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This study aims to present complex network models which analyze professional swimmers of 50-m freestyle Olympic competitions, comparing characteristics and variables that are considered performance determinants. This comparative research includes Olympic medalists’ versus non-medalists’ behavior. Using data from 40 athletes with a mean age, weight and height of 26 ± 2.9 years, 87 ± 5.59 kg, 193 ± 3.85 cm, respectively, at the Olympics of 2000, 2004, 2008, 2012, and 2016 (16-year interval), we built two types of complex networks (graphs) for each edition, using mathematical correlations, metrics and the spectral decomposition analysis. It is possible to show that complex metrics behave differently between medalists and non-medalists. The spectral radius (SR) proved to be an important form of evaluation since in all 5 editions it was higher among medalists (SR results: 3.75, 3.5, 3.39, 2.91, and 3.66) compared to non-medalists (2.18, 2.51, 2.23, 2.07, and 2.04), with significantly differences between. This study introduces a remarkable tool in the evaluation of the performance of groups of swimming athletes by complex networks, and is relevant to athletes, coaches, and even amateurs, regarding how individual variables relate to competition results and are reflected in the SR for the best performance. In addition, this is a general method and may, in the future, be developed in the analysis of other competitive sports.

Keywords: network physiology, complex networks, spectral decomposition, swimming, athletes’ performance evaluation


INTRODUCTION

Swimming is a kind of sport which involves agile body mechanics, including the action and reaction of Newton’s third law (Cureton, 1930) where the human body must combine physiology with engineering concepts to work as a whole (Alexander, 1992). Although it is one of the oldest physical activities, the first swimming competition (Porter, 2017) was only hosted in 1837 at London’s six artificial pools. The Olympic Era, in Athens, started in 1896, at a male-only swimming competition (Oppenheim, 1970). The Summer Olympic Games are a topic which has been attracting the attention of both general audiences and researchers. However, the Social Sciences have generated the most Olympic papers at 1,155 papers, while Exact Sciences like Engineering, have produced only 510 (Skibb et al., 2016). Considering the research involving swimming, until 2013 performance increased each year for both women and men in the World Championships and the Olympics (Wild et al., 2014), which points to the demand for evaluation of the parameters for understanding this growing performance behavior. Studies in this issue have made valuable contributions; however, there is still no consensus for the most knowledgeable way of studying the performance of athletes.

It is also important to consider that, regarding sport investigations, the multiple variable approach for the assessment of cardiorespiratory coordination and the effects on performance helps in the evaluation of different health and fitness training interventions (Garcia-Retortillo et al., 2019). In addition, there are interesting works in the literature that identified and created the first physiological complex models representing body changes and interactions among several organ systems. We can cite one of the first physiological networks created in the analysis of sleep stages, where each network node represented a type of body change interacting each other (Bashan et al., 2012). Some authors were also able to relate different aspects of physiological regulation using non-linear dynamics methods (Bartsch and Ivanov, 2014). The changes in brain, cardiac, and respiratory systems presented an important and strong relationship between network connectivity, links’ weights and physiologic functions. An interesting investigation about the dynamic interactions between organs developed the concept of Time Delay Stability, using complex hierarchical reorganization in network models (Bartsch et al., 2015). The authors proposed transitions across physiological states, and the network models represented various interactions, for example, between the brain and different organs. Statistical tools have also played an important role, once they were able to capture key elements throughout dynamic physiological interactions (Lin et al., 2016).

With the aim of contributing to the analysis of swimming performance, we here provide an investigation by considering the methodology of complex networks. In simple terms, these networks are mathematical graphs, which usually represent athletic performance parameters as nodes (vertices) and interactions as links (edges). Due to their flexibility, complex networks have been applied to a variety of scientific contexts, despite the fact that are still a lack of studies involving sports evaluation (Lewis, 2009). Considering complex social networks, the players were studied as nodes and the amount of interactions between them as links (Passos et al., 2011). Such investigation identified a higher number of interactions among efficient players. Another paper, inspired by the mentioned research on network physiology, investigated the fatigue occurrence during tethered running (Pereira et al., 2015). The network metrics assisted in the understanding of performance and in the avoiding of fatigue occurrence. Variables like Power, Velocity and Lactate time were highlighted. Additionally, considering sprinter athletes running in track field tests, the complex network models revealed that aerobic and anthropometric measures are meaningful in mathematical models and emphasized the extent of the comprehension of an entire complex context for an optimal performance output (Pereira et al., 2018). However, in the literature, the swimming topic through complex network analysis has not yet been explored in the context of the possibilities provided by such a remarkable approach.

Similar to the mentioned complex models, the network approach offers an overview of the athletes’ parameters during a competition scenario for swimming analysis. Shortly, a complex network model can be represented by a mathematical graph, which has an adjacency matrix. It is also possible to determine its decomposition system, for the spectral decomposition analysis. Through the matrix, the eigenvalue can be calculated for each network node, and the higher network eigenvalue is called Spectral Radius (SR). Through the groups of medalists versus non-medalists comparison, the spectral decomposition here proposed becomes possible to analyze the robustness of the interactions. All of this assists in performance comprehension. Physiological and related variables represented as nodes in the networks are one of the first steps in a distinguished level of swimming performance interpretation. If compared with isolated cause and effect studies, variables’ interactions are able to closely represent different levels of change during an activity or physical exercise.

In this article, inspired by the mentioned complex networks approaches on physiology and sports analysis, we developed a complex network study of the most recent 50 m freestyle swimming performance at the Olympic Games, Rio 2016, compared to London 2012, Beijing 2008, Athens 2004, and Sydney 2000. This 16 year range is useful to understand the medalists (winners) versus non-medalists’ behavior. Specifically, topological properties are used to summarize the impact of topology on behavior (Lewis, 2009), but not yet in sports like swimming in the Olympics, as introduced in this research.



MATERIALS AND METHODS

Considering swimming as a kind of exercise which depends on muscle contractility, strength, and speed through previously applied maximal or submaximal loads on the muscle system (Cuenca-Fernández et al., 2018) and metabolic responses (Hellard et al., 2018), data were selected from that which was publicly available from the last 5 editions of the games, specifically concerning the Men’s 50 m freestyle swimming, whose finalists are 8 athletes in each year, totalizing 40 athletes. Using data from swimmers with a mean age, weight and height of 26 ± 2.9 years, 87 ± 5.59 kg, 193 ± 3.85 cm, respectively, it was possible to organize the following data available for each athlete in the event: Birth year (YYYY), Age (years), Weight (kg), Height (cm), BMI – Body Mass Index (kg/m2), Number of Olympic Medals, Time (s), Velocity (m/s), Reaction Time (s) and Lane. Other available data from the country related to the athlete at the competition occasion included: Number of Women and Number of Men at the swimming team, Number of Total Participants, Number of Country Medals and Country HDI (Human Development Index).

Thereafter, it was necessary to proceed with the organization of data with the 8 finalists of each edition, leading to the correlations’ calculation and model construction. The 40 finalist athletes of the Men’s 50 m freestyle swimming competition, in a range of 16 years, were selected from the largest swimming competition that occurs every 4 years. These athletes were filtered through pre-Olympic qualifiers and then each staged within the specific event until the grand finale, where only 8 can compete, representing the swimming elite, with a small variance. The other filter of these athletes is that they should be specialized in high intensity and short duration exercise, since this test is crossing an Olympic pool of 50 m in about 20 s. It was also possible to work with current competition data from athletes representing the world’s greatest sprinter swimmers over 5 competitions, something that could be different from other groups of volunteers, usually from the same country, as that even though they were good swimmers, they would have a different kind of representativeness. It is believed, therefore, that the 2000, 2004, 2008, 2012, and 2016 Olympics finalists are high-level representatives of outstanding swimming performance.

The dataset comparisons via Pearson’s correlation were calculated. We firstly built two complex networks for each of the 5 editions of the games: groups of medalists and non-medalists dataset. The values of the correlations were the value of the network links in %. In order to set a complex model that adequately represents an analysis linked to individual performance, publicly available data were chosen. In this way, 6 variables were selected and transformed into nodes of the complex models. They are: Age (years), Weight (kg), Height (cm), BMI – Body Mass Index (kg/m2), Number of Olympic Medals and Reaction Time (s). The parameters which may directly predict victory, such as Velocity and Time, were not transformed into nodes, in order to avoid bias results. The selection of the variables was made considering those related to performance and individualizing each athlete, according to the Data Availability of each competition. Variables considered unrelated to performance were not included, such as team size and lane. In addition, there is great importance identified in runners for anthropometric data (Pereira et al., 2018). In accordance with the concept of creating complex networks, it is of fundamental importance to include variables such as height, weight, age, BMI, etc. The idea is to understand the relationships (information flow) among them and other variables. Such relationships are represented by links and the variables under analysis represented by nodes, which result in the final complex structure under analysis.

Five correlations (5 links) were calculated for each of the 6 variable analyzed (6 nodes) with a total of 30 links by each of 10 network model. The total calculation involves the creation of: 10 complex networks, 60 nodes, and 300 weighted links (correlations).

Any network can be represented by a graph. Any graph can be represented by its adjacency matrix, from which other matrices such as Laplacian are derived. This linear algebra determines that for each matrix, a collection of eigenvalues with their respective eigenvectors can be associated. The term Eigen has a German origin and means what is inherent, a characteristic or fundamental property. Therefore, knowing that each graph is represented by its matrix, it is natural to investigate its “Eigen system” once it characterizes the graph (Van Mieghem, 2014). Other topological graph characteristics are used to characterize network connectivity, for example, in financial market fluctuations (Spelta, 2017). Topological metrics can be classified into metrics that are based on graph distance, connectivity and spectrum (Van Mieghem, 2010; Jovanovic et al., 2017). The nature of a complex system pattern is possible to determine by decomposing the system’s response to a stimulus into a set of fundamental modes or basis vectors also called orthonormal vectors. This mathematical process is called spectral decomposition. This process of finding the basic vibrational modes (harmonics) and expressing them in terms of constants is called spectral analysis.

This kind of complex network analysis refers to the analysis of a mathematical graph. The measure of the degree of the nodes (parameters under analysis) of a complex network (graph) is related to the total number of edges (relations between the nodes) incident to this node. Nodes with an higher number of edges to it incidents are called hubs. Only the measure of nodes’ degree may not adequately reflect the importance of these nodes in the complex model. An alternative metric can be used to calculate the eigenvalues for each node of the resulting network and to rank these eigenvalues for the General Winners network. Each metric, such as eigenvalue calculation, was made by Eclipse IDE via Java Programing algorithm. The eigenvalue calculation is crucial for the understanding of this approach, and it is explained at the introductory section. The largest eigenvalue of a graph is also known as its SR or index. The basic information about the largest eigenvalue of a (possibly directed) graph is provided by Perron–Frobenius theory (Smyth, 2002).

Each graph G has a real eigenvalue θ0 with non-negative real corresponding eigenvector, and such that for each eigenvalue θ we have |θ| ≤ θ0. The value θ0 (G) does not increase when vertices or edges are removed from G (Brouwer and Haemers, 2011).

Under the assumption that G is strongly connected, then:

(i) θ0 has multiplicity 1.

(ii) If G is primitive (strongly connected, and such that not all cycles have a length that is a multiple of some integer d > 1), then | θ | < θ0 for all eigenvalues θ different from θ0.

(iii) The value θ0 (G) decreases when vertices or edges are removed from G.

There are essentially two types of information related to the spectrum. The largest eigenvalues (and their eigenspaces) give some information on global graph properties. The typical eigenvalues give information on local graph properties, such as degree, partition function, etc. Here the focus is on the SR, which is related to a graph property called maximum eigenvalue. The maximum eigenvalue of a complex network (graph) is also called the SR. As mentioned in the explanation of its calculation, the eigenvalue is a final value assigned to each node, considering not only the number of edges (links) of this node but also the weight of the links to it, associated to its location in the complex network topology. A node with final high value of eigenvalue, if compared to the others in the same graph, is interpreted as an important node due to the amount and weight of the edges, besides it being a node that connects to the nodes around it that, in turn, also have greater amount of weighted links and so on, relevance. In this new proposal of spectral decomposition, considering that the correlation matrix in the context of the networks is sensitive to the weight value attributed to the link, we used correlations in an attempt to not discard connections which have their importance in the context of the complex model and the calculation of the SR. The idea was to consider the set of interactions and their outcomes. That is the reason why complex network analysis includes such measure and the greater adequacy of a measure of maximum eigenvalue (SR) to a convergence tendency of the complex system as a whole. The data that support the analysis and conclusions of this article are publicly available on the website Sports Reference (Evans et al., 2016) and are in accordance with all the Publishing Ethics of this journal.



RESULTS

The following public data available at every edition of the games was analyzed. The measures of central tendency by each Olympic game edition are shown at the Table 1.

TABLE 1. Measures of central tendency – mean and standard deviation – by each Olympic edition split by medalists and non-medalists athletes.
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Pearson’s correlations among sets of data were defined as the weights of the network. Such correlations were a useful choice once it showed the same result for both directions of the model set, as shown at the Figure 1.
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FIGURE 1. The heat map of the Pearson’s correlations results among variables for each edition and complex network model. Predominantly, the weighted links between Medalists had highest values than the weighted links of non-medalists athletes, with significant differences between groups (One-way ANOVA followed by Tukey HSD post hoc test, p < 0.01 at 2000, 2004, and 2008 editions and p < 0.05 at 2012 and 2016 editions). In this figure, A, age; W, weight (kg); H, height (cm); B, body mass index (kg/m2); N, number of Olympic medals and R, reaction time (s).



A similar method was used in another research of the authors (Pereira et al., 2015). An algorithm was built in Java Programing Language, which received the data sets as vectors in a main function, passing them to the function to correlation calculation including the set of data gathered. Every value of correlation was considered and transformed into link. For example, if the result of the correlation between Age and BMI was 0.56, a connection (link) was added between such nodes with a weight of 56%. The 6 nodes of each Olympic edition were included with the same magnitude, once one of the main goals of the model is to identify the resulting dynamics of the nodes through complex metrics. The resulting weighted network had bidirectional links, which means that the link influence flows in both directions. This was necessary once it is not possible to stand that a node like Age, for example, has a cause and effect weight in BMI. Instead, it has a correlation inside the dynamic network. It is interesting to note that most real-world networks, links’ weights may mean capacity, flow or intensity (Bartsch et al., 2015). In this way, a complex model is analyzable simplification of reality representation with mathematical groundwork. Such links’ weights in every complex model directly determined the network structure and the main complex metric utilized in the result: The SR. The complex network models were built as shown in Figure 2.
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FIGURE 2. Complex network model parameters (nodes and links) representation proposed for Medalists (yellow) and non-medalists (red) athletes. Every edition of the games results in two complex models. They are: The 2000 Olympic Games, which took place at Australia, in Sydney; 2004 Olympic Games, which took place in Greece, at Athens city; the 2008 Olympic Games, which took place in China, in Beijing; the 2012 Olympic Games, which took place in United Kingdom, in London; and the 2016 Olympic Games, which took place in Brazil, in the city of Rio de Janeiro. The finalists of the 50 m freestyle male swimmers were considered, relating 6 transformed variables into nodes – colored (Age, Height, Weight, BMI, Number of Olympic Medals and Reaction Time) and their weighted links (black) through the resulting correlation. The links of the Medalists complex models had higher weighted links.



With the focus on what data to analyze together, from the point of view of complex network construction, and the spectral decomposition, which can help to identify trends in the profile of the winners, the complex networks were built in a computational interface. Then, the network SRs were determined. The SR is computed by finding the largest eigenvalue of the weighted connection matrix C, where an element of C is equal to the weight assigned to the link between nodes. Matrix C is symmetric, because links are bi-directional.

By considering the 6 nodes and 10 models proposition, 2 networks by edition were constructed – 2 networks for each edition (2 networks for Sydney, 2 networks for Athens, 2 networks for Beijing, 2 networks for London and 2 networks for Rio). The core idea was to compare medalists’ and non-medalists’ behavior via complex models. The Winners – Medalists network has the correlations of the 3 medalists for that edition. The non-medalists network was created by data from the 5 other athletes’ positions, which did not win medals.

For comparative analysis, within these new 10 complex models we found the eigenvalues of each node and the value of the SR (largest eigenvalue) for each network. In fact, the SR of the winners’ networks, in each edition, are predominantly bigger than the SR of the non-medalists’ networks, as shown at Figures 3, 4. The SR proved to be an important form of evaluation since in all 5 editions it was higher among medalists (SR results: 3.75; 3.5; 3.39; 2.91; and 3.66) compared to non-medalists (2.18; 2.51; 2.23; 2.07; and 2.04), with significant differences between groups (One-way ANOVA followed by Tukey HSD post hoc test, p < 0.05).
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FIGURE 3. The Spectral Radius (SR) network (y-axis) by Olympic edition, comparing Medalists result (white) and non-medalists result (black). The Medalists – Winners network of each edition had the highest SR values at all competitions. It is worth mentioning that the winners always resulted in higher SR values at all editions analyzed, with significantly differences between groups (One-way ANOVA followed by Tukey HSD post hoc test, p < 0.05).
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FIGURE 4. The SR results (y-axis) by Olympic edition versus mean eigenvalues (x-axis) represented by the triangle with the coordinates (x; y). It is important to note that the Medalists SR results were always above 2.91 and the non-medalists’ results are under 2.51. This point to a common behavior among Medalists-Winners (highest values) at all 5 editions of the games analyzed, with significant differences (One-way ANOVA followed by Tukey HSD post hoc test, p < 0.05).





DISCUSSION

Through this new study using quantitative data for the construction of complex networks models, it is interesting to note that success and winning in sports are reached by decisions guided by data and models. Sports analytics is a process of strategically modeling the data available to transform it into a source of competitive advantage (Trewin et al., 2004; Miller, 2015). Players, managers, owners and fans are interested in such strategies in the context of data science, where sports analytics is a blend of business savvy, information technology and modeling techniques.

Our network approach moves toward the recent understanding of the human body as a collection of physiologically interacting systems, according to the interdisciplinary concept of network physiology (Ivanov et al., 2016). Networks are representations of these interacting physiological systems, which include organ changes and metabolites, among others, and provide feedback and feedforward data interacting, which are capable of reflecting on different performances. The computational modeling comes to help in this understanding, allowing the calculation of complex metrics like SR, for example. The concept of network physiology in different sports is still not fully explored but is promising, and may in the future also involve specific interactions, such as those found in different brain regions and their effects on physiological states during sleep (Liu et al., 2015). Considering the potential limitations of this work, there is the fact that the data were not obtained in time series and successively, as could be done in a hypothetical scenario of competition. On the other hand, it was possible to work with actual competition data for athletes representing the world swimming elite over 5 distinct competitions (16 years range) from different countries.

This research approach brings a novel way in order to identifying data sources, gathering data to organize and prepare for the complex analysis. Furthermore, the data selections for this study seemed to be in concordance with research involving the need of evaluate anthropometrics and athletes’ variables. For example, evaluating the performance and the anthropometrical parameters, such as body height, called the attention for both female swimmers (Jagomägi and Jürimäe, 2005) and male swimmers 100-m events (Sammoud et al., 2018). In addition, age, height, and hand grip strength were the best predictors in short-distance events (Zampagni et al., 2008). A balanced diet allows to maintain a stable body weight for athletic performance in swimmers (Ciosek et al., 2015) and anaerobic qualities are important in regards to age in other competitions (Fairbrother, 2007). These are shown at the Olympics over the years, with the important contribution to the model body demonstrated as interactions of a complex network (Herman et al., 2009; Ivanov et al., 2016).

The complex networks make possible the study of the dynamical interactions among professional athletes. This article took into account 5 different Olympics editions and allowed the calculation of the SR, which is a measure that reflects the robustness of each complex model. Once multiple seasons were analyzed, it is possible to track the development of winners SR values and its similarities. In the case of the models of the medalists, there is a communication of greater weight among the variables, that is, for a winner; the intensity of communication between variables at the proposed levels was reflected in a higher SR. For non-medalists, this lower level of communication among the variables may have been decisive in the position they reached.

By considering the SR values analysis, the winners’ networks always have the highest SR values. It is also true even when considering the mean eigenvalues. Winners may be better at combining all factors, here represented as nodes. Maybe a well-balanced athlete is a winner and the complex networks and SR analysis are a newsworthy way of identification of the best fit athlete. It is interesting to note that the variables analyzed via complex models together, may indicate the best use of the set of factors by the winners. Thus, complex networks in association with complex metrics, such as SR, may, in the future, allow for a given test, according to the specific profile and performance of the analyzed athletes, the calculation of SR for different groups of athletes in training and determination of SR values. These network models and their metrics can assist in verifying which groups of athletes would present a greater chance of victory when compared to each other.

The higher SR value among medalists should reflect the more efficient communication of the variables analyzed within the model. The combined communication between physiological basis and previous experience, results in a higher SR for medalists. The application of these physiological complex network models should be taken into consideration when focusing on new training strategies, assisting coaches, athletes, and amateurs. The complex models in conjunction with the spectral analysis proposed by this study showed consistency with the profile of the winners. Such analysis can be applied in future work for women’s swimming events and also for other sports categories, such as athletics. The methodology presented here can also be applied in other types of tests and even other sports, in order to identify the profiles of possible medalist groups and may help in practice, which may inspire new future research applications.
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Background: Limited findings have been reported to systematically study miRNA and mRNA expression profiles in aged human atria. In this study, we aimed to identify miRNAs, genes, and miRNA-mRNA interaction networks for human atrial aging (AA).

Methods: Right atrial appendages from twelve patients who received aortic valve replacement were subjected to miRNA-seq and RNA-seq. All the patients were in sinus rhythm (SR) and stratified by age into four groups. Differential expression analysis was carried out to identify miRNAs and genes for human AA. The miRNA-mRNA interactions for human AA were identified by Pearson correlation analysis and miRNA target prediction programs.

Results: Seven miRNAs (4 upregulation and 3 downregulation) and 42 genes (23 upregulation and 19 downregulation) were differentially expressed in human right atrial tissues between older samples and younger samples. Bioinformatic analysis identified 114 pairs of putative miRNA-mRNA interactions on AA and four types of correlation. Pathway enrichment analysis identified over 40 significant pathways and the top three pathways included rhythmic process (P = 7.5 × 10–5, Q = 0.034), senescence and autophagy in cancer (P = 9.0 × 10–5, Q = 0.034), and positive regulation of cytokine biosynthetic process (P = 1.1 × 10–4, Q = 0.034).

Conclusion: Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for AA, providing novel insights into the development of human AA. Future studies are needed to investigate the potential significance of these miRNA-mRNA interactions in human AA or AA-related cardiovascular diseases.

Keywords: atrial aging, miRNA, mRNA, interaction, signaling pathway


INTRODUCTION

The incidence of atrial fibrillation (AF) increases dramatically in the older population (Schnabel et al., 2015). Aging results in a series of structural and physiological changes of the human atria, which may act as substrates to trigger AF (Pan et al., 2008; North and Sinclair, 2012). Advanced age causes aging-related atrial cardiomyopathy and facilitates the development of AF in patients without cardiovascular diseases (Goette et al., 2017). Moreover, aging significantly contributes to the high risk of ischemic stroke and heart failure in AF patients (Kirchhof et al., 2016). Therefore, aging has a close relationship with AF.

A growing number of studies have documented the evidence for the effects of aging on atrial structural remodeling, atrial electrophysiological remodeling, oxidative stress, and inflammation within the atria (Lin et al., 2018). However, few studies were reported to systematically study miRNA and mRNA expression profiles in aged human atria, which should provide new insights into the miRNA-mRNA regulatory networks during the progression of atrial aging (AA) (Bashan et al., 2012; Bartsch et al., 2015).

MicroRNA (miRNA) belongs to a class of small non-coding RNAs with 20–22 nucleotides in length. These small molecules exist in virtually all organisms and are evolutionarily conserved. By binding to their target mRNAs, miRNAs induce translational repression, mRNA deadenylation and mRNA decay at the post-transcriptional level (Liu et al., 2015). Many important biological processes are regulated by miRNAs, including proliferation, apoptosis, necrosis, autophagy, and stress responses (Ivanov et al., 2016). Some studies have revealed important contributions of miRNAs in cardiac tissues to the pathogenesis of AF, and the circulating miRNAs expressed in blood samples of AF patients may have potential value as diagnostic and prognostic markers (Luo et al., 2015; Zhou et al., 2018). However, the miRNA expression profile in AA is still unknown.

In this study, we enrolled sinus rhythm (SR) patients matched by age, gender and baseline cardiovascular diseases, and then performed high-throughput RNA sequencing (miRNA-seq and RNA-seq) to identify miRNA-mRNA interaction networks and AA-associated biological pathways. We found seven miRNAs and 42 genes that were differentially expressed among four age groups of patients. Interestingly, integrative analysis of miRNA-seq and mRNA-seq data identified 114 miRNA-mRNA interactions for AA and pathway analysis highlighted the rhythmic process and regulation of heart contraction in AA. Together, our study revealed novel miRNA-mRNA interaction networks and signaling pathways for AA (Ivanov et al., 2017).



MATERIALS AND METHODS


Study Subjects

Patients who received open-heart surgery for aortic valve replacement in Beijing Anzhen Hospital between January 2017 and June 2017 were recruited for this study. All patients were in SR at the time of enrollment. Pre-operative two-dimensional color transthoracic echocardiography was performed routinely on the patients. Patients were excluded if diagnosed with or had a previous history of AF, hyper- or hypo- thyroidism, congenital heart diseases, rheumatic heart diseases, mitral valvular diseases or mitral prosthesis, left atrial diameter (LAD) >50 mm, uncontrolled hypertension (>160/90 mmHg), left ventricular dysfunction with an ejection fraction <40%, previous cardiac operations, malignancy, severe liver/renal dysfunction, and acute inflammatory diseases. Twelve patients (four females and eight males) were randomly selected for this study. The demographic and clinical features of the patients are shown in Supplementary Table S1.

The tip of right atrial appendage that was considered to be surgical waste was taken during the surgery. The human atrial tissues were immediately frozen in liquid nitrogen and saved for further experiments. This study was reviewed and approved by the Ethics Committee of Beijing Anzhen Hospital on human subject research and the use of human tissues. This study also complied with the guidelines set forth by the Declaration of Helsinki. Written informed consent was obtained from all patients.



RNA Extraction

The total RNA was extracted from the frozen human right atrial appendages using TRIZOL reagent following the manufacturer’s protocol. The RNA yield and purity were determined using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, United States) and NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, United States). All RNA samples passed quality control with an RNA integrity number of >7.



miRNA-Seq

Genome-wide miRNA expression profiles of twelve human right atrial tissues were generated by miRNA-seq, which was carried out at the Biodynamic Optical Imaging Center (BIOPIC) in Peking University (Beijing, China). miRNA-seq followed the BIOPIC recommended protocol that was based on the NEBNext Multiplex Small RNA Library Prep Kit (Lot #E7560S). In brief, miRNAs were enriched from ∼2.5 μg of total RNA by gel selection (18–30 nt fragment size), and then ligated to 5′ and 3′ adapters and labeled with 6-nt barcodes. Barcoded miRNAs were subsequently reverse-transcribed and PCR-amplified. The resulted miRNA libraries were sequenced with Illumina HiSeq2500 platform. Around 10 million reads from 4 runs were generated for each sample.

Unless specified, default parameters were used in the following post-sequencing analysis. The overall quality of raw reads was evaluated using program FastQC (Andrews, 2010), and then raw reads were trimmed to remove adapter sequences using Cutadapt script (Martin, 2011). The cleaned reads were mapped to human genomes GRCh38 by Burrows-Wheeler Aligner (BWA) with parameters (-t 15, -n 1, -o 0, -e 0, -l 8, -k 0) (Li and Durbin, 2009). The mapped reads were sorted and indexed using samtools with BAM format (Li et al., 2009). The BAM data from multiple runs for the same sample were merged before miRNA quantification. Finally, a Python-based program HTSeq was used to quantify the expression level of known mature miRNAs curated in the recent human miRBase database (Griffiths-Jones et al., 2008; Anders et al., 2015).



mRNA-Seq

For transcriptomic profiling, twelve human right atrial tissues were subjected to mRNA-seq according to the BIOPIC recommended workflow for mRNA-seq. A proportion (∼2.5 μg) of twelve isolated total RNA samples was used to generate cDNA libraries using Illumina TruSeq RNA Sample Preparation v2 Kit (Lot # RS-122-2001, RS-122-2002). The cDNA libraries were then sequenced by Illumina HiSeq2500 platform with pair-end 2 × 150 bp. mRNA-seq generated above 40 million reads with Q30 > 90% per sample on average. Raw mRNA-seq reads were first inspected for overall quality by FastQC and then cleaned by Cutadapt script (Andrews, 2010; Martin, 2011). The cleaned reads were mapped to human genome hg19/GRCh37 using the Subread aligner (Liao et al., 2013), which allows fast and efficient mapping for short reads less than160 bp. Finally, gene-level quantification was performed using featureCounts (Liao et al., 2014), which is a reads summarization program to efficiently count the mapped reads for genomic features (i.e., genes and exons). In this study, all human genes under genome build hg19 were retrieved via R annotation package org.Hs.eg.db (see the link in the section “Data Availability Statement”).



Differential Expression Analysis

Differential expression analysis was performed to identify miRNAs and genes that were either upregulated or downregulated in atrial tissues of older samples compared to that of younger samples. The miRNA-seq and mRNA-seq data were analyzed by R package edger (Robinson et al., 2010; McCarthy et al., 2012), which employs a negative binomial generalized linear model with likelihood ratio test (glmLRT) to compare read counts of each miRNA or gene between two conditions. Raw counts were adjusted by library size to account for sample-specific effects. The count-per-million at log2 scale, denoted as LogCPM, was computed for visualization of miRNA/gene abundance, heatmap clustering analysis, and miRNA-mRNA correlation analysis.

To reduce false positive signals and obtain more conserved results, twelve patients in SR were assigned into four groups: SR40 (38–42 years old), SR50 (48–52 years old), SR60 (58–62 years old) and SR70 (68–72 years old). Each age group included one female and two males. Then, glmLRT was run for SR60 vs. SR40 and SR70 vs. SR50. miRNAs and genes showing P < 0.05 and the same direction in the above two tests were reported in this study. After that, using P values from the above two tests, a meta-analysis with Fisher’s method was carried out to evaluate the overall significance of the identified miRNAs and genes (Chang et al., 2013). For the multiple testing issue, P values were adjusted by the false discovery rate (FDR) method (Dabney et al., 2010). For the top AA-miRNAs and AA-genes, their linear trends with aging were examined using simple linear regression. The regression coefficients, confidence intervals and P values were calculated using R v3.0.01.



miRNA-mRNA Interaction Analysis

Given the availability of both miRNA-seq and mRNA-seq data on 12 patients (Supplementary Table S1), Pearson correlation test was used to examine pair-wise correlations between seven AA-miRNAs and 23,346 genes. In this study, a valid miRNA-mRNA interaction was reported based on the following conditions: (i) both miRNA and gene were associated with AA, i.e., FDR < 0.05; (ii) miRNA significantly correlated with gene expression, i.e., P value < 0.05; (iii) directions of effect sizes of miRNA and gene on aging were consistent with that from pair-wise correlation analysis. For each AA-miRNA, the target genes were predicted using program multiMiR (Ru et al., 2014), which integrated 14 miRNA-mRNA interaction databases such as TargetScan (Lewis et al., 2005), miRDB (Wong and Wang, 2015), miRanda (Betel et al., 2010), miRTarBase (Chou et al., 2018), and others. If any valid miRNA-mRNA pair for AA was predicted by multiMiR, it was classified as a direct interaction; otherwise, it was an indirect interaction.



miRNA-mRNA Network and Pathway Enrichment Analysis

One hundred fourteen miRNA-mRNA interactions, including eight direction interactions, were interconnected in a network using program Cytoscape2. All genes in the network were analyzed by program clusterProfiler (Yu et al., 2012) to determine whether AA-genes were enriched in biological pathways curated in biological knowledge databases such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and WikiPathways. P values from enrichment analysis were adjusted using the FDR method.



Real-Time RT-PCR Analysis

Three miRNAs (miR-23a-5p, miR-1263, and miR-6514-3p) were selected to confirm the results of miRNA-seq by qRT-PCR analysis. miRNAs were converted to cDNA using Mir-XTM miRNA First-Strand Synthesis Kit (Thermo Fisher Scientific, Waltham, United States) and subjected to SYBR® qRT-PCR analysis (Takara, Osaka, Japan). The qRT-PCR was performed with Applied Biosystems 7500 (Thermo Fisher Scientific, Waltham, MA, United States). U6 was used as a reference gene for normalizing miRNA expression. Primer sequences were as follows: miR-23a-5p: 5′-GGG GTT CCT GGG GAT GG-3′, miR-1263: 5′-CAT GGTA CCC TGG CAT ACT GAG T-3′, miR-6514-3p: 5′-CAA ACA AAC ATG GTG CAC TTC TT-3′.



Data Availability and Public Resources

The data supporting the findings of this study, including the full summary statistics of miRNA-seq and mRNA-seq analysis, is available within this manuscript as well as Supplementary Material. The source codes and analytic pipeline used for processing RNA-seq data are open to the public at https://github.com/zhenyisong/wanglab.code. We confirm that the raw sequencing data is immediately available to all researchers upon request with approval from the institutional research committee. Mouse miRNA microarray data for cardiac aging (GEO Accession: GSE43556) were analyzed using GEOquery (Davis and Meltzer, 2007) and Limma (Ritchie et al., 2015). MiRBase: ftp://mirbase.org/pub/mirbase; Human Gene Annotation: 10.18129/B9.bioc.org.Hs.eg.db; GO: http://www.geneontology.org/; KEGG: http://www.genome.jp/kegg/pathway.html; WikiPathways: https://www.Wikipathways.org/index.php/WikiPathways.




RESULTS


miRNA-Seq Analysis Identified 7 miRNAs Associated With Human AA

Twelve patients in SR from four age groups were analyzed in this study. The individual-level phenotypic features are shown in Supplementary Table S1. A total of 1,482 mature miRNAs were identified by miRNA-seq, and the overall quality and distribution across 12 SR samples are shown in Supplementary Figure S1. To reduce false positive signals, we carried out differential expression analysis in two sets. In the first set, compared with the SR40 group, we identified 48 upregulated and 29 downregulated miRNAs in SR60 group at P < 0.05 (Figure 1A). In the second set, compared to SR50, we found 47 upregulated and 24 downregulated miRNAs in SR70 group at P < 0.05 (Figure 1B). Summary statistics of all AA-miRNAs in each set are shown in Supplementary Tables S2, S3.
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FIGURE 1. miRNA-seq analysis of human atrial samples with SR. (A) Differential expression analysis of 1,482 miRNAs between 60 and 40 years old group. X-axis, miRNA expression was quantified as count per million at log2 scale. Y-axis, fold change (SR60/SR40) at log2 scale. (B) Differential expression analysis of 1,482 miRNAs between 70 years old group and 50 years. (C) Venn diagram showing significant miRNAs from the above two comparisons at nominal P < 0.05. (D) Heatmap and hierarchical structure of seven overlapping miRNAs across 12 human atrial samples.



Seven miRNAs were identified by two subsets (Figure 1C), and heatmap plot showed a clear expression pattern that matched with the status of human age (Figure 1D). Moreover, we found that effect sizes of 7 miRNA were highly consistent between two sets (Figure 2A and Table 1) with the exception of miR-1263. Interestingly, we found that two miRNAs (miR-23a and miR-34a) have been linked to cardiac aging (GSE43556, Figure 2B). In the secondary analyses, we assessed the linear trends of AA-miRNAs in the combined set (from 40 to 70 years old). Not surprisingly, miR-23a-5p and miR34a-5p showed a strong linear correlation with age (Figures 2C,D and Supplementary Figure S2).
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FIGURE 2. Comparative analysis of seven human AA-associated miRNAs. (A) Correlation analysis of effect size of miRNAs from SR60 vs. SR40, and SR70 vs. SR50. LogFC, fold change (SR60/SR40 or SR70/SR50) at log2 scale. (B) Venn diagram showing two miRNAs overlapping with cardiac aging-related miRNAs [GSE433556, false discovery rate (FDR) < 0.05]. (C,D) Linear regression analysis of miR-23a-5p and miR-34a-5p with age. The miRNA expression was quantified as count per million at log2 scale (Y-axis). For each miRNA, linear tread and 95% confidence interval were shown as purple line and a gray area. (E) Independent qRT-PCR replication of three miRNAs among four groups.



TABLE 1. miRNA-seq Identified 7 miRNAs Associated with Human AA.
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Three miRNAs (miR-23a-5p, miR-1263, and miR-6514-3p) were selected for an independent replication by qRT-PCR; the results were shown in Figure 2E. Note that we did not exclude miR-1263 from downstream analysis as it was successfully confirmed by qRT-PCR analysis.



mRNA-Seq Based Meta-Analysis Identified 42 Genes Associated With Human AA

With mRNA-seq, transcriptomic profiles of 23,346 genes were obtained from same 12 SR samples. The overall quality and distribution across 12 samples are shown in Supplementary Figure S3. We then identified genes associated with human AA with the similar strategy as for miRNA-seq. After analyzing two subsets of mRNA-seq, we performed a meta-analysis of 2 subsets of results with the Fisher’s test, which combined 2 sets of P values into one set (Figure 3A). We found 69 genes associated with AA at FDR < 0.05. Of these, 42 genes (23 upregulation and 19 downregulation) were consistent between two sets (Figure 3B and Supplementary Tables S4, S5). Heatmap plot showed a clear expression pattern that matched with the status of human age (Figure 3C). We also assessed the linear trends of 42 genes in the combined set. Two examples (CACNA1G and VTN) are shown in Figure 3D.
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FIGURE 3. mRNA-seq analysis of human atrial samples. (A) Meta-analysis of two mRNA-seq datasets. X-axis, −log10 (P value) calculated from differential analysis between SR60 and SR40. Y-axis, −log10 (P value) calculated from differential analysis between SR70 and SR50. Dots with steel blue color indicate genes (or mRNAs) significantly associated with human AA at FDR < 0.05. (B) Counts of genes with opposite (−+ and +) and consistent effects (− and ++). (C) Heatmap and hierarchical structure of 42 AA-associated genes across 12 human atrial samples. Each row indicated a gene, its Entrez ID or official symbol was shown at right side. (D) Examples of top-ranked genes (CACNA1G and VTN) showing strong linear trends with human age. Pearson Correlation coefficient (r) and the corresponding P value were shown at the top.





Integrative Analysis Identified miRNA-mRNA Interaction Networks for AA

We established an effective pipeline to identify miRNA-mRNA interaction for AA. The flowchart of integrative analysis was displayed in Figure 4A. For each of 7 AA-miRNAs (Table 1), we analyzed its correlation with all 23,346 genes generated by mRNA-seq. When looking at distributions of genome-wide miRNA-mRNA interactions, we found that three miRNAs (miR34a-5p, miR-4423-3p, and miR-509-3-5p) showed negative correlations with their predicted targets (Supplementary Figure S4). A total of 116,416 pairs were identified by Pearson correlation tests with P < 0.05. Enrichment analysis also showed that the predicted targets of 4 miRNAs were highly overlapped with 42 AA-genes (Table 2). Therefore, 122 pairs were found by restricting to the most significant 42 AA-genes (FDR < 0.05). Eight pairs were excluded because gene names were not annotated from human gene annotation database.
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FIGURE 4. Identifying downstream genes of AA-associated miRNAs. (A) Flowchart of predicting miRNA-mRNA pairs for human AA by integrating mRNA-seq data with bioinformatics analysis. FDR, false discovery rate. (B) Four types of miRNA-mRNA interactions. In each plot, X-axis represented expression levels (count per million at log2 scale) of a miRNA, and Y-axis represented expression levels of a gene. Labels with “–” or “++” indicated decreased or increased expression in older group compared to younger group. Such effect size were also highlighted by color (color, down-regulation; red, up-regulation). Pearson Correlation coefficient (r) and the corresponding P value were shown at the top.



TABLE 2. Prediction of AA-miRNA Downstream Targets.
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We analyzed the remaining 114 miRNA-mRNA pairs by taking the direction of effects of miRNAs and genes on human AA and obtained four types of correlation (Figure 4B). Eight pairs were found with direct interaction (Table 3), which was defined as the gene of a miRNA-mRNA pair predicted to be a target of miRNA and also negatively correlated with the expression of miRNA. The other 106 pairs demonstrated indirect interaction (Supplementary Table S6).

TABLE 3. List of AA-miRNA and Downstream Direct Targets.
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Our miRNA-mRNA analysis identified seven direct target genes for six miRNAs, which accounted for 16.7% (7/42) of top-ranked AA-genes. The majority of 42 AA-genes were indirect targets of 6 miRNAs. A network of 6 AA-miRNA and 34 targets is shown in Figure 5. Pathway analysis identified over 40 significant pathways (Supplementary Table S7). Top pathways underlying AA included rhythmic process (P = 7.5 × 10–5, Q = 0.034), senescence and autophagy in cancer (P = 9.0 × 10–5, Q = 0.034), positive regulation of cytokine biosynthetic process (P = 1.1 × 10–4, Q = 0.034), circadian rhythm (P = 2.5 × 10–4, Q = 0.034), and transforming growth factor-beta(TGF-β) receptor signaling pathway (P = 2.5 × 10–4, Q = 0.034).
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FIGURE 5. Network analysis of 114 miRNA-mRNA pairs associated with human AA. Each node represented a miRNA (triangle shape) or gene (oval shape). The color of node indicated whether the expression of a miRNA or gene increased (light red) or decreased (light green) in older group. The color of edge indicated the negative (light green) or positive (light green) correlation between miRNA and downstream gene. Edge with sold line indicated direction interaction between miRNA and gene, i.e., gene was a predicted target of miRNA and it negatively correlated with expression of miRNA. Edge with dashed line indicated miRNA-mRNA pairs with indirect correlation, that said, the gene strongly correlated with expression of miRNA (Pcor < 0.05) and AA (FDR < 0.05). The genes in round rectangle were highlighted by gene set enrichment analysis (Supplementary Table S3).






DISCUSSION

Herein, we reported the first study to systematically analyze miRNA and mRNA expression profiles of right atrial tissues across human samples with different age stages. With miRNA-seq and mRNA-seq, we found seven miRNAs and 42 genes whose expression levels significantly correlated with human AA. Integrative analysis identified 114 interactions between seven AA-miRNAs and 42 AA-genes. Pathway enrichment analysis of all genes regulated by AA-miRNAs highlighted rhythmic process and regulation of heart contraction in human AA.

One important finding of our study was the identification of seven miRNAs significantly associated with human AA by taking the advantages of miRNA-seq and reciprocal replication analysis of two sets of human right atrial samples (Figure 1). In each set, older samples (SR60 or SR70) and younger samples (SR40 or SR50) were matched by gender and clinical baseline features to minimize the influence of confounding factors on differential expression analysis (Supplementary Table S1). Four upregulated miRNAs (miR-34a-5p, miR-5683, miR-4423-3p, and miR-509-3-5p) and two downregulated miRNAs (miR-23a-5p and miR-6514-3p) were found to show a consistent pattern between two sets of samples (Table 1). The exception is miR-1263, whose expression pattern was initially opposite between two sets of miRNA-seq data but later confirmed to be downregulated by independent qRT-PCR analysis (Figure 2). Of seven AA-miRNAs, miR-34a was previously reported to be upregulated in aging mouse heart. Boon et al. (2013) showed that miR-34a contributed to cardiac aging by regulating telomere shortening, DNA damage response and cardiomyocyte apoptosis. miR-34a was also upregulated in various vascular aging models by decreasing sirtuin1 expression (Emanueli and Thum, 2013; Yu et al., 2015). Atorvastatin treatment could enhance sirtuin1 expression via inhibition of miR-34a, possibly contributing to the beneficial effects of atorvastatin on endothelial cell function (Tabuchi et al., 2012). Our study provided further evidence that miR-34a is a key regulator in both cardiac aging and vascular aging (de Lucia et al., 2017).

By re-analyzing the miRNA microarray data generated by Boon et al. (2013), we also found that miR-23a differentially expressed between older mouse heart and younger mouse heart. miR-23a was firstly identified as a pro-hypertrophic miRNA (Lin et al., 2009). It may convey the hypertrophic signals by suppressing the translation of muscle-specific ring finger protein 1 or regulating the function of Foxo3a (Wang et al., 2012). Lagendijk et al. (2011) found miR-23a was involved in endocardial cell differentiation and migration. More recently, Feldman et al. reported circulating levels of miRNA-23a were significantly decreased in patients with postoperative AF undergoing coronary bypass artery grafting surgery, indicating a significant contribution of miRNA-23a to the development of AF (Feldman et al., 2017). Consistent with this, our study found that expression of miR-23a-5p negatively correlated with human AA, suggesting that miR-23a-5p may play an important role in the pathogenesis of cardiac hypertrophy, AA, and AF.

The remaining five miRNAs are newly identified for human AA in this study. Ishikawa et al. (2017) found that overexpression of miR-1263 accelerated and increased endoderm differentiation. miR-4423 was identified as a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis (Perdomo et al., 2013). miR-509-3-5p was identified to have the carcinogenetic role in multiple types of cancers (Vilming Elgaaen et al., 2014; Wang et al., 2016). Few studies have linked miRNA-5683 and miRNA-6514 to cardiovascular diseases or other human diseases. The above results indicated that our analytic pipeline was efficient for detecting miRNAs for human AA. Substantial efforts are required to validate seven AA-miRNAs in studies involving the design of larger sample size and various heart tissues rather than right atria.

Using a similar strategy as we analyzed miRNA-seq data, we identified 23 upregulated and 19 downregulated genes in right atrial tissues of older samples compared to those of younger samples (Figure 3). The expression patterns of 42 AA-genes were highly consistent between two sets of mRNA-seq data (Supplementary Table S5). Previous studies have linked several genes to human aging and cardiovascular diseases. The calcium ion channel CACNA1G (L-type calcium voltage-gated channel subunit alpha1G) demonstrated progressively decreased expression with age (Figures 3C,D) (Gan et al., 2013) found that aged left atrial cells showed lower peak L-type calcium currents than normal adult left atrial cells, and both the Cav1.2 mRNA and protein expression levels were reduced in the aged atrial cells. Our results were in line with Gan’s findings. Therefore, the plateau potential was more negative, and the action potential duration was longer in aged atria (Herraiz-Martínez et al., 2015). These age-related changes in L-type calcium channel may facilitate the development of AF. Other genes encoding cardiac cellular structural protein showed differential expression in this study, including TNNI3 (troponin I 3), VTN (vitronectin), IGHG1 (immunoglobulin heavy constant gamma 1), and MUC4 (mucin 4). Several genes encoding cellular functional protein were also dysregulated, like PRKCG (protein kinase C gamma), MRPL41 (mitochondrial ribosomal protein L41), and NAMPT (nicotinamide phosphoribosyltransferase). The expression level of IRF1 (interferon regulatory factor 1) showed an age-dependent decrease (Figure 3C) among four age groups, indicating inflammation-related pathological processes might be involved in human AA. In summary, several genes associated with cardiac electrophysiological remodeling, structural remodeling, and inflammatory response demonstrated age-related expression profiles in aged atria, which provides new insight into the transcriptomic architecture of AF.

The major novelty of this study relied on the rigorous integrative analysis of miRNA-seq and mRNA-seq data from the same set of human atrial tissue samples, leading to the discovery of hundreds of miRNA-mRNA interactions underlying human AA. Three AA-miRNAs and eight AA-genes were identified with direct interactions. The most significant miRNA was miR-34a that was well-known to increase age-related cardiomyocyte apoptosis and cardiac dysfunction (Seeger and Boon, 2016). Numerous genes were validated previously as downstream targets of miR-34a, such as sirtuin1, heat shock protein70, vascular endothelial growth factors, vinculin, etc (de Lucia et al., 2017; Seeger and Boon, 2016). We found five direct downstream targets of miR-34a-5p, including SLITRK3, THBS1, EREG, IRF1, and PEG10. It seemed the miR-34a-5p/IRF1 pair was involved in the regulation of immune responses. Other three pairs (miR-23a-5p/ADORA3, miR-509-3-5p/THBS1, and miR-509-3-5p/KLF10) were also identified in our study, while the possible roles in AA await further studies to reveal. These miRNAs and genes had various indirect interactions with each other, forming complicated regulatory networks for AA (Figure 5). Gene set enrichment analysis showed that rhythmic process is the most important pathway for human AA (Supplementary Table S7). Cardiac rhythm is essential to maintain normal heart function such as heart rate, blood pressure and cardiac muscle contraction (Ivanov et al., 2007). Five genes (PRKCG, EREG, BHLHE40, KLF10, and NAMPT) targeted by AA-miRNAs may contribute to the pathogenesis of heart arrhythmia such as AF. Rhythmic activation of clock-controlled genes could lead to an oscillation in cardiovascular cells such as fibroblasts, cardiomyocytes (Crnko et al., 2019). TGF-β signaling has been shown to promote cardiac fibrosis during aging (Biernacka and Frangogiannis, 2011). Consistent with this, a recent study showed a pivotal role of TGF-β1 in arrhythmogenesis of the fibrotic heart (Salvarani et al., 2017). Besides, TGF-β2 was found to inhibit leukocyte migration by regulating proinflammatory cytokines (Fabry et al., 1995). In our study, three target genes (THBS1, EREG, and IRF1) of AA-miRNAs were highly enriched in the regulation of cytokine biosynthetic progress. These results suggested that miRNAs might contribute to cardiac aging through multiple physiological pathways. Future studies are needed to clarify the detailed molecular mechanisms between miRNA-mRNA and individual components of these pathways.

miRNA directed interventions were expected to be a promising candidate for the treatment of several cardiovascular diseases. The inhibition of miR-34a through gene deletion or antagomiR was able to reverse both postischemic and age-related cardiac dysfunction (Yang et al., 2015). Anti-miR-34a therapy was found to reduce cardiomyocyte cell death via phosphatase one nuclear targeting subunit and regulation of telomere length. miR-34a had a broad spectrum of downstream targets. Once the abnormal expression or function of miR-34a was rescued, several cardiac cascade reactions might be modified. Therefore, pharmacological modulation of aging-related miRNAs might become a novel strategy to treat AA or AF.

There are several limitations to this study. First, the discovering power of our study is limited due to small sample size. Many patients were excluded in the initial screening using stringent criteria and further selection in order to match baseline demographic and clinical features across four age groups. We anticipate that more AA-related miRNA and genes can be identified in future studies with large sample size. Second, all findings of this study are from human right atrial tissues and may not reflect age-related transcriptomic changes in human left atria (Liu et al., 2014). Third, the identified miRNA-mRNA interactions for AA were mostly based on statistical evidence and predictions from public databases. The causal regulations of each pair and the underlying mechanisms in aging require further functional characterization (Boon et al., 2013).

In conclusion, our study for the first time described miRNA and mRNA expression profiles associated with AA, and identified novel miRNA-mRNA interaction networks and signaling pathways. All these might be helpful to understand pathophysiologic changes of AA or AA-related AF at the transcriptional and post-transcriptional level.
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Despite significant effort on understanding complex biological systems, we lack a unified theory for modeling, inference, analysis, and efficient control of their dynamics in uncertain environments. These problems are made even more challenging when considering that only limited and noisy information is accessible for modeling, which can prove insufficient for explaining, and predicting the behavior of complex systems. For instance, missing information hampers the capabilities of analytical tools to uncover the true degrees of freedom and infer the model structure and parameters of complex biological systems. Toward this end, in this paper, we discuss several important mathematical challenges that could open new theoretical avenues in studying complex systems: (1) By understanding the universal laws characterizing the asymmetric statistics of magnitude increments and the complex space-time interdependency within one process and across many processes, we can develop a class of compact yet accurate mathematical models capable to potentially providing higher degree of predictability, and more efficient control strategies. (2) In order to better predict the onset of disease and their root cause, as well as potentially discover more efficient quality-of-life (QoL)-control strategies, we need to develop mathematical strategies that not only are capable to discover causal interactions and their corresponding mathematical expressions for space and time operators acting on biological processes, but also mathematical and algorithmic techniques to identify the number of unknown unknowns (UUs) and their interdependency with the observed variables. (3) Lastly, to improve the QoL of control strategies when facing intra- and inter-patient variability, the focus should not only be on specific values and ranges for biological processes, but also on optimizing/controlling knob variables that enforce a specific spatiotemporal multifractal behavior that corresponds to an initial healthy (patient specific) behavior. All in all, the modeling, analysis and control of complex biological collective systems requires a deeper understanding of the multifractal properties of high dimensional heterogeneous and noisy data streams and new algorithmic tools that exploit geometric, statistical physics, and information theoretic concepts to deal with these data challenges.
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INTRODUCTION

Genomic, proteomic, and physiological processes are generally used for medical diagnosis because they encompass the complex dynamics and multi-scale interactions between the chemical, electrical, and mechanical components of the human body. They exhibit higher-order statistical variability from person to person due to individual biological features (e.g., body mass and height) while also being highly influenced by a wide web of environmental factors (e.g., temperature, noise pollution, cultural traits, and social anxiety levels). Rigorous mathematical analysis shows that many such genomic, proteomic and physiological processes possess time dependent, long-range dependence, and multi-fractal characteristics (Goldberger and West, 1987; Ivanov et al., 2001; Wink et al., 2008; Bassingthwaighte et al., 2013; Ghorbani and Bogdan, 2013; Bohara et al., 2017; Akhrif et al., 2018; Ghorbani et al., 2018; Racz et al., 2018b). For instance, Lombardi et al. (2019) demonstrated that the existence of long-range temporal correlations (dependence) is an accurate marker of “healthy brains.” Moreover, mathematical investigations of physiological processes collected from the individuals suffering from various diseases revealed specific patterns, for example, a decrease in correlation in both temporal and fractal behavior (Ivanov et al., 1999; Stanley et al., 1999; Kotani et al., 2005; Gierałtowski et al., 2012). For instance, the ratio between the short-term and long-term scaling exponents was demonstrated in Platiša et al. (2019) to discriminate between patients experiencing heart failure, providing crucial information where the levels of the cardiac autonomic nervous system control, age, or the left ventricular ejection fraction could not. Similarly, fractal scaling has been demonstrated not only to be capable to discriminate between type 1, type 2 diabetes, and non-diabetic subjects, but also identify the dynamical instabilities in the glucoregulation (Kohnert et al., 2018).

Despite this significant body of work, current diagnosis methods and medical devices (e.g., pacemakers, artificial pancreas, anesthesia systems, and brain-machine-body interfaces) do not account for these mathematical characteristics, thus perpetuating a superficial understanding and deciphering of the unknown unknowns (UUs) governing their complex dynamics and possibly leading to a lower quality-of-life (QoL). Consequently, through this position statement, we aim to catalyze a shift of paradigm by calling for a mode of personalized and precise medicine that is more patient (and physiological complexity aware) centered and which does not rely on generic signal reference values that are patient independent. This new rigorous mathematical and algorithmic paradigm needs to be integrated into future smart medical cyber-physical systems (MCPS) in order to facilitate effective patient-centered healthcare to improve current delivery of care and cut down on its high costs. The MCPS design (Lee et al., 2012) – integrating sensors for assessing (computing/mining) individual physiological state, communicating this information via a network infrastructure from home-to-hospital to medical experts, and controlling vital health signals (e.g., cardiac pacing, insulin level, blood pressure, and brain activity) to prevent health complications, maintain good health, and/or avoid fatal conditions – require a cross-disciplinary approach.

Toward achieving the design of these genomic, proteomic, and physiological complexity-aware MCPS architectures, in this paper, we briefly review a list of urgent mathematical challenges and advocate for (1) a comprehensive understanding of individual complexity of genomic, proteomic and physiological processes in order (2) to establish compact yet accurate mathematical models (Xue and Bogdan, 2017) to predict abnormal behavior corresponding to disease precursor patterns, and (3) to optimize the dynamics of human physiology in accordance with observed complexity (minimize detrimental effects on homeostasis that potentially minimizes also the healthcare costs) and improve the patients QoL. These envisioned complexity-aware MCPS are bound to exploit the fractal geometry, non-linear dynamics, fractional calculus, fractal statistics, and stochastic fractal optimal control for maximizing the impact of prevention, treatment, and QoL, while minimizing health care costs related to hospitalization or side-effects. Also, these MCPS should prevent misuse, overuse or underuse of medical care based on robust mathematical analysis, thus cutting down on healthcare costs, and improving efficiency.



BIOLOGICAL (GENOMIC, PROTEOMIC, PHYSIOLOGICAL) COMPLEXITY: MODELING, ANALYSIS, AND CONTROL


Genomic, Proteomic, and Physiological Signals Display Asymmetric Non-Gaussian Dynamics

While many pioneering and recent studies have demonstrated that genomic, proteomic and physiological processes possess self-similar, long-range dependence (memory), and fractal characteristics (Goldberger and West, 1987; Shlesinger, 1987; Ivanov et al., 1999, 2001; Stanley et al., 1999; Eke et al., 2006; Bassingthwaighte et al., 2013; Ghorbani et al., 2018; Racz et al., 2018b), an intriguing mathematical observation is that many such physiological processes display an asymmetric non-Gaussian dynamics. From a mathematical perspective, this implies that the dynamics of the process under investigation is governed by two components (see Figure 1): the magnitude of positive and negative increments and the inter-event (waiting times between events) of a biological process.


[image: image]

FIGURE 1. Blood glucose analysis. (A) Empirical value of the survival function (i.e., the probability that the positive increment exceeds a threshold τ) is better represented by an α-stable distribution than a Gaussian counterpart. (B) Similarly, the empirical survival function for absolute value of negative increments with varying threshold τ is better represented by an α-stable than a Gaussian distribution.


The statistics of the magnitude of positive and negative increments of a process can encode information about the degree of asymmetry, non-linearity, and the influence of other variables on its dynamics. Many complex (biological) processes exhibit positive (growth) and negative (decline/loss) jumps or bursts characterized by different distributions (e.g., stretched exponential and asymmetric α-stable distributions). For instance, Figure 1 illustrates that most often the positive and (absolute values of) negative increments in blood glucose are better fitted by an α-stable distribution family than exponential or Gaussian distributions. Within this context, a number of open questions arise: (1) From a medical perspective, can the observed asymmetric α-stable statistical behavior represent a universal behavior of a healthy dynamics for specific biological processes? If yes, can the potential deviations in the asymmetric α-stable statistical behavior (e.g., decrease in the degree of asymmetry, decrease/increase in the α-stable parameter) be linked with the disease precursors? Along the same lines, how does the observed asymmetric α-stable statistical behavior evolve with aging? For example, as pointed out in Ferrucci et al. (2018), aging contributes to the stiffening of heart ventricles and large arteries, which leads not only to detrimental changes in cardiovascular performance and physical capacity, but could also influence the statistics of many physiological processes (e.g., heart rate, blood glucose, and brain activity processes). (2) From a mathematical perspective, one can wonder whether the statistics of the magnitude increments can shed light not only on the mathematical expressions (e.g., linear, quadratic, and fractional order) describing the rate of change of one state variable, but also on the causal influence and its corresponding mathematical terms characterizing the coupling among the state variables of the physiological systems. In other words, rather than postulating possibly unjustifiable mathematical expressions and using these postulates for formulating inverse problems, a more rigorous mathematical analysis of physiological complexity would require to carefully analyze the statistics of the positive and negative magnitude increments and encapsulate the statistical findings into generative mathematical models [e.g., generalized master equations (Kenkre et al., 1973; Klafter et al., 1987; Balescu, 1997; Akhrif et al., 2018)].

Moreover, the statistics of time-intervals at which a process changes its value (inter-event or waiting times) dictates whether the process under investigation is possessing short-range dependence (Markovian) or long-range dependence (non-Markovian) characteristics. For exponential inter-event times, the rate of change in the variable can be described by a first order time derivative. In contrast, for single power law distributed inter-event times, the rate of change in one state variable requires the introduction of a fractional order derivative (Shlesinger, 1987; West, 2010; Svenkeson et al., 2016). Of note, as demonstrated in Lombardi et al. (2019), the distribution of inter-event times (among successive events) can not only shed light on the nature of the operator governing the rate of change (dynamics), but also allow us to study the hierarchical temporal organization of the neuronal avalanches (i.e., an ensemble of neurons that fire close-in-time) and the existence of a critical behavior. Nevertheless, the set of critical exponents characterizing the neuronal spontaneous activity in control conditions and in the presence of folic acid are different (Yaghoubi et al., 2018) suggesting the existence of different universality classes. Consequently, a more challenging problem is whether for a process with multi-modal power law distributed inter-event times, the rate of change in the state variable can be accurately described by a combination of fractional order derivatives [i.e., dα x(t)/dtα = Dα x(t), α being the fractional exponent of the fractional derivative] in order to capture the complex memory structure, and how this is connected with criticality (Xue and Bogdan, 2017). Concomitantly, there is a need for mathematical and medical research to understand the statistical complexity of such inter-event times: From a mathematical and bio-physics perspective, we need to better understand the phase transition phenomena characterized by the emergence of multi-modal power law distributed inter-event times and correlate there observations with the degree of the robustness, self-organization, biological intelligence/adaptivity, stability, resiliency, and efficiency of a dynamical system. From a medical perspective, we need to elucidate the relationship between a single or a multi-modal power law distributed inter-event times and the healthy critical or pathological brain states. Future research needs to investigate the relationship between the statistical properties of the magnitude increment and inter-event times and correlate it with the specific mathematical structure of the dynamical equations. Moreover, a more comprehensive cyber-physical systems research is required to analyze genomic, proteomic, and physiological processes in order to elucidate the effect of aging on the relationship between the statistical properties of the magnitude increments and inter-event (waiting) times and determine if changes in these statistical properties can be associated with precursors of diseases. Understanding the universal statistical properties of healthy biological systems as well as healthy aging, could contribute to identifying the disease markers (e.g., detecting genomic instability, epigenetic alterations, mitochondrial dysfunction, and loss of proteostasis), and defining new molecular-based or cellular-based control strategies to correct unhealthy courses and potentially delay or avoid the onset of diseases (Ferrucci et al., 2018).



Biological Systems Display a Complex Spatio-Temporal Interdependent Dynamics Subject to Unknown Unknowns

The ability to efficiently (in real-time) analyze and extract information from large-scale biological datasets is essential for inferring the complex interdependency and corresponding multi-variable functional dependency among various genomic, proteomic and physiological processes, determining the types, and number of required operators (i.e., spatiotemporal integer or fractional order integrals or derivatives) to describe the observed dynamics, incorporating realistic features into compact dynamic models and for endowing MCPS with cognition and intelligence. Current mathematical approaches (e.g., machine learning and system identification) build such dynamic models on simplistic or unverified assumptions (e.g., Markovian dynamics) and achieve good accuracy/fidelity by increasing the number of parameters and the modeling complexity. Such methodologies may pose not only computational challenges, but also impede our understanding of complex biological systems and the design of accurate MCPSs (e.g., brain-machine interfaces, bionic systems) (Pequito et al., 2015; Gupta et al., 2019). One simple approach to account for the spatial complex time-varying interdependency between biological processes and for their short- or long-range memory properties is to construct mathematical models of the following form (Xue et al., 2016b):
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where x1(t),…,xn(t) denote a set of biological processes, Ap represents a coupling matrix encoding the linear interdependencies at previous time points t−τp and E(t) denotes an n-dimensional error term (Xue et al., 2016b). In Eq. (1), the dynamics of a biological process xk(t) is governed by a general operator dα x(t)/dtα = Dα x(t) and based on the observed dynamics xk(t) can be coupled to all other dependent processes x1(t),…,xn(t) or a subset of those. The time operator can either reduce to an integer order derivative for capturing short-range memory dynamics or a fractional order derivative for capturing long-range memory dynamics. For instance, Figure 2 shows a comparison between two dynamic models of the type summarized in Eq. (1) for the case of considering a memoryless (integer order) example and a fractional order one. As one can notice the multi-dimensional fractional order dynamical model of the type summarized in Eq. (1) provides a better prediction when compared to the multidimensional integer order counterpart.
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FIGURE 2. Unknown unknowns (UUs). Twenty step prediction comparison of two models, a multi-dimensional fractional dynamic model with UUs and a multi-dimensional memoryless dynamic model (termed one leg autoregressive AR(1). (A,B) shows comparison of one channel across different time windows, with AR(1) always overshooting the prediction. Similarly, (C,D) are representing the comparison of another channel with two time windows and as it can be noticed the AR(1) exhibits several overshoot/undershoot events in the prediction as compared to the multidimensional fractional dynamic model with UUs.


Consequently, one computational benefit of dynamic models represented in Eq. (1) is that by exploiting up to n fractional order coefficients and one coupling matrix, we can achieve a more compact mathematical representation of complex biological systems with better prediction accuracy than considering higher order autoregressive integrated moving average models. An alternative data-driven mining of the complexity of stochastic processes can be achieved by investigating and estimating the entropy, conditional entropy and information storage of their realizations (Xiong et al., 2017). Although the analysis in Xiong et al. (2017) highlights the importance of non-stationarities (i.e., trends, spikes, and local variance change) and the long-range correlations on the complexity of stochastic autoregressive processes, it also demonstrates that appropriate preprocessing is critical for employing the entropy-based algorithms for mining physiological states, discriminating among various degree of disease, and identifying urgent clinical conditions. Consequently, there is an urgent need for developing algorithmic tools that combine the compact yet accurate mathematical modeling (as the one above-mentioned) with entropic measures for quantifying the complexity of multi-dimensional dynamical systems. From a multiscale multi-dimensional perspective, the multiscale Granger causality was introduced in Faes et al. (2017) to quantify the information transfer across multiple time scales and assess the directed lagged interactions among joint processes (represented by time series). These pioneering works make fundamental contributions toward understanding the multiscale causal relationships among coupled stochastic processes that could be further investigated and extended within the context of Eq. (1) or develop data-driven learning strategies for identifying the structure of Eq. (2).

Along these lines, a major mathematical challenge is how to optimally sense spatio-temporal interdependent cyber-physiological processes exhibiting both short- and long-range memory properties (mainly concerning the dynamics) or short- and long-range cross-dependence properties (concerning the interdependence structure among processes). Alternatively stated, the critical sensing deployment problems seek to determine the minimum number of sensors and their spatial deployment in order to minimize the state estimation error and the process disturbance (Pequito et al., 2015; Xue et al., 2016a; Tzoumas et al., 2018). These problems are even more challenging when considering the intra- and inter-patient variability. For instance, a compact dynamical model as the one in Eq. (1) can be exploited not only for studying such observability related problems, but can also provide new insights into the poorly understood neuro-activation dynamics of motor-related tasks or can suggest design strategies for MCPS (such as the EEG-wearable systems). It is required that such algorithmic strategies are capable of not only capturing the intrinsic spatiotemporal fractality of MCPS through compact mathematical models (with fewest number of parameters), but also allow us to retrieve and predict the states of complex biological systems from small collection of measurements. Although determining the smallest number of sensors required to ensure the observability and retrieve the overall evolution of a coupled fractional and integer order dynamical systems [e.g., collections of electroencephalogram (EEG), electromyogram (EMG), or electrocardiogram (ECG) signals] relied on submodular optimization (Pequito et al., 2015; Xue et al., 2016a; Tzoumas et al., 2018), further studies should investigate non-submodular optimization strategies.

While dynamic models of the type in Eq. (1) can provide compact mathematical representation of complex brain activity and brain-muscle interdependent networks, a much more general mathematical representation may take the following form:
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where h(αk) represents a distribution of fractional order exponents for a specific range αmin≤αk≤αmax. Such a distribution h(αk) may be introduced to model biological processes that display a multi-fractal behavior requiring multiple fractional order derivatives for modeling their dynamic behavior. The function F(x1,…xk,…xn; t) in Eq. (2) encodes the interactions among various processes and can be used to obtain a complex network representation of the physiological systems. For instance, pioneering efforts (Ivanov and Bartsch, 2014; Bartsch et al., 2015; Liu et al., 2015; Ivanov et al., 2016) have demonstrated that various physiological processes can be described through a complex network approach (i.e., the network physiology; Bashan et al., 2012). By exploiting the time delay stability concept, the authors in Ivanov and Bartsch (2014) and Ivanov et al. (2016) quantified the dynamic links among physiological systems and demonstrated a robust relation between the network structure and the physiological states. Moreover, despite numerous studies demonstrating the multi-fractal behavior of various biological processes (Goldberger and West, 1987; Stam and de Bruin, 2004; Wink et al., 2008; Bassingthwaighte et al., 2013; Delignières et al., 2016; França et al., 2018; Mukli et al., 2018; Racz et al., 2018a; Wendt et al., 2018), we lack mathematical and algorithmic tools for identifying the causal interdependence structure and the parameters of dynamical models of the type in Eq. (2). Identifying the mathematical expressions of the functions F(x1,…xk,…xn; t) and reconstructing the physiological networks may be challenging not only because we are required to process heterogeneous, multimodal, and noisy time series (representing various complex multi-component dynamical systems with their own regulatory mechanisms) corresponding to different types of nodes (Ivanov and Bartsch, 2014; Ivanov et al., 2016), but also due to missing samples or scarce observations. Traditional regression techniques may not prove useful and new inverse problems [that may consider extensions of time delay stability concept (Ivanov and Bartsch, 2014; Ivanov et al., 2016)] need to be formulated and solved for identifying the true compact yet accurate mathematical models of biological systems. However, developing rigorous mathematical techniques for identifying the universal behavior encoded in the functions F(x1,…xk,…xn; t) from multimodal heterogeneous time series can not only help decipher the functionality associated with specific physiological network structures, but also develop strategies to detect the spatiotemporal emergence of phase transitions in physiological networks and identify early precursors of diseases and frailty.

Multi-scale multi-physics interactions lead to complex spatiotemporal interdependency and pose significant challenges for MCPS observability and their compact mathematical modeling. In many practical settings, the sensing of time-varying complex networks can only observe a small subset of nodes. Consequently, a major research challenge is on developing mathematical and algorithmic strategies that can tackle the following problems: (i) How to infer the number of unknown unknowns and the interdependency structure not only between the observed variables, but also between the observed and the inferred (unobserved) ones? (ii) How to identify the minimal subset of variables that need to be measured in order to retrieve the unknown CPS states and unknown inputs triggering the overall evolution? For instance, the necessary and sufficient conditions for ensuring the retrieval of state and unknown stimuli and an efficient algorithm to determine a small subset of variables that need to be measured for recovering the states and inputs while establishing sub-optimality guarantees with respect to the smallest possible subset were discussed in Gupta et al. (2018a, b). Exploiting these theoretical tools for identifying compact mathematical modeling while dealing with UUs, a rethinking of the design of EEG-based non-invasive brain machine interfaces (BMIs) was described in order to endow these BMI systems with new algorithmic strategies that identify the parameters of a fractal time-varying complex network for describing the interactions between various brain regions (Gupta et al., 2018a, b, 2019). The parameters of the compact mathematical model are used to decode the spatio-temporal fingerprints of human decision-making processes and classify specific cognitive states (e.g., motor task or its imagination) based on measurements collected from a brain in action and in context. The classification performance on real brain activity motor tasks datasets is on average 85.7% (Gupta et al., 2018b). Thus, this compact mathematical modeling provides excellent features for differentiating among various brain imagined motor movements.

Although promising, in general, the model structure dictated by the biological systems and the environmental influences are unknown. Future research needs to either develop strategies to account for the situation in which each physiological process is characterized by a distribution of fractional order coefficients or determine tradeoff laws that characterize the minimum number of fractional order coefficients that are required for accurate observability and prediction of the overall complex system dynamics. From a medical perspective, we need to investigate whether the above-mentioned compact mathematical modeling enables the definition of robust strategies to detect and identify the hallmarks of aging, or how aging phenotypes, age-related diseases and functional limitations (Ferrucci et al., 2018) influence the structure, fractal profiles and parameter ranges of this compact mathematical model. Similarly, a crucial step toward developing multiscale (long-term) control methodologies with minimal effort or intervention requires compact mathematical models extracted from scarce, sparse, heterogeneous and noisy data, and yet capable of predicting the likelihood of frailty and disability.



Controlling Physiological Complexity

The goal of a MCPS is not only to monitor and construct a dynamical model of complex biological systems, but also to find adequate control strategies that maintain the physiological state within predefined healthy range while minimizing the adversarial effect of the control signal and so improve the QoL of patients (Bogdan et al., 2013; Ghorbani and Bogdan, 2013). For instance, the control algorithm of an artificial pancreas utilizes the model describing the blood glucose to insulin dynamics to determine the minimum amount of insulin to be injected at the prescribed times over a finite horizon of time such that the risk of hypo- or hyperglycemia is minimized (Ghorbani and Bogdan, 2013, 2014). Of note, it is important to find the insulin amount with respect to QoL constraints, because injecting too much too soon or too frequently can affect other organs and can have a detrimental health effect over longer periods of times (months and years). Given the observed physiological variability and taking into account recent findings that associate the loss in the degree of multi-fractal properties with a signature of frailty and departure from homeostasis toward a disease state, one naturally asks how the physiological control problems should be formulated within the healthcare CPS architectures. Alternatively stated, given the intra- and inter-patient variability, enforcing a specific physiological reference value without considering the multi-fractal characteristics may sometimes do more harm than good. It is becoming well accepted that the physiological control should obey a stealthy intervention or influence on the time-varying complex physiological networks (i.e., sparsest in time and minimum amount of actuation signal) such that the control effort does not destabilize the healthy functional feedback (regulatory) loops or contribute to a form of adaptation of the complex biological systems to the therapeutic agent. From this perspective, the physiological control in MCPS should not only consider healthy physiological ranges for state and control variables, but should also ensure that the healthy degree of multi-fractality of an individual is restored. While this mathematical problem remains to be carefully studied, it can be realized that one natural way to control the degree of multi-fractality and implicitly the physiological complexity measure is to optimize over the space of higher statistical moments and cross-moments associated with physiological networks.

To take into account the above-mentioned challenges, we hypothesize a physiological-aware control of complexity problem as a finite horizon stochastic optimization problem of the following form:

[image: image]

where C(t, ⟨|x|⟩, ⟨|x|2⟩,…, ⟨|x|k⟩, u, r) denotes the cost objective as a function of the higher (first k-th) order moments [whose dynamics can be described by stochastic differential equations of the type in Eq. (4)], the control signals u(t) and the healthy physiological reference values r(t), umin and umax are the lower and upper bounds on the acceptable control signals u(t) in Eq. (5), β(t) is the time dependent fractal profile exhibited by the physiological process x(t), α and g(α) are the fractal exponent and distribution of fractal exponents characterizing the changes in the magnitude of stochastic (physiological) process x(t), g(u,t) denotes a function capturing the dependency between the k-th order moments and the control signals u(t), and h is a function meant to capture the additive or multiplicative nature of the noise sources η(t). The reason for accounting for various noise types is motivated by either measurement errors due to variations in the body posture and sensor transient malfunctioning, or communication failures and delays that can occur between various MCPS components. In Eq. (5), we denote by [image: image] the initial values of the k-th order moments. Depending on the medical condition, the clinicians would not only enforce a specific mean for the physiological process, but also minimize the chances of rare events by considering the fourth-order moment or other related metrics. To account for the inter-patient variability, this framework allows us to characterize the statistical properties of a healthy person, derive a stochastic profile in terms of the k-th order moments, and use these models for maintaining an adequate physiological state.

The mathematical expression of the cost C in Eq. (3) depends on the physiological processes to be controlled, the coupled (interdependent) dynamics between the physiological and control signals and the medical condition to be treated. For instance, the cost function of the controller of an AP will have very different expressions when considering diabetes type or the lifestyle conditions such as blood glucose regulation during either nighttime or intensive exercise. From this perspective, there is an urgent need for developing mathematical and algorithmic control strategies for dealing with observed non-linear, time-varying, and inter- and intra-patient variability and encapsulate them into real-time physiological controllers. For example, it is important to determine how to best select a subset of control variables (e.g., single vs. dual hormone controllers for artificial pancreas) for regulating the physiological network in order to achieve the QoL control with minimal intervention (e.g., smooth BG). Equally important is the development of artificial intelligence and machine learning techniques for identifying the optimal risk indices to be optimized in order to provide quality-of-care control (prevent insulin overdose). Given the observed intra- and inter-patient physiological variability, the intelligence of MCPS should also be able to account for time-varying parameter uncertainty and modeled dynamics (unknown sensitivities to control variables), measurement and actuation delays, as well as the distributed nature of MCPS (distributed sensors and controllers). Having knowledge of the healthy physiological complexity of an individual (described through multi-fractal (Delignières et al., 2016), emergence (Balaban et al., 2018), self-organization (Balaban et al., 2018), and robustness metrics), can the MCPS controllers accurately determine (estimate) or retrieve the physiological state when facing sensor noise, adversarial events or actuator errors? Alternatively, can the MCPS controllers distinguish between sensor/actuator faults, abnormal medical conditions and external disturbances (e.g., mean, exercise, and stress levels)? While fractal research has contributed to solving anomaly detection problems in other application domains, we also need to consider how MCPS algorithms can exploit the genomic, proteomic and physiological multi-fractal and complexity to detect changes in the physiological state early on by correlating the mathematical characteristics with particular disease patterns. For instance, there is an urgent need for a comprehensive analysis of functional and phenotypic aging, as well as the development of algorithms for identifying the accelerated aging (Ferrucci et al., 2018), which can enable new control methodologies for delaying or avoiding frailty states. Preliminary research on the fractal physiology promises the design of future MCPS architectures that can determine the type of activity in which the patient is involved, monitor major physiological processes, locally regulate the multiscale physiological dynamics, and remotely inform clinicians via smart alerts.



CONCLUSION AND SUMMARY

While complex networks have been recognized to model biological complexity and decipher medical therapeutics (Barabási et al., 2011; West, 2014; Udrescu et al., 2016), we still lack robust and rigorous data science and analytics techniques for mining the incomplete, heterogeneous and noisy biological data streams and extract their spatiotemporal interdependency. Relying on simplifying assumptions such as memoryless dynamics for either modeling biological processes or linearity for inferring the directionality of causal interactions can provide inaccurate inference strategies of the time-varying complex networks that govern the healthy dynamics of anatomical (biological) systems, which in turn can derail medical therapies. In contrast, by carefully investigating the fractal time properties of neural dynamics one can gain a better understanding and more accurate decoding of the human intent from EEG brain activity (Gupta et al., 2018b, 2019). At the same time, by carefully understanding the potential universal asymmetric statistical characteristics and their implications on the types of fractal (feedback) control architectures, that govern the healthy dynamics of biological processes, can not only provide a more accurate definition of homeostasis, but also open the avenue for new medical control strategies. However, these mathematical problems are made even more difficult when considering that some measurements may be incomplete (e.g., consist of missing contiguous sequences of measurements, measurements affected by noise, many important variables cannot be measured or are not known in order to be measured) or that we have access only to a few partially observable snapshots of the biological network that may suffer from environmental (malicious) interventions (e.g., manifestation of psychological stress and multiscale viral influences) (Xue and Bogdan, 2019; Gupta et al., 2019). Consequently, there is an urgent need for developing rigorous data science approaches that can accurately and efficiently mine the complex spatiotemporal interdependency among biological processes not only for constructing compact accurate mathematical models that can detect and predict abnormality but also for enabling more efficient control strategies to delay (or even avoid) frailty.
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Characterizing brain activity at rest is of paramount importance to our understanding both of general principles of brain functioning and of the way brain dynamics is affected in the presence of neurological or psychiatric pathologies. We measured the time-reversal symmetry of spontaneous electroencephalographic brain activity recorded from three groups of patients and their respective control group under two experimental conditions (eyes open and closed). We evaluated differences in time irreversibility in terms of possible underlying physical generating mechanisms. The results showed that resting brain activity is generically time-irreversible at sufficiently long time scales, and that brain pathology is generally associated with a reduction in time-asymmetry, albeit with pathology-specific patterns. The significance of these results and their possible dynamical etiology are discussed. Some implications of the differential modulation of time asymmetry by pathology and experimental condition are examined.

Keywords: resting state, time irreversibility, entropy production, permutation entropy, Parkinson's disease, schizophrenia, epilepsy, non-linear dynamics


1. INTRODUCTION

Even in the absence of exogenous stimulation and for constant values of the parameters controlling its dynamics, the brain generates fluctuations characterized by non-random patterns over a wide range of spatial and temporal scales (Arieli et al., 1996; Van de Ville et al., 2010; Deco et al., 2011) re-edited across the cortical space in a non-random way (Cossart et al., 2003; Kenet et al., 2003; Beggs and Plenz, 2004; Ikegaya et al., 2004; Dragoi and Tonegawa, 2011; Betzel et al., 2012).

Characterizing resting activity is important for at least three main partially interrelated reasons. On the one hand, accumulating evidence shows that neurological and psychiatric conditions are associated with alterations of several aspects of resting local activity structure, i.e., of how information is processed in each brain region (Zhang and Raichle, 2010; Alderson-Day et al., 2015; Hohenfeld et al., 2018). On the other hand, spontaneous fluctuations are intimately related to stimulus-induced ones (Luczak et al., 2009; Shew et al., 2009; Smith et al., 2009), so that characterizing the former also provides insight onto the latter. No less importantly, the structure of resting brain activity fluctuations gives away key aspects of the physics of the underlying system producing them (Papo, 2014). For instance, if the brain is understood as a complex thermodynamic machine, the activity recorded with standard system-level neuroimaging techniques can be thought of as thermal fluctuations through which the energy is dissipated to ensure its functioning (Livi, 2013). Within this framework, the generic complex spatio-temporal scaling properties of resting brain activity, including scale invariance and long-range temporal memory (Novikov et al., 1997; Linkenkaer-Hansen et al., 2001; Bianco et al., 2007; Gong et al., 2007; Wink et al., 2008; Freyer et al., 2009; Expert et al., 2011), can be understood as indicators of the fact that the brain operates away from equilibrium (Papo, 2013b).

Quantifying the extent to which a system such as the brain deviates from equilibrium conditions is an important issue. The fluctuations of a system at equilibrium obey detailed balance of the probability fluxes, a condition whereby the net current between any pair of states vanishes at long enough times, i.e., given two states x and y and a transition rate W(·) following condition holds: ρ(x)W(x → y) = ρ(y)W(y → x), where ρ(·) is the equilibrium probability distribution. Importantly, this condition can be understood in terms of symmetry property of the probability distributions P(ωt) = P(Iωt) of a trajectory ωt = (ω1, ω2, …, ωt) of length t and its time-reversed one, where I denotes the time reverse operator. In systems outside of equilibrium, this symmetry is broken due to the presence of non-conservative forces: energy dissipation happens with an irreversible increase of entropy, and the time reversal symmetry is then broken. Beyond such explicit dissipation, irreversibility can also be due to the presence of memory, which acts as a hidden dissipative external force in a process (Puglisi and Villamaina, 2009); and, it is destroyed by the presence of noise (Porporato et al., 2007; Xia et al., 2014).

Time irreversibility provides valuable information on the statistical properties of the generating processes of given stochastic dynamics. On the one hand, reversibility implies stationarity (Lawrance, 1991). On the other hand, linear Gaussian random processes and static non-linear transformations of such processes are reversible, and significant time irreversibility excludes Gaussian linear processes or linear ARMA models as possible generating dynamics, implying instead non-linear dynamics or (linear or non-linear) non-Gaussian (Weiss, 1975; Cox et al., 1981; Lawrance, 1991; Stone et al., 1996). The asymmetry under time reversal of some system variable's statistical properties provides a quantitative estimate of the thermodynamic entropy production Σt of the system generating the activity, even when the details of the system are unknown (Gaspard, 2005; Andrieux et al., 2007; Roldán and Parrondo, 2010). Note that the coarse-grained entropy production provides a lower bound on the true one (Seifert, 2019). This fundamental relation between thermodynamic entropy (a macroscopic quantity) and Kolmogorov–Sinai entropy (a microscopic quantity) has in particular been proven to hold for systems in non-equilibrium steady state (NESS) (Gaspard, 2004; Roldán and Parrondo, 2010). Σt can be represented in terms of the ratio Σt = ln[P(ωt)/P(Iωt)]. This quantity is identically equal to zero for each trajectory separately if detailed balance is satisfied, but always non-negative otherwise. Non-equilibrium systems obey fluctuation relations which hold for any stationary time series, independently of their dynamics (Evans et al., 1993; Gallavotti and Cohen, 1995; Crooks, 2000; Evans and Searles, 2002). In particular, the following relation
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provides a quantitative expression for the probability of entropy of a finite non-equilibrium flowing in a direction opposite to that dictated by the second law of thermodynamics, when considered in a finite time. This relation illustrates the fact that for out-equilibrium dynamics the negative tail of the probability distribution decays faster than the positive one.

Not surprisingly, time irreversibility metrics have extensively been used to characterize real-world systems, with a special attention being devoted to economic and financial time series (Ramsey and Rothman, 1996; Zumbach, 2009; Xia et al., 2014). Time reversal asymmetry has also been used to characterize healthy and pathological activity of biological systems, particularly the human heart (Costa et al., 2005; Guzik et al., 2006; Porta et al., 2006, 2008, 2009; Piskorski and Guzik, 2007; Karmakar et al., 2009; Hou et al., 2010), but also to classify hand tremor (Timmer et al., 1993). However, the time-reversal symmetry properties of brain activity have attracted little attention (Paluš, 1996; Van der Heyden et al., 1996; Ehlers et al., 1998; Visnovcova et al., 2014; Yao et al., 2019) and have not yet been systematically examined. For instance, Paluš (1996) found the mutual information between EEG time series and their lagged versions to be time-asymmetric. However, since the asymmetry in the peaks of the mutual information, itself symmetric, may not be equivalent to the temporal asymmetry of the underlying process, the observed properties were tentatively explained as reflecting non-stationary non-linear deterministic oscillatory episodes randomly distributed in a noisy background. Three studies examined time irreversibility in epilepsy, consistently reporting increased irreversibility for ictal activity in both scalp and intracranially recorded electrical brain activity (Van der Heyden et al., 1996; Schindler et al., 2016; Mart́ınez et al., 2018). The surgical removal of brain areas generating time-irreversible iEEG signals was associated with seizure-free post-surgical outcome (Schindler et al., 2016).

Here we address the following main questions: what is the typical time asymmetry of brain activity at rest? How is it modified by a simple experimental condition such as opening and closing eyes? How does it vary in neurological and psychiatric brain pathologies? We conjectured that, insofar as entropy production determines the performance of thermal machines such as the brain, and disease is thought to be associated with impaired self-organizing capabilities, abnormal time reversal symmetry properties may be a marker of pathology and may be differentially affected by different neurological and psychiatric diseases. These questions are addressed by analysing a large set of EEG recordings, comprising three groups of patients and the corresponding control groups, through a recently proposed irreversibility metric based on the assessment of permutation patterns (Zanin et al., 2018). Results suggest that the human brain is generically time-irreversible; that such property is increased in eyes open resting states, with respect to eyes closed ones; and that pathologies like Parkinson's disease and schizophrenia decrease the irreversibility. We further show that irreversibility is non-trivially modified by filtering the EEG signal at different bands, and that its nature can be studied by resorting to surrogate time series.



2. MATERIALS AND METHODS


2.1. Assessing Irreversibility in Time Series

In general terms, the time asymmetry of a stationary driven system can be determined by the Kullback-Leibler (KL) distance between probability distributions representing the forward and reverse trajectory (respectively, p and [image: image]):
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The KL distance can be thought of as the mean of the difference between p and [image: image], and quantifies the distinguishability or, loosely, the distance between these two probability distributions (Gaspard, 2005; Andrieux et al., 2007; Porporato et al., 2007). The KL distance is not just an estimator of entropy production's lower bound but it also provides a general method to distinguish between equilibrium and NESS (Roldán and Parrondo, 2010).

While Equation (2) defines a general rule for estimating irreversibility, it does not define what p and [image: image] should represent. Consequently, various methods to quantify time reversibility from empirical time series have been proposed and applied to real-world problems, particularly biological and financial systems (Diks et al., 1995; Paluš, 1996; Ramsey and Rothman, 1996; Daw et al., 2000; Kennel, 2004; Costa et al., 2005, 2008; Casali et al., 2008; Zumbach, 2009; Lacasa et al., 2012; Donges et al., 2013; Xia et al., 2014; Lacasa and Flanagan, 2015; Flanagan and Lacasa, 2016). Here, we use a method (Graff et al., 2013; Mart́ınez et al., 2018; Zanin et al., 2018) based on permutation entropy (Bandt and Pompe, 2002; Zanin et al., 2012). This method presents various advantages: it has no free parameters other than the embedding dimension of the permutation entropy; as visibility graph methods (Lacasa et al., 2012) it is not an all-or-none measure of irreversibility, so that its use is also meaningful for non-stationary signals, which are by definition irreversible, and is temporally local, and therefore allows assessing fluctuations; however, unlike visibility graphs, it does not rely on scaling arguments and its convergence speed is faster and hypothesis testing more straightforward. For the sake of completeness, we here review the method, starting by the definition of the permutation patterns.


2.1.1. Permutation Patterns

The idea of analysing a time series through its permutation patterns was introduced by Bandt and Pompe (2002), and since then received an increasing attention from the scientific community (Amigó, 2010; Zanin et al., 2012; Riedl et al., 2013). Given a time series X = {xt}, with t = 1…N, this is usually divided in overlapping regions of length D, such that:
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D is called the embedding dimension and controls the quantity of information included in each region, while τ is the embedding delay. s further controls the beginning of each region, and thus the degree of overlap between regions.

In this study we consider D = 3 and τ = 1. While larger values of D may allow detecting more complex dynamics, their use also requires longer time series to reach statistically significant results, especially in the case of EEG time series, which are highly noisy. On the other hand, larger values of τ are used when sampling continuous systems whose characteristic frequency is not known, which is not the present case.

Once these regions have been defined, an ordinal pattern is associated to each one of them. The elements composing each region are sorted in increasing order, and the ordinal pattern corresponding to the required permutation is saved for further analysis. In other words, the permutation π = (r0, r1, …, rD−1) of (0, 1, …, D − 1) is the one fulfilling:
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See Figure 1 for a graphical representation of the six permutation patterns that can appear for D = 3.


[image: Figure 1]
FIGURE 1. Calculation of permutation patterns and irreversibility. The six graphs represent the six possible permutation of a time series values for D = 3. The three arrows indicate how each pattern will be transformed under a time reversal operation.




2.1.2. From Permutation Patterns to Irreversibility

The irreversibility of a time series is then estimated by looking at asymmetries in the appearance frequencies of the corresponding permutation patterns. Specifically, for D = 3, 6 patterns can appear, paired as follows:
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with [image: image] representing a time reversal transformation. In other words, a region corresponding to the pattern (0, 1, 2) (for instance, a monotonically increasing series) will become (2, 1, 0) after a time reversal operation (in the previous example, it will become a monotonically decreasing series). This idea is also graphically represented in Figure 1. A time series will thus be reversible if and only if all permutation patterns composing the previous pairs appear with approximatively the same frequency; if this does not happen, a time arrow can be derived from the predominant presence of one of the patterns composing the pair. In other words, and to illustrate, suppose a trivially irreversible time series with monotonically increasing values; only one permutation pattern can appear, i.e., (0, 1, 2), which will transform to (2, 1, 0) under a time reversal transformation. Given a new realization of the same time series, assessing the relative abundance of (0, 1, 2) over (2, 1, 0) will allow to easily define if we are looking at the original or at the time reversed time series. This is nevertheless not possible if the appearance probabilities of both patterns is approximately the same.

A statistical test can easily be designed, by comparing the probability distributions of patterns in the forward and reversed time series. Specifically, if the time series is reversible, the number of times the two permutation patterns forming a pair appear should be similar—i.e., should not be different, in a statistical sense. Following the previous example, let us denote by n(0,1,2) and n(2,1,0) respectively the number of times the patterns (0, 1, 2) and (2, 1, 0) have appeared; and let us define:
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The time series is not reversible if we can reject the null hypothesis that p = 0.5 in a two-sided binomial test. Note that the test should be repeated for all pairs of permutation patterns—three times in the case of D = 3.



2.1.3. Scaling and Noise in the Irreversibility of EEG Data

The previously described test yields a result that could prima facie be used to understand brain dynamics, i.e., one could simply assess whether or not an EEG time series is irreversible. This direct approach nevertheless masks important information, as it tells nothing about the time scales at which such irreversibility appears; may be sensitive to noise; and could be misleading when comparing time series of different lengths, as one could not exclude that the non-irreversibility of a short time series may be due to its reduced length, and not to a reversible underlying dynamics.

We here solve this problem by calculating how the irreversibility evolves as a function of the scale over which such irreversibility is assessed. To illustrate, let us consider an EEG time series composed of N data points, and a window length (the irreversibility scale) of n, such that n < N. We firstly extract all overlapping sub-regions of size n, and evaluate their irreversibility; if at least a 90% of those sub-regions are irreversible in a statistically significant way (α = 0.01), then the whole time series is considered as irreversible for the time scale n. Finally, we average over all channels and all trials / subjects of a data set, to obtain the fraction of times a channel has been detected as irreversible at a given time scale n, and the evolution of such fraction as a function of n.



2.1.4. Model of Noisy Irreversible Time Series

In order to assess whether the irreversibility evolution may only be due to noise, we here consider a simple dynamical model contaminated with additive Gaussian noise. The chosen model is the well-known logistic map (Ausloos and Dirickx, 2006), defined as:
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r is a parameter defining the dynamics of the map, here fixed to 4 to ensure a chaotic evolution. Additionally, σ is a parameter defining the quantity of additive noise, and ξ random numbers drawn from a normal distribution [image: image].

The logistic map has here been chosen as it presents a non-trivial dynamics, but at the same time its irreversibility can be detected even in short time series (Zanin et al., 2018).



2.1.5. Testing Irreversibility Through Surrogate Time Series

As a final issue, we further analyse the source of the irreversibility of brain dynamics by using surrogate time series—see section 3.3. Such series are obtained through the Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm (Schreiber and Schmitz, 1996). IAAFT works by iteratively performing a random phase transformation of the original time series, aimed at creating surrogates that preserve both the linear (auto-)correlation and the amplitude of the signal.




2.2. EEG Data Sets

Below are described the four data sets considered in this study; additionally, Table 1 reports their main characteristics, and Figure 2 the corresponding power spectra for control subjects. Unless otherwise specified, no further processing has been performed, i.e., the whole broadband signal has been considered without additional noise reduction or artifact elimination steps.


Table 1. Main characteristics of the considered EEG data sets. See section 2.2 of the main text for details.

[image: Table 1]


[image: Figure 2]
FIGURE 2. Power spectra corresponding to the four considered data sets, averaged over all control subjects.



2.2.1. Motor Movement/Imagery Data Set

This EEG data set is described in (Schalk et al., 2004), and can be downloaded from https://www.physionet.org/pn4/eegmmidb/ (Goldberger et al., 2000). The full data set comprises recordings of subjects performing different motor/imagery tasks, albeit only the eyes open/closed resting-state conditions are here considered. A total of 110 trials (one per subject) are available, recorded with a 64-channel EEG (BCI2000 system). The 64 electrodes were located as per the international 10-10 system, excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10.



2.2.2. Parkinson's Disease Data Set

The EEG data set of Parkinson's patients was recorded at Istanbul Medipol University Hospital in Istanbul. PD patients were diagnosed according to the criteria of “United Kingdom Parkinson's Disease Society Brain Bank” (Daniel and Lees, 1993). The Unified Parkinson's Disease Rating Scale (UPDRS) (Lang and S, 1989) was used in order to determine the clinical features of PD; and the Hoehn-Yahr scale (Hoehn and Yahr, 1967) was used to determine the disease stage. A total of 74 patients (ages 56−86, median of 74) and 22 matched control subjects (ages 54−89, median of 67) have here been analyzed. All patients with PD were evaluated 60–90 min after their morning dose of levodopa for the EEG recordings. EEG of all healthy controls and Parkinson's Disease patients were recorded in a dimly isolated room. EEG was recorded according to 10-20 system with Brain Amp 32-channel DC system machine from 32 different electrodes. The EEG was recorded with a sampling rate of 500 Hz and with band limits of 0.01−250 Hz. All impedances were kept below 10kohm and two earlobe electrodes (A1-A2) served as reference electrodes.



2.2.3. Scalp (Epilepsy) Data Set

The CHB-MIT Scalp EEG data set is described in (Shoeb, 2009) and is available for download at https://www.physionet.org/pn6/chbmit/ (Goldberger et al., 2000). It consists of EEG recordings from pediatric subjects (22 subjects, 5 males, ages 3−22, and 17 females, ages 1.5−19) with intractable seizures and free of anti-seizure medication. Note that sub-windows free of seizures are here analyzed alongside other groups' control subjects. All signals were sampled at 256 Hz with 23 sensors, located according to the International 10-20 system. Note that Ref. (Shoeb, 2009) provides no information about the eyes status while recording; in what follows we suppose that all data correspond to an eyes open resting-state condition. As seizures can be of short duration, and for the sake of having time series of similar characteristics across all data sets, only seizure segments longer than 30 s have here been considered, for a total of 92 instances. The same number of seizure-free segments, of equal duration, have randomly been chosen.



2.2.4. Schizophrenia Data Set

This data set includes resting state EEG recordings for a set of schizophrenia patients and matched control subjects, as described in Olejarczyk and Jernajczyk (2017) and available at http://dx.doi.org/10.18150/repod.0107441. The 14 patients (7 males, 27.9 ± 3.3 years, and 7 females, 28.3 ± 4.1 years) met International Classification of Diseases ICD-10 criteria for paranoid schizophrenia (category F20.0). The 14 corresponding healthy controls were 7 males, age of 26.8 ± 2.9 years, and 7 females, age of 28.7 ± 3.4. Fifteen minutes of EEG data were recorded during an eyes-closed resting state condition. Data were acquired at 250Hz using the standard 10-20 EEG montage with 19 EEG channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2. The reference electrode was placed at FCz.





3. RESULTS


3.1. Time Irreversibility of Control Subjects

As a first approach, we calculated how the irreversibility of the healthy (control) brain dynamics evolves as a function of the length of the considered signal. Figure 3 reports the evolution of the fraction of irreversible time windows, as a function of their length—as described in section 2.1.3. Several interesting facts ought to be highlighted.


[image: Figure 3]
FIGURE 3. Evolution of the fraction of irreversible channels, as a function of the considered window length, for all control subjects. The left and right panels, respectively, represent data for eyes closed and open resting states. Results here reported correspond to control subjects only, irrespectively of the name in the label—which represents the name of the data set.


First of all, all results are quite homogeneous across the considered data sets. This suggests that specific elements, like the used EEG machine, the number of channels or the recording setup have little effect in the metric; and thus that brain irreversibility is a robust property.

Secondly, it can be appreciated that the result is a monotonically increasing value with a small slope; even for time windows of 100 s, irreversibility is not detected in about 30% of the cases. The underlying dynamics may thus be irreversible, but a large amount of noise is likely masking such characteristic, so that it can only reliably be detected using long time series. To clarify this point, the left panel of Figure 4 reports the results for the Parkinson's disease and Schizophrenia data sets (in the eyes closed condition), along with those of the logistic map for different values of additive noise - as defined in section 2.1.4. While the shapes seem prima facie equal, two important aspects stand out. On one hand, while the irreversibility for the logistic map grows almost linearly with the size of the time window, that of the two EEG data sets seems to grow in a sub-linear way. On the other hand, the behavior for very short time series is very different, both between the two EEG data sets, and between the EEG data sets and the logistic map—see the magnification in Figure 4, right. The observed time series are thus the result of a complex interplay between an irreversible dynamics and observational noise.


[image: Figure 4]
FIGURE 4. Evolution of the fraction of irreversible channels, as a function of the considered window length, for the Schizophrenia and Parkinson's disease data sets, and for the synthetic noisy model (gray lines). From top to bottom, the four gray lines correspond to noise levels of σ = 0.63, 0.66, 0.69, 0.72. The left and right panels respectively represent the whole results, and a zoom for short window lengths. In all cases, only control subjects have been considered.


