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Editorial on the Research Topic

Bioinformatics Tools (andWeb Server) for Cancer Biomarker Development

Cancer remains a severe public health burden globally. The identification of molecular biomarkers
play significant roles in diagnosis, treatment and prognosis of human cancers (1). Up to now, the
tumor molecular heterogeneity and lack of sufficient biomarkers are two of the major difficulties in
cancer treatment and prognostication.With the advance of recent development of high-throughput
microarray and sequencing technologies, the public cancer transcriptomic databases, including The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), have increased dramatically
(2). These databases offer additional resources and opportunities for biomarker discovery and
validation (2). Unfortunately, those resources are not efficiently explored, and translation of
stored high dimension data into clinical use are not feasible for clinicians and basic researchers
without much bioinformatics background. Therefore, the user-friendly online web servers/tools
are urgently needed for researchers. In this Research Topic, we have collected a series of original
research articles and reviews, providing a number of useful web resources and tools. Those tools will
facilitate better and accurate discovery of cancer biomarkers and expedite their clinical translation.

Currently, several powerful bioinformatics webservers/tools, such as KM plotter, GEPIA (Gene
Expression Profiling Interactive Analysis), Oncomine and TIMER (Tumor Immune Estimation
Resource), have been developed to analyze the public transcriptomic datasets along with
clinical information for oncology research (3–6). However, limitations are still present for these
webservers/tools, such as tedious registration process or single data source. To overcome these
limitations, Yan et al. developed a new survival analysis web-server OSluca for lung cancer based
on 5,245 clinical samples from TCGA, GEO and Roepman study. With OSluca, the users are able
to assess the prognostic value of gene of interest, and the results will be presented by Kaplan-
Meier (KM) plot, Hazard ratio (HR), and log-rank p-value. Dong et al. also collected 684 samples
with long-term follow-up clinical information from 7 TCGA, GEO and Chinese Glioma Genome
Atlas (CGGA) datasets, and developed a survival analysis online tool OSgbm for glioblastoma. In
recent years, T cell repertoire sequencing (TCRSeq) data have been rapidly developed, however,
tools for comprehensive analysis and visualization of TCR-Seq data have not been developed. Ni
et al. developed a tool called VisTCR (Visual TCRSeq), an interactive software with a graphical
user interface (GUI) for TCR data management, short-read sequence mapping, and post-analysis
of TCR clonotype. VisTCR can be used to perform clonotype extraction and downstream analyses
within a single datamanagement framework, which will greatly help TCRseq datamanagement and
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analysis in cancer immunotherapy. In a review of webserver/tools
for cancer prognosis analysis, Zheng et al. described 22
webservers/tools for survival analysis based on mRNA, ncRNA,
DNA and protein data, including LOGpc, KM plotter, GEPIA,
OncoLnc, TCPA, MethSurv, PrognoScan, SurvExpress, and
UALCAN, and they also gave a detailed description of the
software usage, characteristics and algorithms of all these
tools. They also discussed several major challenges and future
directions in this area.

Those online webservers/tools for survival analysis would help
clinician and researchers to discover novel prognostic biomarkers
(3–6), to find the important therapeutic targets, and to investigate
the potential molecular mechanisms of tumorigenesis and
progression. Using a series of online databases, such as Oncomine
and GEPIA, Kaplan-Meier plotter, TCGA, and cBioPortal, Sun
et al. systematically analyzed the expression variation and
prognostic value of sirtuins (SIRTs) 1–7 in ovarian cancer. The
bioinformatics analysis showed that SIRT1-4, 6 and 7 may be
novel prognostic biomarkers. Zhu et al. used a range of online
tools, including Oncomine, GEPIA, TISIDB, and Kaplan-Meier
plotter, to evaluate the expression and prognostic value of CD38.
The results showed that compared with normal ovarian tissue,
CD38 is highly expressed in epithelial ovarian cancer (EOC),
and higher CD38 expression is associated with better prognosis.
In addition, CD38 was found to be associated with tumor-
infiltrating lymphocytes (TILs), especially with activated CD8C
T cells by TIMER. This implies the vital immunoregulatory role
of CD38 in the EOC microenvironment, and provides a novel
prognostic biomarker and potential immunotherapy target. Yu
et al. assembled 45,313 pancreatic cancer-specific AS (Alternative
splicing) events of 10,623 genes from the TCGA and SpliceSeq
database, and performed the cox univariate analyses of overall
survival (OS). They found 6,711 AS events are remarkably
associated with OS in pancreatic cancer. Notably, AS events of
five genes including DAZAP1, RBM4, ESRP1, QKI, and SF1,
were found to be significantly correlated with OS. Using the
DriverDBv2, 13 driver genes were identified correlated with
survival-associated AS events, including TP53 and CDC27. These
findings uncover that the aberrant AS patterns might serve as
prognostic predictors in pancreatic cancer. Ding et al. performed
the comprehensive characterization of differentially expressed
genes between 65 normal colon tissues and 74 CRC samples, and
identified 20 hub genes with a high degree of connectivity from
the protein–protein interaction (PPI) network. Furthermore,
knockdown of one hub gene, MAD2L1, significantly inhibited
the CRC cell growth by impairing cell cycle progression and
inducing cell apoptosis, implying that MAD2L1 could be as a
novel potential biomarker for diagnosis and therapy in CRC.

Single nucleotide polymorphism array (SNP-A) detects
population-level genomic polymorphisms and chromosomal
abnormalities such as submicroscopic or cryptic deletions or
duplications (7). Xiao et al. used SNP-A technique to investigate
the chromosomal abnormalities in 350 myelodysplastic
syndromes (MDSs) patients and 26 healthy individuals.
They showed that chromosomal aberrations contributed to
a unfavorable prognosis in patients with myelodysplastic
syndromes, and were closely related with an increased risk of

transformation to typical myelodysplastic syndrome in patients
with idiopathic cytopenia of undetermined significance. Thus,
SNP-A can help assess the prognosis of patients with MDSs and
the risk of disease progression for patients with ICUS.

Engineered organoids with sequential introducing driver
mutations can provide important new clues for studying the
mechanisms of cancer progression. Ping et al. developed an
comprehensive strategy to capture the dynamic progression of
CRC and prioritize gene cascading paths to model CRC through
engineered organoids. From the single-mutant to quintuple-
mutant engineered organoids, they characterized the functional
activities of hallmark signatures and filled the substantial
biological gaps between the engineered organoids and the
CRC samples.

Although many single-gene cancer biomarkers have been
reported, multi-gene signatures capture more information and
may be more powerful for cancer prognosis, and they can
be developed by analyzing public microarray data and RNA
sequencing data (8). Based on the TCGA database and
weighted gene co-expression network analysis (WGCNA), Tang
et al. used Kaplan-Meier survival analysis and multivariate
Cox regression method, and identified a four-gene prognostic
signature (CLEC5A, FMOD, FKBP9, LGALS8) that was related
with OS and recurrence time of 524 GBM patients. Those
signature genes divided GBM patients into high-risk and
low-risk groups, and the 5-years survival rate of the low-
risk group was significantly higher than that of the high-risk
group. Yang et al. profiled 4 GEO datasets and TCGA dataset
from GBM patients, and performed the differential expression
analysis, WGCNA and Cox regression analysis to identify core
genes associated with clinical outcomes. A four-gene prognostic
signature (SLC12A5, CCL2, IGFBP2, and PDPN) that was able
to divide GBM patients into high-risk and low-risk groups.
High-risk group showed higher mortality than low risk group
by Kaplan–Meier curve. Yang et al. obtained 502 differential
expressed miRNAs based on miRNA expression profiles of CRC
patients from TCGA. Among these miRNAs, a novel five-
miRNA signature (hsa-miR-5091, hsamiR-10b-3p, hsa-miR-9-
5p, hsa-miR-187-3p, hsa-miR-32-5p) that could predict OS of
CRC patients was constructed, verified and assessed in training
group, testing group, and entire cohort. Furthermore, univariate
and multivariate cox regression analysis showed that the five-
miRNA signature could serve as an independent prognostic
factor in CRC. Wang et al. investigated the expression profile
of 63 central carbon metabolism–associated genes in 514 diffuse
low-grade glioma cases (astrocytoma, oligodendroglioma, and
oligoastrocytoma) from TCGA, and explored the prognostic
roles of individual genes and the multiple-gene combination by
Kaplan–Meier curve and multivariate cox regression analysis.
The results showed that a four genes-signature (RAF1, AKT3,
IDH1, and FGFR1) is positively associated with OS in patients
with astrocytoma, suggesting that multigene expression signature
is able to predict the prognosis of low-grade glioma patients.

Increasing studies have demonstrated that the competitive
endogenous RNAs (ceRNA) regulation network plays an
important role in cancer development (9). Yu et al. used
WGCNA to construct the lncRNA co-expression networks,
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miRNA co-expression networks, and mRNA co-expression
networks based on TCGA-ESCC RNAseq data. They identified
21 hub lncRNAs, seven hub miRNAs, and nine hub mRNAs,
and constructed a ceRNA network, the similar ceRNA network
was also built for head and neck squamous cell carcinoma
(HNSCC) by using UALCAN, OncomiR and OncoLnc webtools.
Two hub genes including TBC1D2 and ATP6V0E1 were found
to be associated with the survival time of HNSCC. The ceRNAs
network might provide common mechanisms involving in ESCC
and HNSCC. The same group also constructed the gene co-
expression networks and miRNA co-expression networks in
Idiopathic pulmonary fibrosis (IPF) based on two GEO datasets
(GSE3257 and GSE3258), then validated the clinical significance
of the genes and the miRNAs in other three GEO datasets
(GSE10667, GSE70866, and GSE27430). They identified seven
hubmiRNAs and six hubmRNAs, and constructed an interaction
network of hub miRNAs-hub genes, which was also analyzed in
non-small cell lung cancer (NSCLC). In addition, six hub genes
and three miRNAs were found to be associated with the survival
time of lung adenocarcinoma (LUAD).

The increasing multi-omics data greatly help us to understand
cancer biology and identification of molecular biomarkers,
but add additional layers of difficulty in data processing
and analyses. In this special issue, a range of powerful

bioinformatics tools/webservers for data analysis have been
developed, and they will easily assist clinical and basic science
researchers in biomarker development and validation. Of note,
the bioinformatics tools/web servers presented here still need
lots of improvements, for example, integrating the tumor tissue
image, multi-omics network mapping, multi-gene signature
assessment, and nomogram construction. After tackling these
problems in future, the bioinformatics tools/webservers will
be more powerfully for discovering cancer biomarkers and
innovative cancer therapies.
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Introduction: Glioblastoma (GBM) is the most common and malignant variant of

intrinsic glial brain tumors. The poor prognosis of GBM has not significantly improved

despite the development of innovative diagnostic methods and new therapies. Therefore,

further understanding the molecular mechanism that underlies the aggressive behavior

of GBM and the identification of appropriate prognostic markers and therapeutic

targets is necessary to allow early diagnosis, to develop appropriate therapies and to

improve prognoses.

Methods: We used a weighted gene co-expression network analysis (WGCNA) to

construct a gene co-expression network with 524 glioblastoma samples from The

Cancer Genome Atlas (TCGA). A risk score was then constructed based on four module

genes and the patients’ overall survival (OS) rate. The prognostic and predictive accuracy

of the risk score were verified in the GSE16011 cohort and the REMBRANDT cohort.

Results: We identified a gene module (the green module) related to prognosis. Then,

multivariate Cox analysis was performed on 4 hub genes to construct a Cox proportional

hazards regression model from 524 glioblastoma patients. A risk score for predicting

survival time was calculated with the following formula based on the top four genes in the

green module: risk score = (0.00889 × EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724

× EXPFKBP9) + (0.1557 × EXPLGALS8). The 5-year survival rate of the high-risk group

(survival rate: 2.7%, 95% CI: 1.2–6.3%) was significantly lower than that of the low-risk

group (survival rate: 8.8%, 95% CI: 5.5–14.1%).

Conclusions: This study demonstrated the potential application of a WGCNA-based

gene prognostic model for predicting the survival outcome of glioblastoma patients.

Keywords: glioblastoma, WGCNA, prognostic model, cox proportional hazards regression model, nomogram

INTRODUCTION

Glioma is one of the most common types of malignant brain tumors and has a very poor
prognosis (1). The efficacy of conventional surgery plus radio- and chemotherapy is poor. Several
signature molecular markers have been used in the diagnosis, therapy and prognosis of glioma.
For example, methyl guanine methyl transferase (MGMT) promoter methylation is considered a
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predictive marker for the resistance of glioblastoma (GBM) to
chemotherapy with temozolomide (2). The 1p/19q co-deletion is
a molecular signature of oligodendroglial tumors and a predictive
marker for the response of anaplastic gliomas to vincristine
(PCV) chemotherapy. High WT-1 expression is significantly
associated with worse outcomes in diffuse astrocytic tumors.
IDH1/IDH2 mutations have a strong favorable prognostic value
across all glioma histopathological grades (3–5). With the
advancement of gene technology, molecular signatures for the
classification of gliomas have become prominent in recent years.
The 2016 revision of the World Health Organization (WHO)
classification of tumors of the central nervous system (6) includes
novel classes of diffuse gliomas based on genomic features.
Though molecular diagnostics increase diagnostic accuracy
and prognostic yield compared to previous histology-based
classifications, the current clinical prediction and treatment
outcomes are still not satisfactory (7). As GBM is notoriously
heterogeneous and complex, multi-parameter markers are much
more accurate for cancer prognosis than a single biomarker.
Therefore, a proper analytical model is highly desirable.

In the present study, we identified gene modules related to
the overall survival (OS) and recurrence time of GBM based on
The Cancer Genome Atlas (TCGA) database and weighted gene
co-expression network analysis (WGCNA). The TCGA database
contains genomic expression, sequence, methylation, and copy
number variation data on over 11,000 individuals and over 30
kinds of cancers (8, 9).WGCNA is based on a system of biological
methods for describing the correlation patterns among genes
and modules of highly correlated genes. By using Kaplan-Meier
survival analysis and multivariate Cox regression analysis, we
identified a prognostic model for GBM patients based on gene
characteristics. Our findings may provide novel insight toward
developing a promising predictive tool for the prognosis of GBM.

MATERIALS AND METHODS

Patients
A total of 906 glioma cases were collected from three
databases in this study, including 528 samples from TCGA
(https://portal.gdc.cancer.gov), 219 samples from REMBRANDT
(https://gdoc.georgetown.edu/gdoc/), and 159 samples from the
GSE16011 dataset (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE16011). Forty-six samples were excluded due to a
lack of OS information. As shown in Figure 1, we grouped

Abbreviations: WGCNA, Weighted Gene Co-expression Network Analysis;

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; GS,

gene significance; MS, module significance; EGFR, epidermal growth factor

receptor; HR, hazard ratio; EXP, expression; MAPK, mitogen-activated protein

kinase; CLEC5A, C-type lectin member 5A; FMOD, fibromodulin; FKBP, FK506-

binding proteins; LGALS8, lectin, galactose binding, soluble 8; CIMP:CpG

island methylator phenotype; IDH1, Isocitratedehydrogenase 1; IDH2, isocitrate

dehydrogenase 2; MGMT, O6-methylguanine-DNA methyltransferase; FPKM,

fragments per kilobase per million; TOM, topological overlap measure; GO, gene

ontology; CC, cellular component; MF, molecular function; BP, biological process;

KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating

characteristic curve; AUC, area under the curve; JEV, Japanese Encephalitis Virus;

AIC, akaike information criterion.

cases from TCGA into a training cohort, whereas all cases from
REMBRANDT and GSE16011 were used for validation.

Data Pre-processing
Microarray data of the 906 samples were normalized by the
affy package. All data were filtered to reduce outliers. For genes
with several probes, the median of all probes was chosen.
For probes with missing values, the impute package (http://
bioconductor.org/packages/release/bioc/html/impute) was used
to fill the missing values. Finally, 12,700 genes were obtained
from the TCGA dataset.

Construction of the Weighted Gene
Co-expression Network
By choosing 6 as a soft threshold, a weighted gene co-expression
network was constructed using the R package WGCNA (10),
which has the approximate scale-free fundamental property of
the biological gene networks. A co-expression similarity matrix
was composed of the absolute value of the correlation between
the expression levels of transcripts. The network modules were
generated using the topological overlap measure (TOM) (11),
and the dynamic hybrid cut method (a bottom-up algorithm)
was used to identify co-expression gene modules (12). Finally,
the modules with highly correlated genes were merged, and the
minimum height for merging modules was set to 0.2. Gene
significance (GS) and module significance (MS) were calculated
to measure the correlation between the sample traits (recurrence
time, CpG island methylator phenotype (CIMP) status, survival
time, status, IDH1 status, MGMT status, subtype, age and sex)
of either the genes or modules. The targeted module genes were
visualized with Cytoscape 3.5.1 software (13).

Functional Enrichment Analysis
The biological process (BP) ontology of the modules was
analyzed by Gene Ontology (GO) (14), while pathway
enrichment was analyzed by the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (15). The function of module genes was
verified by the R package clusterProfiler (16). The corrected
P-value (false discovery rate, FDR) < 0.05 was identified as a
significant outcome.

Identification of the Predicted Survival of
Glioblastoma Patients by the Cox
Proportional Hazards Regression Model
To verify the significance of the genes screened above, the
436 green module genes were first screened using univariate
Cox proportional hazards regression, and the 230 genes
with p-value <0.05 was selected for the advanced analysis
(Supplemental Data 2). According to the p-value, we selected
only the top 14 survival-related genes for visualization using the
R package forestplot. Then, a multivariate Cox regression model
analysis was performed to establish a Cox proportional hazards
regression prognosticmodel, whichwas calculated as follows: risk
score=Σ(C× EXPgene), where EXP was the mRNA expression
of the crucial gene, and C was the regression coefficient for
the corresponding gene in the multivariate Cox hazard model
analysis. The optimal model was determined based on akaike
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FIGURE 1 | Flow chart of data collection and analysis.

information criterion (AIC). The relevant codes were provided in
the Supplemental File. The samples were divided into a high-risk
group and a low-risk group according to the median risk score of
the training dataset from TCGA.

Statistical Analysis
Survival curves were constructed by the Kaplan-Meier method
and compared by the log-rank test, which was carried out
through the R package survival. The sensitivity and specificity of
the survival prediction based on the risk score were depicted by

a time-dependent receiver operating characteristic (ROC) curve
using the R package survivalROC. Gene set enrichment analysis
(GSEA) was used to identify the pathways that were significantly
enriched between the high- and low-risk groups. The Cox
regression model was used to perform the multivariable survival
analysis and generate nomograms. Calibration curves were used
to assess whether the actual outcomes approximately predicted
outcomes for the nomogram. Nomogram and calibration curves

were performed with the rms package (https://CRAN.R-project.

org/package=rms). The discrimination of the nomogram was
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FIGURE 2 | Network construction of the weighted co-expressed genes and their associations with clinical traits. (A) Hierarchical clustering tree of the TCGA-GBM

samples based on the training cohort. Dendrogram tips are labeled with the TCGA-GBM unique name. In the hierarchical dendrogram, lower branches correspond to

(Continued)
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FIGURE 2 | higher co-expression. The branches of the cluster dendrogram correspond to the 15 different gene modules based on topological overlaps. Each piece of

the leaves on the cluster dendrogram represents a gene. (B) Module-trait relationships. The background colors of the numbers represent the strength of the correlation

between the gene module and the clinical traits, which increased from blue to red. Each column corresponds to a clinical trait. (C) Visualization of the co-expression

network of the green module. The larger the nodes and the numerous edges, the more significant the gene is. Based on weight, not all genes were represented.

measured and compared by the C-index. All statistical tests were
two-sided, and P < 0.05 was considered statistically significant.
Statistical analyses were conducted using R software (version
3.4.3, www.r-project.org).

RESULTS

Pre-processing of RNA Sequence Data and
Clinical Data
In total, 906 glioblastoma microarray and clinical data were
downloaded from TCGA, REMBRANDT and GSE16011. We
constructed an mRNA expression matrix with gene symbols and
patient barcodes. Furthermore, outlier samples with expression
quantities <20% were screened. A total of 46 samples were
discarded owing to the lack of OS information. Finally, the top
5,000 genes with the greatest variance obtained from the training
cohort were used in the WGCNA studies.

Identification of Modules Associated With
Glioma Survival Status
To identify significant gene modules, we constructed a gene co-
expression network with WGCNA. With a scale-free network
and topological overlaps, we generated a hierarchical clustering
tree based on the dynamic hybrid cut (Figure 2A). Finally,
15 gene modules were identified, and the branches of the
tree represent different gene modules. The non-co-expressed
genes were included in the “gray” module, which was not
further analyzed (Figure 2B). The relationships of the fifteen
modules were analyzed with clinical traits, such as survival time,
recurrence time, age, and sex. The green module correlated
significantly with survival status (Figure 2B). A total of 436 genes
were included in the green module.

Visualization of Green Module Genes
Network screening was used to detect the hub genes in the green
module. The co-expression network of the green module was
visualized with a Cytoscape graph. As shown in Figure 2C, the
hub genes were centrally located in the modules and may be
the key elements of the modules. The larger the nodes and the
numbers of the edges, the more significant the gene is. When
depicted based on weight, not all genes were represented.

Functional Enrichment Analysis
We performed a functional enrichment analysis of the green
module using GO analysis. As shown in Figures 3A–D, enriched
BPs were mainly involved in the positive regulation of cellular
component biogenesis. The cellular components (CCs) were
mainly enriched in focal adhesion and the cell substrate adherens
junction. Enriched molecular functions (MFs) were mainly
involved in cell adhesion molecule binding. KEGG pathway
analysis showed that the MAPK signaling pathway was the most

enriched pathway, followed by proteoglycans in cancer and the
regulation of the actin cytoskeleton. The results suggested that
these genes were closely related to cell adhesion function.

Identification and Validation of a Cox
Proportional Hazards Regression Model
We further selected all genes of the green module to perform
a univariate Cox analysis (Figure 3E). Then, multivariate Cox
analysis was performed on the four genes that were significantly
related to survival time. A Cox proportional hazards regression
model was constructed with the TCGA cohort. The risk score
for predicting survival time was calculated with the following
formula based on the four genes: risk score = (0.00889 ×

EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724 × EXPFKBP9) +
(0.1557× EXPLGALS8).

We divided patients from the training set into high-risk (n
= 262) and low-risk (n = 262) groups according to the median
of the risk score. The 1- and 3-year areas under the ROC curve
were 0.62 and 0.71, respectively, indicating a high predictive
value. Additionally, the predictive model can function as a good
predictive indicator of the survival of glioma patients, which was
confirmed by Kaplan-Meier curves. Patients with high-risk scores
exhibited worse OS according to the Kaplan-Meier curves. The
5-year and 3-year survival rates of the high-risk group (2.7 and
6.8%, respectively) were significantly worse than those of the low-
risk group (8.8 and 18.9%, respectively; Figure 4A). Moreover,
the Kaplan-Meier curves confirmed that the four genes could
function as predictive indicators for the survival of GBM patients
in the training cohort (Figures 3F–I).

Furthermore, we assessed the prognostic effect of different
clinical characteristics using a univariate Cox proportional
hazards regression model. The results showed that CIMP status,
IDH1 status, MGMT status, age, and risk score were associated
with OS (P < 0.01) (Table 1). However, the multivariate
regression model showed that the risk score and age were
independent prognostic factors associated with OS.

To confirm that the proposed risk score model has similar
prognostic value in different populations, the same formula was
applied to the GSE16011 and REMBRANDT cohorts. The results
showed that patients in the high-risk group had a significantly
lower OS rate than those in the low-risk group in both the
GSE16011 and REMBRANDT cohorts (Figures 4B–C). The
functional GSEA showed that the high-risk group was highly
enriched in genes closely related to base excision repair, the cell
cycle, DNA replication, and ribosome function (Figure 5A).

Construction of a Predictive Nomogram
To develop a quantitative method to predict patients’ OS rate,
we constructed a nomogram in the TCGA cohort. The risk
score was stratified into high- and low-risk groups based on the
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FIGURE 3 | Functional enrichment analysis. (A) Biological process (B) cellular component, (C) molecular function; (D) enrichment of Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis for hub genes related to survival time; (E) The top 14 genes which were significantly related to survival time in univariate

analysis; (F–I) Kaplan-Meier curves for CLEC5A,FKBP9, FMOD, and LGALS8 in the TCGA cohort.
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FIGURE 4 | The prognostic efficiency of the Cox proportional hazards regression model. Heat map of the model genes in (A) training set of the TCGA, (B) test set of

GSE16001, (C) test set of Rembrandt; ROC curves of the four genes signature for predicting 12- and 36-months survival of glioblastoma. The 12- and 36-months

areas (AUC) under the ROC curves indicate higher predictive value; Kaplan–Meier curves analyze the survival of the high-risk group and the low-risk group, the high-

risk group had the worse outcome (P < 0.001).
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TABLE 1 | The prognostic effect of different clinical characteristics.

Univariate analysisa Multivariate analysisb

HR 95%CI P-value HR 95%CI P-value

CIMP-status 0.35 0.24–0.5 <0.001 0.29 0.04–2.19 0.232

IDH1-status 0.34 0.21–0.55 <0.001 1.8 0.23–14.08 0.573

MGMT-

status

0.69 0.54–0.87 <0.001 0.84 0.64–1.1 0.205

Subtype 0.93 0.86–1.01 0.07 - - -

Age 1.03 1.03–1.04 <0.001 1.03 1.02–1.04 <0.001

Gender 1.16 0.96–1.41 0.13 - - -

Risk score 1.57 1.3–1.89 <0.001 1.49 1.14–1.94 0.003

aThese data were used to perform the Cox proportional hazards regression.
bMultivariate analysis used stepwise addition of clinical covariates related to survival in

univariate analysis (P < 0.01) and the ultimate models contained those covariates that

were significantly associated with survival (P < 0.01).

median. The predictors included age, risk group, and IDH1 status
(Figure 5B). Due to the lack of IDH1 mutation information
in the REMBRANDT cohorts, the calibration curves for the 1-
and 3-year OS rates were well-predicted in only the TCGA and
GSE16011 cohorts (C-index: 0.65 for the TCGA cohort and 0.68
for the GSE16011 cohort; Figures 5C,D).

DISCUSSION

Gliomas are the most common and malignant brain tumors
with poor prognosis, especially GBM. The most promising
treatments, such as surgery, radiation, and chemotherapy with
temozolomide, improve survival measured in only weeks rather
than years (17). Precise studies of GBM biology and molecular
markers have renewed our understanding of GBM. In 2008,
Parsons et al. first proposed subtypes of GBM based on specific
gene alterations (18). In 2016, the WHO revised the classification
of tumors of the central nervous system based on gene technology
andmolecular signatures. The classification contained somewell-
known biomarkers, such as MGMT methylation, 1p/19q co-
deletion, IDH 1 or 2, and EGFR. Recently, Suchorska et al.
reported that amino acid positron emission tomography (PET)-
based metabolic imaging can be used as a promising tool
for the non-invasive characterization of molecular features
and to provide additional prognostic information (19). These
classifications and studies helped with prognosis, survival time,
and response to treatment. As GBMs are heterogeneous and
complex, molecular signatures are superior to single biomarkers
in the prognosis of glioma.

To identify a gene signature associated with the survival
status of GBM patients, we first constructed a weighted gene
co-expression network in 524 glioma samples and generated the
survival time-specific green module. The detected hub genes in
the green module were significantly correlated with the survival
status of patients with GBM. The GO and KEGG functional
enrichment analysis showed that the genes that were closely
related to adhesion function, adhesion molecules and the MAPK
signaling pathway accounted for the highest proportion of green

module genes. Adhesion function is a key factor in glioma
invasiveness, and adhesion molecules play an important role
in gliomagenesis. The MAPK pathway regulates the activity
of transcription factors that function in proliferation, survival,
differentiation, and apoptosis (20). Furthermore, this signaling
pathway is also activated by EGFR signaling. TheMAPK pathway
could also be directly or indirectly activated through mutations
of downstream components. In high-grade gliomas, MAPK-
activated samples presented prolonged survival in comparison
to other high-grade tumors. In low-grade gliomas, the presence
of activated MAPK was also a predictor of favorable patient
outcome, regardless of fusion or hotspot mutation events (21).

To analyze the relationship between survival time and the
hub genes of the green module, we selected 436 genes for
univariate Cox analysis. Our survival analysis by constructing
a Cox proportional hazards regression model showed that
CLEC5A, FMOD, FKBP9, and LGALS8 were highly associated
with OS. CLEC5A/MDL-1 is a member of the myeloid C-type
lectin family expressed in macrophages and neutrophils, which
is strongly associated with the activation and differentiation of
myeloid cells and has been implicated in the progression of
multiple acute and chronic inflammatory diseases. Research by
Batliner et al. suggested that CLEC5A/MDL-1 could activate a
signaling cascade that results in the activation of downstream
kinases in inflammatory responses (22) and maintain lesional
macrophage survival, causing their accumulation (23). Another
report showed that Japanese encephalitis virus (JEV) directly
interacted with CLEC5A. Additionally, anti-CLEC5AmAb could
repair the blood-brain barrier, attenuate neuroinflammation,
and protect mice from JEV-induced lethality (24). Recently, R.
Chai reported that CLEC5A was also a prognostic biomarker
of GBM (25). FKBP9 is a peptidyl–prolyl isomerase and is
a member of this protein family. It has been implicated in
neurodegeneration, mainly through accelerating fibrillization
(26, 27). Fibromodulin (FMOD), as a GBM-upregulated gene,
promotes glioma cell migration through its ability to generate
the formation of filamentous actin stress fibers. FMOD-induced
glioma cell migration is dependent on the integrin-FAK-Src-
Rho-ROCK signaling pathway (28). FMOD was also reported
to be a prognostic biomarker in GBM (29). LGALS8 plays
functional roles in promoting GBM cell proliferation and clonal
sphere formation (30). Though CLEC5A and FKBP9 have not
been reported in glioma-related studies, their features play
important roles in cell metabolism and pathological processes.
Further studies are needed to explore their relationship with
glioma. Therefore, CLEC5A, FMOD, FKBP9, and LGALS8
could be considered crucial prognostic factors in the OS of
glioma patients.

In this study, we constructed a prognostic score model of a
four-gene signature. The univariate Cox proportional hazards
regression result demonstrated that this four-gene signature,
together with CIMP status, IDH1 status, MGMT status, and
age, was highly associated with OS. The independent prognostic
significance was also verified according to a multivariate
regression model. The ability of the four-gene model to predict
survival outcomes was further confirmed by the validation
cohorts from the REMBRANDT and GSE16011 datasets. To
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FIGURE 5 | Gene-set enrichment analysis (GSEA) and Nomogram. (A) The GSEA showed that high-risk group highly enriched in Base excision repair, Cell cycle, DNA

replication, Ribosome; (B) Nomogram to predict the 1- and 3-year OS. Calibration curve for OS nomogram model in the TCGA cohort (C) and GSE16011 cohort (D).

further strengthen the accuracy of the model, we combined
age, IDH1 status, and risk group to fit a Cox proportional
regression model in the TCGA cohort and used a nomogram
for visualization. The calibration curves showed high predictive
ability in the TCGA and GSE16011 cohorts. Our analysis showed
that the four-gene model is likely a promising and viable
prognostic signature for the survival status of glioma patients.

In summary, through the construction of a gene co-expression
network with data from the TCGA database, a green module

with a survival signature was identified using the WGCNA
approach. The hub genes were selected from the green module
genes and visualized with Cytoscape. By constructing a Cox
proportional hazards regression model, four genes were finally
identified and used in univariate and multivariate Cox analyses,
thereby composing a four-gene module with the risk score =

(0.00889 × EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724 ×

EXPFKBP9) + (0.1557 × EXPLGALS8). This four-gene module
represents a promising and viable prognostic signature for the
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survival outcome of GBM patients. The present study revealed
the potential application of a WGCNA-based gene prognostic
model for predicting the survival outcomes of GBM patients.
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Alternative splicing (AS) has a critical role in tumor progression and prognosis. Our study

aimed to investigate pancreatic cancer-specific AS events using RNA-seq data, gaining

systematic insights into potential prognostic predictors. We downloaded 10,623 genes

with 45,313 pancreatic cancer-specific AS events from the Cancer Genome Atlas (TCGA)

and SpliceSeq database. Cox univariate analyses of overall survival suggested there was

a remarkable association between 6,711 AS events and overall survival in pancreatic

cancer patients (P < 0.05). The area under the curves (AUC) of the receiver operator

characteristic curves (ROC) of risk score was 0.89 for final prognostic predictor. Results

indicated that AS events of DAZAP1, RBM4, ESRP1, QKI, and SF1 were significantly

associated with overall survival. The results of FunRich showed that transcription

factors KLF7, GABPA, and SP1 were the most highly related to survival-associated AS

genes. Furthermore, using DriverDBv2, we identified 13 driver genes associated with

survival-associated AS events, including TP53 and CDC27. Thus, we concluded that the

aberrant AS patterns in pancreatic cancer patients might serve as prognostic predictors.

Keywords: alternative splicing, TCGA, pancreatic cancer, prognosis, driver gene

INTRODUCTION

During the pre-mRNA splicing, introns are removed, and the exons are left to form the final
mRNA products. In this process, exons which are left vary, and thus, one single gene may
generate multiple mRNA isoforms by alternative splicing (AS). More than 95% of human genes
undergo AS, and most of them vary in levels across different cells and tissues (1). Variations in
AS may result in a spectrum of consequences from completely functional inactivation, to subtle or
difficult-to-detect effects, or possibly to altering the location, stability or translation of a transcript,
including oncogenes and tumor-suppressor genes. Alternative splicing has not only critical roles in
normal development but also is indispensable in multiple pathological processes, including cancers
(2–4). Previous studies have provided evidence that aberrant splicing patterns are closely related to
tumor progression and prognosis (2). For example, alternative splicing in pre-mRNA of Epidermal
Growth Factor Receptor (EGFR) produces several isoforms, some of which are constitutively
active, leading to enhanced tumorigenicity, migration, and invasion (5, 6). EGFR, Insulin Receptor
(INSR), and Vascular Endothelial Growth Factor Receptor (VEGFR), whose alternative splicing
features variated, result in promoting tumor progression or reduced response to therapy (7). Recent
evidence found that several tumor suppressor genes undergo aberrant AS in cancer, which leads to
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either complete or partial loss of function, such as TP53 (8).
Therefore, alternative splicing events might be ideal biomarkers
for cancer diagnosis and prognosis and even be served as
a potential target which might help scientists to discover
new drugs.

The conventional molecular method for quantification of
AS is a reverse transcription polymerase chain reaction (RT-
PCR). There are several other techniques, including expressed
sequence tags (ESTs) and splicing-sensitive microarrays, which
were invented to identify the connections between genotypes
and AS patterns in patients. However, these technologies have
low throughput, high noise, or restrained to known splicing
events. Powered by high-throughput RNA-seq, the amount of
human transcriptome data has grown tremendously over the past
decade, and large-scale studies in aberrant AS events at a more
fine-grained level are now available. Recent advances in RNA-
Seq and related bioinformatics methods allow researchers and
clinicians to discover cancer-related AS and further investigate
the molecular mechanism.

Pancreatic cancer is still known as one of the most malignant
solid tumors whose 5-year survival rate has remained under 8%
over the past 30 years. The disease is typically found at a late stage
when the resection is impossible. Moreover, a response rate of
only one-quarter or less can be expected, and resistance of current
chemotherapy, such as gemcitabine, occurred in most of the
pancreatic cancer patients. At present, the molecular mechanism
of pancreatic cancer development and progression is still unclear.
Researches have been undertaken to elucidate the mechanisms
of this malignancy, including AS in specific gene transcription
(9–11). However, few studies have tried to investigate the
prognostic value of AS in pancreatic cancer. Therefore, the
present study identified pancreatic cancer-specific AS events by
analysis of RNA-seq data downloaded from The Cancer Genome
Atlas (TCGA) program, gaining more information about their
functions in cancer biology in detail.

MATERIALS AND METHODS

Alternative Splicing Events From TCGA
RNA-Seq Data
TCGA (https://tcga-data.nci.nih.gov/tcga/) is a landmark cancer
genomics program with a large amount of detailed information
across various cancers in public database (12). The RNA-Seq
data of pancreatic cancer cohorts (PAAD) was downloaded for
further analysis. SpliceSeq (http://bioinformatics.mdanderson.
org/TCGASpliceSeq) is a Java application which explores the
mRNA alternative splicing patterns of TCGA data. The SpliceSeq
tool was used to investigate the mRNA splicing pattern of PAAD
samples from the TCGA database. SpliceSeq aligned reads to
available transcripts of genes in the Ensembl database and built a
unified splice graph. Then, the PAAD sample reads are aligned to
the splice graph, and the feature of splicing for each transcript will
be summarized. The Percent Spliced in (PSI) value is a parameter
to assess the chance of each splicing event. There are several
subtypes of splice events: Exon Skip (ES), Alternate Promoter
(AP), Mutually Exclusive Exons (ME), Alternate Terminator

(AT), Retained Intron (RI), Alternate Donor site (AD), and
Alternate Acceptor site (AA). The detailed information of each
subtype of splicing event in PAAD was shown in Figure 1A.

Survival Analysis
Clinical information of the PAAD cohort with 178 patients was
available in the TCGA database (12). Summary characteristics of
these patients were shown in Supplementary Table 1. In order
to build the model and further analysis, we used mean values
to replace the null value in the dataset of the splicing events.
For each AS event, the patients were divided into two groups
according to the median value; then the Univariate Cox analyses
were performed to identify survival- associated splicing AS events
in pancreatic cancer (P < 0.05). The Multivariate Cox regression
was performed to determine the prognostic value of splicing
events (P < 0.05). Then, the most significant top 20 genes in
each model were chosen for the forest plots. Above analyses
were performed using R/Bioconductor (version 3.5.2) and SPSS
(version 25.0).

Construction of the Model of Risk Scores
Predictive models were built with prognostic events from
identical AS subtype, respectively, whereas the final model was
constructed with the whole splicing events from PAAD. In
order to evaluate accuracy of model of risk scores, we drew
the K-M curve, and the cut-off value is P < 0.01. Receiver-
operator characteristic (ROC) curves were drawn, and the values
of the area under the curves (AUC) were used to compare the
predictive power of each model. All analyses were performed
using R/Bioconductor (version 3.5.2) and Graphdpad Prism 8.0.

UpSet Plot and Gene Network
Construction
Intersections between different types of AS were investigated by
UpSet R (13). UpSet R is a novel R package which provides
intersecting sets using matrix design, along with visualizations of
several common sets, element, and attribute related tasks. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway were performed and were significant when
the P-value was <0.05 in KEGG and 0.0001 in GO analysis.
GO Enrichment plot were used to depicted gene interaction
network, function annotation, and pathway enrichment of
survival- associated AS genes. Therein, using Cytoscape (version
3.7.1), significant genes with the smallest P-value in univariate
analysis were selected for the drawing of the PPI network.

Splicing Correlation Network Construction
The expression of splicing factor genes in mRNA splicing
pathway was investigated by analysis of the level 3 mRNA-seq
data in TCGA. Pearson correlation test was used to analyze
the correlation between the mRNA expression of splicing factor
gene and the PSI value of survival- associated alternative
splicing events. Cytoscape (version 3.7.1) was used to construct
the interaction network of the significant genes with the
smallest P-value.
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Analysis of Splicing-Factor, Transcription
Factors, and Driver Gene
The association between survival- associated AS events and
splicing factors was further investigated. Firstly, the log-rank test
was used to identify survival- associated splicing factors. The list
of 71 known splicing factors was extracted from the SpliceAid
2 (https://bioinformatics.mdanderson.org) database, which was
released in February 2013 (14). The expression profiles of
splicing factors were downloaded from the TCGA database
and further converted into transcripts per million (TPM).
Pearson correlation test was applied to assess the association
between survival-associated AS and survival- associated splicing
factors. FunRich (Functional Enrichment analysis tool for
transcription factors) from ExoCarta (http://www.exocarta.org/),
DriverDBv2 (A database for human cancer driver gene research)
and David (http://david.abcc.ncifcrf.gov/) databases were used
to perform the analysis. To find the correlation between
gene mutation status and AS events, t-test was performed.
Pearson correlation test was also performed to investigate
the association between mRNA expression of driver genes
and AS events. R software (version 3.5.2) was applied for
bioinformatics analysis, and P < 0.05 was considered significant
(Two-sided tests).

RESULTS

Number of mRNA Splicing Events in PADD
Cohort From TCGA
The PSI value of all the splicing events was calculated by
SpliceSeq. To identify each AS event precisely, each AS event
was named by gene name followed by the unique as_ID and AS
types. For example, for the name S100A13/7733/AP, S100A13 is
the gene name, 7733 is the as_ID in the dataset, and the AP is
the AS subtype. As depicted in Figure 1B, a total of 10,623 genes
with 45,313 AS events were detected in 178 pancreatic samples,
including 17,402 ESs in 6,750 genes, 2,873 RIs in 1,922 genes,
9,325 APs in 3,724 genes, 8,733 ATs in 3,816 genes, 3,118 ADs in

2,210 genes, 3,657 AAs in 2,594 genes, and 205 MEs in 202 genes.
Overall results showed that one gene might have an average of
4.2 AS events. Among those genes, 8,833 genes had more than
one type of AS events. Gene collagen type 1 alpha 1 (COL1A1)
had the maximum number of AS events (n = 484), followed by
mitochondrial ribosomal protein L55 (MRPL55) (n = 74) and
interleukin 32 (IL32) (n = 68). Among those splicing subtypes,
ES was the main subtype of AS events, while ME was relatively
rare in the tumor. Besides, only a small proportion of AS events
(1,622 out of 45,313) were novel splice. The PADD cohort of
TCGA also included four normal samples; the PSI median values
of different genes were also summarized and further analyzed.
Several genes splicing events, including KIAA1715/56096/AP,
ZNF567/49415/AP, NTMT1/87861/AP, ANAPC15/17570/AD,
SRPK2/81284/ES, MTMR11/7413/AP, FNIP2/70999/AP, and
TNC/87336/ES, differed significantly between tumor and normal
samples (Figure 2A). When compared to normal samples, cancer
samples had reduced alternative splicing diversity (41,629 AS
events in normal vs. 40,959 in cancers).

Survival-Associated AS Events in PAAD
Cohort
Cox univariate analyses of overall survival were applied to explore
survival- associated AS events in PAAD cohort. The results
showed that 6,711 AS events strongly correlated with OS (P <

0.05), including 550 RIs from 449 genes, 421 AAs from 382
genes, 385 ADs from 342 genes, 1,499 APs from 809 genes,
1,649 ATs from 873 genes, 2,174 ESs from 1,463 genes, 33
MEs from 33 genes and 550 RIs from 449 genes. The UpSet
plot was a novel method to display the intersecting sets, which
may be more intuitive and superior to the Venn diagrams. As
depicted in the plot, most of these genes had two or more AS
subtypes associated with survival, but none of them possessed
seven AS subtypes simultaneously (Figure 2B). The top 20
survival-associated AS events of the seven AS subtypes were
presented in Figure 3. In top 300 genes from survival-associated
AS events, some genes were top hub genes in the network, such

FIGURE 1 | Illustrations for alternative splicing during seven types in this study. (A) Schematic example of AS events, ME, Mutually exclusive exons; ES, Exon skip; RI,

Retained intron; AT, Alternate terminator; AP, Alternate promoter; AA, Alternate acceptor site; AD, Alternate Donor site; (B) A number of AS events and involved genes

from TCGA PAAD cohort were depicted according to the AS types. The black bar represents the preliminarily detected AS events. The red bar represents the

related genes.
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FIGURE 2 | Dot plot and UpSet plots in PAAD. (A) Correlation between tumor PSI and normal PSI in splicing factors were depicted in the dot plot. The smooth red

curve was drawn according to median PSI value in normal; the black triangles represented the median PSI value of genes in the tumor. (B) The UpSet intersection

diagram shows seven subtypes of splicing associated AS events in PAAD. One gene might have more than one subtype of survival-associated AS event.

as VEGFA, CD44, pyruvate kinase gene (PKM), amyloid beta
precursor protein (APP), ubiquitin-conjugating enzyme E2 L6
(UBE2L6) (Figure 4A). In pancreatic cancer, KEGG pathway
analysis showed that “Metabolic pathway,” “Endocytosis,” and
“Axon guidance” were most significantly enriched by these genes.
GO analysis revealed that “Protein binding,” “poly(A) RNA
binding,” and “RNA binding” in molecular function, “cytoplasm,”
“cytosol,” and “extracellular exosome” in cellular component,
“cell-cell adhesion,” “mRNA processing,” and “actin cytoskeleton
organization” in biological process were the most significantly
enriched (Figure 4B).

Prognostic Models for PADD Cohort
To evaluate the prognostic value of AS events in pancreatic
cancer, the survival-associated AS events were selected to
construct the prognostic risk score models in each subtype of AS
events (Figure 5). As depicted in the results, all of the models
showed significant value to predict the outcome of pancreatic
cancer patients, including RI subtype (P < 0.0001), ES subtype
(P < 0.0001), AP subtype (P < 0.0001), AT subtype (P <

0.0001), AA subtype (P < 0.0001), ME subtype (P < 0.0001),
and AD subtype (P < 0.0001) (Figure 6A). The final prognostic
model was built by a combination of prognostic AS events
from different subtypes and showed significant prognostic value
in distinguishing high-risk patients (P < 0.0001). Notably, the
final prognostic model showed better performance than seven
AS subtypes. The final prognostic predictor had the highest
predicting efficiency analyzed by ROC (AUC = 0.89), followed
by the AP model in subtypes (AUC= 0.88) (Figure 6B).

Network of Survival-Associated Splicing
Factor, Transcription Factors, and Driver
Gene
To identify survival-associated splicing factors, we performed a
survival analysis about splicing factors based on PSI values. A
total of 71 splicing factors from the SpliceAid2 database were
chosen for survival analysis. Results showed that AS events of five
splicing factors, including DAZ associated protein 1 (DAZAP1),
RNA-binding motif 4 (RBM4), Epithelial Splicing Regulatory

Proteins 1 (ESRP1), Quaking (QKI), and steroidogenic factor
1 (SF1), significantly associated with overall survival. The level
3 RNA sequence data were downloaded from TCGA, and the
correlations of splicing factors expression and survival were
analyzed. As depicted in Figures 7A–E, the expression of ESRP1
(P = 0.0025) significantly associated with survival, but DAZAP1
(P =0.064), QKI (P = 0.45) and SF1 (P = 0.62) and RBM4
(P = 0.18) were not. The association between PSI values of
top significant AS events and survival-related splicing factors
was still unknown. Thus, String tool was used to investigate the
association and gain systematic insights into their interaction.
Only genes that are significantly related to each other were
included in the network. In the correlation network, there was
a significant association between the expression of five survival-
associated splicing factors and 95 survival-associated AS events.
Among 95 survival-associated AS events, 56 AS events (green
dots) predicted good survival, whereas 39 AS (red dots) events
strongly associated with poor survival in pancreatic cancer
(Figure 7F). Correlation between these five splicing factors and
representative AS events was shown in dot plots, suggesting the
potential association between them (Supplemental Figure 1).

A transcription factor enrichment prediction performed
among the survival-associated AS events using the FunRich
software. Results identified several transcription factors,
including Krüppel-like factor 7 (KLF7), GA binding protein
transcription factor subunit alpha (GABPA), trans-acting
transcription factor 1 (SP1), that might be the most significant
transcription factors associated with survival-associated AS
events. Transcription factor SP1 was the most highly related to
53.4% of all the survival- associated AS genes, followed by KLF7
(36.5%) and GABPA (23.9%) (Figure 8A).

A list of driver genes was generated by at least five

bioinformatics tools using the DriverDB, which is a database

for the investigation of cancer driver gene and mutations.
Results showed that 13 driver genes were identified, including
tumor protein p53 (TP53), which were previously reported (15)
(Figure 8B). In the mutation profile of driver genes, mutation
of TP53, FSHD region gene 1 family member B (FRG1B), and
cell division cycle 27 (CDC27) occurred in most of PAAD
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FIGURE 3 | Forest plots show the top 20 survival-associated AS events of the seven AS subtypes, respectively. The circles represent HRs in the plots; Horizontal bars

represent 95% CIs. Forest plots of HRs for survival associated AA subtypes (A), AD subtypes (B), AP subtypes (C), AT subtypes (D), ES subtypes (E), ME

subtypes (F), RI subtypes (G) in PAAD.

cohort from TCGA. As for the mutation class, truncating and
missense were the two main types for driver genes, such as TP53,
FRG1B, and CDC27 (Supplemental Figure 2). In addition, we
investigated the correlations between mRNA expression of
driver genes and the top 30 survival-associated AS events.
Results indicated that mRNA expression of adaptor-related
protein complex 3 subunit sigma 1 (AP3S1), integrin subunit
beta 4 (ITGB4), and p21 (RAC1) activated kinase 1 (PAK1)

was significantly associated with most of the top 30 survival-
associated AS events (Supplemental Figure 3). Samples were
divided into several groups according to numbers of driver gene
mutations, and results indicated that numbers of AS events for
each sample were not significantly associated with numbers of
driver gene mutations (Supplemental Figure 4). Furthermore,
we explored the correlation of AS events andmutation profiles by
the t-test and found that mutation status of TP53, splicing factor
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FIGURE 4 | Protein-protein interaction analysis and gene enrichment in PAAD. (A) Survival-associated AS events interaction network created by Cytoscape. Genes

are represented as nodes in the plot, and their interactions were denoted by lines. The size and color of the nodes represent Degree values and change pattern,

respectively. The gene of lighter color and greater circle shows the higher Degree values in this network, whereas the darker color and the smaller circle show the

smaller Degree values in this network. (B) Pathways identified by GO and KEGG analyses. Top 15 enrichment analysis of GO (include BP, CC, and MF, respectively)

and top five pathways KEGG analyses of genes from OS-related alternative splicing events. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;

CC, cellular component; Mf, molecular function; BP. Biological process.

3a subunit 1 (SF3A1), and CDC27 significantly correlated with
most of the Top-100 survival-associated AS events (Figure 9).

DISCUSSION

Alternative splicing enables a single gene to generate multiple
mRNAs. Moreover, these mRNAs can be translated into various
proteins with diverse functions and structures. Emerging data
have demonstrated that aberrant AS patterns were identified

in various cancers and engaged in multiple carcinogenic
processes during cancer development and progression (16). The
previous study demonstrated the AS events of tissue factors
promoted neovascularization and monocyte recruitment via
integrin ligation, thus contributing to activation of coagulation
and tumor spread in pancreatic cancer (17). In pancreatic
cancer, AS events of the PKM were differentially regulated and
promoted the expression of the PKM2 isoform. Compared to
PKM1, switching PKM2 AS events is beneficial to withstand

Frontiers in Oncology | www.frontiersin.org 6 August 2019 | Volume 9 | Article 77324

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yu et al. New Prognostic Predictors for Pancreatic Cancer

FIGURE 5 | Construction and analysis of risk score based on the survival-associated splicing events using multiple Cox regression analysis. PAAD patients were

divided into low- and high-risk groups based on the median value of risk score. The top of each assembly drawing represents survival status and survival time of

PAAD patients distributed by risk score, the bottom part is the risk score curve of patients with PAAD. Risk scores were constructed using (A) AA subtypes, (B) AD

subtypes, (C) AP subtypes, (D) AT subtypes, (E) ES subtypes, (F) ME subtypes, (G) RI subtypes, and (H) ALL subtypes of survival-associated splicing events.
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FIGURE 6 | Kaplan-Meier and ROC curves of prognostic predictors in PAAD cohort. (A) Kaplan-Meier plot depicting the survival difference between the high and

low-risk group in these prognostic models. (B) ROC analysis for all prognostic models. The different color lines of ROC curves represent different subtypes of

AS events.

FIGURE 7 | Survival-associated splicing factors and splicing correlation network in PAAD. (A–E) The prognostic value of mRNA expression of five splicing factors

expression, whose AS events was significantly associated with overall survival in PAAD. (F) Splicing correlation network in patients with PAAD constructed by

Cytoscape. These five splicing factors (purple dots) were positively (red lines) or negatively (green lines) associated with AS events, which predicted good (green dots)

or poor (red dots) outcomes in patients with PAAD.

gemcitabine and cisplatin-induced genotoxic stress, thus induced
chemoresistance (18). Serine and arginine-rich splicing factor
1 (SRSF1) and heterogeneous nuclear ribonucleoprotein K
(hnRNPK) were aberrantly upregulated in pancreatic cancer,
leading to the increased expression of anti-apoptotic splice
variants of Bcl-x and Mcl-1, significantly affected responses

to chemotherapy (19). Previous data concerning the function
of AS events in pancreatic cancer mainly focused on one or
several genes, and there was no study which had explored the
prognostic value of AS comprehensively. Given the importance
of AS events in cancer, we investigated AS events and
gained a comprehensive insight into the prognostic value
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FIGURE 8 | Correlation between transcription factors, driver mutation and splicing factors. (A) The histogram shows the results of transcription factor prediction from

survival- associated AS events. The blue band represents the gene percentage, the yellow band represents the P-value standard (P = 0.05), and the red band

represents the P-value. (B) A list of driver genes was generated by at least five bioinformatics tools using the DriverDB.

FIGURE 9 | The correlation between PSI value of AS events and mutated status of driver genes was explored through t-test. Colors represented the P-value of t-test.

Blue to red means P-value from low to high.

of AS events in pancreatic cancer through the analysis
of TCGA.

Among the genes with AS events, Gene COL1A1, which
makes part of a large molecule called type I collagen,
have the maximum number of AS events. Further analysis
revealed some of COL1A1 AS events significantly correlated
with survival. Our results were consistent with previous
studies (20–22). Evidence showed that COL1A1 could activate
β1-integrin and the activation, along with the epithelial-
mesenchymal transition, contributed to the development of
PAAD (23). The previous study has also demonstrated that
once PAAD cells met COL1A1, Snail expression conducted
by the increasing of TGF-β1 (Transforming Growth Factor-
β1) signaling would begin, which in turn accelerate the
progress of PAAD invasion by the upregulated MT1-MMP
(membrane type 1-MMP) expression (24). Evidence also showed
that hypoxia augmented the transcription and deposition of
COL1A1 by TGF- β pathway, and COL1A1 was identified

as a hypoxia marker in the non-small cell lung carcinoma
(20). Abnormal COL1A1 lead to increasing radioresistance
in cervical cancer and had its potential prognostic value in
gastric cancer (21, 22). However, the implication of dysregulated
splicing pattern of COL1A1 in cancer, including pancreatic
cancer with abundance fibrosis, remains to be elucidated. When
compared to normal samples, cancer samples had reduced
alternative splicing diversity. A previous study reported that
the splicing factor genes were upregulated in seven cancer
types, including colorectal adenocarcinoma, breast cancer, and
lung adenocarcinoma, while they were downregulated in four
cancer types, including lymphoma and uterine cancer (2). In
our study, we found that the total expression of the splicing
factor genes in pancreatic cancer was downregulated. The results
indicated that dysregulated expression of the splicing factor
genes among cancer types was not in a fixed mode, which
may partly result from tumor heterogeneity. Thus, systemic
evaluation of the AS patterns in pancreatic cancer contributes
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to the understanding of the underlying mechanism of tumor
development and progression.

Survival analysis was conducted, and interaction analysis
between these survival-associated genes was performed. Results
indicated that VEGFA closely related to other genes and served
as a hub gene in the network. Among the VEGFA AS events,
patients with VEGFA/76330/ES had better survival, implying
that loss of Exon8 may weaken or abolish the interaction of
VEGFA with other proteins and then inhibit the growth of the
tumor. However, VEGFA/76336/ES significantly associated poor
survival in pancreatic cancer, which is inconsistent with previous
data (25). Of note, VEGFA/76336/ES, whose splice occurred with
removal of exon7.1 and exon7.2 loss, lack the neuropilin binding
site at exon7. In breast cancer, the VEGF-A/Neuropilin 1 pathway
promoted cancer stemness by activating Wnt/β-Catenin axis,
resulting in cancer stem cell phenotypes and chemoresistance
(25). In acute myeloid leukemia, high expression of VEGFA was
identified as an oncogenic factor, whose functionmay be reversed
by SEMA3A competing for neuropilin (26). Theoretical speaking,
removal of exon7, the binding site of neuropilin at VEGF
sequence, abolish the interaction and inhibit tumor growth.
However, VEGFA/76336/ES significantly associated unfavorable
prognosis, which indicating its multifaceted roles in pancreatic
cancer progression. It is hard to conclude that VEGFA/76336/ES
promotes tumor growth due to a lack of experimental evidence.
Nevertheless, our results indicated that neuropilin mediates
cancer cell growth may rely on pathways independent of VEGFA.
Additionally, blocking neuropilin may strengthen the role of
anti-VEGF therapy in reducing the formation of new blood
vessels. It is difficult to judge whether a gene is a cancer
suppressor or a promoter since different AS events have varied,
even opposite biological functions. Therefore, mRNA expression
of a gene may be not adequate to determine the biological
function, and the predominant AS events need to be taken
into account.

Due to the characteristics of pancreatic cancer, including
late diagnosis and poor outcome, several researchers had
proposed some prognostic models based onmRNA, lncRNA, and
microRNA (4, 27, 28). Nevertheless, seldom of these prognostic
models come into widely used in clinical practices. Several
studies published before finding that alternatively spliced variants
contributed to cancer metastasis, cell cycle progression, and
chemoresistance (18, 29, 30). As events have been previously
identified as diagnostic, predictive, and prognostic biomarkers
in pancreatic cancer (18, 31, 32). However, current knowledge
about AS events was mostly derived from small samples studies
or mainly focused on one single gene. Recently, a systemic
analysis of AS events in pancreatic cancer was available due
to high-throughput sequencing analysis and data from TCGA.
Analysis of each subtype of splicing events was performed and
found some of the AS events were of significant prognostic
value in pancreatic cancer. Unlike other cancers, including
colorectal cancer, lung cancer, the majority of AS events were
closely associated with favorable prognosis in pancreatic cancer,
especially in AD and RI subtypes. Prediction models were
further built by each subtype, respectively or a combination
of these seven subtypes. Among the models built by identical

subtype, AP events demonstrated the highest efficiency in
the prediction of survival outcome than other six subtypes.
Moreover, the final prediction model built by a combination of
seven subtypes showed better performance than other prediction
models, with an AUC of ROC reaching 0.89 in distinguishing
poor survival outcome. Our current work is the first to provide
a comprehensive and systemic analysis of AS events and
risk score models based on survival-associated AS events in
pancreatic cancer.

The network of survival-associated splicing factors was
evaluated and found AS events of DAZAP1, RBM4, ESRP1,
QKI, and SF1 were significantly associated with overall survival,
but the only mRNA expression of ESRP1 correlated with
overall survival. Therefore, investigation into the AS events is
important to judge the function of gene products. Epithelial-
mesenchymal transition (EMT) is defined as a process that
epithelial cells with tight junctions acquire a mesenchymal
phenotype (33). This means that epithelial cells become easily
mobile after this transition, that is, EMT can regulate metastasis
(34). ESRP1 is a critical regulator in the epithelial splicing
program through targeting several genes, such as fibroblast
growth factor receptor 2 (FGFR2) and CD44 (also called
H-CAM) (35, 36). As the levels of the mRNA of ESRP1
is down-regulated, the CD44 variant isoform is replaced by
the CD44 standard isoform which promotes EMT, increasing
invasiveness in gallbladder cancer (37). Evidence showed that the
role of inflammation-inducible Snail in the driving malignant
transformation of both normal and at-risk human bronchial
epithelial cells required the silencing of RNA splice regulator
ESRP1 (38). However, the evidence about the function of ESRP1
in pancreatic cancer still lacks and further studies are required.
Current evidence has pointed out that splicing factors can
precisely bind to a splice-regulatory sequence located at the
gene, thus control the process of splicing (39). According to
the difference in the sequence and structure, these splicing
factors can be divided into two families, including Ser/Arg
rich proteins (SR proteins) and the heterogeneous nuclear
ribonucleoproteins (hnRNPs). By binding to sequence silencers
or enhancers of splicing, these two families possess the opposite
function in themRNA splicing. However, the potential regulatory
network of splicing factors during the splicing process remains
unclear and clarifying the function of ESRP1 is critical in the
interpretation of the molecular mechanism of pancreatic cancer.
More attention should thus be paid to the study of AS events in
pancreatic cancer.

The transcription process can impact AS events by a
variety of mechanisms. Transcription factors can regulate the
recruitment of splicing components, and modulate Pol II
elongation rate, which regulates the kinetics of exposure of
competing for splice sites (40). We evaluated the association
between survival-associated AS events and transcription factors.
Transcription factors KLF7, GABPA, and SP1, were the most
highly related to survival-associated AS genes, which implied
that one transcriptions factor might participate in splicing
control of several genes. Krüppel-like factors (KLFs) was
involved with many cellular activities, such as proliferation
and metabolism (41–43). Moreover, a previous study reported
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that KLF7 transcriptionally activated argininosuccinate lyase,
which resulted in polyamines production and the oncogenesis
of glioma (44). KLF7 can also contribute to the migration
and epithelial-mesenchymal transition of oral squamous cell
carcinoma (45). However, the mechanism of how transcriptions
factors engaged in the process of splicing is still unknown.
It is reasonable that one single transcriptions factor may
regulate several genes not only by direct binding to the
promoter of targeted genes but also by indirect impact on
splicing process.

Recent evidence showed that several genetic mutations,
including K-Ras, TP53, SMAD family member 4 (SMAD4),
and cyclin dependent kinase inhibitor 2A/P16 (CDKN2A/P16),
drove the oncogenesis of pancreatic cancer (46). Except for
these four driver genes, more and more genes are identified as
the critical genes in the process of pancreatic cancer, including
ret proto-oncogene (RET), AT-rich interaction domain 1A
(ARID1A), and ATM (47). Driver genes have been identified
as the building blocks in pancreatic cancer, and emerging data
suggested that driver gene K-Ras involved in the process of
splicing control, such as mucin 6 (MUC6), hepatocyte growth
factor (HGF), VEGFR-2, and VEGFB (48). The abnormal
expression of splicing factors of SR and hnRNP families results
in dysfunction of targeting apoptotic genes, including p53 (19).
However, rare studies had been conducted in the exploration of
the association between driver genes and AS events. Potential
driver genes were identified by the bioinformatic tool in the
present study. Further analysis revealed that splicing events of
each gene did not increase with accumulating gene mutations.
Though the expression of TP53 and SF3A1 correlated with
rare survival-associated AS events, mutation status of these
two driver genes significantly correlated with many of the
top 100 survival-associated AS events. SF3A1, which belong
to candidate U2-dependent spliceosome genes family, was
identified as driver genes by five prediction tools. Previous
studies indicated that two SNPs (rs5994293 and rs9608886) of
SF3A1, locating to the region of 22q12.2, were strongly correlated
with pancreatic cancer (49). However, the mechanism of how
driver genes, including SF3A1, lead to increasing AS events
is still unclear. Our study findings enriched our knowledge
about the mutation status of driver genes and regulation of
splicing, gaining systemic insight into the molecular mechanism
underlying PAAD.

