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Target for Personalized Treatment of
Chronic Liver Disease
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Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid

droplet-associated protein that has been shown to have hydrolase activity toward

triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with

fatty liver disease was revealed by a genome-wide association study (GWAS) of

Hispanic, African American, and European American individuals in the Dallas Heart

Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3

rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation

(steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma

regardless of etiologies including alcohol- or obesity-related and others. The frequency

of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European

Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence

of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene

variant and environment interaction poses a serious concern for public health, especially

chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty

liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target

for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved

drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic

studies, novel therapeutic strategies are expected to be developed for the treatment of

the PNPLA3(148M) variant-associated chronic liver diseases in the near future.

Keywords: PNPLA3, rs738409, nonalcoholic steatohepatitis, alcoholic liver disease, fibrosis, cirrhosis,

hepatocellular carcinoma

Alcoholic and non-alcoholic fatty liver diseases (ALD and NAFLD) have become serious public
health burdens in the modern societies (1). ALD and NAFLD are chronic liver disorders that
begin with hepatic triglyceride accumulation (steatosis) and progress to hepatic inflammation and
fibrosis, cirrhosis and even liver cancer (2, 3). The causes of these liver diseases are multifactorial,
including genetic, and environmental factors. Excess alcohol consumption, over nutrition, and
physical inactivity are significant environmental risk factors (4, 5). It is believed that hepatic
steatosis sets a stage for elevated susceptibility to acute and chronic inflammation in the liver.
Multiple cytokines and chemokines including transforming growth factor-β (TGF-β) secreted from
inflammatory immune cells trigger an activation of hepatic stellate cells (HSCs) and subsequently
hepatic fibrogenesis (6).

In addition to those environmental factors, numerous genetic variants have been shown to be
associated with ALD andNAFLD, including patatin-like phospholipase domain-containing protein
3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), glucokinase regulator (GCKR),
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membrane bound O-acyltransferase domain-containing 7
(MBOAT7), and hydroxysteriod 17-beta dehydrogenase 13
(HSD17B13) (7, 8). TM6SF2 is involved in the VLDL secretion
(9–15). The rs58542926 C>T variant of TM6SF2 decreases
the VLDL secretion and increases hepatic triglycerides (16–
25). GCKR regulates the glucokinase activity in the liver
(26). The rs780094 A>G and rs1260326 C>T variants of
GCKR lead to the loss of control of hepatic glucose influx
and therefore increase hepatic lipogenesis (27–38). MBOAT7
catalyzes the acyl chain remodeling of phosphatidylinositol
and decreases free arachidonic acid levels (39, 40). The
rs641738 C>T variant of MBOAT7 increases arachidonic
acid levels and hepatic inflammation (41–54). HSD17B13
has been shown to have retinol dehydrogenase activity (55).
The rs72613567:TA variant of HSD17B13 is associated with
increased steatosis and decreased inflammation and fibrosis
(56–64). PNPLA3 has drawn a remarkable attention in the liver
field since the first genome-wide association study (GWAS)
revealed that a single nucleotide polymorphism (SNP) in
the human PNPLA3 gene—rs738409[G] (148M) is the only
non-synonymous sequence variant significantly associated
with hepatic fat content in the Dallas Heart Study cohort (65).

FIGURE 1 | PNPLA family members. Nine PNPLA family members are depicted by the size and localization of the conserved patatin (PAT) domains.

Multiple genetic studies have since validated the association
of PNPLA3(148M) with a broad spectrum of liver diseases
ranging from ALD and NAFLD, non-alcoholic steatohepatitis
(NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC)
(33, 66–117). However, the underlying pathogenic mechanisms
remain elusive. This review aims to briefly summarize the
PNPLA3 biology, clinical implications, and therapeutic
development strategies.

PNPLA3 GENE FUNCTION

PNPLA3 has multiple names in the literature including
adiponutrin (ADPN), calcium-independent phospholipase A2-
epsilon (IPLA2epsilon, and chromosome 22 open reading frame
20 (C22orf20). In 2001, PNPLA3 was initially cloned from
mouse 3T3 preadipocytes as a feeding-inducible gene, therefore
named adiponutrin (118). In 2004, PNPLA3 was rediscovered as
IPLA2epsilon by nucleotide sequence similarity search (119). In
2006, human patatin-like phospholipases including adiponutrin
were grouped to the PNPLA family (120), which has 9 members
(PNPLA1-9). The common feature of the PNPLA family
members is the patatin-like phospholipase domain (Figure 1).
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Protein sequence alignments show that the overall sequence
conservation is low except a few conserved regions including
the glycine-rich region and the aspartate-glycine residues of the
catalytic site (120).

PNPLA3 GENE CHARACTERIZATION

Human PNPLA3 gene is localized on chromosome 22
(22q13.31). It has 9 exons that encode a 481-amino acid
protein. In contrast, mouse Pnpla3 (384 amino acids) is much
smaller than human PNPLA3 protein (Figure 2), as both
proteins share high homology in the N-terminal half of the
amino acid sequences. But the mouse Pnpla3 lacks the middle 17
residues and the C-terminal 75 residues in the human PNPLA3
protein. Therefore, it should be cautioned when implying the
mouse Pnpla3 function to human PNPLA3. Another major
difference between mouse and human PNPLA3 genes is the
tissue-wise gene expression profiles. The human PNPLA3 gene
is expressed highly in the liver and moderately in the adipose
tissue, brain, kidney, and skin (120, 121); however, the mouse
Pnpla3 gene is expressed at very high levels in both white and

brown adipose tissues but at low levels in other tissues (118, 122).
PNPLA3 is regulated by carbohydrate-response element binding
protein (ChREBP) and sterol regulatory element binding protein
1c (SREBP1c) in mouse and human hepatocytes (123–125).
Surprisingly, Pnpla3 gene knockout mice have normal levels
of plasma and hepatic triglyceride contents and they do not
develop fatty liver disease (126, 127). Interestingly, human
PNPLA3(148M) transgenic mice develop hepatic steatosis on
chow or high-sucrose diet (128). Pnpla3(148M) knockin mice
also develop hepatic steatosis on the high-sucrose diet (129, 130)
and hepatic inflammation and fibrosis on a NASH diet (131).

PNPLA3 ENZYMATIC ACTIVITIES

PNPLA3 has been shown to possess triacylglycerol lipase and
acylglycerol transacylase activities using recombinant human
PNPLA3 protein purified from Sf9 insect cells and triolein
and mono-olein as substrates, respectively (119). However,
when Huang et al. used similar recombinant human PNPLA3
protein from Sf9 cells to analyze lipase and transacylase
activities, they only detected the lipase activity against major

FIGURE 2 | Human and mouse Pnpla3 protein sequence alignments. The protein sequences were aligned using the NCBI BLAST program. The identical residues are

in red. The PAT domain is underlined. The 148I residue is marked by asterisk.
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glycerolipids including triacylglyceride, diacylglyceride, and
monoacylglyceride but not transacylase activity (132). In another
study, human PNPLA3 was overexpressed and purified from
HEK293 cells and showed to have a lipase activity on 1,2-
o-dilauryl-rac-glycerol-3-glutaric acid-(6’-methylresorufin) ester
(122). Mutation of the active-site serine within the Ser47-
Asp166 catalytic dyad motif abolished the lipase activity; however,
overexpression of human PNPLA3 in HEK293 cells did not
decrease the cellular triglyceride levels (122). The recombinant
human PNPLA3(148M) mutant from Sf9 cells was shown to
lose the triglyceride hydrolase activity using triolein as substrate
(133). Human wildtype PNPLA3 but not the 148M mutant
recombinant protein from yeast cells also showed triglyceride
hydrolase activity (134). In addition, wildtype recombinant
human PNPLA3 protein purified from yeast cells also showed
retinyl esterase activity using retinyl-palmitate as substrate
whereas the 148M mutant protein had diminished activity
(135). Retinoic acids (all-trans) have been shown to activate
retinoic acid receptor (RAR) and retinoid X receptor (RXR) and
subsequently downregulate fibrotic genes in HSCs (136–138).
PNPLA3(148M) mutant causes an decrease in retinol levels and
downregulation of RAR/RXR target genes in the LX-2 hepatic
stellate cell line (139).

PNPLA3 IN LIPID DROPLET
HOMEOSTASIS

PNPLA3 is mostly bound to lipid droplets in mammalian
cells (133, 140–142), but how this protein functions on lipid
droplet remains elusive (Figure 3). Several lines of evidence
suggest that PNPLA3(148M) abnormally accumulating on lipid
droplets links to the impairment of lipid droplet metabolism.
Wildtype PNPLA3 turns over according to fasting/feeding cycles;
however, the 148M mutant PNPLA3 is resistant to ubiquitin- or
autophagy-mediated protein degradation (129, 143, 144). Excess
PNPLA3 on the lipid droplets seems to impair the activity of
PNPLA2, also called adipose triglyceride lipase (ATGL), likely
through competing with the ATGL activator —comparative
gene identification 58 (CGI-58) or officially abhydrolase domain
containing 5 (ABHD5) (140, 142, 145). Some data suggest that
PNPLA3(148M) tends to interact with CGI-58 more strongly
than the wildtype counterpart does (145). CGI-58 is also required
for the targeting of PNPLA3 to lipid droplet since PNPLA3
cannot localize onto lipid droplet in the CGI-58 knockout liver
cells (140).

PNPLA3 IN HEPATIC FIBROSIS

In addition to hepatocytes, human PNPLA3 gene is also
abundantly expressed in HSCs (121, 139). PNPLA3 can be
induced by TGF-β but not platelet-derived growth factor
(PDGF) in human HSCs (146). The same report also shows
that overexpression of the wildtype PNPLA3 but not the
PNPLA3(148M) mutant reduces the intracellular retinyl esters in
HSCs. Interestingly, after incubation with retinol and palmitate,
wildtype, but not mutant PNPLA3 decreases the secretion

FIGURE 3 | A working model for the PNPLA3 function on lipid droplet. ATGL

and ABHD5 normally interact to promote triglyceride breakdown from lipid

droplets. The 148M mutation impairs the turnover of PNPLA3 protein by

ubiquitin or autophagy mediated degradation. When PNPLA3(148M) variant

proteins accumulate on lipid droplets, PNPLA3(148M) competes with ATGL for

the interaction with ABHD5. As a result, the ATGL activity is reduced and lipid

droplets are accumulated.

of matrix metallopeptidase 2 (MMP2), tissue inhibitor of
metalloproteinase 1 (TIMP1), and TIMP2 from HSCs (146).
Another report shows that the PNPLA3 gene expression
is induced during the primary human HSC activation and
knockdown of PNPLA3 by siRNA attenuates the HSC activation
(139). Human HSCs with the PNPLA3(148M) variant have
higher expression of inflammatory cytokines and chemokines
including granulocyte-macrophage colony-stimulating factor
(GM-CSF), chemokine (C-X-C motif) ligand 8 (CXCL8), and
TGF-β. Overexpression of the PNPLA3(148M) variant enhances
the HSC proliferation and chemotaxis (139). In contrast to
the previous report regarding the retinyl palmitate lipase
activity of PNPLA3 (135), Bruschi et al. have found that
total retinol content and RXR and RAR signaling are both
lower in the PNPLA3(148M) mutant HSCs than that in the
PNPLA3 wildtype HSCs (139). Further signaling analysis has
revealed that c-Jun N-terminal kinase (JNK) is highly activated
in the PNPLA3(148M) HSCs. As a consequence, peroxisome
proliferator-activated receptor gamma (PPARγ), a key HSC
quiescence regulator, is inhibited, whereas activator protein 1
(AP-1), a proinflammatory transcription factor, is activated (139).
Collectively, these dysregulations contribute to the fibrogenic
phenotype in the PNPLA3(148M) HSCs. The inhibition of
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TABLE 1 | Human PNPLA3 genetic association studies in liver diseases.

PNPLA3 SNP Study population Associated phenotype and significance References

rs738409[G] Hispanics, African Americans, European

Americans, N = 9,229

Positive association with hepatic fat content (P = 5.9 × 10−10), serum

ALT (P = 1.3 × 10−5 in Hispanics)

(65)

rs2281135[A],

rs738409[G]

Europeans, N = 12,419 Positive association with ALT (P = 8.4 × 10−16, P = 3.7 × 10−10) (110)

rs738409[G] West-Eurasian populations, N = 23,274 Negative association with total cholesterol (P = 8.87 × 10−7), non-HDL

cholesterol (P = 2.27 × 10−6), LDL cholesterol (P = 7.99 × 10−4)

(148)

rs738409[G] Mestizo (mixed European and Native American

ancestry), N = 1,221

Positive association with ALD (OR = 1.45, P =8.4 × 10−4) and alcoholic

liver cirrhosis (OR = 2.25, P = 1.7 × 10−10)

(89)

rs738409[G] Caucasian (82.1%), African American (2.3%),

Asian (5.4%), American Indian (3.2%), other

(7%), N = 1,117

Positive association with hepatic steatosis (OR = 1.46, P = 0.03), portal

inflammation (OR = 1.57, P = 2.5 × 10−4), lobular inflammation (OR =

1.84, P = 0.005), Mallory-Denk bodies (OR = 1.6, P = 0.015), NAFLD

activity score (P = 0.004), hepatic fibrosis (OR = 1.5, P = 7.7 × 10−6)

(68)

rs738409[G] Japanese, N = 831 Positive association with NAFLD (OR = 1.73, P = 9.4 × 10−10) (149)

rs738409[G] German, N = 1,419 Positive association with alcoholic liver cirrhosis (OR = 2.79, P = 1.6 ×

10−6)

(84)

rs738409[G] Americans and Europeans, N = 1,997 Positive association with NAFLD (OR = 3.26, P = 3.6 × 10−43) (83)

rs738409[G] European Caucasians, N = 537 Positive association with chronic hepatitis C related hepatic steatosis (OR

= 2.55, P = 0.034), fibrosis (OR = 3.13, P = 0.002)

(94)

rs738409[G] German, N = 899 Positive association with liver cirrhosis (OR = 1.56, P = 0.005) (150)

rs738409[G] European Caucasians, N = 658 Positive association with liver cirrhosis (OR = 2.08, P = 0.02) (91)

rs738409[G] Japanese, N = 1,326 Positive association with NAFLD (OR = 2.05, P = 6.8 × 10−14) (151)

rs738409[G] American Caucasians, African Americans,

Mexican Americans, N = 4,804

Positive association with hepatic steatosis and high ALT (OR = 1.36, P =

0.01)

(152)

rs738409[G] American Caucasians, N = 751 Positive association with HCC (OR = 3.21, P = 0.02) (153)

rs738409[G] European Caucasians, N = 2,138 Positive association with alcoholic liver cirrhosis (OR = 2.19, P = 1.54 ×

10−48)

(42)

rs738409[G] Chinese Han, N = 768 Positive association with NAFLD (OR = 1.52, P = 8.7 × 10−4) (102)

rs738409[G] Eastern European, N = 969 Positive association with liver fibrosis (OR = 1.65, P = 0.001), liver

cirrhosis (OR = 1.92, P = 5.57 × 10−7)

(154)

rs738409[G] European Caucasians, N = 183 Positive association with alcoholic hepatitis (OR = 1.9, P = 0.01) (155)

rs738409[G] Korean, N = 4,409 Positive association with NAFLD (OR = 1.54, P = 1.74 × 10−15) (156)

rs738409[G] Chinese Han, N = 1,152 Positive association with ALD (OR = 1.93, P = 6.25 × 10−14) (115)

rs738409[G] Europeans, N = 5,525 Positive association with HCC (OR = 1.67, P = 0.005), HCC in ALD

patients (OR = 3.91, P = 1.14 × 10−9), HCC in non-fibrotic patients (OR

= 2.19, P = 0.007)

(106)

rs738409[G] American Caucasians, N = 9,677 Positive association with NAFLD (OR = 1.79, P = 1.7 × 10−20) (157)

rs4823173[A],

rs2896019[G],

rs2281135[A]

Mexican Americans, N = 3,757 Positive association with AST (P = 3.44 × 10−10, P = 7.29 × 10−9, P =

8.73 × 10−9)

(109)

PPARγ in the PNPLA3(148M) HSCs also negatively affects the
liver X receptor alpha (LXRα) activity. As a result, cholesterol
is accumulated in those mutant HSCs, and this also contributes
to the inflammation and fibrogenesis in the PNPLA3(148M)
HSCs (147).

PNPLA3 GENE POLYMORPHISM AND
CHRONIC LIVER DISEASE

Alcoholic and non-alcoholic liver diseases often begin with
simple steatosis and progress to hepatitis, fibrosis/cirrhosis,
and even liver cancer. Both environmental and genetic
factors contribute to the development of these chronic liver
diseases. Among the well documented genes, PNPLA3 has

the broad impact on ALD and NAFLD. The involvement of
PNPLA3 variant rs738409 (148M) in the broad spectrum of
chronic liver disease has been shown by numerous GWAS
(see Table 1). In 2008, Romeo et al. identified a strong
association between the PNPLA3(148M) variant and hepatic
fat concentration in a GWAS on Hispanic, African American,
and European American individuals (65). The 148M variant
frequencies are concordant with the prevalence of NAFLD
in these three ancestry groups, and their allele frequencies
are: Hispanics (0.49), European Americans (0.23), and African
Americans (0.17). Since then, multiple GWASs have reported
a strong association of PNPLA3(148M) variant with both
ALD and NAFLD (Table 1 and Figure 4). Several studies
have documented a strong association of the 148M variant
with liver cirrhosis (42, 76, 154, 158–160). A number of
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FIGURE 4 | PNPLA3(148M) is associated with a wide-spectrum of chronic

liver diseases. Hepatic accumulation of PNPLA3(148M) protein leads to

triglyceride accumulation, liver injury, and fibrosis. With different etiologies, this

may lead to the development of various liver disorders including NAFLD,

NASH, ALD, alcoholic hepatitis (AH), cirrhosis, and HCC.

reports have also shown that the 148M variant is also
associated with higher risk for HCC (77, 85, 92, 93, 106,
108, 153, 160–169). In addition, the PNPLA3 variant rs738409
could lead to differential gene regulation via microRNAs. An
in silico analysis has identified hsa-miR-769-3p and hsa-miR-
516a-3p as potential microRNAs targeting the 3’ UTR of
the human PNPLA3 mRNA (170). Experimental validations
are needed to demonstrate their functional relevance to the
PNPLA3(148M) variant.

THERAPEUTIC STRATEGIES FOR
TARGETING PNPLA3 FOR PERSONIZED
TREATMENT OF CHRONIC LIVER DISEASE

As the PNPLA3(148M) variant is quite prevalent in most
populations, especially among Hispanics (65), it is very
significant to develop therapeutics targeting this genetic
polymorphism. According to the PNPLA3(148M) biology,
there are several potential ways of targeting the 148M variant.
First, the PNPLA3(148M) variant can be targeted at the RNA
levels by small interfering RNA (siRNA), small hairpin RNA
(shRNA), or antisense RNA oligonucleotide. A recent report
has shown that triantennary N-acetylgalactosamine (GalNAC3)
conjugated antisense oligonucleotides (ASO) targeting Pnpla3
in a 148M knockin mouse model significantly reduce hepatic

steatosis, inflammation, and fibrosis (131), suggesting the utility
of the ASO strategy. In another report, targeting Pnpla3 in the

148M knockin mice by AAV-mediated shRNA has also showed
effective reduction of hepatic triglyceride contents (143). For
the translational perspective, PNPLA3(148M)-allele-specific
RNAi is preferred for human patients in order to avoid affecting
the PNPLA3 wildtype allele as we do not fully understand
the PNPLA3 biology. With the encouraging phase III clinical
trial data on proprotein convertase subtilisin/kexin type 9
(PCSK9) RNAi (171), targeting the PNPLA3(148M) variant
by RNAi can be an attractive strategy. Second, PNPLA3 can
be targeted at the protein level. Recent data suggested that an
accumulation of PNPLA3(148M) on lipid droplets is very critical
for the pathogenesis of fatty liver disease (129, 130, 140, 143).
Therefore, targeting PNPLA3(148M) for degradation can be
a useful strategy. Recently, a proof-of-concept study using
proteolysis-targeting chimera (PROTAC)-mediated degradation
of Halo-tagged PNPLA3(148M) has shown a significant effect
on lowering hepatic triglyceride content (143). The question
will be how to degrade endogenous PNPLA3(148M) protein
in a variant-specific manner. To date, there are no effective
ways to specifically target the PNPLA3(148M) mutant protein.
However, targeting PNPLA3 may work from another angle —an
interaction between PNPLA3 and CGI-58, as the interaction can
be regulated by fatty acids or synthetic CGI-58 ligands (145).
Taken together, targeting PNPLA3(148M) has been increasingly
appreciated for therapeutic development for multiple chronic
liver diseases including ALD and NASH.

In summary, PNPLA3 is an enigmatic protein that has broad
implications in metabolic liver diseases from simple steatosis to
cirrhosis and liver cancer. Better understanding the biological
function of PNPLA3 in lipid droplet metabolism should facilitate
the therapeutic development. Targeting the PNPLA3(148M)
variant is expected to be an excellent example of the modern
personalized medicine.
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Cholangiocarcinoma (CCA), or cancer of the biliary epithelium is a relatively rare but

aggressive form of biliary duct cancer which has a 5-year survival rate post metastasis of

2%. Although a number of risk factors are established for CCA growth and progression,

a careful evaluation of the existing literature on CCA reveals that an inflammatory

environment near the biliary tree is the most common causal link between the risk

factors and the development of CCA. The fact that inflammation predisposes affected

individuals to CCA is further bolstered by multiple observations where the presence and

maintenance of an inflammatory microenvironment at the site of the primary tumor plays

a significant role in the development and metastasis of CCA. In addition, mechanisms

activating the tumor vasculature and enhancing angiogenesis and lymphangiogenesis

significantly contribute to CCA aggressiveness and metastasis. This review aims to

address the role of an inflammatory microenvironment-CCA crosstalk and will present

the basic concepts, observations, and current perspectives from recent research studies

in the field of tumor stroma of CCA.

Keywords: microenvironment, inflammatory signaling, cholangiocarcinoma, tumor lymphangiogenesis,

angiogenesis

INTRODUCTION

Cholangiocarcinoma (CCA) is a term used to define a group of different biliary epithelial cancers
and is the second most common type of liver cancer. This group of primary biliary malignancy
represents three different classically recognized kinds of biliary tree cancers, classified on the basis
of anatomical point of origin in the bile duct, intrahepatic CCA (iCCA), perihilar CCA (pCCA),
and distal CCA (dCCA) (1). Among these three types, iCCA originates in the intrahepatic ducts
and represents the second most prevalent type of primary liver malignancy (about 10% of primary
liver malignancies are iCCA). Duration of survival post-resection in intrahepatic CCA is 12.4
months (2). The most common type of CCA, is the pCCA, constituting ∼50–60% of all recorded
cases. pCCA comprises tumor arising from the emergence of left/right hepatic ducts at liver hilum
to the confluence of cystic duct with common hepatic duct (choledocus formation) while distal
CCA representing 20–30% of CCA occurs in the epithelial cells of the extra hepatic bile ducts
(3). Although iCCA represents only about 5–10% of all CCA cases there is an increase in the
number of iCCA among the three CCA types being observed recently (4). Internationally, CCA
cases have increased since the past decade, in United States ∼5,000 new cases are diagnosed each
year (5). The incidence of CCA is highest among Hispanics and Asians (2.8–3.3/100,000) and
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lowest (2.1/100,000) among non-hispanics and African
Americans (6). With a 5 year mortality rate post metastasis
of 2%, CCA, originally described as a rare form of cancer is
receiving more attention compared to the past decades due to its
high mortality rate (1).

ETIOLOGY

The number of people afflicted with CCA differs geographically
primarily because of the difference in the presence of the risk
factors that predispose an individual toward CCA. The number
of CCA cases is higher in Asian countries (7). CCA also shows
a slight bias toward the male gender (7). The number of risk
factors and their extent of influence on CCA predisposition, is
not as high as in other malignancies. This could be partially
due to the limited number of studies focused on identifying risk
factors of CCA. Presence of bile duct cysts, primary sclerosing
cholangitis, liver cirrhosis, hepatobiliary parasitic infections such
as with liver fluke, hepatolithiasis, and thorotrast exposure, are
themost common risk factors. Further complicating this scenario
is the fact that a majority of CCA cases develop without the
presence of any of the above-mentioned risk factors (8). Hence,
there is a need to look at new prognostic factors that will aid in
predicting the surgical eligibility, outcome and survival of CCA
patients. This has opened up new avenues in research and has
identified the critical role of different inflammatory cytokines,
increased lymphangiogenesis, relatively low angiogenesis, cancer
associated fibroblasts (CAFs), mesenchymal stem cells (MSCs),
and other factors, in the growth and progression of the different
types of CCA. In the next section we will review some of these
risk factors.

Primary Sclerosing Cholangitis (PSC)
Inflammation and inflammatory mediators form a key
underlying basis for several risk factors significantly associated
with CCA (9). An inflammatory and obstructive autoimmune
disease of the bile ducts, PSC is one of the most important risk
factors of CCA. Patients with PSC have a 400-fold higher chance
of developing CCA than those without PSC. Interestingly,
majority of PSC patients are between the ages of 30 and 40 (in
general CCA has a reported age specificity of 60–70 years in
age) at the time of diagnosis (9). Up to 50% of these cases are
recorded in the first year of diagnosis of PSC (10). The presence
of chronic inflammation of bile ducts typically associated with
PSC is thought to be one of the reasons for this heightened risk
(11–13). Other factors that serve as the link between PSC and
CCA include increased proliferation of the epithelial cells of
the biliary tree, cholestasis in the ducts leading to the liver and
presence of mutagens produced in the bile (10, 11). The role of
inflammation in the growth and rapid development of CCA is
also underscored by studies that identify inflammatory bowel
disease (IBD) as one of the risk factors of CCA (12, 13).

Cirrhosis
Liver cirrhosis develops as a consequence of liver diseases and/or
conditions such as alcoholism and hepatitis. As a result, the
liver parenchyma is dominated by fibrosis/scarring of liver tissue

resulting in disruption and eventual loss of normal liver function.
Cirrhosis is an important risk factor for iCCA (14) and shows
high degree of association, especially, in Asian populations
(15). Similar to PSC, this too has an inflammatory stimulus
and a sudden rise in epithelial proliferation, presence of pro-
inflammatory cytokines and chemokines and the generation of
fibrotic nodules in liver, mediates a link between cirrhosis and
CCA (3).

Liver Fluke Infections
Liver fluke (Clonorchis sinensis, Opisthorchis viverrini) infections
have been identified as critical risk factors for CCA especially in
eastern Asian countries where these infections are deemed to be
endemic (16). In fact, the recognition of O. viverrini as a cancer-
inducing parasite by IARC (International Agency for research
on Cancer) is due to its role in the development of CCA in
affected individuals. These infections are associated with a rise
in inflammation, generation of fibrotic nodules, obstruction of
bile ducts and/or cholestasis. Chronic inflammation in the biliary
tree inO. viverrini infected patients (especially in the background
of gene polymorphisms and exposure to other environmental
factors) leads to CCA development (17, 18).

Viral Infections
Viral infections such as hepatitis B and C (HBV and HCV,
respectively), serve as important risk factors for CCA (19).
While HBV infection is endemic to Asian countries and thus
serves as the stronger risk factor for iCCA (20), HCV is the
primary causative agent for iCCA in western countries (14).
Cirrhosis is a common manifestation of hepatitis and leads to
the development of the chronic inflammatory background that
predisposes to CCA. However, the role of hepatitis viruses in
causing proliferation of the hepatic epithelium is also considered
to be a reason for CCA incidence in hepatitis patients (21).

Choledocholithiasis and Hepatolithiasis
Choledolithiasis and cholelithiasis are conditions that involve
the presence of stones in the gall bladder and common
bile ducts. The presence of these gall stones causes biliary
obstruction resulting in cholestasis and serve especially as
a risk factor for extrahepatic CCA (22). The presence of
stones or calcium deposition inside the intrahepatic bile
ducts also leads to cholestasis and chronic inflammation,
ultimately serving as a risk factor for CCA. In the Asian
population, 5–13% of patients with hepatolithiasis develop
iCCA (15, 23).

Other Inflammatory Conditions
Chronic pancreatitis is a strong risk factor for extrahepatic
CCA with an odds ratio of 6.61 (95% CI 5.21–8.40) in
comparison to the 2.66 odds ratio of iCCA (95% CI, 1.72–4.10).
In chronic pancreatitis too, cholestasis and inflammation
may arise leading to CCA (24). Also, the presence of
cysts in the bile ducts (intrahepatic and extrahepatic)
when left untreated leads to the development of iCCA
and eCCA tumors, because of biliary duct obstruction
and dilatation leading to cholestasis and inflammation
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(24, 25). Thus, it is evident that inflammation forms an
underlying theme in the predisposition and development
of CCA.

CELLULAR ORIGIN OF CCA

Role of Cell of Origin
As CCAs originate from cholangiocytes from different
anatomical locations of the biliary tree, they also exhibit
considerable tumor heterogeneity that points to the possibility
of diverse cellular origins (1, 26). In general, CCA originates
from the peribiliary gland (PBG) lining epithelium of intra-
and extra- hepatic ducts (IH and EH, respectively) of the
biliary tree (27). Additionally, cholangiocytes and hepatocytes
originating from canals of Herring can undergo mutation to give
rise to tumors having varying phenotypes (28). Based on the
wide range of these phenotypes, pCCA and dCCA have been
characterized as adenocarcinomas mucinous in nature, while
iCCA has two subtypes: iCCA arising from small bile ducts,
mixed in histological phenotype and those arising directly from
large intrahepatic bile duct, mucinous in histology (29, 30).
While bile ductular type iCCA has been recognized to be
associated with solid tumor formation not having preneoplastic
lesions, iCCA arising from large intrahepatic bile duct is one
which is distinctly preceded by preneoplastic lesions (biliary
intraepithelial/intraductal papillary neoplasm). Additionally, bile
ductular type iCCA has been correlated with chronic liver disease
cases such as cirrhosis in contrast to bile duct type iCCA which is
mostly correlated with PSC. These differences in histology point
to the role of different cells of origin of CCA (29, 30).

Stem Cell/Progenitor Niches for CCA
Development
The undeniable role of stem cells in CCA development and origin
is proven by the fact that human hepatic stem cells (hHPSCs) are
the progenitor cells giving rise to cholangiocytes and hepatocytes
that mutate to give rise to CCA (28). The PBG niche starts
at septal-segmental bile ducts and ends near duodenal area at
hepatic pancreatic common duct. PBG niche thus distributed
all across the biliary tree has a significant role in harboring
a multipotent stem cell niche which forms the source of the
endodermal hepatic mucinous cells that ultimately give rise to
the mucinous CCA subtypes of dCCA, pCCA and bile duct type
iCCA (27, 30–32). Cancer stem cells (CSCs) are more generally
characterized as cellular subset that maintains tumor growth,
such CSCs are recognized by the expression of extracellular
markers like CD 24, CD44, CD133, epithelial cell adhesion
molecule (EpCAM) etc. in liver malignancies (33). In CCA, more
of these studies identifying the specific roles of CSCs are needed.
As such two distinct stem cell niches are recognized for CCA
development: BTSCs (biliary tree stem cell niche within PBG)
and hHPSCs within canals of Herring (26, 27). These findings
suggest that CCA has more than one type of cell-of-origin and
the differences can be looked at to develop a treatment strategy(s)
that is personified from an anatomical point of view (34).

FACTORS INFLUENCING THE
INFLAMMATORY TUMOR
MICROENVIRONMENT OF CCA

CCA is one of the most desmoplastic tumors and the tumor
microenvironment of CCA is characterized by a dense bed of
connective tissue intertwining the tumor cells. This dense stroma
is composed of a contiguously activated subset of fibroblasts
called CAFs that play key roles in modulating several aspects
of CCA progression (35). Further during tumor development
and progression and resulting increase in cellular and metabolic
demands there is often restricted access to nutrients and
oxygen supply. This results in regions of the solid tumor
having permanent or transient hypoxia, due to alterations in
the tumor associated vasculature (36). The expanding vascular
network is unable to meet up with the growing demands of the
tumor and hypoxic regions persist and induce cellular pathways
that promote more malignant phenotypes. In addition, there
are immune cells, blood vessels, and lymphatic vessels that
contribute to tumor progression which will be discussed in the
following sections.

Role of Cancer Associated Fibroblasts
CAFs release a number of molecules functioning as extracellular
matrix proteins (ECM) such as collagen I and fibronectin
(35). In CCA, CAFs typically infiltrate the tumor stroma, and
are differentially stimulated by a variety of molecular factors
released by CCA tumor cells as well as hypoxia. The CAFs
population in CCA thus is heterogenous in origin (37). Two
of the main sources of these CAFs are liver (hepatic stellate
cells, HSCs) and portal vein (portal fibroblasts), while bone
marrow derived MSCs also serve as a source of CAFs to
a minor extent (37). CCA tumor cells and other immune
cells such as macrophages secrete inflammatory chemokines,
cytokines and growth factors that not only signal fibroblasts from
liver and portal vein to infiltrate the tumor microenvironment
but also result in constitutive activation of fibroblasts (35).
Platelet derived growth factor (PDGF-DD) overexpressed by
CCA cells under hypoxic condition has been shown to be an
important CAF infiltrating factor. Binding of PDGF-DD to its
receptor PDGFRβ activates Cdc42, Rac1, and Rho GTPases
and JNK pathways (38). PDGF-DD binding Cdc42 induces
the formation of filopodia and Rac1 induces the formation
of lamellipoda, thus ensuring the migration of CAFs to CCA
tumor stroma. In addition to PDGF-DD, a number of other
growth factors such as FGF (fibroblast growth factor), numerous
factors belonging to PDGF family and TGF-β also aid CAF
infiltration (39).

Alpha-smooth muscle actin-positive (α-SMA) fibroblasts
promote biliary cell proliferation and correlate with poor survival
in CCA. CCA fibroblasts have proliferative effects that enhance
tumor promotion and progression of CCA (40). CCA patients
with a high population of CAFs have poorer prognosis than
patients with low number of CAFs (41). Consequently, CAF-
specific α-SMA is a prognostic factor of CCA patient survival
(42). The tumor boosting ability of stromal CAFs was also
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shown using a 3D collagen matrix-based co-culturing system,
in which CCA cells and CAFs isolated from a syngeneic
orthotopic rat model of CCA showed a corresponding increase
in the formation of structures resembling ducts from CCA cells
with the increase in CAF plating density (43). Interestingly,
hepatic stellate cells (HSCs) under the influence of CCA cells
can also transform into CAFs and support CCA growth (44,
45). These findings were further corroborated by studies in a
syngeneic rat CCA model with selective stromal CAF depletion
that exhibited improved host survival and decreased tumor
growth (46).

Factors Supporting CAF-CCA Cross-Talk
CAFs in CCA show unique characteristics and gene signatures
(47). Gene expression studies with human CCA sample derived
CAFs showed significant differences between normal liver
fibroblasts and CAFs. Most of the genes that were induced
in CAFs were involved in controlling cellular metabolism,
a prerequisite for the active production of cellular proteins
to support the tumor microenvironment and promote
tumorigenesis (47). In addition, exosomes also serve as
important vessels for transporting regulatory molecular factors
(between CAFs and CCA cells) thus supporting cross-talk
between CCA cells and CAFs. While studies characterizing
the exosomal cargo involved in CAF-CCA crosstalk has been
relatively limited (48, 49), it has been shown that exosomes
shuttle miR-195 between CAFs and CCA (50). Stimulation of
MSCs to CCA cell-derived exosomes lead to increased migration
and production of inflammatory tumor promoting cytokines as
CXCL1, CCL2, and IL-6 (51). In addition, several growth factors
contribute to the inflammatory microenvironment.

EGFA/EGFR binding has been shown to promote
tumorigenesis and metastasis in CCA, another important
EGFR ligand, HB-EGF was found to be highly expressed
in myofibroblasts. HB-EGF activated EGF signaling
promotes proliferation of CCA cells and also induces
epithelial-mesenchymal (EMT) changes as well as invasion.
HB-EGF secretion from fibroblasts is also activated by the
pro-tumorigenic growth factor TGF-β secreted by tumor cells
that in turn favors CCA growth (52).

Stromal cell derived factor 1 or SDF-1 has previously been
reported to be involved in promoting cancer growth as a
ligand for CXCR4/CXCR7 (53). In CCA, SDF-1 expression is
only produced by the stromal CAF, possibly as a result of
the HSC infiltration under stimulatory signals derived from
angiotensin-II secreted by cancer cells (54). In vitro studies
indicate that when SDF-1 is expressed by HSCs, a number of pro-
tumorigenic responses are induced such Bcl-2, and activation
of PI3K/Akt pathway. These responses initiate increased CCA
cell invasion and prolonged survival in addition to inducing
epithelial-mesenchymal transition (45, 55). Tumor associated
macrophages were shown to produce TNF-α that induces CXCR4
expression, thus promoting SDF-1 mediated pro-tumorigenic
effects (54). CAFs are also shown to release high levels of HGF
(hepatocyte growth factor) that might mediate high expression
of CXCR4 (43).

Role of Mesenchymal Stem Cells (MSCs)
One of the most important cellular components of CCA stroma
are MSCs. MSCs may activate a series of tumor signaling
pathways through the release of cytokines and that may either
promote or inhibit tumor development and progression (56).
The function of MSCs in tissue repair is similar to the homing
of MSCs to sites of tissue damage and to sites of tumor
microenvironment (51). Injured tissues secrete a wide variety of
inflammatory chemokines that sends signals to MSCs for repair.
It has been seen in a number of studies that tumor cells too, while
modulating several other factors in their microenvironment that
foster a metastatic condition, secrete inflammatory chemokines
that result in MSC infiltration (51). CCA cells also secrete
exosomal vesicles that are shown to enhance expression of IL-6,
CXCL-1, and CCL2 by MSCs. Further, conditioned medium
from MSCs exposed to tumor cell-derived extracellular vesicles
(EVs) caused an upregulation in STAT3 phosphorylation and
proliferation of CCA cells, possibly by secretion of CCL2/MCP1,
CXCL1/GRO-α, CXC3CL1/Fractalkine, IL-6, and PDGF-AA
(51). Conditioned media from MSCs also has been found to
upregulate theWnt signaling pathway in CCA cells and increased
nuclear translocation of ß-catenin (57). Further, coculture studies
of CCA and MSCs have shown that increased CCR5 expression
by tumor cells upregulates metalloproteinases MMP-2 and
MMP-9 in CCA cells and thereby promoted angiogenesis and
CCA metastasis (58).

Role of Macrophages
The CCA stroma is densely populated by different infiltrating
immune cells among which tumor associated macrophages
(TAMs) play an important role by regulating angiogenesis,
lymphangiogenesis, tumor proliferation and also modulating
matrix related changes (59, 60). In a study by Wongkham
et al. more than half of CCA tumor samples showed high
macrophage infiltration in CCA (61). It has also been seen
that CD14+/CD16+ monocyte cells which are precursors
of tissue resident macrophages are present in an increased
number in CCA patients. It is significant that these circulating
CD14+/CD16+ monocytes have high VEGF and CXCL3
expression that promote tumor angiogenesis (62). In a
correlation study it was seen that CD163+ M2macrophages were
associated with FOXP3+ regulatory T cell-related infiltration.
Additionally, this study also showed that CCA conditioned
media treatment of macrophages led to polarization bias toward
M2 macrophages along with secretion of TGFβ, IL10, and
VEGF-A (63). A high density of the M2-TAMs in patients is
significantly associated with increased extrahepatic metastases
possibly due to the effects on EMT pathways (41).

ROLE OF INFLAMMATORY CYTOKINES

The association between chronic inflammation and the
development and progression of malignancy is significantly
pronounced in onset and development of CCA (64).
Inflammation in the tumor microenvironment of CCA is
promoted by a number of cytokines and chemokines that further
enhance tumor progression and aid pathways involved in distant
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metastasis (47). Below, we discuss several inflammatory cytokines
that contribute to an inflammatory tumor microenvironment
and enhance CCA progression.

Tumor Necrosis Factor-Alpha (TNF-α)
TNF-α is one of the most well-knownmediators of inflammatory
stimuli in the tumor microenvironment (65). Although TNF-α is
involved in cancer progression, its more prominent pro-tumoral
effects have been seen in angiogenesis and invasion of cancer
cells (66, 67). During pathogenesis, TNF-α elicits an immune
response at tissue injury locations. TNF-α also induces hepatic
stellate cells (HSCs) so that they secrete oxidative radicals such as
hydroxyl radical, nitic oxide (NO), and superoxide anion and is
associated with aggressive development of CCA (68). Suksawat
et al. showed that CCA cells express very high levels of eNOS
and phosphorylated eNOS that correlate with poor prognosis
in CCA patients. This phosphorylation mediated activation
of eNOS by VEGF-C is through activation of PI3K/AKT
pathway. The downstream effects of eNOS/peNOS/iNOS is
thought to originate from VEGF-C pathway activation (69).
TNF-α has been shown to promote migration of CCA cells
by upregulating expression of S100A4, vimentin and ZEB2,
molecules involved in EMT transition. In neoplastic bile ducts,
thesemolecules have been seen to be associated with upregulation
of TGF-β and downregulation of E-cadherin expression, an
observation that has been correlated to poor prognosis in CCA
patients (70).

Interleukin 1β (IL-1β)
Classified as one of the most important pro-inflammatory
cytokines, IL-1β has been shown to be highly expressed from
HSCs. The autocrine signaling mediated by CCA cells also
becomes prominent in this regard as CCA cells have been
shown to produce high levels of IL-1β that further enhances
the CXCL5/CXCR2 pathway that in turn activates AKT/PI3K
or ERK1/2 pathways. In fact, heightened CXCL5 expression
has been seen to indicate poor rates of survival in CCA
patients (71, 72).

Interleukin 6 (IL-6)
Bone marrow derived MSCs (BM-MSC) when exposed to tumor
conditioned medium can transform into CAFs and stimulate
tumor growth via secretion of inflammatory cytokine IL-6
in the tumor stroma. In CCA, this IL-6 overexpression was
found to decrease the methylation of the EGFR promoter and
enhance EGFR expression that in turn is associated with poor
prognosis and overall survival (64, 73). IL-6 also mediates its
tumorigenic effects by causing hypermethylation based silencing
of tumor suppressor genes (74). In CCA, IL-6 has been shown
to activate the p38 pathway and consequently downregulate
p21WAF/CIP1 a cyclin dependent kinase inhibitor, involved in cell
cycle regulation (75). IL-6 also induces upregulation of STAT3
and Mcl-1 (myeloid cell leukemia-1) genes that mediate an anti-
apoptotic response in neoplastic cholangiocytes (76). In addition,
IL-6 also induces EMT by increasing expression of Snail and
JAK/STAT and a resulting downregulation of E-cadherin and
promotes CCA progression (77).

Transforming Growth Factor (TGF-β)
TGF-β plays dual roles in cancer progression and inhibits cell
proliferation, regulates anti-inflammatory, and pro-apoptotic
effects in cells under normal physiological conditions (78). It
also actively promotes tumor progression and most cancer cells
are resistant to its anti-proliferative effects. TGF-β activates
the expression of its downstream genes (such as Bim) through
differential phosphorylation and nuclear translocation of SMAD
transcription factors (79). Mutational changes in the TGF-
β receptor resulting in changes in Smad4 phosphorylation,
increased cyclin D1 levels activate pathways that make CCA
cells resistant to the tumor suppressive effects of TGF-β (80).
Mouse model-based studies have shown that loss of expression
of PTEN and SMAD4 gives rise to CCA (81). Correlation studies
have shown that high levels of TGF- β is related to CCA
metastasis to lymph nodes and distant sites as well as CCA
recurrence (82). Consequently, inhibition of TGF-β resulted
in significant reduction of CCA cell invasion (83). Further,
altered TGF-β signaling in CCA cells also causes EMT-driven
changes in cytoskeletal structure and CCA cell motility thus
influencing cancer cell invasion through upregulation of EMT
genes (84).

Overall, inflammatory cytokines set the stage for CCA growth
by enhancing proliferation, activation of tumor promoting
mechanisms such as EMT, activation of signaling pathways
that promote tumor growth and loss of cell cycle checkpoints.
However, the major cause for the high mortality associated with
these cancers is its ability to metastasize, that is aided by the
activation of lymphangiogenic (growth of new lymphatic vessels)
and angiogenic (growth of new blood vessels). The various
growth factors secreted by CCA cells into their stroma and
other components of the tumor microenvironment foster the
development of new lymphatic and blood vessels that in turn
promote tumor growth and dissemination to distant organs.

LYMPHANGIOGENESIS AND ANGIOGENIC
MECHANISMS IN CCA PROGRESSION
AND METASTASIS

Tumor cells employ several mechanisms to establish a functional
and integrated vascular system comprised of both blood and
lymphatic vessels to promote cellular growth and metabolism.
Expansion of these vascular networks is key to migration
of the tumor cells to distant sites where they establish
tumor niches. A surge of recent data has implicated the
roles of both lymphatic and the blood vascular in promoting
CCA metastasis.

Lymphangiogenesis and Lymph Node
Remodeling
Tumor-associated lymphangiogenesis, or the sprouting of new
lymphatic vessels in the tumor microenvironment is a form of
tumor-associated neovascularization that has been the focus of
studies concerning the metastatic spread of highly aggressive
form of cancers (85). Lymphatic involvement has emerged as a
hallmark of CAA with significant lymphatic invasion or lymph
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node metastasis implicated with poor disease prognosis (86, 87).
Early metastatic CCA is characterized by a striking expansion
of the intratumoral and peritumoral lymphatic vessels, which
represents a key determinant of the early metastasis to the
regional lymph nodes in patients rendering patients unable
to opt for surgical resection. Post-surgical resection period is
characterized by an increase in lymphangiogenesis and lymphatic
vessel remodeling that correlates with poor post-surgical survival
(86). Hence, it is critical to look at the elements in the tumor
microenvironment of CCA that cause lymphangiogenesis and
lymph node remodeling.

As discussed above, the tumor microenvironment of CCA is
enriched with abundant cytokines and chemokines necessary for
paracrine signaling that promotes development of a lymphatic
bed dedicated to sustaining the growth of tumor. CAFs actively
crosstalk with CCA cells in driving the development of a
rich lymphatic vasculature within a pro-lymphangiogenic tumor
stroma (35). High expression of VEGF-C and VEGFR-3 has
been observed in the tumor microenvironment of intrahepatic
CCA patients (iCCA), that also correlated with poor prognosis
in patients (88–90). VEGF-C is required for the growth of small
(or intial) lymphatic vessels whereas angiopoietin 1 & 2 are need
by VEGF-C to form terminal lymphatic vessels in the adult body
(91, 92). The dense network of lymphatic vessels and a reduced
number of blood vessels, in the CCA tumor stroma also creates
a hypoxic microenvironment (93). Hypoxia inducible factor-1
(HIF-1α) is known to induce lymphangiogenesis in several
cancers (94). In CCA, high expression of HIF-1α promotes
tumor progression and metastasis and is associated with poor
patient survival (95). Interestingly, HIF-1α has also been shown
to support cancer related lymphangiogenesis by upregulating
the expression and subsequent secretion of Ang1/2, VEGF-C/D
and PDGF-B from neoplastic cells into the tumor stroma, in
several cancers as breast cancer, esophageal cancer, and oral
squamous carcinoma (96–98). PDGF-D secreted from neoplastic
CCA cells binds PDGFRβ on CAFs resulting in activation of
ERK/NF-kB and JNK signaling networks that in turn secretes
VEGF-C and promotes expansion of the lymphatic vasculature
and tumor cell intravasation. Pharmacological depletion of CAFs
in a CCA in vivo however, significantly reduced lymphatic
vascularization and reduced lymph node metastases (99). VEGF-
C expression in CCA is also mediated by M2 macrophages (63).
Further, overexpression of Nerve Growth Factor Beta (NGF-
B) overexpression correlated with VEGF-C overexpression,
lymphatic vessel density and lymph node metastasis along with
nerve cell invasion in patients of hilar CCA (100). Different
correlation studies have established lymphatic vessel density
(LVD) and expression of several lymphatic specific markers
such as podoplanin and VEGFR-3 as prognostic biomarkers
of CCA (101, 102). Podoplanin is highly expressed on the
surface of CAFs as well as LECs and emerged to be a
prognostic biomarker in human perihilar CCA (101). Lymph
node metastasis has also been correlated with a high podoplanin
expression on activated CAFs in intrahepatic CCA (90). Further
studies are needed to determine the role of podoplanin
in tumor lymphangiogenesis in CCA. However, podoplanin
mediated regulation of small GTPases as Cdc42 induces

capillary morphogenesis, polarized migration, and invasiveness
of LECs (103, 104).

Thelen et al. have demonstrated that a high lymphatic
vessel density or existence of lymphangiogenesis significantly
correlates with poor prognosis in patients with hilar CCA. This
observation adds to the role of lymphatic vessel remodeling
in cancer progression, specifically the migration of cancer cells
via lymphatic vessels (104, 105). In CCA, a “high” LVD is
associated with increased nodal spread, and “high” LVD tumors
more frequently develop recurrence (105). Indeed recent studies
have shown that both peritumoral as well as intratumoral
lymphatic bed is composed of capillaries that lack organization
and/or drainage function thus favoring neoplastic cell infiltration
because of the differential permeability or leaky nature of these
vessels (106). In this regard, LECs lining these vessels also interact
with tumor cells to transport them through endothelium, an
event mediated by the CCL1-CCR8 chemokine axis. CC-type
chemokine ligand 1 (CCL1) is expressed on the surface of LECs
which bind CC-type chemokine receptor 8 (CCR8) on the surface
of tumor cells and thus help in their trans-endothelial migration
(107). Tumor lymphangiogenesis, which results in proliferation
of LECs also functions in immune-evasion of the cancer cells.
LECs in draining lymph nodes express on their surface the well-
known antigen PD-L1 which binds to PD-1 on the surface of
cancer specific CD 8+ cells and induces their apoptosis (108).
However, there is a need to study the mechanisms of lymph node
remodeling and lymphatic metastasis in CCA, that would further
establish the link between lymphatic vessel remodeling, tumor
stroma, tumor lymphangiogenesis and CCA metastasis.

Angiogenesis
Tumor related angiogenesis, or the sprouting of new blood
vessels is one of the key mechanisms for tumor metastasis that is
promoted by angiogenic factors actively secreted by tumor cells
(109). Tumor angiogenesis is pronounced in CCA, one of the
most aggressive and metastatic cancers. Cholangiocytes promote
neo-vascularization by enhanced expression of pro-angiogenic
growth factors both at the site of primary tumor as well as in
the tumor stroma of distant sites where these cholangiocytes have
metastasized. Thus, a sprawling network of blood vessels created
by secreted factors from cholangiocytes supports the growth and
spread of cholangiocytes (110). Critical mediators and activators
of angiogenesis include the growth hormones VEGF, EGF, and
NGF, FGF, placental growth factor, the angiopoietins and their
receptors, Tie1 and Tie2. Further, neuropilin, ephrin, and leptin
are being recognized as key mediators of angiogenesis and tumor
growth (111). These pro-angiogenic factors play important roles
both in maintenance and growth of the primary tumor as well
as neo-vascularization during CCA metastasis (111). In normal
tissues, following induction of angiogenesis by pro-angiogenic
factors such as the VEGF factor family proteins (VEGF-A, VEGF-
B, VEGF-C), remodeling of the newly formed vessel wall takes
place where intercellular tight junctions and adherens junctions
are created between vascular endothelial cells (BECs), that brings
about permeability and elasticity in the vessel (110). After
vessel remodeling is completed in normal tissues the ensuing
blood flow and establishment of normoxia (normal/physiological
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O2 concentration) results in the inhibition of angiogenesis
inhibition. In tumor cells however, hypoxia or a low oxygen
environment in the region of the tumor induces expression
of VEGF hormones. Cholangiocytes, accordingly, have been
found to secrete high levels of both VEGF-A in the tumor
stroma and VEGFR-2 during cholangiocyte hyperplasia (112).
This suggests an autocrine mechanism by which cholangiocytes
regulate their own growth. Similar to the studies in CCA
lymphangiogenesis where high VEGFR-3 expression is enhanced
under the influence of CAFs and tumor cells on the surface
of LECs, it has been shown that a similar paracrine signaling
mechanism exists in BECs where high levels of VEGFR-2 are
expressed on its surface (112). Enhanced expression of VEGF-
A and other members of the VEGF family such as VEGF-
C cause BECs to secrete MMP-9 and MMP-7 which help in
remodeling of the basement membrane and surrounding ECM

and promotes tumor metastasis. Interestingly, it has been shown
that TGF-β and VEGF are co-expressed in human CCA and
that overexpression and functional interaction of TGF-β and
VEGF could potentially contribute to the “angiogenic switch”
and the malignant phenotype in human CCC (113). In addition
to hypoxia stimulating production of VEGF, additional factors
such as estrogen along with IGF1 (insulin like growth factor 1)
and IGFR (IGF1 receptor) synergistically increases the expression
of VEGFs such as VEGF-A, VEGF-C and their corresponding
receptors in cultured CCA cells (114). In addition, metastasis-
associated in colon cancer-1 (MACC1) protein upregulates
VEGF-A thus favoring the growth of CCA (115). Overexpression
of histidine decarboxylase (HDC) enzyme correlated with that of
VEGF-A/C expression. HDC knockdown/inhibition significantly
reduced tumor growth by reducing tumor cell proliferation and
VEGF expression (109).

FIGURE 1 | Schematic illustrating interaction of key elements in the tumor stroma in CCA progression. Several components of the CCA tumor microenvironment

activate mechanisms that promote tumor growth, migration and activation of tumor associated angiogenesis and lymphangiogenesis. Interaction between VEC and

CCA cell via VEGFR2-VEGFA assisted by neuropilin leads to tumor angiogenesis via upregulation of PI3K/Akt pathway. HIF1α activated by an inflamed tumor

microenvironment stimulates CCA progression. VEGFC secreted by CCA as well by CAF (via PDGFD stimulation of tumor cells) aids in the process of

lymphangiogenesis by stimulating LECs to divide via VEGFR3 engagement and upregulation of ERK/JNK pathway. Further contributing to the surrounding milieu,

exosomal vesicles secreted by CCA triggers production of IL6, CCL2, CXCL1, CXC3CL1, and PDGF-AA which in turn when secreted in the tumor stroma induces

CCA proliferation and growth pathways. CCA, Cholangiocarcinoma; MSC, Mesenchymal Stem Cell; LEC, Lymphatic Endothelial Cell; CAF, Cancer Associated

Fibroblast; VEC, Vascular Endothelial Cell; PDGF-AA, Platelet Derived Growth Factor-AA; CXC3CL1, Chemokine Ligand 1 (Fractalkine); CCL2, C-C Motif Chemokine

Ligand 2; CXCL1, C-X-C Motif Chemokine Ligand 1; IL6, Interleukin 6; VEGFR3, Vascular Endothelial Growth Factor Receptor 3; VEGFC, Vascular Endothelial Growth

Factor C; VEGFA, Vascular Endothelial Growth Factor A; VEGFR2, Vascular Endothelial Growth Factor 2; PI3K, Phosphoinositide 3-kinase; Akt, Protein Kinase B;

HIF1α, Hypoxia Inducible Factor 1 α; PDGFD, Platelet Derived Growth Factor D; PDGFRB, Platelet Derived Growth Factor Receptor B; ERK, Extracellular Receptor

Kinase; JNK, c-Jun N-terminal Kinase.
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microRNA Regulation of
Lymphangiogenesis and Angiogenesis in
CCA
Growing evidence from literature suggests that microRNAs
(miRNA), endogenous small non-coding RNAs (19–24
nucleotides) regulate various aspects of cholangiopathies
including CCA and has been extensively reviewed elsewhere
(116, 117). However, studies evaluating their role in regulation
of lymphangiogenesis associated with CCA is very limited. The
miRNAs involved in CCA associated angiogenesis have been
more extensively investigated and miR-92a, miR-126, miR-132,
and miR-296 regulate several key pathways that enhance CCA
associated angiogenesis (118). Overexpression of miR 16 and
miR-424 has been shown to regulate the VEGF-A/FGF signaling
cascades and reduce tumor cell proliferation and migration
(119). miR-101, an miRNA highly expressed in liver was found
to inhibit the growth of CCA by inhibiting VEGF expression
(120). Understanding how miRNA regulate different molecular
players involved at different levels of CCA progression also will
help design better therapeutic interventions for arresting tumor
progression. Further these miRNAs have the potential of being
diagnostic biomarkers for CCA metastasis.

CONCLUSION AND FUTURE DIRECTIONS

The epidemiology of CCA varies across different regions owing
to the differences in the number and intensity of the risk factors
present in each place, the malignancy also varies in terms of the
epidemiology of its types (iCCA, pCCA, dCCA), however based
on the data above it can be postulated that inflammation of the
tumormicroenvironment and its associated players have a crucial
role in shaping the response of the CCA cells to therapeutic
strategies, their growth and progression. To this end, the early
metastatic events of CCA is an area that can be pursued in the

future to look for new therapeutic targets as well as to unravel
the intricacies of the inflammatory tumor microenvironment-
CCA crosstalk. While therapies targeting specific molecules and
signaling pathways have shown promise, combinatorial therapies
as a whole have come up to be effective in different cancer types.
Hence, a better understanding of the different components of
the tumor stroma that the CCA cells modulate and exploit in
order to give rise to a pro-inflammatory and pro-tumorigenic
environment can lead to a holistic understanding and approach
toward treating CCA. Some of these key mechanisms that
interact and promote the onset and progression and subsequent
metastasis of CCA is shown in Figure 1. It is also evident
that the aggressiveness of this cancer is directly related to its
ability to metastasize and hence understanding key events that
promote lymphatic metastasis in the early stages of the cancer
will be critical for development of targeted therapies. Specific
traits of CCA such as the high rate of lymphangiogenesis vs.
the low rate of angiogenesis, deserve special research focus to
unravel some of the underlying molecular pathways that mediate
disease progression.
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INTRODUCTION

Liver sinusoidal endothelial cells (LSECs) are specialized endothelial cells that have essential roles
in normal liver homeostasis, and are also involved in disease processes. The importance of LSEC
biology has recently been extensively reviewed (1, 2). LSECs line the walls of the hepatic sinusoid
(Figure 1) where they scavenge blood borne macromolecules. LSECs are constantly exposed to
antigens carried from the gastrointestinal tract by the portal vein. LSECs therefore have a crucial
role, alongside Kupffer cells, as gate keepers for liver immunomodulation. If LSEC immune
responses are dysregulated, the result is chronic inflammation which can drive the development
of fibrosis (2).

LSECs maintain a perforated plasma membrane to form fenestrations ranging between 50 and
300 nm in diameter (3). In a healthy, functioning liver, blood enters the sinusoids via the portal
vein and hepatic artery, thus enabling oxygen and macromolecules to be transferred across the
endothelial barrier to hepatocytes, facilitated by the LSEC fenestrae (1).

Due to their location lining the sinusoid LSECs (Figure 1) are in direct contact with blood flow
and therefore exposed to changes in both shear stress and blood pressure. Numerous researchers
have made this observation, however recent reviews of LSEC biology (1, 2) also illustrate how little
is known about mechano-sensing pathways in LSECs. A recent article by Hilscher et al. (4) has
now highlighted how mechano-sensitive pathways in LSECs can drive recruitment of circulating
blood cells to drive portal hypertension. Mechanocrine signaling by LSECs can orchestrate
complex responses across cell types and tissues. This article will highlight the importance of
mechano-biology in LSECs during liver disease and point out important gaps in knowledge. This
exciting research topic has the potential to reveal novel targets for the development of urgently
needed anti-fibrotics.

Importantly LSECs are able to modulate phenotypic changes in hepatic stellate cells (HSCs)
(5–7). HSCs are responsible for the altered extracellular matrix (ECM) production characteristic
of liver fibrosis (8). In the healthy liver HSCs reside in the space of disse between the
endothelial (LSEC) layer and epithelial (hepatocyte) layer. In response to fibrogenic cues, including
inflammatory signals from hepatocytes or LSECs, HSCs alter their phenotype to become activated
myofibroblasts. Activated HSCs are proliferative, migratory, and contractile cells that secrete
fibrotic ECM (9). This means that mechanically induced changes in LSECs have the potential to
rapidly alter HSC phenotype and drive fibrogenesis. The fact that LSEC dysfunction precedes the
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FIGURE 1 | Mechano-sensing by LSECs drives fibrotic processes. LSECs can respond to changes in shear stress and pressure in the sinusoid through activation of

PIEZO channels. Data by Hilscher et al. (4) suggests this is triggered by integrins and myosin filaments. PIEZO channel activation drives cleavage of Notch to release

NICD, and transcription of Notch pathway genes HES1 and HEY1. Activation of this mechanism results in chemokine secretion (CXCL1) which recruits neutrophils (a).

Signaling by LSECs is also known to trigger HSC activation (b) which leads to stiffening of the ECM, potentially driving activation of other mechano-sensitive pathways

(c) such as YAP1.

development of fibrosis in non-alcoholic liver disease (10)
supports the hypothesis that signals from LSECs may be one of
the earliest triggers of HSC activation. There is also the potential
for the establishment of a positive feedback loop in which
mechanically activated LSECs trigger mechanocrine signaling
that activates HSCs. In turn, activated HSCs alter the ECM
to increase tissue stiffness, driving further mechano-activation
of both LSECs and HSCs. Drugs that in some way break
this mechanocrine feedback loop could have great therapeutic
potential for the treatment of fibrotic disease.

MECHANO-BIOLOGY IN LIVER DISEASE

Key experiments by Rebecca Wells’s group clearly showed that
liver stiffness changes very early following hepatic injury (11),
and that increased substrate stiffness is necessary for HSC
activation (12, 13), a key step in fibrogenesis This raises the
question of whether increased hepatic stiffness is a symptom
or a driver of liver disease. Or both? Mechanical force across
a tissue can change due to fluctuations in blood pressure, the
behavior of contractile cells (e.g., HSCs) and changes in the ECM.
Following liver injury changes in hepatic blood pressure occur
rapidly (11, 14), and hypertension in the context of non-alcoholic
fatty liver disease appears to increase the risk of fibrosis (15, 16).

Interest in mechano-sensing during fibrotic liver disease has
largely focused on HSCs (12, 17, 18), and several mechanically
sensitive signaling pathways have been shown to function in
HSCs. Latent TGFbeta, a pro-fibrotic cytokine (19), is released
from the ECM by contractile force transmitted from HSCs via
the αv integrin subunit (20). Furthermore, the mechano-sensitive
transcriptional regulator Yes Associated Protein 1 (YAP1) (21) is
activated in HSCs by increased substrate stiffness (22, 23). YAP1
can be inhibited using verteporfin (24) to reduce fibrosis in vivo
(23). By contrast, relatively little is known about how LSECs sense
and respond to external mechanical cues.

Portal Hypertension and Regulation of
Sinusoidal Tone
Changes in vascular tone cause rapid changes in blood pressure,
shear forces and the overall mechanical stiffness of the liver
(14). LSECs regulate vascular tone by releasing vasoconstrictors,
e.g., cyclooxygenase 1 (COX1) and thromboxane A2 (TXA2);
and vasodilators, e.g., NO which act on HSCs to modulate their
contraction and therefore regulate sinusoidal pressure (25). Some
studies suggest that endothelin, a potent vasoconstrictor, has an
important role in driving portal hypertension, as patients with
cirrhosis have an increased circulating ET-1 (26). When liver
injury occurs, HSCs secrete Endothelin-1 (ET-1), establishing an
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autocrine loop contributing to increased blood pressure (14, 27,
28). Intriguingly, recent data suggests that ET-1 activates YAP-
1 in ovarian cancer cells (29). Tocci and co-workers showed
that beta-arrestin, functioning downstream of ETAR, physically
interacts with YAP1 to increase nuclear shuttling.

Research is now beginning to reveal how LSECs detect
and respond to changes in hepatic blood flow and altered
ECM stiffness.

POTENTIAL FOR MECHANO-SIGNALING
BY LSECS

LSECs are exposed to mechanical cues derived from both blood
flow/pressure changes and changes in the surrounding ECM
of the liver during fibrotic disease. Endothelial cell populations
in other vascular beds are able to detect and respond to
mechanical cues, so it seems reasonable to suggest similar
mechanisms would exist in LSECs. Several different mechano-
signaling pathways, including Neurogenic locus notch homolog
(Notch) 1 (30), PIEZO channels (31–33) and YAP1 (34), have
all been shown to function in endothelial cells. Furthermore, as
described above, ET-1 can drive YAP1 nuclear shuttling (29). This
makes possible a positive feedback loop where HSCs activated by
mechanical cues release ET-1, which could have a dual function.
(1) Autocrine constriction of activated HSCs, contributing to
portal hypertension and increased liver stiffness; and (2) YAP1
activation in both HSCs and LSECs, due to ET-1 signaling, and
increased mechanical stiffness.

Notch
Notch proteins are transmembrane proteins that undergo
proteolytic cleavage upon ligand binding. Notch ligands are
themselves membrane bound proteins from the jagged and delta
families. Upon binding to jagged or delta proteins presented
by neighboring cells, Notch proteins are cleaved to release an
intracellular domain (NICD) that translocates to the nucleus to
orchestrate transcriptional regulation (35). This highly conserved
mechanism allows cell-to-cell contact to regulate key processes
such as proliferation, cell fate, differentiation, and cell death.

Notch proteins are expressed by vascular endothelial cells (36),
and play a critical role in development of the vascular system
(37). Mechanical force is necessary to reveal the Notch cleavage
site and allow release of NICD (38, 39). It has recently been
shown that Notch1 localization in endothelial cells is polarized by
shear force. Notch1 protein polarization occurs in the direction
of flow, and Notch1 is aligned with the downstream direction
of flow across the endothelial cell layer (30). Furthermore, levels
of nuclear NICD increased in a step wise fashion as shear
stress induced by flow increased, providing compelling evidence
that endothelial Notch is a mechano-sensor (30) that regulates
endothelial function and phenotype in response to changes in
shear stress.

In the liver Notch is expressed by LSECs (40, 41).
Targeted deletion of Notch1, or the canonical notch effector
Rbpj1, specifically in LSECs, caused dilated sinusoids and
portal hypertension in adult mice (42). When Notch1 protein

expression was disrupted in LSECs at birth, development of the
liver vasculature was severely disrupted (42). Conversely, forced
Notch pathway activation by endothelial specific overexpression
of NICD also disrupted normal liver homeostasis, with
expanded sinusoids, reduced hepatocyte proliferation and
increased hepatocyte cell death. LSECs appeared to become
dedifferentiated, and the fibrogenic response to CCl4 induced
liver injury was increased (43).

These findings highlight the importance of tightly regulated
Notch1 signaling in LSECs for normal liver function. Mechanical
regulation of Notch1 could play a critical role in normal liver
homeostasis, and in the response to liver injury. Intriguingly,
recent data (4) shows that the Notch1 pathway in LSECs is
sensitive to mechanical cues. Hilscher et al. (4) suggest that
stretch activated PIEZO cation channels activate Notch signaling
which drives recruitment of neutrophils and formation of
neutrophil extracellular traps that cause portal hypertension.

PIEZO Channels
PIEZO proteins form mechano-sensitive cation channels in the
plasma membrane (44, 45). PIEZO1 is essential for correct
vascular development, and global knockout of PIEZO1 is
lethal (31, 32). PIEZO1 channels are present in the plasma
membrane of endothelial cells and activated by shear stress
to trigger Calcium influx into the cell (31, 32). Since their
initial discovery, it has been shown that PIEZO1 is also critical
for normal vascular homeostasis. Endothelial cells respond
to changes in shear forces via PIEZO1. PIEZO1 induced
signaling elicits downstream changes in vascular tone and blood
pressure. In mice with endothelial specific PIEZO1 deficiency
the ability of endothelial cells to respond to changes in flow
by releasing NO to trigger vasodilation was lost, resulting in
hypertension (33).

PIEZO channels are present on LSECs (31), and, as mentioned
above, Hilscher et al. have recently highlighted how PIEZO1
channelsmodulate Notch pathway activity in response to changes
in blood pressure (4). In their experimental model of cyclic
stretch, integrins transmitted changes in mechanical force to
activate PIEZO1 cation channels, possibly via myosin (46,
47). Similarly, force transmitted via non-muscle myosin has
recently been shown to be involved in the ligand-activated
cleavage of Notch (48). In LSECs the integrin-activated PIEZO1
channels interact with the Notch1 receptor to activate Notch
target genes via production of the transcription factors Hes1
and Hey1 (4). Future experiments are necessary to establish
whether myosin filaments in LSECs can interact directly with
Notch1, or via PIEZO1, to drive notch cleavage and downstream
signaling. It is also important to note that the actomyosin
cytoskeleton has a crucial role in maintaining the fenestrated
plasma membrane characteristic of healthy LSECs (49–51). This
adds further complexity to the interplay between external and
internal mechanical forces. How are changes in external force
transmitted into LSECs? How do changes in external force
affect the LSEC cytoskeleton? Could external mechanical cues
have a direct influence on the maintenance of the fenestrated
plasma membrane?
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YAP1
Another mechanism for mechano-signaling in LSECs is YAP1,
which has recently been shown to be sensitive to shear forces
in zebrafish endothelial cells (34). Nuclear YAP1 is also present
in primary LSECs isolated from murine livers (52). YAP1 can
be activated downstream of PIEZO1 (46). Further work is
therefore necessary to confirm YAP1 expression and function in
mammalian LSECs, and whether YAP1 status in LSECs can be
regulated by PIEZO channel activation. Current understanding
of YAP1 function in the liver has recently been extensively
reviewed (53).

THERAPEUTIC POTENTIAL

LSEC phenotype restoration through inhibition of mechano-
sensitive pathways provides an intriguing therapeautic strategy
for the treatment, and even reversal, of liver fibrosis. Compelling
evidence that LSECs signal to neighboring cells in a context
dependent manner to drive either tissue regeneration or fibrosis
(7) provides strong support for the targeting of LSECs as a
means to drive fibrosis regression. As many of the pathways
discussed are not specific to LSECs, or even to endothelial
cells, a means of delivering a therapy specifically to LSECs
is desirable. Nano-particles targeting LSECs for the regulation
of auto-immunity have already been developed (54). Similar
approaches could be used to deliver molecules targeting
mechano-sensing pathways specifically to LSECs. Timing of
therapy will be crucial. Early intervention would arguably
provide more chance of success, but this is made challenging
due to issues with late diagnosis. However, clearance of hepatitis
C infection leads to fibrosis regression, and clearly shows that
human liver fibrosis is reversible at later stages than previously
thought (55).

Targeting Notch
Two classes of drug that target notch signaling are currently
in clinical trials as cancer therapies (56). (1) Gamma-secretase
inhibitors (GSIs) target the enzymes responsible for cleavage of
Notch and block release of NICD. (2) Monoclonal antibodies
block notch-ligand receptor interactions. Both classes of drug
have dose limiting side effects linked to normal notch function
in the gastrointestinal tract. Successful adoption of notch
inhibition as a therapeutic strategy for liver fibrosis would
therefore require cellular targeting to avoid severe side effects.
As mentioned previously (section NOTCH), Notch has diverse
functions during liver development, homeostasis and disease
(57). In hepatocytes (58) or LSECs (43) Notch signaling can
induce HSC activation and promotes fibrosis. It has been
demonstrated that inhibition of Notch signaling using a GSI
in vivo ameliorated fibrosis in a CCl4 pre-clinical model (59).
Therefore, therapeutic targeting of Notch would impact multiple
pro-fibrotic mechanisms, potentially including mechano-crine
signaling by LSECs (4).

Targeting PIEZO Channels
Yoda1 was the first molecule identified which could artificially
regulate PIEZO channel activity (60). However, Yoda1 functions

as an agonist and causes activation of PIEZO1. Based on the
evidence from Hilscher et al. activating PIEZO1 would have a
negative impact on liver fibrosis (4). Dooku is a more recently
identified analog of Yoda1, which appears to function as a Yoda1
antagonist (61). Importantly this molecule only inhibits Yoda1
induced PIEZO channel activation. As yet, no small molecule
antagonists of PIEZO channel mechano-activation have been
discovered. It is interesting to speculate what effect PIEZO
channel inhibitors might have on liver fibrosis, especially if they
could be delivered specifically to LSECs. As PIEZO receptors are
widely expressed across endothelial cell types, long term global
treatment with a PIEZO antagonist would likely have undesirable
side effects.

Integrins
Hilscher et al. demonstrate that PIEZO channel mechano-
activation is triggered by integrin signaling; treatment of cells
with arginine-glycine-aspartate (RGD) peptide inhibited stretch-
induced transcription of Notch target genes (4). Identification
and targeting of the integrin heterodimers (62) involved in
this mechanism could be a strategy for developing anti-
fibrotics. The integrin subunits present in the LSEC cell
membrane are yet to be fully characterized. Mass spectrometry
showed that integrin beta 3 is expressed by LSECs following
partial hepatectomy (63). Candidate integrin alpha subunits
include alphaV and alphaIIb, both of which partner with the
beta3 subunit to facilitate interactions between LSECs and
platelets (64).

Targeting YAP1?
Verteporfin (tradename Visudyne, Novartis) was originally
developed as a light activated treatment for neovascular
macular degeneration (65). Verteporfin’s ability to inhibit YAP1
activity was identified by screening for compounds able to
disrupt the interaction between YAP-1 and it’s DNA binding
partner TEAD1 (24). Mice tolerate verteporfin treatment via
intraperitoneal injection over 3 weeks (23). However, further
studies are needed to assess its specificity and potential
for development as a long term therapeutic strategy. In
light of this it is important to note that more specific
alternatives to verteporfin have already been developed and tested
in vitro (66).

DISCUSSION

The data presented by Hilscher et al. (4) is compelling:
mechanical cues alter LSEC function. In response to mechanical
stretch PIEZO channels activate the notch pathway to trigger
secretion of the chemokine CXCL1 by LSECs. CXCL1 release
recruits neutrophils that drive microthrombi formation and
promote portal hypertension. This is the first direct evidence
of mechano-sensing by LSECs, and links PIEZO channels with
notch-signaling, both of which are known to be mechanically
activated in other contexts. It is reasonable to expect that
integrins will also be involved in the detection of mechanical
cues by LSECs. For other mechanosensitive pathways such as
YAP/TAZ there is potential for involvement in LSEC biology
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as YAP1 responds to shear stress in a zebrafish model (34).
Another area of interest is how actomyosin contractility responds
to and generates force to regulate LSEC shape (fenestrae)
and integrate external and internal cues via PIEZO (47),
notch (48), or YAP1 (67). The next challenge will be to
harness our improving understanding of the importance of
mechanobiology in LSECs to attempt to develop novel therapies
for liver disease. Breaking the positive feedback loop set in
motion when mechanical cues cause LSECs to trigger neutrophil
recruitment, and potentially HSC activation, could be a successful
therapeutic strategy.
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Aging is commonly defined as the time-dependent functional decline of organs and

tissues. Average life expectancy has increased considerably over the past century and

is estimated to increase even further, consequently also the interest in understanding

the aging processes. Although aging is not a disease, it is the major risk factor

for the development of many chronic diseases. Pathologies, such as Primary Biliary

Cholangitis (PBC) and Primary Sclerosing Cholangitis (PSC) are cholestatic liver

diseases characterized by chronic inflammation, biliary damage and ultimately liver

fibrosis, targeting specifically cholangiocytes. To date, the influence of aging in these

biliary diseases is not fully understood. Currently, liver transplantation is the only

solution because of lacking in efficiently therapies. Although liver cells have a high

regenerative capacity, they undergo extensive molecular changes in response to aging.

Following time-dependent damage induced by aging, the cells initially activate protective

compensatory processes that, if hyperstimulated, can lead to the decline of regenerative

ability and the development of pathologies. Recent studies have introduced novel

therapeutic tools for cholangiopathies that have showed to have promising potential as

novel therapies for PSC and PBC and for the development of new drugs. The recent

advancements in understanding of molecular aging have undoubtedly the potential to

unveil new pathways for selective drug treatments, but further studies are needed to

deepen their knowledge.

Keywords: aging, PSC, PBC, senescence, therapeutics, inflammation, fibrosis

INTRODUCTION

The aging of a biological system is the inevitable process determined by time-dependent
accumulation of damage to genetic material (1) that commonly involves DNA damage, telomere
shortening, and epigenetic alterations. The functions of organs inevitably decline in time, leading
to body deterioration, and increased susceptibility to death (2, 3). Average life expectancy
has increased dramatically over the past century and is estimated to increase even further.
However, the sharp increase in the number of elderly people suffering from chronic diseases
suggests that an increase in life span does not necessarily coincide with a prolonged health
span. The aging research goal focuses mainly on improving health span, given the health costs
associated with the years of oldness. Although aging is not a disease, it is the major risk factor
for the development of many chronic diseases (4–6), in particular chronic liver conditions
(7, 8). Specific age-related hepatic changes have already been highlighted and may affect liver
morphology, physiology and oxidative capacity, besides affecting the regenerative capability. Old
age seems to favor non-alcoholic fatty liver disease (NAFLD), NASH, and ultimately HCC,
principally caused by an increased inflammation in agreement with the inflamm-aging theory.

35

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2019.00332
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2019.00332&domain=pdf&date_stamp=2020-01-21
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marco.marzioni74@gmail.com
https://doi.org/10.3389/fmed.2019.00332
https://www.frontiersin.org/articles/10.3389/fmed.2019.00332/full
http://loop.frontiersin.org/people/811547/overview
http://loop.frontiersin.org/people/829048/overview


Pinto et al. Aging in Chronic Cholestatic Conditions

Pathologies affecting cholangiocytes (cholangiopathies), such
as Primary Biliary Cholangitis (PBC) and Primary Sclerosing
Cholangitis (PSC), are cholestatic liver diseases (targeting intra-
and extra-hepatic cholangiocytes), characterized by chronic
inflammation and thus biliary damage which cause proliferation
and ultimately liver fibrosis, which develop and progress
differently according to the patient age. Over the years, more
data have been obtained regarding PSC. This pathology is
characterized by destruction of intrahepatic/extrahepatic bile
ducts, chronic biliary inflammation, liver fibrosis (9, 10) and
is often associated with inflammatory bowel disease rising
risks of developing colorectal cancer and cholangiocarcinoma
(11–13). PBC, is an autoimmune disorder that specifically
target cholangiocytes, characterized by the injury of small- and
medium-sized bile ducts, cholestasis, and lymphocyte infiltration
(14–16). Has been shown that PBC predominantly affects
women, with higher incidence in patients who have a relative
with PBC or any other autoimmune disorder (17). Currently,
liver transplantation is the only solution for cholangiopathies
because of lacking in efficiently therapies. Although new
preclinical studies have provided attractive prospects for the
development of new therapeutic approaches, especially for PSC,
further investigation is needed in understanding mechanisms
and pathophysiology of PBC to identify new candidate targets.

HALLMARKS OF AGING

Studies carried out over the years to understand typical aging
processes have led to the identification of nine hallmarks
that can be grouped into three main categories (3). The
primary hallmarks are the cause of age-related damage,
such as genomic instability, telomere attrition, epigenetic
alterations and loss of proteostasis (18, 19). The response
to these age-related damages, named antagonistic hallmarks,
include cellular senescence, deregulated nutrient sensing and
altered mitochondrial function. Finally, integrative hallmarks
are the consequence of responses and responsible of aging
phenotype which leads to stem cell exhaustion and altered
intercellular communication.

PRIMARY HALLMARKS

The accumulation of both genomic and mitochondrial DNA
damage depends on exogenous stressors (physical, chemical or
biological triggers) and/or endogenous events (DNA replication
errors or ROS production) (1, 20). The oldest cells are the ones
with the higher genomic instability. Typical of old cells are
telomers mutations and their length has been shown to be highly
heritable (21). The correlations between telomeres shortening
and aging has been demonstrated in different animal models (22)
and in several age-related diseases (23–25). DNA methylation
(epigenetic alteration that principally involve CpG islands) seems
to be a predictor of human age in genome-wide methylation
studies (26–28). The impairment of proteostasis (principally due
to toxins or free radicals), lead to the chronic expression of
unfolded or misfolded protein or to the accumulation of protein

aggregates, process that has been linked to different age-related
pathologies of nervous system (29–31).

ANTAGONISTIC HALLMARKS

Cell activates compensatory processes known as antagonistic
hallmarks, in response to the primary hallmarks. They are
initially protective processes but, when hyperstimulated,
may lead to cellular aging or development of pathologies.
Cellular senescence (defined as the irreversible arrest of cell
growth) represents the main response to age-related damage.
Senescence is associated with complex cellular changes, such as
chromatin reorganization, metabolic reprogramming, increasing
of autophagy and release of proinflammatory mediators and
growth factors known as senescence-associated secretory
phenotype (SASP) (32). Cellular senescence is not exclusively
associated with aging but occurs in response to multiple inducing
factors, remodeling the tissue in order to solve the damage. In
vivo data have shown the accumulation of senescent cells in
aged tissues (33, 34). The lack of balance between clearance of
senescent cell and mobilization of progenitor cells, determines
the accumulation of senescent cells, which contributes to aging.
Nutrients sensing deregulation and mitochondrial dysfunction
are also common with advancing age. The main physiologic
pathway affected by aging process, in both humans and model
organisms, is the growth hormone (GH)/insulin like growth
factor (IGF-1) axis, that lead to impaired glucose sensing (35, 36).
Others nutrient sensing systems involved in the detection of
cellular energy status, such as AMPK (which detect high AMP
levels) and Sirtuins (which detect high NAD+ levels) may also
play important role in aging processes (37). Finally, aging-related
mitochondrial dysfunction has been associated with deletion of
mtDNA, oxidation of mitochondrial proteins, destabilization of
themacromolecular organization of respiratory chain complexes,
alteration of lipid composition of mitochondrial membranes,
defective mitophagy and imbalance between fission and fusion
events (38, 39).

INTEGRATIVE HALLMARKS

As the organism ages it decreases the regenerative ability of the
tissues because of depletion of stem cells niches and changes
in intercellular communication (i.e., endocrine, neuroendocrine,
or neuronal). For example, it is known that mesenchymal
stem cell decline leads to osteoporosis, haematopoietic stem
cell exhaustion results in a less production of adaptive
cells (called immunosenescence) that leads to anemia and
intestinal epithelial stem cell depletion causes decreased intestinal
function (3). Immunosenescence and increased secretion of
cytokines by adipose tissue lead to chronic inflammation (40,
41). Chronic low-grade systemic inflammation combined with
immunosenescence are part of the pathogenesis of premature
aging, also called inflammaging. Another physiological change
that negatively influences liver function is the redistribution
of adipose tissue from subcutaneous to visceral sites (42).
This observation, together with the decline of immune system
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efficiency, accumulation of senescent cells, inflammaging, and
defective autophagy, increase mortality and risk of disorders,
such as hypertension, atherosclerosis, hyperlipidemia, insulin
resistance, and diabetes, all of which predispose to developing
NAFLD (40, 43).

MOLECULAR MECHANISMS OF AGING IN
LIVER DISEASE

The liver is a pivotal organ with a wide range of functions,
including detoxification, protein synthesis, regulation of energy
metabolism and much more. Specific age-related hepatic changes
have been reported, such as enhanced hepatocyte size, increase
in the number of binucleated cells, reduction in mitochondrial
number, excessive visceral fat and secretion of pro-inflammatory
cytokines (44–46). These changes significantly affect liver
morphology, physiology, and oxidative capacity. At molecular
level, aged livers go through the loss of the regenerative capacity
and may involve CCAAT/enhancer-binding protein (C/EBP)
family members, glycogen synthase kinase 3 Beta (GSK3β),
histone deacetylase 1 (HDAC1), and Sirtuin 1 epigenetic and
signaling pathways (47–51). Age-related accumulation of lipids
in the liver has also been reported (52). The resulting lipotoxicity
increase the prevalence of NAFLD in elderly person (53).
Furthermore, aging significantly enhance the progression to
NASH and fibrosis, thus predisposing to increased mortality in
elderly subjects with NAFLD (54, 55).

LIVER ENDOTHELIAL SINUSOIDAL CELLS

At the level of single-cell populations a recent study
demonstrated that aging is associated with sinusoidal
remodeling, both in rodents and humans (56, 57). LSECs
are endothelial cells that line the hepatic sinusoids, whose main
role is to facilitate bidirectional exchanges between blood and
hepatocytes. LSECs also mediate endocytosis of circulating
proteins, having a role in the regulation of immunotolerance,
and maintaining sinusoidal microenvironment. Old rats
exhibited significantly higher hepatic vascular resistance in vivo,
with reduced liver perfusion and increased portal pressure in
comparison with young ones. From a molecular point of view,
sinusoidal pseudocapillarization is associated with reduced
expression of VEGFR2, KLF2, and CD32b, altered expression of
the von Willebrands factor, CD31 and collagen (58), and so, in
a reduction in the number and size of fenestrations, thickening
of the endothelium, deposition of basal lamina and collagen
(56, 57) (Figure 1). Due to these alterations, the lipoproteins and
insulin absorption is compromised causing hyperlipidemia and
hepatic insulin resistance (59).

HEPATOCYTES

Age-related molecular alterations induce a reduction in the
number of hepatocytes but with an increased portion of polyploid
hepatocytes, along with reduced rates of DNA synthesis and
repair (60). Hepatocytes, the major parenchymal cells in the

liver, are the chief functional cells of the liver and perform
metabolic, endocrine and secretory functions as well as protein
synthesis, detoxification, activation of innate immunity and so
on. Dysregulation of glycolysis, triglyceride synthesis, and lipid
metabolism occurs because of decreased expression of Sirtuin1,
PGC-1α, lower concentrations of NAD+, and upregulation
of the senescence marker p16 (61). On the other side,
hepatocytes show to be relatively resistant to telomer shortening
(62), maybe due to the high expression levels of telomerase
(63). Other molecular modifications have been associated at
hepatocytes aging, such as increased heterochromatin protein
1β, elevated senescence-associated-β-galactosidase activity, p21,
p16, and γ-H2AX (64), but also genes involved principally in
hepatic metabolism of glucose, lipids and proteins, such as
PI3K/Akt, MAPK, Jak/S, NF-κB, TGFβ, IGF1, and Ca2+/cAMP
(65). Alterations in mitochondrial biogenesis and autophagic
degradation (mitophagy) have been observed together with the
presence of enlarged mitochondria (66, 67) and the reduction
in hepatocytes autophagy in old livers, underlined by lowering
number of autophagic vesicles (68, 69) (Figure 1).

HEPATIC STELLATE CELLS AND KUPFFER
CELLS

Aging affects also hepatic stellate cells (HSC) and Kupffer cells
(KC). HSCs are pericytes located within the space of Disse and
maintain close interactions with sinusoidal endothelial cells and
hepatic epithelial cells. HSCs are involved in vitamin A and
lipid storage, when activated, they acquire their characteristic
phenotype and produce collagen, starting the development of
hepatic fibrosis. An increased expression of HSC activation
markers, such as αSMA, collagen 1α1-2, and phosphorylated
moesin, has been described in aged rats (70, 71). The lipid
droplets in HSC significantly increase in number and size during
aging, as observed inmice and non-human primates thus starting
the development of hepatic fibrosis (72, 73). KCs are specialized
macrophages located in the liver, lining the walls of the sinusoids,
with the main function of performing phagocytic functions to
remove cellular debris from the portal blood flow. KC activation
is observed in most types of liver diseases and contributes to
the pro-inflammatory status of the hepatic sinusoid. Phagocytic
and autophagic activity of KC decline with aging, acquiring
an inflammatory phenotype (71). In aged rats is increased the
infiltration of CD68+ cells along with significant differences in
the mRNA expression of cytokines including TNFα, Mrc1, and
Arg1 (70) (Figure 1).

LIVER PROGENITOR CELLS

Liver progenitor cells (LPCs) are quiescent cells that are activated
during liver injury in order to regenerate the liver parenchyma.
LPC functionality is negatively regulated by the aging process
(74). LPCs in young mice could be activated and proliferate upon
liver injury, whereas in old mice failed to respond and proliferate,
leading to impaired liver regeneration. Levels of Reactive Oxygen
Species (ROS) and neutrophils infiltration are increased in aged
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FIGURE 1 | Synergic activation of liver cells in aging. Schematic representation of the main molecular mechanisms associated with aging in liver disease. Age-related

changes can include alterations that affects morphology, physiology, and oxidative capacity in the different cellular populations of the liver. HVR, Hepatic vascular

resistence; PP, Portal pressure; VEGR2, Vascular endothelial growth factor receptor 2; KLF2, Krüppel-like Factor 2; Sirt1, Sirtuin1; PGC-1α, Peroxisome

proliferator-activated receptor gamma coactivator 1-alpha; γ-H2AX, H2A histone family member X; Saβ-GAL, Senescence-associated beta-galactosidase; TNFα,

Tumor necrosis factor alpha; Mrc1, Mannose receptor, C type 1; Arg1, Arginase 1; SASP, Senescence-associated secretory phenotype; α-SMA, Alpha smooth

muscle actin; Coll1α1-2, Collagen 1α1-2; p-moesin, Phosphorylated moesin.

mice, in collaboration with chemokine production from activated
HSC and decrease activation and proliferation of LPC (Figure 1).

CHOLANGIOCYTES AND
CHOLANGIOPATHIES: FOCUS ON PSC
AND PBC

Cholangiocytes are the cells lining the biliary tract and the
target of cholangiopathies, such as PSC and PBC. PSC is an
idiopathic, autoinflammatory disorder characterized by fibrosis
and obliteration of medium and large ducts throughout the
biliary epithelium. In 70% of patients is associated with
inflammatory bowel disease, particularly ulcerative colitis, and
it may progress in complications, such as cholestasis, hepatic
failure, autoimmune disease, and cholangiocarcinoma (75, 76).
PBC is an autoimmune liver disease that predominantly affects
women [maybe due to the observation that 48% of PBC
patients experienced prior recurrent urinary tract infections,
more frequent in women and caused by Escherichia coli (77)],
characterized by mainly portal inflammation, chronic cholestasis
and destruction of small intrahepatic bile ducts that show a
progressive pathogenesis from liver fibrosis to cirrhosis, portal
hypertension and ultimately liver failure (78, 79). Cholestatic

liver diseases are profoundly influenced by patient age. A
more severe disease course in young patients affected PBC
has been recently observed in a large retrospective study,
showing increased risk of treatment failure, liver transplantation
and death (80). In PSC, the age at diagnosis increase the
risk of develop cholangiocarcinoma (21% for patients older
than 60 years) (81). In elderly patients is risen the risk of
complications after liver transplantation. The development of
biliary complications after orthotopic liver transplantation is
influenced by donor age (82), and lower survival rates in people
aged more than 60 years (5-years survival rate of 59%) has been
observed (83). However, the survival of recipients older than 70
years of age still remains lower than in younger patients (10-years
survival of 43 vs. 64% in recipients aged 60–69 years) (84).

Important clues supporting the role of aging in shaping
cholangiocyte biology in course of biliary injury are also
emerging. The analysis of liver samples collected from PSC
and PBC patients have shown increased expression of senescent
markers and SASP components in diseased cholangiocytes
(85). Furthermore, has been found a significantly increased
expression of N-Ras protein co-localization with activated RAS
in PSC, which was absent in PBC or control samples. These
data underline the role of N-Ras protein as mediator of
lipopolysaccharide-induced inflammation, further supporting a
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potential role for N-Ras signaling in the pathogenesis of PSC (86).
In PBC seems to be more important the role of the autophagy
as a necessary component to the activation of cell senescence
(87). Senescent PBC cholangiocytes accumulated markers of
autophagy, such as microtubule-associated proteins-light chain
3β, cathepsin D, and lysosome-associated membrane protein-
1 (88). Several studies have shown as deregulated autophagy
might be involved in the induction of cholangiocyte senescence
in several biliary disease. The expression of autophagy markers
as LC3 and p62 is significantly correlated with the expression
of the known senescent markers, p16 and p21, in ductular
cells in ductular reaction (DR) (89). In early and advanced
stages of PBC, autophagy is frequently correlated with cellular
senescence in bile ductular cells in DRs. Sasaki et al. suggests
that autophagy may be involved in the pathophysiology of DRs
in PBC and may precede the cellular senescence. Moreover,
they have also found that deregulated autophagy may contribute
to the abnormal expression of mitochondrial antigens and be
involved in the autoimmune pathogenesis of bile duct lesions in
PBC (89–91).

These findings are corroborated by data obtained in animal
models of cholestatic liver injury. Isolated cholangiocytes from
multi-drug resistance 2 knockout (Mdr2−/−) mice develop
cellular senescence (92). As a direct consequence of Mdr2
lack of expression, toxic bile acids accumulate in the bile
triggering increased bile duct mass and liver fibrosis. Despite
these findings demonstrate a link between senescence and
disease presentation, it is unknown whether senescence is
the trigger of disease or if it is a consequence of chronic
damage (93, 94).

NEW POTENTIAL PATHWAYS INVOLVED IN
PSC AND PBC FOR NOVEL THERAPIES

In order to identify new molecular pathways involved in course
of cholangiopathies are needed adequate preclinical animal
models to mimic, as much as possible, the features of relative
human diseases (95–97). To date, for PSC and PBC, various
genetic and chemical models are used in parallel with in
vitro studies to resemble the pathogenesis of these pathologies
(98). PSC is a heterogeneous disease, the identification of
clinical endpoints and treatment goals in PSC remains difficult
to determine for the complex interaction of multiple causes,
such as environmental insult (99, 100), genetic susceptibility
(101), dysregulation of immune signaling (102, 103) and gut
microbiome derangement (104–106) (Table 1). New drugs that
act selectively at the level of senescent cells are being evaluated
for a series of human diseases, such as senolytics, inhibitor
of the anti-apoptotic proteins BCL-2 and BCL-xL, inhibitor
of complex that modulates SASP production (mTORC1 and
JAK2/STAT3 pathway) and other alternative approaches (125).
As suggested by Zhou et al. a possible pharmacological target for
the treatment of cholangiopathies can lie among the mediators
of Secretin/SecretinReceptor axis (107) and secretion pathway
of TGF-β1 at the biliary ducts level (108), both responsible of
the biliary damage and liver fibrosis regulation. In this way,

another new potential target is the Substance P, a neuropeptide
that plays an important role in regulating hepatic fibrosis and
cellular senescence (109). In the contest of PSC and PBC,
Forkhead Box A2 (FoxA2), a key transcriptional factor involved
in tissue regeneration, was found upregulated in LPC and
downregulated, through epigenetic mechanisms, in liver tissue
(117). This reduction was associated with an exacerbation of
fibrotic liver damage suggesting that, acting on an up regulation
of FoxA2, could be a therapeutic strategy to reconstruct the
hepatobiliary system, after a hepatic injury (Table 1). Recently,
has been shown the role of mast cells (MCs) also in course
of cholangiopathies. MCs was found surrounded bile ducts
during the early stages of PSC but were located in fibrous
septa in late-stage PSC (126). Their role in PSC have been
studied founding that MC number and markers are increased in
Mdr2−/− mice and PSC patients compared with controls (118).
Treatment with cromolyn sodium, aMC stabilizer that blocks the
release of histamine, reveled a reduction in MC indicators and
PSC-associated fibrosis. Furthermore, MCs and their mediators
may influence the function of cholangiocytes and hepatic bile

TABLE 1 | This table summarize both pathways and group of therapies that are

currently under investigation.

Disease References

PSC Features

- Environmental insults (99, 100)

- Genetic susceptibility (101)

- Dysregulation of immune signaling (102, 103)

- Gut microbiome derangement (104–106)

Potential pathways

- Mediators of Secretin/Secretin

receptor axis

(107)

- Secretion pathway of TGF-β1 at biliary

ducts level

(108)

- Regulation of substance P (109)

Therapies

- Obeticholic acid (110, 111)

- Norursodeoxycholic acid, oral

antibiotics, such as vancomycin and

rifamixim, FXR agonist, LUM001,

anti-fibrotics agents, Simtuzumab,

and Cenicriviroc

(112)

PBC Potential pathways

- Immunosuppressive and

immunomodulatory agents

(113)

Therapies

- Ursodeoxycholic acid (114–116)

- Obeticholic acid (110, 111)

PSC and PBC Potential pathways

- Forkhead Box A2 (FoxA2) (117)

- Mast Cells (MCs) (118–121)

- Melatonin (122)

- Neurokinin 1 receptor (123)

- Twinfilin 1 (124)
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production and flow (118). Cholangiocytes secrete also stem
cell factor, which is a chemoattractant for c-kit expressed
on MCs. Stem cell factor was found increased in human
PSC and in Mdr2−/− mice (119). Blocking biliary stem cell
factor decreased MC migration, biliary proliferation/senescence,
and HSC activation, so targeting MC infiltration may be an
option to ameliorate PSC progression (119). In PBC there are
minor evidence of MCs role, but is known that PBC patients
often presents increased circulating bile acid pools, and it
has been demonstrated that specific bile acids can alter MC
activation in vitro (120, 121). A recent study showed that
MCs are located in the portal areas and sinusoidal walls in
patients with PBC and an increased expression of chymase
that seems to be co-localized in areas that exhibited extensive
hepatic fibrosis (127). Despite all these studies demonstrate the
increased presence of MCs, and their potential in developing
pharmacologic therapies, the causal effect of MCs remains
to be fully examined. Other approaches concern the use of
Bile acids that are already largely used in cholangiopathies
therapy. Ursodeoxycholic acid (UDCA) inhibits cholangiocyte
proliferation and secretion in vivo (114) and is an approved
drug for PBC (115). UDCA stimulates secretion of bile acids
from hepatocytes, preventing hepatocyte injury, apoptosis and
necrosis and subsequent inflammation and fibrosis. UDCA
expand the bile acid pool and induces a less toxic bile
composition through the activation of AE2 transporters (116).
Furthermore, UDCA administration inhibits MC activation
improving liver conditions in Mdr2−/− mice (128), but its use
for PSC treatment provided controversial results (129) (Table 1).
Instead, there are better perspectives regarding the Obeticholic
acid, which is a synthetically modified bile acid known to be a
potent Farnesoid X receptor (FXR) agonist. A trial of obeticholic
acid for PBC patients has demonstrated to improve serum levels
of ALP and bilirubin compared to the placebo group, and
long-term clinical outcomes in PBC patients (110, 111). In a
clinical trial (NCT02177136), administration of obeticholic acid
improved serum ALP and bilirubin levels also in PSC patients
compared to the placebo group.

Others new potential pathways involved in PSC and PBC
concern the Melatonin, neurokinin-1 receptor, and twinfilin-
1. It has been shown how these molecules may play a role
in cholangiocytes response to injury and liver fibrosis (122–
124), but further studies are needed and must be deeply
investigated (Table 1).

To date, for PSC treatment, various therapies are under
investigation. Just some of this [better elucidate in a review of
Rodriguez et al. (112)] include, Norursodeoxycholic acid, oral
antibiotics, such as vancomycin and rifamixim, FXR agonist,
LUM001, anti-fibrotic agents, Simtuzumab and Cenicriviroc.
For PBC, less is known, but actually, there is good evidence
concern the use of the glucocorticoid Budenoside, fibrates
that act as ligand for the nuclear receptor PPAR, fenofibrates
and bezafibrate, and other strategies aiming at the availment
of immunosopressive and immunomodulatory agents (113)
(Table 1). Noteworthy is a new class of drugs that aim to destroy
senescent cells, called senolytics (130). The notions about these
molecules are still few and need to be further tested on primates
and humans, but could have great potential in improving
healthspan, given the known accumulation of senescent cells
in aging.

CONCLUSIONS

Cholangiopathies are deeply influenced by the aging process,
and elderly patients require a careful management in clinical
practice. Average life expectancy is constantly increasing, it
becomes essential to understand the molecular basis of age-
related modifications that are involved in disease progression.
Current therapeutic approaches utilize agonists or antagonists to
regulate signaling pathways involved in cholangiocyte response,
particularly focused on the improve of portal fibrosis and
liver inflammation and on the activation of other liver
cells by cholangiocytes, such as HSCs and KC leading to
further liver damage. Recently, the use of stem cells or
stem cell-derived extracellular vesicles has also taken hold
and together with the recent studies described above, have
showed to have promising potential as novel therapies for
PSC and PBC and for the development of new drugs. Such
studies have undoubtedly the potential to foster a better
management of patients, but further studies are needed to deepen
their knowledge.
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In the past ten years, our understanding of the importance of bile acids has

expanded from fat absorption and glucose/lipid/energy homeostasis into potential

therapeutic targets for amelioration of chronic cholestatic liver diseases. The discovery

of important bile acid signaling mechanisms, as well as their role in metabolism,

has increased the interest in bile acid/bile acid receptor research development. Bile

acid levels and speciation are dysregulated during liver injury/damage resulting in

cytotoxicity, inflammation, and fibrosis. An increasing focus to target bile acid receptors,

responsible for bile acid synthesis and circulation, such as Farnesoid X receptor and

apical sodium-dependent bile acid transporter to reduce bile acid synthesis have

resulted in clinical trials for treatment of previously untreatable chronic liver diseases

such as non-alcoholic steatohepatitis and primary sclerosing cholangitis. This review

focuses on current bile acid receptor mediators and their effects on parenchymal and

non-parenchymal cells. Attention will also be brought to the gut/liver axis during chronic

liver damage and its treatment with bile acid receptor modulators. Overall, these studies

lend evidence to the importance of bile acids and their receptors on liver disease

establishment and progression.

Keywords: bile acid, chronic liver disease, obeticholic acid, ursodeoxycholic acid, bile acid receptor

INTRODUCTION

Focal studies of hepatic secretion led to the critical analysis and understanding of bile and its
circulation connecting the liver and intestine (1). Bile acids (BAs) are heterogenous compounds
whose chemical and amphipathic properties result from the enzymatic breakdown of insoluble
cholesterol (2). Since their isolation from bile, the field of BA chemistry has provided intensive
study of their complex chemical nature and the physiological effects of their dynamic composition
in circulating bile (2–5).

Hepatic BA build up leads to inflammation, necrosis, and apoptosis of various liver cells which
then affects BA synthesis and transport perpetuating BA-induced damage (2, 3). Due to the
extensive knowledge and research concerning hepatic BA formation and secretion, it is natural
to assume BAs contribute to chronic liver damage. The increased synthesis of BAs in combination
with interrupted BA signaling can lead to adverse effects in patients of chronic liver diseases. It is
estimated that 1.5 billion people worldwide suffer from chronic liver diseases whose complications,
cirrhosis and liver cancer, result in 2 million deaths globally (6). Chronic liver diseases have
an increased burden in the health care system due to the frequent hospital readmissions,
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accompanying hepatic decompensation, and risk for infection as
liver damage progresses (6). Many chronic liver diseases, such as
primary sclerosing cholangitis (PSC) and non-alcoholic fatty liver
disease (NAFLD), have minimal treatment options requiring
liver transplantation as the only permanent remedy (6, 7).

Various therapeutics have been FDA-approved for clinical
trials aiming to improve liver function and relieve adverse effects
of disrupted BA signaling. This article serves as a brief review of
BA signaling and function in various chronic liver diseases and
their regulation of the gut microbiome.

CIRCULATION, MODIFICATION, AND
FUNCTION OF BILE ACIDS

Bile Acid Synthesis and Transport
The catabolism of cholesterol into BAs in the parenchyma is
tightly regulated by over 17 enzymes, preferentially expressed
in the liver, that are involved in the synthesis and alteration of
BAs into bile salts (8, 9). Impairment of these mechanisms can
result in cholestasis, liver damage, impaired lipid metabolism,
and other maladies (3, 5, 8). Modifications and conjugations of
BAs affect their solubility, hydrophobicity, and receptor binding
affinity (8, 10). BA synthesis and conjugations are summarized in
Figure 1 (reprinted with permission from Molinaro et al. Trends
Endocrinol Metab).

Bile acids are secreted into the bile canaliculi by hepatocytes,
draining to the bile ducts located in the portal triad.
Cholangiocytes are the epithelial cells lining the bile ducts
and assist in BA modification and circulation by cholehepatic
shunting, the process in which BAs are reabsorbed from the
bile and returned to hepatocytes (11–14). The intrahepatic bile
duct system allows BAs to flow into the intestinal lumen through
the common hepatic duct in response to food ingestion to
assist in emulsification, metabolism and absorption of dietary
lipids and fat-soluble vitamins (A, D, E, and K). Alternatively,
BAs are deposited in the gallbladder for storage and prevention
of cholesterol-crystallization and gallstone formation (10, 15).
Approximately 95% of BAs are reabsorbed in the distal ileum
by the apical sodium-dependent bile acid transporter (ASBT;
alternatively known as ileal bile acid transporter, IBAT) and
delivered to the liver through the portal system via enterohepatic
or portal circulation (16–18). The gut microbiome is capable
of deconjugating primary bile acids and converting them to
secondary bile acids prior to absorption or fecal excretion
which affects gut microbiome community, BA pool, and liver
health (8, 19, 20).