We then analyzed differences in irreversibility between the eyes open and closed conditions. Figure 5 reports the evolution of the fraction of irreversible windows in the eyes open condition, as a function of the fraction for the eyes closed one. Each graph is constructed by searching, for a point of coordinates (x, y), the minimum window length for which the fraction of irreversible time series in the eyes closed condition is equal or greater than x; then y is set equal to the fraction of irreversible time series in the eyes open condition for that same window length. Points above the main diagonal (dashed gray line) thus indicate that, for a same window length, brain dynamics is more irreversible in the eyes open condition.


[image: Figure 5]
FIGURE 5. Comparison of the fraction of irreversible windows for eyes closed and open conditions, for the motor imaging (left panel) and Parkinson's disease (right panel) data sets. The red lines (right Y axes) depict the evolution of the log10 of the p-value of a binomial test, testing if both values are equal—also represented by the gray diagonal line.


The left and right panels of Figure 5 respectively report the results corresponding to the motor imaging and Parkinson's disease data sets, i.e., the two for which both conditions were available. In both cases the line is above the main diagonal, indicating that the brain is more irreversible in the eyes open condition. This is in agreement with the hypothesis that cognitive activity is associated with irreversibility. Even at rest, leaving the eyes open implies a larger amount of inputs to be processed, and hence a higher activity and irreversibility.



3.2. Change in the Irreversibility Due to Pathological Conditions

An interesting question is to understand how different pathologies may affect the irreversibility of the brain, as the latter may yield information about the effect of the former on brain dynamics. Figure 6 reports on the evolution of the irreversibility of patients, as a function of the corresponding irreversibility in the control subjects (note that these graphs have to be interpreted in a way similar to that of Figure 5).


[image: Figure 6]
FIGURE 6. Comparison of the fraction of irreversible channels between the patients and the corresponding control subjects of the four considered data sets: Parkinson's disease (with eyes closed and open), Schizophrenia and epilepsy. The red lines depict the evolution of the log10 of the p-value of a binomial test, testing if both values are equal—also represented by the gray diagonal line. *assumed state.


In three of the four data sets, patients exhibit a lower irreversibility, which is especially marked in the case of schizophrenia. These pathologies thus seem to reduce the brain's ability to respond to stimuli; or in other words, make the brain less prone to deviate from equilibrium. This is nevertheless not homogeneous: while the difference mainly appears for long time series in the Parkinson's disease and the schizophrenia cases, this is not that marked in the case of the epilepsy. This seems to indicate that the brain's dynamical alterations in the two former conditions are identifiable at long time scales, while ictal events are more temporally local. Parkinson's disease in the eyes closed condition is the exception, displaying a small increase in irreversibility (albeit with no statistical significance). This suggests that, in this pathology, brain dynamics differs in the two conditions, being the irreversibility only different in the eyes open one. This effect may be the result of the visual misperceptions and hallucinations characterizing this pathology, which may have a lower impact in eyes closed conditions (Davidsdottir et al., 2005; Shine et al., 2011).

We further study if these differences between control subjects and patients are consistent across all frequencies, or are specific to some bands. Note that such analysis is also required to exclude that the irreversibility is just a spurious result coming from artifacts or muscular movements. Toward this aim, Figure 7 depicts three cases: results for the broadband signal (as presented in Figure 6), black lines; for signals filtered with a low-pass filter at 50 Hz, blue lines; and for signals filtered with a low-pass filter at 30 Hz, aqua lines. When the low-pass filter is applied, a corresponding downsampling is also executed, in order to avoid spurious slow dynamics that may bias the irreversibility values.


[image: Figure 7]
FIGURE 7. Comparison of the fraction of irreversible channels between the patients and the corresponding control subjects of the four considered data sets: Parkinson's disease (with eyes closed and open), Schizophrenia and epilepsy. Black lines correspond to the broadband signals, as reported in Figure 6; blue and aqua lines to the signals filtered with respectively a low-pass filter at 50 and 30 Hz. *assumed state.


Results strongly differ for the three data sets. Firstly, in the case of schizophrenia, applying the filters yields a strong reduction in the difference in irreversibility; on the other hand, the opposite was seen in the case of the Parkinson's disease data set for eyes open, for which the difference between control subjects and patients was substantially increased. Even stronger is the effect of filtering in the case of epilepsy, in which case not only the difference between control subjects and patients is increased, but the difference in irreversibility even changed sign. This suggests the presence of a complex relationship between irreversibility, dynamics at different frequencies and pathologies. In the case of schizophrenia, patients seem to suffer from reduced irreversibility at high frequencies; while the opposite, i.e., a marked lower reversibility mainly at low frequencies, arises in Parkinson's disease patients.

We finally analyzed how this irreversibility of brain dynamics is spatially distributed throughout the brain in the three pathological conditions here considered. Figure 8 reports the average irreversibility value according to the EEG sensor, for the broadband signal. This value was calculated by averaging the irreversibility obtained for all window lengths, i.e., by averaging the curves of Figure 3; it therefore represents an overview of the dynamics of the brain at all possible time scales. The four right-most panels of Figure 8 further report the difference in irreversibility between patients and control subjects—red shades indicating a higher irreversibility in the former. In the case of the Parkinson's disease in eyes closed conditions, patients were characterized by higher irreversibility in the frontal and occipital regions, while this metric was lower in most other regions. In all other cases, the drop in irreversibility characterizing patients was more spread, and especially strong on a very extended scalp region, spanning frontal, central and parietal regions.


[image: Figure 8]
FIGURE 8. Evolution of the average irreversibility by EEG channel in the three data sets corresponding to pathological conditions. Panels in the first and second columns depict the fraction of irreversible windows per channel, the left (right) ones to control subjects (patients). The four right-most panels depict the difference between the patients and the control subjects; positive values (red shapes) indicate a higher irreversibility in patients. *assumed state.




3.3. Nature of Brain Irreversibility

As a final issue, we analyse the possible origin of the observed irreversibility. As discussed in section 2.1, the statistical significance of all presented results has been calculated through the p-value of a two-sided binomial test; note that this is equivalent to considering that all values composing the time series are independent, and is thus equivalent to comparing the irreversibility against randomly shuffled series. We explore another possibility, i.e., the use of IAAFT surrogate time series, which preserve linear autocorrelation and amplitude of the data—see section 2.1.5 for details. Comparing the results yielded by both approaches allows to partly understand the nature of the observed irreversibility. A statistically significant result in the binomial test suggests the presence of any kind of irreversibility, or of a weak version of it. If such irreversibility is maintained in the surrogates, it is possibly caused by the linear autocorrelation structure of the time series—as this property is maintained by the IAAFT. On the other hand, if the irreversibility is reduced in the surrogate signals, then the linear autocorrelation can be discarded as a cause—hence indicating a strong irreversibility.

Figure 9 reports the evolution of the irreversibility both in the original time series (black lines) and in the IAAFT surrogates (blue dashed lines). A strong heterogeneity in results can be observed. On one hand, time series in the motor imagery and schizophrenia data sets display a similar or lower irreversibility both in the raw time series and in the surrogate ones, thus indicating that its origin resides in the autocorrelation structure. On the other hand, all cases of the Parkinson's Disease data set can be associated with strong irreversibility, as this is lost in the surrogates. An intermediate result is finally observed in the case of epilepsy: while inter-ictal windows are more irreversible, ictal ones are characterized by a larger distance from surrogates' irreversibility; this suggests that ictal activity is less irreversible in a weak sense, but more irreversible in a strong sense with respect to inter-ictal activity, as already suggested in the literature (Van der Heyden et al., 1996; Schindler et al., 2016; Mart́ınez et al., 2018).


[image: Figure 9]
FIGURE 9. Comparison of the fraction of irreversible channels, when the statistical significance is calculated against shuffled time series (black lines) and IAAFT surrogates (blue dashed lines). The red dotted lines (right axes) depict the evolution of the standard deviation of the irreversibility observed in the surrogated time series. *assumed state.





4. DISCUSSION AND CONCLUSIONS

We used a permutation-entropy based metric to quantify the time-reversal symmetry of spontaneous EEG activity from three groups of patients under two experimental conditions (eyes open and closed). Our results show that resting brain activity is generically time irreversible, and that irreversibility is modulated by simply opening or closing eyes, and altered in a pathology-specific way by psychiatric and neurological disease.

The presence of resting time-reversal asymmetry of electrical activity is consistent with a vision of the brain as a generically out-of-equilibrium system. Our results indicate that at sufficiently long time scales the healthy brain may in fact be operating close to a NESS (Livi, 2013). Moreover, insofar as it has the shape of Equation (1)'s fluctuation relation, the proposed asymmetry quantifier provides information as to the system's distance from equilibrium. Equilibrium systems fulfill fluctuation-dissipation relations (FDRs). Translated in terms of neural activity, these relations would reflect a substantial equivalence between spontaneous and task-induced brain fluctuations, so that the presence of FDRs would considerably simplify the characterization of the latter, by allowing to base it merely on the correlation properties of the former (Papo, 2013a). While the brain as any other biophysical system is not expected to fulfill such equilibrium relations, the extent to which these are violated can nonetheless provide important information on the relation between resting and task-induced activity. The most intuitive way to probe FDR violations would in general consist in comparing correlations of the unperturbed system with stimulus- or generally task-induced ones (Martin et al., 2001). However, this method has various shortcoming: (1) it requires separate measures of the correlation and response functions, the latter relying on external perturbations; (2) external perturbations, the effects of which are often difficult to control in a neuroscience context, only represent exogenously promoted cognitive or motor functions; (3) there is no way that perturbations are small enough to guarantee that the measurements are made within the linear response regime. An alternative method to quantify a NESS involves evaluating the property of detailed balance between microstastes of an appropriately coarse-grained mesoscopic representation of the system's dynamics (Rupprecht and Prost, 2016). The proposed method is in some sense a measure of detailed balance violation (Zanin et al., 2018), and provides the time-scale-specific magnitude of the distance from equilibrium. Finally, while the coarse-graining implicit in both EEG data and in our analyses lose parts of the genuine physical entropy production of the underlying system, the proposed time-irreversibility quantifier can nonetheless be thought to give a lower bound of the system's true one (Seifert, 2019).

If time-reversal symmetry reflects a genuine indicator of brain activity efficiency, one would expect that it would vary in a task- and condition-specific manner. Our results show that irreversibility can be modified by an experimental condition as simple as opening and closing eyes (see Figure 5), consistent with an entropy production interpretation of observed time-reversal symmetry. Our results also generally point to decreased irreversibility in pathology, the lowered proneness to depart from equilibrium being most conspicuous in the schizophrenia group (see Figure 6). Pathological dynamics seems reminiscent of non-equilibrium systems recovering equilibrium properties at certain scales (Egolf, 2000). In addition, irreversibility patterns showed some degree of pathology-specificity, particularly conspicuous at faster time scales (see Figure 3). An important general message is then that irreversibility induces a time scale, identified by the transition to irreversibility, both in healthy activity and in pathology. Furthermore, the scales at which irreversibility departs from the healthy pattern also showed some pathology-specificity.

Time-reversal symmetry alterations showed pathology-specific frequency content (see Figure 8). This may indicate that the irreversibility pattern consistently seen in healthy controls across different data sets analyzed in our study may result from a specific composition of the broad-band frequency spectrum. Conversely, this also suggests that frequency-specific dysfunction associated with various pathologies (Lee et al., 2001; Başar and Güntekin, 2008; Oswal et al., 2013; Roach et al., 2013; Little and Brown, 2014), usually seen from an exquisitely dynamic view-point, may ultimately affect basic aspects of normal brain efficiency.

The results of our tests using surrogate time series show a condition-specific dynamical etiology of time reversibility. In particular, in some pathologies, irreversibility may stem from changes in local linear autocorrelations, while in others it may be a consequence of a different dynamical mechanism, the exact nature of which can only be found by surrogate testing of a different nature from the one used in the present study. Time irreversibility in the data may be caused by some trivial static non-linearity rather than by genuine non-linear dynamics of the system generating the EEG (Van der Heyden et al., 1996). In our study, the role of additive noise was systematically examined and it was showed to decrease as expected irreversibility (see Figure 4). On the other hand, when reversibility can be rejected, a static transformation of a linear Gaussian random process can be excluded as an appropriate model for the time series (Cox et al., 1981). Evidence abounds for weak non-linearity in multichannel EEG (Pezard et al., 1994; Rombouts et al., 1995) and in the interdepencies between EEG channels (Paluš, 1996; Breakspear and Terry, 2002). However, the role of non-linearity per se in irreversibility may be a complex one, as suggested by increased nonlinearity (Pezard et al., 2001) but decreased irreversibility in Parkinson's disease in the eyes open (though not in the eyes closed) condition. The frequency-specificity of the irreversibility patterns in the various pathologies considered in the present study may stem from pathology-specific non-linear features, e.g., bistability and non-diffusivity, associated with non-Gaussian statistics appearing at certain scales of the underlying dynamics (Freyer et al., 2009). Again non-Gaussianity and irreversibility may have a complex, possibly scale-dependent relationship, as the equilibrium systems can exhibit non-Gaussian fluctuations, and conversely non-equilibrium systems can exhibit Gaussian fluctuations.

Finally, the topographically distributed nature of changes in irreversibility with respect to healthy controls would point to diffuse impairment, even for pathologies with localized etiologies such as Parkinson's disease. Although scalp topographical results should always be interpreted with caution, higher fronto-posterior irreversibility values in Parkinson's disease may point to compensatory mechanisms (Blesa et al., 2017). Altogether, our results may suggest that pathology may change the dynamic process underlying brain dynamics, pushing activity not only toward qualitatively different statistical and dynamical regimes (Buiatti et al., 2007; Papo, 2014), but also toward different thermodynamical ones. However, given the role of connectivity and network topology in brain physiology (Bullmore and Sporns, 2009; Bashan et al., 2012; Bartsch and Ivanov, 2014; Bartsch et al., 2015; Liu et al., 2015; Ivanov et al., 2016; Lin et al., 2016), appraising the overall significance of time-reversal symmetry in brain functioning will require understanding the properties of their spatial distribution.

In conclusion, irreversibility may represent a signature of normal functioning and with the potential to highlight pathology. More generally, the evaluation of irreversibility by comparing the information content of time-reversed processes provides a bridge between dynamics, information and thermodynamics of the brain, and may ultimately help understanding fundamental questions (but otherwise experimentally hard to address) such as information erasure, which is connected to entropy production through Landauer's principles (Gaspard, 2015). The properties and significance of time scales, the scale- and sampling rate-dependence, etiology, sensitivity, and specificity of time irreversibility as well as the topology across the cortical space will have to be examined with larger and more controlled samples before their clinical significance is corroborated.
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Emerging evidence has attributed altered network coordination between the default mode, central executive, and salience networks (DMN/CEN/SAL) to disturbances seen in schizophrenia, but little is known for at-risk psychosis stages. Moreover, pinpointing impairments in specific network-to-network interactions, although essential to resolve possibly distinct harbingers of conversion to clinically diagnosed schizophrenia, remains particularly challenging. We addressed this by a dynamic approach to functional connectivity, where right anterior insula brain interactions were examined through co-activation pattern (CAP) analysis. We utilized resting-state fMRI in 19 subjects suffering from subthreshold delusions and hallucinations (UHR), 28 at-risk for psychosis with basic symptoms describing only self-experienced subclinical disturbances (BS), and 29 healthy controls (CTR) matched for age, gender, handedness, and intelligence. We extracted the most recurring CAPs, compared their relative occurrence and average dwell time to probe their temporal expression, and quantified occurrence balance to assess the putative loss of competing relationships. Our findings substantiate the pivotal role of the right anterior insula in governing CEN-to-DMN transitions, which appear dysfunctional prior to the onset of psychosis, especially when first attenuated psychotic symptoms occur. In UHR subjects, it is longer active in concert with the DMN and there is a loss of competition between a SAL/DMN state, and a state with insula/CEN activation paralleled by DMN deactivation. These features suggest that abnormal network switching disrupts one's capacity to distinguish between the internal world and external environment, which is accompanied by inflexibility and an excessive awareness to internal processes reflected by prolonged expression of the right anterior insula-default mode co-activation pattern.
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1. INTRODUCTION

A fundamental feature of the healthy human brain is its intrinsic organization into coupled functional networks (Fox et al., 2005), which crucially includes coordinated default mode network (DMN) and central executive network (CEN) activity for cognitive and executive functions (Bressler and Kelso, 2001; Buckner et al., 2008). Their antagonistic activity putatively reflects competing modes of information processing (Fox et al., 2005; Fransson, 2005). The DMN, with its posterior cingulate cortex and medial prefrontal cortex hubs, serves untargeted inner thought (Andrews-Hanna, 2012); the CEN, particularly within the dorsolateral prefrontal and posterior parietal cortices, contributes to focused stimulus-dependent attention (Fox et al., 2005; Seeley et al., 2007; Menon and Uddin, 2010). The right anterior insula, the main salience network (SAL) driver, causally regulates this competing inter-network activity and thus facilitates both bottom-up perception and reorienting of attention, contributing as such to appropriate behavioral responses to salient stimuli (Menon and Uddin, 2010).

Disturbed DMN/CEN/SAL coordination has been related to the confusion of internally and externally focused attention and to the disturbance of cognition, as seen in psychotic disorders (Carhart-Harris and Friston, 2010; Nekovarova et al., 2014). In support of this, emerging evidence has attributed cognitive deficits in schizophrenia to dysfunctions in proper DMN/CEN coordination (Whitfield-Gabrieli et al., 2009; Chai et al., 2011; Whitfield-Gabrieli and Ford, 2012), whereas SAL anomalies have been mostly linked to reality distortion (Palaniyappan and Liddle, 2012; Pu et al., 2012), and thus posited to play a cardinal role in the development of psychotic symptoms (Palaniyappan et al., 2012a,b). Along the same line, we have recently demonstrated a loss of CEN-DMN anticorrelation, accompanied by DMN, CEN, and SAL anatomical overlap, in spontaneous brain activity of subjects at-risk for psychosis (Wotruba et al., 2014b). Importantly, those measures were associated differentially with cognitive (DMN/CEN) and psychopathological (SAL) symptoms.

A better understanding of the neurobiological underpinnings of different at-risk criteria is key to resolve possibly distinct harbingers of conversion to clinically diagnosed schizophrenia, and thus enable early intervention and lead to improved patient outcomes (Satterthwaite and Baker, 2015). Thus, different at-risk criteria have been conceptualized, including basic (BS) or ultra-high risk (UHR) symptoms. The former have been suggested to describe subtle, subclinical disturbances in mental processes, and to be the most direct self-experienced expression of the underlying neurobiological aberrations of schizophrenia; the latter, including subthreshold delusions and hallucinations, were conceptualized as secondary phenomena occurring at a later stage (Schultze-Lutter et al., 2016).

So far, few neuroimaging studies explore the relevance of these different conceptualizations, although divergent structural (Hurlemann et al., 2008; Koutsouleris et al., 2009a,b; Harrisberger et al., 2016) and functional (Ebisch et al., 2013, 2014; Wotruba et al., 2014a,b) brain abnormalities could be associated with different at-risk criteria.

Most resting-state studies in schizophrenia hypothesize stationary connectivity between brain regions, an oversimplification: for example, although the DMN and CEN are anticorrelated most of the time, they also exhibit some temporal intervals of correlated activity (Chang and Glover, 2010). Complex facets of brain activity, such as its non-stationary (de Pasquale et al., 2018; O'Neill et al., 2018) or scale-free (Van Den Heuvel et al., 2008; Van De Ville et al., 2010) nature, should thus be taken into account.

The growing field of network physiology—see Ivanov and Bartsch (2014) and Ivanov et al. (2016) for reviews—precisely attempts to quantify these complex properties. In the context of electroencephalography, approaches such as time-delay stability (Bashan et al., 2012; Bartsch et al., 2015) or delay-correction landscape (Lin et al., 2016) analyses characterize the nature and stability of the interactions between different network nodes, which jointly consist in different frequency rhythms at which functional processing occurs, and in organs under neural regulation (e.g., the eyes or the heart).

This sophisticated dynamics of brain function is modulated by the physiological state, as seen in the case of sleep stages (Bashan et al., 2012) or concomitant physical exercise and cognitive processing (Ciria et al., 2019). In addition, alterations are also seen in disease (Goldberger et al., 2002), which positions the study of resting-state functional brain dynamics as a question of particular interest regarding the emergence of pre-psychotic symptoms.

Recent electroencephalography work has shown the merits of probing the non-linear relationships between not just frequency rhythms, but also spatially remote brain centers (Liu et al., 2015). Functional magnetic resonance imaging (fMRI) is a particularly fitting imaging modality for this purpose, owing to its finer spatial resolution. Dedicated analytical strategies must be established, and accordingly, dynamic functional connectivity (Hutchison et al., 2013; Preti et al., 2017) analyses of schizophrenia (Damaraju et al., 2014; Du et al., 2016; Miller et al., 2016), and time-resolved fMRI investigations (Karahanoğlu and Van De Ville, 2017), have been gaining popularity.

However, the consideration of impairments at the level of specific network-to-network interactions, and so, possible maladaptive dynamics of the particular DMN/CEN/SAL relationship, remains subject to debate. Further, the analysis of connectivity, a second-order statistic, lowers the effective temporal resolution of the data, justifying recent developments toward frame-wise techniques to extract brain networks and analyse their interplays (Caballero-Gaudes et al., 2013; Karahanoğlu and Van De Ville, 2015).

Co-activation pattern (CAP) analysis (Liu and Duyn, 2013) is one such approach, where the sets of regions co-activating with a seed region of interest at different time points can be disentangled. To probe network-specific dynamic impairments, spatial or temporal features of the extracted CAPs can then be analyzed (Amico et al., 2014; Chen et al., 2015).

To improve the early recognition of psychosis and clarify the underlying role of the right anterior insula and co-activating regions, we carried resting-state fMRI on 25 subjects at-risk for psychosis with BS criteria, with full insight into their abnormal nature (Klosterkötter et al., 2001; Schultze-Lutter et al., 2016); 18 individuals with attenuated and/or brief intermittent psychotic symptoms (Yung and Mcgorry, 2007)—UHR criteria; and 29 healthy controls (CTR), matched on premorbid intelligence, age, handedness, and gender. We extracted six recurring CAPs, and given our specific interest in the interplay between the SAL, DMN, and CEN, focused the analysis on related ones, comparing their temporal expression across groups. We considered normalized counts, informing on the relative occurrence of each CAP, and duration, characterizing the average time for which a CAP is sustained. To assess the putative loss of competing relationship between CEN/DMN/SAL-containing CAPs in the at-risk stages for psychosis, we also quantified the balance in occurrence between these patterns of interest.



2. MATERIALS AND METHODS


2.1. Participants

The present study included 76 participants (29 CTR, 28 BS, 19 UHR), and was approved by the local ethics committee of Zürich. Risk groups were recruited in the Swiss region of Zürich within the context of a larger study on early psychosis recognition (Theodoridou et al., 2014). Following an initial screening, in-person diagnostic interviews were administered, and a complete project description was provided. All subjects provided their written, informed consent. The procedure and imaging data acquisition were identical to those used in a previous study (Wotruba et al., 2014b).

Participants reporting at least one cognitive-perceptive basic symptom or at least two cognitive disturbances, as assessed by the Schizophrenia Proneness Interview (Schultze-Lutter et al., 2007) or, for adolescents (age < 18), by the Schizophrenia Proneness Interview “Child and Youth” version (Fux et al., 2013), fulfilled the inclusion criteria for the BS status. Those describing at least one attenuated psychotic symptom or brief, limited, intermittent psychotic symptoms, as assessed by the Structured Interview for Prodromal Syndromes (Miller et al., 2003), fulfilled the criterion for UHR status. Five BS and four UHR subjects were taking second-generation (atypical) antipsychotic medication at the time of scanning. Chlorpromazine equivalents were calculated for them (Andreasen et al., 2010). Five BS and three UHR subjects were being treated with an antidepressant. Our healthy CTRs were screened with the Mini-International Neuropsychiatric Interview (Sheehan et al., 1998) to ensure that none had any current or prior history of psychiatric illness. Those receiving any medication were excluded.

Exclusion criteria were contraindications against MRI, pregnancy, a history of neurological illness, as well as drug or alcohol dependence. Structural MRI scans were checked by an experienced neuroradiologist, excluding participants with structural brain abnormalities. The groups had a mean estimated premorbid intelligence slightly above average, as assessed using a German test for estimating premorbid, verbal intelligence—Mehrfachwortschatz Test, Version B (Lehrl, 1999); adolescent subjects (age < 20) adopted the Leistungsprüfsystem-3 German test for fluid, nonverbal intelligence (Horn, 1983). Handedness was examined by the Edinburgh Handedness questionnaire (Oldfield, 1971).

A list of all 76 subjects, including their taken antipsychotic drugs/antidepressants and exclusion criteria—as further detailed below—is provided in Table S1.



2.2. Imaging Data Acquisition

Resting-state fMRI data were acquired at the University Hospital of Psychiatry Zürich, Switzerland, using a Philips Achieva TX 3 T whole-body MR unit with an eight-channel head coil. Functional scans (6 min runs) involved a sensitivity-encoded single-shot echo-planar (factor 1) [image: image]-weighted echo-planar imaging sequence [repetition time = 2,000 ms; echo time = 35 ms; field of view = 220 × 220 mm2; acquisition matrix = 88 × 87, interpolated to 128 × 128; 32 contiguous slices with a spatial resolution of 2.5 × 2.5 × 4 mm3 (reconstructed 1.72 × 1.72 × 4 mm3); flip angle θ = 78°; and sensitivity-encoded acceleration factor R = 1.8]. We also acquired three-dimensional T1-weighted anatomical images [160 slices; TR = 1,900 ms; TE = 2.2 ms; inversion time = 900 ms; θ = 78°; spatial resolution of 1 × 1 × 1 mm3 (reconstructed 0.94 × 0.94 × 1 mm3); field of view = 240 × 240 mm2]. Echo-planar imaging sequences were conducted under darkness; participants were asked to keep their eyes closed, lying quietly without falling asleep, as confirmed after scanning. To minimize arousal and anxiety effects, acquisition started 10 min after moving the subjects to their final MR bore positioning.



2.3. Preprocessing

Preprocessing was conducted using SPM8 (Wellcome Department of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm), running in Matlab (Mathworks Inc., Sherbon, MA, USA), and the conn toolbox pipeline (version 15a). We performed realignment, slice timing correction, co-registration to structural T1 scan, spatial normalization to Montreal Neurological Institute space, and spatial smoothing (6 mm full width at half maximum). Spurious sources of noise were estimated by the anatomical component-based noise reduction strategy (Behzadi et al., 2007), and included with the six movement parameters as first level nuisance co-variates in a General Linear Model. Temporal band-pass filtering (0.01–0.10 Hz) and z-scoring were applied, and framewise displacement was quantified using Power's criterion (Power et al., 2012). We excluded three subjects (2 BS and 1 UHR) for whom more than 20% of volumes were censored.



2.4. Co-activation Pattern Analysis
 
2.4.1. Seed Choice, Frame Selection, and Extraction of Co-activation Patterns

Figure 1 illustrates the key methodological steps underlying CAP analysis. Based on previous analyses (Wotruba et al., 2014b) and recently proposed theoretical models for disturbance in the triple network (Menon, 2011), we selected a right anterior insula seed. A spherical region (8 mm radius, Montreal Neurological Institute coordinates: x = 38, y = 22, z = −10) based on previous studies (Seeley et al., 2007; Woodward et al., 2011) was created with the MARSBAR toolbox (http://marsbar.sourceforge.net/), and had its activity thresholded to solely retain frames with signal larger than T = 0.5 (seed activation). To rule out biases due to a different number of selected frames across groups, we also computed the amount of baseline, unselected time points, and included it as a co-variate in our analyses.


[image: Figure 1]
FIGURE 1. Co-activation pattern analysis. (A) A right anterior insula (rAI) activity time course (middle panel, bottom trace) is computed for each subject, and the frames for which it exceeds a threshold T = 0.5 positively or negatively (respectively red or blue) are tagged. Frames corrupted by a framewise displacement (middle panel, top trace) larger than 0.5 mm are also tagged in black. Here, only non-corrupted activation frames are analyzed. (B) Retained frames across subjects (depicted by different shades of red) undergo k-means clustering to be separated into K different co-activation patterns (CAPs), each the arithmetic mean between a subset of frames denoting one particular set of regions with which the seed was strongly co-active at some time points. (C) Mean (black) and minimal (blue) reproducibility for cluster number ranging from 2 to 12, computed as the average over 100 separate trials (plain lines), and for the same measures, 95th percentiles of the related null distributions (dashed lines). The selected value of K = 6 shows mean and minimal reproducibility values above this null data threshold.


K-means clustering was applied to the retained frames. If C(i, j) is Pearson's spatial correlation coefficient between fMRI volumes i and j, then d(i, j) = 1 − C(i, j) was used as a distance measure. The algorithm was run 20 separate times, to avoid being trapped in a local optimum. Each run was performed with a maximal limit of 100 iterations, using randomly selected data points for initialization. Similarly to previous CAP studies (Liu and Duyn, 2013; Liu et al., 2013), only the 15% most active and 5% most deactive voxels in each fMRI volume were considered for clustering, in order to damp the impact of noisy dimensions on the clustering process, and all remaining non-null clusters with <6 neighboring elements were also discarded to further attenuate noise.

Through k-means clustering, each of the retained frames is assigned to an output cluster from the algorithm. Denoting a vectorized fMRI volume i by Fi, the set of frames assigned to cluster k by [image: image], and the number of frames assigned to cluster k by Nk, a CAP is defined as the arithmetic mean between all the frames attributed to the same cluster:

[image: image]

Finally, in order to be able to delineate spatial territories showing significant seed co-(de)activation, each CAP map was individually subjected to spatial z-scoring. A threshold of 1.5 was chosen, in accordance with previous work (Karahanoğlu and Van De Ville, 2015), and also used for visualization (see Figure 2A).


[image: Figure 2]
FIGURE 2. Altered co-activation pattern temporal features in subjects at risk for psychosis. (A) The six co-activation patterns (CAPs) found for a right anterior insula seed, with Montreal Neurological Institute slice coordinates (bottom right of each slice). Left on the figure stands for the left side of the brain. CEN, central executive network; DMN, default mode network; SAL, salience network; VIS, visual network; BG, basal ganglia. (B) Normalized counts (top left graph), duration (bottom left graph), and balance (right graph) metrics for all six co-activation patterns in healthy controls (CTR), subjects with basic symptoms of psychosis (BS), and subjects at ultra-high risk for psychosis (UHR). Normalized counts for CAP1 (p = 0.06) and CAP2 (p = 0.02) trended toward significance for a group difference. Duration trended toward significance for CAP1 (p = 0.06), and was significant for CAP2 (p = 0.002), with post-hoc tests revealing CTR vs. UHR (p = 0.001) and BS vs. UHR (p = 0.02) differences. Balance was significantly different across groups (p < 0.05). Error bars indicate standard error of the means. *p < 0.05, **p < 0.005.




2.4.2. Determination of the Number of Clusters

To estimate an optimal cluster number K, we randomly split our subject population into two equally-sized groups 100 times; each time, clustering was performed separately on each half, for K = 2–12. Best-match pairs between each group's CAPs were established (Kuhn, 1955), and lowest/mean correlation values (averaged over the 100 trials) were considered as two reproducibility measures.

To generate reproducibility null distributions, we created 1,000 sets of surrogate data under a stationarity assumption: white noise with the same variance as the real data was added to a subject-specific stationary activity pattern estimated from the first eigenvector of its spatial covariance matrix, and randomly scaled over time. Following temporal z-scoring of this surrogate data, null distributions for both assessed reproducibility measures were generated as described above.



2.4.3. Metrics to Quantify CAP Dynamics

For each CAP, we computed two dynamically informative subject-specific metrics: (1) normalized count, equal to 0/1 if the considered CAP never occurs/occurs every time the right anterior insula seed is active; (2) duration [s] (average time during which the CAP remains active). To assess a possible CAP1/CAP2 competing relationship, a balance metric was also computed for each subject as log2(CAP1 counts/CAP2 counts). Positive/negative values reflect a dominance of CAP1/CAP2.




2.5. Statistical Analyses

A one-way multivariate analysis of variance (MANOVA) was conducted, with and without baseline counts/chlorpromazine equivalents as co-variates, to determine group differences in CAP1 and CAP2 normalized counts and duration. We identified one BS univariate outlier, as assessed by inspection of a box plot for values >3 box-lengths from the edge. This subject, who reported intake of relaxane prior to scanning, was taken out of the analysis, because MANOVA is sensitive to the effect of outliers. This resulted in a total of 72 subjects (following scrubbing-related exclusion) matched across groups for handedness, gender, age, and IQ (Table 1).


Table 1. Demographic characteristics and rating of symptoms for the analyzed subjects.

[image: Table 1]

Baseline, balance, duration, and counts data were normally distributed (Shapiro-Wilk test, p > 0.05), except for CTR CAP1 duration (p = 0.01) and CAP2 counts (p = 0.02), both positively skewed. This was tolerated, as MANOVA is considered robust to non-normality, with only a small effect on Type I error (Weinfurt, 1995). MANOVA analysis was judged appropriate, as there were no multivariate outliers seen by box plot and Mahalanobis distance (p > 0.001), no multi-collinearity (r < 0.65), and homogeneity of variance-covariance matrices (Box's M test, p > 0.001). Linear relationships were always found as assessed by scatter plot, except for BS CAP1 duration and counts, which may have resulted in loss of power.

The CAP metrics differing significantly between groups were used to determine the relation to clinical symptom sub-scores, as assessed by the Schizophrenia Proneness Interview and Structured Interview for Prodromal Syndromes. We avoid reporting any significance values and thus take into account the issue of circular analysis (Kriegeskorte et al., 2009), as the BS and UHR groups were selected based on such criteria.

Data is presented as mean ± standard error of the mean, unless otherwise stated.




3. RESULTS


3.1. Right Anterior Insula Co-activation Patterns

The right anterior insula was subjected to CAP analysis with K = 6 (see Figure 1C) to identify co-activating regions. 20.1% of retained frames were attributed to CAP1, 17.8% to CAP2, 17.0% to CAP3, 16.9% to CAP4, 14.7% to CAP5, and 12.5% to CAP6. CAP1 displayed typical CEN (right dorsolateral prefrontal cortex, posterior parietal cortex) and SAL hubs, as well as negative DMN signal. In contrast, CAP2 predominantly displayed positive signal from DMN areas. CAP3 included a visual network, CAP4 featured SAL areas, CAP5 contained CEN regions, and CAP6 was a mix between SAL and basal ganglia nodes. Due to their frequent occurrence and specific link to the CEN/DMN/SAL relationship, CAP1 and CAP2 dynamic features were further analyzed.



3.2. Quantification of CAP Dynamics

With one-way MANOVA, we found statistically significant group differences on the combined dependent variables (F = 2.2, p = 0.02; Pillai-trace = 2.4; partial η2 = 0.13). Follow-up univariate ANOVAs showed that CAP2 duration (F = 7.2, p = 0.002, partial η2 = 0.18) differed significantly between groups (Bonferroni-adjusted α-level 0.0125), while all other variables trended toward significance (CAP1 duration: F = 2.9, p = 0.06, partial η2 = 0.08; CAP1 counts: F = 2.9, p = 0.06, partial η2 = 0.08; CAP2 counts: F = 4.1, p = 0.02, partial η2 = 0.11).

After adjustment for baseline counts and chlorpromazine equivalents, we similarly found CAP2 duration significance (F = 6.7, p = 0.002, partial η2 = 0.18), while other variables trended toward significance (CAP1 duration: F = 2.8, p = 0.07, partial η2 = 0.08; CAP1 counts: F = 3.2, p = 0.04, partial η2 = 0.09; CAP2 counts: F = 4.1, p < 0.02, partial η2 = 0.12).

Tukey-Kramer post-hoc tests revealed a significant difference in CAP2 duration between CTR (3.4 ± 1.2 s) and UHR (4.6 ± 0.3 s) subjects (p = 0.001), and between BS (3.6 ± 0.2 s) and UHR individuals (p = 0.02), but no difference between CTR and BS groups (p = 0.4; see Figure 2B, bottom left graph).



3.3. Balance Between CAP1 and CAP2

The CAP1/CAP2 balance metric was positive for CTR (0.72 ± 0.23), negative for BS (−0.22 ± 0.3), and close to zero for UHR subjects (0.05 ± 0.34; see Figure 2B, right graph). A one-way ANOVA revealed statistically significant group differences (F = 3.3, p < 0.05, partial η2 = 0.09), which remained after adjusting for chlorpromazine equivalents (F = 3.4, p < 0.05, partial η2 = 0.09).



3.4. Association of CAP Metrics to Clinical Symptom Scores

CAP2 duration was related to the severity of psychopathological symptoms in at-risk subjects. For the Structured Interview for Prodromal Syndromes ratings, we found associations to disorganization symptoms (ρ = 0.3) such as odd behavior or trouble with focus, and to positive symptoms (ρ = 0.3) such as unusual thought content, persecutory delusions, perceptional abnormalities, or disorganized communication. We also found associations with the Schizophrenia Proneness Interview sub-score for disturbances in experiencing the self and surroundings (ρ = 0.3), including decreased emotional discrimination abilities or increased emotional reactivity in response to routine social interactions.




4. DISCUSSION

An aberrant orchestration within the triple network (DMN/CEN/SAL) has been suggested as a backbone for features of various psychiatric disorders (Menon, 2011). Viewing the brain as a dynamic system flexibly adapting to changes in internal and external states (Dixon et al., 2016), we analyzed the dynamic interplay of right anterior insula-driven networks, characterizing and quantifying these states in subjects reporting different at-risk for psychosis criteria.

Our analysis revealed that across intrinsic states, the insular seed activates over the entire resting-state scan, across subjects, in concert with well-known networks: in agreement with prior studies (Nomi et al., 2016), CAP3 and CAP6 displayed visual and basal ganglia networks. Thus, the right anterior insula may be working together with those to coordinate sensory information, with CAP6 supporting the view that dopaminergic paths are involved in insular activity (Menon and Uddin, 2010; Shine et al., 2013). Most frequently, we found that our insular seed fluctuated between a state of antagonistic relationship to the DMN in CAP1, which also included SAL-TPN co-activation, and a state of co-activation with the DMN in CAP2. This is in line with recent dynamic studies (Karahanoğlu and Van De Ville, 2015; Nomi et al., 2016), but contradicts the findings of Ryali et al. (2016), who showed segregation of the SAL from a DMN-CEN state, possibly owing to a different computational approach. In any case, we confirm the pivotal role of the SAL to guarantee the balance between the DMN and CEN by integrating information (Menon, 2011; Nekovarova et al., 2014; Uddin, 2015), as hypothesized by the triple network model, which implies a fundamental neural constraint on cognition, assuming that this constitution of antagonistic network relationships reflects the competition between external and internal information processing (Smallwood et al., 2013).

Due to our specific interest in the networks involving the CEN/DMN/SAL, we focused on the related co-activation patterns, CAP1 and CAP2. UHR subjects exhibited longer durations of excursions in the CAP2 state (right anterior insula/DMN co-activation), and also, with a trend toward significance, larger counts. This is somewhat in line with a report on young subjects with sub-threshold psychosis-spectrum symptoms (Satterthwaite and Baker, 2015), who showed diminished connectivity within the SAL, but enhanced connectivity within the DMN. The right anterior insula has been ascribed a central role for bottom-up processing through interoceptive paths, possibly through the basal ganglia, assisting target brain regions in generating appropriate behavioral responses to salient stimuli via the CEN (Menon and Uddin, 2010), while the DMN is a key structure for awareness and source attribution (Northoff et al., 2006; Leech and Sharp, 2013), and reflects internally guided, self-referential thoughts (Zabelina and Andrews-Hanna, 2016). Thus, the overly potent role of the right anterior insula in engaging with the DMN in UHR may reflect an increasing shift to the internal focus of attention. According to the proximal salience hypothesis, as well as the source monitoring model (Menon, 2011; Damaraju et al., 2014; Robinson et al., 2016), this process might lead to the externalization of thoughts at a later stage of symptom progress and distort the attribution of agency, explaining a number of the positive symptoms of schizophrenia.

The significant group difference seen between BS and UHR in terms of CAP2 duration may relate to the neurodevelopmental etiology of psychosis, as basic symptoms are presumed to characterize the early, and UHR, the late, prodromal phase (Fusar-Poli et al., 2013). Thus, this finding could account for the symptomatic worsening and cognitive decline on the path to a psychotic outbreak, as paralleled by the finding of UHR samples exhibiting more frequent and more pronounced neurocognitive impairments compared to samples with BS symptoms (Schultze-Lutter et al., 2016). Moreover, this network feature then reflects an increased risk toward a psychotic outbreak, rather than a trait or an endophenotype.

Another important difference to draw for those two at-risk groups is further substantiated by the analysis of the balance metric. Here, we show that in contrast to the controls and BS, the UHR do not exhibit a competitive relationship between CAP1 and CAP2. Similarly, children also revealed longer persistence in individual SAL, CEN, and DMN states, and reduced state switching probability (Ryali et al., 2016), pointing to an immature brain network organization in UHR (Satterthwaite and Baker, 2015), perhaps reflecting a state of inflexibility to adapt in a constantly changing environment (Dajani and Uddin, 2015). The loss of CAP1 dominance may be caused by weakened top-down regulation by CEN regions, as supported by the observation of failure of reciprocal influence between the right anterior insula and the dorsolateral prefrontal cortex in schizophrenia (Palaniyappan et al., 2013). Additionally, a takeover of the CEN in favor of voluntary process in a destabilized triple network in hallucinating patients was followed by discontinuation of hallucinations (Lefebvre et al., 2016). Albeit speculative, an initial loss in dominance of CAP1 (frontal and salience-related regions under active inhibition of the DMN) in the early at-risk stage (BS) might be followed by further disintegration of the triple network, as ego disturbances and other related psychotic symptoms (Lebedev et al., 2015) become more advanced in UHR. Future longitudinal studies leveraging the present analytical approach to a finer prospective cohort design will be important to confirm whether a failure in dynamic direct connection, as suggested, is accompanied by worsening of psychotic symptoms (Satterthwaite and Baker, 2015).

The loss of network competition could reflect the risk of a breakdown of separateness of one's internal world and external environment (Carhart-Harris et al., 2013; Nelson et al., 2014). Corroborating this, we found an association of CAP2 duration to positive (psychotic) and disorganized symptoms (such as odd appearance, bizarre thinking, unusual ideas, or attentional troubles), but also to sub-scores for disturbances in experiencing the self and surroundings.

Our findings remained when controlling for baseline right anterior insula activity, demonstrating that they involve the engagement of this seed within different network constellations, rather than mediation of insular activity per se. In addition, as some of the analyzed subjects were medicated and given the vivid debate on the extent to which antipsychotic medication contributes to changes in resting-state fMRI (Sambataro et al., 2010), we also controlled for chlorpromazine equivalents; all observed group differences were still present. While other medications (e.g., antidepressants) may also exert a modulatory influence on resting-state functional properties (McCabe and Mishor, 2011; Arnone et al., 2018), they were taken by only a minor fraction of the analyzed subjects (see Table S1), and thus, this factor also likely played a minimal role on our results.

In future work, a bigger sample will be necessary to learn more about the neurobiological underpinnings of different stages within the disease trajectory. In accordance with this, we did find a trend toward significant group differences in both CAP1 metrics, and also for CAP2 counts (applying a conservative Bonferroni-adjusted significance threshold). Thus, it is unclear whether a bigger sample size would also reveal BS-specific features, as nonlinear relationships for CAP1 duration and counts in this group may have resulted in loss of statistical power.



5. CONCLUSION

In summary, our findings substantiate the pivotal role of the right anterior insula in governing transitions between CEN and DMN, which appear dysfunctional prior to the onset of psychosis, especially when first attenuated psychotic symptoms occur. In the UHR stage, this is in at least two ways: firstly, the right anterior insula is longer active in concert with the DMN, and secondly, there is a loss of competition between a SAL/DMN state, and a state with insular/CEN activation paralleled by DMN deactivation, denoting decreased state switching. Considered jointly with our recent stationary analysis of the triple network (Wotruba et al., 2014b), these features suggest that abnormal network switching disrupts one's capacity to distinguish between the internal world and external environment, which is accompanied by inflexibility and an excessive awareness to internal processes (reflected by prolonged expression of the right anterior insula/DMN co-activation pattern). This may, in turn, contribute to the rise in psychotic perceptions. More generally, our work demonstrates the mechanistic relevance of dynamic transitions between temporal network states to support healthy cognition.
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While much is known about the role of agouti-regulated peptide/neuropeptide Y (AgRP/NPY) and pro-opiomelanocortin (POMC) neurons to regulate energy homeostasis, little is known about how forced energy expenditure, such as exercise, modulates these neurons and if these neurons are involved in post-exercise feeding behaviors. We utilized multiple mouse models to investigate the effects of acute, moderate-intensity exercise on food intake and neuronal activity in the arcuate nucleus (ARC) of the hypothalamus. NPY-GFP reporter mice were utilized for immunohistochemistry and patch-clamp electrophysiology experiments investigating neuronal activation immediately after acute treadmill exercise. Additionally, ARCAgRP/NPY neuron inhibition was performed using the Designer Receptors Exclusively Activated by Designer Drugs (DREADD) system in AgRP-Cre transgenic mice to investigate the importance of AgRP/NPY neurons in post-exercise feeding behaviors. Our experiments revealed that acute moderate-intensity exercise significantly increased food intake, ARCAgRP/NPY neuron activation, and PVNSim1 neuron activation, while having no effect on ARCPOMC neurons. Strikingly, this exercise-induced refeeding was completely abolished when ARCAgRP/NPY neuron activity was inhibited. While acute exercise also increased PVNSim1 neuron activity, inhibition of ARCAgRP/NPY neurons had no effect on PVNSim1 neuronal activation. Overall, our results reveal that ARCAgRP/NPY activation is required for acute exercise induced food intake in mice, thus providing insight into the critical role of ARCAgRP/NPY neurons in maintaining energy homeostasis in cases of exercise-mediated energy deficit.
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INTRODUCTION

The hypothalamus in the CNS is critical to the control of energy homeostasis, with the arcuate nucleus (ARC) and the sub-populations of neurons contained within it being especially important in fulfilling this role (Knner et al., 2009). The ARC contains two neuronal populations, which when activated, have opposite effects on feeding behavior: the anorexigenic pro-opiomelanocortin-expressing (POMC) neurons and the orexigenic agouti-related peptide/neuropeptide Y-expressing (AgRP/NPY) neurons. Activation of POMC neurons suppresses food intake (Santoso et al., 2017) by releasing α-melanocyte stimulating hormone (α-MSH), which binds to and activates melanocortin-4 receptors (MC4Rs) located at the paraventricular nucleus (PVN) (Balthasar et al., 2005). Furthermore, POMC knockout mice are over twice the weight of littermate controls at 3-months-old (Yaswen et al., 1999). Conversely, activation of AgRP/NPY neurons in the ARC by either chemical or optogenetic stimulation results in an immediate and robust increase in food intake (Aponte et al., 2011; Krashes et al., 2011), while ablation of AgRP/NPY neurons results in decreased food intake, which, if not reversed, can lead to starvation in adult mice (Gropp et al., 2005; Wu et al., 2009). These evidences highlight the novel but distinct roles of these two ARC neuron subpopulations in regulating food intake.

ARCAgRP/NPY and ARCPOMC neurons can be regulated by changes in circulating factors and synaptic inputs as energy status fluctuates (Baskin et al., 1999). For example, during energy deficit, the stomach derived hormone, ghrelin, stimulates ARCAgRP/NPY to promote food intake. In contrast, in the sated state leptin is released from adipose tissue to activate ARCPOMC and suppress food intake. Regarding neurocircuitry, the PVN is an important downstream site for the mediation of the ARCPOMC and ARCAgRP/NPY regulation of energy homeostasis, with both subpopulations sending dense projections to this area (Wang et al., 2015). Lesions to the PVN and haploinsufficiency of Single-minded homolog 1 SIM1 (Leibowitz et al., 1981), which is expressed in the majority of PVN neurons, causes obesity, thus suggesting the ARCAgRP/NPY → PVNSIM1 neurocircuitry is essential to the homeostatic regulation of food intake. However, the role of the ARCAgRP/NPY → PVNSIM1 neurocircuitry in post-exercise feeding behaviors remains unclear.

Exercise significantly alters energy homeostasis by generating a temporary energy deficit. Surprisingly, studies investigating exercise as a weight-loss intervention elicit mixed success rates (Group, 2002; Stiegler and Cunliffe, 2006; King et al., 2008). Interestingly, documented compensatory eating post-exercise varies greatly across types, intensities, durations, and modes of exercise (Mayer et al., 1954; Kissileff et al., 1990; King et al., 1994; Verger et al., 1994; Stiegler and Cunliffe, 2006), possibly explaining discrepancies in studies using exercise as a weight-loss intervention. Further complicating our understanding of post-exercise feeding behavior, many commonly used animal models of exercise, including involuntary swimming and those using electricity as a motivator, are not physiologically relevant and induce additional stress confounding data. As a result, the purpose of this study was to investigate the effects of an acute, physiologically relevant, moderate-intensity, treadmill exercise protocol (≈ 75% VO2Max) on feeding behavior and ARC neuron activity to determine the physiological mechanisms involved. Furthermore, we determined the direct involvement of ARC neuron populations in post-exercise feeding behaviors using the Designer Receptors Exclusively Activated by Designer Drugs system (DREADD).



MATERIALS AND METHODS


Experimental Animals

All animal procedures were approved by the Institutional Animal Care and Use Committee for the East Carolina University, Greenville, NC, United States. Two transgenic mouse lines were utilized; B6. Tg (NPY-hrGFP)1Lowl/J (NPY-GFP reporter) mice and the AgRP-Cre mouse model in which Cre recombinase expression is induced selectively in AgRP-expressing neurons. Mice were housed in a temperature-controlled environment (22–24°C) with a 12 h light (07:30)/dark (07:30) cycle with standard mouse chow and water provided ad libitum.



Acute Treadmill Exercise Protocol

Mice were randomly assigned to an acute exercise or sedentary control group. On the day before experiments, all mice were familiarized by resting for 10 min on the treadmill followed by exercise for 5 min at 5 m/min and 5 min at 10 m/min. On the day of the experiment, exercise mice underwent a 10-minute stationary acclimation period on the treadmill, followed by 5 m/min for 2 min and then 13 m/min for an hour, which is estimated to be around 75% of VO2max in adult mice (Schefer and Talan, 1996). At the same time, the mice in the sedentary group remained stationary on top of the treadmill apparatus for the same duration. For post-exercise food intake experiments, half the mice were assigned to an acute exercise group and half to the sedentary group, and a randomized crossover design was used with a week in between experiments. All conditions were maintained in the ARCAgRP/NPY neuron inhibition experiments with the addition of either clozapine N-oxide (CNO) or saline injection 30 min prior to beginning the exercise protocol.



Food Intake

Food intake was measured 0.5, 1, 2, 4, and 8 h immediately post-exercise. All mice were individually housed at least 1 week prior to exercise. Mice were placed in cages with alpha dry bedding 48 h prior to food intake measurements. Any residual food in the bedding was included in measurements. Cumulative food intake data was obtained by adding all intake measurements during the study.



Glucose Measurements and Collection of Blood, Cerebrospinal Fluid (Csf), and Coronal Brain Sections

Immediately after the acute bout of exercise, mice were anesthetized with 99.9% isoflurane. In one subset of mice, blood samples were immediately collected via tail incision and blood glucose levels were measured (Relion Prime Blood Glucose Monitoring System, ARKRAY Inc., Kyoto, Japan). After blood glucose measurements, an incision was made in the neck of the mouse to expose the cisterna magna, a capillary tube was inserted through the dura mater to collect the CSF, and CSF glucose concentrations were measured. In another subset designated for immunohistochemical experiments, mice were intracardially perfused with phosphate-buffered saline (PBS) followed by 10% neutral buffered formalin. Brains were removed, stored in the same fixative for 24 h, and transferred into 30% sucrose at 4°C for at least 24 h. 20 μm coronal sections were generated and divided into five equal series using a freezing microtome (Leica VT1000 S) as previously described (Huang et al., 2012, 2013). Anatomical landmarks such as the median eminence and third ventricle were used to identify PVN and ARC sections, as well as the mouse brain atlas (Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates 4th Edition) and DAPI staining (H-1200, Vector Lab, Burlington, CA, United States).



Immunohistochemistry

Brain sections were washed in PBS and blocked in 3% normal donkey serum in PBS+0.03% Triton (PBST) for 1 h at room temperature. Brain sections were then incubated overnight at room temperature in blocking solution containing primary antiserum (rabbit anti-POMC precursor, Phoenix Pharmaceuticals H-029-30, 1:3000; goat anti-Fos, Santa Cruz Biotechnology, sc-52-G, 1:500; rabbit anti dsRed for mCherry, Clontech, 1:1000; rabbit anti-SIM1, Millipore, 1:500). The next morning sections were extensively washed in PBS and then incubated in Alexa-fluorophore secondary antibody (A-21209, A-11039, both 1:500) for 1 h at room temperature. After several washes in PBS, sections were mounted on glass slides. For DAB (3,3′-Diaminobenzidine) staining, brain sections were washed and blocked in 3% normal donkey serum in PBST for 1 h at room temperature. Slices were then incubated in cfos goat primary antiserum (goat anti-FOS, Santa Cruz Biotechnology, sc-52-G, 1:1000) overnight followed by biotinylated donkey anti-goat IgG (Vector; 1:1000) for 2 h. Sections were then incubated in the avidin–biotin complex (ABC; Vector Elite Kit; 1:500) and incubated in 0.04% DAB and 0.02% cobalt chloride (Fisher Scientific), and 0.01% hydrogen peroxide. AgRP/NPY neurons were identified in sections by native fluorescence (green) of the green fluorescent protein (GFP) transgene from NPY-GFP Reporter mice. The sections were photographed digitally using an upright optical microscope (Leica DM6000, Wetzlar, Germany). 20x objectives were used to image either the left or the right hemisphere in the ARC of the hypothalamus. POMC, cfos, SIM1, DAPI, and NPY-positive neurons throughout the image were counted using ImageJ Cell Counter plug-in function for marking and numbering of positive cells. Once positive cells were marked, ImageJ software was used to overlay images to quantify colocalization. Three serial sections were double blind analyzed in each mouse (n = 3–5 mice per group).



Stereotaxic AAV-HM4Di-mCherry Injections and the DREADD System

The DREADD system was used to insert a physiologically inert inhibitory G-coupled protein receptor specifically onto AgRP/NPY neurons. Briefly, using a stereotaxic device, 200 nL cre-dependent adeno-associated virus (AAV8.hSynp.hM4Di–mCherry, 8.3 × 1012 genomic copies per milliliter, Addgene, Watertown MA, United States) was injected bilaterally into the ARC of 5–6-week-old AgRP-Cre male mice (coordinates from bregma: anterior-posterior, −1.50 mm; dorsal-ventral −5.95 mm and −5.80 mm; lateral, ±0.20 mm) with a glass micropipette and air pressure injector system (Grass S48 Stimulator). After surgery, mice were individually housed and allowed 2 weeks to recover before the start of studies. Activation of these receptors and subsequent AgRP/NPY neuron inhibition was induced by intraperitoneal injection of CNO (0.3 mg/kg of body weight) (Krashes et al., 2011) or saline 30 min prior to the exercise or sedentary conditions. Validation of AAV expression and localization was performed by fluorescent microscopy visualization of mCherry.



Electrophysiological Recordings

Immediately after the acute exercise, animals were deeply anesthetized, and intracardially perfused with an ice-cold N-methyl-D-glucamine (NMDG) solution consisting of (92 mM NMDG, 20 mM HEPES, 25 mM Glucose, 30 mM NaHCO3, 1.2 mM NaH2PO4, 2.5 mM KCl, 10 mM MgSO4, 0.5 mM CaCl, 5 mM sodium ascorbate, 3 mM sodium pyruvate, 2 mM Thiourea) measured osmolarity 310–320 mOsm/l, and decapitated. Brains were quickly removed into ice-cold NDMD solution, oxygenated with 95% O2/5% CO2, 300-μm-thick coronal sections were cut with a VF200 Compresstome (Precision Instruments, Greenville NC, United States) and incubated in oxygenated chilled for 10 min. Slices were transferred to oxygenated aCSF holding solution (92 mM NaCl, 20 mM HEPES, 25 mM Glucose, 30 mM NaHCO3, 1.2 mM NaH2PO4, 2.5 mM KCl, 10 mM MgSO4, 0.5 mM CaCl, 5 mM sodium ascorbate, 3 mM sodium pyruvate, and 2 mM Thiourea) and stored in the same solution at room temperature in a BSK 6 (Automate Scientific, Berkley CA, United States) (20–24°C) for at least 60 min before recording. A single slice was placed in the recording chamber where it was continuously perfused at a rate of 1–2 ml per min with oxygenated recording aCSF solution (125 mM NaCl, 11 mM Glucose, 26 mM NaHCO3, 1.25 mM NaH2PO4, 2.5 mM KCl, 10 mM MgSO4, 2.4 mM CaCl, and 1 mM MgCl). Neurons were visualized with an upright Leica DM6000F equipped with infrared differential interference contrast and fluorescence optics. Borosilicate glass microelectrodes (4–6 MΩ) were filled with internal solution. To assess the effect of exercise on ARCAgRP/NPY neurons, a loose cell-attached recording (seal resistance >20 mΩ) were made in voltage clamp mode with potassium gluconate as internal solution and holding current maintained at Vh = −60 mV in NPY-GFP Reporter mice.



Calculating Estimated Energy Expenditure and Excess Energy Consumption

To calculate the estimated energy expenditure of the mice undergoing the exercise treatment we used a previously validated equation for adult mice to predict their relative VO2 (ml/kg/hr) [VO2 = 5444 + (223 × Treadmill Velocity m/min.)] and then we performed indirect calorimetric calculations (Schefer and Talan, 1996).

To calculate the excess energy consumed in the exercise group compared to the sedentary group over the total time measured post-exercise (8 h), we subtracted the total weight in grams of the food consumed from each mouse during the exercise condition and subtracted this from the total food consumed during the sedentary condition. This difference was then multiplied by the metabolizable energy contained in their food source (3.20 Kcal/gram; Prolab Isopro RMH 3000).



Statistical Analysis

Results are reported as the mean ± SEM. Statistical analyses were performed using Prism 6.0 (GraphPad) software. Food intake was analyzed by two-way repeated measures ANOVA with Sidak correction for multiple comparisons and t-test unpaired set to ∗p < 0.05 for significance. Static data such as total neurons, neurons co-localized with cfos, and firing rate was averaged and measured utilizing an unpaired t-test, and a one-way ANOVA with a Sidak correction when appropriate, with an alpha value set at 0.05 for significance. All patch clamp recordings were reported offline using Clampfit 10.6 to measure firing rate.



RESULTS


An Acute Bout of Exercise Increases ARCAgRP/NPY Neuron Activation While ARCPOMC Neuron Activation Remains Unchanged

There were no differences in the number or activation (cfos) of ARCPOMC expressing neurons in the exercise group compared to the sedentary group (Figures 1A–D). The number of ARCAgRP/NPY neurons that were colocalized with cfos was significantly increased in the exercise group (23.3 ± 0.3 active ARCAgRP/NPY neurons per slice) compared with the sedentary group (3.3 ± 0.3 active ARCAgRP/NPY neurons per slice) (Figures 1E–H), indicating increased activation of ARCAgRP/NPY neurons after an acute bout of exercise.
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FIGURE 1. An acute bout of exercise increases ARCAgRP/NPY neuron activation while ARCPOMC neuron activation remains unchanged. Expression of cfos in POMC-expressing neurons in ARC sections from (A) sedentary control and (B) exercise groups immediately after an acute bout of exercise. (C) Average POMC neuron count per slice. (D) Average number of neurons that are co-localized with cfos. Expression of cfos in ARCAgRP/NPY neurons in (E) sedentary control and (F) exercise groups immediately after an acute bout of exercise. (G) Average ARCAgRP/NPY neuron count per slice (H) ARCAgRP/NPY neuron’s that are co-localized with cfos. 3V: third ventricle; scale bars represent 50 μm. Bar graphs show Mean + SEM. (N = 6 male mice per group), * indicates p < 0.05 vs. sedentary group.




ARCAgRP/NPY Neuron Firing Rate ex vivo Is Increased After an Acute Bout of Exercise

A loose cell-attached voltage-clamp electrophysiology was used to measure the effects of acute exercise on ARCAgRP/NPY neuron firing rate. There was a significant increase in firing rate of ARCAgRP/NPY neurons immediately after exercise (2.07 ± 0.33 Hz) compared to the sedentary group (0.82 ± 0.24 Hz) (Figure 2).
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FIGURE 2. ARCAgRP/NPY neuron firing rate ex vivo is increased after an acute bout of exercise. (A) Representative image of patch-clamp pipette sealed to NPY-GFP neuron in the ARC. (B) Representative cell attached trace of ARCAgRP/NPY neuron firing rate in voltage clamp (–50 mV) after sedentary and exercise conditions. (C) Calculated firing rate of ARCAgRP/NPY neurons in mice. Data are expressed as mean ± SEM. (N = 15–22 neurons from 8 mice (4 male and 4 female) per group) * indicates p < 0.05 vs. sedentary group.




Food Intake Is Increased Immediately Post-exercise

After exercise, cumulative food intake was significantly increased compared to the sedentary group at the 1, 2, 4, and 8 h time points (cumulative 8-hour food intake was (1.41 ± 0.30 g) compared to 0.92 ± 0.11 g) (Figures 3A,C). When analyzing food intake during specific time intervals, food consumed was significantly elevated between 0–30 min and 30–60 min (Figure 3B). We also used a previously validated equation (Schefer and Talan, 1996) to compare estimated energy expenditure during the acute exercise bout with the excess caloric consumption (excess caloric consumption was defined as calories consumed by the exercise group minus calories consumed by the sedentary group). There was no significant difference between the two measures (Excess energy consumed: 1215 ± 288.8 Cal vs. estimated energy expenditure: 1172 ± 34.7 Cal), indicating that the excess energy intake may be compensating for the energy deficit caused by exercise (Figure 3D).
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FIGURE 3. Food intake is increased immediately after a bout of moderate-intensity exercise. (A) Average cumulative food intake in mice over 8 h immediately after the sedentary or exercise conditions. (B) Average food consumed during specific time periods post-exercise (C) Total food consumed after 8-hour time period. (D) Estimated energy expenditure during the acute exercise bout compared to the excess caloric consumption (excess caloric consumption defined as calories consumed by the exercise group minus calories consumed by the sedentary group). Bar graphs show Mean + SEM. (N = 10 male mice per group), * indicates p < 0.05 vs. sedentary group.




Blood and CSF Glucose Levels Were Elevated Immediately Post-exercise

Both CSF (161.2 ± 0.7 mg/dL) and blood glucose levels (213.5 ± 8.5 mg/dL) were significantly increased in the exercise group compared to the control group (CSF glucose: 110 ± 1.4, blood glucose: 129.2 ± 10.8) immediately post-exercise (Figure 4).
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FIGURE 4. Blood and CSF glucose levels were elevated immediately post-exercise. Average circulating glucose levels in (A) blood and (B) CSF of mice immediately after a bout of acute moderate-intensity exercise. Bar graphs show Mean + SEM. (N = 3 male mice per group), * indicates p < 0.05 vs. sedentary group.




AgRP Neuron Inhibition Abolishes Acute Exercise Induced Food Intake

To determine whether ARCAgRP/NPY neuron activity is required for acute exercise-induced food intake, the DREADD system was utilized in conjunction with AgRP-Cre transgenic mice. I.P. injection with saline or CNO (0.3 mg/kg of body weight) alone to non-DREADD treated mice before exercise had no effects on post-exercise food intake. Interestingly, DREADD treated mice receiving CNO injections to inhibit ARCAgRP/NPY neuronal activation experienced significantly decreased food intake (0.64 ± 0.25 g 8 h post-exercise) compared to the exercise groups treated with CNO (1.28 ± 0.15 g) or saline alone (1.41 ± 0.30 g) (Figure 5).
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FIGURE 5. AgRP neuron inhibition abolishes acute exercise induced food intake. (A) Top, targeting scheme for hM4Di-mCherry. Bottom, localization of hM4Di-mCherry with the anatomical location of NPY/AgRP neurons in the ARC. (B) Immunofluorescence and quantification of mCherry positive and cfos-expressing cells in the ARC from AAV CNO and AAV Saline groups immediately after a bout of acute exercise. (C) Cumulative food intake over an 8-hour period immediately after the exercise or sedentary conditions. # indicates significance between Exercise CNO and Sedentary CNO groups (p < 0.05); * indicates a significant difference between Exercise AAV Saline and Exercise AAV CNO groups (p < 0.05) (N = 6 male mice per group). (I.P. CNO and saline injections of 0.3 mg/kg of body weight were applied 30 min prior to exercise). Bar graphs show Mean + SEM. 3V: third ventricle, scale bars represent 50 μm.




Acute Exercise Induces PVNSIM1 Expressing Neuronal Activation Independent of ARCAgRP/NPY Neurons

All exercise groups had increased cFos colocalization in PVNSIM1 expressing neurons, with the exercise, DREADD with CNO, and DREADD with saline groups averaging 70.0 ± 6.1, 70.2 ± 1.8, and 65.5 ± 5.6 active PVNSIM1 neuron colocalization with cFos per slice, respectively, compared to 34.3 ± 8.5 per slice colocalization in the sedentary group. There was no significant difference in the number of SIM1 expressing neurons between the sedentary, exercise, DREADD with saline, and DREADD with CNO groups (Figure 6). There were also no significant differences in cfos expression in PVNSIM1 neurons among the three exercise groups (Figure 6), suggesting ARCAgRP/NPY activity is not involved in exercise-induced PVNSIM1 activity.


[image: image]

FIGURE 6. Acute exercise induces PVNSIM1 expressing neuronal activation independent of ARCAgRP/NPY neurons. (A) Immunofluorescence of SIM1-positive and cfos-expressing cells in the PVN from the sedentary, exercise, AAV CNO, and AAV Saline groups immediately after a bout of acute exercise. 3V = third ventricle; scale bars represent 50 μM. (B) Quantification of SIM1-positive cells in the PVN among the four groups. (C) Quantification of cfos colocalization with SIM1-positive cells in the PVN from the sedentary, exercise, AAV CNO, and AAV Saline groups immediately after a bout of acute exercise. 3V: third ventricle, scale bars represent 50 μm. Bar graphs show Mean + SEM. (N = 6 from 3 male mice per group), * indicates p < 0.05 vs. sedentary group.




DISCUSSION

In this study we investigate the effect of an acute bout of exercise on the activity of ARCAgRP/NPY and their adjacent ARCPOMC-expressing neurons in the hypothalamus, as well as the role of ARCAgRP/NPY neuron activation in the associated feeding response post-exercise. In NPY-GFP reporter mice, both immunostaining for cfos and electrophysiological recording revealed that acute moderate-intensity exercise increases ARCAgRP/NPY neuron activity and has no effects on ARCPOMC neuron activation. Concurrently, food intake was significantly increased immediately after the acute bout of exercise compared to sedentary conditions. Furthermore, chemo-genetic inhibition of ARCAgRP/NPY neurons completely abolished exercise-induced food intake, suggesting ARCAgRP/NPY neurons are critically involved in refeeding after exercise.

ARCAgRP/NPY neuron activation is normally induced by food restriction, but these neurons are also modulated by altered plasma hormone levels associated with stressful conditions, like exercise (Tong et al., 2008; Lin et al., 2010). Single bouts of exercise have been shown to alter circulating hormone levels such as ghrelin and insulin (Berger et al., 1975; Dey et al., 1992; Broom et al., 2009; Mani et al., 2018), and those hormones have been shown to modulate the activity of ARCAgRP/NPY neurons (Björntorp, 1981; Xu et al., 2008; Mani et al., 2018). For example, acylated ghrelin is elevated during exercise, and deletion of ghrelin receptor (GHSR) markedly reduces post-exercise food intake (Mani et al., 2018). These data suggest the importance of exercise induced ghrelin signaling in the regulation of food intake (Mani et al., 2018), and future study is needed to investigate the possible direct role of ghrelin on post-exercise ARCAgRP/NPY activity.

ARCAgRP/NPY neurons also possess glucose-sensing properties, and, consistent with findings from other studies (Mani et al., 2018), both blood and CSF glucose levels were observed to be elevated immediately after the acute exercise bout. However, high glucose concentrations have been shown to inhibit ARCAgRP/NPY neurons (Routh, 2010), indicating that glucose levels are unlikely the direct reason for increased ARCAgRP/NPY activation post-exercise. Altered neurotransmitter release, such as glutamate (excitatory) and GABA (inhibitory), is also critical to the regulation of neuronal activity. It has been reported that acute exercise reduces GABA synaptic input onto neurons in the Nucleus Tractus Solitarii (NTS) to regulate blood pressure in rats (Chen et al., 2009). The NTS has well-documented synaptic connections with ARC neurons, thus, suggesting a pre-synaptic mechanism on which to focus future research into ARCAgRP/NPY control of post-exercise refeeding (Andermann and Lowell, 2017).

ARCAgRP/NPY neuron activity has been shown to decrease energy expenditure and promote food intake in response to states of energy deficit to maintain energy homeostasis (Aponte et al., 2011; Krashes et al., 2011). Thus, the increase in ARCAgRP/NPY activation observed in this study, and subsequent increase in food intake, may suggest a potential compensatory mechanism to conserve energy during the energy deficit caused by exercise. Interestingly, when estimating the total energy expended by exercise using a previously validated equation (Schefer and Talan, 1996), we found that the energy expenditure during the acute bout of exercise is comparable to the additional caloric intake post-exercise. This may suggest a CNS-mediated compensatory mechanism in mice that promotes food intake after forced energy expenditure via moderate-intensity treadmill exercise to maintain energy homeostasis. Notably, this observed significant increase in food intake was predominantly evident in the first hour post-exercise, which is often the timeline observed for ARCAgRP/NPY neuron activation to induce robust increases in food intake (Krashes et al., 2011). Furthermore, when ARCAgRP/NPY neuron activation was inhibited through chemo-genetic inhibition, this acute exercise induced energy intake was completely abolished, indicating that ARCAgRP/NPY neuronal activation is required for acute exercise induced food intake to maintain energy balance. Notably, a limitation of the DREADD system is off-target action due to possibility of Cre-Leakage, however, use of AAV and CNO controls in the current study suggest that this is unlikely.

The effect of exercise on food consumption has previously been studied in both humans and rodents. However, the observations have been controversial due to differences in the intensity, mode, duration, and volume of exercise performed (Mayer et al., 1954; Kissileff et al., 1990; King et al., 1994; Verger et al., 1994; Stiegler and Cunliffe, 2006). Contrary to the current study, in a recent publication using high intensity interval training in mice (>90% VO2MAX), it was reported that food intake was significantly decreased immediately after a single bout of acute exercise. Moreover, the resting membrane potentials of ARCPOMC neurons were increased, while an opposite effect was observed in ARCAgRP/NPY neurons (He et al., 2018). However, the authors mention that the exercise protocol in that study was intentionally chosen for its unique ability to suppress food intake based on a previously published article (Mani et al., 2018). This protocol also used high intensity exercise and electrical shock to stimulate running, which may have induced effects that wouldn’t be seen in a more physiologically relevant setting. In contrast, another independent study reported that only rats who exercised above their lactate threshold (>75% VO2max) had a significant increase in activation in the PVN and the ARC, compared to rats performing low-intensity exercise (Soya et al., 2011), further suggesting that neuronal activation is affected differently based on exercise intensity. However, in the aforementioned study, the specific subpopulations that were activated in ARC were not specified. In the present study, we used a similar exercise protocol of an estimated 75% VO2max, but for the first time utilized NPY-GFP reporter mice to specifically investigate ARCAgRP/NPY neuronal activation. Consistent with previous findings (Soya et al., 2011; Lima et al., 2014), we found an acute bout of exercise resulted in both PVN and ARC neuronal activation. Taken together, the intensity of exercise seems to be key factor in determining the neuronal activation and associated feeding behaviors.

The paraventricular nucleus of the hypothalamus (PVN) is an important downstream site for the mediation of the ARCAgRP/NPY regulation of energy homeostasis, with dense ARCAgRP/NPY projections in this area (Wang et al., 2015). It has been reported that exercise promotes PVN neuronal activation (Lima et al., 2014). These evidences led us to suspect that exercise induced food intake may occur via ARCAgRP/NPY-PVNSIM1 circuitry. In agreement with a previous study (Soya et al., 2011), increased activation in PVN neurons immediately after exercise was observed. However, in this study, inhibition of the ARCAgRP/NPY neurons during exercise had no effect on the activation of SIM1 expressing neurons in the PVN, despite the observed decreases in post-exercise food intake. This indicates that PVNSIM1 neurons are not downstream mediators of ARCAgRP/NPY neurons during acute exercise-induced food intake. However, we cannot rule out the possibility of the opposite neurocircuitry in which exercise activates PVNSIM1 neurons to increase ARCAgRP/NPY neuron activity. Recent studies have shown that the activation of subsets of PVNSIM1 neurons can markedly increase activation ARCAgRP/NPY neurons and increase feeding in sated mice, thus indicating a reciprocal circuit may exist in feeding behavior (Krashes et al., 2014). Therefore, it is possible that PVNSIM1 neuronal activation mediates ARCAgRP/NPY neuronal activation by acute exercise. In future studies, inhibition of these PVNSIM1 neurons through a SIM1-Cre transgenic mouse model could elucidate the causes of the changes in neuronal activation induced by acute exercise. Alternative neurons in the PVN that release excitatory synaptic input onto ARCAgRP/NPY neurons to promote food intake are thyrotropin-releasing hormone (TRH)-expressing neurons or pituitary adenylate cyclase-activating polypeptide (PACAP) neurons (Krashes et al., 2014). Considering the complexity of the brain’s neurocircuitry, there are likely multiple neuronal mechanisms involved in the remodeling of synaptic of ARCAgRP/NPY neurons in response to exercise.

In summary, this study demonstrates for the first time that a single bout of moderate intensity treadmill exercise acutely increases ARCAgRP/NPY neuronal activation, while ARCPOMC neuron activation remains unaffected. Notably, this exercise induced energy deficit also causes an acute increase in food intake immediately post-exercise in an ARCAgRP/NPY neuron-dependent manner. Thus, this data demonstrates exercise induced ARCAgRP/NPY activation is critical in promoting food intake post-exercise. This association in ARCAgRP/NPY neuron activation and food intake provide insight into the mechanisms promoting refueling and energy homeostasis after an exercise-induced caloric deficit.
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Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Due to the lack of early diagnosis methods and warning signals of CRC and its strong heterogeneity, the determination of accurate treatments for CRC and the identification of specific early warning signals are still urgent problems for researchers. In this study, the expression profiles of cancer tissues and the expression profiles of tumor-adjacent tissues in 28 CRC patients were combined into a human protein–protein interaction (PPI) network to construct a specific network for each patient. A network propagation method was used to obtain a mutant giant cluster (GC) containing more than 90% of the mutation information of one patient. Next, mutation selection rules were applied to the GC to mine the mutation sequence of driver genes in each CRC patient. The mutation sequences from patients with the same type CRC were integrated to obtain the mutation sequences of driver genes of different types of CRC, which provide a reference for the diagnosis of clinical CRC disease progression. Finally, dynamic network analysis was used to mine dynamic network biomarkers (DNBs) in CRC patients. These DNBs were verified by clinical staging data to identify the critical transition point between the pre-disease state and the disease state in tumor progression. Twelve known drug targets were found in the DNBs, and 6 of them have been used as targets for anticancer drugs for clinical treatment. This study provides important information for the prognosis, diagnosis and treatment of CRC, especially for pre-emptive treatments. It is of great significance for reducing the incidence and mortality of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide (Dienstmann et al., 2017). CRC is mostly asymptomatic until its advanced stages, which contributes to the difficulties of treatment (Aghagolzadeh and Radpour, 2016). Doctors cannot perform routine and effective treatment precisely on patients, such as surgery, radiotherapy and chemotherapy, thus affecting patients’ survival time and quality of life. Therefore, using effective screening methods for cancer is becoming increasingly important for the prevention and inhibition of CRC.

The occurrence and development of cancer are accompanied by the gradual accumulation of somatic mutations. The accumulation of mutations in some critical genes that affect cell proliferation, differentiation and death will eventually lead to cancer. Therefore, finding the mutation order of critical genes in CRC patients and blocking the process in time can effectively prevent the development of cancer and even achieve the goal of pre-emptive treatment. On the other hand, tumor-adjacent tissues are most susceptible to transforming into cancer tissue and will eventually develop into cancer tissue, as the transcriptomes of tumor-adjacent tissue samples often approximate a gene expression signature of invasive cancer, which can be predictive of disease progression in early premalignant lesions (Finak et al., 2008; Graham et al., 2011; Chatterjee et al., 2018). Therefore, this study intends to analyze the process from the level of tumor-adjacent tissues and cancer tissues to find the critical point at which tumor-adjacent tissue transitions to cancer in the process of CRC development, which can serve as an early warning of cancer.

Disease biomarkers are used to diagnose various phases of disease and to monitor severity of disease and response to therapies and can be used to predict prognosis and which patients are likely to respond to therapy (Wang and Ward, 2012). There are already some molecular tumor biomarkers for clinical research, but these biomarkers have limitations in sensitivity and specificity (Kim et al., 2010). CRC patients often show different therapeutic effects and prognoses (Shin et al., 2017). The same biomarker is not effective for all patients with CRC and cancer type and individual differences need to be considered. Therefore, it is necessary to develop CRC-specific, personalized biomarkers for different molecular types and tumor stages, taking the heterogeneity of CRC into account. In this way, the biomarkers being untargetable or producing a poor or no effect due to low sensitivity and specificity will be resolved.

Recently, many studies have found that a sudden change in the state of a system exists in clinical medicine. Such a change often occurs at a critical threshold, or the so-called “tipping point,” at which the system shifts abruptly from one state to another (Chen et al., 2012). During the progression of many complex diseases, the deterioration is not necessarily smooth but abrupt (Chen et al., 2012; Li et al., 2014, 2017; Liu et al., 2014; Mojtahedi et al., 2016; Richard et al., 2016; Lesterhuis et al., 2017). This transformation qualitatively changes the state of the biological system and therefore plays a key role in biological processes. It usually occurs in pre-disease states (or critical states) in the development of complex diseases. The pre-disease state (Achiron et al., 2010) is the limit the normal state can reach before the critical point. At this stage, if properly treated, the disease can be reversed back to normal. Therefore, it is important to determine the critical point before the transition and detect the pre-disease state to prevent the disease with appropriate interventions. The new concept of dynamic network biomarkers (DNBs) is applicable in this type of scenario. It is different from the traditional static method, which was developed on the basis of non-linear dynamics and complex network theory (Chen et al., 2012; Liu et al., 2012). The concept of DNBs fundamentally distinguishes not only normal samples from disease samples but also pre-disease samples from disease samples and thus has great potential to achieve a true warning of cancer. Researchers have applied the DNB method in lung, kidney and thyroid cancers (Liu et al., 2017, 2019) to identify preventative and prognostic biomarkers, but there is no relevant research in CRC. In contrast with Liu and colleagues, we chose the human protein interaction network as the background network for our study, which can reflect the biological functions of the individuals as a whole and has more biological significance. Second, as did Liu and colleagues, we all applied the three basic rules of the DNB method, but the research purpose and research methods were different. The transition point of cancer found by Liu and colleagues fell on a specific clinical stage, while we focused more on genes contributing to the disease transition, which will facilitate the detection of targeted drugs in the future. In addition, before using the DNB method to find DNBs, we explored the mutation sequences of genes in patients during cancer development, created mutation propagation modules based on the mutation sequences of genes, and then detected the critical transition points before disease.

In this study, we used multiomics data of CRC to obtain a specific mutant giant cluster (GC) featuring the identified mutant genes by a network propagation method. The biological significance of GCs and a high degree of consistency between GC and cancer-related pathways were confirmed by functional enrichment analysis of GCs. Subsequently, we used mutation selection rules to determine the mutation sequences of the mutant genes and used a dynamic network method to mine each patient’s specific DNBs. These DNBs can identify the transition point from normal to cancer in tumor progression. Clinical data verification showed that the transition point we obtained is in line with clinical staging. Due to the high tumor heterogeneity of CRC, we comprehensively considered the driver gene mutation sequences and DNBs of patients with the same type of disease and identified drug targets that could block the cancer process related to DNBs. This strategy provides important reference value for the diagnosis and treatment of CRC, especially for pre-emptive treatments, and is of great significance for reducing the incidence and mortality of CRC. Recently, there have been many studies identifying CRC biomarkers, but these studies have limitations in experimental data and experimental methods as well as in the accuracy, sensitivity and specificity of the identified biomarkers. In our study, each cancer sample had a tumor-adjacent sample compared with it. Under the premise of ensuring accuracy, the heterogeneity of CRC was considered. Using the concept of DNBs to explore the dynamic characteristics of CRC, we can better identify the early warning signals of sudden cancerous changes in the pre-disease state and achieve a true early cancer warning to prevent disease.



MATERIALS AND METHODS


Data Collection

In this study, the expression profiles of 41 CRC patients were downloaded from The Cancer Genome Atlas (TCGA1). Each patient had a pair of cancer tissue and tumor-adjacent tissue expression data. The mutation profiles of 399 CRC patients were also obtained from TCGA. A total of 28 patients had both expression and mutation data, which were used in this study. Clinical information such as tumor staging and consensus molecular subtype (CMS) classification of these 28 patients was obtained from the cBioPortal website (Gao et al., 2013) and the CRC Subtype Consortium (CRCSC) website (Guinney et al., 2015). At the same time, 699 driver genes of CRC were obtained from DriverDB (Chung et al., 2016). A total of 39,240 experimentally confirmed human protein–protein interactions (PPI) were downloaded from the HPRD (Keshava Prasad et al., 2009). After preprocessing of the data, such as de-duplication, removal of isolated nodes, removal of self-interactions and loopback interactions, 36,867 pairs of 9,453 genes were used to construct a human PPI network for subsequent study.

The expression data and mutation data of each CRC patient were mapped into the PPI network to obtain a patient-specific network. The red nodes in the network represent mutant genes, and the white nodes represent non-mutated genes. Patient-specific GC mutations were obtained using network propagation analysis. In each patient, the mutation selection rule was applied to the GC to obtain the mutation sequences of driver genes. By this method, the mutated driver genes are sequenced as sequential changes during tumor development. Dynamic network analysis was used to find critical transition points through differential expression analysis, clustering analysis, and calculation of the criticality index (CI) to obtain patient-specific DNBs. Drug targets that block cancer progression were further explored in terms of their ability to recognize the DNBs (The workflow was shown in Figure 1). In the cluster analysis, we used the function pamk in the R package fpc for unsupervised clustering and selected the default optimal number of clusters. When searching for transition points, for the individual differences of patients, we only selected the maximum value of each patient’s CI and did not specifically focus on the range of change of each patient’s CI value.
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FIGURE 1. The workflow of cancer warning signal identification. Identification of cancer warning signals using TCGA data via the network propagation method, mutation selection rules, and DNB analysis.




Construct the Patient-Specific Networks

For each patient with CRC, the expression profile was mapped to the PPI network. Since each patient’s expression profile had two expression datasets (one of the cancer tissues and one of the tumor-adjacent tissues), to ensure the specificity of the patient network, we selected gene pairs that interacted in the network with expression values for each gene in the two tissue samples not both being zero; in this way, the specific network of each patient was generated.



Network Propagation of Mutation Effects

To simulate the propagation of mutation effects through the PPI network, we employed the network propagation method (Vanunu et al., 2010), which utilizes the random walk with restart (RWR) approach within a network. PPIs have often been screened at the proteome scale for many organisms, revealing 1000s of physical interactions between proteins (Valdeolivas et al., 2019). The availability of large-scale PPI networks led to the application of graph theory-based approaches for their exploration, with the ultimate goal of extracting the knowledge they contained about cellular functioning. These methods exploit the tendency of functionally related proteins to lie in the same network neighborhood (Schwikowski et al., 2000; Katsogiannou et al., 2014; Arroyo et al., 2015; Chapple et al., 2015).

Random walk with restart is the state-of-the-art guilt-by-association approach (Valdeolivas et al., 2019). A patient-specific network (undirected network) is defined as G = (V, E). The adjacency matrix of the network is defined as A, and M denotes a transition matrix that is the column normalization of A. An imaginary particle starts a random walk at an initial node v0∈V. Considering that the time is discrete, t∈N, at the t-th step, the particle is at node vt. Then, it walks from vt to vt+1, a randomly selected neighbor of vt following matrix M. In the RWR version, at each iteration, the particle can also restart by jumping to any randomly selected node in the graph with a defined restart probability, r∈(0,1). This prevents the walk from being trapped in a dead end. Moreover, we can restrict the restart of the particle to a specific seed, setting each patient’s mutant gene as the seed. In doing so, the particle will explore the graph focusing on the neighborhood of the seed and measure the proximity between the seed and all the other nodes in the graph. Then, the RWR equation can be defined as follow:
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The vector P0 is the initial probability distribution. Therefore, in P0, only the seed has values different from zero. Each random walk only has one seed node, which is a mutant gene. Random walks are performed for as many mutations as the current patient has. After several iterations, the difference between the vectors Pt+1 and Pt becomes negligible, the stationary state is reached, and the elements in these vectors represent a proximity measure from every graph node to the seed. In this work, iterations are repeated until the difference between Pt and Pt+1 falls below 10–10 (Li and Patra, 2010; Erten et al., 2011; Zhao et al., 2015). We set the global restart parameter to r = 0.7 (Kohler et al., 2008; Li and Li, 2012; Smedley et al., 2014).

The above method results in a series of mutation propagation modules centered on the mutant seed gene in each patient. The mutation propagation modules overlap each other to form interconnected clusters, and we maximize the connectivity in the interconnected clusters in the patient-specific network. The cluster is called the mutant GC. This GC contains a maximum of the number of mutant genes and the mutation propagation module formed by the patient, which can fully reflect the state of mutation of the patient and has certain biological significance.



Mutation Selection Rules

The development of cancer is accompanied by the gradual accumulation of somatic mutations. In the process of somatic mutation, finding the sequence of mutations in time is crucial for blocking the malignant development of cancer. It also has value for guiding research and understanding the occurrence and development of tumors. In the development of tumors, somatic mutations follow certain mutation selection rules. Based on the existing research results (Shin et al., 2017), we employed the mutation selection rule to select the next mutated gene that minimized the size of the connected module between a mutation candidate and all the previously mutated genes among mutation candidates overlapping with any previously mutated ones. The rule describes two opposing drivers of cancer development, one of which is to reflect the process of promoting cancer progression by ensuring an intersection with the current mutation propagation module and the other of which is to reflect the inhibition of cancer progression by minimizing connective clusters. These two driving forces simulate the confrontation process between cancer development and the immune system in the human body. The specific process is as follows:

Step 1: We selected an initial mutation among all the mutations except driver mutations.

Step 2: According to the rule, we determined the next mutation to be added at each evolution time step.

Step 3: We repeated the previous steps starting from all the available initial mutations and finally obtained as many mutation sequences as the order of the total number of somatic mutations of the patient.

Step 4: By investigating the order of a pair of mutations in the resulting mutation sequences across patients, we constructed a matrix that exhibits the number of mutation sequences such that one mutation in a row occurs earlier than the other mutation in a column.

Step 5: From the mutated gene sequence matrix, the order of mutations of any mutation gene pair can be obtained, and then the mutation sequence of all mutation genes in the patient GC is obtained.



Dynamic Network Biomarker (DNB) Analysis

To identify predictive biomarkers for early diagnosis and prevention, and to understand the mechanism of disease development, we introduce DNB method. These DNBs can detect early warning signals that warn of sudden deterioration before the critical transition occurs with only a small number of samples. As Supplementary Figures S1, S2 show, as mutations accumulate, at one specific point, DNBs will be expressed differently from other genes and exert a significant influence on the following processes. Based on non-linear dynamic theory and the measured data, we theoretically and numerically showed (Chen et al., 2012; Li et al., 2017) that if there is a dominant group of molecules or genes satisfying the following three criteria from the observed data, then the system is near the critical state or tipping point, and the dominant group contains the DNBs we are looking for:
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FIGURE 2. Relationship between the number of seeds and the size of the GC. The abscissa shows the NO. of each of 28 patients, and the ordinate shows the number of genes. The blue line is the number of genes contained in the GC, and the orange line is the number of seeds contained in the GC.



(1)Each member of the dominant group fluctuates violently;

(2)The correlation between any pair of members in the dominant group becomes very strong;

(3)The correlation between members of the dominant group and other non-dominant group members becomes very weak.



The following quantification index (CI: criticality index) approximately considering all three criteria can be used as the numerical signal of the DNB method:
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where size is the number of molecules in the dominant group or DNB, SDi is the average standard deviation of all molecules in the dominant group, PCCi is the average PCC of all molecule-pairs in the dominant group (absolute value), and PCCo is the average PCC of molecule-pairs between the dominant group and others (absolute value). That is, from the measured data, the appearance of a group of genes (or proteins) with strongly collective fluctuations indicates an imminent critical transition (i.e., the system is near the critical state). Thus, the group members are the predictive/dynamic biomarkers for this critical (generally irreversible) transition. When the CI reaches a peak or increases markedly during the measured periods, the biological system is at the critical period or tipping point (Yang et al., 2018). The DNB distinguishes not only normal samples from disease samples but also pre-disease samples from disease samples using both molecular fluctuation information (i.e., dynamic information) and network information (i.e., correlation information among molecules), in contrast to traditional static biomarkers.




RESULTS


Basic Information of Patients

In this study, data from patients with CRC, including cancer sample expression data, tumor-adjacent sample expression data, and mutation data, were extracting. A total of 28 patients, 3 patients had clinical stage 1 tumors, 14 patients had clinical stage 2 tumors, 5 patients had clinical stage 3 tumors, and 5 patients had clinical stage 4 tumors, and the other 1 patient had no clinical staging information. According to the CRCSC, 4 patients had CMS1, 8 patients had CMS2, 3 patients had CMS3, and 9 patients had CMS4, and the other 4 patients had no CMS typing information. In addition to CMS typing information, we also analyzed microsatellite instability/microsatellite stability (MSI/MSS) typing information for the CRC patients. Details of the 28 patients with CRC can be found in Supplementary Table S1.



Patient-Specific Networks

Based on the expression data from the cancer sample and the control sample of each CRC patient, a specific network for each patient was constructed. The genes in the network were expressed in at least one of the cancer samples and the control sample. The node is completely dependent on the patient’s own gene expression and has strong specificity, providing an accurate and highly personalized basis for subsequent research. The basic information of the patient-specific networks is shown in Supplementary Table S1. From the statistical results, we found that the number of genes in each patient’s specific network and the number of interactions between genes were very similar; however, the number of mutations in each patient was significantly different. These networks fully reflect the differences between patients and reflect the necessity of personalized treatment. By visualizing the patient-specific networks, we found that the mutated genes and the non-mutated genes were closely associated in the network, and there were one-to-many and many-to-many interaction relationships. Therefore, in each patient, studying a certain mutant gene alone would not reflect the overall situation of the patient. The mutation function module consisting of mutant genes and non-mutant genes was selected as the research object. We mined the mutation propagation module in the patient-specific network to explore the mutation information of the patient.



Mutation Propagation Module

Using the network propagation method, the mutation genes of each CRC patient were used as the seeds, and the patient-specific network was used as the background network to obtain many mutation propagation modules centered on the mutant seeds. As one seed migrates through the network, its own mutational effect will decrease as the number of walking steps increases. That is, the closer the gene is to the seed, the higher influence the seed will have, and the higher the degree of correlation with the seed is, the higher the final score will be; on the contrary, nodes with low scores are not included in the mutation propagation module composed of the mutant genes. To ensure high correlation between each node in the mutation propagation module and the seed gene, we compared multiple thresholds (0.0001, 0.0005, 0.001, and 0.005). The score threshold for mutation propagation was finally determined to be 0.001, which means that the nodes affected by the seed genes with a score greater than 0.001 were retained to form a mutation propagation module. This threshold value also satisfies that the size (number of genes) of the minimum mutation propagation module is not zero under the premise of ensuring high correlations between each node in the mutation propagation module and the seed genes. Among the mutation propagation modules of all patients, the size of the largest propagation module was 205, and the size of the smallest mutation propagation module was 1. The module size is shown in Supplementary Table S1.



Giant Clusters (GCs)

When all the seeds of the patient form mutation propagation modules, which are scattered in the patient-specific network, some genes are shared by multiple propagation modules. Multiple modules are connected to each other to form a module cluster by sharing the same gene. The module cluster is a subnetwork formed by two or more mutant seeds. We choose the largest connected module cluster, called the giant cluster (GC). The GC is the largest subnet formed by the interconnection of mutation propagation modules dominated by patient mutated genes that may have a significant impact on patient-specific networks. The relationship between the number of seeds and their corresponding GC size for 28 patients is shown in Figure 2.

In Figure 2, the greater the number of seeds, the more genes are contained in the GC. By counting the proportion of genes contained in the GCs of 28 patients in their specific networks, it was found that from the 23rd patient (the 24th patient begins Figure 2), when the number of seeds was greater than 1,000, the proportion of GCs in the network increased from 10% to more than 70% (Supplementary Table S1). This indicates that the accumulation of mutant genes in CRC patients leads to changes in the number and function of genes affected by GC from quantitative to qualitative, which is consistent with the tumor development process. By calculating the proportion of seeds in the GC to all seeds, we can conclude that the GC contains more than 90% of the mutant seeds in the patient (Supplementary Table S1). It is indicated that the information contained in the GC is sufficient to reflect the patient’s mutation state. A subsequent study of the GCs confirmed our conjecture.

To study the biological processes involved in GC and the relationship with cancer in patients with CRC, 189 cancer-related gene sets were downloaded from the Molecular Signature Database (MSigDB; Subramanian et al., 2005; Liberzon et al., 2011). Functional enrichment analysis was performed on the GCs of 28 patients with 189 cancer-related gene sets. We believe that the GC contains enough information on patient mutations. Therefore, if the genes in the GC are widely enriched in cancer-related pathways, they play a significant role in the development of tumors. The enrichment results are shown in Figure 3. In the enrichment heatmap, as seen from the large blue color in the figure, the genes contained in GC are highly correlated with cancer, participate in cancer-related biological processes, and play a significant role in the occurrence and development of tumors. In addition, as shown in the coordinates on the left side of the figure, the enrichment analysis results can be used to cluster different CRC patients with CMS. It can be seen from the figure that the heat maps of patients with different CMS types are very different. By the Wilcox rank sum test, the P-value between every two types was less than 0.05, so the difference was significant. The biological functions of GC in patients with different CMS classifications are inconsistent. Therefore, as shown in the figure, GC can distinguish different types of patients well.
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FIGURE 3. Heatmap of enrichment analyses of 28 patient GCs in 189 cancer-related pathways. The horizontal axis shows 189 cancer-related gene sets, and the vertical axis shows the GCs of 28 patients. The color gradient in the figure from red to blue represents the corrected P-value of the hypergeometric test. The smaller the P-value, the more significantly the genes in the GC are enriched in the cancer-related gene set.


Through various comparisons and functional analyses, GC has a high correlation with CRC patients. The seed and non-seed genes in GC can represent cancer occurrence, development, CMS typing, etc. Therefore, it is meaningful to detect mutation sequences in GC.



Mutation Sequence of Mutant Genes in GC

As the GC can represent the modified biological function of CRC patients, the mutation sequences of the mutant genes in the GC can be found to describe the occurrence and development of tumors in different patients. However, in the process of tumor development, there are 100s of genetic mutations in tumor tissues, but most of them are passenger mutations that represent neutral mutations (Zhang and Wang, 2019). Only a small portion of them will actually cause cancer and play a key role in tumor development. These mutations are driver mutations. According to the set mutation rules, the mutation sequences of the driver genes in the GC represent the development of the tumor. The mutation sequence can be used to define the time at which the tumor state changes and further to find the critical transition point at which the tissue transforms from normal to cancer in the process of cancer development.

Since the mutated genes of each CRC patient are different, the resulting driver gene mutation sequences are also different (Supplementary Table S2). To determine a clinically relevant mutation sequence, we analyzed the mutation order of samples from patients with the same CMS with the mutation selection rule, taking the heterogeneity of CRC into account, so that patients with the same CMS will show a uniform mutation sequence (Supplementary Table S3). We believe that this integrated sequence can be used clinically as a reference for judging the progression of cancer in CRC patients.



DNB Analysis

We used the mutation sequence of the driver genes in each patient’s GC as the standard. The dynamic network method has been applied. The change of the CI (criticality index) reflects the changes of gene expression and biological function during the development of the disease. By counting the increase of the CI in different periods of each patient, it was found that the CI will reach a peak or a significant increase within a certain period. During this period, the genes of the dominant group showed strong collective fluctuations. We believe that this period is the critical point of transition. At the critical transition point in each patient, the timely use of drugs can prevent CRC occurrence and development.

Next, the relationship between CI changes and the number of driver genes in each patient was examined. Figure 4 shows changes in the CI of the TCGA-AA-3496 (16 driver genes in the GC) and TCGA-AA-3663 (116 drivers in the GC) samples. Regardless of the number of driver genes, a period in which the CI reaches a peak (marked in red) can be found in each patient. After that point, the CI returns to a relatively stable fluctuation state. We believe that this period is the turning point of the patient’s cancer, in which the dominant group genes are the DNBs of the corresponding patient. See the Supplementary Figure S3 for the CI curves for all the patients.
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FIGURE 4. The curve of the CI. The upper part of the figure is the CI curve of the TCGA-AA-3496 sample, and the lower part is the CI curve of the TCGA-AA-3663 sample. The horizontal axis shows the dominant group dominated by the driver genes in each patient’s GC, and the vertical axis shows the CI of the corresponding dominant group.




Verification of the Clinical Applicability of the Transition Point

To validate the clinical applicability of the transition points based on CRC typing, we grouped patients by different clinical stages. In patients with the same CMS, we determined whether the driver genes involved in the transition point of patients in early disease stages were mutated before those of patients in advanced disease stages. Taking CMS1 patients as an example, there were 4 patients with CMS1, 3 who were in clinical stage 2, and 1 who was in clinical stage 4. By analyzing the mutation order of each patient and the corresponding transition point, we found that the driver genes that were mutated before the transition point (EP300) of patients in stage 4 included a transition point gene (SPERT) of patients in stage 2. However, in the mutation sequence of the patients in stage 2, the transition point genes of the patients in stage 4 were not included, except for in one patient in whom the transition point gene was EP300. Therefore, for patients with CMS1, the order of mutations at the transition point is consistent with the chronological sequence of clinical stage. That is, the stage 2 transition point genes were mutated prior to the stage 4 transition point genes. In addition to the clinical staging validation results in patients with CMS1, the same validation results were obtained in other subtypes (Table 1). This finding confirms the clinical applicability of the transition point genes we found. It also demonstrates the credibility of our mutation sequences and the accuracy of potential anticancer targets.


TABLE 1. Clinical staging verification for driver transition points in patients with the same CMS.
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Finding Drug Targets That Block Cancer Progression

The mutation sequences in driver genes found in CRC patients can be used to find drug targets that can block cancer process. The dominant groups of genes at the transition point for patients of the same CMS were integrated, called DNB_CMSi, where i is a different type of CMS, and i = 1, 2, 3, 4; in addition, we integrated the driver genes at the transition point with the driver genes at the previous point of the transition point, called Driver_CMSi. Similarly, i is a different type of CMS, and i = 1, 2, 3, 4. After integrating the data, the relevant functional pathways were identified in the KEGG database, and the pathways needed to meet the following conditions:


(1)A pathway must containing at least two driver genes in the Driver_CMSi gene set;

(2)The anteroposterior regulation sequence of at least two driver genes in the pathway must be the same as the sequence of mutations after integration;

(3)Between the two driver genes in condition (2), there are genes that are not in the Driver_CMSi gene set but are in the DNB_CMSi gene set. These genes represent candidate drug target genes.