Several limitations should be considered when interpreting
the results. First, the included number of the PAAD samples was
relatively small, and only four normal samples were available for
PSI analysis. Second, the prognostic value of survival-associated
AS events lack the external independent validation cohort.
Third, the present study only investigated the data from high-
throughput genomic sequence; experimental validation should
be performed in the future.

In conclusion, our comprehensive investigation first
focused on the aberrant AS patterns in pancreatic cancer and
may contribute to the improvement of pancreatic cancer

management and broaden to the novel field of prognosis and
targeted molecular implications.
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Supplemental Figure 1 | Correlation between these five survival-associated

splicing factors and representative AS events was shown in dot plots.

Supplemental Figure 2 | The mutation profile of 13 driver genes. The red band

represents truncating, the purple band represents missense, and the green band

represents inframe.

Supplemental Figure 3 | The heatmap of the correlations between the mRNA

expression of driver genes and PSI values of top 30 survival-associated AS

events. Colors represented the correlation coefficient r.

Supplemental Figure 4 | Samples from PAAD cohort were divided into several

groups according to numbers of driver gene mutations from 0 to 12 in X-axis. No

sample has thirteen gene mutations concurrently. The Y-axis represents the

numbers of AS events of each sample.

Supplementary Table 1 | Baseline characteristics according to TCGA

Clinical data.
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Sirtuins (SIRTs) 1–7 are a family of intracellular enzymes, which possess nicotinamide 
adenine dinucleotide-dependent deacetylase activity. Emerging evidence suggest that 
SIRTs play vital roles in tumorigenesis by regulating energy metabolism, DNA damage repair, 
genome stability, and other cancer-associated cellular processes. However, the distinct 
roles of the seven members in ovarian cancer (OC) remain elusive. The transcriptional 
expression patterns, prognostic values, and genetic alterations of seven SIRTs in OC 
patients were investigated in this study using a range of databases: Oncomine and Gene 
Expression Profiling Interactive Analysis, Kaplan–Meier plotter, the Cancer Genome 
Atlas, and cBioPortal. The protein–protein interaction networks of SIRTs were assessed 
in the String database. Gene Ontology enrichment and Kyoto Encyclopedia of Genes 
and Genomes pathway were analyzed in Database for Annotation, Visualization, and 
Integrated Discovery. The mRNA expression levels of SIRT1–4 and 7 were downregulated, 
while that of SIRT5 was upregulated and SIRT6 exhibited both expression dysregulation 
in patients with OC. Dysregulated SIRTs mRNA expression levels were associated with 
prognosis. Moreover, genetic alterations primarily occurred in SIRT2, 5, and 7. Network 
analysis indicated that SIRTs and their 20 interactors were associated with tumor-related 
pathways. This comprehensive bioinformatics analysis revealed that SIRT1–4, 6, and 7 
may be new prognostic biomarkers, while SIRT5 is a potential target for accurate therapy 
for patients with OC, but further studies are needed to confirm this notion. These findings 
will contribute to a better understanding of the distinct roles of SIRTs in OC.

Keywords: sirtuins, ovarian cancer, prognosis, database, bioinformatics analysis

INTRODUCTION

Ovarian cancer (OC) ranked eighth in incidence and seventh in mortality rates globally among 
all cancers in women in 2018 (WHO, http://gco.iarc.fr/today/home). Furthermore, the absence of 
incipient symptoms leads to over three quarters of patients being diagnosed at advanced stages 
(Zhou et al., 2018). Standard treatment for this disease involves surgical intervention combined 
with chemotherapy. Although the use of gene sequencing and targeted therapies have improved the 
survival of OC patients, the 5-year survival rate is still poor because of the complex tumor processes 
and pathological subtypes of OC and the shortage of more specific target biomarkers. Therefore, 
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enhancing therapy requires new biomarkers for prognosis and 
individualized treatment of OC.

Sirtuins (SIRTs) are a family of intracellular enzymes that 
possess nicotinamide adenine dinucleotide (NAD+)-dependent 
deacetylase activity and share a highly conserved 275-amino 
catalytic core domain. Seven members (SIRT1–7) in mammals 
are divided into the following four classes: SIRT1–3, I; SIRT4, 
II; SIRT5, III; and SIRT6-7, IV (O’Callaghan and Vassilopoulos, 
2017). Based on their subcellular localization, they can also be 
categorized as follows: SIRT1, 6, and 7 reside in the nucleus; 
SIRT2 is expressed in both the nucleus and cytoplasm; and 
SIRT3, 4, and 5 are in the mitochondria (Chalkiadaki and 
Guarente, 2015). Emerging evidence suggest that SIRTs play 
vital roles in tumorigenesis by regulating energy metabolism, 
DNA damage repair, genome stability, and various other 
cancer-associated cellular processes. Aberrant expression of 
SIRTs has been found in common human carcinomas such 
as breast, lung, liver, and gastrointestinal cancers, as well as 
OC and neurologic tumors (Chen et al., 2013; Chalkiadaki 
and Guarente, 2015; Osborne et al., 2016; O’Callaghan and 
Vassilopoulos, 2017).

Presently, the dysregulated expression of SIRTs and their 
prognostic value have been partly reported in OC. For example, 
the expression of SIRT1 was found to be higher in 68 OC tissue 
samples than it was in 16 normal ovaries (Mvunta et al., 2017). 
Consistent with this study, overexpression of SIRT1 was also 
reported in 90 OC tissue samples compared with 40 normal ovary 
tissues, and, interestingly, a high expression level of SIRT1 was 
associated with a favorable outcome (Jang et al., 2009). However, 
a converse finding that SIRT1 was downregulated in OC based on 
public datasets has also been reported (Hyde et al., 2018). SIRT2 
predicted poor survival when upregulated in patients with OC 
(Teng and Zheng, 2017), while reduced expression of SIRT2 was 
observed in 13 samples of serous ovarian carcinoma compared 
with 11 samples of normal ovarian surface epithelial tissues (Du 
et al., 2017). At least one copy of the SIRT3 gene was deleted in 40% 
of breast and OCs, and focal deletions of SIRT3 were especially 
frequent in ovarian tumors (Finley et al., 2011). In contrast, the 
region encompassing the SIRT5 locus was amplified in 30% of 
high-grade serous ovarian carcinomas (Bell et al., 2011a). SIRT3 
and SIRT5 expression were found to be significantly decreased 
and increased in primary serous OCs/tubal cancers compared 
with that in normal counterparts, respectively (Li et al., 2019). 
SIRT4 has been reported to function as a tumor suppressor in 
published studies, and reduced expression in OC was reported 
in a meta-analysis (Csibi et al., 2013).The mRNA expression of 
SIRT6 in 32 OC tissue samples was remarkably lower than that 
in paired normal ovarian tissues (Zhang et al., 2015), whereas 
there were higher SIRT7 mRNA levels in OC, although without 
statistical significant, which could have been due to the small 
sample sizes analyzed (Aljada et al., 2015).

These findings indicate that SIRTs are closely associated with 
OC, and it is striking that even in the same tumor, the specific 
roles of individual SIRTs can be controversial, which may be 
partly ascribed to small sample sizes. A comprehensive analysis 
of the expression and mutation patterns and prognostic values 
of SIRTs in OC based on large database analysis would enhance 

the understanding of their potential roles in OC. Therefore, we 
conducted this study to investigate this phenomenon.

METHODS

Ethics Statement
The OC specimens and normal tissues were obtained from 
patients who were diagnosed with OC and underwent primary 
cytoreductive (debulking) surgery from Aug 2017 and May 
2018 in First Affiliated Hospital, China Medical University. The 
enrolled patients had signed informed consent. This study was 
approved by the Medical Research Ethics Committee of China 
Medical University and conducted according to the principles 
expressed in the Declaration of Helsinki. All the datasets were 
retrieved from the published literature, so it was confirmed that 
all written informed consent was obtained.

Oncomine Database
The Oncomine database (www.oncomine.org) (Rhodes et al., 
2004), an online cancer microarray database and web-based 
data-mining platform, was used to investigate the transcriptional 
levels of SIRTs in different clinical cancer specimens and 
corresponding normal controls. The search contents and 
thresholds were set as follows: keywords, SIRT1–SIRT7, primary 
filter, cancer vs. normal; cancer type, OC, the absolute value of 
log2 fold change >1.5, P < 0.05; and gene rank, 10%. The P value 
was calculated using the Student’s t test.

GEPIA Database
The Gene Expression Profiling Interactive Analysis (GEPIA) 
database (http://gepia.cancer-pku.cn/), a newly developed web-
based tool, provides key interactive and customizable functions 
including tumor vs. normal differential expression analysis, 
profiling plotting in accordance with cancer types or different 
pathological stages, correlation analysis, patient survival analysis, 
similar gene detection, and dimensionality reduction analysis 
based on the Cancer Genome Atlas (TCGA) and the genotype–
tissue expression data (Tang et al., 2017).

The Kaplan–Meier Plotter
The prognostic value of SIRTs in OC patients was evaluated using 
the Kaplan–Meier plotter (http://kmplot.com/analysis), an open 
online dataset that can be used to assess the effect of 54,675 genes 
on survival in 21 cancer types including breast, liver, ovarian, lung, 
and gastric cancer (Győrffy et al., 2012). To analyze the overall 
survival (OS) and progression-free survival (PFS) of patients with 
OC, samples were split into two groups based on median expression 
(high vs. low). The hazard ratio (HR) with 95% confidence intervals 
(CIs) and log-rank P values were calculated and displayed in 
survival plots. P < 0.05 was considered statistically significant.

TCGA Database and cBioPortal
The cBioPortal for Cancer Genomics (http://cbioportal.org) 
provides an open-access web resource for exploring, visualizing, 
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and analyzing multidimensional cancer genomic data from 
TCGA (Gao et al., 2013). In the present study, three TCGA 
datasets of OC, namely, “TCGA Nature 2011 (563 cases),” 
“TCGA PanCancer Atlas (585 cases),” and “TCGA Provisional 
(606 cases)” were selected for further analysis of SIRT gene 
mutations or copy number alterations (CNA). The OncoPrint, 
survival tabs were applied according to the online instructions 
of the cBioPortal.

String Database and DAVID
The interaction proteins network of SIRTs was constructed using 
the String Database (https://string-db.org/), which is an online 
database of predicted functional associations between proteins 
(von Mering et al., 2003). “Homo sapiens” was selected and 
interactions with a combined score >0.7 (high confidence) were 
considered significant. Seven SIRTs and 20 associate proteins 
were imported into Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/) 
to perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses (Huang et al., 2009a; 
Huang et al., 2009b). The human genome was selected as 
the background parameter, and a P < 0.05 was considered 
statistically significant.

Immunohistochemistry
Surgically excised normal and tumor specimens were fixed in 
10% neutral formalin, embedded in paraffin, and cut into 4-mm 
sections. The sections were incubated with commercial rabbit 
polyclonal antibodies against SIRT1, SIRT2, SIRT3, SIRT4, 
SIRT5, SIRT6, and SIRT7 (SIRT1, 2, 5–7 were purchased from 
Proteintech, China; SIRT3 and SIRT4 were purchased from 
Abcam, China) at 1/100 dilution overnight at 4°C. Then, the 
reaction was visualized using the Elivision super HRP IHC Kit 
(Maixin-Bio) and 3,3-diaminobenzidine (DAB); nuclei were 
counterstained with hematoxylin. The sections were dehydrated 
in ethanol before mounting.

Cell Culture and Quantitative Real-Time 
PCR Analysis
The A2780 and SKOV-3 human OC cell lines were used in this 
study. The cells were cultured in Dulbecco’s modified Eagle 
medium and RPMI-1640, respectively, supplemented with 
10% fetal bovine serum. These cells were grown at 37°C in a 
humidified atmosphere with 5% CO2.

Trizol (Invitrogen, Carlsbad, CA) was used to extract total RNA 
from OC cells. One microgram RNA was reverse transcripted 
using the PrimeScript RT Master Mix (TaKaRa) according to 
manufacturer’s instructions. Quantitative real-time PCR (qRT-
PCR) was done using Applied Biosystems Power SYBR Green 
on a qTOWER2.0. Real-time PCR system is as follows: 10 s at 
95°C, then 40 cycles at 95°C for 5 s, and 65°C for 34 s. The gene 
amplification specificity was shown by a melting curve generated 
in dissociation procedure. 2−ΔΔCt method was used to normalize 
the quantification of SIRT1-7 to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). The specific primer sequences are 
performed as follows:

GAPDH Forward 
5′-CCACCCATGGCAAATTCC-3′

Reverse 
5′-GATGGGATTTCCATTGATGACA-3′

SIRT1 Forward 
5′-GTAGGCGGCTTGATGGTAATC-3′ 

Reverse 
5′-GACTCTGGCATGTCCCACTAT-3′

SIRT2 Forward 
5′-GCGGAACTTATTCTCCCAGAC-3′ 

Reverse 
5′-GCTCCCACCAAACAGATGAC-3′

SIRT3 Forward 
5′-CTGTGGGTGCTTCAAGTGTTG-3′ 

Reverse 
5′-CCCGAATCAGCTCAGCTACAT-3′

SIRT4 Forward 
5′- ACACTGGGCTTTGAGCACCT-3′

Reverse 
5′-GAGTCTGTTCCCCACAATCCA -3′

SIRT5 Forward 
5′-TCGTGGTCATCACCCAGAAC-3′ 

Reverse 
5′-GCCACAACTCCACAAGAGGTAC-3′

SIRT6 Forward 
5′-GCCAAGTGTAAGACGCAGTAC-3′ 

Reverse 
5′-TAGGATGGTGTCCCTCAGCT-3′

SIRT7 Forward 
5′-CATCGTGAACCTGCAGTGGA-3′ 

Reverse 
5′-GGGAGTCGCCAGTGAGAAAA-3′

RESULTS

Transcriptional Levels of SIRTs and Their 
Relationship With Clinicopathological 
Characters in Patients With OC
The dysregulated transcriptional levels of seven SIRTs have been 
identified in 20 different types of human cancers in the Oncomine 
database. As shown in Figure 1, SIRTs might act as either a tumor 
promoter or suppressor, in a context-specific manner. Especially, 
the mRNA expression levels of SIRT1 were significantly 
downregulated in patients with OC in Bonome’s dataset (Bonome 
et al., 2008) with a log2 fold change of −1.866, while SIRT5 and 
SIRT7 were higher in ovarian serous adenocarcinoma in two 
another datasets (Yoshihara Ovarian and TCGA datasets; log2 
fold changes, 1.929 and 1.626, respectively) (Yoshihara et al., 
2009) than in normal ovarian tissues (Table 1, bold font).

Moreover, the mRNA levels of SIRTs in different types of OC, 
which were available in Oncomine datasets, are summarized in 
Table 1. In Hendrix’s dataset, SIRT1, SIRT3, and SIRT4 expression 
levels were significantly lower in serous, endometrioid, mucinous, 
and clear cell adenocarcinoma than they were in normal ovarian 
tissues. SIRT2 expression was lower in serous and endometrioid 
adenocarcinoma in Lu’s dataset (Lu et al., 2004), whereas SIRT5 
was upregulated in those types of OC in Hendrix’s dataset 
compared with normal tissues (Hendrix et al., 2006). SIRT6 was 
expressed at higher levels in all types of OC than it was in normal 
tissues in Hendrix’s dataset except for serous adenocarcinoma. 
Interestingly, SIRT7 was downregulated in OC in Bonome’s dataset 
but upregulated in both TCGA and Hendrix’s datasets compared 
with normal tissues (Hendrix et al., 2006; Bonome et al., 2008).

In addition, the GEPIA database was also used to compare 
the mRNA expression of SIRTs between OC and normal tissues. 
The expression levels of SIRT1–3 were significantly lower, and 
levels of SIRT4, 6, and 7 were slightly more downregulated 
(P > 0.05) in OC than they were in normal tissues, while SIRT5 
exhibited contrasting expression (Figure 2A). The results were 
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consistent with those of the Oncomine database except for that 
of SIRT6. These findings were verified by immunochemistry 
(IHC), and as shown in Figure 2B, SIRT5 protein expression was 
higher in OC than in the counterpart normal tissues, while the 
protein expression difference of other SIRTs was not significant. 
Furthermore, the mRNA levels of SIRTs in two OC cell lines were 
detected by qRT-PCR, and the results were similar to the IHC 
(Figure 2C). The relationship between mRNA expression levels 
of SIRTs and different tumor stages of OC were also analyzed, 
and they were all significantly upregulated in stage II except for 
SIRT2 and SIRT4 (Figure 3).

Prognostic Value of SIRTs in Patients With 
OC
To further assess the prognostic value of SIRTs in all patients 
with OC, Kaplan–Meier plotter analysis was used. We initially 
assessed the relationship between the mRNA expression of 
individual SIRT and the survival of OC patients. The survival 

curves demonstrated that decreased SIRT1 and SIRT4 mRNA 
levels and increased expression of SIRT2, 3, 6, and 7 predicted 
favorable prognosis (OS and PFS). Interestingly, a higher level of 
SIRT5 was associated with shorter PFS but with longer OS. Then, 
we also wondered the prognostic value of the combined SIRTs, 
and the results showed that upregulated levels of their combined 
mRNA expression was correlated with poor outcome in patients 
with OC (Figure 4).

Moreover, we also assessed the prognostic values of SIRTs 
in different subtypes of OC, namely, different histology, clinical 
stages, pathological grades, and TP53 status, which are available 
in Kaplan–Meier plotter. As shown in Table 2, increased 
mRNA expression of SIRT3, 5, 6, and 7 in serous OC patients 
and decreased levels of SIRT4 in both serous and endometrioid 
OC patients were significantly related to improved OS. The 
overexpression of SIRT2–4 predicted shorter PFS in serous OC 
patients. As shown in Table 3, high mRNA expression of SIRT5 
and low expression of SIRT6, 7 were associated with poor OS in 
stage 1. Elevated mRNA levels of SIRT3, 5–7 and low levels of 

FIGURE 1 | The mRNA levels of sirtuins (SIRTs) in 20 different types of cancers (Oncomine). The number in each cell represents the number of analyses that 
satisfied the following threshold: P < 0.05, the absolute value of log2 fold change >1.5, and gene rank, 10%. The numbers in colored cells show the quantities of 
datasets with statistically significant mRNA overexpression (red) or downexpression (blue) of target genes.
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SIRT1, 4 were associated with better OS in stage 3, while high level 
of SIRT2 predicted poor OS in stage 4. In terms of pathological 
grades, high SIRT6 mRNA expression was linked to favorable 
OS. Interestingly, increased expression of SIRT3 predicted poor 
OS in mutated TP53 type, while it was associated with better OS 
in wild-type TP53. With respect to PFS (Table 4), high mRNA 
expression of SIRT1-3 and 7 were found to be correlated to 
shorter PFS in stage 1, whereas low levels of SIRT1, 5 and SIRT2, 
4, and 6 predicted longer PFS in stages 2 and 3, respectively. In 
stage 4, increased expression of SIRT2 and 3 were linked to poor 
PFS. With regard to pathological grades, decreased levels of 
SIRT2 and 4 predicted better PFS. Interestingly, SIRT3 exhibited 
opposite roles in different pathological grades. Additionally, 
elevated expression of SIRT1 and 2 were associated with poor PFS 
in both mutated and wild type of TP53, while increased levels of 
SIRT3, 6, and 7 were related to poor PFS in mutated TP53 status. 
Taken together, these results indicated that the mRNA expression 
levels of SIRTs may be potential biomarkers for the prediction of 
OC patient survival.

Genetic Alteration Analysis of SIRTs in 
Patients With OC
Next, the genetic alterations of SIRTs in OC patients were explored 
using the TCGA database and c-BioPortal online tool. SIRTs 
were altered in 1,754 samples of 1,742 patients from three TCGA 
databases of serous cystadenocarcinoma, and the alteration rates 
were 31.02% (188/606), 24.1% (141/585), and 16.7% (94/563), 
respectively, and the amplification accounted for most changes 
(Figure 5A). As shown in Figure 5B, the genetic SIRT alterations 
occurred in 423 (24%) of the queried samples, and the individual 
sequence alteration rates varied from 1.4 to 10%. SIRT2, SIRT5, 
and SIRT7 were ranked as the top 3 of the seven members, and 
their mutation rates were 10, 8, and 5%, respectively (Figure 5B). 
Using the “Survival” tab with the Kaplan–Meier plot and log-
rank test, the survival curves showed that cases with or without 
alterations in one of the SIRTs had no relationship with OS and 
PFS (Figures 5C, D).

GO Enrichment and KEGG Pathway 
Analysis of Protein–Protein Interaction of 
SIRTs
A network of seven SIRT members and 20 proteins that 
significantly interacted with SIRTs was constructed using 
the String database [protein–protein interaction (PPI) 
enrichment P < 1.0E−16]. The network graphic showed that 
cell metabolism-related genes tumor protein 53 (TP53), Fork 
head box O 1/3/4 (FOXO1/3/4), and superoxide dismutase 
2 (SOD2), and histone posttranscriptional modification-
related genes histone deacetylase 1/2/4 (HDAC 1/2/4), E1A 
binding protein p300 (EP300), and suppressor of variegation 
3–9 homolog 1 (SUV39H1) were associated with SIRTs 
(Figure 6A). Then, using “correlation analysis” in GEPIA, the 
Pearson correlation coefficients were calculated between SIRTs 
(Figure 6B), ranging from 0.073 (SIRT1 vs. SIRT2) to 0.39 
(SIRT1 vs. SIRT3).TA
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FIGURE 2 | The mRNA and protein expression of SIRTs in patients with ovarian cancer (OC). (A) Box plots of SIRTs mRNA expression based on GEPIA database. 
(B) The representative immunohistochemical staining images of SIRTs protein expression in ovarian cancer and normal tissues (magnification, ×400; scale bar = 
20 μm). (C) The mRNA levels of SIRTs in A2780 and SKOV-3 ovarian cell lines by quantitative real-time PCR (qRT-PCR).*P < 0.05, **P < 0.01,***P < 0.001, ****P < 
0.00001.
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Next, GO enrichment and KEGG pathway analysis of SIRTs 
and their interactors were performed using DAVID. Cellular 
components, biological process, and molecular functions 
were the three main functions of target host genes in the GO 
enrichment analysis. The nucleoplasm, nucleus, and cytoplasm 
were the major cellular components of target genes (Figure 7A). 
Regulation of transcription from RNA polymerase II promoter 
and DNA templated were mainly associated with SIRTs and 
their interacting neighbors while binding to DNA, chromatin, 
and transcription factor were their primary molecular functions 
predicted online (Figures 7B, C). The top 10 KEGG pathways for 
target genes are shown in Figure 7D, and the Notch, FOXO, and 
cancer pathways were found to be invoved in OC.

DISCUSSION

Emerging evidence suggest that SIRTs play vital roles in 
tumorigenesis mediated by their ability to regulate energy 
metabolism, DNA damage repair, genome stability, and other 
cancer-associated cellular processes. However, the distinct roles 
of seven SIRT members in OC are yet to be elucidated. In the 
current study, the mRNA expression patterns, prognostic values, 
genetic alterations, and PPI networks of SIRTs in OC patients 
were investigated through various large databases, including 
Oncomine and GEPIA, Kaplan–Meier Plotter, cBioPortal, and 
String. Moreover, GO enrichment and KEGG pathway were also 
analyzed via DAVID.

SIRT1 is the most studied of these seven SIRT members in 
human cancer and plays dual roles in numerous malignancies 
including OC (Chalkiadaki and Guarente, 2015). For example, 
the expression of SIRT1 was significantly higher in endometrioid, 

mucinous, and clear-cell OC than it was in normal ovaries in IHC 
analysis, and its overexpression predicted shorter survival in OC 
(Mvunta et al., 2017). Moreover, overexpression of nuclear SIRT1 
was also found to induce chemoresistance and poor prognosis 
in 63 OC patients (Shuang et al., 2015). Consistently, SIRT1 
was found to be involved in the high expression of cancer stem 
cell markers, chemoresistance, tumorigenesis, and epithelial to 
mesenchymal transition (EMT) phenotype (Qin et al., 2017). In 
contrast to these findings, SIRT1 was downregulated in OC based 
on public datasets and acts as a tumor suppressor (Hyde et al., 
2018). In our study, the mRNA expression of SIRT1 was markedly 
lower in OC tissues than it was in normal tissues. Interestingly, 
a higher mRNA expression of SIRT1 was significantly associated 
with poor outcome in OC.

SIRT2 was initially implicated in mitotic progression and 
serves as a cell cycle regulator (Dryden et al., 2003). Recently, 
several studies have highlighted the critical roles of SIRT2 in 
maintaining genome stability (Kim et al., 2011; Serrano et al., 
2013), suggesting that this SIRT mainly functions as a tumor 
suppressor (Chalkiadaki and Guarente, 2015). For example, 
SIRT2 expression in serous OC was significantly lower than it 
was in ovarian surface epithelium as determined using Western 
blotting and IHC. Reduced expression of SIRT2 upregulated 
cyclin-dependent kinase 4 (CDK4) expression, which eventually 
accelerated cell proliferation, migration, and invasion, indicating 
that SIRT2 plays a tumor-suppressor role in OC (Du et al., 2017). 
Consistently, in the present study, the mRNA expression of 
SIRT2 was considerably more decreased in OC, especially serous 
and endometrioid subtypes, than it was in normal tissues and 
increased levels predicted favorable OS and PFS in patients with 
OC. However, overexpression of SIRT2 was previously reported 
to have been related to a poor prognosis in 491 patients with OC 

FIGURE 3 | The relationship between SIRTs mRNA expression and tumor stages in patients with OC [Gene Expression Profiling Interactive Analysis (GEPIA)]. *P < 0.05.
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(Teng and Zheng, 2017). We assumed that this discrepancy may 
be due to the high mutation rate of SIRT2 (10%) in OC, which 
was identified in our study.

SIRT3 primarily serves as a tumor suppressor by limiting 
reactive oxygen species levels and antagonizing hypoxia-inducible 
factor 1-α, which fights against a metabolic switch to aerobic 
glycolysis (Bell et al., 2011b; Finley et al., 2011; Chalkiadaki 
and Guarente, 2015). SIRT3 was reported to be downregulated 
in both metastatic tissues and cell lines of OC and inhibit EMT 

by interacting with and repressing Twist (Xiang et al., 2016). 
Moreover, SIRT3 was reported to be activated by S1, a novel pan 
B-cell lymphoma-2 inhibitor, and then it exerted a proapoptotic 
effect in SKOV3 OC cells (Dong et al., 2016). SIRT3 was identified 
to decrease and function as an independent favorable prognostic 
factor for OS in serous OC (Li et al., 2019). Similarly, our study 
demonstrated that the transcription levels of SIRT3 in different 
subtypes of OC were remarkably lower than those in normal 
samples, and its increased mRNA expression was significantly 

FIGURE 4 | The prognostic value of mRNA level of SIRTs in patients with OC (Kaplan–Meier plotter). *P < 0.05.
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associated with tumor stage II and favorable outcome in OC. In 
addition, our results showing that the genetic alteration rate of 
SIRT3 was 2.4% and extensive deletion predominately occurred 
were in line with the findings that at least one copy of the SIRT3 
gene was deleted in 40% of breast cancers and OC, and focal 
deletions of SIRT3 were especially frequent (Finley et al., 2011).

SIRT4 has been largely reported to have protective roles 
against cancer by repressing glutamine metabolism and 
maintaining genomic stability (Fernandez-marcos and 
Serrano, 2013; Chalkiadaki and Guarente, 2015). However, 
its expression pattern and prognostic value in OC have been 
rarely reported. Only one meta-analysis suggested that lower 
expression of the SIRT4 gene was found in a series of solid 
carcinomas including OC than in corresponding normal 
tissue (Csibi et al., 2013). Likewise, our results showed that 
a lower mRNA expression of SIRT4 was found in OC than in 
normal tissues. Interestingly, a decreased level of SIRT4 was 
associated with unfavorable OS and PFS in OC, especially 
in serous subtypes. Although it is not clear, we ascribed the 
contradictory findings to the background heterogeneity 
between different databases.

SIRT5 is a unique member of the SIRT family, which possesses 
multiple enzymatic activities including NAD-dependent histone 
deacetylase (Nakagawa et al., 2009), potent lysine demalonylase, 
desuccinylase (Du et al., 2011), and lysine glutarylase (Tan et al., 
2014), now known to play controversial roles in tumorigenesis. 
However, an understanding of the distinct role of SIRT5 in OC 
is still in its infancy. An analysis of human high-grade serous 
ovarian carcinomas revealed that the region encompassing the 
SIRT5 locus was amplified in 30% of these tumors (Bell et al., 
2011a). Consistently, our results showed SIRT5 gene alteration 
in 8% of queried OC patients and amplifications accounted 
for most CNAs. Moreover, SIRT5 was found to increase in 
primary serous OCs/tubal cancers compared with that in normal 
tissues, and high expression of it was associated with better OS 
by univariable analysis (Li et al., 2019). Similarly, in our study, 
a higher mRNA level of SIRT5 was found in OC, especially in 

serous adenocarcinoma, and it was related to poor PFS in OC. 
Interestingly, increased expression of SIRT5 predicted superior 
OS, and this may be partly due to its marked overexpression in 
early tumor stages.

SIRT6 and SIRT7 are both nuclear proteins with deacetylase 
activity and function as both tumor suppressor and promotor 
in cancer, including OC (Chen et al., 2013; Chalkiadaki and 
Guarente, 2015). The mRNA expression of SIRT6 in 32 OC 
tissue samples was remarkably lower than that in the paired 
normal tissues, and SIRT6 inhibited the proliferation of OC 
cells by suppressing Notch 3 expression (Zhang et al., 2015). 
Conversely, the expression of SIRT6 was associated with higher 
tumor stage, higher histological grade, platinum resistance, 
and predicted shorter OS in 104 patients with OC. Moreover, 
SIRT6 was overexpressed in omental metastases compared 
with corresponding primary counterparts (Li et al., 2019) 
and facilitated the invasiveness of OC cells by regulating 
EMT signaling, but it did not inhibit their proliferation (Bae 
et al., 2018).

SIRT7 was overexpressed in OC tissues and cell lines (Barber 
et al., 2013), omental metastasis tissues (Li et al., 2019), and 
promoted tumor cell proliferative potential via regulating 
apoptosis (Wang et al., 2015). However, SIRT7 was significantly 
reduced in cultured chemoresistant OC cells (Aljada et al., 2014) 
and was considered a tumor suppressor based on its inhibition 
of the activity of HIF-1 and HIF-2 transcription factors (Hubbi 
et al., 2013). The present study demonstrated that SIRT6 and 
SIRT7 levels were slightly lower in OC than normal conditions 
based on the GEPIA database analysis (P > 0.05) but significantly 
upregulated in the Oncomine database. Moreover, overexpression 
of SIRT6 and SIRT7 was associated with tumor stage II and a 
better outcome.

In addition to the individual prognostic values of the 
investigated SIRTs, we further determined the simultaneous 
increase in the mRNA expression of all SIRTs predicted poor 
prognosis and whether the genes altered or not had no relationship 
with OS and PFS. In addition, the enrichment analysis indicated 

TABLE 2 | The prognostic values of SIRTs in different pathological subtypes OC (Kaplan–Meier plotter).

Sirtuins Histology OS PFS

Cases HR(95% CI) P value Cases HR(95% CI) P value

SIRT1
218878_s_at

Serous 1,207 1.15(0.99–1.34) 0.074 1,104 0.88(0.75–1.03) 0.1
Endometrioid 37 4.94(0.82–29.69) 0.053 51 0.56(0.22–1.43) 0.22

SIRT2
220605_s_at

Serous 1,207 1.13(0.95–1.33) 0.17 1,104 1.4(1.2–1.63) 1.6E−05
Endometrioid 37 3.84(0.43–34.41) 0.10 51 2.08(0.82–5.27) 0.11

SIRT3
221913_at

Serous 1,207 0.82(0.7–0.95) 0.0096 1104 1.21(1.03–1.41) 0.019
Endometrioid 37 0.46(0.08–2.75) 0.38 51 4.92(0.65–36.99) 0.086

SIRT4
220047_at

Serous 1,207 1.22(1.05–1.42) 0.011 1104 1.26(1.09–1.45) 0.0019
Endometrioid 37 9.36(1.04–84.6) 0.016 51 0.64(0.21–1.94) 0.42

SIRT5
229112_at

Serous 523 0.78(0.62–0.98) 0.036 483 1.17(0.94–1.47) 0.17
Endometrioid 30 3.01(0.31–29) 0.32 44 1.51(0.47–4.83) 0.48

SIRT6
219613_s_at

Serous 1,207 0.81(0.69–0.94) 0.0062 1104 1.14(0.97–1.33) 0.11
Endometrioid 37 0.17(0.02–1.5) 0.069 51 1.97(0.7–5.55) 0.19

SIRT7
218797_s_at

Serous 1,207 0.8(0.69–0.93) 0.0044 1104 1.1(0.93–1.3) 0.28
Endometrioid 37 – 0.18 51 1.99(0.79–5.03) 0.14

The bold font indicates the difference was significant statistically. “–”, not available;
OC, ovarian cancer; OS, overall survival; PFS, progression-free survival.
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TABLE 3 | The relationship between SIRTs and OS in other different subtypes of OC (Kaplan–Meier plotter).

SIRT1 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7

Subtypes Cases HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P

Stage 1 74 2.38 
(0.75–7.54)

0.13 0.34 
(0.11–1.08)

0.056 2.31 
(0.62–8.55)

0.2 0.51 
(0.14–1.88)

0.3 5.65 
(1.13–
28.18)

0.017 0.31 
(0.1–0.96)

0.033 0.28 
(0.09–0.88)

0.02

2 61 1.68 
(0.56–5.06)

0.35 0.64 
(0.21–1.9)

0.42 0.55 
(0.18–1.66)

0.28 0.38 
(0.12–1.18)

0.082 0.27 
(0.05–1.44)

0.1 0.3 
(0.07–1.36)

0.099 0.52 
(0.18–1.51)

0.22

3 1044 1.21 
(1.03–1.42)

0.024 0.92 
(0.77–1.09)

0.33 0.75 
(0.63–0.88)

0.0005 1.29 
(1.08–1.54)

0.005 0.7 
(0.55–0.91)

0.0064 0.77 
(0.65–0.91)

0.0017 0.79 
(0.66–0.94)

0.0093

4 176 0.82 
(0.55–1.21)

0.31 1.48 
(1.02–2.14)

0.036 1.28 
(0.88–1.87)

0.19 1.31 
(0.86–2)

0.21 0.69 
(0.36–1.34)

0.27 0.66 
(0.43–1)

0.046 1.27 
(0.84–1.92)

0.26

Grade 1+2 380 1.28 
(0.95–1.73)

0.1 1.15 
(0.85–1.56)

0.37 0.59 
(0.44–0.79)

0.0004 0.8 
(0.58–1.1)

0.17 0.61 
(0.39–0.94)

0.024 0.62 
(0.46–0.83)

0.0011 0.76 
(0.57–1.02)

0.064

3 1015 1.18 
(0.99–1.41)

0.072 1.1 
(0.92–1.33)

0.3 0.84 
(0.7–1)

0.052 1.32 
(1.1–1.58) 

0.003 0.81 
(0.61–1.08)

0.16 0.82 
(0.69–0.97)

0.018 0.73 
(0.61–0.88)

0.0008

TP53 Mutated 506 1.21 
(0.95–1.53)

0.13 1.55 
(1.22–1.97)

0.0003 1.42 
(1.1–1.84)

0.0072 1.19 
(0.94–1.49)

0.14 0.5 
(0.32–0.77)

0.0015 1.17 
(0.92–1.49)

0.21 1.19 
(0.94–1.5)

0.15

WT 94 1.53 
(0.85–2.76)

0.15 0.64 
(0.37–1.12)

0.12 0.54 
(0.29–0.99)

0.043 1.69 
(0.95–3.02)

0.072 0.51 
(0.16–1.64)

0.25 0.67 
(0.38–1.18)

0.17 1.3 
(0.72–2.34)

0.38

The bold font indicates the difference was significant statistically. OC, ovarian cancer; OS, overall survival; WT, wild type.

TABLE 4 | The relationship between sirtuins and PFS in other different subtypes of OC (Kaplan–Meier plotter).

SIRT1 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7

Subtypes Cases HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P

Stage 1 96 3.74 
(1.17–11.99)

0.018 3.17 
(1.06–9.52)

0.03 4.26 
(1.33–13.62)

0.0077 2 
(0.67–5.97)

0.21 3.11 
(0.89–10.8)

0.06 0.43 
(0.14–1.31)

0.13 2.85 
(0.95–8.51)

0.0498

2 67 2.04 
(0.99–4.21)

0.049 0.74 
(0.36–1.52)

0.41 0.52 
(0.24–1.14)

0.096 0.63 
(0.31–1.3)

0.21 2.64 
(1.03–6.76)

0.036 0.6 
(0.3–1.21)

0.15 0.63 
(0.28–1.41)

0.26

3 919 0.88 
(0.75–1.04)

0.13 1.42 
(1.21–1.66)

1.5e−05 1.15 
(0.99–1.34)

0.069 1.27 
(1.09–1.48)

0.0025 1.13 
(0.89–1.43)

0.3 1.27 
(1.08–1.51)

0.0048 1.19 
(1–1.43)

0.056

4 162 0.88 
(0.59–1.3)

0.52 1.88 
(1.27–2.8)

0.0015 1.77 
(1.21–2.59)

0.0028 0.73 
(0.5–1.08)

0.11 1.68 
(0.98–2.86)

0.056 0.71 
(0.48–1.06)

0.096 0.8 
(0.55–1.16)

0.24

Grade 1+2 293 1.31 
(0.99–1.74)

0.061 1.45 
(1.08–1.94)

0.012 0.7 
(0.51–0.95)

0.023 1.57 
(1.16–2.12)

0.0032 0.73 
(0.48–1.09)

0.12 0.78 
(0.59–1.04)

0.085 0.79 
(0.58–1.1)

0.16

3 837 0.85 
(0.71–1.01)

0.064 1.31 
(1.09–1.57)

0.0039 1.24 
(1.05–1.46)

0.012 1.31 
(1.11–1.55)

0.0015 1.29 
(0.99–1.68)

0.063 0.88 
(0.73–1.06)

0.17 0.89 
(0.74–1.07)

0.22

TP53 mutated 483 1.33 
(1.05–1.68)

0.018 1.65 
(1.32–2.06)

1.1e−05 1.53 
(1.21–1.94)

0.00042 1.17 
(0.94–1.47)

0.16 0.75 
(0.5–1.11)

0.15 1.43 
(1.12–1.82)

0.0037 1.36 
(1.05–1.76)

0.019

WT 84 1.84 
(1.07–3.18)

0.026 1.91 
(1.01–3.63)

0.043 0.67 
(0.36–1.23)

0.19 1.66 
(0.97–2.86)

0.063 1.78 
(0.65–4.86)

0.26 1.51 
(0.86–2.66)

0.15 1.44 
(0.85–2.45)

0.17

The bold font indicates the difference was significant statistically. OC, ovarian cancer; PFS, progression-free survival; WT, wild type.
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FIGURE 5 | The genetic alteration analysis of SIRTs in patients with OC (cBioPortal). (A) Summary of alteration in SIRTs. (B) OncoPrint tab summary of alteration on 
a query of SIRTs. Kaplan–Meier plots comparing (C) overall survival (OS) and (D) progression-free survival (PFS) in cases with/without SIRTs gene alterations.

FIGURE 6 | The protein–protein interaction (PPI) of SIRTs. (A) The network of 7 SIRT members and 20 proteins that significantly interacted with SIRTs (String). (B) 
The Pearson correlation coefficients between SIRTs (GEPIA).
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that SIRTs and their 20 interactors were mainly correlated with 
cancer-related pathways such as the Notch and FOXO pathways.

Despite the numerous findings, there are some limitations 
to this study. First, this was a bioinformatics analysis mainly 
based on transcriptional data, whereas proteins are the primary 
mediators of the various functions. Moreover, although SIRTs 
showed distinct prognostic values in OC, the multivariable 
analyses of molecules such as breast cancer type 1, human 
epididymis protein 4, and cancer antigen 125 are needed for 
further identification. Thus, the utility of SIRT expression as 
independent prognostic indicators in OC is yet to be further 

confirmed. Finally, since all the data were obtained from different 
databases with inevitable background heterogeneity, our results 
may contain some inconsistency. To address these issues, we are 
planning to perform well designed studies to verify these findings 
in the near future.

In conclusion, the mRNA expression patterns, prognostic 
values, genetic alterations, and PPI networks of SIRTs in OC 
patients were investigated. This comprehensive bioinformatics 
analysis revealed that SIRT1–4, 6, and 7 may be new prognostic 
biomarkers, and SIRT5 may be a potential target for precision 
therapy for patients with OC. However, further studies are needed 

FIGURE 7 | Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of SIRTs and their interactors (DAVID). 
GO enrichment analysis of target genes based on following three aspects: (A) cellular component, (B) biological process, and (C) molecular function. (D) KEGG 
pathway enrichment analysis of target genes.

43

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Expression and Prognostic Value of Sirtuins in OCSun et al.

13 September 2019 | Volume 10 | Article 879Frontiers in Genetics | www.frontiersin.org

to confirm this notion. Finally, these findings would contribute 
to a better understanding of the distinct roles of SIRTs in OC.
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Purpose: Metabolic alterations are crucial for tumor progression and response to therapy. 
The comprehensive model of combined central carbon metabolism–associated genes 
that contribute to the outcomes of glioma and astrocytoma is not well understood.

Method: We studied the profiles of 63 genes involved in central carbon metabolism in 
514 relatively low-grade glioma patients. The different distributions of gene expression in 
gliomas and astrocytoma were identified. The differential gene expression between each 
cohort and the correlations with prognosis were detected. Finally, we built a tentative model 
to detect the prognostic roles of carbon metabolism–associated genes in astrocytoma.

Result: Two primary clusters and four subclusters with significantly different overall 
survival were identified in low-grade glioma. The differences of histological diagnoses, 
grade, tumor site, and age were detected between each cluster. Comparing with other 
histological types, patients with astrocytoma exhibited the worst prognosis. Between 
astrocytoma patients with poor and favorable prognoses, expression profiles of 11 genes 
were significantly discrepant. We detected that 18 genes were respectively correlated 
with overall survival in astrocytoma; moreover, four genes (RAF1, AKT3, IDH1, and 
FGFR1) were detected as dependent variables for the prediction of the survival status of 
astrocytoma patients and were capable to predict the survival.

Conclusion: Central carbon metabolism–associated genes are differentially expressed in 
all patients with glioma and histological subtype astrocytoma. The gene expression profile 
is significantly associated with clinical manifestations. These results suggested that both 
the multigene expression patterns and individual central carbon metabolism–associated 
genes were potentially capable to predict the prognosis of patients with low-grade glioma.

Keywords: low-grade glioma, astrocytoma, prognosis, metabolism, gene expression

INTRODUCTION

Diffuse low-grade gliomas are the most common primary malignancies in adults and include 
astrocytomas, oligodendrogliomas, and oligoastrocytomas (Brat et al., 2015). Different histological 
subtypes of glioma were undistinguishable; however, large differences in clinical behavior and 
response to therapy suggest that difference among the histological types is crucial (Smith et al., 
2000). Even within each subtype, there are large differences in clinical performance among 
individual patients. Surgery resection is the primary therapeutic method for low-grade gliomas, 
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but the outcomes are less than satisfactory because of the highly 
infiltrative nature of glioma, and the presence of residual tumor 
tissue results in recurrence and malignant progression (Dixit and 
Raizer, 2017). The prognosis of patients with relatively low-grade 
glioma varies widely, with some patients living for more than 5 
years, while others survive less than 1 year (Bush and Chang, 
2016). A more precise method of predicting the outcomes of 
relatively low-grade glioma is urgently needed to be developed.

Metabolic reprogramming is a central hallmark of cancer. 
Dysregulation of metabolism-related genes leads to cellular 
transformation and tumor progression. Warburg (1956) revealed 
differences in the central metabolic pathways in solid tumors 
and noted that cancer cells require a large amount of glucose to 
maintain a high rate of glycolysis even in the presence of adequate 
oxygen and that they convert a majority of that glucose into lactic 
acid (the Warburg effect). More recently, it has been recognized 
that the “Warburg effect” contains a similarly increased utilization 
of glutamine (Reitzer et al., 1979). Previous studies have detected 
some variations in the genes, such as IDH1/2, GLUT1, and 
GLUT3, involved in tumor metabolism in gliomas (Yan et al., 
2009; Verhaak et al., 2010; Labak et al., 2016). High-throughput 
sequencing has substantially advanced the understanding of the 
metabolic changes in low-grade gliomas by detecting changes 
in metabolism-associated genes (Brennan et al., 2013). Profiling 
holistic gene expression not only facilitates the investigation 
of subgroups with low-grade glioma but also enables the 
identification of the predictors of overall survival (OS) (Chen et 
al., 2016). Which pattern of expression of metabolism-associated 
genes in tumor tissue contributes to glioma is not well understood. 
The Cancer Genome Atlas (TCGA) provided a standardized 
gene expression dataset for the study of the expression pattern 
of metabolism-related genes, which enables the investigation 
of correlations between clinical manifestations and carbon 
metabolism–associated genes in glioma (The Cancer Genome 
Atlas Research Network et al., 2008; Sanborn et al., 2013).

In this study, we investigated the expression patterns of 
central carbon metabolism–associated genes in adult patients 
with diffuse low-grade glioma, including astrocytoma, 
oligodendroglioma, and oligoastrocytoma. Moreover, we 
respectively detected the prognostic roles of individual gene 
and the multiple-gene combination. These results will facilitate 
an integral understanding of the metabolic alterations in 
glioma and provide a novel perspective to manage and treat 
this lethal cancer.

METHODS

Samples and Database
We obtained transcriptome data and the corresponding clinical 
data of 514 relatively low-grade glioma patients from TCGA from 
the cBioPortal for Cancer Genomics (http://cbioportal.org) 
(Gao et al., 2013). We filtered the data based on whether the 
mRNA z-score data, histological diagnosis, and OS data were 
comprehensive. Collectively, the studied dataset included 194 
astrocytoma samples, 130 oligoastrocytoma samples, and 190 
oligodendroglioma samples.

Central carbon metabolism–related genes in the cancer-
associated gene panel (hsa05230) were derived from the KEGG 
pathway database (http://www.kegg.jp/kegg/), as previously 
described (Kanehisa et al., 2017). In total, 65 central carbon 
metabolism–associated genes were listed; however, transcriptome 
information was missing for MYC and HKDC1, and the 
remaining 63 candidate genes were included after filtration. The 
gene expression levels were calculated from the mRNA z scores 
and compared to the expression distribution of each gene from 
tumors that were diploid for the genes in 514 patients with glioma 
(RNA-Seq V2 RSEM), based on TCGA data.

Bioinformatics
A cluster analysis of the 63 genes expressed in each histological 
type was used to distinguish samples based on gene expression 
patterns. Samples with different gene expression patterns were 
identified from the whole dataset. The transcriptional levels were 
shown as mRNA z scores and clustered using the hierarchical 
clustering algorithm in the Gene Cluster 3.0 program (De Hoon 
et al., 2004). The cluster heat map and pattern according to 
tumor stage were generated with the Java Treeview program 
(Saldanha, 2004).

Prognostic Implication Analyses
To investigate the prognostic role of the cancer metabolism–
associated genes, we used GraphPad Prism 6 for Windows 
(GraphPad Software, Inc., CA, US; version 6.01, 2012) to 
perform comparisons of the overall survivals in different 
clusters. Additionally, an analysis of the difference in OS 
between the cohorts with low and high expression levels of 
differentially expressed genes was conducted with GraphPad 
Prism 6.

Statistical Analysis
Survival curves were plotted according to the Kaplan–Meier 
method and compared using the log-rank test in GraphPad 
Prism  6. Associations between clinical characteristics and the 
variables used to determine the clusters of patients were analyzed 
by Fisher exact test and the Pearson/Spearman correlation. 
Differences in gene expression levels between clusters were 
analyzed by analysis of variance. Correlations between variable 
were determined by regression analyses. All tests were performed 
with SPSS 19.0 (IBM, Inc., NY, US). P < 0.05 was considered 
statistically significant.

RESULTS

Expression Profile of Central Carbon 
Metabolism–Associated Genes in 
Diffuse Gliomas
To investigate central carbon metabolism programming in diffuse 
gliomas, we first examined the transcriptional distributions of 
carbon metabolism–associated genes. In total, 63 genes that have 
been widely reported to be key players in metabolic reprogramming 
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were included (Soga, 2013). The patients with diffuse glioma were 
sorted by differences in the gene expression according to the RNA-
Seq data. Following filtration, 514 patients with survival data were 
included in the cluster analysis (Figure  1A). The preliminary 
analysis showed that there were two clusters, and strikingly, the 101 

patients in cluster 1 had much worse prognoses than the patients 
in cluster 2 (OS of 48.65 vs 105.12 months, P < 0.0001) (Figure 
1B, Table 1). Between the two clusters, there was a significant 
difference in the expression levels (P < 0.05) of 49 genes (Figure 
1C). A comparison of the clinical characteristics of clusters 1 and 2 

 
FIGURE 1 | The expression profile of central carbon metabolism–associated genes in glioma patients. (A) In total, 514 patients were primarily divided into two 
clusters. The expression values of 63 genes corresponding to the individual patient were arrayed in the columns according to the expression affinity. Patients with 
similar gene expression patterns were clustered and grouped using the hierarchical clustering algorithm and arrayed in the rows. (B) The patients in cluster 1 had 
much worse prognoses than the patients in cluster 2, of which overall survival (OS) was 48.65 months compared to 105.12 months. (C) There were 49 genes that 
showed a significant difference in the expression levels between the two clusters P < 0.05. (D) The studied cohort was further subdivided into four subclusters, 
among which the subcluster 1 was with the worst OS and subcluster 4 showed the most favorable outcome. (E) The differential expression analysis revealed that 
52 metabolism-associated genes were significantly different between subcluster 1 and subcluster 4.
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showed that the parameters of histological diagnoses, tumor grade, 
tumor site, and age were vastly different between the two clusters 
(P < 0.001), as shown in Table 2.

To detect the subtler differences among further stratified 
cohorts, we subdivided the 514 patients into four subclusters 
based on the expression of the 63 genes. We detected that extreme 
differences in prognosis were shown among those subclusters 
(P < 0.0001) (Figure 1D, Table 3). Subcluster 1 was associated 
with the worst OS, while subcluster 4 showed a much favorable 
outcome than other subclusters (Figure 1D). Comparison of the 
gene expression variations revealed that the expression levels of 52 
metabolism-associated genes were significantly different between 
the two prognostic-discrepant cohorts (Figure 1E). Additionally, 
we compared the clinical characteristics of the subclusters. 
Similar with the previous result, clear significant differences were 
found with regard to the parameters of histological diagnoses, 
tumor grade, tumor site, and age (P < 0.001) (Table 4).

Variations in Metabolism-Associated 
Gene Expression Levels in Different 
Histological Types
According to the binary comparisons among different gene 
expression cohorts, histological type was revealed as the variable 
associated with the largest differences in gene expression. We 
compared the OS of patients with astrocytoma, oligoastrocytoma, 
and oligodendroglioma, and significant differences were 
detected (Figure 2A). The median survival times of patients with 
astrocytoma (66.12 months), oligoastrocytoma 5.12 months), and 
oligodendroglioma (95.5 months) were markedly distinguishing 
(P = 0.0084). Further analysis of differences in gene expression 
demonstrated that 45 metabolism-associated genes were 
differentially expressed among the histological types (Figure 2B, 
Supplementary Table 1).

Differences in the Expression Levels  
of Metabolism-Associated Genes 
in Astrocytoma
The above results showed that among the histological types 
of glioma, astrocytoma showed the worst prognosis. To study 
the expression profiles of metabolism-associated genes in the 
poor-prognosis histological types, we grouped the patients 
with astrocytoma according to the metabolism-associated 

TABLE 2 | Characteristics of glioma patients in clustered groups 1 and 2.

Clinical features
Cluster Total P

1 2
Histological diagnosis Astrocytoma 92 102 194 2.96E−10***

Oligoastrocytoma 34 96 130
Oligodendroglioma 32 158 190

Grade Unknown 0 1 1  <0.001***
G2 52 196 248
G3 106 159 265

Age ≤41 53 215 268 1.37E−8***
 >41 105 141 246

Tumor site Unknown 0 1 1  <0.001***
Posterior fossa, brain stem 1 0 1
Posterior fossa, cerebellum 2 0 2
Supratentorial, frontal lobe 73 229 302
Supratentorial, not 
otherwise specified

7 1 8

Supratentorial, occipital 
lobe

0 8 8

Supratentorial, parietal lobe 18 28 46
Supratentorial, temporal 
lobe

57 89 146

Laterality Unknown 1 4 5 0.412
Left 79 171 250
Midline 4 3 7
Right 74 178 252

Supratentorial localization Unknown 7 22 29 0.853
Cerebral cortex 43 98 141
Deep gray 1 2 3
Not listed in medical Record 73 149 222
White matter 34 85 119

Sex Female 74 155 229 0.275
Male 84 201 285

History neoadjuvant No 158 353 511 0.719
Yes 0 3 3

***P < 0.001.

TABLE 1 | Overall survival differences of each cluster.

Cluster Significance 
(P)

1 2

Number 158 356 <0.0001
Median survival 48.65 105.12
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genes transcriptional data. Among the patients, two primary 
clusters that showed distinguishing median survival times of 
43.99 and 73.42 months were identified (P = 0.0064) (Figures 
3A, B). Further, four subclusters were divided according 
to fine grouping. The comparison of the OS showed that 
the difference in prognosis was even more marked (P < 0.0001) 
(Figure 3C). Subcluster 2 had the worse prognosis (median of 
24.9 months) than other subclusters (median of 67.41 months),  
P < 0.0001 (Figure 3D). We respectively detected the gene 
expression differences between cluster 1 versus cluster 2; 
among different subclusters and subcluster 2 versus the 

other subclusters, the results revealed that the expressions 
of 33 metabolism-associated genes were significantly varied 
(Figure 3E).

The Prognostic Role of Metabolism-
Associated Genes in Astrocytoma
We uncovered that the expression pattern of metabolism-
associated genes was closely related to the prognosis of patients 
with astrocytoma. To investigate the effect of individual 
metabolism-associated gene on the prognosis of astrocytoma 
patients, we divided the subjects into two cohorts according 
to the OS: poor prognosis group and good prognosis group. 
We further investigated the differences in the expression 
levels of the metabolism-associated genes. It was detected that 
11 genes, namely, FGFR1, ERBB2, PGAM4, PGAM1, G6PD, 
RET, AKT3, PTEN, RAF1, PKM, and LDHA, had significantly 
different expression levels between patients with poor and 
favorable OS times (Figure 4A, Supplementary Table 2).

TABLE 3 | Overall survival differences of each subcluster

Subcluster Significance
(P)

1 2 3 4

Number 101 57 123 233  <0.0001

Median survival 24.38 62.12 87.39 130.68

TABLE 4 | Characteristics of glioma patients in subdivided clusters.

Clinical features Subcluster Total P

1 2 3 4

Histological 
diagnosis

Astrocytoma 67 25 60 42 194 5.94E−21***
Oligoastrocytoma 19 15 40 56 130
Oligodendroglioma 15 17 23 135 190

Grade Unknown 0 0 0 1 1 3.88E−08***
G2 20 32 60 136 248
G3 81 25 63 96 265

Age ≤41 32 21 84 131 268 5.32E−8***
>41 69 36 39 102 246

Tumor site Unknown 0 0 0 1 1 <0.001***
Posterior fossa, brain 
stem

1 0 0 0 1

Posterior fossa, 
cerebellum

2 0 0 0 2

Supratentorial, frontal 
lobe

40 33 71 158 302

Supratentorial, not 
otherwise specified

4 3 0 1 8

Supratentorial, 
occipital lobe

0 0 3 5 8

Supratentorial, 
parietal lobe

11 7 15 13 46

Supratentorial, 
temporal lobe

43 14 34 55 146

Laterality Unknown 1 0 2 2 5 0.235
Left 44 35 60 111 250
Midline 4 0 1 2 7
Right 52 22 60 118 252

Supratentorial 
localization

Unknown 4 3 6 16 29 0.910
Cerebral cortex 24 19 32 66 141
Deep gray 1 0 0 2 3
Not listed in medical 
record

50 23 55 94 222

White matter 22 12 30 55 119
Sex* Female 45 29 47 108 229 0.357

Male 56 28 76 125 285
History 
neoadjuvant

No 100 55 119 225 499 0.453
Yes 1 2 4 8 15

*** represent P < 0.001.
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FIGURE 2 | The differences in prognoses of patients with astrocytoma, oligoastrocytoma, and oligodendroglioma were significant. (A) The prognoses of patients 
with astrocytoma, oligoastrocytoma, and oligodendroglioma were significant. (B) Differential expression analysis demonstrated that 45 metabolism-associated 
genes were discrepantly expressed among the three histological types.
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Additionally, we detected the pertinences between the trend 
of metabolism-associated gene expression differential and 
survival variation. According to study correlation of individual 
gene expression and survival, positive correlations were detected 
between the respective expression levels of nine genes containing 
PGAM1, PGAM4, RAF1, PDHB, AKT3, PTEN, PIK3R1, RET, 

and MAPK3 with OS (r > 0.2, P < 0.05); on the other hand, the 
expression levels of nine genes containing EGFR, IDH1, GCK, 
PKM, LDHA, G6PD, TIGAR, ERBB2, and FGFR1 were detected 
negatively correlated to survival (r < −0.2, P < 0.05) (Table 5). In 
addition to their associations with survival, the expression levels of 
the genes are closely correlated between the two sets (Figure 4B).

 FIGURE 3 | The expression profile of central carbon metabolism–associated genes in patients with astrocytoma. (A) According to expression profiling, two primary 
clusters and additionally four subdivided clusters were identified. The comparison of median survival between two primary clusters (B) and five subdivided clusters 
(C) showed significant difference. In addition, patients in subcluster 2 showed the worst prognosis comparing to other patients, P < 0.0001 (D). (E) Differential 
expression analysis demonstrated that 33 metabolism-associated genes were significantly variated in all contrast of clusters 1 and 2, subcluster 2 and the other 
subclusters, and five subclusters.
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To address the prognostic roles of those survival-related 
genes, we separately split the astrocytoma patients into two 
groups according to the single gene expression and additionally 
compared the prognosis between the two groups (Figure 5). 
Except to AKT3 and PIK3R1, 16 genes showed a significant 
association with prognosis. Patients with low expression levels 
of RET and PGAM1 were associated with a greater hazard ratio 
(HR) for death than that of patients with high expression levels 
of RET and PGAM1 (P < 0.0001). In contrast, patients with high 
expression levels of TIGAR, ERBB2, EGFR, and FGFR1 had a 
higher HR for death than that of patients with low expression 
levels of those genes (P < 0.0001) (Table 6).

To evaluate the effects of differences in gene expression on 
the prediction of the outcome of astrocytoma, we ranked the 
expression data of 18 genes to construct a regression model. 
Based on the ranking results, four genes (RAF1, AKT3, IDH1, 
and FGFR1) were independent predictors of the survival status 
of astrocytoma patients (Supplementary Table S3). To integrate 
these four genes into a single panel, multivariate Cox regression 
analysis was employed to obtain the coefficient. The risk score was 

calculated as follows: the risk score was equal to the expression of 
RAF1∗1.801 plus the expression of AKT3∗1.545 plus the expression 
of IDH1∗1.569 plus the expression of FGFR1∗1.035 (Figure 6A). 
As shown in Figure 6B, the area under the receiver operating 
characteristic curve of the four-gene panel for the prediction of the 
long- or short-term outcomes of astrocytoma was 0.9407, with a 
95% confidence interval of 0.8864 to 0.9949 and a P < 0.0001.

DISCUSSION

Low-grade glioma has complicated characteristics and diverse 
histologic types. Although the histopathological classification 
of low-grade gliomas is reliable, it varies between observers and 
is insufficient to predict clinical outcomes (Louis et al., 2016). 
Recently, the molecular analysis of tumors has become a critical 
part of tumor classification and prognostication, and increasing 
evidence has suggested that defining tumor subtypes based on 
differences in gene expression in low-grade glioma is meaningful 
(Verhaak et al., 2010; Eckel-Passow et al., 2015; Louis et al., 2016). 
In this study, we found that metabolism-associated gene profiling 
was able to define two primary clusters and four subclusters of 
patients with low-grade glioma regardless of histologic type. 
Overall survival differed between the primary clusters and 
subclusters. We identified 44 genes with significant differences in 
expression levels between the groups of patients with the worst 
and best prognoses (Figure S1). Some of those genes participate in 
the regulation of intracellular signal transduction, and others are 
involved in the metabolism of glucose and other carbohydrates. 
In addition to the differences in gene expression, we found that 
the groups had significant differences in histological types, tumor 
grades, tumor sites, and age. The results showed the specific 
expression profiles of metabolism-associated genes in patients 
with low-grade glioma.

Astrocytomas, oligoastrocytomas, and oligodendrogliomas 
are the three histologic subtypes of low-grade glioma; the 
subtypes have always been difficult to define according to 

FIGURE 4 | The prognostic role of metabolism-associated genes in astrocytoma. (A) There are 11 differentially expressed genes, containing FGFR1, ERBB2, 
PGAM4, PGAM1, G6PD, RET, AKT3, PTEN, RAF1, PKM, and LDHA, which were detected to be significantly discrepant between patients with poor and favorable 
overall survival (OS) times. (B) According to study correlation of individual gene expression and survival, the expression levels of nine genes positively correlated with 
OS (r > .2, P < 0.05), and the expression levels of the other nine genes were negatively correlated with OS (r < –0.2, P < 0.05).

TABLE 5 | The correlation of overall survival (OS) of astrocytoma and expressing 
variation of individual gene.

OS positively correlated genes OS negatively correlated genes

Pearson correlation 
coefficient (r)

Significant 
(P)

Pearson correlation 
coefficient (r)

Significant 
(P)

PGAM1 0.41  < 0.001*** FGFR1 −0.45  <0.001***
PGAM4 0.40 0.001** ERBB2 −0.39 0.001**
RAF1 0.36 0.003** TIGAR −0.37 0.002**
PDHB 0.29 0.012* G6PD −0.33 0.006**
AKT3 0.28 0.016* LDHA −0.32 0.007**
PTEN 0.27 0.020* PKM −0.28 0.017*
PIK3R1 0.26 0.025* IDH1 −0.27 0.021*
RET 0.25 0.029* GCK −0.27 0.018*
MAPK3 0.25 0.031* EGFR −0.23 0.039*

*P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 5 | The correlation of singular gene expression difference with the astrocytoma prognosis.
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clinical features (Louis et al., 2014). In the current dataset, 
patients with astrocytoma had worse prognoses than those 
of patients with the other two subtypes. We detected the 
differentially expressed genes in patients with different 
histological types of glioma, and 45 genes were significantly 
differentially expressed among the three subtypes. Moreover, 
80% of those genes (35 genes) overlapped with the gene set 
(44 genes) that was associated with different subgroups. 
Specifically, we determined the expression profiles of 
metabolism-associated genes in astrocytomas. The results 
showed that 33 genes had significantly different expression 
levels, and those differences in expression were closely 
correlated with OS in patients with astrocytomas. These 
differences in the expression of metabolism-associated genes 
not only reveal metabolic differences among the histological 

subtypes but also suggest that there is metabolic heterogeneity 
within a single subtype.