Abbreviations: ALKP/ALP, Alkaline phosphatase; ASBT, apical sodium bile acid

transporter; AST, aspartate aminotransferase; Bas, bile acids; FXR, Farnesoid X

receptor; CA, cholic acid; CCA, cholangiocarcinoma; CDCA, chenodeoxycholic

acid; DCA, deoxycholic acid; HCC, hepatocellular carcinoma; IBABP, ileal bile

acid binding protein; IBD, irritable bowel disease; IBAT, ileal bile acid transporter;

LCA, lithocholic acid; LDL, low density lipoprotein; MDR2, multidrug resistance

cassette 2; MDR3, multidrug resistance cassette 3; NAFLD, non-alcoholic fatty

liver disease; NASH, non-alcoholic steatohepatitis; OCA, Obeticholic acid; OSTα-

β, organic solute transporter α-β; PBC, primary biliary cholangitis; PSC, primary

sclerosing cholangitis; TBA, total bile acid; TGR5, Takeda G protein coupled

receptor 5; UDCA, Ursodeoxycholic acid.

Aside from their important roles in digestion, BAs can
behave as signaling molecules in carbohydrate and lipid
metabolism, energy expenditure, and hepatic disease (20–22).
BAs and activation of their downstream targets including
G-protein-coupled bile acid receptor (TGR5), transforming
growth factor-α (TGF-α) and sphingosine-1-phosphate
receptor-2 (S1PR2) stimulate cholangiocyte proliferation
and contribute to the progression of cholangiocarcinoma
[CCA, in vivo and in vitro (21–25)]. Alternatively, Farnesoid X
Receptor (FXR) is down regulated in hepatocellular carcinoma
(HCC) (26). It has been shown that FXR via increased
CYP450 epoxygenase activity suppress NF-κB signaling
thereby reducing hepatic inflammation (27, 28). Further
exploration into the anti-inflammatory role of FXR and
assessment of BA direct or indirect targets may provide
understanding of chronic cholestatic disease establishment
and progression.

Intrahepatic and Extrahepatic Bile Acid
Modification
The catabolism of cholesterol results in the formation of
the primary BAs, cholic acid (CA) or chenodeoxycholic acid
(CDCA), through the major (classical) pathway or the minor
(alternative/acidic) pathway, respectively (29). Cholehepatic
shunting alters the BA pool via biliary ASBT transport,
multidrug resistance cassette 3 (MDR3, human; multidrug
resistance cassette 2, mice), and organic solute transporter
α-β (OSTα-β) BA secretion into the peribiliary plexus prior
to reaching the hepatic sinusoids (30). Ileal bile acid binding
protein (IBABP) is expressed in large cholangiocytes to
sequester BAs preventing biliary cytotoxicity (30, 31). CA
and CDCA/Ursodeoxycholic acid (UDCA) are converted
to deoxycholic acid (DCA) and lithocholic acid (LCA),
respectively, via 7α/β-dihydroxylation by various species of
the commensal gut microbiota in the gastrointestinal tract
(32). Human secondary BAs (DCA and LCA) are capable of
being circulated back to the liver via enterohepatic circulation
leading to an increased hepatic levels of damaging hydrophobic
BAs (32).

DYSREGULATION OF BILE ACIDS IN
CHRONIC LIVER DISEASES

PSC and PBC
PSC and Primary Biliary Cholangitis (PBC) are rare cholestatic
liver diseases that affect the biliary system. PSC is an
idiopathic disease with cholestasis, inflammation and eventual
fibrosis resulting from strictures of intra- and extrahepatic
bile ducts (33). PSC is one of the most common causes
for liver transplantation (LT) (33). Due to its heterogenous
and spontaneous progression, effective medical therapies have
not yet been developed (33). Fat-soluble vitamin deficiency
can occur in PSC patients as a result of decreased bile
flow and secretion. It has also been shown that PSC has a
positive correlation with ulcerative colitis (UC), a form of
inflammatory bowel disease (IBD). PSC/IBD patients display
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FIGURE 1 | Human and mouse bile acid synthesis and conjugation. Cholesterol catabolism results in the creation of primary bile acids (BAs) through either the

classical pathway, accomplished by Cytochrome P450 7A1 (CYP7A1), or the alternative/acidic pathway, conducted by Cytochrome P450 27A1 (CYP27A1). Alteration

by various cytochrome P450 family of enzymes allows for the creation of cholic acid (CA) and chenodeoxycholic acid (CDCA). Primary BAs can become conjugated to

glycine or taurine prior to secretion to the biliary ductules. Deconjugation and reconjugation occurs in the distal ileum through bacterial intervention creating secondary

BAs: lithocholic acid (LCA) or deoxycholic acid (DCA). Mice have additional primary BAs: Ursodeoxycholic acid (UDCA) and α- and β-muricholic acid. The murine

specific primary BAs created by cytochrome P450 2C70 (CYP2C70) can also be conjugated to glycine or taurine prior to secretion into bile duct and alteration by gut

microbiota into secondary BAs. Figure reprinted with permission from Molinaro et al. Trends Endocrinol Metab.

altered BA fecal excretion and decreased gut microbiome
diversity compared to healthy or IBD patient controls (34).
Patients with PSC have decreased expression of hepatic FXR,
TGR5, and S1PR2 (35). The multidrug resistance cassette
2 knock-out mouse (MDR2−/−) is a mouse model utilized
to mimic the PSC phenotype including increased cholestasis,
intrahepatic bile duct mass and hepatic inflammation due to
hepatic BA build up (36, 37). This murine model has been
useful for identifying effects of potential therapeutics, such as
UDCA. Meng et al. reported that UDCA treatment in Mdr2−/−

mice reduced serum TBA, elevated hepatic expression of BA
transporters, and reduced hepatic inflammation and collagen
deposition (36).

PBC is a chronic auto-immune disease, predominantly
affecting middle-aged women, that results in biliary ductopenia
and cholestasis. Li et al. reported elevated serum levels
of total BAs (TBA) and FGF19 in cirrhotic PBC patients
compared to healthy controls and non-cirrhotic PBC patients
(38). Similarly, Trottier et al. demonstrated elevated BAs
in serum samples from both PBC and PSC compared to

healthy controls (39). Ursodeoxycholic acid (UDCA), an
epimer of CDCA, was the first FDA-approved treatment
for PBC. Despite increased bile flow, lower liver enzyme
levels, and decreased serum BA levels, one in three PBC
patients will have a limited or no response to treatment,
strengthening the need for effective therapeutic intervention of
PBC progression (33, 40–45).

NAFLD
NAFL and non-alcoholic steatohepatitis (NASH) are two of the
most common hepatic diseases worldwide due to an increase
of sedentary lifestyle and consumption of a high-fat/high-
cholesterol diet (46, 47). Its prevalence has demonstrated positive
correlation with an increasing number of obese and type II
diabetic patients (46). Currently, there are no approved therapies
for the treatment of NAFL and NASH aside from a change of diet
and exercise for gradual weight loss.

BA signaling is disrupted in NAFL and NASH patients
yielding great interest in the search for exogenous methods
of BA regulation (48, 49). Mouzaki et al. uncovered greater
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fecal BA secretion and increased primary to secondary BA ratio
in NASH patients compared to healthy controls (49). Ferslew
et al. found elevated serum BAs in NASH patients, compared
to healthy controls, with an increase of taurine- and glycine-
conjugated BAs (48). Benedict and Zhang proposed that FXR
suppression of hepatic inflammation may ameliorate NAFLD
progression (50).

HCC and CCA
HCC is currently the third leading cause of cancer deaths
worldwide. HCC affects parenchymal cells in the liver, which
make up to 70% of the liver tissue. HCC develops in chronic liver
disease or cirrhotic liver patients and is usually detected through
various imaging methods prior to diagnosis. Patients with HCC
can be asymptomatic or present with a range of symptoms
including cirrhosis-related pain. The underlying chronic liver
injury, and difficulty in diagnosis, both contribute to HCCs
high mortality. CCA is a rare but devastating cancer with
poor prognosis. Patients present with jaundice, pruritus (intense
itch) and acholic (pale) stool due to reduced bile and bilirubin
excretion. Due to the intimate relationship between hepatocytes,
cholangiocytes and BAs it is important to investigate BA signaling
in the establishment and progression of HCC and CCA.

Demonstrating a shift in the BA pool during cancer
development, Changbumrung et al. reported elevated ratios
for trihydroxy to dihydroxy BAs and for glycine-conjugated
to taurine-conjugated BAs in patients with HCC and CCA
compared to healthy patients (51). Luo et al. demonstrated a
similar trend with elevated glycine-conjugated BAs in hepatic
injury patients, ranging from hepatitis B viral infection to
cirrhosis, compared to healthy controls suggesting taurine-
conjugated BAs as a potential sensitive biomarker for liver
injury (52). This increase in BA pool size is due to reduced
inhibition of BA synthesis. FXR activation has been indicated
to have anti-cancer properties, with decreased expression in
progressing human HCC lesions, since its downstream effects
include inhibition of BA synthesis and cell proliferation
(26, 53). Guo et al. reported decreased FXR expression in
HCC tumor lesions, indicating a hindering role in HCC
development and progression (26). Wolfe et al. found a
decrease of FXR expression in HCC tumor lesions, compared
to normal liver tissue, with increasing tumor development
stage (53). Similarly, Liu et al. reported decreased small
heterodimer partner (SHP) and FXR expression in human
HCC compared to paired healthy control (54). Erice et al.
demonstrated FXR expression in CCA samples negatively
correlates with advanced cancer progression and lymph node
invasion. In contrast to FXR, TGR5 expression is elevated in
CCA tumors compared to controls (25). This discovery is likely
due to cholangiocyte requirement of TGR5 for BA-induced
proliferation and anti-apoptosis signaling (55, 56). Additional
BA receptors, such as S1PR2, have been found to have elevated
expression in human CCA tumors, as shown by Liu et al.
(57). Taken together these studies indicate that altered BAs
may serve to enhance HCC and CCA progression during
disease development.

CURRENT BILE ACID-RELATED
THERAPIES OF CHRONIC LIVER
DISEASES

Bile Acid Therapies
The use of synthetic or naturally occurring BAs to reduce
gallstone formation, aid in lipid absorption following gastric
surgeries, and assist in reduction of cholestasis has increased
in recent years. UDCA is a hydrophilic BA conjugated
to undergo enterohepatic circulation or deconjugated and
converted into LCA by the gut microbiome and excreted
into feces. UDCA was the first FDA-approved therapy for
PBC patients exhibiting altered serum liver enzyme levels
(41). UDCA has been a staple therapy due to its ability
to prevent gallstone formation, increasing bicarbonate
secretion to prevent acidification of bile, and positive
side effect profile as compared to treatment with CDCA
(18, 41, 58). In many PBC patients, long-term UDCA
treatment when administered at early stage of disease
increases survival rate, lowers liver enzyme serum levels,
and improves liver histology (41, 43, 59, 60). Regardless of its
beneficial effects, 30–40% of PBC patients do not respond to
UDCA treatment.

UDCA treatment can improve liver histology and
serum ALT/ASP levels in PSC patients, however, data
supporting any long-term efficacy or long-term survival are
lacking (61). Moreover, UDCA prescribed at high doses
increased medical complications and mortality in PSC
patients (61–64). PSC patients treated with norUDCA,
a side chain shortened homolog of UDCA, exhibited
reduced ALP serum levels compared to placebo in a dose-
dependent manner, however norUDCA’s effects on PSC
progression, long-term survival, and mortality have not been
investigated (65).

Bile Acid Receptor/Transporter Agonists
and Antagonists
Obeticholic acid (OCA, Ocaliva) is an FDA-approved, synthetic
derivative of CDCA and is a high affinity ligand for the nuclear
bile acid receptor, FXR (40). FXR is a nuclear BA receptor that
when expressed is capable of reducing BA synthesis, increasing
expression of BA transporters and modulating lipoprotein
metabolism (66). OCA has been studied as a potential therapeutic
drug in the treatment of various chronic liver diseases (40, 44).
Following Phase II and Phase III clinical trials, it has been
suggested that OCA treatment can be delivered in conjunction
with UDCA in PBC, or as a monotherapy in patients who do not
tolerate UDCA, respectively (67, 68). Adverse events including
pruritus occurred in nearly all patients and was observed to
occur in a dose dependent manner (67, 68). The beneficial
effects of OCA as a monotherapy are currently being investigated
in various clinical trials (7, 67, 69). The use of OCA has
promising effects on improving liver enzyme levels, lowering
plasma bilirubin and IgM levels, and has recently been shown
to improve or stabilize liver fibrosis and biliary injury in PBC
patients with cirrhosis (68, 69). Despite promising outcomes in
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PBC patients, long-term effects of OCA on disease progression
and patient survival are still being investigated.

In the Farnesoid X Receptor Ligand Obeticholic Acid in
NASH Treatment (FLINT) clinical trial, NASH patients treated
with OCA presented with improved fibrosis scores, elevated
low-density lipoprotein (LDL) and increased average weight loss
compared to placebo control (46, 70). NASHpatients treated with
OCA also had increased ALP levels compared to placebo control
(46). The effects of OCA on insulin resistance and the observed
improvement of lipid absorption were not sustained following
termination of OCA treatment (46). Further investigation into
the short-term and long-term effects of OCA on liver function
and injury are warranted and are actively being explored
in the Randomized Global Phase III Study to Evaluate the
Impact on NASH with Fibrosis of Obeticholic Acid Treatment
(REGENERATE) clinical trial assessing FXR activation in the
treatment of NASH (71). Translational Research and Evolving
Alcoholic hepatitis Treatment (TREAT) consortium conducted
phase II clinical trial utilizing OCA on patients with moderately
severe alcoholic hepatitis (AH) that was completed in 2018,
however currently no data is available on this study (72). The
Phase 3 Study of Obeticholic Acid in Patients with Primary Biliary
Cirrhosis (POISE) double-blind, placebo controlled clinical trial
has been one of the few to publish results demonstrating OCA’s
long-term safety and effectiveness (69). POISE study data showed

that three-year OCA treatment reduced or stabilized hepatic
collagen deposition and ductular injury in PBC patients with
cirrhosis (69). The CombinationOCA and Statins forMonitoring
of Lipids (CONTROL) clinical trial study found increased
LDL in NASH patients treated with OCA (5, 10, or 25mg)
indicating altered lipid metabolism (73). The observed increase
in LDL cholesterol was reduced in NASH patients concurrently
treated with OCA and atorvastatin, a statin utilized to reduce
endogenous cholesterol production (73). The authors noted
that these two drugs were well-tolerated when utilized together,
addressing the observed increase in LDL cholesterol following
OCA treatment in NASH patients, but remained inconclusive
with respect to the combinatorial effect on hepatic injury (70,
73). Eaton et al. observed that decompensated patients with
cirrhotic PSC and PBC, OCA treatment led to the development
of jaundice and elevated liver enzyme levels (74). While the long-
term benefits of OCA are still being evaluated in various liver
diseases, it is still being explored as a potential.

During normal enterohepatic circulation, IBAT/ASBT is
responsible for the reabsorption of BAs in the intestinal tract
prior to secretion into the portal blood system (75). Additionally,
ASBT is responsible for cholehepatic shunting of BAs between
cholangiocytes and hepatocytes, which ultimately increases
hepatic BA pool. A common symptom of chronic cholestatic
liver disease is pruritus, intense itching of the dermis due

FIGURE 2 | Current bile acid receptor therapeutics and their effects in bile acid signaling. Briefly, Obeticholic acid (OCA) reduces bile acid (BA) synthesis, circulating

BA levels, and hepatic inflammation. This treatment may cause adverse effects such as pruritus and jaundice (in decompensated PBC patients). Ursodeoxycholic acid

(UDCA) alters BA pool and reduced hepatic inflammation and damage. In some cases, UDCA treatment has led to development of pruritus. Apical sodium bile acid

transporter (ASBT) inhibitors affect bile acid synthesis, circulation, secretion, and microbial composition in the intestine.
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to increased BA deposition (75). IBAT/ASBT inhibitors are
potential therapeutic candidates for this detrimental symptom
(76). Pilot studies conducted with various synthetic IBAT/ASBT
inhibitors have demonstrated variable results. The Al-Dury et al.
study reported patients who continued through A4250 (synthetic
IBAT/ASBT inhibitor) received relief from itching, but pruritus
returned during wash-out and BA sequestrant treatment. Despite
improvement of pruritus and lowered serum BAs, many patients
in the A4250 study dropped out early due to abdominal pain and
diarrhea (76). Similar benefits were identified in the pilot study
of GSK2330672 (synthetic IBAT/ASBT inhibitor), PBC patients
resulted with lowered serum BAs and increased serum FGF19.
The most common adverse events in this treatment cohort were
headaches and diarrhea, which provides reason to limit the
treatment length in patients with pruritus (77).

BA RECEPTOR AGONIST EFFECTS ON
THE GUT/LIVER AXIS DURING LIVER
DISEASE

BA species affect and regulate gut microbial species composition
(32). BA species and concentrations in different portions of
the gastrointestinal tract can result in increased side effects
including increased intestinal permeability and BA-induced
diarrhea (78). Elevated hydrophobic BAs in the colon are capable
of inducing inflammation which is reduced following CDCA
treatment alleviating the increased toxicity from insoluble BA
concentrations and mast cell secretory factors (i.e., histamine or
nerve growth factor NGF) (78, 79).

A small cohort of PBC patients exhibited altered gut
microbiome composition, compared to healthy controls,
which was partially reversed following 6-month UDCA
treatment (80). This study found eight-PBC associated
genera and a reduction in normal gut microbiome associated
microbial members including Faecalibacterium, Bacteroides,
Sutterella, and Oscillospira spp. A study from Selmi et al.
implicated increased N. aromaticivorans population is
responsible for the induction of PBC (81). Tang et al.
reported increased epithelial infiltration of Enterobacteriaceae
in PBC patients indicating increased permeability and
decreased gastrointestinal immune response in diseased
patients (80).

The gastrointestinal epithelial barrier plays an important role
in maintaining BA enterohepatic circulation homeostasis and
reduced inflammation from lipopolysaccharide (LPS) leakage.
BA circulation is necessary to avoid damaging increases
in colonic BAs that result in inflammation and intestinal
damage (78). Song et al. found that CDCA was capable of
reducing paracellular permeability and increased cell-to-cell tight

junctions via FXR activation inmice (82). Removal of commensal
gut microbiota in Mdr2−/− mice resulted in increased serum
liver enzyme levels, cholangiocyte senescence, and circulating
primary BAs (37). Alternatively, Li et al. discovered a depletion of
BA induced damage to the colon and reduced mast cell activation
and degranulation in FXR−/− mice or Z-guggulsterone treated
mast cells (79).

The role of the gut microbiome in BA homeostasis is still
being investigated. The disruption of the gut-liver axis can allow
infiltration of microbes, or their metabolic products, into the
enterohepatic circulation to prolong disease (83). Chronic liver
disease patients all maintain their own gut microbiome signature
that inherently play a role in disease development. Future studies
of BA-associated therapeutics should consider effects on the gut
microbiome and their metabolites in relation to changing BA
pool/circulation and chronic liver disease.

CONCLUSION

BA signaling, and therapeutics that alter them, have effects
on the gut microbiome and organs outside of the liver. The
use of BA receptor agonists and antagonists and their indirect
effects (BA pool, synthesis, circulation, and the gut microbiome
composition) is summarized in Figure 2. The human and mouse
gut microbiome fluctuates with the increase or decrease of
BAs, which can lead to increased inflammation and intestinal
malabsorption (19, 37, 80, 84–86). In depth exploration of
BA signaling and circulation during chronic liver diseases
may provide insight to disease amelioration or treatment
strategies. Understanding the role of the gut microbiome on
BA modification and circulation may allow for innovative
concurrent treatment for the reductions of inopportune side
effects of the currently investigated treatments, OCA and UDCA.
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MicroRNAs are small non-coding RNAs that range in length from 18 to 24 nucleotides.

As one of the most extensively studied microRNAs, microRNA-21 (miR-21) is highly

expressed in many mammalian cell types. It regulates multiple biological functions such

as proliferation, differentiation, migration, and apoptosis. In this review, we summarized

the mechanism of miR-21 in the pathogenesis of various liver diseases. While it is

clear that miR-21 plays an important role in different types of liver diseases, its use

as a diagnostic marker for specific liver disease or its therapeutic implication are not

ready for prime time due to significant variability and heterogeneity in the expression of

miR-21 in different types of liver diseases depending on the studies. Additional studies

to further define miR-21 functions and its mechanism in association with each type of

chronic liver diseases are needed before we can translate the bedside observations into

clinical settings.

Keywords: miRNA-21, viral hepatitis, non-alcoholic fatty liver disease, alcohol liver disease (ALD), hepatocellular

carcinoma

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs with 18–24 nucleotides in length. MiRNAs can
bind to target mRNAs and negatively regulate gene expression (1). MiRNAs are transcribed by
RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that
can be either protein-coding or non-coding (2). The biogenesis of miRNAs can be regulated either
at the transcriptional level by specific transcription factors or at the post-transcriptional level by
changes in processing (3, 4). MiRNAs target and regulate essentially all biological processes and cell
types, and influence complex programs of gene expression in several cellular processes. Particular
miRNAs emerge as principal regulators that control major cell functions in various physiological
and pathophysiological settings.

MicroRNA-21 (miR-21) gene is located on chromosome 17 of Homo sapiens and highly
conserved (Figure 1A). Its promoter described by Fujita et al. has several conserved enhancer
elements including binding sites for activation protein 1 (AP-1; composed of Fos and
Jun family proteins), E26 transformation-specific family transcription factor PU1 (Ets/PU1),
CCAAT/enhancer binding proteins α (C/EBPα), nuclear factor I (NFI), serum response factor
(SRF), p53 and signal transducer and activator of transcription 3 (STAT3) (5, 6). At the cellular
level, miR-21 is located in the cytosol (7), extracellular exosome (8), and at the organ level, miR-21
is found in peripheral blood, bone marrow, liver, lung, kidney, Intestine, colon, and thyroid (9).
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FIGURE 1 | (A) miR-21 is highly conserved across the species, (B) the functions of miR-21 on intracellular biological processes.

Functionally, miR-21 regulates its targets via interaction with
the 3′ untranslated region (UTR) binding involving in post-
transcriptional gene silencing (10). It is predicted using

Abbreviations: ALD, alcohol-associated liver disease; AP-1, activation protein

1; C/EBPα, CCAAT/enhancer binding proteins α; Ets/PU1, E26 transformation-

specific family transcription factor PU1; FABP7, fatty acid binding protein 7;

FASLG, Fas ligand; Foxo1, forkhead box O1; HBP1, HMG-Box transcription

factor 1; HCC, hepatocellular carcinoma; HMGCR, 3-hydroxy-3-methylglutaryl-

coA reductase; HNF4-α, hepatocyte nuclear factor 4 alpha; IL-12, interleukin 12;

Insig2, insulin induced gene 2; IRAK1, interleukin 1 Receptor Associated Kinase 1;

KC, Kupffer cells; KLF5, Kruppel Like Factor 5; MMP, matrix metallopeptidase;

MyD88, myeloid differentiation primary response 88; NAFLD, non-alcoholic

fatty liver disease; NASH, non-alcoholic steatohepatitis; NFI, nuclear factor I;

NOX4, NADPH oxidase 4; PDCD4, programmed cell death 4; PPARα, peroxisome

proliferator-activated receptor alpha; PTEN, phosphatase and tensin homolog;

RECK, reversion inducing cysteine rich protein with kazal motifs; SMAD, a family

of proteins similar to the gene products of the Drosophila gene ’mothers against

decapentaplegic’ (Mad) and theC. elegans gene Sma.; Spry1, sprouty RTK signaling

antagonist 1; SREBP1, sterol regulatory element binding protein; SRF, serum

response factor; STAT3, signal transducer and activator of transcription 3; TFDP3,

transcription factor Dp family member 3 TGF-β, transforming growth factor-

β; TIMP-3, tissue inhibitors of metalloproteinases 3; VEGF, vascular endothelial

growth factor.

computational algorithms that 175 genes involving in biological
regulation, cellular and metabolic processes are under regulation
of miR-21 [Figure 1B; (11)], however, relatively few have been
experimentally validated (Table 1).

MiR-21 is upregulated in many biological processes, including
inflammation, fibrosis, and cancer (5). Increasing evidence
has demonstrated the important role of miR-21 in several
types of liver diseases. In this current review, we summarized
the mechanism of miR-21 in common liver diseases, such
as viral hepatitis, non-alcoholic fatty liver disease (NAFLD),
alcohol-associated liver disease (ALD), and hepatocellular
carcinoma (HCC).

MIR-21 IN VIRAL HEPATITIS

Host miRNAs may target viral genomes or cellular factors,
positively or negatively regulating viral infection (30). Viral
infections can affect cellular miRNA expression levels and create
a favorable environment for their survival and pathogenic
effects (30). Serum levels of miR-21 were increased in patients
infected with Hepatitis B virus (HBV) (31, 32). Although there
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TABLE 1 | Reported gene targets known to be regulated by miR-21.

Targets Gene name Mainly function Disease References

FASLG Fas ligand Regulation of the immune system and the progression of cancer ALD, HCC (12, 13)

PTEN Phosphatase and tensin homolog Regulation of the cell cycle lung squamous

carcinoma, HCC

(14, 15)

TFDP3 Transcription Factor Dp Family Member 3 Regulation of the cell cycle Lung cancer (16)

HBP1 HMG-Box Transcription Factor 1 Transcriptional repressor, regulation of the cell cycle NAFLD and HCC (17)

HMGCR 3-Hydroxy-3-Methylglutaryl-CoA Reductase A key enzyme of mevalonate pathway, which produce cholesterol

and isoprenoids.

NAFLD (18)

FABP7 Fatty Acid Binding Protein 7 Fatty acid uptake, transport, and metabolism NAFLD (19)

HIF-1a Hypoxia-inducible factor 1-alpha A transcriptional regulator of cell response to hypoxia, involving cell

survival, tumor invasion, and angiogenesis

ovarian cancer (20)

PDCD4 Programmed Cell Death 4 Plays a role in apoptosis breast cancer (21, 22)

PPARα Peroxisome proliferator-activated receptor

alpha

Regulation of lipid metabolism in liver NAFLD (23)

TGF-β Transforming growth factor, beta Multifunctional cytokine, regulation of immune cells, cell growth. spinal cord injury, colon

cancer

(24, 25)

SMAD7 SMAD Family Member 7 Inhibitor of the TGF-β signaling NASH (26)

IL-12 Interleukin 12 A T cell-stimulating factor, activation of immune response HCC (27)

RECK Reversion-inducing cysteine-rich protein with

Kazal motifs precursor

Metalloendopeptidase inhibitor, wnt-protein binding HCC (28)

TIMP-3 Tissue inhibitors of metalloproteinases 3 Inhibitor of the matrix metalloproteinases Liver fibrosis, HCC (28, 29)

was no direct evidence to prove that miR-21 was responsible
for HBV infection or replication, some studies showed that
miR-21 was essential in the HBV x protein (HBx) induced
non-tumor to tumor transformation (27, 31, 33), mechanically
through phosphatase and tensin homolog/phosphoinositide
3-kinase/protein kinase B (PTEN/PI3k/Akt) signaling
pathway (34).

Hepatitis C virus (HCV) increases the expression of miR-21
in hepatocyte cell lines and primary human hepatocytes (35).
Clinical data showed that miR-21 expression in liver tissues
was associated with viral load and the level of fibrosis in liver
biopsies of patients with HCV infection (36). Chen et al., showed
that during HCV infection miR-21 negatively regulated IFN-α
signaling by inhibiting myeloid differentiation primary response
88 (MyD88) and Interleukin 1 Receptor Associated Kinase 1
(IRAK1) (37).

MIR-21 IN NON-ALCOHOLIC FATTY LIVER
DISEASE (NAFLD)

NAFLD is one of the most common chronic liver diseases which
is associated with metabolic syndrome. It represents a broad
spectrum of histopathological changes ranging from simple
steatosis, steatohepatitis (NASH), and cirrhosis (38, 39). Hepatic
miR-21 expression is increased in animal models and patients
with NAFLD/NASH (23, 40, 41); however, serum miR-21 levels
in NAFLD patients when compared to controls were varied
depending on the studies. One study showed that serum miR-21
level was lower in 25 NAFLD patients than those in 12 healthy
controls (18), the other study claimed that serum level of miR-
21 was higher in patients with NAFLD (42). Several studies

showed that miR-21 relies on a complex transcription network
to regulate glucose and lipid metabolism in hepatocytes. MiR-21,
in part, promotes hepatic lipid accumulation by interacting with
several factors, such as sterol regulatory element binding protein
(SREBP1) (17, 43), 3-hydroxy-3-methylglutaryl-co-enzyme A
reductase (HMGCR) (18), fatty acid binding protein 7 (FABP7)
(19). In addition, Calo et al. (44) revealed a new role for miR-21 in
hepatocytes in promoting hepatic insulin resistance and steatosis
in diet-induced obese mice through regulation of forkhead box
protein O1 (Foxo1), insulin induced gene 2 (Insig2), STAT3 and
Hepatocyte nuclear factor 4 alpha (HNF4-α). Lack of hepatic
miR-21 was sufficient to improve glucose tolerance, insulin
sensitivity as well as to prevent hepatic steatosis and fatty acid
uptake. MiR-21 also contributes to cell injury, inflammation
and fibrosis, through its inhibition of peroxisome proliferator-
activated receptor alpha (PPARα) signal pathway (23). Taken
together, miR-21 may therefore be implicated at different steps of
the NAFLD progression in a cell-specific manner: (1) early steps
of lipid accumulation and steatosis onset in hepatocytes and/or
(2) inflammation and fibrosis at later stages of the disease (45).

MIR-21 IN ALCOHOL ASSOCIATED LIVER
DISEASE (ALD)

ALD comprises of histopathological changes similar to those of
NAFLD in patients with excessive alcohol use. Several miRNAs
are aberrantly expressed after alcohol-induced liver injury. In
animal models of mice fed with ethanol via intragastric ethanol
feeding (12) or 5 weeks Lieber Decarli ethanol feeding (12),
the levels of hepatic miR-21 were found to be differentially
overexpressed in mice fed with ethanol compared to pair-fed
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controls. The induction of hepatic miR-21 is believed to exert
its protective effect against liver injury secondary to alcohol.
First, overexpression of miR-21 increases cell survival during
alcohol-induced liver injury (12). Second, alcoholic hepatitis
and alcoholic cirrhosis lead to alterations of tissue repair; a
process involving a series of death receptor signaling pathways
(46, 47). MiR-21 is a putative mediator of hepatic damage and
crucial in tissue repair during alcohol exposure (12). Third,
miR-21 may serve as a key regulator of liver regeneration in
response to liver injury secondary to alcohol consumption (48).
In addition to the findings in animal model, there are 2 lines
of evidence supporting the important role of miR-21 in ALD.
Integrative miRNA profiling of human liver tissues revealed an
important dysregulation of miRNA expression among patients
with AH compared to controls (49). Among miRNAs which
were differentially expressed frommiRNA profiling, hepatic miR-
21 was confirmed and validated to be significantly upregulated
in patients with AH (49). Despite the evidence suggesting the
protective role of miR-21 in ALD, an in-depth analysis to further
study the molecular mechanism on the role of miR-21 on the
3 key histological pathologies commonly observed in alcoholic
hepatitis; steatosis, inflammation, and fibrosis, are lacking. The
processes involving in the spectrum of alcohol-induced liver
injury are complex and involved the cross talk between the
hepatocytes, kupffer cells (KCs), and stellate cells. Apoptotic
hepatocytes secondary to alcohol-induced liver injury promote
secretion of inflammatory and pro-fibrogenic cytokines from
KCs (47). The role of KCs in the pathogenesis of liver fibrosis
has been shown indispensable since macrophage depletion
blunts the development of fibrosis (50). As miR-21 is present
in the hepatocyte (12) and inflammatory cells/macrophage
(51), and stellate cells (52), the specific role of miR-21 from
different cell types contributing to ALD pathogenesis should be
further studied.

MIR-21 IN LIVER FIBROSIS AND
HEPATOCELLULAR CARCINOMA (HCC)

MiR-21 has been shown to promote fibrogenesis in muscles
and various organs including heart, kidneys, lungs, and liver
(53). Clinical data also showed that miR-21 expression was up-
regulated in liver of patients with biliary atresia-induced liver
fibrosis (54). In liver, miR-21 induces fibrosis by activating
hepatic stellate cells (HSCs) and collagen synthesis (52, 55, 56).
Mechanically, the over expression of miR-21 promotes oxidation,
increases in collagen production and activates angiotensin
via sprouty RTK Signaling Antagonist 1 (Spry1)/ERK/NF-
κB, PTEN/Akt, programmed cell death 4 (PDCD4)/AP-1,
Smad7/Smad2/3/NADPH oxidase 4 (NOX4) pathways (52, 57,
58). Recently, research showed that in an methionine choline
deficient diet model of NASH-associated liver damage, miR-
21 knockout results in decrease of steatosis, inflammation, and
lipoapoptosis, with impairment of fibrosis (59). Similarly, in
a different study, the loss of miR-21 expression resulted in
decreased collagen deposition and expression of fibrotic markers
transforming growth factor-β1 and α-smooth muscle actin in

bile duct ligation mice model (60). Despite the evidence on the
role of miR-21 and fibrosis, a recent study found that antisense
inhibition or genetic deletion of miR-21 does not alter HSC
activation or liver fibrosis in CCL4 induced liver fibrosis mice
models (29).

MiR-21 is an “onco-miR,” and miR-21 is frequently up-
regulated in human solid malignancies, such as tumors of
breast, colon, lung, pancreas, prostate, liver, and stomach
(61). MiR-21 is an established survival factor during liver
injury and hepatocellular carcinoma development. Clinical data
showed that miR-21 was significantly upregulated in both
HCC tissues and serum (62–64). Although miR-21 expression
in HCC tissues did not predict overall survival (64), studies
showed that increased expression of miR-21 was significantly
correlated with tumor progression and could be a novel potential
biomarker for HCC prognosis (63–65). Mechanically, miR-21
promotes migration and invasion in HCC through the miR-
21-PDCD4-AP-1 feedback loop (66). Upregulation of miR-
21 can activate phosphatase and tensin homolog (PTEN),
which activates phosphatidylinositol 3-kinase signaling to AKT
and contributes to progression of HCC (67). Moreover, miR-
21 promotes cell migration and invasion of hepatocellular
carcinoma by targeting Kruppel Like Factor 5 (KLF5) (68). In
addition, HCC cells secreted exosomal miRNA-21 that directly
targeted PTEN, leading to activation of pyruvate dehydrogenase
kinase 1 (PDK1)/AKT signaling in HSCs; then promoted cancer
progression by secreting angiogenic cytokines, including vascular
endothelial growth factor (VEGF), matrix metallopeptidase 2
(MMP2), MMP9, basic fibroblast growth factor (bFGF), and
transforming growth factor-β (TGF-β) (69). In two separate HCC
tumor xenograft models, treatment with specific single-stranded
oligonucleotide inhibitors of miR-21 (anti-miRNAs) suppresses
HCC growth (70).

TABLE 2 | Summary of miRNA-21 dysregulation in various liver diseases.

MiR-21

dysregulation

Sample type Detect

methods

Liver

diseases

References

Up-regulation Human serum RT-qPCR HBV (31, 32)

Up-regulation,

correlated with

fibrotic stage, viral

load

Human liver RT-qPCR HCV (36)

Up-regulation Cell RT-qPCR HCV (36)

Up-regulation Mice liver RT-qPCR High fat diet

model

(23)

Up-regulation Human liver microarray NASH (23)

Down-regulation Human serum RT-qPCR NAFLD (18)

Up-regulation Human serum RT-qPCR NAFLD (42)

Up-regulation Mice liver microarray ALD (12)

Up-regulation Human liver microarray AH (49)

Up-regulation Human liver RT-qPCR Liver fibrosis

with biliary

atresia

(54)

Up-regulation Human liver,

serum

RT-qPCR HCC (62, 63)
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POTENTIAL ROLES OF MIR-21 AS
DIAGNOSTIC AND THERAPEUTIC
TARGETS FOR LIVER DISEASES

While it is clear that miR-21 plays an important role in
different types of liver diseases, its use as a diagnostic marker
for specific liver disease or its therapeutic implication are
not ready for prime time. Circulating miR-21 as a diagnostic
marker for disease staging such as in patients with NAFLD
yielded contradicting results (18, 42). More importantly, the
lack of standard operating procedures and the uniform method
to normalize the level of miR-21 with gatekeeping genes are
also problematic to adopt to use of miR-21 as the diagnostic
tool. Targeting miRNA has previously been conducted for the
treatment of hepatitis C infection (36), however, more studies are
needed to further explore specific mechanisms of miR-21 in the
pathogenesis of various types of liver diseases before its use as a
therapeutic intervention.

SUMMARY

Dysregulation of MiR-21 is common in several types of chronic
liver diseases (Table 2). However, in each type of liver disease,

there is a variability and heterogeneity in the expression of
miR-21 depending on the studies. The underlying explanation
may be due to the use of different animal models and lack
of standardized procedures and methods to normalize its level.
There are several pitfalls in using miR-21 as the therapeutic target
or as potential biomarkers for specific types of liver diseases.
Additional studies to further define miR-21 functions and its
mechanism in association with each type of chronic liver diseases
are needed before we can translate the bedside observations into
clinical settings.
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Long non-coding RNAs (lncRNAs) are RNAs with lengths exceeding 200 nucleotides

that are not translated into proteins. It is well-known that small non-coding RNAs,

such as microRNAs (miRNAs), regulate gene expression and play an important role in

cholangiopathies. Recent studies have demonstrated that lncRNAs may also play a key

role in the pathophysiology of cholangiopathies. Patients with cholangiopathies often

develop cholangiocarcinoma (CCA), which is cholangiocyte-derived cancer, in the later

stage. Cholangiocytes are a primary target of therapies for cholangiopathies and CCA

development. Previous studies have demonstrated that expression levels of lncRNAs

are altered in the liver of cholangiopathies or CCA tissues. Some lncRNAs regulate gene

expression by inhibiting functions of miRNAs leading to diseased liver conditions or CCA

progression, suggesting that lncRNAs could be a novel therapeutic target for those

disorders. This review summarizes current understandings of functional roles of lncRNAs

in cholangiopathies and seek their potentials for novel therapies.

Keywords: cholangiocytes, bile duct, microRNAs, long non-coding RNAs, cholangiocarcinoma

INTRODUCTION

It has been well-known since early studies that the human genome contains very small percentage
(∼1%) of exons of protein-coding genes (1). Although∼5-10% of the human genome is transcribed
into RNAs, the large portions of RNA sequences do not code functional proteins (2). In recent years,
these non-coding RNAs have been classified according to their lengths and characteristics, and
especially small non-coding RNAs called microRNAs (miRNAs) have been studied to understand
the pathophysiology of human diseases (3). Altered expression levels of miRNAs are a hallmark
in diseased conditions, and the regulation of gene expression by miRNAs plays a critical role in
pathogenesis of various human disorders including liver diseases (4). miRNAs could be useful
as biomarkers to diagnose liver diseases including liver fibrosis and cancer, and could be a
novel therapeutic target to regulate specific gene expression as well as cell events (5). Long
non-coding RNAs (lncRNAs) are another class of non-coding RNAs that are >200 bp long.
While the major function of miRNAs is to target mRNAs and regulate their expressions, various
functions of lncRNAs have been suggested including regulation of gene expression, X-chromosome
inactivation, telomere regulation, and chromatin structure regulation (3). Although functions of
large numbers of lncRNAs are undefined, they could play a key role in the pathophysiology of liver
diseases as well as miRNAs.
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Cholangiopathies include bile duct disorders, such as primary
sclerosing cholangitis (PSC), primary biliary cholangitis (PBC),
and biliary atresia, which are characterized by a syndrome of
biliary obstruction resulting from infection-related inflammation
or autoimmune responses (6–8). Numbers of miRNAs have
been identified in patients with cholangiopathies representing
their potentials as novel diagnostic biomarkers or therapeutic
targets (9–11). Recent, studies have also demonstrated that
lncRNAs may be associated with pathogenesis and diseased
conditions during cholestatic liver injury and could be another
therapeutic target for cholangiopathies. This review summarizes
current understandings of functional roles of lncRNAs and their
potentials as therapeutic targets in cholangiopathies.

LONG NON-CODING RNAs IN
CHOLANGIOPATHIES

Cholestatic Liver Injury and Primary
Sclerosing Cholangitis
MEG3

Previous studies suggested the association of lncRNA maternally
expressed gene 3 (MEG3) with liver fibrosis and hepatocellular
carcinoma (12, 13). Another study has demonstrated that
MEG3 interacts with RNA-binding protein polypyrimidine tract-
binding protein 1 (PTBP1), which binds to small heterodimer
partner (SHP) (14). SHP is a key regulator for bile acid
synthesis by regulating cytochrome P450 family 7 subfamily A
member 1 (Cyp7a1) and cytochrome P450 family 8 subfamily B
member 1 (Cyp8b1), which are enzymes for bile acid synthesis
from cholesterol (15). The PTBP1-MEG3 complex destabilizes
SHP mRNA leading to its degradation and elevated Cyp7a1
and Cyp8b1 expression. Overexpression of MEG3 induced
SHP degradation and elevated bile acid synthesis resulting in
cholestatic liver injury in mice (14). These findings suggest that
MEG3 is associated with pathogenesis of cholestatic liver injury
and could be a therapeutic target to manage bile acid homeostasis
and improve liver conditions.

H19

Zhang et al. have demonstrated that B-cell lymphoma protein
2 (Bcl2) is a key regulator of bile acid homeostasis, and
overexpression of Bcl2 increases serum levels of bile acids leading
to cholestatic liver injury in mice (16). Overexpression of Bcl2
induced SHP protein degradation as well as upregulation of
lncRNA H19 (16). This study has demonstrated that SHP is

Abbreviations: ANXA2, Annexin A2; ANXA2P3, Annexin A2 pseudogene 3;

αSMA, alpha smooth muscle actin; Bcl2, B-cell lymphoma protein 2; BDL, bile

duct ligation; CCl4, carbon tetrachloride; ceRNAs, competing endogenous RNAs;

Cyp7a1, cytochrome P450 family 7 subfamily A member 1; Cyp8b1, cytochrome

P450 family 8 subfamily B member 1; CXCR4, C-X-C motif chemokine receptor 4;

EMT, epithelial-mesenchymal transition; HMGA2, high-mobility group AT-hook

2; HSCs, hepatic stellate cells; iCCA, intrahepatic CCA; IL-6, interleukin-6; long

non-coding RNAs, lncRNAs; Mdr2, multidrug resistance 2; MEG3, maternally

expressed gene 3; miRNAs, microRNAs; PBC, primary biliary cholangitis; PSC,

primary sclerosing cholangitis; PTB1, polypyrimidine tract-binding protein 1;

RUNX1, runt-related transcription factor 1; SHP, small heterodimer partner;

SEMA4D, semaphoring-4D; TGF-β1, transforming growth factor beta 1.

a transcriptional repressor of H19, and overexpression of SHP
and knockdown of H19 attenuated Bcl2-induced cholestatic liver
injury in vivo, suggesting the association of H19 with SHP
expression and cholestatic liver diseases (16). Bile duct ligation
(BDL) is a surgical obstruction of common bile duct performed in
rodents, which is utilized as an animal model of cholestatic liver
injury (17). Song et al. have demonstrated that H19 expression
is elevated in the liver after BDL, and overexpression of H19
exacerbates BDL-induced liver damage and fibrosis in mice (18).
H19 deficient mice represented attenuated liver damage and
fibrosis compared to wild-type mice after BDL, indicating the
association of expression levels of H19 and liver conditions
during cholestatic liver injury (18). Multidrug resistance 2
knockout (Mdr2−/−) mice are the most common transgenic
mice that are utilized as the animal model of human PSC
(19). Mdr2−/− mice represent liver damage and fibrosis as well
as elevated H19 expression in the liver, especially in female
mice (20). Downregulation of H19 attenuated liver damage
and fibrosis in Mdr2−/− mice, suggesting that H19 could be
a therapeutic target for the management of liver conditions in
PSC (20).

H19 Carried in Extracellular Vesicles
Exosomes and microparticles are extracellular vesicles (EVs)
that are secreted from cells. Exosomes are small EVs (∼100 nm
in diameter) formed and secreted through the endosomal
network, and microparticles (0.1–1µm) are larger EVs formed
by outward budding of the plasma membrane (21). These
membrane-bound vesicles contain cargo mediators including
DNAs, RNAs, and proteins, and secreted EVs from donor cells
can be transferred into recipient cells delivering those cargo
mediators (22, 23). This EV-mediated cell-to-cell communication
followed by the regulation of cellular events plays a key role
in the pathophysiology of liver diseases. A previous study has
demonstrated that expression levels of H19 are elevated in
the liver of PSC patients as well as in the mouse livers after
carbon tetrachloride (CCl4)-induced liver damage, and CCl4
administration also increases levels of H19 carried in EVs isolated
from mouse serum (24). H19-enriched cholangiocyte-derived
EVs decreased SHP expression in hepatocytes, and injection
of serum EVs isolated from Mdr2−/− mice increased bile acid
synthesis and exacerbated liver conditions in other Mdr2−/−

mice, suggesting EV-mediated cell-to-cell communication via
cargo H19 (24). Since patients with liver cirrhosis have serum
EVs carrying elevated levels of H19 compared to those from
healthy individuals, H19-carrying EVs may play a critical role in
the pathogenesis of cholestatic liver diseases and liver cirrhosis
(24). Another study has demonstrated the correlation between
expression levels of H19 and fibrogenic markers including
collagen I and alpha smooth muscle actin (αSMA) in patients
with PSC and PBC as well as in BDL and Mdr2−/− mouse
models (25). H19-enriched cholangiocyte-derived EVs induced
proliferation and activation of hepatic stellate cells (HSCs)
leading to fibrogenesis and cholestatic liver fibrosis in vivo (25).
These studies suggest that EVs and cargo H19 delivery from
cholangiocytes to other liver cells such as hepatocytes and HSCs
are a critical step for pathogenesis of cholestatic liver injury, and
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H19 could be another therapeutic target for the treatment of
liver fibrosis.

Primary Biliary Cholangitis
PBC is an autoimmune disorder which is characterized by bile
duct obstruction and cholestasis caused by intrahepatic bile duct
destruction and inflammation (26). The cause of autoimmunity
against bile ducts and cholangiocytes is still unknown. Therefore,
previous studies have performed genotyping and association
studies to identify susceptible loci or genes. A previous study
has performed fine-mapping and association studies using a
cohort of 2,861 cases and have identified three candidate loci that
are associated with PBC (27). Hrdlichova et al. have extracted
RNAs from seven immune cell types (granulocytes, monocytes,
NK cells, B cells, memory T cells, naïve CD4+ and naïve
CD8+ T cells) to obtain RNA sequencing libraries for patients
with autoimmune disorders including PBC (28). This study
has demonstrated that various lncRNAs expressed in immune
cells are shared between autoimmune disorders, and NK cells,
memory T cells and CD8+ cells in PBC patients have enriched
those shared lncRNAs (28). Although this study suggests that
lncRNAs may contribute to autoimmunity and pathogenesis of
PBC, current studies are limited and detailed mechanisms and
functional roles of lncRNAs in PBC are largely unknown.

Biliary Atresia
Biliary atresia is a progressive bile duct disorder in infants
representing cholestasis, jaundice, and liver fibrosis (29).
Although previous studies has suggested the association between
perinatal viral infection and biliary atresia development in
infants, detailed mechanisms of pathogenesis in biliary atresia
are still undefined (30). Chen et al. have performed genome-
wide association study using a cohort of 343 non-related biliary
atresia patients and 1,716 healthy controls to identify susceptible
loci to biliary atresia (31). This study identified numbers of
candidate loci, and one of significant SNPs was located in the gene
ADD3-AS1, which encodes an lncRNA (31). Pseudogenes are
DNA sequences that are related to genes but do not encode fully
functional proteins. Therefore, transcripts of pseudogenes are
recognized as lncRNAs. Pseudogenes and pseudogene-derived
lncRNAs can be functional by regulating gene expression and
could be a therapeutic target (32, 33). Annexin A2 (ANXA2)
pseudogene 3 (ANXA2P3) is a pseudogene related to ANXA2.
Previous studies have demonstrated that upregulation of ANXA2
is associated with liver fibrosis and can be useful as a biomarker
for hepatitis B virus-related liver fibrosis (34, 35). Expression
levels of ANXA2 as well as ANXA2P3 are also upregulated in
liver tissues of biliary atresia patients, indicating that ANXA2P3
may be involved in the pathophysiology of biliary atresia
development (36). As mentioned previously, lncRNA H19 is
upregulated in the liver of patients with PSC and mouse models
of PSC (24, 25). Another study analyzed H19 expression levels in
biliary atresia patients and found that H19 was upregulated in the
liver of biliary atresia patients compared to healthy individuals,
and the expression of H19 was correlated with the expression of
fibrogenic markers αSMA and transforming growth factor beta 1
(TGF-β1) (37). This study has demonstrated that H19 regulates

functions of miRNAs let-7 families by binding them leading to
elevated expression of the target of let-7, high-mobility group AT-
hook 2 (HMGA2) (37). Decreased levels of let-7 are associated
with ductular reaction and liver fibrosis during cholestatic liver
injury (38). These studies suggest that lncRNAs are associated
with PBC and biliary atresia although further studies are required
to elucidate detailed mechanisms.

CHOLANGIOCARCINOMA

lncRNAs as Competing Endogenous RNAs
in CCA
Cholangiocarcinoma (CCA) is a cancer that is derived from
the biliary tree, and patients with PSC have a high risk for
the development of CCA (39). Functions of lncRNAs have
attracted interests in recent CCA studies because accumulating
evidence suggests that lncRNAs may play a key role in cancer
development, proliferation, and invasion of CCA. H19 binds to
let-7 families and inhibit their functions like an let-7 sponge,
as mentioned (37). lncRNAs function as competing endogenous
RNAs (ceRNAs), which interrupt miRNA functions and alter
protein expression, and this may be a characteristic hallmark
in CCA. Genome-wide data analysis or RNA-Seq profiling
identified various lncRNAs and ceRNA networks associated with
CCA, and some candidate lncRNAs are significantly associated
with survival rates (40–42). Recent studies have identified a
number of lncRNAs that are associated with CCA progression
and invasion. This review introduces selected studies of lncRNAs
in CCA especially from recent studies. For other lncRNAs in
CCA, see previous schematic reviews (43, 44).

Functional Roles of lncRNAs in CCA
Previous studies have demonstrated that expression levels of
lncRNA H19 are elevated in PSC and biliary atresia patients
as described previously (24, 37). A study using tissue samples
from patients with perihilar, distal, or intrahepatic CCA (iCCA)
has represented that H19 expression is upregulated in CCA
tissues compared to corresponding non-tumor tissues, and
expression levels of H19 are associated with poor survival
rates of patients (45). This study also demonstrated that H19
induced cell proliferation and migration in CCA cell lines RBE
and QBC939 cells (45). Wang et al. analyzed lncRNA profiles
expressed in CCA cell lines, RBE, QBC939, and SK-cha-1 cells,
and found that lncRNAs H19 and HULC were upregulated
during hydrogen peroxidase-induced oxidative stress (46). This
study has demonstrated that H19 disrupts functions of let-7a
and let-7b, which inhibit interleukin-6 (IL-6) expression as a
target, and HULK interferes miR-372 and miR-373 that target
C-X-C motif chemokine receptor 4 (CXCR4) (46). Since IL-6
and CXCR4 are associated with proliferation, migration, and
metastasis of CCA (47–49), upregulation of H19 and HULC
may lead to aberrant expression of IL-6 and CXCR4 as well as
poor survival rates of CCA patients although further studies are
required (46). Microarray analysis for lncRNAs using samples
of fifty two CCA patients has identified five candidate lncRNAs
that are significantly upregulated in iCCA tissues compared to
adjacent non-tumorous tissues (50). Expression levels of one
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of those candidate lncRNAs, SNHG3, represented correlation
with TNM stages, and patients with high SNHG3 expression
had lower survival rates compared with patients with low
SNHG3 expression (50). Another study using sixty CCA patients
(intrahepatic, extrahepatic, and perihilar) has identified lnc-
PKD2-2-3 as a candidate lncRNA, and high lnc-PKD2-2-3
expression was correlated with poor survival rates and high
TNM stages (51). Although functional roles and targets of
SNHG3 and lnc-PKD2-2-3 are undefined, these studies indicate
the correlation between lncRNAs and CCA prognosis, and
these lncRNAs could be utilized as a diagnostic biomarker for
CCA. Epithelial-mesenchymal transition (EMT) is a process that
epithelial cells adopt structural and functional characteristics
of mesenchymal cells and is an important phenomenon in
carcinogenesis andmetastases in cancers including CCA (52, 53).
Previous report have demonstrated that lncRNA-NEF and runt-
related transcription factor 1 (RUNX1) are associated with EMT
in cancer (54, 55). Liang et al. analyzed expression levels of
lncRNA-NEF and RUNX1 in 56 iCCA patients and 42 healthy
individuals and found that lncRNA-NEF was downregulated and
RUNX1 was upregulated in iCCA tissues (56). This study has
demonstrated that low expression levels of lncRNA-NEF are
associated with poor survival rates, and lncRNA-NEF expression
is negatively correlated with RUNX1 expression in iCCA patients
(56). FENDRR is a lncRNA, which is downregulated in various
cancers such as breast cancer, prostate cancer, and hepatocellular
carcinoma (57–59). A study using 60 CCA patients has found
that expression of FENDRR is downregulated in CCA tissues
compared to non-cancerous tissues, and FENDRR expression is
negatively correlated with expression of survivin (60). Survivin is
a protein that inhibits apoptosis and upregulated in cancers (61,
62). FENDRR repressed proliferation, migration, and invasion
of CCA cell lines HuCCT1 and QBC939 cells via regulation
of survivin (60). An in vitro study using CCA cell lines
(HuCCT1, Huh-28, KKU-214, and RBE) has demonstrated
that CCA cells express elevated levels of lncRNA LINC01061
(63). LINC01061 binds to miR-612 and inhibits functions of
miR-612, which targets semaphoring-4D (SEMA4D) (63). Since
SEMA4D promotes invasion and metastasis of cancers (64, 65),
this study indicates that LINC01061 functions as ceRNA for
SEMA4D by sponging miR-612 leading to cell proliferation
and migration of CCA cell lines (63). These studies suggest
that expression levels of lncRNAs are associated with cell
proliferation, migration, and invasion of CCA, and lncRNAs
play an important role in physiological events of CCA cells
by regulating protein expression. Table S1 summarizes lncRNAs
identified in cholangiopathies and CCA.

CANDIDATE THERAPEUTIC APPROACHES
FOR lncRNAs

Current studies represent the association of lncRNAs with
cholangiopathies and abnormal liver functions, such as excess
bile acid synthesis and liver fibrosis as well as CCA characteristics,
such as CCA cell migration and invasion, metastasis, or
prognosis. These findings suggest that lncRNAs could be

a novel therapeutic target to manage disease conditions
in cholangiopathies.

RNA Interference Targeting lncRNA
The majority of lncRNAs associated with cholangiopathies is
upregulated in the diseased liver. RNA interference technology
using shRNA or siRNA can be utilized to manage liver
conditions. For example, shRNA targeting LINC01061 decreased
cell proliferation and increased apoptosis in CCA cell lines
KKU-214 and RBE cells (63). Antisense oligonucleotides that
inhibit lncRNA functions or induce lncRNA degradation by
RNaseH can be utilized for lncRNA silencing. Treatments of
antisense oligonucleotides for lncRNA MALAT1 decrease tumor
volumes and metastases in the mouse model of lung cancer
(66). Gene knockout targeting lncRNAs is another approach
for cholangiopathies. H19 is upregulated during cholestatic
liver injury, and H19−/− mice represent attenuated liver
fibrosis during BDL compared to wild-type mice (25). Previous
studies have introduced a technique for lncRNA silencing
using zinc finger nucleases to induce lncRNA destabilization
and degradation leading to 1,000-fold decreased expression of
MALAT1 (66, 67). However, current studies are limited for
cholangiopathies and CCA, and the majority of current studies
using RNA interference is based on in vitro experiments. Further
studies are required to establish the methodology for effective
lncRNA silencing in vivo.

Induction of lncRNA Expression
Some lncRNAs could be therapeutic or protective against liver
diseases or cancer. For example, expression levels of lncRNA-
NEF and FENDRR are downregulated in CCA tissues compared
to normal tissues (54, 60). Overexpression of these lncRNAs
inhibited cell migration and invasion of CCA cell lines HuCCT1,
QBC939, or TFK-1 cells, indicating the potentials of lncRNA
induction as another therapeutic approach for CCA (54, 60).
As well as lncRNA silencing, lncRNA induction has same
limitations: (i) Current studies are limited in the use of in vitro
cultured CCA cell lines; and (ii) Technical difficulties to induce
specific lncRNAs expression in specific cell types such as CCA
cells. Gene therapy using a plasmid encoding the target gene
has been performed for breast cancer (68), and the methodology
could be modified to target therapeutic/protective lncRNAs in
cholangiopathies although further studies are needed to seek
their potentials.

Small Molecule Inhibitors
Functions of lncRNAs could be impaired by small molecules.
For example, some lncRNAs function as ceRNA by sponging
miRNAs and regulating protein expression. Administration of
small molecules that bind to the region for miRNA sponging
may inhibit interaction between miRNAs and lncRNAs leading
to effective inhibition of the target protein expression by
miRNAs. Some lncRNAs interact with proteins to form a
complex, and this lncRNA-protein complex function as an
inhibitor that suppresses expression of the specific proteins.
For example, lncRNA MEG3 interacts with PTBP1 to form a
complex. This PTBP1-MEG3 complex binds to and destabilizes
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mRNA of SHP leading its degradation followed by elevated
bile acid synthesis and cholestatic liver injury (14). Small
molecules that interfere RNA-protein interaction betweenMEG3
and PTBP1 may have therapeutic effects for cholestatic liver
injury induced by downregulated SHP and aberrant bile
acid synthesis. Small molecules that bind to the specific
region of lncRNAs and inhibit its correct folding could
be utilized to induce lncRNA degradation and functional
inhibition. Although these ideas may be theoretically possible,
studies are still ongoing and no candidate molecules for
cholangiopathies to be utilized for clinical trials are available
to date.

Targeting or Utilization of EVs
Recent studies have demonstrated that EVs play a key role
in cholangiopathies. H19 is upregulated in PSC patients,
and cholangiocyte-derived EVs transfer cargo H19 to
hepatocytes or HSCs in diseased conditions leading to bile
acid synthesis or fibrogenesis, respectively (24, 25). Drugs that
decrease EV production or secretion may inhibit fibrogenic
cell-to-cell communication via H19-enriched EVs in PSC.
High throughput screen assay has identified compounds
that modulate EV biogenesis or release in prostate cancer
cells (69). These compounds could also be effective on EV
production or secretion in cholangiocytes or CCA cells
leading to improved liver conditions although further studies
are required.

EVs functions as a disease-inducing mediator carrier during
cholestatic liver injury by delivering H19 from cholangiocytes
to other liver cells (24, 25). This means that EVs could be
utilized as a drug or therapeutic mediator carrier to manage liver
conditions. A recent study has demonstrated that injection of
EVs isolated from liver stem cells attenuates ductular reaction
and liver fibrosis in Mdr2−/− mice via delivering cargo let-7,
indicating the potentials of EVs as a therapeutic tool and an
miRNA carrier (19). Injection of EVs carrying mediators, such
as small molecules or nucleotides targeting lncRNAs could be
performed to regulate lncRNA functions in vivo andmanage liver
conditions. EVs carrying candidate mediators such as miRNAs
can be produced by cell transfection (70), and previous studies
have also reported that modification of EV cargo mediators
for miRNAs or miRNA inhibitors can be accomplished by
electroporation (71, 72). Although further studies are required,
these studies indicate that the methodology could be modified
for lncRNAs or mediators targeting lncRNAs that are carried in
EVs, and lncRNAs-targeting EVs could be useful to manage liver
conditions and cancer progression.

CONCLUSION

Current studies have demonstrated that expression levels of
lncRNAs are associated with diseased conditions of cholestatic
liver diseases and CCA. lncRNAs function as ceRNAs by
sponging miRNAs to regulate protein expression. Although
there are various approaches available that are theoretically
possible to regulate functions of lncRNAs leading to the
management of cholangiopathies, further studies are required

FIGURE 1 | The role of lncRNAs in liver diseases. During liver damage,

expression levels of long non-coding RNAs (lncRNAs), such as H19, are

elevated in the liver. These lncRNAs sponge microRNAs (miRNAs), such as

let-7 families, and inhibit their functions. Since miRNAs inhibit the expression of

target genes, such as HMGA2, elevated levels of lncRNAs lead to enhanced

gene expressions of target genes. Elevated gene expression is associated with

ductular reaction, liver fibrogenesis and inflammation, or carcinogenesis or

tumor progression. Small molecules targeting lncRNAs may be utilized as novel

therapeutic tools to inhibit lncRNA functions and maintain liver homeostasis.

to understand detailed mechanisms of functions of lncRNAs
and to develop the methodology for a novel therapy targeting
lncRNAs. Figure 1 represents a diagram for the roles of lncRNAs
in liver diseases.
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Non-alcoholic fatty liver disease (NAFLD) is a major growing worldwide health problem.

We previously reported that interruption of the enterohepatic circulation of bile acids

using a non-absorbable apical sodium-dependent bile acid transporter inhibitor (ASBTi;

SC-435) reduced the development of NAFLD in high fat diet fedmice. However, the ability

of ASBTi treatment to impact the progression of NAFLD to non-alcoholic steatohepatitis

(NASH) and fibrosis in a diet-induced mouse model remains untested. In the current

study, we assessed whether ASBTi treatment is hepatoprotective in the choline-deficient,

L-amino acid-defined (CDAA) diet model of NASH-induced fibrosis.

Methods: Male C57Bl/6 mice were fed with: (A) choline-sufficient L-amino acid-defined

diet (CSAA) (31 kcal% fat), (B) CSAA diet plus ASBTi (SC-435; 60 ppm), (C) CDAA diet, or

(D) CDAA diet plus ASBTi. Body weight and food intake were monitored. After 22 weeks

on diet, liver histology, cholesterol and triglyceride levels, and gene expression were

measured. Fecal bile acid and fat excretion were measured, and intestinal fat absorption

was determined using the sucrose polybehenate method.

Results: ASBTi treatment reduced bodyweight gain in mice fed either the CSAA or

CDAA diet, and prevented the increase in liver to body weight ratio observed in CDAA-fed

mice. ASBTi significantly reduced hepatic total cholesterol levels in both CSAA and

CDAA-fed mice. ASBTi-associated significant reductions in hepatic triglyceride levels

and histological scoring for NAFLD activity were observed in CSAA but not CDAA-

fed mice. These changes correlated with measurements of intestinal fat absorption,

which was significantly reduced in ASBTi-treated mice fed the CSAA (85 vs. 94%,

P < 0.001) but not CDAA diet (93 vs. 93%). As scored by Ishak staging of Sirius

red stained liver sections, no hepatic fibrosis was evident in the CSAA diet mice. The

CDAA diet-fed mice developed hepatic fibrosis, which was increased by the ASBTi.
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Conclusions: ASBT inhibition reduced intestinal fat absorption, bodyweight gain and

hepatic steatosis in CSAA diet-fed mice. The effects of the ASBTi on steatosis and

fat absorption were attenuated in the context of dietary choline-deficiency. Inhibition

of intestinal absorption of fatty acids may be involved in the therapeutic effects of

ASBTi treatment.

Keywords: liver, triglyceride, fibrosis, fat absorption, cholesterol

INTRODUCTION

Parallel to the global rise in obesity, the disease burden related to
non-alcoholic fatty liver disease (NAFLD) is emerging as a major
worldwide problem. The number of adults and children with
NAFLD is steadily increasing and the current global prevalence
is estimated at 24% (1, 2). NAFLD comprises a spectrum of
disease states, from non-symptomatic hepatic steatosis to non-
alcoholic steatohepatitis (NASH) and liver fibrosis. NAFLD
also increases the morbidity and mortality associated with
type 2 diabetes mellitus, cardiovascular disease, and chronic
kidney disease (3). Unfortunately, an incomplete understanding
and lack of experimental NAFLD/NASH animal models that
faithfully reproduce the human pathophysiology has slowed
the development of new therapies (4). Recently, bile acid-
related pathways have emerged as an important therapeutic
target for disorders of glucose and lipid metabolism (5). Under
physiological conditions, bile acid synthesis and enterohepatic
cycling are tightly regulated to maintain a relatively constant
whole-body bile acid pool size and restrict the systemic
distribution of bile acids. After their secretion along with bile
into the duodenum, about 95% of the bile acids are reabsorbed
by the apical sodium-dependent bile acid transporter (ASBT;
also called the ileal bile acid transporter, IBAT) in the distal
small intestine, thereby limiting their flux into the colon. This
system is tightly controlled in part by bile acid signaling via
the farnesoid-X receptor (FXR) in the liver and intestine. The
intestinal microbiota harbor enzymes to deconjugate and convert
primary bile acids into secondary bile acids, changing the bile
acid pool size, composition, and physicochemical properties (6).
These changes alter signaling through FXR and other bile acid-
activated receptors, and modulates the metabolic response to bile
acids (7).

Several bile acid-based approaches are currently under
investigation as potential therapies for liver diseases, including
NAFLD. Obeticholic acid, a derivative of the naturally occurring
FXR agonist chenodeoxycholic acid (CDCA), improved liver
biochemistry and histology scores in NASH patients (8, 9).

Abbreviations: ASBT, Apical sodium-dependent bile acid transporter; ASBTi,

Apical sodium-dependent bile acid transporter inhibitor; BW, bodyweight;

CA, cholic acid; CDAA, choline-deficient, L-amino acid-defined; CSAA,

choline-sufficient L-amino acid-defined; DCA, deoxycholic acid; FXR,

farnesoid-X receptor; GC, gas chromatography; HCA, hyodeoxycholic acid;

IBAT, ileal bile acid transporter; LCA, lithocholic acid; MCA, muricholic

acid; MCD, methionine/choline-deficient; NAFLD, non-alcoholic fatty liver

disease; NAS, NAFLD Activity Score; NASH, non-alcoholic steatohepatitis; PC,

phosphatidylcholine; VLDL, very low density lipoprotein.

In addition, we have shown that interruption of the bile acid
enterohepatic circulation by an ASBT inhibitor (ASBTi), SC-
435, prevented hepatic lipid accumulation and improvedmarkers
of NAFLD in mice fed a high fat diet (10). Although these
results and similar findings in high fat diet-fed Ldlr−/−. Leiden
mice demonstrated a robust effect of ASBT inhibition on
hepatic lipid accumulation, the effects of ASBT inhibition on
the progression from hepatic steatosis to steatohepatitis and
fibrosis remain unclear (10, 11). Feeding a Western-type diet
(high fat, sucrose, and cholesterol) to mice typically models
aspects of the human condition including successfully inducing
hepatic lipid accumulation. However, progression from steatosis
to NASH and fibrosis is generally limited and highly variable
(12–14). Therefore, other dietary, genetic or toxic interventions,
or combinations thereof, are required to induce development
of NASH in animal models. One widely used intervention
for dietary induction of NASH and subsequent fibrosis is
the methionine/choline-deficient (MCD) diet. Depriving mice
of dietary choline impairs hepatic secretion of very low
density lipoproteins (VLDL) and results in hepatic steatosis,
oxidative stress, cell death, and increases in cytokine levels
(15). Combined with methionine deficiency, the mice develop
extensive inflammation after 2 weeks and significant fibrosis
after 6 weeks (12). However, MCD diet-fed mice generally lose
considerable bodyweight and show no insulin resistance (or
even increased sensitivity), conditions that poorly correlate with
development of NASH in humans (16, 17). In this current study
we assessed the effects of ASBTi treatment on development of
NAFLD and fibrosis using a choline-deficient L-amino acid-
defined (CDAA) diet, which has been shown to successfully
induce hepatic steatosis and subsequent fibrosis after 22 weeks
without bodyweight loss (18, 19).

MATERIALS AND METHODS

Animals
Male C57Bl/6J mice aged 10 weeks were obtained from Jackson
Laboratories. Animals were group-housed with 4 mice per
ventilated cage (Super Mouse 750 Microisolator System; Lab
Products) containing bedding (1/8” Bed-O-Cobbs; Andersons
Lab Bedding Products) in the same temperature (22◦ C) and
light/dark cycle (12-h; 7 AM to 7 PM) controlled room of the
animal facility to minimize environmental differences. Mice were
fed ad libitum for 22 weeks with either a choline-sufficient L-
amino acid-defined control diet (CSAA, Catalog # 518754; Dyets
Inc., Bethlehem, PA, USA) or choline-deficient L-amino acid-
defined diet (CDAA, Catalog # 518753; Dyets Inc., Bethlehem,
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PA, USA) with or without 0.006% (w/w) of the ASBTi (SC-435).
This amount of ASBTi in the diet provides a dose of ∼11
mg/kg/day of SC-435 (10). The CSAA and CDAA diets contain
31% of calories as fat (in the form of corn oil and partially
hydrogenated vegetable oil; fatty acid composition: 23.4%
saturated, 52.1% monounsaturated, 24.5% polyunsaturated) and
have no added cholesterol. Food consumption was measured by
weighing new and remaining food two times weekly. Calorie
intake was calculated by multiplying the weight of the food
consumed by their caloric density. During the final week on diet,
the mice were individually housed to measure fat absorption and
fecal bile acid and neutral sterol excretion.

Animal Experiments
During the final week of CSAA and CDAA (+/− ASBTi) diet
feeding, mice received powdered diet containing 0.7% sucrose
polybehenate (w/w) (20). Sucrose polybehenate is not absorbed
in the intestine. Therefore, by comparing the ratio of behenic
acid to total fatty acids in the diet and feces, the fractional fat
absorption can be calculated without being reliant on food intake
measurements. Powdered diet was placed in a feeding jar in
the cage and replaced every 2–3 days. Feces were collected for
individual mice during the final 3 days of the experiment and
used for fatty acid, neutral sterol and bile acid measurements.
After, mice were sacrificed and tissues collected for further
analysis. Mice were anesthetized using isoflurane. Blood was
obtained via cardiac puncture, centrifuged and the plasma
was stored at −80◦C. Livers were excised, weighed and pieces
collected for subsequent histology analysis. Remaining liver
tissue was snap frozen in liquid nitrogen. The small intestines
were excised, measured, cut into five equal length segments,
flushed with ice cold phosphate buffered solution (PBS) and snap
frozen in liquid nitrogen. The length of the colon was measured,
divided into proximal (60%) and distal (40%) segments, flushed
with ice cold PBS and immediately snap frozen in liquid nitrogen.

Fatty Acid Measurements
Weighed samples of the synthetic diet and feces were saponified
with methanolic NaOH, extracted with hexane, and converted to
methyl esters. Samples were analyzed using gas chromatography
(GC) to quantitate the fatty acid methyl esters and determine
the amount of behenic acid (C22:0), saturated (14:0, 16:0,
18:0), monounsaturated (C18:1), and polyunsaturated (18:1, 18:2,
18:3ω3, 20:5ω3, 22:6ω3) fatty acids as previously described
(21, 22). Each chromatogram was examined to verify the
identification of constituent fatty acids and for quality control.

Histology
The livers were removed, weighed, and a portion was fixed in 10%
neutral buffered formalin, embedded in paraffin, sectioned at
5µm, and stained with hematoxylin and eosin. Sirius red staining
was performed using the paraffin-embedded liver sections
(method adapted from Picrosirius Red Stain Kit, Polysciences,
Inc., Warrington, PA, USA). The liver histology was assessed in
a blinded fashion by a veterinary pathologist (S.G.) for steatosis,
lobular inflammation, and hepatocellular ballooning to derive the
NAFLDActivity Score (NAS) as described (23). Sirius red stained

sections were blindly assessed by S.G. for Ishak Stage using the
scores adapted from Ishak et al. (24).

Hepatic and Jejunal Lipids
Hepatic lipids were extracted according to a protocol based on the
Folch method (25). Briefly, lipids were extracted from ∼60mg
of tissue using 3ml of chloroform:methanol (2:1) and incubated
at 55◦C for at least 2 h. Phases were split by adding 0.05%
(v/v) sulfuric acid in water and centrifugation at 1,500 rpm for
15min. Part of the bottom layer was transferred, dried under
nitrogen and dissolved in 2% (v/v) Triton X-100 in water. Hepatic
concentrations of total cholesterol (Pointe Scientific, C7510-01-
906), free cholesterol (Fujifilm Wako Diagnostics, Cat# 993-
02501), and triglyceride (Fujifilm Wako Diagnostics, Cat# 994-
02891 and Cat# 990-02991) were subsequently measured by
enzymatic assays.

Gene Expression
Total RNA was isolated from proximal colon and liver using
a miRNeasy kit (Qiagen, Cat# 74106). Reverse transcriptase
polymerase chain reaction (RT-PCR) was performed with 1
µg RNA using a high capacity cDNA reverse transcription
kit (Applied Biosystems, Cat# 4368814). Real-time quantitative
PCR was performed with a Sybr Green master mix (Applied
Biosystems, Cat# 4309155) using a StepOne Plus real time PCR
system (Applied Biosystems). The mRNA expression levels were
calculated based on the 11-CT method; values are means
of triplicate determinations and expression was normalized
using cyclophilin. The sequences of the primers used has been
published previously (26).

Fecal Bile Acids and Neutral Sterols
Fecal pellets were sorted, air-dried, weighed and mechanically
homogenized. Neutral sterols and bile acids were extracted
from 50mg of feces or diet as described (27). Briefly, samples
were heated for 2 h at 80◦C with a mixture of 1M sodium
hydroxide and methanol (3:1). Neutral sterols were then
extracted twice with 2ml petroleum ether and derivatized
with N, O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA)-
pyridine-trimethylchlorosilane (TMCS) (5:5:0.1). Bile acids
were quantitatively extracted from feces, isolated on Sep-Pak
C-18 columns, methylated with methanol/acetyl chloride
(20:1) and derivatized with BSTFA-pyridine-TMCS (5:5:0.1)
(27). Both neutral sterols and bile acids were measured by gas
chromatography (GC) (28). The total amount of bile acids or
neutral sterols was calculated as the sum of the individual species.

Statistical Analyses
Data are presented as means ± standard deviation (SD), unless
stated otherwise. Statistical analyses were performed and graphs
were created using GraphPad Prism 8 (GraphPad Software, La
Jolla, CA, USA). Differences between groups were assessed by
one-way ANOVA with Tukey’s post-hoc test except for Ishak
Stage, which was tested using a Chi-Squared test. Different
lowercase letters indicate statistically significant differences (P <

0.05) between groups.
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FIGURE 1 | ASBTi treatment increases fecal bile acid excretion and bile acid synthesis in mice fed a CSAA and CDAA diet. (A) Study design showing the four

experimental groups, (B) Total fecal bile acid excretion, (C) Hepatic Cyp7a1 gene expression, (D) Colonic Ibabp gene expression. Means ± SD are shown. Distinct

lowercase letters indicate significant differences between groups. P < 0.05; n = 9–12 per group.

RESULTS

ASBT Inhibitor Treatment Reduces
Bodyweight Gain in CSAA and CDAA
Diet-Fed Mice
To determine whether ASBT inhibition can prevent development
of NASH and fibrosis in mice, male C57Bl/6J mice were fed
a choline-deficient L-amino-defined diet (CDAA) or a choline-
sufficient control diet (CSAA) with or without an ASBTi for 22
weeks (Figure 1A). ASBTi treatment increased total fecal bile
acid excretion by approximately 5-fold in CSAA (4.1 vs. 21.4
µmol/24 h/100 g BW, P < 0.001) and 4-fold in CDAA diet-fed
mice (5.3 vs. 19.1 µmol/24 h/100 g BW, P < 0.001) (Figure 1B).
Interruption of the enterohepatic circulation of bile acids was
confirmed by gene expression measurements, with increases in
hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) mRNA as a
marker of bile acid synthesis, and colonic intestinal bile acid-
binding protein (Ibabp) mRNA as a marker of colon bile acid

exposure (Figures 1C,D) in both the CSAA and CDAA diet-
fed mice.

Inhibiting the ASBT in mice has been shown to increase the
proportion of cholic acid (CA) plus its bacterial dehydroxylation
product deoxycholic acid (DCA) and to reduce the proportion
of 6-hydroxylated bile acid species, including alpha-muricholic
acid (αMCA), beta-muricholic acid (βMCA), and the bacterial
product omega-muricholic acid (ωMCA) (10, 11, 29). To
determine if the CDAAdiet alters the effect of ASBT inhibition on
bile acid composition, the fecal bile acid profiles were determined
using quantitative three-day fecal collections performed for
individually-housed mice (Figure 2). The mass of feces excreted
per day per unit body weight (g dry feces/24 h/100 g BW, mean
± SD, n= 9–12/group) was similar for the CSAA vs. CDAA diet-
fed mice, showed a trend toward an increase in ASBTi-treated
CSAA diet-fed mice, and was significantly decreased in ASBTi-
treated CDAA diet-fed mice (CSAA: 1.100 ± 0.266 vs. CSAA
plus ASBTi: 1.326 ± 0.169, P = 0.088; CDAA: 1.157 ± 0.230
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FIGURE 2 | The effects of ASBTi treatment on the fecal bile acid species profile. ASBTi treatment increased excretion of the secondary bile acids, deoxycholic acid

(DCA) and lithocholic acid (LCA), and the primary bile acid, α-muricholic acid (MCA). (A) Pie charts for the fecal bile acid profiles. (B) Mass of bile acid species excreted

into the feces per day. (C) Individual species of BA excreted in feces. Means ± SD are shown. Distinct lowercase letters indicate significant differences between

groups. P < 0.05; n = 8–12 per group.

vs. CDAA plus ASBTi: 0.908 ± 0.071, P = 0.02). The fecal bile
acid results are expressed as a proportion of the total amount
of bile acid excreted per day per unit body weight (Figure 2A)
and as the mass of individual bile acid species excreted per
day per unit body weight (Figures 2B,C). For the fecal bile
acid profiles, the proportion of βMCA and its bacterial product
ωMCAwere increased and the proportion of CA and its bacterial
product DCA decreased in the CDAA vs. CSAA diet-fed mice.
Following administration of the ASBTi, the fecal bile acid species

distribution became remarkably similar in the CSAA and CDAA
diet-fed mice (Figure 2A). Increases were observed in excretion
of the primary bile acid αMCA and secondary bile acids DCA,
lithocholic acid (LCA), and hyodeoxycholic acid (HCA). The
differences in fecal excretion of βMCA and ωMCA between
the CSAA and CDAA-fed mice were lost after ASBTi treatment
(Figures 2B,C). In addition, DCA becomes the major fecal bile
acid, likely reflecting increases in bacterial 7α-dehydroxylation
and possibly decreased hepatic rehydroxylation of DCA to CA
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FIGURE 3 | ASBTi treatment decreases bodyweight gain in CSAA and CDAA diet-fed mice and reduces liver weight in CDAA diet-fed mice. (A) Bodyweight gain over

time in ad libitum fed mice, (B) Bodyweight gain as percentage of initial bodyweight after 22 weeks, (C) Calories consumed per mouse per day, (D) Absolute liver

weights after 22 weeks, (E) Liver to bodyweight ratio; Means ± SD are shown. Distinct lowercase letters indicate significant differences between groups. P < 0.05;

n = 9–12 per group.

by the enzyme Cyp2a12 (30), and this was not affected by feeding
a choline-deficient diet.

To assess whether dietary choline deficiency and/or ASBTi
treatment affected body mass, we recorded bodyweight each
week (Figure 3A). Bodyweight gain was similar for mice fed
the CSAA and the CDAA diets. After 22 weeks, the increase
in bodyweight was 54% and 49% (P = 0.8, Figure 3B) in
the CSAA and CDAA diet-fed mice, respectively. The ASBTi
treated groups gained less weight over the course of 22 weeks,
irrespective of the diet, significantly reducing bodyweight gain
by ∼38 and 39% in the CSAA and CDAA diet-fed mice. The
caloric intake was slightly higher in the ASBTi-treated CSAA
group (17.8 vs. 16.3 kcal/24 h/mouse in the untreated CDAA
group, P = 0.006) and slightly lower in the ASBTi-treated

CDAA group (14.6 vs. 16 kcal/24 h/mouse in the untreated
CDAA group, P = 0.013, Figure 3C). Hepatomegaly due to
steatosis and inflammation is a common feature of NAFLD.
After 22 weeks, both absolute liver weight (2.4 vs. 3.4 g, P =

0.001, Figure 3D) and liver to bodyweight ratio (0.06 vs. 0.08,
P < 0.001, Figure 3E) was increased in mice on the CDAA
vs. CSAA diet. On the CSAA diet, there was a trend toward
a reduced liver weight (1.9 vs. 2.4 g, P = 0.2, Figure 3D) and
liver to bodyweight ratio (0.052 vs. 0.067, P = 0.45) with ASBTi
treatment (Figure 3E). On the CDAA diet, liver weight (2.4 vs.
3.4, P = 0.001, Figure 3D) and liver to bodyweight ratio (0.059
vs. 0.084, P = 0.001, Figure 3E) were significantly lower with
ASBTi treatment, and decreased to values similar to that in CSAA
diet-fed mice.
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FIGURE 4 | ASBTi treatment reduces hepatic steatosis in CSAA but not CDAA diet-fed mice. Hemotoxylin and eosin stained liver sections from (A) CSAA, (B)

CSAA+ASBTi, (C) CDAA, and (D) CDAA+ASBTi fed mice after 22 weeks; Scale bars = 100µm, representative samples; (E) Non-alcoholic fatty liver disease Activity

Score (NAS), (F) Steatosis score, (G) Hepatic triglyceride content, (H) Hepatic total cholesterol content, (I) Hepatic free cholesterol content, (J) Hepatic cholesteryl

ester content. Means ± SD are shown. Distinct lowercase letters indicate significant differences between groups. P < 0.05; n = 9–12 per group.
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FIGURE 5 | ASBTi treatment increases hepatic fibrosis in CDAA diet-fed mice. Sirius red stained liver sections from (A) CSAA, (B) CSAA+ASBTi, (C) CDAA, and (D)

CDAA+ASBTi fed mice after 22 weeks; Scale bars=100µm, representative samples; (E) Fibrosis score (Ishak stage). Means ± SD are shown. Distinct lowercase

letters indicate significant differences between groups. P < 0.05; n = 9–12 per group.

ASBT Inhibitor Treatment Reduces Hepatic
Steatosis in CSAA but Not CDAA Diet-Fed
Mice
To assess key features of the pathophysiology and progression
of NAFLD, we examined the liver histology of the CSAA
and CDAA diet-fed mice. Untreated mice fed the CSAA or
CDAA diet showed clear features of NAFLD, including steatosis,
lobular inflammation and hepatocyte ballooning (Figures 4A,C).
Treatment with the ASBTi reduced visible lipid accumulation
in mice fed the CSAA diet (Figure 4B) whereas the effects
on lipid accumulation were attenuated in mice fed the CDAA
diet (Figure 4D). Slides were assessed by a certified veterinary
pathologist (author S.G.), who was blinded to the 4 groups,
to determine NAFLD activity (NAS) and steatosis scores
(Figures 4E,F). NAFLD activity (6.1 vs. 6.3, P = 0.9, Figure 4E)
and steatosis scores (2.6 vs. 2.8, P = 0.7, Figure 4F) were
similar for mice fed the CSAA and CDAA diets. ASBTi
treatment significantly reduced the NAS and steatosis in mice
fed the CSAA but not CDAA diet. To quantify hepatic lipid
accumulation, we measured hepatic triglyceride and cholesterol
content biochemically. In agreement with the NAS assessment,
hepatic triglyceride levels were similar in mice fed the CSAA
and CDAA diets (201 vs. 236 µg/mg liver wet weight, P =

0.6, Figure 4G). ASBTi treatment significantly reduced hepatic
triglyceride accumulation for mice fed the CSAA diet (90 vs. 201
µg/mg liver wet weight, P = 0.002, Figure 4G), but the ASBTi-
associated reduction in hepatic triglyceride was attenuated in
mice fed the CDAA diet (183 vs. 236 µg/mg liver wet weight, P
= 0.2, Figure 4G). Total hepatic cholesterol content in the liver

was similar between the mice fed the low cholesterol-containing
CSAA and CDAA diets (5.2 vs. 7.0 µg/mg liver wet weight, P =

0.1, Figure 4H). Upon ASBTi treatment, hepatic total (3.6 vs. 7.0
µg/mg liver wet weight, P < 0.001) and free cholesterol (2.3 vs.
3.9 µg/mg liver wet weight, P = 0.01) levels in the CDAA diet-
fed mice were reduced and a similar trend was observed for the
CSAA diet (Figures 4H,I). Cholesteryl esters were significantly
reduced upon ASBTi treatment for both CSAA and CDAA-fed
mice (Figure 4J). Altogether, these show that ASBTi treatment
reduces hepatic steatosis on the CSAA diet, in agreement with
previous observations (10, 11). However, choline deficiency in the
CDAA diet attenuated these effects.

ASBT Inhibitor Treatment Worsens Hepatic
Fibrosis in CDAA Diet-Fed Mice
The CDAA diet has been shown to successfully induce fibrosis
after feeding for 22 weeks (18, 19, 31). To visualize fibrosis on
histology, collagen was stained with Sirius Red. The CSAA diet
did not induce visually evident fibrosis, and treatment with the
ASBTi had no visual impact on histologic Sirius Red staining
(Figures 5A,B). For the CDAA diet, hepatic fibrosis was readily
apparent irrespective of ASBTi treatment (Figures 5C,D). To
quantify the degree of fibrosis, slides were analyzed and scored by
a certified veterinary pathologist (author S.G., blinded to diet and
treatment groups) using the Ishak Scoring system (24, 32). Livers
of mice on the CSAA diet with or without ASBTi did not show
any signs of fibrosis and received an Ishak score of 0. Mice on
the CDAA diet had significantly higher fibrosis compared to the
CSAA diet and received an average Ishak score of 1 (Figure 5E,
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FIGURE 6 | Effect of ASBTi treatment on hepatic gene expression related to fibrosis in mice fed a CSAA and CDAA diet. (A–E) Relative hepatic mRNA expression of

genes related to fibrosis, normalized to cyclophilin. Distinct lowercase letters indicate significant differences between groups. Means ± SD are shown. P < 0.05;

n = 9–12 per group.

P < 0.001), which corresponds to a Sirius Red stained proportion
of 3.0% and fibrous expansion of some of the portal areas with
or without fibrous septa. ASBTi treatment of the CDAA diet-fed
mice resulted in a significantly higher Ishak score of 2 (Figure 5E,
P = 0.02), which corresponds to a Sirius Red stained proportion
of 3.6% and fibrous expansion tomost of the portal areas with or
without short fibrous septa.

Hepatic mRNA expression of a panel of fibrosis related genes,
shown previously to be upregulated by feeding the CDAA diet
(31), was measured to assess whether the histological changes
were reflected by the gene expression. Collagen type I alpha
1 (Col1a1), encoding the main component of collagen type
1 fibers, was upregulated in the CDAA diet and unaffected
by ASBTi treatment (Figure 6A). Hepatic mRNA expression
of tissue inhibitor of metalloproteinase-1 (TIMP-1), a protein
involved in degradation of extracellular matrix and promoting
proliferation, was similarly increased in the mice fed the CDAA
diet and CDAA diet plus the ASBTi (Figure 6B). Interestingly,
alpha-smooth muscle actin (α-SMA) mRNA, a marker used for

hepatic stellate cell activation (33), was unaffected by diet or
treatment (Figure 6C). Connective tissue growth factor (CTGF)
and transforming growth factor beta (TGFβ) play important roles
in fibrogenesis. Hepatic CTGF mRNA showed a trend toward
increased expression in the CDAA vs. CSAA diet-fed mice, and
was significantly decreased with ASBTi treatment in the CDAA
diet-fed mice (Figure 6D). TGFβ was similar between the CSAA
and CDAA diets (Figure 6E). ASBTi treatment significantly
lowered hepatic TGFβ expression for the CSAA but not on the
CDAA diet-fed mice.

As progression of liver steatosis to fibrosis generally
involves inflammation, we measured hepatic gene expression
of several important inflammatory genes. Expression of the
proinflammatory genes tumor necrosis factor α (TNFα),
inducible nitric oxide synthase (iNOS), and monocyte
chemoattractant protein 1 (MCP1) were upregulated in the
CDAA vs. CSAA diet-fed mice and unaffected by ASBTi
treatment (Figures 7A–C). Hepatic cell damage and increases in
inflammation are often paired with oxidative stress. Therefore,
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FIGURE 7 | Effect of ASBTi treatment on hepatic gene expression related to inflammation in mice fed a CSAA and CDAA diet. (A–D) Relative hepatic mRNA

expression of genes related to inflammation, normalized to cyclophilin. Means ± SD are shown. Distinct lowercase letters indicate significant differences between

groups. P < 0.05; n = 9–12 per group.

we measured glutathione S-transferase A1 (GSTα1) expression,
the gene encoding a key enzyme in the anti-oxidative glutathione
pathway. GSTα1 expression was increased upon feeding the
CDAA vs. CSAA diet but unaffected by ASBTi treatment
(Figure 7D). Altogether, these data suggest that the ASBTi
treatment was not able to prevent inflammation, oxidative
stress or fibrosis in this dietary choline deficiency mouse model
of NAFLD/NASH.

ASBT Inhibitor Treatment Reduces
Intestinal Fat Absorption in CSAA but Not
CDAA Diet-Fed Mice
We previously reported that genetic ASBT knockout in mice
reduces intestinal fat and cholesterol absorption (29, 34, 35). In
order to determine if the ASBTi treatment had similar effects in
the CSAA and CDAA diet-fed mice, we measured fat absorption
using the sucrose polybehenate method (20). For mice on the

CSAA diet, ASBTi treatment reduced total fatty acid absorption
by almost 10% (85.3 vs. 94.6%, P < 0.001, Figure 8A). The ASBTi
treatment-associated decrease in fat absorption in the CSAA diet-
fed mice was greater for the saturated fatty acids myristic acid
(C14:0), palmitic acid (C16:0), margaric acid (C17:0), and stearic
acid (C18:0) followed by the trans saturated fatty acid, elaidic acid
(C18:1ω9) (Figure 8B). For the group of saturated fatty acids, the
ASBTi treatment effect on absorption increased with fatty acid
acyl chain length, which corresponds to greater hydrophobicity
and correlates with increased bile acid requirement for efficient
micellar solubilization (36). The ASBTi treatment-associated
decreases in fat absorption in the CSAA diet-fed mice for the
mono- and polyunsaturated fatty acids oleic acid (C18:1ω9),
vaccenic acid (C18:1ω7), and linoleic acid (C18:2ω6) were also
statistically significant but the absolute differences were smaller
(Figure 8B). We found no difference in total fat absorption
between the mice fed the CSAA and the CDAA diets (94.6
vs. 93.6%, P = 0.9, Figure 8A). However, in contrast to mice
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FIGURE 8 | ASBTi treatment reduces intestinal fat absorption in mice fed a CSAA but not CDAA diet. (A) Percentage of total intestinal fat absorption, (B) Percentage

of intestinal absorption of individual fatty acid. Distinct lowercase letters indicate significant differences between groups. Distinct lowercase letters indicate significant

differences between groups. P < 0.05; n = 9–12 per group.

FIGURE 9 | Correlation of hepatic triglyceride content to intestinal fat absorption. (A) Hepatic triglyceride content correlated to intestinal fatty acid absorption in CSAA

and CSAA+ASBTi fed mice (Spearman R = 0.75, P < 0.0001) (B) Hepatic triglyceride content did not correlate to intestinal fatty acid absorption in CDAA and

CDAA+ASBTi fed mice (Spearman R = 0.32, P = 0.13 n = 9–12 per group).

fed the CSAA diet, absorption of neither total fat (93.5 vs.
93.6%, P = 1.0, Figure 8A) or the individual fatty acids were
affected by ASBTi treatment of CDAA diet-fed mice. Correlation
analysis showed that the hepatic triglyceride content is highly
correlated to intestinal fatty acid absorption inmice fed the CSAA
(Spearman R = 0.75, P < 0.001, Figure 9A) but not CDAA diet
(Spearman R= 0.32, P = 0.9, Figure 9B).

Although we did not directly assess cholesterol absorption in
the current study, we measured fecal excretion of neutral sterols,
cholesterol and its fecal metabolites. Fecal neutral excretion
(µmol/24 h/100 g BW, mean ± SD, n = 9–12 per group)
was significantly higher in CSAA mice treated with an ASBTi
compared to CSAA control mice (CSAA plus ASBTi: 12.0 ± 4.8
vs. CSAA: 7.5 ± 3.3, P = 0.02). On the CDAA diet, fecal neutral
sterol excretion was comparable to the CSAA diet (CDAA: 9.7

± 3.2 vs. CSAA:7.5 ± 3.3, P = 0.4). However, in contrast to
the CSAA diet, ASBTi treatment did not significantly increase
fecal neutral sterol excretion in mice fed the CDAA diet (CDAA
plus ASBTi: 8.0 ± 1.2 vs. 9.7 ± 3.2, P = 0.6). Previous studies
have suggested that feeding a choline-deficient diet can promote
triglyceride accumulation in enterocytes as a result of impaired
chylomicron secretion (37, 38). In this study, there was a trend
toward increased jejunal tissue triglyceride in CDAA vs. CSAA
diet-fed mice, but the differences were not statistically significant
(P> 0.05) and there was no effect of ASBTi treatment on the
jejunal tissue triglyceride (µg per g tissue, mean ± SD, n = 9–
12 per group; CSAA: 23.2 ± 10.5; CSAA plus ASBTi: 22.8 ± 9.2;
CDAA: 29.8± 9.2; CDAA plus ASBTi: 33.01± 10.7). The jejunal
tissue total cholesterol content (µg per g tissue, mean ± SD, n
= 9–12 per group) was also not different (P > 0.05) between
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the different groups (CSAA: 2.5 ± 0.2; CSAA plus ASBTi: 2.31
± 0.23; CDAA: 2.27± 0.28; CDAA plus ASBTi: 2.22± 0.39).

DISCUSSION

In the current study, we showed that treatment with an ASBTi
did not prevent development of hepatic fibrosis in a CDAA diet-
fed mouse model. Additionally, under dietary choline-deficient
conditions, previously reported effects of ASBT inhibition on fat
and cholesterol absorption were nullified, possibly contributing
to the phenotype. Dietary interventions in mouse models to
reproducibly induce NASH and fibrosis are limited. The CDAA
diet was used in the current study because, contrary to the
MCD diet, the CDAA diet was shown to successfully induce
hepatic fibrosis without significantly lowering bodyweight and
plasma glucose levels (18, 19). Approximately 95% of the choline
in animal tissues is present as phosphatidylcholine (PC), a
major component of membranes (39). The primary mechanism
believed to be involved in the effects of choline deficiency
on hepatic steatosis is impairment of VLDL secretion due to
insufficient PC (15). Interestingly, bile acid sequestrants act
similar to ASBT inhibition by interrupting the enterohepatic
circulation of bile acids, and have been shown to increase
plasma VLDL and triglyceride levels (40–42). Therefore, one
of the mechanisms contributing to the anti-steatotic actions of
ASBTi treatment may be increasing hepatic VLDL secretion and
triglyceride export from the liver, which is attenuated under
choline-deficient conditions.

In addition to affecting VLDL secretion, choline deficiency
alters mitochondrial function (43), fatty acid beta-oxidation
(44), and changes epigenetic marking (45). Choline deficiency
also alters the intestinal microbiota, which may be involved in
the development of NAFLD (46). Treatment with the ASBTi
induces similar changes in the fecal bile acid profile for the
CSAA and CDAA diet-fed mice, such that the fecal bile acid
composition including the microbiota-derived secondary bile
acids is almost identical for the two ASBTi-treated groups.
Changes in the gut microbiota composition associated with
feeding the choline-deficient amino acid-defined diet have been
reported previously (47). However, the almost identical fecal
secondary bile acid profiles suggests that at least this aspect (bile
acid biotransformation) of the gut microbiome actions does not
appear to account for the differential response of the CSAA and
CDAA diet-fed mice to the ASBTi. It was previously shown
that treatment of high fat diet-fed mice with the ASBTi for 16
weeks shifted the hepatic bile acid composition shifted toward
a more hydrophobic and thus potentially cytotoxic profile (10).
In vitro studies have shown that PC protects hepatocytes from
bile acid-induced cytotoxicity (48, 49). Although not injurious
when hepatic PC synthesis is intact, the ASBTi-induced shift
to a more hydrophobic bile acid pool may be injurious under
PC-deficient conditions. The absence of beneficial effects in the
CDAA model has been noted for other therapeutic interventions
such as FXR agonism with obeticholic acid (50). Moreover,
feeding a choline-deficient, iron-supplemented L-amino acid-
defined diet to rats has been shown to induce a persistent fibrosis,
potentially secondary to increased oxidative stress (51). This later
observation is particularly important since it has recently been

shown that interrupting the enterohepatic circulation of bile
acids in mice decreases hepatic glutathione levels and impairs
glutathione regenerating capacity (52). This is due in part to
increased expression of cysteine dioxygenase type 1, in order to
shunt cysteine toward taurine biosynthesis to meet the increased
demand for synthesis of taurine-conjugated bile acids. A decrease
in hepatic cysteine and glutathione levels combined with
choline deficiency may underlie the increase in fibrosis observed
in the ASBTi-treated CDAA diet-fed mice. However, these
results should be interpreted with caution in regard to human
NAFLD/NASH pathophysiology, as this rarely involves choline
deficiency (53) and humans preferentially use glycine vs. taurine
for bile acid conjugation (54). Future studies using different
models are needed for understand the potential impact of ASBTi
treatment on NASH and fibrosis. Fortunately, several recently
developed murine NAFLDmodels have shown promising results
in mimicking human NAFLD/NASH pathophysiology (55, 56).

Anti-steatotic effects of ASBT pharmacological inhibition
have been a consistent finding in high fat diet-fed mouse
models, including the CSAA diet-fed mice in this study (10, 11),
and we previously observed inhibitory effects of ASBT genetic
inactivation on intestinal cholesterol and fat absorption (29, 34,
35). In our current study, ASBTi treatment lowered fatty acid
absorption and intestinal fat absorption positively correlated
with hepatic triglyceride levels in the CSAA diet-fed mice. By
contrast in the choline-deficient CDAA diet-fed mice, ASBTi-
treatment had no effect on intestinal fat absorption and the
hepatic anti-steatotic effects were attenuated. The mechanisms
underlying our observations in the CDAA-fed mice remain
unclear. Intestinal intraluminal PC concentrations contribute to
mixed micelle formation, lipid transport across the unstirred
water layer, and subsequent lipid translocation to the brush
border membrane (57). In rats, dietary choline deficiency was
shown to decrease chylomicron secretion and alter intestinal
cell morphology and physiology, resulting in impairments of
dietary fat absorption (37, 38). One could speculate that intestinal
adaptations present in the choline-deficient CDAA diet-fed mice
to compensate for decreased biliary PC affect lipolytic and post-
lipolytic events related to intestinal lipid absorption. The absence
of a protective effect on hepatic steatosis for interventions that
act via reduced intestinal fat absorption has been observed
previously in dietary choline-deficient models. For example,
intestine-specific knockout of the zinc finger transcription factor
GATA4 reduces intestinal lipid absorption and was protective
against hepatic steatosis induced by feeding a high fat but not
MCD diet (58).

In conclusion, this study showed that ASBTi treatment did
not affect intestinal fat absorption and was not protective against
hepatic fibrosis in a choline-deficient mouse model of NASH.
Nevertheless, these findings add to our understanding of the
uses and limitations of dietary choline-deficient mouse and the
potential mechanisms by which interrupting the enterohepatic
circulation of bile acids may impact development of NAFLD
and NASH. Indirectly modulating intestinal fat absorption via
ASBTi treatment is an interesting potential therapeutic target.
Future studies using different models for NASH are warranted
to further understand the relationship between bile acids and the
progression of hepatic steatosis to NASH and fibrosis.

Frontiers in Medicine | www.frontiersin.org 12 February 2020 | Volume 7 | Article 6080

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Rao et al. Hepatoprotective Mechanisms of ASBT Inhibition

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by Emory
University Institutional Animal Care and Use Committee.

AUTHOR CONTRIBUTIONS

AR, IP, and SG performed the experiments and collected and
analyzed the data. AR managed the study. AR, SK, and PD
designed the study and conceived the experiments. PD, IP, AR,
and SK wrote the paper.

FUNDING

This study was supported by the NIH (DK047987 to PD and
DK56239 to SK). PD and SK are also supported by the Center

for Transplantation and Immune-mediated Disorders and the
Children’s Healthcare of Atlanta.

ACKNOWLEDGMENTS

We thank Lumena/Shire for the research gift of the ASBTi
(SC-435), Dr. D. Shayakhmetov (Emory University School of
Medicine) for assistance with the microscopy, Matthew Davis
(Lipoprotein Analysis Laboratory at Wake Forest University
School of Medicine) for fatty acid analysis, the Children’s
Healthcare of Atlanta pathology Services for processing tissues
for histology, and the Yerkes Nonhuman Primate Molecular
Pathology Core for assistance with Sirius Red staining. We also
thank Kim Pachura for assistance with the mouse necropsies.
Portions of this work were presented at the Annual Meeting
of the American Gastroenterology Association in San Diego,
CA, 18–21 May 2019 and have appeared in abstract form
Gastroenterology. 156 (6), Supplement 1, S-1296 (Su1556).
Portions of this work are also included in an author’s
doctoral thesis in accordance with the author’s University
policy (59).

REFERENCES

1. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J,

et al. Modeling NAFLD disease burden in China, France, Germany, Italy,

Japan, Spain, United Kingdom, and United States for the period 2016-2030.

J Hepatol. (2018) 69:896–904. doi: 10.1016/j.jhep.2018.05.036

2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M,

et al. Global burden of NAFLD and NASH: trends, predictions, risk

factors and prevention. Nat Rev Gastroenterol Hepatol. (2018) 15:11–20.

doi: 10.1038/nrgastro.2017.109

3. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. (2015)

62:S47–64. doi: 10.1016/j.jhep.2014.12.012

4. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of

NAFLD development and therapeutic strategies. Nat Med. (2018) 24:908–22.

doi: 10.1038/s41591-018-0104-9

5. Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of

metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and

nonalcoholic fatty liver disease. Gastroenterology. (2017) 152:1679–94.e3.

doi: 10.1053/j.gastro.2017.01.055

6. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences

of bile salt biotransformations by intestinal bacteria. Gut Microbes. (2016)

7:22–39. doi: 10.1080/19490976.2015.1127483

7. WahlstromA, Sayin SI,Marschall HU, Backhed F. Intestinal crosstalk between

bile acids and microbiota and its impact on host metabolism. Cell Metab.

(2016) 24:41–50. doi: 10.1016/j.cmet.2016.05.005

8. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M,

et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic

acid in patients with type 2 diabetes and nonalcoholic fatty liver disease.

Gastroenterology. (2013) 145:574–82.e1. doi: 10.1053/j.gastro.2013.05.042

9. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta

ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand

obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a

multicentre, randomised, placebo-controlled trial. Lancet. (2015) 385:956–65.

doi: 10.1016/S0140-6736(14)61933-4

10. Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, et al.

Inhibition of ileal bile acid uptake protects against nonalcoholic fatty

liver disease in high-fat diet-fed mice. Sci Transl Med. (2016) 8:357ra122.

doi: 10.1126/scitranslmed.aaf4823

11. Salic K, Kleemann R, Wilkins-Port C, McNulty J, Verschuren L, Palmer

M. Apical sodium-dependent bile acid transporter inhibition with

volixibat improves metabolic aspects and components of non-alcoholic

steatohepatitis in Ldlr-/-.Leiden mice. PLoS ONE. (2019) 14:e0218459.

doi: 10.1371/journal.pone.0218459

12. Lau JK, Zhang X, Yu J. Animal models of non-alcoholic fatty liver

disease: current perspectives and recent advances. J Pathol. (2017) 241:36–44.

doi: 10.1002/path.4829

13. Denk H, Abuja PM, Zatloukal K. Animal models of NAFLD from the

pathologist’s point of view. Biochim Biophys Acta Mol Basis Dis. (2019)

1865:929–42. doi: 10.1016/j.bbadis.2018.04.024

14. Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from

a hepatologist’s point of view. Biochim Biophys Acta Mol Basis Dis. (2019)

1865:943–53. doi: 10.1016/j.bbadis.2018.06.023

15. Corbin KD, Zeisel SH. Choline metabolism provides novel insights into

nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol.