Through a manual search, CMS1 samples included eight candidate drug target genes, namely, AKT1, CALM1, CCND1, CCNE1, CDK2, MDM2, PXN, and RELA. These genes frequently appeared in the KEGG pathways identified for two driver genes in the Driver_CMS1 gene set. For example, the candidate drug target CCND1 is located between the two driver genes in the pathways hsa05200: pathways in cancer, hsa05220: chronic myeloid leukemia, hsa05214: glioma, and hsa05218: melanoma. The sequence of the two driver genes was consistent with the order of mutations we found (Figure 5).
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FIGURE 5. KEGG database pathway hsa05200: pathways in cancer. The green node is the default gene of the pathway map, and the red node is the driver gene of the Driver_CMSi gene set.


In the pathway map of Figure 5, p53 corresponds to the driver gene TP53, and Rb corresponds to the driver gene RB1. From the pathway, we can see that the position of TP53 in the pathway is before RB1. In the mutation sequence in our integrated CMS1 patients, TP53 is also mutated prior to RB1. Moreover, CCND1 is the gene encoding Cyclin D and is found between TP53 and RB1 in the pathway is in the DNB_CMS1 gene set of the transition point dominant group of patients with CMS1. Therefore, CCND1 is a candidate drug target for blocking the progression of cancer in CMS1 patients.

Similarly, CMS2 included four candidate drug target genes, named PLCG1, PIK3R1, VAV1, and VAV3; CMS3 included six candidate drug target genes, named PLCG1, MDM2, CALM3, MAP2K1, MAPK1, and PLD1; and a total of two candidate drug target genes were found in CMS4, named TGFB1 and SMAD3. See Supplementary Table S4 for details.

In each type, there are specific candidate drug targets with high specificity. These drug targets were frequently identified in patients with the same CMS but not in patients with other subtypes. For CRC, a cancer with high tumor heterogeneity, different drugs can be used to target subtype-specific genes, which could improve the therapeutic efficacy and reduce side effects. However, at the same time, many aspects need to be considered before a protein can be used as a drug target, such as molecular weight, polarity, and tissue distribution in the body (Hopkins and Groom, 2002; Bakheet and Doig, 2009). Therefore, we further studied the existing drug target information and candidate drug targets to explore adaptive anticancer drug targets.

We used the existing drug-target interaction data and our 18 candidate drug target genes to extract specific anticancer targets and drugs, which might be used in cancer treatment. After we annotated the 18 candidate drug target genes with the drug-target information, 12 known drug targets (Table 2) were identified, of which 6 had been used as anticancer drug targets in clinical treatment. We hope that using these six drug targets can block the development of specific cancers in time and achieve the goal of pre-emptive treatment. In our opinion, the six identified targets, which are closely related to the occurrence and progression of cancer, including anti-inflammatory targets and nutritional factors, will have the potential to become anticancer drug targets and will be used in anticancer drug repositioning.


TABLE 2. Potential anti-colorectal cancer targets in existing drug targets.

[image: Table 2]



DISCUSSION

This study constructed a patient-specific network with patient expression data. The genes in this network were determined by patient-specific expression data. We know that the expression profiles of patients with different tumor stages and different cancer subtypes are different. Due to tumor heterogeneity, the expression profiles of patients with the same tumor stage and the same cancer subtype are not the same. Therefore, we obtained each patient-specific network based on this theory (a typical network map can be found in Supplementary Figures S1, S2). Such networks will aid the development of individualized treatments and provide more accurate medical guidance for patients with the same tumor stage and same cancer subtype. Through network propagation analysis, CRC-specific mutant GCs were obtained. The GCs covered more than 90% of the patients’ mutation information. These clusters were highly correlated with cancer-related gene sets and provide a good reference for studying mutations in CRC. The mutation selection rule was used to obtain the mutation sequence of driver genes in CRC patients. The driver gene mutation sequences of patients with the same CMS were considered simultaneously. This analysis not only considered the tumor heterogeneity of CRC but also provides a reference for the diagnosis of the clinical CRC stages. Finally, we used dynamic network analysis to mine DNBs in CRC patients. These DNBs were able to identify the dynamic progression of the tumors, representing a critical transition point between normal to cancer and during cancer progression from one stage to another. The results obtained were verified by clinical data and mirrored actual clinical staging. At the same time, the biological pathways identified by KEGG analyses were further utilized to exploit drug targeting DNBs that can block the progression of cancer. These results provide important value for the diagnosis and treatment of CRC, especially for pre-emptive treatment. It is of great significance to reduce the incidence and mortality of CRC.

At present, there are many research results identifying CRC biomarkers. For example, Shin et al. (2017) studied the mutation sequence of five key driver genes during the development of CRC, but no control samples were included in the study. Therefore, the study could only describe the development of tumors after cancer had appeared. In our study, each cancer sample had a tumor-adjacent sample. Therefore, the critical transition point from normal to cancer in the development of CRC could be found, which provides a reference for monitoring high-risk groups of patients with CRC. Another example is that Linda JW Bosch et al. (2017) identified the hypermethylation status of decoy receptor 1 (DCR1) as a biomarker for predicting metastatic CRC, but the accuracy and applicability were slightly lower. In our study, while ensuring accuracy, we also considered the heterogeneity of CRC. All patients with CRC were classified according to molecular subtypes, and a single and comprehensive analysis was performed for each patient. In the gene function analysis of patients with GC, it was found that the GCs of patients with the same CMS had a high degree of consistency, and there was a large difference between patients with different CMSs (P < 0.05). This also fully illustrates the necessity of typing analysis for CRC patients.

In recent years, many studies have found that for many complex diseases, the progress of the disease is not necessarily smooth but abrupt (Richard et al., 2016; Lesterhuis et al., 2017; Li et al., 2017). This transformation is the pre-disease state of disease progression. At this stage, if properly treated, the disease can usually be reversed back to normal, which means that the pre-disease state is an unstable state (Achiron et al., 2010). However, most of the current methods for finding CRC biomarkers focus on molecular (Chabanais et al., 2018) and network methods (Shin et al., 2017). They are static and are mainly used to distinguish between disease samples and normal samples, and it is difficult to identify pre-disease samples. Therefore, markers identified from such strategies lack the ability to diagnose disease early and interfere with the occurrence of disease. In our research, the concept of DNBs was employed. This dynamic network method was developed on the basis of non-linear dynamics and complex network theory (Chen et al., 2012; Liu et al., 2012). We used it to reflect changes in expression in cancer samples and control samples in the same patient to reflect changes in biological function in patients during CRC, which allowed us to explore the dynamic characteristics of CRC. This strategy can better identify the early warning signs of sudden cancerous changes in the pre-disease state and achieve a true early warning to prevent disease. The recurrence rate of patients after CRC surgery is a serious complication, considered as a failure of the therapeutic strategy (Duineveld et al., 2016; Farhat et al., 2019), and the changes in tissues adjacent to cancer are more susceptible. Therefore, our research can provide early disease diagnosis methods for patients with a family history of CRC or patients after CRC surgery.

Currently, it is common to apply network methods to the research and develop drugs for human diseases. We mapped the expression and mutation profiles of CRC patients to interaction networks with human protein interaction network data, creating a CRC-specific network so that we could reveal the dynamic changes in human patients in specific networks during the development of CRC. In recent years, network physiology has been a good method to study human diseases from a holistic perspective. The human body is an integrated network in which complex physiological systems, each with its own regulatory mechanisms, continuously interact and in which failure of one system can trigger a breakdown of the entire network (Bashan et al., 2012; Bartsch et al., 2015; Liu et al., 2015). The central task of statistical physics is to understand macroscopic phenomena that result from microscopic interactions among many individual components often driven by competing forces and non-linear feedback mechanisms (Ivanov and Bartsch, 2014). This type of analysis is also applicable to the complex mechanisms in physiology. The interdisciplinary field of network physiology bridges two active fields of modern science: (A) the physics of complex networks and (B) the organization and control of integrated physiologic organ systems (Ivanov et al., 2016; Moorman et al., 2016). Network physiology can identify and quantify the dynamic changes in humans during the development of diseases. Since our research objects are genes and many genes are expressed differently in various tissues and organs, there will be varying degrees of influence in different tissues and organs. Our results can provide a basis for the study of CRC from the view of network physiology.

When selecting experimental samples for such analyses, patient samples are required to have both cancer tissue expression data and corresponding tumor-adjacent tissue expression data, as well as mutation data of the patients. Therefore, the number of eligible samples in this study was small, only 28, and it was impossible to comprehensively study the genetic mutations and mutation sequences of CRC patients with different stages. At the same time, we classified the samples according to different molecular subtypes and obtained specific results. However, the result will be affected by the insufficient number of experimental samples, which might be a shortcoming of this research. We hope to add more experimental data in follow-up work to improve the results and provide a further comprehensive analysis.
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FIGURE S1 | Four states in the dynamic cancer processes of sample TCGA-AA-3496. The network was constructed from the protein–protein interaction (PPI) network of the patients. (A) The process begins with a normal state, (B) then mutations accumulate during the process. (C) The pre-disease state was detected when the expression of DNBs in sample TCGA-AA-3496 fluctuated strongly, and this moment is the DNB warning state. (D) After the DNB warning state, the number of mutations increases dramatically, and patients are defined as having a disease state.

FIGURE S2 | Four states in the dynamic cancer processes of sample TCGA-AA-3663. The network was constructed from the PPI network of the patients. (A) The process begins with a normal state, (B) then mutations accumulate during the process. (C) The pre-disease state was detected when the expression of DNBs in sample TCGA-AA-3663 fluctuated strongly, and this moment is the DNB warning state. (D) After the DNB warning state, the number of mutations increases dramatically, and patients are defined as having a disease state.

FIGURE S3 | The CI curves of all the patients. The horizontal axis shows the dominant group dominated by the driver genes in each patient’s GC, and the vertical axis shows the CI of the corresponding dominant group.

TABLE S1 | Basic information of 28 CRC patients.

TABLE S2 | The patient’s driver mutation sequence.

TABLE S3 | The driver mutation sequence of patients with the same CMS.

TABLE S4 | Candidate drug target genes of patients with the same CMS.


FOOTNOTES

1https://www.cancer.gov/tcga
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Tension-resolution patterns seem to play a dominant role in shaping our emotional experience of music. In traditional Western music, these patterns are mainly expressed through harmony and melody. However, many contemporary musical compositions employ sound materials lacking any perceivable pitch structure, rendering the two compositional devices useless. Still, composers like Tristan Murail or Gérard Grisey manage to implement the patterns by manipulating spectral attributes like roughness and inharmonicity. However, in order to understand the music of theirs and the other proponents of the so-called “spectral music,” one has to eschew traditional categories like pitch, harmony, and tonality in favor of a lower-level, more general representation of sound—which, unfortunately, music-psychological research has been reluctant to do. In the present study, motivated by recent advances in music-theoretical and neuroscientific research into a the highly related phenomenon of dissonance, we propose a neurodynamical model of musical tension based on a spectral representation of sound which reproduces existing empirical results on spectral correlates of tension. By virtue of being neurodynamical, the proposed model is generative in the sense that it can simulate responses to arbitrary sounds.

Keywords: music, neurodynamics, timbre, tension, dissonance, roughness, inharmonicity, periodicity


1. INTRODUCTION

Music gives rise to some of the strongest emotional experiences in our lives. Even though the first surviving theoretical treatments of the power of music to move the soul were written in the fifth century B.C. [1], the origin of this power still largely remains a mystery. However, both musicological and music-psychological evidence seems to converge on the theory that music arouses emotions by a sophisticated play of tension-resolution patterns [2]. For instance, many authors describe the musical language of Richard Wagner (1813–1883) as “the language of longing” [2]; it may not be merely a coincidence that Wagner's common practice was to introduce a dissonant chord, making the listener “long for” a more consonant chord to “resolve” the dissonance, and then keep the listener in tension by delaying the resolution or slap him right away with another dissonance [[2], p. 334–339].

Creating and resolving tension is an easy task for composers who follow the nineteenth century Western tradition (as, e.g., most “mainstream” composers of film music do); any standard textbook on harmony and voice leading provides them with plenty of recipes [e.g., [3]] tested by centuries of musical practice and decades of psychological research [e.g., [4] and references therein]. However, over the course of the twentieth century, many composers enriched their palette with sounds possessing neither definite pitch (precluding melody) nor perceivable voice structure (precluding harmony), thus venturing out into territories about which traditional theory has nothing to say but hic sunt leones [5]. Still, while tantalizing their audience with a sound palette ranging from pure tones to the most atrocious noises, they seek control over how their music is experienced by the listener as much as their more conservative colleagues do [6].

Devoid of any perceivable pitch structure, the ferocious sound materials contemporary art music is at times so fond of can only be conceived in terms of loudness and timbre. This forces any composer seeking a full control over these “beasts” to dive from the lofty heights of venerable musical abstractions like pitch, harmony, and tonality to the cold depths of spectral representations of sound. However, beauty emerges even from such depths; by careful manipulation of roughness and inharmonicity composers like Tristan Murail or Gérard Grisey “tense” their audience no less than Richard Wagner by his mastery of tonal harmony; indeed, the term “spectral music,” used when referring to the music style pioneered by the former two composers [7], does not tell the whole story.

As usual, music-psychological research somewhat lagged behind compositional practice; loud music has been shown to be perceived as more tense than soft music [8]; likewise, roughness (that is perception of rapid beating due to interference of close frequencies) seems to be positively correlated with tension [9, 10]. A recent study assessed the effect of specific timbre attributes on the perception of tension [11], confirming particularly the role of roughness, inharmonicity (deviation of the constituent frequencies from integer multiples of a fundamental tone) and spectral flatness. However, the functional forms and mechanisms through which such stimuli aspects combine to give rise to perceived tension are still unclear.

For standard Western musical intervals, roughness is a principal source of perceived dissonance in musical material, which thus gives rationale to mathematical models of musical dissonance [12]. In Stolzenburg [13], a mathematical model of dissonance has been proposed and shown to correlate highly with empirical psychophysical data. The core idea of the model can be illustrated on a simple example: Consider an interval of perfect fifth, the most consonant interval after the octave, which, in the standard Western tuning, corresponds to the distance of seven semitones. Hence, denoting f1 and f2 the fundamental frequencies of the tones spanning the interval, [image: image] ([image: image] is the frequency ratio corresponding to a semitone distance in the standard Western tuning). First, approximate [f1, f2] with a pair of coprime natural numbers, Ω′ = [i, j], such that [image: image], e.g., Ω′ = [2, 3]. Then, the dissonance of the interval will be 2, the minimum of Ω′. Likewise, for an interval of major sixth, considered less consonant than P5, with frequencies [image: image], we have Ω′ = [3, 5], the dissonance being 3 in this case. Finally, for a dissonant interval of minor seventh with frequencies [image: image], Ω′ = [4, 7] and the dissonance will be 4. In general, the dissonance of any vector of frequencies, f, approximated as [image: image], is assumed to be proportional to the minimum element of Ω′. Note that the dissonance of an interval estimated this way does not change if we include harmonics (integer multiples) of the constituent frequencies. However, it does change if one uses a different rational approximation of the frequency ratio; incidentally, all standard Western intervals except for the octave are characterized by an irrational frequency ratio. In Stolzenburg [13], this inconvenience is dealt with by averaging over several alternative approximations.

The quantity above, called relative periodicity [see Definition 6 in [13], p. 17], is equivalent to obtaining the period of the fastest oscillation having the frequencies in question as its harmonics, in particular the period assessed in cycles of the lowest frequency in question. Interestingly, this oscillation has been experimentally observed to be represented in the auditory brainstem response to the intervals listed above [14], with the representation being particularly faithful for relatively more consonant intervals.

Motivated by the latter observation, we put forward a neurodynamical model of tension which is in line with the basic concepts of pitch perception of complex sounds and reproduces the results concerning the effect of roughness and inharmonicity reported in Farbood and Price [11] and, at the same time, provides a dynamical interpretation of relative periodicity [13]. In this regard we follow suit of existing studies which apply the dynamical systems theory to composition [15] and analysis [16, 17] of music.



2. METHODS

Everyone interested in neurodynamical modeling faces the same basic dilemma: which model to use? For modeling perception of music, the most common choices are the leaky integrate-and-fire (LIF) model [18–21] and a canonical model for gradient-frequency networks of Wilson-Cowan-type neural oscillators [22–25]. Still, neuroimaging methods are far from giving us an assurance that among the myriad possible models one of these is the “correct” one. Hence, to improve our chances, instead of adhering to a particular model right from the beginning, we take a whole class of models as our point of departure in the hope that the class is wide enough to include a good approximation to the actual biological system. More precisely, we proceed by derivation of a normal form to which any of the class members can be transformed through a continuous near-identity change of variables and parameters and (possibly) a time scaling. Then, analysis of the entire class effectively reduces to analysis of the normal form [26].

The pioneering work of the latter approach in our field is Large et al. [22]; the model proposed therein can even be fit to auditory brainstem responses to musical intervals [24, 27]. Consequently, one could argue that we already have a neurodynamical model of tension at hand. However, to prove analytically that the latter is indeed a decent model of tension, we would first have to simplify the model substantially for the specific purpose, adopting thus a similar strategy as in previous applications of the model [23, 28, 29]. Moreover, the class of systems of which the latter is a canonical model [22, 27] is not the class of systems we are interested in, as shown below.

Our choice of model class is motivated by the observation that the auditory system is sensitive to the periodicity of the signal (see section 1). A possible explanation for the observation is that the system comprises an array of oscillatory “detectors” with external auditory signal input; these can be viewed (and indeed physically seem to be) ordered tonotopically with respect to their eigenfrequency. Within this framework, eliciting a sustained oscillation in one of the oscillators represents detection of the corresponding period in the input signal. Or, on a continuous scale, the more sustained an oscillation is, the more “‘confident” is the auditory system that the input signal exhibits the corresponding period. In order for a stimulus to elicit an oscillation in a model belonging to our class of choice, it needs to destabilize the (originally stable) quiescent state; if this shift in stability is relatively small or intermittent, the oscillation will have small or fluctuating amplitude.

To avoid introducing unnecessary complexity, we start building our model class of interest by considering the simplest possible model of an oscillator:

[image: image]

where x1, y1 ∈ ℝ and ẋ1, ẏ1 are time derivatives. In matrix form:

[image: image]

Here, x1 and y1 could be interpreted as the amount of local inhibitory and excitatory synaptic activity, respectively, but the particular physiological interpretation of the variables is not important for our discussion. In line with the scenario outlined above, we want the oscillator to transit from a quiescent state (say, [x1, y1] = [0, 0]) to an oscillation when subject to an input having the oscillator's period (1 in this case). By definition, the spectrum of such an input consists of frequencies which are a subset of 1, 2, …, M. As we later aim to introduce the possibility of modeling the effect of inputs with frequencies deviating from perfect multiples of the base frequency, we allow already in the basic model for repeated frequency components of the input, yielding the input frequency vector [ω1, ω2, …, ωn] = Ω = [1, 1, …, 1, 2, 2, …, 2, …, M, M, …, M], where M is the highest frequency contained in the input. Representing the i-th frequency component of the input with frequency ωi as [image: image], we extend the oscillator with forcing by the input:

[image: image]

where f(·), g(·) are smooth real functions.

Two more steps are needed in order to make the model class amenable to derivation of a normal form. First, we need to rewrite this non-autonomous system as an autonomous one. This is straightforward, since [xi+1(t), yi+1(t)], being frequency components of a signal, are harmonic oscillations. Let x = [x1, y1, x2, y2, …, xn+1, yn+1]:

[image: image]

Second, we expand the f(·) and g(·) functions around the origin:

[image: image]

where fd(x), gd(x) are homogeneous polynomials of degree d and [image: image] is a polynomial of degree 4 or more.

Before delving into the actual derivation, a few remarks are in place. First, the idea of modeling the auditory system as a tonotopically arranged array (or rather a series of arrays) of oscillators is in fact not new [23, 24, 27]. Further, since the lowest frequency of signal with harmonic spectrum corresponds to its perceived pitch, Equation (1) is, by design, a pitch detector. Then, instantiating Equation (1) with a range of eigenfrequencies can be thought of as matching a template to the signal; consequently, our model can be considered a neurodynamical implementation of template matching postulated as a possible mechanism underlying pitch perception [30].

As the first step of the derivation, we diagonalize the linear part of Equation (1) using the following two matrices:

[image: image]

where ι is the imaginary unit. Denoting the linear part of Equation (1) as A, the diagonalized matrix reads:

[image: image]

The diagonalization defines a change of variables:

[image: image]

After this change, Equation (1) reads:

[image: image]

[image: image]

with [image: image], where and [image: image] is complex conjugate. From here, with a slight abuse of notation, we drop for simplicity the subscript of gζ(ζ) which is a function in the complex vector space corresponding to g(x) from section 2, that is obtained through the change of variables applied, i.e., [image: image]; likewise for f(ζ). Our subject of study will be the normal form of the system comprising Equations (3) and (4).

When in normal form, f(ζ) in Equation (3) will only contain monomials of the form

[image: image]

where p = [p1, p2, …, pn], q = [q1, q2, …, qn], and [r, s, p, q] is a nonnegative integer solution to the equation

[image: image]

Analogously, the exponents in g(ζ) solve

[image: image]

(see Equation 2). Since f(ζ) and g(ζ) contain neither constant nor linear terms (see section 2),

[image: image]

For conciseness, from now on, whenever v = [r, s, p, q] satisfies the above inequality, we write v ∈ S when it solves Equation (6) and [image: image] when it solves Equation (7). Note that [r, s, p, q] ∈ S iff [image: image]. Consequently, in the normal form,

[image: image]

and, by equality of polynomials,

[image: image]

for all [r, s, p, q] ∈ S.

To broaden the class of systems covered by our normal form, we unfold Equation (3) using small parameters α ∈ ℝ and β ∈ ℝn:

[image: image]

This way, in addition to the models with Taylor expansion around the origin of the form (Equation 1), our class now includes models whose Taylor expansion around the origin has the form

[image: image]

The corresponding normal form then reads

[image: image]

Intuitively, the α parameter makes it possible to change the stability of the origin (see section 2.1) whereas the βk parameters allow the model to resonate when the inputs are not exactly its harmonics. In fact, it might happen that two different inputs approximate the same harmonic. That is, their frequencies equal (1 + βi)ωi and (1 + βj)ωj, respectively, with ωi = ωj. This is the reason why we allowed for duplicate frequencies in the input frequency vector Ω (see the beginning of section 2).

It might appear that Equation (9) only models period detection in a full harmonic spectrum (up to the n-th harmonic). However, it can be easily adapted to a more general stimulus with frequencies Hharm ⊂ Ω by removing the dependence on those zj and wj for which [image: image] from the equation for ż1 and ẇ1 (assuming the dimension of the system is large enough to accommodate any stimulus of practical interest). Since the right-hand sides of the equations are polynomials, it suffices to zero-out the coefficients of those terms containing nonzero powers of the offending zj or wj. This will turn out to be useful when extending the model to an array by making scaled copies of Equation (9); while changing the eigenfrequency by scaling the left-hand side, we can zero-out coefficients as needed to reflect the changing relation between the eigenfrequency and the inputs.

It might be interesting to compare Equation (9) to [[22], Equation 15] reproduced below in a form that facilitates the comparison [see also [27], Equation A.1], which is also a normal form for an oscillator coupled to a set of sinusoidal inputs:

[image: image]

where

[image: image]

In Equation (10), the sum runs over all such vectors [r, s, p, q] for which either r = s + 1, s ∈ ℤ>0, p = q = 0, or r = 0, s ∈ ℤ≥0, [image: image], r + s + |p| + |q| > 0. In contrast, the sum in Equation (9) only runs over the nonnegative solutions to Equation (6), whose coefficients are determined by input frequencies. Hence, whereas Equation (10) applies to inputs of arbitrary frequencies, Equation (9) requires that the frequencies are close to the harmonics of the oscillator's eigenfrequency. On the other hand, in contrast to Equation (9), Equation (10) presupposes a particular form of the coefficients (see Equation 11). Consequently, Equation (9) covers neither a subset, nor a superset of the models covered by Equation (10).


2.1. Model Analysis

In this subsection, we analyse the normal form (Equation 9) derived in section 2. More precisely, we study the stability of the origin (z1 = w1 = 0). The choice of the origin as the focus of this section is motivated by our previous (arbitrary) choice of the origin as a “quiescent state” of the oscillator (see the beginning of section 2). The reason why we treat its stability in such a detail here is that it determines whether, e.g., the oscillator stays quiet (its period was not detected in the input signal) or oscillates (its period was detected in the signal)—see the beginning of section 2.

As the first step of the analysis, note that all solutions to Equation (9) are of the form

[image: image]

Consequently, using the simplified notation Ω = [1, 1, …, 1, 2, 2, …, 2, …, N, N, …, N] and β = [β1, β2, …, βn] as above, and introducing ρ = [ρ1, ρ2, …, ρn], φ = [0, φ2, …, φn], and Ωβ = Ω ◦ β = [ω1 β 1, …, ωn β n], we can drop equations for ż2, ż3, …, żn+1 and ẇ2, ẇ3, …, ẇn+1 from Equation (9) and write

[image: image]

Introducing new coordinates relative to a rotating frame of reference eιt,

[image: image]

and new parameters,

[image: image]

Equation (13) reduces to:

[image: image]

[image: image]

As we will see in section 3, under a rather generic restriction on Equations (16) and (17), the stability of u = v = 0 crucially depends on the relative periodicity and the inharmonicity of the input, as formalized in previous studies, and hence its perceived tension (see section 1). Namely, we require that Equation (16) contains no linear terms in v and, symmetrically, Equation (17) has no linear terms in u. For the remaining linear terms, Equation (6) reduces to

[image: image]

Assuming the origin is a fixed point of the system of Equations (16) and (17), its stability is determined by the Jacobian of the system evaluated at the origin:

[image: image]

where

[image: image]

In particular, the fixed point solution at the origin is stable, if all the eigenvalues of the Jacobian have negative real parts; while it is unstable if at least one eigenvalue of the Jacobian has positive real part. Apparently, without input (ρ = 0), the stability is solely determined by the matrix A, particularly the unfolding parameter α. For positive α, the fixed point at origin is unstable, while for negative alpha, the fixed point at origin is stable. Note that whereas the original class of models (section 2) only covers systems in which the origin is marginally stable (α = 0), the “unfolded” class (Equation 8) encompasses the entire spectrum of stability of the origin.

With input, one can view the Jacobian as the matrix A perturbed by a time-dependent term consisting of a sum of oscillators with amplitudes depending exponentially on p + q (with base ρ) and frequencies Δpq. Thus, if we consider the neural auditory system as spontaneously possessing stable fixed point for a given pitch-detector, i.e., its α < 0, only inputs with high amplitude ρ and/or spectral content giving rise to suitable solutions [1, 0, p, q] ∈ S with small value of (p + q) can perturb the matrix A sufficiently for the fixed point to lose stability at least transiently (note the complicated periodic behavior of the perturbation on the right-hand side), and the pitch-detector show input-modulated oscillatory behavior. An example of such scenario is presented later in section 3.

Let us now in detail assess which monomials appear on the right-hand side of the reduced equations. Note that all solutions to Equation (18) correspond to non-negative integer linear combinations of a finite set of minimal solutions, i.e., they have the structure:

[image: image]

where M is a matrix with the i-th row, denoted [mi, ni], equal to the i-th minimum solution to Equation (18) [31]. Consequently (see Equation 15),

[image: image]

[image: image]

and

[image: image]

As noted above, we model stimulation with Hharm ⊂ Ω by zeroing-out those monomials containing nonzero powers of zj or wj for which [image: image]. Consequently, BkM will be nonzero if and only if

[image: image]

where [image: image] is a submatrix of M whose rows, [image: image], satisfy

[image: image]

(see Equations 18 and 20).




3. RESULTS

In this section, we show how the system of Equations (16) and (17) reacts to stimulation with complex tones varying in relative periodicity and inharmonicity. For the specific case of complex tones consisting of two harmonics, analytical treatment is feasible as we are basically dealing with an interval comprising two pure tones. Let the frequency ratio of the two harmonics be approximated as i:j, Hharm = [i, j], where i ≤ j. Table 1 summarizes the rows of M′ together with the corresponding frequencies of the complex exponentials in Equation (21) (i.e., ±(mj − nj)Ωβ) and the exponents of ρ (i.e., mj + nj) for this case. Note that both the frequencies (in absolute value) and the exponents grow monotonically with i, which is precisely the relative periodicity of the interval (see section 1). Hence, as long as BkM does not grow superexponentially with i, the amplitudes of the complex exponentials (i.e., [image: image] in Equation 21) increase with decreasing relative periodicity of the interval.


Table 1. Context-derived heterogeneous functions of monocyte subsets.

[image: Table 1]

Further, it can be shown that the frequencies above also grow (in absolute value) with the inharmonicity of the interval, the other factor in perception of musical tension considered here. Let f1 and f2 denote the lower and the higher frequency of the interval, respectively, that is,

[image: image]

(see Equation 12). Additionally, let

[image: image]

The inharmonicity of the interval [f1, f2] with respect to the fundamental frequency f0 is defined as its weighted Manhattan distance to the interval [if0, jf0], comprising the i-th and the j-th harmonic of f0. The distance is weighted by the squared signal amplitudes and normalized by f0 and the sum of the squared signal amplitudes [11]. In our particular case, the inharmonicity [image: image] is equal to

[image: image]

Indeed, the frequencies grow (in absolute value) with the inharmonicity of the interval. Consequently, noting that A governs the stability of the fixed point solution at origin without input (ρ = 0), we conclude that, under the above assumption on BkM, pure-tone intervals with lower relative periodicity and lower inharmonicity (i.e., those perceived as less tense) cause a higher-amplitude and slower fluctuation of the driven system eigenvalues around those of A than those with higher relative periodicity and inharmonicity (perceived as more tense).

Note that there is an ambiguity of approximation represented by a choice of i and j in Equation (22). Further, Equations (16) and (17) are far from being a global model of perception of tension even in complex tones consisting of just two harmonics; they are local in the sense that they only model perception of a particular tone with respect to a particular approximation. Last but not least, we still have to demonstrate that the above fluctuations of stability translate to features of the oscillatory dynamics in a meaningful way. We address these issues now when considering the general case of stimulation with a complex tone consisting of more than two harmonics. To this end, we construct an array of models like Equation (16) differing in eigenfrequency. Here, each eigenfrequency represents a choice of f0 in Equation (22) so that the entire array essentially works as a pitch detector. Time traces from simulations of such an array are depicted in Figures 1, 2.


[image: Figure 1]
FIGURE 1. Time traces from simulations of Equation (24) with a soft harmonic (A,B), inharmonic (C,D), and rough (E,F) input. The stability (A,C,E) is quantified as ℜ((J)[0, 0]) (see Equation 2); the amplitude (B,D,F) is simply |z1k|.



[image: Figure 2]
FIGURE 2. Time traces from simulations of Equation (24) with a loud harmonic (A,B), inharmonic (C,D), and rough (E,F) input. The stability (A,C,E) is quantified as ℜ((J)[0, 0]) (see Equation 2); the amplitude (B,D,F) is simply |z1k|.


The equations for the array were derived by applying the above restriction on linear terms to Equation (9), writing-out the inputs (Equations 12, 16, 17) and using Equations (6) and (18),

[image: image]

then truncating the higher-order terms,

[image: image]

and, finally, setting

[image: image]

and scaling the time for convenience by the eigenfrequency, fk, which yields a parametrically-forced normal form for supercritical Andronov-Hopf bifurcation:

[image: image]

Here, (ωj)i signifies a vector with ωj at the i-th position and zero otherwise. Ω and β are set as

[image: image]

(see Equations 1, 8), where each element of Ω24TET approximates the corresponding element of Ω as a power of [image: image] (the 24-tone equal-tempered tuning); Ω and Ω24TET are aligned in such a way that ω5 = ω24TET, 5 = 1 and hence β5 = 0. The oscillators (Equation 24) receive connections from a bank of input units—linear oscillators with eigenfrequencies spanning from B♭0 to B4 in quarter-tone steps. In accordance with Equation (8), each oscillator (Equation 24) is only connected to input units with frequencies (fkωiβi in Equation 8, after scaling by fk) approximating its harmonics (in the above tuning) and, additionally, to frequencies up to 4 quarter-tones below and above these. In other words, it does not have fixed homogeneous connectivity input strength from all input units, but rather receives (weighted) input only from input units with frequencies close to its first six approximate harmonics; the connectivity of each oscillator is thus effectively defined by a connectivity pattern or kernel consisting of six unimodal elementary Gaussian kernels (k(l) = e−0.5l2; l ∈ {−4, …, 4} and k(l) = 0 otherwise) centered at the harmonics. See visualization of the connectivity kernel in Figure 3. Moreover, only the connections emanating from the input units whose frequencies are included in the stimulus are set to have nonzero amplitude in the respective simulation. Note that by fixing a set of eigenfrequencies (corresponding to different choices of f0 in Equation 22) and input units and restricting the connectivity to (near-)harmonics, there remains no ambiguity in approximation of the input; each oscillator, as long as the input falls within the reach of its connectivity kernel, approximates the input in its own, unique, way.


[image: Figure 3]
FIGURE 3. Connectivity of the oscillator with eigenfrequency C1 (k = 1, see Equation 24). The first “blob” represents connections which stem from input units with eigenfrequencies ranging from B♭0 to D1 and target the oscillator's “slots” corresponding to ρ1,1, ρ1,2, …, ρ1,9 in Equation (24); likewise, the second blob connects B♭1, …, D2 to ρ1,10, ρ1,11, …, ρ1,18 etc. The connectivity of any other oscillator is obtained by shifting this kernel so that the center of the first blob is aligned with the oscillator's eigenfrequency.


All simulations were run from initial conditions

[image: image]

with

[image: image]

a parameter setting corresponding to the (almost loss of) stability (without input) of the fixed point z1k = 0. Three alternative inputs were applied, whose spectra can be seen in Figure 4. The first corresponds to harmonic input with the C tone at its base plus its first five harmonics (tones with integer multiple frequencies of the base tone). The second input results from a transformation of the first which increases inharmonicity while the third is a result of a transformation which increases roughness.


[image: Figure 4]
FIGURE 4. Spectrum of the harmonic (A), inharmonic (B), and rough (C) input used in the simulations. The construction loosely follows the procedure from [11]. We chose ϵ = 3 for the soft and ϵ = 5.4 for the loud inputs.


As can be seen from Figures 1, 2, both transformations seem to increase fluctuation of stability of the origin, as predicted by our analysis pertaining to two-frequency stimulation. This results in an increase in amplitude modulation across the oscillator array and a corresponding decrease in peak amplitude (see Figure 5). In other words, an increase in perceived musical tension seems to be related to an increase in fluctuation of stability of the origin which manifests itself as an absence of a stable dominant amplitude peak. These preliminary observations are largely confirmed by computing the minimum and the maximum of each oscillator's amplitude trace (see Figure 6). Consequently, we put forward the absence of a stable dominant amplitude peak as a hallmark of perceived musical tension in our model.


[image: Figure 5]
FIGURE 5. Trajectory of the C1 oscillator with soft/low-amplitude input corresponding to Figure 1 (A,C,E) and loud/high-amplitude input corresponding to Figure 2 (B,D,F) for the harmonic (A,B), inharmonic (C,D), and rough input (E,F), rendered in the complex plane.



[image: Figure 6]
FIGURE 6. Minima and maxima of the oscillator amplitude traces from simulations with soft/low-amplitude input corresponding to Figure 1 (A) and loud/high-amplitude input corresponding to Figure 2 (B) with the first 20 s dropped to attenuate the effect of the same initial conditions. Incidentally, note the similarities between Figure 6 and the major key profile from Krumhansl and Kessler [32].




4. DISCUSSION

We propose the absence of a stable unambiguous pitch detection modeled as the absence of a pronounced amplitude peak in an array of oscillators to be a correlate of timbre-induced musical tension. In the class of oscillators we chose for populating the array, the amplitude of the limit cycle is determined by the stability of the origin; if the stability switches between a stable and an unstable regime fast enough, the amplitude doesn't have enough time to grow. We show that the frequency and magnitude of this switching depends on inharmonicity and roughness of the input to the oscillator. Imagine such an oscillator is actually present in the brain; when subject to a tense (inharmonic and/or rough) stimulus, it will remain almost silent, leading to an “unclear,” “unstable,” “difficult to memorize” etc. percept (see Figures 1, 2D,F). In contrast, a less tense stimulus would result in a “clear”, “stable”, “easy to memorize” etc. percept (see Figures 1, 2B). Of course, neurophysiological and neuroimaging evidence shows the what we have in our head is not a single oscillator, but rather an entire bank of them; we show in our simulations that the results of our analysis of single oscillator generalize to an array of them in the sense that the average oscillation amplitude across the array is lower for tense than less tense stimuli (see Figure 6).

Of course, tension is clearly not a one-dimensional phenomenon and different aspects of it could be related to different aspects of the underlying neurodynamics. For instance, in a nonlinear model like the one proposed here, loudness of the input is going to affect both the general amplitude of the oscillations and their temporal fluctuations—in a frequency-dependent manner, as our example simulations for two loudness levels suggest. We consider disentangling these not necessarily orthogonal dimensions of tension as a natural extension of the currently proposed modeling framework.

We have proposed a neurodynamical model of musical tension (see Equation 24) which reproduces existing empirical results on timbral correlates of tension, is consistent with neuroimaging findings [14] in that consonant stimuli compared to dissonant stimuli elicit more sustained periodic neuronal activity of higher amplitude, and due to its generative nature can provide prediction of perceived tension of an arbitrary sound input. More precisely, we have demonstrated that both inharmonicity and roughness make the spectrum of the simulated signal flatter and more variable (wider range over time) (see Figures 1, 2, 6). Note that while [14] quantified the periodicity by the amplitude of the autocorrelation peak of the signal spectra, we rather proposed the absence of a temporally persistent, pronounced amplitude peak in the spectrum of the elicited neural activity as a possible correlate of tension—a related indicator that is also present in the results presented in [14]. One might even speculate, based on the similarity of the spectrum to the major key profile [32], that the same principles underlie perception of tonality.

Considering the simulation results reported above in more detail, we note that the overall increase in fluctuation of stability of the origin for the inharmonic and the rough input as compared to the harmonic one can be explained based on the analytical insights into the dynamics of a single oscillator obtained earlier. More precisely, the nearly-harmonic relations in the inharmonic and the rough input introduce oscillating terms into most of the oscillators' coupling functions; the increase of amplitude modulation is, in turn, accounted for by the fact that the amplitude of the stable limit cycle of Equation (24) is determined by the stability of the origin. The decrease of the peak amplitude is, for the inharmonic input, probably due to the connectivity; there are no exact harmonic relations in the input and hence no oscillator can align its connectivity kernel optimally with the input (see Figure 3). For the rough input, it might be a consequence of scaling down the amplitudes of its frequency components to keep the overall loudness equal to that of the other inputs which consist of fewer harmonics (see Figure 4).

As for our general approach, a few comments are in order. First, for the sake of simplicity, we chose a subclass of multiple centers [a generalization of double centers; see [26]] as our family of models. It might be an interesting avenue for future research to determine whether there are other families of models in which relative periodicity and inharmonicity of the input plays such an important role.

Also for the sake of simplicity, we only considered relative periodicity and inharmonicity of pure-tone dyads. For general sounds, we would be dealing with the set of nonnegative solutions to a general linear Diophantine equation (Equation 18). To the best of our knowledge, the structure of the set (its minimum generators) can only be determined algorithmically [e.g., [31]]. This makes analytical insights virtually impossible in the general case.

Further, concerning the phenomenon wherein loud music is perceived as more tense than soft music [8], we argue that, replacing the bank of input units with a model of cochlea, the effective input generated by a loud harmonic spectrum would be very similar to the rough input used in the simulations reported here. More precisely, we expect the loud harmonic spectrum to displace not only those segments of the basilar membrane whose eigenfrequencies match the harmonics, but also the adjacent segments (see Figure 4). This way, the effect of loudness would be accounted for by a combination of cochlear physiology and sensitivity of our model to roughness.

Finally, even though the choice of spectral representation was motivated by our interest in contemporary art music, especially the so-called “spectral music,” the model presented here is applicable to any kind of music; indeed, even music composed with traditional categories in mind ends up being rendered as sound which can be fed into our model.

To conclude, mapping perception to neurodynamics is hard. However, from time to time, a favorable constellation of research sheds light on the underlying physiology. The fruitful concept of relative periodicity [13] suggests that roughness, as one of the perceptual “dimensions” of timbre contributing to tension, might originate in (neural) resonance. Indeed, in this study, we have shown that the dynamics of stability of the origin in a wide class of periodically forced nonlinear oscillators crucially depends on the relative periodicity of the input and, additionally, on its inharmonicity. Since roughness and inharmonicity are principal constituents of perceived tension, we have effectively put forward a possible neurodynamical explanation of musical tension. Moreover, for a particular model belonging to the above class, we have demonstrated by simulations that tense inputs result in an absence of a persistent dominant peak in the spectrum of the time series generated by the model.
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Is Innervation of the Neuromuscular Junction at the Diaphragm Modulated by sGC/cGMP Signaling?
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We previously reported NO/sGC signaling in the upper respiratory pathway, receiving input from the respiratory neurons of the brainstem to phrenic motoneurons in the C3–C6 spinal cord. In order to assess whether innervation of the neuromuscular junction (NMJ) at the diaphragm is modulated by sGC/cGMP signaling, we performed unilateral 8-day continuous ligation of the phrenic nerve in rats. We examined sGCβ1 within the lower bulbospinal pathway (phrenic motoneurons, phrenic nerves and NMJs at the diaphragm) and the cGMP level in the contra- and ipsilateral hemidiaphragm. Additionally, we characterized the extent of phrenic nerve axonal degeneration and denervation at diaphragm NMJs. The results of our study show that continuous 8-day phrenic nerve ligation caused a marked increase in sGCβ1 (immunoreactivity and the protein level) in the ipsilateral phrenic motor pool. However, the protein sGCβ1 level in the phrenic nerve below its ligation and the cGMP level in the ipsilateral hemidiaphragm were evidently decreased. Using confocal analysis we discovered a reduction in sGCβ1-IR boutons/synaptic vesicles at the ipsilateral MNJs. These findings are consistent with the marked axonal loss (∼47%) and significant NMJs degeneration in the ipsilateral diaphragm muscle. The remarkable unilateral decrease in cGMP level in the diaphragm and the failure of EMG recordings in the ipsilateral hemidiaphragm muscle can be attributed to the fact that sGC is involved in transmitter release at the diaphragm NMJs via the sGC-cGMP pathway.

Keywords: sGC/cGMP signaling, lower respiratory pathway, rat phrenic nerve ligation, phrenic nerve axonal degeneration, diaphragm neuromuscular junctions


INTRODUCTION

The cervical spinal cord is the most common site of traumatic injury leading to interruption of the descending respiratory pathway, which begins in the brainstem, innervates phrenic motoneurons (PhMNs) in the cervical spinal cord, and controls the diaphragm via the phrenic nerves (PhNs) (Mantilla and Sieck, 2008). Hemidiaphragm paralysis due to unilateral phrenic nerve injury is a well-recognized complication in a variety of etiologies, such as cardiac surgery, neck surgery, chiropractic manipulation, and interscalene nerve blocks (Aguirre et al., 2013). Such injuries lead to breathing rhythm abnormalities and life-threatening weakness in respiratory function. Despite significant progress in the development of new post-injury interventions to restore respiratory function after cervical and/or phrenic nerve injuries (Alilain et al., 2011; Sharma et al., 2012; Aguirre et al., 2013) a number of fundamental questions crucial for understanding the signaling in brainstem-diaphragm circuits remain to be further explored.

The nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) signaling pathway is essential for controlling a number of physiological processes, such as neuronal transmission, cell growth and proliferation (Weill and Greene, 1984; Thippeswamy and Morris, 1997; Fiscus, 2002). Previously, we identified changes in the level of NO-related enzymes in the upper bulbospinal respiratory descending pathway in response to C3 hemisection (Marsala et al., 2002; Capkova et al., 2011). We showed that high cervical spinal cord hemisection followed by 8 days of survival caused strong depletion of neuronal nitric oxide synthase (nNOS) fluorescent terminals around the sGCβ1 subunit immunoreactive (sGCβ1-IR) phrenic motoneurons on the side of the injury. In addition, sGCβ1-IR was significantly reduced in the contralateral and nearly eliminated in ipsilateral PhMNs (Capkova et al., 2011). These data indicate that the guanylyl cyclase phosphorylation cascade, which is activated by NO in the brainstem, could be localized in motor nerve terminals. Several previous studies have indicated that nNOS, cGMP and cGMP-dependent kinase are all concentrated at or near the neuromuscular junction (NMJ) (Kobzik et al., 1994; Chao et al., 1997). Herring and Paterson (2001) demonstrated that NO stimulates presynaptic sGC to produce cGMP at the vagal-atrial junction in guinea-pigs. These data are consistent with the findings of Nickels et al. (2007) showing that NO facilitates transmitter release in vivo by way of a cGMP- and cAMP-mediated mechanism involving the activation of N-type Ca2+ channels.

The compensatory mechanisms occurring following unilateral diaphragm hemiparalysis are not fully elucidated. Nicaise et al. (2013) demonstrated the early time course of phrenic motor neuron degeneration, persistent phrenic nerve axonal degeneration, and consequent respiratory deficits following unilateral cervical spinal cord contusion. These authors reported that the diaphragm compound muscle action potential amplitudes were first reduced at 24 h after C4 contusion (30% of pre-injury maximum amplitude) and afterward some slow functional improvement associated with partial reinnervation at the diaphragm NMJ was seen at 8 and 14 days post-injury. Furthermore, complete phrenic nerve inactivation and ipsilateral paralysis were detected after a lateral area section of the C2 cervical spinal cord (Vinit et al., 2006). Although the activity of the ipsilateral PhN was partially restored after a lapse of 3 months, no spontaneous diaphragm recovery was observed, even after several months. Additionally, Gill et al. (2015) reported an increase in central respiratory drive after acute phrenic nerve denervation. These authors showed that a compensatory loading effect on the contralateral diaphragm may contribute to an increase in central drive to contralateral phrenic motor neurons.

Although NO-sGC signaling has been established in the brainstem-spinal cord circuitry, there have been no investigations into whether signaling in the lower bulbospinal respiratory pathway (phrenic motoneurons – phrenic nerve – diaphragm) is modulated by sGC-cGMP induced mechanisms. We therefore studied this signaling in a rat model of unilateral phrenic nerve ligation. We tested the hypothesis that PhN ligation-induced decrease in sGCβ1-IR terminal boutons at diaphragm NMJs could affect cGMP-dependent formation in the diaphragm. In order to verify the absence of ipsilateral diaphragm activity and thus the completeness of the phrenic nerve injury, we combined this analysis with diaphragm EMG activity measured immediately after phrenic nerve injury and again on the eighth day, when the experiments were terminated.



MATERIALS AND METHODS


Experimental Animals

Experiments were performed with a total of 50 adult male Wistar rats weighing 300–450 g. The animals were divided into three experimental groups: (1) sham-operated animals (n = 20), (2) rats subjected to unilateral PhN ligation followed by 8 days of survival (n = 25), and (3) rats subjected to unilateral PhN ligation followed by bilateral injection of retrograde tracer Fluorogold (FG) into the diaphragm on the sixth day; 8 days survival of animals (n = 5). All surgical procedures and post-operative animal care were approved by the Animal Care Committee at the Institute of Neurobiology, Slovak Academy of Sciences. The experiments conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The experimental animals were housed in individual cages and given food and water ad libitum. The rats were kept in a 12 h light/dark cycle at a temperature of 23°C.



Ligation of Phrenic Nerve

The animals were deeply anesthetized with isoflurane (Abbott, Queenborough, United Kingdom; in 1.5–2.0 L/min oxygen) and ventilated in a respirator with oxygen and nitrous oxide (1:1). Afterward, the rats were rested in supine position on the operating table. The body temperature was maintained at 37°C during the whole surgical procedure. Under aseptic conditions, a midline incision was made through the neck skin and muscles of the left sixth intercostal space. The left phrenic nerve was elevated with a hook and two ligatures were tied around nerve with approx. 0.5 cm distance inbetween. The PhN ligation was performed uniformly using a solid surgical suture (sterile, silk thread, 1C, Leciva Praha, Czech Republic) without disrupting the nerve continuity and was confirmed by identifying the changes in abdominal and rib cage movements associated with breathing. Once the movements in the ipsilateral hemidiaphragm completely disappeared (checking by palpation), the muscles and skin were sutured with silk. The rats received Amoksiklav antibiotic (Sandoz Pharmaceuticals, Ljubljana, Slovenia; 30 mg/kg, i.m.) and Novasul analgesic (Richterpharma, Wels, Austria; 2 ml/kg, i.m.) for 3 days. The animals were housed in separated cages to recover with access to food and water ad libitum and they survived for 8 days (n = 25). In the sham-operated group the animals were subjected to a midline incision through the neck skin and muscles of the left sixth intercostal space without ligation of the phrenic nerve (n = 20).



Ligation of Phrenic Nerve and Retrograde Tracing

Retrograde labeling with Fluorogold fluorescent tracer (Hydroxystilbamidine, methanesulfonate, BioChemika, Steinheim, Germany) was used for visualization of the sGCß1-IR in a pre-labeled phrenic motor neurons of C3-C6 segments. Six days after unilateral PhN ligation the animals (n = 5) were deeply re-anesthetized with isoflurane as described above. An abdominal incision was made to expose the whole diaphragm muscle. Fluorogold (FG; 4% solution dissolved in 0.9 saline) was injected bilaterally into the diaphragm along the primary branches of the phrenic nerves (six injection sites of 3 μl of each) using a 10 μl Hamilton syringe. The abdominal muscles and the skin were sutured, the animals received Novasul (2 ml/kg, i.m.) and Amoksiklav (30 mg/kg, i.m.) and survived for next 2 days.



sGCβ1 Immunohistochemistry

For immunohistochemical analysis of retrogradely labeled phrenic motoneurons, the animals (n = 5) were deeply anesthetized with thiopental (Valeant Czech Pharma s.r.o., Prague, Czech Republic; 50 mg/kg, i.p.) and perfused transcardially through the aorta with 300 ml saline (0.9% NaCl) followed by 300 ml fresh 4% paraformaldehyde in 0.1M phosphate-buffered saline (PBS; pH 7.4, Sigma–Aldrich, St. Louis, MO, United States). The spinal cord segments (C3-C6) were dissected out and postfixed in 4% paraformaldehyde for 3 h, followed by overnight cryoprotection in a solution of 30% sucrose in PBS at 4°C for at least 48 h. Using a cryostat (Leica, CM1850, Wetzlar, Germany), 30μm-thick transverse sections (each fourth slice was collected and used for staining) were cut from the cervical segments (n = 5) and used for sGCß1 immunohistochemistry. Free-floating sections of C3-C6 spinal cord segments were pretreated with 0.1 M phosphate-buffered saline (PBS; pH 7.4) for 30 min and blocked for unspecific staining using 5% normal goat serum (NGS) in PBST for 2 h (PBS with 0.4% Triton). Then the sections were transferred into rabbit polyclonal antibody to Guanylyl Cyclase (β1) (1:100, ab24824, Abcam, Cambridge, United Kingdom) in PBST plus 5% NGS at 4°C for 48 h. After rinsing with PBS, the sections were incubated with goat anti-rabbit IgG (1:200, 111-295-144, Jackson ImmunoResearch, Baltimore, MD, United States) for 1 h at room temperature. Sections were washed 4 × 5 min with PBS, mounted on glass slides, air-dried overnight, cleared with xylene and cover-slipped with Fluoromont (21644, Serva, Heidelberg, Germany). Negative controls were prepared by omitting the sGCß1 primary antibody. Images were captured using an Olympus BX51 (Tokyo, Japan) fluorescent microscope.



Counting of Phrenic Motoneurons

First, the retrogradely labeled phrenic nucleus was visually inspected, clearly identified on the contralateral side and analogously also on the side of PhN ligation. The sGCβ1- positive phrenic motoneurons were individually identified and counted manually from 60 randomly taken FG-labeled/sGCβ1- immunofluorescently stained sections (12 slices/rat). Only phrenic motoneurons showing cytoplasmic staining were counted. The cells were counted by two investigators independently in blind manner, and expressed as number of PhMNs/slide.



sGCβ1 and Neurofilament (NF) Immunohistochemistry

After transcardial perfusion (see above), the control phrenic nerves (n = 5) and the phrenic nerves after ligation (n = 5) were dissected out and postfixed in 4% paraformaldehyde for 3 h, followed by overnight cryoprotection in a solution of 30% sucrose in 0.1M PBS at 4°C for at least 48 h. Using a cryostat (Leica, Nussloch, Germany), 20 μm-thick longitudinal sections (taken from the phrenic nerves below their ligation) were cut, stretched on superfrost slides and used for double immunostaining. Incubation with sGCβ1 antibody was the same as for the cervical segments. Phrenic nerves were double-labeled with NF antibody. Before incubation the sections were rinsed for 20 min in PBST and blocked with NGS for 2 h and incubated with Anti-200 kD Neurofilament Heavy antibody (ab7795, Abcam, Cambridge, United Kingdom, dilution 1:500) for 24 h. Afterward, the sections were incubated with goat anti-mouse IgG (1:125 in NGST, 111-295-144, Jackson ImmunoResearch, Baltimore, MD, United States). Tissues were rinsed in PBS for 30 min and then coverslipped with Fluoromont.



Western Blotting

The control rats (n = 4) and rats subjected to PhN ligation (n = 4) were euthanized on the eighth day of the experiment. Samples from the ventral horn of C3-C6 segments and phrenic nerves were quickly removed from the rats, washed in ice-cold isotonic saline and frozen in liquid nitrogen. Tissues were stored at -80°C until further processing. Phrenic nerves were ground to a powder, then all samples were homogenized in ice-cold homogenization buffer (1 M Tris-HCl, pH 6.8) containing protease inhibitors (Roche, Mannheim, Germany) and then centrifuged at 15 000 × g for 15 min at 4°C. The supernatants were collected and protein content was determined by means of Bradford protein assay (Bradford, 1976). Samples were cooled on ice during the whole procedure. A total of 50 μg protein from each sample was mixed with an equal volume of sample buffer (62.5 mM Tris–HCl, 2% SDS, 100 mM DTT, 0.2 mM 2-mercaptoethanol, 20% glycerol, and 0.5% bromophenol blue, pH 6.8) and denaturated for 5 min at 95°C. Proteins were separated with SDS-PAGE (12%) at a constant voltage of 100 V and transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA 94547, United States) using the “semi-dry” method of Western blotting (50 min). Precision plus protein all blue standard (Bio-Rad, Hercules, CA 94547, United States) was used to determine approximate molecular weights. Ponceau S (Merck, Sigma, Aldrich, Darmstadt, Germany) was used on each membrane to verify protein transfer. The membranes were washed with distilled water 3 × 5 min and blocked with 5% milk powder (non-fat dry milk) in Tris-buffered saline (TBS) containing 0.05% Tween 20 (TBS-T) for 1 h at room temperature. Then the membranes were incubated with rabbit polyclonal antibody to Guanylyl Cyclase (β1) (1:3000, 160897, Cayman Chemical, Ann Arbor, MI, United States) in TBS-T overnight at 4°C on an orbital shaker. Negative controls were prepared by omitting the sGCß1 primary antibody. The next morning the membranes were washed 4 × 5 min with TBS-T and then incubated with peroxidase-conjugated anti-rabbit secondary antibody (1:20,000, 111-035,003, Jackson Immunoresearch, Baltimore, MD, United States) for 2 h at room temperature. After 4 x 5 min washing with TBS-T, the membranes were incubated using the ChemiLucent Detection System kit (Chemicon International, Temecula, CA 92590, United States) exposed to Hyperfilm ECL (Cytiva, Marlborough, MA, United States). After band visualization, the membranes were washed with Restore Plus Western Blot Stripping Buffer (Thermo Scientific, Waltham, MA, United States) and re-used for incubation with β-actin monoclonal antibody (Merck, Sigma Aldrich, Darmstadt, Germany) at 1:50,000 dilution, which was used as sample loading control and normalization protein as well. We used the Gel Doc XR system (Bio-Rad, Hercules, CA 94547, United States) for scanning of protein bands and quantification was performed using Quantity One software (Bio-Rad, Hercules, CA 94547, United States).



cGMP Measurement Using ELISA

An ELISA kit was used for determining the level of cGMP in the control diaphragm (n = 5) and in hemidiaphragms after the phrenic nerve injury (n = 5). The rats were reanesthetized with isoflurane and decapitated, the whole hemidiaphragms were dissected out, frozen in liquid nitrogen and prepared for additional use. Samples were ground to a powder. After the liquid nitrogen evaporated, frozen tissue (300 μg) was homogenized with 0.1 M HCl. A cGMP Enzyme Immunoassay Kit (CG200, Merck, Sigma Aldrich, Darmstadt, Germany) was used for measuring cGMP concentrations in the muscle homogenates. All samples were acetylated (because acetylation of the samples increases the sensitivity of the assay) by adding 10 μl of acetylation reagent (acetic anhydride and triethylamine), and the samples were treated with hydrochloric acid to stop endogenous phosphodiesterase activity. cGMP standards were prepared according to protocol, and the concentrations of cGMP in tubes 1–5 were 50, 10, 2, 0.4, and 0.08 pmol/ml. Tissue samples were centrifuged at 600 × g at room temperature and supernatants were then diluted with 0.1 M HCl. Samples and standards were added in volumes of 100 μl into the appropriate wells (run in duplicates) and then incubated with yellow cGMP EIA antibody at room temperature for 2 h. Thereafter the wells were washed with Wash Buffer, and blue cGMP-Alkaline Phosphatase Conjugate and p-Nitrophenyl Phosphate Substrate Solution were added for 1 h incubation without shaking. The reaction was stopped by adding Stop Solution to every well and the plate was read immediately on a multiwell plate reader at 405 nm, preferably with correction between 570 and 590 nm. The concentration of cGMP was calculated using Logit-Log paper, where we put the percentage bound (optical density of samples and standards) vs. concentration of cGMP for the standards.



Diaphragm and Phrenic Nerve Preparation for Immunohistochemistry

Eight days after PhN ligation the animals (n = 5) were deeply reanesthetized with thiopental (Valeant Czech Pharma s.r.o., Prague, Czech Republic; 50 mg/kg, i.p.), and fresh diaphragm muscle and phrenic nerves were removed in the following steps. Laparotomy was carried out in order to visualize the sternum and xiphoid process. Fat and connective tissue were gently removed using forceps and scissors. The sternum was transversally cut along the ribs to expose the diaphragm and phrenic nerves. Diaphragm muscles and both ipsilateral and contralateral phrenic nerves were carefully dissected out and washed in saline. The dissected diaphragm was pinned down (using insect pins) to silicone-based material (Duosil Expres, SHERA, Lemförde, Germany) in a 90 mm Petri dish to stretch and fix the diaphragm. The diaphragm was afterward postfixed in 4% paraformaldehyde for 15 min. Following postfixation the superior surface of the diaphragm membrane was precisely removed with small forceps. The fixative pins were removed and diaphragm muscles were separated to contralateral and ipsilateral sides and placed in saline to prepare the samples for fluorescence labeling. The phrenic nerves were used for histological staining.



Immunohistochemical Staining of Diaphragm and Phrenic Nerve

Hemidiaphragms were washed in 0.1 M sodium phosphate buffer (PBS, pH = 7.4) 3 × 10 min. Diaphragm samples were incubated in 0.1 M glycine for 30 min. To visualize post-synaptic acetylcholine receptors of the motor endplate, the diaphragm was labeled with rhodamine-conjugated α bungarotoxin (red, 1:400, Biotium, Fremont, CA 94538, United States) for 15 min. After incubation the samples were washed in PBS (3 × 15 min) and incubated with methanol for 5 min at -21°C. Afterward, the hemidiaphragms were washed again (PBS, 3 × 15 min) and blocked in NGST (0.2% PBST+2% NGS) at room temperature. For visualization of sGCβ1 nerve terminals, synaptic vesicles and motor axons, the samples were incubated with primary antibodies (rabbit, 1:200, Abcam, Cambridge, United Kingdom; SV2, rabbit, 1:200, Cell Signaling, Danvers, MA, United States; SMI-312, chicken 1:1000, Abcam, Cambridge, United Kingdom) overnight at 4°C. Subsequently, the diaphragms were washed in NGST 3 × 10 min and incubated with secondary antibodies (green goat anti-rabbit IgG, 1:250, Jackson Immunoresearch, Baltimore, MD, United States; blue goat anti-chicken IgG, 1:500, Abcam, Cambridge, United Kingdom) at room temperature for 1 h. The diaphragm muscles were finally washed with PBS (3 × 10 min), placed on glass slides and mounted with aqueous medium (Fluoromont, Merck, Sigma Aldrich, Darmstadt, Germany). Images were captured with a confocal microscope (Leica DM 2500, Wetzlar, Germany) using LASAF software. The number of neuromuscular junctions (NMJs) was evaluated using ImageJ 1.47 software (NIH, Bethesda, MD, United States). NMJs were counted in the central region of the contra- and ipsilateral hemidiaphragms and were assessed as intact, partially or fully denervated.



Phrenic Nerve Staining and Quantitative Analysis

Both phrenic nerves (contralateral and ipsilateral), isolated under thiopental anesthesia, were immersion-fixed in freshly prepared 2.5% glutaraldehyde in 0.1M phosphate buffer at 4°C for 24 h. After fixation, the nerves were stretched and embedded into protein matrix (Bredt et al., 1990). The matrix containing the nerve was placed into a metallic Tissue matrix (TM-1000 10 × 10 mm chamber w/1 mm slices, ASI Instruments, Warren, MI, United States), and cut with a microtome blade into 1 mm thick slabs. The flat slabs allow proper orientation of the nerve tissue in the mold before the resin hardens. The slabs were then postfixed in 1% osmium tetroxide in 0.1M phosphate buffer and embedded into Durcupan according to standard protocol. Transverse sections were cut on a standard sliding microtome (Leica SM2010R, Nussloch, Germany) with special blades for hard materials (Leica 819, Nussloch, Germany). Under a stereomicroscope, 1–3 μm thick sections were teased onto gelatinized slides from 96% ethanol, dried and coverslipped with Polymount. Selected sections were stained with Toluidine Blue. These sections were photographed at 400× magnification. Ten images from each nerve specimen were analyzed using the freely available Neurocounter morphometric software1 by two researchers blind to nerve identity to count the number of myelinated axons. This software recognizes myelinized axons as objects and automatically evaluates their number as well as several morphometric parameters.



Electrophysiology

To assess diaphragm activity, the diaphragm EMG was recorded in controls (n = 6), immediately after PhN ligation (n = 3) and again later, 8 days after the ligation (n = 3). The animals were anesthetized by means of intraperitoneal injection of a combination anesthetic (containing ketamine and xylazine) at a total dose of 1.4–1.8 ml/kg/animal. After laparotomy, the liver was gently pushed away to expose the diaphragm muscle. Bipolar stainless steel electrodes in the form of small parallel hooks (distance of 3 mm) were inserted into the diaphragm muscle. Signals were recorded from both the contralateral and ispilateral hemidiaphragms. The EMG signal was fed into the preamplifier of a differential A/C amplifier (DP 311, Warner Instrument, Hamden, CT, United States), where it was filtered with high-pass (100 Hz) and low-pass (10 kHz). The amplified signal was then sampled at a sampling rate of 20 k/s (PowerLab 8/35, ADInstruments, Colorado Springs, CO, United States) and analyzed using LabChart 7 software (ADInstruments, Colorado Springs, CO, United States).



Statistical Analysis

The results of Western blot analysis of sGCβ1 in the phrenic nerve and cGMP level measured with Elisa were statistically evaluated using One-Way ANOVA as well as the Unpaired t-test, and were expressed as means ± SEM. The level of significance ∗p < 0.05 was considered as significant. The number of PhMNs, motor axons in the PhN and NMJs at the diaphragm were statistically evaluated using the Unpaired t-test and were expressed as means ± SD (****p < 0.0001).



RESULTS


Effects of PhN Ligation on sGCβ1 Changes in Phrenic Motor Pool

Unilateral 8-day continuous ligation of the phrenic nerve was used to examine sGCβ1 in the lower bulbospinal pathway (phrenic motoneurons, phrenic nerves and NMJs at the diaphragm). As shown in Figure 1A, FG-IR phrenic motoneurons were clustered in groups of 3–5 motoneurons through the contralateral C3-C6 ventral horn. The sGCβ1 fluorescence signal was evident in FG-labeled motoneurons of the ipsilateral phrenic nucleus, while the sGCβ1 staining in the contralateral phrenic nucleus was substantially lower. Quantitative analysis revealed that the number of retrogradely labeled sGCβ1-IR phrenic motoneurons was significantly higher in the ipsilateral than in the contralateral phrenic nucleus (2.52 ± 0.71 vs. 0.76 ± 0.43; p < 0.0001) (Figure 1B). Similar results were achieved using WB analysis (Figure 1C). The level of sGCβ1 protein (normalized by the values of β-actin) was enhanced by 30% (0.903 ± 0.212 vs. 0.632 ± 0.020; p < 0.05) in the ipsilateral vs. contralateral ventral horn of C3-C5 segments. These results show that PhN ligation significantly modifies the expression of sGCβ1 in the phrenic motor microcircuits.
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FIGURE 1. Soluble guanylyl cyclase β1 subunit immunoreactivity (sGCβ1-IR) in retrogradely labeled phrenic motoneurons and level of sGCβ1 protein in cervical spinal cord 8 days after unilateral PhN ligation (A–C). Image of C4 spinal cord segment showing expression of retrogradely labeled phrenic motoneurons in contralateral phrenic nucleus (PN) 8 days after PhN ligation and bilateral injection of retrograde tracer Fluorogold (FG) into diaphragm (A). Magnified area in box on right side shows intensive FG labeling and light sGCβ1-IR staining in motoneurons of contralateral PN. Intense expression of sGCβ1 and weak FG labeling is seen in phrenic motoneurons on ipsilateral side (left side). Number of retrogradely labeled sGCβ1-IR phrenic motoneurons/section in cervical segments (C3-C6) on contralateral and ipsilateral sides (B). Level of sGCβ1 protein in ventral horn of C3-C6 segments after normalization to β-actin (C). Data in (B) are mean values of five experiments ± SEM. Data in (C) are mean values of four experiments ± SEM. Results were statistically evaluated using Unpaired t-test; ****p< 0.0001 in (B), ∗p < 0.05 in (C). Scale bars = 1000 μm in (A), 100 μm (insets in A).




Effect of PhN Ligation on sGCβ1 Changes in Phrenic Nerve

To study the effect of PhN ligation on the level of sGCβ1, the control, ipsilateral and contralateral samples of n. phrenicus were used for Western blot analysis (Figure 2A). The level of sGCβ1 protein (normalized by the values of β-actin) was 0.726 ± 0.060 in the control phrenic nerve. Eight days of continuous PhN ligation caused a significant decrease in sGCβ1 level in the nerve below its ligation (0.398 ± 0.006) compared to the contralateral nerve (p < 0.0001) or control nerve (p < 0.0006). WB analysis showed that the level of sGCβ1 protein was only slightly modified comparing control and contralateral phrenic nerves (p < 0.197). Immunolabeling with SMI-312 antibody (a specific marker for neurofilaments) was performed to visualize axons in the phrenic nerve. The neurofilament- and sGCβ1-IR axons were visible in the control group (Figures 2B,C). At the end of survival, the sGCβ1- and SMI-312-positivity decreased in axons below the nerve ligation (Figures 2D–F). These data indicate that PhN ligation decreased the level of sGCβ1 in motor axons, targeting the diaphragm innervation at the site of ligation.
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FIGURE 2. Soluble guanylyl cyclase β1 subunit immunoreactivity (sGC-IR), neurofilament immunoreactivity (NF-IR) and level of sGCβ1 protein in control phrenic nerve (PhN) in experimental animals 8 days after unilateral PhN ligation. Western blot analysis of sGCβ1 protein in PhN (A). Longitudinal sections of PhN immunostained for sGC and neurofilaments (NF) in control (B,C). sGC- and NF-IR in ipsilateral PhN below its ligation (D,E). Merging of sGC- and NF-IR (F). Level of sGCβ1 protein in (A) is normalized to β-actin. Data are mean values of four experiments ± SEM. Results were statistically evaluated using Unpaired t-test; *p < 0.05. Scale bars = 50 μm.




Degeneration of the Phrenic Nerve

We next examined anterograde degeneration of the phrenic nerve below the ligation point (Figures 3A,B). Axons of the contralateral phrenic nerve showed the typical morphological characteristics of intact myelinated axons. In the ipsilateral nerve, evident axonal loss was detected, and the tissue contained numerous disintegrated myelin structures typical for Wallerian degeneration. Axonal counts indicated massive loss of nerve fibers in the ipsilateral nerve (167.1 ± 0.060 vs. 357.8 ± 0.060 axons/nerve, p < 0.0001) 8 days after PhN ligation (Figure 3B).
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FIGURE 3. Eight days continuous phrenic nerve (PhN) ligation caused axonal degeneration in the ipsilateral PhN and abnormalities at neuromuscular junctions (NMJs) in the ipsilateral hemidiaphragm. Noticeable axonal degeneration in PhN below ligation point (ipsilateral) (A). Quantitative analysis revealed significantly lower number of intact axons in ipsilateral than in contralateral PhN (B). Numbers of intact, partially denervated and fully denervated (arrowhead) NMJs in ipsilateral vs. contralateral hemidiaphragm (C). Data in (B,C) are mean values of five experiments ± SD. Results were statistically evaluated using Unpaired t-test; ****p< 0.0001. Scale bar = 100 μm.




Axon Terminals in the Ipsilateral Hemidiaphragm Showed Reduced sGCβ1- and SV2-Immunoreactivity

Confocal imaging was used to visualize the sGCβ1-IR terminal boutons of the phrenic motoneurons at NMJs in the diaphragm (Figures 4A–C,E). As shown in Figures 4C,G,H, sGCβ1-IR puncta were visible in the contralateral hemidiaphragm inside the NMJs and beyond. Significant reduction in the area commonly occupied by the synaptic vesicles and/or sGCβ1 boutons over the endplates (Figures 4C,D,G–J) was seen in the ipsilateral diaphragm (Figures 4E,F,K–N). Similarly, marked reduction in sGCβ1 immunolabeled puncta was seen through the ipsilateral NMJs (Figures 4E,F,K–N). These results show that correlation exists between the loss of sGCβ1 protein and the loss of axons in the ipsilateral phrenic nerve, and the reduction in sGCβ1immunolabeled terminals in the ipsilateral NMJs.
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FIGURE 4. Representative confocal images showing morphological changes at diaphragm NMJs after unilateral PhN ligation. NMJs of diaphragm muscle were visualized via labeling post-synaptic acetylcholine receptors with rhodamine-conjugated α bungarotoxin (red), axons were labeled with anti-neurofilament antibody- SMI-312 (blue), soluble guanylyl cyclase β1 subunit immunoreactive terminals with sGCβ1 antibody (green) and presynaptic terminals with SV2 (green) (A–N). All NMJs were intact in contralateral diaphragm (A,C,D, arrows), characterized by complete overlap of axons and presynaptic sGCβ1-IR terminals (C), and axons and presynaptic vesicles (D) with postsynaptic acetylcholine receptors. Note dense accumulation of sGCβ1 stained puncta in contralateral diaphragm (C,H). Ipsilateral hemidiaphragm shows NMJ abnormalities represented by partial (B,E, arrows) or complete denervation (F, arrows). Marked preterminal axon thinning is visible in ipsilateral diaphragm (B, asterisk). At NMJs in ipsilateral hemidiaphragm we detected almost complete reduction of sGCβ1- (E,L) and SV2-immunostained puncta (F,N). Note single immunostaining from (C,D, arrows) in (G,I) – BTX, in (H) – sGC and in (J) – SV2. BTX (K,M), sGC (L), and SV2 (N) in ipsilateral hemidiaphragm (single immunostaining from E,F, arrows). BTX- rhodamine-conjugated α bungarotoxin, NF-neurofilaments. sGC-soluble guanylyl cyclase. Scale bar = 75 μm.




Morphological Alterations at Diaphragm NMJs After PhN Ligation

This was further supported by pathological alterations at the diaphragm NMJs. As shown in Figure 3C, differences in numbers of NMJs (intact, partially or fully denervated) between the contra- and ipsilateral hemidiaphragm were significant. Eight days after PhN ligation, the contralateral hemidiaphragm exhibited fully intact NMJs (99% ± 0.006). The number of intact NMJs was three-fold lower in the ipsilateral than the contralateral hemidiaphragm. Continuous PhN ligation induced a high percentage (67%) of NMJ abnormalities in the ipsilateral hemidiaphragm. These alterations were identified as partial (Figures 4B,E, arrows) or full denervation (Figure 4F, arrow). The percentage of NMJs exhibiting partial denervation was significantly greater (44%, p < 0.0001) compared to complete junction denervation (23%, p < 0.0001). However, the percentage of intact juctions declined to 33% (p < 0.0001) in the ipsilateral hemidiaphragm muscle (Figure 3C).



cGMP Levels in the Diaphragm

ELISA assay was used to detect cGMP levels in the control diaphragm and in experimental hemidiaphragms 8 days after unilateral PhN ligation. Under physiological conditions, the level of cGMP was 36 ± 0.15 pmol/ml. Significant decrease in cGMP levels was observed in the contra- and ipsilateral diaphragm (p < 0.0001 vs. control) 8 days after PhN ligation. However, the decrease was nine – times stronger in the ipsilateral than the contralateral hemidiaphragm (0.7 ± 0.02 vs. 6.5 ± 0.01; p < 0.0001).



EMG Activity in the Diaphragm

Immediately after ligation the frequency of breathing decreased significantly by more than 40%, from ∼1.6 Hz in the control group to ∼0.9 Hz in the ligation group (Figures 5A,B). While there was no difference in breathing frequency on both sides of the diaphragm, the overall muscle activity differed dramatically. PhN ligation caused rapid and pronounced reduction in EMG activity amplitude on the ipsilateral side, while the amplitude of EMG on the contralateral side slightly increased (Figure 5B). Eight days after continuous PhN ligation, EMG on both sides of the diaphragm muscles changed markedly: on the ipsilateral side the residual activity disappeared, whereas on the contralateral side there was several-fold increase in EMG amplitude while breathing frequency remained unchanged (Figure 5C). This increase in EMG activity was due to an enormous increase in muscle fibers activity, but not to prolongation of that activity, since the duration of the rhythmic contractions did not change significantly.
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FIGURE 5. Representative EMG recordings from contralateral and ipsilateral hemidiaphragms in control animals (A), immediately after phrenic nerve (PhN) ligation (B), and 8 days after PhN ligation (C).




DISCUSSION

Phrenic nerve injury is a well-established model, since the nerve ligation or transection deactivates descending excitatory drive from the phrenic motoneurons to the diaphragm. Within the framework of “Network Physiology” (Bashan et al., 2012; Bartsch and Ivanov, 2014; Bartsch et al., 2015; Lin et al., 2016) this study focuses on the network interactions between the central nervous system (cervical spinal cord) and the periphery (e.g., phrenic nerve and respiratory muscle). Experimental and clinical data have shown that PhN injury can have significant negative effects on diaphragm and lung, affecting their function. Recently published data revealed that the complete paralysis of the unilateral diaphragm could influence the loss of vital capacity and total lung capacity in the aged rats (Ding et al., 2020) but respiratory function parameters show compensation after 4 weeks in the young rats, and contralateral phrenic nerve transfer can enhance pulmonary function. In the present study we speculated, whether changes in the ipsilateral hemidiaphragm (e.g., loss of sGCβ1-IR nerve terminals, decreased level of cGMP, NMJs abnormalities and silencing of EMG activity) emerged from these interactions as an indicator of physiological state and function. To answer this fundamental question, immunohistochemical and histological staining, Western blotting, Elisa and electrophysiology were used. It is known, that the NO/sGC/cGMP signaling pathway plays a key role in regulation of a variety of vital function. However, its functional importance in the respiratory pathway (brainstem-phrenic motoneurons – phrenic nerve – diaphragm) still remains unclear. We have previously reported that the premotor bulbospinal respiratory pathway connecting the bulbar respiratory centers with the motoneurons of the phrenic nucleus in dog and rat is nitrergic (Marsala et al., 2002; Capkova et al., 2011; Hricová et al., 2012). In the present study we provide the first evidence that unilateral ligation of the phrenic nerve decreases the level of sGCβ1 in ipsilateral motor axons targeting the diaphragm innervation, and suggest that this effect is linked with loss of sGCβ1immunolabeled terminals at the ipsilateral MNJs. Subsequent remarkable unilateral decrease in cGMP level in the diaphragm and silencing of EMG activity can be attributed to the fact that sGC is involved in transmitter release at the NMJs via the sGC-cGMP pathway.

The phrenic nerves are generally considered as motor nerves whose primary function is to supply motor innervation to the diaphragm (Mantilla and Sieck, 2008). By means of a retrograde tracing technique we provide data showing direct projection from the hemidiaphragm to the contralateral FG-labeled phrenic motoneurons of the phrenic nucleus. Eight days of continuous PhN ligation caused significant increase in sGCβ1 (immunoreactivity and protein level) in the ipsilateral phrenic motor pool, but the nerve ligation reduced cGMP levels in the ipsilateral hemidiaphragm muscle. We suggest that continuous PhN ligation may lead to increased metabolic activity by ipsilateral phrenic α-motoneurons, normally expressing sGCβ1 at low level (Capkova et al., 2011). Recently published data indicate that 2 weeks of tetrodoxin (TTX) phrenic nerve blockade significantly increased both the total phrenic motoneuron surface area and the dendritic surface area (Mantilla et al., 2018). These authors suggest that ipsilateral phrenic motoneuron morphological adaptations are consistent with normalization of motoneuron excitability following prolonged alterations in motoneuron activity. Phrenic motoneuron structural plasticity is probably more dependent on motoneuron activity (or descending input) than muscle fiber activity. Furthermore, motoneurons have high metabolic activity associated with neurotransmission (Agar and Durham, 2003). They are relatively large cells, and therefore their permanent stimulation may induce unusually high influx of Ca2+ into these neurons (Greig et al., 2000; Vandenberghe et al., 2000; Van Den Bosch and Robberecht, 2000). Murphy et al. (1996) demonstrated that the primary excitatory drive for phrenic motoneurons is glutamatergic, probably acting via Ca2+-permeable, AMPA subtype glutamate receptors. As reported in previous studies (Saji and Miura, 1990; Marsala et al., 2002) nitrergic axons projecting from the dorsal respiratory group and/or rostral ventral respiratory group to the phrenic motoneurons release a signaling NO molecule as a co-transmitter with glutamate. We suggest that descending synaptic input of NO, which activates sGCβ1 in phrenic motoneurons (Capkova et al., 2011) and/or permanent blocking of NO-mediated cGMP synthesis in the hemidiaphragm after PhN ligation probably upregulates sGCβ1 in the ipsilateral phrenic motoneurons. The ability of motoneurons to handle calcium may also be important in determining their response to stimulation (Chao et al., 1997). Previous studies from our and other labs (Lips and Keller, 1998; Palecek et al., 1999; Lukáčová et al., 2012) have revealed a relatively low endogenous calcium-buffering capacity in motoneurons in comparison with other neuronal populations.

Phrenic motor neuron loss and subsequent diaphragm NMJ abnormalities are well described in various experimental models (Prakash et al., 1999; Nicaise et al., 2012, 2013; Fogarty et al., 2019), however, the correlation of these alterations with sGC transmission at the NMJs is lacking. Bashan et al. (2012) have shown that dramatic change in network structure with transition from one physiological state to another within a short time windows indicates a high flexibility in the interaction between physiological systems in response to change in physiological regulation. In the current study, we detected correlation between motor fiber damage, the reduction in sGCβ1-IR terminals and synaptic vesicles at the post synaptic acetylcholine receptors in the ipsilateral MNJs. Our in-depth diaphragm NMJ analysis demonstrated the phrenic axonal degeneration process, as many motor endplates were found to be fully (23%) or partially (44%) denervated as early as 8 days after PhN ligation. The pattern of diaphragm denervation has been studied in the central region of the diaphragm, particularly innervated by phrenic motor neurons located at the C5 level of the spinal cord (Laskowski and Sanes, 1987). In addition, we found significant loss of motor axons (∼47%) and changes in phrenic nerve morphology such as signs of Wallerian degeneration which affected morphological NMJ denervation and might have resulted in reduced spontaneous diaphragm EMG. We suggest that significant decrease in sGCβ1 level in the efferent arm of the respiratory pathway (diaphragmatic nerve) just below the nerve ligation site is also consistent with the cGMP level alterations in the diaphragm. Although we found marked reduction in cGMP levels in both the contra- and ipsilateral hemidiaphragm, the decrease was significantly greater (nine times) on the side of the ligation. Currently, the functional effects of unilateral 8-day continuous PhN ligation are unknown but significant effects can be inferred from recently published experimental study (Ding et al., 2020). Our results demonstrate that loss of motor axons and/or sGCβ1 in motor nerve terminal boutons after phrenic nerve ligation is consistent with alterations in synaptic transmission, the release of cGMP and endplate morphology in the ipsilateral hemidiaphragm.

As shown previously, most NO effects are mediated by sGC activation and subsequent cGMP formation (Reid et al., 1998; Koesling et al., 2005). cGMP influences the activity of at least three different targets, i.e., cGMP transduces the NO signal to the cGMP-regulated protein kinases, cGMP-activated phosphodiesterases (PDEs) and cGMP-gated ion channels (Southam and Garthwaite, 1993; Juilfs et al., 1999). As mentioned earlier, nNOS, cGMP and cGMP-dependent kinases are all concentrated at or near the NMJs (Kobzik et al., 1994; Koesling et al., 2004; Nickels et al., 2007). Reid et al. (1998) indicated that the rat diaphragm produces NO or NO-derivates which downregulate the contractile function via their effect on excitation-contraction coupling. Abraham et al. (1998) demonstrated that cGMP, which is present in most muscle fibers of the rat diaphragm, is primarily distributed in the subsarcolemmal region of individual fibers. It is important to emphasize that NO/sGC/cGMP signaling depends not only on cGMP formation, but it is also critically influenced by the activity of enzymes responsible for cGMP degradation (Koesling et al., 2005). In the diaphragm, PDEs degrade cGMP and terminate the cGMP-signal (Nickels et al., 2007). Our results support sGC-dependent cGMP signaling in the lower respiratory pathway, but the precise target of cGMP action in the diaphragm muscle still remains unclear.

Bartsch and Ivanov (2014) investigated the network of interactions between the brain, cardiac and respiratory system, and demonstrated that a network approach to physiological interactions is necessary to understand how modulations in the regulatory mechanism of individual systems translate into reorganization of physiological interactions across the organism. It is known that the function of inspiratory muscles is very important in the breathing process, because they are required to contract repetitively without interruption throughout life. Our results show remarkable unilateral silencing of EMG activity immediately after PhN ligation, and the failure of recovery of EMG activity in the ipsilateral diaphragm muscle 8 days after pathological continuous nerve ligation. These changes most likely depend on both the loss of ipsilateral phrenic axons (∼47%) and the degree of diaphragm denervation. We also show spontaneous and increased EMG activity in the contralateral hemidiaphragm. Such enhancement, recorded 8 days after unilateral PhN ligation, seems to be the result of increased muscle fiber activity. Mantilla and Sieck (2009) observed the absence of EMG activity in the ipsilateral diaphragm immediately and 3 days after C2 hemisection using diaphragm electrodes. They recorded progressive increase in the proportion of spontaneous recovery of EMG activity ispilaterally to C2 hemisection over time. Only 10% of unanesthetized animals displayed recovery at 7 days after hemisection. These findings are inconsistent with previously reported spontaneous ipsilateral increase in EMG activity. Vinit et al. (2008) reported that the ipsilateral phrenic nerve deactivated by lateral C2 SCI was spontaneously reactivated 7 days post-SCI. These authors also indicated that ipsilateral phrenic nerve reactivation was greater at 3 months compared with 7 days post-SCI, and that it was enhanced after contralateral phrenicotomy. There was gradual recovery of rhythmic diaphragm muscle activity ipsilaterally to cervical spinal cord injury over time, consistent with neuroplasticity and strengthening of spared, contralateral descending premotor input to the phrenic motoneurons (Mantilla et al., 2013). This suggests that spontaneous recovery of the respiratory pathway may depend on post-lesional time. After 8 days of hemidiaphragm paralysis induced by continuous PhN ligation, there was marked increase in sGCβ1 (immunoreactivity and protein level) in the phrenic motor pool, but the protein sGC level in the phrenic nerve below its ligation point and the cGMP level in the ipsilateral diaphragm were markedly decreased. These findings are consistent with alterations such as dramatic axonal loss below the nerve ligation site, reduction in sGCβ1-IR terminals/synaptic vesicles at the ipsilateral NMJs, significant morphological NMJ degeneration, and subsequent remarkable unilateral silencing of EMG activity.

Taken together, our results indicate the role of sGC/cGMP signaling in the lower respiratory pathway (phrenic motoneurons – phrenic nerve – diaphragm), although the complexity of respiratory circuits (e.g., relationship and coupling between the central nervous system and the periphery) requires further in vivo studies to clarify the functional contribution of this signaling pathway in respiratory neuroplasticity following cervical spinal cord and/or PhN injuries.
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Early life stress in the neonatal intensive care unit (NICU) can predispose premature infants to adverse health outcomes and neurodevelopment delays. Hands-on-care and procedural pain might induce apneas, hypoxic events, and sleep-wake disturbances, which can ultimately impact maturation, but a data-driven method based on physiological fingerprints to quantify early-life stress does not exist. This study aims to provide an automatic stress detector by investigating the relationship between bradycardias, hypoxic events and perinatal stress in NICU patients. EEG, ECG, and SpO2 were recorded from 136 patients for at least 3 h in three different monitoring groups. In these subjects, the stress burden was assessed using the Leuven Pain Scale. Different subspace linear discriminant analysis models were designed to detect the presence or the absence of stress based on information in each bradycardic spell. The classification shows an area under the curve in the range [0.80–0.96] and a kappa score in the range [0.41–0.80]. The results suggest that stress seems to increase SpO2 desaturations and EEG regularity as well as the interaction between the cardiovascular and neurological system. It might be possible that stress load enhances the reaction to respiratory abnormalities, which could ultimately impact the neurological and behavioral development.

Keywords: preterm infants, perinatal stress, pain, bradycardia, desaturation, network physiology, EEG, HRV


1. INTRODUCTION

Premature infants are at risk of maladaptive outcomes and neurodevelopment delays. Patients who spend their early life in the neonatal intensive care unit (NICU) can undergo profound alterations of sleep-patterns as well as exposure to painful procedures and noxious stimuli (Grunau, 2013; Barbeau and Weiss, 2017). Grunau (2013) have shown how stress exposure can induce a cascade of physiological consequences, behavioral and hormonal responses. In addition, Brummelte et al. (2012) highlighted how procedural pain can affect structural connectivity of the subcortical areas during neurodevelopment.

In particular, routine day-care has been reported to affect sleep quality inside the NICU (Barbeau and Weiss, 2017). Levy has shown that prolonged contact in NICU can have multiple consequences. 57% of the sleeping infants experience awakening because of hands-on care. Handling is usually followed by respiratory events, such as hypoapneas and apneas, or desaturations. Surprisingly, clinical handling is more likely to initiate oxygen desaturation and bradycardias. Monitoring of respiratory and hypoxic events is pivotal since experience of long bradycardias and apneic spell in very-low weight infants are known to impact the development of the patients (Pichler et al., 2003; Janvier et al., 2004; Horne et al., 2017). In particular, Janvier et al. (2004) have shown that a higher apnea burden (total amount of apnea days in the ward) is associated to a worsening of the cognitive and motor outcome. Prolonged oxygen desaturations associated with bradycardias are known to have greater negative effect on cerebral oxygenation (Pichler et al., 2003) and the persistence of their effect can be even prolonged at 5–6 months corrected age, with worse SpO2 and heart-rate drops compared to full-term infants at equivalent age (Horne et al., 2017). Furthermore, bradycardias were under scrutiny in different studies as sign of autonomic nervous system development. Gee et al. (2017) has shown how the heart-rate variance and entropy dramatically change before any heart-rate drop. This could be the consequence of a dysfunction of vagal stimulation, which induces the bradycardia, according to the polyvagal theory by Porges. Those events are usually preceded by low-heart rate variability as sign of fetal distress (Porges, 1995).

Although a possible link exists between stress burden and cardiorespiratory events, an automated method to quantify stress exposure in the NICU based on physiological signal activity, especially during oxygen desaturations or bradycardias, has not been described yet. However, the literature provides an overview how physiological signals can be used to investigate pain and apneic spells in adults. Multiple authors described machine-learning models to classify pain-patterns using different modalities, such as EEG or EMG (Gruss et al., 2015; Misra et al., 2017). In parallel, other authors described an algorithm to detect apnea events based on SpO2 analysis (Deviaene et al., 2018). In addition, some authors have already investigated a possible link between modalities that describe brain activity and modalities that describe cardiovascular activity in the case of apneic spells or desaturation events. Specifically, a recent study proposed a model to explain how pre-frontal cortex dysfunctions in adults and children can be caused by obstructive sleep apneas due to disruption of sleep and chemical homeostasis (Beebe and Gozal, 2002). Pitson et al. showed that SpO2 dips due to apneas are related to the patients' daily sleepiness, which can affect the emotional and behavorial state. Interestingly, those desaturation events seem to significantly correlate to other physiological events, such as EEG and heart-rate arousals (Pitson and Stradling, 1998).

This inherent coordination of different physiological systems in case of apneas, as highlighted by Pitson and Stradling (1998), or the necessity to rely on different modalities to classify biopotential information, as shown by several authors (Gruss et al., 2015; Misra et al., 2017), strongly suggest a horizontal interaction among organs, which might be altered in case of stress or hypoxia and might require different tools to approach the alteration of the physiological state of the patients (Ivanov et al., 2016). This synchronization among different organs or signal modality is known as Network Physiology and was specifically applied to show the alteration between brain activity and parasympathetic tone of the HRV (Jurysta et al., 2006) and the synchrony between the neonatal EEG bursts and the heart-rate accelerations of the infants (Pfurtscheller et al., 2008). However, one might investigate network physiology in the infants and relate that to a specific physiological condition. As highlighted by Bashan et al. (2012), physiological systems under neural regulation exhibit a high degree of complexity with non-stationary, intermittent, scale-invariant and non-linear behavior and change in time under different physiological states and pathological conditions. One can not only simply derive the integration among the different physiological systems, but might also try to summarize the topological properties of the physiological network and investigate their evolution over time (Bartsch and Ivanov, 2014; Bartsch et al., 2015). The clinical literature also suggested that the overall activity of the individual physiology cannot simply be summarized as the sum of the individual organs' physiology, but it requires an investigation of the interaction among the different sub-systems, especially in the intensive care setting (Moorman et al., 2016).

Since the clinical literature has already shown a unique relationship between handling of infants and apneas or hypoxic events, the aim of this study is the development of a classification model to relate hypoxias to patient's stress exposure. A binary classifier was developed to classify whether a bradycardic event belonged to a patient with stress or without stress burden. Due to the interdisciplinary nature of hypoxic events and stress exposure, the study aimed not only to derive the features from different modalities, but assess the network physiology of the patients and its relationship with stress load and bradycardias. In this article, stress is defined as accumulation of procedural pain, based on a previous study (Grunau, 2013). The paper is organized as follows: in section Material and Methods, the data collection and stress classification models are outlined. In section Results, the results of the study are presented, while the last section focuses on the implication of this research.



2. MATERIALS AND METHODS

2.1. Patient Sample

Data from pre-term infants were collected as part of the Resilience Study, which has been carried out in the Neonatal Intensive Care Unit (NICU) of the University Hospitals Leuven, Belgium. Parents of pre-term infants born before 34 weeks gestational age (GA) and/or with a birth weight <1,500 g were approached for informed consent within the first 3 days after birth. A total of 136 patients was included in the cohort from July 2016 to July 2018. Exclusion criteria were as follows: parents' age <18 years, limited knowledge of Dutch or English, medical (somatic or psychiatric) condition in the parent(s) that impeded participation, and the presence of a major congenital malformation or central nervous system pathology (grade 3 or grade 4 intraventricular hemorrhage or periventricular leukomalacia) at the time of consent.

The research protocol has been examined and approved by the Ethical Committee of University Hospitals Leuven, Belgium. The Resilience Study was performed in accordance with the Guidelines for Good Clinical Practice (ICH/GCP) and the latest version of the Declaration of Helsinki. It has been registered at Clinical Trials.gov (NCT02623400).



2.2. Data Acquisition

During the NICU stay, pain levels were daily recorded with a multidimensional scale for premature infants known as the Leuven Pain Scale (LPS). This scale varies in the range [0,14] and is obtained as the sum derived by seven categories (such as crying, grimace or heart-rate) (Allegaert et al., 2003, 2013). LPS scores were routinely daily recorded by bed-side nurses, every hour for the intensive care patients and every 3 h for the intermediate care.

Based on the association between stress and pain, perinatal stress has been defined as the presence of non-zero LPS in the patient record the day before the recording, i.e., LPS > 0, which means experience of any pain the day before the recording.

According to the clinical protocol, EEG, ECG, and SpO2 measurements were recorded for at least 3 h in three monitoring groups: the first measurement took place around 5 days after birth (5days), while the second and the third recording were respectively planned around 34 weeks post-menstrual age (PMA) (34w) and in the week before discharge home. The last recording usually consisted of a 24 h polsomnography, therefore the last group was labeled as PSG. Only one of the first two recordings was performed for infants born at 33–34 weeks. In the course of their NICU stay, some infants were transferred to level II units in hospitals closer to home. Therefore, not all infants have multiple recordings and some LPS measures are missing. A total of 245 recordings had corresponding pain scores available and were analyzed. A total of 39 patients had three recordings with associated pain score. A set of 38 patients had two recordings and the remaining 52 had 1 recording (39 * 3 + 38 * 2 + 52 = 245). Table 1 summarizes the clinical characteristics of patients at each measuring point. EEG set-up included nine monopolar electrodes (Fp1, Fp2, C3, C4, Cz, T3, T4, O1, O2) and the EEG signals were referenced to the electrode Cz. The sampling frequencies for EEG, ECG and SpO2 were 256, 500, and 1 Hz, respectively. They were monitored with the OSG system (OSG BVBA, Brussel). The R-peaks of the ECG were detected via the R-DECO toolbox (Moeyersons et al., 2019) and the tachogram or HRV signal was derived as subsequent R-peak to R-peak intervals (RRi).


Table 1. Summary of patient data demographics at different time points: GA (gestational age), birth weight (in g), PMA (post-menstrual age) at EEG and ECG recording, LPS (Leuven Pain Score).
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2.3. Bradycardia Detection and Data Pre-processing

Multiple studies have shown that hands-on-care and clinical handling can disrupt the sleep cycle and induce oxygen desaturations and apneic spell (Barbeau and Weiss, 2017; Levy et al., 2017). The most threatening desaturations for the brain physiology and the development of the infant are usually events concurrent with bradycardia, i.e., a sudden drop in heart-rate (Pichler et al., 2003; Horne et al., 2017). Since Levy et al. (2017) has shown that bradycardias, apneas, hypoapneas, and hypoxic events are linked to stress exposure and Porges (1995) relates bradycardias to fetal distress, the definition of apnea prematurity was followed to detect cardiorespiratory events or desaturations in the physiological signal (Paolillo and Picone, 2013). Clinically relevant apneas were characterized by RR elongation above [image: image] for at least 4 s, where [image: image] is the average of the entire tachogram, with a variation of SpO2 > 10% with respect to the baseline (Janvier et al., 2004). Consequently, hypoxic events were detected as events with concomitant variations of HRV and oxygen saturation, defined by increases above [image: image] for more than 4 s and SpO2 desaturations exceeding the following different thresholds: 3%, 5% and 10%. The saturation drops from the baseline were detected according to Deviaene et al. (2018) and the different thresholds were used to test whether stress exposure induces more pronounced hypoxic events. Normally, apneas are defined as breathing cessation for more than 20 s. However, both Barbeau and Weiss (2017) and Levy et al. (2017) have shown that events due to NICU handling are not necessary full apneic spells, but mostly physiological events like hypopneas and desaturations which last shortly and do not reach the level of clinical alarm. Gee et al. (2017) and Porges (1995) outlined the solely and specific importance of bradycardias as sign of dismaturity and distress of the premature infant. In addition, the respiration signal in our study was frequently distorted by artifacts and usually derived from the ECG for the younger patients. Therefore, the event detection specifically targeted bradycardias, instead of looking at the general breathing cessations. For each of those events, a window of 3 min before and after each bradycardia peak was the starting interval to develop a stress classifier. Specifically, a bradycardia peak is the moment of maximal heart-rate drop or RR intervals elongation. For each epoch, the EEG signal was filtered between [1–20] Hz and possible EOG artifacts were filtered using independent component analysis.



2.4. Features Extraction

Multiple features were extracted from the EEG, HRV, SpO2 from each bradycardic spell to assess its relationship with stress. They were computed at least in two moments: the period before the bradycardic event, i.e., from the start of the window until the RRi exceeds [image: image] threshold, and the period after the bradycardic event, which goes from the moment RRi comes back to stationarity until the end of the window. According to the different methodologies, features were also computed during the bradycardia or during the entire hypoxic spell. The computation within the bradycardia was not always possible since indices like fractality require higher number of samples that were not available. Furthermore, the epoch durations were variable depending on the length and the intensity of the bradycardic event. An overview of the different features are reported in Tables 2, 3.


Table 2. Overview of the univariate features derived from the physiological signal in the study.
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Table 3. Overview of the multivariate features derived from the different monitoring groups and the possible interaction combinations among the different modalities (EEG-SpO2, EEG-RRi, EEG-EEG, EEG-SpO2-RRi).
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2.4.1. Cardiovascular Analysis: HRV and SpO2 Features

The tachogram's reactivity was investigated with classical temporal and spectral indices. Specifically, the power spectral density (PSD) of the tachogram was computed with the continuous wavelet transform using analytical Morlet as mother wavelet. The absolute powers in the high-frequency (HF) and low-frequency (LF) range were derived as sum of the PSD bins in the following frequency bands: HF = (0.2 − 4] Hz and LF = (0.08 − 0.2] Hz (David et al., 2007). The indices [image: image] and [image: image] were used to assess the contribution of the multiple autonomic branches (Hoyer et al., 2013). Since the wavelet-approach derives the time-frequency distribution of a signal, both the mean and the standard deviation of those indices, together with the temporal mean and standard deviation of the HRV, were derived as features in the epochs before, during and after each bradycardic spell. Additionally, the heart-beat dynamics were assessed via the Poincaré Plot (PP) analysis. The PP are two-dimensional scatter-plots where RR(t) is plotted vs. the lagged sample RR(t + τ). This graphical representation is a simplification of Taken's theorem to represent the phase space in order to assess the non-linear behavior of the signal. The lag τ was estimated as the first zero of the autocorrelation function of the signal and the PP can then be described by the matrix X = [RR(t), RR(t + τ)], where RR(t) is a vectorial representation of the HRV time series of dimension ℝ(N−τ)×1, where N represents the length of the signal. Most commonly, the standard deviations SD1 and SD2 of the minor and major axis of the cloud defined by X are computed to represent the short and long-term RR variability. In this study, the information in the PP was quantified via SD2 and SD1 as the first two singular values of X and via the centroids Cx and Cy of the same matrix as the column-wise mean of matrix X. The PP was represented and investigated using the entire bradycardic window.