In patients with astrocytomas, we identified 11 genes that varied 
significantly in expression between patients with poor and favorable 
OS. Additionally, we detected genes with expression levels that 
were positively and negatively associated with OS, and a correlation 
existed between the expression levels of these two sets of genes. 
According to the survival analysis, 16 genes were significantly 
associated with prognosis. Patients with low expression levels of 
RET and PGAM1 and high expression levels of TIGAR, ERBB2, 
EGFR, and FGFR1 had elevated HRs with regard to survival. The 
RET gene encodes a transmembrane receptor that is a member of 
the tyrosine protein kinase family of proteins. It has been reported 
that the mRNA levels of RET are elevated in astrocytoma patients 
with IDH mutations, who are known to have prolonged survival 

TABLE 6 | The prognostic roles of single metabolism associated gene in astrocytoma.

Gene name Median survival (mo) Hazard ratio 95% Confidence interval P

Low expression High expression

RAF1 33.94 79.93 0.331 1.781–5.128  <0.0001****
RET 50.82 144.94 0.277 2.145–6.069  <0.0001****
EGFR 73.42 26.91 3.007 0.155–0.715  <0.0001****
TIGAR 93.13 29.11 4.276 0.135–0.405  <0.0001****
ERBB2 73.42 21.29 4.301 0.104–0.519  <0.0001****
FGFR1 79.93 26.91 2.776 0.206–0.629  <0.0001****
GCK 73.42 29.11 2.456 0.224–0.739 0.0004***
PGAM4 43.99 93.13 0.424 1.399–3.985 0.0007***
MAPK3 39.72 93.13 0.436 1.362–3.87 0.0011**
PGAM1 41.1 73.42 0.409 1.462–4.094 0.0012**
IDH1 93.13 41.1 2.27 0.256–0.760 0.0012**
PTEN 41.1 79.93 0.475 1.235–3.589 0.0027**
LDHA 62.91 62.12 2.022 0.288–0.850 0.0060**
G6PD 62.91 62.12 1.946 0.299–0.885 0.0089**
PDHB 50.82 98.16 0.54 1.107–3.098 0.0229*
PKM 62.12 67.41 1.685 0.345–1.022 0.0441*
AKT3 43.86 67.41 0.603 0.991–2.776 0.0526
PIK3R1 62.12 67.41 0.802 0.742–2.097 0.4085

*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

FIGURE 6 | Four-gene panel was utilized to potentially predict the outcomes of patients with astrocytoma. (A) The score of the four-gene model including RAF1, 
AKT3, IDH1, and FGFR1 was positively correlated with overall survival and showed a linearity. (B) The area under the receiver operating characteristic curve of 
the four-gene panel for the prediction of the long- or short-term outcomes of astrocytoma was 0.9407, with a 95% confidence interval of 0.8864 to 0.9949 and 
P < 0.0001.
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(Zhang et al., 2018). PGAM1 is involved in tumor cell glycolysis and 
biosynthesis, and this protein had elevated expression levels in high-
grade astrocytomas (Liu et al., 2018). Increased expression of these 
two genes in astrocytomas might inhibit metabolic pathways crucial 
to the development and progression of tumors.

Low-grade glioma is one of the most malignant human diseases, 
with a very poor prognosis and scant available information about its 
biological properties. This study provided new information about the 
metabolism events affected by the identified genes with differential 
expression levels. We divided the patients into different subgroups 
according to their metabolism-associated gene expression patterns. 
The expression levels of those genes were strongly correlated with 
the prognosis of patients with astrocytoma, possibly because of 
their effect on the regulation of the biological behavior of the tumor. 
This study increases our understanding of the prognostic roles 
of central carbon metabolism–associated genes in patients with 
low-grade  glioma.
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Mounting evidence has demonstrated that a lot of miRNAs are overexpressed or

downregulated in colorectal cancer (CRC) tissues and play a crucial role in tumorigenesis,

invasion, and migration. The aim of our study was to screen new biomarkers

related to CRC prognosis by bioinformatics analysis. By using the R language edgeR

package for the differential analysis and standardization of miRNA expression profiles

from The Cancer Genome Atlas (TCGA), 502 differentially expressed miRNAs (343

up-regulated, 159 down-regulated) were screened based on the cut-off criteria of

p < 0.05 and |log2FC|>1, then all the patients (421) with differentially expressed

miRNAs and complete survival time, status were then randomly divided into train

group (212) and the test group (209). Eight miRNAs with p < 0.005 were revealed

in univariate cox regression analysis of train group, then stepwise multivariate cox

regression was applied for constituting a five-miRNA (hsa-miR-5091, hsa-miR-10b-3p,

hsa-miR-9-5p, hsa-miR-187-3p, hsa-miR-32-5p) signature prognostic biomarkers with

obviously different overall survival. Test group and entire group shown the same results

utilizing the same prescient miRNA signature. The area under curve (AUC) of receiver

operating characteristic (ROC) curve for predicting 5 years survival in train group, test

group, and whole cohort were 0.79, 0.679, and 0.744, respectively, which demonstrated

better predictive power of prognostic model. Furthermore, Univariate cox regression

and multivariate cox regression considering other clinical factors displayed that the

five-miRNA signature could serve as an independent prognostic factor. In order to

predict the potential biological functions of five-miRNA signature, target genes of these

five miRNAs were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG)

signaling pathway and Gene Ontology (GO) enrichment analysis. The top 10 hub

genes (ESR1, ADCY9, MEF2C, NRXN1, ADCY5, FGF2, KITLG, GATA1, GRIA1, KAT2B)

of target genes in protein protein interaction (PPI) network were screened by string

database and Cytoscape 3.6.1 (plug-in cytoHubba). In addition, 19 of target genes were

associated with survival prognosis. Taken together, the current study showed the model

of five-miRNA signature could efficiently function as a novel and independent prognosis

biomarker and therapeutic target for CRC patients.

Keywords: microRNA, colorectal cancer, TCGA, prognosis, signature
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INTRODUCTION

CRC is a very common gastrointestinal tumor with high
incidence and mortality. It was estimated that more than 1.8
million new colorectal cancer cases and 0.88 million deaths
will occur in 2018, accounting for about 1 in 10 cancer about
incidence and mortality (1). CRC patients usually show a
survival rate of <5 years due to early metastasis. Although
treatments (such as surgery, radiotherapy, chemotherapy, and
targeted therapy) have been developed fleetly, high recurrence,
and poor prognosis remain troubling issues (2). Although various
biomarkers have been discovered and were associated with the
occurrence, progression and prognosis of colorectal cancer to
date (3), their reliability remains controversial. Consequently,
it is urgent to screen new potential diagnostic and prognostic
biomarkers or therapeutic targets for CRC.

MicroRNAs (miRNAs), a vital component of the non-
coding RNA family, are approximately made up of 18–25
nucleotides, which almost function via binding 3′ untranslated
regions(UTR)or 5′UTR of mRNA to suppress translation and
promote mRNA cleavage (4). Along with the advances of human
genome-sequencing technology, a great number of miRNAs have
been abundantly discovered. Increasing evidence demonstrated
that miRNAs regulated various oncogenesis processes including
cellular proliferation, angiogenesis, differentiation, and apoptosis
by binding oncogenes or tumor suppresser genes (5). Zhang et al.
displayed miRNA-519b-3p functioned as a tumor suppressor
miRNA to suppress colorectal cancer cell proliferation and
invasion by regulating the umtck/wnt signaling pathway (6).
Wang et al. exhibited that miRNA-496 accelerated epithelial-
mesenchymal transition and migration of CRC via targeting
RASSF6, which was involved in Wnt-pathway (7). Huang et al.
demonstrated miR-506 inhibited cell proliferation, invasion, and
migration of CRC via reducing NR4A1 expression (8). Studies on
miRNA in colorectal cancer are far more than that, there are also
some studies on miRNA as prognostic factors, including single,
and multiple combinations. Although TCGA database has been
used to construct the miRNA signature prognostic models for
colon cancer (9, 10), there are still some shortcomings with no
miRNAs matures, model validation, and risk assessment.

In the present study, we constructed, verified and assessed
a novel five-miRNA signature that predicted effectively over
survival of CRC patients derived from TCGA database.
Functional enrichment analysis revealed potential biological
functions and signal pathways of five-miRNA signature
associated with cancer, which enhances our understanding to
molecular mechanisms of model in CRC.

MATERIALS AND METHODS

Data Download and Processing
The miRNA expression information [Case (455): Primary
Site (Colon and Rectum), Program (TCGA),Project (TCGA-
COAD and TCGA-READ), Disease Type (Adenomas and
Adenocarcinomas); Files(473): Data Category (Transcriptome
Profiling), Data Type (Isoform Expression Quantification)],
mRNA expression information [Case (472): Primary Site

TABLE 1 | Summary of patient cohort information.

Variables Case Percentage

GENDER

Male 256 53.78%

Female 220 46.22%

AGE (YEARS)

Range 31–90

Median 68 14.29

RACE

ASIAN 9 1.89%

BLACK 52 10.92%

WHITE 219 46.01%

Unknown 196 41.18%

CLINICAL STAGE

Stage I 85 17.86%

Stage II 180 37.82%

Stage III 126 26.47%

Stage IV 70 14.71%

Unknown 15 3.15%

T STAGE

T1+Tis 15 3.15%

T2 86 18.07%

T3 324 68.07%

T4 51 10.71%

LYMPH NODE STATUS

N0 282 59.24%

N1 114 23.95%

N2 80 16.81%

Nx 1 0.21%

METASTATIC

M0 355 74.58%

M1 69 14.50%

Mx 45 9.45%

Unknown 7 1.47%

CANCER TYPE

COAD 385 80.88%

READ 91 19.12%

(Colon and Rectum), Program (TCGA), Project (TCGA-
COAD and TCGA-READ), Disease Type (Adenomas and
Adenocarcinomas); Files (530): Data Category (Transcriptome
Profiling), Data Type (Gene Expression Quantification)] and
their related clinical information (476) (Data Category: Clinical,
Data Format: BCR XML) (Table 1) of all colorectal cancer
samples were downloaded from The Cancer Genome Atlas
(TCGA) official website (https://cancergenome.nih.gov/) on July
3, 2019, the former of which contained 464 tumor samples
and 9 normal samples, the latter included 488 tumor samples
and 42 normal samples. The Fasta format sequences of all
maturemiRNA sequences (mature.fa) were downloaded from the
miRBase website (http://www.mirbase.org/). We combined these
two sets of data in the Perl language to obtain expression profile
information for each mature miRNA.
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Identification of Differentially Expressed
miRNAs, mRNA, and Their Combination
With Patient Survival Data
We used R language 3.6.1 version edgeR package to compare
the miRNA and mRNA expression of tumor group with normal
group and normalize the expression profile of miRNAs and
mRNA, whose mean value was >1, the screening criteria were
corrected p value (FDR) <0.05 and |log2FC|>1 (11). We selected
the clinical information of patients with survival time ≥30 days
and combined it with differentially expressed and standardized
miRNA and mRNA expression profiles.

Grouping of Samples and Construction,
Validation, and Evaluation of Prognostic
Models
We used the R language 3.6.1 version “caret” package
to randomly divide the samples with complete survival
information and differentially expressed miRNA expression
profiles into two groups (train group and test group), and
performed univariate Cox regression analysis of miRNAs for the
train group.

In order to reduce the number of miRNAs with similar
expression, miRNAs with p value< 0.005 were subjected to a
stepwise multivariate Cox regression to construct the prognostic
model. In the multivariate Cox regression analysis, we took
advantage of the function of “Coxph” and “direction=both”
in R language survival package (12). Then, the risk score of
a prognostic miRNA signature comprising multiple miRNAs
was established based on the summation of the product of
each miRNA and its coefficient. Furthermore, we tested the
Proportional Hazards Assumption in Coxmodel. This model was
used to evaluate the survival prognosis of each patients in train
group, test group, entire group using Kaplan-Meier curve, and
log-rank test according to median value grouping of risk score,
namely high risk group, and low risk group. The predictive power
of the miRNA signature was assessed by calculating AUC of 3
years dependent ROC curve using “survivalROC” package (13).

Independent Prognostic Ability of the
miRNA Signature Including Other Clinical
Variables
The relationship between the prognostic miRNA signature
and patients’ overall survival was analyzed in the train

FIGURE 1 | Unsupervised hierarchical clustering heatmap based on the differentially expressed miRNAs between 464 colorectal cancer tissues and 9 normal tissues.
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group by univariate Cox regression, as well as clinical
variables (including age, gender, and clinical stage, lymph
nodes, distant metastasis). Variables with p value < 0.05 in
univariate Cox regression were further used for multivariate Cox
regression analysis to determine whether they could function
as independent prognostic factors. In order to compare the
predictive power of this risk model compared to other clinical
characteristics, we have drawn ROC curves for this model
risk score and clinical characteristics. In addition, we tested
the correlation of each miRNA to clinical features by using
the SPSS 21.0 chi-square test, with a p-value of < 0.05 being
considered meaningfully.

Target Genes Prediction of miRNA
Signature and Their Potential Functions
We downloaded the miRNA prediction database from three
miRNA target gene prediction websites including miRTarBase
(http://mirtarbase.mbc.nctu.edu.tw/), targetScan (http://www.
targetscan.org) and miRDB (http://www.mirdb.org/), and used
the Perl language to find the target genes of miRNA signature
which are covered in at least 2 databases, meanwhile, utilizing
the Venn diagram, and Cytoscape 3.6.1 to map the relationship

between the miRNA and these target genes. To clarify whether
the target genes of these miRNAs are likely to participate in
the progression of colorectal cancer, we taken the intersection
of these target genes and differentially expressed genes in
colorectal cancer. All of these intersection genes obtained were
analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG)
signaling pathway and Gene Ontology (GO) enrichment analysis
through the R language “clusterProfiler” package (14) and the
“org.Hs.eg.db” package, The p adjust < 0.05 and q value < 0.05
was set as the cut-off criteria.

Screening of Hub Genes and Survival
Related Gene
The PPI network of the STRING database (https://string-db.
org/) (15) was applied to unearth the relationship between the
target genes, the parameter of settings the medium confidence
is 0.400. Then, the network relationship file was downloaded
and the top 10 hub genes were identified in accordance with
Cytoscape 3.6.1 and its plug-in (degrees ranking of cytoHubba).
Meanwhile, The Kaplan-Meier method was used to check
whether the intersection gene is related to over survival, log
rank test < 0.05.

TABLE 2 | Univariate and multivariate Cox regression of differentially expressed miRNAs.

Univariate Cox regression Multivariate Cox regression

id HR HR.95L HR.95H P value Co ef HR HR.95L HR.95H P value

hsa-miR-485-5p 1.292 1.124 1.485 0.000

hsa-miR-216a-5p 1.069 1.031 1.109 0.000

hsa-miR-187-3p 1.044 1.019 1.069 0.000 0.031 1.031 1.001 1.062 0.041

hsa-miR-10b-3p 1.016 1.006 1.027 0.003 0.011 1.011 0.999 1.023 0.067

hsa-miR-32-5p 1.007 1.003 1.012 0.003 0.008 1.008 1.003 1.013 0.003

hsa-miR-9-5p 1.000 1.000 1.000 0.003 0.000 1.000 1.000 1.000 0.008

hsa-miR-5091 1.194 1.059 1.346 0.004 0.177 1.194 1.045 1.363 0.009

hsa-miR-5683 1.004 1.001 1.006 0.005

FIGURE 2 | Three miRNAs associated with overall survival in CRC patients using Kaplan–Meier curves and log-rank tests. The patients were stratified into high and

low expression groups according to the median expression of each miRNA. (A) hsa-miR-10b-3p. (B) hsa-miR-216a-5p. (C) hsa-miR-485-5p.
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Statistical Analysis
All statistical analyses are based on R language 3.6.1 version and
attached packages.

RESULTS

Identification of Differentially Expressed
miRNAs and mRNAs
Based on this screening criteria, miRNA mature expression
profiles between 464 tumor samples and 9 normal samples
showed 502 differentially expressed miRNAs (DEmiRNAs),
of which 343 were up-regulated and 159 were down-
regulated (Figure 1). mRNA expression profiles between
488 tumor samples and 42 normal samples showed 5,540
differentially expressed mRNAs (DEmRNAs), of which 2992

were up-regulated and 2,548 were down-regulated, displayed in
Supplemental Table 1.

Construction of the Predictive Five-miRNA
Signature
The entire group (N = 421) with miRNA mature expression
profiles was randomly divided into train group (N =

212) (Supplemental Table 2) and test group (N = 209)
(Supplemental Table 3). The univariate Cox regression analysis
displayed that a total of thirty-two miRNAs were found to be
associated with patients’ overall survival (p value < 0.05) in
the train group. For the reliability of the model, eight miRNAs
(p value < 0.005) were selected for further analysis (Table 2).
Kaplan-Meier method pointed out hsa-miR-10b-3p, hsa-miR-
216a-5p, and hsa-miR-485-5p of eight miRNAs were associated
with patients’ overall survival (p value< 0.05; Figure 2), however,

FIGURE 3 | Validation and evaluation of the predictive five-miRNA signature. Kaplan-Meier curves in the train group (A), test group (B), entire group (C); The AUC of

three years dependent curve in the train group (D), test group (E), entire group (F), Survival status in high and low risk patients for train group (G), test group (H),

entire group (I), red dots represent death, green dots represent alive.
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TABLE 3 | Univariate and multivariate Cox regression of clinical features.

Clinical features Univariate Cox regression Multivariate Cox regression

HR HR.95L HR.95H P value HR HR.95L HR.95H P value

Age (continuous variable) 1.017 0.986 1.050 0.290

Gender (male vs. female) 1.210 0.594 2.467 0.600

Clinical stage (III+IV vs. I+II) 7.872 3.010 20.588 0.000 4.902 0.472 50.935 0.183

T stage (T3+4 vs. T1+2) 6.694 0.910 49.250 0.062

M (M1 VS M0) 7.920 3.816 16.440 0.000 2.977 1.286 6.892 0.011

N (N1+2 vs. N0) 6.585 2.693 16.102 0.000 0.996 0.130 7.666 0.997

Five-miRNA signature 1.286 1.165 1.420 0.000 1.326 1.168 1.505 0.000

FIGURE 4 | Comparison of risk score and clinical features in predicting the

accuracy of patients’ survival prognosis.

the high expression of hsa-miR-485-5p with poor prognosis and
the fact that hsa-miR-485-5p exhibited low expression in tumors
is contradictory. Therefore, the remaining seven miRNAs were
targeted for further analysis.

Based on the previous research, Five (hsa-miR-5091, hsa-
miR-10b-3p, hsa-miR-9-5p, hsa-miR-187-3p, hsa-miR-32-5p) of
the seven candidate miRNAs therein were finally screened out
(Table 2) by stepwise multivariate Cox regression analysis, then
a predictive miRNA signature model was established on the
summation of the product of each miRNA and its coefficient
in multivariate Cox regression as follows: miRNA signature
risk score = (0.1769 × expression of hsa-miR-5091) + (0.0110
× expression of hsa-miR-10b-3p) + (0.0001 × expression of
hsa-miR-9-5p) + (0.0305 × expression of hsa-miR-187-3p) +
(0.0076 × expression of hsa-miR-32-5p). In addition, the results
testing the Proportional Hazards Assumption in Cox model
demonstrated that all the P values are higher than 0.05, which
means that they meet the PH test (Supplemental Table 4).

Prediction of the Five-miRNA Signature for
Over Survival in the Train Group, Test
Group, and Entire Group
Based on median value grouping of risk score. Kaplan-Meier
curves shown high risk group had an obviously poorer overall
survival compared to low risk group in the train group (p =

1.001E-02), test group (p = 4.164E-04) and entire group (p =

2.12E-05; Figures 3A–C). The train group shown overall survival
of 5 years for patients with high and low risk group were 60.0
and 72.8%, respectively. The test group demonstrated that overall
survival of 5 years for patients with high and low risk group
were 39.9 and 62.7%, respectively. The entire group displayed
that overall survival of 5 years for patients with high and low risk
group were 53.0 and 62.8%, respectively.

Evaluation of the Five-miRNA Signature for
Over Survival in the Train Group, Test
Group, and Entire Group
The AUC of 3 years dependent ROC for the five-miRNA
signature achieved 0.790, 0.679, 0.744, respectively, in the train
group, test group and entire group (Figures 3D–F), which
demonstrated the better performance of model in predicting
CRC patient survival risk. In addition, in the three groups, the
patients with high risk score had higher mortality rates than
low (Figures 3G–I).

Independence of the Five-miRNA Signature
Considering Other Clinical Factors
Univariate Cox regression analysis exhibited that the five-miRNA
signature was evidently associated with patients’ overall survival
(hazard ratio HR = 1.286, confidence interval 95% CI = 1.164–
1.420, p = 6.719E-07; Table 3). Multivariate Cox regression
analysis pointed out that the five-miRNA signature remained
independent with overall survival considering other conventional
clinical factors (HR = 1.326, 95% CI = 1.168–1.505, p = 1.23E-
05), such as clinical stage, T stage, Lymph-node status, distant
metastasis, which makes it possible to be a prognostic marker
for CRC in the future. Meanwhile, distant metastasis was also
found to be an independent prognostic factor (HR = 2.976,
95% CI = 1.285–6.891, p = 0.01). The ROC curves for this
model risk score and clinical characteristics demonstrated that
risk score (0.777), clinical stage (0.810), T stage (0.707), Lymph-
node status (0.725), and distant metastasis (0.744) had a high
predictive ability (Figure 4). In addition, the results about the
correlation of each miRNA to clinical features demonstrated hsa-
miR-10b-3p was associated with T stage (p = 0.011), hsa-miR-
9-5p was associated with age (p = 0.032), and clinical stage
(p = 0.049), hsa-mir-3189 was associated with Metastasis (p =

0.002) and clinical stage (p = 0.042; Table 4), which further
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TABLE 4 | The correlation of each miRNA to clinical features.

Variables Numbers hsa-miR-5091 χ
2 test

P value

hsa-miR-10b-3p χ
2 test

P value

hsa-miR-9-5p χ
2 test

P value

hsa-miR-187-3p χ
2 test

P value

hsa-mir-3189 χ
2 test

P value

Low

Expression

High

Expression

Low

Expression

High

Expression

Low

Expression

High

Expression

Low

Expression

High

Expression

Low

Expression

High

Expression

GENDER

Female 81 46 35 0.12 43 38 0.425 44 37 0.334 40 41 0.834 41 40 0.4

Male 108 49 59 51 57 51 57 55 53 48 60

AGE AT DIAGNOSIS

>60 136 69 67 0.836 66 70 0.595 75 61 0.032 72 64 0.238 59 77 0.102

≤60 53 26 27 28 25 20 33 23 30 30 23

T STAGE

T1+2 40 23 17 0.303 27 13 0.011 21 19 0.75 25 15 0.081 20 20 0.678

T3+4 149 72 77 67 82 74 75 70 79 69 80

METASTASIS

M0 155 78 77 0.973 79 76 0.469 81 74 0.242 83 72 0.054 81 74 0.002

M1 34 17 17 15 19 14 20 12 22 8 26

LYMPH NODE STATUS

N0 103 53 60 0.72 54 49 0.418 58 45 0.069 55 48 0.346 54 49 0.108

N1-2 86 42 44 40 46 37 49 40 46 35 51

STAGE

I+II 100 50 50 0.939 52 48 0.509 57 43 0.049 52 48 0.613 54 46 0.044

III+IV 89 45 44 42 47 38 51 43 46 35 54
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FIGURE 5 | Venn diagram of target genes for five miRNAs. (A) hsa-miR-10b-3p, (B) hsa-miR-187-3p, (C) hsa-miR-5091, (D) hsa-miR-9-5p, (E) hsa-miR-32-5p.

suggested that these miRNAs do have a close relationship with
some clinical features.

Prediction of Target Genes for the Five
miRNAs
The target genes regulated by the five miRNAs, were predicted
in at least 2 databases. To further enhance the reliability
of the bioinformatic analysis, the overlapping target genes
were identified. The results indicated that 41, 272, 701, 31,
and 752 overlapping genes were identified for hsa-miR-5091,
hsa-miR-10b-3p, hsa-miR-9-5p, hsa-miR-187-3p, hsa-miR-32-
5p, respectively, by the three databases above, which were shown
using Venn diagram (Figure 5) and network map of miRNA-
target genes (Supplemental Figure 1). A total of 1,672 target
genes was predicted for the five miRNAs. To clarify whether
the target genes of these miRNAs are likely to participate in the
progression of CRC, the above obtained 5540 DEmRNAs (up-
regulated 2992, down-regulated 2548) was used for analysis. The
intersection of target mRNAs for down-regulated miRNAs (hsa-
miR-5091, hsa-miR-187-3p) and upregulated mRNAs, and target
mRNAs for upregulated miRNAs (hsa-miR-32-5p, hsa-miR-
10b-3p, hsa-miR-9-5p) and downregulated mRNAs were taken.
The results were performed on a total of 246 genes including
12 up-regulated genes, 234 down-regulated genes, respectively

(Supplemental Figure 2). The sub network between the five
miRNAs and their 246 target genes was shown in Figure 6.

Functional Enrichment Analysis of Target
Genes Associated CRC
The results of GO annotation about the target genes associated
CRC are 234 (Supplemental Table 5). The top fifteen terms
from the GO results: biological process (BP), cellular component
(CC), and molecular function (MF) were demonstrated in
dotplot (Figures 7A–C). In the three categories, BP analysis
mostly include axon development, axonogenesis, and stem
cell differentiation, CC analysis was mainly contained synaptic
membrane, postsynaptic membrane and neuronal cell body,
MF analysis mainly contained metal ion transmembrane
transporter activity, transcriptional activator activity and
DNA binding, ion channel binding. The results of KEGG
pathways about the target genes associated CRC are 18
(Table 5), of which counts > 10 were mainly enriched
in the cGMP-PKG signaling pathway, cAMP signaling
pathway, Calcium signaling pathway, Neuroactive ligand-
receptor interaction In addition, to provide a readable
graphic representation of the complex relationship between
target genes and relative KEGG pathway, the “pathway-gene

Frontiers in Oncology | www.frontiersin.org 8 November 2019 | Volume 9 | Article 120765

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Five-microRNA Signature in Colorectal Cancer

FIGURE 6 | Sub network map of miRNA regulating mRNA. The hexagon represents miRNA. The circle stands for mRNA. Red means upregulated, blue means

downregulated, and green means both.

network” and “pathway-pathway network” was also shown
in Figures 7D–F.

Hub Genes of PPI Network and Survival
Related Target Genes
Total of 244 of the 246 target genes were filtered into the
target genes PPI network complex, containing 178 nodes and
326 edges, 10 hub gene (ESR1, ADCY9, MEF2C, NRXN1,
ADCY5, FGF2, KITLG, GATA1, GRIA1, KAT2B) were
screened according to Cytoscape 3.6.1 and its plug-in (degree
ranking of cytoHubba) (Figure 8 and Table 6). In addition,
Kaplan-Meier method showed that the expression of 18
of the 246 genes (AHCYL2, AKR1B10, CBFA2T3, CCNJL,
CCR9, CLIC5, DPP10, FAM46C, GATA1, IQGAP2, MAN1A1,
MIER1, NR5A2, PHLPP2, PTGER4, RBM47, RPS6KA5,
TSPAN11) were positively associated with survival prognosis,

however, the high expression of SRCIN1 shown a poorer over
survival (Figure 9).

DISCUSSION

Colorectal cancer is a highly malignant tumor, which is
particularly prone to liver and lung metastasis, seriously affecting
the survival prognosis of patients (16). Therefore, finding
a prognostic marker with high specificity and sensitivity is
becoming more andmore urgent for patients. Extensive evidence
displayedmiRNAs can regulate the expression of abundant genes,
playing critical roles in many biological processes of human
malignant tumor (17). Especially, recent studies have revealed
that distinct miRNA-expression profiles seriously affected the
development and progression of CRC (18, 19). At present,
several miRNAs are known to be used as potential prognostic
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FIGURE 7 | Functional enrichment analysis of target genes associated CRC. (A) BP, (B) CC, (C) MF, (D) dotplot of KEGG signal pathway shown the counts of genes,

(E) cnetplot of KEGG signal pathway shown the “pathway-gene” network, (F) emapplot of KEGG signal pathway shown the “pathway-pathway” network.

TABLE 5 | KEGG pathways of target genes associated CRC.

ID Description P Adjust Q value Count Gene ID

hsa04022 cGMP-PKG signaling pathway 0.00028 0.000212 12 AKT3/EDNRB/ADCY9/ITPR1/ATP2B4/ADRB1/KCNMB2/PRKG2/ADCY5/

MYLK/SLC8A1/MEF2C

hsa04713 Circadian entrainment 0.000397 0.0003 9 RPS6KA5/PER1/GRIN2A/ADCY9/ITPR1/GRIA1/CAMK2A/PRKG2/ADCY5

hsa04024 cAMP signaling pathway 0.001032 0.000782 12 AKT3/GRIN2A/ADCY9/ATP2B4/HHIP/SLC9A1/GRIA1/CAMK2A/ACOX1/

ADRB1/CHRM2/ADCY5

hsa04261 Adrenergic signaling in cardiomyocytes 0.001032 0.000782 10 RPS6KA5/AKT3/ADCY9/ATP2B4/SLC9A1/CAMK2A/ADRB1/ADCY5/

SLC8A1/CACNB2

hsa04020 Calcium signaling pathway 0.001443 0.001093 11 GRIN2A/EDNRB/ADCY9/ITPR1/ATP2B4/CAMK2A/ADRB1/PDE1A/

CHRM2/MYLK/SLC8A1

hsa04971 Gastric acid secretion 0.001615 0.001223 7 ADCY9/ITPR1/SLC9A1/KCNK10/CAMK2A/ADCY5/MYLK

hsa04970 Salivary secretion 0.004453 0.003373 7 ADCY9/ITPR1/ATP2B4/SLC9A1/ADRB1/PRKG2/ADCY5

hsa04924 Renin secretion 0.006429 0.00487 6 PTGER4/ITPR1/ADRB1/PDE1A/PRKG2/ADCY5

hsa04371 Apelin signaling pathway 0.008483 0.006426 8 AKT3/ADCY9/ITPR1/SLC9A1/ADCY5/MYLK/SLC8A1/MEF2C

hsa05014 Amyotrophic lateral sclerosis (ALS) 0.009933 0.007525 5 GRIN2A/NEFL/NEFM/NEFH/GRIA1

hsa04923 Regulation of lipolysis in adipocytes 0.012842 0.009728 5 AKT3/ADCY9/ADRB1/PRKG2/ADCY5

hsa04540 Gap junction 0.015926 0.012064 6 ADCY9/ITPR1/ADRB1/PDGFD/PRKG2/ADCY5

hsa04925 Aldosterone synthesis and secretion 0.025762 0.019515 6 ADCY9/ITPR1/ATP2B4/CAMK2A/ADCY5/SCARB1

hsa04072 Phospholipase D signaling pathway 0.04312 0.032663 7 AKT3/ADCY9/MS4A2/DGKB/PDGFD/ADCY5/KITLG

hsa04725 Cholinergic synapse 0.04312 0.032663 6 AKT3/ADCY9/ITPR1/CAMK2A/CHRM2/ADCY5

hsa04724 Glutamatergic synapse 0.04312 0.032663 6 GRIN2A/ADCY9/ITPR1/GRIA1/ADCY5/GRIK3

hsa04921 Oxytocin signaling pathway 0.04312 0.032663 7 ADCY9/ITPR1/CAMK2A/ADCY5/MYLK/MEF2C/CACNB2

hsa04080 Neuroactive ligand-receptor interaction 0.046345 0.035106 11 GRIN2A/EDNRB/PTGER4/NPY4R/GRIA1/S1PR1/NR3C1/P2RY13/

ADRB1/CHRM2/GRIK3

indictors in various cancers, including miR-191 (20), miR-1908
(21), miR-200c (22), and miR-217 (23). However, overwhelming
studies manifested that multiple miRNA signature have bigger
advantages than single miRNA on the hand of statistically
robust analysis. Thence before our study, there have been a lot
of prognostic markers based on multiple miRNA signature in

tumors (24–26), especially colorectal cancer (9, 10, 27). There are
many differences between our research and previous studies yet,
such as research methods, sample size, and most importantly, we
use miRNAmatures and sample groupings to validate the model.

In the current study, we download mature miRNA expression
profiles and corresponding patients’ clinical information of CRC

Frontiers in Oncology | www.frontiersin.org 10 November 2019 | Volume 9 | Article 120767

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Five-microRNA Signature in Colorectal Cancer

FIGURE 8 | Hub genes of PPI network. The darker the color, the bigger the degrees.

TABLE 6 | Identification of hub genes by cytoHubba.

Node_name MCC DMNC MNC Degree EPC Bottle

Neck

Ec

Centricity

Closeness Radiality Betweenness Stress Clustering

Coefficient

ESR1 40 0.238 11 17 57.77 46 0.101 67.513 10.95 7030.605 17450 0.103

ADCY9 742 0.282 14 14 56.906 4 0.113 59.613 10.577 1678.562 6756 0.275

MEF2C 38 0.255 11 13 57.288 14 0.113 61.663 10.735 2113.807 7622 0.192

NRXN1 44 0.321 8 13 44.099 20 0.113 54.98 10.317 3224.563 11316 0.179

ADCY5 739 0.337 12 13 56.085 13 0.113 56.846 10.453 1075.731 4490 0.295

FGF2 19 0.256 7 12 57.027 15 0.101 63.513 10.826 2905.838 9030 0.106

KITLG 32 0.321 8 12 56.272 9 0.09 60.182 10.639 1839.913 5646 0.167

GATA1 67 0.419 10 11 56.982 8 0.101 58.69 10.566 1203.977 3882 0.382

GRIA1 22 0.329 7 11 54.01 26 0.113 61.78 10.803 3086.888 10038 0.164

KAT2B 32 0.402 7 11 53.712 9 0.101 57.856 10.498 1381.704 4194 0.2

from TCGA database. By using the R language edgeR package
for the differential analysis, 502 DEmiRNAs were obtained.
All the patients were randomly divided into train group and
test group, then a five-miRNA signature model (hsa-miR-5091,
hsa-miR-10b-3p, hsa-miR-9-5p, hsa-miR-187-3p, hsa-miR-32-
5p) was constructed by univariate Cox regression and stepwise
multivariate Cox regression in train group. Meanwhile, a five-
miRNA signature was validated in test group and entire group.
Based on median value grouping of risk score. Kaplan-Meier
curves shown high risk group had an obviously poorer overall
survival compared to low risk group in the three group.
Evaluation of the five-miRNA signature for over survival in the
three group by ROC curve displayed better predictive power.

Univariate Cox regression and multivariate Cox regression
analysis also pointed out that the five-miRNA signature remained
independent with overall survival considering other conventional
clinical factors for CRC patients. Most of these five miRNAs have
been reported to participate in the research progress of various
tumors. Lu et al. demonstrated that the expression level of mir-
10b-3p was obviously upregulated in tumor and serum samples
of esophageal cancer (ESCC) patients. The expression level of
mir-10b-3p is not only correlated with lymph node metastasis
and clinical staging, but also serves as an independent prognostic
biomarker for overall survival of ESCC patients. Augmented
expression of mir-10b-3p stimulates cell proliferation, invasion,
and migration through directly combining the FOXO3 3’UTR
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FIGURE 9 | Target genes associated with over survival.

in ESCC (28). Chen et al. shown that miR-9-5p expression was
upregulated in prostate cancer cells, functioned as oncogene
role in the proliferation, migration, invasion, and epithelial-
mesenchymal transition (EMT) of prostate cancer cells by
binding StarD13 (29). Dou et al. demonstrated that miR-187-
3p was lowly expressed in hepatic carcinoma (HCC) tissues
and cell lines, and was not only correlated with clinical stage
and metastasis of HCC, but also accelerated effects of hypoxia
on EMT of HCC cells. Furthermore, miR-187-3p suppressed
EMT process in HCC via regulating S100A4 (30). Fu et al.
reported that miR-32-5p was markedly upregulated in the HCC
multidrug-resistant cell line (Bel/5-FU). Overexpression of miR-
32-5p demonstrated a worse prognosis, miR-32-5p regulated the
PI3K/Akt pathway via inhabiting PTEN and leaded to multidrug
resistance by exosomes, then advanced epithelial-mesenchymal
transition (EMT) and angiogenesis (31). However, the current
research mechanism of hsa-miR-5091 in tumors has not been
reported yet, somore experiments in the future need to be carried
out to hsa-miR-5091, especially in CRC.

To further understand the regulatory mechanism of the five-
miRNA signature in colorectal cancer, the target genes of five
miRNAs in the model were predicted by three target gene
prediction databases. At the same time, based on the study
of colorectal cancer, we obtained the intersection of the target
genes of these miRNAs and the differentially expressed genes
from the TCGA database, and performed functional enrichment
analysis on these intersection genes. The GO annotation of
the target genes was mainly associated with axon development,
axonogenesis and stem cell differentiation, synaptic membrane,
postsynaptic membrane, and neuronal cell body, metal ion
transmembrane transporter activity, transcriptional activator
activity and DNA binding, ion channel binding. The signal
pathways of the target genes mainly enriched in the cGMP-
PKG signaling pathway, cAMP signaling pathway, Calcium
signaling pathway, Neuroactive ligand-receptor interaction. Ren
et al. illuminated that the cGMP/PKG signaling pathway played
an essential role on proliferation and survival of human renal
carcinoma cells (32). Park et al. displayed that the cAMP
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signaling pathway regulated by the Epac-Rap1-Akt pathway
caused suppression of JNK-dependent HDAC8 degradation,
which augments cisplatin-induced apoptosis by inhabiting
TIPRL expression in lung cancer cells (33). Monteith GR
reviewed that calcium signaling pathway not only played key role
on proliferation, invasion and sensitivity to cell death, but also
in the establishment and maintenance of multidrug resistance
and the tumor microenvironment (34). These signaling pathways
show their effects on tumors to varying degrees, and these three
signaling pathways are only the tip of the iceberg of the target
gene involved in signaling pathway, which prompts that our
constructed miRNA prognosis model may be involved in the
regulation of tumor signaling pathways.

In order to find key nodes of the miRNA signature
model regulating colorectal cancer 10 hub genes (ESR1,
ADCY9, MEF2C, NRXN1, ADCY5, FGF2, KITLG, GATA1,
GRIA1, KAT2B) were screened according to Cytoscape 3.6.1
and its plug-in (degree ranking of cytoHubba). In addition,
the Kaplan-Meier method showed that the expression of
18 genes (AHCYL2, AKR1B10, CBFA2T3, CCNJL, CCR9,
CLIC5, DPP10, FAM46C, GATA1, IQGAP2, MAN1A1, MIER1,
NR5A2, PHLPP2, PTGER4, RBM47, RPS6KA5, TSPAN11) were
positively associated with survival prognosis, however the high
expression of SRCIN1 shown a poorer over survival. Surprisingly,
GATA1 (GATA binding protein 1) is not only a key gene in
the PPI network, but also related to over survival of patients,
which encodes s a protein which belongs to the GATA family
of transcription factors and promoted erythroid development via
adjusting the switch of fetal hemoglobin to adult hemoglobin.
Wang et al. pointed out that decreased of GATA-1 was to the
benefit of high expression of IRF-3 in lung adenocarcinoma
cells by binding with a specific domain of IRF-3 promoter,
consequently, alternating the immunomodulatory function in
tumorigenesis (35). Thus, the miRNA signature may affect the
survival prognosis of colorectal cancer patients and the colorectal
cancer progression through regulating GATA1.

CONCLUSION

In summary, our study not only constructed a new predictive
model of miRNA signature prognosis through miRNA mature
expression profiling, but also by grouping to verify and evaluating
the predictive ability of the model, the most important thing is

that it can be used as an independent prognostic factors in CRC.
In addition, the potential function is inferred by predicting the
target genes of the model, which enhance our comprehension
to tumorigenesis and progression of CRC. However, this is just
a study based on the TCGA database using bioinformatics. We
hope that there will be other databases and a large number of
experiments to verify the feasibility of this prognostic model in
the future and provide a reliable predictor and therapeutic target
for CRC patients.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

YZ downloaded the miRNA and mRNA expression
information. GY constructed miRNA signature model
and performed the statistical analysis using R language
software, and wrote the first draft of the manuscript. JY
contributed conception and design of the study and checked
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.01207/full#supplementary-material

Supplemental Figure 1 | The network map between miRNAs and target genes.

The hexagon represents miRNA, the circle stands for mRNA. Red means

upregulated, blue means downregulated.

Supplemental Figure 2 | The intersection of target mRNAs for miRNA and

differentially expressed mRNAs.

Supplemental Table 1 | Differentially expressed mRNAs between colorectal

cancer samples and normal samples.

Supplemental Table 2 | GO annotation of the target genes.

Supplemental Table 3 | Survival information of differentially expressed miRNA

train group.

Supplemental Table 4 | Proportional Hazards Assumption in Cox model.

Supplemental Table 5 | GO annotation of the target genes.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide

for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424.

doi: 10.3322/caac.21492

2. Al Bandar MH, Kim NK. Current status and future perspectives on treatment

of liver metastasis in colorectal cancer. Oncol Rep. (2017) 37:2553–64.

doi: 10.3892/or.2017.5531

3. Gires O. Lessons from common markers of tumor-initiating cells in solid

cancers. Cell Mol Life Sci. (2011) 68:4009–22. doi: 10.1007/s00018-011-

0772-9

4. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA.

Nature. (2004) 431:343–9. doi: 10.1038/nature02873

5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.

(2004) 116:281–97. doi: 10.1016/S0092-8674(04)00045-5

6. Zhang Y, Sun M, Chen Y, Li B. MiR-519b-3p inhibits the proliferation

and invasion in colorectal cancer via modulating the uMtCK/Wnt

signaling pathway. Front Pharmacol. (2019) 10:741. doi: 10.3389/fphar.2019.

00741

7. Wang H, Yan B, Zhang P, Liu S, Li Q, Yang J, et al. MiR-496 promotes

migration and epithelial-mesenchymal transition by targeting RASSF6 in

colorectal cancer. J Cell Physiol. (2019). doi: 10.1002/jcp.29066. [Epub ahead

of print].

8. Huang M, Xie X, Song X, Gu S, Chang X, Su T, et al. MiR-506

suppresses colorectal cancer development by inhibiting orphan nuclear

receptor NR4A1 expression. J Cancer. (2019) 10:3560–70. doi: 10.7150/jca.

28272

Frontiers in Oncology | www.frontiersin.org 13 November 2019 | Volume 9 | Article 120770

https://www.frontiersin.org/articles/10.3389/fonc.2019.01207/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.3892/or.2017.5531
https://doi.org/10.1007/s00018-011-0772-9
https://doi.org/10.1038/nature02873
https://doi.org/10.1016/S0092-8674(04)00045-5
https://doi.org/10.3389/fphar.2019.00741
https://doi.org/10.1002/jcp.29066
https://doi.org/10.7150/jca.28272
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Five-microRNA Signature in Colorectal Cancer

9. Xu J, Zhao J, Zhang R. Four microRNAs signature for survival

prognosis in colon cancer using TCGA data. Sci Rep. (2016) 6:38306.

doi: 10.1038/srep38306

10. Wei HT, Guo EN, Liao XW, Chen LS, Wang JL, Ni M, et al. Genomescale

analysis to identify potential prognostic microRNA biomarkers for predicting

overall survival in patients with colon adenocarcinoma. Oncol Rep. (2018)

40:1947–58. doi: 10.3892/or.2018.6607

11. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics.

(2010) 26:139–40. doi: 10.1093/bioinformatics/btp616

12. Stel VS, Dekker FW, Tripepi G, Zoccali C, Jager KJ. Survival analysis II: cox

regression. Nephron Clin Pract. (2011) 119:c255–60. doi: 10.1159/000328916

13. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored

survival data and a diagnostic marker. Biometrics. (2000) 56:337–44.

doi: 10.1111/j.0006-341X.2000.00337.x

14. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for

comparing biological themes among gene clusters. OMICS. (2012) 16:284–7.

doi: 10.1089/omi.2011.0118

15. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al.

The STRING database in 2017: quality-controlled protein-protein association

networks, made broadly accessible. Nucleic Acids Res. (2017) 45:D362–D8.

doi: 10.1093/nar/gkw937

16. Adam R, de Gramont A, Figueras J, Kokudo N, Kunstlinger F, Loyer E,

et al. Managing synchronous liver metastases from colorectal cancer: a

multidisciplinary international consensus. Cancer Treat Rev. (2015) 41:729–

41. doi: 10.1016/j.ctrv.2015.06.006

17. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis,

prognosis, therapy prediction and therapeutic tools for breast cancer.

Theranostics. (2015) 5:1122–43. doi: 10.7150/thno.11543

18. Ding L, Lan Z, Xiong X, Ao H, Feng Y, Gu H, et al. The dual role of

MicroRNAs in colorectal cancer progression. Int J Mol Sci. (2018) 19:2791.

doi: 10.3390/ijms19092791

19. Masuda T, Hayashi N, Kuroda Y, Ito S, Eguchi H, Mimori K.

MicroRNAs as biomarkers in colorectal cancer. Cancers. (2017) 9:E124.

doi: 10.3390/cancers9090124

20. Gao X, Xie Z, Wang Z, Cheng K, Liang K, Song Z. Overexpression of

miR-191 predicts poor prognosis and promotes proliferation and invasion

in esophageal squamous cell carcinoma. Yonsei Med J. (2017) 58:1101–10.

doi: 10.3349/ymj.2017.58.6.1101

21. Teng C, Zheng H. Low expression of microRNA-1908 predicts a poor

prognosis for patients with ovarian cancer. Oncol Lett. (2017) 14:4277–81.

doi: 10.3892/ol.2017.6714

22. Si L, Tian H, Yue W, Li L, Li S, Gao C, et al. Potential use of microRNA-

200c as a prognostic marker in non-small cell lung cancer. Oncol Lett. (2017)

14:4325–30. doi: 10.3892/ol.2017.6667

23. Yang J, Zhang HF, Qin CF. MicroRNA-217 functions as a prognosis

predictor and inhibits pancreatic cancer cell proliferation and

invasion via targeting E2F3. Eur Rev Med Pharmacol Sci. (2017)

21:4050–7.

24. Liang B, Zhao J, Wang X. A three-microRNA signature as a diagnostic and

prognostic marker in clear cell renal cancer: an in silico analysis. PLoS ONE.

(2017) 12:e0180660. doi: 10.1371/journal.pone.0180660

25. Zhang C, Zhang CD, Ma MH, Dai DQ. Three-microRNA signature identified

by bioinformatics analysis predicts prognosis of gastric cancer patients.World

J Gastroenterol. (2018) 24:1206–15. doi: 10.3748/wjg.v24.i11.1206

26. Shi XH, Li X, Zhang H, He RZ, Zhao Y, Zhou M, et al. A five-microRNA

signature for survival prognosis in pancreatic adenocarcinoma based on

TCGA data. Sci Rep. (2018) 8:7638. doi: 10.1038/s41598-018-22493-5

27. Zanutto S, Ciniselli CM, Belfiore A, Lecchi M, Masci E, Delconte G, et al.

Plasma miRNA-based signatures in CRC screening programs. Int J Cancer.

(2019). doi: 10.1002/ijc.32573. [Epub ahead of print].

28. Lu YF, Yu JR, Yang Z, Zhu GX, Gao P, Wang H, et al. Promoter

hypomethylation mediated upregulation of MicroRNA-10b-3p targets

FOXO3 to promote the progression of esophageal squamous cell carcinoma.

(ESCC). J Exp Clin Cancer Res. (2018) 37:301. doi: 10.1186/s13046-018-0966-1

29. Chen L, Hu W, Li G, Guo Y, Wan Z, Yu J. Inhibition of miR-9–5p suppresses

prostate cancer progress by targeting StarD13. Cell Mol Biol Lett. (2019) 24:20.

doi: 10.1186/s11658-019-0145-1

30. Dou C, Liu Z, Xu M, Jia Y, Wang Y, Li Q, et al. miR-187–3p inhibits

the metastasis and epithelial-mesenchymal transition of hepatocellular

carcinoma by targeting S100A4. Cancer Lett. (2016) 381:380–90.

doi: 10.1016/j.canlet.2016.08.011

31. Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, et al. Exosomal microRNA-32–5p

induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt

pathway. J Exp Clin Cancer Res. (2018) 37:52. doi: 10.1186/s13046-018-0677-7

32. Ren Y, Zheng J, Yao X, Weng G, Wu L. Essential role of the

cGMP/PKG signaling pathway in regulating the proliferation and survival

of human renal carcinoma cells. Int J Mol Med. (2014) 34:1430–8.

doi: 10.3892/ijmm.2014.1925

33. Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression

via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells. Exp Mol Med.

(2017) 49:e297. doi: 10.1038/emm.2016.152

34. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium-cancer

signalling nexus. Nat Rev Cancer. (2017) 17:367–80. doi: 10.1038/nrc.2017.18

35. Wang LL, Chen ZS, Zhou WD, Shu J, Wang XH, Jin R, et al. Down-regulated

GATA-1 up-regulates interferon regulatory factor 3 in lung adenocarcinoma.

Sci Rep. (2017) 7:2551. doi: 10.1038/s41598-017-02700-5

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Yang, Zhang and Yang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 14 November 2019 | Volume 9 | Article 120771

https://doi.org/10.1038/srep38306
https://doi.org/10.3892/or.2018.6607
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1159/000328916
https://doi.org/10.1111/j.0006-341X.2000.00337.x
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1016/j.ctrv.2015.06.006
https://doi.org/10.7150/thno.11543
https://doi.org/10.3390/ijms19092791
https://doi.org/10.3390/cancers9090124
https://doi.org/10.3349/ymj.2017.58.6.1101
https://doi.org/10.3892/ol.2017.6714
https://doi.org/10.3892/ol.2017.6667
https://doi.org/10.1371/journal.pone.0180660
https://doi.org/10.3748/wjg.v24.i11.1206
https://doi.org/10.1038/s41598-018-22493-5
https://doi.org/10.1002/ijc.32573
https://doi.org/10.1186/s13046-018-0966-1
https://doi.org/10.1186/s11658-019-0145-1
https://doi.org/10.1016/j.canlet.2016.08.011
https://doi.org/10.1186/s13046-018-0677-7
https://doi.org/10.3892/ijmm.2014.1925
https://doi.org/10.1038/emm.2016.152
https://doi.org/10.1038/nrc.2017.18
https://doi.org/10.1038/s41598-017-02700-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 21 January 2020

doi: 10.3389/fonc.2019.01474

Frontiers in Oncology | www.frontiersin.org 1 January 2020 | Volume 9 | Article 1474

Edited by:

Xiangqian Guo,

Henan University, China

Reviewed by:

Mingjun Bi,

The University of Texas Health Science

Center at San Antonio, United States

Xiaowen Chen,

Harbin Medical University, China

*Correspondence:

Jinxuan Hou

jhou@whu.edu.cn

Sheng Li

lisheng-znyy@whu.edu.cn

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Oncology

Received: 08 August 2019

Accepted: 09 December 2019

Published: 21 January 2020

Citation:

Yu D, Ruan X, Huang J, Hu W,

Chen C, Xu Y, Hou J and Li S (2020)

Comprehensive Analysis of

Competitive Endogenous RNAs

Network, Being Associated With

Esophageal Squamous Cell

Carcinoma and Its Emerging Role in

Head and Neck Squamous Cell

Carcinoma. Front. Oncol. 9:1474.

doi: 10.3389/fonc.2019.01474

Comprehensive Analysis of
Competitive Endogenous RNAs
Network, Being Associated With
Esophageal Squamous Cell
Carcinoma and Its Emerging Role in
Head and Neck Squamous Cell
Carcinoma
Donghu Yu 1,2, Xiaolan Ruan 3, Jingyu Huang 4, Weidong Hu 4, Chen Chen 1,2, Yu Xu 5,

Jinxuan Hou 6* and Sheng Li 1,2*

1Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China, 2Human Genetics Resource

Preservation Center of Hubei Province, Wuhan, China, 3Department of Hematology, Renmin Hospital of Wuhan University,

Wuhan, China, 4Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China, 5Department of

Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China, 6Department of Thyroid and Breast

Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China

Esophageal squamous cell carcinoma (ESCC) is a common malignancy with poor

prognosis and survival rate. To identify meaningful long non-coding RNA (lncRNA),

microRNA (miRNA), and messenger RNA (mRNA) modules related to the ESCC

prognosis, The Cancer Genome Atlas-ESCC was downloaded and processed, and

then, a weighted gene co-expression network analysis was applied to construct lncRNA

co-expression networks, miRNA co-expression networks, and mRNA co-expression

networks. Twenty-one hub lncRNAs, seven hub miRNAs, and eight hub mRNAs were

clarified. Additionally, a competitive endogenous RNAs network was constructed, and

the emerging role of the network involved in head and neck squamous cell carcinoma

(HNSCC) was also analyzed using several webtools. The expression levels of eight hub

genes (TBC1D2, ATP6V0E1, SPI1, RNASE6, C1QB, C1QC, CSF1R, and C1QA) were

different between normal esophageal tissues and HNSCC tissues. The expression levels

of TBC1D2 and ATP6V0E1 were related to the survival time of HNSCC. The competitive

endogenous RNAs network might provide common mechanisms involving in ESCC and

HNSCC. More importantly, useful clues were provided for clinical treatments of both

diseases based on novel molecular advances.

Keywords: esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, prognosis, weighted

gene co-expression network analysis, competitive endogenous RNAs network
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INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is the globally
predominant pathological type of esophageal cancer (1). For
the lack of effective biomarkers, most patients with ESCC are
diagnosed at a late stage, which leads to the poor prognosis of
ESCC, with a 5-year survival rate of <20% (2, 3). Numerous
studies have shown that T stage was the independent factor
which influenced the prognosis of ESCC. Besides, most patients
with ESCC have a high prevalence of second primary head and
neck squamous cell carcinoma (HNSCC) (4). In Taiwan, 15–
20% of patients with ESCC may develop a secondary HNSCC
(5). Nowadays, it is necessary to do routine screening of head
and neck field for the patients with newly diagnosed ESCC
and that results in more frequent detection of second primary
HNSCC. Therefore, it is of great value to identify the molecular
mechanisms related to the development and the prognosis of
ESCC, and further research for ESCC-HNSCC pathogenesis is
also urgently needed.

Long non-coding RNA (lncRNA) refers to a non-coding
RNA transcript with a length >200 nucleotides (6). In recent
years, increasing evidences have revealed that multiple lncRNAs
can play as potential biomarkers for the prognosis prediction
of ESCC, including RNA-PCAT-1 (7), TTN-AS1 (8), and
linc00460 (9). However, studies of single lncRNA cannot meet
the requirement for exploration of ESCC prognosis. A lncRNA–
microRNA (miRNA)–messenger RNA (mRNA) network, which
is involved in many important cellular pathways, is badly needed
to clarify exact mechanisms.

The competing endogenous RNA (ceRNA) hypothesis was
presented by Salmena et al., which stated that mRNAs, lncRNAs,
and other non-coding RNAs can act as natural miRNA “sponges”
with common MREs to regulate the expression levels of certain
genes (10). Nowadays, more and more studies have proven that
the ceRNA regulation theory plays an important role in the
development of cancer (11). For example, lncRNA-TTN-AS1 was
identified to be a target of miR133b, and miR133b can repress
the mRNA of fascin homolog 1 in ESCC. Further experiments
demonstrated that lncRNA-TTN-AS1 could operate as a ceRNA
for binding the microRNA to regulate the expression level of
fascin homolog 1 (8).

Although Xue has reported differently expressed lncRNAs,
miRNAs, and mRNAs between normal and ESCC tissues (12),
the relationships between hub RNAs and important clinical traits
had not been rigorously studied. To fulfill these gaps, mRNA
co-expression networks, miRNA co-expression networks, and
lncRNAs co-expression network were constructed by weighted
gene co-expression network analysis (WGCNA) to identify
mRNA, miRNA, and lncRNA modules related to T stage in
ESCC. WGCNA is a method of mining module information
from sequencing data. Under certain conditions, module is
defined as a group of genes with similar expression changes
in physiological process. This method seems similar to cluster
analysis, and the difference is that WGCNA has a biological
significance (13). The relationships between the modules and
clinical features could be further explored to select candidate
biomarkers for cancers. The relationships between lncRNAs and

miRNAs, and miRNAs and mRNAs were predicted to build the
lncRNA–miRNA–mRNA network, which would provide more
information about the mechanisms of ESCC progression, even
ESCC-HNSCC pathogenesis.

MATERIALS AND METHODS

Data Collection and Processing
A brief workflow for this study is shown in Figure 1.
The RNA sequencing data of 95 samples with ESCC were
retrieved from The Cancer Genome Atlas (TCGA) data portal
(https://cancergenome.nih.gov/), which had been derived from
the IlluminaHiSeq_RNASeq and the IlluminaHiSeq_miRNASeq
sequencing platforms. Ninety-five samples were divided into
two groups: 17 normal samples and 78 tumor samples.
Gene expression profiles (GSE20437 and GSE38129) related to
ESCC, which were downloaded for the validation from Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/), provided validation for selected hubmRNAs. The details of
GSE20437 and GSE38129 are listed in Table S1. All datasets were
normalized with quantile normalization. Analysis of variance
were performed for TCGA-ESCC-mRNA and TCGA-ESCC-
lncRNA. We chose the top 25% most variant mRNAs (4,938
mRNAs) and the top 25% most variant lncRNAs (3,712 genes)
for constructing networks, while we did not do pretreatment for
miRNA expression profile due to the small number of miRNAs
(1,881 miRNAs).

Construction of Co-expression Networks
WGCNA was used to construct mRNA, miRNA, and lncRNA
co-expression networks (14). The processes for constructing co-
expression networks were similar. Thus, we took the construction
of weighted mRNA co-expression networks as an example.
First, a matrix of similarity was constructed by calculating the
correlations of the processed genes. Then, an appropriate power
of β was chosen as the soft-thresholding parameter to construct
a scale-free network. Next, the adjacency was transformed into
a topological overlap matrix (TOM) using TOM similarity, and
the corresponding dissimilarity (1—TOM) was figured and the
dissimilarity of module eigengenes (MEs) estimated. Last, the
mRNAs with similar expression levels were categorized into the
same module by DynamicTreeCut algorithm (15).

Identification of Clinically Significant
Modules
The clinical trait we were concerned was T stage in ESCC patients
and key modules which needed to be found in three networks
separately. Above all, we worked out the relationship between
clinical phenotype and MEs. MEs were deemed to represent the
expression levels of all mRNAs, miRNAs, or lncRNAs in the
related module. In addition, mediated P-value of each mRNA,
miRNA, or lncRNA was calculated, and then, we worked out
gene, miRNA, or lncRNA significance (GS = lg P). Finally,
we selected the most clinically significant module according
to module significance, which was the average GS of mRNAs,
miRNAs, or lncRNAs involved in the related module. Besides,
the connectivity of module was measured by absolute value of the
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FIGURE 1 | Flow chart of data preparation, processing, and analysis.

Pearson’s correlation, and the relationships between clinical trait
and mRNAs, miRNAs, or lncRNAs were measured by absolute
value of the Pearson’s correlation. To build a ceRNA regulatory
network in ESCC better, two modules in each co-expression
network were selected. The RNA expression levels in one module
were positively correlated with the clinical trait (T stage), and
the RNA expression levels in the other module were negatively
correlated with the T stage of ESCC.

Functional and Pathway Enrichment
Analysis
The Database for Annotation, Visualization, and Integrate
Discovery (DAVID) (https://david.ncifcrf.gov/) is a database for
several kinds of functional annotation (16). With the help of
Database for Annotation, Visualization, and Integrate Discovery,
we identified biological meaning of the mRNAs in hub modules
according to false discovery rate (FDR) < 0.05. Gene Ontology
(GO) includes three terms: biological process (BP), cellular
component (CC), and molecular function (MF); GO (BP, CC,
MF) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses for the miRNAs in the hub modules were
conducted using mirPath v.3, an online tool for miRNA pathway

analysis (17). GO (BP, CC, MF) and KEGG enrichment analyses
for the lncRNAs in the hub modules were conducted using
co-lncRNA, a web-based computational tool that allows users
to identify GO annotations and KEGG pathways that may be
affected by co-expressed protein-coding genes of a single or
multiple lncRNAs (18).

Identification and Validation of Hub mRNAs
in ESCC
To identify real hub mRNAs associated with the development
of ESCC, three methods were used to screen candidate mRNAs.
First, the mRNAs that have high connectivity with module
and selected phenotype were chosen as candidate genes in hub
module [|cor. module membership| (|MM|) > 0.35]. Then, the
protein/gene interactions for the mRNAs in each hub module
were analyzed using STRING (19), and the mRNAs connected
with more than four nodes in PPI network were selected as
candidate mRNAs for further study. Next, survival analysis was
performed for the mRNAs in each hub module by survival
package in R, and the mRNAs with P < 0.05 were considered to
be associated with overall survival in ESCC. Then, the common
candidate mRNAs in three parts were considered as hub mRNAs.
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FIGURE 2 | Identification of modules associated with the clinical traits of esophageal squamous cell carcinoma (ESCC). (A) Distribution of average messenger RNA

(mRNA) significance and errors in the modules associated with the T stage in ESCC. (B) Distribution of average microRNA (miRNA) significance and errors in the

modules associated with the T stage. (C) Distribution of average long non-coding RNA (lncRNA) significance and errors in the modules associated with the T stage of

esophageal squamous cell carcinoma (ESCC).

To verify our results, GSE20347 (including 17 normal esophageal
tissues and 17 ESCC tissues) and GSE38129 (including 30 normal
esophageal tissues and 30 ESCC tissues) were used to validate the
different expression levels of hub mRNAs between normal tissues
and ESCC tissues. Under the threshold of |log2 FC| > 1.5 and
FDR < 0.05, differently expressed genes (DEGs) were selected
by “limma” package in R in two datasets, separately. OSescc,
containing survival data from GSE53625 and TCGA and giving
users the ability to create publication-quality Kaplan–Meier plots

(20), was used to further explore the prognostic biomarker in the
dataset GSE53625 (21).

Identification Hub miRNAs and lncRNAs
The interactions between lncRNA and miRNA, and mRNA
and miRNA could be predicted. As for selecting hub miRNAs,
TargetScan (http://www.targetscan.org/) was employed to predict
candidate miRNAs for hub mRNAs (22, 23), and context++

score of TargetScan > 0.4 were selected as threshold. Then, the
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FIGURE 3 | Bioinformatics analysis of the messenger RNAs (mRNAs) and the microRNAs (miRNAs) in hub modules. (A) Gene Ontology (GO) analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the mRNAs in green and cyan modules. (B) GO analysis and KEGG pathway enrichment of the

miRNAs in pink and purple modules. (C) GO analysis and KEGG pathway enrichment of the lncRNAs in the yellow and midnight blue modules.

common candidate miRNAs with |MM| > 0.4 in hub modules
and prediction by TargetScan was defined as real hub miRNAs.
LncBase (http://carolina.imis.athena-innovation.gr/diana_tools/
web/index.php?r=lncbasev2) was used to predict lncRNA and
miRNA interactions (24), and the score of LncBase > 0.7 was
selected as threshold. The common candidate lncRNAs with
|MM| > 0.7 in hub modules and prediction by LncBase were
defined as real hub lncRNAs.