(2012) 28:159–65. doi: 10.1097/MOG.0b013e32834e7b4b

16. Rinella ME, Green RM. The methionine-choline deficient dietary model of

steatohepatitis does not exhibit insulin resistance. J Hepatol. (2004) 40:47–51.

doi: 10.1016/j.jhep.2003.09.020

17. Machado MV, Michelotti GA, Xie G, Almeida Pereira T, Boursier J, Bohnic B,

et al. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce

the heterogeneity of the human disease. PLoS ONE. (2015) 10:e0127991.

doi: 10.1371/journal.pone.0127991

18. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi

H, et al. Toll-like receptor 9 promotes steatohepatitis by induction

of interleukin-1beta in mice. Gastroenterology. (2010). 139:323–34.e7.

doi: 10.1053/j.gastro.2010.03.052

19. PizarroM, Solis N, Quintero P, Barrera F, Cabrera D, Rojas-de Santiago P, et al.

Beneficial effects of mineralocorticoid receptor blockade in experimental non-

alcoholic steatohepatitis. Liver Int. (2015) 35:2129–38. doi: 10.1111/liv.12794

20. Jandacek RJ, Heubi JE, Tso P. A novel, noninvasive method for the

measurement of intestinal fat absorption. Gastroenterology. (2004) 127:139–

44. doi: 10.1053/j.gastro.2004.04.007

21. Simon T, Cook VR, Rao A, Weinberg RB. Impact of murine intestinal

apolipoprotein A-IV expression on regional lipid absorption, gene

expression, and growth. J Lipid Res. (2011) 52:1984–94. doi: 10.1194/jlr.M0

17418

22. Sun H, Hu Y, Gu Z, Wilson MD, Chen YQ, Rudel LL, et al. Endogenous

synthesis of n-3 polyunsaturated fatty acids in Fat-1 mice is associated with

increased mammary gland and liver syndecan-1. PLoS ONE. (2011) 6:e20502.

doi: 10.1371/journal.pone.0020502

23. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW,

et al. Design and validation of a histological scoring system for nonalcoholic

Frontiers in Medicine | www.frontiersin.org 13 February 2020 | Volume 7 | Article 6081

https://doi.org/10.1016/j.jhep.2018.05.036
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1016/j.jhep.2014.12.012
https://doi.org/10.1038/s41591-018-0104-9
https://doi.org/10.1053/j.gastro.2017.01.055
https://doi.org/10.1080/19490976.2015.1127483
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1053/j.gastro.2013.05.042
https://doi.org/10.1016/S0140-6736(14)61933-4
https://doi.org/10.1126/scitranslmed.aaf4823
https://doi.org/10.1371/journal.pone.0218459
https://doi.org/10.1002/path.4829
https://doi.org/10.1016/j.bbadis.2018.04.024
https://doi.org/10.1016/j.bbadis.2018.06.023
https://doi.org/10.1097/MOG.0b013e32834e7b4b
https://doi.org/10.1016/j.jhep.2003.09.020
https://doi.org/10.1371/journal.pone.0127991
https://doi.org/10.1053/j.gastro.2010.03.052
https://doi.org/10.1111/liv.12794
https://doi.org/10.1053/j.gastro.2004.04.007
https://doi.org/10.1194/jlr.M017418
https://doi.org/10.1371/journal.pone.0020502
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Rao et al. Hepatoprotective Mechanisms of ASBT Inhibition

fatty liver disease. Hepatology. (2005) 41:1313–21. doi: 10.1002/hep.

20701

24. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al.

Histological grading and staging of chronic hepatitis. J Hepatol. (1995)

22:696–9. doi: 10.1016/0168-8278(95)80226-6

25. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation

and purification of total lipides from animal tissues. J Biol Chem. (1957)

226:497–509.

26. Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA.

The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for

intestinal bile acid transport and homeostasis. Proc Natl Acad Sci USA. (2008)

105:3891–6. doi: 10.1073/pnas.0712328105

27. van Meer H, Boehm G, Stellaard F, Vriesema A, Knol J, Havinga R,

et al. Prebiotic oligosaccharides and the enterohepatic circulation of bile

salts in rats. Am J Physiol Gastrointest Liver Physiol. (2008) 294:G540–7.

doi: 10.1152/ajpgi.00396.2007

28. Gamble W, Vaughan M, Kruth HS, Avigan J. Procedure for determination of

free and total cholesterol in micro- or nanogram amounts suitable for studies

with cultured cells. J Lipid Res. (1978) 19:1068–70.

29. van de Peppel IP, Bertolini A, van Dijk TH, Groen AK, Jonker JW, Verkade

HJ. Efficient reabsorption of transintestinally excreted cholesterol is a strong

determinant for cholesterol disposal in mice. J Lipid Res. (2019) 60:1562–72.

doi: 10.1194/jlr.M094607

30. Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, et al.

Regulation of bile acid metabolism in mouse models with hydrophobic bile

acid composition. J Lipid Res. (2020) 61:54–69. doi: 10.1194/jlr.RA119000395

31. Cabrera D, Wree A, Povero D, Solis N, Hernandez A, Pizarro M, et al.

Andrographolide ameliorates inflammation and fibrogenesis and attenuates

inflammasome activation in experimental non-alcoholic steatohepatitis. Sci

Rep. (2017) 7:3491. doi: 10.1038/s41598-017-03675-z

32. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP. An

appraisal of the histopathological assessment of liver fibrosis. Gut. (2006)

55:569–78. doi: 10.1136/gut.2005.084475

33. Carpino G, Morini S, Ginanni Corradini S, Franchitto A, Merli M,

Siciliano M, et al. Alpha-SMA expression in hepatic stellate cells and

quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent

chronic hepatitis after liver transplantation. Dig Liver Dis. (2005) 37:349–56.

doi: 10.1016/j.dld.2004.11.009

34. Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman

K, et al. Targeted deletion of the ileal bile acid transporter eliminates

enterohepatic cycling of bile acids in mice. J Biol Chem. (2003) 278:33920–7.

doi: 10.1074/jbc.M306370200

35. Dawson PA. Impact of inhibiting ileal apical versus basolateral bile acid

transport on cholesterol metabolism and atherosclerosis in mice. Dig Dis.

(2015) 33:382–7. doi: 10.1159/000371691

36. McKimmie RL, Easter L, Weinberg RB. Acyl chain length, saturation, and

hydrophobicity modulate the efficiency of dietary fatty acid absorption in

adult humans. Am J Physiol Gastrointest Liver Physiol. (2013) 305:G620–627.

doi: 10.1152/ajpgi.00258.2013

37. Takahashi Y, Mizunuma T, Kishino Y. Effects of choline deficiency and

phosphatidylcholine on fat absorption in rats. J Nutr Sci Vitaminol. (1982)

28:139–47. doi: 10.3177/jnsv.28.139

38. da Silva RP, Kelly KB, Lewis ED, Leonard KA, Goruk S, Curtis JM, et al.

Choline deficiency impairs intestinal lipid metabolism in the lactating rat. J

Nutr Biochem. (2015) 26:1077–83. doi: 10.1016/j.jnutbio.2015.04.015

39. Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res.

(2008) 49:1187–94. doi: 10.1194/jlr.R700019-JLR200

40. Beil U, Crouse JR, Einarsson K, Grundy SM. Effects of interruption

of the enterohepatic circulation of bile acids on the transport of

very low density-lipoprotein triglycerides. Metabolism. (1982) 31:438–44.

doi: 10.1016/0026-0495(82)90231-1

41. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman

RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP,

and SREBP-1c. J Clin Invest. (2004) 113:1408–18. doi: 10.1172/JCI21025

42. Mazidi M, Rezaie P, Karimi E, Kengne AP. The effects of bile acid sequestrants

on lipid profile and blood glucose concentrations: a systematic review and

meta-analysis of randomized controlled trials. Int J Cardiol. (2017) 227:850–7.

doi: 10.1016/j.ijcard.2016.10.011

43. Teodoro JS, Rolo AP, Duarte FV, Simoes AM, Palmeira CM. Differential

alterations in mitochondrial function induced by a choline-deficient diet:

understanding fatty liver disease progression. Mitochondrion. (2008) 8:367–

76. doi: 10.1016/j.mito.2008.07.008

44. Serviddio G, Giudetti AM, Bellanti F, Priore P, Rollo T, Tamborra

R, et al. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-

I) impairs fatty acid beta-oxidation in rats fed a methionine-choline

deficient diet. PLoS ONE. (2011) 6:e24084. doi: 10.1371/journal.pone.00

24084

45. Mehedint MG, NiculescuMD, Craciunescu CN, Zeisel SH. Choline deficiency

alters global histone methylation and epigenetic marking at the Re1 site

of the calbindin 1 gene. FASEB J. (2010) 24:184–95. doi: 10.1096/fj.09-1

40145

46. Tremaroli V, Backhed F. Functional interactions between the gut microbiota

and host metabolism. Nature. (2012) 489:242–9. doi: 10.1038/nature11552

47. Ishioka M,Miura K, Minami S, Shimura Y, Ohnishi H. Altered gut microbiota

composition and immune response in experimental steatohepatitis mouse

models. Dig Dis Sci. (2017) 62:396–406. doi: 10.1007/s10620-016-4393-x

48. Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective

effects of phosphatidylcholine against bile salts. Sci Rep. (2017) 7:306.

doi: 10.1038/s41598-017-00476-2

49. Morita SY, Ikeda Y, Tsuji T, Terada T. Molecular mechanisms for protection of

hepatocytes against bile salt cytotoxicity. Chem Pharm Bull. (2019) 67:333–40.

doi: 10.1248/cpb.c18-01029

50. Tolbol KS, Stierstorfer B, Rippmann JF, Veidal SS, Rigbolt KTG, Schonberger

T, et al. Disease progression and pharmacological intervention in a nutrient-

deficient rat model of nonalcoholic steatohepatitis. Dig Dis Sci. (2019)

64:1238–56. doi: 10.1007/s10620-018-5395-7

51. Takeuchi-Yorimoto A, Noto T, Yamada A, Miyamae Y, Oishi Y, Matsumoto

M. Persistent fibrosis in the liver of choline-deficient and iron-supplemented

L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat

due to continuing oxidative stress after choline supplementation.

Toxicol Appl Pharmacol. (2013) 268:264–77. doi: 10.1016/j.taap.2013.

01.027

52. Wang Y, Li J, Matye D, Zhang Y, Dennis K, Ding WX, et al. Bile acids

regulate cysteine catabolism and glutathione regeneration to modulate

hepatic sensitivity to oxidative injury. JCI Insight. (2018) 3:e99676.

doi: 10.1172/jci.insight.99676

53. Guerrerio AL, Colvin RM, Schwartz AK, Molleston JP, Murray KF, Diehl A,

et al. Choline intake in a large cohort of patients with nonalcoholic fatty liver

disease. Am J Clin Nutr. (2012) 95:892–900. doi: 10.3945/ajcn.111.020156

54. Li J, Dawson PA. Animal models to study bile acid metabolism.

Biochim Biophys Acta Mol Basis Dis. (2019) 1865:895–911.

doi: 10.1016/j.bbadis.2018.05.011

55. Hui ST, Kurt Z, Tuominen I, Norheim F, Davis RC, Pan C, et al. The genetic

architecture of diet-induced hepatic fibrosis in mice. Hepatology. (2018)

68:2182–96. doi: 10.1002/hep.30113

56. Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, et al. A simple

diet- and chemical-induced murine NASH model with rapid progression

of steatohepatitis, fibrosis and liver cancer. J Hepatol. (2018) 69:385–95.

doi: 10.1016/j.jhep.2018.03.011

57. Noh SK, Koo SI. Enteral infusion of phosphatidylcholine increases the

lymphatic absorption of fat, but lowers alpha-tocopherol absorption

in rats fed a low zinc diet. J Nutr Biochem. (2001) 12:330–7.

doi: 10.1016/S0955-2863(01)00145-0

58. Patankar JV, Obrowsky S, Doddapattar P, Hoefler G, Battle M, Levak-Frank S,

et al. Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis.

J Hepatol. (2012) 57:1061–8. doi: 10.1016/j.jhep.2012.06.028

59. van de Peppel IP. Intestinal Bile Acid Reabsorption in Health and Disease.

Rijksuniversiteit Groningen (2019).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Rao, Peppel, Gumber, Karpen and Dawson. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 14 February 2020 | Volume 7 | Article 6082

https://doi.org/10.1002/hep.20701
https://doi.org/10.1016/0168-8278(95)80226-6
https://doi.org/10.1073/pnas.0712328105
https://doi.org/10.1152/ajpgi.00396.2007
https://doi.org/10.1194/jlr.M094607
https://doi.org/10.1194/jlr.RA119000395
https://doi.org/10.1038/s41598-017-03675-z
https://doi.org/10.1136/gut.2005.084475
https://doi.org/10.1016/j.dld.2004.11.009
https://doi.org/10.1074/jbc.M306370200
https://doi.org/10.1159/000371691
https://doi.org/10.1152/ajpgi.00258.2013
https://doi.org/10.3177/jnsv.28.139
https://doi.org/10.1016/j.jnutbio.2015.04.015
https://doi.org/10.1194/jlr.R700019-JLR200
https://doi.org/10.1016/0026-0495(82)90231-1
https://doi.org/10.1172/JCI21025
https://doi.org/10.1016/j.ijcard.2016.10.011
https://doi.org/10.1016/j.mito.2008.07.008
https://doi.org/10.1371/journal.pone.0024084
https://doi.org/10.1096/fj.09-140145
https://doi.org/10.1038/nature11552
https://doi.org/10.1007/s10620-016-4393-x
https://doi.org/10.1038/s41598-017-00476-2
https://doi.org/10.1248/cpb.c18-01029
https://doi.org/10.1007/s10620-018-5395-7
https://doi.org/10.1016/j.taap.2013.01.027
https://doi.org/10.1172/jci.insight.99676
https://doi.org/10.3945/ajcn.111.020156
https://doi.org/10.1016/j.bbadis.2018.05.011
https://doi.org/10.1002/hep.30113
https://doi.org/10.1016/j.jhep.2018.03.011
https://doi.org/10.1016/S0955-2863(01)00145-0
https://doi.org/10.1016/j.jhep.2012.06.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


REVIEW
published: 27 February 2020

doi: 10.3389/fmed.2020.00062

Frontiers in Medicine | www.frontiersin.org 1 February 2020 | Volume 7 | Article 62

Edited by:

Domenico Alvaro,

Sapienza Università di Roma, Italy

Reviewed by:

Jonel Trebicka,

Goethe University Frankfurt, Germany

Zuzana Macek Jilkova,

Centre Hospitalier Universitaire de

Grenoble, France

Piero Portincasa,

University of Bari Aldo Moro, Italy

*Correspondence:

Shanthi Srinivasan

ssrini2@emory.edu

Specialty section:

This article was submitted to

Gastroenterology,

a section of the journal

Frontiers in Medicine

Received: 21 October 2019

Accepted: 11 February 2020

Published: 27 February 2020

Citation:

Amir M, Yu M, He P and Srinivasan S

(2020) Hepatic Autonomic Nervous

System and Neurotrophic Factors

Regulate the Pathogenesis and

Progression of Non-alcoholic Fatty

Liver Disease. Front. Med. 7:62.

doi: 10.3389/fmed.2020.00062

Hepatic Autonomic Nervous System
and Neurotrophic Factors Regulate
the Pathogenesis and Progression of
Non-alcoholic Fatty Liver Disease
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1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States,
2Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States, 3 Research-Gastroenterology,

Atlanta VA Health Care System, Decatur, GA, United States

Non-alcoholic fatty liver disease represents a continuum of excessive hepatic steatosis,

inflammation and fibrosis. It is a growing epidemic in the United States of America

and worldwide. Progression of non-alcoholic fatty liver disease can lead to morbidity

and mortality due to complications such as cirrhosis or hepatocellular carcinoma.

Pathogenesis of non-alcoholic fatty liver disease is centered on increased hepatic

lipogenesis and decreased hepatic lipolysis in the setting of hepatic and systemic insulin

resistance. Adipose tissue and hepatic inflammation can further perpetuate the severity

of illness. Currently there are no approved therapies for non-alcoholic fatty liver disease.

Most of the drugs being explored for non-alcoholic fatty liver disease focus on classical

pathogenic pathways surrounding hepatic lipid accumulation, inflammation or fibrosis.

Studies have demonstrated that the autonomic nervous system innervating the liver

plays a crucial role in regulation of hepatic lipid homeostasis, inflammation and fibrosis.

Additionally, there is growing evidence that neurotrophic factors can modulate all stages

of non-alcoholic fatty liver disease. Both the autonomic nervous system and neurotrophic

factors are altered in patients and murine models of non-alcoholic fatty liver disease. In

this review we focus on the pathophysiological role of the autonomic nervous system and

neurotrophic factors that could be potential targets for novel therapeutic approaches to

treat non-alcoholic fatty liver disease.

Keywords: autonomic nervous system, fibrosis, GDNF, NAFLD, NASH, neurotrophic factors

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a significant global burden by
affecting over 25% of the adult population (1). NAFLD encompasses a continuous range of liver
conditions covering steatosis, steatohepatitis, fibrosis, and cirrhosis (2). It is projected to be the
leading indication for liver transplantation in the next 20 years (3). The pathogenesis of NAFLD
remains poorly understood and therapeutic approaches are still being explored. Currently there
is no approved drug therapy for NAFLD by the Food and Drug Administration. Mechanisms for
hepatic steatosis involve insulin resistance, an excess influx of fatty acids into the liver, enhanced
de novo lipogenesis, impaired lipophagy and resultant triglyceride accumulation in hepatocytes
(2, 4). Steatosis progresses to non-alcoholic steatohepatitis (NASH) when inflammation develops
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due to mitochondrial dysfunction, endoplasmic reticulum stress,
activation of the innate immune system, and dysregulation of
autophagy (2, 3). Fibrosis is primarily mediated by hepatic stellate
cells (HSCs), which are mesenchymal cells and part of the repair
system of injured liver. Stellate cells are quiescent in homeostatic
condition, but are transformed to myofibroblast-like cells in
response to oxidative stress, lipopolysaccharide (LPS), apoptotic
bodies and paracrine stimuli from neighboring cells. Activated
stellate cells are the main source of extracellular fibrous matrix in
the development of fibrosis and cirrhosis (5–7).

Both murine and primate livers are innervated by autonomic
nervous system (ANS). Sympathetic and parasympathetic
branches of ANS play critical roles in energy homeostasis,
liver injury and repair (8–10). Both parenchymal and non-
parenchymal cells in liver express receptors for common
neurotransmitters (11–14). HSCs are considered as resident
hepatic neuroglia functioning as neuroendocrine cells in close
proximity with hepatic nervous system. HSCs express various
neuroglial marker proteins such as nestin, neural cell adhesion
molecule, glial acidic fibrillary protein, and synaptophysin. HSCs
also express receptors for serotonin, adrenergic or muscarinic
neurotransmitters, cannabinoids and opioids (15). Despite the
rich hepatic supply by ANS and its interactions with hepatic
cells, its role in the pathogenesis and progression of NAFLD
remains elusive.

Neurotrophic factors play an integral role in the development
and function of nervous system, and are involved in
pathogenesis of neurodegenerative and psychiatric disorders
(16). Consequently, various neurotrophic factors have been
explored as therapeutic agents in treatment of neurological
disorders (17, 18). Several neurotrophic factors and their
receptors are expressed in various hepatic cell types (19–21),
and regulate insulin sensitivity, lipid homeostasis, cellular injury
and fibrosis of the liver (22–26). However, their potential in
management of liver diseases including NAFLD remains mostly
unexplored. This review summarizes current knowledge about
the role of ANS and neurotrophic factors in modulation of
hepatic steatosis, NASH, and NASH-associated hepatic fibrosis.

HEPATIC NERVOUS SYSTEM

The liver is regulated by both sympathetic and parasympathetic
branches of the central nervous system using aminergic,
peptinergic, adrenergic, and cholinergic nerve endings (8).
Sympathetic nerve fibers supply the liver via the splanchnic nerve
and start in celiac and superior mesenteric ganglia that are under
influence of intermediolateral column of spinal cord (8, 9). In
rodents, sympathetic nerves have been detected only up to the
portal tracts surrounding hepatic artery and portal veins (27).
It is postulated that connecting gap junctions further transmit
electrical signals between the hepatocytes in rodents (28) as well
as in humans (8, 9). Sympathetic nerve fibers directly supply
nerve endings to hepatic lobules and along hepatic sinusoids
in humans and guinea-pigs. Sympathetic nerve fibers however
are absent in regenerating nodules in livers affected by cirrhosis
(27, 29). The Vagus nerve supplies parasympathetic neurons

originating in dorsal motor nucleus and relays their nerve
endings directly to the liver or indirectly via hepatic hilar ganglia
(8, 9, 30). Like sympathetic nerve fibers, parasympathetic or
cholinergic fibers penetrate deep into hepatic parenchyma (31).
Cholinergic fibers directly interact with HSCs and the quantity
of these nerve fibers increases in fibrous septa in livers of carbon
tetrachloride (CCl4)-treated rats (32, 33). Alpha/beta-adrenergic
receptors and muscarinic cholinergic receptors are expressed
by hepatocytes and HSCs (11, 12, 34–37), while nicotinic
acetylcholine receptors are present in hepatocytes, Kupffer cells,
macrophages, and dendritic cells (13, 14). Overall, sympathetic
and parasympathetic nerve endings can relay signals to liver
cells through three different mechanisms: (1) direct innervation
onto or near cells by secreting norepinephrine, acetylcholine and
neuropeptides such as galanin, neuropeptide Y, etc.; (2) spreading
of ions or small molecules using gap junctions; (3) innervation of
sinusoidal endothelial and Kupffer cells which communicate with
hepatocytes via eicosanoids, cytokines, endothelin, and nitric
oxide (38).

Afferent fibers of the sympathetic nervous system (SNS) and
parasympathetic nervous system (PSNS) sense levels of ions,
glucose, free fatty acids, cytokines as well as hormones such
as glucagon like peptide-1 and cholecystokinin. This sensory
information is then relayed to the hypothalamus, which in turn
modulates sympathetic or parasympathetic outflow to control
hepatic energy homeostasis (8, 9). Activation of SNS leads to
increased gluconeogenesis and decreased glycogenesis, whereas
parasympathetic activation plays an opposite role. In addition,
hepatic sympathetic supply also regulates lipoprotein secretion,
beta oxidation, ketone body synthesis and release (30).

Sympathetic Nervous System and
Non-alcoholic Steatohepatitis
Limited investigations have been done to study the role of
SNS in pathogenesis of NASH. Overexpression of adrenergic
β-receptors in cultured hepatocytes from rats or mice causes
an increase in lipid accumulation (39). Hurr et al. showed
that sympathetic nerve activity doubled after 10 weeks of
high-fat diet (HFD) feeding in mice. Chemical ablation of
sympathetic nerves significantly reversed steatosis in just 3 days
with improvement in hepatomegaly and hepatic triglyceride
content without affecting food intake, energy expenditure or
body mass. Whole body chemical sympathectomy lowered
hepatic expression of gluconeogenic enzymes and peroxisome
proliferator activated receptor (PPAR) alpha (40). PPARs such
as PPARα and PPARγ are transcription factors that are central
in the regulation of lipid, glucose and amino acid metabolism,
maintaining the homeostasis of adipose tissue and hepatocytes
(41, 42). Selective hepatic sympathetic denervation using phenol
also resulted in similar impact on hepatic gluconeogenic enzymes
and led to almost complete resolution of hepatic steatosis in 1
week (40).Mechanistically, hepatic denervation attenuatedHFD-
increased hepatic expression of CD36 (a fatty acid transporter),
PPARα, and Diacyl-glycerol O-acyltransferase (DGAT) 1 and
DGAT2, which encode critical enzymes catalyzing the final
step of triglyceride synthesis. Hepatic denervation however
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did not affect mitochondrial or peroxiosomal β-oxidation of
fatty acids (40). Hepatic β-adrenergic activity increases with
aging in murine models (39), and aging itself is linked with
development of NASH (43). Ghosh et al. reported that older rats
accumulated even more fat in livers as compared to younger
rats with pharmacologic β-adrenergic stimulation (39). Age-
related increase in sympathetic activity may thus be a critical
link toward development of NASH. In summary, HFD and
aging increase hepatic sympathetic activity elevating hepatic lipid
burden, whereas surgical or pharmacological ablation of hepatic
sympathetic supply ameliorates hepatic steatosis.

Sympathetic Nervous System and Hepatic
Fibrosis
SNS is overly activated in humans with advanced fibrosis
or cirrhosis and in animal models of liver fibrosis. Patients
with cirrhosis elicit increased levels of catecholamines in blood
and enhanced sympathetic nerve activity (44, 45). In mice,
over-activity of SNS worsens CCl4-mediated fibrosis, whereas
dampened sympathetic tone renders lowered susceptibility
(46). Norepinephrine, a type of catecholamine, increases
the proliferation of cultured HSCs, which is inhibited by
alpha- and beta-adrenergic receptor antagonists. Moreover,
murine HSCs produce catecholamine and norepinephrine (12).
Norepinephrine promotes HSC proliferation likely through
the activation of PI3K and MAPK/ERK signaling cascades.
Norepinephrine also induces HSC expression of collagen (12, 47).
Oben et al. further showed that treatment with norepinephrine
induces proliferation of HSCs in vivo in ob/ob mice. This
catecholamine stimulation also results in increased expression of
transforming growth factor beta (TGF-β) along with accentuated
fibrosis (12). The above stimulatory effects of catecholamines on
HSC proliferation as well as the expression of collagen and TGF-
β were also found in cultured human HSCs as reported by Sigala
et al. (48). Thus, the SNS branch of ANS is pro-fibrogenic in
nature. These findings implicate that pharmacological or surgical
disruption of sympathetic supply may be effective in preventing
the progression to steatohepatitis and fibrosis.

Parasympathetic Nervous System and
Non-alcoholic Steatohepatitis
Anti-inflammatory effects of the PSNS was first demonstrated
in a landmark paper by Borovikova et al. They identified that
nicotine, acetylcholine and cholinergic agonist carbachol inhibit
LPS-mediated production of tumor necrosis factor (TNF) by
peripheral blood macrophages. In addition, acetylcholine can
inhibit the release of several other pro-inflammatory cytokines
including IL-1β, IL-6, and IL-18, but not anti-inflammatory
cytokine IL-10. Their work further revealed that electrical
stimulation of vagus nerve decreases LPS-mediated hepatic
TNF production whereas vagotomy stimulates TNF production
(49). This inhibitory effect of vagal electrical stimulation
or acetylcholine receptor (AChR) agonism on hepatic TNF
production was validated in ischemia/reperfusion injury model.
Inhibition of TNF production was at least in part mediated by
decreased nuclear translocation of NF-κB (13). Li et al. reported

that vagus nerve flow suppresses LPS/galactosamine-induced
hepatocyte injury by attenuation of Kupffer cell activation
through the activation of nicotinic α7nAchR receptors (50).
PSNS also elicits anti-inflammatory effects in db/db and HFD-
fed obese mice. Low dose nicotine improved insulin resistance
in these mice whereas knockout of α7nAChR exacerbated
insulin resistance with pro-inflammatory M1 macrophages
infiltrating white adipose tissue (WAT). Nicotine also attenuated
the production of pro-inflammatory cytokines in peritoneal
macrophages induced by stearic acid or TNF (51).

Direct evidence of the role of parasympathetic anti-
inflammatory pathway in NAFLD comes from work done by
Nishio et al. They demonstrated that hepatic vagotomy worsened
methionine-choline deficient diet induced steatohepatitis.
Moreover, vagotomy led to activation of Kupffer cells along
with downregulation of hepatic PPARα and an aggravated
hepatic pro-inflammatory cytokine profile. Beneficial effect of
cholinergic stimulation was mediated by activation of STAT3
pathway and inhibition of nuclear translocation of NF-κB.
Chimeric mice with α7nAChR deficiency in Kupffer cells
had significant aggravation of steatohepatitis. These mice had
increased expression levels of enzymes responsible for fatty acid
synthesis such as fatty acid synthase (FASN) (52). Galantamine
is a cholinergic activator with a unique dual-mode of action
via inhibition of acetylcholinesterase and by modulation of
nicotinic acetylcholine receptors, and has been used in patients
with Alzheimer’s disease (53). Galantamine improves insulin
resistance and serum lipid profile in streptozotocin-induced
diabetic rats (54). HFD-fed mice treated by galantamine show
decreased bodyweight and expression of pro-inflammatory
cytokines as well as improved insulin resistance. These changes
are accompanied by significant reduction in hepatic triglyceride
content and marked improvement in hepatic steatosis and
inflammation (55).

Taken together, PSNS plays anti-inflammatory role inmultiple
sites of the body including the liver primarily through
modulation of cytokine production in macrophages and via
reduction in hepatic lipid content.

Parasympathetic Nervous System and
Hepatic Fibrosis
The role of PSNS in modulation of hepatic fibrosis remains
mostly unclear due to limited number of studies. Given the
anti-inflammatory role of PSNS in the setting of NAFLD, it is
postulated that PSNS is anti-fibrotic indirectly by inhibition
of HSC activation. However, Oben et al. showed that PSNS
exerts pro-fibrotic effects. Treatment of HSCs in culture with
acetylcholine increases the proliferation and collagen expression
of HSCs whereas mecamylamine, an inhibitor of nAChRs
receptor, abolishes this response (33). Luo et al. demonstrated
that treatment with anisodamine, a non-specific cholinergic
inhibitor, improves hepatic inflammation, accompanied by
decreased production of TGF-β1, malondialdehyde, and
hydroxyproline in the liver of CCl4-treated mice (56). Of note,
anisodamine is also an anti-oxidant agent (57). Thus, it is unclear
whether anisodamine’s effects attribute to decreased activity of
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the PSNS or inhibition of oxidative stress. Further studies are
warranted toward a better understanding of the role of PSNS in
the pathogenesis and progression of hepatic fibrosis.

NEUROTROPHIC FACTORS

Neurotrophic factors are small proteins or polypeptides that play
crucial roles in the development, differentiation, migration, and
survival of various neurons in central and peripheral nervous
system (17, 58, 59). Major families of neurotrophic factors
include neurotrophins or nerve growth factors (NGF), ciliary
neurotrophic family (CNTF), glial cell line-derived neurotrophic
factor (GDNF) family, and neuropoietic cytokines (17, 60).
Early studies demonstrated the important role of neurotrophic
factors in neuronal regeneration in neurodegenerative diseases
(59, 60). Recent evidence has identified extra-neuronal role of
neurotrophic factors in many other tissues, such as the liver,
pancreas, heart, breast, lung, testis, ovary, etc. (61). Neurotrophic
factors also regulate systemic energy homeostasis and insulin
sensitivity. GDNF, brain-derived neurotrophic factor (BDNF, a
NGF family member), CNTF and Neuregulin-4 (NRG4) are
among the most studied neurotrophic factors in the context of
NAFLD, and their roles are discussed below.

Glial Cell-Line Derived Neurotrophic Factor
GDNF is the most studied neurotrophic factor in GDNF
family of proteins. Other members include neurturin, artemin
and persephin (62). GDNF is a glycosylated, disulfide-bonded
homodimer that has distant relation with TGF-β superfamily
(63). It binds its cognate GDNF family receptor α1 (GFRα1)
(64, 65) stimulating intracellular PI3K/AKT and Ras/MAPK
pathways (66). GDNF promotes the survival and differentiation
of dopaminergic neurons (59, 63). GDNF also acts on non-
neuronal cells by regulating spermatogenesis, salivary stem cell
survival, and ureteral budding in embryonic kidney (67, 68).
Our work has shown that GDNF and its cognate receptor are
expressed in white adipose tissue (WAT), brown adipose tissue
and the liver, playing an important role in lipid metabolism and
the progression of NAFLD (69).

Glial Cell-Line Derived Neurotrophic Factor and

Non-alcoholic Steatohepatitis
Hepatic deposition of fat leads to an increase in hepatic
infiltration by inflammatory cells along with increased synthesis
of cytokines such as TNF, IL-1β, and IL-6 (70–72). Thus, tight
regulation of lipid metabolism in the liver has an important
role in the progression of NAFLD. We used a transgenic
mouse strain that overexpresses GDNF in central nervous
system, enteric nervous system, WAT, brown adipose tissue
and liver as described earlier. We have shown that GDNF
has a protective effect on HFD induced obesity and hepatic
steatosis (69). GDNF transgenic mice are resistant to HFD-
induced obesity as well as insulin and leptin resistance. GDNF
transgenic mice are also protected from developing hepatic
steatosis as manifested by decreased steatosis and substantially
lower triglyceride accumulation in the liver as compared to
controls (20, 69). Mechanistically, overexpression of GDNF in

transgenic mice reduced the expression of master regulators of
lipid homeostasis, including sterol regulatory element binding
transcription factor 1 (SREBF1), PPARα, PPARγ , and carnitine
palmitoyltransferase 1 (CPT1), all of which are elevated inmodels
of NAFLD. Specific analysis of PPARγ promoter has revealed
an inhibitory effect of GDNF on PPARγ promoter activity in
HepG2 cells (20). The CD 36 gene, which encodes fatty acid
translocase mediating fatty acid uptake in hepatocytes, is under
direct control by transcription factor PPARα and PPARγ (42,
73). Transgenic expression of GDNF abrogated HFD-induced
expression of CD 36 protein. De novo lipogenesis machinery
was also diminished in GDNF transgenic mice as seen by
significant reduction in the mRNA levels of FASN, stearoyl-
CoA desaturase (SCD-1) and DGAT2 while on HFD (20). The
protective role of transgenic expression of GDNF against hepatic
steatosis was recapitulated in a more therapeutic approach by
using GDNF-loaded nanoparticles. Direct role of GDNF in
improving hepatic lipid homeostasis has also been confirmed
in heterozygous GFRα1 receptor-knockout mice, whereby the
expression of PPARα, PPARγ , CD36, FASN, DGAT2, and SCD-
1 are all increased (20). Autophagy maintains insulin sensitivity,
regulates lipid stores, and protects against the development
of inflammation (4). Work in our lab has demonstrated a
stimulatory effect of GDNF on hepatic macroautophagy (20,
74). As compared to HFD-fed WT mice, GDNF transgenic
mice displayed reduced expression of autophagic marker
p62/sequestosome-1 and increased expression of autophagy
related 5 (Atg5), Beclin 1 and microtubule-associated protein-
1 light chain 3 (20). This in vivo effect of GDNF was further
confirmed by in vitro analysis of autophagic flux in primary
mouse hepatocytes and secondary rat cell line (74).

In line with reduced hepatic steatosis, GDNF transgenic
mice resist the development of hepatic inflammation when
challenged with HFD (20, 69). GDNF-loaded nanoparticles also
successfully attenuated hepatic inflammation in HFD-fed mice
(20). Overall, these findings have revealed that GDNF plays a
crucial role in HFD-induced hepatic steatosis through its effect
on autophagy and critical transcription factors such as PPARα,
PPARγ, and Srebf1. Thus, GDNF may be a therapeutic agent
in reversing steatosis and steatohepatitis (20, 69). It however
remains unexplored as to the source of GDNF in native hepatic
tissues. Regardless, it is possible that GDNF functions as a trophic
factor for hepatic neurons as well as executing direct effects on
hepatic parenchymal and possibly non-parenchymal cells. Tao et
al. analyzed human liver tissue specimens and primary cell lines
from human livers, and showed that GDNF is likely present in
human HSCs as it is colocalized with α-smooth muscle actin
positive cells (21).

Glial Cell-Line Derived Neurotrophic Factor and

Hepatic Fibrosis
Hepatic GDNF expression is elevated in patients with advanced
liver fibrosis in conditions including NASH, alcoholic liver
disease or hepatitis B virus infection. Serum GDNF level is
increased in a stepwise fashion with the advancement of fibrosis
stages. Similar results were seen in mouse fibrosis models.
GDNF expression in the liver was increased by 2–4-folds
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in mice which received bile duct ligation or were fed with
methionine-choline deficient diet, and by almost 13-fold in
mice treated with CCl4 (21). Whether the increase in GDNF
plays a protective or exacerbating role in the pathogenesis of
hepatic fibrosis remains elusive, and results are conflicting.
Work from our laboratory has shown that GDNF negates
hepatic fibrogenesis in HFD-fed mice. HFD-fed mice with
administration of GDNF-loaded nanoparticles exhibited 4.5-fold
less fibrosis as compared to control nanoparticles-treated mice
(20). It is unclear if this modulation of hepatic fibrosis by GDNF
was due to decreased hepatocyte injury or direct inhibition of
HSC activation. Conversely, in the study by Tao et al. mice treated
with GDNF-expressing adenovirus showed worsened fibrosis
and increased hepatic expression of pro-inflammatory and pro-
fibrotic genes in bile duct ligation and CCl4 fibrotic models;
whereas, GDNF knockdown lowered fibrosis burden. The same
study showed that GDNF activated mouse HSCs in vitro. This
pro-fibrotic role of GDNF in CCl4 and bile duct ligation models
of hepatic fibrosis is opposite to what was seen in our study with
HFD-fed model of NAFLD (20). Although Tao et al. showed
increased expression of hepatic GDNF in human and animal
models of NASH, they did not determine the role of GDNF in the
progression or prevention of NASH associated fibrosis. Further
work is warranted to clarify the precise role of GDNF in the
pathogenesis of liver fibrosis associated with NASH.

Brain-Derived Neurotrophic Factor
BDNF, a member of neurotrophin family, is the most studied
neurotrophic factor due to its abundance in nervous system
and brain. BDNF plays important roles in development,
differentiation, maintenance, and regeneration of neurons
(75, 76). It signals through p75 neurotrophin receptor and
tropomyosin receptor kinases (77), which are expressed primarily
in neurons as well as in a variety of tissues including the liver,
pancreas, colon, breast, immune system, muscles, and prostrate.
Multiple studies have shown that BDNF regulates energy
homeostasis and the development of NAFLD. BDNF improves
blood glucose and insulin resistance as well as hepatomegaly and
inflammation in db/dbmice (78–80). Tsuchida et al. showed that
subcutaneous administration of BDNF to db/db mice decreased
dyslipidemia, hepatic triglyceride content and hepatic steatosis
(81). Comparison of BDNF with thiazolidinediones in db/db
mice revealed that BDNF was superior to thiazolidinediones in
decreasing food intake, reducing body weight, and ameliorating
hepatic steatosis and hepatomegaly (82). These findings point
toward the role of BDNF in improving dysregulated energy
homeostasis, insulin resistance and hepatic steatosis. Thus,
BDNF could potentially be used as an agent to treat hepatic
steatosis. Further studies are needed to establish the beneficial
effects of BDNF in the treatment of hepatic steatosis in other
models of hepatic steatosis than db/dbmice.

Ciliary Neurotrophic Factor
CNTF is a well-studied neurotrophic factor that is structurally
related to IL-6 and is highly expressed in central and peripheral
nervous system including PSNS. Its attachment to cognate
CNTFα receptor initiates heterodimerization of leukemia

inhibitory factor and gp130 receptors (83). This heterodimer
then transduces signals intracellularly though JAK/STAT or
Ras/MAPK pathways (84). CNTF also signals through IL-6
receptor, at least in humans (85). CNTF prevents degeneration
and cell death of neuroglia, sensory, motor, hippocampal and
cerebellar neurons (83). Nonogaki et al. showed that treatment
of rats with CNTF promoted lipolysis and lipid export from liver
(86). Sleeman et al. demonstrated that CNTF treatment increased
basal metabolic rate of HFD-fed db/db mice. CNTF improved
hepatomegaly, hepatic steatosis, and inflammation. These effects
were associated with decreased hepatic expression of SCD-1
and glycerol-3-phosphate acyltransferase 1 that mediate de novo
lipogenesis as well as increased expression of PPARα and CPT-1
that promote mitochondrial β-oxidation (87). Cui et al. studied
effects of recombinant human CNTF in HFD-fed rat model of
obesity and hepatic steatosis. Treatment with CNTF significantly
improved hepatic steatosis and serum markers of hepatic
inflammation. In in vitro cultured HepG2 cells, CNTF increased
the levels of PPARα and CPT-1 and reduced the expression of
FASN, SCD-1, and SREBF1. Overall these changes elucidated
a peripheral role of CNTF in decreasing de novo lipogenesis
and enhancing lipolysis in hepatocytes (88). Despite somewhat
discouraging clinical outcomes of CNTF in the treatment of
obesity due to various adverse effects and lack of long term
effect, it remains an exciting and novel therapeutic agent to
modulate hepatic steatosis (84). Modifications of CNTFmolecule
to improve its pharmacokinetics, efficacy, and reduction of
immunogenicity could reignite its role in clinical applications.

Neuregulin-4
NRG4 is a neurotrophic factor that belongs to Neuregulin
family of epidermal growth factor-like ligands and signals
through tyrosinase kinase receptor members of the ErbB family
(89). It regulates neuron development, adipocyte differentiation,
brown adipose tissue thermogenesis, and energy homeostasis
(90–92). It is also produced in both brown and white
adipose tissues and then transduces signal to hepatocytes in
an endocrine fashion through ErbB4 receptors. Expression of
NRG4 is significantly higher in brown adipose tissues and
expression of NRG4 in adipose tissues is inversely related
with obesity in mice and human adipose tissue (92, 93).
Decreased production of NRG4 in obesity is likely due to
direct impact of pro-inflammatory cytokines produced in obesity
such as TNF-α and IL-1β (92, 94). Wang et al. showed
that HFD-fed NRG4 knockout mice had increased adiposity,
hypertriglyceridemia and increased insulin resistance (92). These
mice also manifested more pronounced hepatic steatosis and
increased serum markers of hepatic inflammation as compared
to WT mice. Knockout mice had increased hepatic expression
of genes associated with de novo lipogenesis and inflammation
along with increased SREBF1 expression, whereas the expression
of genes associated with beta oxidation of fatty acids and
gluconeogenesis was unchanged (92, 95). NRG4 attenuated
lipogenesis in cultured hepatocytes in vitro. On the other hand,
transgenic expression of NRG4 in adipose tissues rendered mice
resistant to HFD-induced weight gain as compared to WT
mice. These mice also had significantly less hepatic steatosis,
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inflammation and fibrosis (92, 95), along with increased hepatic
beta oxidation of fatty acids and increased ketogenesis (94).
Moreover, NRG4 directly affects hepatocyte cell death in vivo
through downregulation of proteasomal degradation of c-FLIP,
a major anti-apoptotic/necrotic protein. NRG4 knockout mice
had decreased hepatic c-FLIP levels whereas NRG4 transgenic
mice had elevated c-FLIP levels. Restoration of hepatic c-FLIP
expression in HFD-fed NRG4 knockout mice using adenovirus
blocked the progression of hepatic steatosis to NASH (95).
In multiple cross-sectional studies of adults and children with
NAFLD, serum NRG4 levels were significantly lower when
compared to healthy controls, suggesting an important role of
NRG4 in human NALFD as well (96–98). Collectively, these
studies demonstrate that adipose tissue-derived NRG4, via an

endocrine fashion, can improve hepatic steatosis, inflammation
and fibrosis.

CONCLUSIONS

In conclusion, changes in SNS and PSNS activity as well as
the expression of neurotrophic factors play significant roles in
the pathogenesis of NAFLD and its progression to NASH and
cirrhosis. Activation of SNS and adrenergic signaling promotes
steatosis and hepatic fibrosis, whereas stimulation of PSNS
improves NASH with its effects on hepatic fibrosis remaining
unclear. Increased expression of neurotrophic factors including
GDNF, CNTF, BDNF, and NRG4 all alleviate hepatic steatosis.
BDNF, CNTF, and NRG4 decrease inflammation, but only

FIGURE 1 | Model of the regulation of steatosis, NASH, and fibrosis by SNS, PSNS and neurotrophic factors.

TABLE 1 | Key References.

Conclusions Models References

Sympathetic nervous system Pharmacological sympathetic agonism induces hepatic

fibrosis by promoting HSC proliferation

Mouse model of obesity Oben et al. (12)

Pharmacological β-adrenergic agonism promotes steatosis Mouse and rat model of NAFLD Ghosh et al. (39)

HFD increases sympathetic activity, and surgical or chemical

ablation of hepatic sympathetic supply improves steatosis

Mouse model of NAFLD Hurr et al. (40)

Parasympathetic nervous system Pharmacological or electrical parasympathetic agonism

dampens proinflammatory cytokine production

Rat model of endotoxemia Borovikova et al. (49)

Vagotomy exacerbates steatosis and hepatic inflammation Mouse model of NASH Nishio et al. (52)

Neurotrophic factors GDNF overexpression renders resistance to development of

obesity and steatosis

Mouse model of obesity Mwangi et al. (69)

BDNF improves steatohepatitis Mouse model of diabetes Tonra JR et al. (79)

CNTF improves hepatic steatosis and inflammation Mouse model of diabetes Sleeman et al. (87)

NRG4 prevents development of steatohepatitis and fibrosis Mouse model of NASH Guo et al. (95)
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NRG4 improves fibrosis (Figure 1, Table 1). The following is
a point-by-point summary of the roles of SNS, PSNS, and
neurotrophic factors.

• Modulation of the hepatic nervous system and neurotrophic
factors play significant roles in management of hepatic
steatosis, NASH and hepatic fibrosis.

• SNS is over-activated in the setting of aging, HFD-induced
steatosis and advanced hepatic fibrosis.

• SNS stimulation promotes hepatic steatosis whereas surgical
or chemical inhibition of SNS improves steatosis.

• SNS activation promotes hepatic fibrosis by enhancing
proliferation and activation of HSCs along with increased
signaling of TGF-β.

• PSNS activation improves NASH by decreasing hepatic
lipid content and by reducing proinflammatory cytokine
production in liver. This can be achieved by vagus stimulation
or chemical agonism of PSNS.

• Role of PSNS in modulation of hepatic fibrosis remains
unclear, with limited data indicating a promoting effect.

• GDNF, CNTF, BDNF, and NRG4 improve insulin resistance
and alleviate hepatic steatosis by reducing hepatic lipogenesis
and improving β-oxidation.

• GDNF’s effects on liver fibrosis are contradictory by
playing antifibrotic and profibrotic roles in different

models. NRG4 has been shown to ameliorate fibrosis.
The role of CNTF and BDNF in hepatic fibrosis is
not understood.

• Further studies are needed to better understand the roles
of neurotrophic factors and the hepatic nervous system in
modulation of NAFLD.
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Cholangiocarcinoma (CCA) is one of the most lethal cancers, and its rate of occurrence

is increasing annually. The diagnoses of CCA patients remain elusive due to the lack of

early symptoms and is misdiagnosed as HCC in a considerable percentage of patients. It

is crucial to explore the underlying mechanisms of CCA carcinogenesis and development

to find out specific biomarkers for early diagnosis of CCA and new promising therapeutic

targets. In recent times, the reprogramming of tumor cells metabolism has been

recognized as a hallmark of cancer. The modification from the oxidative phosphorylation

metabolic pathway to the glycolysis pathway in CCA meets the demands of cancer

cell proliferation and provides a favorable environment for tumor development. The

alteration of metabolic programming in cancer cells is complex and may occur via

mutations and epigenetic modifications within oncogenes, tumor suppressor genes,

signaling pathways, and glycolytic enzymes. Herein we review the altered metabolism

in cancer and the signaling pathways involved in this phenomena as they may affect

CCA development. Understanding the regulatory pathways of glucose metabolism

such as Akt/mTOR, HIF1α, and cMyc in CCA may further develop our knowledge of

this devastating disease and may offer relevant information in the exploration of new

diagnostic biomarkers and targeted therapeutic approaches for CCA.

Keywords: cholangiocarcinoma, metabolic reprogramming, aerobic glycolysis, glucose metabolism,

warburg effect

INTRODUCTION

Cholangiocarcinoma (CCA) is a primary malignancy that originates from the cholangiocytes lining
the biliary tree, also known as bile duct cancer. CCA is classified according to anatomical position,
as either intrahepatic (iCCA), arising in the liver, and extrahepatic (eCCA), arising outside the
liver. Extrahepatic cholangiocarcinoma can then be further classified as perihilar (pCCA) and
distal cholangiocarcinoma (dCCA). The majority of CCA tumors are found in the perihilar and
distal region, whereas only 10% are reported as intrahepatic, although responsible for 10–20% of
all hepatic tumors (1–3). CCA characteristically manifests late with non-specific symptoms. Due
to an insufficient knowledge of risk factors, coupled with inaccurate screenings, dependable early
diagnosis has proven problematic. Diagnosed at late stages, CCA is among the most deadly cancers
with an∼5% 5-year survival rate in patients (3).
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EPIDEMIOLOGY

The incidence of CCA varies considerably between East-West
dichotomy, reflecting variations in genetic and environmental
risk factors. The highest incidence of CCA is reported in the
north-east part of Thailand with rates of (113/100,000) in men
and (50/100,000) in women; which is almost 100 fold more than
Europe and North America (1-2/100,000), whereas Australia
has the lowest number of CCA incidence (with 0.4/100,000).
The prevalence of CCA is increasing worldwide for unknown
reasons (4). The on-going overall increase in the rate of
CCA makes it imperative to understand the disease’s etiology
and risk factors.

RISK FACTORS AND PATHOGENESIS OF
CCA

Eighty percent of CCA cases in the western world are periodic
and have no identifiable risk factor (4, 5). Smoking, alcohol
abuse, obesity, and diabetes have not been consistently linked
to higher risk, though a small involvement cannot be ruled
out (6). Chronic biliary inflammation is another risk factor
that has been generally associated with CCA. For instance,
in the western world, primary sclerosing cholangitis (PSC)
is associated with 10% of CCA cases (6, 7). Because of
the often desmoplastic nature of CCA, it is challenging to
discriminate between malignant and the benign characteristic
of PSC. Liver cirrhosis of mixed etiology conveys a ten-
fold relative risk (7). Uncommon defects of biliary anatomies,
such as choledochal cysts (bile duct cyst), Caroli’s syndrome
(intrahepatic biliary cysts), biliary papillomatosis or adenoma,
are linked with a high risk (6–30%) of CCA development.
The high frequency of malignant transformation of the cells
promotes prophylactic resection (6–8). Inborn or acquired
defects of the biliary duct in pancreaticobiliary junction
allows pancreatic reflux and subsequently leads to chronic
cholangitis and increasing risk of CCA. Hepatolithiasis and
chronic intraductal gallstones are also predominantly linked
to CCA in Asia, as more than 10% of these patients
develop CCA (5, 6).

ALTERED METABOLISM IN CANCER

Transformed metabolism is a common property of most cancer
cells, including cholangiocarcinoma (9). The most common and
one of the first identified biochemical features of cancer cells
is uncharacteristic glucose metabolism. Glucose is known as a
primary energy and carbon source for the cells, providing not
only energy in form of ATP but also metabolites for several
anabolic pathways (8, 9). Glucose transporters help the cells
uptake glucose, and when in the cytosol, it is metabolized
to pyruvate to yield a small amount of ATP by a multi-
step path known as glycolysis. In normal healthy cells, the
pyruvate derived from glycolysis is mainly transported into the
mitochondrial matrix where the pyruvate dehydrogenase (PDH)
enzyme complex oxidizes it into acetyl coenzymeA (CoA). Acetyl

CoA further participates in the tricarboxylic acid (TCA) cycle,
followed by a high-efficiency ATP generation process known
as oxidative phosphorylation (OXPHOS). The full oxidation
of one glucose molecule can produce up to 38 molecules
of ATP (10).

On the contrary, cancer cells show changes in glucose
metabolism. As shown in Figure 1: (i) Comparison between
normal healthy cells, cancer cells characteristically show
increased glucose uptake and glycolytic rates. Increased
consumption of glucose produces more glycolytic intermediate
metabolites and a substantial amount of ATP from glycolysis.
(ii) Additionally, instead of generating pyruvate, a large fraction
of carbon from glucose is moved into multiple biosynthetic
pathways. (iii) Finally, in the cytoplasm maximum amount
of pyruvate is converted to lactate by the action of lactate
dehydrogenase (LDH) and secreted out instead of being oxidized
in the mitochondria. This process is aerobic glycolysis as it
occurs even in the presence of adequate oxygen to maintain
mitochondrial respiration. This phenomenon of cancer cells
was first observed by Otto Warburg in 1920s; therefore, it
is also referred to as the “Warburg effect” (8, 9). Though
cancer cells exhibit various kinds of metabolic profiles, the
Warburg effect is a widespread cancer-associated characteristic.
Interestingly, higher levels of LDHA have been reported in CCA
patients (11, 12).

FIGURE 1 | The glucose metabolism in normal healthy and cancer cells under

normoxia shown in schematic illustration. The normal cells converted glucose

to pyruvate via glycolysis, and maximum amount of pyruvate participates in

mitochondrial oxidative process for efficient ATP production. Glucose is largely

used for cellular energy requirements. In healthy cells high levels of ATP

mitigate glycolysis by feedback inhibition. In cancer cells Glucose uptake

increased and thereby glycolysis. A substantial part of glucose is used to

biosynthetic pathways to support cell proliferation. Pyruvate is mainly used in

lactate production. Oxidative phosphorylation exists, but is separated from

augmented glycolysis. The amount of glucose carbon flux is indicated by

relative thickness of green arrows. Key mitochondrial metabolism by-products

are shown in red and the metabolic effects on cancer are in indicated in bold

black arrows.
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GLYCOLYSIS PROVIDES BIOSYNTHETIC
PRECURSORS

The mitochondrial function in cancer cells is mostly unchanged,
in opposition to the original Warburg hypothesis. Warburg
also witnessed that the rate of mitochondrial respiration in
cancer cells remains almost similar to that of normal cells (13).
Oxidative metabolism is also present in the majority of cancers
and the main source for ATP generation (10, 13). However,
the elevated glucose flux in cancer cells predominantly leads to
lactate fermentation, and the flow to oxidative metabolism does
not change. In summary, augmented glucose intake in cancer
cells leads to lactate formation and it is uncoupled from oxidative
metabolism in mitochondria. Higher uptake of glucose by cancer
cells is also the basis for positron emission tomography (PET)
with 18-fluorodeoxyglucose, which particularly accumulate in
cancer cells. Due to the prevalence of this phenotype, PET is
an effective clinical imaging method to diagnose most cancers
andmonitor therapeutic approaches (4). This technique has been
useful in the clinical diagnosis of CCA in patients (14, 15).

The Warburg effect has been the canter of metabolism
research in cancer cells. Genetic and epigenetic alterations
in oncogenes and tumor suppressor genes may affect cancer
metabolism. Thus, the variations in metabolic activities in the
cancer cells are considered as a secondary effect on the cancer
development process. Though tumor cell growth requires
more production of the basic cellular macromolecules and
metabolites for new cell development and it is well known
that changes in tumor cell metabolism aid in cell growth
by substantially producing biomolecules (16). Glycolytic
metabolism of glucose yields several metabolites, which
may act as precursors for anabolic pathways including the
triacylglycerol and serine biosynthesis pathways for the
production of amino acids, nucleotides, and lipids (8, 16).
Whereas normal healthy cells utilize glucose almost entirely
for energy, cancer cells increase glucose intake mainly to
produce a persistent source of glycolytic intermediate products
to fulfill the anabolic requirement of proliferating cells. Thus,
intermediate product of glycolysis play a very important
role as compared to pyruvate. In tumor cells the last steps
of glycolysis is slow down, which is controlled by pyruvate
kinase (13, 16), permitting glycolytic intermediates build-up for
biosynthesis of macromolecules. The transformed metabolism
of glucose consequently supports the alteration of glucose
into biomass and withstands the rapid growth of cancer cells
(9). Modifications in oncogenes and tumor suppressors drive
unfavorable cell proliferation, and concurrently maintain cellular
metabolism to satisfy the biosynthetic burdens of constant
cell proliferation.

THE REGULATORY MECHANISM IN
GLUCOSE METABOLISM

Oncogenes are an important set of genes found to be either
mutated or over-expressed in cancer cells, whichmay elicit tumor
initiation and continuous cell growth. Healthy cells do not grow

FIGURE 2 | Cellular pathways regulating the cancer cell metabolism. Different

signaling pathways affected in tumor cells like Akt/mTOR, KRAS, and SIRTs

activate the transcription factor cMyc which in turn, together with HIF1

induced by hypoxia and/or Sirtuins, promotes the expression of glycolytic

proteins such as GLUT1, HK2, PKM2, and LDHA to regulate cancer cell

metabolism. In CCA activation of HIF1, SIRTs, and cMyc inducing glycolysis

has been described (Green Arrows).

independently, but rather go in the cell cycle only after prompted
for it via signaling pathways, and growth factors, that may affect
the cell morphology and gene expression (13, 17). Given that cell
growth depends on many events of metabolic pathways, it is also
known that these activities also regulated by the growth factors.
The metabolism intermediates regulates metabolic functions
that are mostly controlled via the intermediate metabolites on
rate-limiting enzymes, providing self-regulatory capability in
pathways and gives control at starting points of intersecting
pathways (18). A number of these mechanisms in dividing cancer
cells help to recognize the influence of signal activities on cell
growth and it has shown a range of effects focused on metabolic
fluxes (Figure 2).

THE Akt/mTOR PATHWAY REGULATES
AEROBIC GLYCOLYSIS IN CANCER CELLS

The Akt/mTOR regulatory axis is a highly conserved and
commonly expressed system in cells regulated by the growth
factors (19). Coupling of growth factors (EGF, IGF, VEGF and
cytokines) to cell surface receptors triggers PI3K activation,
causing the phosphatidylinositol lipids phosphorylation at the
plasma membrane. This process is involved in the activation
of downstream pathways, mainly the serine/threonine kinases
like Akt/mTOR pathway. Stimulation of the PI3K/Akt/mTOR
regulatory axis by the growth factors in cancer cells, augments
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many of themetabolic processes that support cell growth.Mainly,
it allows cells to increases nutrient transporters expression at
the cell surface, enabling enhanced nutrient uptake, including,
glucose and amino acids (20–22). The Akt/mTOR pathway may
affect gene expression and enzyme activity, increase glycolysis
and lactate accumulation in the cells, and to prompt aerobic
glycolysis (Warburg effect) in either cancer cells or normal cells
(22–24). Additionally, initiation of this pathwaymay enhance the
macromolecule biosynthesis. PI3K/Akt encourage expression of
lipogenesis genes in various cell types (25), while mTOR is a key
controller of protein synthesis in cancer cells (26).

Irrespective of mutation, Akt initiation is among the main
signaling events in cancer cell metabolism, for the reason that
Akt can initiate aerobic glycolysis and lactate assembly and
inhibit degradation of macromolecules in tumor cells including
CCA (27). Similarly, CCA cells have been reported to resist the
chemotherapy treatment via Akt/mTOR pathway (27).

HIF1 MODULATE THE CANCER CELL
METABOLISM

Hypoxia (decreased oxygen condition) can stimulate increased
glucose consumption and lactate production in the cells. This
process is regulated by hypoxia-inducible factor 1 (HIF-1), is a
transcription factor complex (28, 29). HIF-1 targets genes for
glucose transporters, glycolytic enzymes, and LDHA (14, 30).
HIF-1 can also expressed in the influence of growth factor
signaling, and the Akt/mTOR axis in particular (31–34). During
normal oxygen conditions PHD2 induce the posttranslational
modification of HIF-1 by prolyl hydroxylation that encourages
its interaction with a tumor suppressor called von Hippel-
Lindau (VHL), which induces HIF-1 ubiquitination followed
by degradation. During hypoxia, prolyl hydroxylation of HIF is
withdrawn, resulting in stability and transcriptional activity of
the HIF-1 protein complex (35, 36). Cellular stabilization of HIF-
1 in normoxia occurs in tumors as an outcome of mutations in
the VHL (37, 38).

An interesting study of Xu et al. showed that decreased
expression of SIRT3 was correlated with high rate of glycolysis
in CCA. Consistently, changes in glucose metabolism were
observed in SIRT3 knockout mice. Furthermore, the authors
also confirmed that SIRT3 prevents the Warburg effect in
CCA cells and a xenograft mouse model by inhibiting the
HIF1α/PDK1/PDHA1 pathway. Collectively, this study suggests
that SIRT3 shows anti-Warburg effect activity via regulating
the HIF1α/PDK1/PDHA1 pathway and may be a potential
therapeutic intervention to impair CCA progression (39).

cMyC

Many previous studies have shown that some glucosemetabolism
genes are directly regulated by cMyc (40). These genes
include Hexokinase 2 (HK2), glucose transporter GLUT1,
phosphofructokinase, and enolase 1 (ENO1) (41–43). In
addition, cMyc also has been reported to decrease pyruvate
levels by stimulating LDHA and PKM2 levels, which can

decrease the inhibition of HDAC3 and protect CCA from
apoptosis (44). Augmented expression of these genes by cMyc
induces the Warburg effect and the capacity of cancer cells
to metabolize glucose to pyruvate even in inadequate oxygen
availability. Animal models overexpressing cMyc in the liver
demonstrated increased glycolytic enzymatic activity and up-
regulated lactic acid production. Conversely, rodent fibroblasts
cells overexpressing LDHA alone, or cMyc increased the lactate
production. This study suggests that LDHA is a downstream
target of cMyc, and can induce the Warburg effect (45, 46).

In CCA cells, the SIRT2/cMYC pathway was reported to
play a critical role in modulating glucose oxidative metabolism
to serine anabolic metabolism. Furthermore, the high level
of SIRT2/cMYC pathway not only converts glucose to serine,
but also provides antioxidants for oxidative stress resistance in
CCA cells. Therefore, the metabolic reprogramming induced by
SIRT2/cMYC pathway may provide a new therapeutic target for
CCA (47).

THERAPEUTIC INTERVENTIONS RELATED
TO REPROGRAMMED METABOLISM

Targeting cancer cell metabolism has become a significant
emerging field to address effective cancer therapies, including
tumor relapse and drug-resistance. To inhibit glucose
metabolism in cancer cells, glycolytic enzymes (Pyruvate
kinase M2, Hexokinase 1-2, and lactate dehydrogenase) and
glucose transporter (GLUT 1-4) have been considered as
therapeutic targets (9). GLUT1, found overexpressed in a varity
of cancers including CCA (48, 49), helps in rapid uptake of
glucose and its expression associates with anaerobic glycolysis
in the cells (50). Targeting GLUT1 by WZB117 induced breast
cancer cell sensitivity for radiation therapy (51), inhibited cancer
cell growth and proliferation in nude mouse (52) and inhibited
cancer stem cells self-renewal and tumor development capacity
(53). MiR-218, miR-132 and miR-148a have been reported to
inhibit cancer cell proliferation via targeting GLUT1 in bladder,
prostate and pancreatic cancer respectively (54–56). Therefore,
the use of GLUT1 inhibitors in CCA may shed light on the
pathogenesis of CCA and may provide novel tools in clinical
prognosis and treatment.

Alternative potential target is the adaptive characteristic of
cancer cells inside the tumor microenvironment. A cancer cell
can transmit its metabolism in heterogeneous environmental
conditions, glucose deficiency, hypoxia, and acidic environment;
this adaptation to metabolic response by cancer cells plays an
essential role in cell metastasis or chemotherapy resistance (16).
HIF1α is an important enzyme for metabolic adjustment during
hypoxia and is involved in cancer cell survival, angiogenesis,
and metastasis (28, 37, 57). CCA patients showed a higher
level of Pyruvate dehydrogenase kinase 1 (PDK1) (58), which
has been known to control the metabolic shift during hypoxia
via regulating the acetyl-coA production to yield energy in the
TCA cycle by mitochondria oxidation (59, 60). The mTOR
pathway regulates energy homeostasis and engages in cancer cell
survival in cellular metabolic stress such as depletion in nutrients
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and energy (23, 24). The downregulation of mTOR pathway
signaling reduces cancer growth and has therapeutic potential
for CCA (61–64). CCA cells which need OXPHOS for energy
requirements can be targeted by impairing mitochondrial energy
metabolism. Targeting the Peroxisome proliferator-activated
receptor-γ coactivator (PGC1α) can inhibit the Warburg effect
and cause cell death in CCA (65). Inhibition of mitochondrial
protein UCP2 can block mitochondrial OXPHOS by the
inhibition of mitochondrial function using a UCP2 inhibitor
(genipin), which has toxicity against CCA (66). In the same
way, TRAP1 a mitochondrial chaperone inhibitor prompts the
diminishing of protein folding in mitochondria, also targeting
mitochondrial metabolism (67–69). Many studies strongly
advocate that targeting OXPHOS in cancer cell mitochondria
could be an effective approach to against CCA and to decrease
tumor growth and chemotherapy-resistance (70, 71). Therefore,
it is crucial to develop the specific therapeutic targets to inhibit
mitochondrial OXPHOS only in CCA and for the metabolic
alteration of cancer cells with no negative effect in the normal
cells that generally use OXPHOS for energy requirements.

CONCLUSION

The reprogramming of glucose metabolism in malignant cells
is a multi-factor and multi-step route that can be controlled by
carcinogenic signaling processes, and by epigenetic modulations.
The advancement in cancer metabolism research significantly
improved our knowledge of carcinogenesis and gave several
potential targets for cancer. The drug that targets glycolytic
enzymes or glycolysis pathways revealed several encouraging

effects in cancer prevention and therapy (72). The cause
and consequences of metabolism reprogramming in CCA
is understudied, therefore further efforts to understand how
the Warburg effect is regulated are warranted. A better
understanding of this topic in CCA might help in the
development of novel therapeutic approaches. Nevertheless, the
drawback of anti-cancer remedy targeting glycolysis should
also be explored further. As several enzymes catalyze this
multistep process of cancer metabolism, here is a characteristic
compensatory routes in cell metabolism. Thus, drug candidate
may not have a prominent effect on cancer metabolism targeting
specially only one modulator of glycolysis. In future, The impact
of treatments and drug therapies in combination need to be
assessed in CCA. In addition, drugs, which can target several

pathways like Akt/mTOR and HIF1, are also required to be
considered in future studies.

AUTHOR CONTRIBUTIONS

KP wrote the first draft of the manuscript. SR, EP, and SG
critically revised the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.

FUNDING

This work was supported by National Institutes of Health
Grant R01CA183764 (to SG), and The Hormel Foundation. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes
of Health.

REFERENCES

1. Galassi M, Iavarone M, Rossi S, Bota S, Vavassori S, Rosa L, et al. Patterns

of appearance and risk of misdiagnosis of intrahepatic cholangiocarcinoma

in cirrhosis at contrast enhanced ultrasound. Liver Int. (2013) 33:771–

9. doi: 10.1111/liv.12124

2. Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis,

diagnosis, and treatment. Hepatol Baltim Md. (2008) 48:308–

21. doi: 10.1002/hep.22310

3. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma

— evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. (2018)

15:95–111. doi: 10.1038/nrclinonc.2017.157

4. Khan SA, Davidson BR, Goldin RD, Heaton N, Karani J, Pereira SP, et al.

Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update.

Gut. (2012) 61:1657–69. doi: 10.1136/gutjnl-2011-301748

5. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. (2014) 383:2168–

79. doi: 10.1016/S0140-6736(13)61903-0

6. Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for

intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and

meta-analysis. J Hepatol. (2019) 72:95–103. doi: 10.1016/j.jhep.2019.09.007

7. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology.

(2011) 54:173–84. doi: 10.1002/hep.24351

8. Potter M, Newport E, Morten KJ. The warburg effect: 80 years on. Biochem

Soc Trans. (2016) 44:1499–505. doi: 10.1042/BST20160094

9. Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell.

(2008) 134:703–7. doi: 10.1016/j.cell.2008.08.021

10. Zheng J. Energy metabolism of cancer: Glycolysis versus

oxidative phosphorylation (Review). Oncol Lett. (2012) 4:1151–

7. doi: 10.3892/ol.2012.928

11. Yu Y, Liao M, Liu R, Chen J, Feng H, Fu Z. Overexpression of lactate

dehydrogenase-A in human intrahepatic cholangiocarcinoma: its implication

for treatment. World J Surg Oncol. (2014) 12:78. doi: 10.1186/1477-78

19-12-78

12. Thonsri U, Seubwai W, Waraasawapati S, Sawanyawisuth K,

Vaeteewoottacharn K, Boonmars T, et al. Overexpression of lactate

dehydrogenase a in cholangiocarcinoma is correlated with poor prognosis.

Histol Histopathol. (2017) 32:503–10. doi: 10.14670/HH-11-819

13. Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative

phosphorylation: a tumor’s dilemma? Biochim Biophys Acta BBA. (2011)

1807:552–61. doi: 10.1016/j.bbabio.2010.10.012

14. Suzuki H, Komuta M, Bolog A, Yokobori T, Wada S, Araki K,

et al. Relationship between 18-F-fluoro-deoxy-d-glucose uptake

and expression of glucose transporter 1 and pyruvate kinase

m2 in intrahepatic cholangiocarcinoma. Dig Liver Dis. (2015)

47:590–6. doi: 10.1016/j.dld.2015.03.017

15. Paudyal B, Oriuchi N, Paudyal P, Tsushima Y, Higuchi T, Miyakubo M,

et al. Clinicopathological presentation of varying 18F-FDG uptake and

expression of glucose transporter 1 and hexokinase iI in cases of hepatocellular

carcinoma and cholangiocellular carcinoma. Ann Nucl Med. (2008) 22:83–

6. doi: 10.1007/s12149-007-0076-1

16. Vander Heiden MG, DeBerardinis RJ. Understanding the

intersections between metabolism and cancer biology. Cell. (2017)

168:657–69. doi: 10.1016/j.cell.2016.12.039

17. Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation

in cancer cells. Biochim Biophys Acta BBA. (2011) 1807:534–

42. doi: 10.1016/j.bbabio.2010.09.003

18. Witsch E, Sela M, Yarden Y. Roles for growth factors in cancer progression.

Physiol Bethesda Md. (2010) 25:85–101. doi: 10.1152/physiol.00045.2009

Frontiers in Medicine | www.frontiersin.org 5 April 2020 | Volume 7 | Article 11396

https://doi.org/10.1111/liv.12124
https://doi.org/10.1002/hep.22310
https://doi.org/10.1038/nrclinonc.2017.157
https://doi.org/10.1136/gutjnl-2011-301748
https://doi.org/10.1016/S0140-6736(13)61903-0
https://doi.org/10.1016/j.jhep.2019.09.007
https://doi.org/10.1002/hep.24351
https://doi.org/10.1042/BST20160094
https://doi.org/10.1016/j.cell.2008.08.021
https://doi.org/10.3892/ol.2012.928
https://doi.org/10.1186/1477-7819-12-78
https://doi.org/10.14670/HH-11-819
https://doi.org/10.1016/j.bbabio.2010.10.012
https://doi.org/10.1016/j.dld.2015.03.017
https://doi.org/10.1007/s12149-007-0076-1
https://doi.org/10.1016/j.cell.2016.12.039
https://doi.org/10.1016/j.bbabio.2010.09.003
https://doi.org/10.1152/physiol.00045.2009
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pant et al. Glucose Metabolism in CCA

19. Simons AL, Orcutt KP, Madsen JM, Scarbrough PM, Spitz DR. The role of

Akt pathway signaling in glucose metabolism metabolic oxidative stress. In:

Spitz DR, Dornfeld KJ, Krishnan K, Gius D.Oxidative Stress in Cancer Biology

Therapy Oxidative Stress in Applied Basic Research Clinical Practice. Totowa,

NJ: Humana Press (2012). p. 21–46. doi: 10.1007/978-1-61779-397-4_2

20. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under

metabolic stress: cross-talk between aMPK and aKT pathway. Mol Cancer.

(2017) 16:1. doi: 10.1186/s12943-017-0648-1

21. Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt

signaling and redox metabolism in cancer. Front Oncol. (2018)

8:160. doi: 10.3389/fonc.2018.00160

22. Coloff JL, Rathmell JC. Metabolic regulation of akt: roles reversed: figure 1. J

Cell Biol. (2006) 175:845–7. doi: 10.1083/jcb.200610119

23. Conciatori F, Bazzichetto C, Falcone I, Pilotto S, Bria E, Cognetti F, et al. Role

of mTOR signaling in tumor microenvironment: an overview. Int J Mol Sci.

(2018) 19:2453. doi: 10.3390/ijms19082453

24. Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by

the pI3K-Akt-mTOR pathway in cancer. Recent Results Cancer

Res Fortschritte Krebsforsch Progres Dans Rech Sur Cancer. (2016)

207:39–72. doi: 10.1007/978-3-319-42118-6_3

25. Luo X, Zhao X, Cheng C, Li N, Liu Y, Cao Y. The implications

of signaling lipids in cancer metastasis. Exp Mol Med. (2018)

50. doi: 10.1038/s12276-018-0150-x

26. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by

fRAP/mTOR. Genes Dev. (2001) 15:807–26. doi: 10.1101/gad.887201

27. Yokoi K, Kobayashi A, Motoyama H, Kitazawa M, Shimizu A, Notake T,

et al. Survival pathway of cholangiocarcinoma via aKT/mTOR signaling to

escape rAF/MEK/ERK pathway inhibition by sorafenib. Oncol Rep. (2018)

39:843–50. doi: 10.3892/or.2017.6153

28. Morine Y, Shimada M, Utsunomiya T, Imura S, Ikemoto T, Mori H, et al.

Hypoxia inducible factor expression in intrahepatic cholangiocarcinoma.

Hepatogastroenterology. (2011) 58:1439–44. doi: 10.5754/hge11156

29. Gordan JD, Simon MC. Hypoxia-inducible factors: central

regulators of the tumor phenotype. Curr Opin Genet Dev. (2007)

17:71–7. doi: 10.1016/j.gde.2006.12.006

30. Sadlecki P, Bodnar M, Grabiec M, Marszalek A,Walentowicz P, Sokup A, et al.

The role of hypoxia-Inducible factor-1α, glucose transporter-1, (GLUT-1) and

carbon anhydrase iX in endometrial cancer patients. BioMed Res Int. (2014)

2014:616850. doi: 10.1155/2014/616850

31. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al.

HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. (2003)

112:645–57. doi: 10.1016/s0092-8674(03)00154-5

32. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al.

mTOR inhibition reverses akt-dependent prostate intraepithelial neoplasia

through regulation of apoptotic and hIF-1-dependent pathways. Nat Med.

(2004) 10:594–601. doi: 10.1038/nm1052

33. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, et al. PI3K/Akt signaling

transduction pathway, erythropoiesis and glycolysis in hypoxia (Review).Mol

Med Rep. (2019) 19:783–91. doi: 10.3892/mmr.2018.9713

34. Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC.

Cancer metabolism and the warburg effect: the role of hIF-1 and pI3K. Mol

Biol Rep. (2015) 42:841–51. doi: 10.1007/s11033-015-3858-x

35. Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story

of a transcription factor. Acta Oncol Stockh Swed. (2017) 56:503–

15. doi: 10.1080/0284186X.2017.1301680

36. Pezzuto A, Carico E. Role of hIF-1 in cancer progression:

novel insights. A review. Curr Mol Med. (2018)

18:343–51. doi: 10.2174/1566524018666181109121849

37. Agani F, Jiang B-H. Oxygen-independent regulation of hIF-1: novel

involvement of pI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug

Targets. (2013) 13:245–51. doi: 10.2174/1568009611313030003

38. Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic

glycolysis and potential targets for therapy. Oncotarget. (2016) 7:38908–

26. doi: 10.18632/oncotarget.7676

39. Xu L, Li Y, Zhou L, Dorfman RG, Liu L, Cai R, et al. SIRT3 elicited an anti-

Warburg effect through hIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma

tumorigenesis. Cancer Med. (2019) 8:2380–91. doi: 10.1002/cam4.2089

40. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer

metabolism. Clin Cancer Res Off J Am Assoc Cancer Res. (2012) 18:5546–

53. doi: 10.1158/1078-0432.CCR-12-0977

41. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, et al.

Deregulation of glucose transporter 1 and glycolytic gene expression

by c-Myc. J Biol Chem. (2000) 275:21797–800. doi: 10.1074/jbc.C000

023200

42. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and

therapeutic opportunities. Clin Cancer Res Off J Am Assoc Cancer Res. (2009)

15:6479–83. doi: 10.1158/1078-0432.CCR-09-0889

43. Wu S, Yin X, Fang X, Zheng J, Li L, Liu X, et al. c-MYC responds to

glucose deprivation in a cell-type-dependent manner. Cell Death Discov.

(2015) 1:15057. doi: 10.1038/cddiscovery.2015.57

44. Zhang M, Pan Y, Tang D, Dorfman RG, Xu L, Zhou Q, et al.

Low levels of pyruvate induced by a positive feedback loop protects

cholangiocarcinoma cells from apoptosis. Cell Commun Signal CCS. (2019)

17:23. doi: 10.1186/s12964-019-0332-8

45. Lewis BC, Prescott JE, Campbell SE, Shim H, Orlowski RZ, Dang CV. Tumor

induction by the c-Myc target genes RCL and lactate dehydrogenase a. Cancer

Res. (2000) 60:6178–6183.

46. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc

transactivation of lDH-A: implications for tumor metabolism and growth.

Proc Natl Acad Sci USA. (1997) 94:6658–63. doi: 10.1073/pnas.94.13.6658

47. Xu L, Wang L, Zhou L, Dorfman RG, Pan Y, Tang D, et al. The

sIRT2/cMYC pathway inhibits peroxidation-Related apoptosis in

cholangiocarcinoma through metabolic reprogramming. Neoplasia NYN.

(2019) 21:429–41. doi: 10.1016/j.neo.2019.03.002

48. Kubo Y, Aishima S, Tanaka Y, Shindo K, Mizuuchi Y, Abe

K, et al. Different expression of glucose transporters in the

progression of intrahepatic cholangiocarcinoma. Hum Pathol. (2014)

45:1610–7. doi: 10.1016/j.humpath.2014.03.008

49. Amann T, Hellerbrand C. GLUT1 as a therapeutic target in

hepatocellular carcinoma. Expert Opin Ther Targets. (2009)

13:1411–27. doi: 10.1517/14728220903307509

50. Adekola K, Rosen ST, Shanmugam M. Glucose transporters

in cancer metabolism. Curr Opin Oncol. (2012)

24:650–4. doi: 10.1097/CCO.0b013e328356da72

51. Zhao F, Ming J, Zhou Y, Fan L. Inhibition of glut1 by wZB117 sensitizes

radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol.

(2016) 77:963–72. doi: 10.1007/s00280-016-3007-9

52. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A

small-molecule inhibitor of glucose transporter 1 downregulates glycolysis,

induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in

vivo. Mol Cancer Ther. (2012) 11:1672–82. doi: 10.1158/1535-7163.MCT-1

2-0131

53. Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, et al. Targeting

the facilitative glucose transporter gLUT1 inhibits the self-renewal and

tumor-initiating capacity of cancer stem cells. Oncotarget. (2015) 6:651–

61. doi: 10.18632/oncotarget.2892

54. Li P, Yang X, Cheng Y, Zhang X, Yang C, Deng X, et al. MicroRNA-

218 increases the sensitivity of bladder cancer to cisplatin by targeting

glut1. Cell Physiol Biochem. (2017) 41:921–32. doi: 10.1159/0004

60505

55. Qu W, Ding S, Cao G, Wang S, Zheng X, Li G. miR-132 mediates a metabolic

shift in prostate cancer cells by targeting glut1. FEBS Open Bio. (2016)

6:735–41. doi: 10.1002/2211-5463.12086

56. Wu L, Qiu W, Sun J. Down regulation of miR-148a is related to enhanced

pancreatic cancer pathogenesis through targeting gLUT1. Int J Clin Exp

Pathol. (2018) 11:4950–6.

57. Vanichapol T, Leelawat K, Hongeng S. Hypoxia enhances cholangiocarcinoma

invasion through activation of hepatocyte growth factor receptor and the

extracellular signal-regulated kinase signaling pathway. Mol Med Rep. (2015)

12:3265–72. doi: 10.3892/mmr.2015.3865

58. Sanmai S, Proungvitaya T, Limpaiboon T, Chua-On D, Seubwai

W, Roytrakul S, et al. Serum pyruvate dehydrogenase kinase as

a prognostic marker for cholangiocarcinoma. Oncol Lett. (2019)

17:5275–82. doi: 10.3892/ol.2019.10185

Frontiers in Medicine | www.frontiersin.org 6 April 2020 | Volume 7 | Article 11397

https://doi.org/10.1007/978-1-61779-397-4_2
https://doi.org/10.1186/s12943-017-0648-1
https://doi.org/10.3389/fonc.2018.00160
https://doi.org/10.1083/jcb.200610119
https://doi.org/10.3390/ijms19082453
https://doi.org/10.1007/978-3-319-42118-6_3
https://doi.org/10.1038/s12276-018-0150-x
https://doi.org/10.1101/gad.887201
https://doi.org/10.3892/or.2017.6153
https://doi.org/10.5754/hge11156
https://doi.org/10.1016/j.gde.2006.12.006
https://doi.org/10.1155/2014/616850
https://doi.org/10.1016/s0092-8674(03)00154-5
https://doi.org/10.1038/nm1052
https://doi.org/10.3892/mmr.2018.9713
https://doi.org/10.1007/s11033-015-3858-x
https://doi.org/10.1080/0284186X.2017.1301680
https://doi.org/10.2174/1566524018666181109121849
https://doi.org/10.2174/1568009611313030003
https://doi.org/10.18632/oncotarget.7676
https://doi.org/10.1002/cam4.2089
https://doi.org/10.1158/1078-0432.CCR-12-0977
https://doi.org/10.1074/jbc.C000023200
https://doi.org/10.1158/1078-0432.CCR-09-0889
https://doi.org/10.1038/cddiscovery.2015.57
https://doi.org/10.1186/s12964-019-0332-8
https://doi.org/10.1073/pnas.94.13.6658
https://doi.org/10.1016/j.neo.2019.03.002
https://doi.org/10.1016/j.humpath.2014.03.008
https://doi.org/10.1517/14728220903307509
https://doi.org/10.1097/CCO.0b013e328356da72
https://doi.org/10.1007/s00280-016-3007-9
https://doi.org/10.1158/1535-7163.MCT-12-0131
https://doi.org/10.18632/oncotarget.2892
https://doi.org/10.1159/000460505
https://doi.org/10.1002/2211-5463.12086
https://doi.org/10.3892/mmr.2015.3865
https://doi.org/10.3892/ol.2019.10185
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pant et al. Glucose Metabolism in CCA

59. Stacpoole PW. Therapeutic targeting of the pyruvate dehydrogenase

complex/Pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl

Cancer Inst. (2017) 109. doi: 10.1093/jnci/djx071

60. Sradhanjali S, Reddy MM. Inhibition of pyruvate dehydrogenase kinase as

a therapeutic strategy against cancer. Curr Top Med Chem. (2018) 18:444–

53. doi: 10.2174/1568026618666180523105756

61. Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio M, et al.

Targeting the pI3K/AKT/mTOR pathway in biliary tract cancers: a review of

current evidences and future perspectives. Cancer Treat Rev. (2019) 72:45–

55. doi: 10.1016/j.ctrv.2018.11.001

62. ZuoM, Rashid A, Churi C, Vauthey J-N, Chang P, Li Y, et al. Novel therapeutic

strategy targeting the hedgehog signalling and mTOR pathways in biliary tract

cancer. Br J Cancer. (2015) 112:1042–51. doi: 10.1038/bjc.2014.625

63. Zhang S, Song X, Cao D, Xu Z, Fan B, Che L, et al. Pan-mTOR inhibitor

mLN0128 is effective against intrahepatic cholangiocarcinoma in mice. J

Hepatol. (2017) 67:1194–203. doi: 10.1016/j.jhep.2017.07.006

64. Song X, Liu X, Wang H, Wang J, Qiao Y, Cigliano A, et al. Combined

cDK4/6 and pan-mTOR inhibition is synergistic against intrahepatic

cholangiocarcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. (2019)

25:403–13. doi: 10.1158/1078-0432.CCR-18-0284

65. Li D, Wang C, Ma P, Yu Q, Gu M, Dong L, et al. PGC1α promotes

cholangiocarcinoma metastasis by upregulating pDHA1 and mPC1

expression to reverse the warburg effect. Cell Death Dis. (2018)

9:1–15. doi: 10.1038/s41419-018-0494-0

66. Yu J, Shi L, Shen X, Zhao Y. UCP2 regulates cholangiocarcinoma cell plasticity

via mitochondria-to-AMPK signals. Biochem Pharmacol. (2019) 166:174–

84. doi: 10.1016/j.bcp.2019.05.017

67. Masgras I, Sanchez-Martin C, Colombo G, Rasola A. The chaperone tRAP1

as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol.

(2017) 7:58. doi: 10.3389/fonc.2017.00058

68. Im C-N. Past, present, and emerging roles of mitochondrial heat

shock protein tRAP1 in the metabolism and regulation of cancer stem

cells. Cell Stress Chaperones. (2016) 21:553–62. doi: 10.1007/s12192-016-

0687-3

69. Kim H, Yang J, Kim MJ, Choi S, Chung J-R, Kim J-M, et al. Tumor

necrosis factor receptor-associated protein 1 (TRAP1) mutation and tRAP1

inhibitor gamitrinib-triphenylphosphonium (G-TPP) induce a forkhead box

o (FOXO)-dependent cell protective signal from mitochondria. J Biol Chem.

(2016) 291:1841–1853. doi: 10.1074/jbc.M115.656934

70. Porporato PE, Filigheddu N, Pedro JMB-S, Kroemer G, Galluzzi

L. Mitochondrial metabolism and cancer. Cell Res. (2018)

28:265–80. doi: 10.1038/cr.2017.155

71. Guerra F, Arbini AA, Moro L. Mitochondria and cancer

chemoresistance. Biochim Biophys Acta Bioenerg. (2017) 1858:686–

99. doi: 10.1016/j.bbabio.2017.01.012

72. Zabron A, Edwards RJ, Khan SA. The challenge of cholangiocarcinoma:

dissecting the molecular mechanisms of an insidious cancer. Dis Model Mech.

(2013) 6:281–92. doi: 10.1242/dmm.010561

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Pant, Richard, Peixoto and Gradilone. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 7 April 2020 | Volume 7 | Article 11398

https://doi.org/10.1093/jnci/djx071
https://doi.org/10.2174/1568026618666180523105756
https://doi.org/10.1016/j.ctrv.2018.11.001
https://doi.org/10.1038/bjc.2014.625
https://doi.org/10.1016/j.jhep.2017.07.006
https://doi.org/10.1158/1078-0432.CCR-18-0284
https://doi.org/10.1038/s41419-018-0494-0
https://doi.org/10.1016/j.bcp.2019.05.017
https://doi.org/10.3389/fonc.2017.00058
https://doi.org/10.1007/s12192-016-0687-3
https://doi.org/10.1074/jbc.M115.656934
https://doi.org/10.1038/cr.2017.155
https://doi.org/10.1016/j.bbabio.2017.01.012
https://doi.org/10.1242/dmm.010561~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


REVIEW
published: 07 April 2020

doi: 10.3389/fmed.2020.00117

Frontiers in Medicine | www.frontiersin.org 1 April 2020 | Volume 7 | Article 117

Edited by:

Gianfranco Danilo Alpini,

Indiana University, United States

Reviewed by:

Debjyoti Kundu,

Indiana University School of Medicine,

United States

Grace L. Guo,

Rutgers, The State University of New

Jersey, United States

*Correspondence:

Pietro Invernizzi

pietro.invernizzi@unimib.it

Specialty section:

This article was submitted to

Gastroenterology,

a section of the journal

Frontiers in Medicine

Received: 04 February 2020

Accepted: 18 March 2020

Published: 07 April 2020

Citation:

Gerussi A, Lucà M, Cristoferi L,

Ronca V, Mancuso C, Milani C,

D’Amato D, O’Donnell SE, Carbone M

and Invernizzi P (2020) New

Therapeutic Targets in Autoimmune

Cholangiopathies. Front. Med. 7:117.

doi: 10.3389/fmed.2020.00117

New Therapeutic Targets in
Autoimmune Cholangiopathies

Alessio Gerussi 1,2, Martina Lucà 1,2, Laura Cristoferi 1,2, Vincenzo Ronca 1,2,3,

Clara Mancuso 1,2, Chiara Milani 1,2, Daphne D’Amato 1,2, Sarah Elizabeth O’Donnell 1,2,

Marco Carbone 1,2 and Pietro Invernizzi 1,2*

1Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of

Milano-Bicocca, Monza, Italy, 2 European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo

Hospital, Monza, Italy, 3National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver

Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are

autoimmune cholangiopathies characterized by limited treatment options. A more

accurate understanding of the several pathways involved in these diseases has fostered

the development of novel and promising targeted drugs. For PBC, the characterization

of the role of farnesoid X receptor (FXR) and perixosome-proliferator activated receptor

(PPAR) has paved the way to several clinical trials including different molecules with

choleretic and antinflammatory action. Conversely, different pathogenetic models have

been proposed in PSC such as the “leaky gut” hypothesis, a dysbiotic microbiota

or a defect in mechanisms protecting against bile acid toxicity. Along these theories,

new treatment approaches have been developed, ranging from drugs interfering with

trafficking of lymphocytes from the gut to the liver, fecal microbiota transplantation or

new biliary acids with possible immunomodulatory potential. Finally, for both diseases,

antifibrotic agents are under investigation. In this review, we will illustrate current

understanding of molecular mechanisms in PBC and PSC, focusing on actionable

biological pathways for which novel treatments are being developed.

Keywords: primary biliary cholangitis, primary sclerosing cholangitis, liver, FXR agonists, fibrates, microbiome,

gut-liver axis

INTRODUCTION

Autoimmune diseases of the biliary tract include primary biliary cholangitis (PBC) and primary
sclerosing cholangitis (PSC). PBC and PSC are rare diseases of unknown etiology, immune-
mediated pathogenesis and limited treatment options. Recently, there has been an increasing
attention toward these rare diseases and novel agents are under investigation in clinical trials.

This review outlines the most promising novel agents for the treatment of PBC and PSC,
adopting a target-driven approach: the biological target of each class of molecules is briefly
summarized in the context of the pathogenesis of the disease and then preclinical and clinical results
are presented (Figure 1 and Table 1).

FARNESOID X RECEPTOR AGONISTS

Hepatocytes generate bile acids, i.e., cholic acid and chenodeoxycholic acid, from cholesterol
through two pathways: most of the BAs are produced by the classical pathway, which involves
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FIGURE 1 | Therapeutical targets in autoimmune cholangiopathies. FGF-19, fibroblast growth factor 19; FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X

receptor; HCO−

3 , bicarbonate; norUDCA, norursodeoxycholic acid; PPAR, Peroxisome proliferator-activated receptor; ROS, reactive oxygen species; RXR, retinoid

x receptor.

the rate-limiting cholesterol 7alphahydroxylase (CYP7A1); the
cytochrome (CYP) P450 27 alpha hydroxylase (CYP27A1)
generates the remaining fractions. More recently, it has been
reported that bile acids can also be generated by gut microbiota:
these new bile acids are the phenylalanocholic acid, tyrosocholic
acid and leucocholic acid (1).

Bile acids can exert different activities by binding to nuclear
receptors, such as the farnesoid X receptor (FXR; NR1H4),
pregnane X receptor, vitamin D receptor and Takeda G-protein-
coupled receptor 5 (TGR5). FXR acts as transcription factor
binding to FXR response elements in the DNA; it can operate as
a monomer or together with retinoid X receptor (RXR; NR2B1)
(2). FXR is mainly expressed in the liver and the gut, but can
also be found in the kidney and adrenal gland, and its action
exerts effects on the metabolism of bile acids, carbohydrates
and lipids.

In the liver, FXR regulates bile acid synthesis, preventing
their toxic accumulation. The bile salt export pump (BSEP)
is expressed on the canalicular membranes of hepatocytes
and promotes biliary excretion of bile acids. Its expression is

dependent on FXR, while other transporters [e.g., multidrug
resistance-associated protein (MRP) 3 and MRP4] are
independent from FXR.

OSTα-OSTβ (SLC51A and SLC51B) is an heteromeric
transporter expressed mainly in the distal portions of the gut
and bile ducts, localized to the basolateral membrane of ileal
enterocytes and biliary epithelial cells, respectively. Its main
role is to transport bile acids across the membrane, but OSTα-
OSTβ is also involved in steroids transport (3–5). FXR controls
gene expression of OSTα-OSTβ, as proven by the marked
reduction in OSTα and OSTβ expression in the ileum of Fxr-/-
mice (6).

FXR induces the expression of the small heterodimer protein
(SHP), also known as NR0B2 nuclear receptor subfamily 0,
group B, member 2. SHP acts as transcription factor despite
lacking a DNA binding domain, and inhibits CYP7A1 thanks
to the recruitment of other proteins (mSin3A-Swi/Snf complex,
G9a methyltransferase, the corepressor subunit GPS2) (7–10).
CYP7A1 inhibition translates into a negative feedback inhibition
of bile acid synthesis (2).
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TABLE 1 | Novel pharmacological agents in autoimmune cholangiopathies.

Primary Biliary

Cholangitis

Primary Sclerosing

Cholangitis

FXR agonists

Bile acid

- Obeticholic acid ✓ ✓

Non bile acid

- Tropifexor ✓

- Cilofexor ✓ ✓

- EDP-503 ✓

FGF-19 agonists

- NGM-282 ✓ ✓

PPAR agonists

- PPAR-α/(γ)-

Bezafibrate/Fenofibrate

✓ ✓

- PPAR-α/δ - Elafibranor ✓ ✓

- PPAR-δ-Seladelpar ✓(*)

24-norursodeoxycholic (nor-UDCA) ✓

Antifibrotic agents

- Cenicriviroc ✓

- Setanaxib ✓

Immunological Agents

- Rituximab ✓

- Ustekimumab ✓

- Abatacept ✓

- Baricitinib ✓(**)

Gut-Liver axis

- Vedolizumab ✓

- Antibiotics

(Metronidazole, Vancomicin)

✓

- Timolumab ✓

- Fecal Microbial Transplantation ✓

(*)Trial closed for adverse event.

(**)Trial closed in august 2019.

FXR, farnesoid X receptor; FGF-19, fibroblast growth factor 19; PPAR, Peroxisome

proliferator-activated receptor; HCO−

3 , bicarbonate; norUDCA, norursodeoxycholic acid.

In pre-clinical setting, the activation of hepatic FXR is
beneficial in reducing hepatic fibrosis, since it prevents toxicity
due to accumulation of bile acids (11).

Among the FXR-agonists the main distinction is based on
whether they are steroidal (i.e., bile acids) or non-steroidal
agents. Limitations of steroidal agents are due to the intrinsic
lipophilicity of FXR ligand binding site, which reduces solubility
and bioavailability. Moreover, one of the most common side
effects of steroidal FXR agonists is pruritus, which depends on the
TGR5 agonistic properties (12). Nonetheless, also non-steroidal
agents have shown mild pruritogen action despite not binding
the TGR5 receptor. Interestingly, there is preliminary evidence
that support the concept that non-steroidal FXR-agonists might
have more anti-fibrotic effects (13).

Obeticholic acid (OCA) belongs to the class of steroidal FXR
agonists and is a semi-synthetic bile acid. Currently, OCA is
the only registered option for patients with PBC and incomplete
response after 12 months of treatment with UDCA or intolerant
to UDCA (14). The main side effect is itching, which is typically

mild and seldom requires treatment withdrawal. Another side
effect of OCA is the increase in low-density lipoprotein (LDL)
cholesterol; the long-term significance of this side effect on
cardiovascular risk is still unknown. OCA has been tested also
in patients with PSC (AESOP trial), however final results are
still waited.

Non-bile Acid FXR Agonists
Tropifexor has been evaluated in a double-blind, randomized,
placebo-controlled, phase 2 study in PBC, but only the interim
analysis is available. Interestingly, to avoid confounding due
to the possible FXR-mediated alkaline phosphatase (ALP) gene
induction, gamma glutamyl transpeptidase (GGT) reduction was
chosen instead of ALP reduction as primary endpoint of this trial.

The non-steroidal FXR agonist Cilofexor has been tested in
PSC in a randomized, double-blind, placebo-controlled phase
2 trial, and although the primary endpoint was safety, it can
be noticed that it significantly reduced ALP levels, especially
in the 100mg arm (15). A randomized, double-blind, placebo-
controlled phase 2 trial in PBC and a phase 3 trial in PSC are
currently undergoing.

EDP-305 is another non-steroidal FXR agonist being
evaluated in a randomized, double-blind, placebo-controlled
phase 2 trial in PBC. In murine models of fibrosis EDP-305
reduced the extent of fibrotic areas assessed by morphometric
quantification (16).

FIBROBLAST GROWTH FACTOR 19
AGONISTS

During cholestasis, high levels of bile acids favor fibroblast
growth factor 19 (FGF-19) expression. The increased
concentration of FGF-19 in the gut stimulates activation of
the FGFR4/betaklotho receptor in the liver. FGF19 then migrates
to the liver where reduces CYP7A1 gene expression (7, 17).
FGFR4 and betaklotho forms a cell surface receptor complex and
represent the effectors of the liver activity of FGF19. FGF19 is
also induced by FXR activation in the enterocytes.

Preclinical data have shown a higher risk of hepatocellular
carcinoma (HCC) in transgenic mice with ectopic expression
of FGF19 in the skeletal muscle of transgenic mice (18).
Furthermore, 15% of humanHCC cancers show co-amplification
of FGF19 and cyclin D1 on 11q13.3 (19).

A synthetic analog NGM282 was developed without
carcinogenic potential and its safety and efficacy is under
investigation in clinical trials. NGM282 has been tested in two
randomized, double-blind, placebo-controlled trials in PBC and
PSC, showing conflicting results. The PBC study lasted for 28
days while the design of the PSC study scheduled treatment for
12 weeks.

In PBC, NGM282 achieved a reduction of>15% of ALP levels
in 50% of patients treated compared to 7% of the placebo group.
Similar proportions were found between the 0.3mg and the 3mg
arms. Main side effect was non severe diarrhea (20).

Conversely, in the PSC study of NGM282, ALP levels did not
significantly drop in the 1 and 3mg arms compared to placebo
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(21). We do acknowledge that the clinical significance of ALP
in PBC and PSC is different, considering that PBC has a fairly
stable and slowly progressing disease course where ALP is a good
prognostic marker, compared to the erratic disease course of PSC,
where ALP levels can intermittently rise and fall due to episodic
cholangitis (22).

Interestingly, in both studies, NGM282 decreased the α-
Hydroxy-4-cholesten-3-one (C4) levels in treatment groups
confirming that this drug acts by directly inhibiting the de-novo
bile acid synthesis through the classical pathway.

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTORS AGONISTS

Peroxisome proliferator-activated receptors (PPARs) are nuclear
receptors of a family containing three isotypes: PPARα (NR1C1),
PPARβ/δ (NR1C2) and PPARγ (NR1C3). After engagement with
their ligand, PPARs form a heterodimer with the retinoid X
receptor, binding to specific DNA sequences in the regulatory
regions of target genes.

PPARα is highly expressed in tissues with marked fatty
acid oxidation activity, including liver, heart and skeletal
muscle, brown adipose tissue and kidney. Beyond its ability
to regulate fatty acid catabolism in different conditions of
food intake and starvation, animal models of atherosclerosis
and non-alcoholic steatohepatitis have shown that PPARα has
also anti-inflammatory properties. Moreover, PPARα agonism
determines inhibition of bile acids synthesis by acting on
CYP7A1 and cytochrome sterol 27-hydroxylase (CYP27A1).
There is also evidence that PPAR-α abrogates the uptake of bile
acids in hepatocytes through the inhibition of the basolateral
transporter sodium-taurocholate-cotransporting polypeptide
and up-regulates expression of human MDR3 gene favoring
canalicular export of phospholipids (23).

PPARβ/δ is expressed in hepatocytes, cholangiocytes, and
non-parenchymal cells (Kuppfer cells, hepatic stellate cells).
PPARδ is utilized by biliary epithelial cells to control bile
components transporters (24) and favors the timely removal of
apoptotic cells by Kuppfer cells, in order to prevent potential
autoimmune phenomena to arise (25). PPAR-γ expression is
mostly restricted to Kupffer cells (25). In cultured human biliary
epithelial cells from patients with PBC there is a down-regulation
of PPAR-γ and the activation of PPAR-γ is associated with
reduced inflammation (26). A PPAR-γ agonist reduced portal
inflammation in murine models of PBC (27).

Natural ligands of PPAR-α are derivatives of fatty acids
generated during lipolysis, lipogenesis or fatty acids catabolism.
Synthetic PPAR-α agonists belong to the group of fibrates,
derivatives of fibric acid: Gemfibrozil, Fenofibrate, Ciprofibrate
and Bezafibrate (Figure 2). They are typically used in treatment
of isolated hypertriglyceridemia or mixed dyslipidemia.
Fenofibrate is 10-fold more specific for the α- isoform compared
to the γ- one, while Bezafibrate is considered a pan-PPAR-agonist
due to its similar affinity for the three isoforms. Most of their
actions are derived from their PPARα agonism.

There is growing evidence of the therapeutic efficacy of
fibrates in PBC, while evidence is still limited for PSC.

Bezafibrate has been evaluated in a 24 months, double-blind,
randomized, placebo-controlled, phase 3 trial (BEZURSO trial),
at the dosage of 400mg per day in patients with incomplete
biochemical response after 12 months of UDCA. The rate of
ALP normalization was 67% in the treatment arm, compared
to the 2% in placebo group. In addition, Bezafibrate did not
worsen pruritus, which was even improved in a subset of
cases, which is in line with available literature (28). The results
from BEZURSO trial endorse the concept that fibrates reduce
the production of bile acids in hepatocytes since patients in
the 400mg arm experienced a 70% drop in C4 serum levels,
whereas patients in the placebo arm did not show any significant
change. Conversely, experience on Fenofibrate in PBC derive
from smaller cohorts (29–33). Both Bezafibrate and Fenofibrate
show side effects typical of their pharmacological class, namely
myalgias, transaminitis and increase in creatine kinase and
creatinine. The long-term safety of these agents during treatment
for cholestatic diseases is still to be ascertained. Since safety and
efficacy profile of Bezafibrate and Fenofibrate seems to be similar,
but Bezafibrate is supported by a randomized controlled trial, it
would be reasonable to choose Bezafibrate as the fibrate of choice
in PBC until new data are available.

There are now new molecules in the pipeline which show
more selective PPAR-δ activity. Seladelpar is a selective PPAR-δ
agonist (34), while Elafibranor is PPARα/δ.

Based on the safety information derived from two phase
2 trials (35), the potential efficacy of Seladelpar has been
evaluated in the ENHANCE trial, a 52-week, double-blind,
placebo-controlled, randomized, Phase 3 study. However, in
November 2019, the ENHANCE trial was put on hold
following the unexpected histological findings observed in the
Phase 2b study of Seladelpar in subjects with non-alcoholic
steatohepatitis (NASH). Atypical histological findings, including
interface hepatitis and biliary injury were found in the planned
interval biopsies.

Elafibranor has been recently evaluated in a multicenter
randomized double-blind placebo-controlled phase 2 Study
in PBC.

Literature supporting the use of fibrates in PSC is scanty.
At the time of writing, no randomized controlled trials have
been published, and retrospective case series come mostly from
Japan (36, 37).

A French-Spanish retrospective study showed a 40%
reduction in the levels of ALP after 12 weeks of treatment with
fibrates [either Fenofibrate (200 mg/day) or Bezafibrate
(400 mg/day)]. There were no major safety issues and
authors cautiously support further studies. To us, it is
conceivable to further investigate the potential benefit of
fibrates in PSC, based on their inherent anticholestatic and
anti-inflammatory properties.

24-NORURSODEOXYCHOLIC AND THE
BILIARY HCO−

3 UMBRELLA

The HCO−

3 umbrella hypothesis asserts that bicarbonate
(HCO−

3 ) ions, secreted by cholangiocytes and hepatocytes,
form a defensive barrier on the apical side of the hepatocytes
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FIGURE 2 | Chemical structure of most common fibrates.

(38). When this system is malfunctioning, glycine-conjugated
bile acids become able to cross the cholangiocyte membrane,
bypassing membrane transporters. This phenomenon leads to
cholangiocyte apoptosis and senescence (39). There is evidence
supporting the concept that in cholangiopathies like PBC and
PSC the biliary HCO−

3 umbrella is defective (40, 41).
The biliary HCO−

3 umbrella can be stabilized through 24-

norursodeoxycholic (nor-UDCA), mainly thank to its ability
of undergoing cholehepatic shunting. Nor-UDCA is relatively
resistant to N-acyl-amidation with taurine or glycine, so that
cholangiocytes can reabsorb it and it can be re-secreted into
bile after getting through periductular capillary plexus and
hepatocytes. The importance of this process is the ability
to cause a profound stimulus to bicarbonate secretion from
cholangiocytes, strengthening the impaired HCO−

3 umbrella
of cholangiopathies.

Mdr2-/- mice are typically considered a surrogate in vivo
model of PSC (42). The lack of Mdr2-encoded membrane
protein, which is a canalicular transporter deputed to
transport phospholipids from hepatocytes to the bile, causes a
cholangiocyte injury, due to bile acid toxicity from increased
concentration of free non-micellar bile acids. In this model
nor-UDCA increases the hydrophilicity of bile acids, stimulates
bile flow and induces biliary transporters and detoxification
enzymes (43).