Similarly to HRV, temporal features, such as mean and standard deviation, as well as the PP features were derived from SpO2. Concerning the epochs for SpO2 features computation, the epoch before and after SpO2 dips were considered, i.e., the epoch that starts from the beginning of the window until SpO2 exceeds the considered threshold and the epoch that starts from the moment that SpO2 goes back to stationarity until the end of the window.

Desaturation events and bradycardic spells never occur alone, especially when driven by hands-on-care. The periodicity of both SpO2 dips and heart-rate can be characterized by Phase Rectified Signal Averaging (PRSA), which searches for all time points where the signal goes downward (or upward) in the 6 min segments (Bauer et al., 2006). Fragments of 120 s duration were extracted around each time point, known as anchor point, and they were subsequently aligned and averaged. From this average curve, the overall slope and the slope before and after each anchor point were derived to describe the rate of increase or decrease, such as a desaturation trend or bradycardia increase (Bauer et al., 2006). However, the computed average rate is sensitive to the definition of the anchor points, which ultimately represent an increase or decrease for a specific time window of length T according to the properties of the signal. Therefore, multiple parameters T were investigated in the range [1, 5, 10, 20, 50, 100] s to define the best set of PRSA features.



2.4.2. Neurological Analysis: EEG Features and Multivariate Attributes

Pitson and Stradling (1998) have shown how EEG arousals are related to SpO2 dips in respiratory events due to obstructive sleep apneas. Those arousals have been defined as an increase in the main carrier frequency of EEG in windows of 10s or more. Furthermore, different authors have shown swings in burst activity as a consequence of HR variations in premature infants (Pfurtscheller et al., 2008; Schwab et al., 2009). The increase in discontinuity and burst-like type of activity are known biomarkers for brain dismaturity or pain elicitation (Fabrizi et al., 2011; Pavlidis et al., 2017). Therefore, multiple features have been computed from the EEG to describe the level of discontinuity in terms of slow-wave persistence, regularity and lack of smoothness (Pavlidis et al., 2017). In addition, the concurrent variations of heart-rate, SpO2 and EEG were investigated to assess whether they are related to the stress load or not.



2.4.3. EEG Time-Frequency Analysis

The cortical activity was analyzed both in the time and frequency domain. The EEG power in the band δ = (0.5 − 4] Hz. was computed via the continuous wavelet transform, using the analytical Morlet as mother wavelet. The reason to focus on the delta band is 2-fold. On the one hand, the δ band represents the sensitive band to pain stimuli and contains the dominant frequency of the neonatal EEG, which is the frequency with the highest power (Wallois, 2010; Abdulla and Wong, 2011; Fabrizi et al., 2011). On the other hand, this frequency band represents subcortical areas, such as the thalamus, which are involved in stress management and autonomic control of the nervous system (Pfurtscheller et al., 2017). Similarly to the cardiovascular variables, the mean and the standard deviation for the EEG and the power in the δ band in each channel was derived for the three epochs around the bradycardic peak.



2.4.4. Multifractality

A more discontinuous EEG signal is characterized by higher regularity or self-similarity. Signals with such property are defined as fractals or scale-free signals. These time series have long-exponentially decaying autocorrelation functions (ACF) or a power-law spectrum, whose rates of decay can be defined by the Hurst exponent (H), which assess the level of similarity (Doret et al., 2015). However, complex and discontinuous signals can vary in fractal properties over time, i.e., the Hurst exponent and therefore the rate of ACF decay can differ (Jaffard et al., 2007). Wendt proposed an efficient way to estimate the different fractal properties based on wavelet leaders (Doret et al., 2015). His method estimates the spectrum of singularities D(h) (SS), which measures the different Hurst Exponents in the signal and the associated fractal dimension (Wendt et al., 2007).

The most interesting attributes of the singularity spectrum are the location of the maximum and its width which are usually defined as c1, c2 (Jaffard et al., 2007). According to Jaffard et al. (2007), c1 is usually considered the main Hurst exponent (Hexp) of the multifractal signal, while c2 is a variational index to represent the amount of fractals inside the signal. Wendt et al. (2007) reported further details of the methodology and of the WLBFM toolbox implemented in MATLAB to estimate the fractal parameters. The parameters c1, c2 were estimated for each EEG channel and the associated δ oscillations.



2.4.5. Multivariate Analysis: Brain-Heart Interactions

The interaction among the cortical activity and the cardiovascular variables can be estimated with the time-frequency coherence between the δ oscillations derived with CWT, the HRV and the SpO2 (Piper et al., 2014). In order to match the temporal scale, all signals were resampled at 8 Hz. The continuous wavelet coherence is then computed as the following ratio:

[image: image]

where sxi↔xj(t, f) is the cross-scalogram between the signal xi and xj, sxi(t, f) and sxj(t, f) are the autoscalogram of the signals. The signal xi can be the delta oscillation of an EEG channel, HRV or the SpO2. The wavelet transform was computed with analytic Morlet as mother wavelet and the coherence was investigated in the very-low-frequency band VLF = (0.033 − 0.08] Hz in the 5 days group and the low-frequency band LF in the 34 weeks group and the PSG group. As discussed in previous studies (Hoyer et al., 2013; Lavanga et al., 2019), this shift in frequency band is due to undergoing maturation of the autonomic nervous system. The coupling was derived as the maximum absolute imaginary part of Cxi↔xj in the band of interest Lavanga et al. (2018). The statistical validity of each coupling was then tested with amplitude adjusted Fourier transform (AAFT) surrogates. Specifically, each coupling must be greater in value than the coupling estimated for 19 surrogates, in order to guarantee a level of statistical significance α = 0.05. However, due to the large number of channels and exponential number of associations, the pairwise coupling risks to produce collinear features for stress discrimination. Therefore, topological indices were derived via graph theory. The structure of a graph is defined by a set of nodes, that corresponds to one particular signal or specific information derived from a signal (like the power in a specific band). A link is then defined among nodes in case of a significant interaction and a weight value is associated to indicate the strength of the coupling. A weighted graph is then represented by an adjacency matrix A, whose entries A = Aij represent the coupling between nodes i and j (Bullmore and Sporns, 2009). More precisely, Aij = Cxi↔xj, where Cxi↔xj is the general coupling intensity and i, j = 1, .., M, with M as the total number of signals. Since the direction of interaction is not specified (as underlined by xi ↔ xj), Aij is symmetric and its entries represent statistical correlations without any specific direction. In order to describe the graph topology, a list of topological indices have been introduced, such as the path length, the clustering coefficient and the eccentricity (Bondy and Murty, 1976; Bullmore and Sporns, 2009). The path length is the average shortest path to reach a graph node from any other one. The eccentricity of a node represents the maximum distance from one network node to any other, while the clustering coefficient is defined as the average of all weighted triangles around a node. In addition, a graph can risk to be redundant and superfluous connections can emerge as significant, even after surrogate testing (Peters et al., 2013). The capacity of the network to keep the global connectivity in case of connections removal is known as resilience, which can be computed as the number of superfluous connections. Suppose that all couplings of A = Aij are ordered in descending order and the set of original weights of A is defined as [image: image]. The number nsup of superfluous connections is derived as the number that maximizes the following quantity
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where H(wij(n)) is the entropy of the matrix A where n weights were removed. The value wij(n) represents the remaining non-zero weights, while E(wij(n)) is the squared error between the new matrix A and the original matrix. In general, a higher redundant network will have a higher nsup, since the superfluous connections represent the removed connections to maintain the global connectivity high without deviation from the original matrix. In this study, graph theory was applied as follows: EEG delta oscillations (8 channels), HRV and SpO2 were involved in the analysis as nodes setting the number M of processes to 10. Since the interaction estimation is based on wavelet coherence, the adjacency matrix was computed for each time sample and therefore it was possible to derive the charts of the different topological indices. The average and the standard deviation of each topological feature was computed before, during and after each bradycardic spell. In order to test the contribution of a specific modality or signal to the stress classification, graph theory indices were not only computed for the entire set of processes, but we used also partitions of the adjacency matrix Aij. Specifically, we considered connections only related to EEG channels (EEG-EEG), the connections between EEG channels and SpO2 (EEG-SpO2), the connections between EEG channels and RRi (EEG-RRi) and the entire set of connections (EEG-SpO2-RRi), as reported in Table 3. For each of those partitions, the described list of topological indices was computed.




2.5. Bradycardia-Based Classification

A customized software tool was developed with MATLAB libraries to detect whether each bradycardic event belonged to a patient with or without stress burden. In summary, the following groups of features were derived for each hypoxic event:

• Temporal and periodicity features: 14 features in total for HRV, 14 features for SpO2 and 16 features for the EEG

• Spectral features for both HRV and EEG: 8 features for HRV and 16 features for EEG

• Non-linear features: 4 features for HRV, 4 features for SpO2 and 32 features for EEG

• Brain-heart connectivity topological indices: 168 features in total for HRV, EEG and SpO2.

A complete overview is reported in Tables 2, 3. Given the fact that features were derived for three epochs (before, during and after each bradycardia), the total number of extracted features was 748.

The power-features were log-transformed. The study investigated whether there was any association between those features and the bradycardic spell in a patient with a stress exposure in the NICU. As mentioned earlier, the presence of stress was defined as experience of pain the day before the recording (LPS > 0). However, Gruss et al. have shown that more intense pain can be discriminated in an easier way (Gruss et al., 2015). On top of that, there is no clear consensus on the level of desaturation that can be considered threatening for premature infants (Janvier et al., 2004; Poets, 2010; Levy et al., 2017). Therefore, different levels of hypoxia were tested in the classification, i.e., SpO2 > 3%, SpO2 > 5%, SpO2 > 10%.

The objective of the classification was to discriminate whether a bradycardic event belonged to a patient with or without stress. After testing different classification algorithms, such as support vector machines (SVMs) and linear discriminant analysis (LDA), a classifier based on subspace ensemble with LDA has been designed to separate bradycardic spell in two groups (Ho, 1998). Subspace LDA is an ensemble method like random forest, where the bagging process (random subsampling of the training set) is performed together with a random subsampling of the features to find the best feature subsets to separate the data (Ho, 1998). The clear advantage is to span a greater number of features and allow the model to tune for the best subset. The model was tested according to a leave-one-patient-out (LOPO) scheme for each monitoring group (5 days, 34 weeks, PSG), which meant that all bradycardic event belonging to one patient were put in the test set. The tuning in training-set followed a 10-fold cross-validation and the following set of performance indices were derived each monitoring group: the area under the curve (AUC) and Cohen's kappa between machine learning labels and the clinical labels. It is important to remind the only one set of indices was obtained for each classifier since they were obtained by pooling all test sets of the different patients together.

Given that the number of features should be below one tenth of the training dataset, the subspace of features has been restricted to 1/10 (one-tenth) of the data (Misra et al., 2017). However, before tuning of the model, features were further reduced before the subspace ensemble algorithm was applied. The considered attributes had intra-feature correlation below 90% and the highest F-scores. The F-score is a simple measure to assess the discrimination between the positive and the negative class. It is computed as the ratio between the separation between positive and negative class (intra-class variability) and the separation within each class (inter-class variability). The details of the procedure are reported here (Chen and Lin, 2006). In addition, the features were corrected by the baseline effect of age in case subject's PMA was a covariate of the feature of interest (i.e., significant Pearson correlation or p < 0.05).




3. RESULTS

The results for the bradycardia-based stress classification are reported for the three monitoring groups in Figure 1. The AUC and kappa scores are reported in function of the desaturation threshold used to define which events should have been included in the classifier. Each color represent a threshold: blue for desaturations higher than 3%, yellow for desaturations higher than 5% and red for desaturations higher than 10%. The results suggest a moderate association between the bradycardia features and the clinical labels: the AUC lies in the range [0.80–0.96] and the kappa score lies in the range [0.41–0.80]. The SpO2 threshold for the desaturation seems to have a mild effect on classification: only the PSG group reports an increasing Kappa score for higher threshold.


[image: Figure 1]
FIGURE 1. Results of the bradycardia-based classification in three main datasets. The three colors represent different levels of desaturation to consider the bradycardic event in the stress classification. The left panel displays the area under the curve in the three monitoring groups, while the right reports Cohen's kappa.


The effect of the threshold is also reported in Figure 2, where the classification results are shown based on the different feature groups. The left panel shows the AUC for a 3% desaturation threshold, while the right panel shows results for the 10% threshold. The feature group are respectively indicated with the labels EEG, HR SpO2 and BH for the EEG features, the cardiorespiratory features and the brain-heart features. In the 5 days group and 34 weeks group, either the brain-heart features or the EEG features outperform the HR-SpO2 group. In addition, the desaturation threshold seems to increase the AUC for the brain-related attributes. On the contrary, the performance seems to be comparable for all different groups at PSG and the effect of the threshold is equally beneficial for the three groups.


[image: Figure 2]
FIGURE 2. Results of the bradycardia-based classification in three main datasets. The figure here reports the results based on the different feature groups. The left panel reports the area under the curve for desaturations >3%, while the right panel report the results for desaturation >10%. The three colors represent different feature groups: EEG stands for EEG features, HR-SpO2 represent the cardiovascular features and B-H is related to the brain-heart connectivity.


In order to give an idea of the selected features or the most discriminative information for stress classification, Figures 3–5 reported either the behavior of the selected time-series or the boxplots of the most-discriminative features in epochs before, during and after each bradycardia for the three different monitoring groups. Figure 3 reports the desaturation charts for the 5 days group with LPS > 0 (in blue) and LPS = 0 (in green) on the left panel, while the Hurst regularity is reported in the period before and after each bradycardia for a 10% threshold on SpO2. The Hurst exponent shows a higher regularity in case of stress and the SpO2 charts show higher desaturation in case of stress. Figure 4 reports the desaturation charts and the path length among EEG channels and HRV in the LF band for the 34 weeks group with a 10% threshold on SpO2. Results reveal a higher desaturation in case of stress as well as a stronger association between the tachogram and the delta-oscillations of the EEG. It is important to remember that the lower the path length, the higher the connectivity. Figure 5 reports the normalized power in the HF band both as time-series and as boxplots for the PSG group with a 10% threshold on SpO2. The figure does not only suggest a higher and more intense bradycardic spell, but also a more variable bradycardia.


[image: Figure 3]
FIGURE 3. The desaturation levels and the EEG regularity are more pronounced in case of stress. The left panel reports the SpO2 during the bradycardic spell and the right panel shows the boxplot for the Hurst exponent of channel C3 for the period before and after each bradycardia. The data are reported for the 5 days group. All the events with a desaturation >10% were included in this figure. The p-values in the boxplot are derived via the Kruskal-Wallis test.



[image: Figure 4]
FIGURE 4. The desaturation levels and the connectivity between delta oscillations and the heart-rate are more pronounced in case of stress. The left panel reports the SpO2 during the bradycardic spell and the right panel shows the path length derived from the network with EEG channels and the HRV. It is important to remind that the lower the path length, the higher the connectivity. The data are reported for the 34 weeks group. All the events with a desaturation >10% were included in this figure.



[image: Figure 5]
FIGURE 5. The intensity of bradycardias and the parasympathetic activity are more pronounced in case of stress. The left panel reports the normalized HRV power in the HF band and the right panel shows the normalized power in boxplots before, during and after each bradycardic event. The data are reported for the PSG group. All the events with a desaturation >10% were included in this figure. The p-values in the boxplot are derived via the Kruskal-Wallis test.




4. DISCUSSION

The current study examines the relationship between bradycardic spells and stress burden in premature infants and suggests that stress load can enhance the desaturation and the bradycardic effects. Two novel findings can be reported.

First, this research supports the feasibility of the automatic stress classification based on the physiological reactivity in bradycardias. Levy has shown how routine contact in the NICU could induce respiratory events, such as apneas and hypoapneas, and long oxygen desaturations (Levy et al., 2017). This result has been confirmed by the classification performance reported in Figures 1, 2 and the desaturation charts displayed in Figures 4, 5. The definition of routine handling by Levy et al. follows the notion of stress exposure or procedural pain by Grunau (2013), who defines perinatal stress as accumulation of pain and noxious stimuli. The experienced hands-on-care and pain might trigger a completely different physiological reactivity which could induce a greater desaturation or respiratory burden, as also reported by Levy et al. (2017). Interestingly, the results show a moderate association between the features and the classification outcome (with kappa score between 0.3 and 0.6 for the most of the groups). Although similar studies that perform classification of pain stimuli based on physiological information show strong association between features and the outcome (Brown et al., 2011; Gruss et al., 2015; Misra et al., 2017), it is important to remind that does not elicit any pain in the patient. And yet, it shows that babies experiencing pain the day before the measurement react differently to stress as shown by the stress calculator but also by looking at individual parameters like the desaturation chart, Hurst exponent of the EEG and the HRV in the LF and HF bands.

Second, hypoxic events can impact brain homeostasis. Sleep fragmentation and sleepiness might result from either hands-on-care (especially in infants, Levy et al., 2017) or from desaturation events (especially in apneic patients, Pitson and Stradling, 1998). Sleep fragmentation is able to impact the daily behavior of both adult and NICU patients and is commonly considered a category of pain scoring (Grunau, 2013). Interestingly, Pitson and Stradling (1998) did not only show that the sleepiness and desaturation loads are related in apneic patients, but SpO2 appears to be related to heart-rate and EEG arousals, intended as increases in frequency. These EEG arousals can be seen in the increase of EEG regularity (Figure 3), while the relationships among SpO2 dips, heart-rate and EEG arousals might support the higher connectivity between EEG and HRV in the 34 weeks group (Figure 4). In adults, those physiological fingerprints might be the sign of an altered cardiovascular control (Jurysta et al., 2006) or disrupted emotional regulation by the prefrontal cortex (Beebe and Gozal, 2002). Based on these results, one might speculate a possible impact on the brain development and the autonomic regulation development of those infants. However, the exact mechanisms responsible for those events remain still unclear even in adults and further research is still required.

The increase of EEG regularity and desaturation is normally a feature of the first two monitoring groups (Figures 3, 4), while the PSG group is characterized by a greater vagal activity in case of stress exposure (Figure 5). Furthermore, Figures 1, 2 show better classification performance for the PSG data. One might speculate that the effect of stress on the patients' physiology might be easier to discriminate due a lower apnea - bradycardia burden with increasing age and the overall maturation of the ANS (Curzi-Dascalova, 1994). The autonomic development can also explain the increase in performance of cardiovascular features (HR − SPO2) at PSG, while the dominant features are EEG and BH in the first two recording groups (Figure 2, Second Panel). It seems that stress initiates a desaturation effect and regular EEG patterns in the first days of life, while the stress-related HRV patterns only arise at full-term age with the maturation of ANS. It is possible that regular EEG patterns are especially present at younger age because of enhanced hypoxia by hands-on-care (Levy et al., 2017) or a more dysmature EEG. Hypercapnia and reduced cerebral blood flow are common factors to enhance discontinuity of the cerebral activity (West et al., 2006; Weeke et al., 2017). However, the discontinuous EEG might also be triggered by the cumulated pain of the NICU, which increases neonatal burst activity (Slater et al., 2010). In general, dysmature EEG patterns are especially present at younger age and any EEG disruption might be the consequence of subtle effects that can impact the later-life outcome (Watanabe et al., 1999). This relationship between regularity and dysmaturity might further support the hypothesis of an effect on brain development due to enhanced desaturation and exposure to stress.

Similarly to Lin et al. (2016), the interaction between the EEG delta waves showed a strong positive correlation, which increases during the bradycardia spells and under stress exposure (Figure 4). This stronger positive interaction between the slow rhythm of the EEG and the HRV is normally concomitant with a vanishing negative modulation when a sleep state shifts from deep sleep to wake (Bartsch et al., 2015; Lin et al., 2016). This sudden increase in connectivity might indeed be caused due to an underdeveloped parasympathetic control, and the hypoxia event might be considered as a sudden shift toward an awake state. Apneas and other respiratory events are known to lead to sleep fragmentation (Levy et al., 2017) and therefore this increase in connectivity might be a consequence of this sleep disruption. Bartsch et al. (2015) have shown that awake and REM states exhibit stronger physiological connectivity than deep sleep. Especially, the brain-heart interaction increases during REM and awake (Liu et al., 2015). It is possible that the combination of bradycardia and stress exposure might lead the subject to a condition closer to an awake state, with an overall increase of network connectivity.

However, this study has limitations, which have already been considered in the clinical studies by Levy et al. (2017) and Janvier et al. (2004). Bradycardias and apneas are physiological events, whose frequency and severity vary throughout the hospitalization (Janvier et al., 2004). Therefore, there could not be enough events to classify stress levels for the late pre-term, since there are fewer bradycardias and apneas at full-term age. Moreover, the definition of stress or hands-on-care might also influence the design of the classification. Although Levy et al. (2017) pointed out that the clinical handling initiates apneas or hypoapneas, technical contact was also likely to induce desaturations. This study relies on a specific pain scale (LPS), but future research could involve different multidimensional pain scales to have a more in-depth view of the preterm physiology under stress (Jones et al., 2017). The definition of bradycardias or the physiological events of interest might also impact the current analysis. Levy pointed out the different consequences of clinical handling, which does not only include apneas, but also sleep fragmentations, hypoapneas and general desaturation events (Levy et al., 2017). Gee et al. (2017) had a more generic approach, which include all possible bradycardias in his prediction analysis. Specifically, Gee et al. (2017) considered any heart-rate drops for more than 1.2 s as bradycardic event, while Paolillo and Picone (2013) focused only on bradycardias that last for more than 4 s and were concurrent to desaturation events. Based on the fact that the most dangerous de-oxygenation happens with bradycardias (Pichler et al., 2003), the pursued strategy of this investigation focused on events that looked both to desaturations and bradycardias, but it might be possible to reconsider the entire analysis to have only bradycardias. However, the long-term studies on stress aim to quantify the impact on the development of early-life experiences in the NICU and the specific effect of hypoxia was proven detrimental for the development outcome of preterm patients (Janvier et al., 2004). The current study might also be complemented by a longitudinal analysis, using repeated measurement ANOVA or a balanced linear mixed-effect model. However, the current study presents an event-based dataset, where the number of bradycardias vary for each patient and recording time. The number of bradycardias normally reduces with the development of the infant (Curzi-Dascalova, 1994) and the uneven distribution of those events risk to make any within-subject analysis invalid and unrevealing. Therefore, a future study should be designed to monitor bradycardic spell in a longitudinal sense in order to assess whether stress has a persistent effect over the different recordings.

Future steps of this analysis might include a further proof of the development delays in case of apnea load and stress. The multiple attributes derived in this study might be included in a regression model to assess the differences in Bayley scores or other clinical scales (Janvier et al., 2004). Furthermore, the same methodology can be applied to assess the effect of parents-infant interaction with scales, such as the emotional availability scale (Ziv et al., 2000).

In a nutshell, stress seems to induce more intense desaturations, apneic and bradycardic events and cortical activation, which can be the trigger of neurodevelopment impairment. Janvier et al. (2004) have shown how apnea burden can impact the patients' development in terms of cognitive and motor outcome. Pichler et al. (2003) highlighted how long bradycardias can induce severe cerebral deoxygenation in premature infants and Horne et al. (2017) stressed that the cumulated effect of apneas has a long-term negative impact on the cerebral oxygenation of the patients at 5–6 months corrected age. Therefore, an exacerbation of respiratory or hypoxic events due to patient handling or procedural pain can ultimately affect the development of the preterm infants.



5. CONCLUSION

The current study investigated the relationship between stress experience and bradycardias in preterm infants by means of physiological data. Two main findings have been observed. Larger desaturation levels are associated to stress experience. Larger brain-heart synchrony and EEG regularity are observed during hypoxic events linked to procedural pain. The results show that an automatic stress discrimination in premature infants can be implemented assessing the information of the bradycardic spell. In addition, a possible link between stress and neurodevelopment can be envisaged. The enhanced autonomic and hypoxic events we found in stressed infants might impact their frontal cortex activity, which could ultimately affect their developmental outcome. Future research might be required to test this hypothesis.
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Understanding the human brain and its functions has always been an interesting and challenging problem. Recently, a significant progress on this problem has been achieved on the aspect of chimera state where a coexistence of synchronized and unsynchronized states can be sustained in identical oscillators. This counterintuitive phenomenon is closely related to the unihemispheric sleep in some marine mammals and birds and has recently gotten a hot attention in neural systems, except the previous studies in non-neural systems such as phase oscillators. This review will briefly summarize the main results of chimera state in neuronal systems and pay special attention to the network of cerebral cortex, aiming to accelerate the study of chimera state in brain networks. Some outlooks are also discussed.
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1. INTRODUCTION

Network physiology is a new field initiated by Ivanov et al. in 2012, aiming to reveal the relationship between network topology and physiologic function (Bashan et al., 2012; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al., 2016). Generally, a physiological network is consist of different physiologic organ systems, such as the dynamical network of six physiologic systems with nodes being brain activity (EEG waves: δ, θ, α, σ, β), cardiac (HR), respiratory (Resp), chin muscle tone, leg, and eye movements. In contrast to a static complex network, the topology (i.e., number and strength of network links) of physiological network usually vary with time, resulting in different physiologic states such as different sleep stages [deep, light, rapid eye movement (REM) sleep, and quite wake]. That is, each physiological state of physiological network corresponds to a specific network structure. The transition from one physiologic state to another is associated with fast reorganization of physiological interactions. Network physiology can be successfully applied to explain phase synchronization between organ systems (Chen et al., 2006; Xu et al., 2006; Ivanov et al., 2009; Bartsch et al., 2012; Bartsch and Ivanov, 2014). A typical system of network physiology is the brain network, which is the focus of this review.

One of the most challenging and long standing problems is the understanding of the powerful brain functions such as data processing, function approximation, and pattern recognition etc., which has been considered as a black box for a long time. To solve this problem, it is necessary to figure out the brain network first. So far, it is well known that the human cerebral cortex is a huge network, consisting of 1011 neurons and 1014 links. Thus, it is almost impossible to figure out the structure of this huge network. Fortunately, owing to the modern physical detections such as electroencephalogram (EEG), magnetic resonance imaging (MRI), magnetoencephalogram (MEG), and diffusion tensor imaging (DTI) etc., we can now conveniently obtain a coarse-grained brain network with a finite size of hundreds to thousands nodes. It has been found that the obtained brain network is of a modular structure with a complex connectivity (Hilgetag and Kaiser, 2004), which provides a base for the inherent parallel nature of brain computations (Meunier et al., 2010; Zamora-Lopez et al., 2010). The quantification of complexity in brain networks can be also measured by the multifractality and other factors (Liu et al., 2015; Lin et al., 2016; Xue and Bogdan, 2017; Racz et al., 2018; Gupta et al., 2019; Yang et al., 2019). A larger or more precise brain network can be obtained by reconstructing the connectivity under partial observability assumptions, which is common to many real world settings or experiments (Gupta et al., 2018; Xue and Bogdan, 2019).

By the physical detections, it is revealed that synchronization of neuronal ensembles in the network of cerebral cortex is the base of various neurobiological processes. For example, the alpha synchronization is task-related and is also associated to top-down processing (Benedek et al., 2011). Further, it is pointed out that synchronization and desynchronization of neural activity are closely related to both the normal functions of brain and its disorders, such as epileptic seizures and Parkinson's disease etc. (Rothkegel and Lehnertz, 2014). For instance, during an epileptic seizure, some regions of brain are strongly synchronized but the others are desynchronized (Ayala et al., 1973). While in Parkinson's disease, synchronized activity is absent in the brain regimes of damaged neurons (Levy et al., 2000).

Moreover, it was found that the synchronized and desynchronized behaviors are usually co-existed in the time series of brains. For example, the EEG data showed that during sleep of dolphin, its two brain hemispheres have independently synchronized and desynchronized behaviors at the same time (Mukhametov et al., 1977), i.e., one hemisphere is in sleep and another remains awake. This phenomenon is called as unihemispheric slow-wave sleep and has been also found in other aquatic animals and migrated birds (Rattenborg et al., 2000). On the other hand, the similar phenomenon was reported in the context of neuroscience, called bump state, where the firing rate is higher at some spatial locations but a constant at other spatial positions (Laing and Chow, 2001). This bump state takes an important role for feature selectivity in models of the visual system (Somers et al., 1995), the head direction system (Zhang, 1996), and working memory (Camperi and Wang, 1998).

To understand the mechanisms of these coexisted behaviors in brains, numerous efforts have been paid to the synchronization of coupled oscillators. One of its recent progresses is chimera state, which is closely related to the phenomenon of unihemispheric sleep. Chimera state represents the coexistence of coherent and incoherent dynamics. It is surprising that this behavior occurs in symmetrically coupled identical oscillators. This counterintuitive phenomenon was first discovered in 2002 (Kuramoto and Battogtokh, 2002) and then named in 2004 (Abrams and Strogatz, 2004). Since then, chimera state has become a hot topic and different kinds of chimera states have been revealed in different systems such as the chaotic dynamical systems (Omelchenko et al., 2012), time-delayed system Sethia et al. (2008), and systems with regular topology (Ko and Ermentrout, 2008; Yao et al., 2013; Tian et al., 2017) etc. Initially, chimera states were shown to emerge in systems of nonlocal coupling. Recently, it has been extended to the system of globally coupled oscillators (Chandrasekar et al., 2014), and even in complex networks (Zhu et al., 2014). Further, to explain the alternating activity patterns between the hemispheres over time (Mukhametov et al., 1977), Ma et al. considered the effect of time-delay in two coupled populations and found that the synchronous and desynchronous behavior do alternate between the two groups over time (Ma et al., 2010). At the same time, chimera states have also been implemented in several experiments such as on chemical oscillators (Tinsley et al., 2012), mechanical oscillators (Martens et al., 2013), electronic oscillators (Larger et al., 2013), electrochemical oscillators (Wickramasinghe and Kiss, 2013; Schmidt et al., 2014), and optoelectronic oscillators (Larger et al., 2015). See reviews Panaggio and Abrams (2015) and Majhi et al. (2019) for details.

In sum, chimera states are mainly studied on phase oscillators. As chimera state may represent the mechanism of unihemispheric sleep where the neurons in the sleepy hemisphere are synchronized and the neurons in the awake hemisphere are desynchronized, it is necessary to pay more attention on the chimera state in neural systems. Fortunately, some interesting results have already been obtained in this line, which involve most typical neural models. For examples, chimera states have been studied in leaky integrate-and-fire neurons (Olmi et al., 2010), Morris-Lecar neurons (Calim et al., 2018), FitzHugh-Nagumo neurons (Omelchenko et al., 2013, 2015), Hindmarsh-Rose neurons (Hizanidis et al., 2014, 2016), and Hodgkin-Huxley neurons (Sakaguchi, 2006; Glaze et al., 2016). To accelerate the study of chimera state in brain networks, it is necessary to systematically summarize the measures of chimera state and its recent progress in empirical brain systems, which has not been paid enough attention in the previous reviews (Panaggio and Abrams, 2015; Majhi et al., 2019). Thus, we here briefly summarize the main results of chimera state in neuronal systems and pay a special attention to the network of cerebral cortex.



2. THREE MEASURES OF CHIMERA STATE

To characterize the chimera state, three statistical measures have been proposed so far, by using the time series of network. The first measure is the order parameter by

[image: image]

where ρ represents the phase coherence of oscillators, Φ(t) is the average phase of all oscillators, θj(t) is the phase variable of the j-th oscillator. The system is a complete synchronization when ρ = 1 and a complete desynchronization when ρ = 0. This measure can be conveniently used to the system consisting of two groups. It is a chimera state when one group has an order parameter ρ ≈ 1 and the other ρ ≈ 0.

A key element of this measure is to calculate the phase variable θi(t). However, there is not such an explicit variable in all the neuronal models, in contrast to the Kuramoto phase oscillator. Generally, there are two ways to solve this problem. The first one can be used to a general nonlinear oscillator not necessarily having a well-defined rotational center. Let ui and vi represent two variables of the i-th neuron, respectively. The phase θi(t) can be calculated as (Osipov et al., 2003; Liu et al., 2009)
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where [image: image] and [image: image] denote the derivatives of ui and vi, respectively. The second one is to calculate the phase θi(t) by
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provided that ui and vi move around the origin. An alternative way of Equation (3) is to calculate its instantaneous angular frequency (Pereira et al., 2007) by

[image: image]

Then, the phase θi can be integrated from Equation (4).

The second measure is based on the first one but only for the networks having more than two communities (Shanahan, 2010). Consider a network with m communities. We let ρi(t)(i = 1, …, m) represent the order parameter for each community i at time t. A chimera state means that the values of ρi(t) for different communities are not the same. Based on this feature, two indices are introduced to measure the chimera state, i.e., the index of the metastability λ and the chimera-like index χ. For the former, we first calculate ρi(t) for T points, i.e., t ∈ {1 … T}. Then, their variance can be obtained as
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σmet(i) gives the fluctuation of synchronization in the community-i, i.e., the metastability. The index of the metastability for the entire network is
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Similarly, an instantaneous variance over all the m communities can be introduced as (Shanahan, 2010)

[image: image]

Then, the chimera-like index χ is

[image: image]

Thus, the chimera-like χ and metastability λ indices quantify the degree of synchronization along time and among communities, respectively.

The third measure is for a general network with or without clear communities (Kemeth et al., 2016). Its idea is based on the local curvature for the spatial coherence, represented by the second derivative in the case of one spatial dimension. In this case of one dimension, the local curvature D can be calculated as

[image: image]

where f represents the spatial data on a snapshot at time t. Figure 1 shows its schematic figure where (Figure 1A) is a typical snapshot of chimera state and (Figure 1B) is the mapped D, with Dm being the maximal value of |Df|. Dm represents the curvature of the oscillator with its two neighbors being shifted 180o in phase (Kemeth et al., 2016). From Equation (9) we see that |Df| equals to zero in the synchronous regime and finite values with pronounced fluctuations in the desynchronized regime.


[image: Figure 1]
FIGURE 1. (A) Snapshot of a chimera state. (B) Distribution of |Df| from the data set of (A). Reprinted with permission from Kemeth et al. (2016).


From Figure 1B, we see that |Df| is distributed between 0 and Dm. Letting g be the normalized probability density of |Df|, g(|Df| = 0) is the fraction of spatially synchronous regimes. Thus, g(|Df| = 0) is unity for a complete synchronized state, zero for a complete desynchronized state, and a value between zero and unity for a chimera state. As numerical simulations have fluctuation, it was suggested that those points with |Df| < 0.01Dm should be considered as synchronized, and otherwise desynchronized (Kemeth et al., 2016). That is, the fraction of coherent regions can be calculated by

[image: image]

with δ = 0.01Dm. Therefore, we have g0 = 1 for a complete coherent, g0 ≈ 0 for desynchronized, and 0 < g0 < 1 for chimera states.

Except these three main measures, Gopal et al. introduced another approach to characterize the chimera and multichimera states (Gopal et al., 2014). Their approach is based on a transformation from the framework of xi to a new framework zi, i = 1, 2, …, N, where zi = xi − xi+1. In their approach, chimera states can be measured by two indices, i.e., the strength of incoherence and discontinuity measure. Although these measures are different each other, they are all robust in numerical simulations and can be applied in different systems.



3. CHIMERA STATE IN NEURONAL SYSTEMS

Although chimera state is mainly studied in phase oscillators, it has also been observed in other oscillators with amplitudes, including the neuronal systems. We here make a brief review on the results of chimera state in neuronal systems, mainly focusing on the FitzHugh-Nagumo (FHN) neurons and Hindmarsh-Rose (HR) neurons.

We first introduce the studies of chimera state in FHN neurons. In this aspect, Omelchenko et al. considered the case of FHN neurons by a stronger coupling and found a multi-chimera state (Omelchenko et al., 2013). For the sake of simplicity, they introduced a rotational coupling matrix and found that it is possible for the system to show both chimera and multichimera states. Their discussion is as follows. Consider N FHN neurons coupled nonlocally on a ring

[image: image]

where uk and vk are the activator and inhibitor variables, respectively. ϵ is taken as ϵ = 0.05. A neuron is excitable for |a| > 1 and oscillatory otherwise (Omelchenko et al., 2013). For simplicity, Omelchenko et al. (2013) considered the case of identical neurons with ak ≡ a ∈ (−1, 1). In the framework of Equation (11), the coupling strength σ is a constant within the R nearest neighbors from both sides but zero otherwise, marking the feature of nonlocal coupling. To observe chimera states in neuronal systems, Omelchenko et al. introduced the rotational coupling matrix (Omelchenko et al., 2013)

[image: image]

where ϕ is a parameter of coupling phase, representing the relative phase difference of interacting oscillators. This is a kind of cross-coupling. The value of chosen ϕ determines the property of coupling, i.e., attractive or repulsive.

For convenience, the parameter r = R/N is used to represent the coupling radius. The system of Equation (11) has different behaviors for different r and σ. For example, for fixed a = 0.5 and ϕ = π/2−0.1, a chimera state can be observed for small coupling strength σ and multichimeras state for larger σ. Figure 2 shows the case of small σ where Figure 2A represents a snapshot of uk at the moment of t = 5, 000. It is a typical chimera state consisting of coherent and incoherent parts. Figure 2B shows a further confirmation where the desynchronized part is distributed along the limit cycle.


[image: Figure 2]
FIGURE 2. (A) Snapshot of the variables uk for t = 5, 000, (B) snapshot in the (uk, vk) plane for t = 5, 000 (black lines denote the nullclines of the FHN system), (C) mean phase velocities ωk, (D) local order parameter Zk. Parameters: N = 1000, r = 0.35, σ = 0.1, a = 0.5, ϕ = π/2 − 0.1. Reprinted with permission from Omelchenko et al. (2013).


On the other hand, we may also use the mean phase velocity of oscillators to characterize the chimera state, which is defined as

[image: image]

where ΔT is the considered time interval and Mk is the total firing number of node-k in ΔT. Figure 2C represents the results. ωk is a constant for coherent part but lie on a continuous curve for incoherent part. Moreover, we can also use the local order parameter to represent chimera state, defined as

[image: image]

where θj is defined by Equation (3). The k-th unit is in the coherent part of the chimera state when Zk = 1 and incoherent parts otherwise. Figure 2D shows the evolution of Zk by choosing the window size δ = 25, where the yellow parts denote the coherent regions.

For a larger coupling σ, we may observe a multichimera state where the incoherent part is divided into several independent domains, in contrast to the single incoherent domain in chimera state. Figure 3 shows the phase diagram of chimera states on the r − σ plane, where the red region represents the chimera state with one incoherent domain, while the green and blue regions represent the multichimera states with two or three incoherent domains, respectively.


[image: Figure 3]
FIGURE 3. Phase diagram of chimera states on the r − σ plane where the red, green, and blue regions represent the chimera states with one, two and three incoherent domains, respectively. Other parameters as in Figure 2. Insets show typical profiles of the mean phase velocities. Reprinted with permission from Omelchenko et al. (2013).


Further, Omelchenko et al. extended chimera state to the case of nonidentical FHN units (Omelchenko et al., 2015). They randomly choose the parameters ak from a normal (Gaussian) distribution with mean value amean and variance δa, so that the neurons have different frequencies. For fixed amean = 0.5, chimera state changes with δa. Figure 4 represents a few typical snapshots and corresponding ωk for chimera states with one, two, and three incoherent regions, as δa increases. It is clear that these chimera states have some robustness to the nonidentity of oscillators (Omelchenko et al., 2015).


[image: Figure 4]
FIGURE 4. Snapshots of the variables uk and mean phase velocities ωk for inhomogeneous oscillators. (A–C) r = 0.35, σ = 0.1; (D–F) r = 0.33, σ = 0.28; (G–I) r = 0.25, σ = 0.25; values of δa shown for each panel above the mean phase velocities plots. Other parameters as in Figure 2. Reprinted with permission from Omelchenko et al. (2015).


Semenova et al. considered the case with noise (Semenova et al., 2016), as it is unavoidable in real systems. They focus on the question whether noise is beneficial for chimera states. In fact, this consideration is related to the phenomenon of coherence resonance (Hu et al., 1993; Pikovsky and Kurths, 1997; Liu and Lai, 2001), where an optimal noise intensity can result in the counterintuitive increase of temporal coherence. Semenova et al. found that noise is essential for chimera behavior and call it coherence-resonance chimera (Semenova et al., 2016). That is, an optimal noise can even induce a spatial chimera state, rather than purely temporal coherence. Their model is a slight modification of Equation (11) and can be written as

[image: image]

where ξi(t) represents the Gaussian white noise with 〈ξi(t)〉 = 0 and [image: image], and D denotes the noise intensity. The rotational coupling matrix and phase parameter are fixed as the same as in Equation (11) except ai ≡ a = 1.001, indicating that all neurons are excitable but close to the threshold.

The presence of noise may induce a spike for a single FHN neuron in the excitable regime of |a| > 1. When the noise intensity is too small, it is not enough to induce a spike in the system of Equation (15). While a strong enough noise may induce too many spikes and results in irregular behaviors. Thus, there may exist an optimum intermediate noise to induce a chimera state. To confirm this analysis, Figure 5 shows four distinct regimes by ui and Zi from Equation (14). Figure 5A shows the case of D = 0, with no spikes. Figure 5B shows the case of intermediate noise with D = 0.0002. The values of Zi show the characteristic feature of chimera state, i.e., the coexistence of coherent and incoherent spiking. Thus, Semenova et al. called it as coherence-resonance chimera (Semenova et al., 2016). Figure 5C shows the case of strong noise with D = 0.0004, where the coherence-resonance chimera is destroyed. Figure 5D shows the case of much stronger noise with D = 0.1, where the spiking is incoherent in both time and space.


[image: Figure 5]
FIGURE 5. Space-time plots of activator ui (left column) and local order parameter Zi (right column) for different noise intensities. (A) D = 0: steady state, (B) D = 0.0002: coherence resonance chimera, (C) D = 0.0004: incoherent in space but periodic in time, (D) D = 0.1: incoherent in space and time. Parameters: ϵ = 0.05, a = 1.001, σ = 0.4, r = 0.12. Reprinted with permission from Semenova et al. (2016).


To see how the coupling parameters r and σ influence the coherence resonance chimera, Figure 6 shows the phase diagram by fixing the parameters ϵ, a, D, N. Region (a) represents a homogeneous steady state, region (b) shows the state of spiking patterns with temporal periodicity and spatial incoherence, regions (c–e) represent the coherence-resonance chimeras with one, two, and three incoherent domains, respectively. Therefore, except the noise intensity D, the coherence-resonance chimeras are also influenced by the two parameters r and σ.


[image: Figure 6]
FIGURE 6. Dynamic regimes in the (r, σ) parameter plane: (a) steady state (orange dotted), (b) incoherent in space and periodic in time (yellow plain), (c) coherence-resonance (CR) chimera with one incoherent domain (blue crosshatched), (d) CR chimera with two incoherent domains (green crosshatched), (e) CR chimera with three incoherent domains (purple vertically hatched). Other parameters: ϵ = 0.05, a = 1.001, D = 0.0002, N = 500. Reprinted with permission from Semenova et al. (2016).


Further, the values of Zi in Figure 5B show a periodic switching between the coherent and incoherent regimes of chimera state. This feature may be helpful for the understanding of unihemispheric sleep, where the coherent and incoherent behaviors are known to switch between the two hemispheres of brain (Mukhametov et al., 1977). In fact, this kind of alternating chimera behavior has been previously addressed in a phase model by a sinusoidal signal (Ma et al., 2010), which can be also considered as an external perturbation.

Tian et al. considered the case of time-delay and electromagnetic induction in FHN neurons and found that either the time delay or electromagnetic induction can induce chimera states (Tian et al., 2018). By considering both the effect of time-delay and electromagnetic induction, Equation (11) becomes

[image: image]

where φ represents the magnetic flux and τ denotes the time-delay. The term kρ(φi)ui is the induction current (Tian et al., 2018). The nonlinear function ρ(φ) is taken as ρ(φ) = α + 3βφ2 (Ma et al., 2017), where α and β are two parameters.

In numerical simulations, the parameters are fixed as N = 256, k1 = 0.1, k2 = 1.0, α = 0.1, β = 0.1, τ = 1.0, σ = 0.02 and r = 0.35. Figure 7 shows the results where Figures 7A–D denote the cases of k = 0.8, 1.2, 5.2, and 7.4, respectively. It is clear from Figures 7A–D that with the increase of k, the multi-chimera state gradually becomes a chimera state.


[image: Figure 7]
FIGURE 7. Chimera states for the situation of both time-delay and electromagnetic induction with positive k and r = 0.35, τ = 1.0, and c = 0.02. (A–D) Represent the cases of k = 0.8, 1.2, 5.2, and 7.4, respectively. Reprinted with permission from Tian et al. (2018).


Now, we turn to the studies of chimera state in HR neurons. Different from the FHN model of spiking neurons, HR model may represent the bursting behavior of neurons. We here concern about how this bursting behavior influences the chimera state.

Bera et al. studied a network of bursting HR neurons with global coupling as follows (Bera et al., 2016)

[image: image]

where k is the coupling strength, x is the membrane potential, and y and z are the transport of ions across the membrane through the fast and slow channels, respectively. The HR neuron is excitatory for xi(t) < vs, where vs = 2 is the reversal potential. (cij) is the adjacent matrix with cij = 1 if i ≠ j and cii = 0. The coupling function Γ(x) is assumed to be the sigmoidal nonlinear function

[image: image]

where λ′ determines the slope of the function and Θs is the synaptic threshold. These two parameters are taken as Θs = −0.25 and λ′ = 10.

To characterize the chimera state, a new transformed variable w1,i = xi − xi+1 is introduced (Bera et al., 2016). Figure 8 shows the results for snapshots of the state variables xi and w1,i by black and red color dotted points, respectively. Figure 8A shows the case of a weak coupling k = 1.0. It is a disordered state. Figure 8B shows the case of a middle coupling k = 1.2. It is a multichimera state with two domains of disordered oscillators. The inset shows a typical time series of xi (blue color line). Its behavior changes between the square-wave and plateau bursting. Figure 8C shows the case of a strong coupling k = 1.28. Its chimera state has only one incoherent domain, in contrast to the two incoherent domains in Figure 8B. Figure 8D shows the case of a stronger coupling k = 1.3, where all the neurons become coherent.


[image: Figure 8]
FIGURE 8. Snapshots of a system of globally coupled HR neurons for different values of the synaptic coupling strength k in terms of the variables xi (black color) and the transformed variables w1,i = xi − xi+1 (red color): (A) incoherent state, k = 1.0; (B) chimera state (with two desynchronized groups), k = 1.2; (C) chimera state (with single desynchronized group), k = 1.28; and (D) coherent state, k = 1.3. The inset figures are the corresponding time series (blue color). The number of oscillators is N = 301. Reprinted with permission from Bera et al. (2016).


Hizanidis et al. considered a modular network of HR neurons (Hizanidis et al., 2016), which is from the C. elegans network and consists of six communities. They let the neurons be connected by two types of synapses: electrical and chemical. The former is for the connections within each community and the latter for the connections across the communities. Their model can be described as follows

[image: image]

where pi represents the membrane potential, qi and ni are associated with the fast and slow currents, respectively. The parameters are chosen as r = 0.005, a = 1, Vsyn = 2, b = 3, d = 5, c = 1, s = 4, p0 = −1.6 and Iext = 3.25 so that each neuron has the spiking-bursting behavior (Hizanidis et al., 2016). L is the Laplacian matrix with Lij = Eij − δijki, where δij = 1 if i = j, and δij = 0 otherwise. E is the adjacency matrix with Eij = 1 if there is an electrical synapse connecting the neurons i and j, and Eij = 0 otherwise. gel is the strength of the electrical coupling and its functionality is governed by the linear function H(p) = p. The adjacency matrix T is Tij = 1 if there is a chemical synapse between neurons i and j, and Tij = 0 otherwise. gch is the strength of the chemical coupling and its functionality is defined by the sigmoidal function Γ(p) from Equation (18).

To study the chimera state of Equation (19), Hizanidis et al. (2016) used ρ to represent the order parameter of Equation (1) where θ is calculated through Equation (4) by p and q. Figures 9A–G show the phase diagrams of ρ on the (gch, gel) parameter space for each of the six communities and for the entire network, respectively. It is clear that ρ is not homogeneously distributed in the (gch, gel) plane but with higher ρ in some region and lower ρ in other regions. For example, the red regions have ρ ≈ 1 and the yellow regions have 0 < ρ < 1.


[image: Figure 9]
FIGURE 9. Phase diagram in the (gch, gel) parameter spaces. The order parameter of each community ρ1, …, 6 is shown in (A–F), and of the entire network in (G). The metastability index λ is shown in (H) and the chimera-like index χ in (I). The marked points A (gch = 0.015, gel = 1.7), B (gch = 0.18, gel = 0.7), and C (gch = 0.015, gel = 0.5) denote three different dynamical regimes and their dynamical behaviors are illustrated in Figure 10. Reprinted with permission from Hizanidis et al. (2016).


The regions with 0 < ρ < 1 in Figures 9A–G may represent the chimera states. To confirm it, the two measures of metastability index λ of Equation (6) and chimera-like index χ of Equation (8) are used. Figures 9H,I show the results on the (gch, gel) parameter space. From Figure 9H we see that λ reaches higher values in some regions, implying that the system often changes between coherent and incoherent states. From Figure 9I we see that χ reaches its highest values in the two synchronization “islands” of communities 3 and 6. For more detailed information on chimera state, Hizanidis et al. chose 3 interest points on the (gch, gel) phase diagram, marked by letters A, B, and C (Hizanidis et al., 2016), where A has both low-valued λ and χ, B has λ [image: image] χ, and C has χ [image: image] λ, i.e., “chimera-like” state. Figure 10 shows the dynamical behaviors of p for the three points. The snapshots of the system state in the bottom confirm the corresponding behaviors, where only the point C shows the feature of chimera state, i.e., the coexistence of coherent and incoherent domains.


[image: Figure 10]
FIGURE 10. Dynamical behaviors of the three points A, B, and C in Figure 9. (A) The spatiotemporal evolution of pi (upper left), with a time series of the neuron with index 100 of community 3 (upper right) and a snapshot of the system state (bottom) are shown for the point A of Figure 9. (B) The same plot for point B. (C) The same plot for point C. A chimera-like state is illustrated here. Neurons are ordered according to their community. Reprinted with permission from Hizanidis et al. (2016).


Moreover, Majhi et al. studied the chimera state in uncoupled HR neurons induced by a multilayer network (Majhi et al., 2016), where the neurons in the upper layer is unconnected but can share information through the neurons in the lower layer. This topology is related to the remote synchronization (Bergner et al., 2012) and thus may help us to understand brain functions. Bera et al. reported a new type of non-stationary chimera pattern in coupled HR neurons (Bera et al., 2019), called spike chimera.

In summary, these studies show different ways to induce chimera states, including both cross-coupling and single-variable coupling. At the same time, these studies also show that chimera states are available in different neuronal models, indicating the robustness to neuronal models. The drawbacks or limitations are that all the considered network structures are artificial but not empirical brain networks. And the models are for individual neurons but not the average behaviors of an ensemble of neurons, which are the only available time series in experiments such as EEG data.



4. CHIMERA STATES IN EMPIRICAL BRAIN NETWORKS

Except the above extensive studies of chimera states in artificial neural systems, recently, some attention has been paid to the networks of human cerebral cortex measured by DTI. The former helps us to understand the mechanism of chimera state such as how chimera state is induced and what is the condition for chimera state to show up. While the latter highlights a way to cure or control brain diseases such as schizophrenia, Alzheimer's disease and brain tumors. It is well-known that in the fields of nonlinear science and complex network, brain functions can be represented by their corresponding dynamical patterns, i.e., a variety of patterns of partial synchronization. These patterns have a close relationship with chimera states and can be considered as a natural link between coherent and incoherent dynamics. Thus, the studies of chimera states on empirical brain networks is very helpful for exploring the mechanism of brain functions such as cognition and memory. We here make a brief summary for those results on the empirical brain networks, i.e., from the brain networks with smaller size to the middle and then to the larger ones.

Firstly, we introduce the study on an empirical brain network with smaller size. In this case, Bansal et al. considered an empirical brain network consisting of 76 brain regions (or nodes) and paid attention to how brain structure influences the dynamical patterns produced by stimulation (Bansal et al., 2019). They divided this network into nine cognitive systems by using personalized brain network models, named attention, visual, cingulo-opercular, subcortical, medial default mode, somatosensory and motor, frontoparietal, ventral temporal association, and auditory systems. Each of the nine cognitive systems is consist of the coactivated regions for supporting a generalized class of cognitive functions. Then, they presented a chimera-based, cognitively informed framework to study how large-scale brain structure influences brain dynamics and functions, called cognitive chimera states. In their study, the dynamics of each node was modeled by the Wilson-Cowan oscillators (Wilson and Cowan, 1972), a biologically motivated neural mass model, represented as follows

[image: image]

where

[image: image]

and Aij is the weighted coupling matrix. c5 and c6 represent the excitatory and inhibitory coupling strength, respectively, with c6 = c5/4. Pi(t) is the external stimulation. [image: image] is the time-delay, where dij is the spatial distance between nodes i and j and td = 10m/s is the signal transmission speed. Other parameters are biologically taken as c1 = 16, c2 = 12, c3 = 15, c4 = 3, τ = 8, θI = 3.7, θE = 4, aI = 2, and aE = 1.3.

In numerical simulations, the dynamical behaviors of the nine cognitive systems were investigated by stimulating a brain region with Pi = 1.15 (Bansal et al., 2019). The stimulation gradually spreads to other parts of the brain network by the links of the stimulated node and form a dynamical state. By this way, different dynamical states are observed when different brain regions are stimulated. Then, Bansal et al. calculated a cognitive system-based order parameter ρsi,sj from Equation (1). This parameter ρsi,sj measures the degree of synchrony among all oscillators within the two cognitive systems si and sj. By this way, a cognitive system-based 9 × 9 matrix can be obtained. Further, two cognitive systems si and sj are considered as synchronized if ρsi,sj exceeds a threshold value ρTh = 0.8. The whole brain network is a coherent state when all nine cognitive systems are synchronized, a cognitive chimera state when some cognitive systems are synchronized while the other systems are desynchronized, and a metastable state when no stable synchrony between cognitive systems is formed (Bansal et al., 2019).

Figure 11 shows the relative contribution of the nine cognitive systems for the three states after nodes stimulation. We see that the contributions to the three states are different from one cognitive system to another, implying a close relationship between cognitive systems and brain functions. Figure 11A shows that coherent states are mainly from the nodes stimulation within subcortical and medial default mode systems. Figure 11C shows that the frontoparietal and cingulo-opercular systems are the main contributions for metastable states, while the ventral temporal association and auditory systems also contribute substantially to metastable states. Figure 11B shows that all nine systems produce chimera states, implying that chimera states have higher possibility to be observed than either coherent or metastable states (Bansal et al., 2019). Bansal et al. also pointed that the regions of coherent states are distributed more closely to the midline of the brain, and the regions of metastable states are distributed farther from the midline, i.e., along the edges of the hemispheres, while the regions of chimera states are relatively uniformly distributed within the brain space. The metastable states enable segregated neural processing, while coherent states enable integrated neural processing. As the brain system must integrate information across spatially distributed, segregated regions to implement cognitive tasks, a balance between integration and segregation is required for adaptive cognition. This balance is automatically satisfied in chimera states and thus enables segregation and integration in brain dynamics, which guarantees the diverse processing requirements.


[image: Figure 11]
FIGURE 11. Distribution of the contribution fractions from the nine cognitive systems after nodes stimulation where (A–C) represent the cases of final dynamical states as coherent, chimera and metastable states, respectively. This distribution tells a relationship between the dynamical states and individual cognitive systems. Reprinted with permission from Bansal et al. (2019).


Secondly, Chouzouris et al. considered a slightly larger empirical brain network consisting of 90 nodes (Chouzouris et al., 2018), motivated by studies of epileptic seizures. They let the neurons be the FitzHugh-Nagumo oscillators. As this empirical brain network has a topology of complex network, Equation (11) has to be modified into

[image: image]

where ϵ = 0.05 and G is the adjacency matrix. The rotational coupling matrix B = (buu) is taken as the same as in Equation (12).

Chouzouris et al. found that when a is in the range a ∈ (0, 0.8), the network exhibits chimera states for small coupling strength σ (Chouzouris et al., 2018). When the parameters are taken as a = 0.5, σ = 0.2, and N = 90, the network shows a stationary moving chimera. That is, the order parameter r from Equation (1) has a strong fluctuation or changes in time. Figure 12A shows such an example, where the parameters are a = 0.5 and σ = 0.6. The average of order parameter is 〈r〉 ≈ 0.5. Except the strong fluctuation, another feature is that the highest value of r appears right before its drop. Both effects were discovered in the synchronization of epileptic seizures (Jiruska et al., 2013). Chouzouris et al. further pointed out that the high coherence events can be controlled (Chouzouris et al., 2018). Larger σ increases the probability for chimera states to occur. Figure 12B shows the result that the variation of coupling results in a switching between the chimera state and synchronization, which controls the epileptic seizures.


[image: Figure 12]
FIGURE 12. Temporal evolution of the global order parameter r shown in blue for the network with empirical structural connectivity with a = 0.5 and N = 90. The coupling strength σ is shown in red. (A) Chimera state: constant coupling strength σ = 0.6. (B) Controlled dynamics: coupling strength σ = 0.6 is increased to the value σ = 0.7 and kept fixed for the time interval 650 < t/2 × 104 < 1, 350, followed by a decrease back to σ = 0.6; this causes the transitions between the chimera state and frequency synchronized states. Reprinted with permission from Chouzouris et al. (2018).


This empirical brain network of 90 nodes was further studied by Ramlow et al. (2019), where a dynamical asymmetry between the hemispheres was addressed by considering natural structural asymmetry.

Finally, we discuss the situation of empirical brain network with larger size. This network is much larger than the above two and is constructed by the data of Hagmann et al. (2008) where the cerebral cortex was divided into 989 nodes and 17, 865 connections. For this network, Huo et al. first considered the case of adaptive coupling (Huo et al., 2019), based on the fact that in empirical brain network, both the coupling strength and neural activities influence each other and thus change with time. In Huo's model, the coupling matrix is adaptively evolved with the dynamics of neurons. They found that the adaptive coupling finally reaches a self-organized state and induces chimera states. This kind of self-organization may support the high flexibility of brain functions. In details, they let the nodes be the FitzHugh-Nagumo oscillators and the dynamics be represented as follows

[image: image]

where ϵ = 0.05, a = 0.5, and the rotational coupling matrix B is defined as in Equation (12). The adaptive coupling λij is set as

[image: image]

where γ is a small constant. Equation (24) does not influence the topology of network but only change the value of λij.

Huo et al. chose γ = 0.01 and found that it is possible for chimera states to appear in this realistic network (Huo et al., 2019). Figure 13 represents the resulted chimera state for β = −0.5π + 1.2 and ϕ = −π + 4.45, where (Figure 13A) is the initial matrix of λij, (Figure 13B) the stabilized matrix of λij, (Figure 13C) the evolutionary pattern of ui(t), and (Figure 13D) a snapshot of the fast variable ui(t). Comparing Figure 13A with (Figure 13B), we see that the stabilized matrix λij in (Figure 13B) is significantly different from the initial matrix λij in (Figure 13A). This may help us to understand how the brain network is self-organized into chimera states.


[image: Figure 13]
FIGURE 13. Chimera state on the realistic network of cerebral cortex with N = 989, ϕ = −π + 4.45 and β = −0.5π + 1.2. (A) Represents the initial matrix λij chosen randomly from [−1, 1], (B) the stabilized matrix λij, (C) the evolutionary pattern of ui(t), and (D) the snapshot of the fast variable ui(t) at a specific time t. Reprinted with permission from Huo et al. (2019).


To reflect the dependence of chimera states on the parameters ϕ and β, Huo et al. calculated the measure g0 of chimera state by Equation (10). Figure 14 shows its phase diagram on the parameter plane of ϕ and β. The stabilized behaviors consist of disorder, coherent, and chimera states but the fraction of chimera states is the largest one on the phase diagram.


[image: Figure 14]
FIGURE 14. Phase diagram of g0 of chimera state in the parameter plane of ϕ and β for the realistic network of cerebral cortex. Reprinted with permission from Huo et al. (2019).


Kang et al. further considered the empirical brain network of 989 nodes as a two-layered network where the left and right hemispheres of cerebral cortex are considered as different layers, respectively (Kang et al., 2019). In their model, the intra- and inter-coupling strengths are considered to be different. Very interesting, they found that the model can reproduce the phenomenon of unihemispheric sleep where one hemisphere is completely synchronized while the other is completely desynchronized. This finding provides an explanation for the first-night effect in human sleep (Tamaki et al., 2016). Their model for the first layer-A is represented as follows

[image: image]
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where ϵ = 0.05 and a = 0.5. [image: image] and [image: image] are the inter- and intra-degrees of node i, respectively. (AB)ij and Aij denote the inter- and intra-coupling matrices, respectively. The other quantities are the same as in Equations (11) and (12).

The similar dynamics equations can be written for the network B.

Figure 15 shows the results for four typical cases where ωi is calculated by Equation (13), the up and down panels are for the network-A and network-B, respectively, and the insets are their corresponding dynamics of ui. The panels of Figure 15 represent four typical cases where (Figures 15A,E) are for the case of disorder with λin = 0.1 and λout = 0.3; (Figures 15B,F) for the case of chimera state with λin = 0.1 and λout = 1.8; (Figures 15C,G) for the case of disordered network-A and synchronized network-B, with λin = 0.4 and λout = 3.5; and (Figures 15D,H) for the case of synchronization with λin = 4.0 and λout = 3.5. These four cases represent different states. The first case of Figures 15A,E and the last case of Figures 15D,H denote the two extreme states of desynchronized and synchronized states, respectively. The second case of Figures 15B,F represents a chimera state where there is a plateau of ωi in both the up and down panels and their insets show a coexistence of synchronized and unsynchronized ui(t). The most interesting is the third case of Figures 15C,G where the network-A is disordered but the network-B is synchronized, marking the unihemispheric sleep. Kang et al. further showed that the parameter region for the state of unihemispheric sleep is much smaller than that of chimera state, implying that it is usually difficult to observe the phenomenon of unihemispheric sleep. This is consistent with the first-night effect (Tamaki et al., 2016), which can be observed only in the first-night sleep when a person is located in an unfamiliar place.


[image: Figure 15]
FIGURE 15. Four typical dynamical states in the two-layered network model of Equation (25) where the up panels represent the layer-A and down panels the layer-B. The inset in each panel is a snapshot of ui at time t. (A,E) Represent the case of disorder with λin = 0.1 and λout = 0.3; (B,F) the case of chimera state with λin = 0.1 and λout = 1.8; (C,G) the case of unihemispheric sleep with λin = 0.4 and λout = 3.5; and (D,H) the case of synchronization with λin = 4.0 and λout = 3.5. Reprinted with permission from Kang et al. (2019).


In sum, these studies showed the recent progress of chimera states in empirical brain networks, but did not pay much attention to the aspects of characteristic features of brain networks, such as the heterogeneous communities and hub nodes of rich-club, and deeper connection to concrete brain functions, such as cognitive and memory etc.



5. DISCUSSIONS

Chimera state is in fact one of the three kinds of partial synchronization. The other two of them are the cluster synchronization and remote synchronization. Cluster synchronization represents the case where the oscillators of network are automatically evolved into different synchronized clusters but the oscillators in different clusters are not synchronized each other (Schaub et al., 2016; Cao et al., 2018). The relationship between the synchronized cluster and network symmetry is discussed recently (Pecora et al., 2014; Sorrentino et al., 2016), including the case where the synchronized cluster is not directly from the symmetry but due to the same total amounts of inputs received from their neighboring nodes (Siddique et al., 2018). While remote synchronization represents the synchrony among the leaf nodes of a hub but not synchronized with the hub, i.e., the synchronized nodes are not directly connected (Bergner et al., 2012). However, these three partial synchronization are not completely independent of each other but may sometimes represent the same phenomenon. For example, chimera state can appear simultaneously with cluster synchronization in some systems (Hart et al., 2016; Cho et al., 2017; Bansal et al., 2019). It is also possible for remote synchronization to be related to cluster synchronization (Bergner et al., 2012; Kang et al., 2020; Wang and Liu, 2020). For example, in a star network with remote synchronization, if the leaf nodes of the hub is considered as a cluster, their synchronization is in fact the cluster synchronization. Based on these results, it is an open but promising direction to highlight the mechanisms of brain functions such as cognition, memory, and signal spreading etc, from these three aspects of partial synchronization.

One purpose of studying chimera states in neural systems is for its potential applications. On one hand, some attention has been paid to the phenomenon of unihemispheric sleep (Rattenborg et al., 2000; Ma et al., 2010). On the other hand, the study of chimera state may help us to understand neuronal diseases such as epileptic seizures, Parkinson's disease, schizophrenia, Alzheimer's disease and brain tumors (Uhlhaas and Singer, 2006). For example, a therapy for Parkinson's disease is external electric stimulation at high frequencies, called deep brain stimulation (Benabid et al., 1991). These studies are still very primary. More deeper studies are expected, such as the connections of chimera states to the mechanisms of cognitive and memory and the control of various brain diseases in clinical medicine etc.
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In general, the Hurst exponent. is used as a measure of long-term memory of time series. In previous neuroimaging studies, H has been introduced as one important parameter to define resting-state networks, reflecting upon global scale-free properties emerging from a network. H has been examined in the waiting impulsivity (WI) network in an earlier study. We found that alterations of H in the anterior cingulate cortex (HACC) and the nucleus accumbens (HNAcc) were lower in high impulsive (highIMP) compared to low impulsive (lowIMP) participants. Following up on those findings, we addressed the relation between altered fractality in HACC and HNAcc and brain activation and neural network connectivity. To do so, brain activation maps were calculated, and network connectivity was determined using the Dynamic Causal Modeling (DCM) approach. Finally, 1–H scores were determined to quantify the alterations of H. This way, the focus of the analyses was placed on the potential effects of alterations of H on neural network activation and connectivity. Correlation analyses between the alterations of HACC/HNAcc and activation maps and DCM estimates were performed. We found that the alterations of H predominantly correlated with fronto-hippocampal pathways and correlations were significant only in highIMP subjects. For example, alterations of HACC was associated with a decrease in neural activation in the right HC in combination with increased ACC-hippocampal connectivity. Alteration inHNAcc, in return, was related to an increase in bilateral prefrontal activation in combination with increased fronto-hippocampal connectivity. The findings, that the WI network was related to H alteration in highIMP subjects indicated that impulse control was not reduced per se but lacked consistency. Additionally, H has been used to describe long-term memory processes before, e.g., in capital markets, energy future prices, and human memory. Thus, current findings supported the relation of H toward memory processing even when further prominent cognitive functions were involved.

Keywords: Hurst exponent, fMRI, neural network connectivity, impulsivity, fronto-hippocampal pathways


INTRODUCTION

The Hurst exponent H is used as a measure of long-term memory of time series (Eke et al., 2000). In previous neuroimaging studies, H has been introduced as one important parameter to define resting-state networks (Taylor et al., 2012), reflecting upon global scale-free dynamics emerging from a network (Mukli et al., 2018). As real-world time series in general and neuroimaging data in particular, often do not fulfill the criteria of self-similarity or other fractal properties, fractal methods have been further extended. For example, long-range dependence and self-similarity have been shown to be strongly interrelated (e.g., Pipiras and Taqqu, 2017), thus, the application of fractal approaches on time series showing long-range dependence has been encouraged (Abry et al., 2013). Furthermore, the irregularity of a signal plays a crucial role, and that “this irregularity contains meaningful information” (Abry et al., 2013, pp. 19–20).

Among other cognitive functions, H has been linked to human memory processing mathematically (Namazi, 2018) as well as in numerous neuroscientific studies. For example, Wink et al. (2006) showed in a resting-state fMRI study, that bilaterally in the hippocampus (HC) H increased with age (Wink et al., 2006) in healthy subjects. In addition, H seemed to be a sensitive parameter to detect changes in HC processing in patients with and without memory disturbances, e.g., reduced hippocampal H in patients with mild cognitive impairment (Long et al., 2018), autism spectrum disorder (Dona et al., 2017a), and mild traumatic brain injury (Dona et al., 2017b). Furthermore, (multi)fractal analysis of fMRI has been used to “disentangle functional components from artifactual ones, in a robust and significant manner.” (Ciuciu et al., 2012) and to differentiate between healthy neural network from impaired ones at the example of the waiting impulsivity (WI) network in an earlier publication (Akhrif et al., 2018). WI is defined as the ability to inhibit a response in order to earn a reward (Voon et al., 2014). The WI network includes the ventromedial and dorsolateral prefrontal cortex (dlPFC) representing motor or response inhibition (Mechelmans et al., 2017), the reward perception-related nucleus accumbens (NAcc), the anterior cingulate cortex (ACC) for the cognitive evaluation of the reward and HC and amygdala (AMY) responsible for reward-based learning (Dalley et al., 2011). In an earlier study, we found that, H in the ACC and NAcc was reduced in high impulsive (highIMP) compared to low impulsive (lowIMP) participants (Akhrif et al., 2018). Very recent studies showed, that functional connectivity between the ACC and NAcc in the WI network varied in function of monetary reward (high reward, strong connectivity, and vice versa, Mechelmans et al., 2017) and that especially H in the ACC was associated with impulsivity (Gentili et al., 2020).

Following up on the earlier findings, we addressed the relation between the impulsivity-related H reductions in the NAcc and the ACC and brain activation and neural network connectivity of the entire WI network in this study. To do so, brain activation maps were generated, and network connectivity was determined using the Dynamic Causal Modeling (DCM) approach. DCM quantifies the influence region A has on a second region B; thus, it reveals the causal structure of a network. In a final step, H scores as described earlier were transferred into deviations from 1H. H valued close to 1 in the fMRI signal has been associated with highly complex and well attuned dynamics in neural networks (Lipsitz and Goldberger, 1992; Goldberger et al., 2002). In the earlier publication we showed that H values for highIMP subjects (i.e., impaired network functioning) were significantly lower than in lowIMP subjects. Therefore, the question to tackle in the current analyses was, how the deviation from 1 was related to brain activation and effective network connectivity. To address the relation between altered fractality and the network, correlation analyses were performed using H deviations and brain activation maps as well as DCM estimates. This way, the focus of the analyses was placed on the potential effects of alterations of H on neural network activation and connectivity.



MATERIALS AND METHODS


Subjects

In this pilot study, we examined 103 male students, aged between 19 and 28 years (24.0 ± 2.6 years). Volunteers were recruited at the University of Wuerzburg, Germany, and screened for impulsivity using the Wender-Reimherr-Interview and Attention-Deficit/Hyperactivity Disorder checklist (subscales “impulsivity” and “hyperactivity and impulse control”; Rösler et al., 2008; for details see Neufang et al., 2016). The study was conducted in accordance with the Declaration of Helsinki in its latest version from 2008 and was approved by the ethics committee of the Faculty of Medicine, University of Wuerzburg. Their written informed consent was obtained from all volunteers.



Experimental Paradigm

As cognitive task, the human version of the five choice serial reaction time task (5-CSRTT; animal version 5-CSRTT: Bari et al., 2008; human version, 4-CSRTT: Voon et al., 2014) was used. A trial started with a short presentation of 4 boxes, followed by a target in terms of a green dot, located in one of the four boxes. Correct and quick responses were reward by two amounts of money (10 Cent, 1 Euro). Premature responses were defined as reactions before target onset (for a representative trial see Supplementary Figure S1). The task consisted of one block outside the scanner (2.5 min) and five blocks within the MR scanner (14 min) with each block consisting of 20 trials. Total task duration was 16.5 min (for further detail Neufang et al., 2016).

Behavioral testing started with a first baseline block outside the scanner, conducted to determine the individual mean reaction time window (rt, Mrt ± 2 SD). The individual rt windows were used for reward definition in all consecutive blocks, which were performed in the MR scanner: one Euro if the subject responded correct and faster than the individual rt window, 10 cent if the subjects’ responses were within the same. Incorrect answers were neither rewarded nor punished.



Data Acquisition

MRI scanning was performed using a 3 Tesla TIM Trio Scanner (Siemens, Erlangen, Germany). Functional MRI included a T2∗-weighted gradient echo-planar imaging sequence with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, 36 slices of 3 mm thickness, field of view (FoV) = 192 mm, flip angle = 90, and number of volumes = 425.



Data Processing and Time Series Extraction

fMRI-data processing was performed using the Statistical Parametric Mapping Software Package (SPM12, Wellcome Department of Imaging Neuroscience, London, United Kingdom, Wellcome Trust Center for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm/). Data preprocessing in the native space included temporal and spatial alignment (i.e., slice time correction, realignment, and unwarping). Images were then spatially normalized into a standard stereotactic space (Montreal Neurological Institute), resampled to an isotropic voxel size of 2 mm × 2 mm × 2 mm, and spatially smoothed with a Gaussian kernel of 8 mm full width at half maximum. Pre-processing did not include high pass filtering or global mean correction. Model specification on single subject level included the experimental condition “response inhibition” and “reward” with response inhibition being related to target processing and reward was determined in terms of “win trials – loss trials.” In addition to the experimental conditions, “error trials” and “realignment parameters” (i.e., six regressors containing movement in three spatial and three rotational axes) were specified as nuisance regressors to reduce error variance and correct for movement artifacts. Condition-specific onset times were extracted from experimental log-files with onsets of the target trials defined at the moment, the target picture appeared, and onset times of reward trials locked to the time points when the reward feedback picture appeared on the screen. The onsets of error trials were defined as the target onsets of incorrect trials.


Time Series Extraction

Exact coordinates of ROIs were defined based on the significantly activated brain regions of “response inhibition”- and “reward” processing resulting from one sample t-tests. The local maxima of each significantly activated regions were identified and coordinates were then used as the center of a 10 mm spheric ROI using MarsBar (Brett et al., 2002). ROIs were built and used for the extraction of the time series for each subject. Time series extraction was performed using the routine as suggested by Brett et al. (2002)1 from preprocessed fMRI data (i.e., smoothed files resulting from the pre-processing procedure; Brett et al., 2002). Finally, linear trend removal was performed between the first and the last data point of the extracted time series [using the matlab routine detrend (y)] (Bai et al., 2008; Zhang et al., 2008; Fox et al., 2009; Qiu et al., 2011). Linear detrending is a necessary pre-processing step, as fMRI time series have slowly varying trends, that should be removed before performing spectral analyses (Tanabe et al., 2002).

2.5 adaptive fractal analysis- AFAMultiple investigations showed that long memory is an attribute, a property of functional networks and H is the mathematical expression, used to quantify it. Long memory processes belong to a wider range of processes, all expressing a power law spectrum (Eke et al., 2000). Their power spectral density function

[image: image]

[βACC: M = 0.86 ± 0.24, T(103,1) = 91.01, p = 0.000; βNAcc: M = 0.81 ± 0.26, T(103,1) = 85.04, p = 0.000] and with the approximation improving as f approaches zero. Whereas fMRI signals reflect information stemming from different cognitive and physiological processes [e.g., respiratory-frequency: 0.1–0.5 Hz; cardiac-frequency range: 0.6–1.2 Hz (Cordes et al., 2001); cognition-related low-frequency band: 0.045–0.087 Hz (Yang et al., 2018)], neural activity as providing the basis of functional connectivity in particular (Biswal et al., 1995) is carried in the low frequency components of the fMRI signals (<0.1 Hz; Achard et al., 2006; Ginestet and Simmons, 2011). Such processes describe scale-free, or scale-invariant time dynamics such as temporal brain activities. Scale invariance is associated with long range correlation in time. This is the condition to check for first, to assume scale invariance. To compute the β exponent, however, different definitions and methods might be used. For β values interpretation (Eke et al., 2002) as well as the class of processes related to them see Akhrif et al. (2018).

In this study, AFA was chosen for the determination of H, a factor that reflects in a power law manner the relationship, that is intrinsic to fractal processes, between the variance of fluctuation computed around, in our case, a second order polynomial trend v (i) fitted to time series within each segment w, and its size:

[image: image]

H was defined as the slope of the log-log diffusion plot log2(F(w)) as a function of log2(w) (for further details see Akhrif et al., 2018).

According to the dichotomous fGn/fBm model of Mandelbrot and Van Ness (1968) as introduced in the fractal time series analysis field by Eke et al. (2000, 2002), signal classification was performed (Mandelbrot and Van Ness, 1968; Eke et al., 2000, 2002). One of three methods of signal classification was detrended fluctuation analysis (DFA) of Peng et al. (1994). Since AFA results (H), with AFA being strongly related to DFA, were significantly smaller than 1 in both regions [HACC: M = 0.93 ± 0.12, T(103,1) = 5.95, p = 0.000; HNAcc: M = 0.91 ± 0.13, T(103,1) = 7.22, p = 0.000]s, signals were classified fGn, and H = HfGn.



Brain Activation

On single subject level, two contrasts of interest were calculated, “response inhibition” to isolate target-induced brain activation, and “reward” in terms of “win-loss” to identify brain activation associated with the receipt of monetary reward. All brain analyses were performed in a region of interest (ROI) based approach, using atlases within the Wake Forest University PickAtlas toolbox,2 and covering the WI network regions: bilateral superior frontal gyrus, MFG, orbital, triangular, and opercular parts of inferior frontal gyrus (IFG), ACC, HC, and AMY, NAcc, and medial fronto-orbital gyrus. Resulting contrast images entered statistical group analysis.



Neural Network Connectivity (DCM)

For DCM analysis, DCM 12 was used as implemented in the SPM12 software. The current network included eight regions, resulting from significantly activated WI network regions (see Table 1). Endogenous connectivity and the condition-specific (i.e., response inhibition, reward) modulation of connectivity (modulatory inputs) were addressed. Subject-specific coordinates of the global maxima of activated clusters from brain activation results were used as centers for ROIs. Volume of interest spheres with a radius of 5 mm were built around the averaged coordinates in the NAcc and the AMY, and with a radius of 8 mm in all cortical regions. Different sphere sizes were chosen due to the regional volume size of the structures. Regional time series were extracted for all network regions.


TABLE 1. Global maxima of WI-associated brain regions.

[image: Table 1]Based on introduced findings, ten model families were constructed with 4 families varying connectivity within response inhibition-related network, 4 reward-associated families and 4 families across both conditions. Across all families and models, endogenous connectivity was specified for all connections, conditions-specific modulation, however, was varied as follows.

Inhibition-related families were families one to four. In family one (HC bottom-up), it was assumed that the HC influences top-down regions such as right and left MFG (family 1, model 1), the ACC (family 1, model 2), and both, MFG and ACC (family 1, model 3). Families two to four varied top-down connections bilateral from the MFG on the HC (family 2), from the ACC on HC (family 3), and MFG and ACC on the HC (family 4).

Families five to eight defined the interplay between the NAcc, AMY, and the vmPFC. Therefore, family five determined the bottom-up signaling of the NAcc to the AMY (family 5, model 1), to the vmPFC (family 5, model 2), and both, the AMY and vmPFC (family 5, model 3). In analogy, in family 6 the AMY was defined as bottom-up structure and models varied between the targeted region NAcc (family 6, model 1), vmPFC (family 6, model 2), and both, NAcc and vmPFC (family 6, model 3). In family 7, both, NAcc and AMY were defined as bottom-up structure signaling to the vmPFC (family 7, model 1). In family eight, reward-associated top-down was defined on the NAcc (family 8, model 1), on the AMY (family 8, model 2), and on both, NAcc and AMY (family 8, model 3).

Across conditions, connections between reward-associated structures NAcc and AMY and inhibition-related MFG and ACC were defined in terms of family 9: NAcc – bottom-up signaling to the MFG (family 9, model 1), the MFG and the ACC (family 9, model 2), the MFG and the HC (family 9, model 3) as well as the MFG, the HC and the ACC (family 9, model 4). Family 10 defined HC and NAcc combined bottom-up signaling. Families 11 to 13 varied MFG and ACC top-down modulation of NAcc and AMY (for all models see Supplementary Table S1).

The families covering 28 models were compared applying random-effects Bayesian model selection (Stephan and Friston, 2010; Stephan et al., 2010) within a pre-specified Occam’s window (p < 0.05). Individual parameter estimates of the model with highest evidence were then assessed by means of random-effects Bayesian model averaging (Penny et al., 2010) across the models of the winning family. The Bayesian model averaging parameter estimates were then entered into summary statistics at the group level. The significance of each parameter was assessed by a one-sample t-test To test condition-specific modulation of connectivity for significance, repeated measure ANOVA models were defined with the within-subject factor connectivity type (endogenous connectivity vs. condition-specific modulatory input). Threshold for statistical significance was p < 0.05, FDR-corrected for multiple comparisons (Benjamini and Hochberg, 1995).



Statistical Analysis: Brain Activation and AFA

To address the relation between HfGn deviation and network function, 1−HfGn scores were calculated. On group level, two sample t-tests were defined with the group factor impulsive phenotype (highIMP vs. lowIMP) including the covariates [image: image] and [image: image] alterations and determined as interacting with the group factor. Contrast of interest were (i) the correlation between alterations in HfGn and brain activation across all subjects (e.g., response inhibition ∗ [image: image] alterations) as well as (ii) group-specific correlations (e.g., response inhibition∗ [image: image] alterations: highIMP vs. lowIMP). The between-subject factor impulsivity classified subjects based on behavioral performance [i.e., a number of premature responses ≥ 3 in the 5-CSRTT as highIMP (n = 38) subjects and subjects with number of premature responses < 3 as lowIMP (n = 65) subjects]. Threshold of significance was pFWE < 0.05 on voxel level.



RESULTS


fMRI Analysis

One sample t-tests of response inhibition and reward revealed a significantly activated WI network including the regions right/left HC, right/left MFG, ACC, right/left NAcc, left AMY, and the vmPFC (Table 1).



Dynamic Causal Modeling Estimates

Model comparison favored the reward-related NAcc + Amy bottom-up model 1 of family 7, with a family exceedance probability of xp = 0.8353 and a model exceedance probability of xp = 0.9954. In the winning model, endogenous connectivity included all connections, and reward-related modulatory input bidirectional connectivity between the NAcc and the AMY and going to the vmPFC (i.e., NAcc→l_AMY, NAcc→vmPFC, l_AMY→NAcc, and l_AMY→vmPFC). The one-sample t-test, identifying connections of significant connectivity strength revealed that almost all connections were passed the threshold of significance except for connectivity from the rHC→l_AMY (T = 1.3, p = 0.182, n. s.), lMFG→rHC (T = 1.1, p = 0.275, n. s.), r_MFG→vmPFC (T = 0.8, p = 0.458, n.s.), ACC→r_HC (T = 1.1, p = 0.267, n.s.), and vmPFC→r_MFG (T = 0.6, p = 0.582, n.s.). Repeated-measures ANOVA revealed significant modulation for all four connections (NAcc→l_AMY: Fconnectivity type = 37.5, p = 0.000; NAcc→vmPFC: Fconnectivity type = 114.7, p = 0.000; l_AMY→NAcc: Fconnectivity type = 40.5, p = 0.000; and l_AMY→vmPFC: Fconnectivity type = 72.6, p = 0.000).



Alterations in [image: image] and Network Function

During response inhibition brain activation in the r_HC negatively correlated with alterations in [image: image] across all subjects. The effect, however, seemed to be driven by highIMP subjects as demonstrated in the scatterplot in Figure 1. In addition, highIMP-specific positive correlations between connectivity emerging from the ACC and heading toward the l_HC (ACC→l_HC) and alterations in [image: image] were revealed. Furthermore, in lowIMP subjects [image: image] alterations correlated negatively with left-hemispheric fronto-hippocampal connectivity, i.e., l_HC bottom-up signaling to the l_MFG and frontal top-down control of the l_HC by the l_MFG (l_HC→l_MFG, l_MFG→l_HC; for all results see Tables 2, 3 and Figure 1).


[image: image]

FIGURE 1. Neural activation and connectivity associated with [image: image]. Dotted lines indicate correlations with brain activation, arrows represent correlations with connectivity. Scatterplots show correlations, specifically for highIMP, and lowIMP individuals.



TABLE 2. Significant correlations between alterations in HfGn and brain activation.
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TABLE 3. Significant correlations between alterations of HfGn and network connectivity.
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Alterations in [image: image] and Network Function

Reward-specific activation bilaterally in the dlPFC (MFG and IFG pars triangularis) correlated positively with [image: image] alterations. This correlation was stronger in highIMP compared to lowIMP (see Tables 2, 3 and Figure 2). In addition, alterations in [image: image] correlated in highIMP but not in lowIMP subjects, with top-down control of the r_HC by the l_MFG (l_MFG→r_HC).


[image: image]

FIGURE 2. Neural activation and connectivity associated with [image: image]. Dotted lines indicate correlations with brain activation, arrows represent correlations with connectivity. Scatterplots show correlations, specifically for highIMP, and lowIMP individuals.




DISCUSSION

In this study, we investigated the relation between impulsivity-associated deviations of HfGn in the ACC and the NAcc and the function of the underlying network. In an earlier publication, HfGn in both regions have been found to be reduced in highIMP subjects. Current analyses revealed that deviations in the [image: image] were predominantly associated with response inhibition processing, namely right hippocampal brain activation and, specifically in highIMP subjects, connectivity from the ACC on the left HC. Likewise, deviations in [image: image] were associated with broad reward-associated activation clusters in the dlPFC as well as connectivity from the left MFG on the right HC. Findings in reward processing were only significant in highIMP subjects. Thus, across all analyses, HfGnalterations seemed to be related to HC functioning, hinting toward a HfGn -specific relation to HC processing.

In the WI network as proposed by Dalley et al. (2011) the HC has been assumed to directly interact with the ACC in terms of both structures top-down controlling the NAcc. Empirical evidence in humans, however, is scarce (Morris et al., 2016; Neufang et al., 2016; Mechelmans et al., 2017). Recent studies showed, that impulsivity was strongly linked to a hypothalamo-hippocampal pathway including the HC (Gruber and McDonald, 2012), and the NAcc (Barlow et al., 2018; Noble et al., 2019) with a maladaptation of HC-NAcc pathway contributing to the development of impulsivity and impulsivity-associated psychiatric disorders such as addiction (Everitt and Robbins, 2005). For example, in mice WI behavior potentiated hippocampal neurogenesis the way that during reward seeking behavior in the 5-CSRTT, precursor cells were produced in the dentate gyrus of the HC (Oliveros et al., 2017; Peyton et al., 2019). Such impulsivity-induced neurogenesis has been discussed as reflecting both reward-driven highIMP responding and (the known HC-associated) heightened learning performance (Peyton et al., 2019). Thus, it seemed, as if HC function plays a crucial role within the impulsivity network. Combining both assumptions, (i) the HC plays a crucial role within the network and (ii) fractal parameter such as H disentangling functional components from artifactual ones, the current strong relation between HfGn and HC processing seemed plausible. An alternative explanation might be their common involvement in long-term memory. H has been used to describe long-term memory processes before, e.g., in capital markets (Di Matteo et al., 2005; Granero et al., 2008), energy future prices (Serletis and Rosenberg, 2007), and human (motor) memory (Chen et al., 1997; Namazi, 2018). The 5-CSRTT, in return, involves a high learning and memory load as the training and test protocol for animals covers numerous training sessions over weeks (“approximately 30–40 daily sessions,” Bari et al., 2008). Thus, in our analyses, the HfGn exponent proved its strong relation to learning and memory processing even when further prominent cognitive functions such as reward processing were involved.

In addition to HC, altered HfGn was associated with frontal activation and connectivity. The MFG and the IFG are core regions within impulsivity and WI (Dalley et al., 2011), strongly interacting with the ACC (Mechelmans et al., 2017), and implicated in response inhibition and motor control (Morris et al., 2016; Neufang et al., 2016; Mechelmans et al., 2017). Association between H and the frontal cortex have been reported in numerous human studies before. For example, H in the prefrontal cortex in healthy volunteers correlated with impulsivity (Gentili et al., 2020), personality traits (e.g., extraversion Lei et al., 2013; Gentili et al., 2017), cognitive processing (response time in a face recognition task Wink et al., 2008), and healthy aging (Dong et al., 2018; Mukli et al., 2018). In addition, pathological processes were discovered, e.g., in the IFG of schizophrenic patients (Sokunbi et al., 2014), the MFG of patients with mild cognitive impairment (Long et al., 2016, 2018), and Alzheimer’s Disease (Nimmy John et al., 2018) as well as the IFG of autistic individuals (Lai et al., 2010). Thus, frontal processing has been described as following fractal rules before. In line with our findings, H seemed to be able to detect neural alterations not only in pathological populations but also in individual variability in the normal population (Serletis et al., 2012).

In summary, in this study, we addressed the relation between altered HfGn and further neural network parameters in an explorative way to get an idea of how deviations in HfGn were associated with neural network functioning. We found that alterations in HfGn were predominantly related in fronto-hippocampal pathways arguing, that HfGn proved its sensitivity toward learning and memory processing. However, despite the highly interesting and plausible results, we have to state, the current findings reflect processes within a very specific sample (young healthy male students) performing the also very specialized 5-CSRTT (a paradigm which has, to date, predominantly been used in animals). In addition, in contrast to earlier publications, where the interaction between several physiological systems such as brain and cardiac system (Liu et al., 2015, Lin et al., 2016), or brain, cardiac and respiratory systems (Bartsch and Ivanov, 2014) were addressed over phases of different physiological states, analysis of the current work was limited to one physiological network and only during one single state. Especially the frontal lobe seemed to interact with the heart as has been shown in several studies by Thayer et al. (2009, 2012) and Patron et al. (2019). In addition, this data stems from a sample of male subjects only. The data has been collected in a pilot study, which has been published 2016 as the first fMRI study using the human version of the originally animal paradigm 5-CSRTT (Neufang et al., 2016). As at that time, network regions associated with WI in humans was mainly theoretical, we decided to investigate neural underpinnings in a highly homogenous sample, which is healthy male students. Thus, findings are of limited generalizability and need to be replicated in future studies with experimental protocols like those published before. However, the combination of H with further cognitive, neural and peripheral parameters such as inflammation scores as well as the longitudinal study of H to describe physiological variations (e.g., diurnal, brain maturation, aging) are of highest interest in the study of neural networks.
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FIGURE S1 | A representative experimental trial.

TABLE S1 | DCM families and models.


FOOTNOTES

1
http://marsbar.sourceforge.net/marsbar.pdf
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When walking speed is increased, the frequency ratio between the arm and leg swing switches spontaneously from 2:1 to 1:1. We examined whether these switches are accompanied by changes in functional connectivity between multiple muscles. Subjects walked on a treadmill with their arms swinging along their body while kinematics and surface electromyography (EMG) of 26 bilateral muscles across the body were recorded. Walking speed was varied from very slow to normal. We decomposed EMG envelopes and intermuscular coherence spectra using non-negative matrix factorization (NMF), and the resulting modes were combined into multiplex networks and analyzed for their community structure. We found five relevant muscle synergies that significantly differed in activation patterns between 1:1 and 2:1 arm-leg coordination and the transition period between them. The corresponding multiplex network contained a single module indicating pronounced muscle co-activation patterns across the whole body during a gait cycle. NMF of the coherence spectra distinguished three EMG frequency bands: 4–8, 8–22, and 22–60 Hz. The community structure of the multiplex network revealed four modules, which clustered functional and anatomical linked muscles across modes of coordination. Intermuscular coherence at 4–22 Hz between upper and lower body and within the legs was particularly pronounced for 1:1 arm-leg coordination and was diminished when switching between modes of coordination. These findings suggest that the stability of arm-leg coordination is associated with modulations in long-distant neuromuscular connectivity.

Keywords: interlimb coordination, muscle synergies, muscle networks, locomotion, electromyography


INTRODUCTION

Human locomotion requires a well-organized activation of multiple muscles to coordinate movements of upper and lower limbs. The degree of interlimb coordination can be characterized by the strength of frequency and phase locking between limbs. To understand the emergence of coordination patterns and, by this, the way muscle activity is orchestrated, one typically challenges the stability of phase locking by altering a control parameter. For example, if speed is increased from loaf (very slow) to normal walking, one can observe a switch in frequency locking from a 2:1 to a 1:1 ratio between the arm and leg swing (Craik et al., 1976; Schöner et al., 1990; Van Emmerik and Wagenaar, 1992, 1996): At very low speeds, the arm swing is phase locked to the step cycle, while at fast speeds it locks to the stride cycle. This switch is accompanied by a change in the phase relationship between the arms from in-phase to antiphase phase locking (Wagenaar and van Emmerik, 2000), and in the immediate vicinity of the transition the variability of frequency (phase) locking drastically increases1. The methodological benefit of investigating such changes in coordination is that they arguably share characteristics of classic phase transitions, in the sense of non-equilibrium thermostatistics (Kelso, 1995; Beek et al., 2002) al., 2002; Kelso, 1995). In the vicinity of a phase transition, one may expect the dynamics’ dimensionality to be drastically reduced and muscle activity patterns to stay on low-dimensional manifolds.

Interestingly, the switch in coordination during walking depends on whether the walking speed is increased or decreased (Schöner et al., 1990; Van Emmerik and Wagenaar, 1996). This suggests that the underlying mechanisms are not purely mechanical or energetic, as has been conjectured in other cases of altered interlimb coordination (Hoyt and Taylor, 1981; Owaki and Ishiguro, 2017). Our working hypothesis is that the central nervous system substantially contributes to the stability of coordination patterns. As such, we sought to identify (low-dimensional) neural contributions to transitions in upper and lower limb coordination. Well-designed mechanical manipulations may already hint at the relevance and location of such neural contributions. For instance, Bondi et al. (2017) reported how changes of swing of one arm can affect both the swing of the other arm as well as lower limb coordination during walking. The same effects have also been shown in neonates (La Scaleia et al., 2018), children with hemiplegic cerebral palsy (Meyns et al., 2012), and are known for long for stroke survivors where they can be strongly elevated (Stephenson et al., 2009). By the same token, the arm swing can have little to no influence on leg movement after spinal cord injury (Tester et al., 2012). These findings suggest that a partial interruption of the spinal cord may suffice to limit the interaction between spinal motor neurons such that switches in interlimb coordination no longer emerge.

Targeting neural dynamics more directly during motor coordination is not new (Matsuyama et al., 2004). Several groups studied modulations of muscle activity of upper and lower extremities during locomotor tasks via electromyography (EMG) – a proxy of neural activity in the spinal cord (Ferris et al., 2006; Boonstra et al., 2016; Zehr et al., 2016). Muscle activity of different muscles is found to couple at several time or frequency scales. Coherence at low frequencies (0–5 Hz) seems associated with common modulation of motor unit mean firing rate and muscle force generation and, hence, likely reflects co-modulation of muscle activities (De Luca and Erim, 1994; Mochizuki et al., 2006; Boonstra et al., 2008) and the modulation of EMG envelopes (Hansen et al., 2001). Common modulations of EMG envelopes of groups of muscles are considered as muscle synergies (Tresch et al., 2006) that reveal how movements are manifested through synchronized muscle co-activation (Ivanenko et al., 2004, 2005; Cheung et al., 2005; Cappellini and Ivanenko, 2006; Dominici et al., 2011). In a recent review, Bruton and O’Dwyer (2018) outlined numerous studies suggesting that muscle synergies are vital motor control modules. Obviously, muscle synergies change with altered coordination, but what are the origins of these changes? An answer to this may lie in the higher frequencies of the EMG signal, as they may provide the spectral “fingerprints” of distinct neural pathways involved in the control of muscles (Farmer, 1998; Boonstra et al., 2009a, 2016; Danna-Dos-Santos et al., 2014). For example, intermuscular coherence at higher frequency components may reflect supra-spinal drives (Grosse et al., 2002) that modulate the activation of multiple muscles by means of a common input (Danna-Dos-Santos et al., 2014).

Here, we studied the dynamics of muscle activation during changes in interlimb coordination using the experimental design of Wagenaar and van Emmerik (2000). Rather than focusing on isolated muscles, we employed synergy analysis and constructed functional muscle networks (Boonstra et al., 2015). We determined the minimal (i.e., low-dimensional) set of muscle synergies and combined them into a network with multiple synergy-specific layers. In a similar spirit, we used intermuscular coherences to construct networks with multiple frequency-specific layers (Kerkman et al., 2018). Both types of networks were constructed under the proviso that they could be based on a low-dimensional representation2, i.e., a small number of relevant muscle synergies vis-à-vis a small number of frequency components with pronounced coherence determined through conventional mode decomposition of multivariate time series. Network analysis offers new possibilities to assess synchronization between motor units across a large number of muscles. It hence allows for an encompassing study of functional changes in muscle activity during a transition in physiological coupling (Bashan et al., 2012; Bartsch and Ivanov, 2014). In particular, modulations of the network can highlight modifications in the neuromuscular system related to changes in functional behavior during walking.

For the individual synergies, we expected the switch in interlimb coordination to be accompanied by rapid changes in temporal activation patterns, in line with Yokoyama et al. (2016). For the corresponding low-frequency muscle networks, we expected a strong resemblance of anatomical and biomechanical constraints (Kutch and Valero-Cuevas, 2012; Bruton and O’Dwyer, 2018) and switches in coordination to result in concomitant changes in network topology. Given that the higher EMG frequency components are thought to represent supra-spinal input to multiple muscles (Kerkman et al., 2018), we expected these frequency components to discern neural pathways involved in the stability of arm-leg coordination patterns and the switches between them.



MATERIALS AND METHODS


Subjects

Sixteen healthy subjects (five males and eleven females, mean age of 25.3 ± 2.4 years) without any neurological or motor disorder were included in this study. The study was approved by the Ethics Committee Human Movement Sciences of the Vrije Universiteit Amsterdam (VCWE-2017-132). All subjects were informed about the procedure of the study and provided, in accordance with the Declaration of Helsinki, written informed consent prior to participation.



Procedure

Subjects were instructed to walk on a treadmill (Motek Medical B.V., Amsterdam, Netherlands) with their arms swinging along their body while full-body kinematics, ground reaction forces and muscle activities were recorded. Subjects walked at controlled speeds between 1.0 and 4.0 km/h with increments of 0.5 km/h. The ordering of speeds was randomized between subjects and trials. Subjects walked for at least fifteen strides at each speed; see movie ExperimentalParadigm.mp4 in the Supplementary Material.



Data Acquisition

Ground reactions forces (Motek Medical B.V., Amsterdam, Netherlands) and full-body 3D-kinematics (Optotrak, Northern Digital, Waterloo, ON, Canada), using five cluster markers (heel, lower and upper leg, and upper and lower arm) and three cameras (left and right backside and one at the front), were measured to define the fifth metatarsophalangeal joint, heel, ankle, knee, hip trochanter, shoulder, elbow and wrist. Kinetic and kinematic data were sampled at 70 Hz. Surface EMG of 26 bilateral muscles (Table 1) distributed across the body was recorded (two Mini Wave Wireless 16-channel EMG system, Cometa s.r.l, Italy) and sampled at 2 kHz after online band-pass filtering between 10 and 500 Hz. Electrodes were placed according to the SENIAM recommendations (Hermens et al., 1999). Kinematic, ground reaction force and EMG data were synchronized online.


TABLE 1. Muscles included in the recordings.

[image: Table 1]


Data Analysis


Kinematics

Gait cycles were defined based on the right heel strikes obtained from the force plate data. The heel strike was defined as the moment when the vertical ground reaction force exceeded 8% of the average ground reaction force during the trial. This kinetic criterion was verified by comparison with foot strike measured from the kinematic data (Borghese et al., 1996; Roerdink et al., 2008). We determined the mode of interlimb coordination via the maximum spectral overlap after rescaling the frequency axis (Daffertshofer et al., 2000) and the circular variance of the generalized relative phase of the kinematics of the arms and legs for every walking speed and subject (cf. Table 2). We focussed on the frequency locking between arms and legs at 2:1 (∼ very low speed) and 1:1 (∼ normal), and the transition (T) between these modes of coordination. The 2:1 and the 1:1 condition were dominated by spectral overlap at a 2:1 or 1:1 frequency ratio, respectively, and almost constant corresponding generalized relative phases. The transition was characterized by spectral overlap at both frequency ratios of 2:1 and 1:1, and a changing generalized relative phase (Figure 1).