Construction and Topological Analysis of
ceRNA Regulatory Network in ESCC
According to the prediction of TargetScan and LncBase, the
interactions were used to construct the lncRNA–miRNA–mRNA
network applying the Cytoscape software, and the interaction

between genes was also demonstrated from STRING (25). It
is well-known that hub nodes play critical roles in biological
networks. Simultaneously, all node degrees of the lncRNA–
miRNA–mRNA network were calculated by “NetworkAnalyzer”
in Cytoscape.

The Prognostic Factors of ceRNA Network
in ESCC and HNSCC
Survival analysis was performed for the
mRNAs/miRNAs/lncRNAs in ceRNA network by survival
package in R, and the threshold was selected as P < 0.05. In
addition, to explore the role of the interaction network in
HNSCC, UALCAN (http://ualcan.path.uab.edu/) was used to
find the different expression levels of hub genes between normal
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FIGURE 4 | Survival analysis of the association between the expression levels of hub mRNAs based on The Cancer Genome Atlas-esophageal squamous cell

carcinoma (TCGA-ESCC). The expression levels of SPI1, RNASE6, C1QB, C1QC, CSF1R, and C1QA were positively correlated with the overall survival. The

expression levels of TBC1D2 and ATP6V0E1 were negatively correlated with the overall survival of ESCC.

tissues and cancer tissues. UALCAN is a useful online tool for
analyzing cancer transcriptome data, which is based on public
cancer transcriptome data (TCGA and MET500 transcriptome
sequencing) (26). OncomiR (http://www.oncomir.org/), an
online resource for exploring miRNA dysregulation in cancer
based on TCGA, was used to find the different expression levels
of hub miRNAs between normal tissues and cancer tissues (27).
To explore the expression levels of hub lncRNAs in normal and
HNSCC samples, independent t-test was performed for the hub
lncRNAs with the dataset of TCGA-HNSCC-lncRNA. Besides,
OncoLnc (http://www.oncolnc.org/), containing survival data
from 21 cancer studies performed by TCGA and giving users
the ability to create publication-quality Kaplan–Meier plots,
was used to explore the relationship between the expression
levels of hub mRNAs/miRNAs/lncRNAs and the survival time of
HNSCC (28).

Functional Annotation of the Hub Genes
Gene Set Enrichment Analysis (GSEA) was performed for hub
mRNAs in TCGA-ESCC (29). In TCGA-ESCC, according to the
median expression of this hub gene, 119 cases were classified
into high- and low-expression group (high group, n = 60; low
group, n = 59). Gene size > 100, |ES| > 0.6, nominal P <

0.05, and FDR < 25% were chosen as the cutoff criteria. Besides,
Spearman correlation analysis was performed to explore pairwise

gene expression correlation for hub genes in TCGA-ESCC. We
calculated correlation coefficient absolute values, and the top
300 hub genes were selected for functional enrichment analysis.
Based on the results, the potential functions of each hub gene
were predicted, and the method thus bore the name of “guilt of
association” (30).

RESULTS

Weighted Co-expression Networks
Construction and Key Modules
Identification
With the method of average linkage hierarchical clustering,
the samples of TCGA-ESCC were well clustered. To ensure a
scale-free network, power of β = 5 (scale-free R2 = 0.949)
was selected as the soft-thresholding parameter for mRNA co-
expression networks (Figure S1A). Power of β = 3 (scale-free
R2 = 0.939) was selected for miRNA co-expression networks
(Figure S1B). Power of β = 5 (scale-free R2 = 0.935) was
selected for lncRNA co-expression networks (Figure S1C). The
clustering dendrograms of the mRNAs (Figure S2A), miRNAs
(Figure S2B), and lncRNAs (Figure S2C) were generated. By
“WGCNA” package in R, the mRNAs, the miRNAs, and the
lncRNAs, which had similar expression levels, were divided
into modules to construct co-expression networks, separately.
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TABLE 1 | The corresponding GS and MM of the hub mRNAs, hub miRNAs and

lncRNAs in hub modules.

ID Module GS MM

mRNA TBC1D2 Green 0.066802 0.396126

mRNA ATP6V0E1 Green 0.068227 0.443309

mRNA SPI1 Cyan −0.26978 0.92313

mRNA RNASE6 Cyan −0.14359 0.902145

mRNA C1QB Cyan −0.13492 0.84643

mRNA C1QC Cyan −0.12612 0.835847

mRNA CSF1R Cyan −0.16647 0.830564

mRNA C1QA Cyan −0.15212 0.826306

miRNA hsa-miR-515-5p Pink 0.175606 0.747637

miRNA hsa-miR-519e-5p Pink 0.15501 0.49922

miRNA hsa-miR-6769b-5p Pink 0.147596 0.410585

miRNA hsa-miR-519d-5p Pink 0.013167 0.541514

miRNA hsa-miR-4707-3p Purple −0.24545 0.7482

miRNA hsa-miR-6756-5p Purple −0.28336 0.908069

miRNA hsa-miR-650 Purple −0.32189 0.94761

lncRNA RP5-1029K10.2 Yellow 0.173204 0.816681

lncRNA ETV5-AS1 Yellow 0.13791 0.78535

lncRNA RP11-440L14.1 Yellow 0.131855 0.84422

lncRNA RP5-1184F4.5 Yellow 0.131485 0.854835

lncRNA AC226118.1 Yellow 0.111381 0.76165

lncRNA RP3-470B24.5 Yellow 0.108569 0.870981

lncRNA RP5-1125A11.7 Yellow 0.107931 0.741911

lncRNA CTD-2023N9.1 Yellow 0.104444 0.900808

lncRNA RP11-332H14.2 Yellow 0.09411 0.797046

lncRNA XIST Yellow 0.089522 0.401167

lncRNA AC141928.1 Yellow 0.072768 0.73042

lncRNA RP5-1054A22.4 Yellow 0.072657 0.868935

lncRNA C1orf213 Yellow 0.066348 0.746537

lncRNA PSMG3-AS1 Yellow 0.063239 0.798

lncRNA AC016735.1 Yellow 0.056561 0.704278

lncRNA RP11-2H3.6 Yellow 0.035953 0.826073

lncRNA RP11-504P24.8 Yellow 0.023092 0.706706

lncRNA CTD-3018O17.3 Yellow 0.009725 0.726373

lncRNA LINC01355 Yellow 0.001995 0.730689

lncRNA RP11-327F22.6 Midnight blue −0.04346 0.733582

lncRNA RP11-275I4.2 Midnight blue −0.06852 0.711478

miRNA, microRNA; lncRNA, long non-coding RNA; GS, gene significance; MM,

module membership.

In mRNA co-expression networks, green module (GS = 0.15;
containing 279 mRNAs) and cyan module (GS = −0.21;
containing 92 mRNAs) showed the highest correlation with T
stage of ESCC (Figure 2A). In miRNA co-expression networks,
pink module (GS = 0.21; containing 46 miRNAs) and purple
module (GS=−0.32; containing 38miRNAs) showed the highest
correlation with T stage of ESCC (Figure 2B). In lncRNA co-
expression networks, yellow module (GS = 0.13; containing 180
lncRNAs) andmidnight bluemodule (GS=−0.11; containing 71
lncRNAs) showed the highest correlation with T stage of ESCC
(Figure 2C). Six modules from three networks were picked for
following analysis as the clinically significant modules.

Functional and Pathway Enrichment
Analysis
To explore the biological functions of the mRNAs in hub
modules, the mRNAs were categorized into BP, CC, and MF.
The outcome of GO and KEGG enrichment of the mRNAs in
green and cyan module is shown in Figure 3A. The mRNAs
in BP were generally enriched in oxidation–reduction process,
immune response, inflammatory response, proteolysis, and
innate immune response; the mRNAs in CC were mainly focused
on integral component of membrane, extracellular exosome,
plasma membrane, cytosol, and membrane; the mRNAs in MF
were significantly focused on protein homodimerization activity,
identical protein binding, oxidoreductase activity, enzyme
binding, and receptor binding. The top five significantly enriched
pathways in green and cyan module were metabolic pathways,
tuberculosis, metabolism of xenobiotics by cytochrome P450,
cell adhesion molecules, and phagosome. Top enriched GO
terms for the miRNAs in pink and purple modules were
the following: biological process, cellular nitrogen compound
metabolic process, biosynthetic process, transcription, DNA-
templated and response to stress in BP; organelle, cellular
component, cytosol, protein complex, and extracellular vesicular
exosome in CC; and molecular function, ion binding, nucleic
acid binding transcription factor activity, enzyme binding, and
cytoskeletal protein binding in MF. The pathway analysis was
also performed for the miRNAs in hub modules. The top
five significantly enriched pathways were pathways in cancer,
focal adhesion, viral carcinogenesis, AMPK signaling pathway,
and endocytosis (Figure 3B). Top enriched GO terms for
the lncRNAs in yellow and midnight blue modules were as
follows: desmosome organization, small molecule metabolic
process, translational initiation, signal-recognition particle-
dependent co-translational protein targeting to membrane, and
keratinocyte differentiation in BP; Golgi membrane, cell junction,
postsynaptic density, keratin filament, and ribosome in CC;
signal transducer activity, structural constituent of ribosome,
protein complex binding, serine-type endopeptidase inhibitor
activity, and metallopeptidase activity in MF. The pathway
analysis was also performed for the lncRNAs in hub modules.
The top five significantly enriched pathways were focal adhesion,
Wnt signaling pathway, tight junction, cell cycle, and lysosome
(Figure 3C).

Identification and Validation of Hub mRNAs
in ESCC
Under the threshold of |MM| > 0.35, 103 mRNAs in cyan
module and 17 mRNAs in green module were considered as
candidate genes. Then, the relationship between mRNAs in
each module was identified from STRING (Figure S3), and we
calculated the connectivity degree of each node in PPI. Sixty
mRNAs in green module and 148 mRNAs with degrees ≥4
were considered as candidate mRNAs because they interacted
with more proteins. As for the survival analysis, 17 mRNAs in
green module and 29 mRNAs in cyan module were identified
to be related to the overall survival in ESCC. To identify the
common mRNAs in three parts, we performed Venn diagram

Frontiers in Oncology | www.frontiersin.org 7 January 2020 | Volume 9 | Article 147478

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yu et al. ceRNA Network of ESCC

FIGURE 5 | Validation of hub messenger RNAs (mRNAs) in esophageal squamous cell carcinoma (ESCC). (A) Volcano plot visualizing differently expressed genes

(DEGs) in GSE20347 (17 normal samples and 30 ESCC samples). (B) Volcano plot visualizing DEGs in GSE38129 (30 normal samples and 30 ESCC samples). (C)

Identification of common upregulated genes between DEGs of GSE20347 and GSE38129. (D) Identification of common downregulated genes between DEGs of

GSE20347 and GSE38129 by overlapping them.

by online tool jvenn (http://jvenn.toulouse.inra.fr/app/example.
html) (Figure S4). Two mRNA (TBC1D2 and ATP6V0E1)
in green module and six mRNAs (SPI1, RNASE6, C1QB,
C1QC, CSF1R, and C1QA) in cyan module were considered
as real hub mRNAs, and they were closely related to the
overall survival in ESCC (Figure 4). The corresponding MM
and GS of the hub mRNAs in hub modules are shown in
Table 1. GSE20347 and GSE38129 were used to validate the
different expression levels of hub mRNAs between normal

tissues and ESCC tissues with “limma” package in R. The
results showed that TBC1D2 and ATP6V0E1 were significantly
downregulated in ESCC (log2 FC > 1.5 and FDR < 0.05),
while SPI1, RNASE6, C1QB, C1QC, CSF1R, and C1QA are
significantly downregulated (log2 FC < −1.5 and FDR < 0.05)
(Figure 5). It is a pity that no other significant difference
was observed in the prognostic analysis for the biomarkers
in GSE53625 except for TBC1D2 (log-rank P = 0.028615)
from OSescc.
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TABLE 2 | The prediction of the interaction of hub mRNAs and hub miRNAs by

Targetscan.

miRNA Target gene Context++

score of

TargetScan

hsa-miR-519e-5p RNASE6 −0.48

hsa-miR-515-5p RNASE6 −0.48

hsa-miR-519d-5p RNASE6 −0.45

hsa-miR-6756-5p C1QA −0.64

hsa-miR-6769b-5p C1QA −0.4

hsa-miR-4707-3p TBC1D2 −0.59

hsa-miR-519d-5p ATP6V0E1 −0.4

hsa-miR-650 ATP6V0E1 −0.59

mRNA, messenger RNA; miRNA, microRNA.

Identification of Hub miRNAs and lncRNAs
Based on the MM of miRNA co-expression network and the
prediction by TargetScan (Table 2), seven miRNAs (hsa-miR-
519e-5p, hsa-miR-519d-5p, hsa-miR-515-5p, hsa-miR-6756-5p,
hsa-miR-6769b-5p, hsa-miR-4707-3p, and hsa-miR-650) were
defined as real hub miRNAs. Based on the MM of lncRNA
co-expression network and the prediction by LncBase (Table 3),
21 lncRNAs (RP11-275I4.2, RP11-327F22.6, LINC01355,
CTD-3018O17.3, RP11-504P24.8, RP11-2H3.6, AC016735.1,
PSMG3-AS1, C1orf213, RP5-1054A22.4, AC141928.1, XIST,
RP11-332H14.2, CTD-2023N9.1, RP5-1125A11.7, RP3-
470B24.5, AC226118.1, RP5-1184F4.5, RP11-440L14.1,
ETV5-AS1, and RP5-1029K10.2) were considered as hub
lncRNAs. The corresponding MM and GS of the hub miRNAs
and the hub lncRNAs in hub modules are shown in Table 1.

Construction and Topological Analysis of
ceRNA Regulatory Network in ESCC
Eight genes (SPI1, RNASE6, C1QB, C1QC, CSF1R, C1QA,
TBC1D2, and ATP6V0E1), seven miRNAs (hsa-miR-519e-5p,
hsa-miR-519d-5p, hsa-miR-515-5p, hsa-miR-6756-5p, hsa-miR-
6769b-5p, hsa-miR-4707-3p, and hsa-miR-650), and 21 lncRNAs
(RP11-275I4.2, RP11-327F22.6, LINC01355, CTD-3018O17.3,
RP11-504P24.8, RP11-2H3.6, AC016735.1, PSMG3-AS1,
C1orf213, RP5-1054A22.4, AC141928.1, XIST, RP11-332H14.2,
CTD-2023N9.1, RP5-1125A11.7, RP3-470B24.5, AC226118.1,
RP5-1184F4.5, RP11-440L14.1, ETV5-AS1, and RP5-1029K10.2)
were involved in this interaction network. The lncRNA–miRNA–
mRNA network is shown in Figure 6A. Besides, all node degrees
of the network were calculated (Table S2 and Figure 6C).
According to the previous studies, a node with degree exceeding
5 was defined as a hub node (31, 32). In our study, eight nodes
(including three mRNAs and five miRNAs) were selected
as hub nodes. In addition, we calculated the number of the
relationship pairs of miRNA–mRNA and lncRNA–miRNA, and
the results are shown in Table 4. We found that three miRNAs
(hsa-miR-519e-5p, hsa-miR-515-5p, and hsa-miR-6756-5p) not
only had higher node degrees but also had a higher number
of miRNA–mRNA and lncRNA–miRNA pairs. The results

TABLE 3 | The prediction of the interaction of hub lncRNAs and hub miRNAs by

LncBase.

lncRNA Target miRNA The score of LncBase

XIST hsa-miR-519e-5p 0.951

CTD-2023N9.1 hsa-miR-519e-5p 0.711

RP5-1184F4.5 hsa-miR-519e-5p 0.71

RP11-440L14.1 hsa-miR-519e-5p 0.987

RP11-332H14.2 hsa-miR-519e-5p 0.774

ETV5-AS1 hsa-miR-519e-5p 0.803

RP11-327F22.6 hsa-miR-519e-5p 0.706

AC141928.1 hsa-miR-519e-5p 0.707

AC016735.1 hsa-miR-519e-5p 0.779

RP5-1054A22.4 hsa-miR-519d-5p 0.726

RP11-327F22.6 hsa-miR-519d-5p 0.712

XIST hsa-miR-515-5p 0.949

CTD-2023N9.1 hsa-miR-515-5p 0.711

RP5-1184F4.5 hsa-miR-515-5p 0.736

RP11-440L14.1 hsa-miR-515-5p 0.989

RP11-332H14.2 hsa-miR-515-5p 0.782

ETV5-AS1 hsa-miR-515-5p 0.767

AC141928.1 hsa-miR-515-5p 0.715

AC016735.1 hsa-miR-515-5p 0.797

XIST hsa-miR-6756-5p 0.948

RP5-1029K10.2 hsa-miR-6756-5p 0.944

PSMG3-AS1 hsa-miR-6756-5p 0.711

AC226118.1 hsa-miR-6756-5p 0.7

C1orf213 hsa-miR-6756-5p 0.919

RP5-1125A11.7 hsa-miR-6756-5p 0.73

LINC01355 hsa-miR-6756-5p 0.773

RP11-2H3.6 hsa-miR-6769b-5p 0.919

AC226118.1 hsa-miR-6769b-5p 0.703

CTD-3018O17.3 hsa-miR-6769b-5p 0.848

RP11-275I4.2 hsa-miR-6769b-5p 0.991

RP11-440L14.1 hsa-miR-4707-3p 0.822

RP3-470B24.5 hsa-miR-650 0.815

C1orf213 hsa-miR-650 0.716

CTD-3018O17.3 hsa-miR-650 0.762

RP11-504P24.8 hsa-miR-650 0.974

lncRNA, long non-coding RNA; miRNA, microRNA.

suggested that the miRNAs (hsa-miR-519e-5p, hsa-miR-515-5p,
and hsa-miR-6756-5p) might play essential roles in ESCC
progression, which would be considered as the key miRNAs.

The Prognostic Factors of ceRNA Network
in ESCC and HNSCC
The R survival package was used for survival analysis for all
RNAs in the ceRNA network. Because the overall survival of
mRNAs was performed to select hub mRNAs (P < 0.05), the
mRNAs in the ceRNA network were significantly associated
with overall survival of ESCC. Through the Kaplan–Meier
curve analysis for TCGA-ESCC, one miRNA (hsa-miR-515-
5p) and one lncRNA (XIST) were found to be significantly

Frontiers in Oncology | www.frontiersin.org 9 January 2020 | Volume 9 | Article 147480

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yu et al. ceRNA Network of ESCC

FIGURE 6 | The interaction network of hub microRNAs (miRNAs) and hub genes. (A) The view of the long non-coding RNA (lncRNA)–miRNA–messenger RNA (mRNA)

network. The triangle represents lncRNAs, the rhombus represents miRNAs, and the rectangle represents mRNAs. (B) The expression levels of hsa-miR-515-5p and

XIST were negatively correlated with the overall survival. (C) All node degree analysis reveals specific properties of the lncRNA–miRNA–mRNA network.

associated with overall survival. We found that the expression
levels of the hsa-miR-515-5p miRNA and XIST lncRNA were
negatively correlated with the overall survival rate (P < 0.05;
Figure 6B). Besides, some databases were used to explore the
role of the interaction network in HNSCC. The levels of
eight genes (SPI1, RNASE6, C1QB, C1QC, CSF1R, C1QA,
TBC1D2, and ATP6V0E1) expression were higher in tumor
samples from UALCAN (Figure 7A). The results showed that
the expression levels of the hub miRNAs/lncRNAs between
normal and HNSCC tissues had no obvious difference. For the
relationship between hub mRNAs/miRNAs/lncRNAs expression
levels and the prognosis of HNSCC fromOncoLnc, TBC1D2 and
ATP6V0E1 negatively correlated with overall survival of HNSCC
(Figure 7B). It is a pity that no other significant difference was
observed in the prognostic analysis for the hubmiRNAs/lncRNAs
in HNSCC.

Functional Annotation of the Hub Genes
GSEA was performed to identify the lurking mechanisms
related to ESCC progression of eight hub genes. As shown in
Table S3, ESCC samples in TBC1D2 high-expression group

TABLE 4 | The number of lncRNA–miRNA and miRNA–mRNA pairs.

Number Name lncRNA–miRNA

pairs

miRNA–mRNA

pairs

Total

number

1 hsa-miR-

519e-5p

9 1 10

2 hsa-miR-

515-5p

8 1 9

3 hsa-miR-

6756-5p

7 1 8

lncRNA, long non-coding RNA; miRNA, microRNA.

were most significantly enriched in translational initiation
molecules; ESCC samples in ATP6V0E1, SPI1, RNASE6, C1QB,
C1QC, CSF1R, and C1QA high-expression groups were most
significantly enriched in adaptive immune response (Tables S4–
S10). Based on the analysis of guilt of association, we identified
that the hub genes were essential for T-cell activation, and they
mainly played important roles in leukocyte cell–cell adhesion,
regulation of lymphocyte activation, and T-cell receptor
complex (Figure S5).
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FIGURE 7 | The prognostic factors of competing endogenous RNA (ceRNA) network in head and neck squamous cell carcinoma (HNSCC). (A) Gene expression

levels between normal and tumor samples [based on The Cancer Genome Atlas (TCGA)-HNSCC data in UALCAN]. (B) TBC1D2 and ATP6V0E1 were identified to be

related to the overall survival of HNSCC from OncoLnc.

DISCUSSION

Although some certain chemotherapeutic drugs are used
extensively for treating ESCC, including cisplatin (33, 34),
docetaxel (33–35), nedaplatin (35), and fluorouracil (33–35),
the prognosis of patients with ESCC is still very poor. Further

development of some molecular drugs for ESCC is urgently
required. In this study, it was the first time to identify ESCC
mRNA, miRNA, and lncRNA modules by WGCNA at the
same time. More importantly, the common mechanisms and
molecular targets between ESCC and HNSCC were explored by
bioinformatics analysis for the first time. We found six modules,
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including two mRNA modules (green and cyan modules), two
miRNA modules (pink and purple modules), and two lncRNA
modules (yellow and midnight blue modules), which were
significantly related to the T stage of ESCC. We identified eight
hub mRNAs, seven hub miRNAs, and 21 hub lncRNAs, and the
lncRNA–miRNA–mRNA network was constructed. Moreover,
the drugs targeting the prognostic factors were collected from
DrugBank (https://www.drugbank.ca/). Most of the prognostic
factors were not used to develop targeting drugs yet, and more
studies need to be done. Recently, Pexidartinib, a molecular
drug targeting CSF1R, was approved by the Food and Drug
Administration in August 2019 as the first systemic therapy for
adult patients with symptomatic tensynovial giant cell tumor
(36). This achievement would provide the reference to our latter
work. In the independent validation of prognostic biomarkers
in independent dataset, all of the samples of GSE53625 were
collected in China, while the samples of TCGA-ESCC were
collected in America. The predictive capability of the biomarkers
in cancer patients prognosis will be changed greatly in different
races (37, 38). We speculated the predication performance of
these biomarkers for ESCC are different in different races. In
the future, we will further explore these biomarkers for ESCC in
vivo and in vitro and compare the predictability of the prognostic
biomarkers from different ethnic groups with more precision
experimental methods.

Previous studies have revealed that esophageal cancer stage
was more important in predicting outcome of synchronous
ESCC/HNSCC patients (5, 39). The lncRNA–miRNA–mRNA
network, which was based on the RNAmodules related to T stage
of ESCC, would help us understand the pathogenesis of ESCC-
HNSCC. In this study, TBC1D2 and ATP6V0E1 were identified
to be related to the T stage of ESCC, and they have a significantly
better chance of becoming molecular factors for the prognosis
prediction in ESCC-HNSCC. The expression levels of TBC1D2
and ATP6V0E1 were increased in both ESCC and HNSCC
tissues, and they are closely related to the overall survival of ESCC
and HNSCC, which means that TBC1D2 and ATP6V0E1 could
be common therapeutic targets for both cancers.

Most interestingly, we found that the expression levels of SPI1,
RNASE6 C1QB, C1QC, CSF1R, and C1QA were downregulated
in ESCC, whereas they were upregulated in HNSCC. Some
certain genes patriciate different molecular mechanisms in
different tumor cells, so the expression levels of the genes
would be very different (40, 41). We speculated that these genes
participate in different pathogenesis in ESCC and HNSCC, thus
making significantly different expression levels of these genes
in different cancers. Functional data about how these genes
participating in ESCC and HNSCC are not enough, and further
studies are needed to explore the proposed mechanism for this
interesting phenomenon.

As for the miR-515-5p and XIST related to the survival of
ESCC, we conducted a literature review of them. miR-515-5p was
initially described as a placenta-specific factor participating in
fetal growth (42). Previous studies have identified its important
role in breast cancer and non-small cell lung cancer (43, 44).
miR-515-5p overexpression could inhibit cell migration in both
lung and breast cancers, which demonstrated that miR-515-5p

could be a target of some molecular drugs treating the metastatic
cancer patients (44). In this study, it is the first time to discover
that the expression level of miR-515-5p is negatively related to
the overall survival of ESCC, and miR-515-5p might control
cancer cell progression through RNASE6 regulation. As for the
lncRNA XIST (X-inactive specific transcript), it is the master
regulator of X inactivation and a product of the XIST gene
(45). More and more research indicates that lncRNA XIST plays
an important role in cell proliferation and differentiation, and
it is dysregulated in many cancers (46, 47). A recent study
demonstrated the abnormal expression of XIST could contribute
to esophageal cancer via miR-494/CDK6 axis (48). We found
that XIST might influence the prognosis of ESCC via miR-6756-
5p/C1QA. Functional data about how XIST participates in cancer
pathology are not enough, and further studies are needed.

The mRNAs in the hub modules were generally enriched
in oxidation–reduction process and immune response. Cancer
cell survival depends on various redox-related mechanisms,
which are targets of currently developed therapies (49). Besides,
disruption of redox homeostasis is a crucial factor in the
development of drug resistance for ESCC, which is a major
problem facing current cancer treatment (50). The genes
in the hub modules would help us better understand the
new resistance mechanism of the drugs for ESCC, such as
paclitaxel, fluorouracil, and cisplatin. The immune system has an
important role in the control of tumor outgrowth. Nowadays,
immunotherapy is a novel treatment option that has shown
encouraging efficacy in several types of cancer, also in ESCC,
and early phase evaluation of immune checkpoint inhibitors
has yielded promising results (51). The genes, playing an
important role in immune response, might be new targets
for cancer immunotherapy. The miRNAs and the lncRNAs in
the hub modules were generally enriched in cell division and
cell adhesion. A lot of cancer-promoting errors may occur
during cell division, such as DNA mutations and epigenetic
mistakes, chromosome aberrations occurring, and the wrong
distribution of cell-fate determinants between the daughter cells
(52, 53). The miRNAs and the lncRNAs in the hub modules
might regulate the enzyme genes relating to cell division to
control tumor cells division and growth in ESCC. Cell adhesion
molecules are involved in a series of important physiological
and pathological processes, such as cell signal transduction and
activation, cell extension and movement, and tumor metastasis
(54). The expression levels of important cell adhesion molecules
are of great significance for disease diagnosis, guiding clinical
therapy, and prognosis in ESCC (55). For example, the high
expression of EGFR causes the abnormal differentiation of ESCC
cells and the decrease in adhesion between cells, and the tumor is
prone to lymphatic and distant metastasis (56, 57).

This work not only identify the prognostic factors of ESCC
but also do further research for ESCC-HNSCC pathogenesis.
WGCNA, GO/KEGG analysis, GSEA, and some databases
(UALCAN, OncomiR, and OncoLnc) were used to fully explore
the commonmechanisms involving in ESCC andHNSCC. Useful
clues were provided for clinical treatment of both diseases based
on novel molecular advances, but there are still insufficient exist.
First, nowadays, many studies tried to identify genes associated
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with progression and prognosis in patients with cancer using
experimental methods. Lack of experiments (in vivo and in
vitro validation) might be one limitation of our study. Second,
the samples, suffering from ESCC and HNSCC, respectively,
are not best one which is used to investigate mechanisms
related to the prognosis of ESCC-HNSCC pathogenesis. We
will further explore the ceRNA regulatory network and its
role in the progression of ESCC-HNSCC using more in-depth
bioinformatic analyses and experimental methods in the future.

In conclusion, the lncRNA–miRNA–mRNA network was
conducted to explore the development of ESCC and common
pathways between ESCC andHNSCC byWGCNA.We identified
eight hub genes (TBC1D2, ATP6V0E1, SPI1, RNASE6, C1QB,
C1QC, CSF1R, and C1QA), one hub miRNA (hsa-miR-515-5p),
and one lncRNA (XIST), which might be prognostic biomarkers
for ESCC. In the future, the pathogenic overlap of ESCC
and HNSCC may help us to clarify the common molecular
mechanisms between both diseases and may provide a potential
treatment strategy for both diseases.
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Figure S1 | Determination of soft-thresholding power in the weighted gene

co-expression network analysis (WGCNA). (A) Analysis of the scale-free fit index

and the mean connectivity for various soft-thresholding powers for mRNA

co-expression networks. (B) Analysis of the scale-free fit index and the mean

connectivity for various soft-thresholding powers for miRNA co-expression

networks. (C) Analysis of the scale-free fit index and the mean connectivity for

various soft-thresholding powers for lncRNA co-expression networks.

Figure S2 | Clustering dendrograms. (A) Clustering dendrograms of the mRNAs

based on a dissimilarity measure (1-TOM). (B) Clustering dendrograms of miRNAs

based on a dissimilarity measure (1-TOM). (C) Clustering dendrograms of

lncRNAs based on a dissimilarity measure (1-TOM).

Figure S3 | Protein-protein interaction networks for the genes in hub modules. (A)

PPI network of 92 genes in cyan module. (B) PPI network of 279 genes in green

module acquired from STRING 9.1.

Figure S4 | Identification of hub mRNAs in ESCC based on |MM| in co-expression

networks, degrees in PPI network, and survival analysis. (A) TBC1D2 and

ATP6V0E1 were considered as real hub mRNAs in green module. (B) SPI1,

RNASE6, C1QB, C1QC, CSF1R, and C1QA were considered as real hub mRNAs

in cyan module.

Figure S5 | Guilt of association for hub genes (SPI1, RNASE6, C1QB, C1QC,

CSF1R, C1QA, TBC1D2, and ATP6V0E1).

Table S1 | Gene expression microarray datasets related to ESCC.

Table S2 | Node degree analysis for RNAs in ceRNA network.

Table S3 | Gene set enriched in esophageal samples with TBC1D2 high

expression.

Table S4 | Gene set enriched in esophageal samples with ATP6V0E1

high expression.

Table S5 | Gene set enriched in esophageal samples with SPI1 low expression.

Table S6 | Gene set enriched in esophageal samples with RNASE6 low

expression.

Table S7 | Gene set enriched in esophageal samples with C1QB low expression.

Table S8 | Gene set enriched in esophageal samples with C1QC low expression.

Table S9 | Gene set enriched in esophageal samples with CSF1R low expression.

Table S10 | Gene set enriched in esophageal samples with C1QA low expression.
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Engineered organoids by sequential introduction of key mutations could help modeling

the dynamic cancer progression. However, it remains difficult to determine gene paths

which were sufficient to capture cancer behaviors and to broadly explain cancer

mechanisms. Here, as a case study of colorectal cancer (CRC), functional and

dynamic characterizations of five types of engineered organoids with different mutation

combinations of five driver genes (APC, SMAD4, KRAS, TP53, and PIK3CA) showed

that sequential introductions of all five driver mutations could induce enhanced activation

of more hallmark signatures, tending to cancer. Comparative analysis of engineered

organoids and corresponding CRC tissues revealed sequential introduction of key

mutations could continually shorten the biological distance from engineered organoids

to CRC tissues. Nevertheless, there still existed substantial biological gaps between the

engineered organoid even with five key mutations and CRC samples. Thus, we proposed

an integrative strategy to prioritize gene cascading paths for shrinking biological gaps

between engineered organoids and CRC tissues. Our results not only recapitulated

the well-known adenoma–carcinoma sequence model (e.g., AKST-organoid with driver

mutations in APC, KRAS, SMAD4, and TP53), but also provided potential paths for

delineating alternative pathogenesis underlying CRC populations (e.g., A-organoid with

APC mutation). Our strategy also can be applied to both organoids with more mutations

and other cancers, which can improve and innovate mechanism across cancer patients

for drug design and cancer therapy.

Keywords: gene cascading paths, prioritizing, colorectal cancer, engineered organoids, random walk with restart

INTRODUCTION

The well-known adenoma–carcinoma sequencemodel described a basic carcinogenesis mechanism
of colorectal cancer (CRC) (Vogelstein and Kinzler, 2004; Brenner et al., 2014). The sequential
genetic alterations of APC, KRAS, SMAD4, and TP53 could recapitulate the key features in
transition from normal to adenoma and to initiation and progression of CRC, which promoted the
understanding of pathogenesis in CRCs (Powell et al., 1992; Drost et al., 2015; Chen et al., 2016).
Mutations on these genes could deregulate driver pathways to confer selective growth advantages
and further to drive colorectal carcinogenesis. Tumor suppressor gene APC acted as an antagonist
of theWNT signaling pathway. The inactivatingmutations ofAPC could initiate a benign adenoma
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by activating the WNT pathway (Powell et al., 1992; Roper
et al., 2017; Takeda et al., 2019), which was proved by the
upregulation of β-catenin driven by APC mutations (Matano
et al., 2015). The follow genetic alterations in KRAS, SMAD4,
and TP53 further promoted the transition of adenoma to CRC
by activating EGFR, P53 and TGF-β pathways (Drost et al.,
2015; Chen et al., 2016). KRAS was reported to play driver
roles during the progression from early to intermediate adenoma
stages (Takeda et al., 2019). The activating mutations in KRAS
could activate EGF signaling. The SMAD4 and TP53 mutations
promoted the transition from adenoma to adenocarcinoma
stages (Fearon and Vogelstein, 1990). SMAD mutations reduced
the SMAD protein and inhibited TGF-β signaling pathway.
The mutation in TP53 could overexpressed a truncated TP53
protein which made TP53 lose tumor suppressor roles (Tang
et al., 2019). However, due to the high heterogeneity of genetic
alterations across CRC population, it was inefficient for these
driver mutations to characterize the molecular mechanism of
broad CRC patients. Prioritizing different gene cascading paths
for directing sequential introduction of key mutations were the
pressing problem.

Organoids, as an in vitro 3Dmodels, could closely recapitulate
genetic spectra of original tissues (Morizane et al., 2015). For
example, tumor organoids closely recapitulated the molecular
spectra in CRC (van de Wetering et al., 2015). Introducing key
mutations into organoids other than cells could provide better
manners to examine the influence of driver genes during cancer
carcinogenesis. Directly targeting modification of cancer genes
could produce cancer cells from the mouse primary cells or
in vivo tissue (Ran et al., 2013; Heckl et al., 2014; Platt et al.,
2014; Sánchez-Rivera et al., 2014; Xue et al., 2014). Driver gene-
targeted engineered organoids could grow in hostile medium
while normal intestinal organoids ceased proliferation. We
summarized the recent studies modeling CRC using intestinal
organoids with introducing driver mutations in APC, SMAD4,
KRAS, TP53, and PIK3CA (Table S1) (Cooks et al., 2013; Onuma
et al., 2013; Drost et al., 2015; Matano et al., 2015; Chen et al.,
2016; Nakayama et al., 2017; O’Rourke et al., 2017; Riemer
et al., 2017; van Lidth de Jeude et al., 2017). APC mutations
activated WNT signaling and promoted the growth of intestinal
organoids in medium lacking WNT signaling (Matano et al.,
2015). Intestinal organoids with APC mutations developed into
benign tumors after transplantation (O’Rourke et al., 2017).
SMAD4 mutation-targeted organoids could grew in condition
without inhibitor of TGF-β receptor signaling that was essential
for sustaining the growth of normal intestinal cells (Matano
et al., 2015). Engineered organoids expressing KRAS mutations
could expand in the condition withdrawing EGFR signaling
(Matano et al., 2015). TP53 mutations induced prolongation of
activation of NF-kappaB signaling, and promoted inflammation-
associated colorectal cancer (Cooks et al., 2013). TP53mutation-
targeted organoids could recover in the condition of activation
of TP53 signaling pathway which can induce cell cycle arrest
and apoptosis (Matano et al., 2015). Oncogenic PIK3CA could
regulate cell motility thoughAKT, and PIK3CAmutations played
key roles in reprograming glutamine metabolism in colorectal
cancers (Hao et al., 2016). PIK3CA mutations could induce

cell attachment and motility under cooperation of CTNNB1
(Riemer et al., 2017). Oncogenic PIK3CA could regulate cell
motility though AKT, and PIK3CAmutations played key roles in
reprograming glutamine metabolism in colorectal cancers (Hao
et al., 2016). Sequential introducing different combinations of
these driver mutations could delineate the progression from
normal epithelium to adenoma and carcinoma. Engineered
organoids with APC and KRAS mutations grew into lager
dysplasia without invasive features (Takeda et al., 2019), and
further formed invasive submucosal tumor under condition
of inhibited TGF-β signaling pathway (Chen et al., 2016;
Takeda et al., 2019). These studies implied that engineered
organoids with sequential introducing driver mutations could
provide new clues to exploring developmental mechanisms
of cancers. However, whether these engineered organoids
were sufficient to capture broad cancer behaviors were still
a challenge.

The transformation of normal cells to tumor cells was
the dynamic dysregulated procession of cellular homeostasis,
which was the requirement for the organism function normally
(Rosenfeldt et al., 2013). The activity of biological functions could
reflect the extent of homeostasis. Many functional activity-based
methods were proposed to reveal the disease mechanisms (Lee
et al., 2008; Gatza et al., 2010; Drier et al., 2013). The patterns
of functional activity made tumor disease classification more
precise and built subtype characterizations (Lee et al., 2008; Gatza
et al., 2010). The function dysregulated scores characterized the
deregulated extent of functions in individual samples (Drier
et al., 2013). Measuring the difference of function activity among
different cancer stages could help characterizing the dynamic
progression of CRC.

In this work, from the single-mutant to quintuple-mutant
engineered organoids, we dynamically characterized the function
activities of hallmark signatures andmeasured the biological gaps
between the engineered organoids and the CRC samples. An
integrative strategy was designed to prioritize the gene cascading
paths which could help us to understand the carcinogenesis
mechanism of broad CRC patients with different profile of
genetic alterations (Figure 1).

MATERIALS AND METHODS

Data Collection and Processing
Gene Expression Profiles and Mutation Profiles of

Colorectal Cancer
We downloaded the gene expression profiles (GSE57965) of
adenoma and engineered organoids (Table S3), which contained
five adenoma samples with APC mutation (A-organoid), 1
adenoma sample with genetic modification of SMAD4 deletion
(AS-organoid), 1 adenoma sample of genetic modification of
knocking in KRASG12V (AK-organoid), 2 engineered human
colon organoids carrying four gene mutations (APC, KRASG12V ,
SMAD4, and TP53, AKST-organoids) and 1 engineered human
colon organoids carrying five gene mutations (APC, KRASG12V ,
SMAD4, TP53, and PIK3CAE545K , AKSTP-organoid) (Matano
et al., 2015). The gene expression profile with 20,014 genes
were obtained after removing probes corresponding to multiple
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FIGURE 1 | The overview of the integrative strategy for prioritizing gene cascading path.
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genes and averaging the expression level of multiple probes of
each gene.

We also downloaded the somatic mutation data (level 2) and
gene expression profiles (RNA-seq) of colorectal cancer from the
cancer genome atlas (TCGA). We extracted a mutation profiles
which contained the samples with mutations in at least one of
five genes (including APC, SMAD4, TP53, KRAS, and PIK3CA)
and removed mutation types of silent, intron and 5’UTR. Finally,
we obtained 103 samples with both gene expression profile and
mutation profile (Table S3), in which 54 samples only with APC
mutation, 40 samples only with mutations in both APC and
KRAS, 3 samples withmutations only in both APC and SMAD4, 1
sample with mutations only in four genes (APC, KRAS, SMAD4,
and TP53), and five samples with mutations of all of five genes.

KEGG Pathways and HPRD Protein Interaction

Network
We downloaded the KGMLs of 222 human pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000). To get the topological information of these
pathways, we got the corresponding undirected graphs of
pathways and the degrees of genes in these pathways using the
R package iSubpathwayMiner (Li et al., 2009). Only the pathways
in which genes were connected with each other were kept. Finally,
we obtained 186 pathways as the functions to characterize the
biological gaps between organoids and cancer samples.

The protein interaction network was obtained from the
Human Protein Reference Database (HPRD, version 9) (Keshava
Prasad et al., 2009), which contained 9,617 genes and 39,240
interactions among these genes.

Methods
We proposed an integrative strategy to prioritize the gene
cascading path for directing CRISPR-Cas9 to construct colorectal
cancer organoids (Figure 1).

Integrating the Gene Expression Profiles From GEO

and TCGA Using Rank-Based Scores
To joint analysis of expression profiles from GEO and TCGA, we
used the Rank-based scores (Amar et al., 2015) to normalize the
expression profiles of engineered organoids and CRC samples.
18,071 common genes were detected by both GEO and TCGA.
For each sample s, the expression values of 18,071 genes were
sorted in the decreasing order. Rank of highest expressed gene
was 1 and that of lowest one was 18,071. The rank i of gene

g was transformed into rank-based score: Ws(gi) = ie−
i

18071 .
The rank-based scores of genes in the samples were used to
joint analysis.

Identifying Dysregulated Functions in

Biological Gaps Between Engineered

Organoids and Corresponding CRC

Samples
To investigate the potential driver capability of driver
mutations, we characterized the biological distance from

engineered organoids to CRC samples by identifying the
dysregulated functions.

Functional Activity
Functional activity could measure the active status of biological
functions in a specific sample (Bild et al., 2006). For each
sample, we calculated functional activities of 186 functions
using a Normalized Centroid shift method (Yang et al., 2012).
For each function j, we classified the 18,071 genes (G) into
two classes: genes within the function j (Gfunj ) and the
other genes (G/Gfunj ). We calculated the average rank-based
scores NCGfunj

and NCG/Gfunj
, and then the activity score of

function j (FASfunj ) was calculated as the difference between
NCGfunj

and NCG/Gfunj
.

NCGfunj
=

∑

gi∈Gfunj

Ws(gi)

∣

∣

∣

Gfunj

∣

∣

∣

NCG/Gfunj
=

∑

gi∈G∩gi /∈Gfunj

Ws(gi)

∣

∣

∣

G/Gfunj

∣

∣

∣

FASfunj = NCGfunj
− NCG/Gfunj

Identifying Dysregulated Functions With Significant

Activity Difference Between the Engineered

Organoids and CRC Samples
To measure the biological distance from engineered organoids
(S) and corresponding CRC samples (T), we compared the
activities of 186 functions between S and T. For each type
of mutation combination, we calculated the average functional
activities of each function, FASs

funj
and FAST

funj
, for S and T. The

DFASfunj =

∣

∣

∣

FASs
funj

− FAST
funj

∣

∣

∣

measure the activity difference.

To determine the significance of activity difference and identify
dysregulated functions, the gene expression profiles of S and
T were permuted 1,000 times, respectively. We re-calculated
1,000 random DFAS as described above. The significance P was
calculated as the frequency in which random DFAS was larger
than real DFAS.We identified the dysregulated functions as those
at FDR= 0.01.

Inferring Subsequent Key Genes During

the Progression of CRC
The known driver mutations were inefficient to capture cancer
behaviors and to broadly explain cancer mechanisms. Exploring
the subsequent key genes of known drivermutations can improve
the understanding of modeling CRC. We utilized Random walk
with restart (RWR) (Köhler et al., 2008) to infer subsequent
key genes during the progression of CRC for five types
of organoids.

For each dysregulated function k obtained from a specific
organoid, we reconstructed a biological network based on the
pathway structure. We calculated the degrees of genes in the
dysregulated function and selected the top 10% genes with the
highest degrees as the seed genes which were the input of random
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walk. The seed genes were sowed into the protein interaction
network. The information flow can restart from the seed genes
with probability r in RWR (Köhler et al., 2008):

Pt+1 = (1− r)WPt + rP0

where r was set to 0.7; P0was the initial probabilities of genes,
in which the probabilities of seed genes was 1�n (n was the
number of seed nodes) and others 0; Ptwere the probabilities
of genes at the tth steps; W was the normalized transfer matrix
of the protein interaction network; the random walk process
reached the steady-state when the maximum difference between
Pt+1and Ptwas <10−8. The Pt+1 characterized the functional
similarity of genes with seed genes. We randomly selected 1,000
sets of pseudo seed genes with the same size and re-performed
random walk. For each gene j in the protein interaction network,
the significance Pkj was calculated as the frequency in which

random functional similarity was larger than real one. Finally,
we combined the significance (Pkj ) of gene j calculated from all

dysfunctional functions (k = 1. . . . . .K) into a statistic X which
follow the χ

2 (2K) distribution:

χ
2
= −2

K
∑

k=1

ln Pkj

Where the K was the number of dysfunctional functions. The
P(X ≥ χ

2
|X ∼ χ

2(2K)) represented the significance of genes.
We considered genes with FDR ≤ 0.05 as subsequent key genes.

Prioritizing Gene Cascading Paths to

Recapture the Adenoma-Carcinoma

Sequence of CRC
High tumor heterogeneity of genetic alterations in CRC
made the well-known adenoma-carcinoma sequence explain
a part of CRC patients, additional alternative gene paths
were needed to interpret the development progression of
more extensive CRC patients. Different patients with similar
phenotype had different combinations of genetic alterations
that tended to participate in same or similar functions. To
prioritize gene cascading paths for each type of organoid,
firstly, we calculated the functional coherence among the five
known genes and the subsequent key genes (Wang et al.,
2007), and constructed the functional consistency network at
the threshold of 0.4. Then, a sparse functional consistency
network was constructed by selecting two neighbors with
highest functional consistency for each gene. Finally, using
the well-known adenoma-carcinoma sequence model as the
template, each gene cascading path was identified by starting
from the mutant genes in the organoids and ending at the
potential key gene showing the maximum shortest distance with
mutant genes.

Stepwise Comparison of Five Types of

Organoids in the Activities of Hallmark

Signatures
We compared the activities of 50 hallmark signatures among
five types of organoids (including A-organoid, AS-organoid, AK-
organoid, AKST-organoid, and AKSTP-organoid) in a stepwise
way. For a pair of organoids, we identified the significant
activation/inactivation of hallmark signatures in the organoid
with more mutations by comparing with the other. The
activities of 50 hallmark signatures were estimated using gene
set enrichment analysis, and the activity differences between the
pair of organoids were calculated. To measure the significance
of activity differences, we permutated the transcriptomes of the
pair of organoids 1,000 times, and recalculated 1,000 random
activity differences of hallmark signatures. The significance of
activation was calculated as the frequency in which random
activity differences was larger than real one. And the significance
of inactivation was calculated as the frequency in which random
activity differences was smaller than real one. We identified
the significant activation/inactivation of hallmark signatures at
FDR ≤ 0.05.

RESULTS

The Combination Mutation Patterns in Five

Driver Genes Across CRC Populations
The mutations of five genes (including APC, KRAS, SMAD4,
TP53, and PIK3CA) were reported to play driver roles in
CRC progression. Five CRC populations in the cbioPortal were
collected to investigate the mutation distributions of the five
driver genes (Cerami et al., 2012; Gao et al., 2013). We found that
these five genes showed high mutation frequencies ranging from
77 to 100% (Figure 2A). As a “gatekeeper” gene, APC mutations
were extremely pervasive across CRC populations. Especially,
the mutation frequency of APC reached up to 91% in MSKCC
study (Figure S1 and Table S2). The mutation frequencies of
TP53 were 82, 53, 55, 56, and 43% across five CRC populations;
55, 42, 44, 51, and 28% for KRAS; 20, 20, 15, 31, and 21% for
SMAD4; and 12, 14, 15, 24, and 10% for PIK3CA. The high
frequencies of these five driver genes confirmed their core roles
in the progression of CRC. Interestingly, only 0.72, 0.94, 0.45, 0%
(0/72), 0% samples harbored themutations of all five genes across
the five CRC populations (Figure 2B). CRC samples harboring
mutations in four genes only occupied 16.7, 5.7, 5.5, 8.3, and
3.9%, respectively. Most CRC samples (74.6, 65.1, 63.6, 58.3,
and 54.1%) carried mutations of two or three genes. And the
most common combination of mutations was observed between
APC and TP53. These results further showed CRC was a highly
heterogeneous disease from genomic perspective. Different CRC
patients harbored different combinations of genetic alterations.
The mutation frequency of single driver gene was high while the
co-occurrence frequency of the five driver genes was very low.
These phenomenon implied that although the mutations of the
five driver genes could explain the CRC pathogenesis well, which
could only explain the progressive mechanism for a fraction of
CRC patients, but the molecular pathogenesis of major patients
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FIGURE 2 | The mutation distributions of five driver genes in the five CRC populations. (A) The mutation frequencies of the five genes across five CRC populations.

(B) Combination patterns of mutations in the five genes across CRC populations.

remains unclear. There existed other gene paths or mutation
combinations to drive CRC evolution.

Functionally Characterizing Engineered

Organoids Carrying Various Combinations

of Driver Mutations
We collected the transcriptomes of five types of engineered
organoids which expressed mutations of different combinations
of the five genes from GSE57965. For each type of engineered
organoid, we calculated the activities of 50 hallmark signatures
from MSigDB and identified the hallmark signatures with
significant activation or inactivation using gene set enrichment
analysis (Subramanian et al., 2005; Liberzon et al., 2015).
In A-organoid, epithelial mesenchymal transition was the
most significantly activated development signature (Figure S2A,
P < 0.001). The immune signatures [IL6- JAK-STAT3 signaling
(P = 0.0012) and inflammatory response (P = 0.001)] also
showed significant activation. Five of six proliferation signatures
showed significant activation in AK-organoid, which contained
G2M checkpoint (P < 0.001) and E2F targets (P < 0.001).
In AKST- and AKSTP-organoids, the hypoxia and glycolysis
signature showed significant activation. Notably, none of 50

hallmark signatures showed significant inactivation in AKSTP-
organoid (Figure S2B), indicating AKSTP-organoid exhibited
more cancer hallmarks. These results suggested that the
introduction of the five driver genes in intestinal organoids could
induce the activation of hallmark signatures.

Dynamically Analyzing CRC Progression

From A- to AKSTP-Organoids
To further characterize the dynamic activities of hallmark
signatures during sequential introduction of multiple driver
mutations, we compared the activities of hallmark signatures
between the five types of organoids. Compared with A-organoids,
the other four types of organoids showed consistent activation
of proliferation signatures containing G2M checkpoint and
E2F targets (Figure 3A). Further, compared with AK- and
AS-organoids, the AKST- and AKSTP-organoids consistently
activated the hypoxia and glycolysis signature (Figures 3B,C).
Compared with AKST-organoid, the AKSTP-organoid continued
to enhance activation of proliferation signatures (MYC targets
and P53 pathway) and immune signatures (Figure 3D). These
dynamic analyses suggested that sequential introduction of
these driver mutations gradually drove the activation of distinct
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FIGURE 3 | Dynamic activity analysis of 50 hallmark signatures from A-organoid (A) to AKSTP-organoid (AKSTP). (A) The significant activation (red) or inactivation

(blue) of 50 hallmark signatures in AS-organoid (AS), AK-organoid (AK), AKST-organoid (AKST), and AKSTP-organoid (AKSTP) by comparing with A-organoid (A).

(B) The significant activation (red) or inactivation (blue) of 50 hallmark signatures in AKST-organoid and AKSTP-organoid by comparing with AS-organoid. (C) The

significant activation (red) or inactivation (blue) of 50 hallmark signatures in AKST-organoid and AKSTP-organoid by comparing with AK-organoid. (D) The significant

activation (red) or inactivation (blue) of 50 hallmark signatures in AKSTP-organoid by comparing with AKST-organoid.

hallmark signatures, and conferred the selective advantages to
engineered organoids.

Functionally Characterizing Combined

Effects of the Five Driver Mutations Using

TCGA CRC Patients
We collected CRC samples with both expression and mutation
profiles from TCGA. The mutations of the driver genes could
influence gene expression levels of driver genes (P = 0.021 for
APC, P = 0.0174 for SMAD4, P = 2.7e−5 for TP53, P = 0.0013
for KRAS, and P = 0.0183 for PIK3CA, Figure S3). According
to the mutation status of the five driver genes, the 103 CRC
samples were grouped into five groups (Table S3). To evaluate

whether CRC samples with different combinations of driver
mutations showed differential activities of hallmark signatures,
we calculated the activities of hallmark signatures using single-
sample GSEA for each CRC sample (Hänzelmann et al., 2013).
For each group, average activities of hallmark signatures were
calculated. We found that these five groups showed similar
activated patterns (Figure 4A). The correlation coefficients of
average activities ranged from 0.973 to 0.999 (Figure 4B). To
further investigate whether the similar activated patterns also
exited in all CRC samples, the correlation coefficients among
all CRC samples were calculated. We found that all CRC
samples still exhibited highly consistent correlation of hallmark
signature activities in spite of different combinations of genetic
alterations (Figure 4C). The results suggested that there existed
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FIGURE 4 | Highly consistent correlations of 50 hallmark signature activities across CRC samples with different combinations of mutations in five genes. (A) The

average activity scores of hallmark signatures in five different groups of CRC samples. (B) The correlations of hallmark signature activities across five groups. (C) The

correlations of hallmark signature activities across CRC samples.

additional driver genetic alterations contributing to development
mechanism of broad CRC patients.

Substantial Biological Gaps Between

Engineered Organoids and Colorectal

Cancer Tissues
Weused the rank-based scores to integrate the expression profiles
of engineered organoids andCRC samples. The result of principal
components analysis showed that the expression pattern could
distinguish the five types of organoids from TCGA CRC samples

(Figure S4). To characterize the biological distance from the
engineered organoids to CRC, we identified the dysregulated
functions with significant activity difference between engineered
organoids and their corresponding CRC samples at FDR = 0.01
against 1,000 permutations (Table S4).

For the A-organoids, we found that 65 of 186 functions
showed no significant difference of functional activities by
contrast to CRC samples, two of which APC participated in
directly. For example, APC participated in the Wnt signaling
pathway directly. In the A-organoids, the WNT pathway showed
similar functional activity with the CRC samples with APC
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mutation (P = 0.015, Figure S5A). However, the Wnt signaling
pathway showed significant activity difference (P = 0.008,
Table S4) by comparing normal and CRC samples. These results
suggested that APC mutation contributed the activation of Wnt
signaling pathway, which was consistent with previous studies
(Drost et al., 2015; Matano et al., 2015). Meanwhile, there were
121 dysregulated functions with significant activity difference.
The MAPK signaling pathway showed significant activity
difference between A-organoids and CRC samples (P < 0.001,
Figure S5B). The number of functions showing similar activities
between AK-organoids and corresponding CRC samples were
up to 128, and the number of dysregulated functions decreased
to 58. The RAS and MAPK signaling pathway showed similar
activity between AK-organoids and CRC samples (P = 0.11 and
P = 0.33, Figures S5C,D), suggesting the combination of APC
and KRAS mutations enabled the activity of RAS and MAPK
signaling pathway to reach the physiological state of CRCs. We
also compared the function activity between AS-organoid, AKST-
organoids, AKSTP-organoids and their corresponding CRC
samples. We found that the number of functions with similar
activity increased and the number of dysregulated functions
decreased along with the number of genes mutations (Figure 5A
and Table S4). These results gave a clue that combinations of

multiple drive mutations approximated the organoids to CRC by
activating or inactivating the activities of functions.

To characterize the step-by-step progression of CRCs from

organoids engineered by introducing mutations, we compared
the activity difference of 186 functions from five types of
organoids. Firstly, we focused on the five functions including

Wnt signaling pathway, RAS-MAPK signaling pathway, TGF-β
signaling pathway, TP53 signaling pathway and PI3K signaling

pathway, which were targeted by APC, SMAD4, KRAS, TP53,
and PIK3CA, respectively. By comparing the normal and CRC
samples, we found four functions including Wnt, RAS-MAPK,
TP53 and PI3K signaling pathway showed significant differential
activity(P = 0.008, P < 0.001, P < 0.001, and P = 0.003,
Table S4). By introducing the mutations of corresponding

genes, we found the significance of activity difference of four
functions disappeared gradually (Table S5, FDR = 0.01). With
the increasing number of mutated genes, the activity difference
of these functions between organoids and CRCs tended to
random state, suggesting the driver progression of key genes
during carcinogenesis.

To further investigate the dynamic progression integrally, we
clustered the organoids and the 186 functions based on the
significance status of dysregulated functions. We found that A-
and AS-organoids were a class, and AK-, AKST-, and AKSTP-
organoids as a class (Figure 5B). APC mutation was a key gene
for forming an adenoma. The adenoma still maintained the
benign state after introducing SMAD4mutation. KRASmutation
made the adenoma canceration by dysregulating the activities
of many functions, implying KRAS mutation played a key role
during transformation from adenoma to CRC.

Among the 186 functions, 56 showed no significance of
activity difference between any type organoid and CRCs. Twenty
one functions also showed no significance between normal
and CRC samples, indicating these functions may be essential
functions for maintaining cell survival. However, the other 35
functions showed significant activity difference between normal
and CRC samples, of which 16 functions were metabolism-
related, implying the serious metabolic derangements have
occurred from an adenoma. Meanwhile, we found that 27
functions showed significant activity difference between all of five
types of organoids and CRCs, such as the PI3K signaling pathway,
suggesting that additional key driver mutations were needed to
transform the organoids to CRCs.

Prioritizing Gene Cascading Paths

Contributing to the Model of Colorectal

Cancer Derived From Engineered

Organoids
The five driver genes were not sufficient to make organoids
approximate the physiological state of CRCs with features of

FIGURE 5 | The dysregulated functions identified in the gaps between five types of organoids and CRC samples. (A) The number of dysregulated functions identified

five types of organoids. (B) The binary heatmap of dysregulated functions across five types of organoids. (1 represents dysregulated functions, and 0 represents not).
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metastasis and invasion (Matano et al., 2015). Meanwhile, due
to tumor heterogeneity of CRCs, the mutations of five driver
genes could explain development mechanisms of a part of CRC
patients. Additional gene cascading paths were needed to explain
the pathogenesis of broad CRC populations.

Using random walk to propagate information flow from
dysregulated functions, we identified potential subsequent key
genes for five types of organoids. At FDR = 0.05, we predicted
34, 89, 56, 4 potential key genes for A-, AS-, AK-, and AKST-
organoids, respectively (Figures S6A,B and Table S6). For A-
and AS-organoids, both PIK3CA and KRAS were identified, and
PIK3CA was the top one gene identified from AK- and AKST-
organoids, suggesting our method was able to identify key genes
(Figure S6C). We also found that different organoids needed
some common and specific potential genes to compete CRC
progression (Figures S6B,C).

Heterogeneity in genetic alterations across CRC populations
indicated that different combinations of key genes contributed
to the tumor progression through participating in similar
functions. Prioritizing gene cascading paths for different
organoids, which could perform analogical functions of five
driver genes, could provide the interpretation of pathogenesis
for broader CRC patients. Functional analysis showed the
high functional coherence among the five driver genes. We
calculated the function coherence among the potential genes
and five known genes, and found that many potential key
genes showed high functional coherence with the five known
genes (Figures S7–S11). Thus, using the five driver genes as
template, we prioritized cascading paths of key genes based on
the function coherence to recapitulate the adenoma-carcinoma
sequence model for different organoids (Figures 6A–E).

For A-organoids, two paths of potential key genes were
predicted: one contained APC, ERBB4, NRG1, KRAS, PIK3CA,
and PIK3CG, and the other contained APC, ERBB4, LATS2,
TIAM1, and DLC1 (Figure 6A). ERBB4, one of the ErbB
receptor tyrosine kinases, showed the functional coherence of
0.56, 0.59, 0.63, and 0.57 with APC, KRAS, PIK3CA, and
TP53, respectively, which also participated in cancer associated
functions such as MAPK cascade, cell migration and cell
proliferation. The colonic inflammation was limited by ErbB4
signaling through stimulating pro-inflammatory macrophage
apoptosis (Schumacher et al., 2017). ERBB4 itself could not
induce tumor transformation of mouse colonocytes, while under
the condition of colonocytes with mutant Apc and Ras, ERBB4
enhanced the transformed phenotype both in vitro and in vivo
(Williams et al., 2015). The increased co-expression of ErbB4-
CYT-2 with KITENIN promoted the transition of colon adenoma
to adenocarcinoma in tumor microenvironment of APC loss
(Bae et al., 2016). NRG1, neuregulin 1, showed the functional
coherence of 0.54, 0.58, 0.55, 0.58, and 0.51 with APC, KRAS,
PIK3CA, SMAD4, and TP53, respectively. In the ERBB signaling
pathway, NRG1 could participate in cell migration and invasion
by activating ERBB4 and KRAS, and contribute to cell cycle
and cell metabolism by activating ERBB4 and PIK3CA. NRG1
was methylated in tumors and the knockdown of NRG1 could
increase net cell proliferation (Chua et al., 2009). Paracrine
NRG1/HER3 signals promoted CRC cell progression, and was

associated with poor prognosis in CRC (De Boeck et al., 2013).
PI3KCG was a critical switch between immune stimulation and
suppression during inflammation and tumor growth (Kaneda
et al., 2016). The silencing of PIK3CG contributed to inhibit the
PI3K-Akt/PKB signaling system which was responsible for the
tumorigenesis and progression of colorectal cancers (Semba et al.,
2002). Thus, ERBB4 and NRG3may replace SMAD4 and TP53 to
form a new combination, together with APC, KRAS and PIK3CA,
to form an alternative path underlying CRCs.

For ASKT-organoids, PIK3CA was ranked first, together with
APC, SMAD4, KRAS, and TP53, which restored the known
the adenoma-carcinoma sequence model of CRC (Figure 6D).
ASKTP-organoids were capable to form the tumors while showed
weak invasive behavior. Additional key genes were needed to
complete the progression of CRC. PKHD1 were the second
potential key genes which showed function coherence of 0.47,
0.49, 0.48, 0.45, and 0.45 with APC, SMAD4, KRAS, TP53,
and PIC3CA, respectively. The protein encoded by PKHD1
harbored the structural features with hepatocyte growth-factor
receptor and plexins which involved in regulation of cell
proliferation and cellular adhesion and repulsion (Onuchic
et al., 2002). Inhibition of PKHD1 may control cell cycle via
mTOR signaling pathway (Zheng et al., 2009), and induced cell
apoptosis through PI3K and NF-κB pathways (Sun et al., 2011).
We found that PKHD1 showed high frequency of mutations
in the CRC populations (from 8.9 to 11.8%, Figure S12).
Previous studies showed that PKHD1 was a candidate CRC
gene by screening mutations in the consensus coding sequences
profile, and was assigned to the function of cell adhesion
with the first rank (Sjöblom et al., 2006). The germline
mutations of PKHD1 played a protective role in colorectal cancer
(Ward et al., 2011). Thus, introduction of PKHD1 mutations
following the five driver genes may contribute to CRC invasion
and metastasis.