A double-blind, randomized, placebo-controlled, phase 2
study evaluating nor-UDCA in patients with PSC has shown
promising results in terms of safety of the molecule and
reduction of serum alkaline phosphatase after 12 weeks of
treatment (44). This trial assessed three different treatment

regimens (nor-UDCA 500, 1,000 mg/day, and 1,500 mg/day)

compared to a four arm with placebo. All doses showed
a significant reduction in ALP levels, in a dose-dependent
manner, and similar results were achieved for transaminases and
gamma-glutamyl transferase levels. Pruritus did not occur more
frequently in the treatment arms, and nor-UDCA showed a good
safety profile.

A phase 3 clinical study is currently ongoing.

IMMUNOLOGICAL TARGETS

PBC and PSC are both included in the group of autoimmune
diseases of the biliary tract; however, while PBC is much closer
to a typical autoimmune condition, PSC is a complex disease
with aspects also typical of fibrotic and preneoplastic conditions.
Aside from the classificatory debate, the immune system takes
part of many pathogenetic processes of both PBC and PSC.
Nevertheless, many strategies targeting immune cells have failed
so far (45–53). Biological agents, like Rituximab (54, 55),
Ustekinumab (56), and Abatacept (57) were studied in PBC,
based on preclinical promising data (rituximab and abatacept)
or stimulated by results from genome-wide association studies
(ustekinumab), but conflicting results have been produced and
these molecules are not part of the therapeutic armamentarium.

Among the novel agents under investigation, there is
Baricitinib, a small molecule which is a reversible inhibitor of
Janus kinase (JAK) 1 and 2. In mammals, different receptors
are bound by members of the JAK family (JAK 1-3). The
receptor-ligand binding determines a cascade of activation and
modifications leading to the generation of docking sites for the
SH2 domain of the cytoplasmic transcription factors termed
signal transducers and activators of transcription (STATs).
Several downstream signals are regulated by JAK and STAT
proteins, comprising interleukins (ILs), interferons (IFNs), and
the switch toward T helper (Th) 1, 2, or 17 of naïve T cells is finely
regulated by a JAK-mediated signaling (58). Baricitinib is already
included in the available registered drugs for the treatment of
rheumatoid arthritis (59), and was supposed to be evaluated in
a randomized double-blind, placebo-controlled, phase 2, study in
patients with PBC and partial response to UDCA. Unexpectedly,
in August 2019 Lilly, the company that developed the molecule,
decided to terminate the trial.

ANTIFIBROTIC AGENTS

Inflammation, cholestasis and fibrosis are tightly connected
to determine the vicious cycle toward cirrhosis (60).
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Cholangiopathies show a biliary-type of fibrosis which usually
spreads from the portal tract to the lobule (61). None of the
registered therapies for PBC are inherently antifibrotic, but
halt progression of the fibrotic process through antagonism of
inflammation and/or cholestasis. However, specific antifibrotic
therapies are urgently needed to potentially achieve fibrosis
reversal, considered that a not negligible proportion of patients
do progress despite effective treatment (62).

A novel agent located at the crossroad between inflammation
and fibrosis is Cenicriviroc. Cenicriviroc targets C-C motif
chemokine receptor (CCR) types 2 and 5, which are typically
expressed by monocytes, Kupffer cells and hepatic stellate cells.
There is mounting evidence that, upon liver injury, CCR2 and
CCR5 together with their ligands favor macrophage recruitment
infiltration and stellate cells activation (63, 64). In Bile-duct
ligated and Mdr2-/- mice Cenicriviroc, together with another
agent (all-trans retinoic acid), reduced bile acids, plasma liver
enzymes and histological markers of necrosis and fibrosis (65).
A randomized, double-blind, multinational, phase 2b enrolling
patients with Non-alcoholic fatty liver steatohepatitis (NASH)
revealed the antifibrotic capacity of Cenicriviroc, which halted
fibrosis progression more frequently than placebo, without
improving NASH-related liver inflammation (66). Cenicriviroc
is currently under evaluation in PSC.

Setanaxib is another promising antifibrotic agent
characterized by a completely novel molecular target and
potentially representing a first-in-class molecule for the
treatment of PBC and PSC. The main targets of Setanaxib
are NADPH oxidase (NOX) proteins (67), which are enzymes
over-induced in conditions of chronic stress, like chronic
inflammatory and fibrosing diseases (68, 69). Activation of
stellate cells to myofibroblasts is promoted by NOX1, NOX2,
and NOX4 isoforms (70, 71).

In bile-duct ligation and NASH murine models, Setanaxib
reduced histological markers of fibrosis throughNOX-inhibition.
Setanaxib has been recently evaluated in a multicenter,
randomized, double-blind, placebo-controlled, phase 2 study in
patients with PBC and incomplete response to UDCA. The
primary endpoint was reduction in the levels of GGT, which
is considered a more accurate marker of oxidative stress in the
liver (72).

MODULATION OF THE MICROBIOTA AND
GUT-LIVER AXIS

While PBC is classically limited to the small bile ducts of the
liver, PSC also involves large ducts and is often associated with
inflammatory bowel disease (IBD) (53). The involvement of the
distal part of the biliary tree and the frequent co-existence of IBD
have suggested that PSC may derive from the disruption of some
physiological process in the gut. The focus has been put onto two
players: the microbiota and the gut-liver axis.

There is a rising interest in the study of microbiota changes
in pathological conditions (73–76). Dysbiosis, i.e., the abnormal
composition of gut microbiota, has been described in patients
across several diseases, included cirrhosis (77), PBC (78),

and PSC (79). Dysbiosis in the gut can also involve viral
and fungal species, as recently proved in IBD (80) and PSC
(81). Germ-free Mdr2-/- mice show increased hepatitis and
cholestatic injury compared to conventionally-housed Mdr2-/-
mice (82). Nevertheless, it is still under debate whether dysbiosis
has a causal relationship with these pathological findings
in humans.

From a therapeutic point of view, modulation of microbiota in
PSC represents a fascinating option, since some data suggest that
the progression of the disease might be due to a vicious cycle of
inflammation and fibrosis driven by translocation of pathobionts
from the gut to the liver (83). It is likely that tackling this
process could be of benefit, and there is some clinical evidence to
support this concept. The use of antibiotics (e.g.,Metronidazole,
Vancomycin) in patients with PSC can reduce blood markers of
liver injury and cholestasis, despite data on long-term benefit are
lacking (84–86).

Recently, the provoking concept that non-communicable
diseases (i.e., those not caused by infectious microbes) might be
communicable via the transfer of microbiota has been proposed
(87). This challenging theory is supported by several line of
experimental data showing that if a dysbiotic microbiota is
transferred from diseased animals to healthy mice the latter will
develop the disease (88). Conversely, there is also evidence that
Fecal Microbial Transplantation (FMT) may be of benefit for
many diseases (89, 90), in addition to the established indication
for recurrent Clostridium Difficile infection (91). Indeed, a
seminal open-label study has shown the capacity of FMT to
augment microbiota diversity in patients with PSC. In a subset of
individuals FMT improved biochemical markers of cholestasis;
however the small number of individuals included in this pilot
study (i.e., 10 patients) obviously prevents solid conclusions on
efficacy (92).

Regarding gut-liver axis, the anatomical link between gut
and liver translates also in an intimate interconnection at the
molecular level, with several substances flowing to the liver
through the portal vein system. When intestinal permeability
is higher than normal, bacterial byproducts reaching the liver
are potential drivers of inflammation and fibrogenesis. Two
main barriers control this process: the epithelial barrier and
the gut-vascular barrier (93). Under physiological conditions,
mucosal addressin cell adhesion molecule (MAdCAM)-1 is
expressed on gut endothelium and is not expressed in the
liver, avoiding recruitment of T cells in the liver (94). In
PSC there is evidence of aberrant expression of MAdCAM-1
in the liver (95). Despite theoretically promising, the use of
Vedolizumab, which antagonize MAdCAM-1 and its receptor
α4β7 and it is approved for IBD treatment, did not show
efficacy in patients with PSC and IBD (a phase 3 trial was
retired in 2018). A retrospective study on Vedolizumab in
patients with PSC and IBD also failed to reveal a positive
signal (96).

The increased expression of MAdCAM-1 in the liver is mainly

due to the activation of vascular adhesion protein (VAP)-1,

which is an enzyme involved in amine oxidation. Intrahepatic

and circulating levels of VAP-1 are increased in patients with
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PSC compared to non-PSC individuals, and a single-arm, open-
label, multi-center trial evaluating the efficacy of an anti-VAP-1
molecule, Timolumab, is currently ongoing (97).

CONCLUSIONS

Many novel drugs are currently under investigation for PBC and
PSC. The potential future availability of many novel agents opens
the challenge for the identification of the right candidate for each
specific drug or combination of drugs based on the mechanism
of action and safety profile.

It is key the improvement of risk stratification strategies
for this purpose (98), which will require deep, longitudinal
phenotyping of individuals by means of multi-omics analysis
including the exposome, along with the microbiome, genome,
metabolome, among the others (99–104). Then, we need to
implement algorithms to proficiently integrate these big data
to cluster patients across different phenotypes and trajectories
of the disease (105, 106); for this, the collaboration with data
science professionals and experts in artificial intelligence will be
fundamental (107, 108). The last part of this process will be to
put in practice clinical trials with different, multimodal treatment
strategies (109).
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Extensive research performed over several decades has identified cells participating

in the initiation and progression of fibrosis, and the numerous underlying inter- and

intra-cellular signaling pathways. However, liver fibrosis continues to be a major clinical

challenge as the precise targets of treatment are still elusive. Activation of physiologically

quiescent perisinusoidal hepatic stellate cells (HSCs) to a myofibroblastic proliferating,

contractile and fibrogenic phenotype is a critical event in the pathogenesis of chronic

liver disease. Thus, elucidation of the mechanisms of the reversal to quiescence

or inhibition of activated HSCs, and/or their elimination via apoptosis has been the

focus of intense investigation. Lipopolysaccharide (LPS), a gut-resident Gram-negative

bacterial endotoxin, is a powerful pro-inflammatory molecule implicated in hepatic injury,

inflammation and fibrosis. In both acute and chronic liver injury, portal venous levels of

LPS are elevated due to increased intestinal permeability. LPS, via CD14 and Toll-like

receptor 4 (TLR4) and its adapter molecules, stimulates macrophages, neutrophils and

several other cell types to produce inflammatory mediators as well as factors that can

activate HSCs and stimulate their fibrogenic activity. LPS also stimulates synthesis of

pro- and anti-inflammatory cytokines/chemokines, growth mediators and molecules of

immune regulation by HSCs. However, LPS was found to arrest proliferation of activated

HSCs and to convert them into non-fibrogenic phenotype. Interestingly, LPS can elicit

responses in HSCs independent of CD14 and TLR4. Identifying and/or developing

non-inflammatory but anti-fibrogenic mimetics of LPS could be relevant for treating

liver fibrosis.

Keywords: stellate cells, activation, fibrosis, endotoxin, LPS, reversal, inflammation

INTRODUCTION

Liver fibrosis is a repair response to injury caused by various noxious stimuli such as viral
infection (hepatitis B [HBV] and C [HCV] virus), toxins and drugs, autoimmune hepatitis, biliary
damage, and copper or iron accumulation. Although fibrosis is reversible, persistent presence of
the injury stimulus leads to excessive accumulation of extracellular matrix (ECM), collagens I and
III and fibronectin being the major components. This disrupts the hepatic architecture and blood
supply to hepatocytes, the site of numerous essential metabolic functions. Ensuing irreversible
liver cirrhosis is one of the principal leading causes of morbidity and mortality in the world with
organ transplantation as the only option for survival (1–3). Major success has been achieved in
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treating HCV-induced fibrosis, the most common form of
chronic liver disease, through clearance of the virus (4, 5).
However, there is alarmingly increasing incidence of alcohol-
induced and non-alcoholic (fatty) liver diseases that can remain
undiagnosed and thus silently progress to fibrosis/cirrhosis in
predisposed individuals (2). Distinct from these are chronic
liver diseases originating from the portal tracts (primary
biliary cholangitis and primary sclerosing cholangitis) with high
morbidity and mortality. Remarkable advancements have been
made in identifying the cell types that co-ordinate fibrogenesis
as well as the underlying inter- and intra-cellular signaling
mechanisms (6–9). Several animal models of liver fibrosis of
various etiologies have been developed (10, 11), and mono-
and co-culture systems established (8, 12, 13) to discover the
mechanisms of cross-communication amongst the liver resident
cells, infiltrating inflammatory cells and immune cells implicated
in fibrosis at the organ and cellular/subcellular levels. However,
fibrosis of the liver and other organs remains untreatable.

It is generally accepted that activated proliferating hepatic
stellate cells (HSCs) are responsible for liver fibrosis regardless
of the etiology. An exception to this is biliary injury-induced
disease in which portal (myo)fibroblasts are the major cells
during initial period and are also significantly involved, along
with HSCs, at later times of the disease progression (8, 13, 14).
Inflammation initiated by the hepatocyte damage plays a critical
role both in activation and fibrogenic activity of HSCs. Gut-
derived microbial products including Gram-negative bacterial
lipopolysaccharide (LPS) enhance inflammation and thus fibrosis
during chronic liver injury. Therefore, HSCs have been a topic of
intense investigation to discover mechanisms of their responses
to inflammatory mediators as well as microbial products. Several
lines of enquiry have positively implicated LPS in experimental
and human chronic liver disease including non-alcoholic fatty
liver disease (NAFLD) (15–18). In contrast, others found
inflammatory cytokines, and not serum LPS, to correlate with
NAFLD severity (19). However, evidence has emerged showing
LPS-induced inhibition of proliferation, reversal of the activated
phenotype and mitigation of the fibrogenic activity of HSCs

Abbreviations: AP1, Activator protein 1; BAMBI, BMP and activin membrane-

bound inhibitor; CCl4, carbon tetrachloride; C/EBP, CCAAT/enhancer-binding

protein; ECM, extracellular matrix; ERK, extracellular-signal-regulated kinase;

GFAP, glial fibrillary acidic protein; HBV, hepatitis B virus; HCV, hepatitis

C virus; HSC, hepatic stellate cell; IFN, interferon; IL, interleukin; IRAK,

Interleukin-1 receptor-associated kinase-like; IRF, interferon-regulatory factor;

JNK, c-Jun N-terminal kinases; KO, knockout; LBP, lipopolysaccharide-binding

protein; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MMP,

matrix metalloproteinase; NADPH, reduced nicotinamide adenine dinucleotide

phosphate; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells;

PAMP, pathogen-associated molecular pattern; PDGF, platelet-derived growth

factor; P-Mfb, periportal myofibroblasts; PPAR, peroxisome proliferator-activated

receptor; PRR, pattern recognition receptor; ROS, reactive oxygen species;

SEC, sinusoidal endothelial cell; SMAD, small mother against decapentaplegic;

TGF, transforming growth factor; SOCS, suppressor of cytokine signaling;

STAT, Signal transducer and activator of transcription; TIMP, tissue inhibitor

of metalloproteinases; TIR, Toll/interleukin-1 receptor; TIRAP, TIR domain

containing adaptor protein; TLR, toll-like receptor; TNF, tumor necrosis factor;

TRAIL, TNF-related apoptosis-inducing ligand; TRAM, TRIF-related adaptor

molecule; TRIF, TIR-domain-containing adapter-inducing interferon-β); WT,

wild type.

(20–24). This article evaluates such contrasting interactions
between LPS and HSCs and discusses the potential of non-
inflammatory mimetic(s) of LPS as a therapy for liver fibrosis.

DISRUPTION OF HEPATIC STRUCTURE
AND FUNCTION IN CHRONIC LIVER
INJURY

The liver receives nearly 70–75% blood from the portal vein
and 25–30% from the hepatic artery at the portal triads. The
portal veins and hepatic arteries branch after entry into the
liver, and eventually the venous and arterial blood mixes up in
the capillaries known as “sinusoids.” The sinusoids are lined by
specialized endothelial cells with no underlying true continuous
basement membrane. The sinusoidal endothelial cells (SECs)
possess sieve plates that have pores (∼100 nm diameter) called
“fenestrations.” The liver-resident macrophages, Kupffer cells,
are found within the sinusoids adhering to the endothelial cells,
whereas HSCs reside in the “Disse’s space” between the SECs and
the parenchymal cells (hepatocytes), the main cells responsible
for the liver’s metabolic function (25). Highly coordinated
interactions between themajor cell types of the liver (hepatocytes,
stellate cells, SECs, Kupffer cells and biliary epithelial cells) via
physical contacts and soluble mediators are critical to the liver’s
physiological functions and maintenance of homeostasis. This
balance is disrupted during injury, and persistent injury leads to
chronic fibrotic liver disease and its systemic complications.

LIPOPOLYSACCHARIDE AND LIVER
INJURY

Lipopolysaccharide (LPS), a highly inflammatory endotoxin,
belongs to the family of gut-derived microbial products known
as pathogen-associated molecular patterns (PAMPs). It is a
component of the Gram-negative bacterial cell membrane and
is composed of three units, O antigen or O polysaccharide,
core oligosaccharide and the active constituent lipid A. LPS
mediates its cellular effects through toll-like receptor 4 (TLR4),
a type I transmembrane protein with an extracellular leucine-
rich repeat domain and a cytoplasmic domain homologous
to the cytoplasmic domain of the human interleukin (IL)-1
receptor (26). However, association of lipid A with LPS-binding
protein (LBP), a soluble protein that increases the affinity and
potency of LPS, is required for the subsequent binding to soluble
or membrane-bound CD14. CD14 does not have intracellular
domain and therefore the LBP-CD14/LPS complex must bind
to TLR4. LPS-induced transmembrane signaling also requires
TLR4-associated extracellular (MD2) and intracellular (MyD88,
TRAM, TRIF, and TIRAP) adapter components (Figure 1). LPS
instigates several signaling cascades (NFkB, interferon-regulatory
factors [IRFs], p38, ERK1/2, and JNK mitogen-activated protein
kinases, AP1, etc.) in the immune and inflammatory cells coupled
to the expression of cytokines including TNF, IL1α, IL1β, IL6,
IL10, and type 1 and type 2 interferons (IFNs), chemokines
and several other biologically active mediators (27–31) that are
critical to liver injury, repair and fibrogenesis. Interestingly,
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FIGURE 1 | Schematic of LPS-induced signaling in inflammatory cells. LPS in

association with LBP (LPS-binding protein) binds to CD14, which then

stimulates TLR4 signaling. The adapter proteins MD2 (on the outer side of the

cell membrane), and TRIF (TIR-domain-containing adapter-inducing

interferon-β), TRAM (TRIF-related adaptor molecule), MyD88 and TIRAP

(Toll-Interleukin 1 receptor domain containing adaptor protein) that are

associated with the intracellular part of TLR4 are required for LPS-induced and

TLR4-stimulated activation of intracellular signaling via NFkB, mitogen

activated protein kinases (MAPKs) p38, ERK1/2, and JNK1/2 and well as

interferon-regulatory factor (IRF) 1 and 3. Translocation of these activated

transcription factors to the nucleus and their subsequent binding to

appropriate promoter regions on the DNA instigate transcription of a several

cytokines, chemokines and growth mediators specific to a given cell type. The

released mediators then act on target cells to promote pathophysiological

processes. Adapted from Schwabe et al. (27), Akira et al. (28).

LPS can also elicit cellular response in a MyD88-independent
manner (32, 33), and macrophages from Cd14-null mice were
shown to produce TNF in response to lipid A (33). Thus, it
is important to identify the precise mechanisms of a specific
response of a given cell to LPS for better understanding of the
pathophysiological processes.

MULTIFUNCTIONAL HEPATIC STELLATE
CELLS (HSCs)

HSCs are located in the Disse’s space and are the major storage
site of vitamin A within their cytoplasmic lipid droplets (34).
HSCs can be identified by vitamin A autofluorescence and
expression of cytoskeletal intermediate filament desmin and/or
glial fibrillary acidic protein (GFAP). However, zonal expression
of these markers as well as retinoid-storage by HSCs is variable
(35, 36). It is estimated that about 25% of HSCs may not
contain vitamin A (34, 37). Although their cell body is small
(∼10µm), HSCs demonstrate physical contact with 2–3 adjacent
hepatocytes, SECs and even Kupffer cells and other cells in

FIGURE 2 | A normal mouse liver section stained for desmin (expressed by

hepatic stellate cell, HSC). An HSC can be seen connecting with 4

hepatocytes. Nuclei were stained with DAPI. Adapted from Gandhi (38, 39).

the sinusoidal lumen via long cytoplasmic processes (38, 39)
(Figure 2). Thus, from their strategic location, HSCs are able
to influence the functions of almost all hepatic cell types by
juxtacrine (contact) and autocrine/paracrine (via released soluble
mediators) mechanisms (38–40).

HSCs produce and react with the potent vasoconstrictor
endothelin-1 and vasodilator nitric oxide (41–43), which regulate
sinusoidal blood flow by inducing HSC contraction and
relaxation, respectively (44–46). LPS stimulates the synthesis of
both endothelin-1 and nitric oxide by HSCs, and LPS-induced
vascular resistance of the previously normal liver is mitigated
by endothelin receptor antagonism (47). HSCs also demonstrate
remarkable ability to recruit inflammatory and immune cells,
and influence their survival and functions (22, 23, 38–40, 48–
54). Furthermore, evidence has emerged showing an important
role of HSCs in liver regeneration and hepatocellular carcinoma
(55–58). With these powerful characteristics, the strategically
located HSCs regulate hepatic vascular tone, liver injury and
regeneration, and hepatic immunological tolerance.

ACTIVATION OF HSCs AND LIVER
FIBROSIS

Physiologically quiescent HSCs transdifferentiate into highly
proliferative, fibrogenic and contractile myofibroblastic activated
phenotype (aHSCs) during liver injury (Figure 3). Once
activated, HSCs produce excessive amounts of extracellular
matrix (ECM) components, which include fibrillary collagens
and fibronectin (59). The net deposition of the ECM is regulated
by matrix metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinases (TIMPs). Kupffer cells are a major source
of several MMPs whereas HSCs are the major source of
TIMPs. HSCs also produce MMPs. During fibrosis development,
the predominance of increased expression of TIMPs and
down-regulation of the expression of MMPs (collagenases) is
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FIGURE 3 | Rat HSCs on day 2, day 7 of culture and in passage 1. On day 2, the cells show typical morphology of quiescent phenotype, and on day 7 of

myofibroblast-like phenotype. The passagesd cells are fully activated showing myofibroblastic phenotype. Adapted from Gandhi (38, 39).

a major cause of progressive ECM deposition. This topic is
extensively reviewed by Campana and Iredale (60).

The “initiation” phase of HSC activation begins with the
loss of retinoid stores and down-regulation of peroxisome
proliferator-activated receptor γ (PPARγ), accompanied by the
expression of smooth muscle alpha-actin (αSMA) (via up-
regulation of its transcription factor c-Myb) and platelet-derived
growth factor β receptor (PDGFβR) (8, 9, 59). It is not entirely
clear whether the loss of retinoids is a cause or a consequence
of HSC activation. For example, supplementation of the culture
mediumwith retinoic acid retards the rate of HSC activation (61),
and the expression of lecithin-retinol acyltransferase (LRAT), an
enzyme responsible for the accumulation of retinol as its esters,
is lost during HSC activation (62). It was shown that the energy
required for activation of HSCs is derived from triglycerides
stored in the lipid droplets through autophagic/lysosomal
degradation (63). However, mice that lack LRAT are devoid of
lipid droplets (62, 64), and yet are similarly susceptible to bile
duct ligation (BDL)- or CCl4-induced fibrosis as the wild type
(WT) mice, and LRAT-deficient HSCs are similarly activated
as WT HSCs (62). Since HSCs are the exclusive cell type to
express LRAT in the liver, these results suggest that retinoids may
not be absolutely essential for HSC quiescence. Further work is
necessary to understand the role of retinoids and triglycerides
stored in the lipid droplets in HSC activation.

It is generally accepted that in almost all etiologies
of fibrosis, factors derived from injured/dying hepatocytes
including apoptotic bodies, danger-associatedmolecular patterns
(DAMPs), reactive oxygen species (ROS) and hedgehog ligands
are the initial stimuli for HSC activation (8, 65, 66). High
mobility group box 1 (HMGB1), a prominent DAMP released
by dying/damaged hepatocytes, is shown to induce activation
of HSCs, and also to elicit profibrogenic signals in combination
with transforming growth factor-beta 1 (TGFβ) (67). Upon
phagocytosis of hepatocyte apoptotic bodies and stimulation with
DAMPs, Kupffer cells synthesize and release multiple cytokines,
ROS and growth factors such as platelet-derived growth factor
(PDGF) that promote activation and proliferation of HSCs (8,
68).

The “initiation phase” is followed by the “perpetuation”
phase, as the injury stimulus persists. In this, activated Kupffer
cells, modified capillarized SECs, and infiltrating neutrophils

and lymphocytes cause HSCs to remain activated and/or
cause their further activation and proliferation (8, 9). In this
phase, TNFα produced by inflammatory macrophages, including
Kupffer cells, stimulates survival signals in HSCs, whereas
TGFβ1 induces activation as well as fibrogenic signals. Other
cytokines prominently involved in HSC activation, proliferation
and fibrosis are IL17, IL1α, and IL1β (67). Importantly,
aHSCs themselves produce ROS, pro-inflammatory cytokines
and chemokines, and express cell adhesion molecules to recruit
circulating inflammatory and immune cells, and retain activated
phenotype (8, 9, 69–71). Furthermore, highly activated passaged
HSCs and human activated HSC cell line (LX1cells) were shown
to increase their expression of αSMA, TGFβ1, and collagen 1a1
upon phagocytosis of hepatocyte-derived apoptotic bodies (65).

Elimination of the injury stimulus causes aHSCs to undergo
apoptosis (72), senescence (73), or reversal to quiescent or the
so-called “inhibited phenotype” (iHSC) leading to regression of
fibrosis (8, 13, 74–76). IL10 and IL22 can be critically involved
in the fibrosis reversal process as evidenced by IL10-induced
inhibition of the expression of the activation markers in aHSCs
(77–79), and IL10- and IL22-induced aHSC death by senescence
(80, 81). It is important to note that iHSCs can be rapidly re-
activated upon return of the injury stimulus causing accelerated
development of fibrosis (75).

In the injured liver Kupffer cells as well as aHSCs are the
major source of TGFβ, which is considered to be the most
potent cytokine to stimulate ECM synthesis in aHSCs. The
autocrine and paracrine stimulation of aHSCs by TGFβ activates
the transcription factor complex P-SMAD2/3-SMAD4 (SMAD,
small mother against decapentaplegic) and reduced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase-mediated
activation of p35-CCAAT/enhancer-binding protein beta (p35-
C/EBPβ) (9, 81, 82). Other mediators such as angiotensin II,
leptin, ethanol (alcohol) metabolite acetaldehyde and ROS are
also major contributors of the synthesis and deposition of
excessive amounts of ECM components from aHSCs.

Fas/FasL interactions are also critical to liver injury and
fibrosis with an important role of Kupffer cells, which increase
the expression of FasL upon phagocytosis of apoptotic bodies
(68). Resistance of mice lacking Fas (lpr mice) to injury and
fibrosis after bile duct ligation (BDL) (83) indicates that injury
to hepatocytes and/or biliary epithelial cells is a critical stimulus
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FIGURE 4 | Activated HSCs and P-Mfbs during carbon tetrachloride- or bile

duct-ligation-induced liver injury in mice. The cells were identified by flow

cytometry using green fluorescence protein (GFP) under collagen 1 promoter.

GFP+ and vitamin A+ (HSCs) or GFP+ and vitamin A- cells were separated

by flow. Note that HSCs but not P-Mfbs increase in CCl4-induced

inflammatory injury and fibrosis, but the number of both cell types increase

after BDL. Adapted from Iwaisako et al. (82).

for fibrogenesis. As liver injury and fibrosis progress, Fas/FasL
interaction can also be a mechanism of limiting fibrosis through
apoptosis of aHSCs (84). In contrast, portal myofibroblasts (P-
Mfbs) are resistant to Fas/FasL-induced apoptosis (85), indicating
their apparent predominance as the fibrogenic cell in biliary
injury. It is shown that 5 and 20 days, respectively, after BDL,
∼73 and 43% of the fibrogenic cells were found to be activated
P-Mfbs as compared to ∼18 and 51% aHSCs (82) (Figure 4).
In this study, aHSCs and P-Mfbs were distinguished based on
the presence (HSC) or absence (P-Mfb) of vitamin A (82),
and a significant population of HSCs is devoid of or strongly
deficient in vitamin A (34, 35, 37). A comprehensive comparative
examination of the mechanisms underlying biliary and other
types of liver fibrosis and precise identification of the responsible
cells at various stages of its progression will be needed.

CD14/TLR4-INDEPENDENT LPS-INDUCED
INFLAMMATORY RESPONSE BY HSCs

Effective clearance of bacterial endotoxins is an important
function of the liver, primarily performed by Kupffer cells and
hepatocytes (86–88). Plasma concentrations of LPS and other
microbial products are very low or undetectable in physiology,
but increase during both acute and chronic liver damage because

of increased gut permeability and reduced hepatic clearance (15,
89–92). Gut-derived microbial products are critically involved in
complications of endotoxemia occurring in acute and chronic
liver injury, HCV infection, obstructive jaundice, cholestasis and
chronic alcoholic and non-alcoholic hepatitis (93–98). A recent
analysis of the association between serum LPS and chronic liver
disease in>6,500 subjects found that serumLPS can be predictive
of advanced liver disease (17). Because inflammation is critical to
activation and fibrogenic activity of HSCs, LPS has gained much
attention as a driver of liver injury, inflammation and fibrosis.

The pro-inflammatory LBP/CD14/TLR4-mediated effects of
LPS on Kupffer cells, neutrophils and immune cells implicated in
liver damage have been well-characterized (99–101). Activation-
dependent response of rat HSCs to LPS by releasingMCP-1 (102)
provided evidence for their possible role in hepatic inflammation.
In these experiments, high (100 ng/ml) concentration of LPS
and serum-supplemented medium were used (102). LPS was
later found to stimulate the synthesis of nitric oxide, endothelin-
1, TNFα and IL6 in both quiescent and activated rat HSCs
at concentration as low as 1–10 ng/ml in serum-free condition
(20, 21, 43, 103). This indicated that rat HSCs respond to
LPS independent of CD14/TLR4 as serum is the source of
LBP, which is produced by hepatocytes but not HSCs (21).
These findings are of significant importance because LPS causes
liver injury in CD14-independent manner (104); LPS-induced
production of TNFα and IL6 in wild type (WT), TLR4-
knockout (KO) and CD14-KO mice was similar following
partial hepatectomy (105); and bile duct ligation or CCl4
administration elicited similar liver injury in WT, TLR4-mutant
(C3H/HeJ) or TLR4-KO mice (23, 106). LPS also elicited similar
inflammatory response in HSCs from WT and TLR4-KO (23)
or CD14-KO mice (107). Interestingly, although quiescent rat
and human HSCs possess very low (negligible) expression
of TLR4, LPS induced NFkB activation and stimulated the
synthesis of inflammatory cytokines in rat (21) but not human
(108) quiescent HSCs (qHSCs). Whereas, both rat and human
HSCs express TLR4 upon activation (21, 108), mouse qHSCs
contain abundant expression of TLR4 (106). These findings
indicate species-specific differences in CD14/TLR4-dependence
or -independence of LPS effects may have important implications
in hepatic pathophysiology.

In addition to the pro-inflammatory cytokines and
chemokines, LPS also stimulates secretion of anti-inflammatory
cytokines such as IL10 from HSCs (51). Transcriptomic analysis
demonstrated that the repertoire of factors expressed by rat
aHSCs and modulated by LPS was much extensive and included
numerous cytokines/chemokines, cell adhesion molecules, signal
transduction factors, as well as growthmediators (22). Obviously,
the direct actions of LPS on HSCs are of critical importance in
acute and chronic liver injury.

PRO- AND ANTI-FIBROGENIC EFFECTS
OF LPS ON HSCs

As described above, inflammation, initiated by apoptotic bodies,
DAMPs and cytokines released by injured/dying hepatocytes,
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plays a critical role in HSC activation and liver fibrosis. With
continued presence of the injury stimulus, dying hepatocytes,
Kupffer cells, recruited lymphocytes and even HSCs contribute
to the persistent inflammatory environment. The role of Kupffer
cells in hepatic inflammation and fibrosis has been investigated
extensively, and depletion or blockade of Kupffer cells with
gadolinium chloride was found to mitigate liver fibrosis in
several murine models of liver injury including that by CCl4,
dimethylnitrosamine and BDL (109–111). There is also evidence
for a crucial role of the recruited blood-derived macrophages in
liver fibrosis and their switch to anti-inflammatory (restorative)
phenotype during its resolution (112, 113). These restorative
macrophages may induce apoptosis of aHSCs or their reversal to
either quiescent or inhibited phenotype (75, 114).

Although LPS has been implicated in liver fibrosis through its
pro-inflammatory effects, whether its direct actions on HSCs has
a role in fibrogenesis has remained relatively unexplored. LPS was
found to inhibit DNA synthesis, concentration-dependently, in
activated rat HSCs in presence or absence of serum, the source
of LBP (20, 21). This observation is intriguing as activation
and proliferation of HSCs are essential components of the
initiation and progression of fibrosis. Recent work by Sharma and
coworkers confirmed that LPS inhibits proliferation of culture-
activated aHSCs as determined by Ki67 labeling in vitro, and
even HSCs isolated from LPS-treated CCl4-induced chronically
injured liver showed size reduction and reduced Ki67 labeling
as compared to the cells from rats that did not receive LPS (24).
This effect of LPS in vivo is impressive since hepatic inflammation
was augmented, and indicated that LPS may arrest or mitigate
HSC proliferation to limit ongoing fibrosis development in
the inflammatory environment (i.e., in the presence of injury
stimulus). On the other hand, LPS stimulates NFkB activation (a
pro-inflammatory and pro-survival pathway) in HSCs (23, 103,
108), importance of which was confirmed by the observation
showing reduced hepatic fibrogenesis after NFkB inhibition
(114). It is apparent that such contemporaneous stimulation of
the opposing signaling pathways can be of significant importance
in regulating expansion of HSCs in the fibrotic liver (see Figure 5
for schematic of opposing effects of LPS on HSC activation
and fibrosis).

LPS-induced inhibition of DNA synthesis in qHSCs (21)
suggested that it may not have direct effect on their activation.
However, LPS-preconditioned qHSCs are activated upon
incubation with TGFβ or when co-cultured with Kupffer cells
(106), a main source of TGFβ in the liver (110, 115, 116).
LPS was found to down-modulate the expression of BMP and
activin membrane-bound inhibitor (BAMBI), a pseudoreceptor
for TGFβ1, in qHSCs thereby sensitizing them to TGFβ1-
induced activation and fibrogenic activity (106). In this regard,
Kupffer cells were shown to become more sensitive to the
effects of LPS after bile duct ligation and exhibited significant
increase in phagocytic activity, oxidative burst, and cytokine
production (117). Kupffer cells isolated from LPS-injected
mice were reported to show increased expression of TNFα, IL6
and TGFβ (118), and at high concentrations, LPS promotes
autophagy/lipophagy, down-regulates BAMBI and enhances
TGFβ1 signaling in activated HSCs and HSC cell line (119).

However, LPS does not stimulate the synthesis of TGFβ in
purified HSCs (22, 23), and LPS administration to naïve mice
also does not increase the expression of TGFβ (23). Furthermore,
hepatic expression of BAMBI was not altered in mice that
received chronic CCl4 treatment or in LPS-challenged culture-
activated HSCs, but it was down-regulated in the livers of
naïve mice upon acute LPS treatment (23). Because HSCs
(and not hepatocytes or Kupffer cells) express BAMBI (106),
these data suggest that its down-regulation occurring early
during liver injury may not be sustained in the chronic phase.
On the contrary, up-regulation of TGFβ-receptors in aHSCs
(23, 24) could be a more dominant mechanism of liver fibrosis.
TGFβ1 may also self-regulate its effects by modulating BAMBI
expression. For example, TGFβ1 causes up-regulation of BAMBI
mRNA and protein in HEPG2 cells via the P-SMAD2/3-4
transcriptional pathway (119), and stimulation of WNT/β-
catenin signaling increases BAMBI in colorectal tumor cells
(120). Since LPS increases nuclear accumulation of β-catenin
in human hepatoma cell lines (121), it will be important to
determine whether LPS ± TGFβ1 induce SMAD and/or Wnt/β-
catenin signaling in qHSCs or aHSCs and regulate BAMBI,
TGFβ-R1 and TGFβ-R2 expression both in vivo and in vitro for
better understanding of the pathway: LPS→ Kupffer cells/HSCs
→ BAMBI→ TGFβ1→ activation of HSCs/fibrosis.

At 21 days after BDL, hepatic fibrosis was reported to be 30-
50% less in CD14-deficient and in LBP-deficient mice than in the
WT mice (122). However, there was no difference in lymphocyte
and neutrophil infiltration but activation of macrophages was
lower in CD14-KO mice as determined by the expression
of Cd11b, a component of the C3 complement receptor
primarily expressed on myeloid cells (i.e., macrophages and
monocytes) (123). Saito and coworkers proposed that depletion
of neutrophils does not have significant effect on BDL-induced
fibrosis but LPS-stimulated Kupffer cells enhance hepatic
fibrogenesis (123). The TLR4 mutant (C3H/HeJ) mice were also
found to show much less CCl4- or BDL-induced fibrosis as
compared to the WTmice (106). In contrast, C57BL/6J (B6-WT)
and B6.B10ScN-Tlr4lps−del/JthJ (TLR4-KO) mice demonstrated
similar susceptibility to CCl4-induced fibrosis as analyzed by
Sirius red staining, collagen I expression and hydroxyproline
concentration, although necroinflammation and liver injury were
lower in the latter (23). The expression of TNFα and CXCL1
increased similarly in CCl4-treated WT mice and TLR4-KO
mice but that of antifibrogenic IFNγ increased only in WT mice
(23). Furthermore, the expression of αSMA and the number of
desmin-positive cells increased similarly in CCl4-treatedWT and
TLR4-KO mice suggesting that TLR4 activation is not necessary
for activation and proliferation of HSCs. It is apparent that
hepatocyte injury-induced activation of Kupffer cells and HSCs
and also inflammation are more relevant to HSC activation and
fibrosis. While these data demonstrate that LPS/TLR4 interaction
may not be critical to fibrosis development in chronic liver
disease, activation of TLR4 as well as TLR5, TLR7, and TLR9
was actually found to be beneficial in chronic hepatitis B virus
infection by reducing the viral replication (124). Such effects of
LPS and other PAMPs on TLRs can be self-limiting mechanisms
of chronic liver disease in majority of HBV-infected subjects.
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FIGURE 5 | Schematic representation of pro- and anti-fibrogenic effects of LPS on activated HSCs. Although LPS may act through TLR4 on aHSCs, it can also exert

effects in a non-TLR4 pathway that has not been identified yet. LPS by stimulating synthesis of several cytokines and chemokines, via stimulation of NFkB and MAPK

pathways, promotes survival (TNFα and IL1β) in an autocrine manner. The mediators released thus can also stimulate ECM synthesis, migration and proliferation of

aHSCs. LPS down-regulates cMyb transcription factor and thus reduces the expression of α-SMA, a major marker of aHSCs. By down-regulating PDGFβR, LPS

mitigates proliferation of aHSCs. LPS inhibits TGFβ-induced ECM synthesis by down-regulating TGFβR1, by increasing expression of SMAD7, C/EBPα, C/EBPδ, and

p20C/EBPβ. IL17 can act directly on HSCs to stimulate ECM synthesis and by up-regulating TGFβRII. However, by down-regulating the expression of IL17R, LPS can

reduce IL17-induced ECM synthesis by aHSCs. Finally, increased production of IL10 and IFNβ by LPS-stimulated aHSCs can be a mechanism of inhibition of ECM

synthesis, activation and promotion of senescence.

In contrast to the down-modulatory effect of LPS on aHSCs
(in vivo and in vitro), augmentation of CCl4-induced liver
fibrosis in mice was reported within a very short time of
just 4 h following administration of 10 mg/kg LPS (125).
LPS administration (0.5 mg/kg; 3 times a week) from the
beginning of NASH-inducing choline-deficient L-amino acid-
defined (CDAA) diet in mice was also reported to increase
inflammation, activation of HSCs and pericellular fibrosis (126).
It should be noted that CDAA diet does not cause obesity or
insulin resistance in rats, in contrast to mice that develop obesity
and insulin resistance and limited fibrosis (127). Nevertheless,
LPS effect described above contradict our observations that
CCl4-induced hepatic fibrosis is not altered at 24 h after
intraperitoneal administration of 5 mg/kg LPS (24). However,
αSMA expression was strongly reduced by LPS in vivo, and HSCs
isolated from LPS-treated CCl4-fibrotic rats showed reduced size,
proliferation and expression of Acta 2, cMyb, PDGFβR, TGFβR1,
Col1a1, and fibronectin but increased expression of TNFα, IL6,
CXCL1 (24). CCl4-induced liver fibrosis was also not affected

by a weakly inflammatory lipid A-derivative monophosphoryl
lipid A although it caused reduction in αSMA expression in
HSCs both in vivo and in vitro (24). In regard to whether LPS is
really critical in promoting or mitigating fibrogenesis, antibiotic
treatment of mice was found to reduce BDL- as well as CCl4-
induecd fibrosis (106). However, much stronger CCl4-induced
fibrosis was observed in germ-free mice as well as Myd88/Trif-
deficient mice compared to the WT mice (128). Furthermore,
repopulation of Gram-negative microbes (E. coli, the source of
LPS) following dysbiosis did not affect fibrosis when compared
to mice that did not receive E. coli (128). A recent investigation
also reported that monocytes-derived macrophages stimulated
with LPS and monosodium urate increase MMP3 and MMP9
in aHSCs and down-modulate pro-fibrogenic markers (129).
These data and the observations showing unique interactions
between HSCs and LPS (20–23) suggest that LPS has a dual
role as a promoter of liver fibrosis by causing inflammation,
and contemporaneously limit fibrosis by its direct effects
on aHSCs.
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OTHER LPS-STIMULATED PATHWAYS
REGULATING LIVER FIBROSIS

The livers of chronically CCl4-treated rats were found to contain
several apoptotic aHSCs, which increased further when oxidative
stress was induced by administration of tert-butylhydroperoxide
(130, 131). In vitro experiments confirmed that oxygen-free
radicals cause apoptosis of aHSCs (130). Thus, although LPS-
stimulated synthesis of free radicals in Kupffer cells (99) and
HSCs (103) are generally considered as pro-fibrogenic, the
same molecules appear to instigate signaling mechanism of cell
death and prevent aHSC proliferation and fibrogenic activity.
Along the same line, although autocrine or paracrine actions of
TNFα on aHSCs provide NFkB activation-induced cell survival
mechanisms, TNFα also stimulates binding of p20C/EBPβ and
C/EBPδ to Cola1 promoter and thus represses p35C/EBPβ-
induced transcription and fibrosis (132, 133). Interestingly,
TGFβ1 has been shown to induce and increase SMAD7 (an
inhibitor of pro-fibrogenic P-SMAD2/3) in several cell types
including HSCs (134–136). This suggests a feed-back inhibition
of pro-fibrogenic action of TGFβ1 in aHSCs. LPS increases
SMAD7, and p20C/EBPβ and C/EBPδ (inhibitors of p35C/EBPβ)
expression and down-regulates cMyb (a transcription factor
for αSMA) expression in aHSCs in vivo and in vitro (24).
Because LPS also strongly stimulates TNFα synthesis by HSCs
(20–23, 103), the autocrine loop of its action on inhibitory
C/EBP pathway might be a limiting mechanism of fibrogenesis
(Figure 5).

IL17A promotes not only activation of inflammatory cells, but
also stimulates collagen synthesis by HSCs through activation
of signal transducer and activator of transcription 3 (STAT3)
(137). In contrast, another study reported that IL17 does not
directly cause activation of HSCs or induce fibrogenic response,
but increases TGFβRII expression in HSCs sensitizing them to
TGFβ1/SMAD2/3-induced collagen 1 synthesis (138). LPS down-
regulates TGFβR in aHSCs (22, 23), and does not affect IL17A
expression although it increases gene transcript of IL17F by more
than 10-fold (22). Because IL17A and IL17F share the same
receptors (IL17Ra and IL17Rc) (139), a similar fibrogenic effect
of IL17F via autocrine pathway in HSCs may not be ruled out.
However, microarray analysis showed robust decrease in Il17ra
and Il17re in aHSCs stimulated with LPS (22). These findings
indicate that LPS-induced down-regulation of both TGFβR and
IL17R may limit fibrogenesis during chronic liver injury.

While pro-inflammatory and pro-fibrogenic mediators are
produced by various cells during chronic liver injury, there is
also abundant evidence for contemporaneous generation of anti-
inflammatory and anti-fibrogenic factors such as IL10 and IL13.
IL10-KOmice show increased neutrophil infiltration and hepatic
fibrosis during repeated CCl4 administration (140). Kupffer cells
produce IL13 and not IL10 under basal conditions, and LPS
stimulates secretion of IL10 but not of IL13 from them (141–
143). HSCs also produce IL10 spontaneously, which is strongly
stimulated by LPS (22, 50). Such increased production of IL10
and IL13 can be yet another pathway of limiting liver fibrosis.

IL22 is an interesting cytokine that can be a part of anti-
fibrotic mechanisms due to its ability to promote senescence and

apoptosis of aHSCs both in vivo and in vitro (80). These effects
of IL22 were found to be mediated via the activation of STAT3
and suppressor of cytokine signaling 3 (SOCS3) (144). However,
STAT3 activation was also reported to be a mechanism of IL17-
induced collagen synthesis by aHSCs via an IL6-dependent
autocrine pathway, and deletion of IL22 exacerbated CCl4- as
well as BDL-induced fibrosis (137). Furthermore, leptin-induced
JAK2/STAT3 activation increased ECM synthesis and thereby
fibrosis, and SOCS-3 activation negatively regulated JAK/STAT
signaling (144).

Interferons (IFN) are a family of natural glycoproteins with
antiviral activity, and type I IFNs (IFNα and IFNβ) have been
widely used for viral eradication in patients with chronic viral
hepatitis (145, 146). IFNα treatment was found to resolve liver
fibrosis by causing significant reduction in the number of aHSCs
(147–151). IFNβ was also shown to exhibit antifibrotic property
and has been used to treat chronic HCV infection (150, 151).
Recombinant human IFNβ decreased the expression of αSMA,
collagen I and III, TGFβ1, PDGF-BB and SMAD4 in culture-
activated rat or human HSCs, and increased SMAD7 expression
(152). LPS stimulates IFNβ expression in HSCs (22, 49, 52)
and it is likely that this can be an autocrine-inhibitory loop to
reduce fibrosis. Interestingly, HSC-released IFNβ was found to
be a major cytokine to cause autophagy in hepatocytes as a cell
survival mechanism (Figure 5), but it could also induce acute
liver injury through activation of IRF1 signaling in mice upon
concanavalin A challenge (49, 50, 52).

PERSPECTIVE

The well-orchestrated communications between the various liver
cell types maintain the physiological function of the organ
despite exposure to numerous toxic substances, microbial and
viral products, food- and environ-derived antigens, and drugs
and xenobiotics on a regular basis. During liver injury, this
mechanism is disrupted with an immediate repair response that
involves activation of HSCs and/or P-Mfbs, resulting in increased
production of ECM causing liver fibrosis. This mechanism
involves mediators produced by the resident cells (hepatocytes,
Kupffer cells, endothelial cells and cholangiocytes) as well as
recruited inflammatory and immune cells. Upon termination of
the injury stimulus, fibrosis is resolved and the system returns
back to the physiologic state. However, persistence of injury
stimulus causes progression of fibrosis to cirrhosis and, in some
cases, hepatocellular carcinoma. The liver also has a remarkable
ability to produce mediators that instigate mechanisms of
resistance to fibrosis. Although the levels of a highly pro-
inflammatory endotoxin (LPS) are elevated, and it has been
implicated in fibrosis progression, evidence also indicates that it
can reverse the activated fibrogenic phenotype of HSC to non-
fibrogenic phenotype. It is of interest that LPS can exert this effect
in absence of CD14/TLR4, which is essential for the generation of
pro-inflammatory cytokines and chemokines from cells such as
Kupffer cells, monocyte, and neutrophils. Development of LPS
mimetics that do not engage CD14/TLR4 but still can act on
activated HSCs will be a novel way to reverse these cells to the
non-fibrogenic phenotype for treating liver fibrosis.
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SYNOPSIS

This article describes the pro-fibrogenic as well as antifibrogenic
effects of Gram-negative bacterial endotoxin lipopolysaccharide
(LPS). This highly pro-inflammatory mediator is implicated in
liver injury, inflammation, and fibrosis of various etiologies.
Experiments using animal models of liver fibrosis and isolated
cells showed that LPS stimulates synthesis of cytokines
including TNFα, IL6, IL1β, and PDGF in Kupffer cells and
infiltrating inflammatory and immune cells. These mediators
cause activation and proliferation of the fibrogenic hepatic
stellate cells (HSCs). In response to mediators such as TGFβ
released by Kupffer cells and HSCs themselves, HSCs produce
extracellular matrix (ECM) components (collagen I, collagen
III, fibronectin) causing fibrosis of the liver. In contrast, LPS
acts on activated HSCs directly and reduces the expression of
the activation marker α-SMA through down-regulation of its
transcription factor for cMyb. LPS also increases expression of
SMAD7, p20-C/EBPβ, C/EBPα and C/EBPδ in activated HSCs,
which are inhibitors of pro-fibrogenic signaling induced by TGFβ
and other pro-fibrogenic mediators. Furthermore, LPS down-
regulates TGFβR1 expression in activated HSCs thus mitigating
TGFβ-induced fibrogenic activity. LPS stimulates the synthesis
of anti-fibrogenic cytokines type 1 interferons and IL10 in

HSCs. LPS also stimulates the synthesis of TNFα in HSCs and
Kupffer cells. While TNFα is a pro-inflammatory cytokine that
promotes survival of HSCs, it also stimulates p20-C/EBPβ and
C/EBPδ that block p35C/EBPβ-induced ECM synthesis. The
down-modulation of the markers of activation and fibrosis is
observed in the HSCs isolated from the fibrotic liver treated in
vivo with LPS. However, the short-term 24 h treatment with LPS
in vivo increases inflammation and does not cause reduction in
fibrosis. Finally, the antifibrogenic effects of LPS can bemimicked
by its weakly inflammatory mimetic monophosphoryl lipid A.
Such opposing effects of LPS can be potentially important in
limiting liver fibrosis.
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Cholangiopathies are a heterogeneous group of chronic liver diseases caused by

different types of injury targeting the biliary epithelium, such as genetic defects

and immune-mediated attacks. Notably, most cholangiopathies are orphan, thereby

representing one of the major gaps in knowledge of the modern hepatology. A

typical hallmark of disease progression in cholangiopathies is portal scarring, and

thus development of effective therapeutic approaches would aim to hinder cellular

and molecular mechanisms underpinning biliary fibrogenesis. Recent lines of evidence

indicate that macrophages, rather than more conventional cell effectors of liver fibrosis

such as hepatic stellate cells and portal fibroblasts, are actively involved in the earliest

stages of biliary fibrogenesis by exchanging a multitude of cues with cholangiocytes,

which promote their recruitment from the circulating compartment owing to a senescent

or an immature epithelial phenotype. Two cholangiopathies, namely primary sclerosing

cholangitis and congenital hepatic fibrosis, are paradigmatic of this mechanism.

This review summarizes current understandings of the cytokine and extracellular

vesicles-mediated communications between cholangiocytes and macrophages typically

occurring in the two cholangiopathies to unveil potential novel targets for the treatment

of biliary fibrosis.

Keywords: primary sclerosing cholangitis, congenital hepatic fibrosis, monocyte, cholangiocyte, biliary repair

INTRODUCTION

Cholangiopathies are a heterogeneous group of liver diseases targeting the biliary epithelium of
different etiologies including genetic defects (causing Alagille syndrome, cystic fibrosis-related
cholangiopathy, and polycystic and fibropolycystic liver diseases) and immune-mediated attacks
(causing primary biliary cholangitis and primary sclerosing cholangitis) (1–3). Their clinical
evolution is generally much slower than liver diseases aimed at the hepatocytes, spanning over years
or decades, and depends on the balance between the manifestations related to the bile duct injury
such as cholestasis, ductopenia (or conversely, exuberant bile duct expansion), and portal/biliary
fibrosis (4). Whereas, cholestasis related to the impaired ability of the biliary epithelium to
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alkalinize or fluidify the primary bile produced by the
hepatocytes is a common manifestation observed in most of
them, biliary fibrosis is a variable occurrence (5). However,
if present, biliary fibrosis is a major determinant of disease
progression as it is responsible for the disease’s most feared
complications such as portal hypertension and biliary cirrhosis,
and it bears an increased risk of malignant transformation
into cholangiocarcinoma (6, 7). Clinically, management of
cholangiopathies still represents one of the major gaps in modern
hepatology knowledge in terms of both early detection and
effective treatment (3). To date, only a few pharmacological
therapies have been proven to be effective and only in
limited pathology conditions (urosodeoxycholic acid, obeticholic
acid, and bezafibrate in primary biliary cholangitis), while
the vast majority of cholangiopathies are still orphan. Liver
transplantation remains the only option when the disease
is advanced (8–10). Major efforts for developing effective
therapeutic strategies in cholangiopathies should be devoted to
halt biliary fibrogenesis (4, 11). For many years, understanding
of the mechanisms of biliary fibrosis has relied on studies
performed in animal models where biliary fibrosis develops in a
rapid manner not consistent with what is observed in humans
(such as the bile duct ligation in rodents), or in animal models
where the primary dysfunction affects the hepatocyte rather
than the cholangiocyte [such as the multidrug resistance (mdr)2-
KO mouse] (12–14). These studies have lent support to the
notion that biliary fibrogenesis is an intricate process where
multiple cell types are actively involved. Following biliary injury,
cholangiocytes lining the finest ramifications of the biliary tree,
abutting the canals of Hering, become activated in a so-called
“ductular reaction” (2, 15–17). They start to secrete a huge variety
of mediators like cytokines, chemokines, and growth factors,
and to express a rich repertoire of receptors that enable them
to communicate extensively with portal fibroblasts and hepatic
stellate cells, the ultimate effectors of the deposition of new
extracellular matrix (ECM) components (2, 18). Cell interactions
between the epithelial and the mesenchymal compartments are
molded by the further involvement of inflammatory cell types
recruited from the blood such as neutrophils, macrophages,
and lymphocytes (19, 20). Among them, macrophages behave
as emerging players in biliary fibrogenesis since the initial
phase, and deciphering their involvement has provided insights
with translational significance (19, 21, 22). Therefore, the aim
of the present review is to draw attention to some recent
observations highlighting the role played by macrophages in
biliary fibrosis, derived from experimental models of bile duct
injury with progressive portal scarring, which recapitulates
the phenotype of primary sclerosing cholangitis (PSC) and
congenital hepatic fibrosis (CHF), as theymay shed light on novel
therapeutic approaches.

GENERAL CONCEPTS ON THE
INVOLVEMENT OF MACROPHAGES IN
FIBROSIS

Macrophages are a cellular population extensively represented
in the liver that display a wide heterogeneity dependent upon

their developmental origin (resident or infiltrating macrophages)
and their polarization (inflammatory or anti-inflammatory)
regulated by microenvironmental cues, such as danger signals,
and cellular debris taken up by phagocytosis. In normal
conditions, liver-resident macrophages, or Kupffer cells (KC),
are mainly localized in the perisinusoidal space to ensure tissue
homeostasis, antimicrobial defense, and proper metabolism (23,
24). In disease conditions, macrophages play a central role
in host defense against infections as well as in tissue repair
(25). In these cases, infiltrating macrophages can be recruited
following mobilization of circulating monocytes from bone
marrow and the spleen. In mouse, the tissue origin of infiltrating
macrophages can be assessed by a distinct phenotype. In fact,
bone marrow-derived monocytes are Ly-6C high (Ly-6Chi) and
express several receptors such as C-C chemokine receptor type
2 (CCR2) and receptors for pathogen and damage associated
molecular patterns (PAMPs and DAMPs, respectively), while
the spleen-derived macrophages are Ly-6C low (Ly-6Clo) and
are less equipped with the receptor machinery (26). Moreover,
macrophages possess a high level of cell plasticity, enabling them
to respond to a huge variety of both endogenous and exogenous
stimuli, interact with multiple cell types, and direct mechanisms
underlying tissue repair and regeneration. Following ligand
interaction with its receptor(s), macrophages activate a number
of cellular responses including phagocytosis, endocytosis, and
secretion of soluble mediators like cytokines, chemokines,
and growth factors (27, 28). Thanks to these properties,
once stimulated, macrophages may exert a range of functions
including cell adhesion and migration, antigen presentation,
and effector functions in the immune response. Exogenous
ligands are bound by receptors involved in the recognition
of opsonins, mainly antibodies produced by the complement
activation, or through the direct recognition of carbohydrates,
proteins, lipids and nucleic acids. In particular, stimulation
of different Toll-like receptors (TLR) and lectins expressed
by macrophages converge toward the transcription factor NF-
kB, whose activation regulates production of proinflammatory
and profibrotic mediators (29). Macrophages can also express
the receptor for advanced glycation end products (RAGE),
a multi-ligand receptor that can bind, among others, the
alarmin high-mobility group box-1 (HMGB1), belonging to
the DAMP group, and S100 (30). Similar to TLR, RAGE
interaction with HMGB1 kindles the pro-inflammatory cascade
regulated by NF-kB, with a partial overlap between RAGE and
TLRs, since RAGE-deficient macrophages showed a decrease
cytokine response following HMGB1 stimulation (29). In
response to signals released in an “inflamed” environment,
macrophage activation displays marked functional changes that
can be roughly divided into M1 (classically activated) or M2
(alternatively activated) phenotypes as the edges of a continuum
without a clear demarcation, dependent on the phase and
the degree of tissue injury (31). Macrophages undergo M1
activation in the presence of Th1 lymphocytes or upon the
effect of multiple pro-inflammatory cytokines, thus increasing
their ability to kill intracellular pathogens and contributing to
the progression of the inflammatory process. In particular, M1
macrophage differentiation is induced in response to interferon-
γ, exposure to microorganisms or microbial products such as
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lipopolysaccharides (LPS), and cytokines such as tumor necrosis
factor-α (TNF-α) (32). M1 macrophages secrete low levels of
interleukin (IL)-10 and high levels of IL-1β, IL-6, IL-12, IL-
23, and the TNF-α itself, resulting in further activation of Th1
effector cells, thus sustaining a feed-forward loop (33, 34). Beside
the secretory profile, the M1 polarization can be identified also
by a variety of functional and biochemical phenotypic markers
including the overexpression of surface markers, in particular
MHC class II and CD86, and the enhanced competence for
antigen presentation and microbicide activity (35). Pathogen
elimination is indeed facilitated by an increased production of
reactive oxygen species (ROS) and nitric oxide (NO), due to the
activation of the inducible nitric oxide synthase (iNOS) (36, 37).
On the other side of the spectrum, exposure to anti-inflammatory
cytokines induces macrophages toward an alternatively activated
or M2 phenotype, with increased expression of Ly-6C (Ly-6Chi)
and of specific markers such as CD206, Arginase-1, and early
growth response gene-2 (Egr2) (38, 39). M2 macrophages do not
possess antimicrobial activity due to their inability to produce
NO and ROS, and despite the fact that they may express MHC
class II proteins, they are inefficient as antigen-presenting cells.
Rather, they mostly inhibit the proliferation of T cells, and
cooperate with the humoral immune response by regulating the
Th2 effectors and stimulating the secretion of immunoglobulins
by B cells. Classical inducers of M2 polarization are IL-4 or IL-13,
featuring the Th2 response (32, 37). In particular, IL-4 activates
the Janus kinase/signal transducer and activator of transcription
protein 6 (JAK/STAT6) pathway, which leads to the transcription
of several genes, among them Arachidonate 15-Lipoxygenase, C-
C Motif Chemokine Ligand (CCL)22, CCL26, CD23a, Fibronectin
1, and suppressor of cytokine signal, regulating inflammatory
cell recruitment and activation and ECM deposition (40,
41). Furthermore, IL-4-stimulated macrophages showed an
increased production of anti-inflammatory cytokines (IL-10 and
IL-1R antagonist) in conjunction with a reduced expression
of proinflammatory/M1-like cytokines (IL-1, TNFα, IL-6, IL-
12, and MIP1α), an essential step to dampen inflammation.
Furthermore, in animal models of both acute (42, 43) and
chronic liver diseases (44), the ability of M2 macrophages to
blunt inflammation also relies on the stimulation of apoptosis in
M1 macrophages via a IL-10-mediated mechanism, which affects
the balance between the anti- and pro-apoptotic proteins Bax
and Bcl-2. In addition to the immunomodulatory functions, M2
macrophages are pivotal players in tissue regeneration and repair
given their contribution to angiogenesis and ECM remodeling
(45). M2macrophages may stimulate angiogenesis as they secrete
high levels of vascular endothelial growth factor (VEGF)-A
(45). Furthermore, M2 macrophages can also produce major
components of the “scarring” ECM, including fibronectin and
collagen, as shown by up-regulation of Col1a2 and Col3a1
genes (46). On the other hand, the constitutive activation of
arginase in M2 macrophages leads to de novo biosynthesis of
polyamine and proline, which promotes cell growth and further
deposition of collagen in an autocrine loop (47). Moreover, M2
macrophages are responsible for the degradation of the native
constituents of ECM by secreting matrix metalloproteinase
−9, −12, and −13. While the role of macrophages in liver
fibrosis developing in the setting of a parenchymal damage has

been extensively studied and has been the subject of recent
reviews (21), evidence on their significant contribution to biliary
fibrosis have only recently been emerging. Accumulation of
macrophages is a distinctive trait of biliary fibrosis, in particular
when it is particularly prominent (PSC, CHF). Of note, these
conditions share some relevant clinical aspects, as both disorders
may develop portal hypertension without progression to full-
blown biliary cirrhosis and bear an increased risk of malignant
progression toward cholangiocarcinoma.

THE FIBROGENIC ROLE OF
MACROPHAGES IN PSC

Among chronic liver diseases, PSC is paradigmatic of the
pathophysiological relevance of progressive fibrogenesis, which
generates a tight and stiff sheath around the ductal epithelium
whereby necroinflammation is less pronounced compared with
other inflammatory cholangiopathies. The hallmark of the
disease is in fact the development of concentric periductal
fibrosis, leading to the narrowing and eventual obliteration
of both small and large bile ducts, which at the radiological
level results in the formation of diffuse multifocal biliary
strictures recognizable as a “beaded” configuration (48). The
pathogenesis of PSC is largely unknown but immune-mediated
mechanisms are likely involved, although the nature of the
triggering factors remains elusive. The frequent association with
inflammatory bowel disease, mainly chronic ulcerative colitis,
suggests that bacterial components enriched in endotoxins like
LPS and delivered to the liver parenchyma through the portal
circulation may also be relevant in the pathogenesis of PSC
(49). Interesting insights into the mechanisms responsible for
biliary fibrosis can derive from a deep phenotyping of the portal
cell infiltrate. Using a high-throughput sequencing approach,
Govaere et al. found that in PSC, the peribiliary milieu was
extensively populated by CCL28+ macrophages already in the
early stage of the disease before developing advanced fibrosis
in contrast to HCV chronic hepatitis, which instead showed
an enrichment in T and B cells in the areas of hepatocellular
injury and regeneration (50). Macrophage recruitment to the
biliary microenvironment has been confirmed in murine models
of PSC (Mdr2−/− mouse), where they promote injury and
cholestasis (51). Of note, the immunophenotype of macrophages
accumulating in the periportal areas of liver sections obtained
from PSC patients and Mdr2−/− mice, is consistent with an
origin from circulating monocytes rather than from the resident
KCs (CD68+/CCR2+ in human, CD45+/F4/80+/CD11bhi in
mice). In PSC, following the initial pro-inflammatory reaction,
themacrophage infiltration of the peribiliary area increased as the
fibrotic stage of the disease progressed, encompassing both pro-
inflammatory iNOS+ M1 and anti-inflammatory CD206+ M2
phenotypes, with a predominance of M1 in advanced stages (51).

Cell Senescence and Extracellular Vesicle
Release Are Distinctive Epithelial Traits
Promoting Macrophage Recruitment
In PSC, a distinctive feature of cholangiocytes is cell senescence,
an irreversible condition of cell cycle arrest. Senescence is
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induced by the activation of the N-Ras pathway upon persistence
of cellular injury (52), where alterations in cell morphology,
increased lysosomal activities, and enhanced DNA damage
responses are associated with exuberant pro-inflammatory
secretory functions, which involve IL-6, IL-8, CCL2, and
plasminogen activator inhibitor 1, and collectively result in the
senescence-associated secretory phenotype (SASP). Interestingly,
SASP activation in PSC is closely associated with macrophage
recruitment. In vitro models of cellular senescence, generated
by treating normal human cholangiocytes with the inhibitor
of apoptosis antagonist BV6 or with LPS, and cholangiocytes
isolated from PSC livers, released monocyte chemotactic factors
including CCL2/monocyte chemoattractant protein (MCP)-1
and IL-8, regulated by the transcription factor NF-kB, that
promoted monocyte migration (51). In particular, strategies
aimed at blocking CCR2, the cognate receptor of CCL2/MCP-1,
by pharmacological treatment with cenicriviroc (dual antagonist
of CCR2/5) or by genetic ablation led to a significant therapeutic
gain in mouse models of PSC in vivo. In these conditions,
the reduction in peribiliary infiltration of monocyte-derived
macrophages was paralleled by a stark improvement of fibrosis
as well as of cholestatic indexes (53). These findings were
reproduced in an experimental model of acute sclerosing
cholangitis generated by biliary instillation of BV6, where
targeting CCR2-dependent monocyte recruitment significantly
attenuated both the inflammatory and fibrotic responses, thus
highlighting the concept that macrophage accumulation within
the periductal space is a key event since the initial stages
of biliary injury (51). Recent data showed that in addition
to soluble factors, cholangiocytes can activate macrophages
originating from the bone marrow by releasing membrane-
derived nanometer-sized (from 40 to 200) extracellular vesicles
(EVs) (54). EVs are functionally active, bilayer-delimited
particles including miRNA and DAMPs which bear several
small biomolecules mediating cell-to-cell communication as
a sort of “secret messengers” (55). Apoptotic bodies from
dying cells are usually larger than 500 nm, thus EV-mediated

DAMP cargo is of particular interest in conditions with
negligible cell death by necrosis, as occurred in PSC. Among
DAMP, S100A11 is contained in EVs released by primary
cholangiocytes derived from Mdr2−/− mouse and grown in 3D-
structures as cholangioids (54). Of note, S100A1 is a potent
agonist of RAGE (56) and highly expressed by macrophages.
Upon binding to S100A1, bone marrow-derived macrophages
turned to a proinflammatory phenotype involving secretion
of TNF-α, IL-1β, and IL-6 associated with M1 polarization,
through an NF-kB-dependent mechanism (54). Expression
of these proinflammatory cytokines by bone marrow-derived
macrophages was suppressed by RAGE manipulation through
genetic deletion or selective inhibition by TTP448 or by NF-
kB inhibition by TPCA-1. Altogether, these data identify RAGE
as an actionable target to hamper macrophage polarization
promoted by cholangiocyte-derived EVs (54). The key role played
by macrophages in biliary fibrosis featuring PSC, driven by
chemokines and EVs originating from senescent cholangiocytes
is illustrated in Figure 1.

Relationship of Macrophage Activation
With Biliary Repair
In PSC, effects of M1-polarized macrophages have also been
reported on the level of biliary repair involving hepatic
progenitor cells (HPC) (57), whose activation leading to
ductular reaction is instrumental in biliary fibrogenesis (4,
16, 58). In cell co-culture studies, bone marrow-derived M1
macrophages promoted a self-renewing phenotype of HPC
via activation of the Notch signaling pathway (57). It is
important to note that Notch activation in HPC by Jagged1
expressed by myofibroblasts was previously described as a
critical pathway promoting HPC differentiation toward the
biliary lineage (59). Monocyte/infiltrating macrophage and
Notch signaling gene signatures were enriched in PSC liver
samples and among core enrichment genes associated with
HPC marker Hes Family BHLH Transcription Factor 1
(HES1) (57). Effects of macrophage depletion induced by

FIGURE 1 | In PSC (A), senescent cholangiocytes harbor activation of N-Ras signaling, resulting in the secretion of the pro-inflammatory mediators IL-6, IL-8, and

CCL2, which drive the peribiliary accumulation of both M1 (yellow) and M2 (blue) macrophages. Extracellular vesicles (EVs) containing damage-associated molecular

patterns (DAMPs) are also released by senescent cholangiocytes. (B) By binding the RAGE receptor expressed by macrophages, EVs further elicit macrophage

activation and infiltration. (C) M1 macrophages become preponderant in a later phase, when the generation of a dense fibrotic tissue is further enhanced by the

accumulation of portal myofibroblasts (brown).
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liposome encapsulated clodronate (a bisphosphonate which
inhibits the monocyte-macrophage transdifferentiation) have
been extensively investigated in another animal model of PSC,
generated by mouse feeding with 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC). The DDC-fed mouse is characterized
by cholangitis and intense biliary fibrosis associated with
macrophage recruitment, activation of portal myofibroblasts,
and a prominent ductular reaction (60). In DDC-fed mice,
macrophage depletion blunted deposition of laminin, a major
component of the basement membrane surrounding the bile
ducts. When laminin is defective, reactive ductules were confined
within the portal area and did not progress to “atypical” ductules
(61), which extend beyond the portal tract boundaries into the
parenchyma and represent a feature of a more fibrogenic biliary
injury. Moreover, macrophage depletion was accompanied by a
significant reduction in the proliferative status of cholangiocytes
(61), consistent with previous observations identifying the TNF
family member TNF-like weak inducer of apoptosis (TWEAK)
as the signal emitted by macrophages that is responsible for
expansion of HPC by interacting with its receptor Fn14 and
stimulation of ductular reactions by activating NFκB signaling
(62, 63). However, macrophage depletion induced by liposomal
clodronate involves not only bonemarrow-derivedmacrophages,
but also liver-resident macrophages (KCs). A study focusing on
the role of F4/80+ KCs in the same clodronate-treated DDC
model showed that KC depletion was beneficial only in the early
phase of biliary injury, while it was detrimental in the regression
phase with worsening effects on portal inflammation and fibrosis
(64). These data conceivably suggest that KC may play a dual
role in sclerosing cholangiopathy in keeping with their marked
cell plasticity. Therefore, therapeutic interventions targeting
macrophages in sclerosing cholangitis must pay attention to
the remarkable heterogeneity of this cell type that cannot
be too simplified by the conventional distinction between
infiltrating and liver-resident macrophages, and between M1 and
M2 phenotypes.

THE FIBROGENIC ROLE OF
MACROPHAGES IN CHF

Fibropolycystic liver diseases, which encompass a number of
genetic conditions with biliary dysgenesis such as autosomal
recessive polycystic kidney disease (ARPKD), CHF, and Caroli’s
disease (CD), are caused by mutations in the polycystic
kidney and hepatic disease 1 (PKHD1), the gene encoding for
fibrocystin/polyductin (FPC) (65, 66). FPC is a large protein
expressed by ductal epithelial cells, such as cholangiocytes, in
several cellular compartments including cilia, centromeres, basal
bodies, and tight and adherence junctions (65, 66). Although FPC
function is unknown, it is likely involved in cell proliferation, cell-
cell and cell-matrix interactions, cell differentiation, secretion,
and planar cell polarity (67). A common trait of these diseases is
the cyst-like enlargement of the intrahepatic bile duct epithelium
accompanied by a progressive deposition of fibrotic tissue in the
peribiliary region. In the dysgenetic ducts, cholangiocytes present
cilium defects and retain features of immaturity reminiscent of

a fetal-like behavior (2–4, 19). Worsening fibrosis leads to portal
hypertension and related complications, such as variceal bleeding
and ascites, and young patients are generally disposed to develop
chronic cholangitis (2, 68, 69). Since effective pharmacological
treatments are currently lacking, the only curative approaches are
based on surgical interventions such as liver resection (in CD) or
liver transplantation when portal hypertension or recurrent acute
cholangitis lead to life-threatening complications (70).

Epithelial Immaturity of Dysgenetic Ducts
Is Characterized by an Overactivation of
the β-Catenin Signaling to Stimulate
Macrophage Recruitment
Recent findings suggest that in CHF, biliary fibrosis is the result
of a chronic, low-grade inflammatory response sustained by
macrophages and originating from FPC-defective cholangiocytes
akin to “parainflammation,” a process of adaptation to an
unrestrained cell dysfunction. When cell dysfunction is
persistent, the inflammatory response, unable to restore the
normal tissue homeostasis, becomes pathologic and can
ultimately lead to scarring (71). Interestingly, in a murine model
of CHF, the Pkhd1del4/del4 mouse, macrophages featuring the
inflammatory reaction showed a switch of polarization over
the disease progression. In fact, macrophages dominating the
peribiliary infiltrate in the early stages showed a preponderance
of proinflammatory iNOS+ M1 macrophages recruited from
the circulating precursors that gradually shift to a profibrotic
CD206+ M2 phenotype as the fibrosis progressed (72).
Notably, macrophage infiltration was driven by the hectic
secretory functions displayed by FPC-defective cholangiocytes
dependent upon an over-activation of the β-catenin signaling
(72). This perturbation resulted in an exuberant production
of several chemokines, in particular of chemokine (C-X-C
motif) ligand 1 (CXCL1), CXCL10, and CXCL12, directing the
progressive accumulation of macrophages in the pericystic area.
Macrophages in turn released TNF-α when M1-preponderant,
coupled with transforming growth factor (TGF) β while
enriching in M2, which further stimulated the de novo
expression of integrin αVβ6 by FPC-defective cholangiocytes.
Upregulation of integrin αVβ6, the local activator of latent TGFβ
(73), is a crucial mechanism in the peribiliary fibrosis that finally
leads to the recruitment of portal myofibroblasts and is actively
involved in the generation of the several components of the
fibrotic ECM, in particular fibronectin and collagen type I. Thus,
in Pkhd1del4/del4 mice, biliary fibrosis is initially promoted by
macrophages and involvement of portal myofibroblasts occurs
only in a later stage, when fibrosis worsens and associates with
the development of portal hypertension (72). The translational
significance of macrophage targeting in biliary fibrosis even when
related to CHF was confirmed by treating Pkhd1del4/del4 mice
with clodronate in vivo. Macrophage depletion was paralleled
by a significant reduction in portal fibrosis, which prevented
the establishment of portal hypertension (72). Of note, this
finding was reproduced in the cpk/cpk mice, another model of
ARPKD, where macrophage reduction was accompanied by a
decreased size of the epithelial cysts not only in the liver, but also

Frontiers in Medicine | www.frontiersin.org 5 April 2020 | Volume 7 | Article 115126

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cadamuro et al. Role of Macrophages in Cholangiopathies

in the kidney (74). Besides β-catenin, other signaling anomalies
contribute to the pro-inflammatory phenotype activated by
FPC deficiency. In fact, the epithelial secretion of CXCL10 is
further sustained through an autocrine loop in which the NLRP3
inflammasome complex, once activated, allows the secretion
of IL-1β that in turn stimulates CXCL10 secretion through the
phosphorylation and activation of the JAK/STAT3 signaling
(2, 75). Again, this mechanism is amenable to therapeutic
intervention since the in vivo treatment of Pkhd1del4/del4 mice
with AMG-487, an antagonist of CXCR3, the cognate receptor
for CXCL10, significantly reduced the extent of M2 infiltrating
macrophages together with a significant decrease in the fibrotic
and cyst areas (75). Figure 2 summarizes the sequence of events
unleashed by FPC inactivation in cholangiocytes, which results
in the progressive peribiliary accumulation of macrophages.

CCL2/MCP-1 Signaling Also Mediates
Macrophage Infiltration in Ciliary
Dysfunctions
As mentioned, cilium dysfunction represents a defining feature
of ductal epithelial cells in these conditions (thereby also
termed as “ciliopathies”) (76, 77). A crucial protein essential for
cilia formation is the intraflagellar transport 88 (IFT88) (78).
Inactivation of the Ift88 gene in mouse (IFT88Orpk mouse) leads
to liver cyst expansion associated with deposition of fibrosis,
which reproduces the liver phenotype of human ARPKD/CHF,
similarly to the Pkhd1del4/del4 mouse. This model is also
characterized by a massive accumulation of Ly-6Chi infiltrating

macrophages near the dysgenetic ducts, which preceded the
cyst growth and the onset of biliary fibrosis. Macrophage
recruitment was mediated by CCL2/MCP-1 expressed by
cholangiocytes harboring cilia dysfunction. Phenotyping of
peribiliary macrophages showed enhanced gene expression
of profibrotic and proinflammatory mediators including IL-
6, VEGF-A, TGFβ, and PDGF-B, which in turn directed
accumulation and activation of portal fibroblasts in a later
stage that promoted fibrosis progression (79). Notably, in this
model the genetic manipulation of CCL2 signaling obtained
by generating double KO IFT88Orpk/FBVCCR2−/− mice caused
a significant reduction in Ly-6Chi macrophages and in the
pericystic fibrosis, but did not affect liver cyst expansion (79).
The relevance of CCL2 signaling was confirmed further in
the PCK rat, another well-established rodent model ortholog
to the human fibropolycystic liver and kidney diseases. Upon
treatment with bindarit, a small molecule that inhibits CCL2
expression and activity, the PCK rat reported a reduction in
macrophage accumulation accompanied by an amelioration of
renal function, but without significant effects on both liver
and kidney cyst growth (80). These data are partially in
contrast with results obtained treating inducible Pkd1fl/fl;Pax8-
rtTA;TetO-Cremice with INCB3344, a specific CCR2 antagonist,
which showed a reduction of renal cyst enlargement (81).

Collectively, these findings suggest that different mechanisms

likely underpin epithelial cyst expansion and biliary fibrosis,
and confirm that monocyte-derived macrophages are key drivers
of fibrogenesis.

FIGURE 2 | In CHF (A), fibrocystin (FPC)-defective cholangiocytes gain an immature (fetal-like) phenotype characterized by an over-activation of the β-catenin

signaling. This enables cholangiocytes to secrete a range of pro-inflammatory chemokines (CXCL1, CXCL10, and CXCL12) and to express integrin αVβ6, the local

activator of latent TGFβ, a major driver of liver fibrogenesis. In particular, secretion of CXCL10 is sustained by an autocrine/paracrine loop where the activation of the

NLRP3 inflammasome stimulates the secretion of IL-1β via the JAK/STAT3 pathway (pale green cholangiocyte) that, in turn, enhances the production of CXCL10.

(A,B) The exuberant chemokine secretion by cholangiocytes orchestrates the peribiliary accumulation of macrophages, which are initially molded into the M1

phenotype (yellow) prevailing on the M2 (blue). (C) At a later stage, increase in M2 macrophages associates with the recruitment of myofibroblasts (brown), which

result in the progressive accumulation of peribiliary fibrotic tissue and in the progression of the disease.
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TABLE 1 | Anti-macrophage strategies used for in vivo treatments.

Drug Experimental model Mechanism of action Readouts and therapeutic effects

Cenicriviroc C57BL/6. Mdr2−/− mice CCR2 antagonist Reduction in peribiliary infiltration of monocyte-derived

macrophages. Improvement of fibrosis and cholestasis.

Clodronate DDC fed mice, Pkhd1del4/del4 mice

and cpk/cpk mice

Inhibitor of monocyte-macrophage

transdifferentiation

Reduction of tissue accumulation of M2 macrophages.

Significant decrease in fibrosis; reduction in epithelial

cyst size in liver and kidney.

AMG-487 Pkhd1del4/del4 mice CXCR3 antagonist

(CXCL10 receptor)

Reduction of the extent of CD45+ leucocytes (mainly M2

macrophages and CD4+ T cells). Decrease of the fibrotic

area extent and of the cyst size.

Genetic inhibition of

CCL2 signaling

Double KO IFT88Orpk/FBVCCR2−/−

mice

CCL2 signaling inhibitor Significant reduction of Ly6chi macrophages.

Improvement of fibrosis.

Bindarit PCK rat Inhibitor of CCL2 expression/activity Significant reduction of macrophage accumulation.

Amelioration of renal function.

INCB3344 Inducible Pkd1fl/fl;

Pax8-rtTA; TetO-Cre

mice

CCR2 antagonist Reduction of renal cyst enlargement.

CONCLUSIONS

Mouse models of biliary fibrosis developing in the context
of chronic cholangiopathies such as PSC and CHF have
revealed that macrophages, in particular the Ly-6Chi population
originating from the circulating compartment, hold a crucial
role, especially in the initial phase of fibrogenesis. In fact,
following an initial bile duct injury, macrophage infiltration of
the peribiliary area is an early event preceding the accumulation
of the more conventional fibrogenic cell type in the liver, i.e., the
portal myofibroblast, ultimately responsible for the deposition
of scarring ECM components in the portal area. Interestingly,
macrophages are instructed by pro-inflammatory mediators
(CCL2, IL-8, CXCL1, CXCL10, CXCL12) or EV-mediated DAMP
released by cholangiocytes owing to the gain of a senescent
phenotype (as in PSC) or the persistence of an immature, fetal-
like ciliary defective phenotype (as in CHF). It would be tempting
to speculate on the deep phenotypic similarities that senescence
and immaturity, as maturation stages at the opposite ends of
the cell life, share at the cholangiocyte level. On the other
hand, macrophages populating the peribiliary area show different
patterns of polarization over time in the two cholangiopathies.
Whilst in PSC, M1 macrophages become preponderant as the
disease progresses, in CHF theM1 phenotype dominates the early
infiltrate, and is then equated by M2 in a later stage. Nonetheless,
macrophages represent ideal targets for drug delivery given their
phagocytic functions, and experimental evidence is mounting
that their therapeutic targeting provides an attractive strategy
to ameliorate biliary fibrosis (21). Of note, this concept is
even more relevant in PSC and CHF, which are still orphan
diseases and are thus eagerly awaiting novel treatments among
cholangiopathies. The relevant therapeutic effects obtained by
targeting macrophages in animal models of PSC and CHF are
summarized in Table 1. Although these observations may serve
as a promising starting point for future therapeutic directions,
a number of challenges deserve consideration in future studies.
First, it will be important to have a deeper understanding of

the variable role of macrophages during disease progression,
in particular as it relates to the polarization switch, in order
to devise more specific macrophage-targeted interventions.
Second, it must be underlined that most data herein discussed
have been obtained in rodent models, and thus they need
translation to human settings. This is of utmost importance as
the heterogeneity of liver macrophages in humans is much less
investigated compared to mice. Generation of biliary organoids
from patient-derived liver biopsy or bile sample may offer a
significant asset to tackle this challenge (82). Finally, additional
pathogenetic factors such as microbiota and infections, which
are particularly relevant in both PSC and CHF, heavily influence
macrophage functions, and thus major efforts will be devoted to
address this area.
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Cholestatic liver diseases are a significant cause of morbidity and mortality and

the leading indication for pediatric liver transplant. These include diseases such as

biliary atresia, Alagille syndrome, progressive intrahepatic cholestasis entities, ductal

plate abnormalities including Caroli syndrome and congenital hepatic fibrosis, primary

sclerosing cholangitis, bile acid synthesis defects, and certain metabolic disease. Medical

management of these patients typically includes supportive care for complications of

chronic cholestasis including malnutrition, pruritus, and portal hypertension. However,

there are limited effective interventions to prevent progressive liver damage in these

diseases, leaving clinicians to ultimately rely on liver transplantation in many cases.

Agents such as ursodeoxycholic acid, bile acid sequestrants, and rifampicin have been

mainstays of treatment for years with the understanding that they may decrease or alter

the composition of the bile acid pool, though clinical response to these medications is

frequently insufficient and their effects on disease progression remain limited. Recently,

animal and human studies have identified potential new therapeutic targets which may

disrupt the enterohepatic circulation of bile acids, alter the expression of bile acid

transporters or decrease the production of bile acids. In this article, we will review bile

formation, bile acid signaling, and the relevance for current and newer therapies for

pediatric cholestasis. We will also highlight further areas of potential targets for medical

intervention for pediatric cholestatic liver diseases.

Keywords: pediatric, cholestasis, bile acid, bile acid receptor, treatments

INTRODUCTION

Causes of chronic liver injury in children include a wide variety of congenital and acquired
diseases. The primary cholestatic diseases of infancy and childhood are frequently symptomatic
and often rapidly progressive. These chronic cholestatic diseases that present in childhood include
biliary atresia (the most common cause of cholestatic liver disease in children), Alagille syndrome,
progressive familial intrahepatic cholestasis diseases (PFIC), bile acid synthesis defects, cystic
fibrosis related liver disease, ductal plate abnormalities including Caroli syndrome and congenital
hepatic fibrosis, primary sclerosing cholangitis (PSC), and certain metabolic diseases.
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Many patients ultimately require liver transplantation and
within the pediatric population, cholestatic liver diseases remains
the leading indication for pediatric liver transplant in the U.S,
accounting for nearly half of all pediatric patients listed for liver
transplant (1). For this article, we will review the formation
and secretion of bile and bile acid signaling with a highlight
on disease causing mutations, and review current and emerging
treatments that may potentially decrease cholestatic injury
and alter disease progression within pediatric cholestatic liver
diseases. A comprehensive review of supportive management
for cholestatic patients such as management of nutritional
deficiencies and symptomatic management of pruritus is beyond
the scope of this manuscript, though these are important to
patient outcomes.

CHOLESTASIS

Cholestasis describes an impairment in bile flow resulting in the
accumulation of the components of bile (bile acids, bilirubin,
cholesterol, and phospholipids) which often leads to clinical
symptoms and serum laboratory abnormalities. The production
of bile is influenced greatly by the enterohepatic circulation and
recycling of bile acids. The impediment to bile flow in cholestasis
may be due to obstructive causes (e.g., biliary atresia, obstructive
choledochal cysts, common bile duct obstruction) or secondary
to any impairment of appropriate synthesis or secretion of the
components of bile from the hepatocytes and cholangiocytes. The
formation of bile and its flow into the intestinal lumen serves both
as an excretory function of the liver within its role to metabolize
and detoxify substances, and as an aid in digestion of fat and
fat-soluble vitamins. When bile acids are retained within cells,
their detergent nature and induced signaling pathways can lead
to significant cell damage. The exact mechanism of injury in
human and animal models of cholestasis is likely multifactorial
(i.e., altered inflammatory responses, increased fibrinogenesis,
induction of apoptosis or autophagy) and may be different
depending on the precise nature of the injury, the setting of injury
(in vivo vs. in vitro) and the species incurring the injury; and these
detailed mechanisms of cholestatic injury have been reviewed
in detail elsewhere (2). Since bile acid synthesis and transport
occurs primarily within the hepatocytes and cholangiocytes, with
potentially high intracellular concentrations of bile acids, the liver
is the primary site of damage in settings of cholestasis.

BILE SYNTHESIS

Cholesterol is the precursor for the synthesis of bile acids.
Within the hepatocyte, cholesterol is converted into the primary
bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA)
in humans by a complex biochemical pathway involving a
number of different hepatic enzymes within the “neutral”
(classic) pathway or the “acidic” bile acid synthesis pathways.
In the initial and rate limiting step within the neutral pathway,
cholesterol is modified with the addition of a hydroxyl group
at the C-7 position by the microsomal cytochrome P450
liver-specific enzyme cholesterol 7α-hydroxylase (CYP7A1) (3,

4). In the acidic pathway, which contributes significantly to
the production of chenodeoxycholic acid, a mitochondrial
cytochrome P450 enzyme (sterol 27-hydroxylase, CYP27A1),
leads to an initial side-chain oxidation of cholesterol (5).
After these initial steps within the neutral or acidic pathway,
continued modifications occur culminating in the end products
of cholic acid or chenodeoxycholic acid. In the neutral
pathway, 12α-hydroxylation of products (by a liver specific
microsomal cytochrome P450 12α-hydroxylase, CYP8b1) directs
intermediates to the production of cholic acid, and therefore
is important in determining the ratio of the production of
cholic acid to chenodeoxycholic acid (6). Interestingly, the ratio
of cholic acid to chenodeoxycholic acid varies during human
development. Specifically, fetal bile has a predominance of
chenodeoxycholic acid with a ratio of cholic:chenodeoxycholic
acid of reportedly ∼0.85 suggesting altered activity of the
12a-hydroxylase enzyme, or alternative pathways of bile acid
production during fetal life (7). Neonates and adults have a
predominance of cholic acid but notably different ratios of
cholic:chenodeoxycholic acid of ∼2.5 and 1.6, respectively (7,
8).

After primary bile acids are produced, they are conjugated to
either glycine or taurine largely within peroxisomes (9). Several
congenital deficiencies in enzymes involved in the pathways
of bile acid synthesis have been described, broadly termed
bile acid synthesis defects (BASD). BASD include diseases that
are characterized by single enzyme defects (SED) in bile acid
synthesis pathway proteins, or diseases of peroxisome formation,
such as Zellweger spectrum disorders which can lead to the
accumulation of toxic bile acid intermediates and may present as
significant cholestasis in the newborn period (10). The newborn
infant has a predominance of taurine conjugated bile acids,
whereas older infants and adults have a predominance of glycine
conjugated bile acids (8, 11, 12). Additionally, significant species
variation exists with regards to specific bile acid biosynthesis,
metabolism, and the proportion of glycine or taurine conjugation
of primary bile acids which is important when evaluating effects
of potential bile acid altering drugs in animal models. For
example, humans produce primarily CA and CDCA as described
above, however mice predominantly produce muricholic acids;
and humans primarily form glycine conjugated bile acids (but
have the ability to form taurine conjugates), however, mice form
nearly exclusively taurine conjugates (12, 13). These differences
leads to a far less hydrophobic bile acid pool in mice (14). The
reader is referred to the excellent reviews of bile acid metabolism
in different species for more in depth review (2, 15).

Once conjugated, bile acids must be secreted into the
canalicular lumen to become a component of the bile that will
ultimately be excreted into the intestinal lumen. Bile acids are
secreted across the canalicular membrane via an ATP cassette
transporter known as the bile salt export pump (BSEP) which
is encoded by the gene ABCB11. Mutations in ABCB11 lead to
the disease PFIC type 2 in humans (16). After being secreted,
bile acids may undergo “cholehepatic” circulation, whereby bile
acids may be reabsorbed back across the cholangiocyte border
and transported back to hepatocytes or the portal circulation.
This proposed mechanism of “cholehepatic shunting” is likely
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particularly relevant for specific bile acid derivatives including
nor-ursodeoxycholic acid (17–20).

In addition to BSEP, there are several other specific
transporters at the canalicular membrane that are responsible for
excreting the other components of bile across this membrane.
Phospholipids, primarily phosphatidylcholine (PC), are secreted
via the multidrug resistance P-glycoprotein 3 in humans (MDR3,
gene ABCB4) which is known as mdr2 in mice (21, 22). While
homozygous mutations within ABCB4 may lead to PFIC type
3, patients with a mild phenotype or who are heterozygous for
mutations in ABCB4 have been found in increasing numbers
in several cholestatic conditions of adulthood including low
phospholipid-associated cholelithiasis syndrome (LPAC) and
intrahepatic cholestasis of pregnancy (ICP) (23, 24). PFIC type
1 disease in humans is caused by homozygous mutations with
the FIC1 protein (encoded by the ATPase member ATP8B1 gene)
which is located at the hepatocyte canalicular membrane, and
apical membrane of cholangiocytes and enterocytes (25). The
exact mechanism resulting in cholestasis secondary to ATP8B1
mutations remains unclear, however evidence suggests FIC1 is an
aminophospholipid transporter which regulates inner and outer
lipid content of the plasma membrane and if mutated may alter
the canalicular membrane integrity; additionally FIC1 mutations
may lead to alterations in the activity of the farnesoid X receptor
(FXR), a nuclear receptor critical to bile acid homeostasis (26, 27).
Additional mutations recently discovered in the tight junction
protein 2 (TJP2, gene TJP2), also known as zona-occludens 2,
can lead to progressive intrahepatic cholestasis and has been
referred to as PFIC4, however as more newly discovered causes
of inherited progressive cholestasis are discovered, naming of
the intrahepatic cholestasis diseases based on the mutated gene
rather than a numbering system initially developed at a time prior
to identification of the responsible mutations is superior.

Cholesterol is secreted via the heterodimer transporter
ABCG5/ABCG8 (genes ABCG5/ABCG8) also called sterolin, and
mutations in ABCG5/ABCG8 genes can cause sitosterolemia,
which has a varied clinical presentation including associated liver
disease (28, 29). Conjugated bilirubin and other glucoronidated
molecules are secreted via the multidrug resistance-related
protein 2 (MRP2, gene ABCC2), and mutations in ABCC2
lead to Dubin-Johnson syndrome (30). Rotor syndrome is
another disease characterized by a benign increase in conjugated
bilirubin, caused by simultaneous mutations in two members
of the OATP family (OATP1B1, gene SLCO1A2 and OATP1B3,
gene SLCO1B3) located on the hepatocyte sinusoidal membrane
which serve to reabsorb conjugated bilirubin (31).

Other components of bile such as water, bicarbonate,
chloride, and other electrolytes have an important role in bile
homeostasis and are regulated within cholangiocytes (32). The
membrane protein cystic fibrosis transmembrane conductance
regulator (CFTR, gene CFTR), a chloride channel important for
bicarbonate secretion into bile, is located on the apical membrane
of cholangiocytes, and the chloride/bicarbonate exchanger AE2
(gene SLC4A2) is on the apical membrane of cholangiocytes
and on the canalicular membrane surface (33). Mutations within
CFTR lead to cystic fibrosis and cystic fibrosis related liver
disease (CFRLD). AE2 knock-out mice develop a phenotype

TABLE 1 | Cholestatic diseases associated with bile transport and signaling.

Disease

(inheritance)

Protein involved Gene(s)

PFIC 1 (AR) FIC1 ATP8B1

PFIC 2 (AR) BSEP ABCB11

PFIC 3 (AR) MDR3 ABCB4

PFIC disease due to TJP2

mutations (PFIC4) (AR)

TJP2 TJP2

PFIC disease due to FXR

mutations (PFIC5) (AR)

FXR NR1H4

Bile acid synthesis defects

(BASD) (AR)

*varies (single enzymes,

peroxisome proteins)

*varies based on

disease

Sitosterolemia (AR) Sterolin

(ABCG5/ABCG8)

ABCG5/G8

Dubin-Johnson syndrome (AR) MRP2 ABCC2

Rotor syndrome (AR) OATP1B1/ OATP1B3 SLCO1A2,

SLCO1B3

Cystic fibrosis related liver

disease (AR)

CFTR CFTR

Alagille syndrome (AD) *Notch signaling

pathway

JAG1, NOTCH2

Caroli syndrome/congenital

hepatic fibrosis (associated with

ARPKD) (AR)

fibrocystin PKHD1

AR, autosomal recessive; AD, autosomal dominant. *Multiple.

similar to the adult cholestatic liver disease primary biliary
cholanigitis (PBC) (34). Bile flow and water composition is aided
by water channels or aquaporins (AQP) within the cholangiocyte
membranes as well (33).

Additionally, mutations leading to abnormalities in the
normal development of the biliary system can lead to
cholestasis as occurs in Alagille syndrome and ductal plate
malformations. Alagille syndrome is an autosomal dominant,
multisystem disorder that frequently involves the liver, classically
characterized by bile duct paucity on pathology, and is caused
by mutations in Jagged1 (JAG1) or Notch2. Ductal plate
malformations refer to cholangiopathies associated with the lack
of normal development and remodeling of the intrahepatic
bile ducts that occurs along the branches of the developing
portal vein. These include entities such as Caroli syndrome and
congenital hepatic fibrosis which are most commonly associated
with autosomal recessive polycystic kidney disease (ARPKD),
secondary to mutations in the gene PKHD1 which encodes
fibrocystin (35). A list of these discussed cholestatic diseases
associated with bile transport and signaling can be found in
Table 1.

ENTEROHEPATIC CIRCULATION

After the production and conjugation of primary bile acids
within the hepatocytes, these compounds are then secreted
along with the other components of bile into the intestine
where they are ultimately metabolized by bacterial enzymes into
secondary bile acids. Cholic acid and chenodeoxycholic acid are
deconjugated and then may be dehydroxylated into deoxycholic

Frontiers in Medicine | www.frontiersin.org 3 May 2020 | Volume 7 | Article 149134

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kriegermeier and Green Pediatric Cholestasis Current and Emerging Therapies

FIGURE 1 | Enterohepatic circulation of the components of bile.

(DCA) and lithocholic acid (LCA), respectively, which constitute
the majority of bile acids excreted into the feces in humans
(33, 36, 37). Ursodeoxycholic acid (UDCA)may also be produced
from the epimerization of CDCA, but generally is found at low
concentrations in humans (38, 39). While 3–5% of bile acids
are excreted in the feces, the majority of primary and secondary
bile acids are reabsorbed in the terminal ileum and return to
the liver via the portal vein where they are again excreted
via the process known as enterohepatic circulation (40). The
hydrophobicity of bile acids affects their solubilization properties
(detergent effects) and therefore their deleterious effects on cell
membranes, cell signaling, as well as their influence on choleresis
(41). The hydrophilic bile acid UDCA and its taurine conjugate,
tauroursodeoxycholic acid (TUDCA), are weaker detergents and
do not cause significant membrane/cellular toxicity whereas LCA
is very hydrophobic and cytotoxic (42).

Bile acid uptake occurs at the enterocyte via the apical
sodium-dependent bile salt transporter (ASBT) also known as
the ileal bile acid transporter (IBAT) encoded by the gene
SLC10A2 (43, 44). ASBT is also found on the luminal membrane

of large bile ducts and the gallbladder (33). ASBT transports
conjugated bile salts into the enterocyte, which interact with
ileal bile acid-binding protein (I-BABP) within the cytosol (45).
Bile acids are then exported across the basolateral membrane
via a heteromeric transporter, organic solute transporter alpha
and beta (OSTα-OSTβ). In addition to the enterocytes of
the terminal ileum, OSTα-OSTβ is located on the basolateral
membrane of hepatocytes and cholangiocytes as well as several
other tissues and can function to export bile acids from
the hepatocyte back to the sinusoidal blood if necessary (33,
46). At the hepatocyte basolateral membrane, bile acids are
then transported from the sinusoidal blood into the cell via
the sodium-taurocholate cotransporting polypeptide (NTCP)
primarily in humans, but also by members of the anion
transporting polypeptide family (OATP) in mice (47, 48). They
are then excreted once more into bile, thus completing the
enterohepatic circuit (Figure 1). During cholestatic conditions,
the hepatocyte basolateral membrane also has pumps that serve
to efflux bile acids back into the sinusoidal blood including
MRP3 (encoded by gene ABCC3) and MRP4 (encoded by gene
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ABCC4), in addition to OSTα-OSTβ as mentioned above (49).
A in depth review of bile acid enterohepatic circulation with a
significant focus on intestinal metabolism of bile acids can be
found elsewhere (50).

BILE ACID-ACTIVATED RECEPTORS AND
REGULATION OF BILE ACID SYNTHESIS
AND FLUX

In addition to the greater understanding of the recirculation of
bile acids, over the past 20 years there have been several receptors
identified as bile acid activated receptors (BAR) that are activated
by bile acids and that have significant effects on the regulation of
bile acid synthesis and metabolism. Most notably, the discovery
of the first BAR, farnesoid X receptor (FXR), has led to dramatic
reshaping of the understanding of the tight regulation of this
process. FXR (encoded by the NR1H4 gene—nuclear receptor
subfamily 1, group H, member 4) is a nuclear hormone receptor
that influences bile acid synthesis by forming a heterodimer with
retinoid X receptor (RXR) and binding directly to the regulatory
elements (FXR-responsive elements, FXR-RE) of its target genes,
as well as by regulating the downstream transcription factor small
heterodimer partner (SHP) (51–54). Mutations in NR1H4 may
lead to another phenotype of progressive intrahepatic cholestasis
in children that has been referenced as PFIC5 previously,
but are better described as cholestasis secondary to NR1H4
mutations (55).

After activation by bile acids, FXR regulates several aspects of
bile acid trafficking and production. FXR induces the expression
of SHP which binds another receptor, LRH-1 (liver receptor
homolog 1), preventing it from interacting with promotor
regions on both CYP7A1 and CYP8B1, therefore negatively
regulating bile acid synthesis within the hepatocyte (56). FXR
also regulates the release of fibroblast growth factor-19 (FGF-
19) (FGF-15 in mice) from ileal enterocytes which travels via the
portal circulation to the hepatocytes and binds the FGF receptor
FGFR4 and β-Klotho (KLB), another transmembrane protein
that functions as a co-receptor required for FGF-19 binding in the
liver (57). Within the liver, FGF19 signaling suppresses bile acid
synthesis by repressing CYP7A1 expression (58). In the presence
of bile acid-mediated FXR activation in the ileum, SHP activation
leads to decreased expression of ASBT, through repression of
LRH-1 resulting in decreased bile acid update by the ileum (59).

FXR, through SHP, represses the expression of NTCP and
OATP which consequently reduces the reuptake of bile acids
from the portal circulation back into the hepatocytes (60).
Additionally, FXR increases the transcription of the BSEP gene
ABCB11 (61, 62). The net effect of FXR activation is therefore
to promote bile acid excretion and reduce bile acid update,
helping to maintain homeostasis within the hepatocyte. On the
hepatocyte basolateral side, FXR activation leads to increased
expression of OSTα/β, MRP3, and MRP4 which in the setting of
cholestasis can efflux bile salts from the basolateral surface of the
hepatocyte to reduce intracellular bile acid concentrations and
therefore mitigate the toxic effects of bile acids to the cell (46, 63).

In addition to FXR, there are several other bile-acid activated
receptors including the liver X receptor (LXR), the pregnenolone
X receptor (PXR; known as steroid and xenobiotic receptor
or SXR in humans), the vitamin D receptor (VDR), and the
constitutive androstane receptor (CAR). PXR is activated by LCA
and likely serves to reduce bile acid toxicity via its regulation
of CYP7a1 and other cytochrome p450 enzymes, OATP2, and
MRP2 (64–66).

An alternative family of receptors known as the G-protein-
coupled receptor family, the most notable of which is GPBAR1
also known as TGR5 (previously also referred to as M-BAR),
are also able to bind bile acids (specifically secondary bile
acids) (67–69). TGR5 (GPBAR1) has several cell-signaling and
immunoregulatory effects within liver disease due to its presence
on Kupffer cells and natural killer (NK) cells. Additionally,
through its expression on sensory nerves, TGR5 (GPBAR1) may
have a role in regulating pruritus (70–72).

The structure and conjugation of each bile acid affects its
hydrophobicity which influences the ability to activate the
different receptors discussed above. CDCA is the most potent
naturally occurring ligand of FXR followed in strength by DCA
= LCA > CA (69, 73, 74). Secondary bile acids (LCA and DCA)
are potent activators TGR5 (GPBAR1) (68, 69).

In addition to bile acid receptor regulation of bile acid
synthesis, other pathways regulating bile acid synthesis have been
discovered recently. The unfolded protein response (UPR) is
an adaptive cellular response pathway to endoplasmic reticulum
(ER) stress that functions to regulate protein homeostasis, but
can also trigger apoptosis. Activation of the UPR has been
described in several liver diseases including fatty liver disease,
viral hepatitis, and cholestasis (75, 76). However, more recently
animal and in vitro data has shown that the UPR pathways
function to reduce ER stress and hepatic injury as well as
regulate bile acid synthesis and transport, and that activation
of FXR in turn also influences the UPR (77). ER stress has
been demonstrated to suppress CYP7A1-dependent production
of bile acids independently of FXR regulated pathways, and
to alter the expression of the bile acid transporters BSEP and
MRP3 (78, 79).

MEDICAL MANAGEMENT OF PEDIATRIC
CHOLESTASIS

Historically, pediatric chronic cholestasis due to all causes has
primarily been managed symptomatically. Pediatric patients
with cholestatic liver diseases frequently suffer from significant
symptoms and complications including poor growth secondary
to fat malabsorption, fat soluble vitamin deficiencies, hepatic
osteodystrophy, and complications related to progressive portal
hypertension such as ascites and gastrointestinal bleeding.
Significant chronic pruritus is common in several of the
genetic syndromes and a significant cause of major morbidity.
Agents such as ursodeoxycholic acid, bile acid sequestrants,
and rifampicin have been the mainstays of treatment for years
with the understanding that they may promote choleresis
or alter the composition of the bile acid pool. However,
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TABLE 2 | Current and potential medical therapies in pediatric cholestatic liver diseases.