TABLE 2. Overview of modes of coordination per subject per walking speed.
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FIGURE 1. Example of the determination of the modes of coordination based on kinematics of subject 1. (A) The average arm (blue) and ipsilateral leg (red) movement in the anterior-posterior (AP) direction as a function of the gait cycle in the 2:1 (1.0 km/h), transition (T, 2.5 km/h) and 1:1 (4.0 km/h) mode of coordination. (B) The spectral power. (C) The spectral overlap between the power spectra of the arm and leg is maximal for a 2:1 or 1:1 coupling between the arm and leg movement in the 2:1 and 1:1 mode of coordination, respectively. The transition contained peaks at both 2:1 and 1:1 coupling. (D) The relative phase between arm and leg. A generalized relative phase of zero slope implies that arm and leg move at a fixed frequency ratio (2:1, black and 1:1, gray).




EMG Pre-processing

Independent component analysis was used to reduce heart beat contamination in the EMG signals (Willigenburg et al., 2012). Subsequently, EMG signals were high-pass filtered (2nd order, bi-directional Butterworth, cut-off at 30 Hz) and rectified using the modulus of the analytic signal. Here we would like to note that rectification can re-introduce low-frequency amplitude modulations (Myers et al., 2003; Boonstra and Breakspear, 2012).



Muscle Synergies

Electromyography envelopes were determined by low-pass filtering the rectified EMGs (2nd order, bi-directional Butterworth filter, cut-off at 10 Hz). Subsequently, these envelopes were time normalized such that every stride had an equal number of samples (N = 200 samples). For every subject we further normalized the amplitudes to the average activity during the fastest walking speed (4.0 km/h)3. Next, EMG data for every subject were averaged over all strides per mode of coordination yielding EMGs × subjects × conditions time series containing one average stride each. Finally, time series were concatenated along subjects and conditions yielding 26 (number of muscles) discrete time series containing subjects × conditions (SC) strides each4. We denote the data by Xij where i indexes the time point and j the muscle, that is, i = 1, …, SC⋅N spans the SC time-normalized strides with N samples each and j = 1, …,26 are all muscles. These data entered our synergy analysis, namely non-negative matrix factorization (NMF). NMF is a linear mode decomposition X↦W(m)A(m) that includes the constraint that both extracted wave forms A(m) and weights W(m) are positive semi-definite, and that W(m) and A(m) have rank m; we used a multiplicative update algorithm to solve the corresponding minimization of the Frobenius norm [image: image] (Lee and Seung, 1999).

To fix the number of relevant synergies, i.e., the rank m of W(m), we determined the quality of data reconstruction as

[image: image]

and required λ(m) ≥ λcutoff = 80% (Zandvoort et al., 2019) and, additionally, λ(m)−λ(m–1) ≥ Δλcutoff = 1.5%. This notion let us also define the contribution of every synergy to the representation of W(m)A(m) by realizing that W(m) = [w1,…,wm] and A(m) = [a1,…,am]. That is, the contribution of an individual synergy s could be given as

[image: image]

Note that by combining the signals as described above, we obtained different wave forms between and common muscle weights across conditions and subjects, i.e., fixed muscle groups over conditions with varying activation patterns. For the sake of legibility, in the following we denote these outcomes as X↦W(syn)A(syn).



Intermuscular Coherence

The rectified EMGs were down-sampled to 256 Hz to reduce computational load. Data of the same condition were mean-centered and concatenated. Intermuscular coherence was determined between all 26 × 25/2 =325 muscle pairs per subject and condition. The power spectral densities Px and Py of signal pairs (x,y) and the complex-valued cross-power spectral density Pxy were estimated using Welch’s periodogram method (Hamming taper of 200 ms length and about 50% overlap). With this we computed the squared coherence [image: image]; here (.)∗denotes the conjugate complex.

We corrected the coherence estimates for the bias due to differences in data length. We employed a bootstrapping approach (100 surrogates) of the complex-valued cross-spectral density through phase randomization (Hurtado et al., 2004; Kantz and Schreiber, 2004). In brief, phase randomization destroys coherence implying that the resulting bootstrap distribution is zero-centered. However, due to finite-size estimation the distribution may have a finite, frequency-dependent variance even for infinitely many surrogates. This variance yields a null distribution indicating the absence of coherence, which served as normalization factor for the coherence estimates. Since the latter is the modulus of the normalized cross-spectral density, the resulting distribution of squared coherences is a Chi-squared distribution with two degrees of freedom for which we considered squared coherences below α = 0.05 not distinguishable from chance. Accordingly, these values were set to zero.

In line with the synergy analysis, we concatenated the data, i.e., now the corrected coherence spectra across the frequencies (f, 4–60 Hz), over subjects and conditions (SC) and 325 muscle pairs. This yielded a f × (SC × 325) matrix, and we applied NMF to obtain C↦W(coh)A(coh). This NMF yielded m modes, W(coh) = [w1,…,wm] with wj = 1,…,m, containing SC × 325 coherence weights each, and A(coh) = [a1,…am], with aj = 1,…,m defining the m modes for all subjects, conditions and muscle pairs. To anticipate, these modes separated distinct frequency ranges. From hereon we therefore refer to these modes as frequency components. The number of these components was fixed using Eq. (1) with adjusted cut-off values: λcutoff = 55% and Δλcutoff = 4%.



Muscle Networks

We constructed muscle synergy and coherence networks with muscles as nodes and their functional connectivity as edges between them. The synergy-NMF yielded wj = 1,…,m that contained 26 muscle activity weights each for every synergy. We used the outer product Wj⋅Wj to define the connectivity matrix [image: image] of synergies j = 1,…,m to create a one mode projection of a bipartite network (Murphy et al., 2018) with m layers (Horvát and Zweig, 2012). In this synergy network, every element of the connectivity matrices represented the weighted appearance of two muscles in the same synergy. To include the contribution of the synergies by means of the amplitude of the wave forms, the connectivity matrices were weighted for the sum of the integrals of the wave forms of the three modes of coordination.

The intermuscular coherence weights of the m frequency modes (NMF modes) served to define the edges of the coherence network. We thus obtained m × SC different 26 × 26 connectivity matrices [image: image]that we averaged over subjects and combined into an m × 3-conditions multiplex network. The community structures across layers of both the synergy and coherence networks were determined by the Louvain algorithm (Jeub et al., 2019).

To compare topological characteristics of the coherence networks between modes of coordination, we determined the global connectivity, clustering of muscles and strength of connections in the network by means of global efficiency, transitivity, and average strength across nodes (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010) for all layers. Before doing so, the corrected coherence networks were thresholded to construct a minimally-connected network across the layers of the network, i.e., every node (muscle) was connected to at least one other node in one of the layers and the number of edges within the layers was constant across the layers.

Additionally, we time normalized the EMG data and estimated coherence again, but now with a Hamming taper of 5 s over the 0.6–4 Hz frequency range to directly compare synergy and (very) low-frequency coherence networks. Details of this analysis can be found as Supplementary Material.



Statistics

Statistical differences between conditions were assessed over subjects who exhibited both conditions (either 2:1 and transition, 2:1 and 1:1, or transition and 1:1).

Changes in the synergy wave forms were compared in two ways. First, we compared the amplitude during the gait cycle between modes of coordination. Subsequently, the amplitudes were normalized to the maximum of the wave form and we compared the amplitude-normalized wave forms between modes of coordination. We determined the samples of the time series which were significantly different in either amplitude or wave form between the conditions using statistical parametric mapping including paired t-tests (Pataky et al., 2015; see also www.spm1d.org). Significance was identified based on an alpha threshold value corrected for multiple comparisons in three conditions and five synergies, i.e., α = 0.05/(3.5) = 1/300.

Differences between the network metrics of the layers of the coherence networks, i.e., modes of coordination and frequency components, were compared with a univariate ANOVA with subject as random factor (α = 0.05). Post-hoc tests were performed to examine differences between conditions per frequency component (α = 0.005).



RESULTS


Behavior

The kinematic assessment of the modes of coordination revealed that only seven subjects showed both modes of coordination and the transition between the two. The 2:1, transition, and the 1:1 mode of coordination appeared in nine, fourteen, and sixteen subjects, respectively (Table 2).

Figure 1 represents a typical example (subject 1) of the movement of the right arm and ipsilateral leg in the sagittal plane, the corresponding spectral power and overlap, and the relative phase for the 2:1, transition and 1:1 condition.



Muscle Activity

Differences between modes of coordination were clearly visible in both the amplitudes and wave forms of the EMG envelopes (Supplementary Figure S1). EMG amplitudes particularly differed around the heel strike event in the ipsilateral leg and contralateral back and arm muscles in the 1:1 mode of coordination. The peak activity in the arm muscles around the contralateral heel strike shifted to earlier in the gait cycle when the coordination pattern switched toward a 1:1 mode of coordination between arms and legs.



Muscle Synergies

Five muscle synergies accumulated 80% to the Frobenius norm of the original concatenated EMG envelopes and a sixth synergy added very little, which let us fix m(syn) = rank[W(syn)] = 5 (Figure 2). We found [image: image] on average across conditions.


[image: image]

FIGURE 2. Reconstruction quality of the muscle synergies. (A) Additional value of an extra synergy (Δλ) to the total contribution of the synergies to the Frobenius norm, (B) the contribution of every synergy (S1 to S5) to the Frobenius norm (λ). The order of synergies S1 to S5 is showed in Figure 3. Green, cyan and blue bar plots represent the 2:1, transition (T) and 1:1 mode of coordination, respectively.


Synergies were ordered based on the relative timing of the main peak in the activation patterns (Figure 3A). S1 and S4 were active during the heel strike and weight acceptance response of the right and left leg, while S3 and S5 were active mainly in the calf muscle during the stance phase of the right and left leg, respectively. The muscle weights of S1 and S4 showed activity in both the leg and the contralateral trunk and arm muscles; bilateral calf and contralateral shank muscles were dominant in S3 and S5. S2 was active during the stance and swing phases with primarily activity of muscles around the pelvis (Figure 3B). The contribution [image: image] of S2 increased from 2:1 to 1:1, while [image: image] and [image: image] decreased.


[image: image]

FIGURE 3. Muscle synergies across modes of coordination. (A) The synergies’ temporal activation patterns as a function of the gait cycle derived from average muscle activity patterns for the different modes of coordination. Green, cyan and blue represent the 2:1, transition (T) and 1:1 mode of coordination. Error patches represent the standard error of the mean across subjects. (B) Synergies’ weightings across conditions and subjects in color scale. (C) Muscle synergy network plotted separately for each synergy on the body mesh (Makarov et al., 2015). A minimally-connected network was created for visualization. Node size represents the degree of the muscle and edge thickness represents weighted appearance of both muscles in the synergy.


Significant differences were found between the synergies’ wave forms between the 2:1 and the 1:1 and between the transition and the 1:1 mode of coordination (Figure 4). The amplitude of S1 increased in 1:1 compared to 2:1 and the transition around the right heel strike and the activity decreased quicker with an increase in walking speed. Similar results were found for S4 at the corresponding left heel strike. Changes in the amplitude were also visible in S2 between 2:1 and 1:1 and between the transition and 1:1 during the stance and swing phases of both legs. The activation pattern of S3 revealed some minor differences between the transition and 1:1 in the amplitude halfway the stance phase of the right leg and after the left heel strike, while no significant changes were found for S5.


[image: image]

FIGURE 4. Significant differences between synergies’ wave forms between modes of coordination. Green, cyan and blue represent 2:1, transition (T) and 1:1, respectively. Patches represent significant differences in time between the amplitude (gray) and the temporal patterns (red) of the synergies’ wave forms. α = 1/300.




Intermuscular Coherence

The coherence spectra were decomposed in three modes, i.e., m(coh) = rank[W(coh)] = 3. These modes reflected distinct frequency bands, 4–8, 8–22, and 22–60 Hz, in line with our previous findings (Boonstra et al., 2015; Kerkman et al., 2018). The frequency components contained in total 57% of the Frobenius norm of the coherence spectra; [image: image] = [19, 19, 19]%.

We extracted two frequency components (λcutoff = 19%) from the low-frequency coherence (0.6–4 Hz) showing peaks at 1.5 or 2.5, and 3.5 Hz; [image: image] = [9, 10]%.



Muscle Networks

Both the muscle synergies and coherence spectra were represented as multiplex networks to facilitate quantitative comparison. For the muscle synergies, each synergy was represented as a layer of the multiplex network (Figure 3C). We subsequently estimated the community structure across all five layers (Figure 5A). As the connectivity in the layers of the synergy network did not overlap substantially, the community structure across layers yielded a single module and the synergy network contained several contralateral connections between arms and legs. These long-distance edges were distinctive for the layers of the synergies active around heel strike (S1 and S4). S3 and S5 also showed symmetries between left and right, but represented a more comprehensive network in which the whole human body was involved. S2 mainly showed connectivity around the pelvis and between the pelvis and the shoulder muscles (trapezius, Figure 3C).


[image: image]

FIGURE 5. The community structure of the multiplex (A) muscle synergy (B) and coherence networks based on the synergy and coherence spectra muscle weightings. Community structure is visualized by color-coded nodes and the average degree across layers of every muscle is displayed as node size on the body mesh (Makarov et al., 2015). The edge width is based on the average connectivity across layers between the muscles in either the minimally-connected synergy or coherence network.


In contrast, the community structure of the multiplex coherence network divided the body in modules of both legs separate, the trunk with the left arm and the right arm (Figure 5B). The average modularity per frequency component was 0.14, 0.30, and 0.32, respectively. By constructing minimally-connected multiplex networks, we removed on average 293 significant edges (threshold was 0.0970) with weights of 0.0015 ± 0.0011 (mean ± standard deviation), 0.0018 ± 0.0011 and 0.0055 ± 0.0039 for 2:1, transition and 1:1, respectively. The preserved edges had weights of 0.0114 ± 0.0077, 0.0114 ± 0.0067, and 0.0184 ± 0.0069. In contrast to the synergy network, the community structure of the coherence network was not affected by this thresholding (see Supplementary Material).

The community structure of the coherence network over 0.6–4 Hz was very similar to the community structure of the coherence network over the frequency range of 4–60 Hz: the Rand and adjusted Rand indices were 0.85 and 0.63, p < 0.001, respectively. Yet, individual layers of the coherence network revealed similarities with the layers of the synergy network; cf. Supplementary Material for more details.


Changes in Coherence Networks

The topology of the coherence network was reorganized when the coordination pattern changed to the 1:1 mode of coordination (Figure 6). The network metrics, i.e., global efficiency, transitivity and average strength, were significantly different between conditions [F(2,21) = 56.0, F(2,21) = 12.1, and F(2,21) = 38.7, respectively, p < 0.001]. The 1:1 mode in the 4–8 Hz frequency component contained several long-distance connections between the leg and the contralateral arm with high connection strengths corresponding to a high global efficiency (Figure 6C). In contrast, both the 2:1 and the transition showed mainly connections within and between upper body and arms. At 8–22 Hz, 1:1 coordination again deviated from 2:1 and the transition, and was associated with a relatively high global efficiency, transitivity and strength. Some long-distance connections were found in 1:1 between the legs and the lower back, and high within-module connectivity appeared within the legs. For the 22–60 Hz frequency component, the connectivity was high within the trunk in 2:1 and the transition, while this connectivity was lower in 1:1. In the latter condition, the connectivity was higher between arm muscles. The highest frequency component was without connections between the upper and lower body in all conditions.


[image: image]

FIGURE 6. Changes in connectivity between conditions and frequency components in the minimally-connected multiplex coherence network. (A) Frequency components 4–8, 8–22, and 22–60 Hz, obtained with non-negative matrix factorization. (B) Coherence networks in the 2:1, transition (T) and 1:1 mode of coordination (columns) and the frequency components (rows). Colors in the networks depict different modules and node size and edge width represent degree and connectivity strength between muscles, respectively. (C) Global efficiency, transitivity and average strength of the coherence networks per frequency component and condition. Error bars indicate standard errors of the mean and asterisks significant differences between conditions (α < 0.005).




DISCUSSION

The aim of this study was to identify neural correlates of spontaneous switches in interlimb coordination during walking, i.e., transitions in frequency locking ratios between the arms and legs when walking speed changes. We applied more conventional synergy analysis and extended this to multiplex networks in line with the more recently introduced coherence-based muscle networks (Kerkman et al., 2018). As expected, we found changes between task conditions in the activation patterns of specific muscle synergies and in the network metrics of specific frequency layers of the coherence networks. In particular, we found increased activation of the synergies active around right and left heel strike (S1 and S4, respectively) during 1:1 phase locking compared to the other two coordination modes. Likewise, synergy S2 involved the muscles around the pelvis and also showed increased activation during 1:1 locking; note that this synergy appeared left/right symmetric. In contrast, synergies S3 and S5, involved in the initiation of the swing of the left and right leg, respectively, remained largely unchanged across modes of coordination. Similar to the muscle synergies, 1:1 coordination revealed increased connectivity between upper and lower limbs in two (lower) frequency components (4–8 and 8–22 Hz) compared to the other two modes of coordination. The increase in long-distance connectivity was associated with a corresponding increase in global efficiency, transitivity and average strength. We found four modules grouping either left and right leg muscles or left and right arm muscles, though, the module containing the left arm also included all the recorded trunk muscles. These findings indicate that the transition to a 1:1 coordination pattern is associated with a reorganization in the muscle activation patterns.

Arm-leg coordination switched from 2:1 to 1:1 frequency locking mode when walking speed was increased. During the transition period both coordination patterns could be observed supporting the notion of multi-stability (Van Emmerik and Wagenaar, 1996). However, this was not observed in all subjects, in line with earlier studies reporting that the incidence of the 2:1 coordination pattern is reduced in treadmill compared to over-ground walking (Carpinella et al., 2010). Future studies may focus on even lower treadmill speeds to pinpoint neurophysiological changes possibly underlying the transition in coordination. Yet, we identified statistically significant differences between the coordination modes in individual muscle activation patterns. We are confident that these findings underwrite earlier documented importance of arm muscle activity during walking (Craik et al., 1976; Meyns et al., 2013; Goudriaan et al., 2014). They also revealed phase-specific modulations of arm muscle activity associated with the kinematic switches in interlimb coordination (see Supplementary Material). Last but not least, the modulations of EMG activity were reflected in the reorganization of the muscle synergies.

Speed-induced adaptations in muscle synergy strength and timing have been reported earlier (Ivanenko et al., 2004; Yokoyama et al., 2016), which led Den Otter et al. (2004) to speculate that modulations of muscle synergies are a mere by-product of a change in stance and swing time. We found that the synergy active during the stance and swing phases (S2) became stronger accounting for an increase in upper leg activity which may serve to control the relative movement between the trunk and the legs when walking faster. We found left/right-mirrored synergies for both S1 and S4 and S3 and S5; the muscles in S3 and S5 appeared important in preserving the upright body position, while synergies S1 and S4 induced the forward propulsion of the body. Synergies that were active during heel strike were also affected in both the strength and the wave form when switching to another mode of coordination, which was in accordance with the changes in relative timing of the arm swing. The synergy analysis revealed a fairly strong contribution of arm and shoulder muscles in the heel strike synergies (S1 and S4) and the switches between the modes of coordination were marked by a decrease in the involvement of arm muscles when the arm swing was in-phase with the leg swing. These phase-specific modulations could hence be directly related to the changes in kinematic behavior. Moreover, not all synergies were affected. Taken together, we rather support the notion of modular motor control, in which synergies can be modulated depending on the task while other synergies are robust across conditions (Nazarpour et al., 2012).

We used one-mode projections, commonly employed in bipartite networks (Murphy et al., 2018), of the muscle synergy weights to construct multiplex networks (Horvát and Zweig, 2012), with each layer reflecting a synergy. These synergy networks can reveal functional connections between multiple muscles in line with functional modules related to the biomechanical constraints of walking (Neptune et al., 2009). For example, next to the coordination-related coupling between contralateral arms and legs, we also found ipsilateral connections between arms and legs specific for the 2:1 locking mode. The networks of synergies S3 and S5 were dominated by activities important for push-off (GM) and foot raise (contralateral TA), but this modulation did not depend on the mode of coordination. When collapsing the multiplex network across layers, the synergy network only reflected the biomechanical characteristics of walking that kept the mechanisms underlying synergy formation opaque (Tresch and Jarc, 2009). Yet, the muscle synergy network approach supports the idea of functionally organized synergies that are modulated by changes in interlimb coordination.

The topology of the muscle synergy network showed clear similarities with the network derived from intermuscular coherence at lower frequencies (0.6–4 Hz, see Supplementary Material). Coherence at very low frequencies likely captures the co-variation of EMG envelopes which underpins the synergy analysis. Hence, both synergy and coherence networks may yield equivalent results, though, very low-frequency coherence might be difficult to estimate reliably due to the brevity of the gait cycles. At higher frequencies, the agreement between both types of networks was largely absent, as we did not observe a modular structure in the multiplex synergy network. This suggests that synergy and coherence analyses are complementary and potentially capture different aspects of motor control. As expected, the community structure of the coherence networks was closely related to the anatomical relationships of the muscles (Kerkman et al., 2018).

Higher frequency components of intermuscular coherence may indicate different functional pathways in the neuromuscular system, which were affected by the coordination between limbs. We found major changes in the 1:1 mode of coordination compared to the 2:1 mode and the transition, indicating a reorganization in the structure of common input during 1:1 coordination. The connectivity between 4 and 8 Hz was strongly increased between the arm and contralateral leg muscles in the 1:1 mode, indicative for altered afferent input (Bourguignon et al., 2019) and seemingly relevant for maintaining forward propulsion (cf. above). Connectivity in the frequency range of 8–22 Hz covers both alpha and low beta frequency ranges and have frequently been observed in intermuscular (Boonstra et al., 2015; Kerkman et al., 2018) and corticomuscular coherence (Conway et al., 1995; Boonstra et al., 2009b; Petersen et al., 2012; de Vries et al., 2016; Roeder et al., 2018). Although corticomuscular connectivity was not assessed in our study, we are tempted to interpret these frequency ranges as different neural pathways, possibly reflecting afferent and efferent inputs to spinal motor neurons, respectively (McAuley and Marsden, 2000; Rathelot and Strick, 2009; Bourguignon et al., 2019). The connectivity at 8–22 Hz was only affected when the legs and arms were in antiphase, i.e., in the 1:1 mode of coordination, with stronger long-distance connections between both lower back and leg muscles. First and foremost, the overall connectivity changed instead of a reorganization in connectivity patterns. That is, the conjunction between the upper and lower body muscles gained importance arguably because of an increasing demand of upper relative to lower body movements when walking faster. Finally, the connectivity in the frequency component of 22–60 Hz was less affected by changes in interlimb coordination.

The absence of neural connectivity during the 2:1 mode of coordination is in contrast to the kinematic coupling between the limbs. The increase in long-distance connectivity between the upper and lower limbs when switching to 1:1 coordination may indicate additional demands when switching to antiphase coordination. The absence of interlimb coupling in the EMG envelopes might indicate a largely passive contribution of the arm swing at slow walking speeds, while at higher speeds muscle activity is needed to actively establish interlimb coordination and possibly reduce the cost of walking (Collins et al., 2009). The active contribution of arm muscle activity in the 1:1 mode of coordination seemingly underlies the reorganization of muscle synergies. In our study, this reorganization was associated with increased functional connectivity between the arms and legs specifically at 4–22 Hz, which again implies increased common input to both arm and leg muscles (Boonstra et al., 2016). Muscle networks showed an abrupt change in network topology with increased long-distance connections when switching to a 1:1 mode of coordination. The increase in connectivity between arm and leg muscles is also reflected in the layers of synergy network corresponding to synergies S1 and S4, while muscle networks during quiet standing were mainly dominated by local connectivity (Boonstra et al., 2015; Kerkman et al., 2018). The switches in interlimb coordination were hence associated with distinct changes in the functional connectivity in the neuromuscular system reflecting common input to multiple muscles.

Admittedly, our results do not provide undeviating evidence for possible neural causes of synergy formation or stability of interlimb coordination. A promising future step could be to infer the dynamic coupling functions between muscle activation profiles that, in principle, do contain all information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs (cf. Stankovski et al., 2017). We also have to admit that we did not directly assess the contribution of the supra-spinal inputs and it might be a “natural” step to evaluate these inputs using measures like partial directed coherence (e.g., Boonstra et al., 2015) or other directed information theoretic measures (e.g., Boonstra et al., 2019). While evidence about the functional role of intermuscular coherence is rapidly accumulating (Farmer et al., 1993; Boonstra et al., 2015, 2019; De Marchis et al., 2015), research on possible cortical contributions during whole-body movements comes with challenges (Gwin et al., 2010). Several studies already revealed the phasic modulation of corticomuscular coherence (Gwin et al., 2011; Gwin and Ferris, 2012; Roeder et al., 2018) and their importance of stabilizing modes of coordination (Bruijn et al., 2015). Interestingly, a recent experiment by Zandvoort et al. (2019) successfully identified cortical contributions to synergy formation by combining electroencephalography with EMG-based synergy analysis. Future work may adopt this approach to substantiate our suggestions about high-frequency, long-distant neural activation in the context of interlimb coordination and their sources in the central nervous system.



CONCLUSION

The reorganization in muscle synergies and the concomitant alterations in coherence modulations of common neural input to multiple muscles highlight that switches in interlimb coordination are associated with changes in neuromuscular control. Network analysis of connectivity between all muscle pairs showed that the modularity of the neuromuscular system couples anatomical and functional linked muscles. The speed-induced transition to a 1:1 arm-leg frequency locking is accompanied by strong intermuscular coherence between upper and lower body muscles. This functional connectivity is particularly pronounced at higher frequencies indicating a significant long-distance neural interaction that accompanies the formation of muscle synergies.



DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethics Committee Human Movement Sciences of the Vrije Universiteit Amsterdam. The participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

JK, AB, AD, and ND designed the experiment. JK and AB conducted the recordings and the analysis of the kinematics and the EMG. JK and TB performed the network analysis. All authors wrote the manuscript.



FUNDING

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (“Learn2Walk”; Grant Agreement No. 715945) and the Dutch Organisation for Scientific Research (NWO) VIDI grant (“FirSTeps”; Grant Agreement No. 016.156.346).



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2020.00751/full#supplementary-material


FOOTNOTES

1 In particular the increase in phase variability in the immediate vicinity of the behavioral switch in interlimb coordination resembles so-called critical fluctuations which implies the presence of a likewise critical slowing down, i.e., drastic increase of response time after (mechanical) perturbation.

2 As said, we investigated the dynamics in the vicinity of a phase transition.

3 Here, we would like to note that we verified that the amplitude normalization had little to no effect on the temporal and spatial representation of the muscle synergies.

4 Estimating muscle synergies per condition had only minor effects on both weightings and wave forms; details can be found in the Supplementary Material.
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The goals were to investigate in umbilical cord tissue if gestational obesity: (1) was associated with changes in DNA methylation of skeletal muscle-specific genes; (2) could modulate the co-methylation interactions among these genes. Additionally, we assessed the associations between DNA methylation levels and infant’s variables at birth and at age 6. DNA methylation was measured in sixteen pregnant women [8-gestational obesity group; 8-control group] in umbilical cord using the Infinium Methylation EPIC Bead Chip microarray. Differentially methylated CpGs were identified with Beta Regression Models [false discovery rate (FDR) < 0.05 and an Odds Ratio > 1.5 or < 0.67]. DNA methylation interactions between CpGs of skeletal muscle-specific genes were studied using data from Pearson correlation matrices. In order to quantify the interactions within each network, the number of links was computed. This identification analysis reported 38 differential methylated CpGs within skeletal muscle-specific genes (comprising 4 categories: contractibility, structure, myokines, and myogenesis). Compared to control group, gestational obesity (1) promotes hypermethylation in highly methylated genes and hypomethylation in low methylated genes; (2) CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated; (3) diminishes the number of total interactions in the co-methylation network. Interestingly, the associations between infant’s fasting glucose at age 6 and MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 were still relevant after correcting for multiple testing. In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
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INTRODUCTION

Excessive gestational weight gain is related to offspring obesity and related metabolic disorders, independently of pre-pregnancy body mass index (Wrotniak et al., 2008; Olson et al., 2009; Reynolds et al., 2010; Vickers, 2014). More importantly, the effects on the offspring persist into adolescence and adult life (Oken et al., 2008; Hochner et al., 2012).

Studies in rats showed that offspring born to mothers fed an obesogenic diet during pregnancy exhibit reduced skeletal muscle cross-sectional area and fiber number. These structural defects led to impaired muscle contractility (Bayol et al., 2005) and impaired insulin signaling pathway and mitochondrial function (Shelley et al., 2009). Skeletal muscle accounts for about 40% of the whole body mass and plays a central role in metabolic health (DeFronzo and Tripathy, 2009; Gardner and Rhodes, 2009) not only through the regulation of lipid and glucose metabolism (DeFronzo et al., 1981; Brüning et al., 1998) but also through the production of myokines (Pedersen, 2013; Karstoft and Pedersen, 2016). Defects in the formation of skeletal muscle in utero can lead to metabolic complications into adult life (Bayol et al., 2014) as there is no increase in muscle fiber numbers after birth (White et al., 2010).

In mammals, epigenetic regulation is crucial for a variety of different processes such as development, cell differentiation, and proliferation (Skinner, 2011). Numerous studies demonstrate that skeletal muscle can be programmed in part by epigenetic modifications (Jaenisch and Bird, 2003; Patel et al., 2014) and that changes in DNA methylome can be retained and accumulated over time (Jacobsen et al., 2012; Sharples et al., 2016a). Previous research have suggested that appropriate gene interactions, controlled by epigenetic modifications, are of key relevance to maintain cellular homoeostasis (Azuara et al., 2006). As pointed out by Bartsch et al. (2015) understanding the nature of such interactions, can provide useful information regarding the specific role of several physiological systems within an integrated network, during different physiological states (e.g., gestational obesity). However, the effect of gestational obesity on skeletal muscle-specific genes in humans, as well as the mechanisms underlying co-methylation network interactions (i.e., interaction among methylation patterns of individual CpG sites) within these genes in umbilical cord tissue, have been poorly studied (Akulenko and Helms, 2013; Sun and Sun, 2019). Thus, our goals were to examine in umbilical cord tissue if gestational obesity (1) was associated with changes in the DNA methylation of skeletal muscle-specific genes, (2) and could modulate the co-methylation interactions among these genes. Additionally, we also assessed the associations between methylation levels of skeletal muscle-specific genes in umbilical cord tissue and infant’s anthropometric and metabolic variables at birth and at age 6.



METHODS


Study Population and Ethics

The study population included 16 apparently healthy pregnant Caucasian women delivering healthy infants. All pregnant woman had normal weight prior to pregnancy (18.5 < BMI < 24.9). The subjects were selected from a consecutively recruitment during the first trimester of pregnancy among those seen within a setting of prenatal primary care in l’Alt Empordà (Northeastern Spain). The selection of our samples was done to ensure the minimum variation between individual samples. Information on pregnancy, labor, and delivery characteristics was retrieved from standardized medical records. Women with major medical, surgical, or obstetrical complications, including multiple pregnancies, hypertension, gestational diabetes, or preeclampsia, and fetal growth restriction, malformations or asphyxia were excluded. Assisted reproductive technology (Lim et al., 2009) and smoking, drugs of abuse or alcohol addiction during pregnancy were also excluded.

The protocol was approved by the Institutional Review Board of Dr. Josep Trueta Hospital and informed written consent was obtained from all parents.



Maternal Anthropometric Assessments

Maternal weight and height were assessed at each trimester during gestation and before delivery (between 37 and 41 weeks). Body-mass index (BMI) was calculated as weight divided by height squared (Kg/m2). We used maternal weight at the beginning of gestation as a proxy for pre-pregnancy weight. Maternal gestational weight gain was obtained as the difference between the last weight measurement before delivery and pre-pregnancy weight. We classified women into two groups: control group, in whom adequate weight gain during pregnancy (between 11.5 and 16kg) was evidenced, and gestational obesity group in whom excessive weight was gained during pregnancy (above 16 kg), as previously described by the Institute of Medicine guidelines (Olson, 2008).



Infants Anthropometric and Metabolic Assessments

All infants were born at term pregnancy. After delivery, weight and length were measured using a calibrated scale and a measuring board. Gestational age- and sex-adjusted z-scores for birth weight and length were calculated using regional norms (Carrascosa et al., 2008). Ponderal index was calculated as follows: (birth weight in grams x 100) / (birth length in centimeters)3. From the children included at birth, those whose parents agreed to participate further in the study (n = 12) were followed-up at the age of 6 years. Their characteristics at birth did not differ from those who did not participate in the follow-up study. Weight was measured on a calibrated scale wearing light clothes, and height was measured with a Harpender stadiometer without shoes. BMI and age- and sex- adjusted z-scores were calculated as above. Fat mass percentage was assessed by bioelectric impedance (Hydra Bioimpedance Analyzer 4200; Xitron Technologies, San Diego CA, United States).

At birth, umbilical cord blood was collected from the vein immediately after birth and insulin was measured by immunochemiluminiscence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA, United States). At 6 years of age, serum samples were obtained under fasting conditions and fasting glucose was analyzed by the hexokinase method.



Umbilical Cord Tissue Sample Collection and DNA Methylation Analysis

Immediately after childbirth, a sample of umbilical cord tissue was collected and stored at −80°C. Genomic DNA was extracted from the Wharton’s jelly and blood vessels using the Gentra PureGene tissue kit (Qiagen). Sodium bisulfite conversion of DNA was performed, and the chemically modified DNA was then used to analyze the methylation status of over 850,000 individual CpGs in umbilical cord tissue using the Infinium Methylation EPIC Bead Chip microarray (Illumina) at IIS La Fe (Valencia, Spain). DNA methylation data quality control and normalization were performed using the minify R-package (version 1.26.2). Functional normalization and filters were applied to the raw data with the aim to discard probes with a detection p > 0.01, related to sexual chromosomes, within SNPs and multiple homologies. We also applied signal background subtraction and probes that lack signal values in one or more samples were also excluded. At the end, we obtained 27,262 probes with a p < 0.01. From those, 115 were related to skeletal muscle but only 38 were differently methylated between groups. Differentially methylated CpGs were identified with Beta Regression Models (false discovery rate (FDR) < 0.05 and an Odds Ratio (OR) > 1.5 or < 0.67). Each probe or CpG site on the array is annotated to a genomic location [Transcription starting site (TSS)1500, TSS200, 5’UTR, 1stExon, Body, and 3’UTR) and a location in the CpG islands [CpG islands, shores (<2 kb from the CpG island), shelves (2 to 4 kb from the CpG island), and open sea region (>4 kb from the CpG island)]. These were combined for each CpG site to form a unique genomic context annotation. According to each genomic location two groups were created: close (TSS1500, TSS200, 5’UTR, and 1stExon) and distant (Body and 3’UTR) to a transcription site.

Additionally, we used DNA methylation data from skeletal muscle biopsies from a publicly available sample set (EPIC series GSE114763; Seaborne et al., 2018) to test (1) the similarity between DNA methylation levels in umbilical cord tissue and skeletal muscle biopsies; (2) which genes can be modified by both, gestational obesity and resistance training.



CpGs Co-methylation Matrices and Networks

We selected skeletal muscle-specific genes related to contractile function, structural features, myokines, and muscle myogenesis to create four categories of genes according to previous literature (Doherty et al., 2005; Griffin et al., 2010; Pedersen, 2013; Heissler and Sellers, 2014; Subbotina et al., 2015; Mukherjee et al., 2016; Munters et al., 2016; Gautel and Djinoviæ-Carugo, 2016; Cardinali et al., 2016; Chal and Pourquié, 2017; Dierck et al., 2017; Kim et al., 2018; Leal et al., 2018; Lin et al., 2018; Meng et al., 2019; Nieman and Pence, 2019; Pillon et al., 2020; Stavroulakis and George, 2020). To study the interaction among skeletal muscle-specific genes, the DNA methylation levels for the differentially methylated CpG site from umbilical cord tissue was used to construct one gene co-methylation matrix and one gene co-methylation network, for both control and gestational obesity groups. To create the co-methylation matrix (Figure 2A) we used the Pearson correlation coefficient to calculate the correlations of the methylation levels between every pair of individual CpGs sites. Then, to obtain the co-methylation network (Figure 2B) we only used the statistically significant correlations obtained in the co-methylation matrix (Ruan et al., 2010). With the aim of quantifying the interactions within each network (Bartsch et al., 2015) we also computed the number of links (i.e., number of significant correlations). Specifically, we calculated (a) the total number of links (Figure 2C) (b) the number of links among individual CpG sites within the same gene category (i.e., intra-category; contractibility, structure, myokines, and myogenesis; Figure 3A) and c) the number of links comparing categories pairwise (i.e., inter-category; contractibility vs. structure; contractibility vs. myokines; contractibility vs. myogenesis; structure vs. myokines; structure vs. myogenesis; myokines vs. myogenesis; Figure 3B). The links were divided into four types: strong positive links (SPL; Pearson coefficients > 0.8), intermediate positive links (IPL; 0.7 < Pearson coefficients < 0.8), intermediate negative links (INL; −0.7 > Pearson coefficients >−0.8), and strong negative links (SNL; Pearson coefficients <−0.8). Gene co-methylation matrices and networks were processed and obtained by means of Matlab R2016b (Mathworks, Natik, MA, United States). The visualization framework used in our results is based on previous studies analyzing network interactions among physiological systems during different physiological states (Bashan et al., 2012; Bartsch et al., 2015; Lin et al., 2020).



Statistics

Differences in clinical variables and DNA methylation levels between groups (all, gene localization, location in CpG islands and genomic context) were examined by Mann-Whitney U test using SPSS 22.0 (SPSS Inc). The methylation change was calculated in relation to control group levels. The associations between methylation levels of skeletal muscle-specific genes in umbilical cord tissue and infant’s anthropometric and metabolic variables were analyzed by Spearman’s correlation. Significance level was set at p < 0.001 after multiple testing correction (0.05/38 comparisons).



RESULTS

Supplementary Table 1 shows the clinical variables in the mothers and their respective children at birth and at 6 years of age. We show that the two groups only differ in maternal weight gain during gestation and infant’s fasting glucose at 6 years of age.


Gestational Obesity and DNA Methylation Changes

After the quality control of the methylation data we obtained 27,262 probes with a p < 0.01. From those, 115 were related to skeletal muscle (FDR <0.05) but only 38 were differently methylated between groups (FDR <0.05 and OR >1.5 or <0.67). Among the differently methylated individual CpG sites identified in umbilical cord tissue between mother with and without gestational obesity and according to only FDR criteria we found 6 CpGs related to contractile function, 65 related to structure, 28 CpG related to myokines and 16 related to myogenesis of skeletal muscle (Supplementary Table 2). From those, in Supplementary Table 3 we show the methylation levels for 38 individual CpG sites that showed differences in DNA methylation levels according to both, FDR and OR criteria, within the skeletal muscle-specific genes coding for contractile functions (n = 4), structure (n = 17), myokines (n = 12) and myogenesis (n = 5). For each identified gene, we report the known function and their defined role related to skeletal muscle (Supplementary Table 4). Our results showed that, except for gene CDH15-2 (structure), the effect of gestational obesity on DNA methylation might depend on initial methylation levels: compared to control group, gestational obesity promotes a hypermethylation effect in highly methylated genes (Supplementary Figure 1A and Supplementary Table 3), with a mean increase in methylation of 11.97% (methylation changes ranged from 3.5 to 29.6%), and a hypomethylation effect in low methylated genes, with a mean decrease in methylation of 58.54% (methylation changes ranged from 45.3 to 105.4%).

Using DNA methylation data from umbilical cord tissue and vastus lateralis biopsies we showed that ACTBL2, BDNF_1, IL8, and MYH4 have similar methylation levels in both tissues (Supplementary Figures 1A,B; p > 0.05), and that MYL6, OBSCN_4, BDNF_1, and PAX3 (p < 0.05) can be modified by resistance training in untrained male subjects (Supplementary Figure 1C).

From the analyzed individual CpG sites according to genomic location, 76% are located close to a transcription start site (TSS; Figure 1A). When examining the global methylation level according to individual CpG sites genomic localization between groups, we found that only CpGs within TSS1500 and gene body were highly methylated in the gestational obesity group compared to the control group (p = 0.001 and 0.003, respectively; Figure 1D). According to the location in CpG islands, 18.4% are in CpG islands, 21.2% in shores, 7.9% in shelves and 52.6 % in open sea (Figure 1B). When examining the global methylation level according to individual CpG sites within CpG islands, we found that CpGs within shores, shelves and open sea were highly methylated in the gestational obesity group compared to the control group (all p< 0.0001; Figure 1D). Finally, considering the genomic context (Figure 1C), hypermethylation can be seen mostly in locations distant to promoter regions and with lower CpG density while hypomethylation can be seen in locations closer to transcription sites and with a higher CpG density (Figure 1E).
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FIGURE 1. The CpGs methylation levels according to gene localization, localization in the CpG island and genomic context. (A) A pie chart showing the proportions of individual CpG sites according gene localization (B) A pie chart showing the proportions of individual CpG sites according localitzation in CpG island (C) A pie chart showing the proportions of individual CpG sites according genomic context (D) DNA methylation representation for individual CpG sites for all the studied gene localizations (TSS1500, TSS200, 5’UTR, 1stExon, Body, and 3’UTR) and localizations in CpG islands (island, shore, shelf and open sea) in gestational obesity and control group, using horizontal stacked graph bars. (E) A bar chart depicting the change in methylation percentage in gestational obesity in relation to the control group and according to genomic context. Each CpG site on the array is annotated to a genomic location (TSS1500, TSS200, 5′UTR, 1stExon, Body, and 3′UTR) and a location in the CpG Island (island, shore, shelf, and open sea) region. These were combined for each probe to form a unique genomic context annotation. *p < 0.0001; **p = 0.003, and ***p = 0.001. TSS, transcription start site; UTR, untranslated region.




Gestational Obesity and Co-methylation Interactions

Our co-methylation networks showed that gestational obesity reduces the total number of interactions compared to the control group (Figure 2C). As for the different type of interactions, gestational obesity diminishes the number of all links types [SPL, by 47.5%, IPL, by 38%, INL, by 74%, and SNL, by 61% (Figure 2C)]. In the control group, positive associations were found among low methylated CpGs and among highly methylated CpGs, while negative associations were found between highly methylated CpGs and low methylated CpG. It is worth to note that gestation obesity changes not only the strength buy also the trend of the associations observed in structure and myokine gene categories (Figure 2).
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FIGURE 2. Co-methylation network interactions changes among the studied genes according to control and gestational obesity groups. (A) Gene co-methylation matrix. The matrices show the Pearson correlation coefficient of the methylation levels between every pair of genes. Non-significant correlations are represented in green. (B) Gene co-methylation networks. Each node represents a specific CpG for each studied gene category [contractibility (black), structure (dark gray), myokines (gray) and myogenesis (light gray)]. Links between two nodes represent the coupling strength (i.e., the Pearson coefficient) between two genes. The links are divided into four types: strong positive links (Pearson coefficients > 0.8; thick dark red lines), intermediate positive links (0.7 < Pearson coefficients < 0.8; thin red lines), intermediate negative links (−0.7 > Pearson coefficients >−0.8; thin blue lines), and strong negative links (Pearson coefficients <-0.8; thick dark blue lines). Note that the network only includes the significant correlations found in the co-methylation matrix. (C) Total number of links. The height of the bar corresponds to the number of significant correlations in the co-methylation matrix.


Interestingly, gestational obesity also changes both, the percentage of intra-gene category interactions (3.5% in average) and inter-gene category interactions (2.9% in average). Focusing on intra-gene category interactions (Figure 3A), gestational obesity causes a loss all types of links in contractibility and myogenesis categories. In the structure category, IPL are 100% higher in obesity compared to the control group while the SPL are reduced by 5%, the INL are lost, and the SNL are reduced by 3%. Finally, in the gestation obesity group the myokines category gain SNL while the INL are lost and a reduction of 2% in SPL and 4% IPL can be seen. Regarding the inter-gene category interactions (Figure 3B), the control group presents a higher number of all types of links in all gene categories. Gestational obesity in general promotes a diminution of the percentage of links between all gene categories and, furthermore, an absence of some type of links in the studied categories [Contractibility vs. structure (SPL decrease by 2.94%, IPL by 4.41%, INL by 1.47% and SPL by 4.41%), contractibility vs. myokines (SPL decrease by 4.17%, IPL increase by 2.08% and INL decrease by 2.08%), contractibility vs. myogenesis (SPL decrease by 5%, INL remain equal and SPL decrease by 5%), structure vs. myokines (SPL decrease by 1.47%, IPL remain equal, INL decrease by 0.49% and SPL increase by 0.49%), structure vs. myogenesis (SPI decrease by 9.41%, IPI by 2.35%, INI by 1.18% and SPI by 4.71%) and myokines vs. myogenesis (SPL decrease by 6.67%, IPL by 6.67% and INL by 3.33%)]. Note that, all type of links are maintained between structural and myokines CpG.
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FIGURE 3. Percentage of links for (A) intra- gene categories and (B) inter-gene categories. The height of the bar corresponds to the percentage of significant correlations for each link type.




DNA Methylation Levels Correlates With Anthropometric and Metabolic Variables in the Offspring

To test whether DNA methylation levels of skeletal muscle-specific genes in umbilical cord tissue may be associated with infant’s anthropometric and metabolic parameters at birth and at 6 years of age, Spearman’s correlation analysis between variables were performed (Supplementary Table 5).

At birth higher methylation levels of ACTBL2 (r = −0.518; p = 0.040) and IL8 (r = −0.538; p = 0.031) were associated with lower birth weight whereas a negative association between TPM2 methylation levels and ponderal index (r = −0.556; p = 0.025) was observed. However, the associations between methylation levels and birth anthropometry did not remain significant when correcting for multiple testing.

At 6 years of age, height SDS was positively associated with MYL6B (r = 0.627; p = 0.029), and negatively with TNNT3 (r = −0.616; p = 0.032), BMI SDS was positively associated with TTN_1, CXCL13_1 and, PAX3 (all from r = 0.650 to r = 0.580 and p = 0.022 to p = 0.047) and negatively associated with OBSCN_2, BDNF_2, and MYOF (all from r = −0.665 to r = −608 and p = 0.018 to p = 0.035). Fat mass percentage was associated positively with CXCL2 (r = 0.721, p = 0.018) and negatively with TNNT3 (r = −0.648; p = 0.042), and IL13 (r = −0.648; p = 0.042).

Finally, fasting glucose at 6 years of age was positively associated with MYL6, MYL6B, CAPZB, MYBPC2, OBSCN_2, TPM2, BDNF_2, and CXCL2 (all from r = 0.842; to r = 0.684 and p = 0.001 to p = 0.014) and negatively associated with MYH11, CDH15_1, CDH15_2, CORO6, NEB, OBSCN_4, TNNT2, TNNT3, TTN_2, C10orf71, CXCL13_2, FGF21_1, IL13, OSTN, NCAM1, VCAM1, and MYH4 (all from r = −0.856; to r = −0.589 and p < 0.0001 to p = 0.043). Interestingly, the associations between fasting glucose and MYL6 (Contractibility; TSS200_Open sea), MYH11 (Contractibility; TSS200_Open sea), TNNT3 (Structure; Body_Shore), TPM2 (Structure; TSS200_Island), CXCL2 (Myokine; TSS200_Island), NCAM1 (Myogenesis; 5’UTR_Open sea) were still relevant after correcting for multiple testing (Figure 4 and Supplementary Table 5).
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FIGURE 4. DNA methylation levels in umbilical cord tissue and fasting glucose levels at 6 years of age. Correlation graphs of DNA methylation levels of skeletal muscle-specific genes (MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1) in umbilical cord tissue with fasting glucose levels at 6 years of age. Triangles and circles depict subjects from control and gestational obesity group, respectively. R- and p-values are shown from Spearman correlation analysis.




DISCUSSION

The percentage of methylation of at least 38 individual CpG sites within skeletal muscle-specific genes in umbilical cord tissue is modified by gestational obesity. Highly methylated genes in control samples showed hypermethylation in the gestational obesity group, while low methylated genes in control samples showed hypomethylation in the gestational obesity group. Interestingly, 76% of the identified individual CpG sites are close to a transcription starting site. On top of that, CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated in the gestational obesity group. In our networks, gestational obesity changed the intra- and inter-gene category interactions, reducing the number of all types of links in almost all the studied comparisons. We show for the first time that gestational obesity not only changes methylation levels but also changes the co-methylation pattern among genes coding for skeletal muscle in umbilical cord tissue. Finally, in our longitudinal analysis, DNA methylation levels of most of the skeletal muscle-specific genes were related to infant’s fasting glucose levels at age 6.

Sheep studies showed that gestational obesity led to increased fetal skeletal muscle mass with an impaired muscle quality (Tong et al., 2009). In line with that, maternal malnutrition of pregnant rats can affect the contractile properties (Bayol et al., 2005, 2007) the number and composition of muscle fibers (Sharples et al., 2016a) and muscle metabolism (Shelley et al., 2009; Simar et al., 2012) in the offspring. Our results suggest that gestational obesity can alter the methylation pattern of skeletal muscle-specific genes in umbilical cord tissue. Skeletal muscle can store and produce glucose, contributing to blood glucose homeostasis (Shieh et al., 2004). The endogenous glucose production rate and the susceptibility to hypoglycemia improve with age (Powell et al., 1981; Tsalikian et al., 1984; Collins et al., 1990) and this improvement has been related to the increase observed in muscle mass (Gallagher et al., 1999). At the same time, methylation levels of MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 in umbilical cord tissue are related to infant’s fasting glucose levels measured in serum at 6 years of age. Fasting glucose is a glycemic measure with a “J-shaped” relationship with major cardiovascular events (Sarwar et al., 2010; Seshasai et al., 2011; Di Angelantonio et al., 2014; Zaccardi et al., 2015). While elevated glucose levels are a sign of reduced insulin secretion or action and also a proxy of type 2 diabetes (Tirosh et al., 2005; Nichols et al., 2008) and cardiovascular disease (Sarwar et al., 2010) lower levels of fasting glucose are associated with all-cause mortality (Bragg et al., 2016). Wändell suggested that low plasma glucose levels and BMI might serve as a marker of low fat-free mass, which in turn may imply a lower glucose reserve capacity and a higher susceptibility to develop different diseases (Wandell and Theobald, 2007). Interestingly, longitudinal cohort studying trajectories of fasting glucose have shown that this marker increases modestly over time in non-diabetic subjects (Andres and Tobin, 1975) suggesting that variation in fasting glucose is largely unaffected by age-related changes and may be established early in life (Barker et al., 2011). According to previous authors, skeletal muscle seems to retain and pass information from the environmental to daughter cells, through epigenetic processes (Sharples et al., 2016b). More interestingly, Davegårdh et al. (2017) cultured muscle stem cells from obese and non-obese subjects under identical conditions and observed a three-fold increase in the number of DNA methylation changes in the obese subjects. We herein suggest that the long-lasting effects of maternal obesity, at least on fasting glucose levels, could be mediated by an inappropriate epigenetic programming of skeletal muscle in utero. Further studies in larger cohort samples are needed to ascertain the use of these genes as early biomarkers of fasting glucose levels early in life.

In general, gene participation in a common pathway or functional similarity leads to gene co-methylation (Akulenko and Helms, 2013). Transcription factors (TFs) are proteins that bind to specific DNA sequences to regulate development and cell differentiation (Lee and Young, 2013). Several studies indicate that complex programs of cell differentiation might be regulated by a very small number of proteins (Weintraub et al., 1973; Holtzer et al., 1975a, b). In skeletal muscle, more than 170 TF have been identified. Among them, MyoD (the major TF that regulates muscle differentiation) can induce skeletal muscle differentiation in cells from many different lineages, including those from umbilical cord tissues (Davis et al., 1987; Weintraub et al., 1989; Gang et al., 2004). TEAD (1-4) (Jacquemin et al., 1996; Stewart et al., 1996) is also a TF which plays important roles in skeletal muscle differentiation, physiology, structure and contraction (Stewart et al., 1994; Yoshida, 2008). Our results show, that more than three quarters of the CpGs differently methylated in our study are close to a transcription starting site and are highly methylated in gestational obesity, compared to controls. Moreover, differently methylated CpGs were overrepresented at open seas and shelves and underrepresented at shores and islands. This is in accordance with studies aiming to describe disease-associated methylation patterns (Wang et al., 2012; Grundberg et al., 2013; Ollikainen et al., 2015). Overall, in our gestational obesity group, CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated. Our results could be in line with previous studies that demonstrated that obesity can alter epigenetic and transcriptomic regulation during differentiation in skeletal muscle (Tong et al., 2009). More studies are needed to clarify if indeed there exists a common regulator (e.g., TF) of skeletal muscle-specific genes than can be altered by gestational obesity.

Gestational obesity could perturb the normal skeletal muscle development physiology by the following mechanisms: (a) a decrease of the total number of interactions between CpGs, including the interactions intra- and inter- gene categories, and (b) changes in the type of interaction between CpGs (i.e., positive or negative), which can point toward to collaborative or antagonistic relations of these genes in skeletal muscle physiology. Our results suggest that gestational obesity would lead to a loss of complexity, at least for methylation of skeletal muscle-specific genes, revealing a complete reorganization of this methylation process in response to gestational obesity. Noteworthy, the only genes that maintain a similar number of interactions are those within genes related to structure and myokines, pointing to the fact that these genes could be the less affected functions by gestational obesity. As mentioned above, most skeletal muscle genes could be under the same methylation regulatory pathway, since methylation changes caused by gestational obesity seem to follow specifics patterns in our co-methylation networks interactions. The interactions defined in our network could have not only significant clinical implications in the offspring, but they could also be of relevance for the new emergent field of Network Physiology (Bashan et al., 2012; Bartsch et al., 2015; Lin et al., 2016). Understanding this differential methylation organization between normal and gestational obesity pregnancies could bring novel aspects of basic physiological regulation to skeletal muscle formation.

Most of the evidence to date that maternal excessive gestational weight gain affects skeletal muscle development and health into adult life comes from animal studies. There is a general lack of human data because methods to assess skeletal muscle are invasive and often require whole muscle dissection, which is not applicable to humans for obvious ethical reasons (Bayol et al., 2014). It is not known whether umbilical cord reflects the levels of methylation in skeletal muscle, but our results may suggest that umbilical cord tissue, an easily available tissue that can be sampled non-invasively, could be a potential marker of skeletal muscle features and fasting glucose levels. Using data from skeletal muscle biopsies in male subjects, we have shown that certain genes (ACTBL2, BDNF_1, IL8, MYH4) presents similar methylation levels in umbilical cord tissue compared with vastus lateralis biopsies and that methylation in MYL6, OBSCN_4, BDNF_1, and PAX3 can be modified by both, obesity and resistance training. Previous studies have demonstrated that umbilical cord-derived mesenchymal stem cells could differentiate into a skeletal myogenic phenotype (Gang et al., 2004). Moreover, Murphy et al. (2012) reported that, at least for imprinted genes, methylation levels were comparable across multiple tissue types in humans (including umbilical cord and muscle) and emphasizes the potential utility of DNA methylation marks as early exposure assessment tools. However, more studies with longitudinal data are necessary to ascertain if the observed changes in umbilical cord tissue are related to skeletal muscle physiology and global health in childhood and adulthood. And if those genes affected by gestational obesity can also be affected by both, resistance and endurance training.

We acknowledge a number of study limitations. Longitudinal studies with a higher number of participants are needed to confirm the role of gestational obesity in the epigenetic status of muscle-specific genes in umbilical cord tissue. We could not perform skeletal muscle biopsies in the children included in our study due to ethical reasons, but it would be interesting to compare the methylation profile in normal cord with skeletal muscle in animal studies. The possible effect of gestational obesity on skeletal muscle tissue and its implications for children development and adult metabolic diseases would be interesting to explore in the future. We selectively studied genes associated with DNA methylation changes but genes important in other lineages or tissues not necessarily regulated by DNA methylation could be also affected by gestational obesity and should be further studied. Finally, other factors, such as diet or physical activity, which were not available for the current study, should be considered in future studies as possible confounders for co-methylation interactions studies.

In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
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Background: A healthy individual has a high degree of functional connectivity between organ systems, which can be represented graphically in a network map. Disruption of this system connectivity is associated with mortality in life-threatening acute illnesses, demonstrated by a network approach. However, this approach has not been applied to chronic multisystem diseases and may be more reliable than conventional individual organ prognostic scoring methods. Cirrhosis is a chronic disease of the liver with multisystem involvement. Development of an efficient model for prediction of mortality in cirrhosis requires a profound understanding of the pathophysiologic processes that lead to poor prognosis. In the present study, we use a network approach to evaluate the differences in organ system connectivity between survivors and non-survivors in a group of well-characterized patients with cirrhosis.

Methods: 201 patients with cirrhosis originally referred to the Clinic five at the University Hospital of Padova, with 13 clinical variables available representing hepatic, metabolic, haematopoietic, immune, neural and renal organ systems were retrospectively enrolled and followed up for 3, 6, and 12 months. Software was designed to compute the correlation network maps of organ system interaction in survivors and non-survivors using analysis indices: A. Bonferroni corrected Pearson’s correlation coefficient and B. Mutual Information. Network structure was quantitatively evaluated using the measures of edges, average degree of connectivity and closeness, and qualitatively using clinical significance. Pair-matching was also implemented as a further step after initial general analysis to control for sample size and Model for End-Stage Liver Disease (MELD-Na) score between the groups.

Results: There was a higher number of significant correlations in survivors, as indicated by both the analysis indices of Bonferroni corrected Pearson’s correlation coefficient and the Mutual Information analysis. The number of edges, average degree of connectivity and closeness were significantly higher in survivors compared to non-survivors group. Pair-matching for MELD-Na was also associated with increased connectivity in survivors compared to non-survivors over 3 and 6 months follow up.

Conclusion: This study demonstrates the application of a network approach in evaluating functional connectivity of organ systems in liver cirrhosis, demonstrating a significant degree of network disruption in organ systems in non-survivors. Network analysis of organ systems may provide insight in developing novel prognostic models for organ allocation in patients with cirrhosis.

Keywords: network physiology, network medicine, cirrhosis, survival, mutual information


INTRODUCTION

A network approach in medicine represents a shift from a reductionist approach, which considers involvement of distinct physiological components in the disease process. Although such a reductionistic approach has been fruitful in the development of therapy for Mendelian disorders (e.g., haemophilia), it has failed to uncover the true mechanism of complex disorders such as sepsis and multiple organ failure. By contrast, a network approach works on the basis that these components interact non-linearly to coordinate robust integrated functions (Higgins, 2002).

Network analysis has now been biologically applied on multiple levels, including sub-cellular (e.g., gene expression and protein dynamics) (Arodz and Bonchev, 2015; Kontou et al., 2016; Joehanes, 2018), cellular (e.g., neural networks) (Rothkegel and Lehnertz, 2014; Fernandes et al., 2015; Edwards et al., 2018) and tissue level signaling (Oliveira et al., 2014; Taroni et al., 2017). It is now also being applied to organ system analysis at a functional level. A network approach also has non-biological medical applications, including use in the prediction of evolution of research communities (Yu et al., 2012; Shirazi et al., 2016) and health informatics.

Fundamental research in the emergent modern field of network physiology and network medicine has laid the foundation for understanding and quantifying global physiological behavior that results from networked interactions across systems, coordinated over a range of space and time scales. While this review by Ivanov et al. (2016) presents an overview of the current focus and progress in the field, there is no shortage of work that continues to reinforce the link between physiological coupling, phase transitions and phenotypic network states across our complex physiological systems (Bartsch et al., 2012; Bartsch and Ivanov, 2014; Liu et al., 2015; Lin et al., 2016). Such research has yielded important findings, such as showing that the network in specific physiological states are characterized by specific topology and coupling strength between systems (Bashan et al., 2012).

One of the first applications of a network approach to organ system analysis in complex disorders was proposed by Godin and Buchman (1996), who defined the role of organs as biological oscillators that maintain orderly coupling through system-wide communication networks such as cytokines. They demonstrated the progression of the systemic inflammatory response syndrome to multiple organ dysfunction syndrome, with the impairment of interorgan connectivity being modulated by excessive inflammatory stimuli. While individual organ system dysfunction is well categorized (Marshall et al., 1995), disruption of organ systems has been found to bemortality-associated.

Recently, Asada et al. (2016) reported the first clinical application of network analysis to evaluate interorgan relationships between critically ill surviving and non-surviving patients with multiple organ failure. They challenged the reliability of conventional scoring methods, which sum up degrees of individual organ dysfunction to represent systemic illness pathophysiology and disease severity. Based on their network analysis, the degree of organ system disruption was associated with poor prognosis independently of conventional scoring methods. Survivors consistently yielded a higher number of edges and clusters compared to non-survivors in their organ connectivity network structures. Such a network physiology approach for the early detection of critical illnesses facilitated by big data and novel analytic and computational approaches has merit and is encouraging, even in light of limitations (Moorman et al., 2016). More recently, Asada et al. (2019) followed up exploring the differences in connectivity between specific organ system clusters in critically ill patients. These include the respiratory-renal-inflammatory system cluster and the cardiovascular-hepatic-coagulation system cluster. The study revealed that stability of organ clusters was preserved in survivors as long as organ systems formed an interactive network, regardless of severe dysfunction. In contrast, organ cluster instability and organ system isolation was associated with mortality.

While organ system network analysis has been applied to critical illness of an acute nature, its application to critical illness of a chronic nature has not been investigated. Liver cirrhosis represents an interesting a candidate due to its multiorgan involvement and prevalence of approximately 0.15% (Schuppan and Afdhal, 2008). This is characterized by portal hypertension, ascites formation, hepatorenal syndrome, hepatic encephalopathy, hyperdynamic circulation, cardiomyopathy, autonomic dysfunction and an impaired immune response (European Association for the Study of the Liver, 2010; Licata et al., 2014; Vilstrup et al., 2014). Cirrhosis is hence a multisystemic disease that affects the hepatic, cardiovascular, immune, renal and neurological systems (Schuppan and Afdhal, 2008).

Survival prediction is important in cirrhosis patients, particularly for organ transplant allocation. The Model for End-Stage Liver Disease (MELD) score has been used in recent years to this aim, and has subsequently been refined with the inclusion of serum sodium levels (MELD-Na) (Kamath et al., 2007; Martin and O’Brien, 2015). This score comprizes of indices including serum bilirubin, serum creatinine, serum sodium, and coagulation factors. Recently, physiological markers (e.g., EEG and heart rate variability indices) have been shown to be independent of MELD in predicting survival (Montagnese et al., 2015; Bhogal et al., 2019). Therefore, conventional clinical scores still have room to improve in reflecting the multisystem nature of liver cirrhosis. In the present study, we aim to use a network approach to evaluate the differences in organ system connectivity between liver cirrhosis survivors and non-survivors.



MATERIALS AND METHODS


Participants and Ethics

The study protocol was approved by the Hospital of Padova Ethics Committee. All participants provided written, informed consent. This study was conducted according to the Declaration of Helsinki (Hong Kong Amendment) and Good Clinical Practice (European) guidelines. The study population consists of patients with liver cirrhosis referred to the liver unit, Clinic five of the University Hospital of Padova for assessment of hepatic encephalopathy between 2009 and 2018. The exclusion criteria include patients with hepatocellular carcinoma and patients unconfirmed for hepatocellular carcinoma. Two hundred and one patients (156 males, age ± SD: 57 ± 11 years) met the inclusion/exclusion criteria. On the day of study, 26% patients were classed as Child A, 52% as B, and 22% as C. The average (±SD) MELD score was 14 ± 5 and the average MELD-Na score 15 ± 6.



Follow-Up Time and Survivors vs Non-survivors

Patients were classified into 3-, 6-, and 12-month follow-up groups, corresponding to a follow-up time threshold of 90, 180, and 360 days. These follow-up groups were then further classified into a survivor group and a non-survivor group.

During each follow-up, the clinical variable measurements and survivor status of patients were updated. Patients who died during the follow-up periods formed the non-survivor group. Patients who survived formed the survivor group.

Patients who had follow-up information less than a follow-up threshold were censored from analysis as their survival status is unconfirmed. For example, if a patient had a follow-up at 150 days which confirmed they were alive, but had no further update beyond that, they would be included in the 3 month follow-up group but censored from the 6 month follow-up group.



Transplantation

During data collection of the study population, a number of patients underwent successful liver transplantation for liver failure. These patients are considered dead at the time of transplantation.



Clinical Variables

Clinical and laboratory variables were chosen to represent individual organ or system function. These clinical and laboratory variables were derived retrospectively from a preliminary study using a Random Forest machine learning algorithm (Breiman, 2001). Variables which did not hold any weight in contributing to the outcome of mortality in patients were excluded to ensure that our study focused on the variables that have weight in mortality prediction and are hence included in the analysis in our study. Using this approach redundant clinical variables were eliminated, narrowing down the chosen clinical variables to 13. These include C-reactive protein (CRP), serum albumin, total bilirubin, prothrombin time, international normalised ratio (INR), ammonia, hemoglobin, serum creatinine, serum sodium, ascites and hepatic encephalopathy. Hepatic encephalopathy was classified as (0) unimpaired: no clinical evidence of hepatic encephalopathy and no defining EEG or psychometric abnormalities; (1) minimal hepatic encephalopathy: no clinical evidence of hepatic encephalopathy but abnormal EEG and/or impaired psychometric performance; and (2) overt hepatic encephalopathy: clinically evident neuropsychiatric disturbances (Asada et al., 2019). An addition of the MELD-Na (Elwir and Lake, 2016) and Child-Pugh (Child and Turcotte, 1964; Pugh et al., 1973) scores were calculated. Table 1 indicates the list of clinical variables with their physiological interpretation.


TABLE 1. The list of nodes (clinical variables) along with their physiological interpretation and associated major organ system(s) used in this study.
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Generation of Network Maps

In the network maps, individual clinical variables are represented as nodes. A significant correlation between two nodes is represented by the formation of an edge.

There are many approaches using different indices to evaluate the strength of edges between clinical variables in a network map. This ranges from simple linear approaches such as the Pearson’s correlation coefficient analysis to more complex non-linear approaches such as the information theory Mutual information analysis. In the present study, the approach of using the Pearson’s correlation coefficient with Bonferroni’s correction analysis (Armstrong, 2014) is compared against the approach of using the Mutual information analysis (Steuer et al., 2002; MacKay, 2005). An edge was formed between two clinical variable nodes if the association between two clinical variables was equal to, or greater than the determined cut-off value for the analysis index. All values that did not reach the cut-off threshold were considered zero in the adjacency matrix. For the Pearson’s correlation analysis, the cut-off refers to the correlation values that have passed the Bonferroni significance threshold of 0.0038462, which is the result of an adjusted p-value of 0.05 taking into account the number of pairwise comparisons made. For the mutual information analysis, the optimal cut-off value to elucidate informative network connections was determined to be 0.75 after testing a range of values. The use of a lower threshold resulted in an over-saturation of network connections, yielding no interpretable information, while the use of a higher threshold resulted in a lack of network connections.

The adjacency matrices for the survivor and non-survivor groups were plotted for the follow-up times of 3, 6, and 12 months as network maps. An example is illustrated in Figure 1. A force-directed graph drawing algorithm was used for network visualization. This algorithm minimizes edge crossings and facilitate clear identification of clusters in the network graph.


[image: image]

FIGURE 1. (A) Illustration of nodes and edges (B) example of an adjacency matrix (C) the network map corresponding to the adjacency matrix in (B).




Software Development

All computation and analyses were carried out using MATLAB build R2018b (The MathWorks Inc, 2018). The software developed to compute organ system network analysis requires patient data input in CSV file format. Omitting headings, clinical variables occupy rows and patient data occupies columns. Where pair-matching is utilized, the software generates two equally sized datasets with samples drawn from the original dataset and pair-matched based on the chosen matching criteria. There is an element of randomization where there is more than one possible match to a given sample.

The chosen analysis index is applied and an [n × n] adjacency matrix is generated, where n represents the number of clinical variables. Fully labeled and color distinguished weighted correlation networks of survivors and non-survivors are generated as graph subplots for each follow-up timeframe. The thickness of edges reflects the weight or strength of correlation. The software has been designed to include flexibility of customization of parameters such as node labels, edge widths, node colors, node sizes, edge colors, node layout types and titles.

Furthermore, a quantitative summary table of network parameters including number of edges, degree of connectivity, betweenness and closeness is generated (Freeman, 1978; Valente et al., 2008). An adjacency matrix of shortest paths between nodes is also included.

The written software, which code can be found in this GitHub repository (Tan, 2019), executes the following algorithm:


1.Retrieve CSV format datasets for survivor and non-survivor groups. The option to pair-match datasets with randomization based on an existing column criterion can be selected at this stage (see section: Pair-matching).

2.Execute a correlation analysis selected by user input on the datasets.

3.Output a weighted correlation adjacency matrix.

4.Generate a network map based on this adjacency matrix.

5.Calculate network quantification parameters.





Pair-Matching

During follow-up timeframes, the number of patients in the survivor and non-survivor groups continually change. As a result, the comparisons made between survivor and non-survivor group datasets drew unequal sample sizes, which could lead to a clearer observed effect in the larger sample size group. Furthermore, there may have been a difference in the severity levels of liver disease between survivor and non-survivor groups resulting in the observed effects. Pair-matching was hence implemented as a further step after initial general analysis to control for sample size and MELD-Na score (McClatchey et al., 1992). The option to pair-match can be included in step 1 of the software algorithm, using the additional pair-matching algorithm outlined in Supplementary Appendix A.

After pair-matching, the original algorithm detailed in the previous software development section will continue executing step 2 to 5. With the removal of the pair-matched criteria column, the number of clinical variables becomes 12. To prevent confusion, non-pair-matched analyses will be termed general analysis.



Correlation Analysis

Pearson’s correlation is a good measure to evaluate linear correlation between two variables, given the normal distribution of underlying data (Mukaka, 2012). This represents a simplified approach in getting a preliminary, general overview of interorgan relationship in patients. However, it is widely known that biological signaling and regulatory networks are dynamic and complex (Higgins, 2002; Janson, 2012; Blokh and Stambler, 2017). Information theory measures account for the quantity of biological information transmitted independently of network complexity, and are hence robust and sensitive to non-linear relationships and better suited for organ system network analysis (Steuer et al., 2002; Rhee et al., 2012).

Mutual information is one measure that calculates the reduction in the uncertainty of information transmitted between two variables, widely used in network reconstruction and reverse engineering (Basso et al., 2005; Ziv et al., 2007; Iglesias, 2013; Mousavian et al., 2016). It is defined as the difference between the joint entropy of X and Y and the joint entropy under the assumption of independence of X and Y, with the formula (MacKay, 2005):
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The higher the mutual information between two variables, the more dependent the two variables are to each other. The mutual information analysis was computed using an external script (Mikhail, 2020). The cut-off for this analysis index was I(X;Y) ≤ 0.75.



Network Analysis

The differences in organ system interaction between survivor and non-survivor groups was evaluated quantitatively and qualitatively for the follow-up timeframes of 3, 6, and 12 months using the Bonferroni corrected Pearson’s correlation and mutual information analysis indices.

Quantitatively, organ system interaction was evaluated using:


1.Total number of edges. This is the conventional method of comparison for differences in network structure (Tichy et al., 1979; Rowley, 1997).

2.Average degree of connectivity. A node’s degree of connectivity is the total number of edges connected to the node (Freeman, 1978; Valente et al., 2008).

3.Average closeness. A node’s closeness measure is the inverse sum of distances from the node to all other nodes in the network graph and is otherwise a measure of centrality (Freeman, 1978; Valente et al., 2008).



Qualitatively, we attempt to explain the clinical significance of notable organ system interactions and changes observed in the network maps of patients.




RESULTS


Patient Groups

The number of patients in the survivor and non-survivor groups over a follow-up timeframe of 3, 6, and 12 months is outlined in Table 2 for general, MELD-Na pair-matched Bonferroni corrected Pearson’s correlation analysis and for MELD-Na pair-matched mutual information analysis.


TABLE 2. Number of patients for (A) general analysis, (B) pair-matched correlation analysis, and (C) pair-matched mutual information analysis.
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Network Structure

Figures 2 and 3 refers to the network structure of the 3- and 6-month Bonferroni corrected Pearson’s correlation analysis. There is a clear central cluster in survivors consistently throughout both months, with a lack of any substantial clusters in non-survivors.
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FIGURE 2. 3-month Bonferroni corrected Pearson’s correlation analysis network map.
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FIGURE 3. 6-month Bonferroni corrected Pearson’s correlation analysis network map.


Figures 4 and 5 refers to the network structure of the 3- and 6-month mutual information analysis. In survivors, there is a central cluster of high interconnectivity in the 3 month network, but this cluster fails to materialize in the 6 month network. Conversely in non-survivors, there are no substantial clusters that are detected.
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FIGURE 4. 3-month mutual information analysis network map.
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FIGURE 5. 6-month mutual information analysis network map.


Figure 6 refers to the network structure of the 6-month pair-matched Bonferroni corrected Pearson’s correlation analysis. In survivors, there is a substantial central cluster with edges branching out of the central node CRP. Conversely in non-survivors, there are no substantial clusters that are detected.
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FIGURE 6. 6-month pair-matched Bonferroni corrected Pearson’s correlation analysis network map.


Figure 7 refers to the network structure of the 3-month pair-matched mutual information analysis. There is a central cluster of high interconnectivity in survivors compared to a lack of network in non-survivors.
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FIGURE 7. 3-month pair-matched mutual information analysis network map.


Overall, the network structure in survivor groups show consistent central clustering with high connectivity, in line with the overall higher number of edges compared to the non-survivor groups. Quantification of the networks are covered in the next section. The network structure for all follow-up times (3-, 6-, and 12-month) can be found in Supplementary Appendix B.



Network Analysis Quantification

The network parameters measured for each network map in the general analysis is summarized in Table 3 for Bonferroni corrected Pearson’s correlation analysis, mutual information analysis, and the respective pair-matched analysis.


TABLE 3. Network parameters for (A) correlation analysis, (B) mutual information analysis, (C) pair-matched correlation analysis, and (D) pair-matched mutual information analysis.

[image: Table 3]



DISCUSSION

The novel approach of organ system network analysis seeks to elucidate the complex mechanisms underlying life-threatening diseases of multisystem nature, in recognition that current linear clinical scores can be improved upon in assessing and reflecting (Bartsch et al., 2015; Holder and Clermont, 2015). By choosing clinical variables to represent organ systems, our study evaluated the differences in organ system connectivity between survivors and non-survivors of a group of 201 liver cirrhosis patients.

Our results demonstrate that organ system interaction was overall significantly higher in survivors compared to non-survivors, quantified by the total number of edges, average degree of connectivity and average closeness (Table 3). These findings support the hypothesis that decreased organ system interaction is associated with poor prognosis in chronic liver failure. Our findings also continue to support previous studies suggesting that systemic dysfunction in acute life-threatening pathophysiology with multisystem involvement is attributed to a loss of homeostatic interorgan connectivity (Buchman, 2002; Chovatiya and Medzhitov, 2014), most notably in the recent studies published by Asada et al. (2016, 2019). Although our study explores multisystem disease of a chronic nature, the characteristics associated with poor prognosis in non-survivors remain similar, namely the breakdown of organ system connectivity, loss of homeostatic stability and isolation of individual organ system clusters. The results of this study validate the use of a network approach in previously unexplored multisystem disease of a chronic nature and continues to highlight the importance of organ system network analysis in evaluating systemic stability of patients to improve prognostic outcome. However, it must be duly noted that this conclusion only applies to patients who have followed up and thus have a confirmed outcome at the end of the study. Patients with censored data (i.e., unknown outcome) may harbor bias within the network outcome by having a specific phenotype that results in their leaving of the study.

Current survival prediction and analysis scores such as the MELD-Na and Child-Pugh score for liver cirrhosis patients and their room for improvement in accountability of the complex mechanisms of multisystem disease encourages the consideration and investigation of alternate approaches such as the network approach. This is especially important as these scores form the basis of clinically important decisions such as the allocation of organ transplantation priority. Indeed, there has been a gradual shift toward a network approach where the original MELD score’s failure to account for specific pathophysiology and their effects on mortality risk prompted the transformation of the MELD score into the MELD-Na score (Xiol et al., 2009; Martin and O’Brien, 2015). Still, it is recognized that the extension of this clinical score to include renal biomarkers still leaves room to account for the systemic pathophysiology of liver cirrhosis. Some studies have suggested the addition of further predictive components such as in the proposal of the MELD-Plus score (Kartoun et al., 2017), while other studies have identified physiomarkers independent to the MELD score in mortality prediction. Montagnese et al. (2015) has shown that the addition of an EEG-based hepatic encephalopathy index to MELD improves prognostic accuracy, while Bhogal et al. (2019) has defined two heart rate variability indices that predict mortality in cirrhosis patients independently to MELD. The liver remains the primary site of initial pathophysiology development in cirrhosis, and though it is important to include specific liver biomarkers in survivor analysis, the progression of cirrhosis and its downstream effects means that inclusion of involved organ system biomarkers is paramount to reflecting the true complexity of liver cirrhosis.

The use of the Pearson’s correlation and mutual information analysis represent two approaches to defining the association strength between variables. Pearson’s correlation performs well under the assumption of linearity, but is widely used as the general correlation analysis index to elucidate preliminary information about a new dataset (Mukaka, 2012). In this study, such an approach is useful for achieving a general overview of the basic links within the network. Mutual information, as previously specified, accounts for the quantity of biological information transmitted independent of network complexity, and is sensitive to non-linear relationships (Steuer et al., 2002; Rhee et al., 2012). As biological networks operate in a dynamic and non-linear manner, the mutual information analysis presents a more robust measure in discerning and evaluating the true network structure of organ systems. In present study we observed that although both correlation and mutual information analyses exhibited higher network connectivity in survivors, some connections could only be detected by mutual information analysis. For example, hemoglobin level does not seem to be an important part of the correlation network in patents with cirrhosis while mutual information analysis indicates that hemoglobin is a hub in the survivor group and shares mutual dependence with other clinical variables such as serum albumin, creatinine, sodium and markers of blood coagulation. This finding may shed lights on possible adaptive mechanisms in cirrhosis which cannot be easily discovered using simple linear analyses such as Pearson’s correlation.

It is a possibility that the differences in networks between survivors or non-survivors could have been attributed to differences in the degree of liver cirrhosis severity across both groups, such that non-survivors might have an overall higher degree of disease severity. To correct for this, we carried out an analysis with pair-matching patients for MELD-Na scores. In the outcome of network graphs, there is a clear difference in the network structure between non-pair-matched and pair-matched analyses. Furthermore, the structural evolution of the networks over time also differs between non-pair-matched and pair-matched analyses. With regards to the Bonferroni corrected Pearson’s correlation analysis, the 6-month network structure of the pair-matched data (Figure 6) yields the most information as opposed to the 3 month network structure of the non-pair-matched data (Figure 3). From this, we can conclude that the degree of severity of disease is not the only driver of prognosis as the networks evolve.

We also sought to qualitatively analyse the clinical significance behind notable interactions seen on the network maps of patients. Such clinical significance can be expressed in the scope of validated literature of known pathophysiology. However, it is important to highlight that some of the interactions between clinical variables are obvious and expected, such as the [MELD-Na – total bilirubin] link and the [INR – prothrombin time] link, as these variables are closely related with a degree of dependency.

Of clinical significance are the difference in interactions of CRP in the network maps of survivors and non-survivors and the role of systemic inflammation. The survivor group maintains integration of CRP within the central cluster, whereas this interaction is lost or heavily isolated in the non-survivor group (Figures 6, 7). Conclusively, survivors maintain a link to the inflammatory and immune system, while non-survivors experience uncoupling of systemic inflammation from organ systems. CRP is an acute inflammatory protein synthesized primarily in the liver and is a key component in systemic inflammation (Sproston and Ashworth, 2018). Systemic inflammation is associated with disease progression in liver cirrhosis and patient mortality, accompanying the transition from compensated to decompensated cirrhosis, otherwise known as the systemic inflammatory response syndrome (SIRS) (Girón-González et al., 2004; Mahassadi et al., 2018). SIRS is triggered by systemic and life-threatening insults to the body (Balk, 2014).

Like many other life-threatening conditions such as sepsis, liver cirrhosis patients typically observe two phases associated with systemic inflammation. The first phase involves an increase in circulating cytokines, notably IL-6 and TNF-receptor expression (Tilg et al., 1992; Le Moine et al., 1994), which result in increased production of acute phase proteins such as CRP (Meliconi et al., 1988; Sheldon et al., 1993). This increase in circulating cytokines is largely attributed to hepatocyte death and bacterial translocation from increased intestinal permeability as a consequence of portal hypertension (Albillos et al., 2014; Arroyo et al., 2014; Bruns et al., 2014; Jalan et al., 2014). SIRS is hence characteristically observed in decompensated cirrhosis patients regardless of the presence of bacterial infection and is further associated with complications including hepatic encephalopathy and variceal bleeding (Shawcross et al., 2004; Thabut et al., 2007; Cazzaniga et al., 2009). SIRS acts in the capacity of a compensatory mechanism in maintaining systemic stability in the presence of other dysfunctional systems against life threatening illness (Gabay and Kushner, 1999; Asada et al., 2019).

The second phase occurs in the form of immune exhaustion, and in the context of liver cirrhosis is known as cirrhosis-associated immune dysfunction (CAID) syndrome (Albillos et al., 2014). CAID syndrome manifests through excessive activation of the inflammatory and immune system and loss of liver immune surveillance, resulting in non-responsiveness to immune challenges, endotoxin tolerance and immunodeficiency (Tiegs and Lohse, 2010; Giannelli et al., 2014; Sipeki et al., 2014). Given the homeostatic role of the liver in systemic immunity, progressive loss of liver function can consequently lead to failure in regulating the inflammatory response (Christou et al., 2007). Examples of such mechanism involve the breakdown of gp130-STAT3 signaling in hepatocytes and production failure of acute phase proteins. These components control the inflammatory response through mediation of autoregulatory myeloid-derived suppressor cells, an innate immune response in sepsis (Wong et al., 2005; Sander et al., 2010). The onset of a bacterial infection can be encouraged by the immunodeficient environment associated with CAID syndrome, or conversely it can push the onset of CAID syndrome. Regardless, the additional presence of bacterial infection increases the probability of mortality four-fold (Arvaniti et al., 2010) and likely represents the transition point of a patient into an uncontrolled septic state. This is significant as sepsis is responsible for 50% of deaths in cirrhosis patients (Wong et al., 2005). This transition point also likely reflects the loss of integration of the axis of inflammation with organ systems in non-survivors as a prognostic determinant, brought about by CAID syndrome in conjunction to bacterial infection. Consequently, we should expect to see the presence of peritonitis or infection in non-survivors.

The presence of highly interlinked central clusters observed in the network maps of survivors reflects successful homeostatic organ system connectivity, yet this is unlikely to be seen in normal, healthy people as increased organ system connectivity has been established as a compensatory mechanism to maintain homeostatic stability in preventing mortality during life-threatening illness (Gabay and Kushner, 1999; Asada et al., 2019). In fact, the network structures observed may indeed be a reflection of overcompensation, the same way the fight or flight reaction is all or nothing.

A correlation analysis is appropriate for generating the network map of a group of patients, given that multiple samples are available for each pair of variables being analyzed. However, this approach does not work with only a single patient, a shortcoming of such network analysis for feasible application in medicine. To make the network approach clinically viable, there must be a method to analyze the network of a single patient. This is made possible with a recently introduced network type, termed a parenclitic network, which makes it possible to represent a collection of isolated and heterogenous scalar values as a network (Zanin et al., 2014). The basis upon which this works is by calculating the deviation between the data of a single patient with the pre-constructed reference model to weight the link between corresponding nodes. This mathematical framework involving high level analysis is suitable regardless of relationship type or dataset, as long as features are numerical. With this approach, the network map of a single patient can be generated and analyzed mathematically, and with expert domain knowledge input, presents a viable method in evaluating multisystem disease.

Further models using a network approach should include more physiological data, such as heart rate variability and temperature variability indices. Reduced heart rate variability and body temperature variability are known to be inversely associated with increased mortality in cirrhosis patients, where their prognostic value is independent of MELD or Pugh scores (Mani et al., 2009; Bhogal et al., 2019; Bottaro et al., 2020). In a subset of patients investigated, the uncoupling of the autonomic nervous system and cardiovascular system was found to be associated with mortality in liver cirrhosis patients. Clinically, excessive inflammation during cirrhosis progression is known to facilitate cytokine-induced autonomic neuropathy and the uncoupling of the cardiac pacemaker regulation (Hajiasgharzadeh et al., 2011). While such a physiomarker adds immense clinical value to the model, further exploration is required to determine the optimal subset and number of clinical variables for organ system representation and network analysis. A wide range of feature selection methods exist that may be helpful in arriving at the optimal subset of clinical variables (Maniruzzaman et al., 2018) and should be further investigated. Future studies will benefit from including larger number of patients from different hospitals. The low number of patients used to construct the non-survivor networks presents as a limitation in our study. Our data cannot be generalized to all cirrhotic patients as our cohort of patient data comes from a single hospital and our conclusions can only apply to patients who have followed up throughout the length of the study.



CONCLUSION

This is the first study to apply an organ system network analysis approach to a multisystem disease of chronic nature, providing quantitative and qualitative evidence of the role of systemic stability in patient outcome. Such an evaluation method of organ system interactions has high potential in clinical application for improving patient outcomes with proper implementation, given the room to improve within our current clinical score methods for decision making in the accountability of the complex pathophysiology of multisystem disease.
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Epilepsy is one of the most common disorders of the brain. Clinically, to corroborate an epileptic seizure-like symptom and to find the seizure localization, electroencephalogram (EEG) data are often visually examined by a clinical doctor to detect the presence of epileptiform discharges. Epileptiform discharges are transient waveforms lasting for several tens to hundreds of milliseconds and are mainly divided into seven types. It is important to develop systematic approaches to accurately distinguish these waveforms from normal control ones. This is a difficult task if one wishes to develop first principle rather than black-box based approaches, since clinically used scalp EEGs usually contain a lot of noise and artifacts. To solve this problem, we analyzed 640 multi-channel EEG segments, each 4s long. Among these segments, 540 are short epileptiform discharges, and 100 are from healthy controls. We have proposed two approaches for distinguishing epileptiform discharges from normal EEGs. The first method is based on Signal Range and EEGs' long range correlation properties characterized by the Hurst parameter H extracted by applying adaptive fractal analysis (AFA), which can also maximally suppress the effects of noise and various kinds of artifacts. Our second method is based on networks constructed from three aspects of the scalp EEG signals, the Signal Range, the energy of the alpha wave component, and EEG's long range correlation properties. The networks are further analyzed using singular value decomposition (SVD). The square of the first singular value from SVD is used to construct features to distinguish epileptiform discharges from normal controls. Using Random Forest Classifier (RF), our approaches can achieve very high accuracy in distinguishing epileptiform discharges from normal control ones, and thus are very promising to be used clinically. The network-based approach is also used to infer the localizations of each type of epileptiform discharges, and it is found that the sub-networks representing the most likely location of each type of epileptiform discharges are different among the seven types of epileptiform discharges.

Keywords: EEG, epileptiform discharges, adaptive fractal analysis, Hurst parameter, singular value decomposition, brain network


1. INTRODUCTION

Epilepsy is a chronic neurological disease characterized by the paroxysmal seizures that affects people of all ages (Li et al., 2019). According to the WHO, about 50 million people worldwide have epilepsy, making it one of the most common neurological diseases in the world (Perkins, 2019). The ictal EEG is characterized by the presence of epileptiform discharges occurring before or after a seizure (Tautan et al., 2018). Unlike 24 h monitoring where one may be able to record the occurrence of seizures of a patient once or a few times, in clinical examination where only a few hours recording is considered feasible, often epileptiforms rather than actual seizures may be more likely to be observed. As epileptiform discharges can already provide information about seizure localization (Richards et al., 2018) and epileptic syndrome (Basiri et al., 2019), identification of epileptiform discharges is very important.

There are a variety of ways to represent EEG. Among the simplest and most popular are to compute the amplitude values (Toet et al., 2005), compute the Power Spectral Density (PSD) (Gao et al., 2007), or take wavelet transform (Adeli et al., 2003; Subasi, 2007; Faust et al., 2015; Chen et al., 2017). Clinically, however, neurologists still customarily examine the long continuous signals visually to identify epileptiform discharges or other features from EEG. Unfortunately, this is quite time-consuming and potentially inaccurate due to human fatigue. This problem has motivated much effort to develop novel algorithms to automatically detect epileptiform discharges or other features from EEG (Sharmila and Geethanjali, 2019). Among the notable works along this line are to use entropy (Nicolaou and Georgiou, 2012; Arunkumar et al., 2016, 2017) and complexity measures (Gao et al., 2011a, 2012b; Martis et al., 2015; Medvedeva et al., 2016; Pratiher et al., 2016; Sikdar et al., 2018). However, the majority of the works published are based on electrocorticogram (ECoG), which is invasively obtained by means of electrodes applied directly over or inserted into the cerebral cortex (Wang et al., 2019). Clinically, the more widely available form of EEG is the non-invasive surface EEG. Compared with ECoG, surface EEG signals are much poorer in terms of signal-to-noise ratios (Haufe et al., 2018). Besides noise, surface EEG recordings are also often contaminated by various kinds of artifacts (Islam et al., 2016; Brienza et al., 2019), including eye movements (e.g., blinking), muscle activities (e.g., swallowing, head movements), and the heartbeat (Kappel et al., 2017). These noise and artifacts greatly hinder the proper interpretation of the underlying neural information processing and add enormous difficulty to automatically identify epileptiform discharges from normal controls. Although machine learning based approaches (Mirowski et al., 2008; Shen et al., 2009; Antoniades et al., 2016; Kuswanto et al., 2017; Ullah et al., 2018; van Putten et al., 2018; Subasi et al., 2019) can partly solve some of these problems, overall, the problem remains to be challenging, and calls for easily-interpretable, less black-box based approaches.

To develop accurate fundamental principle-based instead of black-box based approaches to automatically detect epileptiform discharges, it is critical to comprehensively account for all the major features in the EEG that distinguish epileptiform discharges from normal ones. Based on this rationale, we will consider the long range correlation properties of EEG, together with the Signal Range and the relative energy in the alpha wave band of an EEG signal. The long range correlation properties are characterized by the Hurst parameter H which has been found to be able to characterize effectively dynamical changes in EEG signals. H is among the simplest measures from nonlinear science (Gao et al., 2007). Here we will employ adaptive fractal analysis (AFA) to compute H (Hu et al., 2009; Gao et al., 2011b, 2012a; Tung et al., 2011; Riley et al., 2012; Kuznetsov et al., 2013), which is an improvement DFA and can better deal with noise, non-stationarity, and various kinds of artifacts in surface EEG (Peng et al., 1994; Hu et al., 2001; Chen et al., 2002, 2005; Xu et al., 2005, 2011; Ma et al., 2010).

The human brain is comprised of numerous neurons that form a complicated network (Bashan et al., 2012; Bartsch et al., 2015; Liu et al., 2015; Ivanov et al., 2016; Denève et al., 2017; Gupta et al., 2018; Xue and Bogdan, 2019). Over the recent years, many researches have been conducted to elucidate the characteristics of cerebral network based on structural and functional scales (Smitha et al., 2017; Smith and Escudero, 2017; Xue and Bogdan, 2017; Gupta et al., 2018, 2019; Wang et al., 2018). The information yielded by an EEG channel is essentially the difference of electrical activity between two electrodes in the time-domain (Pardey et al., 1996; Lopez et al., 2016); the amplitude, frequency, and synchronization of the brain waves and background will change (Seeck et al., 2017; Vanherpe and Schrooten, 2017), depending on which montage is chosen (e.g., earlobe reference, averaged reference, or bipolar Christodoulakis et al., 2013; Geier and Lehnertz, 2017; Rana et al., 2017; Acharya and Acharya, 2019; Rios et al., 2019). For the EEG signals to reflect the networked nature of the brain, it is important to construct networks based on the EEG signals or the features of EEG. As we will discuss later, such a strategy has additional advantages in further suppressing noise and artifacts, and making the dependence of the results on the chosen montages weaker.

The remainder of the paper is organized as follows. In section 2, we briefly describe the EEG data and analysis methods. In section 3, we present results of our analysis. In section 4, we summarize our findings.



2. MATERIALS AND METHODS


2.1. Data

The EEG data analyzed in this study were from the First Affiliated Hospital to Guangxi Medical University. The studies involving human participants were reviewed and approved by the ethics committee of the First Affiliated Hospital to Guangxi Medical University. The participants provided their written informed consent to participate in this study. Fifty-nine epilepsy patients underwent a 3 h video-EEG monitoring with 19-channel EEG recording with electrodes placed on the scalp under the international 10–20 system at 256 Hz sampling rate. The electrode impedances were kept below 10KΩ. The 19 scalp electroencephalographic electrodes were arranged according to the names Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2.

All epileptiform discharges were annotated by an experienced clinical neurophysiologist based on the average montage with an analog bandwidth of 0.1 ~ 70 Hz and a notch filter of 50Hz. EEG signals were segmented into 4s epochs and were assigned random numbers for each participant. The collected epochs were transformed into European Data Format (EDF) for further analysis. In total, there were 532 EEG recordings of epileptiform discharges and 100 healthy controls, each 4s long, from all the participants. Among the 532 short epileptic discharges, there were 69 spikes, 82 sharps, 174 spike, and slow wave complexes, 72 sharp and slow wave complexes, 64 polyspike complexes, 77 polyspike, and slow wave complexes and 2 spike rhythmic discharges. Note the numbers for these 7 epileptiform discharges sum up to 540, which is slightly larger than 532. The reason is a few discharges were considered to simultaneously belong to more than 1 of the 7 different epileptiform discharges. For convenience of referencing, the definitions for these 7 epileptiform discharges are listed below. Examples of their waveforms are shown in Figure 1.

• Spike: The spikes are the most basic paroxysmal EEG activity, with a duration of 20~70 ms. Amplitude varies but are typically >50 uV (Kane et al., 2017).

• Sharp: A sharp wave is similar to the spike, and its time limit is 70~200 ms (5~14 Hz). Its amplitude is between 100 and 200 uV, and the phase is usually negative.

• Spike and slow wave complex: An epileptiform pattern consisting of a spike and an associated slow wave following the spike, which can be clearly distinguished from the background activity; may be single or multiple (Kane et al., 2017).

• Sharp and slow wave complex: An epileptiform pattern consisting of a sharp wave and an associated slow wave following the sharp wave, which can be clearly distinguished from the background activity; may be single or multiple (Kane et al., 2017).

• Polyspike complex: A sequence of two or more spikes.

• Polyspike and slow wave complex: An epileptiform pattern consisting of two or more spikes associated with one or more slow waves.

• Spike rhythm: refers to a widespread 10~25 Hz spike rhythm outbreak, with an amplitude of 100~200 uV and the highest voltage in the frontal area, lasting more than 1 s.


[image: Figure 1]
FIGURE 1. Typical waveforms of the 7 major epileptiform EEG, where (A–G), denotes spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges, respectively.


Recall that a few epileptiform discharge waveforms were considered to simultaneously belong to more than 1 of the 7 different epileptiform discharges. Because of this, further considering the differences among the seven epileptiform discharges becomes impossible and is not pursued here.



2.2. Computation of the Signal Range and the Energy of the Alpha Wave Component

Often EEG epileptic discharges are associated with a larger amplitude than the normal control EEG. This motivates us to compute a simple statistic, which we call Signal Range, to quantify this effect. It is computed as follows:

[image: image]

where x(t) is the EEG signal. This procedure is applied to each of the 19 EEG signals with reference to the earlobes (i.e., the difference of the EEG signals measured at the 19 electrodes and the earlobes), or to the difference of the EEG signals according to the network construction, as detailed in section 2.4. In the former case (i.e., with reference to the earlobe), the final Signal Range is estimated as the average of the 10 largest Signal Range estimated from the 19 EEG signals.

In clinical applications, the brain wave is often categorized into five bands: delta (0.5~3 Hz), theta (4~7 Hz), alpha (8~13 Hz), beta (14~30 Hz), and gamma (>30 Hz), respectively. The alpha wave is most visible when human beings are relaxed with eyes closed. We have found that the alpha wave component on occipital area is often larger for epileptiform discharges. To compute this component, we employ a Fourier transform of the EEG signal, obtain the power spectral density (PSD), and finally integrate the PSD curve over the alpha wave band.



2.3. Adaptive Fractal Analysis (AFA)

AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data for a given time scale and then analyzes the scaling of the residuals to the fit as a function of the time scale (Hu et al., 2009; Tung et al., 2011). The main steps of AFA to estimate H are as follows:

Suppose starting from a stationary incremental process x(1), x(2), x(3),…, construct a random walk through the following equation:

[image: image]

where [image: image] is the mean of the process. Based on this random walk u(n), we wish to get a global trend v(i), i = 1, 2, …, N for any specific time scale w, where N is the length of the original time series. This is achieved by dividing the above random walk process into overlapped windows, where the size of each window w contains an odd number of samples, and adjacent windows overlap by (w + 1)/2 samples. The random walk process in each window is fitted by a polynomial of order M, and the polynomials in overlapped regions are combined to yield a single global trend. Typically M should be 1 or 2, a linear or quadratic function. The local fitting ensures that the global trend is optimal or close to optimal, as locally Taylor series expansion is used.

After we get the global trend v(i) of u(i) by the above method, the residual u(i) − v(i) can describe the fluctuation around the global trend. For fractal processes, the Hurst exponent H can be computed by the following equation,

[image: image]

The above equation means by calculating the variance of the residual between the original random walk process and the fitted global trend under a varying window w, we can obtain a linear (or multiple linear) relation between log2 F(w) and log2 w.

To illustrate the procedures described, we have shown in Figure 2A an example of EEG signal and its global smooth trend in Figure 2B. By varying the window size w, we can obtain a curve of log2 F(w) and log2 w shown in Figure 2C, where we observe two scaling regimes, i.e., the curve can be fitted by two straight lines, with the slopes being the Hurst parameter on short and long time scales, respectively. The H on short time scales will be focused here.


[image: Figure 2]
FIGURE 2. Illustration of estimation of the Hurst exponent using AFA: (A) raw EEG of a channel, (B) fitting (the red curve, with window size w = 21) of the EEG signal by the adaptive algorithm described, and (C) illustration of the scaling law with AFA.




2.4. Cerebral Network Construction

Brain activities involve spatial-temporal coordinated dynamics of numerous neurons in different regions of the brain, i.e., involve numerous functional brain networks. To better characterize the synergistic effects among the brain networks, it is important to construct brain networks based on multi-channel EEG signals. For this purpose, we consider networks with nodes being the 19 electrodes. Between any two of the nodes, we consider the difference between the two associated EEG signals. This is illustrated in Table 1 with a 19 × 19 table consisting of the difference of the EEG signals between two electrodes. Therefore, each element in the Table 1 is a time series. From it we can compute the Signal Range, the relative energy of the alpha wave component, and the Hurst parameter, as detailed earlier. Using each variable, we then obtain a network. Further analysis of these three networks will be based on singular value decomposition (SVD), which we will explain next.


Table 1. A 19 × 19 table consisting of the difference of the EEG signals between two electrodes.