DISCUSSION

The adenoma-carcinoma sequence was recognized as the
mechanism model of CRC, in which mutations of APC, KRAS,
SMAD4, TP53, and PIK3CA could sequentially drive CRC
transformation. The sequential introduction of CRC genes was
used to model colorectal cancer. These studies gave a clue that
it is possible to investigate the CRC dynamic progression using
engineered organoids. We proposed an integrative strategy to
characterize the dynamic progression of CRC and prioritize
gene cascading paths for directing subsequent introductions of
key genes.

Dynamic analysis of activities of biological functions
showed biological gaps between organoids and CRC tissues.
The number of dysregulated functions dropped sharply with
the number of mutations of key genes increasing. These
results were consistent with previous studies (Drost et al.,
2015; Matano et al., 2015), suggesting that our method
could capture biological dynamics and characterize the CRC
progression. The AKST- and AKSTP- organoids approximated
the true CRC with corresponding mutations. However,
there were still many dysregulated functions associated
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FIGURE 6 | The potential gene cascading paths for five different organoids. Red node represents mutant genes in organoids, orange nodes for potential genes.

(A) A-organoid. (B) AK-organoid. (C) AS-organoid. (D) AKST-organoid. (E) AKSTP-organoid.

with tumor metastasis, such as cytokine-cytokine receptor
interaction, ECM-receptor interaction, and adherent junction.
Meanwhile, some tumor microenvironment associated
functions including antigen processing and presentation,
leukocyte transendothelial migration and chemokine signaling
pathway were also in these biological gaps. The identified
dysregulated functions may provide an explaining that AKST-
and AKSTP-organoids without features of migration and
invasion may be due to lacking of tumor microenvironment
supporting invasion and metastasis. Additional driver mutations
of key genes were needed to further identify to control
these functions.

Through screening the genetic alteration profiles of CRC
populations, the co-occurrence frequency of five CRC genes
was low. Although the adenoma-carcinoma sequence of CRC
was recognized, it only explained molecular mechanism in
a fraction of CRC populations with mutations of all five
genes. The genetic alterations of CRC populations showed high
heterogeneity, implicating that other key genes were required
for drawing the mechanism of colon carcinogenesis for most
of CRC populations. Our method not only could characterize
biological gaps between different types of organoids and their
corresponding CRC samples, but also be able to predict key
genes which followed the introduced key mutation to further
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shrink biological gaps. The potential sequential genes were
identified for different types of organoids, which participated in
important functions and pathways. For example, for the AK-
organoids, 56 subsequent genes were predicted. Using functional
enrichment, many cancer-associated functions, such as MAPK
cascade, Ras signaling pathway, PI3K-Akt signaling pathway,
positive regulation of cell migration and positive regulation of cell
proliferation, were identified (Table S7). With the accumulation
of published studies about CRC organoids and multidimensional
omics data of organoids (Fumagalli et al., 2017; Newey et al.,
2019; Ooft et al., 2019), our method could be used to identify
more extensive gene paths and construct the landscape of
molecular pathogenesis for CRC cancer. Sequential introduction
of the mutations in gene paths may provide a new avenue for
understanding the dynamic progression of CRC.

In summary, we developed an integrative strategy to capture
the dynamic progression of CRC and prioritize gene cascading
paths for understanding the mechanisms of wide CRC patients.
Our approach also can reveal the dynamic transformation
mechanism of other cancer types. This will provide a more
detailed interpretation for molecular mechanisms of cancer
which could help for drug design and cancer therapy.
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Prognostic biomarkers are of great significance to predict the outcome of patients

with cancer, to guide the clinical treatments, to elucidate tumorigenesis mechanisms,

and offer the opportunity of identifying therapeutic targets. To screen and develop

prognostic biomarkers, high throughput profiling methods including gene microarray

and next-generation sequencing have been widely applied and shown great success.

However, due to the lack of independent validation, only very few prognostic biomarkers

have been applied for clinical practice. In order to cross-validate the reliability of

potential prognostic biomarkers, some groups have collected the omics datasets (i.e.,

epigenetics/transcriptome/proteome) with relative follow-up data (such as OS/DSS/PFS)

of clinical samples from different cohorts, and developed the easy-to-use online

bioinformatics tools and web servers to assist the biomarker screening and validation.

These tools and web servers provide great convenience for the development of

prognostic biomarkers, for the study of molecular mechanisms of tumorigenesis and

progression, and even for the discovery of important therapeutic targets. Aim to help

researchers to get a quick learning and understand the function of these tools, the current

review delves into the introduction of the usage, characteristics and algorithms of tools,

and web servers, such as LOGpc, KM plotter, GEPIA, TCPA, OncoLnc, PrognoScan,

MethSurv, SurvExpress, UALCAN, etc., and further help researchers to select more

suitable tools for their own research. In addition, all the tools introduced in this review

can be reached at http://bioinfo.henu.edu.cn/WebServiceList.html.

Keywords: web server, tool, prognosis, survival, cancer

INTRODUCTION

The prognosis estimation of tumor patient is of great significance to guide clinical treatments
and facilitate the elucidation of tumorigenesis mechanism. In current clinical practice, prognosis
is determined by many factors, such as disease stage, clinical performance, treatment experience
and understanding of the cancer development. However, these properties are relative subjective
and may lead to inaccurate prognostic estimates, and may even lead to inappropriate anticancer
management strategy. Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA)
projects offer a large number of RNA sequence data of normal and cancer samples, providing
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unprecedented opportunities for many fields such as cancer
bioinformatics and precision medicine to improve our
understanding in cancer development and treatment (1, 2).
Molecular prognostic biomarkers are the basic components
of precision medicine. Data mining and other biological
analysis make it possible to predict the prognosis of tumors at
the molecular level (3–5). Accurate clinical estimation using
prognostic biomarkers helps determining optimal anti-cancer
treatment. At the same time, it provides assistance in developing
more detailed hospice care plans. So in recent years, the
discovery of prognostic biomarkers has become a hot topic in
precision medicine.

Numerous studies have evidenced that molecular markers in
DNA, RNA and protein level can be as prognostic biomarkers
in cancer, and guide the effect of treatment either independently
or in addition with present prognosis systems (6–8). In these
study, Kaplan-Meier method and multivariate Cox proportional
hazards regression models were commonly used to evaluate the
associations between molecular markers and survival of patients
with cancer (9, 10). However, these biomarkers are not suitable
for clinical application due to the lack of independent validation
and poor repeatability between different studies.

Mining data from public datasets andmaking assessments and
predictions can be challenging and time-consuming. To extract
useful information from these datasets, it requires researchers
with strong bioinformatics expertise. To allow more researchers
be able to quickly extract information they need, online tools that
can easily perform survival analysis from these data are needed.
The rapid growth of public datasets has enabled some research
groups to focus on collecting omics datasets and developing
online bioinformatics prognostic tools and web servers. These
various prognostic analysis tools provide valuable evidence and
ideas for cancer researchers. However, for many researchers
and clinicians, it may be difficult to find the most suitable
tool for their own research quickly. This review attempts to
provide a comprehensive overview of the commonly used online
prognostic tools for cancer prognostic analysis. In addition,
the main challenges and future directions in this field are also
discussed in this paper.

MATERIALS AND METHODS

Literature research and data collection: the survival analysis tools
reviewed in this paper include online prognostic bioinformatics
tools and web servers developed by applying different types
of profiling data (genomics, epigenomics, proteomics etc.)
from clinical samples of different cohorts. Search Strategy for
prognostic tools was executed in PubMed and Google Scholar
from Jan 1, 2000 to August 31, 2019. Search terms include:
“survival analysis,” “web server,” “prognostic biomarker” and
“cancer,” keywords combination was used for search. The search
was limited to English language. There are 886 articles that
matched to above criteria. In the review, 22 representative
databases that can be used for the prognosis analysis of multiple
cancer types were selected for detailed description; because most
of the prognostic tools for single type of cancer were included

in the above databases, so we just gave a brief introduction.
Ten of these databases are based on mRNA profiling data for
prognostic analysis, three databases based on ncRNA profiling
data, two databases based on protein data, two databases based
on DNA data, and five databases based on multi-omics data. The
literature retrieval process is shown in Figure 1. The release time
of prognostic databases is presented in Figure 2. The date of the
last search and collating data for these databases was December
10, 2019.

RESULTS

Web Servers for Survival Analysis Based

on mRNA Data
In the past two decades, high-throughput gene chips and next-
generation sequencing technologies have provided opportunities
to explore important cancer-related molecules, therapeutic
targets, diagnostic, and prognostic biomarkers. With the
implementation of the Cancer Genome Atlas (TCGA) project, a
large number of epigenome, transcriptome, and proteome data
of tumor samples became publicly accessible. Researchers can
analyze the correlation between these data and survival, and look
for prognostic biomarkers. Many studies have shown that mRNA
expression is closely related to cancer prognosis (11–13). In
order to promote the development and evaluation of prognostic
biomarkers, some research groups have developed prognosis
tools and web servers based on mRNA data by mining TCGA
and GEO (Gene Expression Omnibus) data and adding complex
statistical calculation. This review introduces 14 bioinformatics
tools for evaluating cancer prognosis based on mRNA data
(Table 1).

LOGpc1

LOGpc is a web server that contains a large number of datasets
for survival analysis, which provides 13 types of survival terms
for 28,098 cancer patients from 26 types of malignant tumors,
including OSlms, OSblca, OSkirc and other 23 online prognostic
tools (14–21). These patient samples were collected mainly from
TCGA and GEO cohorts. LOGpc is free and easy to operate.
Twenty six types of tumors are classified into 11 system categories
according to TCGA. Currently, only official gene symbol input
is acceptable in LOGpc. When user input the gene symbol and
set the relative parameters, then click on the “Kaplan-Meier plot”
button and the results will be displayed on the output webpage.
In order to meet the specific needs from different researchers,
clinical confounding factors can also be defined for advanced
subgroup analysis.

GENT22

GENT2 provides the differential expression analysis and
prognosis analysis based on tumor subtypes (22). The users
can search the gene expression profiles of different tissues,
and compare the expression levels between tissue subtypes. For
survival analysis, this tool provides Kaplan Meier plot with log

1http://bioinfo.henu.edu.cn/DatabaseList.jsp
2http://gent2.appex.kr
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FIGURE 1 | Search flowchart: prognostic web servers for cancers included and excluded in each step.

FIGURE 2 | The time axis for the publication of prognostic web servers.

rank test and establishing Cox proportional risk model for meta-
analysis. At present, it provides survival analysis for 27 cancer
types, including 46 subtypes of 19 cancer types.

PROGgeneV23

PROGgeneV2 is a web-based tool for studying the prognosis of
genes in a variety of cancers (23, 24). In current it comprises
193 datasets for 27 cancer types. The users can perform survival
analysis of single gene, multi genes and two genes expression
ratio, and also use the function of adjusting covariate survival

3http://genomics.jefferson.edu/proggene/

model. Users can upload customized gene datasets for survival
analysis of interested genes and compare the results with
previously published studies.

SurvExpress4

SurvExpress is for studying risk assessment and survival analysis.
It contains more than 29,000 samples of 26 cancer types
with clinical information from 144 datasets (25). The outputs
generated by SurvExpress include the Kaplan-Meier plots by
risk group, a heat map of gene expression values and a visual

4http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
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TABLE 1 | Comparison of prognostic web servers based on mRNA data.

Web server Datasets Cancer types Samples Subgroup

analysis

Multi-gene query Optimal cut-off Login required

LOGpc 193 26 28,098 Yes No No No

GENT2 195 27 – Yes No No No

PROGgeneV2 193 27 28,503 Yes Yes No No

SurvExpress 144 26 29,110 Yes Yes No No

PRECOG 165 39 19,168 Yes No No Yes

Oncomine 103 25 17,217 Yes No No Yes

PrognoScan 74 23 9,196 No No Yes No

KM Plotter 45 21 12,984 Yes Yes Yes No

GSCALite 63 33 10,558 Yes Yes No No

UALCAN 35 31 7,233 Yes Yes No No

GEPIA 33 33 10,558 No Yes No No

CAS-viewer 33 33 10,558 Yes No No No

MEXPRESS 33 33 – Yes No No No

CaPSSA 28 27 10,206 No Yes No No

OncoLnc 21 21 8,616 No No No No

–, survival sample data is not displayed on the website.

association of available clinical information to risk groups.
Survival ROC estimates the specificity and time-dependent
sensitivity for survival risk groups.

PRECOG5

PRECOG is a system for integrating genomic profiles and cancer
clinical data, it covers 39 different cancer types, including about
19,000 samples with overall survival data from 165 cancer
expression datasets (26). It allows researchers to query whether
gene expression correlates with patient survival. For simple
display, 39 different histologic types of tumors were divided into
18 groups. The correlation between gene expression and overall
survival was assessed by univariate Cox regression. PRECOG also
provides gene prognosis analysis for pan-cancer. However, new
users need to register and log in.

Oncomine6

Oncomine is a cancer gene chip database and integrated data
mining platform, aiming at mining cancer gene information
(27, 28). Oncomine has more complete cancer mutation
spectrum, gene expression data and related clinical information,
which provides insights to identify new biomarkers or new
therapeutic targets. With Oncomine, users can get the results
of differential expression, co-expression analysis, molecular
concepts analysis, interaction network, correlation analysis
between gene expression and survival status, but Kaplan-Meier
plot isn’t displayed directly. Meta-analysis can also be used
to compare various studies to determine more reliable and
consistent results. Oncomine Research Edition is free, but needs
a valid academic email address to register and log in.

5https://precog.stanford.edu/
6http://www.oncomine.org/

PrognoScan7

Prognoscan is a platform for predicting the relationship between
gene expression and patient survival based on a large number
of public cancer microarray datasets with clinical information. It
provides a variety of survival terms for 14 cancer types (29). One
of its advantages is that survival analysis in this tool performs the
minimum P-value method and optimal cut-off is provided.

KMplotter8

The KaplanMeier plotter (KMplotter) can be used for single gene
or multiple gene prognosis analysis for many kinds of malignant
tumors (30–32). Researchers can assess the effect of mRNA and
miRNA expression on the survival rate of 21 cancer types by pan-
cancer analysis. When the users input the relevant gene name
and select the appropriate gene expression cut-off point, the
comparison results between the two groups will be displayed with
95% confidence interval, risk ratio and log rank P-value. An Auto
best cut-off is provided to compute all possible cut-off values to
get the best performing threshold in survival analysis.

GSCALite9

GSCALite is a tool for analyzing expression/variation/ clinical
correlation of gene sets in cancers with dynamic and visualization
manner (33). It provides three survival analysis modules for
a gene set based on cancer multi-omics data of TCGA. (1)
Differential mRNA expression of gene set between tumor and
matched normal samples, gene expression between subtypes of
each selected cancer, and its effect on overall survival rate. (2)
The influence of SNV (single nucleotide variants) frequency and
mutation type of gene set on the overall survival rate in a cancer
type. (3) Differential expression of methylation between tumor
and matched normal samples, and the effect on the survival rate

7http://www.prognoscan.org/
8http://kmplot.com/analysis/
9http://bioinfo.life.hust.edu.cn/web/GSCALite/
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of selected cancer types. It allows users to search for prognostic
markers at transcriptome level, epigenetic modification, and
DNA mutation. Users can query the cancer pathway activity
related to gene expression and the correlation between genes and
drug sensitivity, it is convenient for researchers to study drug
resistance of tumor.

UALCAN10

UALCAN is a web-based tool for analyzing TCGA RNA-seq and
clinical data to evaluate the association of gene expression and
patient survival, allows users to conduct differential expression
analysis and survival analysis for interested genes and access the
expression and survival information of a given gene in 31 types
of cancers by performing pan-cancer analysis (34). Currently,
UALCAN provides protein differential expression analysis for
breast cancer, colon cancer, and other three cancer types, but does
not provide survival analysis based on protein data. UALCAN
also provides additional information about the selected genes
or targets by linking to Pubmed, TargetScan, DRUGBANK, and
so on, this helps researchers collect more valuable information
and data.

GEPIA11

GEPIA is an interactive web-based tool for survival analysis based
on gene expression, it offer the choice of selecting overall survival
(OS) or disease-free survival (DFS) for the analysis (35, 36).
According to the characteristics of gene normalization, GEPIA
allows two different genes to be input at the same time for survival
analysis. GEPIA also presents the top genes most related to the
survival of cancer patients. This function is very helpful for the
users. In addition to providing patient survival analysis, GEPIA
has other functions such as differential expression analysis
based between different cancer types, multiple gene comparison,
similar genes detection.

CAS-Viewer12

CAS-viewer is a web-based tool for multiple level comprehensive
analysis by integrating multi-omics data such as mRNA,
miRNA, methylation, SNP, and clinical information across
different cancer types (37). It links the differential transcriptional
expression rate with methylation, miRNA, and splicing
regulatory elements of 33 cancer types. “Clinical correlation”
module presents Kaplan Meier plot showing the correlation
between PSI (percent spliced in) value and survival rate, and
in this way users can identify potential transcripts related to
different survival outcomes of each cancer type.

MEXPRESS13

MEXPRESS is an intuitive web tool for analysis of gene
expression, DNA methylation, and association with clinical
information including patient survival (38). It provides a very
different visual interface, allows users to compare specific
genomic features (such as DNA methylation) with gene

10http://ualcan.path.uab.edu/index.html
11http://gepia.cancer-pku.cn/
12http://genomics.chpc.utah.edu/cas/
13https://mexpress.be

expression and clinical information. Researchers can study the
relationship between DNA methylation and gene expression and
multiple clinical variables by using MEXPRESS platform.

CaPSSA14

CaPSSA supports users to detect the prognostic value of patient
subgroups based on gene expression, mutation or genomic
alterations of query genes (39). Importantly, it also supports
custom histochemical data analysis with clinical information.
For candidate gene sets that user-supplied, interactive patient
stratification is supported based on gene expression profiles and
genomic alterations, the results of log-rank test and KaplanMeier
plots will be displayed for evaluating the prognostic value.

Web Servers for Studying Prognostic

Implications of ncRNA
In the past decade, a large number of studies have shown
that non-coding RNA (ncRNA) plays an increasingly important
role in epigenetic regulation. ncRNAs involved in the network
can affect many molecular targets which are related to the
development of cancer, and many ncRNAs are considered as
driving factors or suppressors of carcinogenesis (40). MicroRNA
(miRNA) as one type of ncRNAs regulates mRNA at the
transcriptional or post-transcriptional level (41). Studies have
shown that lncRNA (long non-coding RNA) plays an important
role in many life activities such as dose compensation effect,
epigenetic regulation, cell cycle and cell differentiation, and
has become a hot spot in tumor genetics research (42). Their
expression in cancer has been studied by high-throughput
methods, generating valuable sources of public available datasets.
An important step in developing ncRNA biomarkers is to
evaluate them in independent cohorts. To help and simplify the
assessment of ncRNA signatures in cancer prognosis, several
ncRNA prognostic databases have been developed by some
research teams using public profiling data (Table 2).

PROGmiRV215

PROGmiRV2 is a pan-cancer miRNA prognostics database,
whosemiRNA data comes fromGEO and TCGA (43). Compared
with version 1, the datasets and samples of the new version
have increased greatly, prognosis analysis has been improved
from single cancer type analysis to pan-cancer analysis, and
the survival indicators provided have increased from one to
three (overall survival, recurrence free survival, and metastasis
free survival). Users are also allowed to upload their own
customized dataset for prognosis analysis, but registration and
login are required.

SurvMicro16

SurvMicro is a bioinformatics tool for analyzing cancer prognosis
based on miRNA. Its data comes from GEO, TCGA, and
ArrayExpress (44). SurvMicro comprises 43 datasets and more
than 6,000 samples in 15 different cancer types. Cox multiple
fitting was used to evaluate the risk of prognosis, the prognosis

14http://capssa.ewha.ac.kr
15http://xvm145.jefferson.edu/progmir/
16http://bioinformatica.mty.itesm.mx/SurvMicro

Frontiers in Oncology | www.frontiersin.org 5 February 2020 | Volume 10 | Article 68105

http://ualcan.path.uab.edu/index.html
http://gepia.cancer-pku.cn/
http://genomics.chpc.utah.edu/cas/
https://mexpress.be
http://capssa.ewha.ac.kr
http://xvm145.jefferson.edu/progmir/
http://bioinformatica.mty.itesm.mx/SurvMicro
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Tools for Survival Analysis

TABLE 2 | Summary of prognostic web servers based on ncRNA data.

Web server Datasets Cancer types Samples Subgroup

analysis

Biomarker Multi-gene query Optimal

cut-off

Login

required

PROGmiRV2 134 33 19,025 Yes miRNA Yes No No

SurvMicro 43 15 6,412 Yes miRNA No No No

KM Plotter 25 21 10,613 Yes miRNA Yes Yes No

OncoLnc 21 21 8,648 No miRNA No No No

TANRIC 23 20 6,763 Yes LncRNA – – No

OncoLnc 18 18 8,023 No LncRNA No No No

–, related information is not displayed on the website.

TABLE 3 | Comparison of prognostic web servers based on protein data.

Web server Datasets Cancer types Samples Proteins Subgroups Multi-gene query Optimal

cut-off

Login required

TCPAv3.0 35 33 8,328 258 No No No No

TRGAted 31 31 7,843 245 Yes Yes Yes No

index was obtained by calculating the sum of miRNA expression
value and Cox coefficients. According to the ranking of prognosis
index, users would know the risk group of poor prognosis.

OncoLnc17

OncoLnc is an interactive tool for studying survival correlations
for lncRNA, miRNA, and mRNA (45, 46). OncoLnc contains
patient survival data of 21 cancer types from TCGA mRNAs,
miRNAs, and MiTranscriptome data. The users can divide
patients into subgroups according to gene expression levels,
measure the result between subgroups. OncoLnc allows users
to view the results of Kaplan Meier plots of one or multiple
types of cancers at one time, provide Cox regression results, and
download the full data used in the analysis. It also allows users
to explore the survival relevance of inquired genes in 21 types
of cancers at one time, this function is helpful to study whether
specific genes play important roles in cancer prognosis.

TANRIC18

TANRIC is an interactive platform for multiple analysis of
lncRNA in cancer (47). It includes the expression profile of
lncRNA in more than 6,000 patient samples of 20 cancer types
from TCGA and other three independent datasets. TANRIC
consists of six modules, users can get the annotation data of
lncRNA through module “My lncRNA,” and analyze whether
lncRNA is related to the survival time of patients (including
subtypes prognosis analysis). Users can also use other functions
TANRIC to recognize the differential expression of lncRNA in
tumor and normal tissue, as well as in tumor subtype or tumor
stage, evaluate the differential expression of lncRNA in wild type
and gene mutation cancer, evaluate the influence of lncRNA
expression on drug sensitivity, and find some signal pathways
related to cancer subtype defined by lncRNA.

17http://www.oncolnc.org
18https://www.tanric.org

Web Servers for Survival Analysis Based

on Protein Data
Functional proteomics is a powerful way to understand the
pathophysiological mechanism and find the therapeutic target
of cancer. In order to find biomarkers for prognosis and
targets for treatment improvement, it is necessary to study
the correlation between protein and survival. As a part of
the Cancer Genome Atlas (TCGA) Project and other works,
reverse-phase protein array (RPPA) was used to measure
the protein expression in a large number of clinical cancer
samples and cell lines (48, 49). This technology provides
a necessary condition for the establishment of repeatable
prediction model and protein prediction database. Here, we
introduce two protein survival analysis databases based on RPPA
data (Table 3).

TCPAv3.019

TCPAv3.0 is an updated version of TCPA to explore and analyze
protein expression based on TCGA RPPA data (50, 51). It
integrates protein data and other TCGA data (somatic mutations,
SCNAs, DNA methylation, mRNA and miRNA expression,
and patient clinical information) and gives comprehensive
protein-centric analyses. The users can find protein markers
or pathway events that are significantly related to patient
survival by using Cox proportional risk model and log rank
test. The users can identify which proteins associated with
the prognosis of different cancers and subtypes by pan-cancer
analysis. The pan-cancer analysis module using multi-omic
TCGA data provides researchers a unique way to validate
specific protein-driven multi-omic hypotheses in multiple
cancer types.

19http://tcpaportal.org/
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TABLE 4 | Summary of prognosis web servers based on DNA data.

Web server Datasets Cancer types Samples Data types Subgroups Optimal

cut-off

Login required

GSCALite 33 33 10,943 Methylation Yes No No

MEXPRESS 33 33 – Methylation Yes No No

MethSurv 25 25 7,358 Methylation No Yes No

cBioPortal >100 32 – Mutation/

CNA

Yes – No

GSCALite 33 33 11,124 Mutation Yes – No

CaPSSA 27 26 10,758 Mutation No – No

–, related information is not displayed on the website.

TABLE 5 | Prognostic tools for single type of cancer.

Cancer type Database Website Data type Reference

Breast cancer miRpower http://kmplot.com/mirpower miRNA (31)

BreastMark http://glados.ucd.ie/BreastMark/index.html mRNA, miRNA (60)

OSbrca http://bioinfo.henu.edu.cn/BRCA/BRCAList.jsp mRNA (19)

Bladder cancer OSblca http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp mRNA (17)

Leiomyosarcoma OSlms http://bioinfo.henu.edu.cn/LMS/LMSList.jsp mRNA (14)

ESCC OSescc http://bioinfo.henu.edu.cn/DBList.jsp mRNA (15)

KIRC OSkirc http://bioinfo.henu.edu.cn/KIRC/KIRCList.jsp mRNA (16)

Cervical cancer OScc http://bioinfo.henu.edu.cn/CESC/CESCList.jsp mRNA (18)

Adrenocortical carcinoma OSacc http://bioinfo.henu.edu.cn/ACC/ACCList.jsp mRNA (20)

Uveal melanoma OSuvm http://bioinfo.henu.edu.cn/UVM/UVMList.jsp mRNA (21)

Ovarian cancer OvMark http://glados.ucd.ie/OvMark/index.html mRNA, miRNA (59)

TRGAted20

TRGAted is an intuitive tool for analyzing the correlation
between more than 200 proteins and survivals in 31 types
of cancers (52). RPPA data (Level 4) contained in TRGAted
come from the TCPA Portal. The cancer clinical information
provided are comprehensive, including: gender, age, tumor stage,
histological type, response to treatment. Users can use Cox
proportional hazard model to analyze the prognosis of all
proteins in each cancer type, or for a single protein across all
cancer types. Comparison with TCPAv3.0, TRGAted provides
more survival indicators, and its function of visualizing all
proteins in a cancer type can help researchers find survival related
proteins in the specific cancer more easily. The users are allowed
to download and modify TRGAted for better usability under
GPLv3 (GNU General Public License v3.0).

Web Servers for Prognosis Analysis Based

on DNA Data
Patients with genetic mutations in tumor cells are more likely
to display poor pathological features, resulting in significantly
altered overall survival (53). The new generation of sequencing
technology has accelerated the study of somatic genetics,
identifying patient subgroups with different genomic alteration
patterns could facilitate to stratify patients with different clinical

20https://nborcherding.shinyapps.io/TRGAted

outcomes and to propose putative biomarkers. In addition to
DNA mutation, DNA methylation is the most studied epigenetic
modification which is crucial for facilitating vital biological
processes such as embryonic development, genomic imprinting,
and X-chromosome inactivation. Aberrant DNA methylation
may lead to changes in cellular micro-environment, affect
the gene expression pattern, and ultimately result in various
pathological conditions including carcinogenesis (54, 55).
Several recently developed high-throughput techniques facilitate
genome-wide DNAmethylation profiling. Some prognostic tools
were also developed to facilitate the evaluation of the prognostic
properties of CpG methylation data (Table 4).

MethSurv21

MethSurv is a web tool dedicating for survival analysis based on
DNA methylation data including 7,358 samples in 25 different
cancer types from TCGA (56). Methsurv provides multiple
survival terms analysis, and the home page contains the following
modules: single CpG, region based analysis, all cancers, top
biomarkers, and gene visualization. Users can retrieve CpG
survival analysis results of selected areas of a chromosome, and
also search for a gene of interest to explore the survival statistics
of all CpGs available. Users can see top biomarkers arranged
according to p-value of all CpG labeled cancer types in the whole

21https://biit.cs.ut.ee/methsurv/

Frontiers in Oncology | www.frontiersin.org 7 February 2020 | Volume 10 | Article 68107

http://kmplot.com/mirpower
http://glados.ucd.ie/BreastMark/index.html
http://bioinfo.henu.edu.cn/BRCA/BRCAList.jsp
http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp
http://bioinfo.henu.edu.cn/LMS/LMSList.jsp
http://bioinfo.henu.edu.cn/DBList.jsp
http://bioinfo.henu.edu.cn/KIRC/KIRCList.jsp
http://bioinfo.henu.edu.cn/CESC/CESCList.jsp
http://bioinfo.henu.edu.cn/ACC/ACCList.jsp
http://bioinfo.henu.edu.cn/UVM/UVMList.jsp
http://glados.ucd.ie/OvMark/index.html
https://nborcherding.shinyapps.io/TRGAted
https://biit.cs.ut.ee/methsurv/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Tools for Survival Analysis

TABLE 6 | Follow-up information of prognostic web servers.

Web server OS DFS RFS MFS PFS DSS Others Total

LOGpc ◦ ◦ ◦ ◦ ◦ ◦ DFI, PFI, DMFS, DRFS,LMFS, BMFS, EFS 13

GENT2 ◦ ◦ ◦ ◦ 4

PROGgeneV2 ◦ ◦ ◦ 3

SurvExpress ◦ ◦ ◦ 3

PRECOG ◦ ◦ 2

Oncomine ◦ 1

PrognoScan ◦ ◦ ◦ ◦ ◦ EFS, DMFS, DRFS 8

KM Plotter ◦ ◦ ◦ ◦ DMFS, PPS, FP 7

GSCALite ◦ 1

UALCAN ◦ 1

GEPIA ◦ ◦ 2

CAS-viewer ◦ 1

MEXPRESS ◦ 1

CaPSSA ◦ ◦ 2

OncoLnc ◦ 1

PROGmiRV2 ◦ ◦ ◦ 3

SurvMicro ◦ 1

TANRIC ◦ 1

TCPAv3.0 ◦ ◦ 2

TRGAted ◦ ◦ DFI, PFI 4

MethSurv ◦ 1

cBioPortal ◦ ◦ 2

“◦”, Yes; OS, overall survival; DFS, disease free survival; RFS, relapse free survival; MFS, metastasis free survival; PFS, progression free survival; DSS, disease specific survival; DMFS,

distant metastasis free survival; PFI, progression free interval; DFI, disease-free interval; PFI, progression free interval; EFS, event free survival; LMFS, lung metastasis free survival;

BMFS, brain metastasis free survival; DRFS, distant relapse free survival; FP, first progression; PPS, post progression survival.

genome. In brief, MethSurv is a valuable platform for preliminary
screening of methylation cancer biomarkers.

cBioPortal22

cBioPortal provides a visual tool for interactive exploration of
multiple cancer genomic datasets (57, 58). It integrates and
simplifies the data including somatic mutation, mRNA and
microRNA expression, DNA copy-number alterations(CNAs)
andmethylation, protein, and phosphoprotein RPPA data, so that
the users can obtain graphical summaries of large-scale cancer
genomic data intuitively. It enables users to inquiry survival
analysis based on DNA mutation data and CNA data, the results
of OS, and DFS of patients are presented intuitively in the form
of Kaplan-Meier plots. Pan-cancer analysis is also allowed.

Prognostic Tools for Single Type of Cancer
Through literature search, 11 prognostic tools for single
type of cancer were found (Table 5). MiRpower is a part
of KMplotter database to analyze the prognostic relevance
of miRNAs in breast cancer (31). OSlms, OSescc, OSkirc,
OSblca, OScc, OSbrca, OSacc, and OSuvm are bioinformatics
tools included in the LOGpc platform for survival analysis of
leiomyosarcoma, esophageal squamous cell carcinoma, kidney
renal clear cell carcinoma, bladder cancer, cervical cancer, breast
cancer, adrenocortical carcinoma, and uveal melanoma (14–21).

22http://www.cbioportal.org

OvMark and BreastMark are online web servers for prognosis
analysis of ovarian cancer and breast cancer, users can detect the
prognostic potential of about 17,000 genes and 341 miRNAs in
ovarian cancer and breast cancer (59, 60).

DISCUSSION

The development of public databases (such as TCGA and
GEO) provides a large number of genomic, epigenomic,
transcriptional and proteomic data, and provides the possibility
for gene function analysis and biological mechanism discussion
(1, 2). The rapid growth of multi-omics data provides more
opportunities for the research of cancer molecular mechanism
and biological target, but for the researchers without strong
computing power and bioinformatics background, they might
face many difficulties and challenges in data mining and
analysis. Since the EAPC (European Association for Palliative
Care) made recommendations for the development of cancer
prognostic tools in 2005, a number of prognostic tools have
been developed, evolved, and validated (61). In this review, we
summarized 22 prognostic bioinformatics tools, which provide
survival analysis or with other functions. We analyzed and
compared their key information and characteristics, follow-
up information for each tool is presented in Table 6, strength
and limitation are displayed in additional files (Table S1). With
these tools, researchers can easily explore a large number of
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FIGURE 3 | Distribution of cancer types in web servers. (A) LOGpc (mRNA level); (B) PROGmiRV2 (miRNA level); (C) OncoLnc (lncRNA level); (D) CaPSSA (mutation

level); (E) GSCALite (methylation level); (F) TCPAv3.0 (protein level).

datasets from complex data platform, find genes, ncRNAs,
proteins, gene modifications, or mutations associated with
patient survival, ask specific questions and test their hypotheses
(48, 62, 63). Comprehensive expression analysis can be carried
out by simple clicks, which greatly promotes data mining in
research fields, scientific discussions and treatment discovery
processes. These tools have the potentials to integrate and
personalize the prognostic information for individual patients
and provide refined risk estimates for uncertain clinical
management scenarios. Meanwhile each database has its own
strengths. Some databases focus on survival analysis by collecting
datasets of various cancer types, such as LOGpc, PROGgeneV2,
KM Plotter, PrognoScan, TRGAted. Some databases provide
other functions, UALCAN, and GEPIA have the function of
top differential gene display, which provide a way for clinicians
and researchers to select possible target genes for diagnosis
or treatment, Oncomine, and TCPA provide multidimensional
analysis and comparison of datas. GSCALite, TANRIC can be
used for drug screening and treatment options by analyzing the
correlation between therapeutic targets and lncRNAs. Advances
in genome technology and computational biology provide us
with an unprecedented opportunity to understand molecular
events associated with cancer, and to apply precise cancer

treatment. We hope this review will be helpful to clinicians and
oncologists who are interested in finding prognostic or predictive
features of cancer.

LIMITATION AND PROSPECTIVE

Although these tools provide great convenience for prognostic
biomarker development, several key aspects of these prognostic
tools remain elusive. Differences in datasets collected and
split points may result in significantly different results, so
we collected datasets and their source of these web servers
(Figure 3 and Tables S2–S5) and found excluding TCGA
data, there are significant differences in other data sources.
This may be one of the reasons why the analysis results of
different tools are not completely consistent. In the future,
efforts should be made in data optimization, prognostic
tools should be improved to be able to predict multi-gene
markers, select optimal cut-off computation, use hierarchical
clustering and consider complex multi-omics networks
of interactions. In addition more molecular subtypes and
clinical information including tumor tissue image and
treatment data should be collected and mined to identify
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more meaningful prognostic markers through more detailed
subtype analysis.
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Objective: Colorectal cancer (CRC) is considered the most prevalent malignant tumor
that contributes to high cancer-related mortality. However, the signaling pathways
involved in CRC and CRC-driven genes are largely unknown. We sought to discover a
novel biomarker in CRC.

Materials and Methods: All clinical CRC samples (n = 20) were from Renmin Hospital of
Wuhan University. We first selected MAD2L1 by integrated bioinformatics analysis of a
GSE dataset. Next, the expression of MAD2L1 in tissues and cell lines was verified by
quantitative real-time PCR. The effects of MAD2L1 on cell growth, proliferation, the cell
cycle, and apoptosis were examined by in vitro assays.

Results:We identified 683 shared DEGs (420 upregulated and 263 downregulated), and
the top twenty genes (CDK1, CCNA2, TOP2A, PLK1, MAD2L1, AURKA, BUB1B,
UBE2C, TPX2, RRM2, KIF11, NCAPG, MELK, NUSAP1, MCM4, RFC4, PTTG1, CHEK1,
CEP55, DTL) were selected by integrated analysis. These hub genes were significantly
overexpressed in CRC samples and were positively correlated. Our data revealed that the
expression of MAD2L1 in CRC tissues is higher than that in normal tissues. MAD2L1
knockdown significantly suppressed CRC cell growth by impairing cell cycle progression
and inducing cell apoptosis.

Conclusion:MAD2L1,asanoveloncogenicgene,playsarole inregulatingcancercellgrowth
and apoptosis and could be used as a newbiomarker for diagnosis and therapy in CRC.

Keywords: MAD2L1, colorectal cancer, bioinformatics analysis, proliferation, cell cycle, apoptosis
INTRODUCTION

Colorectal cancer (CRC) is currently a major public health problem in medicine today. CRC is one
of the most frequently occurring malignancies worldwide, with more than 777,000 new cases
expected in 2015 and almost 350,000 deaths in developed countries (Ferlay et al., 2015). The risk of
developing colorectal cancer depends on different variables that can be classified into lifestyle or
behavioral factors and genetically determinant factors. Similar to other cancers, CRC is considered a
polyphase disease in which gene distortions, cellular contexts, and environmental influences concur
with tumor initiation, progression, and metastasis (Aran et al., 2016). Increasing evidence shows
that multiple genes and cellular pathways are involved in the occurrence and development of CRC.
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Until now, a lack of knowledge about the exact molecular
mechanisms underlying CRC progression has limited the
ability to treat advanced disease. On the other hand, so far,
the main clinical screening methods for CRC involve
endoscopic screening, especially colonoscopy. Colonoscopy has
shortcomings such as poor patient compliance, the influence
of family history, inconvenience, and high cost and risk.
Therefore, it is of great significance to understand the
molecular mechanisms of CRC proliferation, apoptosis and
invasion in order to develop more effective diagnostic and
therapeutic strategies.

The recently adopted high-throughput gene microarray
analysis of tumors and samples from patients and healthy
people allows us to share and explore global molecular tumors
at different levels of the landscape from somatic mutations and
copy number changes to genome-level gene expression at the
transcriptome level, as well as epigenetic changes (Liu et al., 2017;
Sun et al., 2017; Chen et al., 2017). In this study, we downloaded
the GSE117606 dataset from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo) database using R
software for the comprehensive identification of differentially
expressed genes (DEGs). Then, we established a protein–protein
interaction (PPI) network of DEGs to screen out the first 20 hub
genes with a high degree of connectivity. In addition, we also
analyzed Gene Ontology involving the biological processes
(BPs), molecular functions (MFs), and cellular components
(CCs) of the DEGs as well as their KEGG pathways. The
potential correlation and expression levels were analyzed via
Gene Expression Profiling Interactive Analysis (GEPIA) (http://
gepia.cancer-pku.cn/index.html).

Our data showed that the expression of MAD2L1 is
significantly higher in CRC tissues than in normal tissues. The
cell cycle progression could be slowed, and apoptosis could be
induced by knocking down MAD2L1, which directly leads to the
inhibition of the growth of CRC cells. In conclusion, MAD2L1
can be used as a new diagnostic indicator and guide the
combined treatment of CRC.
MATERIALS AND METHODS

Microarray Data
We downloaded the gene expression profile of GSE117606 from
the GEO database, a free public database. The GSE117606
dataset has a total of 208 samples, containing 74 CRC samples
and 65 normal colon tissues and was based on the Agilent
GPL25373 platform (HT_HG-U133_Plus_PM) Affymetrix HT
HG-U133+ PM Array Plate (CDF: HTHGU133Plus
PM_Hs_ENTREZG_20) by Joke Reumers et al. We also
downloaded the Series Matrix File of GSE117606 from the
GEO database.

Data Preprocessing
The expression values of all probes in each sample were reduced
to a single value by determining the mean expression value via
the aggregate function method (Li, 1991). Missing data were
Frontiers in Genetics | www.frontiersin.org 2113
assigned using the k-nearest neighbor method (Altman, 1992).
Quantile normalization for complete data was performed using
the preprocessCore package in Bioconductor (Bolstad et al.,
2003). When many probes were mapped to a gene, the median
of the data was defined as the level of expression of that gene.
However, when many genes were located by a probe, the probe
was considered to lack specificity and was removed from
the analysis.

Identification of DEGs
We utilized the “limma” R package (Ritchie et al., 2015) to
identify the DEGs between CRC samples and normal ovarian
samples. Adjusted P < 0.05 and |log fold change (FC)| > 1 were
chosen as the cutoff criteria. The adjusted P-value (adj. P) was
applied to help correct false positives. The heat map and volcano
plot were drawn with the “gplots” package in R 3.5.3 (Galili
et al., 2018).

A total of 683 DEGs were found, including 420 upregulated
genes and 263 downregulated genes, and we selected the top 20
genes with a high degree of connectivity as hub genes.

Gene Ontology and KEGG Pathway
Analysis of DEGs
Gene Ontology (GO) analysis can be used to annotate genes and
their products with cellular components (CCs), molecular
functions (MFs), biological pathways (BPs), and other
functions (Gaudet et al., 2017). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a collection of databases that
address genomic and biological pathways related to diseases and
drugs. KEGG is essentially a resource for the comprehensive
understanding of biological systems and some high-level
genomic functional information (Kanehisa, 2002). Database for
Annotation, Visualization, and Integrated Discovery (DAVID,
http://david.ncifcrf.gov) (version 6.8) is an online biological
information database that integrates a large amount of
biological data and related analysis tools, providing systematic
and comprehensive biological function annotation information
for high-throughput gene expression (Huang et al., 2007).
P < 0.05 was used as the cut-off criterion for statistically
significant differences. To visualize the key molecular
functions, biological processes, cellular components, and
KEGG pathways of the DEGs, the DAVID online database was
used to perform biological analysis.

PPI Network and Module Analysis
The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) is an online tool that was designed to evaluate and
integrate protein–protein interaction (PPI) information, such as
physical and functional associations. To date, a total of 9,643,763
proteins from 2,031 organisms have been covered in STRING
version 11.0 (Szklarczyk et al., 2015). To evaluate the
interrelationships among these DEGs, we first drew the network
of DEGs in STRING and then visualized the PPI network by using
Cytoscape software. Moreover, we set the maximum number of
interacting bodies to 0 and used a confidence score of 0.7 as the
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cut-off criterion. Additionally, the Molecular Complex Detection
(MCODE) app was also employed to select modules of the PPI
network in Cytoscape according to node score cut-off = 0–2,
degree cut-off = 2, max.depth = 100, and k−core = 2. With
DAVID, the gene pathways of the three modules were analyzed.
Additionally, 20 hub genes were mapped into STRING according
to a confidence score ≥0.4 and a maximum number of interactors
≤5. We also used GO and KEGG pathway analysis to investigate
their underlying information.

Comparison of the Hub Genes’ Expression
Levels
GEPIA (http://gepia.cancer-pku.cn/index.html) is a newly
developed interactive web server designed by Zefang Tang,
Chenwei Li, and Boxi Kang of the Zhang Lab, Peking
University, designed to analyze the RNA sequence expression
data of 9,736 tumors and 8,587 normal samples from the TCGA
and GTEx projects using a standard processing pipeline. GEPIA
provides customizable capabilities, such as tumor/normal
differential expression analysis, profiling by cancer type or
pathological stages, patient survival analysis, similar gene
testing, correlation analysis, and dimensional reduction
analysis (Tang et al., 2017). In our study, we mainly used
boxplots to visualize hub gene expression in CRC and normal
colon tissues. Then, we analyzed the top 20 hub genes'
correlation with a scatter plot. The Human Protein Atlas
(HPA, https://www.proteinatlas.org/) is a Swedish-based
program initiated in 2003 with the aim of mapping all human
proteins in cells, tissues, and organs using the integration of
various omics technologies, including antibody-based imaging,
mass spectrometry-based proteomics, transcriptomics, and
systems biology (Uhlen et al., 2017). We further verified the
expression of MAD2L1 by obtaining immunohistochemical data
based on the HPA in patients with or without CRC.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) is a computational method
for exploring whether a given gene set is significantly enriched in a
group of gene markers ranked by their relevance with a phenotype
of interest. The curated KEGG pathway V5.2 data set was used to
compare the impaired pathways in normal and colon cancer
samples. In addition, the gene sets with fewer than 15 genes or
more than 500 genes were excluded. The phenotype label was set as
colon cancer versus control. The t-statistic mean of the genes was
computed in each KEGG pathway using a permutation test with
1,000 replications. The upregulated pathways were defined by a
normalized enrichment score (NES) > 0, and the downregulated
pathways were defined by an NES <0. Pathways with an FDR P
value ≤1 were considered significantly enriched.

Validation Based on CRC Clinical Samples
To further verify the data from GEO, we conducted quantitative
real-time PCR (qRT-PCR) to quantify the expression level of
MAD2L1 in clinical CRC patient samples (n = 20) from Renmin
Hospital of Wuhan University (Wuhan, China). Written
Frontiers in Genetics | www.frontiersin.org 3114
informed consent was obtained from all patients. This study
was approved by the Institute Research Ethics Committee of
Renmin Hospital of Wuhan University.

Cell Lines and Cell Transfection
All cell lines, including the normal cell line NCM460 and the
CRC cell lines HT-29, HCT116, SW620, and SW480, were
purchased from Bioyear Biotechnology. The cells were cultured
in RPMI-1640 medium supplemented with 10% FBS (Thermo
Fisher Scientific). All cells were maintained in a humidified
incubator with 5% CO2 at 37°C. A total of 1 × 104 cells/ml
were plated approximately 24 h before transfection. Once the
cells reached 40%–60% confluence in each well of a 96-well plate,
the cells were transfected with 2.5 nM siRNA/NC (RiboBio,
Guangzhou, China) using Lipofectamine 2000 (Thermo Fisher
Scientific) at the indicated concentrations according to the
manufacturer's instructions. Six hours later, the culture
medium was replaced with fresh medium containing 10% FBS.
The cells were harvested after 24 h of transfection for the
following assays.

The siRNA sequences were as follows:
Si-h-MAD2L1: forward, 5'-GGGUCCAAAGUUGAGU

GAGUCUUGAdTdT-3 ' ; reverse , 5 ' -CGGACUCACC
UUGCUUGUAACUACUdTdT-3'.

RNA Extraction, Reverse Transcription
(RT)-PCR, and qRT-PCR
Total RNA was extracted from cells using TRIzol reagent
(Invitrogen™). Reverse-transcribed complementary DNA was
synthesized using the PrimeScript™RT Reagent Kit (Takara).
The RT-PCR conditions were 37°C for 15 min, 85°C for 5 s, and
held at 4°C. After the dilution (1:4) of cDNA with nuclease-free
water, qRT-PCR was performed by a StepOne™ Real-Time PCR
system and SYBR® Premix Ex Taq™. The mixes were
predenatured at 95°C for 1 min, followed by 40 cycles of
denaturation at 95°C for 15 s and 72°C for 45 s. The results
were normalized to GAPDH expression. The relative expression
level of MAD2L1 was calculated by the 2−DDCt method.

The primers used for qRT-PCR were as follows: GAPDH
forward, 5'-CATCATCCCTGCCTCTACTGG-3'; and reverse,
5'-GTGGGTGTCGCTGTTGAAGTC-3'; MAD2L1 forward, 5'-
GCAAAAGATGACAGTGCACCC-3'; and reverse, 5'-
GTGGTCCCGACTCTTCCCAT -3'.

Colony Formation Assay
Twenty-four hours after SW620 cells were infected with siRNA,
approximately 300 cells were seeded on each well of a six-well
plate. The cells were allowed to incubate at 37°C for 14 days.
Then, the cells were fixed, stained with crystal violet, and
photographed. ImageJ software (1.48 u; National Institutes of
Health) was used to count the number of clones per well.

Cell Cycle Analysis
Twenty-four hours after siRNA interference, SW620 cells were
harvested, centrifuged, and resuspended in 1× PBS. The cells
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were fixed in 70% ethanol overnight. On the second day, after
being washed with 1× PBS solution and centrifuged, the cells
were resuspended in 1× PBS solution and incubated with
RNaseA at 37°C for 30 min. Finally, the cells were stained with
propidium iodide and analyzed by a FACSCalibur system
(BD Biosciences).

Apoptosis Analysis
SW620 cells were transfected with siRNA for 24 h, harvested, and
centrifuged. Then, the supernatant was removed and
resuspended in 1× PBS solution. This procedure was repeated
three times with 1 × 106 cells per well, and then the cells were
stained with an Annexin V/FITC and PI kit. After staining, the
cells were analyzed with a FACSCalibur system (BD Biosciences).

Statistical Analysis
All experiments were performed at least three times, and each
independent test was carried out in triplicate for each condition
under the protocol and according to the manufacturer's
instructions. All statistical analyses were performed using
PASW Statistics 19.0 (IBM) or GraphPad Prism 6 software
(GraphPad Software, Inc.).
RESULTS

Identification of DEGs and Hub Genes
A total of 74 CRC samples and 65 normal samples were analyzed.
The series from each chip was analyzed separately using R
software, and finally, the DEGs, using adjusted P value < 0.05
and logFC ≥ 1 or logFC ≤ −1 as the cut-off criteria, were
identified. A total of 683 DEGs were identified after analyzing
GSE117606, 420 of which were upregulated genes, and 263 were
downregulated (Figure 1B). Figure 1A shows the performance
Frontiers in Genetics | www.frontiersin.org 4115
level of the DEGs with a fold change of 1. In addition, 20 hub
genes were identified from high to low according to their degree
of connectivity (Table 1).

GO Function and KEGG Pathway
Enrichment Analysis
To obtain amore comprehensive and in-depth understanding of the
selected DEGs, we analyzed the GO function and KEGG pathway
enrichment by DAVID. After importing all DEGs into DAVID, we
discovered the functions of the upregulated DEGs and
downregulated DEGs by GO analysis. More specifically, these
DEGs were mainly enriched in biological processes (BPs)
FIGURE 1 | (A) Heat map of DEGs. (B) Volcano plot of genes detected in CRC. Red means upregulated and downregulated DEGs; black means no difference.
TABLE 1 | Top 20 hub genes with higher degree of connectivity.

Gene Degree of connectivity Adjusted p value

CDK1 55 4.64E-50
CCNA2 46 8.09E-28
TOP2A 41 3.81E-25
PLK1 40 3.35E-22
MAD2L1 39 2.61E-21
AURKA 38 1.39E-30
BUB1B 37 3.23E-38
UBE2C 37 2.11E-28
TPX2 36 1.57E-33
RRM2 36 2.23E-22
KIF11 35 4.54E-31
NCAPG 34 2.35E-27
MELK 34 1.01E-25
NUSAP1 33 3.24E-28
MCM4 29 2.76E-26
RFC4 29 3.04E-22
PTTG1 29 1.78E-24
CHEK1 29 2.05E-37
CEP55 29 1.66E-24
DTL 28 5.48E-25
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involving collagen catabolic process, extracellular matrix
organization, collagen fibril organization, cell division, and G1/S
transition of the mitotic cell cycle for the upregulated genes; and
bicarbonate transport, muscle contraction, regulation of
intracellular pH, chloride transmembrane transport, and one-
carbon metabolic process for the downregulated genes. Regarding
function (MF), the DEGs were involved in extracellular matrix
structural constituent, extracellular matrix binding, platelet-derived
growth factor binding, chemokine activity, and calcium ion binding
for the upregulated genes; and chloride channel activity, carbonate
dehydratase activity, NAD binding, hormone activity, and
intracellular calcium activated chloride channel activity for the
downregulated genes. In addition, GO cell component (CC)
analysis revealed that the upregulated DEGs were principally
enriched in the proteinaceous extracellular matrix, extracellular
region, extracellular space, collagen trimer, and extracellular
matrix, while the downregulated DEGs were mainly enriched in
extracellular exosomes, extracellular space, integral components of
the plasma membrane, brush border membrane, and apical plasma
membrane (Table 2).

Table 3 shows the most significantly enriched KEGG
pathways of the upregulated and downregulated DEGs. The
upregulated DEGs were enriched in the cell cycle, ECM-
receptor interaction, focal adhesion, protein digestion and
Frontiers in Genetics | www.frontiersin.org 5116
absorption, and the PI3K-Akt signaling pathway, while the
downregulated DEGs were enriched in mineral absorption,
proximal tubule bicarbonate reclamation, retinol metabolism,
pentose and glucuronate interconversions, and steroid hormone
biosynthesis. Figures 2A–C present a GO and KEGG pathway
enrichment plot of CRC.

Hub Genes and Module Screening of the
PPI Network
Based on querying STRING protein information from the public
database, we constructed a PPI network of the top 20 hub genes
according to the degree of connectivity (Figure 2D). The top 20
hub genes with a high degree of connectivity were as follows:
CDK1, CCNA2, TOP2A, PLK1, MAD2L1, AURKA, BUB1B,
UBE2C, TPX2, RRM2, KIF11, NCAPG, MELK, NUSAP1,
MCM4, RFC4, PTTG1, CHEK1, CEP55, and DTL. Based on
the GO function and KEGG pathway analysis, we found that
CDK1, MAD2L1, PLK1, BUB1B, CHEK1, PTTG1, CCNA2, and
MCM4 were enriched in the cell cycle. To detect the most
important module in this PPI network, we used the MCODE
plug-in. The top 3 modules were selected (Figure 3). KEGG
pathway analysis revealed that the top 3 modules were mainly
associated with the cell cycle, ribosome biogenesis in eukaryotes,
and the chemokine signaling pathway (Table 4).
TABLE 2 | Gene Ontology analysis of differentially expressed genes associated with colorectal cancer.

Expression Category Term Count % P value FRD

Upregulated GOTERM_BP_DIRECT GO:0030574~collagen catabolic process 19 3.38 6.88E-16 1.14E-12
GOTERM_BP_DIRECT GO:0030198~extracellular matrix organization 25 4.45 4.39E-12 7.53E-09
GOTERM_BP_DIRECT GO:0030199~collagen fibril organization 13 2.31 1.60E-11 2.75E-08
GOTERM_BP_DIRECT GO:0051301~cell division 26 4.63 1.28E-07 2.19E-04
GOTERM_BP_DIRECT GO:0000082~G1/S transition of mitotic cell cycle 14 2.49 2.40E-07 4.11E-04
GOTERM_CC_DIRECT GO:0005201~extracellular matrix structural constituent 12 2.14 1.18E-07 1.73E-04
GOTERM_CC_DIRECT GO:0050840~extracellular matrix binding 8 1.42 7.27E-07 1.06E-03
GOTERM_CC_DIRECT GO:0048407~platelet-derived growth factor binding 6 1.07 1.55E-06 2.26 E-03
GOTERM_CC_DIRECT GO:0008009~chemokine activity 9 1.60 6.77E-06 9.87 E-03
GOTERM_CC_DIRECT GO:0005509~calcium ion binding 31 5.52 2.18E-04 0.32
GOTERM_MF_DIRECT GO:0005578~proteinaceous extracellular matrix 28 4.98 4.16E-12 5.63E-09
GOTERM_MF_DIRECT GO:0005576~extracellular region 71 12.63 2.09E-10 2.83E-07
GOTERM_MF_DIRECT GO:0005615~extracellular space 61 10.85 2.12E-09 2.87E-06
GOTERM_MF_DIRECT GO:0005581~collagen trimer 14 2.49 3.07E-08 4.16E-05
GOTERM_MF_DIRECT GO:0031012~extracellular matrix 22 3.91 4.80E-07 6.49E-04

Downregulated GOTERM_BP_DIRECT GO:0015701~bicarbonate transport 8 2.60 1.19E-06 1.91 E-03
GOTERM_BP_DIRECT GO:0006936~muscle contraction 10 3.25 8.46E-06 0.01
GOTERM_BP_DIRECT GO:0051453~regulation of intracellular pH 6 1.95 8.39E-05 0.13
GOTERM_BP_DIRECT GO:1902476~chloride transmembrane transport 8 2.60 1.75E-04 0.28
GOTERM_BP_DIRECT GO:0006730~one-carbon metabolic process 5 1.63 5.23E-04 0.83
GOTERM_CC_DIRECT GO:0005254~chloride channel activity 6 1.95 4.91E-04 6.73
GOTERM_CC_DIRECT GO:0004089~carbonate dehydratase activity 4 1.30 5.82E-04 7.98
GOTERM_CC_DIRECT GO:0051287~NAD binding 5 1.63 1.13 E-03 1.54
GOTERM_CC_DIRECT GO:0005179~hormone activity 6 1.95 5.77 E-03 7.65
GOTERM_CC_DIRECT GO:0005229~intracellular calcium activated chloride channel activity 3 9.75 0.02 19.61
GOTERM_MF_DIRECT GO:0070062~extracellular exosome 69 2.24 1.68E-08 2.13E-05
GOTERM_MF_DIRECT GO:0005615~extracellular space 38 12.35 3.90E-06 4.95 E-03
GOTERM_MF_DIRECT GO:0005887~integral component of plasma membrane 39 12.68 4.80E-06 6.09 E-03
GOTERM_MF_DIRECT GO:0031526~brush border membrane 7 2.28 3.85E-05 0.05
GOTERM_MF_DIRECT GO:0016324~apical plasma membrane 13 4.23 2.91E-04 0.37
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FIGURE 2 | (A) GO analysis of upregulated DEGs. (B) GO analysis of downregulated DEGs. (C) KEGG pathway of DEGs. (D) The protein–protein interaction (PPI)
network of the top 20 hub genes.
TABLE 3 | KEGG pathway analysis of differentially expressed genes associated with colorectal cancer.

Category Term Count % P value Genes FRD

Upregulated hsa04110: Cell cycle 15 0.03 1.06E-06 CDK1, DBF4, SKP2, CHEK1, PTTG1, MCM4, WEE1, YWHAG, CCND1,
MAD2L1, MCM7, PLK1, PCNA, BUB1B, CCNA2

0.00133

hsa04512: ECM-receptor
interaction

12 0.02 5.25E-06 COL4A1, ITGAV, COMP, COL3A1, COL1A2, ITGA2, COL1A1, COL11A1,
THBS2, COL5A2, COL5A1, SPP1

0.00658

hsa04510: Focal adhesion 16 0.03 9.37E-05 COL4A1, COL3A1, MET, ITGA2, COL5A2, COL5A1, CCND1, ITGAV, COMP,
VEGFA, COL1A2, PDGFRB, COL1A1, THBS2, COL11A1, SPP1

0.11741

hsa04974: Protein digestion
and absorption

10 0.02 2.07E-04 COL4A1, COL7A1, COL3A1, COL1A2, COL12A1, COL1A1, COL11A1, COL5A2,
COL5A1, COL10A1

0.25962

hsa04151: PI3K-Akt signaling
pathway

19 0.03 1.19 E-03 COL4A1, COL3A1, MET, ITGA2, COL5A2, COL5A1, DDIT4, YWHAG, EIF4EBP1,
CCND1, ITGAV, COMP, VEGFA, COL1A2, PDGFRB, COL1A1, THBS2,
COL11A1, SPP1

1.48049

Downregulated hsa04978:Mineral absorption 8 0.03 4.05E-06 SLC26A3, TRPM6, CLCN2, MT1M, SLC9A3, MT1E, ATP1A2, MT1F 0.00484
hsa04964:Proximal tubule
bicarbonate reclamation

6 0.02 2.13E-05 SLC9A3, CA4, ATP1A2, CA2, SLC4A4, PCK1 0.02546

hsa00830:Retinol metabolism 7 0.02 4.22E-04 ALDH1A1, UGT1A6, UGT2B17, ADH1C, DHRS9, ADH1B, UGT2B28 0.50270
hsa00040:Pentose and
glucuronate interconversions

5 0.02 1.55 E-03 UGT1A6, UGT2B17, AKR1B10, UGDH, UGT2B28 1.82991

hsa00140:Steroid hormone
biosynthesis

6 0.02 1.89 E-03 HSD3B2, UGT1A6, UGT2B17, HSD17B2, HSD11B2, UGT2B28 2.23810
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The Expression Level and Correlation
Analyses of the Twenty Hub Genes in
GEPIA
GEPIA is an interactive online server for exploring large data sets
from the TCGA and GTEx projects. To confirm the reliability of
the twenty identified hub genes from the data sets, we used
Frontiers in Genetics | www.frontiersin.org 7118
GEPIA to verify the correlation between them, and they were
obviously positively correlated with each other in CRC (Figure 4A).
GEPIAwas also used to determine the expression levels of the top ten
genes inCRC.Figure 4B shows that these geneswere all significantly
overexpressed in the colon cancer (COAD) samples compared to the
normal samples.
FIGURE 3 | Top 3 modules from the protein–protein interaction network: (A) module 1, (B) module 2, (C) module 3.
TABLE 4 | The enriched pathways of top 3 modules.