Therapy Proposed mechanisms of action Pediatric disease with a favorable outcome reported

in animal models (*or human subjects)

UDCA More favorable bile composition, increased expression of BA

transporters, reduced apoptosis

*PSC at standard doses, *PFIC3

Nor-UDCA Increased choleresis, cholehepatic shunting, and bicarbonate

secretion

PSC and PFIC3 (mdr2−/− mouse), CFRLD, A1AT

Cholic acid Decrease synthesis of toxic bile acid intermediates *BASD (approved for use in BASD 2015)

Rifampin PXR agonist, altered gut flora

Bile acid sequestrants Increased fecal BA secretion; increased hydrophilic BA,

decreased inflammation and fibrosis; increased biliary

proliferation

PSC and PFIC3 (mdr2−/− mouse)

Chemical chaperones Improved trafficking of transport proteins to membrane

surface

*PFIC1, *PFIC2, A1AT, CFRLD

ASBT inhibitors Increased fecal BA secretion PSC and PFIC3 (mdr2−/− mouse), *PSC, *PBC, *ALGS

FXR and TGR5 agonists Suppressed BA synthesis, increased BA secretion across

canalicular membrane

PSC and PFIC3 (MDR2–/– mouse) *PBC

FGF19 analogs Suppressed BA synthesis *PSC

Anti-inflammatory/Anti-fibrotic therapies,

hepatocyte or stem-cell transplants

CCR2/CCR5 inhibition, multiple anti-inflammatory/anti-fibrotic

pathways

Rat fibrosis model, PFIC3 (mdr2−/− mouse), Biliary atresia

(RRV mouse model)

patient response to these medications is frequently insufficient
and data to show that they alter disease progression in
most conditions remains lacking. Patients frequently require
high calorie supplemental formulas to improve malnutrition
secondary to fat malabsorption and antihistamines and other
medications to aid in pruritus management and sleep. Fat soluble
vitamin levels should be monitored closely and repleted if
required, though deficiencies may be difficult to correct (80, 81).
However, in light of the improved understanding of the intricate
signaling pathways involved in BA metabolism, newer strategies
are being developed and considered for treatment that hope to
alter disease progression. It is also likely that with amore nuanced
understanding of the underlying etiologies of patients with
cholestasis, combination therapies tailored to specific patients
may be employed. The following paragraphs and Table 2 will
highlight the current, and potential future medical therapies for
pediatric cholestatic liver diseases.

URSODEOXYCHOLIC ACID (UDCA)

Ursodeoxycholic acid, a hydrophilic bile acid, has been used
for decades for intra-hepatic and extra-hepatic cholestatic
diseases in childhood. Although originally approved for gallstone
dissolution, it is considered first-line therapy for the adult disease
primary biliary cholangitis (PBC) and has been shown to improve
long term outcomes including reduction in the risk of death
or need for liver transplant for PBC patients (82). However,
strong data showing long term improvement in outcomes in
pediatric chronic cholestatic diseases is lacking. By enriching the
BA pool with hydrophilic UDCA, this treatment was originally

thought to decrease the toxic effects that hydrophobic bile acids
may exert on cells in the setting of cholestasis, however it has
been proven that the size of the hydrophobic bile acid pool
remains the same with UDCA treatment despite improvements

in cholestasis (83). UDCA has been shown to promote choleresis,

and alter the expression of the BA transporter BSEP and also
MDR3 (84, 85). Part of the choleretic effect of UDCA may be
secondary to increased chloride and bicarbonate secretion from
the cholangiocytes (86, 87). UDCA may also function to reduce
apoptosis via its beneficial effects on mitochondrial membrane
stabilization (88, 89). Taurine conjugated UDCA (TUDCA) has
been demonstrated to reduce ER stress in obese mice and may
also impact the bile acid pool (90). Finally, UDCA may function
to reduce immunoglobulin and cytokine production, making it
potentially beneficial in decreasing inflammatory consequences
of cholestasis (91, 92). Notably, much of this work has been
performed in vitro and in rodent models and the full range
of effects in human disease are still uncertain. In adults with
PSC, there were several studies that showed improvement in
biochemical markers on UDCA (on doses between 10 and
15 mg/kg/day), but failed to show improvement in long term
outcomes (93–96). Additionally a trial using high dose UDCA
(28–30 mg/kg/day) for the treatment of adult PSC lead to
improved liver biochemical markers, but significantly increased
the risk of serious events including portal hypertension, death
and liver transplantation compared to placebo (97). The current
AASLD guidelines for adults recommend against the use of
UDCA in PSC as a medical therapy (98). However, pediatric
patients with PSC are not the same population as adult patients
and it is important to evaluate the use of UDCA in these
patients separately. Retrospective studies in children with PSC
have shown improved biochemical markers after treatment with
more standard dosing of UDCA, and while no improvement in
long term outcomes specific to UDCA has been found in any
of these studies, patients who are treated with UDCA are more
likely to have normalization of biochemical markers which is a
predictor of improved long term outcomes (99–102). A recent
pilot trial (NCT01088607) investigating withdrawal and then
reinstitution of UDCA in pediatric PSC was completed in 2017,
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which showed approximately 1/3 of patients had no significant
change in labs with withdrawal of UDCA, while 1/3 of patients
met criteria for a disease flare with withdrawal of UDCA, though
long term differences in these 2 subsets were not reported (103).
This suggests that there may be a subset of patients who have
biochemical evidence of UDCA response, and that those patients
may have improved outcomes arguing for continuation of UDCA
in these patients. For patients with PFIC, particularly PFIC3,
UDCA may be effective at improving pruritus and laboratory
values in a majority of patients, however there are no proven long
term benefits on disease progression (104). A recent Cochrane
review of the use of UDCA in cystic fibrosis related liver disease
found that there was no evidence regarding its effects on long
term outcomes, and no strong evidence of its effectiveness in this
disease (105).

Despite this lack of strong evidence in favor of its use,
given the low side effect risk profile of standard dose UDCA
(10–20 mg/kg/day), it is often employed in cases of pediatric
chronic cholestasis.

24-NORURSODEOXYCHOLIC ACID
(NorUDCA)

NorUDCA is similar to UDCA but has a shortened side chain
and is a potent choleretic agent (18, 106). It strongly induces
bicarbonate secretion into bile, and is relatively resistant to
amidation (conjugation) (unlike UCDA which is conjugated to
glycine or taurine). It decreases the amount of phospholipid and
cholesterol secretion relative to bile acids in bile (18). Given
that NorUDCA is resistant to amidation, it undergoes extensive
“cholehepatic” circulation, the proposed process where bile acids
are absorbed across the cholangiocyte canalicular boarder and
transported back to the portal circulation and hepatocytes where
they can be re-secreted. This likely contributes to the significant
induction of bicarbonate secretion and cholangiocyte choleresis
seen with NorUDCA (17). In several rodent models of liver
disease, including the mdr2(−/−) mouse model of PSC and
PFIC3, NorUDCA has been shown to be more effective than
UDCA in preventing liver disease progression, and there is
some evidence that NorUDCA may have anti-fibrotic effects
(107, 108). In the CFTR knockout mice mouse model of
cystic fibrosis, NorUDCA leads to increased biliary bicarbonate
and fluid secretion (20). In a study using a mouse model of
A1AT deficiency, NorUDCA lead to decreased accumulation
of misfolded protein, and improvement in liver disease likely
through increased autophagy mechanisms (109, 110). A study of
NorUDCA in adult patients with PSC demonstrated significant
reduction in alkaline phosphatase levels and an excellent safety
profile, and there is a phase 3 clinical trial currently enrolling
patients as young as 16 years of age (NCT03872921) (111). Given
these features, NorUDCA may prove to have increased utility
in several pediatric liver diseases including cystic-fibrosis related
liver disease, A1AT deficiency, and PSC, however, future studies
are needed.

CHOLIC ACID

Bile acid synthesis disorders (BASD) are a group of raremetabolic
diseases that are characterized by single enzyme defects (SED)
in bile acid synthesis pathway proteins or Zellweger spectrum
disorders (ZSDs). Oral cholic acid was approved for use in
BASD in 2015 and has been shown to decrease synthesis of
toxic bile acid intermediates, and improve histologic features on
liver biopsy in certain patients with BASD (112, 113). Though
some patients treated with cholic acid in an open label study
continued to have disease progression, it is proposed that these
patients had advanced liver disease prior to starting treatment
and that for patients newly diagnosed with these rare diseases,
if therapy is initiated promptly, disease progression can be halted
and liver transplantationmay be avoided (112). This is in contrast
to UDCA which does not satisfactorily reduce atypical bile acid
intermediates in BASD, and when given in combination therapy
with cholic acid did not provide additional benefit and may have
decreased cholic acid efficacy (113). Given these outcomes, cholic
acid is one of the few effective medical therapies for a pediatric
chronic cholestatic disease shown to alter disease progression and
should be considered for BASD.

RIFAMPICIN

Rifampicin is an antibiotic frequently used off-label in pediatric
and adult patients with cholestatic pruritus (114, 115).
Rifampicin is a strong agonist of the nuclear receptor PXR,
which induces hepatic transport proteins and metabolic
enzymes including “detoxifying” cytochrome P450s. This may
explain some of its efficacy in the pruritus associated with
cholestasis, although the exact pruritogenic agents remain
unclear. Activation of PXR may mitigate bile acid toxicity via
its suppression of CYP7a1, and induction of OATP2 and MRP2
expression, and by increasing CYP3A enzyme activity which
functions to further detoxify bile acids via hydroxylation and
urinary excretion (85). Though some studies have actually
shown increased CYP7a1 activity in humans with treatment of
rifampicin (contrary to the in vitro data), these studies have also
shown a decrease in secondary, hydrophobic bile acids (LCA
and DCA). Therefore, alternative explanations for a reduction in
pruritus may include alterations of intestinal flora which alters
production of secondary bile acids, or additional excretion of
other possibly pruritogenic compounds via increased expression
of MRP2 or other liver canalicular membrane transporters
(85, 116, 117). Rifampicin has been associated with drug-
induced hepatitis, however, and therefore pediatric patients with
cholestatic liver disease should be monitored routinely if this
medication is prescribed (118). However, as it is generally well-
tolerated it is still frequently employed for pruritus management
in pediatric patients but additional studies may be helpful to
elucidate any disease modifying benefits.

BILE ACID SEQUESTRANTS

Cholestyramine and colesevelam are bile acid sequestrants that
are also frequently used off label for the treatment of pediatric
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cholestatic pruritus but are also lacking strong data that they
influence any long term outcomes related to chronic liver disease
in pediatric patients (119). Although these drugs were initially
developed for treatment of hypercholesterolemia, by binding
bile acids they can enhance fecal bile acid secretion, and can
be effective for some patients with pruritus (120). Notably,
treatment with colesevelam significantly reduced inflammation
and fibrosis in in an animal model of PSC and PFIC 3 (mdr2−/−

mice) through several proposed mechanisms including increased
hydrophilic hepatic/biliary bile acids, and increasing colonic
resin bound BA which are more abundant TGR5 ligands, which
raises the possibility of specific benefits of bile acid sequestrants
in PSC and PFIC3 outside of simply treating pruritus (121). This
study also proposed a possible benefit of improved appropriate
cholangiocyte proliferation in the setting of injury which may
prevent progression to ductopenia, raising the possibility that
it may potentially be beneficial in other ductopenic diseases
including Alagille syndrome. Further well-controlled pediatric
studies in specific cholestatic diseases are required. As bile acid
sequestrants have been used off label for decades in pediatrics,
they are generally considered safe but are not uncommonly
associated with GI side effects including constipation, bloating,
and abdominal discomfort. Additionally, their poor palatability
often makes compliance an issue within the pediatric population
and long term use of bile acid sequestrants can lead to fat
malabsorption and fat soluble vitamin deficiencies so these need
to be monitored in patients while on therapy.

CHEMICAL CHAPERONES AND
ENDOPLASMIC RETICULUM (ER) STRESS
MODULATORS

For pediatric cholestatic liver diseases secondary to genetic
mutations that alter the functionality of the canalicular transport
proteins, chemical chaperones that may aide in protein folding
and increase functional protein delivery to membranes are
potentially therapeutic. 4-phenyl butyrate (4-PBA), has been
used for treatment of hyperammonemia secondary to urea cycle
defects given its nitrogen scavenging properties. However, it is
also a chemical chaperone that may bind to areas of misfolded
protein, preventing aggregation, enhance proper protein folding,
and therefore increasing delivery of such proteins to their
target locations (122). 4-PBA has been shown to decrease
markers of endoplasmic reticulum stress and reduce cell death
in animal models of several diseases and as such its benefits
may be multifactorial (123–125). Case reports in patients with
PFIC 1 and 2 have suggested improvement in symptomatic
pruritus after 4-PBA treatment and have even demonstrated
increased trafficking of the BSEP and FIC1 protein to the
canalicular membrane in other studies (126–130). 4-PBA in
cell and mouse models of A1AT deficiency have demonstrated
improved secretion of A1AT mutant protein from cells, however
a preliminary small human study did not show increased
serum levels of A1AT after 14 days of oral 4-PBA therapy
(131, 132). Treatment also lead to side effects in several
patients including nausea, vomiting and elevated uric acid
levels. Chemical compounds developed to enhance CFTR folding

may also improve trafficking of FIC1 to canalicular membrane
surfaces and therefore may be a potential therapeutic option for
multiple hepatic diseases (133). Rodent disease models of type
2 diabetes have shown that treatment with TUDCA reduced ER
stress and likely improves protein folding capacity (90). It should
be noted, that there are case reports of potential significant side
effects of 4-PBA including severe hepatotoxicity and psychiatric
disease (134, 135). Additionally, patients who have mutations
other than missense mutations that lead to decreased protein
trafficking may not benefit from these types of drugs. However,
the prospect of chaperone and ER stress modulators is an
area of potential new therapeutic targets and further studies
are warranted.

APICAL SODIUM DEPENDENT BILE ACID
TRANSPORTER (ASBT) INHIBITION

Given its essential role in the enterohepatic circulation of
bile acids, the ASBT is a potential therapeutic target for
cholestatic diseases. Animal work has previously demonstrated
that treatment with ASBT inhibitors reduced total bile acid
composition, and improved liver chemistries and fibrosis in
mdr2−/− mice (136, 137). There have been several studies
looking at the ASBT inhibitor maralixibat (LUM001) or
linerixibat (GSK2330672) in adults with both PSC and PBC
(NCT02061540, NCT01904058) (138). Diarrhea and other GI
symptoms were commonly reported with these drugs, and
while some studies showed improvements in itching, others
lacked significant differences in itching scores. Several studies
demonstrated improvement in bile acids, and one study
demonstrated modest improvement in biochemical features of
disease such as bilirubin and alkaline phosphatase, though this
changes were not clearly clinically meaningful and there is no
evidence that these ASBT inhibitors altered the long-term natural
history of PBC or PSC in these trials.

A double-blind, placebo-controlled phase 2b study of
pediatric patients with Alagille syndrome reported no significant
differences in adverse events between maralixibat and placebo
and no significant changes in serum bile acids or liver chemistries
compared to patients who received placebo, which suggests
this drug appears safe for use in pediatric patients (139).
While this study failed to show a significant decrease in itch
measurements between all drug doses and placebo, there was a
significant decrease in the subset of patients taking the 2 lower
doses of the drug (139). Notably, this study was only able to
randomize 6 patients to the arm with the highest maralixibat
dosing, and the limited patient size may have contributed to
the negative results. Phase 2, 3, and long term safety/efficacy
studies of the ASBT inhibitor maralixibat (LUM001) are
ongoing at different centers internationally in pediatric patients
with cholestatic liver diseases including but not limited to
PFIC and Alagille syndrome (NCT02057718, NCT02047318,
NCT02117713, NCT02160782, NCT04168385, NCT03905330,
NCT04185363). Another ASBT inhibitor, odevixibat (A4250) is
currently undergoing a phase 3 study in pediatric patients with
PFIC type 1 and 2 (NCT03566238, NCT03659916).
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Most of these studies are primarily evaluating improvement
in clinical symptoms such as pruritus or improvement in serum
laboratory values including serum bile acids, but they may
help determine if patients also have some long term benefit
such as decreased rate of transplant or increased survival with
native liver.

FXR AND TGR5 (GPBAR1) AGONISTS

Given its extensive influence on the regulation of bile acids, FXR
agonists have been developed for the treatment of cholestasis.
The first synthetic FXR ligand GW4064 was extensively studied
in animals, but had low bioavailability and was not pursued for
human drug development. However, a semisynthetic derivative
of CDCA (6-ethyl-CDCA), now commonly referred to as
obeticholic acid (OCA), was developed and has an FXR agonist
potency that is 100-fold greater than CDCA (140, 141). OCA
has been studied in adults, primarily with primary biliary
cholangitis (PBC) and has been shown to improve serum alkaline
phosphatase levels in patients who did not tolerate or who did not
have an adequate response to UDCA, but also increased pruritus
in a high proportion of patients (142–144). In addition, OCA
may be potentially beneficial in non-alcoholic steatohepatitis,
although it can cause dyslipidemia and may worsened insulin
resistance. In adults, OCA is now approved for patients with PBC
with an inadequate response or intolerance to UDCA, but is also
being studied in adult patients with non-alcoholic steatohepatitis
(NASH), PSC and other liver disorders.

Additionally, a second generation FXR agonist (INT-767) has
been developed that is reported to be a 3-fold more potent FXR
ligand than OCA and is also a TGR5 (GPBAR1) ligand. In the
mdr2(−/−) mouse model of PSC and PFIC3, INT-767 treatment
lead to improved biliary fibrosis and hepatic inflammation as well
as induced bicarbonate rich bile production which was superior
to improvements seen in selective FXR and TGR5 (GPBAR1)
treatments alone (145). Given the presence of TGR5 (GPBAR1)
on Kuppfer and immune cells as described above, this may be an
additional pathway by which bile acid receptor ligands may serve
to mitigate the effects of chronic cholestasis.

Trials of additional non-bile acid FXR modulators (cilofexor
and tropifexor) are ongoing in adults with PBC, PSC, and
NASH and preliminary human trials indicate that they may
have potential therapeutic benefits with less side effects including
pruritus (146–148). Given these promising studies in adults,
particularly those that show improved fibrosis markers, future
trials in pediatric cholestatic liver diseases involving FXR
and TGR5 agonists and other bile acid receptor ligands may
be considered.

FGF19 ANALOGS

FXR activation promotes the release of ileal FGF19 (the
human homolog of murine FGF15) which suppresses bile acid
synthesis by repressing CYP7A1 expression and therefore FGF19
analogs may be a potential therapeutic target for pediatric
cholestatic liver diseases. However, there are concerns that
FGF19 over-expression in mice lead to hepatocellular carcinoma,

and concerns about a potential risk of the development
of cholangiocarcinoma in cholestatic biliary diseases (149).
However, an FGF19 analog which reportedly is not tumorigenic
has been developed prompting increased interest for human
use (150). This purportedly non-tumorigenic FGF19 analog
(NGM282) has been evaluated in adult PSC patients and reduced
serum BA levels as well as ALT/AST values, but did not decrease
alkaline phosphatase levels (151). Promisingly, there were also
decreased serum biomarkers of hepatic fibrosis, however the
study may not have been of sufficient duration to demonstrate
if there were any long term improvements in these patients.
Studies are ongoing with this treatment in patients with PBC
and also NASH and potential use in children may be considered
pending new safety and efficacy data. It is important to note that
FXR agonists can also induce endogenous FGF19 production.
In addition, since carcinogenetic stimuli may have a long
latency period prior to tumor formation, concerns regarding any
tumorigenic potential of FGF19 may require long-term safety
studies in order to more definitively demonstrate its safety.

ANTI-INFLAMMATORY AND
ANTIFIBROTIC AGENTS

Given the often rapidly progressive nature of fibrosis and fibro-
inflammatory liver damage inmany pediatric cholestatic diseases,
agents that specifically reduce inflammation and hepatic fibrosis
are desirable. Unfortunately, the limited number of clinical trials
that have attempted tomodulate fibro-inflammatory responses in
biliary atresia, specifically with corticosteroids and intravenous
immunoglobulin, have not demonstrated any improvement
in outcomes (152, 153). In adults, there are active clinical
studies looking at modulation of several fibrosis signaling
pathways. Cenicriviroc (CVC) aims to prevent recruitment
of monocytes, macrophages, lymphocytes, and hepatic stellate
cells via dual CCR2/CCR5 inhibition. CVC has previously
demonstrated improved inflammatory and fibrosis makers in a
rat thioacetamide-induced liver fibrosis model and a diet induced
NASH mouse model (154). Though this are not cholestatic
models of liver disease, the improvement in fibrosis may still
be relevant and current studies are ongoing in adults with liver
disease (NCT02217475). If effective, these agents can be studied
in pediatric cholestatic diseases with significant hepatic fibrosis,
particularly biliary atresia.

HEPATOCYTE TRANSPLANT, STEM CELL
INFUSIONS, AND GENE THERAPIES

Hepatocytes that could repopulate the liver with fully functional
cells would be helpful not only in pediatric cholestatic liver
diseases but also in several non-cholestatic and adult liver
diseases. In one study specifically related to pediatric cholestatic
liver disease, splenic injection of mdr2−/− mice with MDR3-
expressing hepatocytes while on a standard diet lead to modest
improvement in phospholipid excretion in mice, but did lead
to histologic improvement of disease and appeared to decrease
the development of hepatic tumors (155). A more recent study
with the mdr2−/− mouse infused via the portal vein with
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mdr2+/+ hepatocytes had improved engraftment rates with
concomitantly given glyceryl trinitrate (a vasodilator) (156).
Prior work with BSEP knout out mice (a model of human PFIC
2) had also demonstrated favorable outcomes after wild-type
hepatocyte transplantation (157). However, in most humans with
cholestatic diseases treated with hepatocyte transplantation the
effects have been less encouraging than in animal studies. A
review nearly 15 years ago reported the use of infused hepatocytes
in pediatric patients with PFIC 2 without improvement in
disease, though apparently no significant complications (158).
This study also summarized outcomes in several other liver-based
metabolic diseases (though not primarily cholestatic diseases)
with hepatocyte transplantation which had variable rates of
success and may be of interest to the reader (158). A follow-up
study to this one which reviewed outcomes in these same patients
that progressed to need liver transplantation months after
hepatocyte transplant demonstrated no evidence of engraftment
of donor hepatocytes into liver cell plates on explanted livers
(159). Though advances have been made over the years, the
field of human hepatocyte transplantation as a therapy for liver
diseases is still working to optimize cell quality/storage, increase
engraftment rates, and allow for long term monitoring of these
cells. A recent review of the current status of human hepatocyte
transplantation for liver diseases and cirrhosis can be found
elsewhere (160, 161).

Stem cell infusions for patients with liver disease has been
proposed to alter hepatic inflammation and fibrosis which makes
it a possible favorable treatment for pediatric cholestatic liver
diseases. Additionally, if autologous stem cells are used then
there would not be a requirement for immunosuppression
(unlike hepatocyte transplantation). In a mouse model of biliary
atresia, animals were given bone marrow-derived mesenchymal
stem cells via intraperitoneal injection and the authors reported
significantly improved AST, ALT, total and direct bilirubin along
with improved histologic features and markers of hepatic fibrosis
14 days later (162). There is a case report of human hepatic
progenitor cells being infused through the hepatic artery for a
1 year old patient with reported biliary atresia which reported
improvement in several lab values including bilirubin at 2
months post-infusion (163). They reported they had followed
the patient for at least 6 months after infusion, however no
further laboratory values after 2 months post infusion or long-
term patient outcome was reported in this case report. A study
out of India of 26 patients with biliary atresia gave 11 patients
an infusion of autologous mononuclear bone marrow stem cell
infusion via the hepatic artery or portal vein at the time of
their operative evaluation +/− Kasai surgery for biliary atresia
(2/11 patients did not receive Kasai surgery due to severity of
portal hypertension at time of diagnosis) while the remaining
15 patients received standard care (2/15 patients did not receive
Kasai due to severity of portal hypertension at time of diagnosis)
and then followed patients for at least 1 year or until death (164).
The authors report a significant decrease in post-operative serum
bilirubin with the use of stem cell infusion compared to the
group without stem cell infusion at 7 d post-operatively and 6
months post-operatively. However, it is notable that in the cohort
of patients that did not receive the stem cell infusions there were

significantly more episodes of cholangitis which may accelerate
the hepatic decline in biliary atresia and may be a confounding
factor in this study, and also there was a high mortality rate
in this series and no significant difference in median post-
operative survival time, though the authors proposed the stem
cell infusions may have prolonged life in early infancy. There
is also currently an open-label trial (NCT03468699) enrolling
patients 1–15 years old with cirrhosis secondary biliary atresia
after undergoing Kasai portoenterostomy where treatment
will include 2 administrations of autologous bone marrow
mononuclear cells infused via the hepatic artery. Excellent
reviews of the use of variable stem cell therapies for a variety
of pediatric and adult liver diseases are available elsewhere (165,
166).

Given the prevalence of diseases with known, single-gene
mutations within the field of chronic pediatric cholestasis, gene-
editing technologies are an attractive future therapeutic option.
There have been human subjects treated with CRISPR edited T
cells and hematopoietic stem and progenitor cells and clinical
trials are ongoing (NCT03399448, NCT03745287). While there
are no current studies underway with pediatric cholestasis,
CRISPR/Cas-9 gene-editing or and other prime editing tools may
offer promise for future gene editing therapies for patients with
single gene or other known mutations.

CONCLUSION

Chronic cholestatic liver diseases are a significant cause of
morbidity and mortality within the pediatric population and
there is a notable lack of specific medical therapies that
improve outcomes in these patients. However, the past few
decades a new understanding of the intricate signaling pathways
involved in bile acid metabolism and transport has led to novel
targets for treating these diseases in pediatric patients. These
include strategies to limit cytotoxicity by changing the bile
pool hydrophobicity, enhancing protein folding, altering the
expression of bile acid and other liver and ileal transporters
to promote choleresis, enhancing hepatic detoxifying enzymes,
disrupting the enterohepatic circulation of bile acids and
decreasing the production of bile acids. Other strategies can
target signaling pathways to decrease inflammation and fibrosis
in liver diseases, and potential future gene editing therapies may
be promising for identified gene defects. Based on our ever
increasing and more nuanced understanding of the underlying
etiologies of specific patient genotypes and phenotypes with
pediatric cholestasis, combination therapies tailored to specific
patients may be employed in the future. However, additional
studies are warranted to elucidate potential therapeutic agents in
humans that are effective, and also have favorable tolerability and
low risk of long-term side effects.
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Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and

progresses to non-steatohepatitis (NASH) when the liver displays overt inflammatory

damage. Increasing evidence has implicated critical roles for dysbiosis and microbiota-

host interactions in NAFLD pathophysiology. In particular, microbiota alter intestine

absorption of nutrients and intestine permeability, whose dysregulation enhances the

delivery of nutrients, endotoxin, and microbiota metabolites to the liver and exacerbates

hepatic fat deposition and inflammation. While how altered composition of gut microbiota

attributes to NAFLD remains to be elucidated, microbiota metabolites are shown to be

involved in the regulation of hepatocyte fat metabolism and liver inflammatory responses.

In addition, intestinal microbes and circadian coordinately adjust metabolic regulation

in different stages of life. During aging, altered composition of gut microbiota, along

with circadian clock dysregulation, appears to contribute to increased incidence and/or

severity of NAFLD.

Keywords: circadian, microbiota, metabolic diseases, NAFLD, inflammation, reprogramming

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease
worldwide. There are 25% of population in the world suffering from NAFLD, including children,
adolescents, and elderly (1). NAFLD is characterized by hepatic steatosis. When exhibiting
inflammatory damage and fibrosis in addition to steatosis, NAFLD progresses to non-alcoholic
steatohepatitis (NASH), the advanced form of NAFLD. As supported by the results from various
epidemiological and clinical studies, NASH is a causal factor of terminal liver diseases including
liver cirrhosis and hepatocellular carcinoma. Unhealthy nutrition-related metabolic disorders,
such as central obesity, insulin resistance, dyslipidemia, and hypertension are closely associated
with NAFLD (2). Although the etiology and progression of NAFLD remain to be elucidated,
growing studies indicate that, additional to insulin resistance and inflammation, gut microbiota,
and circadian rhythmicity of hepatic metabolic genes are considered to play key roles in the
pathogenesis of NAFLD (3, 4).

The gut microbiota is composed of huge numbers of microbes. Half century ago, it was
discovered that the toxicity of Escherichia coli’s endotoxin fatality rate was determined by the
administering time of endotoxin (5). This phenomenal finding and others led to validation
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that the microbiota colonized within the gastrointestinal
tract undergoes circadian oscillations, which influence the
composition and function of gut microbiota (6, 7). For instance,
the diurnal interaction between oscillating hosts and their gut
microbiome affect the circadian clock activities in other tissues
and organs (8, 9), which in turn critically regulate host’s metabolic
homeostasis (10).

It has been accepted that the intestine and the liver are
closely linked. This link is manifested by that gut microbiota
and its metabolites play critical roles in the pathogenesis of
NAFLD. Also, circadian rhythmwas reported tomaintain hepatic
glucose and lipid metabolic homeostasis through regulating gut
microbiota balance. In this review, we focused on the regulation
of gut microbiota in relation to hepatic lipid metabolism and liver
function, the alterations of gut microbiota in NAFLD, and the
effects of microbiota metabolites on the development of NAFLD.
Furthermore, we evaluated the relationships among circadian
clock, gut microbiota, and metabolic disease (in particular
NAFLD). We also summarized the effects of intestinal microbes
on regulating metabolism through reprogramming circadian
clock. Lastly, we summarized the effects of the interplays between
intestinal microbes and circadian on metabolism and NAFLD
aspects in different stages of life.

GUT MICROBIOTA AND LIVER
PATHOPHYSIOLOGY

Many studies have revealed that gut microbiota dysbiosis is
linked to NAFLD (11, 12). The composition of gut microbiota
varies from simple steatosis to NASH, fibrosis, and cirrhosis.
Therefore, gut microbiota may be useful as predictors for NAFLD
progression and severity (13, 14). Gut microbiota is capable
of fermenting indigestible carbohydrates, resulting in important
metabolites, such as short-chain fatty acids. The gut microbiota
can also ferment tryptophan to generate other metabolites such
as indole and indole derivatives. Animal studies and human
studies have shown that these metabolites have beneficial effects
on preventing against and/or alleviating obesity and NAFLD
(15, 16). Understanding the mechanisms of how gut microbiota
and metabolites are involved in NAFLD pathophysiology can
inspire us to find out potential strategies to prevent or
treat NAFLD/NASH. Recent advances in understanding the
crosstalk between the gut and the liver pertinent to NAFLD
pathophysiology is summarized in Figure 1 and detailed below.

Influences of the Gut on Liver Metabolism
The intestine digests foods and absorbs nutrients. The liver
receives nutrients from the intestine. As such, there are many
metabolic events exhibiting the crosstalk between the gut and
the liver. For instance, gut hormones participate in hepatic
metabolism. In response to feeding, glucagon-like peptide 1
(GLP-1), which is secreted by the L cells of the small intestine,
stimulates pancreatic β islet cells to produce insulin. Also, GLP-1
acts on GLP-1 receptor, present on human hepatocytes, to reduce
hepatic glucose production and ameliorate hepatic fat deposition
and insulin resistance (17). The release of intestinal GLP-1

enhances energy expenditure, which is associated with increases
in the peripheral utilization of triglycerides (TG) for energy
production, and reduces hepatic steatosis in mice fed a high-fat
diet (HFD) (18, 19). Insulin-like peptide 5 (INSL5), which is also
an L cell-derived gut hormone and regulated by gut microbiota,
is reported to influence hepatic glucose production. Compared
to that in conventionally raised (CONV-R) mice, the expression
of INSL5 in the gut was 80-fold higher in germ-free (GF) mice
and 20-fold higher in antibiotics-treated mice. The importance
of INSL5 in regulating metabolism is further supported by
the finding that INSL5−/− mice exhibited decreased hepatic
glucose production due to, in part, decreased expression of
gluconeogenic enzymes such as glucose-6-phosphatase (G6Pase)
and phosphoenolpyruvate carboxykinase (PEPCK) (20). In
addition, glucose-dependent insulinotropic polypeptide (GIP),
another gut hormone that is released from K cells located
in the duodenum and proximal jejunum, regulates glucose
homeostasis and lipid metabolism (21). Indeed, GIP appears to
inhibit glucagon-stimulated hepatic glucose production through
an indirect way (22). There is evidence suggesting that GIP
influences hepatic insulin resistance and steatosis via regulating
myeloid-cell-derived S100A8/A9 (23). Fibroblast growth factor
15 and 19 (FGF15 and FGF 19), which are also from the gut, were
reported to ameliorate HFD-induced hepatic fat accumulation
and ER stress (24). In particular, FGF 19 promoted hepatic
glycogen and protein synthesis (25), reduced inflammation and
fibrosis in liver injury mouse model through downregulating
the expression of cholesterol 7α-hydroxylase (CYP7A1) and
sterol-27-hydroxylase (CYP27A1) and thereby inhibiting bile
acid synthesis (26).

Additional to gut hormones that regulate hepatic metabolism
and inflammation, gut microbiota is associated with the
development of NAFLD (27). For instance, gut permeability and
small intestinal bacterial overgrowth are increased in patients
with NAFLD compared with those in health controls. In this
case, the increased gut permeability caused by alteration of
intercellular tight junction likely contributes to the development
and progression of NAFLD (28–30). Inflammation promotes
the development of simple steatosis into NASH. In NAFLD,
impaired intestinal barrier caused by nutrition stress increases
the translocation of microbes and their products into the blood,
leading to hepatic inflammation and even fibrosis/cirrhosis
(31). Gut-derived antigens in the circulation are considered as
major causing factors of strong inflammatory responses in the
liver. Although intestinal permeability is not the main cause
of liver inflammation and fibrosis, due to increased intestinal
permeability, the inflammatory responses to microbial antigen
strongly influence the progression of the disease.

Gut-derived bacterial products, such as lipopolysaccharides
(LPS) and unmethylated CpG DNA, activate the signaling
pathways involved in liver inflammation and fibrogenesis
through stimulating innate immune receptors, e.g., Toll-like
receptors (TLRs). In NASH patients, hepatic and serum TLR4
is significantly increased. Thus, high serum levels of TLR4
are considered as a bio-marker for liver fibrosis development
(32). In a study involving TLR4-mutant mice, the results
indicated that TLR4 was required for fructose to induce NAFLD.
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FIGURE 1 | The crosstalk between intestine and liver in the pathophysiology of NAFLD. Certain intestine hormones, e.g., GLP-1 and GIP, reduce hepatic glucose

production and fat accumulation. In L cells, secondary BAs stimulate GLP-1 synthesis and release via TGR5 activation whereas primary BAs activate FXR to inhibit

GLP-1 synthesis and release. Other intestine hormones, e.g., FGF15 and FGF19, decrease hepatic lipogenesis. BAs stimulate FXR in ileal enterocytes, leading to the

release of FGF15/19 into circulation. After reaching to hepatocytes, FGF15/19 suppresses BA synthesis through inhibiting CYP7A1 expression. Increased gut

permeability, altered composition of gut microbiota, and elevated levels of gut microbiota metabolites such as ethanol are shown to enhance hepatocyte fat deposition

and increase the flow of LPS into the circulation to promote proinflammatory responses through activating TLR4 signaling pathway in target cells. In hepatocytes,

certain primary BAs acts through activating FXR to suppress the activity of SREBP-1c and thus reduces the expressions of lipogenic genes. Primary BAs also inhibit

CYP7A1 expression and thus reduces BAs synthesis. Certain secondary BAs inhibit the activation of hepatic FXR. In addition to activation of FXR, BAs are shown to

regulate hepatic lipid and sterol metabolism through activating S1PR2. Certain gut microbiota metabolites such as SCFAs and indole reduce hepatocyte fat deposition

and proinflammatory responses via decreasing TNFα and IL-1β and/or activating PPARα, AMPK, and Nrf2.

Compared with fructose-fed wild type mice, fructose-fed TLR4-
mutant mice exhibited reduced hepatic fat accumulation, lipid
peroxidation, inflammation, insulin resistance, and plasma
ALT levels. This indicates the involvement of gut-derived
endotoxin in the development of fructose-induced NAFLD
(33). A similar study revealed that hepatic specific TLR4
deletion protected mice from fatty liver induced by 5% alcohol
diet via decreasing the expression of hepatic inflammatory
cytokines and endogenous lipogenesis (34). Saturated fatty
acids (SFA) such as palmitate can activate proinflammatory
signals through TLR4, inducing IL-1β and TNF-α production,
as well as enhancing ROS production in hepatic infiltrating
macrophages (35). Mechanistically, TLR4 promoting of the
progression from simple steatosis to NASH involves in increases
in ROS-dependent activation of X-box binding protein-1 (XBP-
1) in Kupffer cells (36). TLR4 also is shown to induce
transforming growth factor β (TGFβ) signaling pathway, activate
hepatic stellate cell and increase extracellular matrix deposition,
which all contribute to the progression of liver fibrosis (37).
Moreover, gut microbiota and TLR4 appear to be required
for the promotion of hepatocellular carcinoma (HCC), whose

pathogenesis is enhanced by chronic liver inflammation and
fibrosis (38).

More specific mechanisms of fat deposition and inflammation
in the liver, caused by the alterations of gut permeability and
barrier-induced infiltration of bacteria and bacteria products,
involve increased signaling through nuclear factor kappa-light-
chain-enhancer of activated B cells (NFκB) or c-Jun-N-terminal
kinase (JNK), as well as increased levels of tumor necrosis factor
alpha (TNFα) (39). Activation of NFκB in hepatocytes increased
the production of cytokines and resulted in the recruitment
and activation of Kupffer cells to mediate inflammation in
the progression of NASH. Activation of NFκB induced the
expression of TNFα, Fas ligand (FasL), and TGFβ, which
contributed to fibrosis in NASH (40). Disruption of NFκB p65
in mice ameliorated HFD-induced hepatic steatosis and insulin
resistance (41). JNK can be activated by diverse stimuli, such as
cytokines, FFAs, reactive oxygen species (ROS), pathogens, and
toxins. Activation of hepatic JNK decreased the expression of
PPARα target genes and FGF21, up-regulated cytokines such as
TNFα and interleukin-1 (IL-1), and promoted insulin resistance
in liver (42).

Frontiers in Medicine | www.frontiersin.org 3 July 2020 | Volume 7 | Article 361149

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jiang et al. Microbiota and NAFLD

Regulation of Gut Microbiota by Hepatic
Bile Acids
Primary bile acids (BAs), produced in the liver from cholesterol,
serve as an emulsifier for lipid digestion in the intestine. Primary
BAs become secondary BAs after being metabolized by intestinal
flora. BAs are associated with the establishment of the gut
microbiota; given that bile salts have anti-bacteria effects and only
bacteria that are resistant to bile salts can survive in the intestine
(43, 44). The antimicrobial actions of BAs are likely attributable
to that BAs cause bacterial cell membrane damage through
dissolving membrane lipids and dissociating membrane proteins.
BAs also disturb macromolecular stability, such as misfolding
or denaturing protein and inducing DNA damage and oxidative
stress (44). Moreover, in human, chenodeoxycholic acid (CDCA)
and cholic acid (CA), which are primary bile acids, as well as
deoxycholic (DCA) and lithocholic acid (LCA), which are the
predominant forms of secondary bile acids, activate the nuclear
receptor farnesoid X receptor (FXR) to induce the expression of
genes that are responsible for inhibition of microbial overgrowth
and intestinal mucosal damage (45). It is known that BAs play an
important role in regulating the composition of gut microbiota
in response to diet. When mice consumed a Western diet,
the profiles of BAs were altered, which increased Firmicutes,
decreased Bacteroidetes, and disturbed the ecological balance of
microbes (46). A similar study using FXR-deficient mice upon
HFD feeding also revealed that the abundance of Firmicutes
was increased and the abundance of Bacteroidetes was reduced.
The profiles of BAs were featured by increased levels of primary
bile acids such as beta-muricholic acids (βMCA) and taurine-
conjugated beta-muricholic acids (TβMCA) and decreased levels
of secondary bile acids such as ωMCA, hyodeoxycholic acid
(HDCA), and hyocholic acid (HCA) (47). A rapid increase in
the gut BAs pool (35 out of 42 quantified BAs) was observed in
mice upon HFD feeding within 12 h, and an alteration in gut
microbiota composition occurred at 24 h. Treatment of chow
diet-fed mice with glycine-conjugated cholic acid (GCA) and
taurine-conjugated cholic acid (TCA) increased obesity-related
microbial population and brought about obese phenotype.
Inhibition hepatic BAs synthesis in HFD-fed mice ameliorated
HFD-induced dysregulation of microbial composition (48). In
NASH-HCC mouse model, HFD accelerated the incidence of
liver tumors, which was accompanied with increased the levels of
hepatic BAs, including GCA, TCA, and taurochenodeoxycholate
(TCDCA). The changes in gut microbiota were correlated with
altered levels of BAs in the liver, suggesting that high hepatic
BAs are associated with the dysregulation of gut microbiota and
the development of HCC (49). Compared with those in healthy
controls, fecal total and secondary BAs (LCA and DCA) were
lower while primary BAs (CA and CDCA) were higher in patients
with advanced cirrhosis. Patients with advanced cirrhosis also
exhibited higher levels of Enterobacteriaceae and lower levels
of Lachonospiraceae, Ruminococcaceae, and Blautia. Therefore,
the amounts of primary and secondary BAs are associated with
the population of key gut microbiota during the pathogenesis of
cirrhosis (50). There also is evidence indicating that feeding mice
high-saturated fats (from milk), compared to polyunsaturated

fats or chow diet, resulted in alterations of BAs composition
with increased levels of TCA and changes in gut microbiota
with enhanced the abundance of Bilophila wadsworthia (51). IL-
10−/− mice on chow diet treated with TCA for a week exhibited
higher abundance of Bilophila wadsworthia, which showed the
similar results found in milk fat fed mice (52).

Modulation of Bile Acid Metabolism by Gut
Microbiota
Gut microbiota regulates the metabolism of BA synthesis.
Compared with GF mice, the BA pool (mainly for conjugated
and unconjugated βMCA) in CONV-Rmice was reduced by 71%.
The composition of BAs between CONV-R and GF mice was
quite different in the cecum and colon. In the liver, CONV-R
mice had higher levels of TCA and TαMCA and lower levels
of TβMCA, compared with GF mice. The expression and
activity of CYP7A1, which is a rate-limiting enzyme in BA
synthesis in the liver, were downregulated in CONV-R mice.
Furthermore, in FXR-deficient CONV-R mice, the levels of
CYP7A1 were not decreased in the liver. Treatment of GF mice
with FXR agonist INT-747 reduced the level of hepatic CYP7A1.
These findings suggest that gut microbiota suppresses CYP7A1
expression in the liver in an FXR-dependent manner. Ileum
FGF15 was involved in the regulation of CYP7A1 expression
through FXR signaling. Treatment of CONV-R mice with
antibiotics (bacitracin, neomycin, and streptomycin) suppressed
FGF15 expression in ileum and enhanced the expression of
CYP7A1, thus increasing the levels of primary BAs (TCA and
TβMCA) and decreasing the levels of secondary BAs (DCA
and ωMCA) (53). Besides regulating CYP7A1, gut microbiota
also affects other key enzymes in the alternative pathway of
BA synthesis such as oxysterol 7α-hydroxylase (CYP7B1) and
CYP27A1 (45). In addition, gut microbiota not only regulates BA
synthesis, but also modulates BA conjugation and reabsorption.
Bile acid acyl-CoA-synthetase (BACS), which catalyzes taurine
conjugation in BAs in the liver and apical bile acid transporters
in the ileum, were downregulated in CONV-R mice (53). In
a human study for chronic hepatitis B, the levels of total
and primary BAs (TCDCA, GCDCA, GCA, and TCA) were
upregulated in hepatitis B patients with moderate/advanced
fibrosis, accompanied with downregulation of gut microbiota
(such as Bacteroides and Ruminococcus) responsible for BAs
metabolism (54). Trimethylamine N-oxide (TMAO), which is a
metabolite produced by gut microbiota from choline, stimulated
the expression of CYP7A1 in the liver, increased the serum levels
of BAs and promoted FXR-antagonistic BAs (55).

Altered Composition of Gut Microbiota
During NAFLD
The composition of gut microbiota is altered during NAFLD. For
instance, Lactobacillus species and some phylum Firmicutes such
as Lachnospiraceae, genera, Dorea, Robinsoniella, and Roseburia
were high in obese patients with NAFLD (56). Additionally,
non-obese patients with NAFLD exhibited increased phylum
Bacteroidetes and gram-negative bacteria and decreased
Firmicutes including short-chain fatty acids-producing
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and 7α-dehydroxylating bacteria compared with healthy
controls (57). When dietary choline was deficient, the levels of
Gammaproteobacteria and Erysipelotrichi were correlated with
the changes of fat accumulation in the liver. Gut microbiota
such as Gammaproteobacteria and Erysipelotrichi can serve
as a predictor for choline deficiency-induced fatty liver (58).
Compared with that in NAFLD and healthy controls, higher
abundance of Fusobacteria and Fusobacteriaceae was observed
in NASH patients (59). Gut microbiota is related to advanced
fibrosis in NAFLD. In bothmild/moderate NAFLD and advanced
fibrosis, the abundance of Firmicutes and Bacteroidetes is much
higher. Proteobacteria is higher in advanced fibrosis, while
Firmicutes is higher in mild/moderate NAFLD. Eubacterium
rectale and Bacteroides vulgatu are rich in mild/moderate
NAFLD, while B. vulgatus and Escherichia coli are rich in
advanced fibrosis (60). Different steatosis in NAFLD patients
exhibit differential compositions of gut microbiota. The
abundance of Bacteroidetes is lower and the abundance of C.
coccoides is higher during steatosis with inflammation and/or
fibrosis, compared to simple steatosis (61). The composition of
gut microbiota predicts the severity of NAFLD. Bacteroides is
significantly higher in NASH and is independently associated
with NASH, whereas Ruminococcus is higher in significant
fibrosis (14).

Microbiota Metabolites in the
Pathophysiology of NAFLD
In addition to gut microbiota, microbiota metabolites also
influence the pathophysiology of NAFLD. As it is established,
microbial products derived from fermentation of dietary fiber
and protein can affect liver metabolism and the development
of NAFLD (62). Microbial metabolites are different during the
progression from NAFLD to fibrosis. In advanced fibrosis, 3-
phenylpropanoate, generated from anaerobic bacteria, is the
mostly increased metabolite (63). Further analyses of proteins
and enzymes indicate that the enzymes related to lactate, acetate,
and formate are enhanced in mild/moderate NAFLD whereas
the enzymes associated with butyrate, D-lactate, propionate,
and succinate are increased in advanced fibrosis (60). The
following microbiota metabolites are investigated mostly and
closely related to NAFLD.

Short Chain Fatty Acids
Indigestible carbohydrates are fermented by gut microbiota and
generate short chain fatty acids (SCFAs) such as acetate, butyrate,
and propionate. Pectin, which is one of the soluble dietary
fibers, is reported to prevent NAFLD in HFD-fed mice. Pectin
increases acetic acid and propionic acid, as well as the levels
of Bacteroides, Parabacteroides, Olsenella, and Bifidobacterium
in the gut of HFD-fed mice (64). Gut-derived SCFAs such as
propionate and acetate are metabolized by the liver and alter
hepatic glucose and lipid metabolism (16). Serum metabolomics
reveals that the serum levels of butyric acid and propionic
acid were decreased in patient with NAFLD (65). Also, down-
regulation of SCFA-producing bacteria contributes to increased
energy intake and HFD-induced hepatic steatosis (66). Butyrate
is reported to maintain intestinal mucosal health, including

serving as a fuel source and regulating the immune system
(67). There is evidence suggesting that butyrate ameliorates
HFD-induced NAFLD and NASH via restoring the dysbiosis
of gut microbiota and improving gut barrier (68), activating
peroxisome proliferator-activated receptor alpha (PPARα) in the
liver, suppressing hepatic inflammation and enhancing GLP-
1R expression (69, 70). Moreover, butyrate-producing probiotic
reduces hepatic lipid accumulation and inflammatory responses
and improves hepatic insulin resistance via activating AMP-
activated protein kinase (AMPK), AKT, and the expression of
nuclear factor erythroid 2-related factor 2 (Nrf2) in rats with
NAFLD (71). As supported by the results from a study involving
G protein-coupled receptor 41 (GPR41)-deficient and GF mice,
SCFAs binding to GPR41 may account for the regulation of
gut microbiota, thereby host fat accumulation (72). Another
study indicated that SCFAs acted through downregulating the
expression levels of NLPR3, apoptosis-associated speck like
proteins (ASC), and Caspase-1 to decrease inflammation in a
manner involving G protein-coupled receptor 43 (GPR43) (73).
Also, supplementation of SCFAs reduces hepatic fat deposition
and inflammation by decreasing the activities of fatty acids
synthases, increasing lipid oxidation via activation of AMPK,
and suppressing the expression hepatic inflammatory cytokines
such as interleukin-6 and TNFα (74, 75). SCFAs may also act
through stimulating the release of GLP-1 to bring about beneficial
effects on reducing fat accumulation and increasing insulin
resistance (76).

Ethanol
Gut microbiota dysbiosis increases intestinal ethanol levels,
which is associated with the progression of NAFLD. In patients
with NASH, elevated ethanol-producing bacteria increased blood
ethanol concentrations that are considered to be the reason of
enhanced oxidative stress and inflammation in the liver (77),
through increasing gut permeability, decreasing gut barrier, and
increasing the levels of LPS in the intestine. Similar mechanisms
also lead to increased transportation of endotoxin to the liver
(78). In addition, ethanol has a direct harmful effect on the liver,
leading to steatosis, steatohepatitis, and fibrosis (79). Ethanol
stimulation of hepatic fat accumulation is likely attributable to
increased production of acetate, a substrate for the synthesis
of fatty acids. In ob/ob mice, a model of obesity and NAFLD,
the levels of intestinal bacteria-derived ethanol are increased. In
addition, treatment of ob/ob mice with antibiotics ameliorates
ethanol-induced fat deposition and inflammation in the liver
(78). There are different microbes responsible for ethanol
production responding to different carbohydrates from diet.
Most of ethanol is produced by S. cerevisiae, L. fermentum, and
W. confusa after consumption of glucose, whereas the highest
amount of ethanol is produced by S. cerevisiae and W. confusa
after consumption of fructose. Therefore, inhibition of these
microbes may be a viable strategy to reduce ethanol production
and, thereby preventing NAFLD, NASH, or fibrosis (80).

Bile Acids
Primary BAs are synthesized by the liver whereas secondary
BAs are metabolized by gut microbiota. As such, BAs are also
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considered microbiota metabolites. After its metabolism by
gut microbiota, BAs return to the liver via the enterohepatic
circulation through transporters on ileal enterocytes and
hepatocytes. BAs regulate BA homeostasis, glucose and lipid
metabolism through FXR signaling in hepatocytes, ileal
enterocytes, and colonic L cells. Primary BAs such as CDCA,
CA, T(G)CDCA, and T(G)CA are FXR agonists. In the liver,
FXR activation by BAs inhibits expression of the CYP7A1. In
ileum, FXR activation induces the expression of FGF15/19,
which goes to the liver and also inhibits the expression of
CYP7A1 and suppresses BA synthesis. In colonic L cells, FXR
activation suppresses the synthesis and release of GLP-1 (81).
Some BAs are reported to be FXR antagonists, such as UDCA
(secondary BAs in human) and Tα/βMCA (primary BAs in
mice). Secondary BAs such as LCA and DCA act as signal
molecules to regulate energy homeostasis, insulin signaling,
and inflammation via Takeda G-protein-coupled receptor 5
(TGR5) in colon, adipose tissue, muscle, and bone marrow
(12). A study revealed that TGR5 activation improved glucose
tolerance, increased energy expenditure, and decreased hepatic
steatosis in HFD-induced obese mice (18). Altering BA profiles
via diet, probiotics, medication, or surgery is reported to reverse
obese-related metabolic phenotypes such as NAFLD/NASH
through modifying BA composition. The latter involves
appropriate regulation of hepatic metabolism through FXR and
metabolisms in other tissues through TGR5 (82). For example,
TGR5 activation by secondary BAs (such as LCA and DCA) in
colonic L cells stimulated the synthesis and release of GLP-1,
which inhibited glucose production and fat accumulation in
hepatocytes. In patients with NAFLD, the serum levels of primary
and secondary BAs were high, which were accompanied with
decreased activation of FXR, fibroblast growth factor receptor
4 (FGFR4)-mediated signaling and serum levels of FGF19.
In addition, secondary BAs were increased in the intestine of
patients with NAFLD via enhancing the metabolism of taurine
and glycine (83). In patients with NASH, de novo biosynthesis
of bile acids in the liver was increased compared with that in
healthy controls. Furthermore, increased de novo biosynthesis
of bile acids may be closely associated with gut microbiota
dysbiosis in NASH (84). CA was reported to prevent hepatic
lipid accumulation and VLDL secretion via activation of FXR
to suppress the activity of SREBP-1c and thus downregulate the
expression of lipogenic genes (85). In addition to activation of
FXR, conjugated-BAs were shown to regulate hepatic lipid and
sterol metabolism through activating sphingosine-1 phosphate
receptor 2 (S1PR2) to trigger ERK1/2 signaling pathway, which
directly or indirectly modulates transcription of many genes such
as CYP7A1, SREBP1c, and ApoB-100 (86). S1PR2 activation was
also associated with reducing macrophage infiltration, which
is the characteristic in NASH and fibrosis (87). Of note, BAs
and the gut microbiota closely interact with each other. On
the one side, BAs directly suppress bacteria growth in the gut
through the anti-bacterial effects of BAs. On the other side,
certain intestinal bacterial such as L. monocytogenes encode
bacterial bile salt hydrolase (BSH), which in turn degrades BAs
and helps bacteria to resist BAs (44). Interestingly, up-regulating
BSH in conventionally raised mice reduces weight gain, plasma

cholesterol, and liver triglycerides by regulating the transcription
of genes related to lipid and cholesterol metabolism such as
peroxisome proliferator-activated receptor gamma (PPARγ),
ANGPTL4, and ABCG5/8 (88). Therefore, reducing BAs by
modulating gut microbiota appears to be a viable strategy to
improve NAFLD.

Indole and Indole Derivatives
As a bacterial degradation product of tryptophan, indole
exerts powerful anti-inflammatory effects on immune cells and
enterocytes (89). Subsequently, there are studies that have
explored the effects of several indole derivatives as it relates to
NAFLD. In a mouse model with HFD-induced NAFLD, Choi
et al. examined the effects of indole-3-carbinol (I3C) on NAFLD
phenotypes and attributed the anti-steatotic effect of I3C, at least
in part, to decreased expression of lipogenic genes (15, 89–91).
Similarly, two recent studies have shown that treatment with
indole-3-acetate (I3A) alleviated NAFLD phenotypes inmice (92,
93). At the cellular level, I3A decreased hepatocyte production of
palmitate, which was weakened by inhibition of aryl hydrocarbon
receptor (AhR, a proposed receptor that mediates indole actions)
(92). Moreover, I3A decreased hepatocyte mRNA levels of fatty
acid synthase (FAS) and SREBP1c, a key transcription factor
of lipogenic gene expression (94, 95), implying that I3A has a
suppressive effect on hepatic lipogenesis. Consistent with the
anti-NAFLD effects of indole derivatives, indole, per se, has also
been validated to ameliorate diet-induced NAFLD phenotype in
mice. Specifically, treatment of HFD-fed mice with indole, via
intraperitoneal injection, for 9 weeks caused significant decreases
in HFD-induced insulin resistance, hepatic steatosis, and liver
inflammation (93). The mechanisms underlying the beneficial
effects of indole are attributable to that indole reduced HFD-
induced expression of hepatic lipogenic genes such as SREBP-1,
steraroyl coenzyme decarboxylase 1 (SCD1), PPARγ, acetyl-CoA
carboxylase1 (ACC1), and glycerol-3-phosphate acyltransferase,
mitochondrial (GPAM), decreased the hepatic levels of reactive
oxygen species (ROS) and lipid peroxidation product such as
malonaldehyde, enhanced the activity of superoxide dismutase
(SOD), and reduced hepatic macrophage infiltration, monocyte
chemoattractant protein-1 (MCP1) and TNFα levels (93).

The relevance of indole to human NAFLD has been
recently revealed, for the first time, in the study by Ma et al.
In a cohort of 137 Chinese subjects, the circulating levels of
indole were significantly lower than those in lean subjects
and were reversely correlated with liver fat content (96).
In parallel, the data from mice with diet-induced NAFLD
further reveal that the hepatic levels of indole in HFD-fed
mice were significantly lower than those in control mice.
These two lines of evidence enabled the scientific premise for
examining the effect of indole supplementation on alleviating
NAFLD phenotype. As expected, oral supplementation of
indole caused significant decreases in the severity of HFD-
induced hepatic steatosis and inflammation. While gaining
the mechanistic insights of indole actions, the study by Ma
et al. also reveals that myeloid cell-specific disruption of
PFKFB3, a master regulatory gene of glycolysis, nearly blunted
the effects of indole on decreasing HFD-induced hepatic

Frontiers in Medicine | www.frontiersin.org 6 July 2020 | Volume 7 | Article 361152

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jiang et al. Microbiota and NAFLD

FIGURE 2 | The mechanistic scheme for indole alleviation of NAFLD. During

NAFLD, hepatocytes release fat deposition-associated proinflammatory

mediators and palmitate (hydrolysis product of very low-density lipoproteins),

which act on macrophages to enhance the proinflammatory responses. Active

macrophages release proinflammatory factors such as TNFα and IL-1β and

act, via paracrine manners, to exacerbate the proinflammatory responses and

fat accumulation in hepatocytes. Indole, a microbiota metabolite from

tryptophan (Trp), acts to reduce hepatocyte fat deposition via suppressing the

expression of FAS through a mechanism involving AhR activation. Moreover,

indole reduces the inflammatory responses in both macrophages and

hepatocytes and fat deposition in hepatocytes in a manner involving myeloid

cell PFKFB3. Modified based on Krishnan, S., et al. Cell Reports, 2018. 23(4):

p. 1099-1111 and Zheng et al. Front Med 2015; 9: 173-186.

steatosis and inflammation. PFKFB3 is the gene encoding
inducible 6-phosphofructo-2-kinase (iPFK2) (97), whose
product fructose-2,6-bisphosphate is the most potent activator
of glycolytic enzyme 6-phosphofructo-1-kinase (98–100). In
macrophages differentiated from bone marrow cells, indole
displayed a suppressive effect on LPS-induced proinflammatory
responses in a PFKFB3-dependent manner (Figure 2). Moreover,
hepatocytes co-cultured with PFKFB3-disrupted macrophages
displayed increases in palmitate-induced fat deposition and
LPS-induced proinflammatory responses. Of note, treatment
with indole did not alleviate these responses in hepatocytes
co-cultured with PFKFB3-disrupted macrophages as did it in
hepatocytes co-cultured with control macrophages. Clearly,
indole exerts an anti-NAFLD effect in a manner involving
myeloid cell PFKFB3.

The study by Ma et al. also revealed a number of significant
and interesting findings (96). In particular, mice with HFD-
induced NAFLD revealed altered composition of gut microbiota
relative to that inmice fed a control low-fat diet (LFD).Moreover,
treatment of HFD-fed mice with indole brought about changes
in the composition of gut microbiota in a manner similar to

that in LFD-fed mice. This validates that indole, as a microbiota
metabolite, also alters the composition of gut microbiota.
Another important finding from the pharmacokinetic study
is that indole reached its peak levels in the liver at 6 h post
a single oral dosing of indole. In addition, the levels of
indole were significantly higher than those in the circulation.
Because of this, the liver is considered a primary organ
where indole is metabolized. As such, the liver appears to
be primary target for indole-based therapeutic approaches.
The mechanistic scheme for indole actions is summarized in
Figure 2.

Clearly, the intestine plays an important role in the
pathophysiology of NAFLD. Intestine hormones, intestine
conditions (such as permeability and intercellular tight
junction), gut microbiota composition and balance, and
microbiota metabolites regulate glucose production, lipogenesis,
inflammatory response and insulin resistance in the liver by
directly or indirectly ways. These advances have significantly
improved our understanding of how the crosstalk between
intestine and liver critically regulates the pathogenesis of NAFLD.

Management of NAFLD/NASH via
Modulating Gut Microbiota
As gut microbiota is considered to be a new therapeutic target for
NAFLD/NASH, researchers are recently full of enthusiasm about
looking for compounds to control NAFLD/NASH by altering
gut microbiota. Probiotics are living microorganisms that can
relieve intestinal diseases by restoring normal microbiota and
provide health benefits to the host. A human study revealed
that liver aminotransferases levels were improved in NAFLD
patients treated with 500 million of Lactobacillus bulgaricus
and Streptococcus thermophiles (101). MIYAIRI 588, a butyrate-
producing probiotic from Japan, prevented hepatic steatosis
from developing into liver cancer in a rat NAFLD model
through activating of hepatic adenosine 5′-monophosphate-
activated protein kinase (AMPK), AKT, nuclear factor erythoid
2-related factor 2 (Nrf2) and its targeted antioxidative enzymes
(71). A probiotic mixture called VSL#3, which includes eight
probiotic strains, has been proven to be very effective in
the treatment of NAFLD. In obese children with NAFLD,
supplementation with VSL#3 for 4 months decreased steatosis
and BMI by enhancing the expression and the activity of
GLP-1 (102, 103). Prebiotics, which are special form of
dietary fibers, are fermented by gut microbiota to produce
metabolites that promote the growth of beneficial intestinal
flora. Alpha-galacto-oligosaccharides (alpha-GOS) from legumes
was found to reduce food intake, improve fasting blood
glucose, lower plasma non-esterified fatty acids, low-density
lipoprotein (LDL), and total cholesterol in HFD-fed mice
(104). Some phytochemicals also have prebiotic capacity and
may become therapeutic compounds to prevent or treat
NFALD. For instance, quercetin, which has antioxidant and
anti-inflammatory properties, was reported to reduce hepatic
fat accumulation, inflammation, and insulin resistance by
increasing the population of Akkermansia genus in gut
(105). Synbiotics, which are a combination of probiotics and
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prebiotics, was reported to provide more beneficial effects
in NAFLD. Co-administering Lactobacillus paracasei N1115
and fructooligosaccharides in HFD-induced NAFLD mice
reduced the levels of TNFα, insulin resistance and slowed
the progression of cirrhosis (106). In lean patients with
NAFLD, synbiotic (probiotics: 200 million bacteria of seven
strains; prebiotic: 125mg fructo-oligosaccharide) supplement
significantly ameliorated fasting blood glucose, TG, and most
inflammatory mediators (107).

SCFAs, which are metabolites from fermentation of dietary
fiber by gut microbiota, have been used for preventing liver
steatosis, inflammation, and fibrosis. Other metabolites such
as BAs and indole-like molecules are potential therapeutic
compounds to treat NAFLD/NASH. Antibiotics, such as
neomycin and polymyxin B, can reduce fat accumulation
in the liver by changing the gut microbiota and were
found to be effective, to certain extent, for treating liver
cirrhosis (108). After 90 days of solithromycin treatment,
NASH patients showed reduction in liver steatosis and ALT
levels (109). Gut-derived bacterial products and LPS increase
hepatic inflammation in NAFLD through TLR4 signaling
pathway. Blockage of TLR4 signaling pathway is considered
as a potential therapy to alleviate hepatic inflammation and
fibrosis. JKB-121, which is a TLR4 antagonist, was proved
to reverse LPS-induced inflammation cytokine expressions,
activation and proliferation of hepatic stellate cells, and
collagen expression (110). Fecal microbiota transplantation
(FMT) is an effective treatment for Clostridium difficile
infection. There are some studies also suggesting that FMT
may become a potential therapeutic strategy for NAFLD (111,
112). FMT from lean donors to obese recipients with metabolic
syndrome for 6 weeks improved hepatic and systemic insulin
sensitivity and increased butyrate-producing microbiota in
obese recipients (113). A recent human study revealed that
6 weeks after allogenic FMT, small intestinal permeability in
NAFLD patients was significantly reduced compared with that at
baseline (114).

INTERPLAYS OF CIRCADIAN CLOCK AND
GUT MICROBIOTA DURING NAFLD

There is evidence suggesting that circadian rhythms are related
to gut microbiota, while gut microbiota also affects circadian
rhythms (115). Both circadian and gut microbiota critically
regulatemetabolic homeostasis (116, 117) and are associated with
the development of NAFLD (118, 119).

Circadian Dysregulation and Gut
Microbiota Dysbiosis
While highly relevant to human health, microorganisms in
the human body maintain a dynamic balance in the body.
Also, the circadian rhythm and the intestinal microbes are
closely linked (120). Indeed, gut microbiota itself exhibits diurnal
compositional and functional oscillations (121, 122). More
specifically, environmental factors such as disruption of feeding
time and sleep pattern are shown to impair microbiota diurnal

rhythmicity and causemicrobiota dysbiosis (122, 123). There also
are studies showing that circadian disruption alters microbiota
configuration in gut. For instance, disruption of BMAL1 in mice
abolished the circadian rhythms of fecal microbiota in both sexes,
while changing microbiota composition in a sex-dependent
manner (6). Also, circadian CLOCK mutant mice exhibited
lower evenness and diversity of gut microbiota compared with
wild type mice when fed a chow diet. When mice were fed
an alcohol diet, gut microbiota taxonomic levels in circadian
CLOCK mutant mice were significantly different from those
in wild type mice, indicating that gut microbiota community
structure is altered (10, 124). Moreover, the circadian clock
also alters the function of the gut microbes. As supporting
evidence, the bacterial adhesion oscillation in PER1/2−/−

mice was remarkably disappeared (121). When combined with
high-fat and high-sugar diets, mimicking rhythms disruption
through frequent changes in light and darkness by reversing
the light:dark cycle once weekly significantly changed the
structure of microbial communities (124). Also, the microbe
that impairs gut barrier integrity was increased and the microbe
that improves the intestinal epithelial cell layer was decreased
in mice exposed to constant 24 h light. Compared to that
within normal light-dark cycles conditions, the diversity of
rat’s gut microbiota was significantly different in darkness or
constant lighting conditions. The ratios of bacteria families
such as Lactobacillus, Bacteroides, and Parabacteroides were
altered in darkness or constant lighting conditions (125).
In addition to the alterations of gut microbiota taxon, the
expression of genes related to protective immune function
was reduced whereas the expression of genes associated with
gut inflammation was enhanced after circadian disruption.
Specifically, the upregulated inflammatory genes include those
for lipopolysaccharides (LPS) synthesis and transportation (126,
127).

Psychological factors also are shown to alter gut microbiota.
A study reported that diurnal rhythm disorder caused by
insomnia or a psychological and physiological pressure increased
intestinal permeability and altered microbial composition
(128). Also, in a study involving rhesus monkeys, stress was
created by sound during pregnancy at night, and caused
significant changes in intestinal microorganisms in the pregnant
monkeys at 6 months before birth (129). The alteration of gut
microbiota by stress includes reduced microorganism diversity
and population of certain bacteria, such as Lactobacillus (130).
Circadian rhythm disorder also can lead to the growth of
some special intestinal microorganisms. In the first few days
of sleep deprivation, mice revealed microbial invasion. At 20
days after sleep deprivation, the mice revealed 37 times more
numbers of gram-negative bacteria in cecum relative to the
control group (131). In a study involving human subjects, sleep
deprivation increased Firmicutes in intestine, which usually
found high relative abundance in obese population (132).
The relative populations of Firmicutes, Lachnospiraceae, and
Ruminococcaceae were increased and the relative populations
of Bacteroidetes, Actinobacteria, Lactobacillmmaceae, and
Bifidobacteriaceae were reduced in mice with 4 weeks of sleep
fragmentation (133).
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Involvement of Gut Microbiota Dysbiosis in
Circadian Disruption-Related NAFLD
“Time difference phenomenon” has destructive power and
increases the tendency of illness (122). Microbial dysregulation
caused by circadian rhythm disorder leads to an increased
probability of metabolic diseases such as obesity, insulin
resistance, and NAFLD (134–136). There are studies showing
that germ-free mice did not respond to HFD feeding whereas
normal mice with microbiota became obese when fed with
HFD (7). HFD-feeding altered the oscillations of gut microbiota
composition and function, which were associated with disturbed
host circadian rhythm and led to host metabolic dysregulation
(7). This finding is similar to that observed in the human
after weight loss surgery. The latter revealed that the energy
intake was decreased and the numbers of bacteria were changed
(such as increased levels of Prevotella and Bacteroides and
decreased levels of Firmicutes) after gastric bypass surgery
(137). In addition, chronic sleep restriction is associated with
metabolic diseases including NAFLD. Workers with constant
shift in schedules or individuals with frequent jet-lag exhibit
alterations in gut microbiota, leading to increasing inflammatory
responses and metabolic diseases (138). Mice under the
treatment of inverted dark-light every 2 weeks for 8 weeks,
which mimicked shift work, exhibited significantly increased
intestine permeability and altered community of gut microbiota,
systemic insulin resistance, dyslipidemia, and inflammation
(139). Transplanting microbiota from circadian disrupted (such
as jet-lagged) human to germ-free mice increased weight gain
and blood glucose levels (122), which are associated a significant
increase in the incidence of NAFLD.

In the pathogenesis of NAFLD or the progression to
steatohepatitis, intestinal microbiota composition exhibits
altered circadian oscillation, which enhances the permeability of
intestinal endothelial barrier, leading to intestinal and hepatic
inflammation (122, 140). Moreover, gut microbiota is involved
in the regulation of the expression of circadian clock genes in
the liver. This is significant because hepatic circadian disorder
is associated with hepatic lipid accumulation, inflammation,
and oxidative stress (141). In a study involving mice with
diet-induced obesity and NAFLD, time-restricted feeding
(feeding only for 8 h during dark phase) for HFD-fed mice,
which consumed the same amount calories as that of HFD
ad libitum mice, altered hepatic clock genes that are related
to key enzymes for glucose and lipid metabolism in the liver,
thus decreasing hepatic fat accumulation (142). Mice fed an ad
libitum HFD displayed alterations in gut microbiome, luminal
metabolomics, gut signaling, and hepatic gene expression, which
resulted in metabolic dysregulation such as obesity, impaired
glucose metabolism, insulin resistance, hepatic steatosis,
and inflammation. However, mice with time-restricted HFD
feeding revealed decreased obesogenic microbiota, increased
obesity-protective microbiota, enhanced carbohydrate excretion,
restored gut signaling and hepatic gene expression, which
appeared to protect against obesity and metabolic dysregulation
(136). Circadian disruption (mimicking shift work or jet-lag)
in rats enhances the inflammatory responses when treated with

LPS. In particular, Kupffer cells (KCs) isolated from circadian
disrupted rats exhibited increased TNFα expression in response
to LPS, indicating that liver immune cells are modulated by
circadian rhythms (143). Furthermore, KCs itself showed
circadian oscillation, indicated by the findings that the numbers
of KCs varied during the circadian cycle and that some proteins
in KCs have diurnal rhythmicity. The connection between
immune response proteins of KCs and liver immune proteins
is dominant during the daytime whereas the connection of
metabolic proteins between KCs and liver is dominant during
the nighttime (144). A study in which HFD-fed mice were
under constant light revealed that melatonin ameliorated HFD-
and circadian disruption-induced hepatic fat accumulation and
insulin resistance and restored the gut microbiota. The latter
was evidenced by that melatonin reversed the increased ratio of
Firmicutes to Bacteroidetes (145).

GUT MICROBIOTA REGULATION OF
NAFLD DURING AGING

Gut Microbes in Infants and Young Children
In an infant, the majority of bacterial strains comes from the
mother.While most of the bacteria cannot be colonized for a long
time (146), some intestinal strains always live with the host (146).
It has been previously thought that baby’s intestines are sterile.
Numerous studies have now indicated that Staphylococcal and
Enterococci are present in infant feces, verifying that microbial
colonization has already occurred in the intestines (147).
Compared with normal control, early intestinal microbiota
in cesarean section infants is reduced and associated with T
helper-1 (TH1) response (148). This in turn affects the weight
of childhood; although the underlying mechanisms remain to
be elucidated (149). In addition, premature infants with low
birth weight exhibit altered intestinal microbes and increased
risk of metabolic abnormalities (150). Accordingly, early control
of multiple metabolic diseases, e.g., obesity (151) and diabetes
(152), which both increase the incidence of NAFLD, may be
achievable through breastfeeding. In severely malnourished
children, microbes are lagging behind and cannot maintain
optimal homeostasis, indicating that intestinal microbes play
a role in metabolism (153). Gut microbes interplay with a
variety of factors, including genetics and the environment (154).
Congenital genetic materials can generate a significant impact on
adults (155). Compared with those in normal mice, the numbers
of gut microorganisms in the mice with congenital obesity have
changed significantly (mainly Bactericides and Formicates)
(156), and the alterations are also observed in human (157).
Compared to healthy children, children with NAFLD have
higher levels of Gammaproteobacteria and Prevotella, as well
as higher levels of ethanol (158). In a similar study, the results
indicate that children with NAFLD have higher levels of
Actinobacteria and lower levels of Bacteroidetes compared with
healthy controls. In addition, the levels of Bradyrhizobium,
Anaerococcus, Peptoniphilus, Propionibacterium acnes,
Dorea, and Ruminococcus are increased and the levels of
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FIGURE 3 | Circadian rhythms and gut microbiota in the pathogenesis of NAFLD. Under normal physiological conditions, the central and peripheral clocks operate

synchronously to maintain the normal operation of the body. Feeding time, sleep pattern, and aging cause circadian dysregulation, leading to alterations of microbiota

diurnal rhythmicity, microbiota composition, and thus microbiota dysbiosis. Microbiota dysbiosis impairs gut barrier integrity and increases the gut permeability, which

results in increased release of microbiota products such as endotoxin and microbiota metabolites into circulation. HFD or nutritional stress changes microbiota

composition and circadian oscillation, increasing gut permeability and release of microbiota products. These microbiota products reach the liver and cause hepatic

steatosis and inflammation, which are the features of NAFLD/NASH. Circadian disruption also directly causes dysregulation of liver metabolism, promoting

NAFLD/NASH through increasing hepatic fat accumulation and inflammation.

Oscillospira and Rikenellaceae are reduced in children with
NAFLD (159).

Both gut microbiota and circadian rhythms are linked
to the metabolic homeostasis in infants and children and
influence their health in the future. For instance, early microbial
destruction induces metabolic dysregulation. Cho et al. found
that treatment with antibiotics in early life in mice increased
the levels of GIP, adiposity, and the expression of hepatic
genes, which are involved in lipid metabolic processes. Although
early antibiotics did not change the overall numbers of
microbes, the composition of gut microbiota was altered in
mice with antibiotics in early life, such as increased levels
of Firmicutes (160). Of note, under a chow diet, limited
antibiotics ameliorated hepatic accumulation of fat in early age
in male mice (161). Mechanistically, LPS from gut microbiota
is associated with the development of metabolic syndrome in
children. A study indicates that sleep disruption contributes to
gut bacteria dysbiosis and the increase in LPS levels, leading
to inflammation and metabolic dysregulation (162). Child
snoring disturbs sleeping pattern and is related to metabolic
syndrome, neurocognitive, and behavioral problems. In the
gut of children with snoring, the diversity of microbiota was
reduced and pro-inflammatory bacteria population and the
ratio of Firmicutes to Bacteroidetes were increased (163). Also,
the results from a human study involving 40 children with
NAFLD indicate that the serum levels of FGF21 were inversely

associated with the severity of NAFLD in children at 8:00 am

whereas more severe NAFLD revealed increased FGF21 levels at

noon (164).

Gut Microbes Regulation of NAFLD During
Aging
From colonization in early life, the body maintains the balance
of microbes for decades and toward the end of life. For elders,
their intestinal tract is fragile, their teeth are loose, and there
are other factors affecting the intestinal microbes (165). In an
epidemiological survey (166), the results obtained suggest that
total proteobacteria are increased and stable within a limited
time in people over 65 years old. However, there are some
differences between the studies about whether the diversity of
Bactericides is increased (167). Some studies suggest that the
diversity of Bactericides is increased (167) whereas others showed
the opposite results (168). Also, the gut microbial composition
appears to be different in a sex-dependent way in elders. Obese
male elders have lower levels of Bacteroidetes than obese female
elders (169). Moreover, Clostridium levels are different between
elders and young adults. The production of short chain fatty acids
is reduced in elders, compared with young adults (170).

The circadian rhythm controls deep sleep and duration (171).
In the conventional consciousness, the elders have less deep
sleep (172) and more awakening (173). Through detecting body
temperature and melatonin rhythm (174), the phase of rhythm is
shifted forward (175), the amplitude of rhythm is reduced (176),
and PER2 expression is impaired in elders (177, 178). These
findings have been confirmed by many clinical studies. Indeed,
chronic sleep disorders in old adults are associated withmetabolic
dysregulation. Also, in elders, diet has more effects on age-
related dysbiosis in gut microbiota that affects circadian rhythm
in the host and exacerbates metabolic disorders (7). The circadian
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rhythm gradually deteriorates in life (179), characterized by the
shortening of sleep time, the loss of circadian amplitude (180),
the reduction of neuronal synapses (181), and the increase in
the proportion of silent cells (182). However, the results of
a human study suggest that the risk of NAFLD is increased
slightly in a middle-aged and elderly Chinese population with a
long night time sleep duration (183). Similarly, young and old
mice fed an HFD for 12 weeks revealed increased body weight,
fat accumulation, insulin resistance, and NAFLD activity score
regardless of sex. However, old mice exhibited exacerbation of
NAFLD severity and gut microbiota dysbiosis (184). In elder
people, the numbers of protective anaerobic bacteria are reduced,
gastrointestinal function is declining, and the severity of hepatic
steatosis and inflammation is greater in response to HFD. As
such, the health status of the elders should be taken serious
consideration (185).

CONCLUSION

Nutrition, lifestyle and environment (day and night cycle)
influence metabolism, thereby the health, life quality, and
life span. Individuals who are shift workers, frequently cross-
continental traveler undergoing jet-lag, suffers of sleep disorders,
and/or frequent consumers of high-fat and/or high-sugar
diets have increased risks for metabolic diseases including
NAFLD and NASH. Pathologically, dysregulation of circadian
rhythms, along with dysfunctional composition of gutmicrobiota
contribute to the development and progression of NAFLD,

which has been summarized by this review (Figure 3). There
exist circadian rhythms in intestinal microbes. The changes
in intestinal microbes’ oscillation are manifested by increased
intestinal permeability, microbial composition, and increased
inflammation. Intestinal microbe regulates metabolism via
reprogramming circadian clock, in particular the liver circadian
clocks. Aging and unhealthy diet, as well as dysfunctional
intestinal microbes are factors that bring about rhythm disorders,
leading to hepatic fat accumulation and inflammation. As such,
a healthy diet and a clocklike lifestyle are of the effective ways
to prevent NAFLD and maintain metabolic homeostasis, thereby
keeping individuals healthy.
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In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches,

which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large

intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches

have been proven to harbor stem/progenitor cells with great importance in liver and

biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos

progenitor cells within bile ductules are engaged in driving regenerative processes

in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos

population within peribiliary glands is activated when regenerative needs are finalized to

repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including

primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic

liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may

explain the histological and molecular heterogeneity characterizing cholangiocarcinoma,

based on the concept of multiple candidate cells of origin. This review aimed to describe

the precise anatomical distribution of EpCAMpos populations within the liver and the biliary

tree and to discuss their contribution in the pathophysiology of human liver diseases, as

well as their potential role in regenerative medicine of the liver.

Keywords: progenitor cells, liver, biliary tree, cholangiopathy, cholangiocarcinoma

INTRODUCTION

In the adult liver and biliary tree, mature parenchymal cells (i.e., hepatocytes and cholangiocytes)
are characterized by remarkable proliferative capabilities, which support the regenerative needs of
these organs in physiological conditions (1). According to that, lineage tracing studies indicated
that hepatocytes are able to restore hepatic parenchyma after subcritical liver resection and
regenerate cell loss after acute and chronic damage; furthermore, studies on cell plasticity in
rodents indicated the potential of hepatocytes to differentiate toward biliary cells after injury
(1–5). Therefore, conflicting evidence is present in scientific literature regarding the existence and
function of a distinct stem/progenitor cell population capable of participating in liver regeneration
(6). Nonetheless, experimental models characterized by an extensive (or prolonged over time) liver
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injury, which mimic the natural history of human liver diseases,
demonstrated the contribution of stem/progenitor cells in the
regenerative response (7, 8).

Recent single cell transcriptomic studies turned the spotlight
on the EpCAMpos cell fraction within the liver as a candidate
progenitor cell population (9, 10). The epithelial cell adhesion
molecule (EpCAM) is a surface epithelial marker selectively
expressed in the biliary tree, where it individuates the
stem/progenitor cell fraction frommature cholangiocytes (1, 11);
differently, mature hepatocytes within the hepatic lobule do
not express EpCAM (11). The elegant single-cell transcriptomic
atlas compiled by Aizarani et al. produced a comprehensive
depiction of liver cell populations, including hepatocytes, biliary
epithelial cells, endothelial cells, macrophages, and inflammatory
cells (9). The authors revealed the presence of transcriptomic
heterogeneity in the EpCAMpos population and, within this
population, identified the cell fraction with the highest potential
to form liver organoids and to putatively serve as a stem cell
compartment. In parallel, the study by Segal et al. individuated,
by using a similar approach, a unique gene expression profile
within the EpCAMpos cell population in human fetal livers:
in particular, they individuated a distinct EpCAMpos cell
fraction which has bi-potential capability, is distinguishable
from hepatocytes and cholangiocytes, and persists in the adult
organ (10). Besides some discrepancies in cell phenotype,
both studies individuated the EpCAMpos population within the
intrahepatic biliary tree as a strong candidate stem/progenitor
cell compartment with regenerative potential for the liver and
biliary tree.

The present review aimed to discuss the phenotype and the
precise anatomical distribution of EpCAMpos cell populations
within the liver and the biliary tree, to describe their changes
induced by human liver diseases, and to highlight their role as
a potential source for regenerative medicine.

THE HETEROGENEITY OF EPCAMPOS

CELL POPULATIONS IN HUMAN LIVER

In human livers, EpCAMpos cells are localized and organized in
two distinct anatomical niches (Figure 1), namely, bile ductules
and peribiliary glands (PBGs).

The intrahepatic biliary tree begins with the canals of Hering,
which represent the point of junction between the hepatocyte
canalicular system and the biliary tree (12, 13). The canals
of Hering are located at the interface between the portal
tract and the hepatic parenchyma and continue into the bile
ductules, with tortuous conduits draining into the interlobular
bile ducts inside the portal space. A population of EpCAMpos

cells has been identified within the canals of Hering and the

Abbreviations: BTSC, biliary tree stem/progenitor cell; CD, cluster differentiation;

CFTR, cystic fibrosis transmembrane conductance receptor; CK, cytokeratin;

DR, ductular reaction; EpCAM, epithelial cell adhesion molecule; GMP, good

manufacturing practice; HpSC, hepatic stem/progenitor cell; MUC, mucin;

NAFLD, non-alcoholic fatty liver disease; NCAM, neural cell adhesion molecule;

PBC, primary biliary cholangitis; PBG, peribiliary gland; PSC, primary sclerosing

cholangitis.

bile ductules, serving as facultative bipotent progenitors (Hepatic
Stem/progenitor Cells: HpSCs) capable to differentiate into
hepatocytes and cholangiocytes (Figure 2, panel A) (9, 14, 15),
and represents the remnant of the ductal plate in the adult liver
(10, 16, 17). Morphologically, HpSCs are small cells characterized
by a high nucleus-to-cytoplasm ratio and expressing a large
variety of markers, which include stem cell markers [e.g.,
EpCAM, neural cell adhesion molecule (NCAM), transcription
factor Sox9, CD44, and CD133], biliary cytokeratins (CK7/19),
and hepatocellular traits (e.g., albumin, CK18, hepatocyte nuclear
factor 4 alpha) (10, 18). While differentiating toward a mature
fate, the progeny of HpSCs is characterized by the progressive
loss of EpCAM and NCAM expression and the acquirement
of mature hepatocyte or cholangiocyte traits (10, 14, 19,
20). Recently, this EpCAMpos cellular population has been
further characterized by single-cell transcriptomic, with the
identification of an EpCAMpos/NCAMpos fraction which also
displays prominent stem cell features in vitro (10).

Notably, a second EpCAMpos cell niche is endowed in
PBGs located inside the walls of large (i.e., segmental and
area) intrahepatic bile ducts and along the entire extrahepatic
biliary tree (21). PBGs are tubulo-alveolar mucous glands, in
continuity with the surface epithelium of the bile duct (22, 23).
Intriguingly, the EpCAMpos cell population within PBGs showed
stem/progenitor properties, including organoid formation and
plasticity to differentiate into hepatocytes, cholangiocytes, and
endocrine pancreatic cells (Figure 2, panel B) (21, 24, 25). PBG
cells have been collectively named biliary tree stem/progenitor
cells (BTSC) and, embryologically, they represent the remnant
of the common bilio-pancreatic progenitors of the ventral
endoderm (23, 24). Phenotypically, mucin family genes (e.g.,
MUC5A and MUC6) are largely expressed in this anatomical
niche (23); moreover, the EpCAMpos cell pool within PBGs shows
a heterogeneous profile and a radial axis (depth-to-surface)
organization: EpCAMpos cells are mostly found at the bottom
of PBGs, where a subpopulation of them co-expresses markers
of pluripotency (i.e., Oct4, Sox2, and Nanog) (23); a transit-
amplifying (i.e., proliferating) population is located in the middle
portion of the glands; finally, cells with a more mature phenotype
[e.g., expressing secretin receptor, cystic fibrosis transmembrane
conductance receptor (CFTR), mucins, and Trop2] are located
in direct continuity with the surface epithelium (23, 26,
27). Altogether, these findings are confirmed by single-cell
transcriptomic analysis in human, with the identification of an
EpCAMpos/TROP2int/MUC6high progenitor compartment with
prominent stem cell features (9). Moreover, the contribution
of PBG cells in the regeneration of mature biliary epithelium
has been demonstrated in experimental conditions and by
an ex vivo human model of biliary regeneration, which have
disclosed that PBG cells can repopulate the surface epithelium
of bile ducts by proliferation and differentiation into mature
cholangiocytes (25, 28, 29).

In the light of these findings, one of the main aspects
to be considered when interpreting transcriptomic analysis of
liver samples resides in the fact that PBGs and bile ductules
are two anatomically distinct compartments which, however,
can be found in strict spatial proximity within the same
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FIGURE 1 | EpCAMpos cell niches in human liver fragments obtained from normal subjects. (A) EpCAMpos cells are present in small portal tracts and are endowed in

interlobular bile ducts and bile ductules up to the ductular-canalicular (D-C) junction. Hepatocytes are constantly negative for EpCAM. (B) Large portal tracts can be

present together with small ones in the same liver fragment, given their close proximity in sectional histology. Large intrahepatic bile ducts (i.e., segmental and area bile

ducts) contain an EpCAMpos cell niche endowed in the mucous glands present inside their walls (so-called peribiliary glands). Mucin positivity is typically present in

EpCAMpos peribiliary gland cells (on the right) but not in bile ductules and interlobular bile ducts at small portal tracts (on the left). Once isolates from peribiliary glands,

EpCAMpos cells showed progenitor cell features, including high efficiency in organoid formation in vitro. Histologic images are representatives of human liver fragments

obtained from liver donors (N = 5). Specimens were stained by immunohistochemistry for EpCAM and periodic acid-Schiff (PAS) for mucins. EpCAM

immunohistochemistry is counterstained with hematoxylin or with PAS. Organoids were generated by EpCAMpos peribiliary gland cells isolated from the human

common hepatic duct obtained from organ donors (routinely discarded in orthotopic liver transplantation procedures); the phase contrast (PhC) microscopic image is

representative of at least N = 3 biological replicates.

liver fragment (Figure 1, panel B). Thus, the transcriptomic
heterogeneity in the EpCAMpos population revealed by single
cell approaches could be due to the collection of one or
both of these distinct progenitor cell compartments from
the same specimen. EpCAMpos progenitor cells within bile
ductules are characterized by a distinct signature identifying
them from mature cholangiocytes, immature hepatocytes, and
mature hepatocytes, based on NCAMpos/TROP2neg expression
(Figure 2). Therefore, these cells could be distinguished from
cholangiocytes that populate interlobular bile ducts, the latter
expressing TROP2 and mucin family genes. However, a TROPint

cell fraction among the EpCAMpos compartment was proven to
have high stemness properties; thus, this fraction resides more

likely into peribiliary glands than in bile ductules, given also its
high mucin family gene expression (e.g., MUC5A and MUC6)
and low CK19 and CFTR levels (25, 30).

Understanding the phenotypes of distinct biliary populations
and their anatomical niches is crucial when considering
that the pathophysiology of hepatic and biliary diseases
is often hindered by difficulties in identifying regenerative
pathways. Interestingly, the EpCAMpos population exhibited
only a stochastic expression of proliferation markers (9). This
finding strengthens the concept of a facultative progenitor
compartment that is only engaged by the regenerative needs and
trajectories required after prolonged chronic or acute massive
damage (8).
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FIGURE 2 | EpCAMpos cells within the liver and biliary tree and their progeny. The cartoon shows the phenotype (main markers) of EpCAMpos stem/progenitor cells

within the bile ductules (A) and the peribiliary glands (B) and their differentiative capabilities.

EPCAMPOS CELL POPULATIONS IN
CHRONIC HUMAN DISEASES OF THE
LIVER AND BILIARY TREE

In human liver diseases, the phenotypic and transcriptomic
profiles of liver cells change noticeably. In this context,
taking into account the heterogeneity within the EpCAMpos

progenitor population is a crucial prerequisite to understand
the specific contribution of different hepatic regenerative
pathways in human disease progression. Chronic prolonged
diseases affecting hepatocytes or interlobular bile ducts could
engage HpSCs within bile ductules (Figure 3, panel A) (19);
differently, PBGs and their EpCAMpos cell fraction (i.e.,
BTSCs) could be activated when the disease leads to the
damage of large intrahepatic (or extra-hepatic) bile ducts
(Figure 3, panel B) (30, 31).

EpCAMpos Cell Fraction in Bile Ductules:
Ductular Reaction and Chronic Liver
Diseases
In a number of different chronic liver diseases, EpCAMpos

HpSCs within the canals of Hering and the bile ductules

represent the source of a prominent ductular reaction (DR)
(Figure 3, panel A) (19, 32). The phenotype and the behavior
of EpCAMpos DR have been extensively characterized in liver
diseases affecting hepatocytes (19). In these conditions, DR
appearance is associated with the emergence of a unique
EpCAMpos hepatocyte population, which localizes periportally
and is characterized by the co-expression of biliary cytokeratins
(11, 19, 33). Detailed studies of liver samples obtained from
cirrhotic patients allowed accurately describing the expansion of
DR and the emergence of an EpCAMpos hepatocyte population,
able to regenerate large portions of liver parenchyma (34, 35).

In chronic liver diseases, the expansion of DR is secondary
to the prolonged exposure of hepatocytes to pathogenetic
insults, which leads to the progressive loss of hepatocyte
replicative capability and induces hepatocellular senescence.
For example, in non-alcoholic fatty liver disease (NAFLD),
hepatocyte regenerative capabilities are highly impaired due
to progressive lipotoxicity and lobular inflammation (36, 37);
this induces a prominent EpCAMpos DR, followed by the
appearance of EpCAMpos hepatocytes at the periportal zone
(37–42). In NAFLD, DR correlates with disease activity and
NASH onset; interestingly, DR extent also correlates with
periportal fibrogenesis and is predictive of fibrosis stage
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FIGURE 3 | Distinct EpCAMpos cell niches are engaged by specific human diseases based on regenerative needs and may represent the cell of origin of specific

subtypes of cholangiocarcinoma. (A) Regenerative pathways engage EpCAMpos/MUC6neg progenitors within bile ductules in chronic human diseases affecting

hepatocytes and/or interlobular bile ducts. In these diseases, an expansion of the EpCAMpos cell population is present and includes the emergence of ductular reaction

and the appearance of EpCAMpos hepatocytes (arrows). Two subtypes of EpCAMpos cholangiocarcinoma (CCA) may derive from the neoplastic transformation of

EpCAMpos interlobular cholangiocytes (small duct type CCA) and bile ductules (cholangiolo-carcinoma). (B) The EpCAMpos/MUC6pos population within peribiliary

glands (PBGs) could be engaged when regenerative needs are finalized to repair large intra- or extrahepatic bile ducts affected by chronic pathologies, including

primary sclerosing cholangitis. The EpCAMpos PBG cell population response is characterized by hypertrophy and mucinous metaplasia of this compartment. The

onset of mucinous CCAs could be due to the neoplastic transformation of the EpCAMpos PBG niche, through the sequence hypertrophy-metaplasia-dysplasia-cancer.

Histologic images in (A) are representative of human liver fragments obtained from patients affected by chronic viral hepatitis, primary biliary cholangitis, and CCA. In

(B), specimens were obtained from patients affected by primary sclerosing cholangitis and CCA. Specimens were stained by immunohistochemistry for EpCAM and

periodic acid-Schiff (PAS) for mucins. EpCAM immunohistochemistry is counterstained with hematoxylin or with PAS.

(43, 44). Parallel studies confirmed this role of DR also in
pediatric subjects affected by NASH (39, 45). Moreover, DR
is associated with systemic oxidative stress levels (38) and
extra-hepatic clinical manifestations such as obstructive sleep
apnea syndrome (46).

Extensive EpCAMpos DR can also be triggered by a severe
hepatocyte loss as a consequence of acute liver injury. In alcoholic
hepatitis, a relevant cause of morbidity and mortality in heavy
drinkers with alcoholic liver disease (47), DR extension is
correlated with the severity of the damage and can predict short-
term mortality (47, 48). In this setting, patients responding to

first-line steroid therapy were characterized by higher DR (49);
differently, in non-responders, cells within DR do not show signs
of differentiation into hepatocytes, which correlates with a less
favorable outcome (19, 50–53).

A prominent EpCAMpos DR also appears in chronic diseases
affecting the biliary tree (i.e., cholangiopathies) and acquires
a peculiar phenotype, which reflects the pathophysiology of
the disease. Primary biliary cholangitis (PBC) is a chronic,
autoimmune cholangiopathy, characterized by the damage of
interlobular bile ducts, leading to impaired bile duct flow into the
biliary tree (54). In patients affected by PBC, DR is composed
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of cells expressing stem cell markers (EpCAM, NCAM, Sox9,
and CD133) and displaying a variable degree of cholangiocyte
differentiation signs, together with Notch pathway activation
(19, 33, 55, 56). Disease severity and stage are correlated with
the extent of DR, which might serve as prognostic marker for
the development of clinical symptoms, patient prognosis, and
response to therapy (55, 57). Differently from PBC, patients
affected by primary sclerosing cholangitis (PSC) show a unique
DR phenotype. In PSC, chronic inflammatory damage targets
large intrahepatic bile ducts and mostly spares interlobular bile
ducts; the development of fibrotic strictures and consequent
cholestatic injury of the liver parenchyma trigger DR which,
however, is less prominent compared to PBC and is characterized
by the expression of hepatocellular traits, with the appearance of
numerous EpCAMpos hepatocytes (55).

In summary, liver diseases induce a substantial modification
of the EpCAMpos fraction within the liver; these changes are
strongly influenced by the etiology of liver diseases and the
specific regenerative needs. Remarkably, liver diseases further re-
shape the non-parenchymal cell fractions (i.e., macrophages and
hepatic stellate cells), inducing an inflammatory and fibrogenetic
response (Table 1) (37, 40). In turn, these changes influence
the EpCAMpos cell compartment and support the vicious
cycle which promotes and sustains liver fibrosis (58, 59). This
represents the rationale for the strong correlation between
EpCAMpos fraction activation and clinical outcomes in human
diseases (40, 57).

EpCAMpos Cells Within PBGs in Human
Cholangiopathies
The EpCAMpos cell population in PBGs is implicated in human
diseases affecting large intrahepatic and extrahepatic bile ducts
(Figure 3, panel B) (1). Indeed, in PSC samples, progressive
hyperplasia, and mucinous metaplasia of PBGs characterize
fibrotic large bile ducts. Hyperplasia of PBGs is determined by
the expansion of BTSCs, which also contributes to biliary fibrosis
trough epithelial-to-mesenchymal transition and is sustained by
the signaling pathway mediated by hedgehog ligands (Table 1)
(30, 55). Interestingly, in PSC patients, the expansion of PBG
mass correlated with the severity of the histological stage of liver
cirrhosis and with the clinical stages according the Mayo score
(30). It is worth noting that the histopathology of large bile duct
fibrosis (which is at the basis of biliary strictures development
in PSC) was understudied for years, although a consensus on
PSC animal models highlighted the need to study large bile
ducts and associated PBGs (60). In PSC and in pathologies
of large bile ducts and in extrahepatic cholestasis, indeed,
inflammation mostly spares the interlobular bile ducts within
the liver parenchyma, whereas ductular reaction and fibrosis
are present (55). These observations indicate that parenchymal
injury in PSC is the consequence of ascending cholestasis.
Differently, in PBC patients, the histomorphological study of
bile ducts and livers demonstrated no activation of the PBG
niche, thus indicating that the EpCAMpos BTSCs endowed in
large intrahepatic and extrahepatic bile ducts are elicited by
the injury of this portion of the biliary tree (as in PSC) but

not in diseases affecting occurring interlobular bile ducts (i.e.,
PBC) (30).

Other than PSC, PBGs are involved in the turnover and
regeneration of biliary epithelia in sclerosing reactions in
secondary sclerosing cholangitis and hepatolithiasis (22, 61).
Cystic changes in PBGs can occur de novo, as part of a congenital
syndrome, or secondarily to insults such as alcoholic cirrhosis
(61). Interestingly, the systematic examination of bile ducts
of liver grafts revealed the relationship between the degree of
ischemic-based PBG injuries and the future development of
non-anastomotic strictures (28, 62). Moreover, using an ex vivo
model based on precision-cut slices of extrahepatic human bile
ducts obtained from discarded donor livers, the spatiotemporal
differentiation and migration of PBG cells after severe biliary
injury was recently studied; this approach revealed that human
PBGs contain biliary progenitor cells and are able to respond
to bile duct epithelial loss with proliferation, differentiation, and
maturation to restore epithelial integrity, providing evidence
for a pivotal role of PBGs in biliary regeneration after severe
injury (28).

Although normal PBGs themselves are particularly small
structures that cannot be recognized using any of the currently
available imaging modalities, these glands are closely associated
with several diseases which have typical imaging features. The
knowledge of the basic pathophysiology of PBGs could be helpful
for depicting innovative diagnostic modalities and endpoints in
biliary diseases associated with PBG injury (61). Since human
BTSC activation in fibrotic large duct pathologies is associated
with PBGs hyperplasia/metaplasia and dysplasia, in the future,
histomorphology and radiology correlation studies are needed in
order to envision innovative PBG imaging tools.

Mechanisms underlying the repair of extrahepatic biliary
tree after injury have been scarcely explored. We have
recently shown that the Wnt signaling pathway triggers
human BTSC proliferation in vitro and influences PBG
hyperplasia in vivo in a mouse biliary injury model (25).
In particular, Notch signaling pathway activation induces
BTSC differentiation in vitro toward mature cholangiocytes,
in parallel with the observation of Notch pathway activation
within PBGs in a mouse model; moreover, in human PSC,
inflammatory and stromal cells trigger PBG activation through
the upregulation of the Wnt and Notch signaling pathways
(25). Considering these findings, the demonstration of the
involvement of PBG cells in regenerating the injured biliary
epithelium and identifying the signaling pathways driving BTSC
activation could have relevant implications on the treatment
of cholangiopathies.

The EpCAMpos (MUC6high) cell population may even
respond to systemic stimuli, like hyperglycemia. In experimental
and human diabetes, EpCAMpos/MUC6high cell population in
PBGs respond to diabetes with proliferation and differentiation
toward insulin-producing cells, indicating that PBG niches
may rescue pancreatic islet impairment in diabetes (63). These
findings offer important implications for the pathophysiology
and complications of this disease, comprising the understanding
of the paramount role of type II diabetes in cholangiocarcinoma
risk nowadays (see the next paragraph) (63).
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TABLE 1 | Summary of the main signaling pathways involved in EpCAMpos niches

of the liver and biliary tree.

Pathway Secreted

ligand

Receptor Intracellular

effector

Function

Notch Jagged 1

Source:

HSCs/MFs

Notch Notch

intra-cellular

domain

Cholangiocyte

fate

Wnt/β-catenin Wnt1/Wnt3a

Source:

macrophages

P-β-Catenin β-Catenin Proliferation

Hepatocyte fate

Hedgehog Hh

Source:

EpCAMpos

stem/progenitor

cells

Patched Gli-1 Fibrogenesis

EMT

Wnt/planar

cell polarity

Wnt5a

Source:

HSCs/MFs

VANGL2 JNK/JUN Modulation of

niche

microenvironment

EMT, epithelial/mesenchymal transition; HSC, hepatic stellate cell; MF, myofibroblast.

EPCAMPOS CELL POPULATIONS IN
CHOLANGIOCARCINOMA

The recent focus on the EpCAMpos/MUC6high cell population
residing in large intrahepatic and extrahepatic bile ducts sheds
light on the clinical management of malignancies arising in
this organ, which are collectively termed cholangiocarcinoma
(30, 31). From an anatomical point of view, cholangiocarcinoma
can be classified as intrahepatic, perihilar, or distal (64); however,
growing evidence suggests that distinct cells of origin within
an organ, particularly tissue-specific stem cells, may give rise to
different cancer subtypes (Figure 3) (65). In this context, certain
subtypes of intrahepatic cholangiocarcinoma (small bile duct
type and cholangiolo-carcinoma) are constituted by mucinneg

cells and could originate from small cholangiocytes or from
the EpCAMpos/MUC6neg population located in ductules and/or
interlobular bile ducts. In keeping, chronic liver diseases and
cirrhosis represent specific risk factors for these tumor subtypes,
and the surrounding parenchyma is generally characterized by
a marked EpCAMpos/mucinneg DR (40, 57). The division rate
of stem cells is linearly correlated with the lifetime risk of
developing primary liver cancer (66).

Intriguingly, mucinous intrahepatic (large bile duct type)
and perihilar cholangiocarcinoma show a similar phenotype,
with mucinpos cells occupying the entire neoplastic mass,
and are characterized by a similar clinical course (67);
such tumors could arise from PBGs and, likely, from the
EpCAMpos/TROP2int/MUC6high compartment (31). PSC and
liver flukes represent well-recognized risk factors for these tumor
subtypes (67); these diseases chronically affect large intrahepatic
and extrahepatic bile ducts and determine hyperplasia, mucinous
metaplasia, and dysplasia in PBGs (30). The expansion of the
EpCAMpos/MUC6high compartment within PBGs represents an
attempt to restore epithelial integrity as a response to chronic
bile duct damage (25). However, the continuous exposure to
harmful stimuli leads to a progressively uncontrolled response,

and dysplasia-to-cancer progression takes place diffusely within
bile ducts with multiple neoplastic foci, mimicking field
cancerization (31).

The inter-tumor heterogeneity of cholangiocarcinoma might
be due to the interplay of distinct tissues/cells of origin, the
underlying disease, and the associated molecular clustering based
on driver mutations which shape the pathobiological features
of the different cholangiocarcinoma subtypes. In keeping with
that, intrahepatic cholangiocarcinoma can be distinguished into
two main subtypes (small and large bile duct type) based on
its origin and histomorphologic features. Remarkably, these
tumor subtypes have distinct cancer stem cell profiles (68), thus
suggesting a putative different cell of origin (HpSCs vs. BTSCs).
These subtypes also differ in terms of gross growth pattern,
genetic signatures, and driver mutations (e.g., IDH1/2 in small
bile duct type and KRAS in large bile duct type), and prognosis.
With this latter regard, the large bile duct cholangiocarcinoma
subtype is a highly aggressive cancer, characterized by a low
disease-free and overall survival. This tumor typically arises in
patients with PSC and has been proved to derive from dysplastic
EpCAMpos PBGs both in humans (31) and in experimental
models (69).

Emphasizing the role of the different tissues/cells of origin
on the complex pathogenesis of cholangiocarcinoma, also in
the picture of EpCAMpos cell niches, could have implications
on preventive strategies and early diagnosis in patients with
underlying clinical or subclinical hepatobiliary disease, shedding
new light on dissecting cholangiocarcinoma heterogeneity and
allowing a rational approach to personalized medicine for this
devastating cancer (67, 70).

PERSPECTIVES AND APPLICATIONS OF
EPCAMPOS CELLS IN REGENERATIVE
MEDICINE

Orthotopic liver transplantation represents the main curative
option for the majority of chronic liver diseases. In this context,
the shortage of organ donors represents a severe limitation to
patients’ treatment, which results in many patients dying while
waiting for transplantation. For these patients, the development
of effective strategies for cell therapy could represent a promising
approach to the treatment of liver diseases, also as a bridge to
liver transplantation.