[image: Table 1]



2.5. Singular Value Decomposition (SVD)

SVD is a decomposition method that can be applied to arbitrary matrices. For an n × m matrix A, it is generally expressed as:

[image: image]

where, Un×n and Vm×m are orthogonal matrices, which are composed of eigenvectors of square matrices, AAT and ATA, respectively. Σn×m, called the singular value matrix, is non-zero only on the main diagonal with the elements there being the square root of the eigenvalues of AAT (or ATA). Denote them by Σii = σi, i = 1, 2, …, r, where r is the rank of AAT (or ATA). They are usually written in descending order. In this work, we only need the largest singular value of the three networks based on the Signal Range, the energy of the alpha wave component, and the Hurst parameter.



2.6. Inference of the Localization of the Epileptiform Discharges

Based on the networks constructed using the three variables, the signal range, the relative energy of the alpha wave component, and the Hurst parameter, and using SVD, we can infer the localization of each type of epileptiform discharges. The approach is as follows. For each network of a subject, after we obtain the SVD, we project each column vector of the network to the singular vector corresponding to the largest singular value. The vector is then retained if the absolute value of the projection coefficient is ≥ 0.5. These vectors allow us to determine which channels of the original data are important. The procedure is applied to each of the three networks of the subject. We assume the common channels indicate the localization of this particular type of epileptiform discharge for that subject. As this localization may vary among subjects, we determine the most likely localization of a particular type of epileptiform discharge for all relevant subjects by requiring that each channel occurs at least with certain probability. Here, we has chosen this probability to be 0.55.



2.7. Random Forest Classifier (RF)

Random forest (RF) is an ensemble-based learning technique for classification (Cutler et al., 2012), which has been shown to have high accuracy, is not affected by overtraining, and does not require normalization of the input data. It consists of many separate classification trees, each of which is obtained through a separate bootstrap sample from the data set and each tree classifies the data. A majority vote among the trees provides the final result.

The objective of the RF classifiers used here is to classify which of the two classes an EEG signal belongs to: normal or epileptic discharges. The inputs to the RF classifier are the square of the largest singular values of the three networks (e.g., based on the Signal Range, the energy of the alpha wave component, and Hurst parameters) based on SVD. Following usual practice, we have randomly taken one-third of the total data as testing data and two-thirds of the data for training the model in this paper.



2.8. Evaluation of Performance

To assess the consistency of the diagnosis by the neurologists and machine classification, we need to compute the classification accuracy. This can be accomplished by computing the receiver operating characteristic (ROC) curve and many statistics derived from the ROC curve. In fact, all these are best understand with the confusion matrix, which is a table with two rows and two columns that reports the number of false positives (FP), false negatives (FN), true positives (TP), and true negatives (TN). From them we can define three major metrics:
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Note that the sensitivity is also called true positive rate (TPR) and 1 − specificity is also called false positive rate (FPR).

The ROC is a plot of TPR vs. FPR using different threshold values as a sweeping variable. Not suffering from class imbalance, the ROC is a good way to characterize imbalanced data sets. The area below the ROC is called area under curve (AUC). Its value takes from 0 to 1. A value of AUC being 0.5 means the classification model has no predictive ability at all. On the other hand, when the value of AUC reaches 1, it means that the probability density functions of negative and positive classes are completely separated, and the prediction ability is 100%. This is equivalent to the ROC being a unit step function.




3. RESULTS

Recall that among the 640 EEG data sets analyzed here, 69, 82, 174, 72, 64, 77, and 2 data sets are for spike, sharp, spike and slow wave complex, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, and spike rhythm, respectively, and 100 are for normal controls. Figures 3A,B depicts examples of typical wave forms of epileptiform discharge and the normal EEG. One easy way to appreciate their difference is to construct 2-D phase diagrams shown in Figures 3C,D, which are constructed using the summation of the 19 EEG signals shown in Figures 3A,B. As one can easily understand, the Signal Range can be conveniently estimated from such 2-D phase diagrams. On average, we have observed that the Signal Range is larger for epileptiform discharges than for normal controls. However, this is only in terms of average. Opposite situations also exist. An example is shown in Figure 4, where we observe that the Signal Range for epileptiform discharges can be much smaller than that of normal EEG. Of course, such cases are well-known in the literature and clinically, and motivate us to also account for other features of EEG signals.


[image: Figure 3]
FIGURE 3. Comparison of epileptiform discharges and normal EEG: (A) example of epileptic discharges, (B) normal EEG, (C,D) 2-D phase diagrams using the summation of the 19 epileptiform discharges and normal EEG signals shown in (A,B), respectively, which can be used to estimate Signal Range.



[image: Figure 4]
FIGURE 4. Same as Figure 3, except data were from another subject showing that Signal Range for epileptiform discharges can be smaller than that of normal EEG: (A) example of epileptic discharges, (B) normal EEG, (C,D) 2-D phase diagrams using the summation of the 19 epileptiform discharges and normal EEG signals shown in (A,B), respectively, which can be used to estimate Signal Range.


To complement the Signal Range, let us examine the long range correlations captured by the Hurst parameter H. We have calculated H for the 19 EEG signals shown in Figures 3, 4 and then taken the average. In Figure 5, we have constructed scatter plots using Signal Range and Hurst parameter H. We observe that the three cases, the polyspike and slow wave complex and the spike rhythm, are completely separated from the normal control group, as shown in Figures 5F,G. The separations for the other 5 cases, although not 100%, are also quite good, as is evident from Figures 5A–E. These plots highly suggest the classification accuracy will be very high.


[image: Figure 5]
FIGURE 5. Scatter plots using features Signal Range and the Hurst parameter H, where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These plots highly suggest the classification accuracy will be very high.


To compute the classification accuracy based on the Signal Range and the Hurst parameter, we have employed the RF classifier. We have randomly taken two-thirds of the data as the training data and the remaining one-third of the total data as the testing data. The class distribution of the samples in the training and testing data set is summarized in Table 2. The test performance of the classifier can be determined by computing the metrics defined in section 2.7. The confusion matrix in Table 3 (Method One) shows that 6 out of 34 normal subjects are classified incorrectly by the RF as the epileptiform discharge, 5 out of 180 epileptiform discharges are classified incorrectly as the normal subject. Table 4 shows classification performance. It can be seen that it provides the accuracy of 94.86%, sensitivity and specificity of 97.22 and 82.35%. Figure 6 (the red curve) shows the ROC curve for the testing data of the RF classifier with all seven types of epileptiform discharges grouped into one super class. The AUC of the red curve is 0.9297.


Table 2. Class distribution of the samples in the training and test data sets.
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Table 3. Confusion Matrix for the testing data of 180 epileptiform discharges and 34 normal controls: Method One uses Signal Range and H, Method Two is based on the networks constructed from the Signal Range, the energy of the alpha wave component, and the H.

[image: Table 3]


Table 4. Classification performance measures.
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FIGURE 6. The ROC curve for the testing data. The red and blue curves show respectively the ROC based on methods using Signal Range and H and networks built on Signal Range, energy of the alpha wave component, and H. The AUC for the blue and red curves is 0.9882 and 0.9297, respectively.


To improve the accuracy of classification, we have developed a brain network based approach. Specifically, three separate networks are constructed, based on the Signal Range, the energy of the alpha wave component, and H. Extracting the Signal Range is straightforward. Extracting the energy of the alpha wave component is a little more complicated, but can be readily done (Gao et al., 2007). As shown in Figure 7, we can see that typical PSD for epileptiform discharges and normal EEG show significant difference in the energy of the alpha wave component: it is often larger for epileptiform discharges than for normal. Obtaining H has already been done. Examples of heat maps for these networks are shown in Figure 8. Each of these networks is further analyzed by SVD. We have focused on the square of the first singular value as the final features. In Figure 9, we have constructed scatter plots using the square of the first singular values of the networks based on the Signal Range and the energy of the alpha wave component. We observe that the difference between the seven types of epileptiform discharges and the normal EEG is very significant.


[image: Figure 7]
FIGURE 7. Typical PSD curves for epileptiform discharges and normal EEG showing that the relative energy of the alpha wave component for epileptiform discharges is often larger for that of normal EEGs.



[image: Figure 8]
FIGURE 8. Heat maps illustrating the three types of networks described in section 2: (A,C,E) are for epileptiform discharges while (B,D,F) are for normal EEG.



[image: Figure 9]
FIGURE 9. Scatter plots using features from networks based on the Hurst parameter and the Signal Range, where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These plots highly suggest the classification accuracy will be very high.


Again, let us input the square of the first singular values of the networks based on the Signal Range, the energy of the alpha wave component, and the H to the RF classifier. Table 3 (Method Two) shows that 1 out of 34 normal subjects are classified incorrectly as the epileptiform discharge, while 2 out of 180 epileptiform discharge is classified incorrectly as the normal subject. Clearly, this network based method is much improved over the first method, which is based on Signal Range and the Hurst parameter, as the number of misclassifications with this new method is much reduced. With this network based method, the RF classifier has a sensitivity, specificity, and accuracy of 98.89, 97.06, and 98.60%, respectively, in contrast with that of 97.22, 82.35, and 94.86%, which are the basic parameters for the method based on the Signal Range and the Hurst parameter. These numbers are summarized in Table 4, and the blue ROC curve shown in Figure 6 (with all seven types of epileptiform discharges grouped into one super class). While the ROC curve is already close to a unit step function, the result for the training data is even better (and thus not shown here).

We have tried to infer the localizations of each type of epileptiform discharges based on the approach described in section 2.6, whose essence is to equate the sub-network representing the localization of each type of epileptiform discharge to the nodes which generate the most likely alpha band energy, signal range, and the Hurst parameter of that type of epileptiform discharge. The result is shown in Table 5. We observe that while the channels O1 and O2 have appeared in most of the epileptiform discharges, the sub-networks representing the most likely location of each type of epileptiform discharges are different among the seven types of epileptiform discharges studied here.


Table 5. The localization of the epileptiform discharges.

[image: Table 5]

Finally, we have compared our results with that of Anh-Dao et al. (2018), who developed an expert system employing multiple state-of-the-art signal processing and machine learning techniques including wavelet transform, spectral filtering, and artificial neural networks for the purpose of automatically detecting epileptic spikes. They achieved an AUC of 0.945, which is slightly better than our Signal Range and the Hurst parameter based method. This is understandable, since our Signal Range and the Hurst parameter based method is so much simpler than their method. Interestingly, our network based approach, which is of similar simplicity with our Signal Range and the Hurst parameter based method, is much more accurate that their method, since our AUC is 0.9882. Most importantly, both of our methods are based on fundamental principles rather than the black-box approach, and therefore, either of our method has the prospect of being widely deployed in clinical setting.



4. CONCLUSION

In this paper, we have proposed two approaches for distinguishing epileptiform discharges from normal EEGs, with the aim of being able to use them widely in a clinical setting. Our first method is based on Signal Range and the Hurst parameter. Every component of our method can be readily understood and implemented based on first principles. Although simple, the approach already achieves a high detection accuracy of 94.86%. To improve the accuracy of detection, our second method employs the notion of network, with the hope of capturing the functioning of human brain network to some degree. Specifically, our approach involves three types of networks, one based on the Signal Range, the second based on the energy of the alpha wave component of EEG, and the third based on the Hurst parameter. Each of the networks is analyzed by SVD, and the square of the first singular value is utilized to construct features to distinguish epileptiform discharges from normal controls. This network based approach, while still fully first principle based and readily understandable, achieves a very high accuracy of 98.60%. This accuracy is higher than a recent approach proposed by Anh-Dao et al. (2018), which was an expert system employing multiple state-of-the-art signal processing and machine learning techniques including wavelet transform, spectral filtering, and artificial neural networks for the purpose of automatically detecting epileptic spikes. Most importantly, both of our methods are based on fundamental principles rather than the black-box approach, and therefore, are very promising to be used clinically.

We have also designed a network-based approach to infer the localizations of each type of epileptiform discharges based on the networks constructed using the three variables, the signal range, the relative energy of the alpha wave component, and the Hurst parameter. The essence of the approach is to equate the sub-network representing the localization of each type of epileptiform discharge to the nodes which generate the most likely alpha band energy, signal range, and the Hurst parameter of that type of epileptiform discharge. We have found that while the channels O1 and O2 have appeared in most of the epileptiform discharges, the sub-networks representing the most likely location of each type of epileptiform discharges are different among the seven types of epileptiform discharges studied here.

It is worth noting that the epileptiform discharges analyzed here were provided in two batches: in the first batch, which was about 2/3 of the data analyzed here, the accuracy was similar to that reported here. Then more epileptiform data were given to us by clinical doctors to examine whether the accuracy remained as high. It was yes. Nevertheless, the data analyzed here were still quite limited. It would be interesting and important to further validate the proposed approaches with more data in different clinical sets.
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The RR-interval time series or tachograms obtained from electrocardiograms have been widely studied since they reflect the cardiac variability, and this is an indicative of the health status of a person. The tachogram can be seen as a highly non-linear and complex time series, and therefore, should be analyzed with non-linear techniques. In this work, several entropy measures, Sample Entropy (SampEn), Approximate Entropy (ApEn), and Fuzzy Entropy (FuzzyEn) are used as a measure of heart rate variability (HRV). Tachograms belonging to thirty-nine subjects were obtained from a cardiac stress test consisting of a rest period followed by a period of moderate physical activity. Subjects are grouped according to their physical activity using the IPAQ sedentary and active questionnaire, we work with youth and middle-aged adults. The entropy measures for each group show that for the sedentary subjects the values are high at rest and decrease appreciably with moderate physical activity, This happens for both young and middle-aged adults. These results are highly reproducible. In the case of the subjects that exercise regularly, an increase in entropy is observed or they tend to retain the entropy value that they had at rest. It seems that there is a possible correlation between the physical condition of a person with the increase or decrease in entropy during moderate physical activity with respect to the entropy at rest. It was also observed that entropy during longer physical activity tests tends to decrease as fatigue accumulates, but this decrease is small compared to the change that occurs when going from rest to physical activity.

Keywords: exercise, stress test, heart rate variability, tachograms, entropy, complexity, physical conditioning


INTRODUCTION

The variability of human heart rate (HRV), is obtained by measuring the beat-to-beat changes in the duration of the RR interval of the electrocardiogram (ECG), is the result of the combination of different physiological control systems, which operate on different scales temporary and that allow the functioning of the body to adapt to physical, environmental or other changes. Such fluctuations have been represented as a superimposition of rhythms, which contribute to the neuroautonomic modulation of the heart rhythm in healthy conditions, and are altered by a wide variety of disease states. In fact, there is a consensus among the scientific community that the long-term RR interval time series are non-linear and multifractal and that the HRV scale behavior is altered with aging, during physical exercise and in pathological conditions such as for example, myocardial infarction (Iyengar et al., 1996; Ivanov et al., 1999a; Huikuri et al., 2000; Bernaola-Galván et al., 2017; Gómez-Extremera et al., 2018; Faes et al., 2019). It is also widely accepted that the evaluation of HRV on different time scales has allowed us to give a quite satisfactory explanation of the short-term mechanisms underlying cardiovascular control (Malliani et al., 1991; Cohen and Taylor, 2002; Xiong et al., 2017). When heart rate variability (HRV) is reduced, we associate this reduction with an elevated risk for cardiovascular disease (Tsuji et al., 1994; Felber Dietrich et al., 2006), and an increase in mortality has also been reported in patients with circulatory system diseases (Ziegler et al., 2008; Drawz et al., 2013). HRV can be extracted from the ECG; we localize the R points and calculate the RR-intervals time series or tachograms. HRV is usually measured under well-controlled conditions over short periods of time of few minutes. Today, there is a greater use of ambulatory HRV measurement, usually with the use of a long-term ambulatory meter or Holter.

Long-term measurement makes it easy to assess the influence on HRV of activities of daily living as physical exercise. Changes in HRV induced by low or intense physical activity have been extensively reported (Tulppo et al., 1996; Aubert et al., 2003; Leicht et al., 2008; Goya-Esteban et al., 2012; Weippert et al., 2014; Taylor et al., 2017). In particular, in a seminal article, Karasik et al. (2002) noted how the dynamics of the heartbeat can change dramatically with physical activity. They noted that there are important differences in cardiac regulation associated with rest and exercise that cannot be clearly distinguished when analyzing the combined records of rest and exercise. They proposed that cardiac dynamics can be represented by a biased random walk toward some preferred levels of attraction: at rest, both the sympathetic and parasympathetic systems are active, and each attracts the walker to its own level. When the walker is between the two levels, each level biases in the opposite direction, virtually canceling the effect of the other. Therefore, the walker is free to move in both directions until he crosses either level and then is forced to return. With this proposal, they explained the crossover that they found in the scaling behavior of a higher value of the correlation exponent on short scales, where the fluctuations of the walker are not limited, to a lower value of the exponent on large time scales, where the walker’s dynamics is limited by the levels of attraction of the sympathetic and the parasympathetic.

During exercise, the sympathetic system dominates and the walker fluctuates around this level producing anti-correlated behavior on short time scales. However, since the level of attraction changes over time and as the walker follows these changes, fluctuations in the walk increase on intermediate time scales, causing a crossover to a more correlated behavior (Karasik et al., 2002).

Tachograms are non-linear time series, highly inhomogeneous, and non-stationary (Sugihara et al., 1996), they fluctuate in a complex way, suggesting that different parts of the signal have different scaling properties (Ivanov et al., 2001, 2002; Guzmán-Vargas et al., 2005; Voss et al., 2009; Shekatkar et al., 2017); therefore, non-linear methods can better capture changes in HRV that cannot be captured by linear methods. To analyze these time series, it has been used a lot of non-linear methodologies, for instance, detrended fluctuation analysis (Peng et al., 1995; Hu et al., 2001; Guzmán-Vargas et al., 2005; Muñoz Diosdado et al., 2005), time irreversibility (Porta et al., 2008; Visnovcova et al., 2014), fractal dimension (Higuchi, 1988; Eke et al., 2002), multifractal spectra (Goldberger et al., 2002; Aguilar-Molina et al., 2019), and a great number of other non-linear methodologies, and among them several entropy measures have been used to the same objective [see for instance (Shi et al., 2017) and references (Peng et al., 1995; Hu et al., 2001; Ivanov et al., 2001; Guzmán-Vargas et al., 2005; Muñoz Diosdado et al., 2005; Voss et al., 2009; Shekatkar et al., 2017) in that article]. The entropy of a dynamic system measures the information contained in its current state (Xiong et al., 2017), higher values of entropy indicate a more complex signal, and lower value of entropy implies less complexity of the signal. Entropy measurements can be applied to noisy processes with important stochastic components such as those that describe the dynamic activity of real-world systems, and they have been applied with great success to many fields of research, including HRV (Kurths et al., 1995; Porta et al., 1998; Vikman et al., 1999; Vigo et al., 2010; Voss et al., 2015; Xiong et al., 2017). The so-called conditional entropy includes a wide range of entropy measurements and estimates that have been recently proposed to quantify the complexity of a time series (Xiong et al., 2017). These measures, which include Approximate Entropy (ApEn; Pincus, 1991; Richman and Moorman, 2000), Sample Entropy (SampEn; Richman and Moorman, 2000; Lake and Moorman, 2011), Fuzzy Entropy (FuzzyEn; De Luca and Termini, 1972; Chen et al., 2007), corrected conditional entropy (Porta et al., 1998), and permutation entropy (Bandt and Pompe, 2002), are widely used for estimating conditional entropy in various fields.

One of the most important entropy measures is SampEn (Pincus, 1991; Richman and Moorman, 2000) which lately has been the most used because it has several advantages, one of which is that its values are stable with the size of the time series, SampEn was proposed because the first introduced kernel-based measure conditional entropy, the ApEn, was usually skewed (Xiong et al., 2017). One of the most recent and important articles on the calculation of conditional entropy is that of Xiong et al. (2017), that analyzed the dependence of the different entropies on the specific parameters of the estimator, as well as the effects of three types of non-stationarity due to the artifacts that are most commonly found in real data (trends, random peaks, and changes in local variance). In this article they presented for the first time a quantitative assessment of the impact on entropy measures of trends originating from the intrinsic dynamics of systems exhibiting multifractality properties. They considered the study of human heartbeat fluctuations in different physiological states and pathological conditions and their results evidenced advantages and pitfalls of entropy measures and estimators, as well as provided indications and recommendations for their optimal use in the study of real-world time series. In the HRV series analysis, when entropy measurements are applied correctly, they can characterize changes of specific types in the cardiac system that are associated with different physiological and clinical states. Xiong et al. established that a correct interpretation of the behavior of entropy measurements requires a clear understanding of the properties of the chosen specific measure and estimator, and an adequate choice of preprocessing applied to the measured signals. This is because when entropy methods are applied directly to the original HRV signals, there may be factors present in the data, such as long-range trends or correlations, which differently affect entropy measurements and estimators, and therefore can lead to inconsistent results and make interpretation difficult. In this work SampEn is used for the analysis of the RR-intervals time series, but the ApEn and Fuzzy En were also used to reinforce our results.

Exercise can bring out cardiovascular alterations that are not present at rest and can therefore be used as a means to assess cardiac function. Comparison between resting HRV time series or HRV time series during physical activity, using non-linear techniques has been an important topic (Ivanov et al., 1999b; Karasik et al., 2002) for several years, for example, in 1999 Ivanov et al. (1999b) compared the scaling properties of cardiac dynamics during sleep and wake periods for healthy individuals, subjects with congestive heart failure (CHF) and cosmonauts during orbital flight, and for the three groups, they found a higher degree of anti-correlation in the fluctuations in heartbeat during sleep compared to waking periods, and this difference from sleep-wake in the exponents of scale for all three groups is comparable to the difference between healthy and CHF patients. The observed differences in the scale that they reported (Ivanov et al., 1999b) are not simply explained by the different levels of activity. Karasik et al. (2002) studied the HRV of the heartbeat of healthy individuals at rest and during exercise. They focused on the correlation properties of the intervals formed by successive peaks in the time series and found significant scale differences between rest and exercise. For exercise, the interval series is anti-correlated on short time scales and correlated on intermediate time scales, while for rest they observed the opposite crossover pattern. As mentioned above, they suggested a physiological explanation to provide an intuitive explanation of the scale differences between rest and exercise. Of no less interest have been the analyzes of HRV observed due to circadian regulation and how it influences cardiac dynamics, for example, Ivanov (2007) hypothesized that, in addition to known periodic rhythms with a characteristic time scale, the mechanisms of sleep and circadian regulation can influence cardiac dynamics on a wide range of time scales and, therefore, could lead to systematic changes in the scale properties of heartbeat fluctuations. They found that scale-invariant characteristics of heartbeat dynamics, which have previously been associated with the underlying mechanisms of cardiac regulation, change significantly with the transition from sleep to wakefulness, through the stages of sleep and circadian phases, both in healthy and pathological conditions.

The endogenous circadian pacemaker is known to influence physiological functions, it is normally synchronized with the sleep-wake cycle, and HRV often exhibits complex continuous fluctuations, even in healthy resting conditions (Ivanov et al., 1996, 1999a,b; Bunde et al., 2000; Ivanov et al., 2001; Hu et al., 2004). Heartbeat fluctuations in healthy subjects possess a self-similar temporal structure related to the underlying cardiac control mechanism, characterized by long-range correlations over a wide range of scales (Peng et al., 1995; Ivanov et al., 2001). These characteristics change with sleep-wake states (Ivanov et al., 1999b; Bunde et al., 2000; Kantelhardt et al., 2002; Penzel et al., 2003; Hu et al., 2004), exercise (Karasik et al., 2002; Martinis et al., 2004), and in pathological conditions (Goldberger, 1996; Ho et al., 1997; Ivanov et al., 2001). Ivanov et al. (2007) established in a relevant article that physical activity affects the average heart rate, but it is not known how the dynamic scale-invariant measures of these two physiological variables are related. They investigated the activity and heartbeat data in healthy subjects at all circadian phases and determined whether circadian influences on static or dynamic characteristics of heart rate regulation are decoupled from circadian influences on activity regulation. They noted that exercise, may also be an independent contributing factor to increased cardiac risk when living outside of the laboratory setting.

The stress test (ST) is a procedure diagnostic that assesses the response of the heart to a progressive physical exercise. The ST is one of the most common non-invasive tests in cardiology to establish or confirm the diagnosis and prognosis of heart disease and to assess the effect of its treatment. The presence of cardiovascular abnormalities can be manifested by alterations of the parameters that are determined during the test. Thus, undergoing additional work for the heart, while watching the patient and his ECG monitors, it is possible to discover heart problems that are not evident in the subject at rest. It has been shown that heart rate increases during exercise due to both parasympathetic withdrawal and increased sympathetic activity. The relative role of these two impulses depends on the intensity of the exercise (Aubert et al., 2003). It has been reported in animal models that obtaining physical conditioning, before an induced pathology, can reduce the problems caused by the disease (Amaral et al., 2016). In this work we measured how active the study subjects were by using the IPAQ (International Physical Activity Questionnaire; Booth, 2000; Booth et al., 2000; Craig et al., 2003; International Physical Activity Questionnaire [IPAQ], 2016) questionnaire, although there are different ways to study physical activity data, the use of this scoring method enhances the comparability between surveys. IPAQ is an instrument specially designed to monitor the population of physical activity among adults.

In this work the SampEn, ApEn, and FuzzyEn algorithms were applied to the analysis of tachograms obtained from healthy adults both at rest and during STs. The ST consisted of walking on a treadmill for 30 min. We worked with three groups of people: A group of young sedentary people around 20 years of age, another group of adults around 50 years also of sedentary habits, and another group of people that without being athletes perform physical activity daily on a regular basis. Significant differences were found between the entropy values from the rest series and entropy values during the STs for the three groups. In the sedentary groups (both young and middle-aged adults) there is a decrease in the entropy. But in the case of people who regularly do exercise there is a different trend. Finally, in a test of longer duration (60 min) entropy decreases as the ST progresses, this last test was performed both on treadmill and running track and in both cases the trend is the same. Insights about the influence of physical condition on the entropy values can be obtained from the results.

The paper is organized as follows. The method and the procedure to obtain the data are described in section “Materials and methods.” In section “Results” we present our results and in the Discussion section we analyze and interpret the results obtained for the entropy in the different situations. Finally, we present our conclusions.



MATERIALS AND METHODS

From a time series with N points given by the expression {xi, 1 ≤ i ≤ N}, a set of vectors of length m is constructed. There are various methods to evaluate entropy (Kurths et al., 1995), we have chosen three of them in the present work, that we will describe below. SampEn is our principal method and ApEn and FuzzyEn have been used for comparison purposes and to reinforce our results. SampEn does not present major changes due to the length of the time series. In previous research it had been proven that the method gives excellent results for synthetic and physiological time series (Muñoz-Diosdado et al., 2017).


Algorithm of Approximate Entropy

The evaluation of entropy can be thought of as the conditional probability that two templates matching within an arbitrary tolerance will continue to match at the next point. Entropy is estimated with greater precision when more events are counted. For a length m < N and starting point i, the template xm(i) is the vector containing the m consecutive intervals xi, xi+1, ⋯, xi+m−1 (Richman and Moorman, 2000), m is the length of sequences to be compared, and r is the tolerance for accepting matches. The ApEn measures the irregularity of a time series by comparing subseries of length m, each subseries represents a pattern, which is subsequently compared with the other patterns of the same length. Therefore, the more repeatability there is between the patterns, the more predictable, or regular the time series will be. For a time series {xi,  1 ≤ i ≤ N} ApEn can be calculated by the following procedure (Shi et al., 2017).

[image: image]

Here m indicates the embedding dimension and τ the time delay. In this way, N−mτ +  1 vectors of length m can be constructed, for example, for τ = 1 and m = 3, the first three vectors are: [image: image].

The distance between the vectors [image: image] and [image: image] is defined as the maximum difference in absolute value of the components of the vectors, that is,
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For a vector [image: image] of length m we calculate the percentage of vectors [image: image] whose distance is less than a threshold factor r, that is, di,j ≤ r:
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Where [image: image] is the total number of vectors v “similar” to the vector [image: image], on the other hand. Is important to consider that if the series are not normalizad the r factor is normally considered as a fraction of the standard deviation of the time series, (σx = std(xi)), usually r =  0.2σx (Richman and Moorman, 2000). In the evaluation of entropy it is quite common that the series is normalized with a standard deviation equal to 1, that is why the tolerance in that case is simply equal to r.

The average of the percentages for the time series {xi, 1 ≤ i ≤ N} is defined as:
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The above process is repeated to calculate Φm+1 (r). ApEn of the time series is calculated by:

[image: image]



Algorithm of Sample Entropy

The sampling entropy (SampEn) was developed because it has a better representation of the entropy of the analyzed signals compared to the ApEn (Richman and Moorman, 2000). The motivation for this method is the classification of the complex system that includes both deterministic and stochastic characteristics of time series with a limited number of data points compared to other measures such as the correlation dimension (Grasberger and Procaccia, 1983).

In a similar way to what is done for the ApEn, the vectors [image: image] and [image: image] of length m are obtained.

Thus, in this context two vectors [image: image] and [image: image] are similar if they meet that di,j < r, where r is a threshold value that depends on established conditions. Analogously to the case of ApEn it is chosen as: r =  0.2σx if the time series is not normalized.

For a length m and threshold r, the number of vectors of length m similar to [image: image] is calculated by:

[image: image]

Where

[image: image]

It is noteworthy that i≠j, means that the self-comparison of a vector with itself is not considered in the sum. The similarity [image: image] of the vector set [image: image] y [image: image] for a length m is calculated by:
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Now the average similarity can be obtained by the expression

[image: image]

Using the same time series and tolerance r, the average similarity is calculated for a vector of length m+1, that is, it is calculated Am + 1.

The so-called SampEn is obtained by,

[image: image]



Algorithm of Fuzzy Entropy

The FuzzyEn is a methodology very similar to the SampEn, as in the previous cases the vectors of longitude m, [image: image] and [image: image] are defined from the time series {xi, 1 ≤ i ≤ N}. The counting of similar vectors is now done by changing the reference r by the membership function:
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Where di,j represents the distance:
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Where

[image: image]

In this case, [image: image] and [image: image] are, respectively, the averages of the vectors [image: image] and [image: image], this eliminates the local average of vectors. In this way, FuzzyEn evaluates the similarity between vectors based primarily on their shape. From the above it is obtained that the degree of similarity is in this case:
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From now on the calculations are identical to those made for the SampEn. Again r =  0.2σx as in the previous methods. The average similarity for the FuzzyEn is:

[image: image]

With the same parameters Bm + 1 is evaluated, finally FuzzyEn is obtained:

[image: image]

All three methods require values of the parameters m, r, and τ, based on our previous experience and that reported by other authors (Pincus, 1991; Richman and Moorman, 2000; Lake and Moorman, 2011; Muñoz-Diosdado et al., 2017; Shi et al., 2017) we obtained better results for the set of values: of r = 0.2, m = 2, and τ = 1 for present calculations, although we had previously used m = 3 and the results were also good. For example, Shi et al. (2017) used the values of m = 2, r = 0.1, and τ = 1 for the calculations they made, for ApEn, SampEn, and FuzzyEn and other entropies they used. Richman and Moorman (Richman and Moorman, 2000) showed that for series with more than 100 points, the SampEn values with m = 2, and r = 0.2 have deviations less than 3% of the predicted values, while for very short series, the values obtained for SampEn have deviations up to 35%. Lake and Moorman (2011) used r = 0.2 and different values of m, they obtained excellent results for both m = 1 and m = 2. Muñoz-Diosdado et al. (2017) also obtained good results using r = 0.2 and m = 3, this m-value was chosen because they analyzed series with 10,000 points. Pincus (1991) analyzed the ApEn for values of m = 1, 2, and r between 0.1 and 0.25. We can show, for time series generated by us for white, Brownian and pink (1/f) noises, the performance of these three methodologies for different parameter values. The self-affine series were generated with N = 3000 data and different values of the spectral exponent β: β = 0 (white noise), β = 1 (pink noise), and β = 2 (Brownian noise), to generate the series we followed the methodology of the references (Mandelbrot and Van Ness, 1968; Malamud and Turcotte, 1999; Gálvez Coyt et al., 2010).

As a comparison of the three methods to calculate the entropies, three time series of length N = 3000 data were used, the first series corresponds to white noise, the second to Brownian noise and the third to 1/f noise. For the three series, the three entropies were calculated for values of m = 1, 2, 3, and 4 and r = 0.1, 0.2, and 0.3 (multiplied by the standard deviation of the time series). All the results obtained are summarized in Figure 1. Figure 1A shows the results for white noise, Figure 1B for Brownian noise and Figure 1C for 1/f noise. Since they are not real-world series, they were not preprocessed. As can be seen, the highest entropy values are obtained for 1/f noise, then for white noise and finally for Brownian noise. Considering the variation of the entropies with the m-value, it turns out that the graphs for the SampEn (in red color) are practically horizontal lines for all cases (m = 1, 2, 3, and 4). For the ApEn (blue), the variations are stronger in all cases, although in the case of Brownian noise, their variations are not as dramatic as in the case of 1/f noise and white noise. The FuzzyEn (green) also presents important variations, but for cases m = 3 and 4, its values for m = 1 and m = 2 are very similar, so its performance is better for m = 1 and 2. This last observation is also valid for the ApEn. In other words, the SampleEn is the most stable when changing the size of the m-value. As for the variation of the entropies with respect to r, it causes a vertical displacement for all of them. This is a well-known fact: For instance, Xiong et al. (2017) have reported that the width of r determines the size of the cells used for the probability estimation: when it decreases, less r points are included in the cell used to estimate the probabilities; therefore the estimated probabilities are lower, giving higher entropy estimates. On the contrary, when r increases, more points are included in the vicinity of any reference point, which increases the estimated probability and therefore leads to lower entropy estimates. Since taking the tolerance equal to 0.2σx gives the intermediate values for all entropies, in this work we chose to evaluate the entropies with this tolerance value.
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FIGURE 1. Values of SampEn (A; red), ApEn (B; blue), and FuzzyEn (C; Green) for self-affine time series with 3000 data and different values of m (1, 2, 3, and 4) and r (0.1, 0.2, and 0.3). SampEn behaves stably for different values of m, the variations in entropy values with respect to r are normal, the largest entropy values correspond to the smallest values of r and vice versa, the smallest entropy values correspond to the larger values of r.


In this manuscript we work with HRV series at rest and HRV series when exercising, we report the observed changes in entropy, that is, we evaluate SampEn, ApEn, and FuzzyEn and we calculate the exercise-rest variations and report such changes, obviously the changes do not have the same values, but the trends are the same, that is, if we notice that there is a decrease in entropy, such decrease is observed in the three entropies, although the average changes do not have the same value.

Therefore, although the three entropies were evaluated, the values shown in the graphs correspond to SampEn if not stated otherwise, because as shown in Figure 1, this entropy has more stable values and the calculations are more robust than the other entropies, the choice of m = 2 and r = 0.2 provides good estimates for the three entropies, but mainly for SampEn.

We know that the accuracy of the estimates is highly dependent on the time series length, so very long time series would be needed to yield accurate estimation of conditional entropy if there are strong positive long-range correlations. However, based on our experience and in the other authors (Richman and Moorman, 2000; Lake and Moorman, 2011; Muñoz-Diosdado et al., 2017; Shi et al., 2017), SampEn is the most stable entropy with respect to the time series length. In our case, we chose to use series of the same length to assess entropy.



Physionet

To illustrate how the methods work and how they can give good results, SampEn, ApEn, and FuzzyEn were implemented in the analysis of tachograms obtained from the beat to beat time of the Physionet datasets of CHF RR Interval Database (Goldberger et al., 2000) with 29 CHF patients, the BIDMC CHF Database with 15 CHF patients subjects, and the Normal Sinus Rhythm RR Interval Database with 54 patients with normal sinus rhythm. We obtained 6-h subseries when the subjects were sleeping, but it was only possible to obtain these subseries for 52 healthy subjects and 39 patients. The results are shown in Figure 2, we applied T-Student tests with a significance level of 0.05 to show that there is a statistically significant difference between the average entropies for healthy subjects and CHF patients, the same behavior is observed for SampEn, ApEn, and FuzzyEn. For SampEn, we obtained for the patients with CHF: [image: image] and for the healthy [image: image], the values are statistically different with a p-value of pSampEn = 0.00060; for ApEn we obtained: [image: image] and [image: image] and these average values are statistically different, pApEn = 0.0001, and finally, for the FuzzyEn: [image: image] and [image: image], and there is also a significant difference, with pFuzzyEn = 0.0002. In general, there is a diminution in the entropy associated to the CHF disease (Martinis et al., 2004; Goya-Esteban et al., 2012). After appreciating that the three entropies could properly differentiate between healthy and congestive subjects, the methods were used for people in a cardiac stress condition, as we will describe in the following. But in order not to be repetitive and since the same behavior is observed for the three entropies, the graphs illustrate preferably the SampEn.


[image: image]

FIGURE 2. Entropy comparison of the asleep period time series of the 39 congestive patients and 52 healthy subjects. The time series correspond to the 6-h records while the subjects are asleep. (A) Sample Entropy. (B) Approximate Entropy. (C) Fuzzy Entropy.




Physical Activity

Physical inactivity is a global health problem, one of the most standardized approaches to measure it was proposed by Craig et al. (2003), based on a proposal by Booth (2000). Its objective was to develop an appropriate measure to assess the levels of physical activity of the population in all countries.

The questionnaire they proposed, the IPAQ, was designed to be used in adults between 18 and 65 years old. There is a short version that provides information on the time spent walking, in activities of vigorous and moderate intensity and in sedentary activities. The long version, which was the one we use in this work, was designed to collect detailed information within the domains of domestic and garden work activities, occupational activity, transportation and physical activity in leisure time, as well as sedentary activity. IPAQ instruments have been used to collect reliable and valid physical activity data in many countries (Booth et al., 2000; International Physical Activity Questionnaire [IPAQ], 2016).

The detailed explanation of the method can be consulted in International Physical Activity Questionnaire [IPAQ] (2016); here we will only say that the questionnaire allows classifying populations into three levels of physical activity: high, moderate, and low.

High: This category was developed to describe the highest levels of physical activity. Although the greatest health benefits are associated with higher levels of activity, there is no consensus on the exact amount of activity to obtain maximum benefit. The IPAQ Research Committee proposed a measure that is equivalent to at least 1 h per day or more, of physical activity above the baseline level of physical activity (walking about 5000 steps per day), this category is considered for those who walk at least 12,500 steps per day, or the equivalent in moderate and vigorous activities. This represents at least one more hour of activity of moderate intensity above the baseline level of activity, or half an hour of activity of vigorous intensity above baseline levels daily.

Moderate: This category corresponds to an activity level equivalent to half an hour of physical activity at least of moderate intensity on most days.

Low: This is simply defined as not meeting any of the criteria for any of the other classifications.

In this paper, we want to highlight the differences in the calculated entropy values for sedentary people and for active people, comparing the entropy values at rest and exercising. Therefore, we define a person as sedentary if their physical activity result using the IPAQ questionnaire is “low”; a person is active if they obtained a result of “high” in the physical activity evaluation according to the IPAQ questionnaire. To avoid confusion, the individuals who obtained “moderate” in the evaluation were excluded from the present study.



Stress Test

Tachograms of thirty-eight subjects were analyzed at rest and in a cardiac ST. The population was divided by age and by the amount of physical activity according to the IPAQ classification. Twenty-five young sedentary subjects were analyzed at rest and in a cardiac ST. The subjects were 5 men and 20 women with an average age of 23 years old. Another 6 young subjects who regularly do exercise every day and that are in good physical condition even though they are not athletes, with an average age of 23 years were also considered for comparison purposes.

The measures were repeated for six middle-aged subjects with an average age of 50 years, two women and four men, all of them are sedentary. We also have two active middle-aged adults. The conditions were the same that for the first group, but we decreased the speed of the ST to 3.5 miles per hour. The time series used to perform the calculations are available in the Supplementary Material of this article. Complete ECG records are available on request to the correspondence author.

For each subject, the personal information was collected, including age and gender. Subjects with any disease that could affect the cardiovascular system were not included in the study. Subjects should not be taking medications previous and during the STs. They were asked to have adequate sleep during the previous night. All tests were performed in the morning (∼10 a.m.) in a quiet room with a temperature between 20 and 21 centigrade degrees.

The body mass indices of the subjects are as follows, for active youth it is 24.01 ± 1.76, for sedentary youth it is 24.00 ± 4.07, and for sedentary adults it is 26.11 ± 2.69.

For each recording, there were two measures, a 60 min’ rest record and a 30 min’ cardiac ST was recorded. For this experimentation, the study was designed by taking the patients into a complete rest state while ECG recording was obtained with a Fukuda Denshi Holter monitor model FM-150 with sampling frequency of 125 Hz, once the 60 min’ rest period had finished, the subjects were taken into a commercial electric treadmill at 4.0 miles per hour (mph) during 30 min. The beat to beat signal or tachogram was obtained for each digitalized ECG and then processed with the entropy algorithms. One of the measured time series is shown in Figure 3, in the tachograms it is easily recognizable when the subjects are at rest and when they are doing the walking test. Therefore, it was easy to obtain the tachograms at rest and the tachograms at the ST. It was mentioned in the introduction section that Karasik et al. (2002) provided a qualitative explanation of the remarkable differences in the amplitude of fluctuations at rest and during exercise, when the walker is between the two levels of attraction, no net force acts on him, so there is a small probability of going several steps in the same direction and in the case of a single level of attraction, there is a restriction that changes its direction. Therefore at rest when both levels are active, the fluctuations are greater compared to exercise when there is a single level of attraction (see Figure 3C). As the HRV time series are complex, physiological interpretations based on entropy measures should be provided with caution (Xiong et al., 2017; Faes et al., 2019). As Xiong et al. (2017) have stated, entropy measurements can only differentiate changes of specific types in cardiac dynamics and that proper preprocessing is vital for correct estimation and interpretation. They recommended some strategies to analyze the HRV time series. The entropy measurements depend on the length of the time series, but as we mentioned earlier, SampEn is very stable with respect to the length of the time series, and we take the length of the series of the same length, at rest we analyze series with 1024 points and in the ST we also analyzed 1024 points. Although trends have a big impact on the detection of the dynamical complexity of stochastic processes, we decided not to eliminate the trends in our data because for two main reasons, the time series are quite short and because we want to analyze the effect that fatigue has on the time series. Spikes are commonly encountered in a large variety of measurements; we took special care to eliminate the artifacts. Fortunately, since the measurements were made at rest and at low speeds, the operation of the Holter Fukuda Denshi FM 150 is very stable and the measured signal was very clean, there were few spikes, their values were replaced by the average of the previous and next data. Although the data were normalized for the calculation of entropy, the calculations were also made without normalization and the same results were obtained. As we can see in our time series (available in Supplementary Material) we did not have segments of high variance, and fortunately the presence of this sort of non-stationarity does not affect results as much as other types of non-stationarity (Xiong et al., 2017).


[image: image]

FIGURE 3. We show ECG and RR time series for a sedentary young subject. First, a segment of the digitized ECG signal obtained with the Holter (A), the localization of the R points was obtained with an algorithm previously designed (B), the difference (in seconds) between the R points gives the RR time series or tachogram, note that it is easily distinguishable when the subject is at rest and when the subject is walking in the treadmill (C). The tachogram belongs to a healthy young subject, the first part belongs to the rest period, and the second half of the time-series belongs to the cardiac stress test, we can obtain subseries corresponding to the rest and to the exercise (D). Note that there is a decreasing trend in RR intervals as time progresses and the individual experiences some fatigue.


An important point to highlight is the fact that the time series for the STs were not taken since the subject got on the treadmill, it took a few seconds for the signal to stabilize, that is, we did not take points in the rest-exercise transition region.

Long-lasting one-h records were also measured for seven sedentary youth who walked at a speed of 3.5 miles per hour. These records were 2-h length, 1 h for the rest period, and 1 h for the cardiac stress episode. The tachogram that corresponds to the ST was divided into four parts, equivalent of 15 min of recording and for each 15-min segment we calculated the entropies.

This research was approved by the Secretaría de Investigación y Posgrado of the Instituto Politécnico Nacional of Mexico with the grants SIP20171974, SIP20182121, and SIP20196318 and by the Secretaría de Educación, Ciencia y Tecnología (SECTEI) of Mexico City with the project SECTEI/271/2019. Given that the project only considers measuring the ECG in healthy people at rest and walking slightly at low speeds, we were not required to present the proposal to the Ethics Committee of the Institution.

The participants were voluntary and signed the informed consent form. Medical staff confirmed that the participants were healthy, individuals who presented cardiovascular diseases or risk factors such as hypertriglyceridemia, hypertension, or diabetes were excluded. Specialized personnel were always present during the measurements. All the research was in compliance with the Ethics Code of the World Medical Association (Helsinki Declaration).



RESULTS

A general behavior is observed for all sedentary people; at rest they have a higher entropy value than when they are exercising. This difference in entropy is statistically significant. This behavior is shown in Figure 4A for a sedentary young person, the first point corresponds to the value of SampEn at rest, the second point to the value obtained when he walked on the treadmill at a speed of 3.5 mph, then he was asked to rest for half an hour and to walk another 30 min at a speed of 4 mph, the third point corresponds to the value of the SampEn for the speed of 4 mph. SampEn decreases as the speed increases. As the same behavior is observed for ApEn and FuzzyEn we do not show the corresponding figures.


[image: image]

FIGURE 4. (A) SampEn for one subject where the first record belongs to the rest period, the second record to a cardiac stress condition at 3.5 mph and the third measure to a cardiac stress condition at 4 mph. (B) SampEn values for rest and cardiac stress tests of one subject in seven measures. The mean of SampEn at rest is 1.3541 ± 0.187 and at cardiac stress SampEn mean is 0.4344 ± 0. 2475.


The behavior of entropy is the same for all sedentary, similar to that of Figure 4A, we mean that in all the time series of sedentary subjects, the 25 young subjects and the 6 middle-aged adults, this decrease in entropy is observed. So SampEn (and ApEn and FuzzyEn) decreases while stressing the hearth of the sedentary subjects. In order to prove that the obtained result was not random and thinking whether or not the results are reproducible, one sedentary subject was tested seven times in order to confirm that the observed pattern of the graph was reproducible. In Figure 4B we can observe the comparison between seven different experiments with the same subject. As we can observe, in all the measures the pattern can be observed. There are variations, as expected in these complex systems, but in general the pattern is repeated. As observed in the Figure 4A, the loss of entropy when stressing the hearth of the subjects is notorious, this can be seen as a negative slope while drawing a line between both values as we can visualize in Figure 4B.

We show in Figure 5A, the values of slope obtained for the 25 sedentary young person’s when using the three different entropy methods mentioned before, and with the aim of comparison we show in Figure 5B, the results obtained for the six middle-aged adults with low physical activity. As mentioned, all entropy decreases for sedentary subjects when doing the ST, but as can be seen in Figure 5, the difference between youth and adults is not significant. The average change in Entropy for young persons is [image: image], [image: image], and [image: image] and the values for adults with a sedentary lifestyle are [image: image], [image: image], and [image: image].


[image: image]

FIGURE 5. SampEn values for rest and cardiac stress tests for (A) 25 young subjects and (B) six middle aged adults. The speeds for the stress tests were 4 mph and 3.5 mph, respectively. There are no significant statistical differences.


The other group of six young subjects that regularly do exercise was analyzed with the same methodology. These six evaluated individuals have a particular difference with respect to the other young subjects, probably due to physical activity. In comparison with the observed results in Figure 5, the straight lines have in average positive values, that is, the entropy of the time-series tends to increase or maintain its values while performing the cardiac stress episodes (Figure 6). But it should be clear that this increase in entropy is observed when going from rest to the ST when walking at 4 miles per hour, if we increase the speed, eventually the entropy decreases (see Discussion section).


[image: image]

FIGURE 6. Sample entropy values for rest and cardiac stress tests for six young subjects that do regular physical activity.


Entropy values behave similarly for people that have similar patterns of physical activity independently of their age. In order to stress this idea, a comparison of both populations was made. Adults and young people with low physical activity were grouped together and were compared with adults and young people with high levels of physical activity.

For this test, the slope of the line between the value of entropy at rest and the ST was compared for the two groups for the three entropy methods having the following values for the group of sedentary people are [image: image], [image: image], and [image: image]. The following values for people who reported to have physical activity in a daily basis: [image: image], [image: image], and [image: image]. This comparison was made for the three types of entropy as it is possible to visualize in Figure 7. As always, the sampling entropy is the one that gives us the best results.


[image: image]

FIGURE 7. Comparison of people with high physical activity and people with low physical activity for the three entropy methods, ApEn, FuzzyEn, and SampEn. The means of these populations are statistically different with p values 0.0011, 0.0052, and 0.0033 for the three methods, respectively.


In the last experiment, we are interested in seeing how entropy varies as the test progresses, that is, as fatigue accumulates. As previously mentioned, seven sedentary young subjects were asked to walk during an hour after a rest period of an hour. The entropy was calculated every 15 min, having a total of four SampEn results for each subject. These results are shown in Figure 8A. The speed of the treadmill was 3.5 mph. The graph in Figure 8B, belongs to the same subjects, but this time they did not walk on the treadmill but on a running track, the speed is approximately of 3.5 mph although it is difficult to control the speed in the running track.


[image: image]

FIGURE 8. Results of sample entropy for 1-h cardiac stress tests in (A) a treadmill at 3.5 mph and (B) a track at approximately 3.5 mph.




DISCUSSION

The present work shows that there is a variation in SampEn, ApEn, and FuzzyEn values for beat to beat time-series of subjects in different conditions. It has been reported that the tachograms of healthy persons tend to have higher entropy values than the tachograms of the population diagnosed with CHF, this lack of entropy implies a loss of complexity of the signal. This is similar to what we observed in the present work, when sedentary people are at rest their tachograms have SampEn, ApEn, and FuzzyEn values that decrease when they undergo STs, therefore the beat to beat time series are less complex when they are doing exercise.

In order to secure that the results were trustworthy and the observed pattern where entropy decrease in cardiac stress situations was replicable, the measures were developed in different days for a single patient reproducing the conditions of the test. The analysis of this experiment allowed us to affirm that the results are reproducible (Figure 4B). As known, cardiac system has complex dynamics and there are many factors that affect the cardiac rhythm, in accordance with this, the measures observed are not identical, but the tendency of entropy to decrease during the ST is always observed.

While comparing the subjects, a difference between those who develop regular physical activity and the ones who do not was observed. In contrast with the common tendency showed by most of the tested subjects, a slight increase of the average entropy values was observed in subjects with regular exercise on a daily basis. In contrast with the subjects who live more sedentarily, the entropy measurement of the time series of the cardiac ST may have an increase compared to the resting time series, or it tends to maintain its values, or, in the event of a decrease in entropy, this decrease is small.

Looking for a difference between young sedentary subjects and middle age sedentary adults, the pattern of decreasing entropy was appreciated for both groups (Figure 5). But there are not significant but there are no statistically significant differences between both groups.

In the one-h cardiac STs, the tendency observed in the previous experiments is more evident. Comparing the different values of entropy at different times of the test, it tends to decrease while the time goes on. The cardiac stress not only depends on the speed of the test, but in the duration of it.

Summarizing, the entropy of the time series of heartbeat intervals time series of people who are considered sedentary is reduced with respect to their resting value when people do moderate physical activity, in this case walking on a treadmill. On the other hand, for people who are active, that is to say, that they exercise regularly, the entropy values when doing physical activity are maintained or even increase when they walk at moderate speeds, it is necessary to greatly increase the speed of the treadmill to observe the decrease in entropy (Figure 9). This fact could be used to measure the physical condition of people; it seems important because it is currently known that regular physical activity of moderate intensity plays an important role in promoting good health and preventing diseases (Pate et al., 1995). For older adults, being regularly active is associated with better physical and even psychological health (McAuley and Rudolph, 1995). There is evidence indicating that, among older adults, low physical condition is a risk factor for functional impairment, and there is a positive effect of physical activity on functional limitations (Huang et al., 1998; Morey et al., 1998).


[image: image]

FIGURE 9. This figure shows a stress test performed by an active person. (A) Original time series, (B) the stages of the stress test, and (C) sample entropy for the time subseries of each stage. The different stages of the test are: (I) 1 h at rest, (II) walked half an hour at a speed of 3.5 mph, (III) walked at 4.0 mph preceded by a half-hour break, (IV) walked at 4.5 mph, also preceded by a half-hour break. In this figure we can see what has already been discussed in the article, an active person has an entropy-value at rest (I). When walking at moderate speed the value of entropy tends to increase or maintain (II), which is exactly the opposite of what happens with sedentary people. It is necessary to increase the walking speed so that the decrease in entropy is noticed (III,IV).

Finally, we know that when exercising, the heart rate increases, this is observed in Figure 3C, as well as a decrease in the RR times, which means that the heart rate tends to increase as the ST progresses. This led us to think that entropy could probably change not only due to the change in rest-exercise, but also due to fatigue. We arbitrarily took five series of active youth and five series of sedentary youth during the ST at 4 miles per hour and calculated the sampling entropy, in 1024-point subseries, then took another 1024-point subseries to the right but with an overlap with the first series of 100 points and so we continued to the right until the end of the test, that is to say, a windowing with overlap was made. The results are shown in Figure 10, as we can see, the entropy values for active youth are larger than those for sedentary. On average, there is a decrease in entropy in both cases, but such decreases are very small compared to the entropy changes associated with the change in rest-exercise.


[image: image]

FIGURE 10. Five time series of active young subjects (red) and five time series of sedentary young subjects (blue) during the stress tests (4 miles per hour). The points represent SampEn values for subseries obtained from the time series with overlapping. For active subjects the average change in sampling entropy is –0.10, and for sedentary subjects is –0.11.


Finally, we mention possible limitations of the present study: it is known that gender has a substantial effect on HRV. In a future work the size of the database will be increased to be able to make precise gender and age distinctions, because these influences need to be considered when performing HRV studies even if these influences only partly differ (Voss et al., 2015; Faes et al., 2019). It is also necessary to complement the study with the application of other non-linear techniques.



CONCLUSION

It seems to be that beat-to-beat time series entropy analysis from continuous ECG recordings, while performing physical activity, may be effective in measuring fitness. We measured the entropy at rest and only for healthy subjects who do physical activity regularly a light increase in the entropy values was observed during the physical activity test, and a decrease in the entropy values was observed in those subjects with a sedentary lifestyle, this also happens for middle-aged adults. This work suggests that SampEn is a good measure of cardiovascular variability which can be related to physical condition and well-being. Although the entropy variations and the results obtained are reproduced for the SampEn, the ApEn, and the FuzzyEn, the sampling entropy is the best for quantifying the complexity of the HRV series.

The main finding of the study is the different behavior of entropy of the RR time series for sedentary and active people. While for sedentary people, entropy decreases during a ST compared to the resting state, for active people, entropy increases, indicating greater complexity in the latter case. The results are reproducible and different entropic measurements provide similar results. Although the sample size is relatively small, all the series are well characterized, they were pre-processed to ensure that the results are not altered by the length of the series, the presence of peaks or the presence of regions with extreme variability. Furthermore, supported by the IPAQ questionnaire, it was perfectly possible to characterize who of the participating subjects were sedentary and who were active subjects. It is important to emphasize that the entropy variations are significant despite the fact that in the STs the walk was carried out at very low speeds.
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The aim of the study was to analyze the relationship between resting state electroencephalographic (EEG) alpha functional connectivity (FC) and small-world organization. For that purpose, Pearson correlation was calculated between FC and small-worldness (SW). Three undirected FC measures were used: magnitude-squared coherence (MSC), imaginary part of coherency (ICOH), and synchronization likelihood (SL). As a result, statistically significant negative correlation occurred between FC and SW for all three FC measures. Small-worldness of MSC and SL were mostly above 1, but lower than 1 for ICOH, suggesting that functional EEG networks did not have small-world properties. Based on the results of the current study, we suggest that decreased alpha small-world organization is compensated with increased connectivity of alpha oscillations in a healthy brain.
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INTRODUCTION

Functional connectivity (FC) is highly important in physiology at various levels: from molecules to organs and physiological networks are not only of wide scientific interest, but also have high impact in medicine (Ivanov et al., 2016; Lin et al., 2016; Moorman et al., 2016). Functional connectivity is crucial also in brain physiology (Lynn and Bassett, 2019). Significant work has been done to show that neural network architecture can be adaptively reconfigured between different states of the subjects (Bassett et al., 2006; Liu et al., 2015a; Lin et al., 2020) and associate network topology to physiologic states (Bashan et al., 2012; Bartsch and Ivanov, 2014; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Liu et al., 2015b).

Functional connectivity and complex network analysis have been the most widely used types of brain network analysis by providing the tools to analyze the brain as a network of interacting regions, while maintaining computational simplicity. Complex network analysis is based on classical graph theoretical analysis, but focuses on analyzing complex real-life networks (Rubinov and Sporns, 2010). Real-life neural networks are represented graphically, using electroencephalographic (EEG) channels as nodes and FC as edges between nodes. Graphs are constructed by removing edges with lowest values. Small-world organization is one of the most frequently analyzed topological properties of functional neural networks. A network is compared to random networks and in order to have small-world properties, the network should be more clustered than a random network, but have similar characteristic path length (Watts and Strogatz, 1998; Albert and Barabási, 2002; Rubinov and Sporns, 2010; Bassett and Bullmore, 2017). In that case, functional integration and functional segregation are simultaneously high. A measure of small-worldness (SW) has been proposed to assess small-world properties of a network (Humphries and Gurney, 2008). Since then, studying small-world properties of functional brain networks has been widely used.

Changes in EEG resting state FC and small-world structure are often used for statistical analysis between two populations, generally with the aim to compare patient and control groups. Previous studies have found results in all frequency bands, but often inconsistencies between studies occur. Therefore, we will focus on frequency bands, where the most frequent and consistent results were reported. Major depressive disorder (MDD) is mostly characterized by increased FC (Fingelkurts et al., 2007; Leuchter et al., 2012; Olbrich et al., 2014; Li et al., 2017) and more random network structure (Li et al., 2017; Zhang et al., 2018; Sun et al., 2019) in theta and alpha frequency bands. However, few studies have also found a decrease in alpha FC (Shim et al., 2018; Zhang et al., 2018). Alzheimer’s disease (AD) has been consistently characterized by decreased FC in alpha frequency band (Koenig et al., 2005; Wang et al., 2014; Babiloni et al., 2016). Furthermore, SW of AD subjects has been found to decrease in theta frequency band (Wang et al., 2014; Vecchio et al., 2017), and AD is characterized by more random network structure in alpha frequency band (Wang et al., 2014; Babiloni et al., 2016). In schizophrenia, most consistent FC alteration has also been the decrease of FC in alpha frequency band (Jalili and Knyazeva, 2011; Di Lorenzo et al., 2015; Maran et al., 2016). Furthermore, schizophrenia has also been associated with decreased SW in alpha, beta, and gamma frequency bands (Micheloyannis et al., 2006) and more random network architecture (Rubinov et al., 2009).

Although alterations in FC and small-world organization have been studied for diseased brain (see above), the relationship between FC and SW is unclear for healthy subjects. We have previously shown that adding graph theoretical measures to features of FC did not improve classification accuracy when classifying MDD and healthy subjects (Orgo et al., 2017). Therefore, a fundamental relationship between FC and graph theory measures can be expected and a disruption in that relationship is likely related to different mental disorders. However, only a few studies have analyzed the relationship between different graph theory measures. Lynall et al. (2010) reported a positive correlation between functional magnetic resonance imaging (fMRI) FC and SW, together with several correlations between different graph theoretical measures. However, healthy and schizophrenic subjects were analyzed together and the group contained of a small number of subjects (15 healthy and 12 schizophrenic subjects). To the best of our knowledge, the relationship between graph theory measures for EEG data has not been analyzed before.

FC has recently been shown to be a complex spatiotemporal phenomenon (Racz et al., 2018), but in the current study we apply widely used static approach of FC to construct functional networks. To ensure more reliable results, we calculate three frequently used FC measures: magnitude-squared coherence (MSC), imaginary part of coherency (ICOH), and synchronization likelihood (SL). These measures were chosen to take different EEG properties into account. Firstly, SL is calculated in time domain, while MSC and ICOH are calculated in frequency domain. Secondly, measures of FC can be divided into linear and nonlinear measures. On the one hand, EEG nonlinear time series analysis is based on the nonlinear nature of neural processes. Previous studies have reported strong nonlinear interdependences in EEG signals (Rubinov et al., 2009) and nonlinear metrics can detect nonlinear interdependencies between EEG signals that linear measures cannot. On the other hand, nonlinear measures are computationally expensive and susceptible to noise (Netoff et al., 2006). Linear measures are more robust and can perform as well as nonlinear measures in some cases (Bastos and Schoffelen, 2016; Bachmann et al., 2018). Therefore, a combination of linear and nonlinear measures should provide the most information. In the current study, SL can capture both linear and nonlinear interdependencies between signals. We have previously shown with surrogate data method that SL can detect nonlinearity in 9% of EEG segments, which cannot be detected with linear methods (Päeske et al., 2018). Therefore, SL may provide additional information to other connectivity measures. Thirdly, several FC measures such as MSC are strongly influenced by volume conduction (Bastos and Schoffelen, 2016). One solution to avoid spurious results from volume conduction would be to apply inverse method to the scalp EEG signals and then calculate FC between obtained source signals. The problem with this approach is that perfect inverse method cannot exist (Sarvas, 1987) and therefore accurate FC estimation is not guaranteed. Other option is to use FC measures that are less sensitive to volume conduction, for example ICOH (Christodoulakis et al., 2015; Bastos and Schoffelen, 2016). Imaginary part of coherency measures only phase-shifted relationship between time series, therefore minimizing connectivity between information from the same sources. At the same time, true interactions at zero-phase are also lost and for a more complete understanding, these measures can be calculated complementary to other measures.

In the current study, we analyze the relationship between alpha FC and SW in the resting state for healthy subjects. We use only alpha frequency band, because most of the alterations in FC or SW have been previously found in the alpha frequency band for MDD, AD, and schizophrenia. Furthermore, EEG alpha frequency has an important role in cognitive, sensorimotor, psycho-emotional and physiological processes (Bazanova and Vernon, 2014). It is important to note that although graphs are constructed by thresholding FC values, small-world graph theory measures are normalized. Therefore, mathematically, there is no correlation between FC and normalized graph theory measures for random graphs. If a correlation between FC and SW occurs for a physiological network, but not for a random network, the origin of the correlation is also expected to be physiological. We will also construct random graphs for reference, using Erdös-Rényi model, to ensure that our results could not be derived mathematically.



MATERIALS AND METHODS


Subjects

The subjects were chosen for the experiment according to the following criteria: no epilepsy, no usage of psychotropic medication one month prior to the experiment, no usage of narcotics three months prior to the experiment, no history of head injury or concussion, and no psychiatric disorders at the time of the experiment. Following these criteria, the study was carried out on a group of 80 healthy volunteers from ages 19 to 75, with the mean age of 37 ± 15 years. Out of all subjects, 38 were female and 42 were male. The subjects were asked to abstain from alcohol 24 h and from coffee two hours prior to the EEG recording.

The study was conducted in accordance with the Declaration of Helsinki and was approved by the Tallinn Medical Research Ethics Committee. Informed consent was obtained from each subject before participating in the study.



Data Recordings

Electroencephalographic signals were recorded using Neuroscan Synamps2 acquisition system (Compumedics, NC, United States) from 30 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2). Electrodes were positioned according to the extended international 10–20 system with linked mastoids as reference. In addition, horizontal and vertical electrooculograms were recorded to monitor eye movements. To ensure good conductivity between the skin and electrodes, electrode impedances were kept below 10 kΩ.

The data were sampled at 1000 Hz. The resting state EEG was recorded for six minutes, during which the subjects were lying in a relaxed position with their eyes closed. The room of the recordings was electrically shielded and dimly lit. In addition, earplugs were used to minimize any disturbances.



Preprocessing

The data were analyzed using MATLAB (The Mathworks, Inc.). Butterworth filter was used to filter signals into alpha (8-12 Hz) frequency band. Sampling frequency was reduced to 200 Hz to reduce the computation time of FC measures and the data were divided into 20.48-s (4096 sample) segments. All segments were inspected by a studied technician and segments with ocular, muscular or other artifacts were removed. For each subject, first 10 artifact-free segments were used for further analysis.

Signals were re-referenced according to the reference electrode standardization technique (REST) (Yao, 2001), which approximately re-references scalp EEG signals to a reference point at infinity using an equivalent source model. REST has been shown to be the best reference montage to recover the real EEG FC network configuration (Qin et al., 2010; Huang et al., 2017).



FC Analysis

Three non-directed measures of FC were calculated in the current study: MSC, ICOH, and SL. An example of EEG signals in alpha frequency band for different levels of FC is shown in the Supplementary Material. FC measures were calculated between all channels, obtaining connectivity matrices for each subject. Median values of MSC, ICOH, and SL were obtained over segments in time.


Magnitude-Squared Coherence

Coherency estimates linear relationship between two signals at each frequency f. When time series from channels i and j are xi(t) and xj(t) and their Fourier transforms are Xi(f) and Xj(f), then the cross-spectrum between Xi(f) and Xj(f) is [image: image], where * indicates complex conjugation and ⟨⟩ expectation value. Coherency is calculated as:

[image: image]

where Sii(f) is the power spectrum of Xi(f) and Sjj(f) is the power spectrum of Xj(f). Coherence is the absolute value of coherency:

[image: image]

In the current study, the MSC (Kay, 1988) was used as a frequently used measure of FC:

[image: image]

Symmetric Hann window with a window length of 512 samples and 50% overlap was used to calculate Fourier transform. MSC was found by averaging MSCij(f) values within the alpha frequency band.



Imaginary Part of Coherency

It is often argued not to use MSC as it is strongly influenced my volume conduction. Therefore, ICOH (Nolte et al., 2004) was also used in current study as a secondary measure of FC, which is calculated as an imaginary part of coherency:

[image: image]

Imaginary part of coherency was found by averaging iCOHij(f) values within the alpha frequency band. Imaginary part of coherency removes zero-phase interactions between time series xi(t) and xj(t), therefore minimizing the effects of volume conduction.



Synchronization Likelihood

Synchronization likelihood (Stam and Van Dijk, 2002) describes dynamical interdependencies between simultaneously recorded signals. The definition and calculation of SL is provided by Stam and Van Dijk (2002). Briefly, time series are reconstructed in state space and the recurrences of states are detected from time-delay embedding vectors. Synchronization likelihood is the likelihood of these recurrences being simultaneous. The parameters for SL were calculated from sampling frequency, highest frequency and lowest frequency using suggestions by Montez et al. (2006). Therefore, the following parameters were used: the embedding lag L = 6, the embedding dimension m = 6, the number of recurrences nrec = 10, the fraction of recurrences pref = 0.01, window W1 = 50 and window W2 = 1049. Such selection of the parameters ensures that the state vector is long enough to sample the slowest oscillations and at the same time signal is sampled at sufficiently short intervals to take fastest oscillations into account.



Graph Theory Analysis

A connectivity matrix can be analyzed as a graph consisting of nodes (EEG channels) and edges between the nodes (FC between EEG channels). To obtain a graph, a threshold is applied on FC values: an edge exists only if the value of FC is higher than the threshold. In the current study, the sparsity of each graph was maintained by applying a different threshold to each graph. For example, network density of 40% means that 60% of all connections were removed from each graph. This ensures that differences between graph theory metrics are due to differences in graph topologies, rather than connectivity strengths. As currently there is no optimal network density used in the literature, a range of network densities are used. In the current study, the network densities from 10 to 50% with a step of 5% were used. These are one of the commonly analyzed densities, ensuring that the network is sparse enough to show small-world properties and at the same time is still fully connected (Bullmore and Bassett, 2011; Sun et al., 2019). Obtained graphs were binarized: edge values were 0 or 1, depending on whether there was a connection between two nodes or not. In other words, unweighted graphs were used in the current study. As non-directed FC measures were used, edges did not have a direction.

Brain Connectivity Toolbox (Rubinov and Sporns, 2010) was used to calculate graph theoretical measures in MATLAB. Graph theory measures calculated in the current study describe small-world properties of a network and are therefore also called small-world measures. Clustering coefficient (C) describes functional segregation, characterizing brain’s ability to process information within interconnected clusters. Clustering coefficient for a given node equals with the fraction of node’s nearest neighbors that are also directly connected to each other (Watts and Strogatz, 1998). Characteristic path length (L) is a measure of functional integration, characterizing brain’s ability to combine information from distributed areas. Shortest path length is the smallest number of edges between two nodes. Characteristic path length is the average shortest path length of the graph (Watts and Strogatz, 1998). High functional integration is described with small L. A network has small-world properties if it is more clustered than a random network, but has similar L (Rubinov and Sporns, 2010). Small-worldness quantifies these properties and is calculated from C and L (Humphries and Gurney, 2008):

[image: image]

where Crand is the clustering coefficient and Lrand is the characteristic path length of an equivalent random network. A network has small-world properties if SW > 1 (Wang et al., 2014). Random networks for normalization were generated according to the method of Maslov and Sneppen (Maslov and Sneppen, 2002; Rubinov and Sporns, 2010) by reshuffling the topology and maintaining the degree distribution of original networks.

Small-worldness was calculated for all three FC measures. For reference, random graphs were generated using Erdös–Rényi model – for the fixed number of nodes, the existence of each potential edge is determined by a probability p. To differentiate between graph theoretical measures calculated from different FC measures, FC measures are marked with a superscript. For example SWMSC denotes small-worldness, calculated from a MSC graph.



Statistical Comparisons

For each subject, the mean values of FC and SW were calculated over all channels. The values of SW were statistically compared using Wilcoxon’s ranksum test and the correlations between mean FC and SW were calculated using Pearson correlation coefficient (r). The confidence level of p < 0.05 was used. p-Value was adjusted according to the number of statistical tests using Bonferroni correction to address the problem of multiple comparisons. As three different measures and nine different graph densities were used, the number of statistical tests was 27 and p-value was adjusted to p < 0.05/27 = 0.0019. The correlations were considered statistically significant if |r| > 0.34, corresponding to the adjusted p-value p < 0.0019 and sample size of 80 subjects. If the absolute value of obtained correlation was higher than 0.34, the correlation could not have emerged randomly.



RESULTS

First, we statistically compared the values of SW calculated from different FC measures (Figure 1). Bonferroni correction for 27 statistical tests was applied. Small-worldness calculated from ICOH was significantly lower than SW calculated from MSC and SL for all graph densities analyzed in the current study. For MSC and SL, SW was mostly above 1 or close to 1, indicating these networks have better or similar small-world properties compared to a random network. For ICOH, most values of SW were below 1, indicating these networks have less small-world properties compared to a random network.


[image: image]

FIGURE 1. Small-worldness (SW) depending on graph density. The mean and standard deviation values are shown for SW, calculated from MSC, SL and ICOH. SWICOH is significantly lower than SWMSC and SWSL.


Secondly, Pearson correlation coefficient was calculated between SW and FC for all measures of FC (Figure 2). There was a statistically significant negative correlation between FC and SW for all measures of FC. For MSC and ICOH, correlations were statistically significant for graph densities 15 … 50% and for SL 20 … 50%. The highest correlations are plotted on Figure 3. The highest correlation for MSC was for graph density 40% (Figure 3A), for SL 45% (Figure 3B) and for ICOH 50% (Figure 3C). Pearson correlation coefficient was also found between SW and averaged edge values of random graphs. As expected, correlation for random graphs was not statistically significant for any of the analyzed graph densities.


[image: image]

FIGURE 2. The values of Pearson correlation coefficients (r) between measures of functional connectivity (MSC, SL, and ICOH) and small-worldness calculated from these measures (SWMSC, SWSL, and SWICOH) for different graph densities. Black horizontal line corresponds to correlation -0.34. Correlations below this line are statistically significant with confidence level of 0.05 (p-value is adjusted according to Bonferroni correction to p < 0.0019).



[image: image]

FIGURE 3. Correlation between FC and SW for (A) MSC, (B) SL, and (C) ICOH. Pearson correlation coefficient (r) is shown in the upper right corner.




DISCUSSION

As a result of the study, we found a negative correlation between EEG alpha FC and SW. The correlation occurred for all three measures of FC calculated in the current study. For MSC and ICOH, correlations were statistically significant for graph densities 15 … 50% and for SL 20 … 50%. Based on the results of the current study, we suggest a hypothesis that decreased alpha small-world organization is compensated with increased connectivity of alpha oscillations in a healthy brain. Furthermore, a correlation may indicate that a certain efficiency is maintained in the brain by balancing between alpha FC and SW: as one increases, the other decreases.

Results found in the current study may be associated with default mode network (DMN; Jann et al., 2010; Liu et al., 2017). The DMN has been the most studied of resting state networks, largely because it deactivates during demanding tasks. Furthermore, areas involved in DMN have high activity during resting state, observed with fMRI BOLD signal, and high connectivity (Hagmann et al., 2008). A recent study used high-density EEG to detect large-scale networks (Liu et al., 2017). The authors spatially overlapped obtained EEG networks with fMRI networks and found that although each resting state brain network is associated with oscillations of different frequency bands, DMN can be fully reconstructed using alpha frequency band. In the current study, alpha frequency band was also used and therefore association between the results in the current study and DMN are plausible.

Previous studies have mostly found that alpha FC is increased in MDD (Fingelkurts et al., 2007; Leuchter et al., 2012; Olbrich et al., 2014). Although changes in alpha SW in MDD are unclear, some studies have found that small-world measures of alpha EEG were decreased for subjects with MDD (Zhang et al., 2018; Sun et al., 2019). Therefore, in MDD, the relationship between FC and SW found in the current study is probably not disrupted. Fingelkurts et al. (2007) suggested that FC between short-range connections in the left hemisphere and long-range connections in the right hemisphere of subjects with MDD was increased to compensate insufficient semantic integration. However, according to the hypothesis suggested in the current study, the compensational mechanism proposed by Fingelkurts et al. (2007) may be inherent to healthy subjects as well. A compensational mechanism could be a fundamental characteristic to brain functioning. According to that theory, another possible explanation to the increase in FC for MDD is the decrease in SW, which in turn leads to an increase in FC.

Alzheimer’s disease in alpha frequency band is characterized by decreased FC (Koenig et al., 2005; Wang et al., 2014; Babiloni et al., 2016), but also decreased small-world measures (Wang et al., 2014; Babiloni et al., 2016). Therefore, compensating low small-world architecture with increased FC may be disrupted in AD.

Similarly to AD, schizophrenia in alpha frequency band has also been previously described with decreased FC (Jalili and Knyazeva, 2011; Di Lorenzo et al., 2015; Maran et al., 2016) and small-world measures (Micheloyannis et al., 2006; Rubinov et al., 2009). Schizophrenia is often described with “dysconnectivity syndrome” – impaired functional integration between and within brain areas. Considering the results of the current study, it could be presumed that “dysconnectivity syndrome” is expressed by disrupted compensational mechanism in schizophrenia.

We statistically compared the values of SW calculated from different FC measures. Small-worldness calculated from ICOH (SWICOH) was significantly lower compared to SWMSC and SWSL. As ICOH measures only phase-shifted relationship between time series, this result shows that MSC and SL capture a lot of information from zero-phase interactions. A lot of these interactions are due to volume conduction. Previous studies have shown that volume conduction falsely increases values of SW (Kuś et al., 2004). The same effect could also be observed in the current study, where SWMSC and SWSL were significantly higher compared to SWICOH. Nevertheless, the correlation between FC and SW found in the current study cannot be caused by volume conduction, because in addition to MSC and SL, the correlation was also found with ICOH, which minimizes the effects of volume conduction.

Magnitude-squared coherence is a linear measure that is calculated in a frequency domain and SL is a nonlinear measure that is calculated in a time domain. Although these measures are fundamentally different, there were no statistically significant differences between SWMSC and SWSL. This result shows that for robust network analysis applications, MSC can be selected instead of SL, because MSC is easier and faster to compute.

In the current study, SWMSC and SWSL were mostly slightly higher than 1 (Figure 1), indicating these networks have better or similar small-world properties compared to the random networks generated from original networks. However, SWICOH was mostly below 1 (Figure 1), indicating these networks have less small-world properties compared to a random network. These results are in line with previous studies: SW has been found to be above 1 for FC measures that are more influenced by volume conduction (Micheloyannis et al., 2006; Wang et al., 2014; Zhang et al., 2018) and slightly below 1 for measures that are less influenced by volume conduction (Hou et al., 2018; Zheng et al., 2018). Previous studies have found that EEG functional networks are small-world networks, but the current study shows that these results may be influenced by volume conduction, since functional ICOH networks in the current study did not show small-world properties during eyes-closed resting state.

Most studies that compare two groups of subjects, obtain values above 1 for SW. Since those metrics are obtained by comparing original networks to random networks, decrease in those values is generally interpreted as a more random network structure (Rubinov et al., 2009; Zhang et al., 2018; Sun et al., 2019). In the current study we showed that although decrease in SWMSC and SWSL can be interpreted as a more random network structure (Figures 3A,B), decrease in SWICOH resulted in a less random network structure (Figure 3C). Therefore, the decrease in SW does not necessarily interpret into a more random network structure, although such result can be concluded mathematically in case of certain measures. These results strengthen the argument to calculate ICOH in addition to MSC or SL.

The negative correlation obtained in the current study increased between graph densities 10 … 25% and was more stable for graph densities 30 … 50% (Figure 2). As mean FC was constant for all graph densities, this result could be more influenced by the dependence of SW on graph density. Still, one has to take into account that the dependence of SW on graph density differs for each individual network. Generally, denser networks naturally have smaller values of SW (Bassett and Bullmore, 2017). However, the same conclusion did not apply to the results of ICOH in the current study (Figure 1). To address the limitation of SW depending on the graph density, the small-world propensity (SWP) was introduced by Muldoon et al. (2016). However, in the current study, we chose a more common approach to calculate SW for a range of graph densities (Figure 2) to investigate the correlation between FC and SW depending on the graph density.

In the current study, functional networks of healthy subjects in resting state was analyzed. Further studies could also investigate the relationship between FC and SW in subjects with MDD, AD, and schizophrenia. Based on the network analysis in studies by other authors, the relationship between FC and SW found in the current study may be disrupted in AD and schizophrenia, but not in MDD.

Previous studies have shown that different physiologic states can be described with different network structure (Bartsch et al., 2015) and FC (Lin et al., 2016) within organ systems, indicating an association between network topology, FC, and physiologic function. In the more focused perspectives of the brain, the hypothesis of a compensatory mechanism between FC and SW suggested in the current study seems to be consistent with these findings in that in healthy subjects FC and SW underlying different physiologic states may well alter in an interrelated manner. This concept should be made subject of further research within a broader framework incorporating functional integration and segregation, too.



CONCLUSION

To the best of our knowledge, current study is the first to analyze the relationship between resting state EEG FC and SW. We report a negative correlation between FC and small-world organization in alpha frequency band for healthy subjects. We interpret these results as the manifestation of a compensational mechanism of the healthy brain, where lower small-world organization is compensated by higher connectivity strength. The finding is expected to be useful in the differentiation of mental and neurological disorders.
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This study investigates the complex interplay between the cardiac and respiratory systems in 268 healthy neonates born between 35 and 40 weeks of gestation. The aim is to provide a comprehensive description of the developing cardiorespiratory information transfer mechanisms as a function of gestational age (GA). This report proposes an extension of the traditional Transfer Entropy measure (TE), which employs multiple lagged versions of the time series of the intervals between two successive R waves of the QRS signal on the electrocardiogram (RR series) and respiration time series (RESP). The method aims to quantify the instantaneous and delayed effects between the two processes within a fine-grained time scale. Firstly, lagged TE was validated on a simulated dataset. Subsequently, lagged TE was employed on newborn cardiorespiratory data. Results indicate a progressive increase in information transfer as a function of gestational age, as well as significant differences in terms of instantaneous and delayed interactions between the cardiac and the respiratory system when comparing the two TE directionalities (RR→RESP vs. RESP→RR). The proposed investigation addresses the role of the different autonomic nervous system (ANS) branches involved in the cardiorespiratory system, since the sympathetic and parasympathetic branches operate at different time scales. Our results allow to infer that the two TE directionalities are uniquely and differently modulated by both branches of the ANS. TE adds an original quantitative tool to understanding cardiorespiratory imbalance in early infancy.
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INTRODUCTION

Premature birth and related complications are the leading cause of death under 5 years of age across the world (Liu et al., 2016). According to the March of Dimes, in the United States, the percentage rate of preterm birth in 2019 was 10.00%, marking the third consecutive year of increase after 7 years of decline (March of Dimes, 2019). Epidemiological studies have shown that late preterm [LPT: 340/7–366/7 weeks of gestational age (GA)] infants have significantly more medical problems, resulting in markedly increased hospital costs compared with full term infants (FT: 390/7–406/7 GA) (Wang et al., 2004). Data from a population study from 2006 to 2014 in the United States showed that LPT birth rate was 6%, while early term (ET: 370/7–386/7 GA) rate was 26.9% (Richards et al., 2016). Late preterm and early term birth are associated with adverse neonatal outcomes, such as higher incidence of respiratory distress syndrome, temperature instability, hypoglycemia, hyperbilirubinemia, apnea, feeding problems, as well as higher rates of re-hospitalization and a two-fold increase in Sudden Infant Death Syndrome (SIDS) (Thompson and Mitchell, 2006; Loftin et al., 2010; Adamkin, 2013). Limited sleep state regulation, frequent episodes of apneas, periodic breathing, altered pulmonary function, bradycardia, and diminished autonomic control of heart rate (HR) have been documented in these populations (Hunt, 2006; Scher et al., 2011; McEvoy et al., 2013; Lucchini et al., 2018).

Starting from a concept introduced by the new field of Network Physiology, the human organism can be viewed as a network of integrated and interacting physiological systems (Ivanov and Bartsch, 2014; Ivanov et al., 2016). Thus, given the described adverse conditions related to imbalances of both cardiac and respiratory systems, investigation of risks associated with late prematurity should include a focus on the dynamic interaction in the cardiorespiratory network. Regulation and autonomic control of respiratory and cardiovascular interactions are crucial for the maintenance of homeostasis during sleep (Harper et al., 1988). In adults, many studies have shown evidence that cardiorespiratory imbalance is associated with obstructive sleep apnea and heart failure, resulting in higher sympathetic tone and potentially ultimately triggering life-threatening events (Harper et al., 2012). Similarly, it has been reported that nocturnal perturbations of cardiac and respiratory systems in newborns play a crucial contributory role in SIDS (Schechtman et al., 1991). Despite the high clinical relevance there is a paucity of research data about the mechanisms related to cardiorespiratory interactions early in life when the primary control systems are still developing.

Many approaches have been proposed in the past to address the complex interaction of the cardiorespiratory system, from simple time and frequency domain measures (Horne, 2014) to more complex ones, such as those based on information theory (Frasch et al., 2007; Bartsch et al., 2012; Penzel et al., 2016). These, in particular Transfer Entropy (TE), are progressively gaining interest as model-free approaches which quantify directional interaction between subsystems and are thus sensitive to both linear and non-linear interactions. In prior publications the existence of several co-existing forms of cardio-respiratory coupling (Bartsch et al., 2014) has been shown, and our group has also addressed this topic analyzing cardiorespiratory interaction with regards to entropy and phase locking (Lucchini et al., 2017, 2018). In the current report, we propose a new application of TE measure to provide an estimation of information transfer between the cardiac and the respiratory system at various lags. The focus on the timing of such interactions will augment descriptive approaches for assessing cardiorespiratory interplay at various time scales.

Specifically, we are interested in characterizing such system crosstalk in a population of LPT, ET, and FT infants. This investigation aims to provide insight into developing control systems involved in the cardiorespiratory regulation and how prematurity affects this complex interaction. This could inform interventions aimed at reducing risk for morbidities and mortality in this population.



MATERIALS AND METHODS


Lagged Transfer Entropy

For our proposed framework, we modeled a dynamical system composed of two interacting sub-systems (M = 2), whose visited states can be represented by discrete-time stationary stochastic processes, namely X and Y. In this context, TE aims at evaluating the information transfer by the past states of the process X about the present of the process Y, that is not already provided by the past states of Y (directionality X→Y) and vice versa (directionality X→Y) (Schreiber, 2000).

We define xn, yn as the stochastic variables representing the present states of the processes X and Y at a given time point n, with n < N and N = length of the signals, and x1:n–1, y1:n–1 the vectors of their respective past states.

Transfer Entropy is defined accordingly to Eq. 1:

[image: image]

where the sum incorporates all states visited by the subsystems.

Similarly, the formulation of TE can be expressed in terms of the difference between two Conditional Entropy (CE) terms as shown in Eq. 2:

[image: image]

The previously reported TE formulations encompassed an aggregate measure of information transfer which is not candidate-specific, where candidate refers to one of the elements contained in the vectors employed to reconstruct the past of processes X or Y at the instant n defined as x1:n–1 and y1:n–1.

In this work, to disambiguate the contribution of different candidates toward the estimate of TE, we employed the approach described in Faes et al. (2014). Given the TE formulation expressed in Eq. 2, we computed TE based on a sequential procedure for non-uniform conditioning, where the conditioning vector is updated progressively by selecting the candidate which reduced the most uncertainty in explaining the target variable. The initial set of candidates was defined including a predefined maximum number of past states, i.e., Ω = {Xn–1, Xn–2,.., Xn–Lmax, Yn–1, Yn–2,.., Yn–Lmax}. In this work, the maximum number of candidates (Lmax) was set equal to 10. Candidates were progressively selected among the elements of Ω as described in Faes et al. (2014). Once the selection procedure has terminated, the vectors of candidates for both X and Y processes were produced and defined as Vk = [VkX, VkY]. Thus, they were suitable to be employed as conditioning vectors for further TE estimations. Given the reported notation, Eq. 2 can be rewritten employing conditioning vector formulation as reported in Eq. 3:

[image: image]

The final step to TE estimation relied on the computation of probability density functions to approximate the interrelationship between X and Y, based uniquely on single realizations of the two processes. The practical estimation of terms in Eq. 3 was based on the previously defined embedding vector (Vk) and it employed a Nearest Neighbor (NN) estimator. The combination of non-uniform embedding and NN estimator (NN NUE) has been reported to be optimal for TE estimation (Kugiumtzis, 2013). Furthermore, the statistical significance of computed TE was assessed using surrogate data implemented by time shift procedure. In this analysis, the number of employed surrogate series was equal to 100, with a maximum allowed time shift of 20 samples. The significance threshold was set above the 95th percentile of the surrogate series distribution.

Transfer Entropy has been usually employed for a global measure of information transfer between time series. This work proposes a novel approach toward the quantification of the instantaneous and delayed effects among two interacting systems based on TE notion. This application lies its foundations on the previously described TE implementation, yet it considers several lagged versions of the original series (Pini et al., 2019).

In order to quantify TEX→Y at a lag value (τ) equal to one, the target series was shifted forward of one sample so that x(n) was aligned with y(n–1). The lagged version of TE proposed in this approach aims at quantifying the information provided by the past of X on the shifted portion of the process Y, that is not already provided by the past of Y as reported in Eq. 4:

[image: image]

The underlying idea is to quantify the source series effects on the target and the instantaneous and delayed effects between the two processes. The previously described computational implementations for TE are again employed for this proposed lagged version. For this analysis the maximum lag between X and Y series was set to 15. The statistical significance of TE estimations for each lag was tested with surrogate data, as previously described.



Validation

To provide validation of the proposed methodology, lagged TE was computed based on a dynamical system composed by M = 2 stochastic dynamic subsystems, namely X and Y, defined by Eq. 5:

[image: image]

where Un and Vn are independent white noises with zero mean and unitary variance. The autoregressive parameters a1, a2, C1, C2, and C3 were set as described in Faes et al. (2014). Process X simulates a self-sustained rhythm with a characteristic frequency centered at f = 0.1 Hz. Parameters and delay settings were chosen to simulate two different types of interaction: one which is, lasting and strong taking into consideration the directionality X→Y, the other which is transient and weak for Y→X. The simulated series length was set to N = 300 points, and the total number of generated series was equal to 100 for each lag, ranging from the unlagged version (lag = 0) of the series to their maximum lagged version (lag = 15). As previously described in the Methods section, the statistical significance of TE estimations for each lag was tested with surrogate data. Two one-way ANOVAs were performed to test the interaction between the fixed factor lag and each dependent variable (TEX→Y or TEY→X).



Experimental Protocol and Data Preprocessing

For this analysis our dataset included 268 infants born at the Morgan Stanley Children’s Hospital of New York between 350/7 and 406/7 weeks of GA. No participating newborn was admitted to the Neonatal Intensive Care Unit, and there was no evidence of major illness, genetic disorders. Also, there was no past/present medicated/non-medicated psychiatric complaints in the mothers. A minimum Apgar score of 8 after 5 min of life was required. Mothers signed informed consent forms prior to enrollment in the study. The Institutional Review Boards of the New York State Psychiatric Institute and Columbia University Medical Center approved all consent and data acquisition procedures.

Subjects who met inclusion criteria were tested 12–84 h after birth (mean and standard deviation of hours of life = 48 ± 12 h). Infants were grouped based on GA: LPT (N = 67), ET (N = 91), and FT (N = 110). Within ∼30 min after feeding, infants were put supine to sleep and data acquisition lasted 10 min. ECG and respiration signals were acquired at 500 Hz and 200 Hz, respectively. ECG was recorded with three leads, placed on the infant’s chest (left abdomen, left and right scapula) and the signal was amplified and recorded using the DATAQ Instruments ECG system (Medelex, New York City, NY, United States). A respiratory inductance belt (Ambulatory Monitoring Inc., Ardsley, NY, United States) was placed around the infant’s abdomen to measure the respiration signal. Sleep states were classified into active sleep (AS) and quiet sleep (QS) based on respiratory variability and confirmed by behavioral codes entered throughout the study to determine when infants were awake, crying, or fussy (Stefanski et al., 1984; Isler et al., 2016).

The R peaks were detected on the ECG with proprietary software (Gmark, Ledano Solutions) based on the Pan–Tompkins algorithm and subsequently checked by visual inspection. The respiration signal was bandpass filtered (0.05–3.5 Hz). The thresholds of acceptance for RR interval were set as 0.3–0.667 s, with an absolute variation between consecutive RR intervals of 10%, while for respiration thresholds were 0.5–2.5 s (absolute change 40%). Segments with more than 5% rejected samples were discarded from further analysis. The RR series was then defined so that RR(n), was the time interval between the n-th R peak and the successive one at a time (n + 1)-th. Similarly, the n-th sample of resampled respiration series RESP(n) was obtained by resampling the original respiration series at the onset of the n-th R peak which coincides with the time previously defined for RR(n). Within the same sleep state, segments of 300 consecutive RR intervals (RR) and 300 respiration samples (RESP) were identified. The resulting series, RR(n) and RESP(n) with n = 1, …, 300, were normalized to zero mean and unit variance to be employed for further analysis. The segments length was chosen based on previous studies, reporting 300 samples as appropriate for a reliable TE estimation as fulfilling the requirement of stationarity (Faes et al., 2014; Lucchini et al., 2017). The described preprocessing pipeline was necessary to avoid potential bias in the further analysis. Specifically, the effect of non-stationarities over entropy measures and estimators due to artifacts has been extensively shown in Xiong et al. (2017).

The total number of analyzed segments was 661, 392 in AS and 269 in QS. The MuTE toolbox was employed for computing Transfer Entropy (Montalto et al., 2014).

Two-way ANOVAs tested the effect of fixed factors lag (0:15) and GA (LPT, ET, FT) on TERR→RESP and TERESP→RR for each sleep state. Sex, mode of delivery (MoD), and hours of life (HoL) were included in the statistical model as covariates. Significance for fixed factors as well as their interactions were tested. A series of post hoc tests were performed: simple main effects and specific group differences. Statistical analysis was conducted with IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.



RESULTS


Validation Data

The top panel of Figure 1 shows TEX→Y as a function of lag, computed on a simulated dataset. The behavior of TEX→Y is in accordance with the simulated interaction between subsystems X and Y. Specifically, TEX→Y exhibits a strong and stable influence of process X over process Y for lags 0 to 5, where the information transfer between the two series is expected to be maximum given that Xn–1, Xn–2, and Xn–5 are effectively contributing to modulate the target series Y. The rapid reduction in TE at lags equal to 6 and 9 are consistent with the set delays. Specifically, at lag 6, the past state Xn–5 of process X cannot be included in the conditioning vector anymore, given the chosen maximum candidate delay L = 10. Accordingly, a net decrease in TE is noticed when passing from lag = 5 to lag = 6. Analogous reasoning applies when moving from lag = 8 to lag = 9. Lastly, from lag = 10 on, the mutual influence in the directionality X→Y becomes negligible given the loss of interaction between the two sub-systems, thus resulting in TE estimates close to zero. Statistical analysis reveals a significant effect of lag over TEX→Y (p-value < 0.001). Bonferroni post hoc tests showed significant differences of lag 0–5 vs. lag 6–15, lag 11–15 vs. lag 0–10, and lags 6, 7, 8, 9, 10 are significantly different from each other.
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FIGURE 1. TE estimates for the directionality X→Y (top) and Y→X (bottom) computed on simulate dataset. TEX→Y exhibit a marked influence as lags are progressively increasing. On the contrary, no influence of lags over TEY→X is detected.


Distribution of selected RR candidates included in the conditioning vector VkX referring to TE at lag = 0 is displayed in the top panel of Figure 2. The frequency of selected candidates is in accordance with the simulated interaction delay between the two series, namely Xn–1, Xn–2, and Xn–5.
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FIGURE 2. X (top) and Y (bottom) series candidate distributions employed for TE computations considering lag = 0. RR series candidate distribution shows a proper selection of the simulated delays. On the other hand, RESP candidate distribution reflects the weak modulation effect of series Y on X.


With regard to TEY→X, values are stable across all the lags and noticeable lower when compared with estimates for TEX→Y, as presented in the bottom panel of Figure 1. The absence of any TEY→X significant differences by lags reflects the weak and transient influence of the information transfer for this directionality. Uniformly, only Yn–1 results the preferred candidate as it effectively contributing to modulate the target series X as a standalone past sample of series Y, as shown in the bottom panel of Figure 2.



Cardiorespiratory Data

Using the same approach described in see section “Validation” for the simulated dataset, TE estimations across lag and GA, as well as RR and RESP candidate distributions were computed. Additionally, the statistical significance of TE estimations for each lag was tested employing surrogate data.

The subsystems’ interaction for the directionality RR→RESP exhibited a long-lasting and steady effect of cardiac system modulation over the respiratory system, as shown in the top two panels of Figure 3. No differences were found when comparing TERR→RESP across lags in the interval 0–9, consistently for both QS and AS. Analogous behavior was displayed in the interval 10–15. In contrast, post hoc tests revealed significant differences comparing each lag in the interval 0–9 vs. 10–15. Significant GA group differences were found when considering estimates of TERR→RESP in AS only. Specifically, we observed an average increase in information flow across GA. This was confirmed by the post hoc test comparing LPT vs. ET (p < 0.001), LPT vs. FT (p < 0.001), and ET vs. FT (p < 0.001). RR candidates employed in estimating TERR→RESP at lag = 0 exhibit a similar frequency of selection for both QS and AS. Moreover, when investigating the role of GA for candidate frequency of selection, no differences are found across age.
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FIGURE 3. TE estimates computed for cardiorespiratory dataset considering the three GA groups: LPT, ET, and FT, separately for QS and AS. The behavior of TERR→RESP resembles a longer and stable effect of RR modulation over RESP. On the contrary, TERESP→RR exhibit a transient and rapidly decreasing interaction between the subsystems.


In contrast to what previously reported for TERR→RESP, TERESP→RR exhibited, the current study demonstrated a decrease in information transfer from RESP to RR as lags were progressively increasing in both QS and AS states. As confirmed by statistical analysis and shown in the two bottom panels of Figure 3, no significant differences among lags were found for lags >3. Given this finding we limited the analysis to a restricted poll of lags, specifically 0–3, with the aim of avoiding over-representing similar class distributions in the successive analysis. The statistical analysis performed on the subgroups of lags for TERESP→RR showed a significant effect of lag as a fixed factor. Specifically, each lag was consistently different from each other for both QS and AS. Analyses among GA groups report no differences for TERESP→RR in AS. Significant differences were evident in QS. A summary of statistical results is reported in Table 1. The candidate analysis reported a behavior characterized by a prevalent selection of Yn–1 and Yn–2 candidates for both sleep states as displayed in Figure 4.


TABLE 1. Results of two-way ANOVA tests on cardiorespiratory data.
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FIGURE 4. RR (top two panels) and RESP (bottom two panels) series candidate distributions employed for TE computations of cardiorespiratory data. RR candidates are selected uniformly among all possible candidates. On the opposite considering the respiratory signal, the first two possible RESP candidates are selected with higher probability.


Given the differences of TERR→RESP and TERESP→RR as a function of GA, we decided to investigate the role of breathing rate for our model. The rationale for investigating breathing frequency was based on previous studies showing differences by sleep state (higher breathing rate in AS) but not by GA (Lucchini et al., 2018). Thus, we hypothesized that breathing rate is partly mediating the interaction between sleep states and TE.

In this analysis, we first tested (Sobel test) a model having sleep states as the independent variable (IV), TE as the dependent variable (DV) and breathing frequency as a mediator (M). Partial mediation analysis quantifies the decrease in correlation strength among two factors, once a specific mediator is introduced in the model. Specifically, when considering TERR→RESP as DV, the correlation between IV and DV was significant (p-value < 0.001) and the mediation effect of breathing frequency was equal to 11%, similar results were obtained considering TERESP→RR as DV (p-value = 0.001 and 14%). On the other hand, when testing GA as the DV, no significant mediation was reported in either TE directionality.



DISCUSSION

The goal of this study was to analyze the maturation of the cardiorespiratory networks in terms of information flow dynamics in a population of newborns during sleep. Gaining insight on such interactions attains the potential for assessing individual differences in neonatal control mechanisms and vulnerability for the reported higher morbidity and mortality rates in LPT and ET newborns (Richards et al., 2016). Investigation of the neurophysiological mechanisms responsible for cardiorespiratory regulation is challenging, due to their intrinsic complexity and the requirement to employ non-invasive monitoring. Quantitative analysis of cardiorespiratory interactions in the newborn nursery represents a valuable investigation tool. Moreover, the derived parameters provide a window of opportunity to observe non-invasively the interaction between sympathetic and parasympathetic nervous systems and their capability to timely respond to internal and external challenges.

In this study, we propose TE as an optimal method to investigate the above-mentioned interaction (Kugiumtzis, 2013). The advantages of the proposed approach are multiple. Firstly, it is model-free, i.e., it does not require any a priori assumption regarding the systems generating the observed data. This is crucial in the neonatal context, given that control systems at birth are still developing and the typical cardiorespiratory models for adults thus cannot be applied. Even in the context of integrated system physiology in adult subjects, general models cannot be directly employed but often need to be modified and adapted in accordance with the observed dynamics. Secondly, TE is a measure encompassing the dynamics of information transfer and thus it provides an indication of directionality (Schreiber, 2000). This is particularly important as it is well documented that respiratory and cardiovascular rhythms influence each other due to central as well as peripheral nervous mechanisms of interaction (Bartsch et al., 2015). Despite these two important advantages there is one intrinsic limitation of traditional TE techniques, namely the reliance on a single global measure of information. Thus, TE lacks information about different time scales of information flow across subsystems. Gaining an understanding of the different time scales at which the vagal and sympathetic mechanisms operate would augment the description of ANS modulating action over cardiorespiratory interaction (Faes et al., 2014).

To specifically address this issue, this paper proposes an extension of traditional TE formulation. It complements the estimates of magnitude and directionality of information flow with that of timing between the two coupled processes. Accordingly, TE was calculated on several lagged versions of the original series.

To provide validation for the proposed methodology, computation of lagged TE was performed based on a dynamical system composed of two stochastic subsystems simulating two different types of interaction: a lasting and strong one considering the directionality X→Y, paired with a transient and weak one for Y→X. The validation procedure performed on simulated data confirmed the ability of lagged TE to track the information transfer at different time scales.