Category Term Count % P value Genes FRD

Module 1 hsa04110:Cell cycle 8 33.33 8.19E-10 CDK1, MAD2L1, PLK1, BUB1B, CHEK1, PTTG1, CCNA2,
MCM4

6.49E-07

hsa04114:Oocyte meiosis 5 20.83 4.10E-05 CDK1, MAD2L1, PLK1, AURKA, PTTG1 0.03253
hsa04914:Progesterone-mediated oocyte
maturation

4 16.67 5.10E-04 CDK1, MAD2L1, PLK1, CCNA2 0.40350

hsa04115:p53 signaling pathway 3 12.5 6.80 E-03 CDK1, RRM2, CHEK1 5.26615
hsa05166:HTLV-I infection 4 16.67 0.01 MAD2L1, BUB1B, CHEK1, PTTG1 8.25324

Module 2 hsa03008:Ribosome biogenesis in eukaryotes 6 60 2.88E-10 DKC1, WDR3, NOP58, WDR43, NMD3, GNL3 6.51E-08
Module 3 hsa04062:Chemokine signaling pathway 5 0.53 1.70E-05 CXCL1, CXCL3, CXCL8, CXCL11, CCL28 0.01435

hsa04060:Cytokine-cytokine receptor interaction 5 0.53 4.89E-05 CXCL1, CXCL3, CXCL8, CXCL11, CCL28 0.04128
hsa05134:Legionellosis 3 0.32 1.24 E-03 CXCL1, CXCL3, CXCL8 1.04102
hsa05132:Salmonella infection 3 0.32 2.90 E-03 CXCL1, CXCL3, CXCL8 2.42586
hsa04621:NOD-like receptor signaling pathway 2 0.21 5.56 E-02 CXCL1, CXCL8 38.32740
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FIGURE 4 | (A) The correlation analysis of the 20 hub genes. (B) Expression levels of the 20 hub genes in CRC compared to the normal samples. Notes: R is the
Pearson correlation coefficient. Abbreviations: CRC, colorectal cancer.
FIGURE 5 | Gene set enrichment analysis (GSEA). Listed pictures are five representative functional gene sets enriched in CRC with MAD2L1 highly expressed.
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Gene Set Enrichment Analysis
To gain further insight into the functions of the DEGs, GSEA was
conducted to map the DEGs into the KEGG pathway database.
Under the cut-off criteria of FDR <0.05, |enrichment score (ES)| > 0.6,
and gene size ≥100, the top five pathways were “p53 signaling
pathway,” “homologous recombination,” “cell cycle,” “nucleotide
excision repair”, and “spliceosome” (Figure 5).
Expression Patterns of MAD2L1 in CRC.
To identify the expression level of MAD2L1 in CRC, we
performed qRT-PCR to confirm the expression of MAD2L1 in
20 paired clinical samples, in which the mean expression level of
MAD2L1 was notably higher in CRC tissues than in normal
tissues (Figure 6A). Next, we measured the expression of
MAD2L1 in various cell lines, including the normal cell line
NCM460 and the CRC cell lines HT-29, HCT116, SW620, and
SW480. The expression of MAD2L1 was higher in tumor cells
than in normal cells (Figure 6B), which is similar to the results
from the four datasets in GEO and the GEPIA results, suggesting
that our results for these genes are reliable.
Frontiers in Genetics | www.frontiersin.org 9120
Knockdown of MAD2L1 Suppressed Cell
Growth by Impairing Cell Cycle
Progression and Inducing Cell Apoptosis
To determine whether MAD2L1 could be a therapeutic target in
CRC, we inactivated MAD2L1 by using siRNAs in SW620 cells.
We found that the MAD2L1 knockdown, compared to the
control knockdown, significantly inhibited cell proliferation
(Figure 6C) and reduced cell numbers of SW620 cells (Figures
6D, E), which indicated that MAD2L1 might promote cell
proliferation. To examine how MAD2L1affects cell growth, the
cell cycle phase distribution and apoptosis were analyzed by flow
cytometric analysis. Knockdown of MAD2L1 resulted in a
decrease in the percentage of cells in the G1 and G2 phases
and an increase in the percentage of cells in the S phase (Figures
6F, G), which indicated that MAD2L1 knockdown prevented cell
passage from the S phase into the G2 phase. Therefore, MAD2L1
was shown to promote S/G2 phase transition. The apoptosis
assay results indicated that the apoptotic cells significantly
increased in SW480 cells with si-MAD2L1 transfection
(Figures 6H, I). These data indicate that MAD2L1 knockdown
could impair cell cycle progression and induce cell apoptosis.
FIGURE 6 | MAD2L1 knockdown suppressed colon cancer cell proliferation by impairing cell cycle progression and inducing apoptosis. Notes: (A) Expression level
of MAD2L1 gene in 20 paired CRC tissues (n = 3; **P < 0.01; two-tailed t-test). (B) Expression level of MAD2L1 gene in colon normal cell line NCM460 and CRC cell
line HT-29, HCT116, SW620 and SW480 (n = 3; **P < 0.01, ***P < 0.001; two-tailed t-test). (C) The cell proliferation rate was analyzed by CCK-8 assay. All value
were mean ± SD (n = 3; ***P < 0.001; two-tailed t-test). (D), (E) Colony formation assays were performed (n = 3; ***P < 0.001; two-tailed t-test). (F, G) Distribution of
cells in three cell cycle phases was examined by flow cytometry assay, and the graph shows quantification for each phase. (H) For measurement of apoptotic cells,
cells were stained with both AV and PI and analyzed by an image flow assay. (I) Graph illustrating the quantification of apoptotic cells (n = 3; ***P < 0.001; two-tailed
t-test). Abbreviations: AV, Annexin V FITC; CCK-8, cell counting kit-8, PI, propidium iodide; NC, negative control.
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DISCUSSION

Even with a gradual decline in the past few years, CRC remains
the fourth leading cause of cancer-related death worldwide
(Marmol et al., 2017). The occurrence and development of
CRC is a dynamic process. At different stages of CRC, the
expression levels of some molecules are different. (Moroishi
et al., 2015) In this case, early screening and diagnosis are
becoming increasingly difficult. Therefore, it is necessary to
find accurate and meaningful CRC biomarkers. Our study
systematically focused on expression profiles obtained from
microarray studies of CRC. Our analysis included 74 CRC
samples and 65 normal samples from the GSE117606 dataset
of the GEO database. A total of 683 DEGs were identified,
including 420 upregulated genes and 263 downregulated genes.
To better explore these DEGs, we carried out GO function and
KEGG pathway analysis of these DEGs.

GO analysis showed that the upregulated DEGs were
particularly enriched in mitotic collagen catabolic process,
extracellular matrix organization, proteinaceous extracellular
matrix, extracellular region, extracellular matrix structural
constituent, and extracellular matrix binding, while the
downregulated DEGs were involved in bicarbonate transport,
muscle contraction, extracellular exosome, extracellular space,
chloride channel activity, and carbonate dehydratase activity. In
addition, the KEGG pathways for the upregulated DEGs
included the cell cycle, ECM-receptor interaction, and focal
adhesion, while the pathways of the downregulated DEGs were
mainly in mineral absorption, proximal tubule bicarbonate
reclamation, and retinol metabolism.

A PPI is defined as the process by which two or more kinds of
protein molecules form a protein complex by noncovalent
bonding. PPI networks could provide a visible framework for a
better understanding of the functional organization of the
proteome (Liu et al., 2009). The enriched pathways of the top
3 modules showed that CRC was associated with the cell cycle-
related pathway and the p53 signalling pathway.

Cell cycle-related genes that promote the proliferation of
endothelial cells contribute to the progression of tumor
growth and metastasis of CRC (Hong et al., 2009). CDK1
encodes a serine/threonine kinase that controls the eukaryotic
cell cycle by regulating mitotic onset, as well as the centrosome
cycle (Santamaria et al., 2007). CDK1 promotes cell
proliferation via the phosphorylation and inhibition of the
forkhead box O1 transcription factor (Liu et al., 2008). The
alteration of CDK1 has been found in numerous cancer types,
including breast cancer (Kim et al., 2008), esophageal
adenocarcinoma (Hansel et al., 2005), hepatocellular
c a r c i noma (Wu e t a l . , 2 019 ) , p anc r e a t i c duc t a l
adenocarcinoma (Piao et al., 2019), and oral squamous cell
carcinoma (Chang et al., 2005). Iacopetta et al. revealed that
p53 mutations that lose transactivation ability are more
common in advanced CRC and associated with poor survival
(Iacopetta et al., 2006). Slattery ML et al. suggested that the
activation of p53 from cellular stress could target downstream
Frontiers in Genetics | www.frontiersin.org 10121
genes that could in turn influence cell cycle arrest, apoptosis,
and angiogenesis through mRNA:miRNA interactions
(Slattery et al., 2018). In the p53 signaling pathway, the
RRM2 gene was an oncogene that was overexpressed in
colorectal cancer, with its elevated expression correlated
with the invasion depth, poorly differentiated type, and
tumor node metastasis stage (Lu et al., 2012).

Twenty DEGs with high connectivity were selected as hub
genes for PPI network analysis. By analyzing the correlations and
expression levels in GEPIA, we determined that the hub genes
were obviously positively correlated and significantly
overexpressed in CRC samples.

We searched the literature in PubMed for associations
among the twenty hub genes in CRC. In Yanqi Gan et al.'s
study, they revealed that expression of CCNA2 in CRC tissues
is higher than that in normal tissues and that CCNA2
knockdown could significantly suppress CRC cell growth by
impairing cell cycle progression and inducing cell apoptosis
(Gan et al., 2018). TOP2A is a gene that involves copy number
variations and chromosomal instability in many cancers
(Simon et al., 2002; Bofin et al., 2003; Chen et al., 2015;
Sonderstrup et al., 2015). In colorectal cancer, the protein
expression level of TOP2A was related to aggressive tumor
phenotypes and advanced tumor stages (Coss et al., 2009). In
our research, we found that TOP2A expression was
upregulated in colorectal cancer. The expression of PLK1
was correlated with tumor size, lymph node metastasis,
depth of invasion, and TNM stage, consistent with the
results from Takahashi et al. (Takahashi et al., 2003). Ding-
pei Han et al.'s study revealed that PLK1 has additional
functions and is involved in the proliferation, migration and
invasion of colorectal cancer cells (Han et al., 2012). The
spindle proteins AURKA, BUB1, and MAD2L1 are important
components of the spindle assembly checkpoint (Xue et al.,
2016), which has been frequently established as an important
mechanism that drives aneuploidy and carcinogenesis in CRC
(Chen et al., 1998; Burum-Auensen et al., 2007). Anke H,
Sillars-Hardebol et al.'s study revealed TPX2 and AURKA as
major players in this critical step in colorectal carcinogenesis
(Sillars-Hardebol et al., 2012). RRM2 overexpression was
s i gn ifican t l y a s soc i a t ed wi th invas ion dep th and
differentiation, and clinical tissue specimens also showed
that the expression levels of RRM2 may be associated with
tumor stage, which was shown in Ai-Guo Lu et al.'s study (Lu
et al., 2012). KIF11 is a mitotic kinesin and is required for the
separation of duplicated centrosomes during spindle
formation (Zhu et al., 2005). Imai T et al.'s results verified
that knockdown of KIF11 by siRNA inhibits sphere formation,
indicating that KIF11 is important in the activity of esophageal
cancer and CRC (Imai et al., 2017). MELK was overexpressed
and highly phosphorylated in colorectal adenocarcinomas,
and its expression was significantly correlated with tumor
stage and lymph node metastasis (Gong et al., 2018).
NUSAP1 is a microtubule-binding protein that plays a vital
role in the assembly of mitotic spindle (Song and Rape, 2010).
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NUSAP1 gene silencing induced cell apoptosis and inhibited
cell proliferation, cell migration, cell invasion, and EMT in
colorectal cancer by inhibiting DNMT1 gene expression
(Han et al., 2018). Human replication factor C (RFC) is a
multimeric protein consisting of five distinct subunits that are
highly conserved through evolution (Yao and O'Donnell,
2012) . Jun Xiang et al . ' s results revealed that the
overexpression of RFC4 commonly occurs in CRC and that a
high expression level of RFC4 is associated with poor
differentiation and late TNM stages in patients with CRC.
Higher levels of RFC4 protein expression correlate with a
worse overall survival in CRC (Xiang et al., 2014). Human
pituitary tumor transforming gene-1 (PTTG1) is a novel
oncogene. Ren Q et al.'s study preliminarily explored the
effects of PTTG1 in colorectal cancer cell proliferation and
metastasis and found that the downregulation of PTTG1
expression suppressed colorectal cancer cell proliferation,
migration and invasion (Ren and Jin, 2017). Gali-Muhtasib
H et al.'s study confirmed the in vivo existence of the CHEK1/
p53 link in human colorectal cancer, showing that tumors
lacking p53 had higher levels of CHEK1, which was
accompanied by poorer apoptosis. CHEK1 overexpression
was correlated with advanced tumor stages, proximal tumor
localization, and worse prognosis (Gali-Muhtasib et al., 2008).
Overexpression of CEP55 activates p21 and enhances the cell
cycle transition. In contrast, the knockdown of CEP55 inhibits
cell growth in gastric (Tao et al., 2014) and breast cancer
(Wang et al., 2016). DTL is located at chromosomal region
1q32.1–32.2 and encodes a putative 730-amino-acid nuclear
protein that contains six highly conserved WD40-repeat
domains (Ueki et al., 2008). It has been reported that DTL
plays an essential role in cell proliferation, cell cycle arrest and
metastatic potential in hepatocellular carcinoma, breast cancer,
gastric cancer and rhabdomyosarcoma (Pan et al., 2006; Ueki et al.,
2008; Li et al., 2009; Missiaglia et al., 2009; Song et al., 2010).
Baraniskin A et al.'s data identified miR-30a-5p as a tumor-
suppressing miRNA in colon cancer cells, exerting its function
via the modulation of DTL expression, which is frequently
overexpressed in CRC (Baraniskin et al., 2012).

MAD2L1 is highly expressed in colon cancer according to
biological information. Moreover, MAD2L1 has a high positive
correlation, with a Pearson correlation coefficient of 0.88.
Through bioinformatics analysis of GSE117606, we know that
MAD2L1 is one of the 20 core genes, and that MAD2L1 plays a
role in the occurrence and development of colon cancer by
participating in the cell cycle pathway. In examining the
expression level of MAD2L1, we found that MAD2L1 has a
higher expression in the CRC clinical samples and cell lines.
Afterward, by searching PubMed, we found that there were no
relevant studies reporting that MAD2L1 is involved in the cell
cycle pathway, so we chose MAD2L1 for the next cell
experiments. We further confirmed that knockdown of
MAD2L1 could significantly suppress CRC cell growth by
impairing cell cycle progression and inducing cell apoptosis.
MAD2L1 has the potential to be a new biomarker for diagnosis
and therapy in CRC.
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There is a limitation of this study that needs to be considered:
the analysis of a single dataset from GEO will result in partial bias,
and too few samples will not lead to new findings. However, the
data set we selected contains a large number of samples, so this
limitation can be compensated to a certain extent.

In summary, using the GSE117606 profile data set and
multiple bioinformatics analyses, our present work identified
twenty hub genes as DEGs. These DEGs are significantly
enriched in several pathways that are mainly associated with
the cell cycle, ECM-receptor interaction, and mineral
absorption pathways in CRC, and they might play key roles
in the development and progression of CRC. MAD2L1 shows
higher expression levels in CRC, is involved in colon cancer
cell growth and cell cycle progression, and could be used as a
new biomarker since it has a significant meaning for
clinical treatment.
CONCLUSION

In this study, using a GSE data set and multiple bioinformatics
analyses, we identified twenty hub genes that were significantly
enriched in the cell cycle, ECM–receptor interaction, and
mineral absorption pathways in CRC. Moreover, the
expression level of MAD2L1 was significantly increased in
CRC, and knockdown of MAD2L1 suppressed colon cancer
cell growth by impairing cell cycle and apoptosis progression.
Our findings also establish that MAD2L1 could be a new
biomarker for CRC diagnosis and guide combination therapy
for CRC.
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Glioblastoma (GBM) is the most common malignant tumor of the central nervous system.
GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of
effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly
Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the
prognostic value of candidate genes. Currently, OSgbm contains 684 samples with
transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA),
Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The
survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with
Hazard ratio (HR) and log-rank p value. As demonstration, the prognostic value of 51
previously reported survival associated biomarkers, such as PROM1 (HR = 2.4120, p =
0.0071) and CXCR4 (HR = 1.5578, p < 0.001), were confirmed in OSgbm. In summary,
OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web
server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.

Keywords: glioblastoma, survival analysis, prognostic biomarker, OSgbm, transcriptome profiles,
clinical information
INTRODUCTION

Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS)
and causes a high mortality rate (Nikiforova and Hamilton, 2011; Stoyanov et al., 2018). Although
many new therapies have improved the clinical outcome and more clinical trials have demonstrated
the high efficacy in treating GBM, the survival rate of GBM patients is still low. GBM is a complex
disease to tackle with a median survival period of approximately 14 months, and a 5-year survival
rate of 5% (Stupp et al., 2005; Johnson and O'Neill, 2012; Polivka et al., 2017). Prognostic
biomarkers have been showing great roles in cancer patient management and may guide targeted
therapies. Therefore, it is greatly needed to investigate prognostic biomarkers in GBM.

Previous studies have reported some prognostic biomarkers in GBM, such as gene mutation of gene
IDH and PTEN, and expression variation of gene CD133 (Yang et al., 2016; Cai and Sughrue, 2017;
February 2020 | Volume 10 | Article 13781125
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Nguyen et al., 2018). However, these biomarkers have not been
translated to clinical applications due to the lack of independent
validation. In addition, due to the molecular heterogeneity among
GBMs and limited patient samples (Nathanson et al., 2014; Aldape
et al., 2015; Brown et al., 2017), the prognostic behavior of a certain
biomarker may be inconsistent or even contradictory between
different reports. In other words, cross population validation
in a larger patient cohort is critical for evaluating the
prognostic biomarker.

In current work, we collected the gene expression profiles and
clinical information of 684 GBM patients from seven
independent cohorts obtained from TCGA, GEO and CGGA.
We developed a user-friendly web server, OSgbm, to analyze the
prognostic value of genes of interests. With this web server, it
would facilitate researchers and clinicians to screen, develop and
validate new prognostic biomarkers in GBM.
METHODS

Datasets Collection
GBM datasets are from three major data sources. First, level-3
gene expression profiling data (HiSeqV2) and clinical information
of GBM samples were downloaded from TCGA on April 2018
(https://portal.gdc.cancer.gov/). Second, four cohorts (≥30 cases)
with available gene expression profiles and clinical survival
information were collected from GEO database (http://www.
ncbi.nlm.nih.gov/geo/). Third, two GBM cohorts were gathered
from CGGA (http://www.cgga.org.cn/). After an initial filtration
and quality check (with available gene expression profiling data
and clinical survival information), 153 samples from TCGA, 276
samples from GEO, and 255 samples from CGGA were included
for the following database and web server construction. The
histology of recurrent GBM (rGBM) were included in GSE7696
(10 samples), GSE42669 (11 samples), CGGAarray (9 samples)
and CGGAseq (22 samples) datasets. Two CGGA datasets also
included 20 samples of secondary GBM (sGBM).

System Implementation and Server Set-Up
OSgbm is a web-based tool which uses J2EE (Java 2 Platform
Enterprise Edition) architecture as we previously described
(Wang et al., 2019; Wang et al., 2019; Xie et al., 2019a; Zhang
et al., 2019). The gene expression and clinical data were
integrated in the background database, which was handled by
a MySQL server. Dynamic web interfaces were written in HTML
5.0 and hosted by Tomcat on Windows Server. Using OSgbm
requires a HTML 5.0-compliant browser with JavaScript
enabled, but does not require any particular visual plug-in tool.
Since the web server was designed for users with no specialized
bioinformatics skills, we propose ‘out-of-the-box’ data. The input
of OSgbm web server is official gene symbol. For the “Data
Source: Combined” option, as all the datasets used in OSgbm
already have been published, processed and normalized well, in
order to avoid of the batch effect and platform biases among
these datasets, we first stratify the patients into high- and low-
expression group for the input gene in each dataset, and then
Frontiers in Genetics | www.frontiersin.org 2126
merged relative patients from high- and low-expression group
from each dataset into a combined high-expression group
(Upper group in the Kaplan–Meier plot) and a combined low-
expression group (Lower group in the Kaplan–Meier plot) for
the analysis of Kaplan–Meier plot and log-rank test. The
statistical analyses of input were performed with R package:
KM curves with Hazard ratio (HR, 95% confidence interval) and
log-rank p value were calculated by R package ‘survival’. OSgbm
is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.

Validation of Previously Reported
Prognostic Biomarkers
A PubMed search was performed to identify previously reported
GBM prognostic biomarkers, using keywords ‘glioblastoma’,
‘survival’ and ‘biomarker’. Totally, 53 prognostic biomarkers were
identified from 2013 publications. The flow chart of biomarker
collection was showed in Figure S1. The prognostic values of these
published biomarkers were analyzed in either a form of combined
cohorts of all GBM patients or in a single cohort in our database.
RESULTS

The Clinical Characteristics of GBM
Datasets Used in OSgbm
In OSgbm, we included a total of 684 unique GBM samples from
seven datasets, including one TCGA cohort, four GEO cohorts
and two CGGA cohorts. The survival information includes
overall survival (OS), disease specific survival (DSS), disease
free interval (DFI) and progression free interval (PFI) (Liu
et al., 2018). The confounding clinical factors, such as age,
grade, gender, histology and treatment regimens were included
as well. Clinical characteristics of these datasets in the OSgbm
were presented in Table 1. All of the 684 patients have OS data,
TABLE 1 | Clinical characteristics of each GBM dataset used in OSgbm.

Data
Source

Sample
Size (n)

Median
Age

(years)

Death
(%)

OS
Median
(years)

Gender
(male,
%)

Grade
(I/II/
III/IV,
%)

Survival
Terms

TCGA 153 60 79.08 11.90 64.71 – OS,
DSS,

DFI, PFI
GSE7696 80 52 81.25 15.58 73.75 – OS
GSE4412 85 42 69.41 12.97 37.65 0/0/

30.59/
69.41

OS

GSE42669 57 51 80.70 14.93 52.63 – OS
GSE30472 54 – 88.89 15.72 – 3.7/

12.96/
29.63/
53.71

OS

CGGAseq 128 48 66.67 9.55 65.22 0/0/
0.72/
99.28

OS

CGGAarray 127 47 83.46 13.43 62.20 0/0/0/
100

OS

Total 684 50 78.49 13.44 59.36 – –
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TABLE 2 | Validation of previously reported prognostic biomarkers in OSgbm.

Gene
symbol

Validation results Literature data

OS, HR
(95% CI)

p
Value

Cut Off Osgbm OS, HR (95% CI) p
Value

Sample
(n)

Level Reference

PROM1 2.412 (1.040–
4.174)

0.007 Upper 25% vs Lower
25%

GSE7679 2.39 (1.77–3.23) <0.001 656 mRNA (Zhang et al., 2016)

SRGN 2.371 (1.256–
4.477)

0.008 Upper 25% vs Lower
25%

CGGAseq – 0.037 504 mRNA (Roy et al., 2017)

EDNRB 2.272 (1.115–
4.627)

0.024 Upper 25% vs Lower
75%

GSE30472 2.86 (1.12–7.34) 0.031 25 Protein (Vasaikar et al., 2018)

PSMB4 2.074 (1.187–
3.626)

0.010 Upper 25% vs Lower
25%

CGGAseq – <0.001 77 Protein (Cheng et al., 2018)

WNT6 2.035 (1.098–
3.770)

0.024 Upper 25% vs Lower
25%

CGGAseq – 0.004 16 Protein (Gonçalves et al., 2018)

DPYSL5 2.023 (1.160–
3.527)

0.013 Upper 25% vs Lower
25%

CGGAarray – 0.026 183 Protein (Moutal et al., 2015)

IL17A 2.009 (1.107–
3.646)

0.022 Upper 50% vs Lower
50%

GSE30472 – 0.007 41 Protein (Cui et al., 2013)

TLR9 1.976 (1.089–
3.588)

0.025 Upper 25% vs Lower
25%

CGGAseq – 0.020 46 Protein (Mu et al., 2017)

ACKR3 1.974 (1.040–
3.747)

0.038 Upper 30% vs Lower
30%

GSE7679 1.56 (1.04–2.51) 0.03 146 Protein (Deng et al., 2017)

H19 1.864 (1.309–
2.653)

<0.001 Upper 25% vs Lower
25%

Combined – 0.034 – mRNA (Wu et al., 2017)

EGFR 1.845 (1.077–
3.160)

0.026 Upper 25% vs Lower
75%

GSE7696 – <0.001 196 Protein (Heimberger et al., 2005)

NUSAP1 1.748 (1.006–
3.040

0.048 Upper 25% vs Lower
25%

CGGAarray 0.65 (0.49–0.86)* 0.003 518 mRNA (Qian et al., 2018)

CHAF1B 1.707 (1.323–
2.203)

<0.001 Upper 30% vs Lower
30%

Combined – 0.004 96 Protein (De Tayrac et al., 2013)

TAGLN2 1.665 (1.282–
2.161)

<0.001 Upper 25% vs Lower
25%

Combined – <0.05 667 mRNA (Han et al., 2017)

BIRC1 1.658 (1.266–
2.172)

<0.001 Upper 25% vs Lower
25%

Combined – 0.0003 66 Protein (Shirai et al., 2009)

MGMT 1.633 (1.260–
2.115)

<0.001 Upper 25% vs Lower
25%

Combined 1.50 0.01 157 Protein (Dahlrot et al., 2018)

CD70 1.561 (1.180–
2.065)

0.002 Upper 25% vs Lower
25%

Combined 1.6 (0.98–2.51) 0.046 107 mRNA (Ge et al., 2017)

CXCR4 1.558 (1.207–
2.010)

<0.001 Upper 25% vs Lower
25%

Combined – <0.05 156 mRNA (Ma et al., 2017)

CA9 1.556 (1.202–
2.015)

<0.001 Upper 25% vs Lower
75%

Combined – 0.004 66 Protein (Cetin et al., 2018)

PDCD1 1.508 (1.171–
1.942)

0.002 Upper 30% vs Lower
30%

Combined – 0.028 149 mRNA (Nduom et al., 2016)

IDH1 1.490 (1.013–
2.192)

0.043 Upper 50% vs Lower
50%

CGGAarray – 0.045 163 Protein (Chaurasia et al., 2016)

IGFBP2 1.467 (1.132–
1.902)

0.004 Upper 25% vs Lower
25%

Combined 1.04 (1.02–1.05) 0.001 83 Plasma (Han et al., 2014)

PBK 1.456 (1.131–
1.875)

0.004 Upper 25% vs Lower
25%

Combined – 0.007 32 Protein (Hayashi et al., 2018)

EFEMP2 1.446 (1.117–
1.871)

0.005 Upper 25% vs Lower
25%

Combined – <0.01 77 mRNA (Li et al., 2017)

MET 1.434 (1.130–
1.820)

0.003 Upper 30% vs Lower
30%

Combined 1.7 (1.1–2.2) <0.05 69 Protein (Olmez et al., 2014)

CHI3L1 1.438 (1.104–
1.872)

0.007 Upper 25% vs Lower
25%

GSE30472 – <0.01 98 mRNA (Steponaitis et al., 2016)

TRAF2 1.443 (1.118–
1.863)

0.005 Upper 25% vs Lower
25%

Combined – 0.03 105 mRNA (Zhang et al., 2017)

HMGB2 1.391 (1.099–
1.759)

0.006 Upper 30% vs Lower
30%

Combined 3.35 (1.25–9.02) 0.017 51 Protein (Wu et al., 2013)

MCM6 1.387 (1.132–
1.699)

0.002 Upper 25% vs Lower
75%

Combined 1.19 0.006 325 mRNA (Cai et al., 2018)

CD44 1.386 (1.073–
1.790)

0.012 Upper 25% vs Lower
25%

Combined – <0.001 28 Protein (Steponaitis et al., 2016)

(Continued)
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and the median OS time was 13.44 months, while 153 GBM
patients from TCGA cohort have four above mentioned survival
terms (OS, DSS, DFI and PFI). The median age of all the patients
is 50 years. The death rate is 78.49%. A large proportion of the
patients are in grade IV, especially in the two CGGA datasets
(99.28% and 100%, respectively).

Set-Up of OSgbm Web Server
The main function of OSgbm web server is to evaluate and
determine the prognostic value of the quested genes. The users
Frontiers in Genetics | www.frontiersin.org 4128
start by typing the gene symbol and choosing one dataset of
interest or the combined dataset with pooling all the datasets
together. To measure the association between a quested gene and
survival, GBM samples are categorized according to the median
(or other appropriate cutoff value, such as Trichotomy, Quartile)
of the selected gene, and KM analysis is used to compare the
outcomes between groups (Xie et al., 2019b). The user could limit
the analysis in a subgroup of the patients by setting the age range,
grade, gender and so on. Once the gene symbol is input and
clinical characters are chosen, OS, DSS, DFI or PFI of each
TABLE 2 | Continued

Gene
symbol

Validation results Literature data

OS, HR
(95% CI)

p
Value

Cut Off Osgbm OS, HR (95% CI) p
Value

Sample
(n)

Level Reference

TIMP1 1.342 (1.025–
1.758)

0.033 Upper 25% vs Lower
25%

Combined 3.2 (1.5–6.7) 0.004 112 Protein (Aaberg-Jessen et al.,
2009)

CD151 1.336 (1.023–
1.746)

0.034 Upper 25% vs Lower
25%

Combined 5.064 (1.427–
17.969)

0.012 211 Protein (Lee et al., 2013)

TWIST1 1.312 (1.013–
1.699)

0.039 Upper 25% vs Lower
25%

Combined 5.745 (1.331–1.89) 0.017 86 Protein (Wang et al., 2013)

CCT6A 1.316 (1.045–
1.655)

0.019 Upper 30% vs Lower
30%

Combined 3.21 (2.85–3.65) 0.006 497 Protein (Hallal et al., 2019)

APC 1.308 (1.093–
1.566)

0.004 Upper 50% vs Lower
50%

Combined – <0.001 83 Protein (Rosati et al., 2013)

CD247 1.292 (1.022–
1.633)

0.032 Upper 30% vs Lower
30%

Combined 1.54 (1.05–2.28) 0.023 149 mRNA (Nduom et al., 2016)

CXCR3 1.272 (1.027–
1.575)

0.028 Upper 25% vs Lower
75%

Combined 1.56 (1.04–2.51) 0.03 146 Protein (Pu et al., 2011)

TCTN1 1.223 (1.011–
1.493)

0.039 Upper 30% vs Lower
70%

Combined 1.32 (1.08–1.61) 0.006 518 mRNA (Meng et al., 2014)

BICD1 0.794 (0.644–
0.978)#

0.030 Lower 25% vs Upper
75%

Combined 1.577 (1.299–1.914) <0.001 523 mRNA (Huang et al., 2017)

IFIT1 0.770 (0.609–
0.973)

0.029 Upper 30% vs Lower
30%

Combined 0.22 (0.10–0.52) 0.001 70 mRNA (Zhang et al., 2016)

BRMS1L 0.753 (0.587–
0.966)

0.026 Upper 25% vs Lower
75%

Combined – <0.05 60 mRNA (Lv et al., 2018)

IGF1R 0.745 (0.588–
0.944)

0.015 Upper 30% vs Lower
30%

Combined 1.65 (1.10–2.47) 0.016 167 Protein (Maris et al., 2015)

GANO1 0.748 (0.585–
0.957)

0.021 Upper 30% vs Lower
30%

Combined – 0.009 178 Protein (Zupancic et al., 2014)

PTEN 0.729 (0.567–
0.938)

0.014 Upper 25% vs Lower
25%

Combined 3.3 (1.6–4.3)* 0.0003 61 mRNA (Sano et al., 1999)

SEMA6A 0.694 (0.556–
0.867)

0.001 Upper 25% vs Lower
75%

Combined 1.71 (1.01–2.65)* 0.012 200 Protein (Zhao et al., 2015)

PHF3 0.683 (0.529–
0.883)

0.004 Upper 25% vs Lower
25%

Combined 0.44 (0.26–0.77) 0.0031 35 Protein (Yan et al., 2015)

PPARa 0.644 (0.503–
0.825)

<0.001 Upper 30% vs Lower
30%

Combined 1.31 (1.05–1.63)* 0.016 473 mRNA (Haynes et al., 2017)

PCBP2 0.632 (0.417–
0.957)

0.031 Upper 25% vs Lower
75%

TCGA – <0.001 130 mRNA (Luo and Zhuang, 2017)

LAPTM4B 0.626 (0.433–
0.894)

0.010 Upper 50% vs Lower
50%

TCGA – <0.001 39 Protein (Dong et al., 2017)

ANXA7 0.619 (0.475–
0.806)

<0.001 Upper 25% vs Lower
25%

Combined – <0.001 99 Protein (Hung and Howng, 2003)

PHF20 0.557 (0.319–
0.972)

0.040 Upper 50% vs Lower
50%

CGGAarray 0.5 (0.29–0.86) 0.012 62 Protein (Yan et al., 2015)

TES 0.407 (0.173–
0.958)

0.040 Upper 30% vs Lower
30%

GSE42669 – <0.05 37 Protein (Bai et al., 2014)

LGALS1 0.368 (0.157–
0.863)

0.022 Upper 25% vs Lower
25%

GSE42669 – 0.009 45 Protein (Chou et al., 2018)
Febru
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stratified group can be measured and analysis results will be
available on the output web page. The prognostic value of each
given gene is determined by HR (95% CI) and log-rank p value.

Validation of Previously Reported GBM
Prognostic Biomarkers
To determine the performance of this online tool, 53 previously
published GBM prognostic factors collected as the procedure
shown in Figure S1 and then they were evaluated in OSgbm
(Table 2, Figure 1) (Sano et al., 1999; Hung and Howng, 2003;
Heimberger et al., 2005; Aaberg-Jessen et al., 2009; Shirai et al.,
2009; Pu et al., 2011; Cui et al., 2013; De Tayrac et al., 2013; Lee et
al., 2013; Rosati et al., 2013; Wang et al., 2013; Wu et al., 2013; Bai
et al., 2014; Han et al., 2014; Meng et al., 2014; Olmez et al., 2014;
Zupancic et al., 2014; Maris et al., 2015; Moutal et al., 2015; Yan
et al., 2015; Zhao et al., 2015; Chaurasia et al., 2016; Nduom et al.,
Frontiers in Genetics | www.frontiersin.org 5129
2016; Steponaitis et al., 2016; Steponaitis et al., 2016; Zhang et al.,
2016a; Zhang et al., 2016b; Deng et al., 2017; Dong et al., 2017;
Ge et al., 2017; Han et al., 2017; Haynes et al., 2017; Huang et al.,
2017; Li et al., 2017; Luo and Zhuang, 2017; Ma et al., 2017; Mu et
al., 2017; Roy et al., 2017; Wu et al., 2017; Zhang et al., 2017; Cai
et al., 2018; Cetin et al., 2018; Cheng et al., 2018; Chou et al.,
2018; Dahlrot et al., 2018; Gonçalves et al., 2018; Hayashi et al.,
2018; Lv et al., 2018; Qian et al., 2018; Vasaikar et al., 2018; Hallal
et al., 2019). OS was selected as the survival term. Among these
prognostic genes, 51 of them showed significant prognostic
ability in a large-scale combined cohort (33 genes) or in single
cohort (18 genes), which were consistent with the prognostic
value reported in the literature. The remaining two genes (IGF1R
and PCBP2) display significant prognostic values in OSgbm, but
is contradictory to what was reported in the literatures. Both of
them were shown as favorable prognostic biomarkers in OSgbm
FIGURE 1 | Analysis of the prognostic value of MGMT in OSgbm. (A) The options of input parameters used in the prognostic analysis of MGMT in OSgbm. (B) The
output web page of prognosis analysis of MGMT using a combined cohort with pooling all datasets together in OSgbm. (C) The OSgbm output of gene MGMT in
single cohort.
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but were reported to be unfavorable GBM prognostic biomarkers
in previous reports (Table 2) (Maris et al., 2015; Luo and
Zhuang, 2017).
DISCUSSION

The development of prognostic biomarkers is important for
guiding the treatments especially for therapy-resistant GBM
patients. In our work, we developed a new web server, OSgbm,
to help researchers to evaluate the prognostic value of a given
gene for GBM patients. OSgbm is easy to use and requires no
special skills (such as bioinformatics training). With filtering by
one or several clinical confounding factors provided in OSgbm,
users can also evaluate the prognostic value of their interested
genes according to their special needs. The function and
performance tests of OSgbm web server showed that 96% (51
out of 53) of previously reported prognostic biomarkers could be
confirmed in OSgbm, which indicates that these biomarkers
validated in independent cohorts have the potency of
translating to clinical applications, and also indicates the well
performance of OSgbm. Nevertheless, there are two genes
including IGF1R and PCBP2 which showed different
prognostic values to the literatures, the discrepancy of
prognostic performance of IGF1R and PCBP2 between OSgbm
and literatures may be caused by race, different cohort size, or
analysis level and methods (mRNA vs. protein, gene microarray
vs. immunohistochemistry) (Maris et al., 2015; Luo and Zhuang,
2017). For example, the race reported in literatures for PCBP2 is
Asian, while that in validated cohort of OSgbm is mostly White.
The mRNA level was analyzed in OSgbm for IGF1R, while
IGF1R was determined by immunohistochemistry in literature.
In addition, the race analyzed in OSgbm for IGF1R is Asian
(Korea for GSE42669 and Chinese for CGGA), while the race
reported in literature for IGF1R is European. As a result, it will be
necessary to validate the prognostic performance of IGF1R and
PCBP2 in a larger independent cohort of glioblastoma.

In conclusion, OSgbm is a user-friendly web server to help
researchers and clinicians to identify suitable prognostic
biomarkers in GBM. Furthermore, we will keep update the
database of OSgbm to collect more and more GBM datasets
Frontiers in Genetics | www.frontiersin.org 6130
when new GBM dataset is available, and will implement the
multivariate cox proportional hazards model into OSgbm for the
purpose of adjustment for the confounding clinical factors, and
we also encourage users to contact us to upload their own data
into OSgbm.
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Background: Gliomas are the most common intracranial tumors and are classified as
I–IV. Among them, glioblastoma multiforme (GBM) is the most common invasive glioma
with a poor prognosis. New molecular biomarkers that can predict clinical outcomes in
GBM patients must be identified, which will help comprehend their pathogenesis and
supply personalized treatment. Our research revealed four powerful survival indicators in
GBM by reanalyzing microarray data and genetic sequencing data in public databases.
Moreover, it unraveled new potential therapeutic targets which could help improve the
survival time and quality of life of GBM patients.

Materials and Methods: To identify prognostic signatures in GBMs, we analyzed the
gene profiling data of GBM and standard brain samples from the Gene Expression
Omnibus, including four datasets and RNA sequencing data from The Cancer Genome
Atlas (TCGA) containing 152 glioblastoma tissues. We performed the differential
analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, weighted gene co-expression network analysis (WGCNA) and Cox
regression analysis.

Results: After differential analysis in GSE12657, GSE15824, GSE42656 and
GSE50161, overlapping differentially expressed genes were identified. We identified 110
up-regulated DEGs and 75 down-regulated DEGs in the GBM samples. Significantly
enriched subclasses of the GO classification of these genes included mitotic sister
chromatid separation, mitotic nuclear division and so on. In KEGG pathway analysis,
the most abundant terms were ECM-receptor interaction and protein digestion and
absorption. WGCNA analysis was performed on these 185 DEGs in 152 glioblastoma
samples obtained from TCGA, and gene co-expression networks were constructed. We
then performed a multivariate Cox analysis and established a Cox proportional hazards
regression model using the top 20 genes significantly correlated with survival time. We
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identified a four-protein prognostic signature that could divide patients into high-risk
and low-risk groups. Increased expression of SLC12A5, CCL2, IGFBP2, and PDPN
was associated with increased risk scores. Finally, the K-M curves confirmed that these
genes could be used as independent predictors of survival in patients with glioblastoma.

Conclusion: Our analytical study identified a set of potential biomarkers that could
predict survival and may contribute to successful treatment of GBM patients.

Keywords: glioblastoma, GEO, TCGA, WGCNA, prognosis biomarkers

INTRODUCTION

Gliomas are the most common intracranial tumors and are
classified as grades I–IV according to World Health Organization
(WHO) Classification of Tumors of the Central Nervous
System (CNS). Among them, glioblastoma multiforme (GBM)
is the most common primary brain tumor in adults with a
poor prognosis (Reni et al., 2017). Patients with glioblastoma
multiforme usually survive for less than 15 months after diagnosis
and treatment. Therefore, it is crucial to develop appropriate
and effective biomarkers to predict the prognosis of patients
with glioblastoma. Various tumor related biomarkers have
been found in glioblastoma, including epidermal growth factor
receptor (EGFR), mutant form of the EGFR (EGFRvIII), vascular
endothelial growth factor (VEGF), p53 and Phosphate and tensin
homolog deleted on chromosome 10 (PTEN), Retinoblastoma
(RB1) and Isocitrate dehydrogenase (IDH) (Appin and Brat,
2015). Some of these markers can predict therapeutic effect
and clinical prognosis (Garrett-Bakelman and Melnick, 2013;
Network, 2013; Westphal and Lamszus, 2015). Methylation status
of the promoter of O-6-methylguanine-DNA methyltransferase
(MGMT) is related to the sensitivity of temozolamide therapy
and the prognosis of patients (Hegi et al., 2005; Wang et al.,
2018). Loss of heterozygosity (LOH) of 1p/19q is another
prognostic indicator, representing a better prognosis (Wiestler
et al., 2014; Zhao et al., 2014). However, these markers can only
be applied to specific parts of glioblastoma patients, and their
proportion is not high. It is still necessary to identify novel
molecular biomarkers that can predict the clinical outcome of
GBM patients, which could help comprehend their pathogenesis
and supply personalized treatment.

With the rapid development of sequencing technology and
bioinformatics, they have provided new ideas for the study of
clinical problems and related pathological mechanisms of various
cancers. The Gene Expression Omnibus (GEO), The Cancer
Genome Atlas (TCGA) and other public databases are broadly
integrated collections of microarray data and gene sequencing
data, enabling investigators to perform systematic analysis,
which can help improve the diagnostic methods and survival
prognosis of cancer patients. Considering different detection
methods used by different technological platforms, as shown
in Figure 1, various data processing and analysis methods are
being explored. In this study, the RobustRankAggreg (RRA)
(Kolde et al., 2012) method was used to combine the results of
several separate studies to improve statistical power. Meanwhile,
weighted gene co-expression network analysis (WGCNA) (Fuller

et al., 2007; Langfelder and Horvath, 2008) was adopted to
construct free-scale gene co-expression networks to identify core
genes associated with clinical outcomes. These core genes may
have important clinical significance and can be used as diagnostic
and prognostic biomarkers or therapeutic targets.

MATERIALS AND METHODS

Microarray Data
Gene profiling data of GBM and normal brain samples were
downloaded from the GEO1, a public functional genomics
data repository. Four datasets were selected for bioinformatics
analysis, including GSE12657 (GPL8300, Affymetrix Human
Genome U95 Version 2 Array),GSE50161 (GPL570, Affymetrix
Human Genome U133 Plus 2.0 Array) (Griesinger et al.,
2013), GSE42656 (GPL6947, Illumina HumanHT-12 V3.0
expression chip) (Henriquez et al., 2013) and GSE15824
(GPL570, Affymetrix Human Genome U133 Plus 2.0 Array)
(Grzmil et al., 2011). All raw data were downloaded from
the GEO database.

Microarray Data Normalization and
Probe Annotation
The microarray data were quantile normalized using the
“limma” package (Ritchie et al., 2015). After the data were
normalized, the probe data in the original format were
mapped to the gene symbols based on the annotation
information. If multiple probes correspond to a gene, the
average expression value of these probes was calculated as
the expression of the gene (Xu et al., 2018). For probes
with missing values, the “impute” package2 was used to fill
in missing values.

Download and Pre-processing of
RNA-seq Data From TCGA
RNA sequencing data of human glioblastoma samples were
available from the TCGA data portal3, which contained
152 glioblastoma tissues. These data were then constructed
into a matrix of RNA sequences, where gene symbols were
rows and patient barcodes were column names. The clinical

1http://www.ncbi.nlm.nih.gov/geo
2http://bioconductor.org/packages/release/bioc/html/impute.html
3https://cancergenome.nih.gov/
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FIGURE 1 | Flow chart of data collection and analysis.

metadata of 152 samples were also downloaded and filtered for
useful information.

Differential Analysis
Difference analysis was performed on four GEO datasets using
the R package “limma” (Ritchie et al., 2015). In order to determine
the best ranking results of the differential genes, a new robust
rank aggregation method was used, which was implemented as
the R package “RobustRankAggreg” (RRA)4 (Kolde et al., 2012).

GO and KEGG Enrichment Analysis
The enrichment analysis of the KEGG pathway and
Gene Ontology terms were performed through the R
package “clusterProfiler”5 (Yu et al., 2012; Yu et al., 2015).
Enriched ontological terms and pathways (P < 0.05) were
visualized as histograms.

Weighted Gene Co-expression Network
Analysis
The R software package “WGCNA” was used for weighted
gene co-expression network analysis (Langfelder and
Horvath, 2008). It is an algorithm for constructing co-
expression networks, defined by the similarity of gene
co-expression. First, we calculated the Pearson correlation
between each pair of differential genes and obtained a
similarity matrix (sij). Second, the similarity matrix was
converted into an adjacency matrix. The topological matrix
was created using topological overlap measure (TOM)
(Yip and Horvath, 2007). Finally, we chose the Dynamic
hybrid cut method to identify co-expression gene modules

4https://CRAN.R-project.org/package=RobustRankAggreg
5https://github.com/YuLab-SMU/clusterProfiler

(Langfelder et al., 2008). Details on the algorithm were
available on request.

Cox Regression Analysis
To validate the significance of the prognostic risk genes screened
above, we used univariate Cox proportional hazards regression
to assess the effect of expression of these genes on survival
time in GBM patients. Limited to the strength of computer
calculation, we used the top 20 genes significantly related to
survival time to perform the multivariate Cox analysis. Then,
statistically significant genes were used to construct a multivariate
cox regression model. The above analysis had used the R package
“survival”6 (Therneau and Grambsch, 2000). The R package
“survivalROC”7 was used to perform the receiver operating
characteristic curve (ROC) to evaluate the accuracy of the model
(Heagerty et al., 2000).

Statistical Analysis
All statistical tests and charts were performed using RStudio.
P < 0.05 was considered statistically significant. These graphics
were then integrated and displayed using Photoshop.

RESULTS

Screening for Differentially Expressed
Genes (DEGs)
The differential analysis in GSE12657, GSE50161, GSE42656, and
GSE15824 was performed by “limma” algorithm. Subsequently,
185 overlapping differentially expressed genes were identified by

6https://CRAN.R-project.org/package=survival
7https://CRAN.R-project.org/package=survivalROC
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FIGURE 2 | Visualization and enrichment analysis of differentially expressed genes. (A) The heatmap of the top 50 DEGs. (B) GO enrichment analysis of differentially
expressed genes. BP, biological process; CC, cellular component; MF, molecular function; (C) KEGG enrichment analysis of differentially expressed genes. The size
of the dot represents the count number of genes in one KEGG term.

“RobustRankAggreg,” of which 110 were up-regulated and 75
were down-regulated in GBM samples. The top 50 DEGs were
visualized as heatmap (Figure 2A).

GO and KEGG Enrichment Analysis of
DEGs
To explore the biological relevance of DEGs, Gene Ontology
(Ashburner et al., 2000) and KEGG (Ogata et al., 2000)
pathway enrichment analyses were performed. GO and
KEGG analysis predicted that these genes were involved
in several important physiological processes. These genes
were significantly enriched in the following subclasses of
GO classification:mitotic sister chromatid segregation (GO:
0000070 P = 2.67E-10), mitotic nuclear division (GO: 0140014
1.28E – 09), sister chromatid segregation (GO: 0000819
P = 2.44E – 09), extracellular matrix component (GO:
0044420 P = 2.69E – 09),proteinaceous extracellular matrix
(GO: 0005578 P = 4.39E – 09) and extracellular matrix
structural constituent (GO: 0005201 P = 1.57E – 06). The
KEGG pathway analysis showed that the most enriched terms
were ECM-receptor interaction (hsa04512 P = 4.18E – 07),
protein digestion and absorption (hsa04974, P = 9.33E – 07)
(Figures 2B,C).

Co-expression Network Construction
and Visualization
Afterward, the WGCNA analysis was performed to construct
gene co-expression networks. We analyzed the 185 DEGs
identified above in the data of 152 glioblastoma samples from
TCGA and divided the 185 genes into three modules (Figure 3).
The blue and turquoise co-expressed modules were identified
to further analysis (Figure 4A). In order to explore whether
different modules have different biological functions, enrichment
analysis was also performed on the modules. It was found that
the biological processes of the blue module mainly focused on
cell proliferation and division. However, the turquoise module
focused on signal molecule delivery (Figure 4B). Whereafter,
the co-expression networks of the modules were exported into
Cytoscape and visualized (Shannon et al., 2003). The nodes were
defined as individual genes in the networks, and the edges were
defined as the interactions between genes (Figure 4C).

Construction of the Cox Proportional
Hazards Regression Model Based on
Hub Genes and Kaplan–Meier Analysis
The selected DEGs were further used to perform univariate
Cox analysis. We then performed a multivariate Cox
analysis using the top 20 genes significantly correlated with
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FIGURE 3 | Weighted gene co-expression network of glioblastoma. (A) Gene dendrograms obtained by average linkage hierarchical clustering of 185 genes based
on consensus Topological Overlap with the corresponding module colors indicated by the color row. (B) The eigengene networks were shown as heatmap. The
deeper the color expressed a high adjacency.

survival time, and constructed a Cox proportional hazards
regression model from 152 patients with glioblastoma. Based
on the above model, the following formula was used to
calculate the risk score for predicting survival time: risk
score = (0.2239∗expression level of CCL2) + (0.3375∗expression
level of IGFBP2) + (0.1516∗expression level of
PDPN) + (0.2276∗expression level of SLC12A5) (Figure 5).
According to the median risk score, 152 patients were divided
into high-risk (N = 76) and low-risk (N = 76) groups. The
5-year survival rate in the high-risk group was significantly
lower than low-risk group. Increased expression of SLC12A5,
CCL2, IGFBP2, and PDPN was associated with increased risk
scores (Figure 6A). The area under the ROC curve was 0.701
(Figure 6B), indicating the high predictive value. Meanwhile,
K-M curves confirmed that these three genes (CCL2, IGFBP2,
and PDPN) could be used as independent predictors of survival
in patients with glioblastoma (Figures 6C–F).

DISCUSSION

High-throughput microarray technology provides insights into
pathogenesis, molecular heterogeneity and treatment response.
The biological conclusions are inconsistent due to differences
in detection platforms and laboratory protocols and noisy
microarray data. To overcome these limitations, it is considerable
to analyze these data set separately and then summarize different
lists of results. In our research, we identified 185 DEGs for
GBM derived from independent profiling datasets by applying
“limma” algorithm and “RRA” method. This method using a
probabilistic model probabilistic model makes the algorithm
parameter free and robust to outliers, noise and errors, and
facilitates the calculation of significance probabilities for all the
elements in the final ranking. This strategy has been widely
applied to identify disease-related genes (Kolde et al., 2012; Xiao,
2020; Xiong et al., 2018).

Subsequently, the WGCNA analysis was performed on RNA-
seq data obtained from TCGA on those 185 DEGs to identify
two co-expressed modules (blue and turquoise). WGCNA is a
recently developed method to construct a weighted gene co-
expression network and a new analytic approach to move beyond
single-gene comparisons (Giulietti et al., 2018). The WGCNA
algorithm has been used to identify disease-related genes,
biological pathways and therapeutic targets for diseases such
as familial combined hyperlipidemia, Osteoporosis, Autistic,
and Alzheimer disease (Goh et al., 2007; He et al., 2011;
Tang et al., 2017). It also has been used in neuroscience
and oncology. Michael C Oldham performed the WGCNA in
normal human brains to identify co-expressed gene modules
that reflected the underlying cellular composition of brain
tissue and system-level molecules related to neuroanatomy
(Oldham et al., 2006). The large number of tumor RNA-
seq data and other high-throughput data resources such as
TCGA provide a broad opportunity for the application of
WGCNA in cancer research. To date, there have been similar
studies on gliomas. Zhou and colleagues revisited the gene
expression profile data downloaded from GEO to identify
novel genes associated with pediatric pilocytic astrocytoma
using the WGCNA analysis. They identified nine network
modules associated with pilocytic astrocytomas. The further
functional analysis revealed that these genes were involved in
the regulation of cell differentiation (Zhou and Man, 2016). S.
Horvath used WGCNA to identify several gene co-expression
modules and revealed abnormal spindle-like microcephaly-
associated protein (ASPM) that might function as a potential
molecular target in glioblastoma (Horvath et al., 2006). In
addition, Upton A and his colleagues used the WGCNA
algorithm and further identified 92 genes that were associated
with different evolutionary stages of glioblastoma (Upton and
Arvanitis, 2014). In our research, the biological processes of the
blue module mainly focused on cell proliferation and division.
While, the turquoise module focused on signal molecule delivery.
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FIGURE 4 | Gene co-expression modules associated with glioblastoma. (A) Heatmap of genes belonging to the co-expression module. Corresponding module
eigengene values (y-axis) across samples (x-axis). (B) Relevant gene ontology categories of enriched genes in the blue and turquoise modules. (C) Visualization of
the gene co-expression network of the blue and turquoise modules.
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FIGURE 5 | Cox proportional hazards regression model. Purple depths of the third column reveal the risk score of the low-risk and high-risk groups. Green depths of
the fourth column display the survival status and time of 152 glioblastomas. The lowest column shows the heatmap of the model genes.

FIGURE 6 | Kaplan–Meier curves and receiver operating characteristic (ROC). (A) Kaplan–Meier curve showed that the mortality in the high-risk group was higher
than that in the low risk group (P < 0.001). (B) Time-dependent ROC curve indicated a higher predictive value. The area under the ROC curve (AUC) was 0.701.
(C–F) Kaplan–Meier curves of the four predictive indicators.
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These results help to understand the occurrence and development
of glioblastoma to some extent, and further research is needed.

Cox proportional hazards regression has been widely used
to examine the prognostic value of candidate predictors in
human diseases (Degnim et al., 2018; Liu et al., 2018). Aoki
K used the Cox proportional hazards regression model to
study the effects of genetic variation and clinicopathological
factors on the survival of diffuse low-grade gliomas (LGGs).
The authors reported subtype-specific genetic alterations
could stratify patients with different LGG subtypes (Aoki
et al., 2018). By constructing the Cox proportional hazards
regression model, we selected an optimal four-gene model
(SLC12A5 + CCL2 + IGFBP2 + PDPN) for prognosis
prediction. Among the genes in this model, solute carrier
family 12, member 5 (SLC12A5) was considered as a neuron
marker, but it has not been reported in glioma-related studies.
Chemokine ligand 2 (CCL2) is one of several cytokine genes
and could be secreted by astrocytoma cells and myeloid
cells. Importantly, CCL2 then recruits regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) through
CCR4 and CCR2 as significant contributors to the potently
immunosuppressive glioma microenvironment (Carrillo-de
et al., 2012; Braganhol et al., 2015; Chang et al., 2016; Lu
et al., 2017). Overexpression of Insulin-like growth factor
binding protein 2 (IGFBP2) has been reported to be involved
in the progression of many types of cancer. In gliomas,
IGFBP2 is considered to be an oncogene that causes glioma
progression through integrin/ILK/NF-kB pathway (Phillips
et al., 2016). According to reports, Podoplanin (PDPN) was
a novel candidate gene that might play an essential role in
glioblastoma pathogenesis and response to treatment (Sailer
et al., 2013; Krishnan et al., 2018). However, these genes and
the related signaling pathways and mechanisms involved are still
not clear enough.

Our research has some limitations. First, in order to reduce
intensity of computer operation, we used the top 20 genes
significantly related to survival time to perform the multivariate
Cox analysis. But constructing a model with more genes might
get more meaningful results. Second, due to the lack of survival
data in the GEO datasets, we did not validate the prognostic
value of the four-gene model. Third, the expression levels of
corresponding proteins have not been verified in tissue samples.
Finally, we used the “RRA” method to identify DEGs, and in
this process, the tumor heterogeneity might be ignored. We

might lose some key genes and pathways in the development
of gliomas in the integration analysis. In summary, in this
study, we tried to apply a new procedure to screen out some
new biomarkers that can help the diagnosis and treatment of
glioblastoma. Although the methods are not new, combining
them with new process may bring new perspectives. We identified
a four-gene (SLC12A5 + CCL2 + IGFBP2 + PDPN) Cox
proportional hazards regression model for prognosis prediction.
Although the specific mechanism remains to be studied, these
genes could be considered as risk factors for GBM patients and
novel therapeutic targets.
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Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease with lesions
confined to the lungs. To identify meaningful microRNA (miRNA) and gene modules
related to the IPF progression, GSE32537 (RNA-sequencing data) and GSE32538
(miRNA-sequencing data) were downloaded and processed, and then weighted gene
co-expression network analysis (WGCNA) was applied to construct gene co-expression
networks and miRNA co-expression networks. GSE10667, GSE70866, and GSE27430
were used to make a reasonable validation for the results and evaluate the clinical
significance of the genes and the miRNAs. Six hub genes (COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-
5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-
26b-5p) were clarified and validated. Meanwhile, iteration network of hub miRNAs-hub
genes was constructed, and the emerging role of the network being involved in non-
small cell lung cancer (NSCLC) was also analyzed by several webtools. The expression
levels of hub genes were different between normal lung tissues and NSCLC tissues.
Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and three miRNAs
(hsa-miR-29c-3p, hsa-let-7c-5p, and hsa-miR-29b-3p) were related to the survival time
of lung adenocarcinoma (LUAD). The interaction network of hub miRNAs-hub genes
might provide common mechanisms involving in IPF and NSCLC. More importantly,
useful clues were provided for clinical treatment of both diseases based on novel
molecular advances.

Keywords: idiopathic pulmonary fibers, non-small cell lung cancer, weighted gene co-expression network
analysis, hub genes, hub miRNAs, interaction network

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic phlogistic interstitial lung disease with excessive
tissue scarring and loss of function, and most patients with IPF would die of organ failure eventually
(Datta et al., 2011; Lehtonen et al., 2016). To assess disease progression for the patients with
IPF, the scores of St. George’s Respiratory Questionnaire (SGRQ) are usually used, which have
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a strong correlation with lung function significantly (Swigris
et al., 2014, 2018; Lawrence et al., 2017). Besides, non-small cell
lung cancer (NSCLC), which can mainly be categorized into
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC), is commonly altering the course and mortality of IPF
(Ballester et al., 2019). IPF and NSCLC are coexistent and affect
each other, and majority of studies have shown that LUSC is
the most frequent type of NSCLC in IPF patients, while LUAD
is the second most frequent (Lee et al., 2014; Tomassetti et al.,
2015; Kato et al., 2018). Studies have shown that the risk of
NSCLC is higher in IPF patients, and it was reported that the
cumulative prevalence of NSCLC is increased from IPF diagnosis
(Kinoshita and Goto, 2019). Recent Studies indicated that the
occurrence of IPF and NSCLC share the same genetic mutations
and abnormal activation of signal pathways, suggesting potential
molecular mechanisms between IPF and NSCLC, and there
is speculation IPF could lead to cancer (Han et al., 2019;
Kinoshita and Goto, 2019). IPF, which has a poor prognosis and
a course that is unpredictable, thus needs for a more complete
understanding of its mechanisms, and further research for IPF-
NSCLC pathogenesis is also urgently needed.

MicroRNA (miRNA) is a class of gene regulator, and it
can repress the expression of target genes by binding to the
mRNAs (Taganov et al., 2007). In recent years, increasing
evidences have revealed that multiple miRNAs can play as
potential biomarkers for the prediction of IPF, including miR-
92a (Berschneider et al., 2014), miR-let-7d (Huleihel et al., 2014),
and miR-98 (Gao et al., 2014). However, studies of single miRNA
cannot meet the requirement for exploration of IPF progression.
miRNAs–mRNAs constitute networks, which are involved in
many important cellular pathways, are badly needed to clarify
exact mechanisms.

Though Fan has reported differently expressed genes and
differently expressed miRNAs between normal tissue and IPF
tissues (Fan et al., 2017), the relationships between hub genes
and important clinical traits, hub miRNAs, and important clinical
traits had not been rigorously studied. The weighted gene
co-expression network analysis (WGCNA), which provides an
effective way to explore the mechanisms behind certain traits, can
solve this problem elegantly (Langfelder and Horvath, 2008). To
fulfill these gaps, gene co-expression networks and miRNA co-
expression networks were constructed by WGCNA to identify the
gene and miRNA modules related to the scores of SGRQ in IPF,
and the relationships between genes and miRNAs were predicted
to construct miRNA–gene network, which would provide more
information about the mechanisms of IPF progression, even
IPF-NSCLC pathogenesis.

MATERIALS AND METHODS

Data Collection and Processing
A brief workflow for this study is indicated in Figure 1. Selection
criteria on the Gene Expression Omnibus (GEO) database1 are:
(1) The datasets contain miRNA expression profiles and gene

1https://www.ncbi.nlm.nih.gov/geo/

expression profiles; (2) there are normal group (normal tissue
samples) and IPF group (IPF tissue samples) in the datasets;
and (3) the number of samples in each group is more than
10. miRNA expression profiles (GSE32538 and GSE27430) and
gene expression profiles (GSE32537, GSE10667, and GSE70866)
related to IPF were downloaded from GEO database. All datasets
were normalized with quantile normalization. The data quality
was evaluated, and boxplot was used to compare before and
after being standardized. The details of these datasets are
listed in Supplementary Table S1. Among them, GSE32537
and GSE32538 were used to identify hub genes and hub
miRNAs by WGCNA separately. After doing analysis of variance
for GSE32537, we chose the top 25% most variant genes
(2987 genes) for constructing networks, while we did not to
do pretreatment for GSE32538 due to the small number of
miRNAs (1801 miRNAs).

Construction of Co-expression Networks
Weighted gene co-expression network analysis was used
to construct gene co-expression networks and miRNA co-
expression networks (Langfelder and Horvath, 2008). The
processes for constructing gene co-expression networks and
miRNA co-expression networks were similar. So, we took
the construction of weighted gene co-expression networks as
an example. First, a matrix of similarity was constructed by
calculating the correlations of the processed genes. Second, an
appropriate power of β was chosen as the soft-thresholding
parameter to construct a scale-free network. Third, the
adjacency was transformed into a topological overlap matrix
(TOM) by using TOM similarity, and the corresponding
dissimilarity (1-TOM) was figured and the dissimilarity of
module eigengenes (MEs) was estimated. Fourth, the genes with
similar expression levels were categorized into the same module
by DynamicTreeCut algorithm.

Identification of Clinically Significant
Modules
The clinical trait that we concerned was the scores of SGRQ in IPF
patients and key modules needed to be found in two networks
separately. Above all, we worked out the relationship between
clinical phenotype and MEs. MEs were deemed to represent the
expression levels of all genes or miRNAs in the related module. In
addition, mediated p-value of each gene or miRNA was calculated
and then we worked out gene significance or miRNA significance
(GS = lg P). Finally, we selected the most clinically significant
module according to module significance (MS), which was the
average GS of genes or miRNAs involved in the related module.

Functional and Pathway Enrichment
Analysis
The Database for Annotation, Visualization and Integrate
Discovery5 (DAVID)2 is a database for several kinds of functional
annotation (Huang et al., 2009). With the help of DAVID, we
identified biological meaning of the genes in a given module

2https://david.ncifcrf.gov/

Frontiers in Genetics | www.frontiersin.org 2 April 2020 | Volume 11 | Article 302143

https://www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00302 March 31, 2020 Time: 18:9 # 3

Yu et al. MicroRNAs-Genes Network in IPF-NSCLC

FIGURE 1 | Flow chart of data preparation, processing, analysis, and validation.

according to false discovery rate (FDR) < 0.05. GO includes three
terms: biological process (BP), cellular component (CC), and
molecular function (MF). Besides, GO (BP, CC, MF) and KEGG
enrichment analyses for the miRNAs in the selected module were
conducted using mirPath v.3, an online tool for miRNA pathway
analysis (Vlachos et al., 2015).