Therefore, different strategies of cell therapy have been
attempted (71, 72). Hepatocyte transplantation represents the
proof of concept of liver cell therapy but it is limited
by the scarcity of donor organs, the low cell engraftment,
difficulties in cryopreservation, and the necessity of long-
term immunosuppression (72–74). Mesenchymal-derived stem
cells, comprising hematopoietic stem cells and mesenchymal
stem cells, have been largely applied for liver regenerative
medicine purposes in a number of clinical trials throughout
the world (71, 75–79). Although autologous transplantation of
hematopoietic and mesenchymal stem cells is clinically safe, the
recent negative results of randomized clinical trials limit the
future application of this strategy (75–79). Clinical applications
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of pluripotent stem cells in hepatology are actually null; this
is due to the teratocarcinogenic risk and the ethical concerns
for the use of embryonic stem cells and to the possibility of
tumorigenic expansion of reprogrammed induced pluripotent
stem cells (72).

In this scenario, the hepatic EpCAMpos cell fractions could
represent an important alternative source, currently under
investigation worldwide. Other than case reports concerning the
use of EpCAMpos HpSCs in biliary atresia and inborn errors
of metabolism (80, 81), a non-randomized clinical trial of 25
subjects and 25 controls with decompensated liver cirrhosis
due to various causes undergoing human fetal EpCAMpos

HpSCs infusion into the liver via the hepatic artery has been
reported (82). At 6-months follow-up, multiple diagnostic and
biochemical parameters showed improvement, with a significant
decrease in the patients’ MELD (model for end-stage liver
disease) scores (82). In western countries, Pietrosi et al.
performed an intrasplenic infusion of a total cell population
obtained from the fetal liver in nine patients affected by end-
stage liver disease, demonstrating that the procedure was safe and
well-tolerated in all patients (83). Similar to HpSCs, EpCAMpos

BTSCs could represent a possible source for stem/progenitor
cells for liver regenerative medicine, as they are readily available
from the biliary tree of adult or fetal organ donors and from
cholecystectomized patients (84–87). In the past, we reported
a preliminary experience in treating patients with advanced
cirrhosis by the infusion via hepatic artery of human EpCAMpos

BTSCs (84). This report represents the proof of concept that
EpCAMpos BTSCs are a suitable source for the cell therapy of
liver cirrhosis and represents the basis for an ongoing controlled
clinical trial (84). Moreover, cells are routinely isolated in good
manufacturing practices (GMP) conditions, and all required
media are available in GMP-grade (84). Finally, the EpCAM-
based sorting procedure is highly standardized and has been
already used in clinical program (11, 84, 88, 89).

3D organoids represent an advanced culture technology in
the field of stem cells and regenerative medicine, recapitulating
embryonic development and the physiology of the tissue of
origin. So far, organoid cultures have been developed for the
adult intestine (90), stomach (91), and pancreas (92) of different
species, likemouse and human.When cultured as organoids, cells
can expand long term in culture, maintain the genetic stability,
and spontaneously self-organize into structures that resemble the
in vivo tissue in terms of cellular composition and function.

Organoid techniques have been largely applied to human liver,
in particular to its EpCAMpos stem/progenitor compartments.
Under defined culture conditions, EpCAMpos HpSCs from
adult liver can be expanded for months (>1 year) in culture,
showing an exponential rate of proliferation and genetic stability
(92). HpSCs can readily be expanded as bipotent stem cells
into 3D organoids and differentiate into functional hepatocyte
cells both in vitro and in vivo upon transplantation (93,
94). Noteworthily, single isolated EpCAMpos cells develop into
organoid with high colony forming efficiency, while EpCAMneg

cells failed to create organoids (93). Moreover, the engraftment
and differentiation of organoids was demonstrated in mouse
models of acute liver injury; in these mice, a stable expression

of human hepatocyte markers was observed in recipient serum
for more than 4 months, and cell engraftment was confirmed by
immunohistochemistry for human albumin (93).

The application of the organoid technique is feasible to obtain
long-term expansion of BTSCs, maintaining stem cell markers
and genetic stability over months (24, 87, 95). Interestingly,
Sampaziotis et al. have demonstrated that cells isolated from the
extrahepatic biliary tree can be expanded in vitro in long-term 3D
organoid culture, while maintaining the biliary transcriptional
signature and functional characteristics; this culture can be
propagated as a potential system for the application of
regenerativemedicine in the field of cholangiopathies and in vitro
common bile duct disease modeling (96).

Overall, organoid cultures derived from patients’ liver could
represent a relevant system to study human biology, physiology,
and the regeneration and development of the liver and biliary
tree (97). In addition, 3D organoid cultures enable the study
of molecular mechanism driving liver diseases, comprising
cholangiopathies (98) and primary liver cancers including
cholangiocarcinoma (99); at the same time, this technique can
provide potential tools to manipulating genomes and facilitate
gene correction for regenerative medicine and autologous
therapy (97). Recently, a specific interest has increased for
the genetic modification of liver organoids to create disease-
specific models in settings where providing a patient’s material
is challenging (100).

Liver organoids facilitate the study of human liver diseases
and regeneration and open the way to expand human liver cells
in vitro in the field of personalized medicine or drug testing for
biliary and liver disease. The effective application of organoid-
derived hepatocytes and cholangiocytes to humans needs to face
important technical issues related to the in vitro manipulation
and the large use of non-clinical-grade GMP substances
necessary to promote and sustain long-term 3D growth.

CONCLUSION

The liver and the biliary tree harbor two EpCAMpos

stem/progenitor cell niches, both yielding high regenerative
capabilities and the potential to differentiate into mature
hepatocytes and cholangiocytes, but displaying distinct
localization and phenotype and peculiar behavior and role
in the physio-pathogenesis of liver and biliary diseases.

EpCAMpos HpSCs are located at the canals of Hering and in
the bile ductules; these cells are recruited in human acute and
chronic liver diseases affecting hepatocytes, contributing to liver
regeneration and being implicated in the fibrogenetic processes.
HpSCs are also elicited in cholangiopathies affecting interlobular
bile ducts (i.e., primary biliary cholangitis). EpCAMpos BTSCs
can be found in the PBGs of large intrahepatic or extrahepatic
bile ducts and participate in regenerative responses following
cholangiopathies affecting large ducts. Their activation is
key in the pathogenesis of biliary strictures in primary
sclerosing cholangitis, and their injury is implicated in the
onset of non-anastomotic strictures following orthotropic
liver transplantation.
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Both niches could contribute to the development of
cholangiocarcinoma due to their prominent activation occurring
in pre-neoplastic conditions, and their distinct phenotype
could explain, at least in part, the heterogeneity observed in
cholangiocarcinoma subtypes.

Finally, due to their stem cell properties and safety of use,
they represent a valid cell source for regenerative medicine of
the liver.
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Non-alcoholic fatty liver disease (NAFLD) is a major health problem associated with

obesity and other features of the metabolic syndrome including insulin resistance and

dyslipidemia. The accumulation of lipids in hepatocytes causes liver damage and triggers

inflammation, fibrosis, and cirrhosis. Beside fatty acids and triglycerides, evidence

showed an increased accumulation of free cholesterol in the liver with subsequent

toxic effects contributing to liver damage. The maintenance of cholesterol homeostasis

in the body requires a balance between several pathways responsible for cholesterol

synthesis, transport and conversion into bile acids. Intestinal absorption is also one of

the major determinants of cholesterol homeostasis. The nature of changes in cholesterol

homeostasis associated with NAFLD has been a subject of extensive investigations. In

this article, we will attempt to provide a brief overview of the current knowledge about

the disturbances in cholesterol metabolism associated with NAFLD and discuss how

certain molecular targets of these pathways could be exploited for the treatment of this

multifactorial disease.

Keywords: NPC1L1, ezetimibe, statins, bile acids, fatty liver

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic disorder associated with
obesity and metabolic syndrome (1, 2). Histologically, NAFLD encompasses a broad range of liver
injury including simple steatosis or non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis
(NASH) and subsequent fibrosis as well as cirrhosis (3). The key feature is lipid accumulation in
the liver that is not related to alcohol in hepatocytes (4). The accumulation of lipids in hepatocytes
as a result of dyslipidemia and insulin resistance leads to liver damage and triggers elaborate
response causing hepatic inflammation and fibrosis (2). It is widely accepted that increased
flux of fatty acids associated with insulin resistance and/or increased de novo lipogenesis in
the liver lead to fatty acid accumulation in the liver with associated lipotoxicity (5). However,
emerging evidence also suggested that the increased level of cellular cholesterol contributes to
the development of NAFLD and the progression of the disease (6). Understanding the roles of
cholesterol in the pathophysiology of NAFLD is of a particular importance as it may unravel
novel molecular targets for effective therapeutic interventions for NAFLD. In this review, we will
give a brief summary about processes involved in the maintenance of cholesterol homeostasis
and discuss their potential roles in NAFLD. A synopsis of current knowledge regarding the
benefits of cholesterol lowering drugs in the management of patients with NAFLD is also included.
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CHOLESTEROL HOMEOSTASIS

Maintaining cholesterol pool in the body is achieved by balancing
between input and output pathways of cholesterol metabolism
(7). Components of input pathways include endogenous de novo
synthesis and intestinal absorption of cholesterol, whereas the
output pathways include the excretion of free cholesterol in bile,
the conversion into bile acids, and the non-biliary trans-epithelial
cholesterol efflux (TICE) in the intestine (8, 9). Cholesterol is
secreted into the circulation in the very low-density lipoprotein
(VLDL) from the liver, and its clearance from the blood involves
the uptake of low-density lipoprotein (LDL) by the LDL receptor
(LDLr). Cholesterol is transported from the peripheral tissues
to liver in the high-density lipoproteins (HDL) particles by the
process of reverse cholesterol transport (8).

Intestinal cholesterol absorption represents one of the major
determinants of cholesterol homeostasis. The total amount of
cholesterol in the intestinal lumen is derived from multiple
sources including diet (∼300–500 mg/day from western-type of
diet) as well as the epithelial cells that are shed into the lumen
(∼300 mg/day) and biliary cholesterol (∼800–1,200 mg/day). A
total amount of ∼1,400–1,700mg of cholesterol is presented in
the intestine on a daily basis for absorption (10). The efficiency of
cholesterol absorption exhibits wide inter-individual variations
(28–80%) and depends on several luminal (emulsifiers: bile
acids, phospholipids) and epithelial factors (10). Cholesterol
uptake by enterocytes is mainly mediated by the specific
transporter protein Niemann-Pick C1 Like 1 (NPC1L1), which is
abundantly expressed on the brush-border membrane of small-
intestinal enterocytes (8, 11) (Figure 1). Cholesterol is esterified
by acetyl-CoA cholesterol acyltransferase 2 (ACAT-2) and
incorporated along with triglycerides and apolipoprotein B-48
into chylomicrons. Triglycerides are hydrolyzed by lipoprotein
lipase and chylomicrons are transformed into chylomicron
remnants that are taken up by the liver (10).

The de novo synthesis of cholesterol occurs in all cells
in the body. However, the liver represents the main site for
cholesterol synthesis and storage (8). Cholesterol synthesis starts
with acetyl-CoA and involves multiple reactions. The two rate-
limiting steps in this complex process aremediated by 3-hydroxy-
3-methyl-glutaryl CoA reductase (HMGCoAr) and squalene
monooxygenase. Cholesterol, the newly synthesized in the liver
and the one derived from the intestinal absorption, is then
packaged along with triglycerides and apolipoprotein B-100 into
the VLDL particles that are assembled by themicrosomal transfer
protein. The VLDL loses its load of triglycerides while circulating
in the tissues by lipoprotein lipase and transforms into LDL
that represents the main vehicle of cholesterol transport to the
peripheral tissues. Other processes involving cholesterol in the
liver include esterification by ACAT2 for storage, excretion into
bile by the function of heterodimer of ATP-binding cassette
transporters ABCG5/G8 found on the canalicular membrane
of hepatocytes, or the conversion to bile acids by a complex
process in which the cytochrome P450 7A1 (CYP7A1) enzyme
mediates the rate-limiting reaction (8). The expression of
CYP7A1 is mainly regulated by a signal generated from the
ileum represented by fibroblast growth factor 19 in human and

15 in rodents (FGF19/15) (12). The synthesis and secretion of
FGF19/15 are induced by the uptake of bile acids by enterocytes
in the distal ileum that is mediated by the action of the apical
sodium dependent bile acid transporter ASBT. The inhibition
of ASBT reduces FGF19/15 expression and promotes hepatic
bile acid synthesis and therefore, decreases levels of hepatic
cholesterol (Figure 1).

The transport of cholesterol from the peripheral tissues
back to liver is initiated by cholesterol efflux from cells via
the ATP-binding cassette transporter ABCA1 to the nascent
apolipoprotein A containing HDL particles. Cholesterol could be
transferred from HDL in the circulation to LDL by cholesterol-
ester transfer protein (CETP). HDL is taken up by hepatocytes
via the scavenger receptor B1 (SR-B1) (8) (Figure 1).

The expression of genes responsible for cholesterol transport
and metabolism are tightly regulated by coordinated actions
of transcription factors. For example, the decrease in the
level of cellular cholesterol activates the ER membrane-
bound transcription factor Sterol regulatory element-binding
protein isoform 2 (SREBP-2) that induces the expression of
HMGCoAr and LDLr (8). On the other hand, the increase
in cellular cholesterol elevates the levels of the oxygenated
cholesterol intermediates oxysterols that trigger Liver X receptors
(LXRs) transcription factors to stimulate the pathways of
cholesterol efflux and to promote cholesterol elimination from
the liver (8).

CHOLESTEROL AND THE
PATHOPHYSIOLOGY OF NAFLD

The interest in understanding the relationship between
cholesterol metabolism and the development of NAFLD and
NASH was incited by observational studies linking liver damage
with the risk for the development of cardiovascular disease
(CVD) (13). In fact, the increased prevalence of metabolic
syndrome in patients with NAFLD was to such an extent
that some authors suggested that NALFD represents the
hepatic manifestation in a spectrum of metabolic disorders
(14). The metabolic syndrome refers to a cluster of metabolic
disturbances including obesity, insulin resistance, hypertension,
and atherogenic dyslipidemia that increase the risk for
cardiovascular disease, stroke and diabetes mellitus (14).
Meta-analysis of observational retrospective and prospective
studies demonstrated an increased risk for CVD of both fatal
and non-fatal events of CVD in patients with NAFLD as
compared to patients without NAFLD (15). Such a link between
NAFLD and CVD provided a compelling rationale to closely
examine cholesterol metabolism in patients with NAFLD.
The features of dyslipidemia associated with NALFD include
hypertriglyceridemia and a decrease in HDL cholesterol (2).
Although there is no evidence for an increase in total LDL
cholesterol, patients with NAFLD were shown to have elevated
levels of highly atherogenic subpopulations of LDL such as the
oxidized particles (2). Furthermore, feeding high cholesterol
atherogenic diets was able to induce lesions of early NAFLD as
well as atherosclerosis in several animal models.

Frontiers in Medicine | www.frontiersin.org 2 September 2020 | Volume 7 | Article 467176

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Malhotra et al. Cholesterol Related Disturbances in NAFLD

FIGURE 1 | Cholesterol metabolism and transport. NPC1L1 mediates the uptake of cholesterol and plant sterols into small intestinal epithelial cells. The majority of

plant sterols are secreted back into the lumen by the action of ABCG5/G8 heterodimer. Cholesterol is esterified and packaged into chylomicrons along with

triglycerides. Ezetimibe inhibits NPC1L1 and decreases the intestinal cholesterol absorption. Cholesterol is synthesized in the liver and intestine. ABCA1 transporter

mediates the efflux of cholesterol to a nascent HDL particle. Cholesterol enters the hepatocytes via LDLr or the HDL receptor SR-B1. In hepatocytes, cholesterol is

esterified, secreted as free cholesterol into bile via ABCG5/G8 transporters, or converted to bile acids with a process in which CYP7A1 mediates the rate-limiting step.

Bile acids are reabsorbed by ASBT in the ileum and activate FXR which increased the expression and secretion of FGF19 in humans (15 is rodents). FGF19/15

circulates back to the liver to inhibit CYP7A1 via FGF4 receptor and β-klotho co-receptor. ASBT, apical sodium-dependent bile acid transporter; BA, bile acid;

CYP7A1, cytochrome P450 7A1; FGF15/19, fibroblast growth factor 15/19; FXR, farnesoid X receptor; Ost a & β, organic solute transporter alpha and beta; HMGCR,

3-Hydroxy-3-methylglutaryl-CoA Reductase; C, cholesterol; PS, plant sterols; NPC1L1, Niemann-pick C1 Like 1; G5/G8, ATP binding casette transporter G5 and G8;

SR-B1, scavenger receptor B1; ABCA1, ATP-binding cassette transporter ABCA1; ACAT2, Acetyl-Coenzyme A Acetyltransferase 2; HDL, High density lipoprotein;

CE, cholesterol ester; TG, triglyceride; FGFR4, fibroblast growth factor receptor 4; LDLR, Low density lipoprotein receptor; LDL, low density lipoprotein.

It should be noted that animal species have remarkable
differences in cholesterol metabolism and respond differently to
cholesterol rich diet. In this regard, it is well-established that
rabbits have features of cholesterol metabolism that are closer
to those in humans (16). For example, the predominant plasma
lipoproteins in both rabbits and humans is LDL whereas it
the HDL in mice. This difference is due to the fact that the
CETP is lacking in the plasma of mice (17). More importantly,
rabbits are sensitive to dietary cholesterol and develop severe
hypercholesterolemia in response to high dietary cholesterol
with prominent atherosclerosis (16). A recent study showed
that diet-induced hypercholesterolemia in rabbits fed with diet
containing 1% cholesterol caused liver injury that resembles
early lesions of NAFLD (changes in fatty acid and sporadic
fibrosis) concomitant with the development of atherosclerosis
in the aorta (18). This study generated evidence linking blood
cholesterol with NAFLD and provided novel insights into the
roles of free cholesterol in inducing liver damage. In the
mouse model, hypercholesterolemia and atherosclerosis can be

produced only in genetically modified animals such as apoE
and LDLr knockout mice (19). In this regard, steatohepatitis
was shown in apoE knockout mice in response to high
fat high cholesterol feeding (20). Combined transcriptomics
and metabolomics analysis demonstrated that high dose of
dietary cholesterol in apoE knockout mice triggered hepatic
inflammation (21).

An interesting observation was made in wildtype mice (but
not in the transgenic mice models of hypercholesterolemia)
showing that high cholesterol in the diet was essential to elicit
steatohepatitis and fibrosis after 30 weeks of feeding, whereas
high fat diet alone failed to produce the same degree of
liver injury (22). This role of high dose of dietary cholesterol
in the induction of liver damage in wildtype mice was also
illustrated in other species. For example, a study showed that
feeding Ossabaw pigs atherogenic diet containing high fat
along with 2% cholesterol caused severe metabolic syndrome
along with lesions in the liver with features resembling human
steatohepatitis including microvesicular and macrovesicular
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steatosis, fatty Kupffer cells, hepatocyte ballooning and fibrosis
(23). Collectively, the evidence from preclinical animal models
strongly indicate that a high dose of cholesterol is an
independent risk factor for liver damage and the development
of atherosclerosis. A conclusion can be drawn from these
studies linking NAFLD with atherosclerosis implicating the
accumulation of cholesterol in the liver and arteries as a trigger
for inflammation and subsequent manifestations of liver disease
and CVD.

Beside the studies in animal models, the results of a landmark
study in humans also supported the role of cholesterol in
NAFLD/NASH. Puri et al. (24) showed high levels of free
cholesterol in patients with NAFLD (simple steatosis) that
were more pronounced in cases with progressive form of the
disease, NASH. Cholesterol esters remained unchanged despite
the increase in free cholesterol suggesting an impaired function
and/or expression of the enzyme responsible for cholesterol
esterification (ACAT). Collectively, the evidence from animal
models and humans indicates that cholesterol is one of the
toxic lipids that accumulates in the liver contributing to liver
damage during the course of NAFLD and the progression
to NASH.

Recent studies investigated the molecular mechanisms
underlying the toxic effects of high cholesterol in the liver.
The findings of Mari et al. (25) provided evidence showing
that accumulation of free cholesterol but not triglycerides or
fatty acids makes hepatocytes more sensitive to TNFa and
Fas-mediated apoptosis due to depletion of mitochondrial
glutathione. Other studies suggested that the accumulated free
cholesterol in damaged hepatocytes precipitates as crystals which
in turn induce inflammatory response by interacting with NLRP3
inflammasomes of Kupffer cells (26). Free cholesterol was shown
also to directly accumulates in lysosomes of Kupffer cells
triggering an inflammatory response (27). Such inflammatory
cascade was blocked by 27-hyroxycholesterol that prevented
the accumulation of cholesterol in Kupffer cells and reduced
NASH. The accumulation of cholesterol in hepatic stellate cells
(HSCs) was also implicated in the progression to NASH and
fibrosis (28). For example, studies provided evidence showing
that the accumulation of free cholesterol in HSCs resulted in
an increase in the expression of TLR4 receptor and an increase
in the sensitivity of HSCs to TGFb with subsequent fibrosis
(29). It is apparent therefore, that increased cellular levels of
cholesterol in different cell types in the liver may be responsible
for liver damage and the progression from simple steatosis
to NASH.

MOLECULAR PATHWAYS UNDERLYING
CHOLESTEROL ACCUMULATION IN
NAFLD

The accumulation of free cholesterol in NAFLD may occur due
to an upregulation in the input pathways or a decrease in the
elimination of cholesterol. Studies showed that the expression
of HMGCoAr are increased in patients with NAFLD/NASH
(30). There is evidence to suggest that changes in microRNAs

(miRs) might be responsible for the observed increase in
HMGCoAr. Several studies demonstrated the roles of several
miRs in the development of liver diseases including NAFLD.
The roles of these miRs including miR-122, miR-33, and miR-
24a are discussed in details in other excellent review articles
(31, 32). Studies have also demonstrated the regulation of several
genes involved in cholesterol metabolism such as HMGCoAr by
miRs and these findings are nicely summarized in other review
articles (33, 34).

With respect to cholesterol metabolism as it relates to
NAFLD/NASH, miR-34a levels were shown to be elevated in
patients with NAFLD/NASH causing a decrease in hepatic
NAD-dependent deacetylase Sirtuin1 with subsequent
dephosphorylation and an increase in HMGCoAr (30). The
roles of miR-29a was also suggested by a supporting evidence
showing a negative correlation between miR-29a and HMGCoAr
expression after 3 weeks feeding of methionine-choline deficient

diet (MCD) to mice (35). The study revealed that 3
′

un-translated
region (3′UTR) of HMGCoAr was targeted by miR-29a (35). The
decrease in miR-29a was concomitant with a decrease in hepatic
Dicer1 enzyme that is essential for the maturation of microRNAs.
In fact, liver-specific knockout of Dicer1 enzyme resulted in
an increase in HMGCoAr associated with accumulation of free
cholesterol in the liver (35). These findings revealed an important
molecular pathway involving hepatic Dicer1 and microRNAs
in the increase in cholesterol synthesis and accumulation of
free cholesterol in the liver contributing to the development
of NAFLD/NASH.

The expression of SREBP2 transcription factor was also
increased in patients with NAFLD/NASH (30). Since SREBP2
induces the expression HMGCoAr, the observed increase in
active SERBP2 represents an additional molecular pathway that
might be responsible for the increases in hepatic levels of
free cholesterol. Mari et al. (25) demonstrated that SREBP2
overexpression was not found in obese patients and patients with
other chronic liver diseases such as hepatitis C, but was rather
a specific feature associated with NAFLD/NASH. It should be
noted that the accumulation of free cholesterol in hepatocytes is
expected to inhibit the activation of SREBP2 (36). It is possible
that SREBP2 is activated in NAFLD/NASH by a mechanism
independent from the canonical pathway related to changes
in cellular cholesterol (37). Indeed, a previous study showed
that the injection of cytokines in C57BL mice resulted in an
increase in hepatic SREBP2 and HMGCoAr expression (38).
Similar findings were obtained in response to incubation of
human hepatic HepG2 cells with cytokines. Although loading
of HepG2 cells with cholesterol inhibited the SREBP2 pathways
as expected, such a negative feedback inhibition was overridden
by inflammatory stress caused by the cytokines (38). It is also
reported that miR-122 stabilizes the inactive form of SREBP2
(39). Interestingly, miR-122 was shown to be significantly
decreased in patients with NASH, thus providing a potential
explanation for the increase in SREBP2 (39). It is possible also
that hyperinsulinemia resulted from increased insulin resistance
may also cause an increase in the active form of SREBP2
(40). Collectively, the inflammatory stress, the decrease in
miR-122 and associated hyperinsulinemia in NASH presents a
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reasonable explanation for the constant activation of SREBP2
bypassing the canonical negative feedback inhibitory effect of
high levels of cellular cholesterol (37). Beside the role of
hepatic SREBP2 in the pathophysiology of NAFLD/NASH,
our studies in transgenic mouse model of intestine-specific
overactivation of SREBP2, demonstrated hepatic steatosis, and
increased susceptibility of the animals to severe liver damage
and profound inflammation and fibrosis in response to a
high fat/high cholesterol diet (41). These observations strongly
suggest that the activation of SREBP2 not only in the liver but
also in the intestine plays a critical role in the development
of NAFLD/NASH.

Beside the increase in cholesterol synthesis, changes in
the pathways involved in the elimination of cholesterol were
also noted in patients with NASH. Among these observations
is the decrease in the expression of CYP7A1 implicating
reduced bile acid synthesis from cholesterol (30). Also, a
decrease in the expression of cholesterol transporters ABCG5/G8
responsible for cholesterol excretion into bile was reported
(30). It is clear therefore, that the accumulation of hepatic
free cholesterol in NAFLD/NASH patients is multifactorial with
underlying increase in synthesis and decrease in the elimination
of cholesterol.

With respect to dietary cholesterol and liver disease in
humans, an epidemiological study suggested that dietary
cholesterol is an independent risk factor for liver cirrhosis
and hepatic cancer (42). These studies provide support to the
observations made in animal models demonstrating the role
of cholesterol in the induction of liver damage (43, 44). Since
dietary cholesterol represents only a small portion of the total
amount of luminal cholesterol presented for absorption (10), one
could argue that the relation between the efficiency of cholesterol
absorption and the development of liver diseases including
NALFD/NASH should be carefully investigated. One study by
Simonen et al. (45) evaluated serum surrogate markers for
cholesterol synthesis (cholestenol, desmosterol, and lathosterol)
and absorption (plant sterols). Individuals with NALFD were
identified as those having liver fat ≥ 5.56% as judged by with
protonmagnetic resonance spectroscopy. The authors found that
the content of liver fat was positively correlated with markers
of cholesterol synthesis and inversely correlated with markers
of cholesterol absorption (45). It is possible that there is an
interrelationship between these two processes so that the decrease
in cholesterol absorption may represent a homeostatic response
to an increase in cholesterol synthesis (45). It will be important
to investigate a possible difference in the efficiency of cholesterol
absorption in patients with NASH as compared to those with
NAFLD. With respect to the expression of intestinal NPC1L1,
previous studies showed an increase in the expression of this
intestinal in patients with diabetes mellitus (46). It is of central
importance to investigate the expression of NPC1L1 in patients
with NAFLD and NASH to a make a conclusion regarding
potential changes in cholesterol absorption. Also, the studies
mentioned above assessed the efficiency of cholesterol absorption
indirectly by measuring serum plant sterols as surrogate markers.
A direct measurement of cholesterol absorption in patients with
NAFLD/NASH is warranted.

CHOLESTEROL LOWERING DRUGS IN
THE MANAGEMENT OF NAFLD/NASH

According to current guidelines, decreasing the levels of plasma
cholesterol to stringent low levels is highly recommended
in patients with high risk for CVD (47, 48). Patients with
NAFLD/NASH have high risk of developing CVD (15, 49).
Therefore, it is of central importance to address treatment
options available to lower plasma cholesterol in this patient
population. Table 1 summarizes the results of selected studies
related to cholesterol-based therapy for NAFLD.

Inhibitors of Cholesterol Synthesis
Statins, the inhibitors of HMGCoAr, are the widely used drugs
to lower plasma cholesterol (61). It is well-established that
statins reduce LDL cholesterol and significantly decrease the
risk for CVD. Thus, it is logical to use statins in NAFLD
patients who are at risk for CVD (62). The use of statins
was noted to be associated with an increase in the levels
of serum transaminases raising concerns about their safety
especially in patients with NAFLD/NASH (63). However, recent
studies in a cohort of ∼1,200 European patients provided
strong evidence demonstrating the beneficial effects of statins
in the protection against steatosis, steatohepatitis, and fibrosis
as assessed by liver biopsies (50). Several other meta-analysis of
available data suggested that atorvastatin improved liver injury in
NAFLD/NASH patients and was more potent in decreasing CVD
risk as compared to individuals with normal liver function (64).

The effects of statins on several aspects of liver injury
was shown in animal models (51). Statins were shown to
decrease experimentally induced fibrosis in rats by inhibiting the
activation of hepatic stellate cells (52). Recent study also showed
that simvastatin reduced liver inflammation and fibrosis in ApoE
knockout mice fed with western-type of diet (53). These effects
were attributed to the inhibition of RhoA and Ras signaling (53).
It is possible therefore, that the amelioration of liver injury by
statins is due to other effects beside the inhibition of cholesterol
synthesis (65). Statins may also affect cholesterol metabolism
in other organs and indirectly influence liver function. For
example, it was shown that statin treatment in humans increased
the expression of intestinal SREBP2 (66). In this regard, our
studies demonstrated that the intestine-specific overexpression
of SREBP2 caused hepatic steatosis and profound diet-induced
liver injury in mice (41). It is possible therefore, that statins
may negatively affect liver function by increasing intestinal
SREBP2 expression. In light of the complexity underlying the
global effects of statins, comprehensive studies are warranted to
delineate the molecular pathways involved in the effects of statins
on NAFLD/NASH.

Inhibitors of Bile Acid Absorption
Blocking the absorption of bile acids eliminates the negative
feedback inhibition on their hepatic synthesis and promotes
cholesterol degradation (12). ASBT mediates the first and rate
limiting step in bile acid absorption and its inhibition represents
an attractive therapeutic target to reduce hepatic cholesterol
toxicity in NAFLD/NASH (12). Recent studies provided a
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TABLE 1 | Therapeutic interventions for NAFLD/NASH.

Therapeutic intervention Therapeutic

agent

Molecular target Effect on NALFD/NASH Model Ref

Inhibition of cholesterol

synthesis

Statins HMGCoAr Protection against steatosis, steatohepatitis

and fibrosis [assessed by liver biopsies]

Retrospective study-humans (50)

Simvastatin HMGCoAr Protects parenchymal and endothelial

components of the liver after warm

reperfusion.

Rat model of steatotic graft (51)

Fluvastatin HMGCoAr Reduced hepatic steatosis and fibrosis scores,

α-SMA protein expression, mRNA expression

of pro-inflammatory, and pro-fibrogenic genes

Choline-deficient L-amino

acid-defined diet-induced Rat

NASH model

(52)

Simvastatin RhoA and Ras

signaling

Decreased hepatic inflammation and fibrosis.

No effect on steatosis

Diet-induced NASH in apoE−/−

mice

(53)

Inhibition of bile acid

absorption

SC-435 ASBT Restored glucose tolerance, reduced hepatic

triglyceride and total cholesterol, improved

NAFLD activity score

High fat diet-induced NAFLD in

C57BL mice

(54)

Volixibat ASBT Attenuated the hepatocyte hypertrophy,

reduced hepatic triglyceride and cholesteryl

ester levels, decreased NAFLD activity score

Diet-induced NASH in LDLr–/–/

Leiden mice

(55)

Volixibat ASBT Interim-endpoint was not met and the study

was terminated owing to lack of efficacy

Clinical trial-humans (56)

Inhibition of cholesterol

absorption

Ezetimibe NPC1L1 Decreased hepatic cholesterol content and

increased the hepatic total bile acid content,

ameliorated hepatic insulin resistance

C57BL mice fed with high fat diet (57)

Ezetimibe NPC1L1 Fibrosis stage and ballooning score were

significantly improved with ezetimibe

treatment [Histological evaluation]

Clinical trial-humans (58)

Ezetimibe NPC1L1 Failed to reduce liver fat assessed by

MRI-PDFF imaging

Clinical trial-humans (59)

Ezetimibe NPC1L1 Decreased NAFLD activity score (NAS) but not

hepatic steatosis

Meta-analysis of RCTs-humans (60)

compelling evidence showing that the lack of ASBT in knockout
mice protected against diet-induced liver injury and steatosis
(54). Further, these studies showed that the pharmacological
inhibition of ASBT significantly decreased hepatic triglycerides
and total cholesterol and improved NAFLD activity score
(54). Additional studies using the ASBT inhibitor volixibat
in LDLr leiden knockout mice supported that conclusion
and demonstrated a significant decrease in diet-induced Non-
alcoholic fatty liver disease activity score by the inhibition
of ASBT (55). In humans however, a phase 2 clinical trial
to assess the effects of 48 weeks treatment with the ASBT
inhibitor, volixibat, was terminated after mid-term assessment
due to lack of improvement in NASH score as judged by MRI-
PDFF imaging (56). It should be noted that the histological
evaluations including the scores for ballooning and inflammation
in this clinical trial were lacking. Such histological analysis
in response to treatment with volixibat is crucial as it may
provide more insights on the potential effects of inhibiting
bile acid absorption on liver injury in NAFLD/NASH. Also,
additional studies in preclinical models seem essential to
unravel the molecular basis for the observed improvement of
NAFLD/NASH in the animal models. Enhanced understanding
of these pathways at themolecular level may unravel novel targets
that could be more efficacious in the treatment of NALFD/NASH
in humans.

Inhibitors of Cholesterol Absorption
Studies showed that the inhibitor of cholesterol absorption
ezetimibe reduces plasma cholesterol and decreases the risk of
CVD when used alone or in combination with statins (67, 68).
Earlier studies in animal models showed that ezetimibe alleviated
liver steatosis in mice fed with high fat diet and had promising
effects on NAFLD/NASH (57). However, the studies about the
beneficial effects of ezetimibe in patients with NAFLD/NASH
generated conflicting results (69). Takeshita et al. (58) showed
in a randomized clinical trial in a cohort of 32 patients with
NAFLD that ezetimibe improved hepatic fibrosis. However, the
clinical trial by Loomba et al. (59) with 50 patients showed that
ezetimibe failed to significantly reduce liver fat in NAFLD as
assessed by MRI-PDDF imaging. A recent meta-analysis, which
exclusively included studies assessing NAFLD/NASH based on
biopsy, with only one study that was based MRI-PDFF imaging,
showed that ezetimibe decreased NAFLD activity score (NAS)
but not hepatic steatosis (60). It was noted that current available
data about ezetimibe and NAFLD/NASH were generated from
limited number of clinical trials with small sample size (69). Large
scale randomized clinical trials are needed for better assessment
of the outcome of ezetimibe on the disease activity in patients
with NAFLD/NASH. It is noteworthy to mention that the inter-
individual variations in the efficiency in cholesterol absorption
may influence the results of these studies. We suggest that this
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potential confounding factor be taken into consideration when
assessing the effects of ezetimibe on NAFLD/NASH.

CONCLUSION

Disturbances in cholesterol metabolism contribute to the
pathophysiology of NAFLD/NASH. An increase in cholesterol
synthesis and a decrease in the pathways responsible for
the elimination of cholesterol lead to accumulation of free
cholesterol in the liver. The toxicity of high cellular levels
of cholesterol in hepatocytes is one of the major factors
causing inflammation and fibrosis leading to liver damage. The
pathways involved in cholesterol metabolism are potential targets
for the treatment of NAFLD/NASH. One challenging area is
the complex nature of the processes involved in cholesterol
homeostasis. For example, cholesterol absorption exhibits wide
interindividual variations that may explain the conflicting results
when evaluating the efficacy of cholesterol lowering drugs in the
treatment of NAFLD/NASH. Such variations evoke the need for
precisionmedicine approaches and individualized treatment. It is
possible that individuals with naturally occurring low efficiency
of cholesterol absorption may not benefit from the use of
cholesterol absorption blocker ezetimibe. It will be interesting
in future studies to stratify patients into relevant subgroups in a

rigorous manner and take into consideration the inter-individual
variations in cholesterol metabolism when assessing the outcome
of cholesterol lowering drugs in the treatment of NAFLD/NASH.
Precision medicine approaches necessitate the development of
novel and simple methods to directly measure dynamic processes
such as cholesterol absorption when individualized therapeutic
interventions are to be considered for NAFLD/NASH treatment.
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Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from

cholesterol and have been shown to be essential for lipid homeostasis. BAs regulate

a variety of metabolic functions via modulating nuclear and membrane receptors.

Farnesoid X receptor (FXR) is the most important nuclear receptor for maintaining BA

homeostasis. FXR plays a tissue-specific role in suppressing BA synthesis and promoting

BA enterohepatic circulation. Disruption of FXR in mice have been implicated in liver

diseases commonly occurring in humans, including cholestasis, non-alcoholic fatty liver

diseases, and hepatocellular carcinoma. Strategically targeting FXR activity has been

rapidly used to develop novel therapies for the prevention and/or treatment of cholestasis

and non-alcoholic steatohepatitis. This review provides an updated literature review on

BA homeostasis and FXR modulator development.

Keywords: bile acids, FGF15/19, FXR, agonist, non-alcoholic fatty liver disease, species difference

INTRODUCTION

Bile acids (BAs) serve critical physiological functions, including elimination of cholesterol,
absorption of fat and fat-soluble vitamins, regulation of the gut microbiome, and serving as
important signaling molecules. BAs are endogenous ligands of farnesoid X receptor (FXR),
Takeda G protein receptor 5 (TGR5), and sphingosine-1-phosphate receptor 2 (S1PR2). In the
liver and intestine, BAs suppress their own synthesis, regulate glucose and lipid homeostasis,
and inhibit inflammation and fibrogenesis. Disruption of BA homeostasis leads to severe
pathological outcomes, including cholestasis, hepatic steatosis, fibrosis, and liver tumors.
Regulating BA pathways has become a novel strategy to treat cholestasis and non-alcoholic
steatohepatitis (NASH).

OVERVIEW OF BAS

Synthesis
BAs are amphipathic molecules synthesized from cholesterol in the liver mainly through two
pathways, the classical and the alternative pathway (1). In the classical pathway, the initial and
rate-limiting step is the 7α-hydroxylation of cholesterol by a cytochrome P450 enzyme, cholesterol
7α-hydroxylase (CYP7A1) (2, 3). The crucial role of CYP7A1 has been demonstrated with Cyp7a1
knockout (KO) mice that have a high incidence of postnatal death due to abnormal neurological
development following vitamin deficiencies (4). Afterwards, microsomal 3β-hydroxy-15-C27-
steroid dehydroxylase (3β-HSD) converts 7α-hydroxycholesterol to 7α-hydroxy-4-cholestene-
3-one (C4) (5), which can be converted by sterol 12α-hydroxylase (CYP8B1) to cholic acid
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(CA) or alternatively catabolized by cytosolic 14-3-oxosteroid
5β-reductase (AKR1D1) and 3α-hydroxysteroid dehydrogenase
(AKR1C4), yielding a sterol intermediate, 5β-cholestan-3α,7α-
diol, which is further converted to chenodeoxycholic acid
(CDCA) (5, 6). Cyp8b1 KO mice eliminated CA synthesis,
suggesting that CYP8B1 is required for CA synthesis and is
responsible for the CA-to-CDCA ratio in the classical pathway
(7). Additionally, the C4 intermediate can be used as a serum
marker for assessing BA synthesis levels in vivo (8).

In the alternative or acidic pathway, cholesterol is oxidized
by mitochondrial sterol 27-hydroxylase (CYP27A1) to produce
27-hydroxycholesterol and 3β-hydroxy-5-cholestenoic acid,
which is further hydroxylated by oxysterol 7α-hydroxylase
(CYP7B1) to form the intermediate 3β, 7α-dihydroxy-5-
cholestenoic acid (6, 9). Subsequent enzymatic conversions
produce CDCA.

There is clear species difference of the composition of BAs
between humans and mice (Figure 1). Human primary BAs are
CA and CDCA, that form a relatively hydrophobic BA pool
consisting of 40% CA, 40% CDCA, and 20% deoxycholic acid
(DCA) (9). Mouse primary BAs are CA and muricholic acid
(MCA) that is from 6-hydroxylation of CDCA. Hydroxylation
significantly changes the physicochemical properties of BAs,
resulting in a BA pool that is more hydrophilic, less potent
as detergents, and cytotoxic. More significantly, this additional
conversion in mice markedly changes BA signaling properties,
converting the most potent endogenous FXR agonist (CDCA)
to antagonists (MCAs) (9). Three seminal studies discovered
the mouse 6β-hydroxylase, CYP2C70, converting CDCA to
MCA (10–12). Furthermore, the DCA levels are much higher
in humans than in mice because humans are unable to
rehydroxylate DCA and lithocholic acid (LCA)whereasmice can.
A study by Honda et al. reported that mouse CYP2A12 is the
enzyme responsible for 7α-rehydroxylation of taurodeoxycholic
acid (TDCA) and taurolithocholic acid (TLCA), solving another
unknown of the species difference between humans and
mice (12).

Conjugation is considered to be the terminal step in BA
synthesis and involves the addition of an amino acid, glycine or
taurine, through an amide linkage at carbon 24 (13). Humans
and rodents both utilize the enzyme bile acid-CoA:amino acid

Abbreviations:ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; ANIT,

α-Naphthylisothiocyanate; ASBT, Apical sodium-dependent bile salt transporter;

AST, Aspartate transaminase; BA, Bile acid; BDL, Bile duct ligation; BSEP,

Bile salt export pump; C4, 7α-Hydroxy-4-cholesten-3-one; CA, Cholic acid;

CDCA, Chenodeoxycholic acid; CY27A1, Cytochrome P450 27A1; CYP7A1,

Cytochrome P450 7A1; CYP8B1, Cytochrome P450 8B1; DCA, Deoxycholic

acid; FGF, Fibroblast growth factor; FGF15, Fibroblast growth factor 15; FGF19,

Fibroblast growth factor 19; FGFR4, Fibroblast growth factor receptor 4; FXR,

Farnesoid X receptor; GGT, Gamma-glutamyltransferase; HSC, Hepatic stellate

cell; IBABP, Intestinal bile acid binding protein; iNOS, Inducible nitric oxide

synthase; KO, Knockout; LCA, Lithocholic acid; LPS, Lipopolysaccharide; LT, Liver

transplantation; MCA, Muricholic acid; MRP2, Multidrug resistance-associated

protein 2; NASH, Non-alcoholic steatohepatitis; NR, Nuclear receptor; NTCP,

Sodium taurocholate co-transporting polypeptide; OCA, Obeticholic acid; OSTα,

Organic solute transporter alpha; OSTβ, Organic solute transporter beta; PBC,

Primary biliary cholangitis; PFIC2, Progressive familial intrahepatic cholestasis

type 2; PSC, Primary sclerosing cholangitis; PXR, Pregnane X receptor; SHP-1,

Small heterodimer partner 1; UDCA, Ursodeoxycholic acid; WT, Wild type.

N-acyltransferase (BAAT) for conjugation; however, primary
human BAs are mainly conjugated with glycine and, to a less
extent, taurine, while rodent primary BAs are taurine conjugates
(14, 15). Conjugation of BAs ultimately increases their solubility
and amphipathicity (13).

Enterohepatic Circulation
BAs undergo constant enterohepatic circulation. Conjugated
BAs are transported across the canalicular membrane into
the bile and stored in the gallbladder in both humans
and mice (9). Cholecystokinin, a hormone, is secreted by
the duodenum following a meal to stimulate gallbladder
contraction, leading to the release of BAs into the intestine
(9), where BAs help absorb dietary lipids and fat-soluble
vitamins. In the ileum, about 95% BAs are reabsorbed and
transported back to the liver through portal circulation (9).
Daily, ∼0.5 g of BAs, or 5% of the total BA pool, is excreted
in the feces, with BAs being recycled 4–12 times a day;
this entire process comprises the enterohepatic circulation of
BAs (9).

BA transporters are responsible for dynamically moving
BAs during the enterohepatic circulation. Efflux of BAs from
the hepatocytes into canaliculi is mainly mediated by the bile
salt export pump (BSEP; ABCB11/Abcb11) (16). The multidrug
resistance-associated protein (MRP2; ABCC2/Abcc2) effluxes
divalent BAs along with other organic substrates, bilirubin
conjugates, glutathione, and drugs (17). Like BSEP, MRP2 is
an ATP-binding cassette transporter localized to the canalicular
membrane of hepatocytes (17). There seems to be a species
difference between humans and mice regarding the roles of BSEP
and MRP2. Mice use mainly BSEP and, to a smaller extent,
MRP2, to efflux BAs into the bile, whereas humans mainly
rely on BSEP to efflux BAs into the bile, which could at least
partially explain the more severe cholestasis development in
human patients with BSEP mutation compared to mice with
BSEP deficiency (18). Mutation of the ABCB11 gene causes BSEP
deficiency and progressive familial intrahepatic cholestasis type
2 (PFIC2) (19). PFIC2 is an inherited disorder characterized
by severe cholestasis beginning at infancy that can progress to
cirrhosis, hepatic failure, hepatocellular carcinoma (HCC), and
death (20, 21). Due to the species differences mentioned above,
the PFIC2 phenotype cannot be achieved in Abcb11 KO mice.
This leaves a void for a translational model for PFIC2 to study
potential therapies as the standard treatment remains to be
liver transplantation.

Reabsorption of BAs in the terminal ileum mainly
occurs through the uptake mediated by the apical sodium-
dependent bile salt transporter (ASBT; SLC10A2/Slc10a2)
(22), intracellular binding to intestinal bile acid-binding
protein (IBABP) (23), and basolateral BA efflux into the portal
circulation by the organic solute transporters OSTα and OSTβ

heterodimer (24).
At the basolateral (sinusoidal) membrane of hepatocytes,

the major BA uptake transporter is the sodium taurocholate
co-transporting polypeptide (NTCP; SLC10A1/Slc10a1) (25).
Interestingly, human NTCP seems to have higher affinity than
does the rat transporter, allowing more efficient BA extraction
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FIGURE 1 | Species difference in bile acid (BA) synthesis and composition. In

hepatocytes, primary BAs, cholic acid (CA) and chenodeoxycholic acid

(CDCA), are made from cholesterol. In mice, CDCA is converted to muricholic

acid (MCA) by CYP2C70. CA and CDCA are conjugated and then efflux via

ABCB11 to the intestine through the uptake transporter ASBT, where they

facilitate lipid absorption. Most BAs are transported back by effluxion out of

enterocytes via the organic solute transporter (OST)α/OSTβ complex to the

liver through portal circulation and taken up into hepatocytes mainly via

sodium taurocholate co-transporting polypeptide (NTCP), with a small amount

being converted to deoxycholic acid (DCA) and lithocholic acid (LCA), the

secondary BAs in the large intestine. In mice, DCA can be transported back to

the liver and converted to CA by CYP2A12.

at low plasma levels (25). Sodium-independent basolateral
BA uptake into hepatocytes is mediated by organic anion
transporting polypeptides (OATPs) (16). Only 25% of the hepatic
BA uptake is estimated to be mediated by Na+-independent
mechanism and responsible for mainly unconjugated BA
uptake (16).

Although not directly involved in enterohepatic circulation,
an important canalicular membrane flippase encoded by the
multidrug resistance gene (MDR3;ABCB4 in humans and
Mdr2;Abcb4 in mice) is responsible for phospholipid secretion
into the bile (26, 27). Disruption of Mdr2 prevents the secretion
of phospholipids, a component of BA mixed micelles, thus
increasing the concentration of free BAs that can damage the
biliary epithelium (21). Defects in ABCB4 are associated with
progressive familial intrahepatic cholestasis type 3 (PFIC3),
intrahepatic cholestasis of pregnancy, and adult biliary cirrhosis
(28, 29). Mdr2 KO mice develop severe biliary fibrosis and are a
well-established model for primary sclerosing cholangitis (PSC)
(30, 31).

The gut microbiota play an important role in BA
biotransformation and are responsible for secondary BA
formation. Conjugated BAs that remain in the intestine are
deconjugated by bacterial bile salt hydrolases (BSHs) (32).
In the large intestine, bacterial 7α-dehydroxylase converts
CA to DCA and CDCA to LCA through the removal
of the hydroxyl group at the C-7 position (32). These
secondary BAs are more cytotoxic. While LCA is highly
insoluble and mostly excreted by fecal excretion, DCA can
be reabsorbed through passive diffusion (33). As mentioned
above, mouse hepatocytes can rehydroxylate DCA to CA
by CYP2A12 (12). Species differences in the gut microbiota
may affect the generation of secondary BAs and should be
considered when using animal models to study human BA
signaling (21).

BAs are important for the intestinal absorption of lipids and
lipid-soluble nutrients, removal of excess cholesterol, regulating
bile flow, modulating the gut microbiome, and modulating
energy homeostasis. Many of these functions are performed by
modulating a nuclear receptor (NR) FXR in a tissue-specific
manner. Additional NRs and membrane-bound receptors that
have been identified to be activated by BAs include pregnane X
receptor (PXR), vitamin D receptor (VDR), Takeda G protein-
coupled receptor (TGR5), and sphingosine-1-phosphate receptor
2 (S1PR2) (34–36).

FARNESOID X RECEPTOR

FXR is the most important NR to regulate BA homeostasis.
NRs are ligand-activated transcription factors that regulate the
expression of genes involved in various processes, including
cell growth, differentiation, and metabolism (37). The general
structure of NRs consists of an N-terminal DNA-binding
domain (DBD) and a C-terminal ligand-binding domain (LBD),
with the DBD being the most conserved area that contains
two zinc finger motifs (9). These zinc fingers allow the
NR to bind to DNA elements, known as hormone response
elements (HREs), composed of direct, inverted, or everted
repeats of the sequence AGGTCA and separated by a variable
number of nucleotides (38). NR activation also requires
either homodimerization or heterodimerization with retinoid X
receptor (RXR) (39).

FXR was originally labeled as an orphan NR (38). After
multiple groups demonstrated that physiological concentrations
of free or conjugated BAs could activate FXR, with CDCA
being the most potent, followed by DCA, CA, and LCA,
BAs were recognized to be the endogenous ligands of
FXR and FXR is now considered an “adopted” NR (40–
42). FXR is highly expressed in the liver, ileum, kidneys,
and adrenal glands (40). The most common FXR response
element (FXRE) consists of an inverted AGGTCA repeat
separated by one nucleotide (IR1); FXR could also bind to an
everted repeat separated by two nucleotides (ER2) (43). Both
steroidal and non-steroidal FXR agonists are being developed
in the treatment of various liver diseases and include semi-
synthetic BA obeticholic acid (OCA), cilofexor, and tropifexor,
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FIGURE 2 | Farnesoid X receptor (FXR) regulates bile acid (BA) synthesis in a

tissue-specific manner. In the intestine, FXR activation induces fibroblast

growth factor (FGF)15/19, which can go to the liver and activate the

FGFR4/β-klotho dimer to activate signaling pathways in order to inhibit the

expression of genes in the classical BA synthesis pathway. Hepatic FXR

activation also inhibits BA synthesis, albeit to a smaller degree.

with OCA being used clinically to treat primary biliary
cholangitis (PBC).

Regulation of BA Homeostasis
It has been well-established that FXR is involved in the regulation
of BA homeostasis. As shown in Figure 2, there is a clear tissue-
specific role of FXR in the liver and intestine to regulate BA
synthesis (44). Activation of intestinal FXR plays a major role
and activation of liver FXR serves a minor role in suppressing
CYP7A1/Cyp7a1 gene expression through the induction of the
ileal hormone fibroblast growth factor 19 (FGF19) in humans and
FGF15 in mice and hepatic small heterodimer partner 1 (SHP-1),
respectively (42, 44–47). In contrast, Cyp8b1 gene repression via
FXR is almost equally dependent on both intestinal and liver FXR
(44). Furthermore, FXR is critical in regulating the enterohepatic
circulation of BAs by inducing the expression of BSEP, IBABP,
and OSTα/β and suppressing those of NTCP and ASBT (48–52).

Regulation of Lipid and Glucose
Homeostasis
FXR also shows critical effects in regulating lipid and glucose
homeostasis. In general, FXR activation leads to lower lipid levels
in the circulation as it suppresses de novo fatty acid synthesis
(53, 54), decreases very low-density lipoprotein (VLDL) hepatic
secretion (55), and increases triglyceride hydrolysis and clearance
as well as fatty acid oxidation (56–60). Activation of FXR may
reduce glucose intolerance by reducing hepatic gluconeogenesis
and glycolysis and increasing glycogen synthesis (61). FXR
activation may decrease gluconeogenesis via SHP-mediated

suppression of the critical transcription factors involved in
gluconeogenesis (62). In contrast, a different study utilizing
human and rat hepatocytes and mouse livers showed that FXR
agonism induced phosphoenolpyruvate carboxykinase (PEPCK)
expression and glucose levels (63). Our genome-wide ChIP-
seq analysis also suggests that FXR could regulate glucose
homeostasis, but there may be species differences among humans
and mice (43, 64). Despite conflicting evidence, it is apparent
that FXR may play important roles in glucose homeostasis
as FXR KO mice develop fatty livers, elevate circulating free
fatty acids (FFAs) and serum glucose levels, and present insulin
resistance (65). In both diabetic db/db and wild-type mice, FXR
activation or hepatic overexpression significantly lowered the
blood glucose levels, decreased the FFA levels, and increased the
insulin sensitivity (66), suggesting FXR activation may improve
metabolic syndrome.

Role in Inflammation and Fibrosis
During liver injury, FXR has been shown to play an anti-
inflammatory role (67, 68). Monocyte chemoattractant protein-1
(MCP-1/CCL2) is a key chemokine that regulates the migration
and infiltration of monocytes/macrophages (69). In the
methionine/choline-deficient (MCD) diet-induced NASH
model, the synthetic FXR agonist WAY-362450 decreased
MCP-1 expression and significantly decreased inflammatory cell
infiltration in the liver (68). Nuclear factor kappa-light-chain
enhancer of activated B cell (NF-κB) is a transcription factor
that induces the expression of various pro-inflammatory genes
(70). FXR KO mice displayed strong hepatic inflammation
after treatment with lipopolysaccharide (LPS), confirmed by
massive liver necrosis and the significant increase in the hepatic
cytokine signaling molecules inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX-2), and interferon-γ (IFN-γ)
(67). Ultimately, the pretreatment of HepG2 cells and mouse
primary hepatocytes with FXR agonists suppressed the NF-κB-
mediated inflammation in an FXR-dependent manner (67). FXR
could suppress inflammation via an indirect mechanism by
reducing cholestasis and the levels of toxic BA production and
accumulation in the liver, as described above.

FXR activation suppresses the development of hepatic
fibrosis. In addition to regulating hepatic lipid metabolism
and reducing hepatic fibrosis, FXR seems to directly inactivate
hepatic fibrosis by inducing anti-fibrotic gene expression in
hepatic stellate cells (HSCs). Activation of FXR induces SHP
to increase the peroxisomal proliferator-activated receptor γ

(PPARγ) expression in HSCs, and PPARγ is well-known to
inactivate HSCs (71, 72). Recently, we have shown that FGF15
deficiency reduces hepatic fibrosis through increasing FXR
activation following loss of FGF15-mediated suppression of BA
synthesis (73, 74). Interestingly, in a human HSC cell line,
LX2, FGF19 does not suppress fibrogenic gene expression,
but suppresses inflammation, likely through modulating the
inhibitor of nuclear factor kappa B (IκB) activity (74). These
studies provide another group of evidence to support the role of
FXR as a homeostatic regulator to suppress liver inflammation
and fibrosis.
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Role in Cholestasis
There is conflicting evidence regarding the role of FXR in
cholestatic diseases. In an early study, the synthetic FXR agonist
GW4064 was investigated in rat models of extrahepatic and
intrahepatic cholestasis through bile duct ligation (BDL) and
α-naphthylisothiocyanate (ANIT) administration, respectively
(75). Significant reductions in liver injury were observed in
GW4064-treated animals in both cholestatic models, revealed
by the reduced alanine aminotransferase (ALT) and aspartate
transaminase (AST), necrosis, inflammation, and bile duct
proliferation (75). The observed protective effects of GW4064
suggest that FXR agonists may be helpful in treating cholestatic
diseases (75).

However, another group found that FXR KO mice were
protected from obstructive cholestasis achieved through
BDL (76). In FXR KO mice after BDL, mortality and liver
injury were reduced as serum bilirubin was not significantly
elevated (76). FXR KO mice had reduced serum total BA
concentrations and had a marked induction of the basolateral
transporter multidrug resistance-associated protein 4 (Mrp4),
suggesting that these animals had a greater capacity to
export BAs back into circulation and reduce hepatoxicity
(76). This study supports the potential clinical use of
FXR antagonists in the treatment of obstructive cholestatic
diseases (76).

Looking further into the role of FXR during intrahepatic
cholestasis, ANIT-induced injury was utilized in wild-type
(WT), FXR KO, and PXR KO mice (77). Serum ALT, alkaline
phosphatase (ALP), and bilirubin were elevated in all genotypes
after ANIT administration, with the highest ALP levels seen
in FXR KO mice (77). ANIT-treated FXR KO mice had
higher concentrations of serum and liver unconjugated BAs
across all genotypes (77). While ANIT treatment induced
the messenger RNA (mRNA) expressions of Mdr2, Bsep, and
ATPase, class I, type 8B and member 1 (Atp8b1) in WT
and PXR KO mice, no upregulation was observed in FXR
KOs (77). It was concluded that FXR deficiency, not PXR
deficiency, was responsible for the increased susceptibility to
injury in the ANIT-induced intrahepatic cholestasis model
due to the reduction of hepatobiliary efflux transporters and
the accumulation of unconjugated BAs (77). Furthermore,
pretreatment of the FXR agonist GW4064 was also investigated
in ANIT-treated WT mice (77). GW4064 treatment was
shown to be protective as it reduced necrosis compared to
ANIT treatment alone (77). This reproduces what Liu et al.
had found in BDL and ANIT-induced injury in rats and
further supports FXR as a therapeutic target for intrahepatic
cholestasis (77).

Through the use of reversible BDL (rBDL) in the rat to model
cholestasis, FXR activation by OCA worsened the biliary injury,
shown by a considerable increase in ALT and ALP compared
to the controls (78). OCA treatment in rBDL rats upregulated
Bsep, multidrug resistance-associated protein 3 (Mrp3), Mrp4,
and Ostβ transporters (78). The 8-fold induction of the FXR
target gene Bsep was suggested to be the cause of biliary injury
as BAs would be pumped via BSEP into an already obstructed
biliary tree (78).

Cholangiocytes
Cholangiocytes are epithelial cells which line the bile ducts
of the biliary tree (79). Through absorptive and secretory
transport systems in cholangiocytes, bile is modified to become
more fluid and alkaline (80). Bile then enters the gallbladder
for concentration and storage or delivered to the intestinal
lumen (80). Cholangiocytes have also been shown to be actively
involved in bile homeostasis (81). Compared to hepatocytes,
cholangiocytes have no or low expressions of Cyp7a1 and
Cyp8b1, but considerable expression of Cyp27a1, suggesting
that cholangiocytes are involved in cholesterol metabolism
(81). Measurement of the mRNA levels revealed that Fgf15
was expressed at higher levels in cholangiocytes compared
to hepatocytes, while the fibroblast growth factor receptor
4 (Fgfr4) expression was lower (81). As FXR is known to
regulate Fgf15/FGF19 levels, investigation of a similar regulation
in cholangiocytes was achieved through treatment of rat
cholangiocytes with CDCA and the FXR agonist GW4064,
with both treatments inducing the expression of Fgf15 (81).
Additionally, cultured human cholangiocytes treated with CDCA
induced the secretion of FGF19 in the medium (81). FGF15/19-
mediated repression of Cyp27a1 in cholangiocytes was found to
differ from hepatocytes and is mediated through p38 kinase (81).
Ultimately, understanding BA metabolism in cholangiocytes
may help provide therapeutic pathways for cholangiopathy
treatments (81).

One of the most common biliary complications after liver
transplantation (LT) is non-anastomotic strictures that develop
after biliary epithelial damage and can result from BA toxicity
(82). To investigate the mechanism of cholangiocyte BA
transport following LT, a rat LT model was utilized. After
transplantation, a prolonged biliary transport time of BAs
was observed, while the expression of FXR was dramatically
decreased and was related to cold ischemic time of the donor
liver. Furthermore, in vitro-cultured human biliary epithelial
cells under hypoxic conditions exhibited a repression of FXR
expression and DNA binding activities (82). Hypoxic conditions
also altered the expressions of BA transporters as hypoxia slightly
induced Asbt expression and repressed both Ostα and Ostβ
(82). This led to the intracellular accumulation of BAs, increased
cell apoptosis, and increased expression of profibrotic factors in
cholangiocytes (82). It was concluded that, after LT, repression of
FXR under ischemic/hypoxic conditions led to the disruption of
BA transport of cholangiocytes and, thus, biliary damage (82).

FIBROBLAST GROWTH FACTORS 15/19

Fibroblast growth factors (FGFs) make up a family of at least
22 proteins that regulate various biological processes including
growth, development, and differentiation (83, 84). FGF15 and
its human ortholog FGF19 belong to the subfamily of endocrine
FGFs that act as hormones due to their low or no affinity for
heparin sulfate, which allows them to enter systemic circulation
(84, 85). FGF19 was originally identified in the fetal brain during
a screen for novel FGFs (86). Although FGF15 and FGF19 are
orthologs, they interestingly only share∼50% amino acid identity
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(86). For high-affinity receptor binding, the endocrine FGFs
require klotho proteins that interact with fibroblast growth factor
receptors (FGFRs) (87). β-Klotho specifically binds to FGF15/19
which has high affinity for fibroblast growth factor receptor 4
(FGFR4) and less for fibroblast growth factor receptor 1 (FGFR1)
that are highly expressed in hepatocytes and white adipose tissue
(WAT), respectively (88, 89). Low levels of FGFR4 expression are
also detected in other cell types, including HSCs, macrophages,
and some central neurons (90). FGF15/19 is expressed in ileal
enterocytes, where it is strongly induced by FXR activation (84).
Once released into blood circulation, FGF15/19 acts on the liver
to repress BA synthesis, as described above.

However, mouse FGFR4 does not recognized human FGF19
(91). Therefore, when using high dosage of FGF19 in mice, the
observed effects may be due to the activation of FGFR1 or other
FGFRs, but not FGFR4 by FGF19.

Role in Energy Expenditure
To investigate the role of FGF19 in physiological homeostasis,
transgenic mice expressing human FGF19 were utilized (92).
FGF19 transgenic mice had a significant reduction in fat mass
arising from an increase in energy expenditure (92). When fed
a high-fat diet, FGF19 transgenic mice did not become obese
or diabetic (92). The results suggest two mechanisms by which
FGF19 may increase energy expenditure through an increase
in brown adipose tissue (BAT) and through a decrease in liver
enzyme acetyl CoA carboxylase 2 (ACC2) (92). Reduction in
ACC2, the rate-limiting enzyme for fatty acid entry into the
mitochondria, also resulted in reduced liver triglyceride levels
(92). In an additional study, FGF19 increased the metabolic rate
in mice fed a high-fat diet while reducing body weight and
diabetes in leptin-deficient mice (93). FGF19 also acts in the
central nervous system to improve insulin sensitivity by reducing
hypothalamic agouti-related peptide (AGRP)/neuropeptide Y
(NPY) neuron activity (94). In summary, FGF15/19 increases
insulin sensitivity, thermogenesis, and weight loss and decreases
serum cholesterol and triglyceride levels.

Protein and Glycogen Synthesis
FGF15/19 also regulates hepatic protein and glycogen synthesis
(95). Fgf15 KO mice were shown to be glucose-intolerant and
store half as much hepatic glycogen compared to control wild-
type mice (95). In diabetic mice lacking insulin, FGF19 treatment
restored the hepatic glycogen concentrations to normal levels,
indicating that FGF19 activates an insulin-independent pathway
to regulate glycogen metabolism (95). It was determined that
FGF15/19 uses a RAS/extracellular signal-regulated protein
kinase (ERK)/p90RSK pathway to induce hepatic glycogen and
protein synthesis in vivo (95). FGF19 also shows a positive effect
on muscle weight, revealed by a study showing that FGF19
stimulates the phosphorylation of the ERK1/2 and the ribosomal
protein S6 kinase (S6K1), an mTOR-dependent master regulator
of muscle cell growth (96).

Gluconeogenesis
Energy homeostasis is additionally regulated through FGF15/19
repressing gluconeogenesis, like insulin (97). While insulin

peaks in serum 15min after feeding, FGF15/19 peaks ∼45min
later due to the increase of BAs in the small intestine (97).
In vivo, FGF15/19 blocks the expression of gluconeogenesis
genes through the dephosphorylation and inactivation of the
transcription factor cAMP regulatory element-binding protein
(CREB) (97). This then inhibits the expression of peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α) and
other downstream hepatic metabolism genes (97).

Fatty Acid Synthesis
Lastly, FGF19 inhibits hepatic fatty acid synthesis. Primary
hepatocytes incubated with recombinant FGF19 protein in the
presence or absence of insulin showed that FGF19 suppressed
the insulin-dependent stimulation of fatty acid synthesis (98).
Similar to the SHP-mediated suppression of sterol regulatory
element-binding protein 1c (SREBP1c) following FXR activation,
FGF19 was shown to decrease SREBP1c through increasing
the signal transducer and activator of transcription 3 (STAT3)
and decreasing the peroxisome proliferator-activated receptor-γ
coactivator-1β (PGC-1β), while also increasing the expression of
SHP (98). This favorable inhibition of hepatic fatty acid synthesis,
along with the promotion of protein and glycogen synthesis
and the repression of gluconeogenesis, supports the beneficial
effects of FGF15/19 on metabolic syndrome and warrants further
investigation of FGF15/19 in the prevention and treatment of
NASH. Indeed, modified FGF19 has been shown to be beneficial
in mouse models of NASH and cholestasis (99, 100).

FXR AS DRUG TARGETS—FXR AGONISTS

There are many FXR modulators that have undergone clinical
trials for the treatment of chronic liver diseases. The focus
for most of these trials is the efficacy of FXR activation
on cholestasis, NASH, and obesity; however, there are some
studies focused on minor indications, including bile acid
diarrhea or association with reactivation of latent pro-virus
(clinical trials.gov). Currently, two types of FXR agonists—
steroidal represented by OCA vs. non-steroidal represented by
tropifexor—are front-runners for obtaining U.S. Food and Drug
Administration (FDA) approval for the treatment of NASH.

The first FDA-approved FXR agonist for the treatment of PBC
is OCA, which is a steroidal FXR agonist modified from CDCA
(101). When compared to CDCA, OCA was shown to be ∼100
times more potent (101). In a model of cholestasis, male Wistar
rats were administered LCA through an intravenous infusion to
impair bile flow. Administration of OCA alone did not induce
cholestasis, while co-infusion of LCA and OCA fully reversed
bile flow impairment and protected hepatocytes from necrosis
(101). This initial study confirmed OCA as a selective, potent
FXR agonist and warranted further investigation of additional
therapeutic uses.

The traditional first-line treatment for PBC is ursodeoxycholic
acid (UDCA) as it has been shown to improve liver tests and
transplant-free survival withminimal side effects (102). However,
not all patients respond to UDCA (102). In a randomized,
double-blinded, 12-week, phase II clinical trial, the efficacy
of OCA in PBC patients who did not respond favorably to
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UDCA was evaluated (103). Patients (n = 165) were randomly
assigned to receive 10, 25, or 50mg of OCA or placebo once
daily in addition to an existing dose of UDCA (103). The
primary endpoint was level change of ALP from baseline until
the conclusion of the study (103). All three doses significantly
reduced the levels of ALP, γ-glutamyltransferase (GGT), and
ALT compared to placebo. However, pruritus was reported in all
groups, with severity correlating to the dose of OCA (103). Based
on the efficacy and tolerability, the once daily dose of 10mg OCA
was determined to be the most effective (103).

In the randomized, double-blinded, phase III POISE trial,
217 PBC patients who had an inadequate response to UDCA
were assigned to receive 10mg OCA, 5–10mg OCA, or placebo
once daily for 12 months (104). Patients still received UCDA
as a background therapy (104). The primary endpoint was a
reduction in ALP from baseline and a normal total bilirubin
level, which was reached in more patients in both OCA groups
compared to placebo (104). As seen previously in the phase
II trial, an OCA dose-dependent increase in the incidence of
pruritus was reported (104). Based on the favorable effects of
OCA on important biochemical markers, the FDA approved
OCA for the treatment of PBC patients with an inadequate
response of intolerance to UDCA in 2016 (105).

Another phase II study investigated OCA as a monotherapy in
PBC patients (106). Patients received 10mg OCA, 50mg OCA,
or placebo once daily for 3 months and then followed up for up
to 6 years (106). OCA treatment as a monotherapy significantly
improved ALP and other biochemical markers associated with
improved clinical outcomes (106). However, severe pruritus was
reported in almost all patients who received 50mg OCA (106).
Compared to UDCA co-therapy, no additional benefits for OCA
as a monotherapy were reported (107).

A multiyear study (COBALT) to determine the effects of OCA
in PBC patients with more advanced liver disease is ongoing
(104). In 2017, after 11 cases of serious liver injury and 19
cases of death associated with OCA were reported, the FDA
released a black box warning for the use of OCA in patients with
decompensated cirrhosis (105). Many of the cases of increased
liver injury appeared to be due to inappropriate high dosing of
OCA (105).

Due to arising side effects including pruritus and increased
risk of liver decompensation in cirrhotic PBC patients
administered OCA, a study to determine whether OCA
worsened liver injury under cholestatic conditions was carried
out (108). BDL and ANIT treatment were studied in rats (108).
In both models, OCA treatment exacerbated liver injury in a
dose-dependent manner and downregulated the expression of
basolateral transporters (108). The non-steroidal FXR agonist
GW4064 was also tested in the ANIT cholestasis model. In
contrast, GW4064 administration decreased the severity of
cholestatic injury compared to OCA and reduced AST, ALT,
GGT, and bilirubin (108). This is again consistent with the
results published by Liu et al. (75) and suggests that the safety of
FXR agonists is impacted by their pharmacokinetic properties
(108). OCA, as a semi-synthetic derivative of CDCA, has a high
rate of intestinal absorption, which allows it to recirculate like
endogenous BAs (108). While synthetic GW4064 undergoes

taurine conjugation in the liver which is then not recognized
by intestinal transporters thus reducing its bioavailability (108).
Under cholestatic conditions, OCA accumulates in the liver
where it may reach toxic concentrations (108, 109). In mice,
genetic KO of FXR or inhibition of FXR both resulted in
protection from injury induced by OCA in an ANIT model of
cholestasis (108). After RNAseq analysis, FXR antagonism was
shown to reverse the transcription of over 2,000 genes, including
V-Maf avian musculoaponeurotic fibrosarcoma oncogene
homolog G (Mafg) and its partner nuclear factor erythroid
2-related factor 2 (Nrf2) (108). Mafg expression has been shown
to be induced in cholestatic diseases and represses genes involved
in the synthesis of antioxidant glutathione (110, 111). The
modulation of these transcription factors was then investigated.
Pharmacologic or genetic inhibition of Mafg prevented damage
caused by ANIT and OCA, while Nrf2 induction was protective.
These results support that the negative side effects of OCA
treatment are FXR-mediated (108).

There is currently no approved treatment for PSC, and the
efficacy of UDCA for PSC remains uncertain (112). Thus, the
efficacy and safety of OCA in PSC patients were assessed in
a phase II randomized, double-blind, placebo-controlled, dose-
finding study (113). Patients (n = 76) were assigned to receive
1.5–3.0mg OCA, 5–10mg OCA, or placebo once daily for
24 weeks (113). At 24 weeks, treatment with 5–10mg OCA
significantly reduced serum ALP compared to placebo (113).
Dose-related pruritus was reported as the most common side
effect, consistent with the earlier clinical studies (113).

The safety and efficacy of the non-steroidal FXR agonist
cilofexor (GS-9674) were evaluated in a phase II double-blinded,
placebo-controlled study in PSC patients (114). Randomized
patients received 100mg cilofexor, 30mg cilofexor, or placebo
once daily for 12 weeks (114). Treatment with cilofexor was
generally well-tolerated, safe, and improved the biochemical
markers of cholestasis and inflammation (114). Significant
dose-dependent reductions in serum ALP, GGT, ALT, and
AST with cilofexor compared to placebo were reported (114).
The effect of cilofexor on ALP was independent of UDCA
use, and adverse events were similar between treatment
groups (114).

Cilofexor was also evaluated in a double-blind, placebo-
controlled, phase II trial in patients with NASH (115). Non-
cirrhotic patients (n = 140) were randomized to receive 100mg
cilofexor, 50mg cilofexor, or placebo once daily for 24 weeks
(115). Cilofexor was safe and significantly improved hepatic
steatosis, liver biochemistry (e.g., GGT), and bile acids (115).
Compared to OCA treatment that resulted in increases in
serum LDL-C and total cholesterol, cilofexor treatment had
no significant effects on serum lipids (115). Moderate to
severe pruritus was reported in 14% of the 100-mg cilofexor
group and 4% of the 30-mg group (115). In contrast, 23%
of the OCA-treated patients reported pruritus (116). However,
cilofexor treatment only had modest beneficial effects on liver
biochemistry compared to OCA treatment, indication of a
potential limitation for efficacy (115).

To evaluate the effect of FXR activation by OCA on insulin
resistance and liver lipid metabolism, Zucker (fa/fa) rats that
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contain a loss-of-function mutation in the hunger hormone
leptin receptor were utilized (117). This mutation leads
to hyperphagia and hyperleptinemia, resulting in diabetes,
insulin resistance, obesity, and liver steatosis; therefore,
Zucker (fa/fa) rats are considered a non-alcoholic fatty
liver disease (NAFLD) model (117). Daily OCA treatment
(10 mg/kg) over 7 weeks reversed insulin resistance and
prevented body weight gain and liver fat deposition (117).
Moreover, OCA treatment reduced blood triglyceride and
plasma aminotransferases and improved liver histopathology
(117). Reversal of insulin resistance after the administration of
OCA is further supported by in vitro data showing that OCA
significantly increases insulin secretion in mouse β-TC6 cells
and human pancreatic islets (118). Additionally, OCA activation
of FXR in mouse β-TC6 cells leads to AKT (protein kinase
B)-dependent translocation of glucose transporter 2 (GLUT2),
thus increasing the glucose uptake by these cells (118). Taken
together, OCA activation of FXR improves hyperglycemia
through enhanced insulin secretion and glucose uptake by the
liver (118).

OCA has also been shown to exhibit anti-inflammatory
and anti-fibrotic properties. While investigating the NF-
κB signaling pathway, a key inflammation pathway,
pretreatment of HepG2 cells with OCA (3µM) inhibited
the expression of the cytokine-inducible enzymes COX-2
and iNOS after stimulation with LPS or tumor necrosis
factor alpha (TNFα) (67). Inhibition of iNOS by OCA
was also confirmed in LPS-treated primary mouse
hepatocytes (67).

After animal studies showed that OCA decreased insulin
resistance and hepatic steatosis, the efficacy and safety of
OCA were first evaluated in a phase IIa study in patients
with type II diabetes and non-alcoholic fatty liver disease
(119). The participants were randomly assigned to placebo
(n = 23), 25mg OCA (n = 20), or 50mg OCA (n = 21)
groups for the 6-week treatment period (119). Both OCA
groups exhibited reduced GGT and ALT levels along with
decreased bodyweight (119). Furthermore, treatment of OCA
led to improved insulin sensitivity and elevated FGF19 serum
levels. This, in conjunction with the decreased BA precursor
C4 and endogenous BAs, again confirmed OCA’s FXR agonist
activity (119).

Based on previous favorable results, OCA was further
investigated in the phase IIb Farnesoid X Receptor Ligand
Obeticholic Acid in NASH Treatment (FLINT) trial (116). In
this multicenter, double-blind, randomized clinical trial, patients
with non-cirrhotic NASH were assigned to receive 25mg OCA
(n = 141) daily or placebo (n = 142) for 72 weeks (116).
OCA treatment was shown to improve the biochemical and
histological features of NASH when compared with placebo;
specifically, 45% of OCA patients improved their NAFLD
activity score by two points or greater without worsening
of fibrosis compared to the 21% improvement in placebo
patients (116). However, there was no significant difference in
the histological resolution of NASH between the OCA-treated
and placebo groups (120). Adverse outcomes of pruritus and

unfavorable dyslipidemia manifested in the OCA treatment
group (116). Additionally, the favorable effects on ALP, lipids,
and blood glucose seen in the placebo group associated with
weight loss were absent or reversed in the OCA-treated
patients (120).

Currently, OCA is being evaluated by Intercept in a phase
III trial REGENERATE (121). To assess OCA’s effect on
liver histology and clinical outcomes, 2,065 biopsy-confirmed
NASH patients were randomized into a 10-mg OCA, 25-
mg OCA, or placebo group (121). Total study duration is
estimated to be 6 years, with interim biopsies performed
after the first 18 months to evaluate improvement of fibrosis
stage and resolution of NASH with no worsening fibrosis
(121). Although OCA was recently approved by the FDA
for treating PBC, the current American Association of the
Study of Liver Diseases guidelines do not recommend the
off-label treatment of OCA in NASH patients until further
safety and efficacy data are available (122). In February 2019,
Intercept announced that OCA achieved the primary endpoint
of improving liver fibrosis without worsening of NASH after
18 months (p = 0.0002). This marks the first and largest
successful phase 3 study in fibrosis patients due to NASH.
Intercept filed a New Drug Application (NDA) with the FDA
in September 2019. As of June 2020, the FDA issued a
complete response letter stating that the predicted benefit of
OCA did not outweigh the potential risks in patients with
fibrosis due to NASH and that long-term outcome needs to be
evaluated (123). Thus, accelerated approval was not granted at
this time.

Tropifexor is a representative of non-steroidal FXR agonists.
In mouse models of NASH, tropifexor significantly reduced
oxidative stress, steatosis, inflammation, and fibrosis (124). It will
be very interesting to see whether, as a non-steroidal FXR agonist,
tropifexor will present similar adverse effect to the steroidal
FXR agonists.

CONCLUSION

As a key regulator of BA homeostasis, FXR activation suppresses
BA synthesis mainly through the induction of FGF15/19 in
the gut and promotes enterohepatic BA circulation. FXR
agonism also regulates lipid metabolism, reduces hepatic
gluconeogenesis and glycolysis, and increases glycogen
synthesis while playing an anti-inflammatory role during
liver injury. FGF15/19 favorably increases energy expenditure
and glycogen synthesis while decreasing gluconeogenesis
and fatty acid synthesis. While FXR and FGF19 have been
considered promising targets for the treatment of cholestasis
and NASH, the molecular mechanism by which these two
factors regulate liver BA transport, steatosis, and inflammation
needs to be further determined, and most importantly,
an individualized treatment plan is paramount to develop
drugs and treatment strategy with better efficacy and less
toxic effects.
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Neddylation is a ubiquitin-like posttranslational modification that conjugates neural

precursor cell expressed developmentally downregulated-8 (Nedd8) to specific

substrates for regulation of protein activity. In light of current researches, the neddylation

pathway is aberrant in the pathogenesis of many diseases. In our review, we summarize

the versatile roles of neddylation in chronic liver diseases (CLDs). CLDs are one of

the leading causes of chronic disease-associated deaths worldwide. There are diverse

etiologic agents causing CLDs, mainly including hepatitis B virus (HBV) infection,

nonalcoholic fatty liver disease (NAFLD), chronic exposure to alcohol or drugs, and

autoimmune causes. So far, however, there remains a paucity of effective therapeutic

approach to CLDs. In this review, we summarized the role of the neddylation pathway

which runs through the chronic hepatitis B/NAFLD–liver fibrosis–cirrhosis–hepatocellular

carcinoma (HCC) axis, a canonical pattern in the process of CLD development and

progression. The dysregulation of neddylationmay provide a better understanding of CLD

pathology and even a novel therapeutic strategy. Correspondingly, inhibiting neddylation

via MLN4924, a small molecule compound targeting NEDD8-activating enzyme (NAE),

can potently alleviate CLD progression and improve the outcome. On this basis, profiling

and characterization of the neddylation pathway can provide new insights into the CLD

pathology as well as novel therapeutic strategies, independently of the etiology of CLD.

Keywords: neddylation, HBV, NAFLD, liver fibrosis, HCC, therapy, MLN4924

INTRODUCTION

Chronic liver disease (CLD) is posing a significant public health problem worldwide for it causes
∼2 million deaths annually. It is desperately needed to pay high attention to it (1). There are
diverse etiologic agents causing CLDs, primarily including chronic infection of hepatitis B or C
viruses (HBV or HCV), chronic aberrant metabolic conditions [nonalcoholic fatty liver disease
(NAFLD)], chronic consumption of alcohol or drugs, and abnormal autoimmunity (2, 3). Further,
the onset, development, and deterioration of CLD are progressive processes. A variety of factors are
involved in them, such as inflammatory cell infiltration, liver tissue reconstruction, fibrogenesis,
and extracellular matrix (ECM) deposition (4, 5). Therefore, the pathological process of CLD
is complicated, characterized by pan-cellular and pan-pathway mechanisms. Recently, more and
more attention has been paid to the ubiquitination pathway due to its potential role in the therapy
of CLD, particularly hepatocellular carcinoma (HCC), the advanced stage of CLD.
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A new insight into the CLD field is the emerging role
of the neddylation pathway. Neddylation is a ubiquitination-
like modification. However, unlike ubiquitination that mainly
targets proteins doomed to be degraded, neddylation regulates
proteins’ function and stability (6). The best-known physiological
substrates of neddylation are the cullin family, the crucial
component of cullin-RING ligases (CRLs). CRL is the largest
family of ubiquitination E3 ligases (7) and responsible for
about 20% of cellular protein degradation via proteasome
(8). Neddylation of cullin activates CRLs (9) and promotes
the ubiquitination of substrates (10). Hence, neddylation
modulates the cellular function in some degree via manipulating
ubiquitination E3 ligases behind the scene. Previous researches
demonstrated that neddylation inhibition can inactivate CRLs
(11) and then results in accumulation of their substrates, such
candidates including chromatin licensing and DNA replication
factor 1 (CDT1) (12), p21 (13), and nuclear factor erythroid
2-related factor 2 (NRF2) (14, 15). Most substrates of CRLs
are tumor suppressors (16). The consequence of neddylation
inhibition is cell apoptosis, cell autophagy, cell senescence, and
ultimately cancer suppression (17) (Table 1). Current researches
of noncullin substrates of neddylation uncover that neddylation
might participate in additional biological process of cells (41)
(Table 2). On this basis, recent studies have uncovered that
neddylation inhibition can repress HBV survival (64), alleviate
steatosis (65), reduce liver fibrosis (66), and restrain pro-tumor
inflammation (67). Considering the progress that has been made

Abbreviations: CLD, chronic liver diseases; MDM2, murine double minute-

2; NEDD8, neural precursor cell expressed developmentally downregulated-8;

HBV, hepatitis B virus; HCV, hepatitis C virus; HCC, hepatocellular carcinoma;

HBx, HBV-encoded X protein; HSC, hepatic stellate cell; NAE, NEDD8-activating

enzyme; E2F-1, E2F transcription factor 1; ECM, extracellular matrix; CRL, cullin-

RING ligases; VHL, von Hippel-Lindau; RBX, RING box protein-1; SKP, S-phase

kinase-associated protein; CDT1, chromatin licensing and DNA replication factor;

CDT2, chromatin licensing and DNA replication factor 2; NRF2, nuclear factor

erythroid 2-related factor 2; NF-κB, the nuclear factor kappa-light-chain-enhancer

of activated B cells; ATF4, activating transcription factor 4; βTrCP, beta-transducin

repeat containing protein; DCN1, defective in cullin neddylation 1; ROS, reactive

oxygen species; mTORC, mammalian target of rapamycin complex; NASH,

nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; TRIM40,

tripartite motif containing 40; BCA3, breast cancer-associated protein 3; FBXO11,

F-box protein 11; HuR, Hu antigen R; TGFβ-RII, transforming growth factor

β type II receptor; AICD, APP intracellular domain; EGFR, epidermal growth

factor receptor; BRAP2, BRCA1-associated protein 2; SCF, Skp1, cullin, and F-

box protein; RTK, receptor tyrosine kinase; cccDNA, covalently closed circular

DNA; IL-8, interleukin-8; MMP9, matrix metalloproteinase-9; DEPTOR, DEP

domain containing mTOR-interacting protein; HIFα, hypoxia-inducible factor-

α; DCAF, DDB1–CUL4-associated factor; IFNα, interferon-α; ColIα1, collagen

type I alpha 1; TGFβ, transforming growth factor; TNFα, tumor necrosis factor

α; IL-6, interleukin-6; Cxcl, the chemokine (C-X-C motif) ligand; Ccl, the

chemokine (C-C motif) ligand; Ccr, the C-C chemokine receptors; c-Cbl, Casita

B-lineage lymphoma; pVHL, Von-Hippel-Lindau protein; DDB1, the damage-

specific DNA binding protein 1; SARM, sterile α and HEAT/armadillo-motif-

containing protein; Bax, Bcl-2 associated protein X; CUL, cullin; KC, Kupffer cells;

CCl4, carbon tetrachloride; JNK, c-Jun N-terminal kinase; Bcl-2, β-cell lymphoma

2; SMC, the structural maintenance of chromosomes; ETFs, electron transfer

flavoproteins; SRSF3, serine-rich splicing factor 3; BDL, bile duct ligation; CCl4,

carbon tetrachloride; HSP70, heat shock protein 70; SREBP1c, sterol regulatory

element-binding protein 1c; HDM2, human homolog of mouse double minute 2;

LKB1, liver kinase B1; AGEs, advanced glycation end products; WIPI2, WD repeat

domain, phosphoinositide interacting 2.

to understand the role of neddylation, it is worthy to explore
and conclude the relevance between neddylation and CLD. In
this review, we particularly focus on the role of the neddylation
pathway in CLD pathology and assess the therapeutic approach
targeting neddylation in CLD.

NEDDYLATION IN CLD

Overactivation of Neddylation
Deregulation of the neddylation pathway has been described in
various pathological conditions. Focusing on the CLD context
like liver fibrosis and HCC, both NAE1 and global protein
neddylation expressions are upregulated (66, 68). However,
the initial triggering mechanism that overactivates neddylation
pathways during CLD is not understood exactly. Significantly,
a previous study demonstrated that diverse stress conditions
such as heat shock and oxidative stress may lead to an entire
increase of the neddylation pathway in vitro. Under the stress
circumstance, the ubiquitin E1 enzyme Ube1, rather than NAE1,
regulates the conjugation of the NEDD8 (69, 70). Further analysis
reveals that the crosstalk between NEDD8 and ubiquitin causes
a prompt and dramatic amplification of the NEDD8 proteome
under stress conditions. In addition, neddylation of the substrate
competing with its ubiquitination upon stress could stabilize
its protein level and prevent its degradation (69). Subsequently,
accumulated substrates mediate vital biological processes and
trigger diverse cellular responses, which may result in multiple
hepatic dysfunctions eventually. Besides, in HCC, a decrease in
deneddylating enzyme NEDP1 with a concomitant increase of
NEDD8 conjugates leads to the inhibition of ATPase activity of
heat shock protein 70 (HSP70) (71). As a result, the formation
of the apoptosome is disturbed, and subsequently, the apoptosis
resistance of hepatoma cells is elevated (72).

NEDDYLATION AND HBV INFECTION

HBV chronic infection is a primary pathogeny leading to
CLDs, especially cirrhosis and HBV-related HCC (64). HBV-
encoded X protein (HBx) is a small regulatory protein that
exhibits pleiotropic activities, including affecting transcription,
DNA repair, cell growth, and apoptotic cell death (73). HBx
can interact with various cellular proteins to influence its
own activity. Among all these HBx-interacting proteins, the
damage-specific DNA binding protein 1 (DDB1) is a well-
characterized HBx binding partner (74). This interaction is
worthy of attention because DDB1 is the adaptor protein of CRL4
ubiquitin E3 ligase. Previous researches reported that HBx–
DDB1 interaction is indispensable in HBx-induced viral genome
replication and affects cell viability. An interesting structural
study revealed that HBx contains an α-helical motif termed the
H-box, which is shared by several DDB1–CUL4-associated factor
(DCAF) proteins (75). DCAF proteins act as well-known CRL4
substrate acceptors. According to the above, it is possible that
HBx assembles an HBx–DDB1–CUL4–ROC1 E3 ligase complex
(CRLHBx) as CRL4 and HBx plays the role of substrate receptor.
HBx targets host proteins that suppress HBV genome replication,
and CRLHBx promotes their ubiquitylation and degradation
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TABLE 1 | Neddylation inhibition and CRL inactivation.

Response Substrate CRL Function Reference

Apoptosis CDT1 CRL1SKP/CRL4CDT2 DNA damage (12, 18, 19)

pIkBα CRL1β−Trcp NF-κB inactivation (17, 20, 21)

NOXA RBX2-associated CRLs DNA damage (22–24)

ATF4 RBX1–CRL1 DR5 expression (25–28)

Autophagy DEPTOR CRL1β−Trcp mTORC1 inactivation (29–31)

HIF1α CRL2VHL mTORC1 inactivation (32–34)

Senescence p21 CRL1SKP2/CRL4CDT2 G2 (or G2/M) phase arrest (13, 35–37)

P27 CRL1SKP2 G2 (or G2/M) phase arrest (38)

WEE1 CRL1 G2 (or G2/M) phase arrest (39)

Redox Homeostasis NRF2 CRL1/CRL3 scavenging ROS (14, 15, 40)

TABLE 2 | Neddylation pathway substrates.

Type Substrates E3 ligases Function of neddylation References

Ubiquitin E3 ligases CRLs RBX1/2 and/or DCN1 Increases CRL activity (42)

Smurf Smurf Increases Smurf activity (43)

Parkin Increases parkin activity (44)

VHL Promotes VHL association with

fibronectin

(45)

BRAP2 Inhibits NF-κB-mediated

transcription

(46)

MDM2 MDM2 Increases MDM2 stability (47)

Transcription

regulation

p53 MDM2 and SCFFBXO11 Inhibits p53 transcriptional activity (47)

p73 MDM2 Inhibits p73 transcriptional activity (48)

IKKγ TRIM40 Inhibits NF-κB activity (49)

BCA3 Inhibits NF-κB-mediated

transcription

(50)

E2F1 Reduces E2F-1 stability (51)

APP/AICD Inhibits AICD-mediated

transcriptional activation

(52)

HIF1α/HIF2α Increases protein stability (53)

HuR Mdm2 Increases stability and nuclear

localization

(54)

Signaling pathways RTK signaling EGFR c-CBL Facilitates EGFR degradation (55)

TGFβRII c-CBL Increases TGF-βRII stability (56)

SHC Promotes Erk activation (57)

Apoptosis drICE Inhibits apoptosis (58)

Caspases/IAPs/RIP1 Suppresses caspase activity (59)

DNA damage Histone H4 RNF111 Activates DNA damage-induced

ubiquitination

(60)

Nucleolar stress signaling L11 MDM2 Increase stability and nucleolar (61)

S14 localization (62)

Oxidative/calcium stress RCAN1 Increase RCAN1 stability (63)

via the proteasome pathway (75–77). Neddylation activates
CRL4HBx via conjugating Nedd8 to the cullin protein’s conserved
lysine residues to affect HBV replication indirectly.

Liu et al. also found that HBx can be neddylated by the Nedd8
E3 ligase human homolog of mouse double minute 2 (HDM2).
Neddylation modification alters HBx’s half-life and enhances its
stability. Moreover, it also increases HBx’s chromatin localization

and the binding with DDB1 (64). Previous researches show
that HBx is ubiquitylated by E3 ligase Siah-1 to induce HBx
degradation (78). Interestingly, Liu and his colleagues found that
the mechanism of HDM2-mediated neddylation modification
increases HBx stability by preventing its ubiquitination-induced
degradation (64). These processes ultimately favor HBx’s activity
of transcriptional regulation, cell proliferation, and HBV-driven
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tumor growth. In conclusion, it provides an insight into the
neddylation’s role in HBV invasion. Further study found that
HDM2’s expression is positively correlated with HBx expression
in HBV-related HCC samples (Figure 1). HDM2 has the
potential to act as a new prognostic marker for HBV-related
HCC. Inhibition of the neddylation pathwaymay provide us with
a novel therapeutic method for HBV-related HCC.

NEDDYLATION AND NAFLD

NAFLD is an increasingly prevalent CLD and has become a
prominent healthy concern globally due to dietary structure
change and lifestyle change (79). NAFLD is characterized by
steatosis, a pathologic phenomenon of excessive triglyceride
accumulation in hepatocytes. NAFLD will frequently progress to
its more severe form called nonalcoholic steatohepatitis (NASH),
which consists of hepatic steatosis, inflammation, and fibrosis.
NASH accompanied with advanced fibrosis may eventually lead
to cirrhosis and even HCC (80, 81). Recently, more and more
insight has been shed on the association between NAFLD
and neddylation.

Neddylation plays a crucial physiological role in lipid
metabolism. Recent research reported that liver-specific
deficiency of NEDD8 or UBA3 causes neonatal death with
spontaneous fatty liver in mouse models. Interestingly, electron
transfer flavoproteins (ETFs), whose defects can lead to fatty

acid oxidation disorder in glutaric aciduria type II (GA-II),
are neddylation substrates. Hepatic neddylation modification
can stabilize ETFs and even enhance ETF expression via
suppressing their ubiquitination, which prevents fasting-induced
steatosis (82).

Furthermore, another research of serine-rich splicing factor
3 (SRSF3) illuminates that neddylation is involved in the
pathology of NAFLD and NASH. It suggested that the low
expression of SRSF3 is correlated with an increased risk of
NAFLD, NASH, or cirrhosis. In the condition of oxidative stress,
SRSF3 could be modified by the NEDD8 protein at lysine
11, which results in the degradation of SRSF3 via proteasome
(83). On this basis, the result above implies that intervening
with the neddylation of SRSF3 contributes to its stability and
accumulation, which is beneficial for preventing hepatic steatosis,
fibrosis, and inflammation.

Recently, it was reported that sterol regulatory element-
binding protein 1c (SREBP1c), a critical role in maintaining lipid
homeostasis, is upregulated in liver to contribute to the progress
of hepatic steatosis. However, unlike SRSF3, neddylation of
SREBP1c competing with its ubiquitination facilitates its stability
and, rather than promoting its degradation via proteasome,
eventually contributes to hepatic steatosis. Further, SREBP1c
can be neddylated by NEDD8 E3 ligase HDM2, which can also
mediate the neddylation of HBx as described above (84).

Additionally, Dehnad et al. revealed that advanced glycation
end product (AGE) clearance receptor AGER1 was decreased

FIGURE 1 | Neddylation and HBV infection. HBV is a DNA virus carrying a 3.2-kb genome. Following entry into the host cell, the 3.2-kb genome is transported into

the nucleus and converted to a cccDNA, which serves as a crucial template for HBV transcription. HBx is transcripted from cccDNA and serves as a transcriptional

activator to promote the expression of IL-8, MMP9, and YAP, which are implicated in HCC development. HBx in cytoplasm is ubiquitylated by E3 ligase Siah-1 to

induce HBx degradation through proteasome. HBx can be neddylated by Nedd8 E3 ligase HDM2 in the cytoplasm. HDM2-mediated neddylation modification

increases HBx stability by preventing its ubiquitination-induced degradation. Meanwhile, HBx plays a role as a substrate acceptor and assembles CRL4HBx ubiquitin

E3 ligases. HBx targets SMC5/6, a host protein that suppresses HBV genome replication, and CRL4HBx promotes its ubiquitylation and degradation via proteasome.

Besides, neddylation activates CRL4HBx via conjugating Nedd8 to cullin protein’s conserved lysine residues to affect HBV replication indirectly.
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in NASH. Further analysis demonstrated that exposure to high
AGEs promotes an AGER1/RAGE imbalance and subsequently
promotes NRF2 degradation via neddylation of cullin3, which
eventually causes downregulation of AGER1 (85).

Taken together, these studies come to the conclusion that a
neddylation-dependent pathway is implicated in liver steatosis
and fibrosis mainly via regulating the stability of its substrates,
which function as critical regulators in the process of liver
steatosis. Revealing the role of neddylation in hepatic lipid
metabolism and fibrosis progressionmay pave the way for a novel
therapeutic approach in NAFLD and NASH (65).

NEDDYLATION AND LIVER FIBROSIS

Liver fibrosis is a continuous wound-healing progress leading to
sustained scarring response (86). Liver fibrosis can be triggered
by underlying etiologies of CLDs, such as viral infection, alcohol,
and NASH (87). The pathology progress is a dynamic and
reversible response that can be regulated by halting or reversing
the fibrosis to cirrhosis and HCC (3). To date, specific therapies
validated as being effective for liver fibrosis have primarily been
etiology induced. However, there is no thoroughly validated
antifibrosis therapy that is independent of the underlying etiology
in the clinic.

More recently, deregulated neddylation is founded in
liver fibrosis (66). Firstly, neddylation inhibition decreases
liver inflammation. It is reported that neddylation inhibition
reduces the expression level of pro-inflammatory cytokines
and chemokines, such as tumor necrosis factor α (TNFα),
interleukin-6 (IL-6) and its receptor, the tumor necrosis factor
alpha receptor (TNFR1) (88), the chemokine (C-X-C motif)
ligand 1 (Cxcl1), the chemokine (C-X-C motif) ligand 2
(Cxcl2), the chemokine (C-C motif) ligand 2 (Ccl2), and
the C-C chemokine receptors (Ccr) (Ccr1, Ccr2, and Ccr5)
(89). Secondly, neddylation plays a role in hepatic stellate cell
activation. In bile duct ligation (BDL) and carbon tetrachloride
(CCl4)-induced injury rodents, neddylation inhibition decreases
HSC activation and collagen accumulation, certified by reduced
levels of the pro-fibrogenic factor, transforming growth factor
(TGFβ), and the expression of collagen type I alpha 1 (ColIα1)
(90). Thirdly, neddylation inhibition decreases fibrosis by
inducing HSC apoptosis due to c-Jun accumulation. c-Jun,
associated with apoptosis in several types of cells, such as HSC,
could be targeted by neddylated cullins for degradation via the
ubiquitin proteasome system. This provides a critical clue that
neddylation inhibition could somehowmodulate c-Jun levels and
concomitant apoptosis (91).

Moreover, there are another two possible regulated
mechanisms of neddylation in liver fibrogenesis. The
transcription factor NF-κB mediates transcription of genes, such
as pro-inflammation cytokines involved in the inflammation
progress of fibrogenesis (92). Neddylation functions on NF-κB
activation by promoting its nuclear translocation via activating
SCFβTrCP’s cullin. SCFβTrCP is a CRL that targets the NF-κB
inhibitory protein IκBα for degradation via proteasome (93).
It is reasonable to believe that neddylation inhibition could

ameliorate inflammation and fibrosis via reducing specific
NF-κB target genes’ expressions. Another possible mechanism
is associated with TGFβ. TGFβ is significantly important in
HSC activation and involved in Smad2 signaling through
transmembrane receptor serine/threonine kinases (94). An
intriguing research shows that Casita B-lineage lymphoma
(c-Cbl) can function as a Nedd8 E3 ligase of the type II receptor
(TGFβ-RII) beyond CRL (56). The neddylation modification
of TGFβ-RII interferes with its ubiquitination–proteasome
degradation in blood cells. Therefore, we can speculate that the
neddylation modification of TGFβ-RII stabilizes its function and
thereby promotes TGFβ signaling, playing a key role in HSC
activation (66, 95).

NEDDYLATION AND HCC

HCC, the most common and frequent primary liver cancer, is
the advanced stage of CLD. Although some alteration of signal
molecules involved in HCC progression is discovered, the high
mortality and the poor prognosis make it the third malignancy
that leads to cancer-related death globally (96). Recently, it
was reported that the dysregulation of the neddylation pathway
is associated with HCC. The whole neddylation pathway
including NEDD8; NEDD8-specific E1, E2, and E3; and even
deneddylation enzymes was upregulated in HCC (97).

Inhibiting the neddylation pathway can significantly suppress
HCC cell proliferation and migration, induce apoptosis, and
eventually inhibit HCC growth and metastasis (98). Nieves
Embade and his colleagues found that Hu antigen R (HuR)
was implicated in the above process. HuR plays a critical role
in hepatocyte proliferation, survival, differentiation, and HCC
transformation via enhancing the stability of target mRNAs (92).
The stability of HuR itself in cells is attributed toMdm2-mediated
neddylation. The neddylation modification of HuR promotes its
nuclear localization and reduces its degradation (54, 99). SREBP-
1 is not merely a critical regulator of lipid metabolism but is also
associated with cancer metabolism. In metastatic HCC samples,
SREBP-1 is upregulated with a concomitant increase of UBC12.
Recently, it was reported that SREBP-1 can be neddylated by
NEDD8 E3 ligase UBC12. Consequently, neddylation of SREBP-
1 competing with its ubiquitination promotes the stability of
SREBP-1 (68). Otherwise, liver kinase B1 (LKB1) andAkt kinases,
critical regulators in proliferative metabolism of the liver, could
be neddylated to enhance their stability. Inhibition of neddylation
leads to metabolic reprogramming and concomitant apoptosis of
liver cancer cells via altering the stability of LKB1 and Akt (100).

Importantly, neddylation is closely related to regulation
of autophagy in liver cancer cells (101). Autophagy is a
cellular biological process in response to various stresses to
maintain cellular homeostasis. Several researches have reported
that autophagy could play a pro-survival role in cancer cells.
Inhibition of neddylation would induce autophagy to promote
survival of cancer cell and thus result in drug resistance.
Mechanistically, suppressing neddylation causes inactivation of
CRL1β−TrCP and CRL2VHL and subsequently contributes to
the accumulation of their substrates: DEPTOR and HIF1α.

Frontiers in Medicine | www.frontiersin.org 5 October 2020 | Volume 7 | Article 586881200

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yao et al. Neddylation in Liver Diseases

DEPTOR and theHIF1–REDD1–TSC1 axis would inducemTOR
inactivation, which partially leads to autophagy (34, 102, 103).
Additionally, increased level of reactive oxygen species (ROS)
and activating transcription factor 3 (ATF3) could also trigger
autophagy in the circumstance of neddylation inhibition (104).
Recently, it was reported that inactivation of CRL4 would
block polyubiquitination and proteasomal degradation of the
WD repeat domain, phosphoinositide interacting 2 (WIPI2) via
inhibition of neddylation, which eventually induces autophagy
during mitosis (105).

Moreover, neddylation also regulates pro-tumorigenic
inflammation in liver cancer cells. Hypoxia-inducible factor-1
(HIF1), an oxygen homeostasis transcription factor, provides
anti-inflammation activity under hypoxia conditions (106).
The alpha subunit of HIF1 (HIF1α) can be targeted by the
Von-Hippel-Lindau protein (pVHL), a substrate receptor of
CRL2 (107). Under normoxic conditions, HIF1α prefers to be
hydroxylated and then recognized by pVHL, which mediates
the degradation of hydroxylated HIF1α by the UPS pathway
(32, 33). Under hypoxic conditions, HIF1α tends to translocate
to the nucleus and form a heterodimer with a HIF1β subunit and
transcriptionally regulates a wide spectrum of genes significant
for the anti-inflammatory response (108). Likewise, neddylation
modification of cullin2 alters the activity of CRL2 and eventually
influences the stability of HIF1α (109) (Figure 2). Recently,
Cannito et al. (110) have suggested that SerpinB3, a serine

protease inhibitor, can stimulate proliferation of hepatic tumor
cells and subsequently facilitate HCC progression by enhancing
the stabilization of HIF2α by promoting the direct and selective
neddylation of HIF2α (111).

Further analysis elucidates that the role of neddylation poses
a profound effect not only on liver cancer cells but also on
immune cells. In macrophages, blocking neddylation regulates
NF-κB signaling and eventually causes the downregulation of
proinflammatory cytokines. Besides, further research reveals
that the sensitive to apoptosis gene (SAG), a neddylation E3
ligase, collaborates with UPS to promote survival of infectious
macrophages via degrading proapoptotic Bax and sterile α and
HEAT/armadillo-motif-containing protein (SARM) (112). SAG
also affects cytokine secretion of macrophages (113). Similar to
innate immune cells, SAG-deficient T cells also show decreased
proliferation, reduced production of cytokines, and diminished
release of the T-cell lineage. Besides, knockdown of Ubc12 in
CD4+ T cells caused impaired T-cell receptor/CD28-induced
proliferation because T cells were arrested in the G0/G1 phase
of the cell cycle (113). Moreover, cytokine production like IL-
2 and the differentiation of CD4+ T cells into effector Th-
cell subsets are decreased when the expression of Ubc12 is
reduced. The neddylation pathway regulates various aspects
of CD4+ T-cell function. However, the exact mechanism
remains to be investigated. A similar result was found in
B cells (114–116).