The resulting application of lagged TE on neonatal cardiorespiratory data showed two distinct interaction profiles as a function of directionality: a fast and quickly decaying information transfer from RESP to RR, and a slower but more stable transfer from RR to RESP. Convergent findings with regard to the directionality from RESP to RR were obtained by Faes et al. (2014), showing that the fast information flow from breathing to HR is associated with the respiratory sinus arrhythmia. Furthermore, the timing of activation of the information flow profile is comparable to the known latencies of activation for the sympathetic and parasympathetic arms of the nervous system. Specifically, the sympathetic branch intervenes on a slower time scale but its effect on the target system lasts longer whereas the parasympathetic has a punctate, yet rapidly vanishing action. Thus, the reported lagged TE dynamics might reflect that information transfer directionalities are driven by different autonomic branches of the ANS (Hoyer et al., 2005). This is relevant in the context of possible approaches for quantification of sympathetic activation. A state of sympathetic hyperactivity has been in fact reported as associated with an increase in cardiovascular morbidity and mortality (Brook and Julius, 2000; Nakamura et al., 2016). Thus, while several heart rate variability parameters can assess parasympathetic activity, consensus about quantification of sympathetic nervous system activity is still pending.

Regarding the differences as a function of GA, we reported a significant decrease of information flow in LPT from RESP to RR in quiet sleep, and for LPT and ET a reduced information flow from RR to RESP in active sleep. Interestingly, there was no difference in the candidates selected for the reconstruction of the past states. In line with our findings, previous work addressing other forms of cardiorespiratory interaction in newborn population highlighted that the direction of coupling between cardiovascular and respiratory systems varies with age over the first 6 months of life, with a tendency to change from a nearly symmetric bidirectional interaction to primarily unidirectional mode from RESP to RR (Rosenblum et al., 2002; Lucchini et al., 2016). These findings strengthen the assumption that GA-related differences are due to intrinsic differences in the interactions between subsystems, given the reported candidate selection employed for the reconstruction of RR series past vector. The reported GA-related results constitute a plausible explanation for cardiorespiratory differences in the newborn period and might pave the way to a possible explanation for the increased risk of LPT and ET populations.

To extend these findings, we explored the role of breathing rate on the modulation of the information flow. Our partial correlation model confirmed the role of breathing rate as a mediator for the interaction between sleep states and TE, but not between GA and TE. These results mirror our previous findings regarding cardiorespiratory interactions. We previously reported the absence of a change in breathing frequency as a function of GA. However, a significant modification of directionality of the cardiorespiratory coupling had been observed (Lucchini et al., 2018).

One limitation of the presented investigation is the absence of arterial blood pressure (ABP) included in the model. The availability of this additional signal would lead to a more comprehensive investigation of the complex physiological interactions of the cardiovascular systems as a function of state and age (Xiao et al., 2005). Lastly, larger scale studies are needed to investigate neonatal ANS regulation in the context of diverse factors, e.g., ethnicity, socio-economic status, maternal conditions, psychosocial stressors.

In conclusion, the utilization of a lagged version of TE might lead to a novel approach to investigate physiologic networks, selectively assessing horizontal information transfer at different time scales. This particular investigation of the interaction between the cardiac and respiratory systems aimed at characterizing the different regulatory profiles of the two branches of the ANS and at ultimately providing an indication of altered patterns of physiological behavior. Findings presented in this paper are convergent with previous published findings (Frasch et al., 2007; Faes et al., 2014). The novel contribution of this study is the characterization of the dynamics of the cardiorespiratory network across sleep states and gestational ages. Ultimately, application of TE in assessment of network physiology affords an opportunity for early risk stratification in a high risk population (Bartsch et al., 2015). In the near future, we envision the application of TE methodology for the characterization of other interacting subsystems such as brain-brain and brain-heart to provide a more comprehensive picture of the complex mechanisms characterizing neonatal development.
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In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization.

Keywords: synchronization, integrate-and-fire, neuronal network, time delay, conductance


1. INTRODUCTION

Network physiology reveals how organ systems dynamically interact (Bartsch et al., 2015). The human organism is a complex physiological and integrated system in which a fail in a specific component can produce a range of biological effects (Bashan et al., 2012). One of the biggest challenges is to understand how global behavior of the human organism emerges due to local causes (Ivanov et al., 2016). Brain-brain and brain-organ networks have been considered to study integrated physiological systems under neuronal control (Ivanov et al., 2009). Chen et al. (2006) investigated the relationship between the blood flow velocities in the cerebral arteries and beat-to-beat blood pressure. Liu et al. (2015) built a network of brain wave interactions. They found complex brain dynamics, such as desynchronous and synchronous activities (Xu et al., 2006) during quiet wake and deep sleep, respectively.

Time delay has been considered in several problems of biological interest (Glass et al., 1988), such as herbivore dynamics (Sun et al., 2015), polymerization processes (Mier-y-Terán-Romero et al., 2010), dynamics of tumor growth (Byrne, 1997; Borges et al., 2014), and dynamic behavior of coupled neurons (Esfahani et al., 2016). One of the brain's intrinsic properties is the delay in the transmission of information among separate brain regions (Deco et al., 2009). Stoelzel et al. (2017) investigated the relation between axonal conduction delays and visual information. They found that some conduction times in corticothalamic axons exceed 50 ms. Conduction latencies in mammalian brain about 100 ms are also reported by Aston-Jones et al. (1985).

Dynamic brain behavior can be mimicked by means of neuronal network models (Protachevicz et al., 2019), for instance, neuronal synchronous behavior (Borges et al., 2018). Neuronal synchronization is found in task conditions (Deco et al., 2011). Furthermore, many neurological disorders are also related to synchronous behavior in the brain (Uhlhaas and Singer, 2006). Network models have been used to study the effects of time delay in synchronized neuronal activities (Stepan, 2009). Dhamala et al. (2004) showed the enhancement of neuronal synchrony by time delay in a neuronal network. Wang et al. (2016) investigated synchronized stability in coupled neurons with distributed and discrete delays. Kim and Lim (2018a,b) studied synchronization in networks, where they considered plasticity (Borges et al., 2017a) and time delays between the pre-synaptic and post-synaptic spike times.

Neurons can be modeled by differential equations. In 1907, Lapicque (Lapicque, 1907) used a linear differential equation (leaky integrate-and-fire) to simulate the neuron membrane potential. A system of non-linear differential equations was proposed by Hodgkin and Huxley (1952) to describe the action potential. The Hodgkin-Huxley model considers ion channels that open and close according to the voltage. Different connectivities among the neurons have been considered to form neuronal networks. The dynamics of coupled neurons was investigated in networks with random connections (Brunel, 2000), small-world (Tang et al., 2011), and scale-free (Batista et al., 2007, 2010) topologies were used to study neuronal synchronization.

We build here a network composed of adaptive exponential integrate-and-fire (AEIF) neurons. The AEIF model was introduced by Brette and Gerstner (2005). Depending on the parameter values, the AEIF neuron can exhibit different firing patterns (Naud et al., 2008). Synchronized firing patterns were observed in coupled AEIF neurons (Borges et al., 2017b). Pérez et al. (2011) studied the influence of conduction delays on spike synchronization in Hodgkin-Huxley neuronal networks. Previous works found that slow-rising inhibitory synaptic currents can induce synchrony (Abbott and van Vreeswijk, 1993; van Vreeswijk et al., 1994) and affect the stability of asynchronous state (e.g., splay state) (van Vreeswijk, 1996; Olmi et al., 2014). Chen et al. (2017) reported that the competition between coupling strength and synaptic time-constant leads to rich bifurcation in pulse-coupled neuronal networks with either excitatory or inhibitory synapses.

In this work, we study AEIF neurons randomly connected by means of excitatory and inhibitory conductivities. The neurons can exhibit not only spike but also burst activities (Santos et al., 2019). Our results show that the delayed conductance in both excitatory and inhibitory connections play an important role in the neuronal synchronization. Furthermore, we demonstrate that not only the values of the conductance intensity, but also small delays in inhibitory conductances are important to prevent abnormal synchronization.

The paper is organized as follows. In section 2, we introduce the neuronal network composed of AEIF neurons and delayed conductance. Section 3 shows our results about the effects of conduction delays in neuronal synchronization. We draw our conclusions in the last section.



2. MODEL AND METHODS

We construct a neuronal network with 100 AEIF neurons, where the connections are randomly chosen with probability equal to 0.5. The connection probability is defined as

[image: image]

where NT is the total connection number of the network and N·(N − 1) is the maximal possible number of connections for a network with N neurons without auto-connections. We consider that each neuron has at least one connection. The network has 80 and 20% of excitatory and inhibitory connections, respectively (Noback et al., 2005). The network dynamics is given by

[image: image]
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where Vi, wi, and gi are the membrane potential, the adaptation current, and the conductance of the neuron i, respectively. We consider C = 200 pF (capacitance membrane), gL = 12 nS (leak conductance), EL = −70 mV (resting potential), Ii = 2·Irheo (constant input equal to two times the rheobase current Naud et al., 2008), ΔT = 2 mV (slope factor), VT = −50 mV (potential threshold), and τw = 300 ms (adaptation time constant). The level of subthreshold adaptation ai is randomly distributed in the interval [1.9, 2.1] nS. This set of parameters corresponds to the spike adaptation activity when neurons are uncoupled. In the model, the adaptation mechanism is able to generate burst activities when the neurons are connected by excitatory synapses (Fardet et al., 2018). For weak coupling, the neurons exhibit spike activities, while for strong, burst activities can occur for low inhibition (Protachevicz et al., 2019). The current input [image: image] is calculated by the expression

[image: image]

where dj is the time delay in the conductance. We consider dj = dinh for inhibitory and dj = dexc for excitatory neurons. [image: image] is the reversal potential (VREV = 0 mV for excitatory and VREV = −80 mV for inhibitory synapses). In the adjacency matrix (Aij), the element value is equal to 1 when the presynaptic neuron j and post-synaptic neuron i are connected, and 0 when they are not connected. gj has an exponential decay with the synaptic time constant τs = 2.728 ms. When the membrane potential of the neuron i is above a threshold (Vi > Vthres) (Naud et al., 2008), the state variables are updated according to the rules

[image: image]

where Vr = −58 mV is the reset potential and b = 70 pA is the triggered adaptation addition. The chemical conductance gs assumes gexc and ginh for excitatory and inhibitory neurons, respectively. We define a relative inhibitory conductance as g = ginh/gexc. Table 1 shows the standard parameter set that we use in our simulations.


Table 1. Standard parameter set.

[image: Table 1]

As a diagnostic tool to identify synchronization, we use the time average of the Kuramoto order parameter (Kuramoto, 1984; Batista et al., 2017)

[image: image]

where the final time in the simulation and initial time for analyses are tfin = 10 s and tini = 5 s, respectively. [image: image] ranges from 0 to 1 and approaches 1 for synchronous behavior. The phase of each neuron j is calculated by Pikovsky et al. (1997)

[image: image]

where tj,m is the time at which neuron j suffers its m-th spike (m = 0, 1, 2, … ) and Φ is defined between two spikes in the interval [tj,m, tj,m+1].

The AEIF neuron can exhibit spike or burst activities. To identify these activities, we compute the coefficient of variation of the inter-spike interval (ISI)

[image: image]

where σISI and [image: image] are the standard deviation and the mean value of ISI, respectively. We identify spike activities when [image: image] and burst activities when [image: image] (Protachevicz et al., 2018).

We calculate the mean firing frequency [image: image] of the neuronal network by mean of the expression

[image: image]

We also compute the instantaneous Isyn(t) and the mean synaptic input [image: image] (pA) of the network through

[image: image]
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where [image: image] is described by Equation (5). In all diagnostics, each point in the parameter space dinh × dexc is computed by means of the average of 10 different initial conditions. The initial conditions of Vi and wi are randomly distributed in the interval Vi = [−70, −50] mV and wi = [0, 80] nA, respectively. The initial conductance gi is equal to 0 for all neurons. To solve the delayed differential equations, we consider an initial profile of the network (for t ∈ [−dj, 0]) in which the neurons are not spiking.



3. RESULTS

Neuronal conductances play a key role in network responses to stimuli (di Volo et al., 2019). Conduction delays were observed between the activities of the pre-synaptic and post-synaptic neurons (Ermentrout and Kopell, 1998). Figures 1A–D display [image: image], [image: image], [image: image], and [image: image], respectively, as a function of dexc for gexc = 0.2 nS, g = 6, and dinh = 5 ms. In Figures 1E–G (blue points, red points, black points), we show the raster plots for the parameters indicated by the respective filled colored circles. In Figures 1A–D, increasing dexc from 65 ms (blue) to 75 ms (red), the desynchronized spikes (Figure 1E) go to a synchronous behavior (Figure 1F), however, the spikes desynchronize when dexc is increased to 85 ms (Figure 1G). We find that a small change of the delayed conductance value can improve or suppress synchronous behavior.


[image: Figure 1]
FIGURE 1. (A) Mean order parameter ([image: image]), (B) mean firing frequency ([image: image]), (C) mean coefficient of variation ([image: image]), and (D) mean synaptic input ([image: image]) as a function of the excitatory delayed conduction dexc. Raster plots for dexc = 65 ms (E), dexc = 75 ms (F), and dexc = 85 ms (G) for gexc = 0.2 nS, g = 6, and dinh = 5 ms, and according to the colored circles.


Figures 2A,B display the parameter space dinh × dexc for gexc = 0.2 nS (weak coupling), where the color bar corresponds to the average order parameter [image: image]. The parameter space exhibits synchronous (yellow region) and desynchronous (black region) spike patterns ([image: image]). For g = 2 (Figure 2A), we verify vertical domains of synchronization that can be reached by maintaining dinh constant, and varying dexc. Increasing the relative inhibitory conductance for g = 6, separated domains with synchronized spikes appear, as shown in Figure 2B. For the considered parameter space, the highest and lowest values of [image: image] (Figures 2C,D) and [image: image] (Figures 2E,F) appear in the synchronized domain. In the domains with synchronized activities, we observe that the neuronal network achieves and maintains synchronized activities by means of changes in the mean firing frequency and synaptic current. In the region with a desynchronous pattern, the excitatory and inhibitory synaptic currents arrive in the neurons approximately at the same time.


[image: Figure 2]
FIGURE 2. Colors represent [image: image], [image: image] and [image: image] on the parameter space dexc × dinh for gexc = 0.2 nS, where we consider g = 2 in (A,C,E), and g = 6 in (B,D,F).


Figure 3 displays magnifications of the parameter spaces shown in the right column of Figure 2 (40 ≤ dexc ≤ 110 ms and 0 ≤ dinh ≤ 70 ms). In the domain with a synchronous pattern, we observe that dexc and dinh have a significant influence on the mean firing frequency and mean synaptic current, respectively. The dynamics of neurons for some values of dexc, indicated in the vertical line (blue circles) in Figure 3 for dexc = 75 ms, are shown in Figure 4 by means of the temporal evolution of i (A,C,E) and Isyn (B,D,F), where we consider dinh = 70 ms (blue), dinh = 60 ms (red), and dinh = 10 ms (green).


[image: Figure 3]
FIGURE 3. Magnifications of the parameter spaces shown in the right column of Figure 2. (A) [image: image], (B) [image: image], and (C) [image: image] for gexc = 0.2 nS and g = 6 on the parameter space dexc × dinh.



[image: Figure 4]
FIGURE 4. Raster plot (top) and Isyn(t) (bottom) for gexc = 0.2 nS, g = 6, and dexc = 75 ms for different values of dinh (blue circles in Figure 3). We consider (A,B) dinh = 70 ms (blue), (C,D) dinh = 60 ms (red), and (E,F) dinh = 10 ms (green).


In Figures 4A,B, we verify the existence of desynchronous spikes when excitatory and inhibitory inputs arrive in almost the same time (dexc ≈ dinh). Figure 5 shows raster plots (top) and Isyn(t) (bottom) for dinh = 30 ms (blue squares in Figure 3), where we consider dexc = 65 ms (blue), dexc = 75 ms (red), and dexc = 85 ms (green). The parameters correspond to the region where synchronization can occur. Furthermore, we observe that depending on the excitatory delay value, synchronization can be improved. We verify that the synchronization is improved for dexc = 75 ms, namely certain values of the delay can optimize the synchronization regime.


[image: Figure 5]
FIGURE 5. Raster plot (top) and Isyn(t) (bottom) for gexc = 0.2 nS, g = 6, and dinh = 30 ms for different values of dexc (blue squares in Figure 3). We consider (A,B) dexc = 65 ms (blue), (C,D) dexc = 75 ms (red), and (E,F) dexc = 85 ms (green).


Increasing gexc from 0.2 to 0.8 nS (strong coupling), in Figure 6, we observe in another range of the parameter space dinh × dexc (Figure 6A) where the region with synchronous behavior increases. Figure 6B displays the existence of regions with spike (blue) and burst (red) through the coefficient of variation value. Comparing Figures 6A,B, we verify that there are not only synchronized spikes, but also synchronized bursts. Moreover, desynchronous spike patterns are found for dinh ≈ dexc. Figures 6C,D show in color scale the values of [image: image] and [image: image], respectively. We see that the synchronized spikes occur for the values of dinh and dexc in which [image: image] and [image: image] are low. The synchronized bursts can be found with different values of [image: image] and [image: image]. In addition, we also observe desynchronized activities for dinh ≈ dexc. Figure 7 displays the raster plot (top) and Isyn(t) (bottom) for gexc = 0.8 nS, g = 6, and different values of dexc and dinh, according to the parameters pointed by the symbols in Figure 6. Different delay values can generate desynchronized spikes (Figures 7A,B), synchronized bursts (Figures 7C,D,G,H), and synchronized spikes (Figures 7E,F).


[image: Figure 6]
FIGURE 6. (A) [image: image], (B) [image: image], (C) [image: image], and (D) [image: image] in the parameter space dexc × dinh for gexc = 0.8 nS and g = 6. Symbols in dexc × dinh correspond to dexc = dinh = 0 ms (cyan square), dexc = 0 ms and dinh = 50 ms (cyan circle), dexc = 70 ms and dinh = 50 ms (cyan hexagon), and dexc = 110 ms and dinh = 50 ms (cyan triangle).



[image: Figure 7]
FIGURE 7. Raster plots (top) and Isyn(t) (bottom) for gexc = 0.8 nS, g = 6 for different values of dexc and dinh. Different delay values generate desynchronized spikes (A,B), synchronized bursts (C,D), synchronized spikes (E,F), and synchronized bursts (G,H).




4. DISCUSSION AND CONCLUSION

In this paper, we investigate the influence of delayed conductance on the neuronal synchronization. The study of neuronal synchronization is of great importance in neuroscience, due to the fact that it has been related to cognition, as well as to brain pathology. The conductance between the neurons plays a crucial role in the synchronous behavior. Many studies investigated the effects of the conductance on the neuronal activities (Bezanilla, 2008; Kispersky et al., 2012).

We construct a network composed of adaptive exponential integrate-and-fire (AEIF) neurons. The AEIF neuron has been used to mimic spike and burst patterns. In our network, we consider that the neurons are randomly connected by means of inhibitory and excitatory synapses. We find that for some network parameters, it is possible to observe spikes or bursts synchronization. We use the mean order parameter ([image: image]) and the mean coefficient of variation ([image: image]) as diagnostic tools to identify synchronization and spikes or bursts patterns, respectively. We also calculate [image: image] and [image: image] to analyse how they are related to synchronous behavior.

In order to explore the effects of different delayed conductances on the neuronal synchronization, in the section 3, we consider delay in both inhibitory and excitatory conductances. When all neurons are spiking (weak coupling), the delays induce synchronization domains in the parameter space dinh × dexc. Inside the parameter domains with synchronized neurons, we observe separated parameter subdomains representing neurons with higher and lower values of the mean firing frequency [image: image] (Hz), as well as different values of the mean synaptic input [image: image] (pA). For the neuronal network with strong coupling, we do not find domains with behavior similar to weak coupling in the parameter space dinh × dexc. However, we see synchronous and desynchronous activities with either spike and burst activities. We also observe a range of high values of [image: image] and [image: image] when only inhibitory delayed conductance is increased (dexc ≈ 0), responsible for turning desynchronous spikes into synchronous burst patterns. For dexc ≈ dinh and strong coupling, we also observed desynchronous spike activities. Desynchronous spike activities can be associated with lower mean firing frequency and synaptic currents for strong coupling.

For weak coupling, the size of the region with synchronized behavior in dinh × dexc decreases when the number of connections is decreased. In this situation, we observe that the size of the small regions can be increased by increasing gexc. In addition, for strong coupling and decreasing the number of connections, there is no burst activity and we verify the existence of synchronized and desynchronized spiking patterns, as shown for weak coupling and no sparse connectivity. Therefore, the connectivity and the synaptic conductance play an important role in the synchronization.

In conclusion, we verify that the delay in the conductances plays a crucial role in the behavior of the neurons in the neuronal network. For weak coupling, we uncover that not only the synchronous behavior, but also the mean firing frequency and the mean synaptic input depend on the delayed inhibitory and excitatory conductances. We identify which range of synaptic current allow the neuronal network to achieve and maintain synchronous activities. In the region with desynchronized activities, excitatory and inhibitory currents arrive in different times, consequently, high synchronization does not appear. For strong coupling, we see that also spike and burst patterns depend on the delayed conductances. The domain with synchronous pattern is characterized by having different delays in the inhibitory and excitatory conductances. Considering dexc ≈ dinh, we observe desynchronous spikes activities for both weak and strong coupling. In addition, our results demonstrate that not only intensity of synaptic conductance, but also a short delay in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization.

Our results can be useful to clarify how synchronous and desynchronous activities are reached in a context of neuronal population with delayed conductance. In future works, we plan to analyse the influence of the connection probability between excitatory and inhibitory neurons in the neuronal synchronization, as well as the appearance of clusters synchronization.



DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



AUTHOR CONTRIBUTIONS

PP, FB, KI, EL, and MH designed the work, developed the theory, and performed the numerical simulations. AB wrote the manuscript with support from MB, IC, JS, and JK. The authors revised the manuscript several times and gave promising suggestions. All authors also contributed to manuscript revision, read, and approved the submitted version.



FUNDING

This study was possible by partial financial support from the following Brazilian government agencies: Fundação Araucária, National Council for Scientific and Technological Development (CNPq) (302665/2017-0, 310124/2017-4, 428388/2018-3, 150153/2019-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) (Finance Code No. 001), and São Paulo Research Foundation (FAPESP) (2015/07311-7, 2015/50122-0, 2016/23398-8, 2017/18977-1, 2018/03211-6, 2020/04624-2). We also wish to thank the Newton Fund and IRTG 1740/TRP 2015/50122-0, funded by the DFG/FAPESP and the project RF Goverment Grant 075-15-2019-1885.



REFERENCES

 Abbott, L. F., and van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E 48:1483. doi: 10.1103/PhysRevE.48.1483

 Aston-Jones, G., Foote, S. L., and Segal, M. (1985). Impulse conduction properties of noradrenergic locus coeruleus axons projecting to monkey cerebrocortex. Neuroscience 15, 765–777. doi: 10.1016/0306-4522(85)90077-6

 Bartsch, R. P., Liu, K. K. L., Bashan, A., and Ivanov, P. Ch. (2015). Network Physiology: how organ systems dynamically interact. PLoS ONE 10:e0142143. doi: 10.1371/journal.pone.0142143

 Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. Ch. (2012). Network physiology reveals relations between network topology and physiologic function. Nat. Commun. 3, 1–9. doi: 10.1038/ncomms1705

 Batista, C. A. S., Lopes, S. R., Viana, R. L., and Batista, A. M. (2010). Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw. 23, 114–124. doi: 10.1016/j.neunet.2009.08.005

 Batista, C. A. S., Szezech, J. D. Jr., Batista, A. M., Macau, E. E. N., and Viana, R. L. (2017). Synchronization of phase oscillators with coupling mediated by a diffusing substance. Phys. A 470, 236–248. doi: 10.1016/j.physa.2016.11.140

 Batista, C. S., Batista, A. M., de Pontes, J. A., Viana, R. L., and Lopes, S. R. (2007). Chaotic phase synchronization in scale-free networks of bursting neurons. Phys. Rev. E 76:016218. doi: 10.1103/PhysRevE.76.016218

 Bezanilla, F. (2008). Ion channels: from conductance to structure. Neuron 60, 456–468. doi: 10.1016/j.neuron.2008.10.035

 Borges, F. S., Iarosz, K. C., Ren, H. P., Batista, A. M., Baptista, M. S., Viana, R. L., et al. (2014). Model of tumour growth with treatment by continuous and pulsed chemotherapy. Biosystems 116, 43–48. doi: 10.1016/j.biosystems.2013.12.001

 Borges, F. S., Lameu, E. L., Iarosz, K. C., Protachevicz, P. R., Caldas, I. L., Viana, R. L., et al. (2018). Inference of topology and the nature of synapses, and the flow of information in neuronal networks. Phys. Rev. E 97:022303. doi: 10.1103/PhysRevE.97.022303

 Borges, F. S., Protachevicz, P. R., Lameu, E. L., Bonetti, R. C., Iarosz, K. C., Caldas, I. L., et al. (2017b). Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model. Neural Netw. 90, 1–7. doi: 10.1016/j.neunet.2017.03.005

 Borges, R. R., Borges, F. S., Lameu, E. L., Batista, A. M., Iarosz, K. C., Caldas, I. L., et al. (2017a). Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw. 88, 58–64. doi: 10.1016/j.neunet.2017.01.010

 Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642. doi: 10.1152/jn.00686.2005

 Brunel, N. (2000). Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. J. Physiol. 94, 445–463. doi: 10.1016/S0928-4257(00)01084-6

 Byrne, H. M. (1997). The effect of time delays on the dynamics of avascular tumor growth. Math. Biosci. 144, 83–117. doi: 10.1016/S0025-5564(97)00023-0

 Chen, B., Engelbrecht, J. R., and Mirollo, R. (2017). Cluster synchronization in networks of identical oscillators with α-function pulse coupling. Phys. Rev. E 95:022207. doi: 10.1103/PhysRevE.95.022207

 Chen, Z., Hu, K., Stanley, H. E., Novak, V., and Ivanov, P. Ch. (2006). Cross-Correlation of instantaneous phase increments in pressure-flow fluctuations: applications to cerebral autoregulation. Phys. Rev. E 73:031915. doi: 10.1103/PhysRevE.73.031915

 Deco, G., Buehlmann, A., Masquelier, T., and Hugues, E. (2011). The role of rhythmic neural synchronization in rest and task conditions. Front. Hum. Neurosci. 5:4. doi: 10.3389/fnhum.2011.00004

 Deco, G., Jirsa, V., Mcintosh, A. R., Sporns, O., and Kötter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Ssi. U.S.A. 106, 10302–10307. doi: 10.1073/pnas.0901831106

 Dhamala, M., Jirsa, V. K., and Ding, M. (2004). Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92:074104. doi: 10.1103/PhysRevLett.92.074104

 di Volo, M., Romagnoni, A., Capone, C., and Destexhe, A. (2019). Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation. Neural Comput. 31, 653–680. doi: 10.1162/neco_a_01173

 Ermentrout, G. B., and Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Ssi. U.S.A. 95, 1259–1264. doi: 10.1073/pnas.95.3.1259

 Esfahani, Z. G., Gollo, L. L., and Valizadeh, A. (2016). Stimulus-dependent synchronization in delayed-coupled neuronal networks. Sci. Rep. 6:23471. doi: 10.1038/srep23471

 Fardet, T., Ballandras, M., Bottani, S., Métens, S., and Monceau, P. (2018). Understanding the generation of network bursts by adaptive oscillatory neurons. Front. Neurosci. 2:41. doi: 10.3389/fnins.2018.00041

 Glass, L., Beuter, A., and Larocque, D. (1988). Time delays, oscillations and chaos in physiological control systems. Math. Biosci. 90, 111–125. doi: 10.1016/0025-5564(88)90060-0

 Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane curent and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

 Ivanov, P. C., Liu, K. K. L., and Bartsch, R. (2016). Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 18:100201. doi: 10.1088/1367-2630/18/10/100201

 Ivanov, P. C., Ma, Q. D. Y., and Bartsch, R. P. (2009). Maternal-fetal heartbeat phase-synchronization. Proc. Natl. Acad. Sci. U.S.A. 106, 13641–13642. doi: 10.1073/pnas.0906987106

 Kim, S.-Y., and Lim, W. (2018a). Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw. 97, 92–106. doi: 10.1016/j.neunet.2017.09.016

 Kim, S.-Y., and Lim, W. (2018b). Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw. 106, 50–66. doi: 10.1016/j.neunet.2018.06.013

 Kispersky, T. J., Caplan, J. S., and Marder, E. (2012). Increase in sodium conductance decreases firing rate and gain in model neurons. J. Neurosci. 32, 10995–11004. doi: 10.1523/JNEUROSCI.2045-12.2012

 Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Berlin: Springer-Verlag.

 Lapicque, L. (1907). Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Gen. 9, 620–635.

 Liu, K. K. L., Bartsch, R. P., Lin, A., Mantegna, R. N., and Ivanov, P. Ch. (2015). Plasticity of brain wave network interactions and evolution across physiologic states. Front. Neural Circuits 9:62. doi: 10.3389/fncir.2015.00062

 Mier-y-Terán-Romero, L., Silber, M., and Hatzimanikatis, V. (2010). The origins of time-delay in template biopolymerization processes. PLoS Comput. Biol. 6:e1000726. doi: 10.1371/journal.pcbi.1000726

 Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybernet. 99, 335–347. doi: 10.1007/s00422-008-0264-7

 Noback, C. R., Strominger, N. L., Demarest, R. J., and Ruggiero, D. A. (2005). The Human Nervous System: Structure and Function. Totowa, NJ: Humana Press.

 Olmi, S., Torcini, A., and Politi, A. (2014). Linear stability in networks of pulsed-coupled neurons. Front. Comput. Neurosci. 8:8. doi: 10.3389/fncom.2014.00008

 Pérez, T., Garcia, G. C., Eguíluz, V. M., Vicente, R., Pipa, G., and Mirasso, C. (2011). Effect of the topology and delayed interactions in neuronal networks synchronization. PLoS ONE 6:e19900. doi: 10.1371/journal.pone.0019900

 Pikovsky, A. S., Rosenblum, M. G., Osipov, G. V., and Kurths, J. (1997). Phase synchronization of chaotic oscillators by external driving. Phys. D 104, 219–238. doi: 10.1016/S0167-2789(96)00301-6

 Protachevicz, P. R., Borges, F. S., Lameu, E. L., Ji, P., Iarosz, K. C., Kihara, A. H., et al. (2019). Bistable firing pattern in a neural network model. Front. Comput. Neurosci. 13:19. doi: 10.3389/fncom.2019.00019

 Protachevicz, P. R., Borges, R. R., Reis, A. S., Borges, F. S., Iarosz, K. C., Caldas, I. L., et al. (2018). Synchronous behaviour in network model based on human cortico-cortical connections. Physiol. Meas. 39:074006. doi: 10.1088/1361-6579/aace91

 Santos, M. S., Protachevicz, P. R., Iarosz, K. C., Caldas, I. L., Viana, R. L., Borges, F. S., et al. (2019). Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network. Chaos 29:043106. doi: 10.1063/1.5087129

 Stepan, G. (2009). Delay effects in brain dynamics. Philos. Trans. R. Soc. A 367, 1059–1062. doi: 10.1098/rsta.2008.0279

 Stoelzel, C. R., Bereshpolova, Y., Alonso, J.-M., and Swadlow, H. A. (2017). Axonal conduction delays, brain state, and corticogenuculate communication. J. Neurosci. 37, 6342–6358. doi: 10.1523/JNEUROSCI.0444-17.2017

 Sun, G.-Q., Wang, S.-L., Ren, Q., Jin, Z., and Wu, Y.-P. (2015). Effects of time delay and space on herbivere dynamics: linking inducible defenses of plants to herbivore outbreak. Sci. Rep. 5:11246. doi: 10.1038/srep11246

 Tang, J., Ma, J., Yi, M., Xia, H., and Yang, X. (2011). Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83:046207. doi: 10.1103/PhysRevE.83.046207

 Uhlhaas, P. J., and Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168. doi: 10.1016/j.neuron.2006.09.020

 van Vreeswijk, C. (1996). Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E 54:5522. doi: 10.1103/PhysRevE.54.5522

 van Vreeswijk, C., Abbott, L. F., and Ermentrout, G. B. (1994). When not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321. doi: 10.1007/BF00961879

 Wang, L., Zhao, H., and Cao, J. (2016). Synchronized bifurcation and stability in a ring of diffusively coupled neurons with time delay. Neural Netw. 75, 32–46. doi: 10.1016/j.neunet.2015.11.012

 Xu, L., Chen, Z., Hu, K.un, Stanley, H. E., and Ivanov, P. Ch. (2006). Spurious detection of phase synchronization in coupled nonlinear oscillators. Phys. Rev. E 73:065201. doi: 10.1103/PhysRevE.73.065201

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Protachevicz, Borges, Iarosz, Baptista, Lameu, Hansen, Caldas, Szezech, Batista and Kurths. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	 
	BRIEF RESEARCH REPORT
published: 23 September 2020
doi: 10.3389/fphys.2020.572063





[image: image]
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Effects of treadmill walking on Parkinson’s disease (PD) patients’ spatiotemporal gait parameters and stride duration variability, in terms of magnitude [coefficient of variation (CV)] and temporal organization [long range autocorrelations (LRA)], are known. Conversely, effects on PD gait of adding an optic flow during treadmill walking using a virtual reality headset, to get closer to an ecological walk, is unknown. This pilot study aimed to compare PD gait during three conditions: Overground Walking (OW), Treadmill Walking (TW), and immersive Virtual Reality on Treadmill Walking (iVRTW). Ten PD patients completed the three conditions at a comfortable speed. iVRTW consisted in walking at the same speed as TW while wearing a virtual reality headset reproducing an optic flow. Gait parameters assessed were: speed, step length, cadence, magnitude (CV) and temporal organization (evenly spaced averaged Detrended Fluctuation Analysis, α exponent) of stride duration variability. Motion sickness was assessed after TW and iVRTW using the Simulator Sickness Questionnaire (SSQ). Step length was greater (p = 0.008) and cadence lower (p = 0.009) during iVRTW compared to TW while CV was similar (p = 0.177). α exponent was similar during OW (0.77 ± 0.07) and iVRTW (0.76 ± 0.09) (p = 0.553). During TW, α exponent (0.85 ± 0.07) was higher than during OW (p = 0.039) and iVRTW (p = 0.016). SSQ was similar between TW and iVRTW (p = 0.809). iVRTW is tolerable, could optimize TW effects on spatiotemporal parameters while not increasing CV in PD. Furthermore, iVRTW could help to capture the natural LRA of PD gait in laboratory settings and could potentially be a challenging second step in PD gait rehabilitation.

Keywords: Parkinson’s disease, gait disorders, gait assessment, virtual reality, gait variability, fractals, long range autocorrelations, treadmill walking


INTRODUCTION

Parkinson’s disease (PD) results from dopamine-producing neurons degeneration in the basal ganglia and is clinically characterized by classical motor triad combining rest tremor, plastic rigidity, and bradykinesia (Jankovic, 2008). Postural instability and gait disorders including reduced gait speed and step length, increased cadence and altered stride duration variability in terms of magnitude [increased coefficient of variation (CV)] and temporal organization constitute hallmarks of PD gait (Schaafsma et al., 2003; Warlop et al., 2016). Regarding temporal organization of gait, stride duration is known to fluctuate in a complex structured manner over many consecutive strides and this can be quantified with non-linear analysis such as long-range autocorrelations (LRA) computation (Hausdorff et al., 1995). Indeed, stride duration variability presents with a fractal pattern (Stergiou et al., 2006; Cavanaugh et al., 2017) that is somehow a sign of a long-term memory in the locomotor system (Hausdorff, 2007) and would be representative of adaptative abilities of healthy systems (Goldberger et al., 2002; Stergiou and Decker, 2011; Cavanaugh et al., 2017). On the contrary, a breakdown in LRA would be the signature of a pathological state (Goldberger et al., 2002; Stergiou and Decker, 2011; Ravi et al., 2020). Such a breakdown is present in PD (Ota et al., 2014; Warlop et al., 2016) with diminished fractal scaling exponent α that would be linked to the degeneration of the basal ganglia (Hausdorff et al., 1997; Goldberger et al., 2002; Hausdorff, 2007; Sarbaz et al., 2012) which are an important part of the central nervous system notably involved in the regulation of posture and gait (Takakusaki, 2017). Interestingly, strong correlations between breakdown of LRA and balance impairments but also with disease progression were recently highlighted in PD patients (Schaafsma et al., 2003; Ota et al., 2014; Warlop et al., 2016). The more the disease progresses, the greater the neurodegeneration, the lower the α exponent and the greater the risk of falls and their consequences. Therefore, LRA computation was proposed as an objective and quantitative biomarker of postural instability as well as disease progression that highly condition the higher fall risk inherently associated to PD (Hausdorff, 2009; Warlop et al., 2016).

Given the impact of these gait disorders on the risk of falling, researchers and clinicians are looking for innovative ways to assess and rehabilitate PD patients’ gait. Among others, treadmill walking is one of the most widely used tools to both assess and treat gait disorders in this population. Indeed, treadmill walking improves spatiotemporal gait parameters on the long term (Mehrholz et al., 2015) and is known to modify LRA in PD gait (Warlop et al., 2018; Hollman et al., 2020). In addition, this allows patients to walk long distances in a safe manner. However, treadmill walking lacks ecological visual inputs encountered when walking overground in daily-life situations. Indeed, combined with vestibular and proprioceptive information, visual inputs encountered during an ecological walk such as an optic flow (movement of the environment perceived while walking) are of essential importance to control gait. Previous studies stressed the unique importance of vision and especially optic flow during healthy subjects’ gait compared to the other sensory inputs concerning positional information (Patla et al., 2004; Chien et al., 2014) and correct adjustments of gait parameters during locomotion (Mukherjee et al., 2011). Likewise, visual disturbances lead to a higher variability of spatiotemporal parameters which may supposedly increase the risk of falling (Chien et al., 2014). If visual inputs are important for healthy subjects, it seems to be even more so for PD patients during walking (Azulay et al., 1999) and obstacle crossing (Vitório et al., 2013). This observation leads to think that it would be possible to further improve treadmill training by adding an optic flow. The most appropriate way to create a realistic optic flow during treadmill walking is to use high-end technologies such as immersive virtual reality (iVR) headsets.

In previous studies, 2D displays and projection systems were used to study the impact of optic flow during treadmill walking on healthy subjects’ gait (Prokop et al., 1997; Mohler et al., 2007; Katsavelis et al., 2010; Mukherjee et al., 2011; Chien et al., 2014, 2016) and PD gait (Schubert et al., 2005; van Wegen et al., 2006b). Although these devices are still used in recent studies, some of their technical characteristics do not make it possible to realistically produce an optic flow. Among others, these are: narrow vertical and horizontal field of view, no stereoscopic 3D rendering that gives the necessary depth of field essential to the optical flow, low rendering framerate limiting image fluidity, low immersion and feeling of presence in the virtual environment limiting the forgetting of the laboratory context in which the patient is located (Tieri et al., 2018). On the contrary, iVR headsets make it possible to reproduce this ecological visual information better than these older devices and seem to solve almost all their technical limitations.

Although only one previous study (Kim et al., 2017) showed both feasibility and tolerability of the iVR on treadmill in PD, no study has evaluated the impact on PD patients’ spatiotemporal gait parameters of an optic flow reproduced in an iVR headset during treadmill walking. Furthermore, no study has to date investigated the impact of this combination on gait variability measures (CV and LRA computation) of these patients, even with older devices. Thus, this pilot study aims to compare PD gait during three conditions: on overground and on a treadmill with and without iVR. Considering visual dependence of PD gait, the lack of optic flow on TW and recent technological advances, we put forward the hypothesis that the addition of an optic flow in iVR during treadmill walking will allow to more ecologically and accurately capture PD patients’ natural LRA in stride duration variability, similar to overground walking.



METHODS

This pilot study had approval from the local ethics committee (B403201837458/Clinicaltrial.gov registration: NCT04019158). Participants gave written informed consent in accordance with the Declaration of Helsinki prior to data collection. Testing took place in Cliniques universitaires Saint-Luc (Brussels, Belgium).


Participants

Ten PD patients were recruited for this pilot study according to the following inclusion criteria: idiopathic PD according to the UK Brain Bank Criteria (Hughes et al., 1992), modified Hoehn & Yahr scale (Goetz et al., 2004) ≤ 3, Mini-Mental State Examination (Dick et al., 1984) > 24/30, no other pathology interacting with gait or causing dizziness, no uncorrected visual deficiency and ability to walk 512 consecutive strides (± 10–15 min). Patients were also evaluated using the Movement Disorders Society – Unified Parkinson’s Disease Rating Scale (Goetz et al., 2008), the Mini Balance Evaluation Systems Test (Franchignoni et al., 2010) and the Activities specific Balance Confidence scale (Powell and Myers, 1995).

Clinical characteristics and anthropometrics of the 10 PD patients are displayed in Table 1.


TABLE 1. Characteristics of the PD patients.
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Procedure

Participants were asked to walk in a randomized order in three conditions: Overground Walking (OW), Treadmill Walking (TW), and immersive Virtual Reality on Treadmill Walking (iVRTW). Each condition lasted 10–15 min in order to get a minimum of 512 strides necessary to determine the presence of LRA during gait with a high level of evidence (Crevecoeur et al., 2010; Warlop et al., 2017). During OW, patients walked on a 63.2 m rectangular track with smooth rounded corners at their comfortable speed. Prior to data collection, all patients performed one lap to get used to the terrain. In addition, patients were instructed to walk right in the middle of the track. During TW, patients walked on a treadmill at their comfortable speed assessed before with a 10 m walking test, were secured by a non-weight bearing harness and had no handrails that could have been grabbed so as not to interfere with the swinging of the arms. During iVRTW, patients walked on the treadmill at the same speed as during TW, wearing the harness, still without handrails, while wearing an iVR headset. Through the iVR headset (HTC, Vive, Taiwan), patients were immersed in a homemade environment created with Unity software (USA) and written in C# (Visual Studio, Microsoft, United States). The iVR headset weighed 470 grams and provided patients with a horizontal field of view of 110 degrees, a resolution of 1080 × 1200 pixels per eye and a refresh rate of 90 Hz. Also, this system allows to create depth of field by rendering stereoscopic 3D. To provide a complete visual immersion, the headset was designed to occlude peripheral vision in all directions. In this way, patients could not see the real environment around them and therefore only saw the virtual environment. The virtual environment consisted in a straight realistic endless hallway with some unevenly placed furniture on the sides in order to look real but to still avoid a rhythmic visual cueing to isolate optic flow effect. The goal was therefore to have a realistic ecological environment with fewer potentially distracting elements than an outside environment. Choosing a closed and restricted environment also saves computing power to ensure a fluid image without loss of framerate that could have given a jerky image. While walking on the treadmill, patients perceived an optic flow within the virtual environment moving at the same speed as the treadmill and creating the illusion of walking in an actual hallway (see Supplementary Material).

During each condition, two Inertial Measurement Units (IMeasureU Research, VICON, United Kingdom) were taped on patients’ lateral malleoli to record ankle accelerations at a sample of 500 Hz in antero-posterior direction. During OW, the recording was started after the warm-up lap. Regarding TW and iVRTW, recordings took place after a 3-min session of habituation to each condition and were initiated while patients walked on the treadmill while performing each condition. Data was then transferred onto a computer and stride durations were determined using a peak detection method (Terrier and Dériaz, 2011; Fortune et al., 2014).

Gait was assessed in terms of spatiotemporal gait parameters and variability in terms of magnitude and temporal organization.

Spatiotemporal gait parameters were assessed as follow:

[image: image]

To assess magnitude of stride duration variability, CV was calculated using the mean stride duration and SD:CV(%)= [image: image] 100.

Temporal organization of stride duration variability was assessed by LRA computation using the evenly spaced averaged version of the detrended fluctuation analysis (DFA) (Almurad and Delignières, 2016) to obtain α exponent. This method was chosen given its robustness regarding stationary and non-stationary processes (Phinyomark et al., 2020; Ravi et al., 2020). LRA are present when α exponent values are between 0.5 and 1 meaning that large stride duration fluctuations tend to be followed by other large fluctuations, and vice-versa. An α exponent of 0.5 indicates the absence of LRA and a fully random organization (i.e., white noise). Also, α exponent values below 0.5 is the signature of anti-persistence. Finally, an α exponent of 1 (i.e., 1/f noise) is the boundary between stationarity and non-stationarity (Hausdorff et al., 1996). Peng et al. (1995) interpreted 1/f noise as “a “compromise” between the complete unpredictability of white noise (α = 0.5) (very rough “landscape”) and the very smooth “landscape” of Brownian noise (α = 1.5).” Then, 1/f noise is interpreted in the context of the theoretical framework of optimal movement variability (Harrison and Stergiou, 2015; Cavanaugh et al., 2017; Ravi et al., 2020) as the optimal state of variability characterizing healthy gait.

When using iVR, some studies reported the occurrence of what is known as “motion sickness.” This phenomenon is defined as the occurrence of adverse symptoms when using iVR headsets such as dizziness, nausea, headaches, and others (Cobb et al., 1999). Indeed, in some cases iVR can induce a mismatch between visual, proprioceptive, and vestibular inputs creating a sensory conflict (Reason, 1978). As such, patients of this study completed the Simulator Sickness Questionnaire (SSQ) after TW and iVRTW conditions to assess the presence of motion sickness based on a cut-off score of 15 out of 235.6 on the total score (Kennedy et al., 1993). Three sub-scores (i.e., Nausea, Oculomotor, and Disorientation) were also assessed (Kennedy et al., 1993).



Statistical Analysis

A power analysis was computed using the data of Warlop et al. (2018). Authors compared PD patients’ temporal organization of stride duration variability using α exponent calculated with the DFA during two conditions: overground walking and treadmill walking. The power analysis was made using PASS software, in the idea of performing a one-way repeated measures ANOVA. Total sample of 10 participants achieved 80% power to detect differences among the means versus the alternative of equal means using an F-test with a 0.05 significance level. The size of the variation in the means was represented by their standard deviation which is 0.08. The common standard deviation within a condition was assumed to be 0.2.

Sigmaplot 13.0 software (Systat, Richmond, CA, United States) was used to analyze data. Normal distribution of the data was verified for all variables using the Shapiro–Wilk normality test. A paired t-test showed a difference between gait speed during OW and TW/iVRTW (p = 0.003). Given that gait speed influences spatiotemporal parameters and CV (Bollens et al., 2012; Warlop et al., 2016, 2018), OW could not be compared with TW and iVRTW. Since gait speed is not expected to modify the LRA (Bollens et al., 2012), a one way repeated measures ANOVA comparing the three conditions was performed only for the results of the evenly spaced averaged DFA and a Holm–Sidak post hoc test was performed. Regarding SSQ and the other gait outcomes, paired t-tests were performed to compare TW and iVRTW only. Cohen’s d was used to express the effect size between conditions for all outcomes if a significant difference was found.



RESULTS

First, the added optic flow during iVRTW induced a positive effect on the spatiotemporal gait parameters with higher step length and reduced cadence compared to TW. Indeed, step length was higher (Cohen’s d = 0.392, p = 0.008) and cadence lower (Cohen’s d = 0.712, p = 0.009) during iVRTW than during TW for the same walking speed (Table 2 and Figure 1).


TABLE 2. Absolute mean values of the spatiotemporal gait parameters and stride duration variability assessed during Overground Walking (OW), Treadmill Walking (TW), and immersive Virtual Reality on Treadmill Walking (iVRTW) conditions and comparison between TW and iVRTW conditions.
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FIGURE 1. Graphs showing mean (±1 SD) and individual gait parameters values assessed during Overground Walking [OW, only graph (E)], Treadmill Walking (TW), and immersive Virtual Reality on Treadmill Walking (iVRTW) conditions. (A) Cadence graph. (B) Step length graph. (C) Mean stride duration graph. (D) Coefficient of variation graph. (E) α exponent graph (dashed lines corresponding to the limits between which there are LRA).


Regarding magnitude of stride duration variability, the CV was similar between TW and iVRTW (p = 0.177) which shows that the added optic flow had no significant effect on this parameter (Table 3 and Figure 1).


TABLE 3. Absolute mean values of the Simulator Sickness Questionnaire (SSQ) total and sub scores for the comparison between Treadmill Walking (TW) and immersive Virtual Reality on Treadmill Walking (iVRTW) conditions.

[image: Table 3]As expected, patients presented with a similar temporal organization of stride duration variability during OW and iVRTW. Conversely, α exponents were higher during TW. Indeed, even though all patients presented LRA during all conditions, α exponent was different between the three conditions [F(2,9): 5.633; p = 0.013]. While no difference was found between OW and iVRTW (p = 0.553), the α exponent during TW was higher than during OW (p = 0.039) and higher than during iVRTW (p = 0.016). The effect size was large for both comparisons: Cohen’s d = 1.030 when comparing TW to OW and 1.141 when comparing TW to iVRTW (Table 2 and Figure 1).

Regarding motion sickness, the SSQ total score as well as sub-scores were low and similar between TW and iVRTW (Table 3). Interestingly, 7/10 patients did not reach the cut-off score after TW and 5/10 after iVRTW while surprisingly no patient complained orally of motion sickness symptoms or discomfort linked to the headset during and after these two conditions. Note that two patients reached the cut-off score both after TW and after iVRTW, one patient who reached the cut-off after TW but not after iVRTW and three patients did not reach the cut-off after TW but did after iVRTW.



DISCUSSION

Purposes of this pilot study were to assess the effects of adding an optic flow displayed through an iVR headset during treadmill walking on gait and verify its feasibility and tolerability in PD population. The added optic flow during iVRTW improved step length and reduced gait cadence in comparison to TW at the same gait speed. Regarding magnitude of stride duration variability, CV was similar between iVRTW and TW. On the contrary, optic flow affected temporal organization of stride duration variability. Indeed, LRA were similar when the optic flow was present (during OW and iVRTW) but different when it was absent (during TW). Finally, this study confirmed that iVRTW is feasible and tolerable in PD.

Spatiotemporal gait parameters were influenced by iVRTW. Reduced step length is a well-known PD gait feature (Pistacchi et al., 2017), one of the components of cautions gait associated with fear of falling (Balash et al., 2007) and TW is known to be an effective rehabilitative approach to improve it (Mehrholz et al., 2015). However, it is also known that frail (Herman et al., 2005; Balash et al., 2007) and PD (Warlop et al., 2018) patients adopt a more precautious gait on the treadmill with decreased step length and increased cadence to maintain speed. This may have been due to the newness and the lack of “naturalness” of the task perceived by the patients. With the same gait speed as TW, patients increased step length and reduced cadence during iVRTW perhaps indicating a less cautious and a more natural gait adopted during this condition. The optic flow added with the iVR headset could then be an additional way to improve the well-known effect of TW on spatiotemporal parameters potentially leading to less cautious gait.

As described in the introduction, magnitude of stride duration variability (i.e., CV) is increased in PD (Schaafsma et al., 2003) and is associated with the presence of a postural reflex disorder (Ota et al., 2014). Also, usually considered as a marker of attentional load allocated to the task, CV was not different between TW and iVRTW. On one hand, some authors (Bello and Fernandez-Del-Olmo, 2012) hypothesized that the absence of optic flow during TW would decrease the attentional load on PD patients. With fewer environmental factors to consider while walking, PD patients would then more easily focus on walking on the treadmill allowing to overcome damaged automaticity in PD gait (Baker et al., 2007). If this hypothesis was accurate, CV would have been higher during iVRTW than during TW since iVRTW can be disturbing at first glance for patients (newness of the task, safety instructions to follow, potential anxiety of not seeing the real environment). On the other hand, recent studies showed that walking speed has the greatest influence on CV in both healthy and PD populations and, for the latter, for both OW and TW (Bollens et al., 2012; Warlop et al., 2018). Since CV was similar between TW and iVRTW for the same gait speed, it could be concluded that the magnitude of stride duration variability does not seem to be influenced by the presumed attentional load induced by the added optic flow in iVR. Note that such results are also in line with a similar study conducted on young healthy subjects using older equipment (Katsavelis et al., 2010).

In contrast to the magnitude of stride duration variability, the temporal organization of gait variability was significantly modulated by the addition of optic flow during iVRTW. Such results brought two lines of thought. On one hand, this study confirmed that TW would improve the temporal organization of gait variability among PD (Warlop et al., 2018; Hollman et al., 2020). On the other hand, by adding an optic flow, iVRTW would be a controlled and safe alternative to assess and maybe rehabilitate PD patients’ gait in a more ecological way.

All patients exhibited α exponents between 0.5 and 1 in all conditions, indicating the presence of LRA in the temporal organization of stride duration variability. Interestingly, α exponent during TW was closer to 1, approaching 1/f noise considered as an optimal state of variability (Peng et al., 1995; Harrison and Stergiou, 2015; Ravi et al., 2020) and indicating strong coordination among the multiple sub-systems that regulate locomotion (Stergiou and Decker, 2011; Delignieres and Marmelat, 2012). Attempting to get closer to 1/f noise seems clinically significant given the results of previous studies. Indeed, Hausdorff (2007) stated that it was possible to discriminate between elderly fallers (α close to 0.5) and non-fallers (α close to 1) based on LRA computation and that this could even have a prognostic value on the risk of falling. Similarly, a positive correlation was shown between low α exponent and poor balance test scores in PD patients (Ota et al., 2014; Warlop et al., 2016). So, getting closer to 1 seems to be an interesting goal in PD patients’ gait rehabilitation. On the other hand, α exponent was lower and similar between OW and iVRTW. Optic flow could be an explanatory factor since PD patients can overreact to visual information for maintaining balance (Schubert et al., 2005; Snijders et al., 2011). By increasing degrees of freedom, the added optic flow could thus increase the regulatory load on the locomotor system (Katsavelis et al., 2010) during iVRTW in a similar way to OW, decreasing α exponent compared to TW. On the contrary, the absence of optic flow during TW reduces the amount of information to be managed by the patients, allowing them to focus on the motor task. In addition to previous studies (Warlop et al., 2018; Hollman et al., 2020), this study highlights that, by reducing the degrees of freedom on the PD deficient locomotor system, absence of optic flow combined with the constant rolling of the treadmill could provide a framework for PD patients to regulate the temporal organization of their gait. The treadmill would provide external cues to patients allowing to bypass defective internal pallidocortical projections responsible for rhythm control impairments in PD (van Wegen et al., 2006a; Baker et al., 2007). It is therefore interesting to notice that during iVRTW, the rolling of the belt was kept as well as the constant speed imposed. Therefore, patients should somehow have kept this framework and this cueing effect, but these seemed to be lost by the addition of the optic flow. This may further underscore the fact that PD patients take into account and rely predominantly on visual information and optic flow to regulate their gait (Azulay et al., 1999; Vitório et al., 2013) compared to proprioceptive information, whose acuity is diminished in PD (Almeida et al., 2005; Konczak et al., 2009). From a PD gait rehabilitation point of view, TW could be conceived as a first step and iVRTW could have the potential to be a second stage in a challenging, safe and ecological rehabilitation approach, perhaps allowing a smoother progression between what has been worked on during rehabilitation and everyday walking.

Likewise, a previous study questioned the adequate gait assessment of gait variability during TW in PD participants (Warlop et al., 2018). As the study of LRA has to be done over a long period of time, much research has relied on treadmill walking in laboratory setting to assess PD patients’ temporal organization of gait in a controlled and safe manner. However, the results of the present study and of previous ones (Warlop et al., 2018; Hollman et al., 2020) highlight that the assessment of LRA on a treadmill does not adequately capture the natural temporal organization of gait in PD patients. Conversely, iVRTW could be an interesting way since α exponent during iVRTW was similar to that of OW.

Results regarding motion sickness are in line with those of the sole previous study conducted on PD population (Kim et al., 2017). Indeed, five patients out of 10 reached the cut-off point at which motion sickness is considered significant after iVRTW. However, this cut-off was already reached by three patients after TW. The fact that motion sickness symptoms appeared even without iVR for some PD patients was expected because it is well-known that these patients have impairments in sensory processing and integration (Hwang et al., 2016). These impairments coupled with medication (Chaudhuri and Schapira, 2009) could then be explanatory factors. Likewise, no significant differences were found regarding the SSQ total score and sub-scores between the two conditions meaning that iVRTW did not induce more motion sickness than TW. The hypothesis behind this result is that the mismatch between the visual, proprioceptive and vestibular inputs perceived by the patients was minor during iVRTW. Given that motion sickness is induced by a sensory conflict (Reason, 1978), it could be concluded that the iVR method of displaying an optic flow during treadmill walking used in this study would be efficient enough to limit this conflict. Another explanatory factor could be the technological upgrade seen regarding iVR in the last 10 years: better image framerate, higher display resolution, higher field of view. Furthermore, this present study reinforces the results of the sole previous study (Kim et al., 2017) who had shown tolerability over 5 min sessions while the present results showed tolerability over a ± 15 min session.

Some limitations of the present study should be addressed. First, although significant results were found only 10 PD patients were included. This study should be considered as a pilot study and it could be used to make sample calculations for future studies on the subject. Second, included patients were clinically mildly affected by PD with a fairly low Hoehn & Yahr score. More transversal and longitudinal studies including more patients at different stages of the disease are then required to confirm our findings regarding spatiotemporal gait parameters and on magnitude and temporal organization of stride duration variability. Third, one of the safety instructions during iVRTW was to follow a virtual security fence in iVR ensuring the patients walked at the right speed on the treadmill. This may have caused a cueing effect that may have had consequences on patients’ gait. Fourth, this study only investigated the direct adaptation of patients during TW and iVRTW but did not investigate potential after-effects when walking overground directly after these two conditions. Future studies should therefore focus on the acute effects potentially present after these particular walking conditions. Fifth, despite the impressive technological advancement of iVR headsets, the 2 years old headset used in this study only proposes a horizontal field of view of 110 degrees. Although it is superior to the devices used in previous studies, it is still below the natural field of view of the human eye. This loss of peripheral vision could have a significant impact on the correct perception of the optic flow during iVRTW. Newer headsets already offer a significant improvement in display resolution and a larger field of view. It is then likely that iVR headsets with a natural field of view will be available in a few years’ time. Finally, this study focused solely on a single method to analyze gait dynamics. Future studies similar to this one could add other methods to analyze gait dynamics (ARFIMA, Lyapunov exponent, entropy) (Roume et al., 2019; Ricaurte et al., 2020).

In conclusion, this pilot study highlighted that iVRTW could enhance the effectiveness of TW in improving step length while not increasing magnitude of stride duration variability. Also, TW could be perceived as a first step in PD gait rehabilitation to regulate temporal organization of gait and iVRTW as a second one within a challenging, safe and ecological gait rehabilitative approach. In addition, iVRTW may be a more adequate way to safely assess LRA in PD gait over a long period of time than TW. Future transversal and longitudinal studies including more PD patients presenting with a broader spectrum of disease severity need to be conducted in order to confirm these findings.
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Here, we examine subjectivity and consciousness as emergent properties of the computational complexity of information processing by the brain, rather than metaphysical phenomena. While Psychology concentrates on the emergent properties and Neurobiology examines the properties of the biological substrate, Neurophysiology and Cognitive Neuroscience link the two levels by investigating the mechanisms and processes by which the functions of the brain emerge from the anatomical, cellular and network properties of the nervous system. Our purpose here is not to locate the neural structures that sustain subjectivity or other psychic functions; rather, we examine the operating modes of neurons and neural circuits: they reveal an intrinsically relational quality; sensory elaboration itself proves to be relational and self-centred, necessarily associated with the vital, hedonic, emotional relevance of each experience and external cue, and intrinsically oriented to a behavioral interaction with the latter. The hippocampus adds to this self-centred relational perspective the capability of transforming the identification and the spatial location of objects into a contextualized representation of reality. Since the hippocampus is strongly interconnected with the archaic structures that evaluate vital and hedonic relevance and generate emotional responses, the contextualized information, emotionally colored, is transformed into a comprehensive individual experience. This way, a subjective, self-centred, affectively colored perspective arises in animals due to the intrinsic properties of neuronal circuits in the brain. We conclude that neuronal network processing is strongly characterized per se by a relational and self-centred (subjective) and emotionally colored, motivationally oriented (personal) perspective. The properties and features of neural processing discussed here constitute well-established knowledge in the neuroscientific community. Yet, from a layman’s perception, subjectivity still mysteriously arises in our brain due to the action of consciousness, and in epistemological and philosophical debates, the question often arises as to how consciousness may add the subjective and personal perspective to neural elaboration. The answer appears to be simple: it does not; subjectivity is already there, present ab initio in neuronal processing and not added a posteriori by some other “consciousness” function of unclear neural basis.

Keywords: consciousness, neuronal processing, emergent properties, neuronal network, subjectivity

An impressive wealth of literature has been accumulating in recent years on the neuronal substrate of consciousness. The matter remains challenging, since “consciousness” is an umbrella term that subsumes a number of logical, representational and executive functions, which obviously are performed by many distinct circuits and computational modules in the brain.

In addition to the many computational aspects involved in consciousness, the term carries with it a metaphysical flavor, related to its intrinsically intentional, subjective and personal nature. In fact, from a layman’s perspective the essence of consciousness seems to lie in its capability to add the dimension of identity and subjectivity to the elaboration performed by neural circuits. If this were true, we might even achieve a clear and mechanistic knowledge of how the brain builds a precise, detailed and holistic, consistent internal representation of reality (the epistemological aspect of consciousness), but the question would still stand as to which circuits may generate a “conscious principle” that subjectively “observes” such internal representation (the metaphysical aspect of reflexive consciousness); one may conclude that no neural mechanisms might ever do this, and some non-neural (possibly metaphysical) principle must be involved.

In this paper, a different perspective is adopted: the modes of information processing by neuronal circuits are examined to explore to what extent a subjective and personal perspective might arise as an emergent property of the complex neural networks in the brain. This analysis reveals an intrinsic relational nature of neuronal elaboration; in particular, such relational nature appears to be inherently self-centred; furthermore, all activities in the brain (anything which is sensed/experienced) are analyzed and perceived in terms of their vital, emotional and operative relevance for oneself. This suggests that a subjective dimension (self-centred relational analysis) and a personal perspective (emotional, affective, operative relevance for the self) intrinsically characterize cerebral activity, and are not “added” a posteriori by some subjective observer function (consciousness) to an initially detached, objective representation of reality.

An effort has been made to clearly separate, in what follows, the data present in scientific literature from the views and hypotheses of the author.


THE OPERATING MODE OF THE NEURON


The Layman’s Perspective

A simplified view of the operation of a neuron suggests that it receives a number of inputs (activation of the synapses on its dendritic tree and soma), which generate electrical events on its membrane; these electrical events possibly generate a nerve impulse (spike, action potential) if their sum produces a depolarisation that overcomes a certain threshold level (Bachatene and Bharmauria, 2017).


The Data

Although this may be true, in principle, the situation for central neurons is much more complex and intriguing: the “language” of the neuron is not the impulse (i.e., its being ON or OFF), but rather a continuously changing pattern of impulse firing. Similarly, it receives a complex, continuously varying combination of momentary depolarising or hyperpolarising pulses at each of its synapses, that reflects the combined firing pattern in a large number of neurons in a cortical circuit (a “complex pattern of neural activity”): as a consequence, the response of the neuron does not monitor the overall intensity of synaptic activation, but rather the synchrony, consistency and continuous interaction among the activities of all the neurons that synapse on it. Cortical neurons examine the many inputs they receive with a degree of discrimination – precision, timing and selectivity – that depends on how narrow the time interval is for effective summation of the incoming signals (Wang et al., 2010); and such time window markedly changes, depending on the mode in which information reaches the cortex from the thalamus (Tremblay et al., 2016). The thalamus is in turn regulated by projections from the cortex (Mease et al., 2014), so the corticothalamic dialogue determines whether a circuit examines the incoming information in an approximate way (during inattentive processing) or in a more precise and discriminative manner (see below for a more detailed discussion; Guo et al., 2017).



An Interpretive Hypothesis

Figuratively, it is as if the neuron listened to the melodies that are played simultaneously by many other neurons on its synapses. It would then elaborate, based on all this, an overall emerging melody (its own time-varying firing pattern); depending on the dialogue between each cortical circuit and the corresponding thalamic neurons, such melody would either reproduce the general tonality and rhythm of the incoming signals (in “non-discriminative” mode) or rather produce a more sophisticated elaboration of specific melodic and harmonic details in the concert it is listening to.

Such a way of integrating incoming signals clearly indicates that no central neuron ever responds to a datum (be it of sensory or of endogenous origin), but they detect specific relations among the patterns of activity of the neurons that are connected to them, and may thus attribute a consistent (vague and generic or more specific) meaning to such complex patterns of activity.



The Data

The property of detecting patterns in the relations among sensory data is particularly well documented by recordings performed in central neurons positioned along the cortical paths that analyze visual information.

Neighboring neurons in occipital-temporal areas respond to patterns in the visual field, such as lines or borders with variable slant (Figure 1); each neuron generates a firing rate that depends on how closely the slant of the line/border approaches the angle it is designed to recognize, with neighboring neurons responding to slightly different angles in an ordered way (original observations by Hubel and Wiesel, recollected by Alonso, 2009).


[image: image]

FIGURE 1. Drawing that illustrates how neurons detect relations (patterns). Depiction of the activity of neighboring neurons in the visual cortex: top row shows representative images, that are presented one after the other at the times indicated by the black bars (ON, second row). Numbers 1 to 4 represent histograms of spike frequencies in recordings from neighboring neurons. Each neuron preferentially responds to a profile with a specific slant angle. However, pattern detection is not crisp and absolute, but rather fuzzy and “tentative.”


This occurs somewhat independently of the precise location of the line in the visual field, which indicates that these neurons signal the presence of a specific pattern in the incoming visual information, rather than precisely locating cues in the visual field. In more anterior areas of the temporal lobe, neurons display increasingly sophisticated elaboration of the incoming image, and will fire in the presence of any visual pattern that may represent a relevant object, such as a hand or a face (Gross, 2008).

Although neurons innately programmed to recognize specific relevant shapes are present in the temporal lobe (Figure 2), for most of the objects that we recognize, this cannot occur by means of innately wired connections.


[image: image]

FIGURE 2. Object recognition by a single neuron. Responses (histograms of spike frequencies vs. time) of a single neuron to the corresponding images, presented during the times indicated by the horizontal black bars. Many different elaborations clearly converge onto this neuron, which does not recognize a pattern, but many possible visual patterns that can be related to the shape of a hand, through association and generalization, either in a pictorial or in a structural way (elements and their relations). Object detection is tentative, and the discharge rate indicates the likelihood that what is being seen belongs to a certain conceptual category. Modified from Gross et al. (1972).




A General Interpretation

Returning to the above musical metaphor, if we were able to encode a complex pattern of neuronal activity into audible music, then that music would indicate that something has been recognized, i.e., the “awareness” of something has arisen. Zeki (2001) coined the term “micro-consciousnesses” to refer to these rudimentary elements of awareness, observed in visual elaboration circuits. Note that if this same metaphor is applied to the auditory system, the “music” played by a neuron would not reproduce the heard sound; it would rather signal a specific feature in the auditory input stream (a note, a chord, a phoneme or a specific sequence of phonemes).

The occipital-temporal path of visual elaboration is called the “what pathway,” but elaborations of auditory, somatic and sensory-motor information also converge with this path to contribute in recognizing “objects,” and even in associating (and memorizing) the sound of words (and the shape of written words) to objects.

The recognition of objects arises from the capability of each neuron to generate a specific response when the complex activity patterns of many other neurons points to the possible presence of an object. This process of object recognition may be either precise and reliable, when the neurons are in a discriminative processing mode, or quite tentative and uncertain. In either case, an object is recognized if a neuron (or a set of neurons) specifically reacts to the pattern of neural activity elicited by the presence of the object, as if it were designed to recognize it.



EMOTIONS AND LEARNING


The Data

At every moment in our life, a number of deep subcortical structures (hypothalamus, amygdala, midbrain ventral tegmental area, raphe, nucleus accumbens, substantia nigra; see e.g., Bayer and Glimcher, 2002; Balleine and Killcross, 2006) monitor the activity in most areas of the brain and evaluate of the relevance of the current situation for survival and well-being, i.e., the vital, emotional, hedonic and operational relevance of external cues and/or the current experience (e.g., Robinson et al., 2016). The activation of these structures produces visceral-vegetative responses (change in heartbeat, sweating, weeping, shaking…) and changes in posture and facial expression (smiling, looking sad, frightened, angry…), but it also activates the limbic areas of the cortex that enable the emotions (fear, pleasure, grief, rage, hope, disgust…) to be felt and cognitively elaborated by the other appropriate areas of the cerebral cortex (Damasio, 1996).

Emotional relevance influences the network: any novel pattern of neuronal activity tends to induce changes in synaptic connectivity and strength, so that it is likely to become more easily reproduced; such plastic changes typically occur when a pattern occurs repetitively, or it is associated to a concurrent emotion (detection of vital relevance). The activity at synapses, and in particular the precise association and reciprocal temporal relations among the signals that converge on a neuron, produce modulation of numerous biochemical processes, at the presynaptic nerve terminals as well as at the postsynaptic specializations; this introduces temporary and reversible changes, but also permanent and irreversible ones, in the structure and efficacy of synaptic contacts and therefore in the overall connectivity of the local network (“synaptic plasticity;” Feldman, 2012).


An Interpretive Hypothesis

So, how does the brain become able to “recognize” objects the circuits are not initially wired to recognize? The amount of activity converging on a neuron is not as important as the precise way the combination of time-varying synaptic activations interact at each moment on each neuron; in fact, depending on the precise timing of converging synaptic inputs, distinct molecular events may occur and trigger biochemical modifications, in addition to the electrical events. The resulting modifications in the efficacy of the synaptic contacts change the way the neuron processes the incoming information (long term potentiation or depression). These “plastic” changes occur as a consequence of specific sequences and time delays between the activations of neighboring synapses.

Through neuronal plasticity, any novel pattern of neuronal activity, i.e., any unknown element of the current experience, can be associated to existing knowledge: it will receive a cognitive meaning (logical, causal, operational) based on its relations with known elements in the experience (similarity in neuronal activity patterns); it will be attributed a personal meaning (connection with some vital value) related to the emotions associated with such known elements, with the current experience and with its cognitive/operative implications (opportunities, risks, possible developments). This way the circuitry gets to “know” – and becomes able to detect – the novel elements in the experience, to attribute a meaning to them and to re-cognise them in the future. Once more, this process is totally based on the capability of neurons to examine relationships, consistencies and reciprocal interactions.

The specific features of neuronal plasticity accounts for two main quite relevant consequences: first, in general, the neural circuits change the way they process information as a consequence of the information itself they elaborate; second, the plastic modifications have intrinsic associative characteristics, in that they occur depending on the precise spatial and temporal relations (association) among synaptic activations on the neuron. All this accounts not only for all forms of associative learning (classical, aversive and operant conditioning, procedural learning, associative memory), but also for the fact that each brain elaborates the same information in a different, specific way that arises from all the information it has processed up to this moment and – more relevant – the way it has elaborated such information. This is a strong basis for the emergence of individuality as a consequence of the mode itself of operating of neural circuits.

Depression and pruning of synaptic contacts is at least as relevant as long-term potentiation: the number of synapses in the brain markedly decreases in development, and especially so during adolescence. This trims the associative network: cerebral elaboration matures from the childish generic and mythological perspective toward the more precise, rigorous and rational adult attitude.

This perspective on neural plasticity lets us take a novel perspective not only on individuality but also on neuropsychological disorders.

We know that a number of biological factors – genetic, developmental, pathological or iatrogenic, acute or chronic – may act directly on neuronal structure, viability, function and connectivity, affecting the function of computational modules in the brain and of the higher functions that result from the interactions among such modules. Since experience also influences all aspects of neuronal plasticity, most changes that can be produced by biological causes can also be produced by neuronal activity itself, i.e., by experience, thus blurring the border between the organic/biological “Nature” of the self and the psychological “Nurture” that molds identity and possible psychic disorders (Figure 3).
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FIGURE 3. Physiological and pathological biological factors (chronic or acute; left-hand side) may alter neuronal structure, viability, function and connectivity, affecting the function of computational modules in the brain and short as well as long-range connectivity. Due to experience-driven neural plasticity, “biological” (organic) and “psychogenic” (experience) factors may similarly affect the function of the computational modules and the higher functions that result from the interactions among such modules.




THE SELF-CENTRED RELATIONAL PERSPECTIVE


The Data

In addition to being processed along the “what” pathway, all sensory data are also examined in terms of spatial relations, both reciprocal ones and with respect to the sense organs that captured them. This is a particularly challenging process, because the location of a stimulus perceived by the eyes will be mapped as a function of gaze direction, an auditory stimulus will be located with respect to the head, and a somatosensory stimulus with respect to the position of the limb or extremity that senses it. The resulting, modality-specific, sensory spatial maps are organized in the superior colliculus (a midbrain structure) and relayed to the parietal cortex, which puts in register these maps with each other and remaps the stimulus – whatever its sensory origin was – in terms of movement, i.e., the direction that the gaze, the head, a hand or other appropriate parts of the body are to be directed to in order to adequately face the stimulus. Such further mapping is bounced back to the superior colliculus, which controls rapid and reflex eye and head movements (Gandhi and Katnani, 2011). Notice that this reflex is extremely rapid and is brought about by subcortical structures (colliculus and tectospinal motor system): the cortex would be much slower in reacting.

Note that in the associative visual cortices in the occipital lobe the visual field is mapped after a transformation from Cartesian to spherical coordinates (see below, Figure 4; Tootell et al., 1997).
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FIGURE 4. Neuronal processing is self-centred and interaction oriented. (A) A hypothetical visual field. (B) The corresponding topological mapping of the image on the retina and on the primary visual cortex (V1). (C) The transformation of the topological mapping in the right associative visual cortices (V1 to V4): notice the transformation to a spherical coordinate system (angle αn and distance dn), that helps to map objects in terms of the direction (azimuth and elevation) of a movement to reach them.


Simultaneously, higher processing of the spatial relations occurs in the parietal cortex, along the occipital-parietal path (the so-called “where” pathway). Here, spatial relations are analyzed. The geometric and mathematical analysis of the physical space, as well as any virtual spaces, is performed by these circuits, which actually contribute to elaborate any complex sets of sensory or mental data and generate the idea itself of space, as a set of reciprocal relationships among elements that are simultaneously present.

The capability of the parietal cortex to remap all sensory inputs in the surrounding space, according to a motor map, enables these circuits to directly activate premotor areas in charge of programming movements (Maranesi et al., 2014). In particular, one set of neurons (so-called canonical neurons) are activated to prefigure the movements (reaching, grasping, rejecting) needed for the appropriate behavioral interaction with the identified object (“affordance”); here, “appropriate” refers to those interactions that have been positively reinforced during past experiences, since they were successful in producing pleasure, reducing pain or nuisances, or helping to operationally achieve an aim. Another set of premotor neurons (so-called mirror neurons) are also activated, to prefigure the appropriate finalized action (motor act with a purpose) that can be performed with the object (holding it, bringing it to the mouth, throwing it away…) (Fadiga et al., 2000); again, appropriate here means heuristically consolidated by reinforcement.


A Theory on How to Interpret These Data

The mapping of the visual field in the associative visual cortices according to a spherical coordinate system (Figure 4) constitutes motor-oriented vectorial information about objects: direction and extent of a movement to reach for them. So the parietal cortex, in mapping objects in space, actually predicts possible motor behaviors to reach for them.

The elaboration of spatial relations by the parietal cortex is possibly the most powerful computational instrument in the cognitive representation and analysis of reality; in fact, humans tend to represent any complex problems by mapping them in some sort of virtual space: time is handled by visualizing it as a time line (Oliveri et al., 2009), numbers are visualized as a series in space, even emotions are given a spatial representation (a dear friend is internally represented as “close” and occupying a “larger room” in one’s visual field and inner life).

In the context of what is being discussed here, it appears that brain circuits examine and interpret every cue not only in terms of their internal and reciprocal relations, but also in terms of their relation with one’s own body, and of possible behavioral interactions with the cue: every cue is therefore given a meaning not only in terms of its possible vital relevance, but also with respect to its relevance to one’s own actions, aims and operative plans.

This way the interpretation of each cue becomes a clearly subjective one, colored by emotional valence, characterized by possible usefulness and appropriateness to achieve specific aims: it becomes a clearly subjective and personal interpretation.



A THEORY ON “AUTOPILOT” BEHAVIORAL CONTROL

The parietal cortex is able to elicit the activation of motor programs in the premotor cortex in response to the detection of any possibly relevant object in the environment. Still, one obviously does not react to every cue they detect. The selection among possible cue-driven (“reactive”) behaviors is one of the main functions of the basal ganglia, deep brain structures that monitor cortical activities and return either facilitatory or inhibitory feedback onto each such activity, based on the hedonic value (pleasure) that presumably is associated to it, according to past experience (positive or negative reinforcement that such activity has encountered) (see, e.g., Averbeck and Costa, 2017). As long as nothing unexpected happens, this regulation of behavior, which might be defined as cue-driven reactive behavior, accounts for most of the activity of an animal, and does not actually need to be monitored by attentive and intentional control (awareness may be present of the actions that are performed, but it is not needed). A similar mode of behavioral control operates in humans as well, when they act with no attentive and intentional supervision, in a so-to-say autopilot mode.

Any unexpected event, error, failure, contradiction, inconsistency, puzzling aspect or unpredicted result generates an arousal response and activates the anterior cingulate gyrus, which generates a (possibly pleasurable or unpleasant) reaction of surprise, shifts selective attention to the problem and involves the prefrontal cortex in rationally facing the problem, by driving the working memory system to develop alternative, rationally elaborated, behavioral strategies (Carter et al., 1998).

Typically, “autopilot” behavior is guided by external cues rather than endogenous projects, and being regulated by the basal ganglia it occurs with no attentive and intentional control. Still, it is equally effectively guided by a personal, utilitarian perspective, by the nigro-striatal control of the basal nuclei. This does not imply that these behaviors are involuntary or “unconscious” (we may well be aware of what we are doing); it simply indicates that consciousness – attention and intentionality – is not needed to produce a behavior that is clearly directed in one’s own best interest.



TRANSFORMING INFORMATION INTO A PERSONAL EXPERIENCE


The Data

The information about the meaningful objects detected in the environment (“what” pathway) and about the relations among objects and with oneself and the overall environment (“where” pathway) are relayed, respectively, to the perirhinal and parahippocampal cortices, and from these areas they converge onto the entorhinal cortex, the main gateway to and from the hippocampus. The hippocampus performs an overall integration of these two kinds of information by generating a spatial and temporal context (Eichenbaum, 2017).

The hippocampus is an ancient cortical structure that is much more developed than the neocortex in lower mammals (Murray et al., 2018); due to its above-described contextualizing function, it has a central role in sustaining spatial memory (Moser et al., 2008): in laboratory animals, its proper working can be tested by examining the performance in spatial tasks, such as learning to escape from a labyrinth or recognizing spatial clues. In humans, the temporal context is at least as important, in that it helps to interpret the how and why of an episode; similarly, the contextualization in virtual spaces – cognitive contextualization – makes it possible to link abstract notions (facts) into a context, which greatly helps in memorizing them. Notice that this process relies heavily on the capability of retrieving previously acquired knowledge as a framework for contextualisation. Thus, in humans the hippocampus has a crucial role in declarative (both episodic and semantic) memory (Opitz, 2014).


A Theory on the Emergence of a Personal Experience

The hippocampus transforms a huge set of mutual spatial relations among objects into a contextualized perception of the environment (situation), and the temporal relations among events into connected and possibly causally related sequences (processes). This way an integrated, consistent, logically organized and dynamic internal image is generated of the external reality and of the episodes that arise from events and actions. Because of the great plastic properties of hippocampal circuits, such internal images can be saved and possibly recalled in the future to help analyze and interpret novel situations.

The hippocampus is strongly and bidirectionally connected to the amygdala, the main subcortical structure in charge of attributing a vital relevance to the current experience. This way, the memorizing capability of the hippocampus is enhanced whenever the current experience is recognized as emotionally relevant by the amygdala; meanwhile, the hippocampus helps in correctly evaluating possibly relevant clues by contextualizing them (a lion in a cage must not elicit fear).

More relevant to the topic at hand, thanks to the input from emotion-related subcortical structures, the internal picture of reality and of the current experience, generated within the hippocampus, becomes emotionally colored.

It can therefore be concluded that the hippocampus transforms the streams of data about objects, their emotional relevance and their reciprocal spatial relations, into a comprehensive, integrated, emotionally tinted, vital experience, i.e., a properly subjective and personal perspective of the current moment of one’s life. This integrated personal experience of the current moment, rather than the raw sensory data it was built upon, is relayed back by the hippocampus to the cortical areas involved in higher mental functions: we cognitively elaborate, and we remember, our personal experience of reality and of the episodes of our life, rather than what was effectively there and occurring, or what was objectively perceived by our senses (Figure 5). In simple words, this integrated personal experience simultaneously constitutes a state of mind and an internal image of an object, a situation, an episode, a fact/concept.
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FIGURE 5. Diagram that shows how information is transformed into a personal experience. Data about object identification and location is relayed to the hippocampus. The latter provides contextualisation: spatial, temporal (which transforms sequences of events into episodes), and semantic. The strong bidirectional connections with limbic structures help the latter to emotionally evaluate the contextualized situation; the emotional coloring adds affective contextualisation and enhances memorization by the hippocampus. The experience so personalized is reflected onto the peri-hippocampal cortices that relay it to higher level associative areas and can store it as a long-term memory of the comprehensive and personal vital experience.




OUR HYPOTHESIS ON EMERGENCE

The mode of neuronal functioning, the process of spatial and temporal summation of synaptic signals, the connectivity and the plastic properties of neuronal circuits give rise to a number of emerging “meta-biological” properties:


From Information Processing to the Emergence of Knowledge

The firing pattern of a neuron reflects a real-time elaboration of the synchronicity and consistency of the time-varying inputs onto its dendritic and somatic synapses. Each of such inputs reflects the firing pattern of a neuron and represents the detection of a feature in sensory input (external cue) or endogenous cerebral activity (internal cue). Thus, the firing pattern of each neuron signals that (and to what extent) a set of specific features are present in the incoming information. Most neurons project to thousands of other neurons, so that each bit of information gets examined in many ways, in parallel, by many neurons that put it in relation with multiple sets of other data: as a result, information is continuously rearranged and read according to many interpretive criteria and attributed a meaning (perceptual, emotional, functional, operative) thanks to such logical reorganization, through associations and generalizations. This way information is transformed into meaningful information, i.e., into knowledge.



Liking and Disliking, Desiring, and Fearing: The Emergence of a Personal Meaning

Every brain activity is bounced onto several deep structures: the amygdala detects vital and physiological relevance, activates visceral-somatic responses through the hypothalamus (the bodily component of emotions) and produces cortical arousal and possibly excitation or anxiety; the serotonergic median raphe nuclei control anxiety and mood, regulate the weight of social constraints, ethical merit and reality judgment in choices (cognitive as well as behavioral) and contribute to define the emotional response; dopaminergic structures in the midbrain perform hedonic and operative evaluation that guide spontaneous (autopilot) behavior through the basal ganglia and generate motivational drives for the prefrontal executive cortex. All these elaborations are fed to the limbic cortex to generate feelings, expectations and desires: each sensory experience, each motor and cognitive program and/or behavior are this way framed in an emotional and affective setting oriented to personal well-being and achievement of operational success and/or pleasurable outcomes. It should be apparent how this transformation can turn every pattern of neuronal activity into a personally meaningful event, and orient spontaneous as well as rationally programmed behavior toward the best interest of the self.



The Emergence of Conceptual Elaboration

In order to abstractly manipulate a concept in an efficient way, a system of symbolic references (some form of language) must be there; however, the concept is formed in the course of information processing by neuronal networks before such symbolic system is in place. The existence of neurons in the occipital cortex that fire in response to the presentation of a line, or a circle, in the visual field indicates that each object that is perceived will be able to generate a specific pattern of activity in the brain, a specific “signature” in neural activity. Although this cannot be looked at as the signature of a “concept,” it might be thought of as a generalized “internal representation” of the object. The evaluation of possible vital relevance, the association of an emotional response, the activation of possible behavioral interaction programs, and the prediction of possible operative value for the identified object actually give it a “meaning.” Such meaning is distinct from the specific sensory properties of the object (its appearance, shape, size, structure, color, texture); rather, it is related to the concerted activity of a number of neural networks in the brain (neural signature), aimed at identifying the possible interactions with such an object, i.e., its subjective and personal relevance (meaning).

The association of a loud sound with the fear reaction it generates elicits a signature that is not specific to the particular sound, but will be shared by any other sufficiently strong, sudden, and therefore fearful, sound, and constitute the “internal representations” of a “fearful sound.” Such internal representations are general, abstract references to categories of objects/experiences, giving rise to “proto-concepts,” such as that of a “fearful sound,” even before any words are coined to refer to them. The same holds for a “hurting/burning/soothing object,” a “reassuring/menacing face,” a “pleasant/bitter/sour food.”

In terms of information processing, each of such proto-concepts consists in a specific pattern of concerted neuronal activity in various areas of the brain (signature). Each item referred to by the proto-concept will activate specific patterns of activity related to its particular sensory features, but it will also elicit the signature of the proto-concept, which therefore constitutes a mental representation, and internal image, of a category of objects, situations, experiences that share the same (or a similar) meaning for the self.

The “proto-concepts” here discussed have a clear pre-verbal nature; still, they can sustain a rudimentary form of pre-verbal thought, of non-verbal communication (by mimicking reactions/emotions) and even verbal communication (onomatopoeic, “boom” for a thunder, “meow” for a cat).



The Emergence of Imagination

The hippocampus was mentioned to be able to generate “internal images” as consistent integrated pictures of what is being experienced, and save them in memory to possibly revive them, together with the emotional experience and the possible operative relevance associated to them. “Reviving” the experience simply means to be able to reproduce in the brain the neuronal activity patterns it generated in the first place. The reproduced patterns will obviously differ in that the primary sensory input that the actual experience originally elicited will not be there; this incompleteness can be detected by the nervous system and a corresponding modulation of (mostly serotonergic) projections from subcortical systems to the cortex will allow the brain to label them as “non-real,” imaginary. It is well known how serotonergic drugs – such as LSD – can impair this capability of the brain, giving rise to delusions and hallucinations.

The process of proto-conceptualization described above indicates that mental representations tend to depart from the mere reproduction of sensory experiences and rather be categorical, generic, non-specific. This is particularly important in attributing a meaning to novel sensory experiences: every aspect of the pattern of neuronal activity elicited by the novel experience will share some features with some patterns that have been experienced in the past and attributed some meaning (personal relevance); in particular, they will “resonate” with the signatures of some proto-concepts, and this will make it possible to interpret the novel experience and give it a meaning. Notice the quite relevant active component that this implies in the process of perception: sensory information will revive a number of activity patterns, associated to proto-concepts, and the attribution of meaning will be based on how the novel pattern “resonates” with the many imaginative productions awakened by the experience (a neural correlate of the “qualia”). The genericity, non-specificity of proto-concepts is a central feature of imagination, each mental representation possibly referring to many real targets (semantically pleiotropic, symbolic: notice the etymology of symbol, from συν+βαλλo, “throw together”): internal images are symbolic, imprecise, vague, incomplete and ambiguous; they may quite fluidly merge into one-another, unless rational thought, helped by a rigorous symbolic system such as language, intervenes in impoverishing their possible references and polishing them by reducing them to words with a (subjectively) specific and (hopefully) unambiguous meaning.



The Emergence of Selective Attention


The Data

Information processing by cortical circuits can proceed in different modes. A synaptic signal (a depolarization) typically persists for a few milliseconds; in principle, a pyramidal neuron (the principal, projecting neuron in a cortical column) can accumulate membrane potential changes generated by all its synapses over a period of several msec; this implies that it will not be able to specifically recognize a precise time coincidence of the inputs it receives (and precise synchrony in the time-varying activation of its synapses) and generate in turn a firing pattern that precisely represents the structure of incoming data. However, most inputs coming from the thalamus (the mandatory last station for any information directed to the cortex) also hit the PV (parvalbumin positive) inhibitory interneurons that project on the principal neurons, so that any depolarization will be very rapidly (∼1 msec) followed by an inhibitory hyperpolarization. In this situation, synaptic inputs on the principal neuron can only summate if they occur within a very narrow time window, making the elaboration by the neuron particularly precise and discriminative (Wang et al., 2010).

Thalamic neurons display a complex behavior. When they receive no tonic depolarizing input, they respond to synaptic inputs by repetitively firing (“bursting”): this occurs during slow-wave sleep, but also during wakefulness, in areas of the thalamus that project to cortical circuits that are not targeted by selective attention. Thalamic bursting produces desensitization of PV interneurons: the principal neurons are no more immediately shut off, the time window for synaptic summation widens and they shift to non-discriminative elaboration mode. The bursting behavior of thalamic neurons can be switched off in a diffuse way by a number of subcortical circuits implied in the regulation of the wake-sleep cycle and general arousal; however, when a cerebral area is activated (targeted by selective attention), it is able to maintain the corresponding thalamic circuits in non-bursting mode, and this way can operate in a fully discriminative way (Mease et al., 2014).

For example, when a person is concentrated in reading visual cortical areas operate in a discriminative fashion, but the auditory cortex does not; if somebody talks to them, the auditory cortex becomes activated, shifts to discriminative mode, the focus of attention moves to the auditory input and the person, who has perceived the beginning of the sentence as a mere sound/noise, will now be able to understand the rest.



The Emergence of Intentionality


A Historical Perspective

Selective attention is linked in many ways to consciousness. The phenomenological school (Brentano, Husserl) strongly emphasized the directedness (“aboutness”) of consciousness as an “intentional” (in-tend, tend toward) act, which needs to be directed to an object (the content of consciousness). For some Authors, intentionality is somewhat equivalent to a “mental representation,” which would make the common perception of consciousness a mongrel concept (Block, 1995, 2002) that involves phenomenal perception (what it is like to), possible access to selective attention (intentionality) and maybe a reflexive component; the latter, however, would require a brain capable of a certain degree of abstraction and (verbal) concept manipulation.



A Modern Educated Perspective

From a neurophysiological perspective, an experience corresponds to a certain pattern of activation of neural circuits in the various areas of the brain (signature). As mentioned above, the hippocampus is capable of reviving significant signatures experienced in the past, thus reproducing a virtual re-experiencing. Projections from subcortical structures help in discriminating whether an experience is real (here and now) or is a virtual re-experiencing in the absence of the corresponding sensory inputs (imagination).

Computationally, phenomenal consciousness can be looked at as the imaginative activity generated by experience (or endogenously produced). Access to this imaginative content would be granted by shifting the involved cortical areas to a discriminative mode of operation, i.e., focussing selective attention mechanisms on them. This would well account for intentionality, but not for the reflexive aspect of consciousness; still, the capability of distinguishing whether the object of a mental act is real (out there) or not (imaginative) constitutes an important step toward a judgmental (if not reflexive) perspective. Husserl suggested that some kind of reflexivity is essentially built into every conscious act, because the (intentional) object of a “mental act” (thought, judgment, desire) is perceived as external to the mind, out there or in some ideal realm, and therefore “transcends” the mind and its acts.



The Emergence of “Here and Now”


The Puzzling Data

Back in the 1980 Libet et al. (1983) suggested, based on direct stimulation of the brain during neurosurgical operations, that it takes around half a second for a stimulus to work its way through to consciousness. Quite a lot of rumor was generated, some 30 years later, by the demonstration by Haynes’ group that signals in brain activity predict a person’s upcoming “free” choice up to several seconds before they believe they have made up their mind (Soon et al., 2014).



A Theory on the Awareness of Here and Now

Apart from philosophical considerations and the number of criticisms these data elicited, they raise a puzzling computational aspect: how can our brain drive us to swing a bat and correctly hit a baseball that may travel at up to 100 mph?

Let’s neglect the possible terrible delay of consciousness; simply due to the time needed for neuronal processing (at least 100 msec), our brain will localize the ball more than 4 meters behind its true current position; furthermore, the premotor cortex has to set up and launch the motor program to drive the bat some tens (possibly hundreds) of milliseconds in advance of the actual movement. This means that the circuitry in the brain must be able to predict the current position of the ball, based on an extrapolation of its movement (perceived with a delay), and program the movement in advance, so that at the moment of the impact (this precise instant, now) the ball and the bat come to meet each other at a position that the ball does not seem to have reached yet and the bat should have long passed (based on when we “commanded” it). This is not a particularly hard computational task, but it implies that reality has to be depicted by the brain by: (1) extrapolating past sensory inputs (events), to some “now” time; (2) considering motor commands issued some while back as if they were being issued exactly now; and (3) generating a virtual “now” instant in which the brain seems to perceive, as precisely synchronous, something it extrapolates from past sensations, what it has commanded way back and proprioceptive sensations, that inform on the state of muscles and joints, that have not arisen yet. Consciousness or not, the circuits are able to generate such virtual now, which manages to be perfectly in phase with what is actually occurring out there; and when this depiction of the changing reality by cerebral circuits is fed to conscious awareness (Herzog et al., 2016) the picture is not delayed: it simply reflects a reality that has been computationally recreated in brain circuits using prediction, extrapolation and appropriate delays, and only hopefully reflects what is going on out there now.

It is apparent that this process occurs in any brain that is capable of producing appropriately timed reactions to external stimuli (in every animal with a brain), so that the perception of “here and now,” of being there and interacting with reality, must be computationally present in any such brain as a “mental state” that produces an “internal image” of this precise moment. Telling a story about it, i.e., a proper explicit reflexive awareness, is another story, will require a more refined brain and a delay, needed for elaborating such mental state, but will be perceived (through the same trick of predicting and delaying) as if it were occurring in the same moment.



The Emergence of Agency – Perception of One’s Own Body, Sensing, Acting, Thinking

As we become proficient in performing an activity, such as playing the piano, there remains no actual time to realize whether we are performing accurately or not. If we try to do so, the performance gets jammed.


The Data

The cerebellar circuits are much faster than the cerebral cortex, and very precisely and finely tuned in terms of timing; they are called into play whenever an inconsistency is encountered between programmed and actual movement, and they rapidly adjust intensity and timing of the activation of each muscle involved, so that the imprecision of the movement is not perceived from the outside or even internally. In doing so, cerebellar circuits undergo plastic changes (“learn”) so that repeated movements become “automatic,” perfectly organized and timed. In the meantime, cerebellar circuits “reassure” the cerebral cortex that everything is alright (Therrien and Bastian, 2019), tuning down the comparison of proprioceptive sensation with the motor commands issued (a rapidly corrected imprecision is not perceived). This way the cerebellum speeds up not only motor performances but also cognitive ones, such as repeating poems learnt by heart, ordering words in a sentence, picking the right tense of verbs or the appropriate pronoun to indicate a person or a thing, etc. (although the details of this function remain mostly inferential; Koziol et al., 2014). This role of the cerebellum is essential in order to preserve the capability of cerebral circuits to generate the consistent perception of now in the face of an accelerated performance.

The consistent perception of now is essential for consciousness unity: specific disorders of the cerebellum have been reported to be associated with dissociative conditions, i.e., disorders of consciousness such as autism and schizophrenia (e.g., Turner and Schiavetto, 2004). Experimentally, consciousness can be deranged by procedures that produce some forms of “disembodiement”: in the “rubber hand illusion” situation, subjects experience an artificial hand as part of their own body, while the real hand is subject to a sort of disembodiment (della Gatta et al., 2016); similarly, when subjects were shown a view from a video-camera positioned two meters behind their back through a head-mounted device, drift in perceived self-location, self-identification with the virtual body, and touch referral to the virtual body were observed (Cowie et al., 2018).



An Hypothesis About Agency (and an Embryo of Self-Awareness)

The cerebral-cerebellar circuits are able to produce a consistent perception of one’s own actions, and the perception of one’s own body parts can be easily tricked; this is reminiscent of the ability of the brain to generate feelings by perceiving and internally depicting emotions. Telling a story about this, i.e., a proper explicit reflexive awareness, is another story, but if a brain were able to generate thought (is it?) there would be no reason to doubt that a similar perception of one’s own mental activity would occur. In facing this question, Sellars (1956) proposed to distinguish “sentience” (sensation, phenomenal consciousness), which any brain would be able to generate, from “sapience” – awareness of, awareness that, – which requires having the appropriate concepts, learning and inferential capacities typically associated a complex symbolic system (“Awareness is a linguistic affair”).



An Hypothesis on the Emergence of Thought

Given the complexity and sophistication added by language to mental activity, somebody disputes the concept itself of “preverbal” thought: the term “thought” should be reserved for conscious, aware, linguistically explicit thought; the rest should be considered as mere imaginative activity. In any case, the main feature in both thought and imagination is the capability of shifting focus, either following a thread (logical, mnestic, emotional) or just wandering about, driven by (logical, mnestic, emotional) associations. This suggests that the computational basis for imagination and verbal thought is offered by the mechanisms of selective attention and their dynamics. As mentioned above, such dynamics are made possible by the fact that each cerebral circuit may shift from a non-discriminative (out of focus) mode to discriminative (and in focus) operation.

The paramount bioethical relevance of being able to detect the presence of a consciousness in a patient has prompted innumerable studies aimed at identifying objective means and procedures to quantify the presence and level of consciousness. Tononi’s group (Tononi et al., 2016) reported a particularly intriguing set of results that convincingly convincingly correlated the “degree” of consciousness (from deep coma to alertness) with the “complexity” of cerebral activity: multipolar EEG (mEEG) responses, generated in remote areas of the cortex by a localized transcranial magnetioc stimulation (TMS) pulse, ranged from null or waning echoes (in deep comatose states) to highly correlated responses (sleep), to relevant and only marginally correlated activities in alert subjects. The increased complexity is paralleled by a decreasing compressibility of mEEG recordings, using standard compression algorithms. The authors interpreted this as a sign that consciousness arises from the concomitant independent processing of information by local circuits combined with strong interactivity among such local circuits.

Given selective attention is an essential feature of consciousness, the continuous switching from discriminative to non-discriminative processing in the many circuits of the brain is expected to add a further level of complexity to the combination of local and interconnected processing and the way they interact at each site in the brain.



An Hypothesis on the Emergence of Reflexivity

Based on the above considerations, the mode of processing by the neurons appears to be intrinsically relational. Specific neural circuits are focussed on detecting such relations in strict reference to one’s own body and emotions, i.e., with the self; this gives rise to an internal picture of reality and what is happening, amounting to an inevitably subjective and personal experience. This might be considered as a rudimentary form of consciousness: the perception of being there, feeling emotions and performing actions. All animals seem to possess such an ability, which possibly coincides with what Edelman named “primary consciousness”: the perception of being there, generated by the production of an internal image of reality and its relation with oneself, here and now (Edelman and Seth, 2009).

Climbing up the evolutionary scale, with the development of the neocortex such ability becomes ever more detailed, comprehensive and precise. In humans, and possibly some other mammals, much more complex functions come about: (i) the realization of object permanence, i.e., the awareness that reality and objects (and people) remain there and continue to undergo changes even if not perceived, and (ii) the way time is handled by humans, by perceiving it as a line along which things happen and evolve, guided by object permanence, continuity and causality. Object permanence is not present in lower mammals; it is presumably present in primates and possibly some other species; even in humans, it is not an innate capability, but appears to come about during development, by the end of the second year of life, according to Piaget’s (1954) studies, or quite earlier, 9–10 months age, according to more recent studies (Moore and Meltzoff, 2008).