Identification and Validation of Hub
Genes and Hub miRNAs in IPF
The connectivity of module can be measured by absolute value
of the Pearson’s correlation. Besides, the relationship between
clinical trait and genes can be measured by absolute value of
the Pearson’s correlation. The genes that have high connectivity
with module and selected phenotype were selected as candidate
genes in hub module (cor.geneModuleMembership > 0.8
and cor.geneTraitSignificance > 0.2). Then the protein/gene
interactions for candidate genes were analyzed using STRING
(Szklarczyk et al., 2019) and the genes connected with more
than five nodes in PPI network were selected as hub genes
for further study. As for selecting hub miRNAs, two web

tools, microT-CDS3 and TargetScan4, were employed to predict
candidate miRNAs for hub genes (Paraskevopoulou et al., 2013;
Agarwal et al., 2015), and the score of microT-CDS > 0.9
and context + + score of TargetScan > 0.4 were selected as
threshold. Then the common candidate miRNAs in hub module
and prediction by microT-CDS and TargetScan were defined as
real hub miRNAs. To verify our results, GSE10667 (including
15 normal lung tissues and 31 IPF tissues) and GSE70866
(including 20 normal lung tissues and 110 IPF tissues), were
used to validate the different expression levels of hub genes
between normal tissue and IPF tissues with two-tailed student’s
t-tests, separately.

Gene Set Enrichment Analysis (GSEA)
and Guilt of Association for Hub Genes
Gene set enrichment analysis (GSEA) analysis was performed for
hub genes in GSE32537 (Subramanian et al., 2005). In GSE32537,
according to the median expression of this hub gene, 119 cases

3http://www.microrna.gr/microT-CDS/
4http://www.targetscan.org/
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were classified into high expression group and low expression
group (high group, n = 60; low group, n = 59). | ES| > 0.5,
nominal P < 0.05, and FDR ≥ 25% were chosen as the cut-off
criteria. Besides, Spearman correlation analysis was performed to
explore pair-wise gene expression correlation for hub genes in
GSE10667. We calculated correlation coefficient absolute values,
and the top 300 genes of each hub gene were selected for
functional enrichment analysis. Based on the results, the potential
functions of each hub gene were predicted, and the method thus
bore the name of “guilt of association.”

Construction of Hub miRNA and Hub
Gene Interaction Network
According to the score of microT-CDS and the context+ + score
of TargetScan, miRNA–gene interaction network was constructed
in Cytoscape (Shannon et al., 2003). And the interaction between
genes was also demonstrated from STRING. Furthermore, text
mining of hub genes and hub miRNAs was performed using
GenCLip 2.05. GenCLip 2.0 is an online text-mining server, which
can provide the analysis of gene and miRNA functions with free
terms generated by literature mining (Wang et al., 2014).

Analysis of the Role of the Interaction
Network Involved in IPF and NSCLC
To further understand the role of hub genes and hub
miRNAs in clinical practice, we selected two data sets
(GSE70866 and GSE27430) with clearer clinical information
to do clinicopathological correlation analysis separately. From
GSE70866, 110 samples with IPF were used to determine
the association between age and hub genes expression levels,
between gender and hub genes expression levels by Pearson
Chi-square test. From GSE27430, 13 samples with IPF were
used to determine the association between age and hub miRNAs
expression levels, gender, and hub miRNAs expression levels
with Fisher test due to small sample size. P-value < 0.05 was
considered as statistical significance. In addition, to explore the
role of the interaction network in NSCLC (mainly including
LUAD and LUSC), UALCAN6 was used to explore the different
expression levels of hub genes between normal tissues and cancer
tissues (including LUAD and LUSC), separately. UALCAN is
a useful online tool for analyzing cancer transcriptome data,
which is based on public cancer transcriptome data (TCGA and
MET500 transcriptome sequencing) (Chandrashekar et al., 2017).
Moreover, we evaluate the relationship between the expression
levels of hub genes and the prognosis of LUAD and LUSC, the
expression levels of hub miRNAs and the prognosis of LUAD and
LUSC. Kaplan Meier Plotter7, including the gene expression data
and survival information of GEO and TCGA repositories, was
used to explore the relationship between the expression levels of
hub genes and the survival time of LUAD and LUSC (Gyoerffy
et al., 2014). Besides, OncoLnc8, containing survival data from 21
cancer studies performed by TCGA and giving users the ability

5http://ci.smu.edu.cn/
6http://ualcan.path.uab.edu/
7http://kmplot.com/analysis/
8http://www.oncolnc.org/

to create publication-quality Kaplan–Meier plots, was used to
explore the relationship between the expression levels of hub
miRNAs and the survival time of LUAD and LUSC (Anaya, 2016).

RESULTS

Weighted Co-expression Networks
Construction and Key Modules
Identification
It is found that the median of miRNA/gene expression value
of each sample is approximately equal (Supplementary Figure
S1), and the results indicated that the processed datasets can be
used for further analysis. With the method of average linkage
hierarchical clustering, the samples of both data sets (GSE32537
and GSE32538) are well clustered separately. The clustering
dendrograms of the genes of GSE32537 are generated in
Figure 2A, while miRNAs of GSE32538 are shown in Figure 2B.
By “WGCNA” package in R, the genes and the miRNAs which
had similar expression levels were divided into modules to
construct co-expression networks. Power of β = 3 (scale free
R2 = 0.92) was selected as the soft-thresholding parameter for
gene co-expression networks (Supplementary Figure S2), and
power of β = 5 (scale free R2 = 0.89) was selected for miRNA
co-expression networks (Supplementary Figure S3). In gene
co-expression networks, 11 modules were identified and blue
module (GS = 0.38, p-value = 6.8e-282) showed the highest
correlation with the scores of SGRQ. In miRNA co-expression
networks, five modules were identified and turquoise module
(GS = 0.20, p-value = 7.9e-58) showed the highest correlation
with the scores of SGRQ (Figure 3). There are 285 genes in
blue module and 163 miRNAs in turquoise module. Blue module
(G blue) and turquoise module (M turquoise) were picked for
following analysis as the clinically significant module.

Pathway Enrichment Analysis of Genes
and miRNAs in Hub Modules
To explore the biological functions of the G blue, the genes
were categorized into BP, CC, and MF. The outcome of GO
and KEGG enrichment of the genes in blue module was shown
in Figure 4A. The genes in BP were generally enriched in cell
adhesion, extracellular matrix organization, signal transduction,
positive regulation of cell proliferation, and negative regulation of
cell proliferation; the genes in CC were mainly focused on plasma
membrane, extracellular region, extracellular space, extracellular
exosome, and extracellular matrix; the genes in MF were
significantly focused on calcium ion binding, heparin binding,
integrin binding, extracellular matrix structural constituent,
and growth factor activity. The top five significantly enriched
pathways in blue module were PI3K-Akt signaling pathway,
focal adhesion, pathways in cancer, ECM–receptor interaction,
and protein digestion and absorption. Top enriched GO terms
for the miRNAs in turquoise module were: BP, transport,
response to stress, cell death, and cell proliferation in BP;
organelle, protein complex, cytosol, CC, and focal adhesion
in CC; ion binding, MF, enzyme binding, RNA binding, and
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FIGURE 2 | Clustering dendrograms. (A) Clustering dendrograms of genes based on a dissimilarity measure (1-TOM). (B) Clustering dendrograms of miRNAs based
on a dissimilarity measure (1-TOM).

protein binding transcription factor activity in MF. The pathway
analysis was also performed for the miRNAs in turquoise
module. The top five significantly enriched pathways were
proteoglycans in cancer, protein processing in endoplasmic
reticulum, viral carcinogenesis, pathways in cancer, and focal
adhesion (Figure 4B).

Identification and Validation of Hub
Genes and miRNAs in IPF
Under the threshold of | MM| > 0.8 and | GS| > 0.2,
58 genes in blue module were considered as candidate genes.
Then the relationship between candidate genes was identified
from STRING (Supplementary Figure S4), and we calculated
the connectivity degree of each node in PPI. The nodes
with degrees =5 were COL3A1, COL1A2, OGN, COL15A1,
ASPN, and MXRA5, which were considered as real hub
gens because it interacted with more proteins. Based on the
prediction of microT-CDS and TargetScan, seven hub miRNAs
(hsa-let-7b-5p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-29c-
3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p) were
identified in turquoise module. In the blue module, COL3A1
and COL1A2 were the most central genes with the degrees
of 13, and they are involved in the process of other genes
regulating cell metabolism. As for the miRNAs, hsa-let-7b-
5p was considered as key miRNA with the highest MM
(MM = 0.915). The corresponding MM and GS of hub genes
and hub miRNAs are shown in Table 1. From the results of
two-tailed student’s t-tests for GSE10667 and GSE70866, the
expression levels of all hub genes (COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5) were significantly higher in IPF
tissues (Figure 5). And the ROC curve analysis for GSE10067
indicated that the hub genes exhibited excellent diagnostic
efficiency for normal tissues and IPF tissues (Supplementary
Figure S5).

GSEA and Guilt of Association
Gene set enrichment analysis was performed to identify
the lurking mechanisms related to IPF progression of six
hub genes. As shown in Supplementary Table S2, IPF
samples in COL3A1 high expression group were most
significantly enriched in cellular adhesion molecules; IPF
samples in COL1A2, OGN, COL15A1, ASPN, and MXRA5
high expression groups were most significantly enriched in
ECM receptor interaction (Supplementary Tables S2–S7).
Based on the analysis of guilt of association, we identified that
the hub genes were essential for extracellular environment
and ossification, and they mainly played important roles
in extracellular structure organization, extracellular matrix

TABLE 1 | The hub genes and hub miRNAs as well as the corresponding MM
and GS.

Symbol Degrees in PPI MM GS

Hub COL3A1 13 0.812933 0.582487

genes COL1A2 13 0.821623 0.555745

OGN 6 0.862299 0.475489

COL15A1 5 0.860161 0.600621

ASPN 5 0.854841 0.642866

MXRA5 5 0.805921 0.592231

Hub hsa-let-7b-5p − 0.915297 −0.35161

miRNAs hsa-miR-26a-5p − 0.825955 −0.44743

hsa-miR-25-3p − 0.793815 −0.31258

hsa-miR-29c-3p − 0.676672 −0.25468

hsa-let-7c-5p − 0.660136 −0.1454

hsa-miR-29b-3p − 0.622602 −0.19913

hsa-miR-26b-5p 0.577243 −0.13157

miRNAs: microRNAs. PPI: protein/gene interactions. MM:
cor.geneModuleMembership. GS: cor.geneTraitSignificance.
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FIGURE 3 | Identification of modules associated with the clinical traits of IPF. (A) Heatmap of the correlation between co-expressed gene module eigengenes and
clinical traits of IPF. (B) Heatmap of the correlation between co-expressed miRNA module eigengenes and clinical traits of IPF. (C) Distribution of average gene
significance and errors in the modules associated with the scores of SGRQ. (D) Distribution of average miRNA significance and errors in the modules associated
with the scores of SGRQ in IPF.

organization, and skeletal system development (Supplementary
Figure S6).

Construction of Hub miRNA and Hub
Gene Interaction Network
The hub genes and hub miRNAs interactions were predicted
by microT-CDS and Targetscan (Table 2), and the hub genes

and hub miRNAs interaction network was shown in Figure 6A.
Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and
MXRA5) and seven miRNAs (hsa-let-7b-5p, hsa-miR-26a-5p,
hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p,
and hsa-miR-26b-5p) were involved in this interaction network.
Besides, the occurrence frequency of terms of corresponding
literature was demonstrated from GenCLip 2.0, including
extracellular matrix, transforming growth factor, squamous
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FIGURE 4 | Bioinformatics analysis of the genes in blue module and the miRNAs in turquoise module. (A) GO analysis and KEGG pathway enrichment of the genes
in blue module. (B) GO analysis and KEGG pathway enrichment of the miRNAs in turquoise module.
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FIGURE 5 | Hub gene expression levels between normal tissue and IPF tissue (based on GSE10667 and GSE70866). The gene expression levels of COL3A1,
COL1A2, OGN, COL15A1, ASPN, and MXRA5 in GSE10667 (A). The gene expression levels of COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5 in
GSE70866 (B).
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TABLE 2 | The prediction of the interaction of hub genes and hub miRNAs by
microT-CDS and Targetscan.

miRNA Target Score of Context + + score
gene microT-CDS of TargetScan

hsa-let-7b-5p COL3A1 0.99 −0.47

hsa-let-7b-5p COL1A2 0.99 −0.5

hsa-miR-26a-5p ASPN 0.99 −0.41

hsa-miR-25-3p ASPN 0.93 −0.44

hsa-miR-29c-3p COL3A1 0.99 −0.87

hsa-miR-29c-3p COL1A2 0.99 −0.61

hsa-miR-29c-3p COL15A1 0.99 −0.5

hsa-let-7c-5p COL3A1 0.99 −0.47

hsa-let-7c-5p COL1A2 0.99 −0.5

hsa-miR-29b-3p COL3A1 0.99 −0.87

hsa-miR-29b-3p COL1A2 0.99 −0.61

hsa-miR-29b-3p COL15A1 0.99 −0.52

hsa-miR-26b-5p ASPN 0.98 −0.4

miRNA: microRNA.

cell carcinoma, mesenchymal stem cell, fibrillar collagen,
procollagen, and osteoblast differentiation (Figure 6B).

Analysis of Hub Genes–Hub miRNAs
Interaction Network in IPF and NSCLC
Based on the results of clinicopathological correlation analysis,
there were no statistical differences in age distribution and
gender distribution between these high-expression and low-
expression groups of hub genes. And we also did not find any
substantial differences in age distribution and gender distribution
between these high-expression and low-expression groups of hub
miRNAs. More details are listed in Supplementary Table S8.
Furthermore, some databases were used to explore the role of
the interaction network in NSCLC (LUAD and LUSC). The levels
of the six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN,
and MXRA5) expression were significantly different between
normal samples and LUAD samples from UALCAN (Figure 7A).
COL3A1, COL1A2, COL15A1, ASPN, and MXRA5 were higher
expressed in tumor samples, while OGN was lower expressed.
In LUSC tissues, the levels of COL3A1, COL1A2, OGN, ASPN,
and MXRA5 expressions were significantly different from normal
lung tissues, and there is no difference of COL15A1 between
normal tissues and LUSC tissues (Figure 7B). For the relationship
between hub genes expression levels and the prognosis of
NSCLC from Kaplan Meier Plotter, COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5 were associated with the overall
survival of LUAD (Figure 8A), but the expression levels of
these genes did not affect overall survival of LUSC patients.
Besides, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p were
identified to be related to the overall survival of LUAD from
OncoLnc (Figure 8B).

DISSCUSION

Idiopathic pulmonary fibrosis is a medically incurable disease
with complicated clinical manifestations. Nowadays, only two

medicines, nintedanib and pirfenidone, are approved for the
treatment to slow down the progression of IPF (Lehtonen et al.,
2016; Maher et al., 2017; Drakopanagiotakis et al., 2018). In order
to identify a meaningful biomarker, a part of previous studies
had focused too much on single miRNA or gene (Mizuno et al.,
2017), and this cannot meet the requirement for exploration
of molecular mechanisms in IPF progression. Though another
part of previous studies had reported differently expressed genes
and differently expressed miRNAs between normal tissue and
IPF tissues to further explore the molecular mechanisms, the
relationships between hubs and important clinical traits had not
been rigorously studied, which would make clinically significance
few. Besides, there are some previous studies focusing preclinical
models by aberrant gene expression; though these modules are
useful for clinical application, it did not make much sense in
exploration of pathogenesis in IPF and NSCLC. It is a pity that
the research on molecular mechanisms of IPF affecting NSCLC
occurrence and prognosis was little, especially in bioinformatics.
To fulfill these gaps, the interaction network of hub miRNAs-
hub genes was studied on this research, and WGCNA was used
to identify IPF gene and miRNA modules for the first time.
More importantly, it was the first time to explore the common
mechanisms and molecular targets between IPF and NSCLC in
bioinformatics, which would provide more information about
that IPF causing NSCLC and poor NSCLC prognosis, and this
more attention is to be called on IPF-NSCLC patients. Two
modules were found, including one gene module (blue module)
and one miRNA module (turquoise module), were significantly
related to the scores of SGRQ. We identified six hub genes and
seven hub miRNAs, and the hub miRNAs–hub genes interaction
network was constructed. In GenCLip 2.0, the BPs (extracellular
matrix, transforming growth factor, squamous cell carcinoma,
mesenchymal stem cell, etc.) were considered to be significantly
related to IPF and NSCLC.

Focal adhesion was considered as a key pathway shared by
blue module and turquoise module, and many gens/proteins
have been considered to be involved in the progression of
IPF through disordering focal adhesion (Gimenez et al., 2017;
Kathiriya et al., 2017; Molina-Molina et al., 2018). For example,
it has been reported that decreased expression of collagen VI, an
important kind of protein of ECM, would upregulate the focal
adhesion (Knueppel et al., 2018). For example, COL1A2, which
is a subtype of Type I collagen (Fang et al., 2019), is implicated
in the induction of epithelial–mesenchymal transition in many
fibroblasts (Cheng et al., 2017). Type I collagen could induce
the disruption of E−cadherin33 and SMADS to downregulate
E−cadherin (Koenig et al., 2006). Of course, there are still
potential pathways worth further study about hub genes in IPF.
In present study, the hub miRNAs, except hsa-miR-25-3p (Min
et al., 2016), were identified to be related to the progression of IPF
for the first time, which would be novel diagnostic biomarkers of
patients with IPF.

After analyzing and comparing the results of GSEA analysis
and guilt of association, we found that ECM–receptor interaction
is an important pathway shared by hub genes. Pulmonary
extracellular matrix, which is a complex system composed
of proteoglycans and glycosaminoglycans, is of importance in
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FIGURE 6 | The interaction network of hub miRNAs and hub genes. (A) The network of regulation of hub miRNAs and hub genes in IPF. (B) Text mining of the hub
genes and hub miRNAs from GenCLip 2.0 software.

tissue’s homeostasis and repair. Previous studies have revealed
that ECM protein expression plays an important role in the
fibrotic process in IPF lungs (Vicens-Zygmunt et al., 2015).
Excessive accumulation of ECM in the alveolar parenchyma and
progressive scarring of lung tissue are major characteristics of IPF
(Knudsen et al., 2017), and some studies have used this protein
expression level as a criterion for evaluating treatment outcomes
(Molina-Molina et al., 2018; Mullenbrock et al., 2018). Altogether,
migration is strongly influenced by topology and composition of
the ECM including integrin ligands, and the hub gens and hub
miRNAs might play an important role in IPF progression with
the change of ECM.

Evidence suggests that patients with NSCLC who develop IPF
have worse outcomes than patients without IPF (Han et al., 2019).
Clinical examples with both diseases are numerous, and they
are difficult to treat. In the treatment of patients suffered IPF
and NSCLC, physicians are reluctant to treat NSCLC because

of the poor prognosis of IPF (Kinoshita and Goto, 2019).
Therefore, the interaction network was analyzed between these
two types of diseases, which would provide more information
about that IPF causing NSCLC and poor NSCLC prognosis.
Though cancer was not taken as the main research topic at
first, with analysis continuing, we identified hub miRNAs and
hub genes may participate in the progression of NSCLC. And
the hub miRNAs–hub genes interaction network would help
us understand the pathogenesis of IPF-NSCLC. For example,
COL3A1 is highly expressed in both IPF and NSCLC tissues, so
it is speculated that COL3A1 is a key molecule of cross-linking
between IPF and NSCLC, and even a signal of IPF leading to
NSCLC. MXRA5 is upregulated in IPF, and it is found that the
higher the expression, the worse the prognosis of NSCLC. We
speculated that MXRA5 is an important intermediate molecule of
IPF leading to poor prognosis of NSCLC. Of course, these all need
further experimental verification later, and some experiments
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FIGURE 7 | Gene expression levels between normal lung and tumor samples (based on TCGA data in UALCAN). (A) The gene expression levels of COL3A1,
COL1A2, OGN, COL15A1, ASPN, and MXRA5 between normal lung tissues and LUAD tissues. (B) The gene expression levels of COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5 between normal lung tissues and LUSC tissues.
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FIGURE 8 | Survival analysis of the association between the expression levels
of hub genes and hub miRNAs in LUAD. COL3A1, COL1A2, OGN, COL15A1,
ASPN, and MXRA5 were identified to be related to the overall survival of LUAD
from Kaplan Meier Plotter (A). hsa-miR-29c-3p, hsa-let-7c-5p, and
hsa-miR-29b-3p were identified to be related to the overall survival of LUAD
from OncoLnc (B).

need to be done to confirm the hub genes. We will further explore
the hubs and its role in the progression of IPF-NSCLC by using
more in-depth bioinformatic analyses and experimental methods
in the future., In this study, OGN was identified to be related to
the progression of IPF for the first time. Most interestingly, we

found that OGN is highly expressed in IPF, but is lowly expressed
in cancer tissues. And low expression levels of OGN would
have an important impact on the prognosis of LUAD (Figure
8). Different signal pathways should be activated to regulate
or influence OGN. Although many studies identified that the
expression levels of OGN would alter in cancers, such as gastric
cancer (Lee et al., 2003), colorectal cancer (Hu et al., 2018), and
invasive ductal breast carcinoma (Roewer et al., 2011), functional
data about how OGN participating in cancer pathology are not
enough, and further studies are needed.

CONCLUSION

It was the first time to construct miRNA–gene interaction
network to explore the development of IPF and common
pathways between IPF and NSCLC by WGCNA. We identified
six hub genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and
MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-
5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-
3p, and hsa-miR-26b-5p), which might be diagnostic biomarkers
for IPF. In the future, the pathogenic overlap of IPF and NSCLC
may help us to clarify the common molecular mechanisms
between both diseases, and may provide a potential treatment
strategy for both diseases.
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FIGURE S1 | Standardization of gene expression. The data quality was evaluated,
and boxplot was used to compare before and after being standardized.
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FIGURE S2 | Determination of soft-thresholding power in the weighted gene
co-expression network analysis (WGCNA). (a) Analysis of the scale-free fit index
for various soft-thresholding powers. (b) Analysis of the mean connectivity for
various soft-thresholding powers. (c) Histogram of connectivity distribution when
β = 3. (d) Checking the scale free topology when β = 3.

FIGURE S3 | Determination of soft-thresholding power in the weighted miRNA
co-expression network analysis. (a) Analysis of the scale-free fit index for various
soft-thresholding powers. (b) Analysis of the mean connectivity for various
soft-thresholding powers. (c) Histogram of connectivity distribution when β = 5.
(d) Checking the scale free topology when β = 5.

FIGURE S4 | Protein–protein interaction network of 58 candidate genes acquired
from STRING 9.1.

FIGURE S5 | ROC curve of COL3A1, COL1A2, OGN, COL15A1, ASPN, and
MXRA5 in GSE10067.

FIGURE S6 | Guilt of association for hub genes (COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5).

TABLE S1 | Gene and miRNA expression microarray datasets related to IPF.

TABLE S2 | Gene set enriched in lung samples with COL3A1 high expression.

TABLE S3 | Gene set enriched in lung samples with COL1A2 high expression.

TABLE S4 | Gene set enriched in lung samples with OGN high expression.

TABLE S5 | Gene set enriched in lung samples with COL15A1 high expression.

TABLE S6 | Gene set enriched in lung samples with ASPN high expression.

TABLE S7 | Gene set enriched in lung samples with MXRA5 high expression.

TABLE S8 | Clinicopathological correlation analysis for hub genes and
hub miRNAs in IPF.
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The identification of predictive biomarkers and novel targets to optimize immunotherapy
strategies for epithelial ovarian cancer (EOC) is urgently needed. CD38 is a
multifunctional glycoprotein that acts as an ectoenzyme and immune receptor. However,
the underlying immunological mechanisms and prognostic value of CD38 in EOC remain
unclear. CD38 gene expression in EOC was evaluated by using Gene Expression
Profiling Interactive Analysis (GEPIA) and TISIDB database. The prognostic value was
calculated using GEPIA and Kaplan–Meier plotter. Gene set enrichment analysis was
conducted to study the roles of CD38 in the EOC microenvironment. Furthermore, the
relationship between CD38 expression level and immune cell infiltration was analyzed by
the Tumor Immune Estimation Resource and TISIDB. The GEPIA and TISIDB databases
showed that CD38 expression in EOC was higher than that in normal tissue and
was highest in the immunoreactive subtype among the four molecular types. A total
of 424 cases from GEPIA revealed that high levels of CD38 were associated with
longer disease-free survival [hazard ratio (HR) = 0.66, P = 0.00089] and increased
overall survival rate (HR = 0.67, P = 0.0016). Kaplan–Meier plotter also confirmed
the prognostic value of CD38 in EOC. Data from The Cancer Genome Atlas database
demonstrated that gene signatures in many categories, such as immune response and
adaptive immune response, were enriched in EOC samples with high CD38 expression.
In addition, CD38 was positively correlated with immune cell infiltration, especially
infiltration of activated CD8+ T cells, CD4+ T cells, and B cells. CD38 is positively
correlated with prognosis and immune cell infiltration in the EOC microenvironment and
contributes to the regulation of antitumor immunity. CD38 could be used as a prognostic
biomarker and potential immunotherapy target.

Keywords: CD38, ovarian cancer, prognosis, tumor-infiltrating lymphocytes, antitumor immunity

INTRODUCTION

Epithelial ovarian cancer (EOC) is the seventh most common cancer and seriously threatens
female health worldwide (Siegel et al., 2019). There are no typical early symptoms and feasible
screening options, and the majority of ovarian cancer patients present with late or advanced disease
(stages III and IV) (Bowtell et al., 2015; Menon et al., 2018). The standard curative treatments
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involve cytoreductive surgery followed by platinum-based
chemotherapy. Despite improvements in therapy, relapse is
inevitable, and the 5-year overall survival (OS) for EOC is
approximately only 45% (Lheureux et al., 2019b). Currently,
multitarget immunotherapy has become one of the most
promising approaches in cancer therapy. In particular, immune
checkpoint blockade, with targets such as PD-1, PD-L1,
and CTLA-4, has emerged as a novel therapeutic method
with noteworthy results in malignant melanoma and lung
cancer (Ribas and Wolchok, 2018; Scott et al., 2018). In
general, immunotherapy is less efficient in patients with EOC
and lacks biomarkers for selecting the optimal population
for immunotherapy (Odunsi, 2017; Lheureux et al., 2019a).
Therefore, coping with the challenges and exploiting more
effective immunotherapeutic approaches depend on a better
understanding of the tumor–immune interactions in the tumor
microenvironment (TME) (Mandal and Chan, 2016).

CD38 is a 45-kDa type II transmembrane glycoprotein
with ectoenzymatic functions, defined as an ectoenzyme,
which participates in the catabolism of nicotinamide adenine
dinucleotide (NAD+) to ADP-ribose and cyclic ADP-ribose
(Niels et al., 2018; Hogan et al., 2019), thus playing an
important role in adenosinergic pathways and mediating NAD+
homeostasis. In addition, CD38 has also been described as a
surface differentiation marker for lymphocytes, including plasma
cells, myeloid cells, and other lymphoid cells (Hogan et al.,
2019; Joosse et al., 2019). Because CD38 is uniformly and highly
expressed on myeloma cells, a novel therapeutic strategy has
emerged that involves targeting CD38 in multiple myeloma;
basic research and clinical trials have demonstrated that anti-
CD38 mAbs (such as daratumumab) have high efficacy and
favorable safety as immunotherapies to increase survival for
multiple myeloma patients (Dimopoulos et al., 2016; Horenstein
et al., 2019). Recently, studies have also demonstrated that CD38
is involved in CD8+ T-cell suppression via adenosine receptor
signaling in the TME, which can cause resistance to PD-1/PD-L1
blockade therapy (Chen et al., 2018). These results showed that
CD38 plays multifaceted functional roles in lymphocytes and in
the TME. However, the underlying immunological mechanisms
and prognostic value of CD38 in the microenvironment of EOC
are still unclear.

Here, we used online databases, such as Gene Expression
Profiling Interactive Analysis (GEPIA), Oncomine, TISIDB, and
Kaplan–Meier plotter (Supplementary Table S1), to validate
that CD38 was highly expressed in EOC compared with normal
ovarian tissue and positively correlated with good prognosis.
CD38 was correlated with tumor-infiltrating lymphocytes (TILs),
especially with activated CD8+ T cells. These findings uncover
the important immunoregulatory role of CD38 in the EOC
microenvironment and provide a potential target for ovarian
cancer immunotherapy.

MATERIALS AND METHODS

GEPIA Database Analysis
Gene Expression Profiling Interactive Analysis1 is a
comprehensive web-based analysis tool that includes tumor and

1http://gepia.cancer-pku.cn/index.html

normal sample RNA sequencing data from The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression projects and
provides analysis of the interactive relationship, functions,
and prognostic value of gene expression in cancer and normal
tissues (Tang et al., 2017). The mRNA expression level and
prognostic predictive significance of the CD38 gene in EOC were
determined in GEPIA. Moreover, gene expression correlation
analysis was also conducted by using the GEPIA database.

Oncomine Database Analysis
Oncomine2 is a gene chip–based online database (Rhodes
et al., 2004) that was employed to further verify the expression
level of CD38 in EOC.

TISIDB Database Analysis
TISIDB3 is an integrated repository web portal for analysis
of interactions between tumors and the immune system (Ru
et al., 2019). It integrates multiple types of data resources in
oncoimmunology, including literature mining results from the
PubMed database and TCGA. The TISIDB was used to assess the
role of CD38 in tumor–immune interplay.

Kaplan–Meier Plotter Database Analysis
Kaplan–Meier plotter4 is an online database integrating gene
expression data and clinical information (Gyorffy et al., 2012).
To evaluate the prognostic value of CD38 mRNA expression
in ovarian cancer, CD38 was entered into this database to
obtain Kaplan–Meier survival plots. The hazard ratio (HR) with
95% confidence intervals and log-rank P values were calculated
on the web page.

The Tumor Immune Estimation Resource
Database Analysis
The Tumor Immune Estimation Resource (TIMER)5 is a
user-friendly web interface for investigating the molecular
characterization of tumor–immune interactions (Li et al.,
2017). TIMER adopts a deconvolution of previously published
computational approaches for estimating the abundance of TILs
from gene expression profiles. Approximately six subsets of TILs
were pre-calculated in 32 cancer types and data from the TCGA
database. The correlations between CD38 mRNA expression
and gene markers of TILs were analyzed via correlation
modules in TIMER.

TCGA Data Downloading
The level 3 gene expression profile for EOC using Affymetrix
HT Human Genome U133a (version September 8, 2017)
was downloaded from TCGA datasets6. Meanwhile,
clinicopathological and survival information were also obtained
from the TCGA data portal. The ESTIMATE algorithm
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) was used to calculate immune

2http://www.oncomine.org
3http://cis.hku.hk/TISIDB
4www.kmplot.com
5https://cistrome.shinyapps.io/timer
6https://tcga-data.nci.nih.gov/tcga/
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scores and stromal scores of ovarian cancer by applying the
downloaded data. The ESTIMATE algorithm was designed
by Yoshihara et al. This algorithm can analyze specific gene
expression signatures of immune and stromal cells to calculate
immune and stromal scores (Yoshihara et al., 2013) and finally
predict the non-tumor cell infiltration level.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed to identify
significantly enriched groups of genes (Subramanian et al., 2005).
In this study, GSEA software7 was applied to analyze biological
pathway divergences between high and low CD38 mRNA in the
EOC expression profiles of TCGA data. P < 0.05 and FDR (false
discovery rate) q < 0.05 were considered threshold values to
estimate statistical significance.

Calculation of Immune and Stromal
Scores
The Cancer Genome Atlas level 3 gene expression data and
clinical information were acquired from the Genomic Data
Commons (GDC, available at https://portal.gdc.cancer.gov/) data
portal on May 10, 2019. Immune and stromal scores were
calculated by the ESTIMATE algorithm of the downloaded data
for each ovarian cancer sample (Yoshihara et al., 2013). The cutoff
values were defined with median scores, and based on the cutoff
value, samples were divided into low and high immune/stromal
score groups. The survival analysis was assessed by the log-rank
test. P < 0.05 was considered statistically significant.

Statistical Analysis
Survival analysis of CD38 in EOC was performed by using
Kaplan–Meier plotter and GEPIA, and these two databases used
the log-rank test for hypothesis evaluation. The Cox proportional
hazard ratio and the 95% confidence interval are displayed in
the survival curves. The thresholds for high-/low-expression-
level cohorts were defined as the median CD38 mRNA level. The
correlation of CD38 mRNA expression was assessed by using
TIMER and TISIDB. Spearman correlation was calculated, and
P < 0.05 indicated statistically significant differences.

RESULTS

Expression Levels of CD38 mRNA in EOC
Based on the data of the GEPIA database, the CD38 mRNA
levels in EOC and normal ovarian tissues were assessed. The
results showed that the CD38 expression level in EOC was higher
than that in normal ovarian tissue (Figure 1A). In addition,
when compared to the different stages of EOC in some data
sets, higher expression was observed in stage II, and lower
expression was observed in stages III and IV (Figure 1B).
Unfortunately, data about stage I disease were not found. We
further used the Oncomine database to examine CD38 expression
in multiple histological types of EOC. This analysis revealed

7http://www.broadinstitute.org/gsea/

that CD38 mRNA was more highly expressed in malignant
EOC than in borderline tumors, and ovarian endometrioid
carcinoma had lower CD38 expression than ovarian serous
cancer (Supplementary Figure S1).

Four molecular subtypes (mesenchymal, immunoreactive,
differentiated, and proliferative) have been identified in EOC
(Konecny et al., 2014). In TISIDB, we found that CD38 expression
was highest in the immunoreactive subtype and lowest in the
proliferative subtype (Figure 1C). This result implied that CD38
was strongly linked to the tumor immune microenvironment.
Shmulevich’s study clustered six immune subtypes for cancer
(Thorsson et al., 2018). In TISIDB, we further analyzed CD38
expression in different immune subtypes of EOC. We found
CD38 was expressed in four types, including C1 (wound
healing type), C2 [interferon γ (IFN-γ) dominant type], C3
(inflammatory type), and C4 (lymphocyte depleted type). CD38
was highest in the C2 (IFN-γ dominant) type and lowest in the
C3 (inflammatory) type (Figure 1D).

The Prognostic Value of CD38 in EOC
The GEPIA database was used to evaluate the correlation of
CD38 gene expression with the prognosis of ovarian cancer
patients, and this analysis included 424 EOC cases. This analysis
revealed that high levels of CD38 (above median) expression were
associated with significantly longer disease-free survival (DFS,
HR = 0.66, P = 0.00089) and increased OS (HR = 0.67, P = 0.0016)
(Figures 2A,B).

To validate CD38 gene expression analysis, we next used
the Kaplan–Meier plotter database to investigate the prognostic
potential of CD38 expression in EOC, and this analysis included
1,657 patients with OS data and 1,435 patients with progression-
free survival (PFS) data. CD38 gene expression was also
strongly correlated with increased OS [HR = 0.75 (0.64–0.86),
P = 0.0004] and PFS [HR = 0.8 (0.73–0.97), P = 0.0178]
(Figures 2C,D and Table 1). The detailed relationships between
CD38 mRNA expression and prognosis of EOC based on
different clinicopathological characteristics in the Kaplan–Meier
plotter database are presented in Table 1.

In Kaplan–Meier plotter databases, except the microarray
analysis of CD38 expression, RNA sequencing data were also
acquired and used for online analysis of the prognostic value
of CD38 in 373 patients of EOC with diverse tumor mutation
statuses. We found that CD38 levels were positively correlated
with OS in patients with both high and low mutation burden
(P = 0.0044 and 0.0027, respectively; Figures 2E,F).

The Correlation of CD38 With Immune
and Stromal Scores in EOC
The gene expression and clinical data profiles of 469 ovarian
serous cystadenocarcinoma patients were downloaded from the
TCGA database on May 10, 2019. The ESTIMATE algorithm
was applied to assess stromal and immune cells in ovarian
cancer. The analysis results implied that stromal scores of
EOC were distributed from -1,988.05 to 1,837.43, and immune
scores ranged from -1,498.58 to 2,774.16. To determine the
potential relevance of CD38 with immune scores and/or stromal
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FIGURE 1 | CD38 expression levels in ovarian cancer. (A) Epithelial ovarian cancer compared with normal tissues in the GEPIA database. (B) CD38 expression
levels in different stages of epithelial ovarian cancer from GEPIA database. (C) CD38 expression levels in different molecular subtypes of epithelial ovarian cancer
from TISIDB database. (D) CD38 expression levels in different immune subtypes of epithelial ovarian cancer from TISIDB database. The CD38 gene expression
profiles were normalized by log2(TPM + 1) in (A,B), and log counts per million mapped reads (log2CPM) in (C,D).

scores, 469 patients were classified into top (high group)
and bottom halves (low group) according to their scores.
Patients with high immune scores had higher CD38 expression
compared with patients with low immune scores (Figure 3A).
Consistently, patients with high stromal scores also showed
higher CD38 expression compared with patients with low stromal
scores (Figure 3B).

We further evaluated the prognostic impact of CD38 on
the different statuses of immune scores and/or stromal scores
for ovarian cancer. For the immune scores, CD38 gene
expression was positively correlated with OS of EOC in both
the high (above median) immune score group and the low
score group (Figures 3C,D). The difference was that, for the
stromal scores, CD38 gene expression was positively correlated
with the OS of EOC in patients with high (above median)

stromal scores but not in patients with low stromal scores
(Figures 3E,F).

CD38 Expression Is Involved in
Antitumor Immunity
To further study the roles of CD38 expression in the ovarian
cancer microenvironment. Gene set enrichment analysis was
conducted by utilizing the gene expression profiles of 469 EOC
samples acquired from TCGA database, which contain RNA
sequencing data. The gene signatures implied enrichment in
many categories, such as immune response, adaptive immune
response, lymphocyte activation, regulation of T cell–mediated
immunity, and natural killer cell–mediated cytotoxicity, and
were enriched in EOC samples with high CD38 expression
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FIGURE 2 | Kaplan–Meier survival curves comparing the high and low expression of CD38 in epithelial ovarian cancer in the GEPIA and Kaplan–Meier plotter
databases. (A,B) Survival curves of OS and DFS in ovarian cancer from GEPIA databases. (C,D) Survival curves of OS and PFS in epithelial ovarian cancer from
Kaplan–Meier plotter databases. (E,F) High CD38 expression was correlated with better OS either in high or low tumor mutation burden from Kaplan–Meier plotter
databases.
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TABLE 1 | Correlation of CD38 mRNA expression and clinical prognosis in ovarian cancer with different clinicopathological factors by Kaplan–Meier plotter.

OS PFS

Clinicopathological traits n HR P n HR P

Total 1,656 0.75 (0.64−−0.86) 1E-04 1,435 0.84 (0.73−−0.97) 0.0178

Average CA-125 below lower quartile 395 0.6 (0.46−−0.78) 0.00012 326 0.5 (0.38−−0.66) 8.5E-07

HISTOLOGY

Endometrioid 37 5.31 (0.88−−31.88) 0.041 51 2.53 (1.0−−6.45) 0.0431

Serous 1,207 0.7 (0.6−−0.82) 1.3E-05 1,104 0.87 (0.76−−1.01) 0.0639

STAGE

I 74 1.74 (0.52−−5.87) 0.3639 96 5.88 (1.6−−21.64) 0.0028

II 61 1.91 (0.62−−5.84) 0.2513 67 1.72 (0.85−−3.49) 0.1287

III 1,044 0.69 (0.59−−0.82) 2.2E-5 919 0.83 (0.71−−0.97) 0.02

IV 176 0.67 (0.45−−1.0) 0.0488 162 1.37 (0.9−−2.07) 0.1357

GRADE

I 56 1.62 (0.61−−4.31) 0.3328 37 3.29 (1.1−−9.83) 0.0236

II 324 0.69 (0.49−−0.97) 0.0295 256 1.3 (0.93−−1.82) 0.1211

III 1,015 0.65 (0.55−−0.77) 8.7E-07 837 0.83 (0.7−−0.99) 0.0346

P53

Mutated 506 0.7 (0.55−−0.89) 0.0043 483 0.71 (0.56−−0.89) 0.0025

Wild type 94 1.36 (0.74−−2.48) 0.318 84 1.55 (0.88−−2.72) 0.1223

DEBULK

Optimal 801 0.67 (0.52−−0.87) 0.0022 696 0.84 (0.7−−1.02) 0.0719

Suboptimal 459 0.72 (0.59−−0.88) 0.0011 459 0.67 (0.54−−0.83) 0.0002

CHEMOTHERAPY

Contains platin 1,409 0.75 (0.65−−0.86) 4.8E-05 1,259 0.75 (0.66−−0.86) 2.2E-05

Contains Taxol 793 0.62 (0.49−−0.78) 5.8E-05 715 0.79 (0.65−−0.95) 0.0126

Contains Avastin 50 0.55 (0.21−−1.43) 0.2168 50 0.75 (0.39−−1.45) 0.391

Bold values indicate P < 0.05.

(Figure 4). This analysis revealed that CD38 might play vital roles
in antitumor immune modulation.

The Relationship Between CD38
Expression and Immune Cell Infiltration
Several studies have implied that TILs are a prognostic
indicator for ovarian cancer (Zhang et al., 2003). Therefore, the
associations between CD38 gene expression and TILs infiltration
level in EOC were analyzed in the TIMER database. This
analysis showed that CD38 was significantly correlated with
tumor purity, CD8+ T cells, CD4+ T cells, and B cells in
EOC. Myeloid cell types, including macrophages, neutrophils,
and dendritic cells, were also significantly correlated with CD38
expression (Figure 5A). In the TISIDB database, we also found
that CD38 was strongly related to immune infiltration in EOC,
especially the infiltration of activated immune cells, such as
activated CD8+ T cells (R = 0.68), activated CD4+ T cells
(R = 0.604), and activated B cells (R = 0.663) (Figures 5B–D and
Supplementary Table S2). Interestingly, the relationship between
CD38 and memory immune cells was not strong (Figure 5E
and Supplementary Table S3). To further clarify the relationship
between CD38 and various subtypes of TILs in ovarian cancer, the
TIMER and TISIDB online databases were employed to further
analyze the relationship between CD38 and marker genes of
different immune cells, including CD8+ T cells, CD4+ T cells,

B cells, macrophages, neutrophils, and dendritic cells in EOC
(Table 2 and Supplementary Table S3).

DISCUSSION

As a multifunctional ADP-ribosyl cyclase, CD38 is widely
expressed on plasma cells and other types of immune cells
(Deaglio et al., 2001). With daratumumab (an anti-CD38 mAb)
approved for clinical application, CD38 has emerged as a
high-impact therapeutic target in multiple myeloma (Nijhof
et al., 2015; Elsada and Adler, 2019). The CD38/CD203a/CD73
adenosinergic pathway is a major regulatory mechanism in
niche metabolic reprogramming (Horenstein et al., 2013).
Furthermore, CD38 is expressed on various lymphocytes,
including regulatory T cells (Tregs), B cells, and myeloid
cells, which have potential immunomodulatory effects (Flores-
Borja et al., 2013; Karakasheva et al., 2015; Feng et al.,
2017). However, the role of immunologic reprogramming in
the solid TME is still unclear. Here, we present a study that
revealed that CD38 expression levels correlate with prognosis
in ovarian cancer. High expression of CD38 correlates with
early disease stage and better prognosis. In addition, our
analyses show that TILs and diverse immune markers in ovarian
cancer are associated with CD38 expression levels. Hence,
our comprehensive and systematic analysis study provides
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FIGURE 3 | The correction between CD38 and immune or stromal scores (this analysis in ovarian cancer patients with immune or stromal scores median cutoff).
(A) CD38 highly expressed in high immune scores group from TCGA database. (B) CD38 highly expressed in high stromal scores group from TCGA database.
(C) Survival curves of OS in high immune scores group of epithelial ovarian cancer from TCGA database. (D) Survival curves of OS in low immune scores group of
epithelial ovarian cancer from TCGA database. (E) Survival curves of OS in high stromal scores group of epithelial ovarian cancer from TCGA database. (F) Survival
curves of OS in low stromal scores group of epithelial ovarian cancer from TCGA database.

valuable insights into the potential immune regulatory role
of CD38 in the EOC niche and suggests its use as a cancer
prognostic biomarker.

Our study analyzed the CD38 mRNA expression level in
normal ovaries and EOC by using online datasets in GEPIA,
Oncomine, and TISIDB. The expression of the CD38 gene
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FIGURE 4 | Gene set enrichment analysis showed that CD38 expression is involved in ovarian cancer patients’ antitumor immune responses. (A) Gene sets
representing Innate immune response. (B) Adaptive immune response. (C) Lymphocyte activation. (D) Positive regulation of lymphocyte mediated immunity.
(E) Regulation of T cell–mediated immunity. (F) Natural killer cell–mediated cytotoxicity.

Frontiers in Genetics | www.frontiersin.org 8 April 2020 | Volume 11 | Article 369163

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00369 April 28, 2020 Time: 17:24 # 9

Zhu et al. CD38 in Epithelial Ovarian Cancer Microenvironment

FIGURE 5 | Correlation of CD38 expression with immune infiltration level in epithelial ovarian cancer. (A) CD38 expression is significantly negatively related to tumor
purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells from TIMER
database. (B–E) CD38 expression has significant positive correlations with active CD8+ T cells, active CD4+ T cells, and active B cells, other than memory B cells.
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TABLE 2 | Correlation analysis between CD38 and relate genes and markers of
immune cells in TIMER.

None Purity

Immune Immune Cor P Cor P

profile gene

T CELL

CD3D 0.695 5.34E-45 0.654 1.03E-31

CD3E 0.711 0.00 0.687319 3.71E-36

CD3G 0.627 1.89E-34 0.543433 1.56E-20

CD2 0.737 4.36E-53 0.718886 6.87E-41

CD4+ T CELL

CD4 0.535 0.00 0.468871 5.16E-15

CD8+ T CELL

CD8A 0.656 0.00 0.584927 2.98E-24

CD8B 0.539 0.00 0.448 1.01E-13

TBX21 0.738 2.51E-53 0.727225 2.99E-42

EOMES 0.586 2.14E-29 0.512907 4.14E-18

LCK 0.604 0.00 0.559081 7.10E-22

IFNG 0.674 1.88E-41 0.610228 8.56E-27

PRF1 0.687 0.00 0.663527 5.71E-33

GZMA 0.655 0.00 0.629182 7.47E-29

GZMB 0.665 5.01E-40 0.633114 2.68E-29

GZMH 0.643 9.21E-37 0.59184 6.34E-25

GZMK 0.625 3.56E-34 0.562898 3.26E-22

GZMM 0.647 2.45E-37 0.615405 2.42E-27

CXCL9 0.704 0.00 0.642913 1.95E-30

CXCL10 0.792 0.00 0.767956 1.07E-49

TH1

IFNG 0.674 1.88E-41 0.610228 8.56E-27

TBX21 0.738 2.51E-53 0.727225 2.99E-42

TNF 0.247 1.46E-05 0.176 5.45E-03

STAT4 0.673 2.98E-41 0.624 2.78E-28

STAT1 0.641 0.00 0.61 1.02E-26

TH2

GATA3 0.277 1.04E-06 0.114 7.32E-02

STAT6 0.066 2.55E-01 0.061 3.37E-01

STAT5A 0.224 8.82E-05 0.216 5.84E-04

IL13 0.167 3.48E-03 0.143 2.42E-02

Tfh

CXCR5 0.424 9.16E-20 0.338595 4.28E-08

CXCL13 0.693 1.31E-44 0.618193 1.21E-27

BCL6 −0.004 9.43E-01 0.067 2.93E-01

IL21 0.325 7.11E-09 0.314 4.16E-07

TH17

IL17A 0.151 8.27E-03 0.118106 0.062768

RORC −0.114 4.82E-02 −0.04595 0.470446

IL23A 0.076 1.88E-01 0.085397 0.179202

STAT3 0.232 4.66E-05 0.153 1.56E-02

Treg

FOXP3 0.663 0.00 0.604827 3.12E-26

IKZF2 −0.092 1.09E-01 −0.07343 0.248332

IL10 0.321 1.31E-08 0.206341 0.001057

TGFB1 0.362 1.09E-10 0.194492 0.002049

CCR8 0.49 9.65E-20 0.408 2.03E-11

STAT5B −0.061 2.90E-01 −0.079 2.13E-01

(Continued)

TABLE 2 | Continued

None Purity

Immune Immune Cor P Cor P

profile gene

CHECKPOINTS

CTLA4 0.738 2.14E-53 0.70801 3.46E-39

PDCD1 0.609 3.67E-32 0.558032 8.78E-22

LAG3 0.764 0.00 0.750288 2.73E-46

PDL1/CD274 0.682 0.00 0.642702 2.07E-30

TIM3/HAVCR2 0.578 0.00 0.512411 4.51E-18

TIGIT 0.733 3.26E-52 0.694518 3.50E-37

PROINFLAMMATION

PTGS2 0.11 5.67E-02 −0.00507 0.936513

IL8 0.081 1.59E-01 0.006259 0.921719

IL1A 0.098 8.77E-02 0.02809 0.659131

IL1B 0.305 7.07E-08 0.169372 0.007393

IL18 0.32 1.48E-08 0.245112 9.30E-05

IL6 0.273 1.36E-06 0.134232 0.034253

IL12A 0.223 9.37E-05 0.179456 0.004503

TNF 0.247 1.46E-05 0.175629 0.005451

METABOLISM

IDO1 0.584 0.00 0.489875 1.96E-16

NOS2 −0.021 7.13E-01 −0.08555 0.178423

HIF1A 0.01 8.63E-01 −0.07241 0.254943

APC/DC

HLA-DPA1 0.559 0.00 0.484698 4.48E-16

HLA-DPB1 0.519 0.00 0.433577 7.79E-13

HLA-DQA1 0.474 0.00 0.376692 8.15E-10

HLA-DRA 0.508 0.00 0.431049 1.09E-12

HLA-DMA 0.456 0.00 0.392215 1.39E-10

HLA-DQB1 0.36 1.36E-10 0.275 1.05E-05

BDCA-1/CD1C 0.191 8.09E04 0.073 2.53E-01

BDCA-4/NRP1 0.176 2.18E-03 0.038 5.54E-01

CD11C/ITGAX 0.489 0.00 0.422 3.41E-12

B CELL

BLK 0.325 7.28E-09 0.245509 9.05E-05

CD19 0.352 2.85E-10 0.3409 3.42E-08

MS4A1 0.57 01.75E-27 0.478648 1.16E-15

CD79A 0.62 1.43E-33 0.522 8.55E-19

MONOCYTE

CD86 0.639 0.00 0.579 1.02E-23

CD115/CSF1R 0.411 7.85E-14 0.306 8.61E-07

TAM

CCL2 0.428 0.00 0.359 5.38E-09

CD68 0.584 0.00 0.532 1.33E-19

CSF2 0.338 1.56E-09 0.318 3.03E-07

M1

INOS/NOS2 −0.021 7.13E-01 −0.086 1.78E-01

IRF5 0.263 3.65E-06 0.236 1.75E-04

COX2/PTGS2 0.11 5.67E-02 −0.005 9.37E-01

M2

CD163 0.511 0.00 0.424 2.70E-12

VSIG4 0.438 0.00 0.33 9.62E-08

MS4A4A 0.539 0.00 0.484 4.73E-16

(Continued)
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TABLE 2 | Continued

None Purity

Immune Immune Cor P Cor P

profile gene

N

CD66B/CEACAM8 −0.094 1.01E-01 −0.083 1.93E-01

CD11B/ITGAM 0.454 0.00 0.373 1.25E-09

CCR7 0.65 0.00 0.614 3.20E-27

NK

KIR2DL1 0.225 7.82E-05 0.135 3.37E-02

KIR2DL3 0.24 2.46E-05 0.212 7.38E-04

KIR2DL4 0.53 2.67E-23 0.497 6.38E-17

KIR3DL1 0.392 1.44E-12 0.353 1.03E-08

KIR3DL2 0.188 9.88E-04 0.134 3.40E-02

KIR3DL3 0.148 9.94E-03 0.12 5.96E-02

KIR2DS4 0.19 9.16E-04 0.128 4.32E-02

Cor, R value of Spearman correlation; None, correlation without adjustment; Purity,
correlation adjusted by purity. *P < 0.01; **P < 0.001; ***P < 0.0001.

in EOC was not only higher than that in normal tissue
but was also higher than that in borderline ovarian tumors.
Nevertheless, ovarian cancer is not a single disease and can
be subdivided into many molecular subtypes. Analysis of the
TISIDB database showed that the CD38 gene had the highest
expression level in the immunoreactive subtype, followed by the
mesenchymal type, with little expression in the differentiated
and proliferative types. Different levels of CD38 expression in
distinct immune subtypes of ovarian cancer were observed,
and the C2 (IFN-γ dominant) type had the highest level
compared with the other three subtypes. The comprehensive
and detailed analysis of CD38 gene expression in various
databases among EOC and different subtypes may reflect that
CD38 is strongly linked to immunological properties in the
microenvironment.

Nevertheless, in the Kaplan–Meier plotter and GEPIA
databases, the analysis found matching prognostic value
correlations between CD38 expressions in EOC. The increased
CD38 expression correlated with better survival in EOC and
was not influenced by the immune scores. In addition, high
CD38 expression was related to favorable prognosis of EOC in
stages III and IV and grades II and III. Together, these results
robustly indicated that CD38 is a potential prognostic biomarker
for ovarian cancer.

Another important finding is that CD38 expression is closely
related to the immune response and lymphocyte infiltration in
EOC. Under physiological conditions, CD38 induced mature B-
cell proliferation and immunoglobulin M (IgM) secretion. And
in CD38 expressed higher on activated T cells, the CD38+ T
cells inhibited CD38− T-cell proliferation to maintain T-cell
homeostasis (Bahri et al., 2012; Glaria and Valledor, 2020). On
the contrary, another study have unveiled that T cells expressing
high levels of CD38 have an extremely low proliferative ability
but an enhanced capacity to produce interleukin 2 (IL-2)
and IFN-γ (Sandoval-Montes and Santos-Argumedo, 2005).

These evidences all suggested that CD38 plays a vital role in
the regulation of immune cells activation and differentiation.
But its exact regulatory function still needs further study.
The GSEA and correlation analyses in our study implied
that CD38 regulated the tumor immune microenvironment in
EOC and was associated with B- and T-cell activation and
regulated immune responses. A study also certified that in
human lung cancer CD38 protein is highly expressed in CD8+
tissue-resident memory cells, CD103+ (TRM cells), and a high
density of TRM cell infiltration predicts a better prognosis
(Ganesan et al., 2017).

Another study revealed that CD38 is one of the essential
mechanisms by which tumors obtain resistance to immune
checkpoint blockade immunotherapy, resulting in CD8+ T-cell
dysfunction. Interferon β might be a factor increasing CD38
expression in the TME (Chen et al., 2018). In addition,
Schietinger et al. certified that PD1hi TILs were a heterogeneous
population and that PD1hi T cells with increased CD38
expression did not respond to PD-1 and/or PD-L1 immune
checkpoint blockers. CD38+ PD1hi T cells may be in a fixed
dysfunctional state rather than the plastic reprogrammable state
(Philip et al., 2017). All of the studies hinted that CD38 plays
a vital role in remodeling the immune microenvironment, and
CD38 deserves further research as an immunotherapeutic target
and prognostic biomarker in ovarian cancer.
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FIGURE S1 | CD38 expression levels in different types of epithelial ovarian tumor.
(A) CD38 in data sets of epithelial ovarian cancer compared with borderline
ovarian tumor in the Oncomine database. (B) CD38 in data sets of ovarian serous

cancer compared with ovarian endometrioid cancer in the
Oncomine database.

TABLE S1 | Detailed information of the online databases applied in the study.

TABLE S2 | Spearman correlation analysis between expression of CD38
and TILs in epithelial ovarian cancer from TISIDB database.

TABLE S3 | Spearman correlation analysis between expression of
CD38 and Immunomodulator in epithelial ovarian cancer from
TISIDB database.
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Lung cancer is the principal cause of leading cancer-related incidence and mortality
in the world. Various studies have excavated the potential prognostic biomarkers for
cancer patients based on gene expression profiles. However, most of these reported
biomarkers lack independent validation in multiple cohorts. Herein, we collected 35
datasets with long-term follow-up clinical information from TCGA (2 cohorts), GEO
(32 cohorts), and Roepman study (1 cohort), and developed a web server named
OSluca (Online consensus Survival for Lung Cancer) to assess the prognostic value
of genes in lung cancer. The input of OSluca is an official gene symbol, and the output
web page of OSluca displays the survival analysis summary with a forest plot and a
survival table from Cox proportional regression in each cohort and combined cohorts.
To test the performance of OSluca, 104 previously reported prognostic biomarkers in
lung carcinoma were evaluated in OSluca. In conclusion, OSluca is a highly valuable
and interactive prognostic web server for lung cancer. It can be accessed at http://
bioinfo.henu.edu.cn/LUCA/LUCAList.jsp.

Keywords: survival, lung cancer, biomarker, prognosis, OSluca

INTRODUCTION

Lung cancer (LUCA) is an aggressive disease with leading mortality and incidence in the world.
Based on histology, there are two types of LUCA, including non-small cell lung cancer (NSCLC),
which accounts for 80% of LUCA and small cell lung cancer (SCLC), which accounts for
approximately 20% of LUCA (Raponi et al., 2006; Bray et al., 2018). NSCLC can be further
sub-divided into four subtypes, including adenocarcinoma, squamous cell carcinoma, large cell
carcinoma, and bronchioloalveolar carcinoma (Ramalingam et al., 2011). Classical histological
subtypes indeed play a dominant role in treatment and prognosis of lung cancer. Recently,
reclassification of lung cancer based on tumor biomarkers improves lung cancer therapy (Beer et al.,
2002; Hoadley et al., 2018).

Many studies have demonstrated that using clinical-association-prognostic biomarkers can
assist the characterization of cancer subtypes and provide new insights of cancer recurrence and
patients response to more precise therapies (Meyerson and Carbone, 2005; Bild et al., 2006;
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Raponi et al., 2006). It is worth noting that numerous single- or
multi-prognostic biomarkers have been identified using high-
throughput profiling methods (Raponi et al., 2006). By mining
a mass of these profiling data deposited in public database, meta-
analysis has exploited potential prognostic genes, such as KRT8
(Xie et al., 2019a). However, for biologists and clinicians, it is
technically difficult to analyze these massive public data to screen
and develop prognostic biomarkers. Previously, we have built
several web servers of prognostic biomarker analysis for breast
cancer, esophageal carcinoma, etc. (Wang et al., 2019a,b,c, 2020;
Xie et al., 2019b,c; Yan et al., 2019; Zhang et al., 2019, 2020;
Dong et al., 2020). In this current study, we have integrated bulky
RNA expression profiles of lung cancer with clinical survival
information, mainly from TCGA (The Cancer Genome Atlas)
and GEO (the Gene Expression Omnibus) databases, and built a
prognostic analysis web server named OSluca (Online consensus
Survival for Lung Cancer) to analyze and evaluate prognostic
potency of gene in 35 independent lung cancer cohorts.

MATERIALS AND METHODS

Collection of Lung Cancer Datasets
The lung cancer cohorts for OSluca with expression profiling
and clinical follow-up data were collected from PubMed, TCGA,1

and GEO2 by searching the keywords: “lung” AND “cancer”
AND “survival” (Table 1). The dataset for each cohort that met
these following criteria will be included in OSluca: (1) have RNA
sequencing or gene microarray data; (2) have complete follow-
up data, such as overall survival and status (Liu et al., 2018); (3)
all the data were specific for lung cancer, not from secondary or
metastatic lung tumor from other types of tumors; (4) the cohort
size is no less than 30 cases. The primary clinical pathological
characteristics of lung cancer patients are listed in Table 1.

Construction of OSluca Web Server
Online consensus Survival for Lung Cancer is built in a tomcat
server as previously described with minor modifications (Wang
et al., 2019b,c; Xie et al., 2019b,c; Yan et al., 2019; Zhang et al.,
2019). Briefly, front-end application was used for inputting query
and displaying the results. Java and R package were used to
analyze request and output the results. In addition, profiles and
clinical information were stored in the SQL Server database.
The prognostic significance of inputted gene is determined by
analyzing the association of gene expression and survival time
using the R package “survival.” In addition, a genome-wide pre-
calculation of Cox proportional regression for all the human
genes were performed as well, and the home page of OSluca
could display the survival analysis summary with a forest plot
and a table of Cox proportional regression result for inputted
gene in all cohorts with P-value and HR [(95% confidence
interval (CI)] with the built-in upper 25% cutoff. The R package
“forestplot” was used to produce the forest plot for inputted gene
in OSluca web server.

1https://cancergenome.nih.gov/
2www.ncbi.nlm.nih.gov/geo/

Validation of Previously Reported
Prognostic Biomarkers of Lung Cancer
in OSluca
Keywords including “lung cancer,” “survival,” “biomarker,” and
“prognosis” were used to search biomarkers of lung cancer in
NCBI PubMed. We finally obtained 104 prognostic biomarkers
using the following criteria (Table 2): (1) immunohistochemistry
(IHC) or qRT-PCR (qPCR) detection of biomarkers in primary
cancer tissue; (2) a significant association between biomarker and
survival; (3) the sample size must be above 50 cases; (4) the study
was published in the English for full access.

Statistical Analysis
The association of lung cancer clinical factors and survival
outcomes was analyzed by GraphPad Prism 8.0 software. The
Cox proportional hazards regression and Kaplan Meier plot
functions from R package “survival” were used in the OSluca to
determine the association between gene expression and survival.
The P ≤ 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics of Lung Cancer
Patients in OSluca
To develop an online survival web server for lung cancer, we
collected 35 published high-throughput profiling datasets of
lung cancer with long-term follow-up information (2 TCGA
datasets, 32 GEO datasets, and 1 Roepman dataset). TCGA
comprises 513 lung adenocarcinoma cases and 499 squamous cell
carcinoma cases (Tables 1, 2). GEO cohorts and Roepman cohort
had more than 4,000 samples and 172 samples, respectively,
as shown in Table 2. 4,901 patients have OS (overall survival)
data; 2,176 patients have DSS (disease-specific survival) data; and
2,075 patients have PFI (progression-free interval or recurrence-
free survival) data, while 608 patients have DFI (disease-free
interval) data. The results showed that the patients with lung
adenocarcinoma significantly survive longer than those of other
histological lung cancer, and small cell lung cancer is associated
with the worst prognosis compared to other types of lung
cancer (Figure 1A). Moreover, other clinical characteristics
can also prominently affect patients’ prognosis, such as gender
(P < 0.0001), stage (P < 0.0001), p-TNM stage (P < 0.0001),
and smoking status (P < 0.0001) (Figures 1B–E). Besides, these
risk factors can influence other survival endpoints, such as PFI
(data not shown). These results are in accordance with previous
researches (Mao et al., 2016; Bray et al., 2018).

Construction and Usage of Prognostic
Web Server OSluca
Online consensus Survival for Lung Cancer includes a set of
optional clinico-pathological factors, such as age, sex, histological
type, grade, smoking status, and so on. Four survival endpoints
can be selected basing on original patient outcomes, containing
OS, DSS, DFI, and PFI (Liu et al., 2018). In order to make the
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TABLE 1 | Summary of clinical characteristics of lung cancer cohorts in Online Consensus Survival for Lung Cancer (OSluca).