FIGURE 2 | Neddylation and HCC. There are two biological processes taking place in pro-inflammation macrophages. One is related to the transcription factor HIF.

HIF-1α can be targeted by pVHL, a substrate receptor of CRL2. Under normoxic conditions, HIF-1α prefers to be hydroxylated and then recognized by pVHL for

degradation via the UPS pathway. Under hypoxic conditions, HIFα tends to translocate to the nucleus and form a heterodimer with a HIF1β subunit and

transcriptionally regulates a wide spectrum of genes significant for the anti-inflammatory response. The other is about the apoptosis inhibition of pro-inflammation

macrophages. SAG, a neddylation E3 ligase, collaborates with UPS to promote survival of infectious macrophages via ubiquitination of Bax and SARM. In contrast,

SAG knockdown leads to the accumulation of proapoptotic Bax and SARM and breaks the balance between antiapoptotic Bcl-2 and Bax in the mitochondria, which

induces the death of macrophages.
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THERAPEUTIC STRATEGIES TARGETING
NEDDYLATION

MLN4924 (pevonedistat), a small molecule inhibitor of NAE,
disrupts CRL-mediated protein turnover; causes restraining
tumor cell growth by inducing apoptosis, senescence, and
autophagy; and causes sensitization to chemoradiation therapies
in a cellular context-dependent manner (8). Currently, MLN4924
is being evaluated in several phase Ib/II/III clinical trials
(https://www.clinicaltrials.gov/). Among these clinical trials,
five completed phase I clinical trials in solid tumors and
hematological malignancies have verified that MLN4924 is safe
and feasible. Several phase II clinical trials are under way.
Particularly, a phase III clinical trial of MLN4924 combined with
azacytidine is currently recruiting volunteers with hematological
malignancies. Previous researches suggested that MLN4924 is
a potent and selective inhibitor in hematological neoplasms
as well as many solid neoplasms, including HCC. Given that
the summaries about previous studies of MLN4924 in HCC
are relatively sufficient, we primarily demonstrate the use of
MLN4924 in HBV infectious, NAFLD, and liver fibrosis.

Currently, although nucleoside or nucleoside analogs can
suppress new viral DNA replication, they are unable to eradicate
the cccDNA from infected hepatocytes thoroughly (117). This is
the most critical reason resulting in HBV rebound and obstinacy.
Recently, it is reported that MLN4924 can suppress HBV
transcription and protein expression significantly via restoring
the structural maintenance of chromosome (SMC) complex
protein (SMC5/6) levels (118). Murphy et al. (119) identified
that SMC5/6, a host restriction that restricts HBV replication
by inhibiting HBV gene expression, is the substrate of CRLHBx

(120). HBx targets SMC5/6 for degradation by the ubiquitin–
proteasome system, and subsequently, the transcription from
cccDNA is elevated (Figure 1). Neddylation of cullin is necessary
for activation of CRLHBx. MLN4924 inhibits the neddylation

process, promotes SMC5/6 accumulation, and ultimately leads to
restriction of viral transcription and HBVDNA level, particularly
cccDNA (118). Thereby, the neddylation pathway is a potential
target for HBV treatment. MLN4924 may become a novel anti-
HBV agent, though evidence is far from being enough.

In view of the role of neddylation in regulating stabilization
of SRSF3, MLN4924 can repress the degradation of SRSF3
and reduce the accumulation of SREBP1c, which alleviate the
steatosis and prevent the progression of NAFLD (65). Serrano-
Macia et al. have found that β-oxidation activity and ketone
body levels were enhanced after treatment. On the contrary, the
levels of lipid peroxidation and ROS are significantly reduced
after MLN4924 treatment. Further study suggests that in a
NASH mouse model, MLN4924 treatment can reverse steatosis,
inflammation, and fibrosis. Hence, inhibition of neddylation
via MLN4924 is a potent therapeutic option because it can
ameliorate fatty acid metabolism (121).

Similarly, using the pharmacological inhibitor MLN4924
could protect liver from injury, inflammation, and fibrosis
via regulating the function of hepatocytes. To be more
specific, MLN4924 treatment reduces the expression of pro-
inflammatory cytokines previously associated with liver damage
and, therefore, ameliorate the inflammation after liver injury
(122). In agreement, pro-fibrogenic factors implicated in liver
fibrosis, such as TGFβ, COL1α1, matrix metalloproteinase-9
(MMP9), and interferon-α (IFNα), are consistently decreased
after using MLN4924. More importantly, MLN4924 diminishes
the activation of HSC (66). Together, these results highlight that
MLN4924 treatment is pointed out as a potential antifibrosis
therapy that is independent of the underlying etiology in
the clinic.

In this review, we conclude that inhibition of neddylation
pharmacologically via MLN4924 can significantly alleviate CLD
exacerbation and progression in view of recent researches (8).
Given its well-tolerated toxicity and potent antitumor activity

TABLE 3 | Neddylation in CLDs.

CLD Substrate CRL/E3 ligase Function Reference

Hepatitis B SMC5/6 CRL4HBx/HDM2 Promotes HBV replication (77, 78)

NAFLD/NASH ETFs ? Promotes hepatic steatosis (82)

SRSF ? (83)

SREBP1c HDM2 (84)

NRF2 CRL3 (85)

Liver fibrosis c-Jun CRL? Promotes activation of HSC and inflammation (91)

IkBα CRL1β−Trcp (93)

TGFb-RII c-CBL (56)

HCC HuR Mdm2 Promotes proliferation, survival and metastasis of cancer cells (54, 99)

SREBP1 ? Regulates pro-tumorigenic (68)

LKB1 ? inflammation Regulates the function of immune cells (100)

Akt ? (100)

HIF1a CRL2VHL (106–109)

HIF2a ? (110)

Bax/SARM SAG (112)
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in preclinical trails, MLN4924 is anticipated to be a promising
therapeutic approach for CLD. However, there still remains
some challenges for final application of MLN4924 in the clinic.
Due to the treatment-emergent NAEb mutations, resistance
to MLN4924 during therapy will appear, which subsequently
reduces the effectiveness of this medicine (123). Therefore, it is
indispensable to design next-generation NAE inhibitors that can
overcome treatment-emergent resistance.

CONCLUSIONS AND PERSPECTIVES

Chronic hepatitis/NAFLD–liver fibrosis–cirrhosis–HCC axis is
a canonical pattern in the process of CLD progression (124).
Recent studies in the neddylation pathway provides us with
crucial clues that neddylation is a versatile pathway that takes
on various aspects and phases of CLD (Table 3). Although the
complicated mechanism underlying the overactivation of the
neddylation pathway during CLD still remains elusive, there are
several notable features of neddylation in CLD. First, the NEDD8
and NAE1 expressions are upregulated significantly in NAFLD,
liver fibrosis, and HCC, and the components of the neddylation
pathway like Nedd8, E1 (NAE), E2, and E3 may become novel
biomarkers for CLD diagnosis. Second, under stress conditions,
neddylation modification directly or by activating CRL indirectly
promotes the stability of the substrate (promotes degradation in
rare cases), and the accumulated substrate functions as a crucial
molecule to facilitate the development of CLD. Third, MLN4924
could inhibit the overactivation of neddylation during CLD and
thus alleviates the pathological process.

However, there remain several issues that need to be further
explained correspondingly. First, the underlying mechanism by
which the neddylation pathway is overactivated in CLD has

not been demonstrated clearly so far. Second, besides HSC
and cancer cells, whether and how the upregulated neddylation
pathway plays a significant role in hepatic parenchyma, Kupffer
cells, and tumor microenvironment require further exploration.
Third, MLN4924 suppresses the whole neddylation pathway and
may cause potential unforeseeable secondary effects. Moreover,
MLN4924 would induce autophagy that acts as a pro-survival
signal in cancer cells. Given this situation, it is probably sensible
to be cautious about using MLN4924 for CLD therapy.

Notably, sumoylation, another important ubiquitin-like
posttranslational modification, is identified as a double-edged
sword in CLD while neddylation generally causes pathological
consequences. Inhibition of the global sumoylation pathway
might not always be an optimal therapeutic strategy due to
its “two faces” in CLD (125–128). Therefore, targeting the
neddylation pathway holds promise for the therapy of CLD. On
the context of drug discovery, it is highly anticipated that more
specific and safer small molecule inhibitors aiming at special
targets such as specific E3 Nedd8 ligases or deneddylase enzymes
should be discovered as novel therapeutic approaches for CLD.
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Aim: The diagnosis of drug-induced liver injury (DILI) remains a challenge and the cases of

Polygonummultiflorum Thunb. (PM) induced DILI (PM-DILI) have receivedmuch attention

This study aimed to identify a simple and high-efficiency approach to PM-DILI diagnosis

via metabolomics analysis.

Methods: Plasma metabolites in 13 PM-DILI patients were profiled by liquid

chromatography along with high-resolution mass spectrometry. Meanwhile, the

metabolic characteristics of the PM-DILI were compared with that of autoimmune

hepatitis (AIH), hepatitis B (HBV), and healthy volunteers.

Results: Twenty-four metabolites were identified to present significantly different levels in

PM-DILI patients compared with HBV and AIH groups. These metabolites were enriched

into glucose, amino acids, and sphingolipids metabolisms. Among these essential

metabolites, the ratios of P-cresol sulfate vs. phenylalanine and inosine vs. bilirubin were

further selected using a stepwise decision tree to construct a classification model in order

to differentiate PM-DILI from HBV and AIH. The model was highly effective with sensitivity

of 92.3% and specificity of 88.9%.

Conclusions: This study presents an integrated view of the metabolic features of

PM-DILI induced by herbal medicine, and the four-metabolite decision tree technique

imparts a potent tool in clinical diagnosis.

Keywords: drug-induced liver injury, metabolomics, autoimmune hepatitis, hepatitis B, Polygonum multiflorum
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INTRODUCTION

Drug-induced liver injury (DILI) includes an assorted array of
symptoms caused by exposure to synthetic or natural drugs, and
the incidence rate is 1–10 in 100,000, approximately. DILI is one
of the major reasons for the effects of withdrawal of drugs (1). A
sustained growth in the number of patients with DILIs has been
recorded in recent years, particularly due to the rapid expansion
of the use of natural herbal medicines, including traditional
Chinese medicines (TCM) and herbal healthcare products (2–
4). DILI patients can deteriorate due to acute liver failure (ALF),
and more than half of ALF patients have been reported to be
attributed to DILI (5). The early diagnosis of DILI is crucial to
ameliorate the therapeutic outcome.

However, the diagnosis of DILI is quite challenging due to the
lack of specific and reliable biomarkers (6), and largely depending
on excluding diagnosis. Moreover, the diagnostic approach is
complex and time-consuming (7). Recently, Tomoyoshi et al.
reported that γ-Glu-citrulline and ALT have the potential to
differentiate DILI from other liver diseases, including hepatitis B
(HBV), and hepatitis C (HCV) (8). Furthermore, in our previous
study, nine biomarkers obtained by means of 1H NMR were
employed in the differential diagnosis of AIH from other diseases
that are commonly confused with AIH, including DILI (9).
However, the efficiency of these biomarkers in the differentiation
of DILI and viral hepatitis (VH) is unclear. Therefore, we need to
focus on identifying more specific biomarkers of DILI.

Metabolomics focuses on the global metabolic changes that
occur in response to disturbances in living systems, and has
emerged as a powerful tool for disease diagnosis and pathogenic
investigations (10). In the present study, the metabolites DILI
patients were examined by metabolomics involving the use of
liquid chromatography mass spectrometry (LC/MS). Due to the
rise in number of cases of Polygonum multiflorum Thunb. (PM)
induced DILI (PM-DILI) which has received much attention
in Asian countries (e.g., China, Japan, and Korea), as well as
European and North American countries (11, 12). PM-DILI
was explored in this study. We identified a highly specific
set of metabolites (i.e., P-cresol sulfate, phenylalanine, inosine,
and bilirubin) that were able to effectively differentiate PM-
DILI patients from patients with other applicable diseases and
healthy controls.

MATERIALS AND METHODS

Patients
A total of 58 plasma samples were obtained from patients in the
fifth Medical center of Chinese PLA general hospital. Thirteen
PM-DILI patients, 12 AIH patients, 24 HBV patients, and 9
healthy controls were recruited after they provided informed
consent; the study protocol was approved by the Medical Ethics
Committee of the Fifth Medical Center of Chinese PLA General
Hospital. The diagnoses of all patients were made according to
international codified criteria (7, 13, 14). The plasma samples of
AIH and HBV patients were collected during acute exacerbation
while hospitalized. The clinical baseline characteristics, including

TABLE 1 | Clinical baseline characteristics of all participantsa.

Variable (Mean ± SD) AIH CON DILI HBV

Gender (F/M)b 9/3 2/7 6/7 2/22

Age (y) 52.8 ± 11.5 51 ± 16 45.8 ± 13 45.0 ± 9.6

IgG (g/L) 35.3 ± 3.7 9.7 ± 2.2 32.2 ± 5.4 29.5 ± 4.5

IgM (g/L) 33.6 ± 5.4 1.8 ± 1.2 28.8 ± 17.1 30.1 ± 10.7

Bilirubin (µmol/L) 26.5 ± 17.2 12 ± 7 85.8 ± 90.5 252.0 ± 127.5

ALT (U/L) 55.8 ± 24.4 31 ± 11 372.2 ± 424.5 76.6 ± 55.3

AST (U/L) 62.9 ± 26.9 27 ± 10 210.2 ± 202.3 111.0 ± 69.1

ALP (U/L) 183.1 ± 94.7 77 ± 40 127.9 ± 48.7 134.6 ± 35.7

aSD, standard deviation; AIH, autoimmune hepatitis; CON, health controls; DILI, Drug-

induced liver injuries; HBV, hepatitis; IgG, immunoglobulin G; IgM, immunoglobulin M; ALT,

alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase.
bF for female and M for male.

gender, age, and the main parameters of the liver markers, are
summarized in Table 1.

Sample Preparation
Pre-prandial venous blood samples were collected in themorning
using lithium heparin tubes (BD Vacutainer; 6mL; Becton,
Dickinson and Company, Franklin Lakes, NJ, USA), and the
plasma was collected by centrifugation at 1,000 g at 4◦C for
15min. The plasma samples were immediately stored at −80◦C
until they were used for the metabolomics analysis. Prior to
the LC/MS analysis, 600 µl of acetonitrile was added to 200 µl
of plasma, which was thawed at room temperature, for sample
purification. The samples were then centrifuged at 10,000 g for
10min at 4◦C. Subsequently, the supernatants were transferred
into sample vials.

UHPLC/MS-QTOF Measurement
Four-microliter samples were injected and separated using an
Infinity 1290 UHPLC system (Agilent Technologies, SA, USA),
ZORBAX SB 300 C18 column (100 × 2.1mm with a 1.8-
µm particle size, Agilent Technologies, SA, USA). The column
temperature was maintained at 35◦C. The system was operated
at a flow rate of 0.3 mL/min with solvent A (water) and solvent
B (acetonitrile), and 0.1% of formic acid was also added for the
positive mode. The gradient elution program was as follows:
5.00% B for min 0–1; 5%−40% B for min 1–9; 40–90% B for
min 9–19; 90–100% B for min 19–21; and 100% A for min 21–25.
The total run time was 30min for each analysis. The mass data
were acquired with an Agilent 6550A Q-TOF mass spectrometer
(Agilent Technologies, SA, USA) in the full scan mode (80–1,200
m/z) in both the positive and negative ionmodes using an Agilent
Jet Stream ESI source. In the positive mode, the capillary voltage
was set to 4,000V with a nozzle voltage of 500V. In the negative
mode, the capillary voltage was set to −3,000V with a nozzle
voltage of −500V. The other source parameters were as follows:
the nebulizer was set to 45 psig; the drying gas temperature
was maintained at 225◦C; the flow rate was 11 L/min; and the
voltages of the fragmentor, skimmer 1, and octupole RF peak
were 230, 0, and 750V, respectively. During the analysis, two
groups of reference masses of 121.0509 m/z (purine; [C5H4N4
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+ H]+) and 922.0098 m/z (HP-0921; [C18H18O6N3P3F24
+ H]+) in positive mode and 112.9885 m/z (ammonium
trifluoroacetate [C2H4O2NF3 - NH4]

−) and 1,033.9881 m/z
(HP-0921 + ammonium trifluoroacetate [C20H22O8N4P3F27 -
NH4]

−) in negative mode, were continuously injected to obtain
high-accuracy mass correction. To ensure the stability and
repeatability of the LC-MS systems, the QC sample was obtained
from 10 µl of each sample and then analyzed together with the
other samples. Five replicates of the QC sample were performed
on the system before the sample sequence. The QC samples were
also inserted, and every five samples were analyzed.

Data Processing and Statistical Analysis
The peak alignment and data filtering were processed using Mass
Profinder (version B.06.00, Agilent Technologies, SA, USA).
For the molecular feature extraction, up to 2,000 compounds
with peak height above 300 counts were extracted. GeneSpring
(version 13.1.1, Agilent Technologies, SA, USA) was used for

the normalization and statistical analysis. Only variables that
were present in 70% of at least one group were included in the
analysis, to reduce noise. The normalized data was analyzed using
the Wilcoxon Mann-Whitney Test with p < 0.05 and a fold
change > 2 set as the level of statistical significance. SIMCA
13.0 (Umetrics, Umeå, Sweden) was used for the multivariate
analysis, principal component analysis (PCA) and orthogonal
projection to latent structures discriminate analysis (OPLS-DA)
were applied with Pareto scaling. Finally, the metabolites with
greater variable importance in the projection value (VIP > 1)
and correlation coefficient value (|Pcorr| > 0.5) in the OPLS-DA
analysis were considered statistically significant.

Biomarker Identification
The compounds that exhibited significant changes were selected
as the candidate biomarkers and identified using the METLIN
database (http://metlin.scripps.edu/). The pathway analysis of
the potential biomarkers was carried out with MetaboAnalyst

FIGURE 1 | Score plot of PCA model for AIH, CON, DILI, and HBV with the first two principal components. (A) The PCA1 and PCA2 explained 27% variation under

ESI- mode. (B) The PCA1 and PCA2 explained 35% variation under ESI+ mode.
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FIGURE 2 | Discrimination of DILI patients from AIH, HBV, and healthy controls according to orthogonal projection to latent structures discriminate analysis (OPLS-DA)

model in the ESI- mode. The points in red indicate the identified biomarkers. (A) Score plot of the OPLS-DA model for the pair-wise comparisons between the AIH and

DILI; (B) S-plot of the OPLS-DA model for the AIH and DILI; (C) Score plot of the OPLS-DA model for the CON and DILI; (D) S-plot of the OPLS-DA model for the

CON and DILI; (E) Score plot of the OPLS-DA model for the HBV and DILI; (F) S-plot of the OPLS-DA model for the HBV and DILI.

3.0 (http://www.metaboanalyst.ca/) based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways library
for humans (http://www.genome.jp/kegg/). The differences were
considered significant when the test p value was below 0.05.

Decision Tree Learning for the PM-DILI
Diagnosis
The classification and regression tree analysis (CRT) was
calculated with IBM SPSS 22.0 for Windows, and the Gini
algorithm together with a 10-fold cross-validation was used
to determine the best split for each node. Receiver operating
characteristic (ROC) testing was performed to further evaluate
the performances of the established models in the diagnoses of
the different patients. The diagnostic values were assessed using
the sensitivity, specificity, and area under the curve (AUC).

RESULTS

Plasma Metabolomic Study of the Patients
The representative UHPLC-MS base peak ion (BPI) current
chromatograms in the positive and negative ion modes for the
human sera from each group, were visually compared. Using
the optimized analysis protocol, such as peak alignment and
normalization, we obtained 3,995 molecular features.

Pattern Recognition Analysis and
Biomarker Screening
After data normalization, log transformation, and Pareto scaling,
850 metabolites were identified to be significantly different
between the PM-DILI and other groups by multivariate analysis.
PCA was used as an unsupervised method to examine the overall
differences among groups and revealed that the metabolites in
PM-DILI were vastly different from the other groups (Figure 1).
OPLS-DA (Figures 2, 3) was then used as a supervised method
capable of performing classification and discrimination analysis
to comprehensively examine the metabolites and revealed
significant differences in the paired groups. Based on the criteria
of VIP > 1 and a |P(corr)| > 0.5, the 217 molecular-feature
ions from the ESI+ and ESI– mode analyses were combined
to further identify the molecular formulas. The accurate mass
charge ratios of these ions were tentatively identified against
the online METLIN database. Finally, a total of 24 potential
biomarkers, including 9 metabolites in ESI+ mode and 15
metabolites in ESI– mode, were identified and listed in Table 2.

The average normalized quantities of the identified
metabolites were orderly clustered and plotted on a heat
map based on their Pearson correlation coefficients. The
metabolic differences between the PM-DILI and other groups
are mapped in Figure 4 according to the KEGG pathways
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FIGURE 3 | Discrimination of DILI patients from AIH, HBV, and healthy controls according to orthogonal projection to latent structures discriminate analysis (OPLS-DA)

model in the ESI+ mode. The points in red indicate the identified biomarkers. (A) Score plot of the OPLS-DA model for the pair-wise comparisons between the AIH

and DILI; (B) S-plot of the OPLS-DA model for the AIH and DILI; (C) Score plot of the OPLS-DA model for the CON and DILI; (D) S-plot of the OPLS-DA model for the

CON and DILI; (E) Score plot of the OPLS-DA model for the HBV and DILI; (F) S-plot of the OPLS-DA model for the HBV and DILI.

database. We found that the disturbances of some metabolic
pathways, such as the metabolisms of three essential amino acids
(i.e., tryptophan, valine, phenylalanine), glycerophospholipid
metabolism, primary bile acid biosynthesis, and sphingolipid
metabolism may specifically contribute to PM-DILI but not to
other diseases.

Decision Tree Learning for PM-DILI
Diagnosis
The 276 randomly combined pairs of 24 identified metabolites
were employed to create a decision tree model for the
differential diagnosis of the PM-DILI from other diseases
using SPSS software. Ultimately, the best two pairs, the
ratios of P-cresol sulfate vs. phenylalanine and inosine vs.
bilirubin, were selected. Along with a 10-fold cross-validation,
the decision tree for PM-DILI prediction achieved sensitivity
(positive predictive values) of 92.3%, specificity (negative
predictive values) of 88.9%, accuracy of 89.8%, and an
error risk of 0.205 ± 0.061. The ROC curve for this
decision tree is plotted in Figure 5, and it yielded an AUC
of 0.931.

DISCUSSION

DILI has always been an important cause of ALF, and the
diagnosis of DILI remains a challenge. In the present study,
plasmametabolomics were employed to investigate themetabolic
differences between PM-DILI, HBV, AIH patients, and healthy
individuals, to identify a simple and high probability method of
diagnosis of PM-DILI.

Different Metabolic Features of PM-DILI
and Relevant Diseases
Based on the results of the current analysis, we found
that a few essential amino acids and glucose metabolites
play important roles in the differentiation of PM-DILI from
other symptomatically similar diseases and healthy states. The
consumption of glucose leads to increased glucuronic acid
volume through the pentose and glucuronate interconversion
pathway in HBV and increased 2-Deoxy-D-ribose-5P (dR5P)
volume through the pentose phosphate pathway in AIH. It is well
known that glucuronic acid conjugates with xenobiotics, such
as drugs and bilirubin, with a high probability of making them
more water-soluble and eliminating them from the body through
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TABLE 2 | Identification of significantly changed metabolites.

Metabolites name RT (min) Formula Massa

(m/z)

Data from the ESI– mode

4-Cresol 1.20 C7H8O 107.0503

Phenylalanine 1.06 C9H11NO2 164.0729

P-cresol sulfate 1.34 C7H8O4S 187.0042

Oxalosuccinic acid 1.33 C6H6O7 189.0027

D-Glucuronic acid 0.90 C6H10O7 193.0388

Deoxyribose 5-phosphate 3.31 C5H11O7P 213.0217

Melatonin 3.97 C13H16N2O2 231.1098

Inosine 12.66 C10H12N4O5 267.0696

PA(17:2(9Z,12Z)/0:0)a 18.70 C20H37O7P 419.2069

(25S)-5β-cholestane-

3α,7α,12α,26-tetrol

23.11 C27H48O4 435.3601

Glycochenodeoxycholate 4.33 C26H43NO5 448.2976

LysoPE

(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))b
13.94 C27H44NO7P 524.2746

Taurocholate 15.00 C26H45NO8S 530.2818

PA(14:1(9Z)/13:0)c 19.20 C30H57O8P 575.3758

PG(14:1(9Z)/18:3(6Z,9Z,12Z))d 6.53 C38H67O10P 713.4488

CoA 15.02 C21H36N7O16P3S 766.1094

Data from the ESI+ mode

Valine 1.02 C5H11NO2 118.0875

Methionine 1.05 C5H11NO2S 150.0585

Phenylalanine 1.06 C9H11NO2 166.0875

Coniferyl aldehyde 18.76 C10H10O3 179.0719

Tyrosine 1.05 C9H11NO3 182.0776

Phytosphingosine 11.75 C18H39NO3 318.3045

PE (17:2(9Z,12Z)/0:0)e 10.42 C22H42NO7P 464.2905

Bilirubin 19.93 C33H36N4O6 585.2639

DG(17:2(9Z,12Z)/20:0/0:0)f 19.93 C40H74O5 635.5741

a [M-H]− for the ESI– mode and [M+H]+ for the ESI+ mode.
bCompound in the pathway is LPA.
cCompound in the pathway is L-2-LPE.
dCompound in the pathway is PA.
eCompound in the pathway is PG.
fCompound in the pathway is L-1-LPE.
gCompound in the pathway is DG.

the urine or bile (15). In the present study, the significantly
elevated levels of D-glucuronic acid observed in the HBV patients
might induce impairment in liver detoxification. The pentose
phosphate pathway is the primary pathway for the generation of
nicotinamide adenine dinucleotide phosphate (NADPH), which
is beneficial in the prevention of oxidative stress (16–18). It can
be deduced that AIH patients endure more oxidative stress than
PM-DILI patients. Considering that the metabolites of the TCA
cycle and LysoPE were elevated in PM-DILI and AIH patients,
glycerophospholipid metabolism might have been accelerated
by the degradation of phosphoethanolamine (PE) to provide
adequate energy in these patients.

In addition to glucose metabolism, changes in plasma AA
concentrations may also have influenced various biological
functions by impairing hepatic function and subsequently caused
hyperinsulinemia and hyperglucagonemia (19). For example,

methionine (Met) was upregulated in HBV and decreased in AIH
and PM-DILI, and the change ofMet is frequently associated with
the change of related metabolites, such as taurine and cysteine
(20). Taurocholic acid is a conjugate of taurine and cholic acid
and was observed in our study, which contrasts with the changes
in Met. Furthermore, a stepwise increase in the plasma levels of
valine was observed from AIH to PM-DILI to HBV. Valine is
one of the branched-chain amino acids that have a stimulatory
effect on glutamine synthesis and is a major source of nitrogen
(21–23). Given that the liver plays a role in the regulation of
the glutamine synthesis (24), plasma levels of valine may reflect
changes in hepatic function. Additionally, γ- glutamyl dipeptides,
the biomarkers for many liver diseases (8), are also synthesized
from glutamate, which suggests that valine has the potential to
discriminate PM-DILI from other liver diseases.

Furthermore, a few metabolites of amino acids observed in
this study were also able to differentiate PM-DILI from other
diseases. For example, melatonin is an indolamine product
of tryptophan and is involved in the regulation of circadian
rhythms. Melatonin also possesses an ability to modulate
numerous molecular pathways, including those related to cellular
injury (25), oxidative stress (26–28), and inflammation (29–
32). The plasma melatonin is altered in different diseases and
pathological states; i.e., decreased levels are associated with
the hyperactivation of the immune system (33), and elevated
levels are correlated with the severity of cirrhosis and hepatic
encephalopathy (34). In our study, melatonin were reduced
in AIH group and elevated in HBV group compared to the
PM-DILI and healthy group. It can be concluded that the
levels of melatonin in AIH may be downregulated by abnormal
autoimmune reactions against hepatocytes and the liver injuries
of HBV patients could be more serious than those of the PM-
DILI patients.

Moreover, sphingolipid metabolism was abnormal in
the AIH and HBV patients compared to the PM-DILI
patients. Sphingolipids have been reported to play important
roles in mediating many biological functions, such as cell
growth, apoptosis, senescence, and differentiation (35–38).
Phytosphingosine is structurally similar to sphingosine and is a
precursor of ceramide, which is also regarded as an important
cellular signal for inducing apoptosis. Phytosphingosine was
downregulated in the HBV patients and upregulated in the AIH
patients, but no significant difference was observed between
the PM-DILI patients and healthy controls. Thus, it could be
inferred that apoptosis was not obvious in PM-DILI patients.

Diagnostic Potentials of the Differential
Metabolites
The underlying mechanisms of DILI induced by distinctive drugs
may also be different. However, the changes in some metabolites
in the plasma might be similar among the DILI samples (8).
In this study, all the metabolites with significant changes were
regarded as candidate biomarkers, whose diagnostic potentials
need to be investigated. In order to precisely differentiate
DILI (PM-DILI) cases from cases with other liver diseases,
a decision tree analysis that can be used in clinical settings
was implemented. Considering the error of each detection, we
performed the decision tree analysis with the ratios of identified
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FIGURE 4 | Metabolic network of the significantly changed metabolites. The significantly changed metabolites are shown under the normalized contents. All the P

values were calculated using Mann-Whitney Test, * and ** represent p < 0.05 and p < 0.01 compared with the DILI group, respectively. DG, 1,2-diacylglycerol; dR5P,

deoxyribose 5-phosphate; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphoethanolamine; PG, phosphatidylglycerol; L-1-LPE,

L-1-lysophosphoethanolamine; L-2-LPE, L-2-lysophosphoethanolamine; LPA, lysophosphatidic acid; TCA, taurocholic acid; GCDCA, glycochenodeoxycholic acid;

F6P, fructose-6-phosphate; G6P, glucose-6-phosphate.

FIGURE 5 | Decision tree classification model for the differential diagnosis of DILI. PCS, P-cresol sulfate; Phe, phenylalanine; BIL, bilirubin. (A) Flowchart of the

discriminating DILI based on the two ratios of four marker metabolites; (B) Results of the ROC tests that correspond to flowchart A.
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metabolites. The results indicated that the ratios of P-cresol
sulfate vs. phenylalanine and inosine vs. bilirubin need to be
investigated for their potential utility in the differential diagnosis
of DILI.

CONCLUSION

In summary, our LC–HRMS-based metabolic profiling analysis
of plasma samples provides an integrated view of the metabolic
features of PM induced DILI. The differential metabolites
between DILI and relevant liver diseases were screened and
identified, and the results indicated that the metabolic alterations
in DILI were mainly related to amino acid and sphingolipid
metabolisms. These findings can potentially provide valuable
information for the diagnoses of DILI. The diagnostic potentials
of the differential metabolites found in the plasma samples
revealed that the ratios of P-cresol sulfate vs. phenylalanine and
inosine vs. bilirubin exhibited good sensitivity and specificity in
differentiating DILI from AIH and HBV. Hence, these factors
have great potential as biomarkers of DILI in clinical diagnosis.
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Objectives: Autoimmune hepatitis (AIH) can progress into severe outcomes, i.e.,

decompensated cirrhosis, from remarkable and persistent inflammation in the liver.

Considering the energy-expending nature of inflammation, we tried to define the

metabolomics signatures of AIH to uncover the underlying mechanisms of cirrhosis

development and its metabolic biomarkers.

Methods: Untargeted metabolomics analysis was performed on sera samples from 79

AIH patients at the stages (phenotypes) of non-cirrhosis (n= 27), compensated cirrhosis

(n = 22), and decompensated cirrhosis (n = 30). Pattern recognition was used to find

unique metabolite fingerprints of cirrhosis with or without decompensation.

Results: Out of the 294 annotated metabolites identified, 2 metabolic fingerprints were

found associated with the development of cirrhosis (independent of the decompensated

state, 42 metabolites) and the evolution of decompensated cirrhosis (out of

47 metabolites), respectively. The cirrhosis-associated fingerprints (eigenmetabolite)

showed better capability to differentiate cirrhosis from non-cirrhosis patients than

the aminotransferase-to-platelet ratio index. From the metabolic fingerprints, we

found two pairs of metabolites (Mesobilirubinogen/6-Hydroxynicotinic acid and

LysoPA(8:0/0:0)/7alpha-Hydroxycholesterol) calculated as ratio of intensities, which

revealed robust abilities to identify cirrhosis or predict decompensated patients,

respectively. These phenotype-related fingerprint metabolites featured fundamental

energy supply disturbance along with the development of AIH cirrhosis and progression

to decompensation, which was characterized as increased lipolysis, enhanced

proteolysis, and increased glycolysis.

Conclusions: Remodeling of metabolism to meet the liver inflammation-related energy

supply is one of the key signatures of AIH in the development of cirrhosis and

decompensation. Therefore, drug regulation metabolism has great potential in the

treatment of AIH.

Keywords: liver cirrhosis, autoimmune hepatitis, metabolomics, metabolic pathway, biomarkers
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INTRODUCTION

Autoimmune hepatitis (AIH) is an inflammatory disease of
the liver mediated by an abnormal autoimmune response (1).
The pathogenesis of AIH is not fully understood. AIH patients
may have long-term asymptomatic tissue inflammation, but they
are often not diagnosed, thus losing treatment opportunities.
When clinical symptoms appear, the disease may have progressed
to a more severe stage, and may even further progress to
cirrhosis, decompensation of liver function and eventually
liver failure (2, 3). AIH cirrhosis has no specific clinical
manifestations in the compensated stage; When the disease
progresses to the decompensated stage, liver dysfunction and
portal hypertension will appear. Decompensated patients may
also experience symptoms such as gastrointestinal bleeding,
liver ascites, and coma. Liver transplantation is an effective
treatment for decompensated patients (4), but AIH may recur
after transplantation. Although AIH is a disease mediated by
autoimmune abnormalities and autoantibodies are important
for the diagnosis of AIH, serum autoantibodies do not reflect
the severity of the disease in AIH patients (5). Looking for
biomarkers that can predict the progression of liver cirrhosis
and malignancy in AIH patients is of immense significance
in the clinical prognosis and understanding of the underlying
mechanism of disease progression.

AIH is mainly characterized by liver inflammation, which is
essentially a chronic and unresolved liver inflammatory damage
(6). Inflammation is an energy-expensive biological process that
requires a large amount of energy and intermediary metabolites
for the synthesis of inflammatory factors and immune response
(7). Continuous hepatic inflammation inevitably causes
significant metabolic changes and induces a wide range of
catabolic dysfunction, which may be involved in the progression
of the disease. The liver is the main metabolic organ, responsible
for most of the body’s metabolic processes such as synthesis,
decomposition, and transformation (8), thus, it is very important
to study AIH from the perspective of metabolism.

Metabolomics is a phenotypic method for studying
metabolites, small molecule substrates, and intermediary
metabolites, which directly reflects potential biochemical activity
and state of cells/tissues (9). Furthermore, it is a powerful
method to explore specific biomarkers of liver diseases (10). In
recent years, non-targeted metabolomics has been applied to
the study of AIH-related biomarkers (11–13), but there is no
research related to disease progression of AIH.

Here, we report the findings of untargeted and whole
spectrum metabolomic study in sera from 79 AIH patients
and compare the metabolic markers of liver cirrhosis and
decompensation. The aim of this study is to characterize the
serametabolite fingerprints specific to patients with compensated
or decompensated AIH cirrhosis, and to identify potential
prognostic biomarkers of AIH.

MATERIALS AND METHODS

Study Design
We explored the sera samples of hospitalized AIH patients
in the Biobank of Fifth Medical Center of Chinese PLA

General Hospital from October 31st, 2015 to May 19th, 2017.
Patients diagnosed with AIH and where adequate clinical
information was available, were selected for the study. This
research scheme was approved by the Ethics Committee of the
hospital based on the ethical principles of the Declaration of
Helsinki, and written informed consent was obtained from all
patients. Their sera had to be deposited within 4 days after
diagnosis. Patients with competitive etiologies were excluded.
There are 89 AIH patients initially screened, and 10 of them were
excluded due to competitive etiologies. Among those 10 excluded
patients, 8 had concurrent drug-induced liver injury and 2
had alcoholic liver disease. Finally, 79 patients were enrolled
in the study. The enrolled samples were divided into three
groups: non-cirrhosis (NC) (n = 27), compensated cirrhosis
(CC) (n = 22), and decompensated cirrhosis (DC) (n = 30)
groups, according to the international clinical guidelines (14).
Based on untargeted metabolomics, we acquired numerous
metabolites (metabolome profile) with significant difference
(P < 0.05 and FC >1.5 or <0.67) by comparing CC and
DC with NC and marked them as (CC+DC)/NC. Metabolites
identified in metabolome profiles were considered as ones
with cirrhosis-associated metabolome features. Similarly, by
comparing CC or DC with NC, they were marked as CC/NC
and DC/NC, respectively. The excluded part of DC/NC can be
considered as decompensation-associated metabolome features.
Also, hierarchical clustering was used to screen out the metabolic
fingerprints, which consisted of a cluster of metabolites with high
area under curve (AUC) of the receiver operating characteristic
(ROC) analysis and P-values, in differentiating each group
(phenotype). Furthermore, the phenotype-associated fingerprint
metabolites were projected to one eigenmetabolite by reducing
the dimension, which is defined as the first principal component
in unsupervised principal component analysis (PCA) (15). The
eigenmetabolite was further investigated to discover relationships
with demographics, biochemistry, complications, and clinical
evaluation models. Finally, metabolic pathways of phenotype-
associated fingerprint metabolites were analyzed to interpret the
underlying mechanisms of the metabolic drivers in the evolution
of AIH.

Samples Preparation and
Chromatographic Conditions
The biobanked serum were processed according to the literature
(16). Quality control samples (QC) were prepared by mixing
10 µL from each sample to be analyzed. Chromatographic
column: ZORBOX RRHD C18 analytical column (2.1mm i.d.
× 100mm, 1.8µm i.d., Agilent Technologies, USA). Column
temperature: 30◦C. Sample temperature: 4◦C. The mobile phase
was composed of solvent A: Water with 0.1% formic acid in
positive mode of Q-TOF, pure water in negative mode, mobile
phase B: Acetonitrile. Flow rate: 0.30 mL/min; Sample injection
size: 4 µL. Chromatographic gradient elution conditions: 0–
1min, 100% (A); 1–9min, 100%-60% (A); 9–19min, 60–10% (A);
19–21min, 10–0% (A); 21–25min, 100% (B).

Mass Spectrum Condition
An Agilent 6550 Q-TOF LC/MS with an electrospray ionization
source (ESI) in positive and negative ion modes was used.
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TABLE 1 | Clinical information comparison between liver disease patients with NC, CC, and DC.

Non-cirrhosis (n = 27) Compensated cirrhosis (n = 22) Decompensated cirrhosis (n = 30) Pa Pb

Age/year 51(42,56) 54(50,63) 57.5(51.0,67.0) 0.224 0.274

Female, n (%) 27(100.0) 18(81.8) 28(93.3) – –

ALT/U·L−1 30.0(12.0,96.0) 35.5(20.3,145.8) 32.0(22.0,76.8) 0.26 0.663

AST/U·L−1 59.0(26.0,121.0) 75.0(30.8,171.5) 49.5(36.8,117.8) 0.148 0.788

AST/ALT 1.4(1.1,2.2) 1.6(0.9,2.4) 1.8(1.3,2.7) 0.702 0.404

ALP/U·L−1 105.0(79.0,184.0) 135.0(114.8,190.8) 118.5(90.3,224.0) 0.067 0.437

GGT/U·L−1 67.0(15.0,197.0) 94.0(48.3,164.3) 49.5(26.3,181.5) 0.501 0.47

TBil /mg·dl−1 14.2(10.2,22.4) 22.3(13.5,61.4) 26.6(11.8,83.5) 0.03 0.624

DBil/µmo·L−1 5.7(3.3,12.0) 11.6(5.3,47.1) 14.5(5.4,66.5) 0.027 0.657

IgA/g·L−1 2.6(1.9,3.5) 2.9(1. 9,4.6) 3.7(2.4,6.2) 0.488 0.154

IgG/g·L−1 15.0(12.1,21.3) 21.6(15.5,24.0) 20.4(16.2,25.8) 0.062 0.97

IgM/g·L−1 1.2(0.8,1.7) 1.7(0.9,2.9) 1.7(1.1,2.3) 0.093 0.795

CHE/U·L−1 5241.0(4877.0,7125.0) 4192.0(2938.3,6100.5) 2883.0(1984.8,4037.3) 0.011 0.005

INR/IU 1.0(0.9,1.0) 1.1(1.0,1.2) 1.1(1.0,1.3) 0.005 0.194

TC/mmol·L−1 4.2(3.7,5.0) 3.8(2.8,4.7) 3.3(2.7,4.0) 0.151 0.243

TG/mmol·L-1 1.1(0.9,1.5) 1.3(0.8,1.7) 1.0(0.8,1.6) 0.96 0.535

ALB/g·L-1 36.0(34.0,40.0) 33.0(29.5,37.0) 29.5(25.8,33.3) 0.025 0.05

WBC/mm3 5140.0(4340.0,6800.0) 3825.0(3155.0,4777.5) 3850.0(2852.5,5010.0) 0.005 0.926

PLT/109·L−1 195.0(168.0,223.0) 101.0(62.5,158.0) 84.0(53.5,124.5) <0.01 0.229

TBA/umol·L-1 22.0(7.0,37.0) 35.5(17.3,97.8) 47.0(16.0,108.3) 0.033 0.853

Cr/umol·L-1 59.0(51.0,70.0) 60.0(53.5,65.8) 66.0(60.5,74.3) 0.371 0.081

PT /s 11.2(10.6,11.7) 12.3(11.0,13.7) 12.8(11.2,14.7) 0.008 0.188

ANA 1:100(1:486,1:100) 1:320(1:1,000,1:100) 1:320(1:1000,1:100) 0.102 0.669

γ-globulin/% 24.0(18.0,28.8) 29.4(22.4,33.8) 32.0(25.6,35.0) 0.052 0.4

With ascites (%) 0(0.00) 0(0.00) 26(86.7) – –

With HE (%) 0(0.00) 0(0.00) 0(0.00) – –

APRI score 31.9(12.8,55.8) 69.9(35.8,185.4) 97.2(38.3,159.9) 0.004 0.697

All clinical information in the table indicates data collected at the time closest to blood collection.

Median and quartile values are provided as Median (upper quartile, lower quartile), unless otherwise noted as n (%). Pa is the significant difference comparison between non-cirrhosis

and compensated cirrhosis patients, Pb between compensated and decompensated cirrhosis patients.

ALT, alanine aminotransferase. AST, aspartate transaminase. ALP, alkaline phosphatase. GGT, γ-glutamyl transpeptidase. TBil, total bilirubin. DBil, direct bilirubin. IgA, immunoglobulin

A. IgG, immunoglobulin G. IgM, immunoglobulin M. CHE, cholinesterase. INR, international normalized ratio. TC, total cholesterol. TG, triglyceride. ALB, albumin. WBC, white blood cell.

PLT, platelet. TBA, total bile acid. Cr, creatinine. PT, prothrombin time. ANA, antinuclear. HE, hepatic encephalopathy. APRI, AST to PLT ratio index.

Non-targeted primary mass spectrometric detection conditions:
The mass range of m/z 50–1,200; gas temperature of 225◦C
in both positive and negative ionization modes; airflow of 13
l/min; the nebulizer of 20 pisg (negative) and 20 pisg (positive);
sheath gas temperature of 275◦C and sheath gas flow of 12 l/min;
electrospray capillary voltage of 3,500V in negative ionization
mode and 4,000V in positive ionizationmode; and nozzle voltage
of 2,000V in the positive and negative ionmodes. The acquisition
mode was ESI Continuum mode and 14,104 variables were
captured in positive ion mode as well as 13,357 variables were
captured in negative ion mode.

Statistical Analysis
All variables were normalized in MetaboAnalyst 4.0 (https://
www.metaboan-alyst.ca) after being preprocessed in Masshunter
Profinder software. Summarized results of the patients’ clinical
biochemical characteristics for continuous variable are expressed
as median (upper quartile, lower quartile), and categorical
variables are expressed as numbers and percentage. Comparisons

between groups were made with Kruskal-Wallis H test. All
statistical analysis was performed using SPSS 21.0 software.
The significance level for all statistical tests was set at 0.05.
PCA and orthogonal partial least squares discrimination analysis
(OPLS-DA) were performed in SIMCA -P 14.1 software. The P-
values, fold change (FC) and AUC of ROC were obtained from
the MetaboAnalyst website. We narrowed down the original
variables to fingerprint by P-value, FC, and AUC.

RESULTS

Baseline Demographic and Clinical
Characteristics of the Study Cohort
The baseline demography and clinical characteristics among NC,
CC, and DC groups are described in Table 1. There was no
difference in the mean ages among the three groups. Except for
6 male patients, female patients accounted for an overwhelming
proportion of AIH patients (n = 73, 92.41%). Between NC
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and CC groups, the levels of TBA, PT, and INR in CC were
much higher than those in NC, and the levels of CHE, ALB,
PLT, and WBC in CC were significantly lower than those in
NC. Significantly lower levels of ALB and CHE were found
in DC groups as compared to the CC group. With respect to
complications, 86.67% of patients in the DC group had ascites.
Besides, there was no hepatic encephalopathy in AIH patients.
Aminotransferase-to-platelet ratio index (APRI) score showed an
increasing trend along with the development of cirrhosis from
NC to CC and DC.

Patients With Cirrhosis Exhibited Different
Anabolism and Metabolism Characteristics
Compared to non-cirrhotic AIH patients, those that developed
into the cirrhosis stage (CC or DC) showed different
characteristics, including sera enzymes, liver-synthesizing
proteins, liver-metabolizing metabolites, and coagulation
function (Table 1). When cirrhosis developed, significant
decrease in albumin and white blood cell counts were observed.
The coagulation function indices (prothrombin time and
international normalized ratio) increased significantly, but were
not significant between CC and DC groups. Bilirubin (TBiL and
DBiL) increased significantly in the CC group compared to the
NC group, indicating potential liver dysfunction of detoxication.
Along with the evolving disease stages, cholinesterase decreased
significantly. Together, these results indicated a gradual
disturbance of liver functions such as anabolism and metabolism
in the evolution of AIH.

Liver Cirrhosis and Decompensation
Stages Associated With Different Sera
Metabolites
We observed significant alterations in the metabolomic profiles
from either positive or negative modes of mass spectrometry, in
different stages of AIH (Figures 1A–D). This indicates that the
progression from NC to CC and DC was a major contributor
for the alteration of the sera metabolome. To explore the
underlying relationship between the evolving stages of AIH
and the patterns of sera metabolite levels, we firstly obtained
metabolic entities with significant difference (P < 0.05) between
NC and CC, as well as CC vs. DC. The Venn diagram of these
metabolic entities showed over 1,200 metabolites (including both
positive and negative modes) that were associated with cirrhosis
[(CC+DC) vs. NC]; while over 1,600 metabolites were solely
associated with decompensation (DC vs. CC) (Figures 1E,F).
We then identified 124 and 170 metabolites in these two
sets of variables, respectively. Based on these metabolites, we
found that the PCA plot of 124 cirrhosis-related metabolites
showed an obvious separation of NC from either CC or DC,
while CC and DC overlapped (Figure 1G). The PCA plot
of the 170 decompensation-related metabolites revealed an
evident separation of DC from either CC or NC, while CC
and NC were located in the same zone (Figure 1H). These
results indicate two distinct metabolic features associated with
cirrhosis or decompensation stages. The fold changes of these

annotated metabolites between the study groups are showed in
Supplementary Figure 1.

Cirrhosis-Associated Sera Metabolites
Composed of a Fingerprint for AIH-Related
Liver Cirrhosis
To reduce the dimension of the data set and find a unique
metabolomic fingerprint of AIH-related liver cirrhosis, we
computed the AUC and P-values of each of the 124 cirrhosis-
related metabolites in differentiating cirrhosis (either CC or DC)
from non-cirrhosis (NC). The resulting AUCs and associated P-
values were used for a hierarchical cluster analysis and shown in
a heat-map, indicating the highest relevant cluster (including 42
metabolites) with a highly significant association with cirrhosis
[Supplementary Figure 2 (I)]. The AUC values in this cluster
for cirrhosis ranged from 0.6786 to 0.7835 with significant
P-values (Supplementary Tables 1, 3). Interestingly, the 42-
metabolite cluster identified in Supplementary Figure 2 (I), the
high AUC values observed in cirrhosis (either CC or DC)
were maintained when patients were separated into CC or DC
groups [Supplementary Figure 2(II,III)]. These results indicate
a unique metabolome fingerprint (42 metabolites) among
patients with cirrhosis.

To further display the metabolome fingerprint trend in
AIH development, we computed an eigenmetabolite (15) using
PCA as a representative variable of the aforementioned 42-
metabolite cluster. The eigenmetabolite showed progressively
decreasing trend across the different stages of AIH and reached
a minimum in DC (Figure 2A). Interestingly, there was a
significant decrease of the eigenmetabolite in CC compared to
NC, but no significance was observed between CC and DC. This
trend supports the result that the 42 metabolites represented a
metabolic fingerprint for AIH-related liver cirrhosis.

Cirrhosis-Associated Metabolic Fingerprint
Showed Better Diagnostic Performance in
Discerning AIH Cirrhosis Than That of APRI
We found that the cirrhosis-associated metabolic fingerprint
(eigenmetabolite) had better capability of identifying cirrhotic
from non-cirrhotic patients than APRI (AUC values 0.874
vs. 0.763, Figures 2B,C). Collectively, these findings indicate
that the 42-metabolite cluster can serve as a fingerprint of
sera metabolites, which characteristically differentiated cirrhosis
from non-cirrhosis.

Decompensation-Associated Sera
Metabolites Composed a Fingerprint for
Differentiating Decompensation Stage
Similarly, for each of the 170 metabolites in decompensation-
associated metabolome feature, we computed the AUC assessing
the differentiation accuracy of each metabolite in decompensated
cirrhosis from the compensation stage. The resulting AUCs
and associated P-values were used for a hierarchical cluster
analysis, which identified the highest relevant cluster including
47 metabolites with a highly significant association with
cirrhosis (AUC for cirrhosis and significant P shown in
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FIGURE 1 | Metabolome profile for cirrhosis at different period. (A–D) are PCA and OPLS-DA with whole variables among NC, CC, and DC under positive and

negative model. The great difference among NC, CC, and DC under OPLS-DA demonstrated the difference among groups. (E,F) Venn diagram. (E) The inner parts

means the set of variables related to progression of cirrhosis, 124 of which annotated in database was metabolome feature for cirrhosis. (F) The part of DC was the

set of variables related to decompensation, 170 of which annotated in database was metabolome feature for decompensation. (G,H) are PCA among NC, CC, and

DC with metabolome feature for cirrhosis and decompensation. They showed that great discrimination of NC and DC respectively.
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FIGURE 2 | Identification of cirrhosis-related metabolome fingerprint. (A) Showed the decreasing trend of eigenmetabolite of metabolome fingerprint along with the

progression of cirrhosis. (B) Demonstrated the cirrhosis-associated metabolic fingerprint (eigenmetabolite) revealed better capability to identify cirrhotic patients from

non-cirrhotic ones(AUC:0.874). (C) The ROC curve of APRI in discriminating cirrhosis from non-cirrhotic AIH patients(AUC:0.763). (D) Showed that the increasing

trend of eigenmetabolite of metabolome fingerprint from NC to CC and DC.

[Supplementary Figure 3, Supplementary Table 2]). We then

computed an eigenmetabolite by PCA, which is representative of
the 47-metabolite cluster and correlated the eigenmetabolite with

the progression of AIH, from NC to CC and DC (Figure 2D).

The eigenmetabolite showed an increasing trend and significant
differences (all P < 0.05) among NC, CC, and DC.

Metabolic Fingerprints Indicating Loss of
Liver Anabolic Functions
We further compared trends of the two metabolic fingerprints
separately using clinically important indices (14, 17, 18).
Cirrhosis-associated eigenmetabolite were significantly higher
in NC and CC patients with high-albumin (Figure 3A), which
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FIGURE 3 | Clinical associations of the two metabolic fingerprints and the diagnostic ability of paired metabolites. (A) Comparison between clinical indices and the

cirrhosis-associated fingerprint (eigenmetabolite) in NC and CC patients. (B) Comparison between clinical indices and the decompensation-associated fingerprint

(eigenmetabolite) in CC and DC patients. (C) The diagnosis ability of intensity ratio between Mesobilirubinogen and 6-Hydroxynicotinic acid to differentiate NC and

CC. (D) The diagnosis ability of intensity ratio between LysoPA(8:0/0:0) and 7alpha-Hydroxycholesterol to differentiate CC and DC(The units of each index are

indicated in Table 1).
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indicates the loss of liver anabolic function in cirrhotic AIH
patients. Albumin-associated scores may be useful to evaluate
long-term prognosis in patients with autoimmune-related
hepatic cirrhosis (19). Similarly, high level of eigenmetabolite was
observed in patients with high cholinesterase. In some clinical
indices, decompensation-associated metabolic fingerprint in CC
and DC patients had significant alterations in their subgroups
(Figure 3B). Notably, significant P-value also existed between
patients with low-albumin and high-albumin indicating further
loss of liver anabolic functions in decompensated cirrhotic
patients. In addition, high level of alkaline phosphatase corelated
with low level of decompensation-associated eigenmetabolite,
indicating low anabolic liver function (20, 21). Besides, low
levels of eigenmetabolite were observed in patients with high
γ-glutamyl transpeptidase in cirrhosis and decompensated
patients. Gamma-glutamyl transpeptidase and albumin were
independent predictors of significant fibrosis (22, 23). In cirrhotic
patients with ascites, low level of decompensation-associated
eigenmetabolite was observed compared to non-ascites patients.

Paired Metabolites Reveal Diagnostic and
Prognostic Capability for AIH
From the cirrhosis-associated fingerprint, a metabolites pair—
Mesobilirubinogen and 6-Hydroxynicotinic acid—was further
screened out to construct a novel diagnostic parameter to identify
AIH-related cirrhosis patients (Figure 3C). The diagnostic ability
of such paired metabolites is based on the intensity ratio,
which was 0.865 of AUC. The intensity ratio of paired
metabolites can eliminate the differences between instruments
and provide better methodology and good applicability for
clinical use. Similarly, another metabolites pair—LysoPA(8:0/0:0)
and 7alpha-Hydroxycholesterol—was screened out from the
decompensation-associated fingerprint and achieved 0.792 of
AUC in differentiating decompensated cirrhosis from non-
decompensated ones (Figure 3D).

Metabolic Fingerprints Have Potential
Pathophysiological Significance in the
Evolution of AIH Cirrhosis
Several energy sources and intermediary metabolites in the
plasma of patients with liver cirrhosis changed significantly
compared to non-cirrhosis patients, which indicates a
particularly significant energy metabolism disorder. We found
that the two metabolic fingerprints are obviously related to the
energy supply related to the interference of metabolic pathways,
especially increased lipolysis and proteolysis (Figure 4). These
results indicate that abnormalities in metabolic fingerprints may
be involved in the progression of the disease.

AIH Cirrhosis Associates With Increased Lipolysis
In the two metabolic fingerprints for different stages of
AIH, a typical feature is that a series of metabolites related
to long-chain fatty acids (e.g.,12,13-DHOME, trans-2-Enoyl-
OPC4-CoA, Docosadienoyl-CoA, Tetrac-osatetraenoyl-CoA and
(S)-3-Hydroxydodecanoyl-CoA, etc.) are significantly reduced
(Supplementary Tables 1, 2). Increased lipolysis and suppressed

lipogenesis strikingly promote the energy supplying flux by
fatty acids.

AIH Cirrhosis Associates With Increased Proteolysis
Due to a large amount of energy expenditure, a key feature
of decompensated liver cirrhosis was observed to be used
as energy supply by proteolysis (Figure 4). Several proteolysis
markers Glutaminylphenylalanine, Hydroxyprolyl-Tyrosine, and
Glutaminyltryptophan, and incomplete breakdown products
of protein catabolism, increased significantly in DC group
compared to the NC or CC groups (Supplementary Table 3).

DISCUSSION

This paper is the first study utilizing untargeted and whole-
spectrum metabolomics approach in sera samples of
AIH patients without cirrhosis or with cirrhosis at either
compensation or decompensation stages. We identified
two metabolic fingerprints for different stages of AIH. The
fingerprint of metabolites related to liver cirrhosis includes
42 metabolites, reflecting the characteristic metabolic changes
in the process of AIH progression to liver cirrhosis, without
distinguishing between compensatory and decompensated
states. Compared to non-invasive liver cirrhosis evaluation
index APRI, liver cirrhosis-related metabolite fingerprints
have a better diagnostic ability to distinguish between
non-cirrhosis and liver cirrhosis. The metabolic fingerprint
related to decompensation includes 47 metabolites, reflecting
the characteristic metabolic changes from cirrhosis to the
decompensated stage. These metabolic characteristics provide
a new perspective to understand the underlying mechanism of
AIH disease progression. Specifically, the analysis of pathway
enrichment by combining two metabolic fingerprints indicates
that AIH progresses to liver cirrhosis and decompensated stage,
which is manifested by obvious disturbances in metabolic
processes related to energy supply, and nutrient metabolism
is the basic characteristic of decomposition and consumption.
These metabolic characteristics are further strengthened from
compensated cirrhosis to decompensated cirrhosis.

AIH-related immune response may be caused by the
autoantigens of initial CD4+ T cells (24), which further forms
continuous immune response and inflammatory reaction. There
are many studies on the relationship between immunology and
metabolism (25–27), but little is known about the metabolic
adaptation and characteristics of AIH disease progression. AIH
is mainly characterized by liver interface inflammation. As the
disease progresses, it produces energy dependence, leading to
energy competition between the immune system and other
programs in the body. At the same time, the energy supply in the
body is obviously disordered, and nutrients (such as lipids and
proteins) are consumed in large quantities (7),which manifests as
increased lipolysis and proteolysis. In this study, we found that a
group of pathways involved in energy metabolism constituting
the metabonomic characteristics of AIH. L-kynurenine and
its further breakdown products carry out diverse biological
functions, including dilating blood vessels during inflammation
and regulating the immune response (28, 29). The elevation of
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FIGURE 4 | Pathway enrichment of metabolites in metabolome fingerprint. A typical feature is that a series of metabolites related to long-chain fatty acids (e.g.,

12,13-DHOME, trans-2-Enoyl-OPC4-CoA and Docosadienoyl-CoA, etc.) are significantly reduced. And, a key feature of decompensated liver cirrhosis was observed

to be used as energy supply by proteolysis (incomplete breakdown products of protein catabolism increased significantly in DC group).
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L-kynurenine is associated with the presence of inflammation
and energy expenditure (7).

We also observed significant decrease of 7alpha-
hydroxycholesterol (the catalyzing product of Cyp7a1) in
decompensated autoimmune hepatic cirrhosis (30). Previous
studies have shown that Cyp7a1 is positively associated with
liver inflammation (31, 32). Cyp7a1 is the rate-limiting enzyme
in the “classic pathway” of bile acids synthesis. The reduction
of bile acid synthesis will inevitably cause the dynamic balance
of enterohepatic circulation, which will lead to persistent
inflammation in the liver (33). In addition, bile acids can help
emulsify fat, enhance lipolysis, and improve the solubility of
lipids by forming mixed micelles, promote the absorption of
lipids in the intestine, and improve lipolysis. And, the interaction
between bile acids and intestinal microbiota is not unidirectional.
It is necessary to study the intestinal bacteria of AIH patients
to elucidate the potential impact of gut microbial on bile
acids metabolism and its further effects on liver immune and
metabolic microenvironments. Interestingly, the metabolites
related to long-chain fatty acids in the metabolic fingerprint
of cirrhosis are all reduced, which indicate that β-oxidation of
fatty acids is enhanced, and the body needs to consume a lot of
energy for immune response and immune cell activation and
proliferation (34). There are many proteins with incomplete
catabolism in the fingerprint of decompensated metabolism.
These findings imply that proteolysis may increase due to
energy requirements. In previous reports, the skeletal muscles
of rats have a significant accumulation of sphinganine and
sphingosine after exercise, which may be related to the increase
in energy requirements. Furthermore, ceramide promotes
apoptosis whereas sphingosine-1-phosphate can inhibit
apoptosis and induce cell growth. So, the reaction will tend to
transform to sphingosine. Therefore, Galabiosyl ceramide and
N-tetradecanoyl sphinganine will decrease (35).

Based on the favorable aspects of metabolic reprogramming
mechanisms of AIH, we can explore the utility of characteristic
metabolites to facilitate diagnosis or monitoring of disease
progression. We therefore found that the intensity ratio of a
pair of metabolites [Mesobilirubinogen and 6-Hydroxynicotinic
acid] can be applied to recognizing cirrhosis in AIH patients;
furthermore, the paired metabolites [LysoPA(8:0/0:0) and
7alpha-Hydroxycholesterol] can predict the development of
decompensated cirrhosis for AIH. Since the intensity ratio of
paired metabolites can eliminate the system bias of instruments
in different laboratories, these metabolite pairs can be much
easier to be applied in clinical settings. Compared with
targeted quantitation of metabolites by mass spectrometry, the
intensity ratio of paired metabolites is much cheaper and
simpler (36).

In summary, liver metabolic dysfunction featuring enhanced
lipolysis and increased proteolysis, may play an important role
in the pathogenesis and progression of liver cirrhosis in AIH
patients. The established metabolic fingerprint profile related to
liver cirrhosis and decompensation can be used as a resource
for metabolic adaptation and metabolic reprogramming of AIH,
and provide guidance for future clinical prognosis, mechanisms,
and new treatment research. Furthermore, this finding suggests
that metabolic reprogramming may be a new direction in
treating AIH.
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Background: Chronic drug-induced liver injury (DILI) occurs in up to 20% of all

DILI patients. It presents a chronic pattern with persistent or relapsed episodes and

may even progress to cirrhosis. However, its underlying development mechanism is

poorly understood.

Aims: To find serum metabolite signatures of chronic DILI with or without cirrhosis, and

to elucidate the underlying mechanism.

Methods: Untargeted metabolomics coupled with pattern recognition approaches

were used to profile and extract metabolite signatures from 83 chronic DILI patients,

including 58 non-cirrhosis (NC) cases, 14 compensated cirrhosis (CC) cases, and 11

decompensated cirrhosis (DC) cases.

Results: Of the 269 annotated metabolites associated with chronic DILI, metabolic

fingerprints associated with cirrhosis (including 30 metabolites) and decompensation

(including 25 metabolites), were identified. There was a significantly positive

correlation between cirrhosis-associated fingerprint (eigenmetabolite) and the aspartate

aminotransferase-to-platelet ratio index (APRI) (r = 0.315, P = 0.003). The efficacy

of cirrhosis-associated eigenmetabolite coupled with APRI to identify cirrhosis from

non-cirrhosis patients was significantly better than APRI alone [area under the

curve (AUC) value 0.914 vs. 0.573]. The decompensation-associated fingerprint

(eigenmetabolite) can effectively identify the compensation and decompensation periods

(AUC value 0.954). The results of the metabolic fingerprint pathway analysis suggest

that the blocked tricarboxylic acid cycle (TCA cycle) and intermediary metabolism,

excessive accumulation of bile acids, and perturbed amino acid metabolism are potential

mechanisms in the occurrence and development of chronic DILI-associated cirrhosis.

Conclusions: The metabolomic fingerprints characterize different stages of chronic DILI

progression and deepen the understanding of the metabolic reprogramming mechanism

of chronic DILI progression to cirrhosis.

Keywords: biomarker, chronic drug-induced liver injury, cirrhosis, fingerprint, metabolomics, signature
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INTRODUCTION

DILI is one of the most common and serious adverse reactions
to drugs (1–5), and an important cause of clinically acute liver
injury and failure (2, 6, 7). Clinically, most patients with DILI
recover after drug withdrawal. However, around 8 ∼ 20% of
patients progress to chronicity (2, 8–10). According to the
Spanish DILI registry study (10), 8% (25/298) of DILI patients
had unresolved liver injury over 1 year, and among these chronic
DILI patients, 64% (16/25) did not resolve in the first 3 years.
More importantly, 44% (7/16) of these chronic DILI patients who
underwent liver biopsies had cirrhosis and 6% (1/16) manifested
fibrosis. Collectively, a high proportion of patients with chronic
DILI may progress into cirrhosis. However, the mechanism of
chronic DILI progression is still unclear.

Metabolomics is the study of small molecular metabolites. It
improves our understanding of the pathophysiological evolution
of diseases and greatly promotes the diagnosis, treatment,
and prognosis of diseases (11). Metabolic fingerprints are
a cluster composed of a series of serum metabolites that
highly correlate with diseases (12). They have great significance
in revealing the pathophysiological mechanism of diseases
and in searching for biomarkers. Metabolomic methods have
been used successfully to identify biomarkers associated with
DILI. Previous studies reported that metabolomic biomarkers
predicted the occurrence of DILI (13, 14) and distinguished
between DILI and autoimmune hepatitis (15). Xie et al.
(16) reported that changes in metabolomic biomarkers, such
as glycochenodeoxycholic acid, phosphatidylcholine, and two
metabolomic pathways (primary bile acid biosynthesis and
alpha-linolenic acid metabolism) are closely related to the
severity of DILI. These studies suggest the robustness and
capability of untargeted metabolomics in screening for DILI-
related biomarkers. However, the metabolomics of chronic DILI
progression has not been studied.

Thus, we conducted untargeted metabolomic analysis of
83 chronic DILI patients (hepatitis, compensated cirrhosis,
decompensated cirrhosis) and compared three groups of serum
metabolomics characteristics, to establish the metabolic
fingerprint of chronic DILI-related cirrhosis, including
its potential biomarkers and mechanism of occurrence
and development.

MATERIALS AND METHODS

Study Design
Patients from the Fifth Medical Center of Chinese PLA General
Hospital from 2015 to 2017, were enrolled. The enrolled patients
were diagnosed according to DILI guidelines (2) and liver
cirrhosis guidelines (17), with no age and sex restriction. A
total of 83 hospitalized chronic DILI patients, including non-
cirrhosis (NC, n = 58), compensated cirrhosis (CC, n =

14), and decompensated cirrhosis (DC, n = 11) groups were
enrolled. In addition, 10 serum samples of healthy subjects
(HS) were collected. This research scheme was approved by
the Ethics Committee of the hospital based on the ethical
principles of the Declaration of Helsinki. Also, written informed

consent was obtained from all patients. Based on the utilization
of untargeted metabolomics, we obtained metabolic entities
(metabolome profile) with significant difference (P < 0.05)
between cirrhosis (CC + DC) and NC groups. The differentially
abundant metabolites from metabolome profiles were deemed
to be cirrhosis-associated metabolome features. Similarly, the
differentially abundant metabolites for comparisons between DC
and CC groups were considered as decompensation-associated
metabolome features. The metabolic fingerprint (a cluster of
metabolites) was screened using a hierarchical cluster and
heat map analysis. We mainly used unsupervised principal
component analysis (PCA) for fingerprint metabolites and
formed one eigenmetabolite, which is defined as the first principal
component (12).

Sample Preparation and LC/MS Conditions
Serum samples from the three groups were processed using
an organic solvent precipitation method, according to our
previous work (14). Ten microliter from each sample was
mixed and then prepared as the quality control samples (QC).
Agilent ZORBAX 300 SB-C18 column (2.1 × 100mm, 1.8µm,
Agilent Technologies, USA) was used and the temperature
was maintained at 30◦C. The temperature of the sample was
maintained at 4◦C. An optimum mobile phase was composed
of water (A, containing 0.1% formic acid and 5% acetonitrile)
and acetonitrile (B, containing 0.1% formic acid). The flow
rate was maintained at 0.3 mL/min with gradient elution
conditions set as follows: 0–1min, A (95%); 1–9min, B (5%
to 40%); 9–19min, B (40% to 90%); 19–21min, B (90% to
100%); 21–25min, B (100%). The sample injection volume was
kept at 4 µL.

Mass spectrometry (MS) evaluations were conducted on an
Agilent 6550 iFunnel Q-TOF LC/MS equipped with electron
spray ionization (ESI). MS data in both positive and negative
modes were acquired based on optimal parameters, including
a mass range from m/z 50–1,200; capillary voltage of 2.2 kV
(negative) and 2.5 kV (positive); cone voltage of 40V; ion source
temperature of 130◦C; desolvation temperature of 350◦C; cone
airflow of 50 L/h; and desolvation airflow of 800 L/h.

Statistical Analysis
Mass hunter Profinder software was used for raw data
pre-processing. The online analysis tool MetaboAnalyst 4.0
(https://www.metaboanalyst.ca/) was used for data filtering and
normalization. The clinical data of patients was expressed
as a median (p25, p75) or numerical value. Differences
between groups were analyzed by the non-parametric test
in SPSS software program (version 25.0, Chicago, IL, USA)
and reported as statistically significant if the P < 0.05. PCA
and orthogonal partial least square discrimination analysis
(OPLS-DA) were carried out using the SIMCA-P software
(version 14.1, Umetrics AB, Umea, Sweden). The MetaboAnalyst
website was used to acquire AUC and the associated P-values
of differential metabolites. The human metabolome database
(HMDB, http://www.hmdb.ca) and Kyoto encyclopedia of genes
and genomes (https://www.kegg.jp) were used to construct an
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TABLE 1 | Clinical characteristics of chronic DILI patients in NC, CC, and DC groups.

Characteristics NC (n = 58) CC (n = 14) DC (n = 11) P-value

NC vs. CC CC vs. DC

Age/year 48.0 (39.5, 55.5) 50.0 (46.0, 52.2) 59.0 (46.0, 67.0) 0.490 0.153

Sex (male/female) 11/47 4/10 2/9 – –

Alanine aminotransferase/U·L−1 35.0 (18.0, 94.0) 43.0 (17.8, 132.2) 32.0 (15.0, 41.0) 0.733 0.066

Aspartate aminotransferase/U·L−1 49.5 (24.5, 117.2) 39.5 (24.5, 137.5) 53.0 (33.0, 112.0) 0.876 0.641

Alkaline phosphatase/U·L−1 96.0 (77.2, 126.2) 120.0 (69.5, 195.5) 137.0 (103.0, 211.0) 0.252 0.443

Total bilirubin/µmo·L−1 12.5 (8.4, 19.4) 14.9 (9.7, 35.1) 32.0 (20.4, 70.2) 0.289 0.055

Direct bilirubin/µmo·L−1 4.2 (3.2, 10.4) 5.3 (4.1, 18.6) 14.8 (7.1, 49.4) 0.261 0.025

Total bile acid/µmo·L−1 11.0 (5.0, 18.0) 25.0 (6.5, 40.5) 36.0 (20.0, 72.0) 0.040 0.188

International normalized ratio/IU 0.9 (0.8, 1.0) 1.0 (0.9, 1.1) 1.1 (1.0, 1.2) 0.039 0.021

γ-glutamyl transpeptidase/U·L−1 57.5 (22.0, 148.5) 36.0 (14.7, 110.5) 86.0 (40.0, 140.0) 0.351 0.171

Cholinesterase/U·L−1 6,212.0 (5,383.7, 7,330.0) 5,407.0 (4,653.7, 5,902.0) 3,426.0 (1,489.0, 5,910.0) 0.010 0.063

Total cholesterol/mmo·L−1 4.3 (3.4, 5.1) 3.8 (3.1, 4.8) 4.5 (2.8, 4.9) 0.224 0.477

Triglyceride/mmo·L−1 1.2 (1.0, 1.8) 1.36 (1.17, 1.5) 0.9 (0.8, 1.4) 0.654 0.095

Creatinine/µmol·L−1 61.0 (56.0, 68.2) 63.5 (58.2, 69.5) 67.0 (54.0, 80.0) 0.555 0.381

Immunoglobulin A/g·L−1 2.2 (1.6, 2.9) 2.6 (1.8, 3.5) 3.7 (2.2, 5.8) 0.164 0.192

Immunoglobulin G/g·L−1 12.6 (10.5, 14.4) 14.4 (11.7, 17.1) 16.8 (13.6, 22.8) 0.191 0.099

Immunoglobulin M/g·L−1 1.1 (0.8, 1.6) 1.2 (0.6, 1.7) 2.1 (1.3, 2.3) 0.976 0.034

White blood cell/109·L−1 5.0 (3.9, 6.3) 5.8 (3.2, 7.2) 4.8 (3.6, 7.8) 0.842 1.000

Platelet/109·L−1 204.0 (168.5, 235.0) 154.0 (109.2, 223.5) 121.0 (103.0, 182.0) 0.044 0.352

Albumin/g·L−1 38.0 (35.0, 39.0) 36.5 (34.7, 39.0) 27.0 (26.0, 34.0) 0.410 0.002

Globulin/g·L−1 27.0 (24.0, 31.0) 32.0 (24.7, 34.0) 33.0 (27.0, 34.0) 0.127 0.297

Albumin/Globulin ratio 1.4 (1.2, 1.5) 1.2 (1.1, 1.4) 0.9 (0.7, 1.0) 0.041 0.003

Prealbumin/mg·L−1 156.0 (128.5, 206.5) 104.5 (77.5, 164.8) 81.0 (36.0, 121.0) 0.032 0.046

Roussel Uclaf causality assessment method score

highly probable (>8) 7 3 2

probable (6 ∼ 8) 35 7 6

possible (3 ∼ 5) 16 4 3

Data are median (p25, p75) or numerical value. P-values for comparisons were carried out by nonparametric tests.

interactive network for the metabolic fingerprint and associated
metabolic pathway.

RESULTS

Demographic and Clinical Parameters of
the Study Population
The demographic and clinical parameters of the three groups
of study population are listed in Table 1, and the causative
agents of DILI patients are presented in Table 2. Patients from
NC, CC, and DC groups with no significant differences in
the mean ages, with female predominance (n = 66, 79.52%)
were included in this study. Comparisons between CC and
NC groups were conducted and the levels of cholinesterase,
platelet, albumin/globulin ratio, and pre-albumin were found to
be significantly lower in CC than NC, and the reverse was true
for total bile acid. Patients in the DC group showed significantly
higher values of direct bilirubin, international normalized ratio,
and immunoglobulin M, but significantly lower values of
albumin, albumin/globulin ratio, and pre-albumin, compared to

the CC group. These results suggest that a gradual disturbance
of liver functions occurred during anabolism and metabolism in
chronic DILI advancement.

Serum Metabolic Profiles in Chronic DILI
Evolution
Significant changes in global metabolic profiles were observed
in different stages of chronic DILI under both ESI+ and ESI−

modes (Figures 1A–D). This suggests that sera metabolome
changed while progressing from NC to CC and DC. To
explore the relationship between the evolving stages of
chronic DILI and serum metabolite levels, we first screened
a set of variables with significant differences (P < 0.05)
between cirrhosis (CC + DC) and NC, as well as DC
vs. CC. Of the 1,324 metabolites (including positive and
negative ion modes) differentiating between cirrhosis and
NC groups, 195 metabolites in the database were annotated
(Figure 1E). This indicates that metabolites are related to
cirrhosis irrespective of the status of the compensation. Similarly,
a total of 465 metabolites (74 were annotated in the database)
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TABLE 2 | The causative agents of enrolled DILI patients.

Classification Ingredient n

Herbal and

traditional

medicine

(H/TM)

TM preparations (ingredient unknown) 19

Propolis 6

Bupleurum chinense DC 4

Dictamnius dasycarpus Turcz. 2

Polygonum multiflorum Thunb. 2

Corydalis yanhusuo W. T. Wang 2

Agrimonia pilosa Ledeb. 2

Rubia cordifolia L. 1

Tripterygium wilfordii Hook. f. 1

Polygonum multiflorum

Thunb./Psoralea corylifolia L.

1

Bupleurum chinense DC./Corydalis

yanhusuo W. T. Wang

1

Chemicals

drugs (CDs)

Ibuprofen 6

Amlodipine 3

Omeprazole 3

Amoxicillin 2

Nitrofurantoin 2

Phenobarbital 2

Valproate 2

Sulfasalazine 2

Simvastatin 2

Enalapril 2

Pioglitazone 2

Loratadine 1

Nimesulide 1

Nifedipine 1

Methotrexate 1

Metronidazole 1

Valsartan 1

Metronidazole/Amoxicillin 1

Levofloxacin/Sertraline 1

Enalapril/Simvastatin 1

Sertraline/Valproate 1

Isoniazid/Pyrazinamide/Rifampicin 1

Combined

use of H/TM

and CDs

Bupleurum chinense DC./Simvastatin 1

Bupleurum chinense

DC./Amoxicillin-Clavulanate

1

Polygonum multiflorum

Thunb./Amoxicillin

1

were identified and differentiated between the DC and CC
groups, indicating that these findings are associated with
decompensation of cirrhosis (Figure 1F). Then, the three-
dimensional PCA scatter plot revealed good separation of
195 cirrhosis-related metabolites between cirrhosis and NC
groups (Figure 1G) and 74 decompensation-related metabolites
between CC and DC groups (Figure 1H). In summary, the

metabolome profiles associated with cirrhosis of chronic DILI
and those related to decompensation, were preliminarily found
to have potential roles in the identification of cirrhosis or
decompensation, respectively.

Identification of Cirrhosis-Related
Metabolic Fingerprint
According to literature, the AUC and P-values of 195 annotated
metabolites related to cirrhosis were calculated, to identify a
unique metabolomic fingerprint of chronic DILI-related liver
cirrhosis (12). The AUC and associated P-values were performed
using a hierarchical cluster and heat map analysis. Next, we
identified the highest relevant cluster with the top 30 metabolites,
which had a highly significant association with cirrhosis
(vertical violet bar, Figure 2Ai). The AUC and P-values for
this cluster of metabolites are shown in Supplementary Table 1.
Interestingly, we observed that this cluster was effective in
distinguishing between CC and NC groups (Figure 2Aii), as
well as DC vs. NC groups (Figure 2Aiii). We then performed
an eigenmetabolite (12) analysis of 30-metabolite clusters by
reducing the dimensions and observed that the eigenmetabolite
from HS, NC, and CC to DC has been on the rise, whereas no
statistically significant differences between CC and DC groups
were observed (Figure 2B). Meanwhile, we also found that
eigenmetabolite positively correlated with the fibrosis stage in
liver biopsy (Supplementary Figure 1A). These results suggest
that a single metabolomic fingerprint (30 metabolites) was
associated with chronic DILI-related liver cirrhosis, regardless of
the compensatory status.

Comparison of Cirrhosis-Associated
Metabolic Fingerprint and APRI in the
Identification of Cirrhosis and
Non-Cirrhosis
Further, we observed that 30 metabolites consisting of
eigenmetabolite are associated with APRI (r = 0.315, P =

0.003, Figure 2C). We also found that cirrhosis-associated
metabolic fingerprints coupled with APRI had better ability
for differentiating patients with cirrhosis from those without
cirrhosis as compared to APRI alone (AUC values 0.914
vs. 0.573, Figure 2D). Collectively, these findings indicate
that the 30-metabolite cluster can be used as a cirrhosis-
associated fingerprint to assist the identification of cirrhosis and
non-cirrhosis cases.

Identification of Decompensated
Cirrhosis-Related Metabolic Fingerprint
We refined a unique metabolic fingerprint associated with
decompensation among the 74 decompensation-related
metabolites, in the same way. We then defined the highest
relevant cluster with the top 25 metabolites (vertical blue
bar, Figure 3A), which were highly associated with DC
patients. The resulting AUC and P-values of this cluster are
presented in Supplementary Table 2. Similarly, we computed
an eigenmetabolite for 25-metabolite clusters. Significantly
increased eigenmetabolite levels were found in DC patients
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FIGURE 1 | Metabolome profile for chronic DILI with or without cirrhosis. (A–D) PCA, and OPLS-DA model analysis of all variables among NC group (n = 58, green

square), CC group (n = 14, blue triangle), DC group (n = 11, red diamond), and QC (n = 14, yellow circle). (E,F) Venn diagram, the inner section of diagram has a set

of variables associated with cirrhosis and decompensation, 195 and 74 metabolites annotated for metabolome feature cirrhosis and decompensation, respectively.

(G,H) PCA 3-dimensional scatter plot of cirrhosis (CC + DC) vs. NC with 195 cirrhosis-related metabolites and DC vs. CC with 74 decompensated-related metabolites.
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FIGURE 2 | Identification of cirrhosis-related metabolic fingerprint. (Ai) Hierarchical cluster analysis of AUC and P differentiation between cirrhosis and non-cirrhosis

groups. (Aii) Corresponding metabolites in differentiating between DC and NC groups. (Aiii) Indicates corresponding metabolites in differentiating between DC and NC

groups. (B) shows increasing trend of eigenmetabolite across different stages of chronic DILI, from HS to DC. (C) Indicates significantly positive correlation relationship

between cirrhosis-associated eigenmetabolite and APRI score. (D) is ROC curve analysis for metabolic fingerprint (eigenmetabolite) and APRI score, in discriminating

cirrhosis from non-cirrhotic patients with chronic DILI.
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(Figure 3B) and patients with fibrosis stage 2–3 in liver biopsy
(Supplementary Figure 1B). The 25 metabolites consisted of
eigenmetabolite that could effectively discriminate patients with
decompensation from those in the compensation stage (AUC
value 0.954, Figure 3C). In summary, these findings suggest that
the identified decompensation-associated metabolic fingerprint
could well-discern the decompensation and compensation status
in chronic DILI cases.

Metabolic Fingerprints Have Potential
Pathophysiological Significance in Patients
of Chronic DILI With Cirrhosis
To understand the evolution of chronic DILI, two metabolic
fingerprints and the associated pathways that form an interactive
network were identified, as shown in the schematic diagram
(Figure 4). The characteristic metabolic fingerprints of chronic
DILI-related cirrhosis are mainly concentrated as described
below: phenylalanine and tyrosine metabolism, tryptophan
metabolism, arginine and proline metabolism, TCA cycle,
ubiquinone and other terpenoid-quinone biosynthesis, and bile
acid biosynthesis.

DISCUSSION

This study characterizes the metabonomic profile of chronic
DILI with or without cirrhosis, and reveals the metabolic
fingerprints by using untargeted metabolomics and pattern
recognition analysis. There are two crucial metabolic
fingerprints of chronic DILI without correlation on age
and sex (Supplementary Figures 1C,D). One is composed of
30 metabolites reflecting the cirrhosis associated characteristics
(with no relationship with decompensation), the other one is
decompensation-related metabolic fingerprint, composed of 25
metabolites (focus on the development from the compensated
stage to the decompensated stage). Specifically, the metabolic
fingerprints of chronic DILI-associated cirrhosis are mainly
related to perturbed amino acid metabolism, blocked TCA cycle,
intermediate metabolism, and accumulated bile acids.

Glucose metabolism of the liver is disarray in cirrhosis
and depends more on proteolysis to provide energy (18–20).
Two metabolic fingerprints reveal the metabolites in the
amino acid metabolic pathway (phenylalanine metabolism,
tryptophan metabolism, and arginine metabolism), with
the elevation of proteolysis markers (tryptophyl-glutamine
and cysteinyl-proline) in patients with chronic DILI-related
cirrhosis (Supplementary Table 3). L-phenylalanine and enol-
phenylpyruvate are metabolites of phenylalanine metabolism.
L-phenylalanine has been reported to be positively correlated
with imaging findings in liver injury patients and progression
in liver cirrhosis patients (21, 22). A recent study reported that
L-phenylalanine and phenylpyruvate via glycolysis inhibition
affect energy metabolism of hepatocytes (23). Indolepyruvate,
indole-acetaldehyde, 3-hydroxy-anthranilate, 3-methoxy-
anthranilate, and quinolinic acid are metabolites of tryptophan
metabolism. Tryptophan and its metabolites affect the immune

and nervous system functions of patients (24). Additionally, 3-
hydroxy-anthranilate has been reported to significantly provoke
impairment of energy metabolism by inhibiting the activities of
complexes I and II of the respiratory chain (25). Moreover, there
is increased accumulation of quinolinic acid, which reflects not
only the degree of liver dysfunction (26), but also inhibits the
oxidative phosphorylation involved in cell energy metabolism
(27). Arginine and n(omega)- hydroxyarginine are metabolites of
arginine metabolism. Under cirrhosis conditions, cytokines and
endotoxin may perpetuate arginine metabolism and nitric oxide
(NO) generation (28). Arginine has been reported to diminish
succinate dehydrogenase and complex II activities through NO
formation (29). These findings suggest that energy requirements
may lead to increased proteolysis to produce amino acids and
their metabolites, which in turn, result in mitochondrial damage
and energy metabolism dysfunction.

The disturbed TCA cycle and intermediate metabolism are
some additional metabolic features of chronic DILI-associated
cirrhosis. We observed a significant increase in the metabolites of
TCA cycle (e.g., citric acid and 3-carboxy-1-hydroxypropylthiae
diphosphate) in patients with chronic DILI-related cirrhosis
(Supplementary Table 3). Citric acid is often revealed as a
marker of hepatotoxicity (30). The TCA cycle mainly occurs
in mitochondria is the core of intermediate metabolism
(31). Blocked TCA cycle causes suppression of both fatty
acid oxidation and carbohydrate catabolism, and leads to
marked decrease of energy production from nutrients. We also
observed some disorders of intermediate metabolites associated
with coenzyme Q (e.g., 3-Polyprenyl-4,5-dihydroxybenzoate,
menaquinol, menatetrenone), which plays a key role in the
electron transport chain and in turn interferes with the electron
transport chain and mitochondrial metabolism (32). Disturbed
lipid metabolism has been reported as the potential biomarkers
of hepatocellular, mixed, and cholestatic-type DILI (33),
such as Polygonum Multiflorum-induced liver injury (34).
Metabolism disorders of these lipids (e.g., phosphatidylcholine,
phosphatidylethanolamine, phosphatidylserine, sphingomyelin,
and ceramide; Supplementary Table 3) could result in
hepatocyte dysfunction and liver disease progression (35, 36).
The deposition of many long-chain fatty acids (e.g., 3-keto
stearic acid, all-Z-8,11,14-Heptadecatrienal, 9-hydroxypalmitic
acid; Supplementary Table 3) may indicate the inhibition of
beta - oxidation in patients with chronic DILI-related cirrhosis,
resulting in abnormal fat deposition and energy metabolism
(37, 38). These findings therefore indicate that blocked TCA
cycle and intermediary metabolism may be contributors to
mitochondrial damage.

As main synthesis and metabolism in liver, bile acid is
seriously affected after liver disease. We found a significant
increase in conjugated bile acids (e.g., glycocholic acid,
taurochenodesoxycholic acid, and chenodeoxycholic acid glycine
conjugate) in patients with chronic DILI-associated cirrhosis.
The excessive accumulation of chenodeoxycholic acid glycine
conjugate and taurochenodesoxycholic acid promote apoptosis
of liver cells and liver failure (39, 40). These abnormal
accumulations of bile acids may not only be biomarkers
for chronic DILI-associated cirrhosis, but also involved in
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FIGURE 3 | Identification of decompensation-related metabolic fingerprint. (A) is a hierarchical cluster analysis of AUC and P differentiation between DC and CC

groups. (B) shows an increasing trend of eigenmetabolite from HS, NC, and CC to DC. (C) ROC analysis for fingerprint (eigenmetabolite) to differentiate between DC

and CC groups.
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FIGURE 4 | Metabolic pathway alterations involved in chronic DILI with cirrhosis.

the development of the disease. Inhibiting accumulation of
toxic bile acids in the liver may be beneficial to the
clinical treatment of chronic DILI, while there are very
few studies in this area, and hence it is worth exploring.

Collectively, these findings indicate mitochondrial injury,
lipid accumulation, and bile acid accumulation may be as
mechanism implicated in DILI, which is consistent with the
literature (41).
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Our analysis provides novel information to further our
understanding of the pathological changes of several metabolic
pathways, based on serum metabolites, during the progression
of chronic DILI. However, there are still a few limitations
in the study. As all know, due to the abundant metabolites
and biological process, the metabolomic study needs to further
verify the results using animal models. And multi-center,
large-sample studies could improve the application of these
metabolic fingerprints to clinical DILI management in the
future. Nevertheless, the study is expected to offer references
for clinical diagnosis and monitoring of the occurrence and
development of chronic DILI-associated cirrhosis, and to serve
as a resource of metabolic adaptation and reprogramming to
guide future investigations on clinical prognosis, mechanisms
and novel therapeutics.
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Liver diseases are a major health concern globally, and are associated with poor

survival and prognosis of patients. This creates the need for patients to accept the

main alternative treatment of liver transplantation to prevent progression to end-stage

liver disease. Investigation of the molecular mechanisms underpinning complex liver

diseases and their pathology is an emerging goal of stem cell scope. Human induced

pluripotent stem cells (hiPSCs) derived from somatic cells are a promising alternative

approach to the treatment of liver disease, and a prospective model for studying

complex liver diseases. Here, we review hiPSC technology of cell reprogramming and

differentiation, and discuss the potential application of hiPSC-derived liver cells, such as

hepatocytes and cholangiocytes, in refractory liver-disease modeling and treatment, and

drug screening and toxicity testing. We also consider hiPSC safety in clinical applications,

based on genomic and epigenetic alterations, tumorigenicity, and immunogenicity.

Keywords: HLCs, primary human hepatocytes, liver disease, clinical application, IPS cell

INTRODUCTION

Liver disease causes ∼2 million deaths annually worldwide. Cirrhosis-related complications
account for 50% of deaths, and viral hepatitis and hepatocellular carcinoma (HCC) together
account for the other 50% of deaths annually worldwide. Cirrhosis is currently the 11th most
common cause of death globally, and liver cancer is the 16th leading cause of death. Cirrhosis
and HCC together account for 3.5% of all deaths worldwide (1). Currently, liver transplantation
is the most effective treatment option for patients with end-stage liver disease (ESLD). However,
<10% of global liver transplantation needs aremet (2). The shortage of donor organs and transplant
costs are the major limiting factors (3). In addition, the recipient’s immune system may reject the
transplanted organ (4). Therefore, the development of alternative therapeutic strategies for patients
with chronic liver disease is of utmost importance.
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Human induced pluripotent stem cells (hiPSCs) are
pluripotent stem cells that are induced and reprogrammed
from adult cells into undifferentiated cells by exposure to
specific mediators. They have the capacity for self-renewal and
differentiation into a variety of somatic cells, such as embryonic
stem cells (5). HiPSC-derived hepatocyte-like cells (hiPSC-
HLCs) exhibit morphological and phenotypic characteristics
of primary human hepatocytes (PHHs) (6). hiPSC-HLCs
should be incorporated into future studies of liver diseases to
solve the problems of organ shortage and prevent recipient
immunorejection of PHHs. hiPSC-HLCs can be considered
as an ideal source of hepatocytes. In addition, these cells may
enable cell-based therapy, exploration of liver disease models, in
vitro models for pharmacology and toxicology studies (7) and
ESLD treatment.

In this review article, we aimed to provide a perspective on the
current organization and provision of transplant services based
on specific challenges and environmental settings. We review
how these specific requirements are addressed by the existing cell
culture systems for the generation of hiPSC-derived hepatocytes,
describe their applications for modeling hepatic disorders, and
discuss future directions for the use of hiPSCs in the study and
treatment of liver diseases.

RECENT DEVELOPMENTS IN THE iPSC
REPROGRAMMING METHODOLOGY

Protocols for somatic cells transformed into induced pluripotent
stem cells are widely used for iPSC reprogramming method.
The key to the success of these protocols is the ability to
efficiently induce pluripotent cells to adopt a definitive endoderm
fate. Earlier studies have shown that mouse fibroblasts can
be reprogrammed to develop embryonic stem cell (ESC)-
like features, and grow in the presence of four factors:
Oct3/4, Sox2, c-Myc, and Klf4 (8). These induced cells were
named iPSCs. These insights opened the door to further
refinements in the cell differentiation methodology and enabled
the derivation of visceral, endodermal-derived tissues. The
same protocol was used to successfully generate iPSCs from
adult human skin cells (9). In addition, human somatic cells
were transformed into PSCs by inducing the expression of
a new set of four factors: Oct4, Sox2, Nanog, and Lin28
(10). Many optimization steps have been devised to improve
the efficiency of reprogramming factors, such as the use of
integration-free methods (8, 11). Episomal vectors, Sendai
viruses, and synthetic mRNAs are among the most commonly
used methods for generating hiPSCs (12–14) without modifying
the host genome, which could interfere with disease modeling
or experimental outcomes.

Abbreviations: iPSCs, induced pluripotent stem cell; HLC, hepatic like cell;

PHH, primary human hepatocytes; confidence interval; ESLD, end-stage liver

disease; ESC, embryonic stem cells; IMD, metabolic disorder of liver; HCC,

Hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; NASH, Non-

alcoholic steatohepatitis; HBV, hepatitis B virus; HCV, hepatitis C virus; AATD,

α1-antitrypsin deficiency; FH, familial hypercholesterolemia; EVs, extracellular

vesicles; HSC, hepatic stellate cell; CSC, cancer stem cells; XCI, X-chromosome

inactivation; CNV, copy number variations; SNV, single-nucleotide variations.

CURRENT APPROACHES FOR
GENERATION OF hiPSC-HLCs AND
CHOLANGIOCYTE-LIKE CELLS

In 2009, hiPSCs were induced to differentiate into hepatic cells
for the first time, via a timed administration of various growth
factors. The expression of hepatocyte markers and liver-related
functions in hiPSC-HLCs was monitored and compared with
those in differentiated human ESCs and PHHs (15). This revealed
that hepatic cells could be generated from iPSCs but the process
took more than 20 d. To overcome this, the differentiation step
was revised to a more efficient three-step protocol, allowing
rapid generation of HLCs from hiPSCs (Figure 1) (16). Hepatic
progenitor-like cells derived from hiPSCs possess the potential
for bipotent differentiation into HLCs and cholangiocyte-like
cells (17).

For clinical applications, differentiated cells should be
assessed by comparing them with primary liver-derived cells,
to verify their morphology and expression of liver-specific
proteins, such as alpha-fetoprotein (AFP) and albumin.
However, neither ESCs nor iPSCs can differentiate into
fully mature hepatocytes in vitro. As a consequence of an
emerging interest in using iPSCs in regenerative medicine
to treat liver diseases, many researchers are focused on
developing the most efficient and reproducible approaches
for the derivation of high-quality hiPSC-HLCs. Currently,
the differentiation strategies for obtaining hiPSC-HLCs
generally require a stepwise induction of definitive endoderm,
hepatocyte specification, and hepatoblast expansion into
mature HLCs. Activin A, Wnt3a (18)and fibroblast growth
factor 2 (FGF) signaling (19) play important roles in
hiPSC differentiation toward hepatic endoderm, whereas
hepatocyte growth factor (HGF) promotes the growth of
hepatoblast cells (20, 21). Another factor, the interleukin
(IL) 6 family cytokine oncostatin M (OSM), combined with
the glucocorticoid dexamethasone (DEX), accelerates the
maturation of hepatocytes. Meanwhile, many protocols for
iPSC differentiation to hepatocytes have been reported, which
involve the use of various growth factors and cytokines, plating
techniques, and transduction of key liver-specific transcription
factors (22).

Other studies have reported strategies for the generation of
cholangiocyte-like cells from hiPSCs. The first differentiation of
cholangiocyte-like cells from hiPSC hepatoblasts was induced in
the presence of growth hormone, epidermal growth factor (EGF),
IL-6, and sodium taurocholate (23). Subsequently, efficient
differentiation of cholangiocytes from iPSCs was improved by 3D
co-culture of hepatoblasts and OP9 stromal cells in the presence
of HGF, EGF, and TGF-β (24), and by stimulating cholangiocyte
progenitor specification using FGF10, activin A, and retinoic
acid (25). Yet another stepwise cholangiocyte differentiation
approach involves a definitive endoderm–hepatic specification–
hepatic progenitor–cholangiocyte procedure, with Jagged1 and
TGF-β supplementation being key for the promotion of iPSC-
cholangiocyte formation (26). These cells were subsequently
characterized in vitro and in vivo. Induced-cholangiocytes
show mature markers, such as SOX9, CK7, CK19, CFTR,
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FIGURE 1 | Flow diagram showing typical protocol for iPSCs reprogramming and hepatic differentiation of human into hepatocyte-like cells in vitro. OCT 4, octamer

binding transcription factor 3/4; SSEA, stage-specific embryonic antigen; TRA, Tumor resistance antigen 1-60; SOX2 sex determining region Y box 2; KLF4

(Kruppel-like factor 4); GATA4, GATA binding protein 4; CXCR4, C-X-C chemokine receptor type 4; FGF, fibroblast growth factor; HGF, hepatocyte growth factor;

BMP, bone morphogenetic protein; HNF6, Hepatocyte nuclear factor 6; CK, cytokeratin; EpCAM, Epithelial cell adhesion molecule; AFP, alpha-fetoprotein; AAT1,

α1-anti-tripsin; ALB, albumin; ASGR, asialoglycoprotein receptor; MRP, multidrug resistance protein; CLD, claudin; EGF, epidermal growth factor; IL-6, interleukin 6;

TGF-β, transforming growth factor beta; CK7, cytokeratin 7; CK19, cytokeratin 19; AE2, chloride/bicarbonate anion exchanger 2; ASBT, apical sodium-dependent bile

acid transporter; CFTR, cystic fibrosis transmembrane conductance regulator; AQP1, aquaporin-1; SOX9, SRY-box 9; SCTR, secretin receptor.

AE2, ASBT, AQP1, and SCTR and they are negative for the
hepatocyte marker HNF4a.

FEATURES AND FUNCTIONS OF
hiPSC-HLCs

The liver performs a wide range of fundamental functions,
including metabolic, nutrient storage, and detoxification
functions. Hence, each protocol for an efficient maturation of
iPSCs into HLCs needs to incorporate a thorough and critical
evaluation of the hepato-specific transcriptome and enzymatic
activities of the obtained cells. Drug metabolizing capacity,
urea cycle activity, or bile acid and lipoprotein synthesis and
excretion need to be evaluated to ascertain HLC maturation
(Figure 2). By contrast, most of the current reports on HLC
generation show that HLCs express genes at levels that are

characteristic for the fetal liver and display a fetal-like phenotype.
According to one study (26), HLC mitochondria display
specific morphological changes, such as elongation, swollen
cristae, dense matrix, and cytoplasmic migration, with an
increased expression of mitochondrial DNA transcription and
replication-related genes, and increased oxygen consumption.
Following differentiation, HLCs express liver-specific proteins,
including albumin and hepatocyte nuclear factor 4 alpha, and
show intrinsic hepatocyte functions, including CYP450 activity.
However, HLCs also express high levels of AFP, suggesting a
persistent immature phenotype or inability to turn off early-stage
genes. Furthermore, albumin production, urea production,
CYP450 activity, and mitochondrial function of HLCs are
significantly lower than those of primary human hepatocytes.
Functional indicators, urea synthesis, glycogen synthesis, lipid
storage, indocyanine green intake, and low-density lipoprotein
intake, are also used to evaluate the function of HLCs (27–31)
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(Table 1). Liver function after HLC transplantation in disease-
specific models in mouse is assessed using glycogen content
synthesis, low-density lipoprotein, and indocyanine green
intake (32).

Hepatocyte isolation is not easy to perform, and requires
expertise and access to primary human liver tissue. An
alternative strategy for the acquisition of hepatocytes may
grant the researchers access to important control material,
thanks to commercially available cryopreserved hepatocytes,
or as an alternative to using human liver tissue. Recently,
an important and detailed report describing the expression
of more than 60 hepatic, pluripotency, and developmental
genes has been published to map their changes during liver
cell isolation and stem cell maturation into HLC (33). In
this report, the specific traits of iPSC-HLC were compared
with those of adult liver and fetal liver cells, proving that
several hepatic enzymes, whose expression is limited during
the fetal period and absent at the postnatal stage, are highly
expressed in iPSC-HLCs. In the study, CYP3A4 and CYP3A7
genes were used for a convenient and quick evaluation
of hepatic maturation.

hiPSC-HLCs FOR THE TREATMENT OF
ESLD

At present, some promising stem cell-based transportation
treatments for ESLD have been reported. Several studies have
demonstrated the restoration of liver function in hematopoietic
stem cells (HSCs), mesenchymal stem cells (MSCs), and
endothelial progenitor cells (EPCs) in acute liver failure (34–
37). Although alleviation of liver dysfunction was observed
in patients who have received these treatments in clinical
trials, the safety and short-term efficacy of stem cell-based
transplantation were not explored in detail and should be
further evaluated in large-scale prospective cohort studies (38).
In fact, stem cell transplantation as an alternative treatment
for ESLD cannot be used for remodeling injured hepatic
structure. In theory, iPSC-HLCs can be regarded as the
optimal cell replacement treatment for acute liver failure
(ALF) and ESLD. Meanwhile, HLCs derived from patient-
specific iPSCs are an unlimited source of hepatocytes to
treat liver failure.

To date, the application of iPSCs in ALF and liver
failure has been tested in animal models. Indeed, iPSC-
HLC transplantation improves the general condition in a
mouse model of CCl4-induced liver injury (39). Further, the
survival rate of immunodeficient mice with ALF significantly
increased and liver fibrosis levels in mice with chronic liver
injury significantly decreased after hiPSC-HLC transplantation
(40). According to another study, hiPSC-HLCs rescue drug-
induced ALF in rodents, and hiPSC-HLCs have functional and
proliferative potential for liver regeneration after transplantation
in an ALF model (41, 42). These studies indicated the
potential of these cells in regenerative medicine for future
clinical applications. Of note, the aforementioned studies only
focused on rodent models rather than primates. To date,

no studies have illustrated the application of iPSC-HLCs
in human liver failure.

The first transplantation of hiPSCs in regenerative medicine
took place in 2014, and was performed to treat a 77-year-old
female patient with polypoidal choroidal vasculopathy in both
eyes. Autologous iPSCs were generated from the patient’s skin
fibroblasts, differentiated into retinal pigment epithelium, and
then transplanted into the eye. Immune response to autologous
transplantation was observed 18 months postoperatively, and the
results indicated no complications. The retinal pigment epithelial
sheet that had been transplanted survived well, and the corrected
visual acuity of the treated eye did not improve or worsen.

Unfortunately, not all cases are as successful as the autologous
transplant discussed above. Another clinical trial involving
three patients with age-related macular degeneration involved
intravitreal administration of stem cells derived from autologous
adipose tissue. Post-treatment observation revealed vision loss
associated with ocular hypertension, hemorrhagic retinopathy,
vitreous hemorrhage, combined traction and rhegmatogenous
retinal detachment, or lens dislocation (43).

The above trials demonstrate the need for further
investigation of stem cell therapy and, more specifically,
the use of hiPSCs in regenerative medicine to treat ESLD.

hiPSC-HLC MODELING OF LIVER DISEASE
DEVELOPMENT

Infectious Liver Diseases
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are the
most prevalent agents of infectious liver diseases. Approximately
520 million people suffer from infections caused by one of
these viruses worldwide, including 170 million people with HBV
and 350 million people with HCV infections (44). The infected
population will develop virus-related cirrhosis and liver cancer
(45). At present, the interaction between these viruses and host
hepatocytes remains unclear because of the absence of viral
culture models to reflect the infection process and reproduce the
molecular events within an infected host cell.

PHHs are the gold standard for studying the physiopathology
of liver infections. However, low cell viability and yield caused by
a rapid loss of hepatic phenotype upon isolation from the liver
microenvironment are the main limitations of their application.
As an alternative to overcome these limitations, iPSC-HLCs
could be used to study the viral infection process and virus–host
interactions, as well as the viral life cycle, to ultimately identify
efficacious drugs for infectious liver diseases.

In the past, iPSC-HLCs have been successfully used as an in
vitro system for modeling hepatitis virus infections and virus–
host interactions. When HCV entry and genomic replication is
stimulated, iPSC-HLCs more commonly express HCV receptors
and show increased susceptibility to HCV infection than
PHHs (46). Further, HCV entry inhibitor (CD81 antibody)
and HCV genomic replication inhibitor (interferon) attenuate
HCV pseudovirus entry and HCV sub-genomic replication,
respectively, in iPSC-HLCs. It has been reported that hiPSC-
HLCs support the entire life cycle of HCV, including the
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FIGURE 2 | The phenotypic characterization of Hepatocyte-like cells derived from iPSCs. CYP, CYPs cytochromes P450; UGT, UDP glucuronosyltransferase.

SULT1A1, Sulfotransferase Family 1A Member 1; NAT1, N-Acetyltransferase 1; GSTs, Glutathione S-Transferase; OATP, organic anion-transporting polypeptide; MDR,

Multiple drug resistance; MRP2:multidrug resistance protein 2; AKR1D1, aldo-keto reductase family 1 member D1, AKR1C4, aldo-keto reductase family 1 member

C4, TTR:Transthyretin, TP, Total protein, ALB, Albumin, HNF, Hepatocyte nuclear factor, CEBPA/B, CCAAT Enhancer Binding Protein Alpha/Beta, G6P,

Glucose-6-Phosphatase.

inflammatory response to infection and host genetics impacting
viral pathogenesis (31). Furthermore, iPSC-HLCs that show an
appropriate antiviral response produce interferon (47, 48) and
survive in vitro for up to 1 week after inoculation with HCV (47),
comprising a superior model for observing hepatocyte function
during a relatively long-term infection. Detailed molecular
mechanisms allowing viral infection can also be investigated
using this model (49).