NSCLC SCLC (N = 223) #NA (N = 85)

NSCLC, Total (N = 4937) AD (N = 3345) SCC (N = 1381) LCC (N = 197) NOS (N = 194)

Age, year 64 (13–91) 64 (13–90) 66 (39–83) 63 (39–81) 62 (22–80) 64 (40–83) 58 (15–82)

Gender

Male, % 52.6 46.9 68.3 77.2 12.9 58.1 50

Female, % 38.8 47.7 23.7 18.1 12.4 41.9 50

#NA, % 8.6 5.4 8.0 4.7 73.7 0 0

Stage*

I, n 2301 1,653 567 66 28 10 9

II, n 889 500 347 27 15 5 4

III, n 595 366 199 18 12 2 3

IV, n 101 73 13 2 13 0 0

T stage
1/2/3/4/#NA

646/1074/230/103/2884 468/663/102/49/2063 155/362/109/39/716 20/44/17/9/107 3/5/2/6/178 11/13/5/4/190 28/20/10/6/21

N Stage
0/1/2/3/#NA

1638/495/280/21 1038/254/198/5/1859 549/218/70/7/537 48/20/17/5/107 3/3/4/4/180 14/4/12/6/187 33/25/5/1/21

M stage 0/1/#NA 1685/42/3210 853/26/2466 740/8/633 82/2/113 10/6/178 33/4/186 63/2/20

Smoking/non-
smoking/#NA

1839/262/2836 1112/256/1977 618/3/760 40/1/156 9/2/183 18/1/204 9/8/68

OS, mo 46 (0.03–256) 48 (0.03–242) 41 (0.03–256) 46 (0.1–216) 38 (0.5–208) 51 (2–211) 68 (2–244)

DSS, mo 42 (0.03–256) 43 (0.19–242) 41 (0.03–256) 45 (1–216) 36 (6–76) 24 (2–140) 69 (2–244)

DFI, mo 33 (0.16–242) 32 (0.6–242) 34 (0.16–159) – – – –

PFI, mo 33 (0.03–242) 36 (0.03–242) 30 (0.03–180) 53 (1.8–164) 4 (0.23–54) – 30 (2–73)

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; AD, adenocarcinoma; SCC, squamous cell carcinoma; LCC, large cell cancer; NOS, NSCLC, not
otherwise specified; F, female; M, male; n, number; mo, months; OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free
interval or recurrence free survival. *The stage only counts stages of lung cancer patients described in the original datasets; #NA, data lost or unknown.

user clearly see the prognostic effect of interested gene, a meta-
analysis is to summarize the prognostic value for each gene on
the home page of OSluca. Briefly, after the user types the official
gene symbol into the input box on the home page, OSluca will
display the survival analysis summary with a forest plot and
a table from Cox proportional regression in each cohort and
combined cohorts (combining all the datasets together). Take the
tumor suppressor gene TP53 (tumor protein p53) as an example
and type “TP53” into the gene symbol box and click on “Survival
analysis” (Figure 2A, left). The meta-analysis results with a forest
plot and a survival table for the TP53 gene, will display the
P-value and HR with 95% CI of each cohort and the combined
cohorts (Figure 2A, right). Then, the user can easily obtain KM
plots of separate cohorts such as GSE30219 dataset by clicking
on the “Go” button in the survival table (Figure 2B). In addition,
it is also available to use a subgroup of certain cohort to obtain
specific prognostic information with selectable risk factors, such
as cutoff value, histological type, grade, etc. Briefly, OSluca can
output survival rates displaying a forest plot and a survival table
with KM plot and P-value to measure the association between the
investigated gene and survival rate.

Validation of Previously Reported Lung
Cancer Prognostic Biomarkers in OSluca
A search for lung cancer biomarkers was performed using a set of
keywords in NCBI PubMed, including “lung cancer,” “survival,”
“biomarker,” and “prognosis.” In total, we collected 104 published
lung cancer prognostic biomarkers verified by IHC or qPCR

(Supplementary Table S1) to evaluate the performance of
OSluca. For example, Hsu et al. reported that ERO1L (ERO1-like
protein alpha, also named ERO1A) is significantly overexpressed
in tumor tissue and could be as a poor prognostic biomarker
for lung adenocarcinoma (Hsu et al., 2016). The prognostic
analysis of ERO1L in OSluca showed that high expression of
ERO1L gene is significantly associated with poor outcome in
eight out of nine cohorts (Top 9 cohorts, the sample size
above 150 cases) (Figures 3A–H), except the Roepman dataset
(Figure 3I). Next, each published biomarker was investigated
in the Top 9 cohorts in OSluca, and the results showed that
approximately 66% of biomarkers (69/104) were consistent
with original published findings (Supplementary Table S1).
Meanwhile, OSluca can be used to perform the outcome meta-
analysis of the interested gene that showed that 14% (14/104)
(Supplementary Table S1) of published prognostic genes have
the similar prognostic values in one or multiple OSluca cohorts
as reported in the literature, but these genes also showed the
opposite outcomes in some other cohorts from OSluca. These
genes need further investigations, such as the DDIT3 gene
(Supplementary Figure S2 and Supplementary Table S1). In
contrast, there are some prognostic biomarkers, which have
been shown different outcomes between OSluca and previous
findings. A total of 9% of the published prognostic genes showed
opposite outcome results between OSluca and literatures (9/104)
(see Supplementary Table S1), suggesting that these genes
need further validation. For example, the transcription factor
KLF15 (Krüppel-like factor 15) had been proven to be higher in
tumor tissue than that of adjacent non-tumor tissue and played
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TABLE 2 | Clinico-pathological traits of lung cancer cohorts.

Datasets Cohorts Platform Histological type Survival Samples References

Rockville GSE102287 GPL570 AD/SCC/NOS OS 32 Mitchell et al., 2017

Heidelberg GSE10245 GPL570 AD/SCC OS 58 Kuner et al., 2009

Koto-ku GSE1037 GPL962 AD/SCC/SCLC OS 61 Jones et al., 2004

Basel GSE11117 GPL6650 AD/SCC/NOS OS 41 Baty et al., 2010

Nagoya GSE11969 GPL7015 AD/SCC/LCC OS 149 Takeuchi et al., 2006

Groningen GSE12428 GPL1708 SCC OS 34 Boelens et al., 2009

Nagoya GSE13213 GPL6480 AD OS 117 Tomida et al., 2009

Toronto GSE14814 GPL96 AD/SCC /NOS OS/DSS 133 Zhu et al., 2010

Chapel Hill GSE17710 GPL9053 SCC OS/PFI 56 Wilkerson et al., 2010

Rotterdam GSE19188 GPL570 AD/SCC/LCC OS 82 Hou et al., 2010

Chapel Hill GSE26939 GPL9053 AD OS 116 Wilkerson et al., 2012

Dallas GSE29013 GPL570 AD/SCC OS/PFI 55 Xie et al., 2011

Lund GSE29066 GPL6947 AD/SCC/SCLC OS 68 Staaf et al., 2012, 2013

La Tronche GSE30219 GPL570 AD/SCC/SCLC/LCC OS/DFS 293 Rousseaux et al., 2013

Chuo-ku GSE31210 GPL570 AD OS /PFI 226 Okayama et al., 2012

Durham GSE3141 GPL570 AD/SCC OS 111 Bild et al., 2006

Dallas GSE31908 GPL96/97 AD OS 30 NA

Houston GSE33072 GPL6244 AD/SCC PFI 66 Byers et al., 2013

Uppsala GSE37745 GPL570 AD/SCC/LCC PFI 196 Botling et al., 2013

Dallas GSE41271 GPL6884 AD/SCC/LCC OS/PFI 275 Sato et al., 2013

San Diego GSE4573 GPL96 SCC OS 130 Raponi et al., 2006

Nagoya GSE4716 GPL3696/3694 AD/SCC/LCC OS 50 Tomida et al., 2004

Toronto GSE50081 GPL570 AD/SCC/LCC OS/DFS 181 Der et al., 2014

Brisbane GSE5123 GPL3877 SCC OS 51 Larsen et al., 2007b

Brisbane GSE5828 GPL3877 SCC OS 59 Larsen et al., 2007a

Brisbane GSE5843 GPL3877 AD OS 48 Larsen et al., 2007c

St. Louis GSE6253 GPL8300 AD/SCC/NOS DSS 34 Lu et al., 2006

Bethesda GSE63459 GPL6883 AD OS 33 Robles et al., 2015

Stanford GSE67639 GPL570 AD/SCC/NOS OS 1106 Gentles et al., 2015

Rockville GSE68465 GPL96 AD OS/PFI 442/363 Shedden et al., 2008

Rockville GSE68571 GPL80 AD OS 86 Beer et al., 2002

Seoul GSE8894 GPL570 AD/SCC PFI 138 Lee et al., 2008

NIH and NHGRI TCGA DCC AD OS/DSS/DFI/PFI 513/478/306/513 The Cancer Genome
Atlas Research Network,
2014; Liu et al., 2018

NIH and NHGRI TCGA DCC SCC OS/DSS/DFI/PFI 498/452/303/499 Hammerman et al., 2012;
The Cancer Genome
Atlas Research Network,
2012; Liu et al., 2018

Reopman Roepman AD/SCC/LCC/NOS OS 172 Roepman et al., 2009

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; AD, adenocarcinoma; SCC, squamous cell carcinoma; LCC, large cell carcinoma; NOS, not otherwise
specified; OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval.

an important role in promoting proliferation and carcinoma
diversification in lung adenocarcinoma, associated with poor
prognostic outcome (Gao et al., 2017). It was not anticipated that
the patients with high expression of KLF15 have better survival
than those with low expression (Supplementary Table S1 and
Supplementary Figure S1). The OSluca result for the KLF15
gene was consistent with other prognostic analysis tools (Gyõrffy
et al., 2013; Anaya, 2016), such as the KM plotter [P < 0.001,
HR (95% CI) = 0.4 (0.28–0.58)]. In addition, the remaining 12
of 104 previously published prognostic biomarkers (11%) were
not significant for prognostic analysis in the Top 9 cohorts in
OSluca, but 8 of them (8/12) are significant in one or multiple

datasets other than the Top 9 cohorts in OSluca (data not shown).
All in all, the OSluca server is an interactive and free web
server for researchers to develop potential prognostic biomarkers
for lung cancer.

DISCUSSION

Owing to tumor molecular heterogeneity, the prognosis of
lung cancer patients is variable and difficult to predict. The
prognosis of patients suffering from lung cancer had been
demonstrated to be highly dependent on clinical factors
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FIGURE 1 | Correlation between the clinico-pathologic characteristics and overall survival of lung cancer in Online Consensus Survival for Lung Cancer (OSluca).
(A) Correlation between histological types and OS. (B) Correlation between gender and OS. (C) Correlation between tumor stages and OS. (D) Correlation between
p-TNM stages and OS. (E) Correlation between smoking status and OS. OS, overall survival; AD, adenocarcinoma; SCC, squamous cell carcinoma; LCC, large cell
cancer.

of the patient, such as histological type, smoking status,
and so on. However, it is also an imperative need to
exploit novel prognostic biomarkers for determining the risk
of cancerous lesions and predicting lung cancer patient
outcomes by all available means, especially by high-throughput

sequencing technologies. However, one major challenge to
non-bioinformatics researchers is how to integrate the high-
dimension profiling datasets of lung cancer and discover
new biomarkers to potentially guide prognostic stratification.
Previous studies had revealed that the online prognostic web

Frontiers in Genetics | www.frontiersin.org 5 May 2020 | Volume 11 | Article 420173

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00420 May 22, 2020 Time: 19:45 # 6

Yan et al. A Prognostic Web Server for Lung Cancer

FIGURE 2 | The output home page and KM output web subpage in OSluca for lung cancer. (A) Home page of OSluca with TP53 gene survival analysis, containing
prognostic meta-analysis of a forest plot and a survival table. (B) KM plots of TP53 gene in the GSE30219 cohort. Note: the cutoff value is the upper 25% vs. other
75%. The “Combined” in forest plot and survival table means the overall prognostic significance of inputted gene in a pooling cohort with all the datasets. TP53,
tumor protein p53.
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FIGURE 3 | Validation of a previously reported biomarker ERO1L in OSluca. Overexpression of ERO1L in tumor tissue is suggested as a worse survival biomarker in
lung adenocarcinoma. (A) Overall survival (OS) of ERO1L gene in GSE30219 cohort. (B) OS in GSE31210 cohort. (C) OS in GSE37745 cohort. (D) OS in GSE41271
cohort. (E) OS in GSE50081 cohort. (F) OS in GSE67639 cohort. (G) OS in GSE68465 cohort. (H) OS in TCGA in lung adenocarcinoma. (I) OS in Roepman cohort.
The histological type of all the above cohorts is lung adenocarcinoma. ERO1L, ERO1-like protein alpha (also named ERO1A).

servers of cancer (Elfilali et al., 2006; Mizuno et al., 2009;
Goswami and Nakshatri, 2013; Gyõrffy et al., 2013; Tang
et al., 2017) could substantially help researchers to discover
potential biomarkers (Zheng et al., 2020). Herein, we developed

a free web server OSluca to assess the prognostic value of
the interesting gene in multiple cohorts of lung cancers. In
OSluca, all the lung cancer cases are originated from the
organ lung, not the second cancer from other cancers or
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organs. As a result, the prognostic specificity is only for
lung cancer. Nevertheless, its prognostic significance in other
types of cancers is also worth to be determined. To access
the repeatability of previously reported prognostic biomarkers
in OSluca, we collected 104 previously published prognostic
biomarkers of lung cancer identified by qPCR or IHC, and
tested their prognostic significance in OSluca. The testing results
showed that most of the biomarkers were verified in OSluca
and were confirmed for the published findings. Nevertheless,
some genes showed different prognostic outcomes compared to
previous literatures.

The advantage of OSluca over other online prognostic web
servers is that the size of lung cancer samples in OSluca is
large, and tens of independent cohorts are available, which
is extremely valuable for the identification and validation of
cancer prognostic biomarkers, since the most important part
for the biomarker development is independent validation across
different datasets/cohorts. The limitation of the current study is
that OSluca can only test a single gene for outcome analysis. In
summary, OSluca is a free web server for non-bioinformatics
researchers to study potential lung cancer prognostic biomarkers,
accessed at http://bioinfo.henu.edu.cn/LUCA/LUCAList.jsp.
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Background: Chromosomal abnormalities play an important role in the diagnosis and

prognosis of patients with myelodysplastic syndromes (MDSs). The single-nucleotide

polymorphism array (SNP-A) technique has gained popularity due to its improved

resolution compared to that of metaphase cytogenetic (MC) analysis.

Methods: A total of 376 individuals were recruited from two medical centers in China,

including 350 patients and 26 healthy individuals. Among these patients, 200 were

diagnosed with de novo MDS, 25 with myeloproliferative neoplasm (MPN), 63 with

primary acute myeloid leukemia (AML), and 62 with idiopathic cytopenia of undetermined

significance (ICUS). We evaluated the significance of abnormal chromosomes detected

by SNP-A in the diagnosis and prognosis of MDS-related disorders.

Results: (1) When certain chromosomal abnormalities could not be detected by

conventional MC methods, these abnormalities could be detected more efficiently by

the SNP-A method. With SNP-A, the detection rates of submicroscopic or cryptic

aberrations in the MDS, MPN, and AML patients with normal MC findings were 32.8,

30.8, and 30%, respectively. (2) The chromosomal abnormalities detected by SNP-A had

a very important value for the prognosis of patients with MDSs, especially in the low-risk

group. The survival of patients with abnormal chromosomes detected by SNP-A was

significantly lower than that of patients with no detected chromosomal abnormalities;

this difference was observed in overall survival (OS) (P = 0.001) and progression-free

survival (PFS) [24 months vs. not reach (NR); P = 0.008]. The patients with multiple

chromosomal abnormalities detected by SNP-A had an inferior prognosis, and SNP-A

abnormalities (≥3 per patient) were found to be an independent predictor of poor

prognosis in patients with MDSs [hazard ratio (HR) = 2.40, P = 0.002]. (3) Patients

with ICUS may progress to myeloid malignancies, but most patients often maintain

a stable ICUS status for many years without progression. An ICUS patient found to
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have an MDS-related karyotype would be rediagnosed with MDS. SNP-A can efficiently

detect chromosomal abnormalities, which would be important for assessing the evolution

of ICUS. In our study, 17 ICUS patients with SNP-A-detected abnormalities developed

typical MDSs.

Conclusions: SNP-A can help evaluate the prognosis of patients with MDSs and better

assess the risk of disease progression for patients with ICUS.

Keywords: myelodysplastic syndrome (MDS), idiopathic cytopenia of undetermined significance (ICUS), single-

nucleotide polymorphism (SNP), chromosome aberrations, prognosis

INTRODUCTION

Myelodysplastic syndromes (MDSs) are a heterogeneous group
of malignant hematopoietic disorders characterized by dysplastic
changes in one or more cell lineages, ineffective hematopoiesis,
and a variable predilection to the development of acute
myeloid leukemia (AML) (1). Karyotype analysis provides useful
diagnostic and prognostic information for many hematological
malignancies. Some chromosomal lesions have a significant
impact on the prognosis ofMDS patients, and poor chromosomal
lesions significantly affect the survival of patients (2–4). In the
prognostic algorithm and the Revised International Prognostic
Scoring System (IPSS-R) of MDSs, cytogenetic results account
for an important proportion. In addition, recent studies have
shown that MDS patients with certain cytogenetic abnormalities
may benefit from targeted therapies (5, 6). However, the standard
metaphase cytogenetic (MC) technique, in general, can only
detect chromosomal rearrangements of more than 10Mb in
size. Furthermore, chromosome banding analysis is dependent
on the cell proliferation of MDS clones in culture to obtain
metaphases. Thus, the MC technique will miss many important
chromosome abnormalities, resulting in genomic aberrations
detectable in only 40–50% of MDS patients (7, 8). Notably,∼75–
90% of chromosomal changes identified in MDSs are unbalanced
aberrations, leading to gains or losses in all, or part, of specific
chromosomes (3, 9, 10).

The single-nucleotide polymorphism array (SNP-A)

technology relies on oligonucleotide probes corresponding
to variants of the selected SNP allele. This method does not

rely on cell division, has excellent resolution for unbalanced

rearrangements, and overcomes some of the shortcomings of
MC analysis. Since SNP-A has a higher analytical resolution than
MC, SNP-A can detect submicroscopic or cryptic deletions or
duplications. Another major advantage of SNP-A technology
is its ability to recognize the loss of heterozygosity (LOH),
which occurs when there is no simultaneous change in DNA
copy number (CN), i.e., CN-neutral loss of heterozygosity.
This defect is consistent with uniparental disomy (UPD).
Acquired segmental UPD is increasingly recognized for its role
in various tumors (11, 12). SNP-A-based genomic analysis has
been applied in patients with various hematologic malignancies
(2–4, 13, 14). A particularly interesting study by Mohamedali
et al. (13) analyzed patients with low-risk MDS and found
that 10% of these patients had a cryptic or submicroscopic
deletion or duplication and 8% had gains. However, in general,

the clinical significance of SNP-A-based analysis has not been
fully realized.

The present study is aimed at developing a rational diagnostic
algorithm for the detection of SNP-A-based genomic aberrations
(unbalanced chromosome rearrangements and acquired UPDs)
and establishing their clinical correlations in patients with MDS-
related disorders. Based on the technical advantages of SNP-A,
we assessed 376 cases of MDSs, various other myeloid disorders,
and normal individuals. Our study represents the first such
investigation in a large cohort of Chinese patients.

MATERIALS AND METHODS

Patients
A total of 376 individuals were recruited from the Department
of Hematology at Tianjin Medical University General Hospital
and Tianjin First Central Hospital from April 2013 to September
2016. These individuals included 200 patients with de novo
MDS, 25 with myeloproliferative neoplasm (MPN), 63 with
primary AML, and 62 with idiopathic cytopenia of undetermined
significance (ICUS) as well as 26 healthy individuals. The 62
ICUS patients were initially suspected of having MDS but were
subsequently redefined as having ICUS due to lack of typical
abnormal karyotypes and morphological dysplasia as well as a
proportion of blast cells <5% (10, 15). The MPN and AML
cases served as the positive controls, and the healthy individuals
served as the normal controls for the purposes of assay validation
(Table 1).

Clinical data used for the assessment included age, sex,
blood cell counts, bone marrow morphology, blast counts, and
survival times, including progression-free survival (PFS) and
overall survival (OS), for all patients (Table 1). The diagnosis
and classification of MDS were in accordance with the Vienna
diagnosis standard and the 2008 WHO classification (10, 16).
Among the 200 MDS patients, 115 were males and 85 were
females, aged from 12 to 87 years old with a median age of
60 years. According to the 2008 WHO classification standard
(17), 10 cases were classified as refractory anemia with ringed
sideroblasts (RARS), 34 as refractory cytopenia with unilineage
dysplasia (RCUD), 68 as refractory cytopenia with multilineage
dysplasia (RCMD), 26 as refractory anemia with excess blasts-1
(RAEB-1), 46 as refractory anemia with excess blasts-2 (RAEB-
2), nine as unclassified myelodysplastic syndrome (MDS-U), and
seven as 5q-syndrome. In the prognostic evaluation of MDSs,
IPSS-R was a commonly usedmethod. IPSS-R was based on these
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TABLE 1 | Baseline characteristics of 376 cases in study.

Characteristic De novo MDS Pos ctl NC ICUS

AML MPN

Number 200 63 25 26 62

Age, years 12–87 11–91 50–87 26–74 9–74

Median 60 61 71 55 62

Male/Female 115/85 32/19 14/11 13/13 32/30

WBC, ×109/L 0.4–38.2 0.2–265.9 2.3–24.5 4.3–9.5 1.2–11.5

Median 3.6 8.1 6.7 6.7 5.6

Hb, g/L 27–168 38–147 65–187 123–146 34–132

Median 82 89 102 132 66

PLT, ×109/L 2–531 3–267 34–863 102–278 13–258

Median 96 42 167 176 71

Follow-up, months 6–42 8–39 6–40 – 6–42

Median 28 26 27 – 27

MDS, myelodysplastic syndromes; AML, acute myeloid leukemia; MPN, myeloproliferative

neoplasm; ICUS, idiopathic cytopenia of undetermined significance; WBC, white blood

cell; Hb, hemoglobin; PLT, platelet; Pos ctl, positive control; NC, normal control.

characteristics (depth of cytopenias, splitting of marrow blasts
<5%, and more precise cytogenetic subtypes). MDS patients
were more precisely classified into all five IPSS-R categories,
including Very low, Low, Intermediate, High, and Very high
subgroups. Cytogenetic results accounted for an important
proportion and could be divided into five categories, including
Very good [–Y, del(11q)], Good [Normal, del(5q), del(12p),
del(20q), double including del(5q)], Intermediate [del(7q), +8,
+19, i(17q), any other single or double independent clones], Poor
[−7, inv(3)/t(3q)/del(3q), double including−7/del(7q), complex:
three abnormalities], and Very poor (complex:>3 abnormalities)
subtypes (18). According to the IPSS-R standard,MDS patients in
each subgroup were 10, 41, 54, 55, and 26, respectively; However,
there were 14 cases not classified due to no cell growth available
for MC analysis. The clinical features of these subgroups have
been presented in Supplementary Table 1. The lower-risk group
consisted of patients from the Very low, Low, and Intermediate
categories of IPSS-R, and the higher-risk group was composed
of patients from the High and Very high categories of IPSS-
R. Patients were considered for clinical management driven by
individual patient’s clinical and biological characteristics and by
physician preferences. Patients were managed according to the
Chinese Expert Consensus on Diagnosis and Treatment of MDS
(19). The goal of treatment for low-risk MDS patients was to
improve the quality of life. The treatment was mainly supportive
care, including blood transfusion, erythropoietin (EPO) and
granulocyte colony-stimulating factor (G-CSF) administration,
and removal of iron. Commonly used immunomodulation
therapy drugs include thalidomide and lenalidomide. The
target of MDS treatment in high-risk groups was to delay
disease progression, prolong survival, and cure. The high-risk
patients were treated with decitabine and/or chemotherapy.
Hematopoietic stem cell transplantation was performed in eight
of our patients.

All 376 recruited cases were subjected to SNP-A and MC
studies on their BM samples. All samples were obtained at
disease presentation.

This work was prospectively conducted in regard to specimen
collection and clinical follow-up. OS was measured from day
0 to death from any cause (patients lost to follow-up were
censored). PFS was defined as the time from day 0 to disease
progression. This study was approved by the Ethics Committee
of Tianjin Medical University General Hospital and Tianjin
First Central Hospital. Patients and healthy controls gave their
informed consent. The study was conducted in accordance with
the Declaration of Helsinki.

Cytogenetic Analysis
Cytogenetic analysis of bone marrow aspirates was performed
according to standard methods. The chromosomal preparations
were G-banded using trypsin and Giemsa (GTG), and the
karyotypes were described according to the International System
for Human Cytogenetic Nomenclature (ISCN) (20).

Single-Nucleotide Polymorphism Array
Analysis
SNP-A analysis was performed at Wuhan Kindstar Diagnostics
Co./Kindstar Global gene (Beijing) Technology, Inc., P. R. China,
by using the GeneChip Mapping 750K Assay Kit (CytoScan R©

750K Assay Kit, Affymetrix, USA). Testing procedures were
performed in strict accordance with the manufacturer’s
instructions and quality control standards, primarily including
the steps of DNA extraction, enzyme digestion, connection,
PCR, purification, fragmentation, labeling, hybridization,
scanning, and data analysis. The detection instrument used
was the GCS 3000Dx v.2 gene chip system, which is certified
by the FDA/CE/CFDA, and the software used for data analysis
was ChAS. The CytoScan 750K chip employed has more than
750,000 probes coated for the detection of genomic variance
and covers 4,127 genes that include all the ISCA (International
Standards for Cytogenomic Arrays) genes and 83% of the OMIM
(Online Mendelian Inheritance in Man) disease-related genes.
This chip can reliably detect copy number variations (CNVs),
UPDs, and >10% of abnormal clones in mosaicism but is
incapable of detecting balanced chromosome rearrangements
and DNA point mutations. In the present study, three criteria
were used to interpret a significant genomic aberration: First,
the size of an identified aberration should be ≥400Kb (for a
gain), ≥400Kb (for a loss), or ≥5Mb (for a UPD) based on
the manufacturer’s recommendation and our own database.
Second, the frequency of the identified aberration should be
somewhat in concordance with the percentage of BM blasts
in a patient, which could suggest that the aberration is likely
acquired instead of constitutional in nature. Therefore, only
aberrations in mosaic status (>10% of abnormal clones)
were employed for further investigations. A threshold of 10%
for mosaic identification was validated and provided by the
manufacturer. Last, with regard to whether the aberration
had been reported in association with respected disorders,
related literature, and the Atlas of Genetics and Cytogenetics in
Oncology and Hematology (http://atlasgeneticsoncology.org/
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Anomalies/Anomliste.html) should be reviewed and checked to
identify possible disease relationships.

Statistical Analysis
Categorical variables were compared using Fisher’s exact test and
the χ2 test. Variance analysis was used to compare measurement
data. Survival analysis was performed using the Kaplan–Meier
method, and the Cox proportional hazard model was used
for univariate analysis and multivariate analysis. All P-values
are two-tailed, and P < 0.05 indicates statistical significance.
Statistical analyses were performed with SPSS version 19.0.

RESULTS

Single-Nucleotide Polymorphism Array
Analysis Led to a Higher Detection Rate of
Chromosome Abnormalities
Our evaluation was performed on 376 cases that had been
referred for identification of chromosome abnormalities by MC
and SNP-A methods (Supplementary Table 2). MC allowed for
the detection of 17 balanced rearrangements that were not
detected by SNP-A. However, all the unbalanced chromosome
aberrations identified by MC were also detected by SNP-A. In
addition, SNP-A was able to detect many submicroscopic or
cryptic chromosome abnormalities, which could not be detected
by MC. The abnormality detection rate by SNP-A was 73.5, 72,
and 69.8%, but by MC, it was 42, 48, and 36.5% in MDS, MPN,
and AML patients, respectively. Comparing the two groups,
the P-values were P ≤ 0.001, P = 0.148, and P ≤ 0.001,
respectively. Notably, in our positive controls, the abnormal
detection rates by both MC and SNP-A were higher in the
MPN patients than in the AML patients likely due to the
relatively small number of MPN patients enrolled in the study.
Because our MPN and AML patients served as the positive
controls, their detection results are only provided for assay
validation purposes.

Importantly, in the 20 combined cases of MDS, MPN, and
AML that had no informative MC findings (no cell growth
available for MC analysis), 11 (55%) were found to be abnormal
by SNP-A. In addition, with SNP-A analysis, the detection rates
of submicroscopic or cryptic aberrations in the MDS, MPN, and
AML patients with normal or no informative MC findings were
32.8, 30.8, and 30%, respectively. Furthermore, SNP-A-based
aberrations in addition to the detection of MC in a patient were
observed in 31% of the MDS, 50% of the MPN, and 30.4% of the
AML patients. Notably, there were no abnormalities as detected
by either MC or SNP-A in the normal controls.

Finally, even though all 62 ICUS patients were found to be
normal by MC, 20 of them (32.2%) were identified as abnormal
according to the SNP-A analysis.

Single-Nucleotide Polymorphism Array
Analysis Revealed More Complex
Chromosome Abnormalities
Using SNP-A, both CNVs and UPDs were observed in
our MDS patients, with chromosome gains accounting for

FIGURE 1 | (A) Number of myelodysplastic syndrome (MDS) patients with

different types of single-nucleotide polymorphism array (SNP-A) abnormalities

in each chromosome. (B) Number of myeloproliferative neoplasm (MPN)

patients with different types of SNP-A abnormalities in each chromosome.

(C) Number of acute myeloid leukemia (AML) patients with different types of

SNP-A abnormalities in each chromosome.

42.0%, losses for 38.4%, and UPDs for 19.6%. The number
of CNVs per patient ranged from 0 to 15, with a median
number of 2.0 CNVs/patient. Notably, 88 of the 147 (59.9%)
MDS patients with abnormal SNP-A detections showed
1–2 CNVs per patient, and 59 of the 147 (40.1%) showed
≥3 CNVs per patient. The SNP-A-detected abnormalities
were found to involve essentially all 24 chromosomes, with
chromosomes 1, 5, 7, 8, 9, 12, 17, 18, 19, 20, and 21 being
affected relatively frequently. The detected chromosome
aberrations by SNP-A mainly appeared as Gain 1q21, Loss
5q11, Loss 5q14, Loss5, Loss 7q11, Loss 7q22, Loss 7p21,
Gain 8, Gain 9p13, Loss 9q21, UPD 9q21, Loss 12p11,
Loss 12p13, Loss 17p11, Loss 17p13, Loss 18p11, Gain
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FIGURE 2 | Correlations between overall survival (OS)/progression-free survival (PFS) and single-nucleotide polymorphism array (SNP-A) detections in patients with

myelodysplastic syndrome (MDS). Comparison of the MDS patients with and without SNP-A aberrations in OS (A) and PFS (B). Comparison of the MDS patients with

abnormal SNP-A detections and without such additional SNP-A aberrations in OS (C) and PFS (D) of the normal or good cytogenetic findings by metaphase

cytogenetics (MC). Comparison of the MDS patients with and without SNP-A aberrations in OS (E) and PFS (F) of the high-risk group. Comparison of the MDS

patients with and without SNP-A aberrations in OS (G) and PFS (H) of the low-risk group.
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19p13, Loss 19p13, Loss 20q11, and Loss 20q12. Notably,
UPDs were observed to involve chromosomes 2, 4, 6,
9, 11, 19, and 22 (Figure 1A). All these findings were
largely consistent with previously reported observations
(2, 3, 5, 9).

In our positive controls (MPN and AML patients), many
chromosomal abnormalities were also observed by SNP-A.
Notably, these abnormalities were identified as commonly
involving chromosomes 4, 7, 9, 13, and 20 in the MPN patients
and chromosomes 7, 8, 11, and 17 in the AML patients
(Figures 1B,C).

Chromosomal Aberrations Detected by
Single-Nucleotide Polymorphism Array
Contributed to a Poor Prognosis in
Patients With Myelodysplastic Syndromes
IPSS-R evaluation predicts overall survival and leukemia-free
survival of patients with primary MDSs (18). There is no
doubt that cytogenetics is one of the most valuable indicators
in assessing MDS prognosis in the “gold standard” scoring
system. In our study, except for seven patients lost to follow-
up, the remaining 193 patients with MDS were followed
up for 6–42 months with a median time of 28 months.
The MDS patients with SNP-A-detected abnormalities had
significantly lower OS (24 months vs. NR; P = 0.004) and
PFS (15 vs. 40 months; P = 0.002) than those without SNP-
A abnormalities (Figures 2A,B). In addition, we evaluated the
prognostic value of SNP-A analysis in MDS patients with
normal karyotypes or good IPSS-R karyotypes by MC. Of these
patients, the prognosis of the patients with abnormal SNP-
A detections was significantly worse in terms of OS and PFS
(Figures 2C,D).

According to the IPSS-R standard, high-risk and very-high-
risk MDS patients were classified as the high-risk group, and
very-low-risk, low-risk, and intermediate-risk MDS patients
were classified as the low-risk group. In our study, SNP-
A analysis did not demonstrate an advantage in prognostic
assessment for the high-risk group (Figures 2E,F). However,
in the low-risk group, the patients with abnormal SNP-
A detections had a significantly shorter survival time than
patients without SNP-A aberrations (Figures 2G,H). Therefore,
for MDS patients with a low-risk evaluation according to IPSS-
R, SNP-A analysis seems to have a more significant impact on
prognostic prediction.

Finally, in one patient, the number of SNP-A abnormalities,
clinical features (including sex, age, blood counts, bone
marrow blasts), and MC findings were also used to evaluate
the prognosis of MDS patients by multivariable analysis
(Table 2). The number of SNP-A abnormalities (≥3 per
patient) was an independent predictor of poor prognosis
in the patients with MDS [hazard ratio (HR) = 2.40, P
= 0.002]. Our investigations provided valuable additional
risk-stratification information to the standard IPSS-R
scoring system.

TABLE 2 | Multivariable analysis of clinical data, MC findings, and number of

SNP-A aberrations.

Factor Hazard ratio (95% CI) P

Age 1.73 (0.75–4.07) 0.002

Sex (male vs. female) 1.47 (1.01–1.69) 0.007

NEU (×109/L) (<0.8 vs. ≥0.8) 1.19 (0.81–2.92) 0.029

Hb (g/L) (<80 vs. 80–100 vs. ≥100) 1.52 (1.06–4.02) 0.016

Plt (×109/L) (<50 vs. 50–100 vs.

≥100)

1.06 (0.58–1.52) 0.030

BM blasts (%) (<5 vs. 5–10 vs. >10) 1.79 (1.04–3.47) 0.016

MC (very good, good, intermediate

vs. poor, very poor)

2.22 (0.79–6.12) 0.008

Number of SNP-A aberrations (≥3 vs.

<3)

2.40 (1.48–9.57) 0.002

NEU, neutrophil; Hb, hemoglobin; Plt, platelet; BM, bone marrow; MC, metaphase

cytogenetics; SNP-A, single nucleotide polymorphism array.

Chromosomal Aberrations Detected by
Single-Nucleotide Polymorphism Array
Were Closely Associated With a High Risk
of Transformation to Typical
Myelodysplastic Syndrome in Patients With
Idiopathic Cytopenia of Undetermined
Significance
Patients with ICUS may progress to myeloid malignancies, but
most patients often maintain a stable ICUS status for many
years without progression. An ICUS patient once identified as
having an abnormal karyotype that meets the MDS criteria
would be rediagnosed with MDS. SNP-A can efficiently detect
chromosomal abnormalities, which is important for assessing
the evolution of the disease. In our study, 20 of the 62
ICUS patients were found to have chromosomal abnormalities
by SNP-A technology. These abnormalities affected almost all
chromosomes except chromosomes 2, 10, 11, 13, 16, and X
(Table 3). These 20 ICUS patients with SNP-A aberrations
were followed up for a median of 11 months (6–20 months).
Notably, 17 of them (85%) transformed to typical MDS, and
the remaining three (15%) transformed to aplastic anemia (AA)
(Table 3). However, the other 42 ICUS patients without SNP-A
abnormalities were also followed up for a median of 12 months
(3–24 months), and none of them were converted to MDS.
Therefore, chromosomal abnormalities detected by SNP-A were
closely associated with a high risk of disease transformation in
patients with ICUS.

DISCUSSION

The global profiling of DNA copy number changes in cancer cells
through the use of microarray platforms is extremely attractive
because it provides an unparalleled opportunity to uncover
elusive genomic aberrations that are critical to tumorigenesis
and progression. SNP-A technology allows for the capture of
DNA copy number changes and SNP-based genotypes at sub base

Frontiers in Oncology | www.frontiersin.org 6 July 2020 | Volume 10 | Article 962184

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xiao et al. Value of SNP in MDS

TABLE 3 | Aberrations detected by SNP-A in 20 ICUS patients.

Patients Aberrations Diagnosis* Time**

1 UPD (17q11.1-q11.2) RAEB-1 8 months

2 Loss(20q), Gain(21q), UPD(14q) MDS-U 12 months

3 Loss(5q21.1-qter), Loss(12p), Loss(17q) RCMD 6 months

4 Loss(Y) AA 13 months

5 UPD(19p) AA 8 months

6 UPD(6p) RCUD 10 months

7 Gain(8) RCUD 12 months

8 UPD(14q) RCMD 10 months

9 Gain(1q) RCMD 15 months

10 Loss(20q) RCUD 13 months

11 Loss(3p), Gain(18q), UPD(9p,12q) RCMD 6 months

12 UPD(19q) RCUD 14 months

13 Gain(1q), Loss(7q), UPD(15q,17q) RCMD 8 months

14 Gain(8) MDS-U 10 months

15 Loss(Y) RCUD 14 months

16 UPD(4q) RCMD 18 months

17 Gain(8) AA 9 months

18 UPD(4q) RCUD 17 months

19 Loss(4q,5q,11p,17), Gain(21q) RAEB-1 7 months

20 UPD(5q) RCUD 20 months

UPD, uniparental disomy; RAEB-1, refractory anemia with excess blasts-1; MDS-U,

myelodysplastic syndrome, unclassified; RCMD, refractory cytopenia with multilineage

dysplasia; RCUD, refractory cytopenia with unilineage dysplasia; AA, aplastic anemia.

*Diagnosis after transformation from ICUS.

**Follow-up time from initial diagnosis to disease transformation.

resolution, which helps detect small-scale genomic lesions and
UPDs. A series of SNP-A-based studies have been performed on
hematologic disorders, including acute lymphoblastic leukemia
(21), MDS (22–25), myeloma (26), leukemias (27–29), and
lymphomas (30).

From a technological point of view, our investigations have
demonstrated that the detection of chromosomal abnormalities
can be improved significantly by using the SNP-A technique for
patients with MDS. From the following several aspects of data
analyses, even somewhat confirmatory for previous findings in
nature, we could still better appreciate the technical advantages
of SNP-A over MC in detecting chromosomal aberrations. First,
in our study, the abnormal detection rate by SNP-A for the
patients with MDS and for the positive controls (MPN and
AML patients) was higher than that obtained by MC. Second,
SNP-A allowed for the detection of cryptic chromosomal lesions
in the MDS patients and the positive controls with normal,
abnormal, or even no informative MC findings, meaningfully
demonstrating the technical reliability of SNP-A analysis. Third,
SNP-A can detect chromosome deletions, gains, and UPDs.
Acquired UPDs have been described in several malignancies
(31–33), but due to the inability of MC to identify them,
UPDs have remained largely elusive in many hematological
disorders. Acquired segmental UPD is likely the result of mitotic
recombination and appears to be a common event in MDS

(24, 34, 35). In our study, acquired UPDs were observed in
19.6% of the MDS patients, with chromosomes 2, 4, 6, 9, 11, 19,
and 22 being involved, which is largely consistent with previous
reports. Finally, from a practical point of view, we would still
recommend the combined application of MC and SNP-A for
detection becauseMC can offset the inability of SNP-A to identify
balanced chromosome rearrangements.

From a clinical point of view, our studies offered the following
findings either not previously reported or less emphasized:

(1) Remarkably, in our study, 20 of the 62 ICUS patients
had abnormal SNP-A detections, and 17 of these 20 patients
progressed to typical MDSs with a progression time of 6–20
months and a median progression time of 11 months. Thus,
abnormal SNP-A detections may predict the transformation to
MDSs in advance for patients with ICUS, which would lead to
disease monitoring and early intervention.

(2) It is likely that the presence of chromosome abnormalities
as detected by SNP-A is responsible for the prediction of clinical
phenotype and prognosis. A series of studies have shown that
SNP-A detection is closely associated with prognosis (24–26). In
this regard, our current study further strengthened the clinical
value of SNP-A detection in prognostic assessment for patients
with MDS. As a result, the patients with a normal SNP-A finding
likely had a more favorable prognosis; SNP-A detection had an
especially important value for prognostic assessment of the MDS
patients in the low-risk group; the number of abnormalities (≥3
per patient) was observed to be an independent predictor of poor
prognosis. Therefore, our observations are of significant clinical
value and provide additional information important for further
risk-stratification assessment of patients with MDSs. Based on
our findings and those of previous reports, it is now evident
that a combination of MC and SNP-A methods would provide
a more precise assessment of the prognosis of patients with
MDSs. Recently, a series of studies (2, 6, 22, 36) showed that
total genomic alterations detected by SNP-A were predictive of
overall survival in a cohort of patients with MDSs or other
related hematological disorders who received demethylation-
based treatment, which certainly deserves further investigation.

A better understanding of the strength and weakness of
each technique in a clinical setting is of extreme importance.
SNP-A can detect loss of heterozygosity and serve as a useful
complement to MC by capturing additional submicroscopic
or cryptic chromosome gains or deletions. However, SNP-A
can only detect chromosomal or chromosome-fragment-size
aberrations but cannot detect single gene-based mutations.
Recently, Choi et al. (37) used a more sensitive SNP-A approach
(Affymetrix CytoScan HD) to investigate submicroscopic or
cryptic chromosome aberrations inMDS patients. This CytoScan
HD platform had ∼2.7 million coated probes (much more than
that of the CytoScan 750K chip employed in our study) and
was able to detect gains or losses of more than 35 markers
within or including a known clinically significant cancer-
related gene. Thus, in the study by Choi et al., they could
identify much smaller cryptic abnormalities, such as KMT2A
partial tandem duplication and deletion involving the TET2
gene, that are often smaller than 100 kb in size. Certainly, the
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CytoScan 750K-based SNP-A platform adopted in our study
cannot reach such a greater sensitivity in detection. Based on
the detection of chromosome-fragment sized aberrations (often
>400 kb in size), our study provided several findings either
not previously reported or less emphasized as described above
and should be considered valuable information complementary
to Choi’s findings. Next-generation sequencing (NGS) focuses
more on gene mutation analysis. Mutant genes can be detected
in more than 80% of MDS patients, and most mutations
are not specific and usually have uncertain significance (38).
Although NGS makes it increasingly easy to detect fusions and
mutations, not all cytogenetic abnormalities can be detected
by NGS. Therefore, if feasible, these techniques should be
combined to contribute to the study of genomic aberrations
for better and more precise management of patients with
MDS (39–42).
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Recent progress in high throughput sequencing technologies has provided an
opportunity to probe T cell receptor (TCR) repertoire, bringing about an explosion of
TCR sequencing data and analysis tools. For easier and more heuristic analysis TCR
sequencing data, we developed a client-based HTML program (VisTCR). It has a data
storage module and a data analysis module that integrate multiple cutting-edge analysis
algorithms in a hierarchical fashion. Researchers can group and re-group samples
for different analysis purposes by customized “Experiment Design File.” Moreover, the
VisTCR provides a user-friendly interactive interface, by all the TCR analysis methods
and visualization results can be accessed and saved as tables or graphs in the process
of analysis. The source code is freely available at https://github.com/qingshanni/VisTCR.

Keywords: T cell sequencing, analysis tool, data analysis, Graphic user interface, T cell repertoire

INTRODUCTION

Breakthroughs made in the development of antibody-based treatments for autoimmune diseases
and tumor immunotherapy in recent have fueled an as-yet unmet need for feasible personal
immune monitoring platforms to evaluate adaptive immune response (Han et al., 2015). T cells
are one of the most critical players of adaptive immunity, with diverse functions including cell
killing, providing B cell help (and consequently boost specific antibody production), and cytokine
secretion. By capturing the identity and relative size of T cell clones, T cell receptor (TCR)-Seq
offers an opportunity to observe changes in the composition of the adaptive immune system
at homeostasis or during pathogenic responses (Aris et al., 2018; Fahl et al., 2018; Jiang et al.,
2018). Sorting and clonotyping of purified T cell populations, such as Tregs, has yielded insight
into pathogenic populations and phenotypic changes in autoimmunity, while the clarification
of the clonal dynamics of tumor-infiltrating CD8+ T cells responsive to tumor neoantigens is
under intensive study due to their positive association with enhanced prognosis. This additional
dimension of immune monitoring thus extends our understanding of adaptive immunity, and has
the potential to inform treatment decisions.

Facilitated in part by the decreasing cost of next-generation sequencing, T cell repertoire
sequencing (TCR-Seq) data has been rapidly generated in recent years (Robins, 2013; Six et al., 2013;
Newell and Davis, 2014; Hou et al., 2016). Many tools have also been developed for T cell sequencing
data analysis. Some of these focus on sequence assembly, assignment to genomic V, D and J genes,
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extraction of CDR3 regions and error correction, such as IgBlast
(Ye et al., 2013), TCRKlass (Yang et al., 2014), Decombinator
(Thomas et al., 2013), IMSEQ (Kuchenbecker et al., 2015),
MiTCR (Bolotin et al., 2013), and MiXCR (Bolotin et al.,
2015). Others provide global evaluation methods on the TCR
sequencing data, such as ARResT/Interrogate (Bystry et al., 2017),
ImmunExplorer (Schaller et al., 2015), VDJtools (Gardner et al.,
2015), VDJviz (Bagaev et al., 2016), Vidjil (Duez et al., 2016), and
tcR (Nazarov et al., 2015), providing different methods to gain
biological and clinical understanding by diversity measurements,
clonotype distribution, similarity analysis, etc. Many of these
tools also offer different types of visualizations for a given analysis
that emphasize distinct interpretations. For instance, VDJviz can
generate individual-sample circus plots for VJ usage, while tcR
offers radar plots to emphasize divergence in VJ segments across
samples. Other features, such as clonotype clustering in VDJil,
may be more rarely provided by an individual tool.

However, these initial clonotype extraction and final
visualization tools tend to be separated, and not all of these
tools are readily intercompatible. As such, performing a more
complete analysis of TCR repertoires would require a user
to piece several of these tools together in order to generate
comprehensive visualizations. Furthermore, most of the current
tools are primarily operated by a command line interface, and
data interpretation from such interfaces may be challenging
for some wet lab immunological researchers, who may require
extensive assistance from computational bioinformaticians to
generate these analysis. The nuances between, and functional
impact of applying, different clonotype extraction methods in
terms of downstream interpretation may also be confusing. To
overcome this barrier, we have developed the VisTCR (Visual
TCRSeq) software, an interactive platform with a graphical user
interface (GUI) for simplified management and analysis of TCR
sequencing data. Starting from raw sequencing data, VisTCR can
be used to directly perform clonotype extraction and downstream
analyses within a single data management framework. VisTCR
leverages three of the most commonly used extraction methods
to allow users to more easily explore their data, and investigate
the differences that may result from applying distinct analysis
pipelines across a broad range of downstream visualizations.

DESIGN AND IMPLEMENTATION

The design of VisTCR emphasizes a friendly, GUI and intuitive
analysis workflow. The major features of the software include:

1. Independent modules for data management and analysis.
In the Data Storage Module, raw data are uploaded and
grouped in each sequencing experiments (Figure 1B and
Supplementary Video S1). In the Data Analysis Module,
the raw data can be selected and re-organized to perform
various analyses and generate figures (Figure 1C and
Supplementary Video S2).

2. Freedom to group samples for individualized analysis. An
“Experiment Design File” is introduced in VisTCR that
contains a combination of multiple variables for an analysis

task, which allows users to de-construct their experiment
data into a complex analysis design. Furthermore, in the
data analysis process, individual variables or any combination
of variables can be selected to group and re-group samples
for comparison and analysis of T-cell sequencing data
(Supplementary Files S1, S2 and Supplementary Video S2).

3. Integration of multiple cutting-edge analysis algorithms in a
hierarchical fashion. These data analysis methods in VisTCR
are organized in hierarchical fashion and are divided into
three categories: Single sample analysis, Pairwise samples
analysis, and Multi-samples analysis. Each category is further
subdivided to generate comprehensive repertoire analysis that
includes visualizing clonotype distribution, similarity analysis
and diversity analysis, and tracking individual clones across
samples, etc. (Figure 1A and Supplementary Table S1 and
Supplementary Video S2).

4. User-friendly interactive interface and visualization of data.
VisTCR provides a point and click interface for all of the
TCR analysis methods. The analytical results are transformed
into interactive data visualization with a representation-
transparent approach (Bostock et al., 2011). These results can
be downloaded as tables or graphs during each stage in the
analysis workflow.

The workflow of VisTCR is composed of three steps
(Figure 1A): (1) Uploading the sequencing data files into Data
Storage Module, (2) Creating an analysis task in the Data Analysis
Module, and (3) Performing analysis in Data Analysis Module.
VisTCR use standard fastq format file as input, which is the
most widely used format in sequence analysis. The raw TCR
sequencing data files are uploaded, stored and organized in
the “Experiment” tab of Data Storage Module (Figure 1B and
Supplementary Video S1). A quality control tool (FastQC)1

has been integrated to Data Storage Module for assessment of
sequencing quality (Supplementary Video S1). In Data Analysis
Module, an “Experiment Design File” is created firstly with a list
of samples and variables to import the raw data from Data Storage
Module into analysis workflow (Supplementary Files S1, S2 and
Supplementary Video S2). The raw TCR sequencing data can be
parsed with several decoding methods [Decombinator (Thomas
et al., 2013), MiTCR (Bolotin et al., 2013), and MiXCR (Bolotin
et al., 2015)] as options (Supplementary Figure S1).

The analysis methods are categorized into three groups: Single
sample analysis, Pairwise samples analysis, and Multi-samples
analysis. In Single sample analysis, the TCRBV and/or TCRBJ
usage, CDR3 spectratype and Clonotype distributions of selected
samples can be analyzed. In Pairwise samples analysis, the shared
clonotypes between two selected samples are shown in a plot
with frequency of nucleotide or amino acid (nt/aa) sequences in
Overlapping clonotype analysis. Moreover, the degeneracy of the
shared T cell clonotypes is evaluated with Convergent Analysis,
in which the number of unique CDR3 nucleotide sequences that
are translated into same CDR3 amino acid sequence is calculated
(Venturi et al., 2008). The Multi-sample analysis is classified
into three categories: descriptive statistics, similarity analysis

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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FIGURE 1 | Overview of the VisTCR software. (A) Basic workflow of the VisTCR software and TCR sequencing data analysis methods in VisTCR software. The
workflow of the VisTCR software includes three steps (1) Uploading TCR sequencing data files in the Data Storage Module, (2) Creating an analysis project in the
Data Analysis Module. (3) Performing analysis and obtaining results in the Data Analysis Module. (B) The GUI of the Data Storage Module. (C) The GUI of the Data
Analysis Module.

and diversity analysis. The description statistics contain Most
Abundant Clonotypes, Clonal Space Homeostasis, Clonotype
Tracking, and Overlap Analysis. The similarity analysis and
diversity analysis provide statistical methods to quantify the
differences of grouped datasets by using a variety of similarity and
diversity estimation methods (Supplementary Table S1). A list of
the analyses that are possible in VisTCR with respect to two other
commonly used tools featuring GUIs is also included for ease of
comparison (Figure 1A). Notably, VisTCR enables a number of
unique analyses for sequence convergence and clonotype overlap
that are not available in the other tools.

The software is a client-based HTML program that has an
intuitive user interface which is written in ROR (Ruby on
Rails) (Bachle and Kirchberg, 2007), and Data-driven documents
Javascript library (D3.js) (Bostock et al., 2011). The calculation
is implemented using R language, which is integrated with ROR
using Rserve2.

RESULTS

To demonstrate the usage of VisTCR in T-cell repertoire
analysis, a data set from a previously published paper was

2http://www.rforge.net/Rserve/

re-analyzed (Niu et al., 2015). As part of the original
study to longitudinally characterize the CD4+/CD8+ T-cell
repertoires in drug reaction with eosinophilia and systemic
symptoms (DRESS) from diagnosis to clinical remission,
CD4+ and CD8+ T-cells from peripheral blood of DRESS
patients were isolated at 10-day intervals, and sequenced
CDR3-regions of the TCRB chain on Ion Torrent PGM
platform (Life Technologies, Carlsbad, CA, United States).
This data set includes 66 samples from eight DRESS patient
and 28 samples from healthy donors (Niu et al., 2015). All
samples were uploaded into the data management module
of VisTCR (Supplementary Video S1). Two experiment
design files (Supplementary Files S1, S2) were edited to
re-organize the data set. After uploading the experiment
design files in the analysis module, two analysis tasks were
created to demonstrate the cutting-edge analysis functions
of VisTCR (Supplementary Video S2). One analysis task
grouped the five timepoint TCR sequencing data from WDJ
patient (Supplementary File S1). Another grouped the TCR
sequencing data from the eight healthy donors together with
samples taken at the first time pointfrom eight DRESS patients
(Supplementary File S2). MiXCR with default parameters was
used to extract CDR3 regions from raw sequences and perform
error correction.
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Single Sample Analysis
The Single Sample Analysis in VisTCR was provided to
browse the fundamental characters of TCR sequencing data
to uncover clues for further analysis of each given sample.
For instance, significant differences between the first and fifth
timepoint data for the samples from patient WDJ (an obscured
patient ID) could be found in terms of TRBV/J segment
usage, CDR3 length distribution, and clonotype distribution
could be observed from this analysis (Supplementary Video
S3 and Figure 2). The increase usage of TRBV27, TRBV13,
TRBV18 and decreased usage of TRBV5-8, TRBV19 were
discovered in the TRBV usages of the two timepoint data
(Figures 2A,B). The peak of CDR3 length was 45 bp

at the first timepoint and 42 bp by the fifth timepoint
(Figures 2C,D). The highest frequency of TCR clonotype
reached 10% in fifth timepoint, but had only reached 1.8%
in first timepoint (Figures 2E,F). These resulting visualizations
are thus consistent with the original conclusion that a
portion of the CD8 + T cells were rapidly expanding
in DRESS patients.

Pairwise Sample Analysis
To inspect the change of the repertoire of CD8+ T cells in
the development of DRESS, the first and fifth timepoint TCR
sequencing data of WDJ patient were selected to analyze the
distribution of overlapped and un-overlapped clonotype in the

FIGURE 2 | Examples of single sample analysis in VisTCR. The two samples are CD8+ repertoires and obtained at time point 1 and 5 from a representative patient
are shown (patient WDJ). (A,B) TRBV segment usage. (C,D) The CDR3 length distribution with TRBJ segment usage. (E,F) Clonotype Frequency plots.
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FIGURE 3 | Multi-time point sample analysis of patient WDJ. (A) Overlapping Clonotype Frequency plots between time point 1 (Group1) and time point 5 (Group 2).
(B) Un-overlapping Clonotype Frequency plots of time point 1 (Group1) and time point 5 (Group 2). (C) Clonal space homeostasis visualization to help identify
potential clonal expansion. The proportional distribution of the fourth timepoint TCR clonotypes differed from the third timepoint (p < 0.0001, Chi-square test) and
fifth timepoint (p < 0.0001, Chi-square test). (D) Clonal tracking mapping the dominance of a given clone across all samples. Each line corresponds to a unique
TCRB clonotype. As a general trend, it can be seen that a number of clones undergo clear expansion at the earlier timepoint (time2) before subsequently contracting
(time4), a behavior consistent with memory T cell formation following the end of antigen exposure. (E) Bar plot of Shannon diversity index. Two groups, DRESS
patients and healthy donors, of repertoires are selected and analyzed. (F) Box plot of the two groups.

section of Pairwise sample analysis (Supplementary Video S4
and Figures 3A,B). In the Overlapping Clonotype Frequency
scatter plots, the distribution of the shared clonotypes from

the selected pair of timepoint datasets deviated significantly
from the diagonal. The coefficient of determination was only
0.001 between the two timepoints (Figure 3A). Furthermore,
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a lot of high frequency clonotypes were found in the fifth
timepoint TCR sequencing data of WDJ patient from the
Un-Overlapping Clonotype Frequency scatter plots (Figure 3B).
The differences between the pair of TCR sequencing data is useful
as a comparison between extremes in this demonstration (since
there are additional timepoints), but may just as readily serve as
the primary analysis of interest in alternative study designs.

Multi-Sample Analysis
The section of Multi-samples Analysis provides a number of
statistical analysis methods that are categorized into Description
Statistics of TCR clonotypes, Similarity Statistical analysis
between grouped datasets, and Biodiversity Statistical analysis of
grouped datasets. The Description Statistics of TCR clonotypes
was executed with pre-defined experimental factors Time_point
in the WDJ Experiment Design Files (Supplementary Video S5
and Figures 3C,D). In Clonal space homeostasis analysis, it was
shown that the proportional distribution of the fourth timepoint
TCR clonotypes differed from other timepoint (Figure 3C). In
Clonotype Tracking analysis, the change of the high frequency
TCR clonotypes from five timepoint demonstrated that the CD8+

T cells of WDJ patient were expanded in second timepoint
and contracted in third and fourth timepoint, then expanded
in fifth timepoint again (Figure 3D). However, these types of
visualizations can also be easily applied to explore the flow of T
cell clones between different tissues, and each group can also be
readily reordered to help facilitate ease of comprehension.

The statistical analysis on the similarity index and diversity
index of TCR sequencing dataset also is developed in the VisTCR.
For instance, the Bio-diversity index analysis calculated the
diversity index of the TCR sequencing data according to factors
set in the Experiment Design File (Supplementary Video S6 and
Figure 3E). In Pairwise Diversity Analysis, it was found that
the diversity index (Shannon entropy) of DRESS patients was
significantly lower than healthy donors (p < 0.005, Wilcoxon
Test). The lower diversity of DRESS patients is consistent
with the expected expansion of antigen specific CD8 + T cells
(Supplementary Video S6 and Figure 3F).

Applicability of visTCR on Mouse Data
To further demonstrate the easy and general applicability of
VisTCR, we also provide an additional worked example using a
publicly available mouse tumor TCRseq dataset with a distinct
experimental design (Aoki et al., 2018). Simple visualization
of clonal homeostasis and Shannon diversity in the peripheral
blood, tumor, and draining lymph node samples yielded the
expected result of the tumor samples having lowered diversity
and more highly expanded clones (Supplementary Figure 2A).
Pairwise analysis of the blood and lymph node samples was
similarly consistent with the reported results, and offered a simple
statistical test for significance (Supplementary Figures 2B–E).
Additional clustering and correlation across the three sample
types considered could also be easily performed in VisTCR. The
frequency of the dominant clone in the tumor samples could
also be readily recovered and traced across the other samples.
Taken together, VisTCR make it easier for users to perform their
standard and unique analysis tasks.

Additional Human Data Analysis of
Sezary Syndrome
As an additional test case of the consistency of the VisTCR
data analyses, we further replicated our workflow on a
published dataset of peripheral blood samples from patients
with Sezary syndrome, a form of cutaneous T cell lymphoma
(Ruggiero et al., 2015). Consistent with the published results,
the patients with Sezary syndrome showed more limited usage
of TRBV chains compared to healthy controls (Supplementary
Figures 3A,B). We could also observe that the Sezary patients had
hyperexpansion of a number of clonotypes, with spectratyping
showing a sharp dropoff in the detection of smaller clones as
compared to healthy controls (Supplementary Figure 3C-D).
These samples had lower performance in diversity metrics as
a consequence (Supplementary Figures 3D,E). Taken together,
these results generated using our analysis tool are qualitatively
consistent with those generated using other utilities. VisTCR
may thus also be useful for quickly performing third-party
data re-analysis.

CONCLUSION

VisTCR has been developed to parse, evaluate, and statistically
analyze the TCR repertoire data with a user-friendly GUI. The
data management module provides simple functions to organize
the TCR sequencing data, and the data analysis module integrates
most of the popular methods for TCR repertoire analysis with
an intuitive analysis workflow. We believe that VisTCR may
help make TCR repertoire analysis more accessible to wet-lab
scientists, and help unlock the full potential of TCRseq data.
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FIGURE S1 | The GUI of clone extract methods used in VisTCR. Three major
methods are included and can be chosen by the user as follows; (A)
Decombinator (B) MiTCR (C) MiXCR.

FIGURE S2 | Example analysis of mouse tumor dataset by using VisTCR. (A)
Clonal homeostasis analysis. (B) Bio-diversity analysis by using Shannon diversity
index. (C–E) Pairwise diversity analysis.

TABLE S1 | TCR sequencing data analysis methods in VisTCR software.

FILE S1 | Experiment design file for analyzing all 5 CD8+ samples from DRESS
patient WDJ. The experiment design file is used to define the specific experimental
conditions and any dependent variables or factors that can be used in TCR
repertoire data analysis.

FILE S2 | Experiment design file for analyzing samples from 8 DRESS patients
and 8 healthy donors.

VIDEO S1 | Uploading the sequencing data files into Data Storage Module. This
video displays the experimental data management functions provided by Data
Storage Module in VisTCR. Firstly, an experiment is created with title and
description. Then, the raw TCR sequencing data belonging to the experiment
are uploaded one by one. Finally, the quality of raw sequencing
data is checked.

VIDEO S2 | Creating an analysis task in the Data Analysis Module. Firstly,
experiment design files are created by using Notepad ++, and saved in the CSV
format. Then, a new analysis project is created by using wizard mode in VisTCR.
In this process, the project title and description is set, the method for parsing raw
TCR sequencing data is selected, and the experiment design file created
previously is uploaded.

VIDEO S3 | Single sample analysis in VisTCR. This video displays single sample
analysis functions provided by Data Analysis Module in VisTCR, including their
TRBV and/or TRBJ usage, CDR3 spectratype, and their clonotype distribution.

VIDEO S4 | Pairwise sample analysis in VisTCR. This video displays pairwise
sample analysis functions provided by Data Analysis Module in VisTCR, including
samples selection, overlapping and un-overlapping clonotype distribution and
convergence analyses.

VIDEO S5 | Description statistics analysis in VisTCR. This video displays
description statistics analysis functions provided by Data Analysis Module in
VisTCR, including most abundant clonotypes, clonal space homeostasis,
clonotype tracking, overlap analysis.

VIDEO S6 | Multi-sample analysis of DRESS patients and healthy donors. This
video displays some multi-sample analysis functions used to analyze DRESS
patients and healthy donors, including most abundant clonotypes, clonal space
homeostasis, bio-diversity index, and pairwise diversity analysis.
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