The above observations suggest that iPSC-HLCs can act as a
promising cell model for analyzing hepatocyte responses to viral
infection, as well as an ideal platform for drug target discovery for
HCV therapy. However, some limitations should be considered.
For example, some studies have reported lower virus titers in
culture supernatants of HBV-infected iPSC-HLCs than those in
PHHs (50), and suggested lack of functional maturation of iPSC-
HLCs obtained using various differentiation protocols. Finally, it
is necessary to increase the diversity of hiPSC lines used in similar
such analyses to assess the impact of the host genetic background
on the cellular response and efficiency of infection.

Inherited Metabolic Disorders of the Liver
(IMDs)
The liver is vital for metabolic homeostasis. Approximately
70% of patients with IMDs are affected by liver tissue
damage. α1-Antitrypsin deficiency (AATD) and familial

hypercholesterolemia (FH) are common IMDs that have been
extensively studied. AATD results from a single base-pair
mutation (leading to Glu342Lys substitution in the protein
product), known as the Z mutation, in the SERPINA1 gene.

The substitution causes the protein to misfold and be retained

in the endoplasmic reticulum (ER), with the formed protein

polymers inducing hepatocyte death (51). By contrast, FH is an
autosomal dominant hypercholesterolemia caused by mutations

in a gene for the low-density lipoprotein receptor (LDLR) or
LDLR-related genes. FH is characterized by elevated serum levels
of low-density lipoprotein (LDL)-cholesterol (C), which lead
to xanthoma formation and premature cardiovascular disease
(52, 53).

The use of iPSC-HLCs as a novel model of the above
monogenic diseases and iPSC-HLC application for a
gene correction therapy for the generation of disease-free
autologous cells are attracting increasing attention. For instance,
accumulation of A1AT variant polymers in the endoplasmic
reticulum of iPSC-HLCs was observed when iPSCs from AATD
patients were differentiated into HLCs (54). Further, biochemical
features and morphological manifestations of iPSC-HLC models
generated from cells from AATD patients with and without
severe liver disease (SLD) were explored (55). The analysis
of individual disease phenotypes of AATD patients revealed
rapid degradation of misfolded α1-antitrypsin Z (ATZ) and
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TABLE 1 | Functional features of hepatocyte-like cells (HLCs) derived from human

induced pluripotent stem cells.

Function features hiPSC-HLCs PHHs

Phase I CYP activities

CYP1A2 (28, 31) – +

CYP2B6 (28, 31) – +

CYP3A4 (31) – +

CYP3A7 (31) + –

Phase II transferase (27) + +

UGT1A1 + +

SULT1A1 + +

NAT1 + +

GSTs + +

Phase III transferase (27) + +

OATP1B1 + +

MDR1 + +

MRP2 + +

Hepatocytic TFs + +

HNF4A (29, 30) + +

AFP (27, 29) + –

Bile acid synthesis + +

Albumin synthesis (29, 30) + +

Glycogen storage (30) + +

LDL uptake (29, 30) + +

Urea metabolism (30) + +

Cholesterol metabolism (29) + +

no globular inclusions in cells from patients in which the
liver disease had been ameliorated (55). Similar, the main
pathological characteristic of FH was recapitulated by inducing
iPSCs obtained from patients with FH to form HLCs (54). In
addition, analysis of iPSC-HLCs obtained from an FH patient
with a mutation in the LDLR gene demonstrated that FH-derived
iPSC-HLCs are unable to take up LDL-C, and secrete more
apolipoprotein B-100 than the controls (56). Furthermore, these
HLCs do not respond to statin treatment (56). Together, these
observations demonstrate that IMD-hiPSCs effectively model
the pathological features of IMD.

Animal models have been used to assess the efficacy of
iPSC-HLC therapy in IMDs (57). The first reported targeted
gene correction of AATD in iPSCs was achieved by bi-allelic
correction of mutated loci by using zinc finger nucleases
(ZFNs) and PB technology to correct the A1AT gene in hiPSCs
(58). Genetic correction of iPSC-HLCs restored the normal
structure and function of the A1AT protein in vitro and in
vivo. Gene correction for AATD has been also successfully
attempted using the TALEN approach, which is more efficient
than ZEN (59). In addition, the use of CRISPR/Cas9 gene
editing technology to correct point mutations in specific genes
has been reported (60) and experimental data have highlighted
the advantages of using the CRISPR/Cas9 system for allele-
specific genome targeting and for gene disruption mediated by
non-homologous end joining. Indeed, CRISPR/Cas9 genome
editing was used to permanently correct a 3-bp homozygous

deletion in LDLR exon 4 in patient-derived homozygous FH
(HoFH)-iPSCs (61). This genetic correction restored LDLR-
mediated endocytosis in FH-HLCs and is a proof-of-principle
that CRISPR-mediated genetic modification can be successfully
used to normalize HoFH cholesterol metabolism deficiency at
the cellular level. The above findings clearly demonstrate that
genome-editing technology can be used to achieve functional
correction of patient-derived iPSC-HLCs.

Non-alcoholic Fatty Liver Disease (NAFLD)
NAFLD is becoming a serious clinical concern because of its
severe morbidity and potential progression to ESLD, such as liver
cirrhosis andHCC (62). The current global prevalence of NAFLD
is estimated to be 25.24% (63) and NAFLD is the second most
common cause of liver transplantation (64). The disease develops
when chronic hepatic lipid accumulation stimulates an overload
of metabolic alterations, including mitochondrial dysfunction,
endoplasmic reticulum stress, and hepatic insulin resistance, and
induces an inflammatory response (65–68). It is not possible
to predict the progression of NAFLD because of adverse events
and sampling variability of the currently used invasive diagnostic
methods (liver biopsy) (69).

Several studies have reported cell models of NAFLD that use
HCC cell lines or immortalized primary hepatocytes (70, 71)
Differences in cell function and gene expression between the
two have been demonstrated. However, the main limitation
of these models is that cultivation of liver biopsy-derived
primary hepatocytes for NAFLD modeling takes several
days. Hence, using iPSC-HLCs to model NAFLD and non-
alcoholic steatohepatitis (NASH) would facilitate research on
molecular diagnosis and prognosis, disease progression, and
drug development for NAFLD. hiPSC-HLCs have been used
as an in vitro model to first demonstrate intracellular lipid
accumulation in NAFLD (72). Major changes in the expression
of metabolism-associated genes and upregulation of the lipid
droplet-coating protein Perilipin2 (PLIN2) were detected in the
model. Upregulation of the expression of numerous genes of
the peroxisome proliferator-activated receptor (PPAR) pathway,
constituting a regulatory hub for metabolic processes, was
also detected. Taking previous studies into consideration, an
iPSC-HLCs model with the PNPLA3 genotype that is closely
associated with hepatic steatosis in moderate (30–40% fatty
changes) and severe (70% fatty changes) NAFLD patients was
established and characterized (73, 74). Other studies, on the
association between endoplasmic reticulum stress response and
hepatocyte metabolism disorders in hiPSC-HLCs have been
published (75). ER stress pathways play an important role in
lipid metabolism, and ER stress enhances lipid accumulation
∼5-fold in hiPSC-HLCs compared to their respective
controls (71).

Taken together, the hiPSC-HLC model of NAFLD can
be used to characterize some of the metabolic features of
NAFLD. However, the pathological progression of lipotoxicity
in NAFLD involves not only lipid accumulation but also a
complex pathophysiological response, such as inflammation
and the immune response. Future studies should highlight the
applicability of hiPSC-HLCs as a discovery platform for the
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exploration of molecular events and aid in drug development
for NAFLD.

Liver Cirrhosis
Liver cirrhosis is characterized by the presence of diffuse, chronic
necro-inflammatory, and fibrogenetic hepatocytes, ultimately
leading to the development of features of chronic liver injury,
such as structurally abnormal nodules, dense fibrotic septa,
concomitant parenchymal exhaustion, and collapse of the
liver tissue (76). Chronic liver injury remains one of the
most common causes of death in the Western world (77).
Currently, modeling liver cirrhosis in vitro to unveil the intricate
cellular interactions underlying its pathological development is
challenging. Traditional approaches involve treatment of cell
culture models with toxic drugs or compounds that are often
not specific to liver disease (78). Meanwhile, 3D models of
primary hepatocyte co-culture with stellate cells are limited by
the availability of tissue samples (79). 3D-Organoid cell culture
models using iPSC-HLCs, stromal cells, and Kupffer cells (80, 81)
can be an excellent approach to study the cellular interactions
underlying the pathophysiology of liver cirrhosis. However, some
chronic liver injuries, such as cardiac cirrhosis, are difficult to
study in an in vitro setting and require major advances in 3D
co-culture systems.

Previous studies have demonstrated enhanced liver
regeneration in mouse model (42), reduced murine liver
fibrosis (82) and stabilization of chronic liver disease (39)
following iPSC-HLC administration, highlighting its potential
as a therapeutic strategy for liver cirrhosis. Recently, the
anti-fibrotic properties of iPSCs were demonstrated. Namely,
iPSC-derived extracellular vesicles (EVs) were shown to regulate
hepatic stellate cell activation and have anti-fibrotic effects
(83). Consequently, the use of iPSC-EVs is regarded as a novel
anti-fibrotic approach that may reduce or reverse liver fibrosis in
patients with chronic liver disease. Furthermore, the therapeutic
potential of iPSC-HLCs in liver fibrosis was explored by
generation of iPSC-HLCs from mouse embryonic fibroblasts by
using a reprogramming technology, and migrating iPSC-HLCs
cluster to the intra-spleen and the liver (84). Transplantation
of iPSC-HLCs significantly attenuated liver fibrosis induced
by CCL4 (80); hence, iPSC-HLCs may be used as a novel
therapeutic strategy for the treatment of liver fibrosis. However,
while a cell-based therapy for cirrhosis can temporarily relieve
cellular hepatocyte injury, it cannot eliminate collagen deposits
or restore the original liver structure. Further detailed studies
could bring about a novel method by which fibrogenic cells can
be reprogrammed into hepatic parenchymal cells in the cirrhotic
liver (85).

Liver Cancer
HCC is the third leading cause of cancer-related deaths
worldwide and the sixth most common malignancy (86, 87).
Liver cancer research mainly focuses on the molecular pathways
and treatments for HCC. Within the cancer stem cell (CSC)
research, previous reports have explored the possibility of
generating liver CSCs by the induction of reprogramming-
related factors, such as Oct4 or Nanog (88, 89). However, the

induction of HCC cells into liver CSCs using pluripotency-
related transcription factors has not yet been widely studied.
According to one report, reprogramming can be achieved in
tumor cells by retroviral induction of reprograming-associated
genes (76). Interestingly, the reprogrammed pluripotent cancer
cells (iPCs) were very different from the original cancer cells in
terms of colony shape and gene expression of tumor markers.
Further, the induction of pluripotent liver cancer cells is
correlated with the p53 status, suggesting that varying the gene
expression level of p53 may affect the reprogramming process.

In one study, potential tumorigenicity of hiPSC-HLCs during
differential induction from hiPSCs to HLC was observed after
knockdown of p21 (90). The authors of that study also
investigated whether hepatoma-like cells derived from hiPSCs of
HCC patients can be transformed into normal hepatocyte cells
upon treatment with acyclic retinoid and AKR1B10 inhibitor
(tolestat). Combining acyclic retinoid (10µM) with tolestat
(10µM) is considered to be an appropriate regimen for inducing
differentiation of hepatoma-like cells into hepatocytes. The
efficacy and toxicity of this combination therapy for individual
patients with HCC will be evaluated in the near future.

Previously, iPSCs have been used to treat HCC. More
specifically, the therapeutic effect of IPS cell-derived myeloid
lineage cells (iPS-ML) and their ability to produce interferon
(IFN) β in primary and metastatic liver cancer were reported
in mice xenograft model of liver metastasis (91). Further, iPS-
ML producing IFN-β injection hindered cancer progression and
increased the survival rate in a mouse model.

In summary, at present, the applicability of iPSC technology
for HCC treatment mainly focuses on cell reprogramming from
HCC to CSCs, and the search for novel HCC treatments.
The above studies provide valuable insights for studying and
treating HCC.

hiPSC-Cholangiocyte Modeling of
Cholangiocyte Disease Development
Cystic fibrosis (CF) is a single-gene inherited disease
characterized by mutations in the cystic fibrosis transmembrane
conductance regulator gene (CFTR), affecting the function of
chloride ion channels, with intrahepatic bile stasis. The iPSC-
cholangiocytes are superior to other cells from the perspective
of the exploration of these diseases and drug discovery. In 2015,
two studies reported generation of cholangiocyte organoids from
CF patient-iPSCs using their iPSC-cholangiocytes protocols
(24, 92). The disease phenotype was modeled in these studies
by exploring non-functional CFTR proteins, with subsequent
chloride channel impairment and the inability of fluid secretion
to form cysts. The effects of the drug VX809 on CF were also
tested, demonstrating a functional rescue of impaired CFTR
proteins. Both disease models illustrate valid applications of
iPSCs, not only as a proof of pathophysiological interactions, but
also for biliary-specific pharmacological screening.

Currently, no other types of cholangiopathy have been
modeled using iPSC-cholangiocytes, modeling these disease-
types rely on animal models of a deficiency or mutation of
disease-specific genes. It may be easier to characterize disease
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FIGURE 3 | Safety evaluation of hiPSC-HLC in various applications. Xa, X chromosome activity; Xi, X chromosome inactivity; XIST, X-inactive specific transcripts; CNV,

copy number variation; SNP, single nucleotide polymorphism.

pathophysiology and obtain detailed drug test information if
cholangiocytes derived from patient-related iPSC have direct
disease-specific genes information. The etiology of biliary atresia,
primary biliary cholangitis, primary sclerosing cholangitis, and
cholangiocarcinoma is still unknown because of the intricate
interaction between the environment and the genes. Therefore,
iPSC cholangiocytes derived from disease-specific cases can
be studied to confirm the etiological hypotheses and identify
potential therapeutic targets.

DRUG DISCOVERY AND TOXICITY
TESTING

Another important application of iPSCs is assessing the
therapeutic effect and toxicity of drugs, as has been reported
in many studies (93, 94). The effect of drugs is influenced
by the genetic background and other complex factors. It is
easier to screen drugs using iPSCs than via pharmacological
testing of animals. Consequently, organoids, as an innovative
technique for drug screening and toxicity assessment, have been
extensively researched. However, iPSC-derived organoids in 2D
culture cannot be used for drug screening because iPSCs in

such culture receive similar stimuli as those in monolayer and
cannot be used to model the physiological microenvironment.
By contrast, 3D culture models the in vivo microenvironment
and approximates the physiological conditions. Many studies
have reported high-throughput screening of small molecule
libraries for drug development and toxicity assessment for
liver diseases using iPSC-hepatocytes (59, 95, 96). Generation
of organoids in several liver cell co-cultures yields a more
sensitive cellular model than that constructed using single
cell type. Recently, Broutier et al. (97) developed organoids
representing the tumor structure and reflecting the expression
profile of hepatocellular carcinoma, cholangiocarcinoma, and
hepatocellular cholangiocarcinoma. These organoids open up
new opportunities for drug testing and personalized medicine,
and can be used for the generation of tumor bio-banks to be
used as screening platforms (98). Additionally, “liver-on-a-chip”
as a platform for drug development and toxicology testing can
be used in pharmacokinetic and pharmacodynamic studies. In
one study, liver organoids were generated using hepatocytes and
cholangiocytes on a perfusable microcapillary chip (99). These
organoids were then used to test the dose- and time-dependent
hepatotoxic effects of acetaminophen. Thus, “organ-on-a-chip”
represents a novel and valid platform for drug testing.
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FIGURE 4 | Generation of liver cells from iPSC and their applications. The scheme illustrates an overview of iPSC and organoid technology in relation to liver diseases.

Disease specific iPSCs are generated by reprogramming technology from a biopsy of patients. One hand, iPSCs with disease–related gene mutation can be corrected

by genome editing and then differentiated into functional disease-specific liver cells in vitro. These corrected cells are used to autologous cell therapy. Another hand,

Non-corrected iPSC-derived disease-specific liver cells can be remodeled liver disease phenotypes, pathogenesis, and drug testing. IMD, Inherit metabolism disease;

NAFLD, Non-alcoholic fatty liver disease.

SAFETY EVALUATION OF hiPSC-HLCs IN
VARIOUS APPLICATIONS

While iPSCs have considerable applications in regenerative
medicine, the genomic stability of these cells, such as the
occurrence of genomic and epigenetic aberrations, copy number
variation (CNV), and single-nucleotide polymorphisms (SNPs),
is a matter of concern. Genomic aberrations in human PSCs
(hPSCs) include abnormal karyotypes, such as recurrent trisomy
of chromosomes 12, 17, or X, and aneuploidies of sub-
chromosomal regions, such as duplications of the 12p, 17q,
or 20q11.21 loci (100). Some studies have demonstrated that
iPSCs, unlike somatic cells, contain regions of uniparental
disomy (UPD), sharing the equivalent chromosomal and
sub-chromosomal characteristics (101). These abnormalities
may confer a selective advantage to certain genes during
prolonged culturing.

In addition to genomic aberrations, other studies have
focused on epigenetic aberrations, but the possibility of hiPSC

application for complex diseases remains unknown (102).
Epigenetic variations are often observed in different iPSC
lines, and prolonged periods of culture (103) may affect
disease modeling and clinical applications. For example,
reactivating X-chromosome inactivation (XCI) and erosion of
inactive X chromosome (Xi) silencing in female hiPSCs during
iPSC reprogramming may trigger phenotypic and epigenetic
changes in iPSCs, reducing their differentiation potential
and increasing their tumorigenicity (104). Furthermore,
local epigenetic variations in iPSCs, such as cellular memory
and aberrant methylation loci, have been noted. Cellular
memory leads to incomplete reprogramming, as DNA
hypomethylation and histone modification at specific loci
render iPSCs remain similar to the source cell. Further,
iPSCs with cellular memory are susceptible to preferential
differentiation into the cell type that they had been derived
from (105–108). The iPSC-associated methylated loci contain
certain imprinted loci and other genomic regions. Some
alteration of genomic imprinted loci occurs during cell
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reprogramming or long-term culture (109–112). For instance,
aberrant silencing of the D1K1-Dio3 imprinted locus is
functionally associated with the failure to generate iPSCs
in mouse during reprogramming (113, 114). Methylome
profiling has been used to detect differentially methylated
regions (DMRs) in hESCs and hiPSCs (115). In the study,
all hypermethylated CG DMRs in hiPSCs were recognized as
reprogramming-induced aberrancies.

CNVs and SNVs can be introduced into iPSCs as they
may already exist in source cell lines or be acquired during
the reprogramming process. hiPSCs contain more CNVs than
hESCs, source cells, and somatic cells (116). Therefore, it is
possible that iPSCs are more susceptible to CNV generation
during cell reprogramming. However, sequencing-based findings
suggest the occurrence of few or no detectable de novo CNVs
in iPSCs (117–121). By contrast, low-grade genetic mosaicism
of CNVs in source cells was tracked to iPSC derivation.
Hence, it is possible that low-grade genetic mosaicism of
somatic cells is the major source of CNVs in iPSCs. In
addition, several studies have discussed the potential relationship
between SNVs and iPSC generation. Most studies revealed
no specific functional enrichment of genes with SNVs in
iPSCs (117, 120, 122, 123). Most iPSC-manifested SNVs
appear to be randomly distributed in the genome and are
functionally irrelevant to iPSC generation. Therefore, the
safety of iPSCs for use in regenerative medicine still faces
many challenges.

Another safety concern has been raised regarding
immunogenicity and tumorigenicity of the iPSC technology.
Both genetic and epigenetic instability arising from iPSC
reprogramming increases the risk of immunogenicity and
tumorigenicity in vivo during iPSC-derived hepatic cell-
associated therapy. Theoretically, the recipients of autologous
iPSC-HLC transplants should not reject the transplants (124).
However, in a teratoma mouse model, immune rejection
in recipients was observed after iPSC transplantation
(125). Undifferentiated PSCs, which possess the privilege
property of immune tolerance because of low MHC-I antigen
expression and the absence of MCH-II antigen expression,
are expected to be less immunogenic than iPSCs (126–129).
However, abnormal epigenetic differences between iPSCs and
PSCs could contribute to the expression of immunogenic
antigens during iPSC differentiation (128). Further, iPSC
tumorigenicity poses a challenge for the development of
individualized iPSC-HLC therapy. Pluripotency acquired by
somatic cells upon reprogramming methods can increase
genomic instability on the chromosomal and sub-chromosomal
levels, contributing to the risk of tumorigenic transformation
(130). Therefore, before the clinical development of iPSCs,
current reprogramming technologies need to be optimized to
minimize the occurrence of immunogenicity and tumorigenicity
(Figure 3).

CONCLUSION

Together with the burgeoning application of stem cell-based
techniques, iPSC technology has been incorporated into
new approaches such as -omics–related research, nuclear
reprogramming, gene-editing technology, RNAi, tissue
engineering, medical devices, high-throughput screens (HTS),
and humanized chimeric animal models. iPSCs provide
promising opportunities to study novel therapies for liver
diseases using cell properties of self-renewal and differentiation
for the generation of HLCs. Recent studies have demonstrated
that iPSC-derived hepatocytes are applicable for in vitro studies
of complex liver disorders, such as viral hepatitis, inherited
metabolic disorders, non-alcoholic liver diseases, cirrhosis,
and HCC (Figure 4). HLCs can also be used as cell therapy
to repair and regenerate liver mass to treat liver disease and
prolong patient survival. The genetic and molecular mechanisms
underlying liver disorders are an emerging area of research. By
studying iPSC-HLCs as a possible treatment option, researchers
are able to gain valuable insight into in vitro disease modeling
and personalized medicine.

Nevertheless, several limitations still exist that prevent
the clinical application of iPSC technology. The protocols
for reprogramming and differentiation of hiPSCs into HLCs
should be optimized and standardized to increase the efficiency
of inducibility and promote HLC maturation. The risk of
potential tumorigenicity associated with genomic and epigenetic
variations should also be assessed. In addition, to commercialize
iPSCs for clinical applications, further investigation into the
limitations and challenges of using iPSCs is needed. Very few
scientific reports have tested HLC injection/transplantation in
life-threatening models of congenital diseases. To the best of our
knowledge, to date, no single study has been able to demonstrate
correction of amino acid or neurotransmitter abnormalities
by injecting iPSC-HLCs. Nonetheless, with rapid technological
advances in stem cell therapy, hiPSCs are likely to become
effective and safe treatment of liver diseases in the future.
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Background:Wilson’s disease (WD) is a rare condition; its diagnosis is challenging owing

to a wide spectrum of ATP7B genotypes and variable clinical phenotypes, along with

environmental factors. Few cases of WD with presentation of skin lesions and acute

neurovisceral symptoms have been reported in the literature. To our knowledge, this

is the first reported case of WD with an uncommon ATP7B gene mutation and rare

symptoms of photosensitivity, sensation abnormality, and skin eruption occurring in a

19-year-old woman.

Case presentation: We report the case of a 19-year-old woman with WD presenting

with liver failure, skin manifestations, and acute neurovisceral symptoms.The rare

mutation in intron 1 of ATP7B (c.51+2T > G) was further confirmed by gene sequencing.

The patients’ symptoms improved after administration of penicillamine and zinc therapy

combined with plasma exchange. She received long-term penicillamine treatment, and

her liver function was within the normal range at 1 year after discharge. However, she

underwent liver transplantation at 1.5 years after discharge.

Conclusions: We present a case of WD with a novel ATP7B gene mutation that may

serve as a reference to generalists and specialists in hepatology or neurology of the rare

clinical characteristics of WD, to prevent misdiagnosis and aid in the early diagnosis and

treatment of the condition.

Keywords: ATP7B, copper storage disease, liver failure, porphyria, Wilson’s disease

INTRODUCTION

Wilson’s disease (WD), also termed hepatolenticular degeneration, was first reported by Kinnear
Wilson in 1912. WD is an autosomal recessive inherited disease, which is caused by a dysfunction
of the ATP7B gene located on chromosome 13q14.3 (∼80 kb). The ATP7B gene is composed of 21
exons and 20 introns encoding a copper-transporting P-type ATPase containing 1,465 amino acids
that comprise six copper binding domains, eight transmembrane domains, and one ATP loop (1).
It plays a key role in transforming apoceruloplasmin into ceruloplasmin and evacuating excessive
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copper into biliary canaliculi. Defects of ATP7B will result in an
overdose of copper accumulation in many vital organs, primarily
in the liver and brain (2). The incidence of WD is between
1 in 30,000 and 1 in 100,000 people worldwide (3). However,
reports of the disease occurring in the Chinese population have
been increasing (4).

Additionally, patients with WD present with variable
clinical manifestations, including hepatic abnormality and
neurological and psychiatric disturbances. Liver damage includes
decompensated chronic liver disease, chronic hepatitis, and
fulminant hepatic failure, leading to severe coagulopathy,
infections, hepatorenal syndrome, and hepatic encephalopathy.
However, less common clinical features include renal disease,
osteoarthritis (5), and pancreatitis (6). Some reports have
shown that different ATP7B mutation genotypes cause
distinctive clinical phenotypes (7). Consequently, WD is
easily misdiagnosed as other diseases owing to the heterogeneity
of its clinical presentations and loci mutations.

Porphyria, a term for a group of metabolic diseases,
leads to an overload of porphyrins and their precursors.
Acute intermittent porphyria (AIP) is characterized by acute
neurovisceral symptoms and abdominal pain predominantly (8),
while porphyria cutanea tarda (PCT) is characterized by the
development of blisters and sores after light exposure (9). WD
presenting originally as skin lesions and acute neurovisceral
symptoms similar to AIP or PCT has been rarely reported.

Here, we report a case of a young Chinese woman with WD
and an uncommon ATP7B gene defect, similar to porphyria.The
patient presented with photosensitivity of rash, paresthesia,
acute neurovisceral symptoms of stomachache, and exacerbation
of liver failure. Additionally, we present relevant literature to
discuss our conclusions.

CASE PRESENTATION

A 19-year-old woman was admitted to the Department
of Infectious Diseases, Xiangya Hospital of Central South
University on September 14, 2019, with the chief complaint of
body numbness for 9 days and stomachache with jaundice for
5 days. She developed acute burning sensations on the skin of
the forehead, face, neck, and palms of both hands that progressed
into numbness, especially in the proximal joints on September 5,
2019. The above symptoms progressively worsened, with blisters
and pruritus on sun-exposed areas. She experienced paroxysmal
colic in the upper right abdomen, with no nausea, vomiting,
fever and diarrhea on September 11, 2019, and presented with
jaundice gradually. After a series of treatments, including anti-
inflammatory, antispasmodic, liver protective, and rehydration
medications at the local hospital, the symptoms of abdominal
pain were relieved, jaundice was intensified and the total bilirubin
level continued to rise (36.67 mg/dL). She was then referred to
our hospital for further treatment.

During her pregnancy in February, 2019, the patient
was diagnosed with abnormal liver function and took
ursodeoxycholic acid (0.25mg TID) irregularly, resulting in
the continued increase of her aspartate aminotransferase (AST)

and alanine aminotransferase (ALT) levels. In July, 2019,
cesarean delivery was performed on the primigravida at 36 weeks
and 5 days of gestation because of misdiagnosis of intrahepatic
cholestasis of pregnancy at a local hospital. The baby boy’s weight
was 2.7 kg, with an Apgar score of 10. The patient had no history
of drug abuse or known allergies, and had never smoked or drank
alcohol. She had no history of liver disease or similar symptoms
in her families. Notable examination findings included anemia,
severe jaundice, liver palms, hepatosplenomegaly, belly bulge,
and shifting dullness. Remarkably, some scattered skin rashes
with pigmentation were present on her scalp and forehead.

After the patient was admitted, laboratory findings revealed
mild erythropenia, moderate hypochromia, and significantly
elevated total bilirubin (27.13mg/dL) and aminotransferase (AST
>ALT) levels. Poor hepatic synthetic function revealed low levels
of total protein (58.5 g/L) and albumin (32.9 g/L). Additionally,
prothrombin time was prolonged and prothrombin activity was
severely decreased to 34.44% (Table 1). Severe and prominent
liver damage was observed in this patient, whereas hepatitis B
virus, autoimmune hepatitis-related antibodies, and Budd-Chiari
syndrome were ruled out, and the patient had no history of
alcohol and use of drugs as treatment for liver lesions. Inherited
metabolic diseases were considered first because of the young
age of onset with obvious liver enlargement and cirrhosis on
abdominal ultrasound examination. Porphyria was suspected
based on the initial symptoms of photosensitivity, acute
stomachache, and pink urine under Wood’s lamp illumination.
However, genetic sequencing without porphyria-associated gene
mutations excluded the diagnosis.

The diagnosis of WD was established based on the presence
of Coombs negative hemolytic anemia, Kayser-Fleischer rings
on slit lamp examination (Figure 1), low level of serum
ceruloplasmin, and obviously elevated levels of 24-h urine
copper (3,804 µg/24 h) (Table 1). The whole exon region
(about 20,000 genes) in the human genome sequencing was
performed on the Illumina MiSeq next-generation sequencing
(NGS) and Sanger sequencing. The former presented a possible
loss of heterozygosity in the area of chr13q14.3 (52158814-
53624916) with a length of 1.47Mb. The latter revealed a
novel heterozygote splicing mutation c.51+2T>G within intron
1 of the ATP7B (13q14.3|NM_000053.3) (Figure 1A), which
was evaluated as likely pathogenic according to the American
College of Medical Genetics and Genomics (ACMG) (10)
criteria. The evidence of pathogenicity of the this mutation
is PVS1+PM2+PP3+PP5.According to the scoring system
developed at the 8th International Meeting on Wilson’s disease,
Leipzig 2001 (11), the patient received a score of 8 points in total,
which further confirmed the diagnosis of WD.

Treatments included ornithine aspartate for preventing
hepatic encephalopathy and albumin infusion combined with
hydragogue for reducing ascites. Non-biological artificial liver
treatment (plasmapheresis) was used to remove harmful
substances and relieve hemolytic crisis and hepatic failure. For
WD, the patient was treated with oral penicillamine (increased
to 0.9 g/d) and zinc (0.15 mg/d). Plasmapheresis combined
with chelation therapy was effective, because the ceruloplasmin
level returned to the normal range and serum bilirubin and
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TABLE 1 | Laboratory results of the patient at the first day of admission and 1.5

years after discharge and a data comparison of another WD patient with a

different mutation.

Laboratory tests The patient of this case The control patient

First day of

admission

1.5 years after

discharge (recently)

First day of

admission

WBC (× 109/L) (3.5–9.5) 6.6 9.24 1.9

N (× 109/L) (1.8–6.3) 5.0 4.86 1.4

RBC (× 1012/L)

(3.80–5.10)

2.55 5.15 4.36

Hb (g/L) (115–150) 89 145 127

PLT (× 109/L) (125–350) 174 288 17

ALT (U/L) (7–40) 42.5 24.7 17.6

AST (U/L) (13–35) 61.7 19.6 26

Γ -GGT (U/L) (7–45) 157.6 52.3 104.7

TB (µmol/L) (1.7–17.1) 464.0 9.6 8

CB (µmol/L) (0–6.8) 255.8 2.9 4.7

TP (g/L) (65–85) 58.5 71 63.1

Alb (g/L) (40–55) 32.9 45.2 40.1

PT (s) (10–16) 23.7 12.4 14.4

PTA (%) (70–140) 34.44 119 82

INR (0.8–1.2) 1.91 0.91 1.15

APTT (s) (20–43) 70.9 36.5 39.7

Fibrinogen (g/L) (2–4) 1.47 2.88 2.1

C3 (mg/L) (790–1,520) 254 n.a. 612

C4 (mg/L) (100–400) 79.8 n.a. 142

Ceruloplasmin (mg/L)

(210–530)

66.1 n.a. 33.2

24-H urine copper

(µg/24 h) (15–30)

3,804 n.a. 2,899

Coombs test (–) – n.a. n.a.

n.a., not available; WBC, white blood cells; N, neutrophils; RBC, red blood cells; Hb,

hemoglobin; PLT, platelets; ALT, alanine aminotransferase; AST, aspartate transaminase;

γ-GGT, gamma-glutamyltransferase; TB, total bilirubin; CB, conjugated bilirubin; TP, total

protein; Alb, albumin; PT, prothrombin time; PTA, prothrombin activity; INR, international

standard ratio; APTT, activated partial thromboplastin time.

hemoglobin levels were normal on the day of her discharge.
Notably, the patient’s abdominal pain was relieved and the
scattered papules on the scalp and forehead disappeared after
a comprehensive treatment, which possibly suggested that
photosensitivity and stomachache were symptoms of WD.
However, the treatment of WD is life-long and should be
continued after discharge to maintain normal liver functioning.

The patient had normal liver functioning during follow-up
at 1 year after discharge, which was maintained by treatment
with oral penicillamine (0.25 g). However, her liver function
deteriorated after drug withdrawal without the authorization of
her attending physicians at the latest follow-up; thus, she had to
undergo liver transplantation. At the time of writing, specifically
at 1.5 years after discharge, she is in a good condition (Table 1).

DISCUSSION

Prominent cirrhosis and hepatomegaly in this young patient
on abdominal ultrasound suggested a long course of illness.

Porphyria was considered first based on her outstanding
symptoms of skin damage and stomachache. Porphyria, caused
by the absence of enzyme activity in the heme biosynthetic
pathway, leads to the increased concentration of porphyrin or
its precursors (12). Some patients may present with chronic liver
damage and cholelithiasis because of the excessive release of
protoporphyrin into the biliary tract (13). Therefore, porphyrin
accumulation in the liver and biliary tract leads to liver
damage, ranging from minor liver biochemical abnormalities
of elevated levels of bilirubin and transaminase to liver
carcinoma (14). In addition, acute hepatic porphyrias present
with episodic and acute neurovisceral symptoms (8), while
photosensitivity may occur mainly in cutaneous porphyria
(9). The clinical manifestations of porphyria hepatica are
atypical and diversified. Specific diagnostic tests are few, and
most of them show negative results. Therefore, the clinical
misdiagnosis rate of WD is high. In this case, the diagnosis
of porphyria was excluded using gene sequencing. However,
attention must be given to such confounding manifestations to
avoid misdiagnosis.

Studies focusing on characterizing mutations within the
ATP7B gene have soared recently. Approximately 1019 different
mutations have been reported in the ATP7B gene from the
Human Genome Organization database (http://www.hgmd.cf.
ac.uk/ac/index.php), updated in April, 2019. Among them,
single-nucleotide missense/nonsense mutations are the most
common, followed by insertions/deletions, and a few of splice site
mutations. WD gene mutations are with significant geographic
variations. The p.His1069Gln is found mostly in Northern
America (15) and Europe (16), while the p.Arg778Leu is the
most common in East Asians (17, 18). WD presents multiple
phenotypic manifestations due to the combined action of
genotype, diet, and environment (19). Multiple previous studies
on the association between genotypes and clinical features
showed that p.Arg778Leu is associated with a young age of
onset and low levels of ceruloplasmin and serum copper, and
both p.Arg919Gly and p.Thr935Met indicate high levels of
ceruloplasmin (20). Another research suggested that a p.H1069Q
variant is related to late onset and neurologic presentation
of WD (21).

In the present case, the pathogenic mutation c.51 + 2T > G
and loss of heterozygosity are compound heterozygotes on the
two chromosomes of the proband, inherited from her father and
new mutation of her own. The mutation c.51 + 2T > G is a
new mutation that was first identified in 2019. The mutation is
located in intron one, which predicted results in exon skipping,
leading to a disorder of the encoded protein and loss of its
normal function (22). As a result, ATP7B ATPase cannot be
encoded, and copper accumulates. Hence, it could be classified
as “pathogenic variants” of WD according to ACMG Standards
and Guidelines (10). It has been confirmed previously that splice
variants can alter the order of intron removal, thereby leading to
exon skipping (23). One study had found that a splice mutation
(c.561-3T>C) of intron 6, in the POC1B gene, in which exon
6 is partly skipped (24). Based on the findings reported in the
literature (25) and those of our case, mRNA sequencing analysis
revealed that deep intron deletion on both sides of the affected
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FIGURE 1 | Image obtained during slit lamp examination showing characteristic Kayser–Fleischer (K–F) ring (arrowhead) at the margin of the cornea and scler. (A) the

image of the left eye; (B) the image of the right eye.

FIGURE 2 | Sequence analysis of ATP7B gene in the family.

exon can cause exon jumping, intron retention, or sequence
insertion of other genes in mRNA, and intron deletion may be
a pathogenic mutation.

In addition, this patient showed special symptoms of
skin damage, photosensitivity, and acute neurovisceral
manifestations, which may be a special phenotype of the
gene mutation (c.51 + 2T > G). For nonspecific skin changes,
some features of hyperpigmentation, xerosis, acanthosis
nigricans, and dermatomyositis have been reported in patients
with WD (26). In a study involving children aged 4–17 years,
Muammer et al. found that xerosis was common (45.7%) in
relatively newly diagnosed children with WD, followed by
keratosis pilaris (10.8%) and spider angioma (10.8%) (27). In

an early study, hyperpigmentation was known to be related to
WD. Histologically, it was found that hyperpigmentation of the
skin was due to excessive melanin deposition rather than the
presence of copper or iron (28). It had been confirmed that the
skin changes are caused by the treatment with penicillamine,
as its cutaneous side-effects include degenerative dermatoses,
including cutis laxa, anetoderma, elastosis perforans serpiginosa,
and lymphangiectasis (29, 30). Obviously, the skin lesion of
this patient was not caused by adverse drug reactions, because
of the first diagnosis. Most of the patients with WD have
copper metabolic abnormalities with liver dysfunction. It seems
likely that the liver abnormality plays an important role in the
development of skin pigmentation in patients with WD. Thus,
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FIGURE 3 | Family pedigree of the mutation in c.51+2T>G and heterozygous deletion.

far, the exact pathophysiological mechanism of varied skin
lesions in WD is not clear. Additionally, for acute neurovisceral
manifestation, one patient presented with mild pancreatitis,
which was attributed to copper deposition in the pancreas
(31). The pigmented gallstone pancreatitis and cholangitis with
concomitant obstructive jaundice have also been reported as
the features of WD (6). A study involving 10 WD patients
with different causes included three cases showed that acute
pancreatitis is a complication of massive hemolysis, with a
prevalence of ∼25% (32). The cause of WD presenting as
pancreatitis, thus, was presumed to be copper deposition or
hemolysis. Therefore, further investigation is still needed to
verify the causality between genotype and phenotype, especially
the novel mutation c.51 + 2T > G and skin manifestations and
acute neurovisceral symptoms. Unfortunately, few studies have
reported a splice site variant of c.51+ 2T > G.

First-degree relatives of the proband must be screened for

WD; a higher (4.08%) than expected (0.5%) frequency of WD

among their subsequent generations was detected (33). The

parents, younger sister, and baby boy of the patient all underwent

genetic testing, as shown in Figure 2. The c.51 + 2T > G

variant located on intron one was detected in both the father
and younger sister of the patient, and the same heterozygous
deletion in the chr13q14.3 (52158814-53624916) region was
located in her son. In this case, the pathogenic gene of the
splicing mutation c.51 + 2T > G in intron one came from her
father, while the new heterozygosity deletion originated from
herself, which led to the formation of complex heterozygotes.
Based on the phenotype of their families, we mapped the
family pedigree, as shown in Figure 3. Although, none of her
first-degree relatives had any pathognomonic physical sign of
the disease, a study showed that prophylactic therapy was
effective in WD, whereas a long period must elapse before
the illness could be prevented in these asymptomatic families
(34). We suggest that her family should regularly undergo
liver function tests and should note any neuropsychiatric
symptoms of WD. A low-copper diet and zinc therapy have

been used successfully in asymptomatic or presymptomatic
individuals (3).

The limitations in our report are quite obvious. It was not a
controlled study, and only one patient with WD with splicing
variants of c.51 + 2T > G in the ATP7B gene was involved.
Thus, our findings may not be generalizable to other patients
with WD. However, we have added a data comparison with a
WD patient with other mutation (p.R778L) in Table 1. Although
this mutation has been reported previous studies, more animal
experiments with greater scientific rigor are needed to confirm
the relationship between genotype and phenotype.

CONCLUSION

In this case, the diagnosis of porphyria was excluded using
gene sequencing. However, attention must be given to such
confounding manifestations to avoid misdiagnosis. In this case
report, we identified the rare splicing variants of c.51 + 2T >

G in the ATP7B gene that may be involved in the pathogenesis
of WD.The patient developed skin changes and stomachache,
which have never been reported in WD populations. We hope
that our case report may serve as a useful reference for generalists
and specialists in hepatology or neurology in diagnosing the rare
clinical characteristics of WD, to prevent misdiagnosis and for
the early diagnosis and treatment of the condition.
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Liver cirrhosis is a disease characterised by multiple complications and a poor prognosis.

The prevalence is increasing worldwide. Chronic inflammation is ongoing in liver cirrhosis.

No cure for the inflammation is available, and the current treatment of liver cirrhosis

is only symptomatic. However, several different medical agents have been suggested

as potential healing drugs. The majority are tested in rodents, but few human trials

are effectuated. This review focuses on medical agents described in the literature with

supposed alleviating and curing effects on liver cirrhosis. Twelve anti-inflammatory, five

antioxidative, and three drugs with effects on gut microflora and the LPS pathway were

found. Two drugs not categorised by the three former categories were found in addition.

In total, 42 rodent studies and seven human trials were found. Promising effects of

celecoxib, aspirin, curcumin, kahweol, pentoxifylline, diosmin, statins, emricasan, and

silymarin were found in cirrhotic rodent models. Few indices of effects of etanercept,

glycyrrhizin arginine salt, and mitoquinone were found. Faecal microbiota transplantation

is in increasing searchlight with a supposed potential to alleviate cirrhosis. However,

human trials are in demand to verify the findings in this review.

Keywords: liver cirrhosis, inflammation, treatment, cytokines, anti-oxidation, cirrhosis models

INTRODUCTION

Liver cirrhosis is a chronic disease with increasing prevalence. Its most common aetiologies are
alcohol consumption, viral hepatitis, obesity, diabetes mellitus, and metabolic syndrome leading
to non-alcoholic steatohepatitis as a part of non-alcoholic fatty liver disease (1). In general,
liver cirrhosis results from ongoing fibrosis formation, and further progression leads to portal
hypertension, hepatic encephalopathy, and an increased risk of organ failure and hepatocellular
carcinoma (HCC), which is associated with high mortality (2).

Chronic inflammation in alcoholic liver disease is mediated by a direct response to alcohol and
an indirect inflammatory response to gut microbiota-derived lipopolysaccharide (LPS), leading to
a stronger oxidative-inflammatory response (3). With ongoing systemic inflammation, endothelial
dysfunction, and fibrogenesis (4) evolve in the liver and are associated with elevated inflammatory
cytokines and immune cell activation (5). The inflammation may be caused by translocation
over the bowel wall of pathogens or derived pathogen-associated molecular patterns (PAMPs)
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and damage-associated molecular patterns (DAMPs). These are
products of microbial origin produced by pathogens and not by
the host. Products from apoptotic cells (6) translocate into the
portal and systemic circulation via an impaired intestinal barrier.
With a continuous injury, the PAMPs and DAMPs can activate
hepatic stellate cells (HSC’s) with unwanted adverse effects (6).
The HSC’s are a source of myofibroblasts and portal fibroblasts,
which drive the fibrogenic process (2). When quiescent, HSC’s
mainly act as vitamin A reserves, but they can abundantly secrete
extracellular matrix proteins and different proteinases that elicit
unwanted liver architecture remodelling when activated.

Currently, there is no cure for this chronic inflammation in
cirrhosis, and treatment mainly focuses on symptomatic relief.
When ascites develops in the decompensated stage, diuretics,
and albumin infusion improve fluid retention and circulatory
function after paracentesis. Non-selective beta-blockers (NSBB’s)
decreases portal hypertension and are used for long-term
treatment as primary and secondary prophylaxis of bleeding
from oesophageal varices (7, 8). Hepatic encephalopathy can be
reversed using antibiotics and lactulose, as the encephalopathy is
often triggered by infections and constipation (9).

There is a reduced incidence of HCC in patients treated with
NSBB’s (10). The underlying mechanism might be a reduction
in bacterial translocation from the gut, which may diminish the
portal load of PAMP’s and thus the hepatic inflammation.

As hepatic inflammation and neo-angiogenesis are critical
drivers in the pathogenesis of HCC, the beta-adrenergic blockade
may impede angiogenesis through inhibition of vascular
endothelial growth factor production and prevent HCC (11).
The preliminary studies need further scientific explorations to
support this hypothesis.

Diuretics are the first choice treatment of ascites in
decompensated cirrhosis (8, 12). However, side effects of
diuretics include fluid- and electrolyte disturbances, dehydration,
and renal impairment. Albumin infusion is used to prevent

Abbreviations: ACLF, acute on chronic liver failure; α-SMA, α-smooth

muscle actin; ALT, alanine aminotransferase; ALP, alkaline phosphatase; AMP,

antimicrobial peptide; AST, aspartate aminotransferase; BDL, bile duct ligation;

CCl4, carbon tetrachloride; cCK18, cleaved cytokeratine-18; COX, cyclooxygenase;

CTGF, connective tissue growth factor; eNOS, endothelial nitric oxide synthase;

flCK18, full-length cytokeratine 18; FMT, faecal microbiota transplantation;

GPx, glutathione peroxidase; GR, glutathione reductase; GSH, glutathione

reductase/reduced glutathione; GST, glutathione-S-transferase; HBV, Hepatitis

B virus; HCC, hepatocellular carcinoma; HCV, Hepatitis C virus; HE, hepatic

encephalopathy; HRS, hepatorenal syndrome; HSC, hepatic stellate cells; HVPG,

hepatic venous pressure gradient; HYP, hydroxyproline; ICAM-1, intercellular

adhesion molecule 1; IL-6, interleukine-6; Keap-1, Kelch-like ECH-associated

protein 1; KLF2, Krüppel-like factor 2; LDL, low density lipoprotein; LFA-

1, lymphocyte function-associated antigen 1; LPS, lipopolysaccharide; MDA,

malondialdehyde, measure of lipid peroxidation; MSCs, mesenchymal stem

cells; NADPH, nicotinamide adenine dinucleotide phosphate; NFkB, nuclear

factor-kB; NO, nitrogen oxide; NOS, nitrogen oxygen synthase; Nrf2, Nuclear

factor erythroid 2-realted factor 2; PARs, protease activated receptors; PDGF,

platelet derived growth factor; PPARα, peroxisome proliferator-activated receptor-

α; RCT, randomised controlled trial; ROS, reactive oxygen species; SBP,

spontaneous bacterial peritonitis; SOD, superoxide dismutase; STAT3, signal

transducer and activator 3; Supp., supplementary; TAA, thioacetamide; TBARS,

thiobarbituric acid reactive substances; TGF-β, transforming growth factor-β;

TNF-α, tumour necrosis factor-α; VEGF, vascular endothelial growth factor;

WKYMVm, a hexapeptide.

the development of hepatorenal syndrome (HRS) and relieve
circulatory disturbances in decompensated cirrhosis (13, 14).

In addition to its osmotic effects, albumin has an
immunomodulatory effect (14–16) that is measurable by
significantly reduced interleukine-6 (IL-6) response in high dose
albumin treatment (14). Thus, albumin may improve survival
and prevent complications in decompensated cirrhosis, and its
immunomodulatory effects require further exploration as they
relate to the prevention of acute-on-chronic liver failure (ACLF).

Both inflammation and oxidative stress are considered key
elements in the pathology of cirrhosis. When the liver is injured,
it may increase reactive oxygen and nitrogen species (ROS, RNS).
These intermediates can induce pro-fibrogenic mechanisms.
The oxidative stress causes injury by an alteration of DNA,
proteins and lipids, resulting in activation of the hepatic stellate
cells; hence one of the triggers of fibrogenesis also elicited by
inflammatory pathways. Oxidative stress and inflammation are
tightly related and can create a vicious cycle to aggravate liver
injuries (17).

Multiple pathways are relevant and interesting when seeking
to treat liver cirrhosis. In particular, the chronic and systemic
inflammatory and oxidative mechanisms that mediate several
complications in cirrhosis suggest that inflammatory cascades
are possible targets for the treatment of cirrhosis. The available
therapy is inadequate in treating fibrogenesis and liver tissue
inflammation, and novel targets and therapies are wanted.

The present review aims to evaluate possible anti-
inflammatory agents as potential drug candidates that may
alleviate, cure or increase survival among patients with
liver cirrhosis.

METHODS

A search of the literature published during the last 10
years was conducted in PubMed and Medline. Titles and
abstracts were searched for the following key terms in
different combinations: “cirrhosis,” “liver cirrhosis,” “cohort,”
“inflammation,” “anti-inflammatory,” “chronic liver disease,”
“drugs,” “targets,” “cure.” The complete search strategy is
described in Supplementary Table 1. Following agreement
among the authors, specific searches were then carried out that
include the following terms combined with “liver cirrhosis”:

“silymarin,” “anti-TNF-α,” “curcumin,” “faecal microbiota
transplantation,” “enoxaparin,” “etanercept,” “artesunate,”
“celecoxib,” “aspirin,” “kahweol,” “mitoquinone,” “glycyrrhizin
arginine salt,” “pentoxifylline,” “statin,” “emricasan,”
“lanifibranor,” “formyl peptide receptor 2 (WKYMVm),”
“tanshinone.”
Inclusion criteria for the studies were their full text being in
English, and their design being clinical trials, clinical studies,
comparative studies, multi-centre studies, case reports, and
observational studies. Interventional studies were considered
regardless of whether they had a control group or were blinded.
In addition, studies evaluating the safety, efficacy, and therapeutic
mechanisms of pharmacological agents with anti-inflammatory
effects in humans were included, and studies evaluating
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inflammatory mechanisms in rodent models were also assessed
to support our understanding of immunological mechanisms.

Selected studies using rodent models were considered for
inclusion, as the differentiation between fibrosis and cirrhosis
differs markedly from that in humans. Hence, mentioning
cirrhosis was a criterion in rodent studies. Cell model studies
were considered relevant only when combined with human- or
rodent studies fulfilling all other search criteria.

Studies with an exclusive focus on fibrosis, steatosis,
steatohepatitis, and viral hepatitis without cirrhosis
were excluded.

RESULTS

Literature searches were conducted between the 6th of March
and the 16th of May 2021. The initial search strategy resulted in
57,853 general hits, which were subsequently reduced to 1,337
drug search-related hits.

After excluding duplicates and irrelevant papers and
following the above-stated in- and exclusion criteria, the
abstracts of 351 publications were identified and screened
for studies evaluating pharmacological agents’ safety, efficacy,
and therapeutic mechanisms with anti-inflammatory effects
in cirrhosis.

Another 16 papers were found during a manual search
of reference lists and bibliographies (Figure 1, Trial flow
chart). The remaining 275 papers were excluded due to their
primary focus on fibrosis, with no mentioning of cirrhosis
or because of a lack of investigations into inflammatory
or antioxidative pathways. Seventy-six publications were
considered relevant to the research question as evaluated
by the authors (SM, NK, and TMK). Of these, 27 studies
explored the clinical effects of the included anti-inflammatory
drugs in human studies without a particular focus on the
anti-inflammatory markers, and these were excluded (see
Supplementary Table 2).

Forty-two studies explored potential anti-inflammatory
mechanisms of drugs in animal models, and seven studies
explored these same drug mechanisms in humans.

Tables 1A,B lists the included studies.
Agents were assessed according to their pathway mechanisms.

Anti-inflammatory Mediators
Twelve different anti-inflammatory mediators acting on several
pathways were evaluated in 30 animal studies and five human
studies. Cytokines were most often used as a marker for
inflammation. Cytokines are regulatory peptides released by
activated cells and act as crucial mediators in immune and
inflammatory disorders. Increasing evidence support amajor role
for several cytokines in liver diseases (Figure 2) (66).

The following agents are reported to interfere with the
immune system, with potential beneficial effects:

Celecoxib (25–29, 67), aspirin (30, 31), etanercept (32),
curcumin (33–39), kahweol (40, 41), pentoxifylline (42, 68),
diosmin (42–44), glycyrrhizin arginine salt (45), statins (18, 19,
46–50), emricasan (20–22, 51, 69) and lanifibranor (52) and
formayl receptor 2 agonist—WKYMVm (53).

In addition, 27 human studies with various
methodologies investigated the mechanisms but did not
report anti-inflammatory endpoints. These are listed in
Supplementary Table 2.

Celecoxib
Celecoxib is a cyclooxygenase-2 (COX-2) inhibitor used in the
treatment of arthritis (70, 71). COX-2, an enzyme expressed
due to inflammation, is increased in inflammatory, vascular
endothelial lining, and expressed by Kupffer cells in the cirrhotic
liver (72, 73). Celecoxib has anti-inflammatory effects to relieve
cirrhosis complications and reduce portal hypertension in several
rat studies (25–29, 67) (Supplementary Table 3a). Celecoxib
was administered to prevent cirrhosis in experimental animal
models where cirrhosis was induced by peritoneal injections of
thioacetamide (TAA). However, no human studies with anti-
inflammatory endpoints have been carried out with celecoxib.

Aspirin
Aspirin is a COX-inhibitor that acts on the nuclear factor kappa
B (NFkB), which transcript adhesion molecules in endothelial
cells and vascular smooth muscle cells, which affect macrophage
and T lymphocyte adherence (30). In addition, aspirin may
enhance interferon-α-induced growth inhibition and apoptosis
in HCC (74), but few studies have investigated aspirin as a single
treatment for cirrhosis.

In rats with TAA-induced cirrhosis, aspirin markedly reduces
fibrogenesis with a macroscopic and histologic improvement of
the liver tissue compared to controls (30, 31).

While biomarkers of inflammation were not assessed in these
studies (30), serum bilirubin levels were significantly lower in
the aspirin-treated cirrhotic rats than in the untreated cirrhotic
rats (31).

So far, no human studies of aspirin as a treatment
of inflammation have investigated specific molecular
or anti-inflammatory biomarkers or inflammation
cascades. Clinical endpoints investigated are listed in
Supplementary Table 2 (75–77).

Etanercept
TNF-α is a cytokine produced in immune cells, and it is shown
that hepatic signalling through the TNF-R1-receptor is essential
for liver regeneration (78). TNF-α activates the NFkB-pathway,
which mediates protective and anti-apoptotic effects but also
initiates transcription of inflammatory mediator genes (79).
However, TNF-α is also a proinflammatory mediator capable
of inducing apoptosis and liver destruction (79). Etanercept is
a TNF-α antagonist and an approved drug for autoimmune
diseases, e.g., inflammatory bowel disease and rheumatoid
arthritis. A single rat study (32) found that TNF-α levels were
neutralised combined with a significantly lower expression of
TNF-R1 by etanercept exposure. Surprisingly, a retrospective
study of patients with various immune-related diseases receiving
TNF-α-inhibitors found an increased hazard ratio for developing
cirrhosis. Immunological pathways were not further assessed,
and its endpoints are listed in Supplementary Table 2 (80).
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FIGURE 1 | Trial flow chart.

Curcumin
Curcumin is a derivative of turmeric, which appears to have anti-
inflammatory, antioxidant, plus anticarcinogenic effects (81).

Curcumin has an increasing effect on the signalling molecules
nuclear factor erythroid 2-related factor 2 (Nrf-2), Nrf2-NFkB
(measured as mRNA) and protein expression (34), and a decrease
in the cytokines TGF-1β and TNF-α and in IL-10 (33). In
addition, curcumin reduces alanine aminotransferase (ALT)
levels in hamsters and rats with CCl4-induced cirrhosis (33, 35).

Curcuminmay also reduce the expression of α-smoothmuscle
actin (α-SMA), a phenotypic marker of HSC-activation, and

COX-2 combined with lactulose (35). In addition curcumin
increases SIRT3, a sirtuin with a pivotal role in fatty acid
oxidation and reduction of cellular reactive oxygen species (ROS)
in the liver, which is decreased in cirrhotic rats (36). Furthermore,
mRNA expression of the signalling molecules AMPK, CPT-
1A, IDH2, and MnSOD was increased by curcumin, indicating
reduced oxidative stress.

Curcumin was found to reduce protein expressions of eNOS,
COX-2, VEGF, p-VEGFR2, and p-Erk in cirrhotic rats (37). The
impact of curcumin on inflammatory markers was investigated
by Cai et al. (38) and by Hernández-Aquino et al. (39)
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(Supplementary Table 3b). Curcumin appeared to decrease the
levels of LPS-TLR4-related downstream inflammatory cytokines
in the liver, specifically, TNF-α, IL-1β, IL-6, and CINC-1/IL-
8. The decreases were mediated by decreased LPS levels and
innate inflammation in the curcumin-treated group, not due
to decreased LPS absorption but enhanced LPS clearance and
detoxification in the liver (38). In addition, restoration of MMP-
9, MMP-2, MMP-13m NFkB, IL-1, IL-10, TGF-β, connective
tissue growth factor (CTGF), collagen, α-SMA, and Smad3+7
was also induced by curcumin as well as a decrement in activated
hepatic stellate cells (39).

Overall, curcumin seems to decrease inflammatory responses,
ameliorate fibrosis and portal hypertension, and attenuate
splanchnic hyperdynamic circulation at least partly by inducing
vasoconstriction through inhibition of eNOS and decreasing
mesenteric angiogenesis via VEGF blockade.

In humans, a recent double-blind placebo-controlled
trial demonstrated the effects of curcumin vs. placebo

on disease severity in cirrhosis. However, specific anti-
inflammatory effects have not been addressed in humans,
see Supplementary Table 2 (82).

Kahweol
The LPS-induced inflammatory response is a crucial driver
in systemic inflammation, most likely caused by bacterial
translocation of PAMPs and DAMPs from the gut into blood
circulation (6). The LPS signal transducer activates NFkB. Signal
transducer and activator 3 (STAT3) is another transcriptional
factor involved in the NFkB-pathway. Inhibition of these two
factors could reduce the inflammatory responses (83).

Kahweol is a coffee-specific compound of coffee beans that
exhibits anticarcinogenic, anti-tumour progressive, and anti-
inflammatory properties (84), probably via affection of the NFkB
and STAT3 signalling.

Seo et al. investigated kahweol’s antifibrotic and anti-
inflammatory effect on mouse liver Kupffer cells and hepatocytes

TABLE 1A | Human studies (N = 7).

Study ID Species Intervention Methods Aim Results

Zafra et al. (18) Humans Statins (Simvastatin 40mg,

once 12 h before and once 1 h

before the study)

Randomised, double-blind,

placebo-controlled trial. 30

patients with liver cirrhosis

Impact on hepatic nitric oxide

release and hepatic resistance

Increased hepatosplanchnic

output of nitric oxide

products. Decreased hepatic

resistance

Kaplan et al. (19) Humans Statins (Simvastatin 40

mg/day for up to 24 months)

Prospective, multi-centre,

double-blind, randomised

clinical trial

To investigate the potential

reduction of incident hepatic

decompensation events

among patients at high risk for

hepatic decompensation

Not yet available

Frenette et al. (20) Humans Emricasan (25mg twice daily

for 3 months, and afterwards

25mg daily open label)

Multi-centre study,

randomised

placebo-controlled trial of 86

patients

To investigate the effect of

Emricasan on liver function in

cirrhosis

Decrease of full-length CK-18

and caspase 3/7. No

decrease in cleaved CK-18.

Improvement of MELD and

Child-Pugh score after 3

months due to improvement

in INR and bilirubin

Garcia-Tsao et al.

(21)

Humans Emricasan (25mg twice daily

for 28 days)

Multi-centre, open-label

clinical study of 23 patients

Impact on portal hypertension No significant change in

HVPG overall, but sig.

decrease in severe PH, AST,

ALT, cCK18, and

caspase-3/7.

Garcia-Tsao et al.

(22)

Humans Emricasan (5, 25, and 50mg

twice daily for up to 48 weeks)

Multi-centre, double-blinded,

randomised clinical study of

263 patients

Testing earlier results of

Emricasan decreasing portal

hypertension in NASH-related

cirrhosis

No significant difference in

HVPG for any emricasan dose

vs. placebo. Sig. decrease of

biomarkers (including

Caspase 3/7, cCK18, and

flCK18) at week 24, returned

to baseline by week 48

Bajaj et al. (23) Humans FMT (15 capsules) Randomised, single-blind,

placebo-controlled clinical

trial. 20 patients with cirrhosis

and recurrent HE

Safety, tolerability, and impact

on mucosal/stool microbiota

and brain function

Similar episodes of infections

and HE in both groups.

Reduced LBP in FMT-group.

Reduced IL-6 expression

post-FMT

Bajaj et al. (24) Humans FMT (15 capsules) Randomised, single-blind,

placebo-controlled trial of 20

patients with cirrhosis and

recurrent HE

Effect of FMT on the gut-brain

axis, inflammation (IL-6 and

LPS-binding protein)

Reduced HE-occurrence.

Reduced serum IL-6 and LBP
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TABLE 1B | Rodent studies (N = 42).

ID Species Drug Methods Aim Results

Gao et al. (25) Rats Celecoxib (20 mg/kg/day) TAA-induced cirrhosis for 16

weeks during celecoxib

administration

Inhibition of COX-2 by

celecoxib, reduction of

intestinal inflammatory

transport

Improvement of intestinal

epithelial barrier integrity,

blocked inflammatory

transport, and diminished

progression of cirrhosis

Gao et al. (26) Rats Celecoxib (20 mg/kg/day) TAA-induced cirrhosis for 16

weeks during celecoxib

administration

Effect of celecoxib on portal

hypertension and the

mechanisms behind it.

Dual effects on intrahepatic

fibrosis and angiogenesis,

Modulation of VEGF/VEGFR-2

Wen et al. (27) Rats Celecoxib (20 mg/kg/day) TAA-induced cirrhosis for 16

weeks during celecoxib

administration

Effect on the

epithelial-mesenchymal

transition of hepatocytes

Amelioration of fibrosis and

cirrhosis through suppression

of mesenchymal biomarkers.

Reduction of intrahepatic

inflammation and inhibition of

TGF-β1/Smad pathway.

Gao et al. (2) Rats Celecoxib (20 mg/kg/day) TAA-induced cirrhosis for 16

weeks during celecoxib and

octreotide administration

Anti-angiogenesis effect of

octreotide and celecoxib on

cirrhotic portal hypertension

Celecoxib and octreotide

relieved fibrogenesis,

micro-hepatic arterioportal

fistulas, and intrahepatic

angiogenesis.

Su et al. (28) Rats Celecoxib (20 mg/kg/day) TAA-induced cirrhosis for 16

weeks during celecoxib

administration

To investigate whether

celecoxib alleviates liver fibrosis

by inhibiting hepatocyte

apoptosis via the ER stress

response

Celecoxib reduces hepatic

apoptosis in TAA-induced

cirrhotic rats.

Tang et al. (29) Rats Celecoxib (20 mg/kg/day) TAA-induced cirrhosis for 8

weeks before concomitant

continued induction with

celecoxib

To examine the impacts of

splenomegaly on the

development of cirrhosis and

assessment of the effects of

celecoxib on the splenomegaly

and cirrhotic liver.

Celecoxib ameliorates cirrhosis

via reducing inflammatory

cytokines and immune cells

derived from the spleen and

suppressing oxidative stress.

Li et al. (30) Rats Aspirin (low dose aspirin: 30

mg/kg/day, high dose aspirin:

300 mg/kg/day) and enoxaparin

(2 mg/kg/day)

TAA-induced cirrhosis for 4

weeks during aspirin and/or

enoxaparin administration

To examine effects of aspirin

and enoxaparin in liver

function, coagulation index,

and histopathology in a rat

model of liver fibrosis

Sign. improvement in fibrosis

grade in low-dose aspirin,

high-dose aspirin, and

enoxaparin treated rats.

Assy et al. (31) Rats Aspirin (300 mg/kg daily) and

enoxaparin (2 mg/kg/day) for 5

weeks

TAA-induced cirrhosis To examine the effect of aspirin

and enoxaparin on fibrosis

progression and regenerative

activity in a rat model of liver

cirrhosis and to determine if

the drugs are beneficial in

animals with advanced fibrosis

or cirrhosis undergoing partial

hepatectomy

Sig. improvement in fibrosis

grade in both aspirin and

enoxaparin group.

Improvement of hepatic

regenerative activity sig.

improved in the aspirin group,

unchanged in the enoxaparin

group

Abdul-Hamid et al.

(32)

Rats Etanercept (2 mg/kg

subcutaneous twice a week for 5

months)

TAA-induced cirrhosis during

treatment with etanercept

To clarify the effect of

etanercept on the development

of cirrhosis and hemosiderosis

in rats, highlighting the

implication and distribution

pattern of hepatic TNF-R1

Diminished expression of

hepatic TNF-R1, attenuation of

collagen and hemosiderin

accumulation, and preservation

of hepatic histoarchitecture

Abo-Zaid et al. (33) Rats Curcumin (150, 200 or 250

mg/kg/day for 6 weeks)

CCl4-induced cirrhosis during

curcumin injections

To evaluate the immune

regulatory effect of curcumin in

hepatic cirrhotic rats

IL-10 sig. increased in

curcumin groups, TNF-α and

TGF-1β decreased. Curcumin

tended to retain the normal

structure of liver tissues.

Macías-Pérez et al.

(34)

Hamsters Curcumin (30 mg/kg/day for 4

weeks)

CCl4-induced cirrhosis before

Curcumin administration

To evaluate reversal of cirrhosis

by doxazosin, carvedilol, and

curcumin and studying

possible modulation of Nrf-2

and NF-kB

a/b adrenergic blockers with

curcumin reverse hepatic

damage, possibly as a result of

adrenergic antagonism on

HSC and conceivably by the

increase of Nrf-2/NF-kB mRNA

ratio

(Continued)
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TABLE 1B | Continued

ID Species Drug Methods Aim Results

Kyuong et al. (35) Rats Curcumin (10 mg/mL orally for 4

weeks)

DMN induced cirrhosis To investigate the

hepatoprotective effect of

curcumin. Comparison of

curcumin and lactulose

treatment in cirrhotic rats

Increased electrical

conductivity when treated with

curcumin or lactulose

compared to the cirrhotic

model, sig. levels of attenuated

fibrosis and decreased

inflammatory response after

curcumin and lactulose.

Chenari et al. (36) Rats Curcumin (100 mg/kg/day for 4

weeks)

BDL-induced cirrhosis To explore the

hepatoprotective activity of

curcumin via measuring

expression of SIRT3, AMPK,

CPT-1A, IDH2, and MnSOD

and lipid profile

Increase of SIRT3, AMPK,

CPT-1A, IDH2, and MnSOD

and improvement of lipid profile

when fed curcumin

Hsu et al. (37) Rats Curcumin (600 mg/kg/day for 2

weeks)

CBDL-induced cirrhosis To evaluate the effects of

curcumin as an

antiproliferative,

anti-inflammatory, and

anti-angiogenic agent

Decrease of flow in the

superior mesenteric artery and

increased resistance. Sig.

reduction of eNOS, COX2,

VEGF, and pErk. Decrease of

portosystemic shunting,

induction of vasoconstriction.

Amelioration of portal

hypertension.

Cai et al. (38) Rats Curcumin (200 mg/kg/day for 12

weeks)

CCl4-induced cirrhosis To test the anti-endotoxemia

effect of curcumin on induced

cirrhosis in rats, elucidate the

underlying molecular

mechanism.

Improvement of physiological

condition, amelioration of liver

injury, reduction of

inflammatory cytokines in

serum and liver tissue, a

decrease of LPS in a peripheral

vein

Hernández-Aquino

et al. (39)

Rats Curcumin (100 mg/kg twice a

day for 3 weeks)

CCl4-induced cirrhosis partly

before Curcumin administration

To investigate fibrosis reduction

in cirrhotic rats and to

determine the

canonical/non-canonical

Smad3 pathways and HSC

activation/deactivation induced

by curcumin

Reduced liver damage,

restoration of levels of MMP-9,

MMP-2, Nf-kB, IL-1, IL-10,

TGF-β, CTGF, Col-1, MMP-13,

Smad-7, α-SMA, and Smad-3.

Decrement in hepatic stellate

cells

Seo et al. (40) Mouse liver

cell model

Kahweol (doses not specified) Addition of kahweol in LPS-

Kupffer cells and hepatocytes

Effect of kahweol on liver

inflammation

Decrease of LPS-induced

production of IL-1a, IL-1b, IL-6,

and TNF-α. Downregulation of

phosphor-NF-kB and—signal

transducer and activator of

transcription 3 expression.

Arauz et al. (41) Mice Kahweol (200 mg/kg twice a day

caffeinated or decaffeinated for 8

weeks)

TAA-induced cirrhosis during

coffee administration.

Antifibrotic properties of coffee Blockade of TGF-1β and

connective tissue growth

factor.

Ali et al. (42) Rats Pentoxifylline (100 mg/kg/day)

and/or diosmin (50 mg/kg/day)

for 28 days

BDL-cirrhotic rats Effects on inflammatory

response oxidative balance,

cytoglobin

Downregulation of

Keap-1/Nrf-2/GSH and

NF-kB-p65/p38-MAPK

pathways

Ali et al. (43) Rats Diosmin (100 mg/kg/day) and

sildenafil (10 mg/kg twice daily)

for 4 weeks

BDL-induced cirrhosis Effects of diosmin on fibrotic

markers, oxidation levels, and

diverse oxidative markers

Downregulation of NF-kB-p65,

P38-MAPK, Keap-1, and iNos.

Tahir et al. (44) Rats Diosmin (10 mg/kg or 20 mg/kg

for 4 weeks)

Ethanol-induced cirrhosis,

diosmin before ethanol

(increasing dose of ethanol for 28

days).

Efficacy of diosmin on

hepatotoxicity, free radicals,

oxidative status, transcription

factors, and inflammatory

markers.

Diosmin normalised CYP 450

2E1 and alcohol

dehydrogenase, attenuated

oxidative stress, and alleviated

ethanol-induced NF-kB

activation as well as TNF-α,

COX-2, and iNos.

(Continued)
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TABLE 1B | Continued

ID Species Drug Methods Aim Results

Zhang et al. (45) Rats Glycyrrhizin arginine salt (75 or

150 mg/kg for 2 weeks)

BDL-induced cirrhosis Effect of glycyrrhizin arginine

salt on cirrhosis

Decrease of serum bilirubin,

AST, 8-isoprostane and

malondialdehyde, Slower

fibrogenesis. Reduction of bile

salt pool, hydroxyproline,

TGF-β1, α -SMA, TNF-α,

MMP-2, and MMP-9.

Tripathi et al. (46) Rats Statin, 25 mg/kg/day for CCl4-

and TAA induced cirrhosis, 5

mg/kg/day for BDL cirrhosis

(simvastatin for 3 days)

CCl4-, BDL, and TAA induced

cirrhosis

Effect on ACLF Prevention of

ACLF-complications and

improved survival. Reduction

of inflammation and oxidation

markers

Meireles et al. (47) Rats Statin (simvastatin 5 mg/kg/day

for 3 days)

BDL induced cirrhosis Impact of cirrhotic

microcirculation and

hepatoprotection

Aggravation of microvascular

dysfunction and upregulation

of inflammatory pathways;

prevention of endothelial

dysfunction

Uschner et al. (48) Rats Statin (atorvastatin 15 mg/kg for

7 days)

BDL + CCl4-induced cirrhosis Investigation of angiogenesis

and the hedgehog pathway.

Inhibition of the non-canonical

Hh-pathway and angiogenesis.

Shirin et al. (49) Rats Statin (atorvastatin 1, 10 or 20

mg/kg/day, rosuvastatin 2.5, 5,

10, or 20 mg/kg/day for 12

weeks)

TAA-induced cirrhosis

concomitantly with

atorvastatin/rosuvastatin/saline.

Prevention of cirrhosis No inhibition of cirrhosis or

oxidative stress

Jang et al. (50) Rats Statin and MSCs (1 × 106

MSC’s two times during 12

weeks, and/or 10 mg/kg/day of

simvastatin for 5 weeks)

TAA-induced cirrhosis Synergistic effect of simvastatin

and MSCs on fibrosis

Decreased collagen

distribution, lowered

hydroxyproline content

Gracia-Sancho et al.

(51)

Rats Emricasan (10 mg/kg/day for 7

days)

CCl4-induced cirrhosis.

In vitro experiment on

hepatocyte expressions

Effects on haemodynamics,

hepatic cells phenotype

Lowered portal pressure,

reduced hepatic inflammation,

and reduced fibrosis. In vitro

experiment improved

hepatocyte expression

Boyer-Diaz et al. (52) Rats and

human

samples

Lanifibranor (100 mg/kg/day for

2 weeks)

TAA-induced cirrhosis for 12

weeks and BDL induced

secondary biliary cirrhosis in two

separate rat groups.

Human samples from

liver resections

Therapeutic potential of

pan-PPAR activation for the

treatment of advanced

cirrhosis

For the rats with TAA-cirrhosis:

Sig. decrease in portal

pressure, reduction of ascites,

and cirrhosis regression.

Attenuation of the hepatic

proinflammatory environment

through cytokine expression

pattern shift.

For human hepatocytes:

improvement and amelioration

of HSC phenotype and

reduction in

contraction capacity

Jun et al. (53) Rats WKYMVm (2.5 mg/kg twice pr.

week for 22 weeks)

BDL-induced cirrhosis Effects on hepatic regeneration

via vascular remodelling,

resulting from its

pro-angiogenic properties

Improvement of vascular

remodelling, inhibition of

fibrosis, and enhanced hepatic

function

Vilaseca et al. (54) Rats and

human

liver cells

Mitoquinone (5 mg/kg/day for 14

days)

HSCs exposed to mitoquinone.

CCl4- and TAA-induced cirrhosis.

Effects of mitoquinone on

hepatic oxidative stress, HSC

phenotype, inflammation

markers, and liver fibrosis

Decrease of proliferation in

both HSCs and rats. Decrease

in hepatic oxidative stress and

diminished fibrosis

Turkseven et al. (55) Rats Mitoquinone (10 mg/kg/day for

25 days)

BDL-induced cirrhosis Effect on oxidative stress,

inflammation markers, fibrosis,

and mitophagy.

Prevention of inflammation,

hepatocyte necrosis, and

fibrosis by mitoquinone.

Decrease of TNF- α, TGF-1β,

collagen, IL-6, IL-1β, and

metalloproteinases.

Attenuation of apoptosis by

reduced expression of cleaved

caspase-3.

(Continued)
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TABLE 1B | Continued

ID Species Drug Methods Aim Results

Zaidi et al. (56) Rats Silymarin vs. saline (200 mg/kg

twice a week for 8 weeks)

TAA-induced cirrhosis Effects of silymarin on liver

enzymes, antioxidant enzymes,

glutathione reductase, and

MDA

Restoration of antioxidant

enzymes (SOD and GSH),

MDA, and catalase activity

Pour et al. (57) Rats Silymarin (50 mg/kg/day) and/or

lactulose (2 g/kg/day) for 8

weeks

TAA-induced cirrhosis Possible synergic and healing

effects

Decrease in liver enzymes and

malondialdehyde levels

Ali et al. (58) Rats Curcumin (400 mg/kg),

silybin-phytosome (400 mg/kg),

alpha-R-lipoic acid (200

mg/kg/day), or saline. For 7

weeks.

TAA-induced cirrhosis Protective effects Blockade of malondialdehyde

(MDA) and protein carbonyls.

Decrease of GSH-depletion,

collagen deposition,

MMp-2activity, TGF-1β levels,

a-SMA, and HSP-47

expression

Abdel-Moneim et al.

(59)

Rats Silymarin (100 mg/kg five times a

week for 4 weeks), taurine (100

mg/kg five times a week for 4

weeks), or both, or olive oil

CCl4-induced cirrhosis Hepatoprotective effect Alleviation of thiobarbituric acid

reactive substances, reduction

of NO levels, and NOS activity.

Increase of superoxide

dismutase, glutathione

peroxidase, and glutathione

reductase. Reduction of

TGF-1β, IL-6, and TNF-α.

Combination therapy

decreased adiponectin levels

and normalised FFA

Aithal et al. (60) Rats Silymarin (100 mg/kg) and/or

bone-marrow-derived stromal

cells (5.8 mill. cells in 0.5mL) for

3 weeks

CCl4-induced cirrhosis Efficiency and hepatic

differentiation potential of

BM-MSCs in combination with

silymarin

Ameliorated liver tissue

damage through

immunoregulatory activities.

Decrease in liver enzymes and

diminished fibrosis.

Combination treatment was

most efficient compared with

individual treatments

Yang et al. (61) Rats Tanshinone (10, 20, or 40 mg/kg

for 1 week)

CCl4- and concomitant

alcohol-induced cirrhosis

Investigate therapeutic effects

of tanshinone by promoting

proliferation and differentiation

of stem cells.

Improvement of histology, liver

markers, and promotion of

proliferation and differentiation

of endogenous liver stem cells.

Liu et al. (62) Germ-free

Mice

FMT (0.2mL daily gavage for 3

days)

CCl4-induced cirrhosis in

conventional and germ-free

mice.

Effect of colonisation using

human donors on cortical and

liver inflammation markers

Reduced neuroinflammation,

and microglial activation and

dysbiosis. Liver inflammation

was unaffected.

Chen et al. (63) Rats Artesunate (25 mg/kg/day for 8

weeks)

CCl4-injection and

ethanol-induced cirrhosis.

Concomitant artesunate or oil

solution

Effect of artesunate on

bacterial translocation and gut

microbiota

Decrease of IL-6 and TNF-α

levels. Positive effect on

dysbiosis and reduction of

bacterial translocation.

Fortea et al. (64) Rats Enoxaparin (40 IU/kg/day or 180

IU/kg/day) vs. saline for 12

weeks

CCl4-induced cirrhosis, BDL

induced cirrhosis.

Effects on advanced cirrhosis No effect on fibrosis,

profibrogenic gene expression,

or infection. No amelioration of

IL-6 levels. Hepatic arterial

dysfunction was corrected.

Cerini et al. (65) Rats Enoxaparin (1.8 mg/kg

subcutaneously) for 24 and 1 h

or daily for 1 week or daily for 3

weeks

CCl4-induced cirrhosis,

TAA-induced cirrhosis,

concomitant Enoxaparin.

Effects on hepatic and

systemic haemodynamics,

fibrosis, and nitric oxide

availability

Decreased portal pressure.

Reductions in fibrosis, fibrin

deposition, HSC-activation

(α-SMA, pro-collagen), and

desmin expression

in vitro (40). Kahweol was found to limit the production of
IL-1α, IL-1β, IL-6, and TNF-α were reduced. Furthermore, this
inhibitory effect was associated with the downregulation of LPS-
stimulated phosphor-NFkB and STAT3.

Arauz et al. (41) investigated the effects of coffee in rats
with TAA-induced cirrhosis. Coffee prevented a weight loss and
limited the increase of ALT, alkaline phosphatase (ALP), and
gamma-glutamyl transpeptidase observed in cirrhotic controls.
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FIGURE 2 | Cytokines in liver disease. Inflammatory responses on various liver injuries and potential targets for anti-inflammatory agents. COX-2, cyclooxygenase−2;

IL, interleukin; LPS, lipopolysaccharide; NFkB, nuclear factor-kB; STAT3, signal transducer and activator 3; TGF, transforming growth factor; TNF, tumour necrosis

factor.

In addition, significant amelioration of the cytokines TGF-β,
CTGF, IL-10, and MMP-13 and α-SMA spikes evolved when
coffee was administered to the rats. Thus, the action mechanisms
are probably associated with antioxidant properties, mainly with
coffee’s ability to block the elevation of the profibrogenic cytokine
(TGF-β) and the downstream effector CTGF.

No intervention studies in humans have yet explored
the anti-inflammatory effects of coffee derivatives in patients
with cirrhosis. However, one epidemiologic study is listed in
Supplementary Table 2.

Pentoxifylline and Diosmin
Pentoxifylline is a non-selective phosphodiesterase inhibitor,
which exhibits vasodilator activity on peripheral hepatic blood
vessels (85). In addition, it exerts an anti-inflammatory regulation
by affecting TGF-β- and tissue inhibitor metalloproteinase-
1 (TIMP-1) expressions. Beneficial effects in humans with
advanced liver disease have been described (68), and regulating
effects of the hepatic stellate cell activity, is suggested to be related
to the Hedgehog signalling pathway (86).

Diosmin is a natural flavone reported to prevent hepatic
injury through inhibition of NFkB activation (42, 87). In
bile duct ligated(BDL)-induced cirrhotic rats, pentoxifylline
and diosmin have increased survival (42). A healing effect
on the fibrotic markers HYP and TGF-β, and the oxidative
markers malondialdehyde (MDA), SOD (superoxide dismutase),
glutathione reductase (GSH), and nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity favoured both
diosmin and pentoxifylline; see Supplementary Table 3c.

Diosmin has been investigated as a single treatment
and in combination with sildenafil (43). Findings about its
anti-inflammatory and antioxidant effects are described in
Supplementary Table 3c. A rodent study (44) confirmed findings
of regulation of TNF-α and NFkB activation in rats treated
with ethanol and diosmin concomitant for 4 weeks. TNF-
α was significantly elevated by ethanol and remitted by the
concomitant addition of diosmin. NFkB was investigated by
immunohistochemical staining, and the expression wasmarkedly
suppressed in diosmin-treated rat groups.

In a clinical trial, 329 patients with cirrhosis were randomised
to treatment with pentoxifylline or placebo for 6 months (68).
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Pentoxifylline lowered complication rates of bacterial infections,
renal insufficiency, hepatic encephalopathy, and gastrointestinal
bleeding. Higher TNF-α baseline levels were associated with the
development of complications in the absence of pentoxifylline.

Glycyrrhizin Arginine Salt
Glycyrrhizin is the primary active constituent of liquorice
root. Liquorice has anti-inflammatory, spasmolytic, laxative,
anti-depressive, anti-ulcer, and anti-diabetic effects (88).
The statement is supported by a rodent study in which
glycyrrhizin combined with arginine seems to protect against
hyperammonaemia and hepatic encephalopathy (45).

The therapeutic effects of glycyrrhizin and arginine also
change cytokine levels (TGF-β1 and TNF-α), antibodies against
matrix metalloproteinases, and biochemical markers of liver
function. In this study, significant changes were found to
recommend glycyrrhizin arginine salt treatment. Results for its
anti-inflammatory effects are listed in Supplementary Table 3d.

Statins
Statins have proved antioxidative, antiproliferative, and anti-
inflammatory properties and a capacity to improve endothelial
function and stimulate neoangiogenesis (89, 90). Statins decrease
leukocyte adhesion to endothelial and epithelial cells by
inhibiting expression and binding of the integrin LFA-1 and the
intercellular adhesionmolecule 1 (ICAM-1). Statins also decrease
NFkB production, and hence the release of proinflammatory
cytokines such as TNF-α and IL-6. This chain of action blocks
critical proteins required to form lipid rafts and immune cell
activation and growth. They also reduce the levels of oxidative
stress (91).

Studies in rats with experimental-induced cirrhosis have
shown that statins may prevent LPS-induced ACLF-derived
complications and prolong survival. Moreover, statins increase
the hepatic sinusoidal function, protect against endothelial
dysfunction and the harmful effects of hypovolemic insults.
Finally, statins normalise inflammatory markers during
critical events such as ACLF and hypovolemia (46, 47) (see
Supplementary Table 3e). A significant effect of simvastatin,
when combined with bone-marrow-derived mesenchymal stem
cells, has been demonstrated with amelioration of fibrosis
(50) (see Supplementary Table 3e). Atorvastatin also reduces
portal pressure in CCl4-cirrhotic rats (48). In human cirrhotic
liver samples, Sonic hedgehog (Shh) and Glioma-associated
oncogene family zinc finger-2 (Gli-2) mRNA levels, as well
as protein expressions, increases (48). Atorvastatin treatment
significantly downregulated the hedgehog components Shh
and Gli-2 in the BDL and CCl4-cirrhotic models. Likewise,
mRNA levels of α-SMA, collagen-1, and vimentin decreased
after atorvastatin treatment.

In contrast, one rat study did not find a significant
amelioration of cirrhosis on treatment with atorvastatin or
rosuvastatin (49).

Simvastatin may increase the hepato-splanchnic output
of nitric oxide products in patients with cirrhosis, thereby
improving portal hypertension (18).

Randomised clinical trials have investigated beneficial effects
on clinical outcomes such as liver function, rebleeding from
oesophageal varices, and survival (92–94), and one ongoing
multi-centre trial is also prospectively investigating the potential
reduction of hepatic decompensation (19). However, no human
studies have explored anti-inflammatory mechanisms in detail;
hence, the therapeutic effects of statins are not yet completely
understood [for clinical endpoints in human studies (90, 92–104)
see Supplementary Table 2].

Emricasan
Emricasan is an oral pan-caspase inhibitor with alleviating
impact on apoptosis, inflammation, and fibrosis in animalmodels
of liver injury.

Studies have demonstrated how emricasan can inhibit hepatic
cell death with reductions in caspase-3-activity in CCl4-
cirrhotic rats, while reducing portal hypertension and hepatic
microvascular dysfunction in rats with advanced cirrhosis is also
described (51). In addition, three human studies have explored
the clinical effects of emricasan (20–22).

Frenette et al. (20) administered emricasan 25mg in a
randomised, double-blinded, placebo-controlled trial. Emricasan
reduced cleaved keratin-18 (a marker of apoptosis) relative
to placebo, although insignificant, but caspase 3/7 and flCK-
18 levels reduced significantly. Garcia-Tsao et al. (21) likewise
found reductions in cleaved cytokeratin 18 and caspase-3/7 after
28 days of treatment with emricasan in 22 cirrhotic patients.
Supplementary Table 3 lists anti-inflammatory marker results
for the rodent studies.

A recent clinical trial concerning NASH-related cirrhosis
by the same authors (22) showed the same biomarker
patterns described above. However, the clinical effects on liver
biochemistry and portal hypertension were not observed in
patients with decompensated NASH-related cirrhosis (69) (see
Supplementary Table 2).

Lanifibranor
Peroxisome proliferator-activated receptors (PPARs) are present
in mammals in three isoforms, and all isoforms have a role
in maintaining liver function (105). The pan-PPAR agonist
lanifibranor has shown potential to alleviate models of mild liver
injury and non-alcoholic fatty liver disease. We found one study
of the effects of lanifibranor on cirrhotic rats and on cirrhotic
human hepatic cells in vitro. Lanifibranor ameliorated fibrosis
and portal hypertension in the rats in addition to significant
anti-inflammatory effects (Supplementary Table 3f) and showed
promising results in human hepatic cells. However, no human
clinical trials were found.

Formyl Peptide Receptor 2 Agonist—(WKYMVm)
Hexapeptide WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met) is a
ligand of the formyl peptide receptor 2. It exhibits anti-
inflammatory and angiogenic properties in multiple disease
models. The WKYMVm peptide improves vascular remodelling
and inhibits fibrosis in a rat model of hepatic failure (53) (See
Supplementary Table 3g). Furthermore, WKYMVm enhances
hepatic function by upregulating the expression of hepatic
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functionmarkers. These data suggest that theWKYMVmpeptide
modulates liver function and vascular regeneration in rodent
hepatic failure. No human trials are described.

Antioxidants
Seventeen animal studies investigated the effects of five different
antioxidant mediators, three of which were investigated in
human studies with clinical endpoints): Curcumin (33–38),
pentoxifylline (42, 68), and diosmin (42–44) are described
above. Mitoquinone (54, 55) and silymarin (56–60, 106) are
described below.

Antioxidant agents seem to attenuate hepatic fibrosis in
rodent models (107). The mechanism is partly due to the
influence on the activation of hepatic stellate cells, which induce
extracellular matrix deposition (Figure 3). Several agents have
supposed antioxidant effects demonstrated by measurements of
reactants as MDA, NADPH oxidase, Nrf2, Keap 1, NFkB, and
IkB. NADPH oxidase is highly expressed by Kupffer cells and
generates high amounts of ROS during early liver injury. In
addition, hepatic stellate cells also seem to express NADPH—
generating ROS, which mediates fibrogenic factors (107).

Mitoquinone
Mitochondrial dysfunction appears to play a crucial role in the
development and progression of liver cirrhosis. Cirrhotic livers
exhibit increased ROS produced by mitochondria. Mitoquinone
is a mitochondria-targeted antioxidant, which might relieve the
damaging effects of ROS within cirrhotic livers (54, 55). Two rat
studies have assessed the effects of treatment with mitoquinone.
Thus, Vilaseca et al. (54) found a relieving effect on portal
hypertension in rats, as well as on fibrosis and oxidative markers.

Mitochondrial superoxide content was significantly higher in
hepatic stellate cells and hepatocytes from cirrhotic rats but not in
sinusoidal- or Kupffer cells compared to non-cirrhotic rats, and
this effect appeared to be dose-dependent. Similar effects on HSC
activity were found in human liver cells exposed to mitoquinone.

Mitoquinone also reduced oxidative stress and reduced
portal pressure and intrahepatic vascular resistance in rats with
CCl4-induced cirrhosis. Mitoquinone resulted in a significant
reduction in hepatic fibrosis, which points to a potential clinical
value of this drug. The activity of the hepatic stellate cells was
assessed by the expression of profibrogenic genes and α-SMA,
and both markers reduced significantly in cirrhotic rats.

Finally, inflammatory markers in in vivo models
were measured, and iNOS, IL-6, and IL-1β were all
reduced significantly.

In another study of BDL rats, Turkseven et al. (55)
also investigated the effects of mitoquinone. Treatment with
mitoquinone prevented inflammation, hepatocyte necrosis, and
progression of fibrosis. Initially, bile-duct ligation of the rats
led to increased gene expression (Qr-PCR) of inflammatory
and oxidant markers, and these responses were reduced
by mitoquinone. Collagen type col1α1, TGF-β, TNF-α, IL-
6, IL-1β, and levels of circulatory TNF-α were all reduced.
Furthermore, mitoquinone reduced the protein carbonylation,
an indicator of irreversible oxidative protein modification, in
cirrhotic rats. Mitoquinone normalised the gene expression of the

mitochondrial antioxidant Mn-SOD, Cu/ZnSOD, and catalase
impaired by cirrhosis.

Parkin protein expression in mitochondria is an indicator of
the removal of dysfunctional mitochondria by autophagy. Parkin
protein expression decreases in cirrhosis but increases in rats
treated with mitoquinone (55).

Mitoquinone seems to possess both anti-inflammatory and
antioxidant effects in human cells and rodent models, but no
human studies have yet verified these effects.

Silymarin
Silymarin is an extract of the plant Silybum marianum (milk
thistle), the main compound being silybin. Silymarin has a
low bioavailability and lack solubility in water. Silybin acts
by turning off proinflammatory signals derived from NFkB-
activation (which is involved in the induction of TNF-α,
IL-1, IL-6, and GM-CSF) and induces apoptosis. Silymarin’s
antioxidant activity is related to its free radical-scavenging and
lipid peroxidation inhibition, as demonstrated in vivo and in
vitro (108).

We identified five rodent studies that have assessed the effects
of silymarin in cirrhosis models.

Ali et al. (58) investigated the modulatory effects of curcumin,
silybin-phytosome, and alpha-R-lipoic acid in rats with TAA-
induced cirrhosis. TAA was given at the same time as the
intervention. Glutathione depletion, collagen deposition, matrix
metalloproteinase-2 activity, TGF-β1 levels and heat shock
protein-47 gene expressions- all factors believed to be involved
in the development of cirrhosis-, were partially blocked by the
combination therapy with curcumin, silybin-phytosome, and
alpha-R-lipoic acid. Thus, therapy increased ROS generation
and inhibited the activation of hepatic stellate cells, thereby
preventing liver cirrhosis.

Zaidi et al. (56) also evaluated the effects of silymarin on rats
with TAA-induced cirrhosis. Antioxidant activity was reduced
as superoxide dismutase (SOD) and GSH were low, and MDA
(measure of lipid peroxidation) and catalase were increased
before treatment was initiated. Conversely, silymarin restored
SOD and GSH, MDA, and catalase activity.

A possible synergistic effect between silymarin and lactulose
has been investigated in a cirrhotic rat model (57) with no
significant difference found between treatment groups according
to their necro-inflammatory scores.

A combination of silymarin and the amino acid taurine
was assessed in a study on CCl4-induced cirrhosis (59).
Silymarin alone and silymarin with taurine restored the
TBARS (thiobarbituric acid reactive substances) levels, and the
combination treatment significantly reduced NO levels and
NOS activity. However, activities of SOD, glutathione peroxidase
(GPx), and glutathione reductase (GR) increased significantly
in all treatment groups. In addition, glutathione-S-transferase
(GST) and reduced glutathione (GSH) increased in rats treated
with silymarin alone or the combination treatment.

The cytokines TNF-α, TGF-β1, IL-6, and the proteins leptin
and resistin elevated in the cirrhotic model, while adiponectin
reduced. All three treatments reduced TGF-β1, IL-6, and leptin,
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FIGURE 3 | Antioxidative mechanisms. Simplified illustration of oxidative and antioxidative mechanisms affecting liver cells. α-SMA, α-smooth muscle actin; HSC,

hepatic stellate cell; NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species.

but only taurine and the combination taurine and silymarin
reduced TNF-α and resistin.

Finally, a combination of bone-marrow-derived stromal
cells and silymarin ameliorated liver tissue damage in a
CCl4-cirrhotic rat model through immunoregulatory activities.
However, antioxidative markers were not investigated in this
study (60).

Only a single cohort study of silymarin has been carried out in
humans. Fathalah et al. (106) investigated the effects of high-dose
silymarin in decompensated chronic hepatitis C virus (HCV)-
cirrhotic patients. The main results improved biochemical liver
parameters and Child-Pugh score; however, no oxidativemarkers
were investigated (see Supplementary Table 2).

Gut Microflora and the LPS Pathway
Gut dysbiosis with translocation of bacteria and the bacterial
product might play a role in the development of complications of
cirrhosis. Alleviation of the dysbiosis in the gut flora of patients
with cirrhosis, and the effects on LPS, supports that counteracting
anti-inflammatory mechanisms are beneficial in cirrhosis.

Our search resulted in four animal studies, two human studies
reporting effects on inflammatory markers, and two human
studies where only clinical endpoints were considered. Thus, we

found three different gut microbial modulation therapies, namely
Faecal microbiota transplantation (23, 24, 62, 109), kahweol (40,
41) as described earlier, and artesunate (63).

Faecal Microbiota Transplantation (FMT)
Among pertinent mechanisms, an increase in LPS leads to
hepatocyte damage, which stimulates hepatic macrophages
and increases the release of IL-1, IL-6, and TNF-α. Several
pathways are involved in the promotion or counteraction
of chronic inflammation (40). For example, kahweol affects
the LPS pathway in the gut resulting in anti-inflammatory
effects (described above). Liu et al. explored the effects
faecal microbiota transplantation (FMT) from humans to
germ-free and conventional mice (62). They found reduced
neuroinflammation and microglial activation and dysbiosis 15
days after FMT exposure, whereas liver inflammation was
unaffected. Higher degrees of neuroinflammation in mice
regardless of their cirrhosis state was found with faecal microbial
colonisation from humans with cirrhosis as compared with
mice exposed to colonisation from healthy humans. Bajaj
et al. investigated the safety of FMT capsules in patients with
cirrhosis and recurrent HE in a Phase 1 randomised, placebo-
controlled trial (23). FMT improved duodenal mucosal diversity,
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dysbiosis, and expression of duodenal antimicrobial peptide
(AMP) and reduced lipopolysaccharide-binding protein (LBP).
Subsequently, a trial was constructed based on the same cohorts
elucidating the effects on inflammatory markers: IL-6 and LPS-
binding protein, and bile acids in serum (24). Four weeks of FMT
decreased levels of serum IL-6 and LBP compared to the placebo
group. In the FMT group, greater deconjugation and secondary
bile acid formation were found. In an ongoing study,Woodhouse
et al. (109) currently assess if FMT in patients with advanced
cirrhosis is effective, feasible, and safe.

Artesunate
Artesunate is an extract of the Chinese herb “Artemisia annua,”
which has historically been used as an antimalarial drug. It is
assumed to affect the pathological bacterial translocation (63),
which is thought to be the key driver of spontaneous infection
in patients with cirrhosis (110). For example, prophylactic
antibacterial treatment is often indicated in patients with ascites
and risk of spontaneous bacterial peritonitis. A single study
assessed the effects of artesunate in rats with CCl4-induced
cirrhosis (63). Thus, artesunate decreased IL-6 and TNF-α in
the cirrhotic liver at week 4, 6, and 8, indicating an effect on
inflammatory responses. Microbial diversity in the artesunate
group, as compared to controls was increased at week 4 and
reduced at weeks 6 and 8. Bacterial genomic DNA products
reappeared in rats treated with artesunate after 4 weeks, unlike
in the cirrhotic rats not treated with artesunate. No bacteria were
detected in the blood in either group. Thus, artesunate decreased
the occurrence of bacterial translocation significantly.

No human studies have yet been conducted, but the primary
impression of the effects of artesunate is promising according
to alleviating the inflammatory factors and the dysbiosis of gut
microbiota in cirrhosis.

Deactivation of Hepatic Stellate Cells
Several of the therapeutic agents described are hypothesised
to have multiple impacts on different homeostatic and
pathophysiological pathways. For example, enoxaparin
(30, 31, 64, 65, 111) and tanshinone (61) may have effects
that have not yet been classified as direct antifibrotic mechanisms
and do not fit into a concrete anti-inflammatory or antioxidative
mode of action.

Enoxaparin
Enoxaparin has both anticoagulant and antithrombotic effects
(112). A rat experimental study observed a reduction of
proliferation and activation of hepatic stellate cells (30).
In addition, it has been demonstrated that patients with
cirrhosis more frequently exhibit a prothrombotic state than a
hypocoagulative state (113, 114).

Enoxaparin has been proven to reduce portal pressure in
cirrhotic rats, implying effects beyond the anti-thrombotic (65).
Short-term treatment of cirrhotic rats with enoxaparin showed a
significant reduction of superoxide content, α-SMA, and mRNA
of pro-collagen I and liver fibrosis. In addition, the oxidative
stress levels were lower, and fibrosis reduced by 25% after
enoxaparin treatment.

However, Fortea et al. (64) did not find an amelioration
of fibrosis, biochemical parameters, hepatic endothelial
dysfunction, or portal hypertension after enoxaparin treatment
of cirrhotic rats. On the contrary, the therapeutic dose of
enoxaparin did decrease survival in rats with CCl4-induced
cirrhosis. Enoxaparin as a preventive therapy for portal venous
thrombosis in patients with Child-Pugh B-C cirrhosis has
been suggested by the authors of one study (111), favouring
enoxaparin compared to no treatment. It was found safe and
preventive for thrombosis for 34 patients treated for 48 weeks. In
addition, the frequency of decompensation reduced, and survival
increased in the enoxaparin group.

Tanshinone
Salvia miltiorrhiza (S. miltiorrhiza) is a Chinese herb comprising
multiple compounds. Tanshinone is extracted from S.
miltiorrhiza and is described as a natural antioxidant with
hepatoprotective, antifibrotic, and anticancerogenic effects. In
addition, it is supposed to induce stem cell proliferation and
differentiation (115). A single rat study investigated the effects
in a cirrhotic model (61), where tanshinone improved the
histological injury, serological tests, and increased expression
of markers indicating newly proliferated stem cells. These
effects appeared to be caused by promoting proliferation and
differentiation of endogenous liver stem cells. No human trials
were found.

DISCUSSION

In the present review, we have identified and explored
possible anti-inflammatory and antioxidant agents as potential
drug candidates to interfere with the fibrogenesis processes
and thereby alleviate the development and perpetuation of
complications of cirrhosis. In cirrhotic rodent models we have
found promising indices of beneficial anti-inflammatory and
antioxidative effects of the COX-2 inhibitor celecoxib, aspirin,
curcumin, kahweol, pentoxifylline, diosmin, statins, emricasan,
and silymarin. Few indices of effects of etanercept, glycyrrhizin
arginine salt, and mitoquinone were found. In addition, FMT
is a growing field with the potential to alleviate cirrhosis by a
beneficial regulation of the gut flora.

The main limitation of the present review is the lack of human
studies assessing anti-inflammatory agents in cirrhosis. The lack
makes it difficult to assess the clinical efficacy of the agents
discussed and to compare the effects between different studies.
The literature offers many experimental studies in rodents where
multiple beneficial effects on cirrhosis regarding fibrosis are
reported (see Supplementary Table 3). However, extrapolating
experimental animal studies into a clinically relevant setting
is problematic. Nevertheless, several different agents were
identified, andmany of these showed potential curing or relieving
mechanisms and effects in the applied models. However, most of
the rodent studies are not comparable since especially themethod
of inducing cirrhosis differs. The procedures, the duration, and
the timing of adding the experimental agents differ vividly.

There are important conflicting results for enoxaparin, statins,
and etanercept. In particular, one human study investigating

Frontiers in Medicine | www.frontiersin.org 14 September 2021 | Volume 8 | Article 718896272

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kronborg et al. Novel Treatments in Cirrhosis

etanercept found significant harmful effects (80). One rat study of
statins (49) and enoxaparin (64) showed no intervention effects.
Curcumin seems promising in both rodent and human clinical
trials. Anti-inflammatory and antifibrotic effects, as well as a
positive impact on portal pressure and hemodynamic in rodents
combined with favourable clinical outcome in cirrhotic patients,
indicates a convincing potential (33–38, 82). Curcumin also has
potential effects on quality of life (116). Silymarin is also studied
in a different setting and shows potential anti-inflammatory
and antioxidative effects in rodents and clinical improvement
in patients. Emricasan showed promising alleviating effects in
both rodent and human studies on several parameters. Promising
clinical effects (20–22) are shown, but only caspase and flCK-
18 are measured as anti-inflammatory markers. Hence, the
mechanisms are still largely unexplored, and future studies with
inflammatory and clinical endpoints are warranted.

Several retrospective studies have suggested that statins can
improve mortality in cirrhosis (90, 95, 103). Clinical studies
of the anti-portal hypertensive effects of statins have provided
encouraging results in recently published trials (93, 97, 102,
117), while other studies have reported a reduced risk of
decompensation and death (89, 90, 92, 94), and that statins might
reduce the risk of infections in patients with cirrhosis (96). One
study also described improved survival during infections among
cirrhotic patients undergoing continuing treatment with statins
(104). Human studies exploring anti-inflammatory mechanisms
in cirrhosis should be highly encouraged.

The anti-inflammatory effects of statins seem to be steps ahead
of other agents concerning testing in human trials, mainly due
to the similar effect of statins on portal hypertension (93, 97,
102, 117). Novel research implies the anti-inflammatory effects
of statins as key drives in lowering the portal pressure, but
the immunological impact needs further exploration in humans
(89, 91).

Dysbiosis in the gut flora is suspected as a precipitating
factor in cirrhotic patients with infections who need antibiotic
treatment. FMT could prove to be a valuable “post-treatment”
after antibiotic exposure, restoring the potentially harmful effect
antibiotics have on microbial diversity and function (118). Initial
studies have focused on safety and organ function outcomes in
cirrhosis (23), relevant in a complex disease entity. Studies on
FMT without prior antibiotics are needed to assess the impact
of gut dysbiosis and the inhibition or alleviation of inflammation
in decompensated cirrhosis. Future studies are awaited (109) in
the search for preventive and treating agents in cirrhosis.

Very few side effects are reported for the main part of the
described agents, and safety deserves a primary focus in future

investigations of anti-inflammatory agents. Only two safety
studies regarding celecoxib are conducted (119, 120).

Real-life clinical trials exploring anti-inflammatory
interventions and their safety in patients with liver cirrhosis
are notably missing in the literature. Furthermore, data on the
combination of anti-inflammatory or antioxidative markers and
clinical outcomes are scarce. Human randomised clinical trials,
preferably placebo-controlled, are the next step toward clinical
application of anti-inflammatory agents. As most inflammation
markers are easy to sample by blood tests, this should be possible
and feasible to add to clinical protocols.

Autologous macrophage therapy is another promising
treatment that seems safe (121); the effects of which are
yet to be fully investigated. This is also the case for other
autologous cell transplantation, such as mesenchymal stromal
cell therapy (122).

In conclusion, we recommend further study of the
inflammatory, oxidative, microbiological, and immunological
mechanisms and pathways responsible for disease progression
in cirrhosis. Known and novel compounds with potential
healing effects in cirrhosis are identified and require further
exploration. In general, the literature encloses very few human
clinical trials on the aspects, and the need for studies is growing.
Future studies should include anti-inflammatory biomarkers
and clinical endpoints in combination to assess potential
immunological agents in the treatment of cirrhosis.
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