In principle, object permanence and efficient handling of time may be sufficient to transform a “primary consciousness” into the capability of perceiving reality as an evolving system and telling a story about reality and oneself, thereby transforming the awareness of being here, now, into a diachronic picture of the self as a unitary subject that persists and evolves through time, in a reality that also evolves according to criteria of causality that can somehow be understood: a unitary subject and a reality that have a past, which can be told, and a possible future, which can be imagined, prefigured and possibly determined. Edelman referred to such capability of building a diachronic picture of reality and integrated image of the self as the “higher-order consciousness” typical of humans (Edelman and Seth, 2009).

If “primary consciousness” arises from the capability of producing an internal image of reality, the human brain transforms such image into the perception that reality evolves according to laws of persistence and causal relations, the self is perceived as a diachronic entity with its own story, a present and a future, and the internal picture of reality becomes a story to be told.

Even the most primordial brain is able to interpret each sensory experience as pleasurable, indifferent or noxious, i.e., to generate the raw basis of emotions. In brains with a cortex, the ability to analyze what is there and happens in relational terms, with reference to oneself and one’s own emotions and purposes, emerges from the organization and processing mode of neural circuits. Human brain can add to this a logical, diachronic and causal interpretation, creating a story about it all, in which the protagonist is the subject who sees, interprets, feels, thinks and acts. As Gazzaniga (1998) neatly put it: “the human left hemisphere has the interpreter [whose] job is to interpret our behavior and our responses… It constantly establishes a running narrative of our actions, emotions, thoughts, and dreams.” Such emergent property involves the autoscopic capacity we refer to with the term reflexivity.



IS THIS “HUMAN CONSCIOUSNESS?”

This exceeds the aim of this discussion. However, the capability of handling symbols and generating a whole symbolic system (language) makes it possible to precisely depict and communicate (apart from the inefficiencies of any communication) one’s own perception of reality. This adds a further dimension to human “higher order consciousness”: in addition to a “primary” perception of the self, here and now, humans perceive their own ability to subjectively tell a story about reality and themselves, as if one were a spectator of what happens in one’s own brain. This may possibly be the origin of the autoscopic dimension of consciousness (self-consciousness) and of “Descartes’ error” (Damasio, 1994), the dualistic view of consciousness as a spectator in the theater where the brain sets up its dramas.

Phenomenally conscious states have been defined as states such that “there’s something it’s like for one to be in them.” Neurologically, this almost directly translates into neural activity patterns being focussed on by selective attention. Such patterns would be very similar whether they are elicited by sensory inputs or by endogenous activity (imagination), although subcortical neurons and projections to the cortex (mostly serotonergic) normally differentiate the two situations. These internal images (“mental states” or acts) are there whether or not they are targeted by selective attention, although they would be vague and ambiguous like images in mind wandering, day-dreaming, half-awake states (“threshold consciousness”) or dreams, when the cortical structures implied work in a non-discriminative mode. Targeting by selective attention would turn the corresponding circuits into discriminative operation and simultaneously focus and sharpen the internal images, restrict their possible meanings, eliminate ambiguity. This suggests that consciousness consists in some kind of higher order representation – the mind “scanning” itself – that does not require a “higher-order thought,” but a form of representation somehow sensory in character, rather than thought-like or conceptual (Lycan, 2004). This can be seen as “a mental state which then becomes the object of a meta-state” (Gennaro, 2005), i.e., a cortical activity pattern which becomes the object of selective attention processes. This idea of mental reflexivity can be tracked back to Kant’s (1787) “inner sense” or Locke’s (1690) “perception of what passes in a man’s mind.” However, quite a number of authors have argued against the idea that this kind of mental reflexivity can account for all that consciousness is: – can account for all that consciousness is (see, e.g., Smith, 2005; Zahavi, 2005).



CONCLUSION

Introspection elicits the impression that some kind of duality exists in our consciousness, as if we were, at the same time, the subject of our own life and an external observer who witnesses our life and can tell the story. The way this precisely occurs in the brain remains a challenging, formidable conundrum, still far from solved. On the other hand, “consciousness” is itself an ill-defined term that simultaneously refers to a number of functions – from reactivity to stimuli to alertness and presence, from orientation in time and space to cognitive performance, from correct exam of reality to soundness of thought. Each of these aspects likely involves distinct cerebral circuits and interactions among several cortical areas. Up to now, in the search for a neural correlate of consciousness, which might offer us a way to objectively measure the presence and extent of consciousness (e.g., in vegetative coma or in locked-in syndromes), the most advanced and promising studies point to measures of complexity in EEG recordings; such complexity would arise from the simultaneous operation of many local circuits and computations, with a marked margin of autonomy but strongly interconnected in such a way that partial correlation and partial independence coexist in the activity of the various circuits (Casarotto et al., 2016). Further complexity is added by the mechanisms of selective attention, that produce continuous changes in the mode of elaboration by the various areas of the cortex, sustained by the cortico-thalamic dialogue (Mease et al., 2014), and account for the incessant change of the focus of our consciousness.

Rather than discussing the possible biological substrate of all the cerebral functions that may sustain consciousness, our purpose here was to examine the typical functioning mode of neurons and the way sensory information is processed. This revealed that neuronal processing is intrinsically relational, and in particular it tends to be self-referred. Furthermore, any activity in the brain tends to be evaluated in terms of vital, emotional and hedonic value, so that neuronal processing inevitably involves the attribution of a meaning (value for one’s survival and well-being) that is essentially subjective and personal. Cortical areas that have traditionally been considered dedicated to sensory elaboration (such as the parietal cortex) must actually be seen as sensory-motor areas and play a role in motor programming by proposing appropriate interaction with any identified object; thus the meaning of any object and situation which is encountered will also be enriched by the judgment of its possible operative usefulness (which again adds subjective and personal relevance). All information collected by the cortex and dissected by the analysis of elements, objects, relations and localisation with respect to the body is conveyed to a structure – the hippocampus – that transforms such streams of data, and the related emotional marks, into an integrated and contextualized vital experience.

Hence, we are led to conclude that elaboration by neural circuits necessarily transforms the informational material into a subjective and personal experience. Curiously enough, all this happens independent of any reference to consciousness, except for the most raw and elementary aspect of consciousness, i.e., a sufficient arousal and quantitative level of cortical activity.

Thus, perhaps unexpectedly, subjectivity turns out to be there before – not as a consequence of – consciousness.

If we wish to consider subjectivity as a specific feature of consciousness, we must conclude that it is provided to consciousness by the intrinsic operating mode of the brain and not added to the processes going on in the brain by some mysterious biological or metaphysical process or entity (consciousness). Consciousness appears to make humans able to extract from experience what has happened outside and within themselves in the past, what might have happened if only…, what is occurring now and will or may occur in the future; to tell a story about all this; to understand, simulate, imagine and predict. But, contrary to a possible layman’s perception, consciousness – in its somewhat mysterious nature – is not the origin of these abilities or the source of an individual perspective on the external reality and the self: because consciousness works on “material” (neurally processed information) that already has in itself a well-defined subjective, emotional and individual characterisation.
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A recent experiment proves the therapeutic effect of arm-in-arm walking, showing that if an aged participant walks in close synchrony with a young companion, the complexity matching effect results in the restoration of complexity in the former. A clear manifestation of complexity restoration is a perfect synchronization. The authors of this interesting experiment leave open two important problems. The first is the measure of complexity that is interpreted as a degree of multifractality. The second problem is the lack of a theoretical derivation of synchronization, which is experimentally observed with no theoretical derivation. The main goal of this paper is to establish a physiological foundation of these important results based on the recent advances on the dynamics of the brain, interpreted as a system at criticality. Criticality is a phenomenon requiring the cooperative interaction of units, the neurons of the brain, and is hypothesized as the main source of cognition. Using the criticality-induced intelligence, we define complexity as a property of crucial events, a form of temporal complexity, and we prove that the perfect synchronization is due to the interaction between the two systems, with the more complex system restoring the temporal complexity of the less complex system. The phenomenon of temporal complexity is characterized by ergodicity breaking that has made it difficult in the past to derive the perfect synchronization generated by complexity matching. For this reason, we supplement the main result of this paper with a comparison between complexity matching and complexity management.

Keywords: reinforcement learning, complex adaptation, complexity matching, control, complex periodicity, biofeedback


1. INTRODUCTION: WALKING TOGETHER AS A FORM OF THERAPEUTIC SYNCHRONIZATION

Walking in synchrony is a subject of significant interest for its therapeutic effects (Zivotofsky and Hausdorff, 2007; Engelhard, 2018). A remarkably interesting result is illustrated in Almurad et al. (2018), a sequel to the earlier work of Almurad et al. (2017). Senior individuals, with problems in walking and balance, interpreted as a lack of physiological complexity, participated in a longitudinal training program of synchronized walking, with young experimenters. The authors observed a restoration of complexity in the senior participants after 3 weeks, and this effect persisted for at least 2 weeks beyond the end of the training program. Recovering complexity in walking was signaled by synchronization between a senior patient and a youthful experimenter. Figure 1 illustrates the synchronization effect that we intend to recover with simple computational rules by implementing the complexity matching principle (CMP).


[image: Figure 1]
FIGURE 1. Experimental walking synchronization. The top panel shows two distinct gait trajectories for two human subjects walking together. The bottom panel shows the same trajectories, but overlapping them to emphasize their synchronization. This figure is derived from Almurad et al. (2017), with permission.


The computational prescriptions that we adopt to recover the experimental results of Almurad et al. (2017) and Almurad et al. (2018) are based on neurophysiological arguments that are expected to shed light into the connection between the experimentally observed synchronization and brain dynamics. The synchronization model is reminiscent of the theory of phase-locked modes of Kelso et al. (1987), which in turn, rests on the theoretical perspective of synergetics (Haken, 1983) explained in the book by Kelso (1995). However, the coupling between the two interacting systems implies the cooperative action of many units, the neurons of the brain. The present paper designs the phase rearranging selected by one system to establish synchronization with the other, as a consequence of a self-organization process, again reminiscent of synergetics. However, here we draw special attention to fitting the condition of temporal complexity and ergodicity breaking. These two important conditions reflect the recent experimental and theoretical work in the field of neurophysiology, quoted herein to clarify the steps required to reproduce the experimentally observed synchronization of Almurad et al. (2017) and Almurad et al. (2018).

A relevant example of the connection between the model adopted herein and the neurophysiology literature is the use of subordination theory. Bohara et al. (2018) modeled the dynamics of the brain in such a way as to establish a bridge between the nearly coherent oscillations hypothesized by the observation of brain waves and the rapid transition processes, which are compelling results of the recent analysis of EEGs. Subordination theory rests on the assumption that coherence is a property of operational time, intimately related to the function of the body. The transition from operational time to clock time is accomplished by introducing crucial events, either visible or invisible, so as to generate a frequency spectrum for time series variability. The spectrum is characterized by 1/f noise in remarkably good agreement with experimental observation.

The crucial events are characterized by a complexity index μ, ranging from the value μ = 2, corresponding to the greatest complexity, to the value μ = 3, at the border with the region of ordinary statistical physics, thereby representing the condition of least complexity and greatest pathology. We propose a prescription to couple two different complex-periodic systems, one representing a healthy person and the other representing a sick patient. We prove that as a result of this coupling, the healthy complex system transfers its temporal complexity and its periodicity to the pathological system and the subsequent transfer of information. As a result of this therapeutic process, synchronization between the two systems emerges.

Note that the synchronization depicted in Figure 1 is the result of an experiment while the results shown in Figure 6, which are remarkably similar to those shown in Figure 1, is the result of the coupling between a system with μ close to 3, representing the senior patient, and a system with μ close to 2, representing the young experimenter. Almurad et al. (2017) and Almurad et al. (2018) make the plausible conjecture that their experimental result is a manifestation of the phenomenon of complexity matching, namely the phenomenon of maximal transfer of information between two systems with the same complexity. This special condition of information transfer is made clear by the almost ideal synchronization, which is obtained by increasing the complexity of the senior subject while the complexity of the healthy youth remains unchanged. These authors however leave open the definition of complexity that, according to them, can be measured by multi-fractality.

In line with the theory of Mahmoodi et al. (1990) showing that multifractality is generated by crucial events at criticality, the main goal of the present manuscript is to prove that the complexity index μ is the proper measure of complexity. To make the significance of achieving this goal more apparent, we supplement this result with a proper revision of the connection between complexity matching and complexity management.



2. METHOD

To address the ambitious purpose of explaining synchronization, we adopt subordination theory (Sokolov, 2002). This theory allows us to combine rhythm, which is a fundamental property of biological processes (Winfree, 2001) with non-rhythmic crucial events. The crucial events are organization rearrangements, or renewal failures observed in the brain (Paradisi et al., 2016) and are closely related to the phenomena of intermittency (Metzler et al., 2014).

The time distance τ between consecutive crucial events is described by a waiting-time probability density function (PDF) ψ(τ) with an inverse power law (IPL) structure:

[image: image]

with the IPL index in the interval:

[image: image]

These crucial events are the source of aging and of non-stationary correlation functions (Metzler et al., 2014), and aging is perennial if μ < 2. Earlier research work shows that the human brain operates in the region 2 < μ < 3 (Bohara et al., 2017), where the first moment < τ > of the PDF ψ(τ), is finite. Therefore, we focus on this condition to establish a connection between renewal events and rhythm. Rhythm is a property of the operational time n (Sokolov, 2002) and corresponds to harmonic motion:

[image: image]

Herein we refer to this harmonic motion by means of the time period:

[image: image]

as well as the frequency Ω.

In clock time, according to subordination theory, x(t) is given by (Bohara et al., 2017) :

[image: image]

where [image: image] is the PDF corresponding to the occurrence of the n-th crucial events at time t′. From time t′ to time t no further crucial event occurs. This constraint is established by Ψ(t − t′), with Ψ(t) being the survival probability associated to the waiting–time PDF ψ(t). Note that x(t) of Equation (5) can be interpreted as being the harmonic motion of Equation (3) made complex through the transform n → t.

A clear sign of the complexity of x(t) is that its power spectrum is characterized (Bohara et al., 2017) by the IPL formula:

[image: image]

where the spectral IPL index is:

[image: image]

Note that when μ = 2, S(f) of Equation (6) yields β = 1, namely, the ideal 1/f-noise as found by Allegrini et al. (2009) to be produced by a healthy human brain.

In Figure 2 we show one complex system driving another and synchronization is achieved. Herein we explain how this synchronization is realized through the study of two complex systems, S1 and S2, with their respective frequencies and complexity parameters, Ω1, μ1 and Ω2, μ2. Note that here we use the IPL indices as measures of the systems' complexity.


[image: Figure 2]
FIGURE 2. The curves show the x(t) of the driving system (blue), modeled by a subordinated cosine wave with μ1 = 2.7 and Ω1 = 2π/200, which was connected (uni-directional) with perturbation strength r2 = 0.1 to the driven system (red), with μ2 = 2.3 and Ω2 = 2π/100. The connection is realized using Equation (9). Ensemble size = 1.


At time t the subordination process yields for S1:

[image: image]

and for S2:

[image: image]

Of course, in the absence of coupling n1(t) ≠ n2(t). Let us assume that S1 is the driving and S2 the driven system. The coupling is realized through the intelligent response of S2, which tries to compensate for the difference between x1(t) and x2(t) by rearranging the phase according to the prescription;

[image: image]

where the difference between the driven and driver systems is:

[image: image]

This means that the driven system is aware of whether the difference Δa(t) ≡ x1(t) − x2(t) is positive or negative. In addition it also knows the gradient Δb(t) ≡ ∂x2/∂n2∝ − sin(Ω2n2(t), namely the derivative of x2 with respect to operational time. The complex driven system S2 increases or decreases its phase Φ(t) depending on the sign and magnitude of the product Δa(t)Δb(t).

Equation (10) is a generalization of the swarm intelligence prescription adopted in earlier work (Turalska et al., 2009; Vanni et al., 2011) and is the learning process in our algorithm which enables the driven system to continuously adopt to the driving system, thereby creating complexity matching between them. In Figure 2 we illustrate the typical synchronization obtained by assigning to the driving system μ1 = 2.7, Ω1 = 2π/200 and to the driven system μ2 = 2.3, Ω2 = 2π/100.

Each panel of Figure 3 shows the spectra of the driving system (black curve) and of the driven system before (red curve) and after (blue curve) connection. Panels 3A,B refer to the cases where both driving and driven systems have the same complexity μ1 = μ2 = 2.5, but different periodicities. In panel 3A the driving system has the lower periodicity (Ω1 = 2π/100 and Ω2 = 2π/1, 000) while in panel 3B the driven system has the higher periodicity (Ω1 = 2π/1, 000 and Ω2 = 2π/100). The results depicted in these two panels reveal that the driven system adopts the periodicity of the driving systems. The driven system with higher periodicity shifts its periodicity to that of the driving system (3A). Panel 3B shows that the driven system with lower periodicity adopts the periodicity of the driver, as well as, the other embedded oscillation modes. The remaining two panels of Figure 3 are cases where both driving and driven systems have the same periodicity (Ω1 = Ω2 = 2π/100), but different complexity indices. In Panel 3C the driver has higher complexity (lower complexity index) (μ1 = 2.1 < μ2 = 2.9) while in Panel 3D the driver has lower complexity (higher complexity index) (μ1 = 2.9 > μ2 = 2.1). These panels show that the less complex system could adapt to both the complexity index and periodicity of the more complex driven system (3C). By contrast, Panel 3D shows that the more complex driven system does not adapt to the complexity index and periodicity of the less complex driver.


[image: Figure 3]
FIGURE 3. The spectra of the driving system (black curve), driven system before connection (red curve), and driven system after connection (blue curve). (A) μ1 = 2.5, Ω1 = 2π/100, μ2 = 2.5, Ω2 = 2π/1, 000, r2 = 0.1. (B) μ1 = 2.5, Ω1 = 2π/1, 000, μ2 = 2.5, Ω2 = 2π/100, r2 = 0.1. (C) μ1 = 2.1, Ω1 = 2π/100, μ2 = 2.9, Ω2 = 2π/100, r2 = 0.1. (D) μ1 = 2.9, Ω1 = 2π/100, μ2 = 2.1, Ω2 = 2π/100, r2 = 0.1. L = 105. Ensemble size = 100.


The panels of Figure 4 show the four general conditions where the driving and driven systems have different parameters for both complexity and periodicity. The results of these figures follow the same patterns as those of Figure 3. Notice there are also signs of the extra oscillation modes between the driving and the driven frequency illustrated in Figures 3B, 4B,D.


[image: Figure 4]
FIGURE 4. The spectra of the driving system (black curve), driven system before connection (red curve) and driven system after connection (blue curve). (A) μ1 = 2.1, Ω1 = 2π/100, μ2 = 2.9, Ω2 = 2π/1, 000, r2 = 0.1. (B) μ1 = 2.1, Ω1 = 2π/1, 000, μ2 = 2.9, Ω2 = 2π/100, r2 = 0.1. (C) μ1 = 2.9, Ω1 = 2π/100, μ2 = 2.1, Ω2 = 2π/1, 000, r2 = 0.1. (D) μ1 = 2.9, Ω1 = 2π/1, 000, μ2 = 2.1, Ω2 = 2π/100, r2 = 0.1. L = 105. Ensemble size = 100.


Of great importance for the therapeutic effect of walking together is the condition where S1 is influenced by S2 in the same way. We refer to this condition as back–to–back, also known as bi-directional information exchange. To realize the back–to–back condition, as we shall subsequently see that we need to introduce the new parameter r1, which defines the intensity of the influence of S2 on S1. The panels in Figure 5 show the cases where two systems are connected back–to–back. The systems with lower complexity (μ2 = 2.9) improved their complexity from μ1 = 2.9 to μ1 = 2.1 and both systems adopted a frequency between the initial effective frequencies.


[image: Figure 5]
FIGURE 5. The spectra of the two systems at isolation (S1: black and S2: red curves) and after being connected back to back (blue and green curves, respectively). (A) μ1 = 2.1, Ω1 = 2π/100, μ2 = 2.9, Ω2 = 2π/100. (B) μ1 = 2.1, Ω1 = 2π/1, 000, μ2 = 2.9, Ω2 = 2π/100. (C) μ1 = 2.1, Ω1 = 2π/100, μ2 = 2.1, Ω2 = 2π/1, 000. (D) μ1 = 2.1, Ω1 = 2π/100, μ2 = 2.9, Ω2 = 2π/1, 000. r1 = r2 = 0.1. L = 105. Ensemble size = 100.


Here we have to stress that the perturbing system is quite different from the external fluctuation that was originally adopted to mimic the effort generated by a difficult task (Corell, 2008; Grigolini et al., 2009). In that case, according to Heidegger's phenomenology (Dotov et al., 2010) the transition from ready-to-hand to unready-to-hand makes the IPL index μ depart from the 1/f-noise condition μ = 2 (Corell, 2008; Grigolini et al., 2009) so as to reach the Gaussian border μ = 3 and to go beyond it. Here the perturbation is characterized by an intense periodicity, and while it does not change the complexity of the perturbed network very much, it does transfer its own periodicity.

The theory developed herein may shed light on the crucial role of cooperation. Recent psychological research on collective intelligence (Woolley et al., 2010) shows that cooperative interactions between the members of a group may improve the global intelligence of that group. To realize a condition that is close to that of the paper of Woolley et al. (2010), we study the case where S1 is influenced by S2 in the same way S2 is influenced by S1. As a result of this mutual interaction, we have [image: image]and [image: image]. When μ1 < μ2 we expect the shifted complexity indices to lie in the interval:

[image: image]

Figure 5 shows that [image: image], thereby suggesting that the system with higher complexity does not perceive its interaction with the other system as a difficult task, which would force it to increase its own μ (Corell, 2008; Grigolini et al., 2009), while the less complex system has a sense of relief. We interpret this result as an important property that should be the subject of psychological experiments to shed light on the mechanisms facilitating the teaching and learning process.

The term “intelligent” that we use herein is equivalent to assessing a system to be as close as possible to the ideal condition μ = 2, corresponding to the ideal 1/f noise. In this sense, two very intelligent systems are the brain and heart that, when healthy, share the property of a μ being close to 2. The present paper, therefore, provides a rationale for (an explanation of) the synchronization between heart and brain time series (Pfurtscheller et al., 2017) and shows that the concept of resonance, based on tuning the frequency of the stimulus to that of the system being perturbed, may not be appropriate for complex biological systems. Resonance is more appropriate for a physical system, where the tuning has been adopted over the years for the transport of energy, not information. The widely used therapies resting on bio-feedback (Lin and Li, 2018), are the subject of appraisal (Papo, 2019), and the present results may contribute to making therapeutic progress by establishing their proper use.



3. SUPPORTING INFORMATION


3.1. Walking Together

To facilitate the appreciation of the similarity between the complexity matching prescription observed herein and the walking synchronization of the paper of Almurad et al. (2017), we invite the readers to examine the experimental results of Figure 1. We used numerical results, of the same kind as those illustrated in Figure 2 of the text, properly modified to connect the two trajectories back–to–back. To make the qualitative similarity with the results of the experiment of the paper of Almurad et al. (2017) more evident, we adopt the same prescription as that used by Almurad et al. We interpret the time interval between consecutive crossings of the origin, x = 0, as the time duration of a stride of x(t). Figure 6 illustrates the result of this procedure. This remarkably good qualitative agreement between Figures 1, 6 supports the efficiency of the complexity matching approach used herein. This procedure can also be used to explain the synchronization between the heart and brain found empirically by Pfurtscheller et al. (2017).


[image: Figure 6]
FIGURE 6. The blue and red curves show the duration times between the strides of x(t) of two systems, being connected back to back; corresponding to the spectra of Figure 4B: μ1 = 2.1, Ω1 = 2π/1, 000, μ2 = 2.9, Ω2 = 2π/100, r1 = r2 = 0.1. Ensemble size = 1.




3.2. Beyond Complexity Management

We also show how the method of the present paper works when applied to experimental data to evaluate the cross-correlation between the driven and the driving complex networks, going beyond the limitations of the research work on complexity management (Aquino et al., 2011; Piccinini et al., 2016). Complexity management is very difficult to observe. It is based on ensemble averages, thereby requiring the average over many identical realizations (Aquino et al., 2011). In the case of experimental signals of physiological interest, for instance, on the brain dynamics, taking an ensemble average is not possible. The theory presented herein makes it possible to evaluate the correlation between the driving and the driven system using a single realization of the time series. We stress that while complexity management (Aquino et al., 2011) does not affect the IPL index μ of the interacting complex networks, the theory of this paper, as shown by Figure 4, affords important information on how the cooperative interaction makes the unperturbed values of μ change as a consequence of the interaction.

Panel 7A illustrates the maximum value of the cross-correlation function Cmax vs. periodicity of the driver and the driven systems connected, uni-directionally, r2 = 0.025, while keeping their complexity index equal: μ1 = μ2 = 2.5. High values of Cmax corresponds to the strong adaptability of the driven system to the driving system. This figure shows that when the driven system has the periodicity similar to that of the driver, its adaptation is maximum. Panel 7B shows the cross-correlation function, Cmax vs. complexity index of the driver and driven systems connected, uni-directionally, r2 = 0.025, while keeping their periodicity equal: Ω1 = Ω2 = 2π/50. Notice that there is no ensemble averaging done in producing Figure 7. A driven system with lower complexity (higher μ) adapted more to the driving system than does a driven system with higher complexity.


[image: Figure 7]
FIGURE 7. (A) Dependence of Cmax (as a measure for synchronization) on the periodicity of the drive and driven systems. μ1 = μ2 = 2.5. r2 = 0.025, L = 5 × 107. (B) Dependence of Cmax on the complexity index of the drive and driven systems. T1 = T2 = 50, r2 = 0.025, L = 5 × 107. Ensemble size = 1.


Figure 8 shows the recurrent plots which provide a way to visualize the changes in the periodic nature of the driven system before and after being connected to the driving system. In Panels 8A,B the colors indicate the value of x1(t1) × x1(t2) and x2(t1) × x2(t2) for the driver (with μ1 = 2.9, T1 = 1, 000) and driven (with μ2 = 2.1, T2 = 100) systems, respectively. Panel 8C shows the cross–recurrence between the driving and driven systems after connection (r2 = 0.1). Panel 8C shows that the driven system adapted the complex periodicity of the driving system and in addition gained some extra oscillation modes in between (corresponding to panel 8B).


[image: Figure 8]
FIGURE 8. Recurrent plots. The x and y axes are time. The colors in the panels correspond to the values of x1(t1) × x1(t2) (A; driving system), x2(t1) × x2(t2) (B; driven system before connection) and x1(t1) × x2(t2) (C; cross-recurrence between the driving and the driven system after connection). Drive system: μ1 = 2.9, T1 = 1, 000. Driven system: μ2 = 2.1, T2 = 100, r2 = 0.1.





4. COMPLEXITY, INFORMATION, AND CONCLUSIONS

In the recent literature on self-organization (see e.g., Gershenson and Fernández, 2012), the emergence of complexity is interpreted as corresponding to information reduction. Variety increases with a complex system performing multitask actions and decreases with a complex system focusing on a single task (Bar-Yam, 2004). More recent work confirms this property in sociological systems (Zhang et al., 2018), while it is well-known that it holds true for physiological processes (Peng et al., 1995; Struzik et al., 2004). The hypothesis of self-organization has been known and used in biology for nearly half a century (Eigen, 1971; Thompson and McBride, 1974) [see also Chapter 5 of Eigen's important book Eigen (2013)].


4.1. Information Reduction

The entropic approach used to deal with crucial events is the Kolmogorov-Sinai (KS) entropy hKS (Ignaccolo et al., 2001), which is well-described by the formula

[image: image]

where [image: image]. Equation (13) indicates that the KS entropy vanishes at z = 2 and it remains equal to 0 in the entire infinite interval 2 < z < ∞ (μ < 2). Allegrini et al. (2003) noticed that z = 1, corresponding to μ = ∞, is the condition of total randomness, namely, the case where an infinitely large amount of information is necessary to control the system. The condition z = 1.5, corresponding to μ = 3, makes the sequence of crucial events compressible, namely, it reduces the amount of information necessary to control the system, and finally, the KS entropy vanishes when μ < 2. This is a region characterized by the diverging value of the mean waiting time < τ >.

The recent generalization to the mechanism of self–organized criticality given by self–organized temporal criticality (SOTC) (Mahmoodi et al., 2017) generates crucial events with μ < 2, and, albeit a form of self–organization yielding values of μ in the interval 2 < μ < 3 is not yet known, we make the plausible conjecture that complex processes that are experimentally proven to generate crucial events in this interval as well as in the interval 1 < μ < 2, are the result of a process of self-organization. The condition z > 2 (μ < 2) is where Korabel and Barkai (2009) had to modify Equation (13) leaving this expression unchanged for 1 < z < 2 and making it increase from the vanishing value with z > 2. Actually, KS entropy is a Lyapunov coefficient, and Korabel and Barkai defined the Lyapunov coefficient for z > 2, by comparing the rate of departure between two trajectories moving from very close initial conditions to tμ−1, rather than to t, as correctly done for z < 2. This means that the region z > 2 (μ < 2) is not fully deterministic, but the amount of information necessary to control the system is drastically reduced.



4.2. Requisite Variety

Ivanov et al. (1999) noticed that healthy heartbeats have variability that makes it impossible to adopt the conventional method of analysis of anomalous scaling based on the stationary assumption. Consequently, they made the assumption of a scaling fluctuation that led them to adopt a multifractal approach. Their proposal turned out to be extremely successful and was adopted to distinguish healthy heartbeats from heart failure heartbeats (Ivanov et al., 1999). Allegrini et al. (2002) examined the data from the same cohort of patients studied in Ivanov et al. (1999) using the crucial events defined herein and found that healthy patients have a μ very close to 2, which makes the KS entropy vanish. They also conjectured that self-organization generating crucial events may also be the generator of multifractality. This last conjecture has been fully confirmed in the recent work of Bohara et al. (2017) and Mahmoodi et al. (1990).

Of remarkable importance for the requisite variety issue is the work by Struzik et al. (2004), emphasizing the transition from 1/f noise to 1/f2 noise as a manifestation of variability suppression. Healthy heart physiology is based on the balance between the conflicting action of the sympathetic and parasympathetic nervous systems, thereby resulting in the ideal 1/f noise for healthy individuals and in the 1/f2 noise for pathological individuals. This condition is examined herein with the help of Figure 1. The SOTC time series of the paper of Mahmoodi et al. (2017) yields μ < 2. We examined the case of μ moving into the interval 2 < μ < 3 using subordination to regular oscillatory motion, a phenomenological way of combining crucial events and periodicity. We believe that SOTC can be extended to this condition, and have confidence that future work will realize this important goal. We see that for f → 0, the IPL spectra [image: image], has β = 3 − μ. The ideal condition of 1/f noise is realized when μ = 2. The transition from 1/f noise to white noise is realized by increasing μ from the ideal value μ = 2 to the value μ = 3 and beyond. In the presence of periodicity, though, the 1/f noise region can also be affected by moving the periodicity peak from right to left, in such a way as to make the 1/f2 noise the dominant contribution to the spectra in accordance with the experimental observation of Struzik et al. (2004).



4.3. Lack of Difficult Task Perception

The results of Figure 5 showing μ1′ ≈ μ1, as earlier stated, suggest that the system with higher complexity does not perceive the interaction with the less complex system as a difficult task. This is an indication that the dynamical model adopted in this paper works at a merely physiological level with no direct influence on behavior. Further research work is necessary to go beyond the limits of the model of this paper. An interesting example of a valuable direction to follow to realize this extension is afforded by the recent work of Tognoli et al. (2018). The authors of this illuminating paper adopt a multiscale neurocomputational model of social coordination that enables exploration of social self–organization at all levels, from neuronal patterns to people interacting with each other. The theoretical background is afforded by the synergetics of Haken (1983) that is based on the contraction over fast irrelevant variables thereby addressing criticality with no attention to the ergodicity breaking role of crucial events. The present paper shows that crucial events should be taken into account.

We believe that in principle this extension can be realized by adopting the payoff arguments of Mahmoodi et al. (2017) in SOTC. In the model of the present paper, the less complex systems have more events and consequently more chances to adapt their phases to the more complex system. Therefore, the less complex network matches the trajectory of the more complex network with no need to go beyond the physiologic level. If the two systems were connected in a way that the payoff of each system depended also on the performance of the other, then the more complex could increase its μ to help the less complex to decrease its μ, but together they could reach maximum performance. This may have the effect of explaining the earlier mentioned results on the collective intelligence of Woolley et al. (2010).

Adopting the distinction between neurophysiologic and sociologic level (Tognoli et al., 2018), interpreted as two distinct complex systems, we should be able to take into account the perception of task difficulty, going beyond the limitations of the model adopted herein. A remarkable example of a problem that would be settled using this extension of the model of the present paper is given by Tuladhar et al. (2018). Tuladhar et al. analyzed the heartbeats of subjects practicing meditation and found that this has the effect of generating additional coherence and increasing the executive control, while moving μ from low to high values, a property adopted in the earlier work of Allegrini et al. (2009) to explain the Corell effect (Corell, 2008), interpreted as a consequence of the perception of task difficulty. Adopting a proper extension of the present model, the improved executive control would be interpreted as the behavioral and neurologic systems reaching the level of maximum performance.

Another important problem requiring further theoretical advances is the persistence of complexity restoration. From a theoretical point of view, this is an open problem. In fact, the actions of the system with less complexity are determined by subordination to harmonic processes with the transition from operational to clock time being determined by a waiting–time PDF with a fixed value of the complexity parameter μ. On the basis of the statistical analysis of real EEG′s and EKG′s this parameter has been assigned a value close to 2 to simulate healthy systems and close to 3 to simulate systems affected by pathologies. These values of μ are the result of a dynamic interaction between the units of the complex systems. The papers of Turalska et al. (2009) and Vanni et al. (2011) show that the intelligent behavior of a system is determined by a control parameter K, the strength of the interaction between the system's units. To assess the persistence of complexity restoration we would need a theory where K is not fixed but may change according to the interaction with the environment. The SOTC of Mahmoodi et al. (2017) is based on the assumption that the search for an optimal payoff has the effect of changing the control parameter K, with the pathological behavior being determined by a top-down rather than bottom-up approach to complexity. Therefore, a theory to assess the persistence of the recovery would require an extended form of SOTC, which balances the top-down with the bottom-up effects. On the other hand, the experimental results of Almurad et al. (2018) on the rehabilitation protocol indicate that there may be a form of persistence making the new training process easier and faster. But this is not firmly proved, requiring further experiments. Therefore, we are inclined to conclude that the assessment of this important issue will be the result of further research work, at both experimental and theoretical level.

Finally, we conclude by stressing that the surprisingly accurate synchronization of the walking together process ought not to be confused with either chaos synchronization or resonance. In fact, chaos synchronization requires finite Lyapunov coefficients and resonance requires frequency tuning. Complex systems with μ very close to the ideal condition μ = 2, where the traditional Lyapunov coefficient vanishes, have the effect of transferring their temporal complexity to systems with higher values of μ. The numerical results show that, although communication through frequencies still exists (bottom panel of Figure 5), the action of crucial events is more important for the transfer of intelligence. Our theoretical approach is based on the essential role of crucial events. The crucial events with μ becoming closer to μ = 2 are generators of multifractality, as pointed out in the work of Bohara et al. (2017) and Mahmoodi et al. (1990). Thus, our prediction that the walker with μ close to 2 attracts the μ of the walker close to the Gaussian region μ = 3 can be interpreted as transmission of multifractality from the healthy to the pathological walker in a surprising agreement with the recent experimental result of Almurad et al. (2018).
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Metabolic homeostasis emerges from the interplay between several feedback systems that regulate the physiological variables related to energy expenditure and energy availability, maintaining them within a certain range. Although it is well known how each individual physiological system functions, there is little research focused on how the integration and adjustment of multiple systems results in the generation of metabolic health. The aim here was to generate an integrative model of metabolism, seen as a physiological network, and study how it changes across the human lifespan. We used data from a transverse, community-based study of an ethnically and educationally diverse sample of 2572 adults. Each participant answered an extensive questionnaire and underwent anthropometric measurements (height, weight, and waist), fasting blood tests (glucose, HbA1c, basal insulin, cholesterol HDL, LDL, triglycerides, uric acid, urea, and creatinine), along with vital signs (axillar temperature, systolic, and diastolic blood pressure). The sample was divided into 6 groups of increasing age, beginning with less than 25 years and increasing by decades up to more than 65 years. In order to model metabolic homeostasis as a network, we used these 15 physiological variables as nodes and modeled the links between them, either as a continuous association of those variables, or as a dichotomic association of their corresponding pathological states. Weight and overweight emerged as the most influential nodes in both types of networks, while high betweenness parameters, such as triglycerides, uric acid and insulin, were shown to act as gatekeepers between the affected physiological systems. As age increases, the loss of metabolic homeostasis is revealed by changes in the network’s topology that reflect changes in the system−wide interactions that, in turn, expose underlying health stages. Hence, specific structural properties of the network, such as weighted transitivity, i.e., the density of triangles in the network, can provide topological indicators of health that assess the whole state of the system. Overall, our findings show the importance of visualizing health as a network of organs and/or systems, and highlight the importance of triglycerides, insulin, uric acid and glucose as key biomarkers in the prevention of the development of metabolic disorders.
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INTRODUCTION

Metabolic homeostasis arises from the interchanges between multiple chains of biochemical reactions and their mechanical responses. These exchanges maintain variables related to energy expenditure and energy availability within suitable ranges for the organism. The components of these chains are shared by multiple others, thereby constituting a metabolic network. Unfortunately, many processes of this network are not readily accessible in the clinical setting. Therefore, to make inferences about the underlying energy metabolism, various biomarkers–either biochemical or anthropometric−have been used to assess the state of the different physiological sub-systems that constitute the network. These physiological variables represent either regulated variables or physiological response systems (Fossion et al., 2018). The lability of the values of physiological response variables, and the consequent stability of regulated variables, characterizes the robustness of a complex homeostatic system that resorts to pathological states only in order to preserve vital variables (Kitano et al., 2004). Thus, homeostasis can be established by the interplay between physiological variables, allowing its study through a metabolic physiological network.

Over time, the physiological compensatory systems that maintain homeostasis become worn down due to the cumulative impact of metabolic insults, transitioning from healthy to maladaptive states that precede disease onset (Stephens et al., 2020). An already existing medical notion of this system-wide progression of states before the overt onset of disease is metabolic syndrome (MetS), whose prevalence increases strongly with age (Hildrum et al., 2007) and unhealthy lifestyles. At early stages, MetS biomarkers indicate invisible alterations, wherein homeostasis can still be preserved (Huang, 2009). Insulin resistance, dyslipidemia, endothelial dysfunction, prothrombotic, proinflammatory states and, more recently, oxidative stress are then employed to diagnose a condition of increased cardiometabolic risk (Reaven, 1993; Vona et al., 2019). With this in mind, several medical organizations established operational diagnostic criteria (Xu et al., 2018), starting with preexisting diagnostic thresholds for each associated disease, and then lowering them in order to provide a preventive focus for the diagnosis of MetS (Parikh and Mohan, 2012). In the continued presence of metabolic insults, as each physiological regulatory system fails, the cascade is absorbed downstream by the next system. Eventually, what was originally reversible pathological states progress to become irreversible diseases. This is the final stage, characterized by the lability of the regulated variables, wherein the physiological response systems become overwhelmed. These states correspond to clinical diseases that were the basis for the first historical descriptions of MetS, where gross anatomical changes and clinically overt symptoms, comprising obesity, hypertension, gout, atherosclerosis and obstructive apnea were first associated (Enzi et al., 2003). However, it is usually on a scale of decades that these physiological interactions change substantially. Disease appears only once the robustness of the metabolic physiological network is broken, and regulated variables lose their tight control.

The current approach to determining metabolic health relies on using the thresholds of individual biomarkers, without considering the overall physiological network itself. As threshold values are the result of a compromise between sensitivity and specificity, they must be tailored adequately for both screening and diagnostic purposes in each population (Almeda-Valdes et al., 2016). However, current thresholds consider neither age stratification nor the duration of the pathological states, resulting in medical interventions that are targeted toward single variables and only late in life (Easton et al., 2019). Furthermore, standard of care for these complex states is no different from the treatment of each of its individual components (Kahn, 2007). Although targeted approaches for age have been proposed, for providing further insight on the etiology of risk factors and guide disease-prevention strategies (Leventhal et al., 2014; Leatherdale, 2015; Xu et al., 2018), it has been argued that the principle utility of MetS as a concept relies on the preventive nature of its scope, and the idea that single interventions could improve simultaneously all of the current five MetS criteria (Vassallo et al., 2016). However, there is still doubt as to how to weight the risk associated with each factor, or their combinations (Sattar, 2008). Indeed, given the increasing abundance of metabolic biomarkers that predict disease, there is not even a universal consensus on which criteria should be included and excluded in the first place in order to best assess metabolic health (O’Neill and O’Driscoll, 2015). As metabolic health is an emergent property, arising from the interaction of multiple physiological systems over time, the framework of complexity provides the means for a whole-system analysis (Lusis et al., 2008; Haring et al., 2012; Sun et al., 2012), rather than a reductionist variable-by-variable approach. In previous work (Stephens et al., 2020), we considered how aging was an important driver of metabolic change across a wide variety of metabolic biomarkers (anthropometric, fasting blood test and vital signs measurements), considering each one individually and noting a substantial degree of heterogeneity as to the impact of aging across them. In contrast, in the present study, we have used Complex Inference Networks (Stephens et al., 2009, 2018) of these biomarkers as a means to give a more holistic, systems-biology perspective in order to demonstrate how the changes in the coupling between regulated variables and those regulatory systems that try to maintain homeostasis lead to metabolic health changes over a lifetime. In particular, in this paper, we will use complex physiological networks to better understand these interactions, constructing a data-driven network of biomarkers that can be used to characterize homeostasis and how it changes as a function of age.



RESULTS


Demographic Description of the Population

A general description of our study population (n = 2572), and the distinct age groups is provided in Table 1. The mean age of the participants was 38 years old with a standard deviation, SD = 15, and a range from 18 to 81 years old. Our population sample was predominantly female (65%). This predominance was preserved across age groups considered with no statistically significant differences between groups. Our population sample comes mainly from the metropolitan region of Mexico City (93%), with the remaining participants from neighboring states. Educational level proportions changed within the age groups, with an increasing trend for postgraduate and basic education (at most 12 years of study), and a decreasing trend for undergraduate education, that are illustrative of the population composition within the sample (Table 1). We found that MetS prevalence, as defined by the harmonized criteria (Alberti et al., 2009), increased significantly by age (under a chi-squared test for trend p < 0.001), beginning with a prevalence of 4% for the first age group (<25 years old), which increased ten-fold to 47% in the age group from 55 to 65 years old. For adults older than 65 years old, MetS prevalence is high (43%) but is lower than that from 55 to 65, however, this difference between groups is not statistically significant [X2 (1, N = 659) = 0.14, p = 0.7].


TABLE 1. Demographic description of the population.
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Physiological Variables and Pathological State Prevalence Change With Age

To examine whether this increase in MetS prevalence with age was due to an increment in the mean values of the physiological variables or to an increase in the tail of the distribution above the cut-off values (Table 2), linear regressions and chi-squared tests for trends were evaluated (Table 3). Most of the physiological variables (fasting glucose, HbA1c, LDL cholesterol, triglycerides, urea, creatinine, waist, weight, systolic, and diastolic blood pressure) increased progressively with age, having a statistically significant positive linear regression slope, whereas height and axillar temperature decreased, being associated with a statistically significant negative linear regression slope. In contrast, three physiological variables: basal insulin, HDL cholesterol, and uric acid, showed no linear changes as a function of age. Following the trend of their respective physiological variables, the prevalence of pathological states also grew with age, with one exception: high temperature. While changes in the mean values of the physiological variables as a function of age were considerably smaller, as shown by the slopes in the linear regressions, the proportion of the population above the cut-off values increased substantially (Table 3). For the physiological variables, waist circumference, weight, systolic and diastolic pressure had the greatest regression coefficients as a function of age. Regarding the prevalence of pathological states, overweight, low estimated glomerular filtration rate (eGFR), and hyperglycemia, had the greatest increase as a function of age, followed by high blood pressure, high LDL, hypertriglyceridemia, high HbA1c, and azotemia. Age had a widespread influence on most of the components of MetS, whether regarded as continuous or as categorical variables. The prevalence of low HDL and hyperuricemia changed with age, although this trend was not detected by a linear regression.


TABLE 2. Pathological states criteria.
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TABLE 3. Physiological variables means and pathological states prevalence.
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Metabolic Modules Can Be Identified Within the Network

To investigate how metabolic physiological components are grouped within the networks, we employed two strategies, either identifying largest cliques (a clique is a group of fully connected nodes) or finding clusters within the networks (see Figure 1). For the first strategy, the largest cliques method shows the biggest possible, maximally connected subgraphs of a network, indicating which components go hand in hand most frequently across distinct age groups (Figures 1C,D). For the physiological network, weight, waist circumference, uric acid, systolic and diastolic blood pressures appeared most frequently in the major cliques (Figure 1C). In the pathological states network, insulin resistance, hypertriglyceridemia, overweight and hyperglycemia were most frequently found to occur within the largest cliques (Figure 1D). For the second strategy, the networks were assorted into different clusters, using the Louvain algorithm (Blondel et al., 2008) for the physiological network, or the Spinglass algorithm (Reichardt and Bornholdt, 2006) for the pathological states network (Figures 1E,F). Four main clusters were found in the physiological network (Figure 1E), with the main cluster associated with weight, and followed by a cluster around urea. An intermediary cluster was found around glucose and HbA1c, while systolic and diastolic blood pressure remained separated from the rest. For the pathological states network, the main cluster was around hyperglycemia and the second was around low eGFR, with an intermediate cluster around high blood pressure and high temperature (Figure 1F). The metabolic components within these clusters were related by metabolic pathways, establishing metabolic modules.
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FIGURE 1. Physiological subsystems identified by Data-driven association. Representative networks (A) for the physiological variables network and (B) for the pathological states network. Physiological variables and pathological states clusters are shown as largest cliques (blue connections), and, as clusters (nodes within color highlighted areas). In both metabolic physiological networks, the red subgraph shows the currently accepted MetS components. The diameter of the network – the two furthest nodes path – is highlighted in purple. (C) Frequency of physiological variables composing the largest clique of each age group network. (D) Frequency of pathological states fully associated within largest cliques as shown by the pathological states network. The frequency of appearance of a node pertaining to a certain cluster (membership) was registered. Since 7 networks were generated (all participants, and 6 age-range groups), a node belonging to the same cluster across the entire lifespan would reach a value of 7. In panel (E), the frequency value represents how many times a node is part of the same cluster for the physiological variables, where the Louvain algorithm was used to determine clusters. Three main clusters appear, with blood pressure variables making a fourth. (F) Cluster membership of pathological states using the spinglass community algorithm that selects the group of nodes most likely to be found in the same state. Three main clusters appear, with different groups of pathological states in each one.


Both strategies lead to a selection of nodes that differs from current MetS criteria (Figures 1A,B). While waist and weight are frequently part of the largest clique of the network, they are often clustered separately from the metabolic components of triglycerides and glucose. Triglycerides, both as a physiological variable or as pathological state, are frequently part of the largest cliques and belong to the main cluster of the networks. Hyperglycemia, on the other hand, is part of the main cluster only in the pathological states network and is frequently part of largest cliques but is not part of the largest cliques nor of the main cluster as a physiological variable (glucose). Systolic and diastolic blood pressures are also frequently part of the largest cliques, but only as physiological variables and not as a pathological state. They belong mainly to the cluster of overweight as pathological states, but are in an independent cluster as physiological variables. Finally, HDL cholesterol as a physiological variable was seldom part of the largest cliques; however, it was part of the main cluster in the pathological states network.



The Role of Metabolic Biomarkers Within the Network Across a Lifetime

The relations between the physiological variables and pathological states within the networks change with age. We observed that obesity, whether as proxied by the weight and waist circumference physiological variables, or as the overweight pathological state, is the main influencer in the network. This role was measured by eigencentrality, a measure of the first and second order connections of a node, and remained stable across all age groups (Figures 2A,C). In contrast, physiological variables with characteristically tight homeostatic control, like glycemic variables and temperature, were uninfluential in the network (Figure 2C). For the pathological states network, the largest influence, as measured by the hub score, a generalization of eigencentrality for directed graphs, where only outgoing links are measured, was exerted by overweight, with the components of dyslipidemia becoming less influential from 25 to 34 years old onward, while the pathological states associated with low estimated glomerular filtration rate (low eGFR) steadily became more relevant above 65 years old (Figures 2B,D). In order to assess which nodes are intermediaries in the network, a “betweenness” measure is required. The most useful here is betweenness flow, where flow is taken as the minimum weight associated with each disjoint path between any two nodes. The betweenness flow of a node is then the sum of the flows that are lost if that node is removed from the network. It is therefore a measure of how much flow is mediated by a given node. This property is called gatekeeping, since it represents the potential to disconnect the flow. High intermediacy biomarkers of the flow between systems were uric acid, insulin, HbA1c and HDL in the physiological network, while hypertriglyceridemia, insulin resistance, hyperglycemia and high HbA1c were the main intermediaries between pathological states (Figures 2E,F). While eigencentrality values are stable for each node regardless of age, flow betweenness values change profoundly as a function of age (Figures 2E,F).
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FIGURE 2. Network modeling highlights physiological and pathological interactions. Centrality measurements identify the role of each physiological variable or pathological state within the metabolic network. (A) Physiological network from 35 to 44 years old, and (B) pathological network from 55 to 64 years old, as examples of the different centrality contribution that each node has. Influence is measured by eigencentrality and is represented by node color, while betweenness is measured by flow and represented by node size. The values from these examples are emphasized inside gray rectangles. (C) Most influential nodes in the physiological variables network, Weight and waist, are indicated. (D) Most influential nodes as seen by eigencentrality in the pathological states network. Overweight, dyslipidemia and low eGFR are indicated. (E) Gatekeeping nodes, as seen by flow betweenness, that mediate the associations between those physiological variables that are not directly connected. (F) Gatekeeping nodes that are the route between unconnected pathological states. The most meaningful nodes in this regard are hypertriglyceridemia, insulin resistance, hyperglycemia and high HbA1c as age increases. * indicates values unlikely to be found by chance alone in CUG tests.




Whole Network Topology as a Biomarker for Metabolic Homeostasis

As well as local properties of the physiological variables and pathological states networks, global properties also change with age. Topological properties of these networks for all the age groups are summarized in Table 4. These topological properties describe the structure of the network in several aspects. For undirected networks transitivity and clustering coefficient, measures of the proportion of triangles in the network, and characteristic path length, a measure of the distance between nodes, are important descriptors of structure. For directed networks a third parameter is reciprocity, the proportion of bilateral connections in the network. Noticeably, for the pathological states network, we found that reciprocity was lower and transitivity was greater than would be expected for random networks of the same size, number of links or dyads (Table 4). Characteristic path length was lower than would be expected for random networks. Moreover, the local transitivity of physiological variables reaches a peak in the life decade between 25 and 34 years old, and from then on, the transitivity begins to decrease (Figures 3A,C). However, this decrease is not the result of a reduction in the weighted degree distribution (strength) of the correlations within the network, which are similar across all age groups (Figure 3E), instead it is related to an increase in the number of edges within the network, as presented by network density (Table 4). In other words, the organization of the physiological variables changed independently from the strength of the relationships between the variables. Over a lifetime, nodes within a cluster tend to connect more within themselves rather than outside the cluster. This topological change results in a modularity increase in the physiological network (Figure 3D). However, this trend was not shared with the pathological states network. In this network, there is a trend toward increasing transitivity until the 45 to 54 years old age groups group, and a decrease in older groups (Figures 3B,C). Pathological states became increasingly correlated as a function of age, until reaching a maximum in the decade between 45 and 54 years old (Figure 3C). This clustering change is related to the weighted degree distribution of the pathological states network (Figure 3F) and to an increase in the density of the network (Table 4). In these networks modularity, a measure of how well separated are the clusters, decreases from the 35 to 44 years old group onward (Figure 3D). Three stages become apparent: a healthy stage, where the clustering of both networks increases; a transition stage, where the clustering of pathological states increases, while the clustering of physiological variable decreases; and a disease stage, where the clustering of both networks decreases (Figure 3C). The proportion between clustering coefficient and characteristic path length in a network can be summarized by the small world index to compare structural changes in our matching networks of increasing age. For the physiological networks of groups starting below 54 years, the small-world index has values between 1.3 and 1.9, increasing to values above 2 in the groups above 55 years old. All pathological networks had a greater small world index than the corresponding physiological networks, which increased substantially in the age group above 65 years old and concurrently with a decrease in the global clustering coefficient.


TABLE 4. Topological properties of the physiological variables and pathological states networks.
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FIGURE 3. Topological properties from physiological and pathological networks. Network structural changes as a function of age can be seen using several topological metrics. (A) Physiological network of the third decade of life as a visual example of weighted transitivity in a tightly intertwined network. (B) Pathological network of the fifth decade of life as an example of weighted transitivity in a directed network. These two networks represent the greatest transitivity in all age groups. (C) Weighted transitivity of each network as the mean ± S.E.M. from all life decades, n = 2572. The values that come from the physiological network nodes are highlighted in blue and for the pathological states network in pink. (D) Weighted transitivity of each network as the mean ± S.E.M. value of the 12 tested pathological states from all the age groups. Frequency distribution of the weighted degree (strength) of the network in each life decade (E) for the physiological networks and (F) for the pathological states networks. Age dissociates physiological variables, as seen by the reduction of the weighted transitivity in the physiological network, but without a significant change in the weighted degree, while pathological conditions become more associated with age, as seen in the pathological network, reaching a peak at the fifth decade of life.




DISCUSSION

Metabolic homeostasis loss is the main driver of non-communicable diseases and their resulting mortality. These complex diseases involve diverse combinations of risk biomarkers that occur more often together than by chance alone (Alberti et al., 2009). Currently, however, only five such factors are monitored for the assessment of metabolic health (overweight, high triglycerides, low HDL cholesterol, high systolic blood pressure, and high fasting plasma glucose). By adopting a network approach, in this study, we have shown that, in reality, not only the level of each individual factor is important, but also their correlations, both local and global. Local properties of the network are equivalent to current reductionist approaches, while global properties provide new metrics that can be used as markers of metabolic health. As allostatic load on body metabolism increases with age, changes in the ratios between different physiological variables represent the adaptive adjustment of their corresponding setpoints in order to accommodate an increasing burden of internal failures and cumulative external insults (Fossion et al., 2018; Goldstein, 2019). Here, we have shown that the number of correlations present within the networks, represented as network density (Table 4), the number of connections of each node, represented as the node’s degree, and the strength of the correlation, represented as weighted degree, all change gradually across age groups and reflect this adaptive adjustment (Figure 3). Therefore, topological properties that emerge from the structure of the networks reflect how whole−system interactions within the physiological network change over a lifetime and, in particular, show how, as age increases, the loss of metabolic homeostasis is revealed by these changes. For example, local weighted transitivity measures the probability that the neighbors of a node are connected among themselves. This measure has the advantage of being largely independent from the size of the network (Barabási et al., 2003). Changes in this metric give insight into how the cumulative impact of metabolic insults increases and decreases the relations between physiological variables and pathological states. At the global level, transitivity and the clustering coefficient of the network are two indicators of how the network’s connections become aggregated or disaggregated as a function of age. Therefore, these changes in the networks’ structure echo the underlying homeostatic changes.

The transition from health to disease, in the case of complex diseases, can be described by three-state models (Chen et al., 2017). In the healthy stage, regulated variables are kept within strict bounds and physiological response systems increase their activity proportionally in order to compensate the impact of interaction with the environment. In the transition stage (from 35 to 54 years old) regulated variables increase their correlation with their physiological response system as metabolic insults are not fully compensated. At this stage internal malfunctions can be buffered, but at the expense of the development of pathological states, that then begin to correlate, leading to an ever-increasing burden (Figure 3). Finally, homeostasis is lost, and pathological states lead to disease onset in an irreversible fashion, resulting in a decrease in the clustering of both network types. Regulated variables are now fully dysregulated from their corresponding regulatory system variables and correlations are lost. Our results show that the transition from health to disease is reflected in our topological metrics as a result of the changes in the correlations between physiological variables and the corresponding association between pathological states. The different network metrics we evaluated show that our networks are not random (Table 4). Although a formal, large-scale topological characterization of our physiological networks falls beyond the scope of this work, and would potentially require the addition of many more variables, it is interesting to point out that the observed properties of scale free and small world are properties that are frequently found in complex biological systems (Song et al., 2005). It has been argued that these topologies confer properties of network robustness and adaptability that are desirable as properties with a homeostatic interpretation (Fossion et al., 2018; Toledo-Roy et al., 2019). Nevertheless, considering the wide structural diversity found in real-world networks, classification of these complex systems remains an active area of development (Hilgetag and Goulas, 2016; Broido and Clauset, 2019).

Individual biomarkers were described in the context of the network through centrality measurements of influence and intermediacy. The important influence of weight on the metabolic network was found in both network approaches and was sustained across all age groups (Figure 2). Additionally, weight-associated physiological variables and their corresponding pathological states were most frequently embedded within the largest cliques. Both these results exhibit the central role of weight inside the metabolic networks. This has been confirmed in a large cross-sectional study, where long term sustained weight loss was seen to improve overall metabolic risk (Knell et al., 2018). However, some classically established MetS components, such as HDL cholesterol, are seldom present within the largest cliques, indicating a more peripheral role within this network. In this regard, some of the biomarkers we used have a high flow betweenness in the network, suggesting that they behave as an “exchange currency” among several metabolic subsystems. This was the case for triglycerides, insulin, uric acid and glucose, whether considered as physiological parameters or as pathological states (Figure 2). These nodes have the potential of disconnecting the flow within the network, and therefore may serve as sensitive indicators of alterations from several different systems. This suggests that they are key components in the transmission of disruptions between different metabolic subsystems. Additionally, these metabolic subsystems, as identified by our clustering strategies, are also those that would be considered as the natural ones from a medical perspective (Goh et al., 2007; Chan and Loscalzo, 2012). Our results show that different, relatively independent, metabolic modules arise, that communicate through some gatekeeping exchange molecules. With age, this modularity increases in the case of the physiological variables network (Figure 3C). Such modularity is a measure of how much the networks tend toward a community structure. Furthermore, there is a strong correspondence between the clusters that were found in the physiological variables network and those found in the pathological states network, suggesting that the associated pathological states emerged from the underlying relationships between the corresponding physiological variables and are, therefore, not just a byproduct of chance or prevalence alone. These two approaches complement each other, reinforcing their respective conclusions where both reach similar results. This was the case for the clustering of metabolic components in both the physiological variables networks, the pathological states networks (Figures 1E,F), and the corresponding centrality measurements (Figure 2).

Finally, it is worth mentioning that another advantage of network analysis is that it can be used as part of an automated process for discovering and analyzing patterns in large datasets, with the assistance of experts to ensure a relevant and adequate interpretation (Merico et al., 2009). In this way, networks can be extended in an iterative process in order to accommodate new biomarkers in a way that can both enrich and refine the generated network models (Aittokallio and Schwikowski, 2006). Unfortunately, many of these biomarkers cannot be monitored continuously, or their measurement is relatively expensive. However, the correlation networks that arise from transversal studies that consider a wide age spectrum can provide a means for studying the relations among physiological variables at a population level, while at the same time reducing the costs and difficulties associated with a longitudinal study. Of course, there are subtleties and limitations associated with the interpretation of such transversal data that apply equally to our work. In spite of this, comparisons between cross-sectional and longitudinal data, as well as retrospective studies, are in good agreement with the trends presented in Table 3, which reinforce the role of aging as the origin of the changes we observe (Chiu et al., 2015; Gu et al., 2018). Transversal studies are complementary to longitudinal approaches and result in an useful approximation (Fossion et al., 2017). In fact, the narrow age cohort approach we have employed is useful for demonstrating the increasing (and decreasing) covariances that occur between variables due to the underlying aging process. Nevertheless, there is, of course, no cross-sectional design that can account for the correlated changes that occur within a given individual (Hofer and Sliwinski, 2001). In addition, although our study is transversal in nature, and the generated networks are static, certain network properties, such as a low characteristic path lengths and high clustering coefficient in small world networks, are known to affect dynamic properties, such as the velocity of the spread of a disease (Jansson, 2020).

Our work provides the layout for evidence-based rationale for adding (or replacing) other CVD risk factors (e.g., CRP or family history) to the definition of MetS (Kahn et al., 2005). For instance, the physiological variables network does not rely on the particular values of cut-offs and illustrates that some variables that are not monitored currently, such as uric acid, may be better early indicators of metabolic burden. It is important to notice that uric acid is not used traditionally as a biomarker of metabolic disorders, even when in our network analysis it is more frequently embedded within the largest cliques than blood pressure components, triglycerides and HDL cholesterol (Figure 1C). This result adds to the growing body of literature that considers uric acid to be a relevant biomarker in MetS (Kanbay et al., 2016). In summary, the physiological network approach to metabolic homeostasis is capable of providing useful insights on whole-system function that are inaccessible through reductionist approaches.



CONCLUSION

Changes in network topology are global indicators of metabolic homeostasis and do not rely on any single parameter or threshold but, instead, assess the behavior of the whole system. Thus, this novel conceptualization of homeostatic health allows for a more holistic comprehension of a person’s physiology. Structural properties, such as weighted transitivity or the small-world index, may then serve as topological indicators of health for the metabolic physiological network.



METHODOLOGY


Ethical and Human Research Considerations

This study was carried out in accordance with current regulation contained in the Mexican Official Normativity, NOM-012-SSA3-2012. The Ethics Committee of the Facultad de Medicina of the UNAM approved the procedures and protocols for this study under project FM/DI/023/2014, all the participants provided a written informed consent.



Study Population and Age Sub-Groups

We performed a transversal, community-based study of an ethnically and educationally diverse sample within a large public university, comprising 2572 participants. Each participant answered a health questionnaire and underwent vital signs, and anthropometric measurements along with fasting blood tests. This resulted in a multi-dimensional data set. The sampling was performed in successive steps from 2014 to 2019. The global sample was divided into 6 groups of increasing age, beginning with less than 25 years, and increasing in decades up to above 65 years of age. As a result, we obtained 6 age groups (see Table 1).



Anthropometric Measurements and Laboratory Procedures

All tests were performed in the morning during a 4-h period (from 6 a.m. to 10 a.m.) after verifying fasting and general status. Anthropometric measurements (weight, height, waist and hip circumferences) and vital signs (blood pressure and temperature) were taken by trained medical staff using standard procedures (World Health Organization [WHO], 1995; Whelton et al., 2018). Blood samples were obtained from participants who had fasted for 8 to 12 h. Samples were stored at 4−5°C and submitted for chemical analysis of glucose, glycated hemoglobin (HbA1c), insulin, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, uric acid and creatinine. Fasting plasma glucose was measured using spectrophotometry and potentiometry with a hexokinase kit (amorting PIPES, NAD, Hexokinase, ATP, Mg2+, G6P-DH; AU 2700 Beckman Coulter R). HbA1c was measured with High Performance Liquid Chromatography (HPLC) analysis with the Variant R Turbo kit 2.0, which consisted of 2 buffers and 1 wash solution. Fasting plasma insulin concentrations were determined using Chemiluminescence (Access Ultrasensitive Insulin, Unicell Dxl 800 Beckman Coulter R, Sensitivity: 0.03−300 U/mL). The lipid profile was obtained with enzymatic colorimetric assay (glycerol phosphate oxidase, cholesterol oxidase, accelerator-selective, detergent, and liquid-selective detergent). Uric acid was measured using the colorimetric method with uricase enzymatic OSR6698, system AU2700/5400, Beckmann Coulter R. This resulted in a set of 15 non-derivative, independent, continuous, physiological variables. From the original data set, 14 particular values associated with distinct variables were excluded, based on two main criteria:

(1) Outliers based on physiologically improbable values that are most likely to be erroneous as they would be incompatible with life. This included removing three values of blood pressure, three values of axillar temperature, two glucose measurements, two values of HbA1c, and one each of uric acid, and LDL.

(2) Anthropometric measurements which were inconsistent between themselves. For example, exceedingly high values of waist circumference in an underweight participant. Thirteen values of waist and one value of height were discarded on this account.



Pathological States Assessment

From these physiological variables, thresholds were defined in order to distinguish normal values from abnormal values, thus categorizing health status or a pathological state (Table 2). We would like to emphasize that the thresholds used here are not diagnostic of disease; instead they are low enough values that indicate increased risk. Most of our criteria are backed up by major health societies and organizations, however, when a consensus was not available, we used literature-based cut-off values that best correlated with the increased risk-prevention view of the harmonized MetS criteria (Sund-Levander et al., 2002; Alberti et al., 2009; Esteghamati et al., 2009; Khanna et al., 2012; Levin et al., 2013; Whelton et al., 2018; Mach et al., 2019; Tyagi and Aeddula, 2019; American Diabetes Association, 2020). Thus, the pathological states described here are not diseases per se, but an indication that physiological values do not represent normal health status. Three of the physiological variables that we measured do not have a pathological state by themselves alone. For instance, high blood pressure was determined by either elevated systolic or diastolic values. For insulin and creatinine, two derived indices were calculated: Homeostasis Model Assessment Insulin Resistance index (HOMA-IR) (Wallace et al., 2004) for the pathological state of insulin resistance, and eGFR for chronic kidney disease (Levin et al., 2013).



Network Modeling

Network science is now an important are of science in itself with applications in many different fields. The construction of complex networks of nodes, and links between them that represent interactions, permits the simultaneous visualization and analysis of potentially large numbers of such interactions where global properties of the system that are not apparent at the local level manifest themselves. The vast majority of networks have links that are associated with known, experimentally verified interactions, such as in a food web or a social network. In this paper, however, we will use Complex Inference Networks (Stephens et al., 2009, 2018), where the interaction represented by a network link is inferred rather than directly observed, by examining co-occurrences between variables. Such co-occurrences may be in space or time, or both. Here, we consider co-occurrences – correlations – in time1.

It has been observed that two models of metabolism are possible. In the first one metabolic risk increases progressively as an increasing function of certain physiological variables (Wijndaele et al., 2006; Knell et al., 2018). In the second one, metabolic homeostasis is bimodal, and as such, risk increases significantly only upon exceeding certain thresholds associated with the diagnosis of the pathological state (Stern et al., 2005; Alberti et al., 2009). Therefore, to encompass both possibilities, we created Complex Inference Networks for both employing accessible biomarkers that probe the underlying metabolism.

In the first case, the coupling between two physiological variables can be explored through their rate of change in the population. Here, a monotonic association would be found between those variables that interact directly or indirectly within the physiological network. We tested the physiological variables datasets for normality using the Shapiro−Wilk test and screened them for extreme values. Since the data sets were not normally distributed and had extreme values expected to be real, we selected the Spearman Rank Correlation (Batushansky et al., 2016) as a measure of correlation. We modeled the metabolic physiological network as a continuous association of pairs of variables. For this monotonic correlation model, a correlation matrix was constructed for the 15 chosen physiological parameters (Figure 4). Significant correlations were established at a value of p < 0.001, indicating that the relation does not support the null hypothesis that the independent and dependent variables are unrelated. The weight of the Spearman’s rho correlation was squared in order to obtain only positive values.
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FIGURE 4. Metabolic physiological network construction from matrices. (A) Correlation of 15 physiological variables and their corresponding 12 pathological states associations were modeled using Spearman correlation and ε value, respectively. (B) Adjacency matrix as a heatmap where the darker the red indicates a greater monotonic relationship between two physiological variables, as calculated by the Spearman rank correlation rho. (C) ε Value between each pair of pathological states, a darker red indicating a greater probability of coexistence. In both heatmaps, rows and columns are ordered by weighted degree, and on the left side of the heat maps the resulting hierarchical dendrogram is shown. For directed networks some nodes lacked outgoing links, this is presented as blank rows. (D) Undirected network of physiological variables for the whole sample. The edges are weighted by the rho value in the Spearman correlation. The size of the node shows the flow betweenness of a node, the eigencentrality is shown by its color and the color shadowed areas indicate the Louvain clusters. (E) Directed network of pathological states. The edges are weighted by the ε value, the size of the node shows the flow betweenness of each node, the eigencentrality is shown by its color and the color shadowed areas indicate spinglass clusters. (F) In both networks, the red subgraph shows the components of MetS, while the blue subgraph highlights the largest clique and the diameter of the network is in purple. For Spearman correlation, values with p > 0.001 were discarded, whereas for ε, values below 1.96 were discarded.


For the second case, a pathological states network was constructed using currently accepted thresholds from the literature. Here, cut-off values allow the comparison of the tails of the distributions across age groups. The objective here was to indicate whether the participants within the tail of the distribution of one physiological variable have a greater probability of being also in the tail of the distribution of another physiological variable than would be explained by the prevalence of the pathological states alone. This probability of being in a pathological state B given that the individual is in a pathological state A was described using the following binomial test:

[image: image]

This test is not necessarily reciprocal, thus giving a weighted directionality to the relationship. If a pathological state is probably the origin of another, their ε value would be expected to be high in that direction, while it could be low in the opposite one. For this binomial test the null hypothesis is that the probability of presenting condition C is not affected by having condition X. The statistical significance, ε, is a measure of the extent to which the null hypothesis is verified by the data. In the circumstance, which is valid here, where the binomial distribution can be approximated by a normal distribution, ε > 1.96 corresponds to the standard 95% confidence interval (Easton et al., 2014). As the pathological states network is based upon thresholds accepted by medical consensus, this network adheres well to the known progression of MetS. However, the employment of cut-off values for asserting associations between states may result in an association toward the most sensitive, low thresholds. Exceedingly low thresholds can make pathological states seem more prevalent and bias the direction of ε (Easton et al., 2019). In consequence, care was taken for the selection of thresholds consistent with the preventive scope of MetS.

In summary, for the first case, physiological variables are monotonically correlated along all their biologically plausible spectrum. In this scenario the associations between parameters are present even at healthy values and represent a continuum. For the second case, pathological states are best regarded as binomial. Upon reaching a threshold, the association between these states either appears or increases significantly. This second model resembles the current interpretation of MetS, as it requires a co-occurrence higher than would be expected by chance and contemplates cutoff values as all or nothing states (Alberti et al., 2009). Finally, we used groups of individuals of different ages in order to explore the progressive changes that occur during the aging process and which result in an increasing prevalence of MetS. From the systems biology perspective, the network structure is a direct result of the coordination, or lack thereof, of components that are linked by homeostatic feedback (Goldstein, 2019).



Network Construction and Statistical Analysis

For the construction of our considered networks we used correlation matrices of physiological variables and pathological states. These matrices were interpreted as weighted adjacency matrices, where adjacency is represented by the Spearman rhos or the ε values between each pair of metabolic components. The resulting matrices were weighted and undirected for the Pearson correlation matrix and weighted and directed in the case of ε values (Figure 4). For the construction of the Spearman correlation matrix, data-set normality testing, linear regression and chi-squared tests for trends were all done with Prism 8.1.2(277), GraphPad Software, La Jolla, CA, United States, www.graphpad.com. For the network construction RStudio, an R language programming suite and igraph package (Csárdi et al., 2016; R Core Team, 2020; RStudio Team, 2020).

Nodes within a network can be ranked according to several centrality definitions that fall into two main groups, radial measures and medial measures. Inferring causality exclusively from centrality within networks requires caution, although eigencentrality has been found to be the best centrality measurement for this purpose, especially for small networks with less than 30 nodes (Dablander and Hinne, 2019). Therefore, we selected eigenvector for undirected networks and hub score for directed networks as radial measures. For medial measures we decided to use flow betweenness. These centrality values allow for a direct comparison of either the influence of nodes (radial measure) or gatekeeping (medial measure) within the network (Borgatti and Everett, 2006). Eigencentrality corresponds to the value of the first eigenvector of the graph adjacency matrix and was interpreted as a measure of influence within the undirected networks. These values were obtained using the evcent function from the SNA package (Katz, 1953; Butts, 2019). For directed networks, hub score and authority score, are a better way of representing influence as these measures takes into account the directionality of the links. Hub scores are defined as the principal eigenvectors of A∗t(A), where A is the adjacency matrix of the network. These values were calculated with the hub_score function from the igraph package (Kleinberg, 1998). Flow betweenness was used as a measurement of intermediation within the network. Flow betweenness was calculated using the flowbet function from the SNA package (Koschützki and Schreiber, 2008). In order to test if the eigencentrality and flow betweenness values obtained would be seen in a random graph with the same number of vertices, edges or dyads, univariate conditionally uniform graph tests (CUG test) were employed with the cug.test function from the SNA package.

Networks can contain subgraphs, subsets of vertices with a specific set of edges connecting them within the original graph, that are of particular relevance (Aittokallio and Schwikowski, 2006). We sought two particular subgraphs within our models: First, the graph corresponding to those variables associated with the current definition of MetS, and second, the largest clique within the graph. As there may be more than one combination of nodes that result in a largest clique, we registered the number of times each node appeared within a possible largest clique. These maximally connected subgraphs − largest cliques − were identified using the largest_cliques function of the igraph package (Eppstein et al., 2010). Largest clique and current MetS variables were highlighted as subgraphs, along with the graph diameter.

The largest clique is the biggest, maximally connected subgraph of a graph and contains vertices such that each vertex is connected with every other vertex of the clique. This gives an idea of which vertices go hand in hand in each network (Pavlopoulos et al., 2011). On the other hand, a cluster, as defined using a suitable clustering algorithm, is a group of vertices within a graph that are more densely connected to one another than to other vertices (Csárdi et al., 2016). There are several alternative algorithms for discovering communities of vertices within graphs. For community detection within the networks we used two different algorithms. For the Pearson model, the Louvain algorithm was employed as a heuristic method based on modularity optimization, with the cluster_louvain function from the igraph package (Blondel et al., 2008). In the ε model, the spinglass community algorithm selects those nodes with the greatest probability to be found in the same state concurrently, with the cluster_spinglass function from the igraph package (Reichardt and Bornholdt, 2006). These two approaches to identifying related biomarkers are complementary − clustering strategies maximize the modularity of the network, while largest-clique identification maximizes the transitivity of the largest possible subgraph.

Topological properties were assessed as follows: Density, reciprocity and characteristic path length of the networks were calculated using the igraph package (Faust and Wasserman, 1994; West, 1996; Freeman, 1979). For the calculation of the weighted transitivity and the clustering coefficient in directed and undirected weighted networks the DirectedClustering package was employed (Barrat et al., 2004; Onnela et al., 2005; Fagiolo, 2007; Clemente and Grassi, 2018). The Small world index, as calculated by qgraph, was used as a summary metric of the network topology (Watts and Strogatz, 1998). CUG tests were also performed for network density, reciprocity, transitivity and characteristic path length. A glossary of specialized terms is provided in Table 5.


TABLE 5. Glossary.
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FOOTNOTES

1
Networks that consider links associated with correlations in time have also been considered in Ivanov et al. (2017) and Lin et al. (2020).
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Bipolar disorder (BD), which involves mood swings between mania and depression, is associated with multiple relapses during long-term treatment and high suicide and morbidity rates. In BD, the circadian rhythms, which are measured by daily mood scores and actigraphic records, are disturbed. Chronotherapy has emerged as a potential treatment for BD because it stabilizes the disturbed circadian rhythms and improves BD symptoms. Concrete treatments include light therapy and combination therapy (light therapy and drugs). However, some patients have difficulty adjusting to light therapy; inappropriate light and duration of treatment increase risks for inducing mixed states and the emergence of conditions, such as hypomania and autonomic hyperactivation. Therefore, it is important to devise methods for optimizing chronotherapy for BD. We aimed to develop feedback signals for the frontal cortex, which were based on the delayed feedback method as one of the chaos control methods, to stabilize the disturbed circadian rhythms of BD. Concrete procedures of this study are indicated as follows: first, circadian rhythms of BD are reproduced using the frontal cortex and hypothalamus neural system, which has been previously proposed. Second, the delayed feedback signal is developed by using bifurcation analysis. Third, the effect of delayed feedback signal is evaluated by index for complexity, and power spectrum under the condition with/without stochastic noise in feedback term. We found that application of the delayed feedback signal to the frontal cortical neural activity induces the periodic state of circadian rhythms from the disturbed complex and is feasible for treating BD. However, when increasing the influence of noise in feedback term, the stabilizing effect is diminished. In conclusion, we developed a stabilizing method for disturbed circadian rhythms of BD using the circadian neural systems. The present study highlights the potential usefulness of the chaos control method for treating BD.
Keywords: bipolar disorder, circadian rhythms, chaos control, delayed feedback control, chaos–chaos intermittency, chronotherapy
1. INTRODUCTION
Bipolar disorder (BD), which involves mood swings between mania and depression, is associated with multiple relapses during long-term treatment and high suicide and morbidity rates (Belmaker, 2004). Changes in the glutamatic acid and gamma-aminobutyric acid (GABA) neural pathways and abnormal cortical neural networks have been reported as the neural bases for BD (Sanacora et al., 2012; Schloesser et al., 2012). Moreover, Tobe et al. (2017) showed that abnormal phosphorylation of synaptic connections causes BD. Drugs, such as mood stabilizers (i.e., lithium carbonate and clozapine) and intramuscular neuroleptics are widely utilized for BD. Pharmacological mechanisms of these treatments have been elucidated in previous studies (Hirschfeld et al., 2003; López-Muñoz et al., 2006; Tobe et al., 2017). However, these treatments are also associated with several side effects, such as progressive renal failure and a narrow therapeutic index (Hirschfeld et al., 2003; López-Muñoz et al., 2006). Therefore, previous studies have focused on developing alternative and effective treatment methods for BD (Abreu and Bragança, 2015).
Recently, the clinical efficiency and feasibility of chronotherapy has been studied (Abreu and Bragança, 2015). In mood disorders, including BD, the circadian rhythms, which are measured by daily mood scores and actigraphic records, are disturbed (Yeragani et al., 2003; Glenn et al., 2006; Bonsall et al., 2011; Moore et al., 2014). Chronotherapy stabilizes the disturbed circadian rhythms and improves BD symptoms (Abreu and Bragança, 2015). Concrete treatments include light therapy and combination therapy (light therapy with drugs) (Leibenluft et al., 1995; Terman and Terman, 2005). However, it is difficult for some BD patients to adjust to light therapy; furthermore, inappropriate light and duration of treatment increase the risks of mixed states, hypomania, and autonomic hyperactivation (Terman and Terman, 2005; Sit et al., 2007; Abreu and Bragança, 2015).
The application of nonlinear modeling for drug treatments has also emerged as a potential therapy (Itik et al., 2009; Aihara and Suzuki, 2010; Mhawej et al., 2010; Babaei and Salamci, 2015; Hamdache et al., 2016). Particularly, Tanaka et al. (2010) and Suzuki et al. (2010) proposed the concept of intermittent hormone therapy for preventing the growth of prostate cancer and its divergences; the model was based on the nonlinear control theory and utilized a prostate cancer model. Other control methods, such as optimized cancer immunotherapy and drug treatments involving human immunodeficiency virus have also been developed (Mhawej et al., 2010; Babaei and Salamci, 2015; Hamdache et al., 2016). That is, applying nonlinear control methods has opened a new avenue of medical treatments. Therefore, applying nonlinear control methods to chronotherapy for stabilizing the circadian rhythms of BD is promising for avoiding risks associated with chronotherapy.
Hadaeghi et al. (2016) and Bayani et al. (2017) demonstrated that a mechanism of disturbed circadian rhythms in BD involves aperiodic daily neural activities, which is referred to as chaos-chaos intermittency. In the frontal cortex, chaos-chaos intermittency perturbs the circadian pacemaker of the hypothalamus through model simulation of the neural system (which is comprised of the frontal cortex and hypothalamus). The accuracy of this model is high in comparison with physiological circadian rhythms of BD, and it can explain the relationship between abnormalities in cognitive function and the disturbance of circadian rhythms (Hadaeghi et al., 2013; Hadaeghi et al., 2016; Bayani et al., 2017; Hassanzadeh et al., 2017). Therefore, based on previous findings, it can be inferred that the method for shifting the chaos-chaos intermittency to a periodic state in frontal cortical activity stabilizes the circadian rhythms of BD and optimizes chronotherapy.
To stabilize and adjust chaotic behaviors, various kinds of chaos control methods have been proposed, such as the method established by Ott–Grebogi–Yorke (OGY) Ott et al. (1990), the delayed feedback method (Pyragas, 1992; Nakajima, 1997), [image: image] control (Jiang et al., 2005), and a reduced region of the orbit method (Nobukawa et al., 2018; Nobukawa et al., 2019b). These chaos control methods have been adopted and applied to many neural systems (Li et al., 2008; Zhou et al., 2008; Nobukawa and Shibata, 2019; Nobukawa et al., 2019c). Particularly, compared to the other chaos control methods, the delayed feedback method can stabilize the chaotic behaviors using a smaller number of parameters (Schöll and Schuster, 2008). Concretely, by applying the delayed feedback method at an appropriate strength, which is based on the previous system status before the target period, the chaotic behaviors may shift to periodic behaviors within the target period (Pyragas, 1992; Nakajima, 1997). Therefore, even under conditions where the detailed system dynamics cannot be comprehended (i.e., the actual neural systems), the delayed feedback method has high potential and feasibility.
Based on the delayed feedback system, we aimed to develop feedback signals for the frontal cortex that could be used to stabilize disturbed circadian rhythms associated with BD. Concrete procedures used in this study are as follows: first, circadian rhythms of BD were reproduced using bifurcation analysis and the frontal cortex and hypothalamus neural system, as proposed by Hadaeghi et al. (2016). Second, the delayed feedback signal was developed using the bifurcation diagram. Third, the effect of the delayed feedback signal was evaluated by index for complexity and power spectrum analysis under the condition with/without stochastic noise in feedback term.
2. MATERIALS AND METHODS
2.1. Neural System Composed of the Frontal Cortex and Hypothalamus
The pathology of BD involves multiple complex neural pathways (Sanacora et al., 2012; Schloesser et al., 2012; Tobe et al., 2017). Hadaeghi et al. (2016) focused on the pathological competition between excitatory (glutamatergic) and inhibitory (GABAergic) neurons in the frontal cortex (Tretter et al., 2011; Montague et al., 2012) and impaired connectivity between the frontal cortex and hypothalamus (McKenna and Eyler, 2012; McKenna et al., 2014; Baghdadi et al., 2015) as major factor of BD. They constructed the neural system, which is composed of the frontal cortex and hypothalamus, in order to reproduce healthy and disturbed circadian rhythms, which are associated with BD (Hadaeghi et al., 2016; Bayani et al., 2017). Figure 1 shows an overview of this neural system.
[image: Figure 1]FIGURE 1 | Overview of the neural system proposed by Hadaeghi et al. (2016), which is composed of the frontal cortex and hypothalamus to reproduce circadian rhythms.
The daily neural activity of the frontal cortex x(n) (n = 1, 2, …) is controlled by the competition of excitatory and inhibitory neural populations:
[image: image]
Here, w1, w2 the synaptic weights of input to the inhibitory neural population and excitatory neural population are determined, respectively. A, B correspond with the synaptic weights of output from the inhibitory neural population and excitatory neural population, respectively. The output from the frontal cortex to the hypothalamus is defined as the temporal variation from the periodic state with period p:
[image: image]
The dynamics of the circadian pacemaker in the hypothalamus are represented by a two-dimensional map-based model (Pavlov et al., 2011):
[image: image]
[image: image]
where y and z represent the fast and slow variable at time step [image: image], and μ refers to the length of the circadian cycle. The function of ϵ is defined by a Heaviside step function, with a threshold yth: ϵ(z) = H(z − yth). The time scale n of Eq. (1) is the daily scale, which corresponds with the period from peak to peak of z(k) in Eq. (4). The function f is a nonlinear function, as follows:
[image: image]
where u is given by the external stimulus Iext, and an internal parameter β: u = β + Iext. zs exhibits the peak value of oscillation of z(k). The other parameter, g in Eq. (4) is a parameter for the rising shape of the [image: image] from bottom state:
[image: image]
[image: image]
Here, [image: image] represent the optimal value of inhibitory and excitatory neurotransmitters, and the optimal value of g, respectively. Δ is given by the connection w4 from the frontal cortex to the circadian pacemaker of the hypothalamus, [image: image] where D is a function of tansig. The output of the hypothalamus is a function of the slow-state variable z that is regulated by input from the frontal cortex e(n):
[image: image]
[image: image]
where M is a function of tansig.
The set of parameters used in this study was determined based on previous research by Hadaeghi et al. (2016) and Bayani et al. (2017) as follows:
[image: image]
[image: image] [image: image]. The period between peak to peak of output in [image: image] is defined as one day in Eqs (3)−(9).
2.2. Controlling Frontal Cortical Neural Activity by Delayed Feedback Signals
Hadaeghi et al. (2016) demonstrated that healthy periodic circadian rhythms and disturbed circadian rhythms associated with BD are produced by period-p state in the periodic window and chaos–chaos intermittency state, respectively, in the frontal cortical neural activity, as demonstrated by Eq. (1) (Hadaeghi et al., 2016). In this study, we developed the feedback signal to shift the chaos–chaos intermittency of [image: image] the periodic-p state using the delayed feedback method (Pyragas, 1992; Nakajima, 1997) for inducing the stable circadian rhythm. In the delayed feedback method, the feedback signal—which is based on the difference between the current state and the previous state before p-period—stabilizes an unstable periodic-p orbit embedded in a chaotic attractor (Pyragas, 1992; Nakajima, 1997). The daily neural activity of the frontal cortex x(n) is controlled by delayed feedback signals, as follows:
[image: image]
Here, in the delayed feedback method, the target period is not only the period-p, but also involves p/m(m = 1, 2, …).
In the actual treatment, the estimation of frontal cortical activity and the applying of stimulus involve the measurement error and background noise. To evaluate the influence of stochastic noise in the feedback term, we considered the daily neural activity of the frontal cortex [image: image] controlled by delayed feedback signals involving stochastic noise [image: image] where D and [image: image] indicate noise strength and Gaussian white noise (mean: 0, standard deviation: 1) given by
[image: image]
2.3. Evaluation Indices
2.3.1. Power Spectrum
A power spectrum analysis was performed to evaluate the periodicity of circadian rhythm given by (k). We calculated the power spectrum density (PSD) (dB·day) for output(k) using a fast Fourier transform. A Hanning window was applied to this time-series.
2.3.2. Multiscale Entropy
The approximate entropy was used to evaluate the disturbance of circadian rhythms (Yeragani et al., 2003; Glenn et al., 2006). This approximate entropy was extended to the sample entropy (SampEn) and multiscale entropy (MSE) by modifying the data length dependency and robustness of outliers (Costa et al., 2002). In this study, along with PSD, we used MSE to evaluate the complexity with time scale dependency in the time-series of output(k).
Against stochastic variable [image: image], a SampEn is defined by
[image: image]
where [image: image] indicates the probability to satisfy with [image: image]. Here, [image: image] is m a dimensional vector given by
[image: image]
In MSE analysis, against coarse-grained series of [image: image] with the scale factor [image: image]:
[image: image]
SampEn [image: image] is calculated. By the dependency of [image: image] with a scale factor τ, we evaluated the characteristic of complexity in the time-series of output (k). In this study, we set m = 2, r = 0.2 (Costa et al., 2002).
3. RESULTS
3.1. Circadian Rhythms in the Neural System Are Composed of the Frontal Cortex and Hypothalamus
We have demonstrated that the system behavior in the neural system is composed of the frontal cortex and hypothalamus. Figure 2A shows the bifurcation diagram of the frontal neural activity x(n) as a function of synaptic weight from the inhibitory neural population A. With an increasing A value, x(n) exhibits the period doubling bifurcation and enters a chaotic state [image: image]. In [image: image], the x(n) is trapped either in the negative or positive regions, depending on the initial value x(0). In [image: image], x(n) goes back and forth between negative and positive regions, (chaos–chaos intermittency). This chaos–chaos intermittency is observed as the merged attractor of negative and positive regions in the bifurcation diagram. The periodic window exists in [image: image]. Hadaeghi et al. (2016) indicated that the frontal neural behavior in this periodic window corresponds with the frontal neural behavior of healthy subjects [healthy control (HC)], while the other chaos-chaos intermittent behavior corresponds with the behavior of patients with BD.
[image: Figure 2]FIGURE 2 | System behaviors in the neural system composed of the frontal cortex and hypothalamus as a function of synaptic weight from the inhibitory neural population A. (A) Bifurcation diagram of the frontal neural activity x(n) given by Eq. (1) as a function of A. Blue and red dots indicate the positive and negative initial value x(0) cases, respectively. (B) Time-series of frontal neural activity x(n) and circadian rhythm output(k) are given by Eq. (8) in healthy controls (upper panel) and bipolar disorder (lower panel) patients. In [image: image], [image: image] goes back and forth between negative and positive regions, (chaos–chaos intermittency). The periodic window exists in [image: image].
Figure 2B shows typical examples of the frontal neural activity [image: image] given by Eq. (1) and the circadian rhythms [image: image] given by Eq. (8) in HC and BD patients. In correspondence with HC behavior, [image: image] exhibits the periodic-4 state where this parameter set is located at the periodic window in Figure 2A. The circadian rhythms are not disturbed because the temporal variation of x(n):e(n) becomes zero. In A = 15.0 correspondence with BD behavior, x(n) exhibits chaos–chaos intermittency; therefore, [image: image] is applied to the circadian pacemaker in the hypothalamus. This perturbation leads to intermittent states, with smaller peaks of [image: image] and a shortened period from peak to peak. Consequently, circadian rhythms are disturbed, which is evaluated using MSE analysis. Figure 3 shows the results of the MSE analysis of the circadian rhythms [image: image](A) and its power spectrum analysis (B) in HC (A = 13.0) and BD (A = 15.0) patients. Due to the disturbed circadian rhythms of BD patients, SampEn in the scale (≲7 days) and the PSD in lower and higher frequency component around peaks ([image: image]1 [1/day]) increased.
[image: Figure 3]FIGURE 3 | (A) Multi-scale entropy analysis of circadian rhythm [image: image] given by Eq.(8) in healthy controls ([image: image]) and bipolar disorder (BD) ([image: image]) patients. The mean and standard error of the sample entropy (SampEn) in 10 trials are shown by solid line and error bar respectively. (B) Power spectrum density (PSD) of circadian rhythm output(k) in HC and BD cases. The mean and standard error of PSD were indicated by solid and dotted lines, respectively. Due to the disturbed circadian rhythms of BD patients, SampEn in the scale (≲7 days) and the PSD in ≲1, ≳1 [1/day] increased.
3.2. Stabilizing Disturbed Circadian Rhythms Using the Delayed Feedback Method
To stabilize the disturbed circadian rhythms of BD (A = 15.0), the delayed feedback signal was applied to the frontal neural activity using Eq. (10). Figure 4A shows the bifurcation diagram of the frontal neural activity [image: image], which is given by Eq. (10) as a function of K. In [image: image], the orbit exhibits the periodic state. In Figure 4B, the typical examples of the time-series of frontal neural activity [image: image] and circadian rhythms [image: image] are shown for the cases with and without feedback signals. In [image: image] case, [image: image] shows chaos-chaos intermittency; due to this perturbation, [image: image] exhibits irregular behaviors. On the other hand, in [image: image] case, [image: image] converged its periodic state 65 days later. Consequently, [image: image] also exhibited the periodic state. This stabilized effect was evaluated using MSE analysis. The dependence of SampEn as a function of temporal scale is shown in Figure 5A. It is confirmed that, with feedback signals (K = 0.5), SampEn in the scale (≲7 days) is lower, compared to the case without feedback signal (K = 0). Along with it, the power spectrum analysis showed that under the feedback signal (K = 0.5), the PSD in lower and higher frequency component around peaks ([image: image]1 [1/day]) decreased more than the case without feedback signal (K = 0). That is, the delayed feedback signal stabilizes the disturbed circadian rhythms.
[image: Figure 4]FIGURE 4 | System behaviors in the neural system composed of the frontal cortex and hypothalamus as a function of delayed feedback strength K. (A) Bifurcation diagram of the frontal neural activity x(n) given by Eq. (10) as a function of K. Blue and red dots indicate the positive and negative initial value x(0) cases, respectively. (B) Time-series of the frontal neural activity x(n) and circadian rhythm output(k) given by Eq. (8) in the cases without feedback signals (upper panel) and those with feedback signals (lower panel). In [image: image], the chaos–chaos intermittent state transfers to the periodic state.
[image: Figure 5]FIGURE 5 | (A) MSE analysis of stabilized circadian rhythms output(k) given by Eq. (8) in BD ([image: image]) and stabilized ([image: image]) cases. The mean and standard error of SampEn in 10 trials are shown by solid line and error bar respectively. (B) PSD of circadian rhythm output(k) in BD and stabilized cases. The mean and standard error of PSD were indicated by solid and dotted lines, respectively. In MSE analysis, with feedback signals (K = 0.5), SampEn in the scale (≲7 days) is lower, compared to the case without feedback signal (K = 0). Along with it, the power spectrum analysis showed that under the feedback signal (K = 0.5), the PSD in ≲1, ≳1 [1/day] decreased than the case without feedback signal (K = 0).
3.2. Stabilizing Disturbed Circadian Rhythms in the Case With Delayed Feedback Signals Involving Stochastic Noise
Assuming the estimation of frontal cortical activity and the applying of stimulus involve the measurement error and background noise, we evaluated the influence of stochastic noise in the feedback term given by Eq. (11) to stabilizing disturbed circadian rhythms. Figure 6A showed that the result of MSE analysis in circadian rhythms [image: image] given by Eq. (11) in stabilized BD ([image: image]) case and cases under the influence of stochastic noise [image: image]. The SampEn in the scale (≲5 days) under the noise ([image: image]) increases in comparison with noise-free condition (D = 0.0). In addition to MSE analysis, the corresponding result by power spectrum analysis is shown in Figure 6B. By the influence of stochastic noise, both lower and higher frequency component of PSD around peak ([image: image] [1/day]) increases in [image: image] case. In stronger noise strength condition ([image: image]), the lower frequency component of PSD (≲1.0 [1/day]) increases. Hence, the stochastic noise in the feedback term degrades the stabilized circadian rhythms.
[image: Figure 6]FIGURE 6 | (A) MSE analysis of circadian rhythms output(k) given by Eq. (11) in stabilized BD ([image: image]) case and cases under the influence of stochastic noise [image: image] cases. The mean and standard error of SampEn in 10 trials are shown by solid line and error bar respectively. (B) PSD of circadian rhythm output(k) in BD and stabilized cases. The mean and standard error of PSD were indicated by solid and dotted lines, respectively. In MSE analysis, the SampEn in the scale (≲5 days) under the noise ([image: image]) increases in comparison with noise-free condition ([image: image]). In power spectrum analysis, both lower and higher frequency component of PSD around peak ([image: image] [1/day]) increases in [image: image] case. In stronger noise strength condition ([image: image]), the lower frequency component of PSD (≲1.0 [1/day]) increases.
4. DISCUSSION AND CONCLUSION
In this study, we reproduced the periodic and disturbed circadian rhythms that corresponded with neural system (frontal cortex and hypothalamus) behaviors of HC and BD patients, which was proposed by Hadaeghi et al. (2016). Furthermore, MSE analysis and power spectrum analysis revealed that the disturbed circadian rhythms of BD exhibited higher complexity than those associated with HC. A disturbed circadian rhythm corresponded with BD; the delayed feedback signal was applied to the frontal cortical neural activity following the delayed feedback method. As a result, the feedback signal induced a periodic circadian rhythm from the disturbed rhythm.
In order to determine the feedback signals in the actual treatment of BD, we must consider the method used to estimate the daily frontal cortical activity. In this estimation, its accuracy strongly affects the ability to stabilize the disturbed circadian rhythm (see Figure 6); therefore, a highly accurate estimation method is needed. As the candidates for the estimation method, Mitsukura and her colleagues developed a method with portable, single-channel electroencephalogram (EEG) devices; the daily variation of these devices was detected via the combination of pattern recognition methods and the obtained EEG time-series (Yamada and Mitsukura, 2016; Ohta et al., 2017). Croce et al. (2018) reported that the daily variation in EEG signals, in regard to circadian rhythms, can be estimated using Higuchi’s fractal dimension of EEG signals as the simple temporal fractal analysis (Croce et al., 2018). Using their method, the daily frontal cortical activity can be estimated and the feedback signals can be determined.
According to the delayed feedback method (Pyragas, 1992; Nakajima, 1997), the feedback signals can also be determined by measuring the observation variables and analyzing their effects on the target dynamics. Therefore, the frontal cortical feedback signals can be developed by physiological and psychological signals, such as actigraphic records, body temperature, and daily mood states, which reflect circadian rhythms. However, based on the construct of the neural systems of the frontal cortex and hypothalamus, as proposed by Hadaeghi et al. (2016), the daily variation of cortical neural activity reflects the disturbance of circadian rhythms. That is, it can be assumed that, in many cases, the observation variable regarding circadian rhythms might include historical frontal cortical activity. In the original delayed feedback methods, the historical effects of observation variables were not considered (Pyragas, 1992; Nakajima, 1997). Therefore, further modifications of the delayed feedback method are necessary for this control.
The actual signals corresponding to the feedback signals in the treatment must be considered. Light therapy and combination therapy (light and drugs) control the melatonin secretion which affects circadian rhythms (Leibenluft et al., 1995; Terman and Terman, 2005). Therefore, the strength and duration of light and the amount of drugs needed to realize the target concentration of melatonin in the blood can correspond with feedback signals. Optimizing chronotherapy based on the delayed feedback method may reduce the risk for inducing mixed states, hypomania and autonomic hyperactivation (Terman and Terman, 2005; Sit et al., 2007; Abreu and Bragança, 2015).
This study has some limitations that should be addressed. Recent studies showed that the network structures, especially topological features, are strongly related with the temporal behavior of neural activity and its functions (Kawai et al., 2019; Nobukawa et al., 2019a; Park et al., 2019; Nobukawa et al., 2020). Many studies regarding neuroimaging modality reported the structural/functional changes of brain network in pathological conditions (Levitt et al., 2017; Takahashi et al., 2017; Takahashi et al., 2018; Ji et al., 2019). However, the frontal cortical network, which was dealt with in this study, is described by the neural population model with only one variable for cortical neural activity. As long as this population model is used, the cortical network structures cannot be implemented. Therefore, future directions for study, should use a neural network model with higher physiological validity, such as a spiking neural network. We plan to construct the frontal cortical neural network including brain network structures; by using the network model with high physiological validity, the effectiveness for our proposed treatment can be further evaluated. Another limitation lies in the delayed feedback method, where the inherent unstable periodic orbit becomes stabilize (Pyragas, 1992; Nakajima, 1997). Therefore, if this inherent unstable periodic orbit is inconsistent with periodic orbit in HC condition, the stabilized orbit is different compared to one in HC condition. Therefore, in our simulation, the frontal cortical activity exhibited the period-2 state and higher amplitude than HC. However, from the viewpoint of actual treatment, the objective is that the pathological disturbed circadian rhythm is changed to a healthy circadian rhythm. Therefore, the target period must be set to healthy period. To realize this purpose, the other chaos control methods that can specify a more detailed target parameter, such as OGY method (Ott et al., 1990), H∞ control (Jiang et al., 2005), and the method utilizing synchronization mechanism (Doho et al., 2020) must be evaluated and compared with the delayed feedback method. We plan to deal with these points in future works. To determine the possible clinical application of this proposed method, the vital reaction regarding the melatonin secretion against light stimulus and drugs must be modeled to determine the strength and duration of light and the amount of drugs needed. Therefore, future studies should implement these vital reactions when modeling for circadian neural systems. Developing feedback signals based on the observation variables of frontal cortical activity is important because actigraphic records and body temperature are easier to obtain, compared to EEG measurements. Furthermore, in addition to BD, abnormal circadian rhythm appears in various chronic-degenerative diseases, caused by the pathological network conditions (Fossion et al., 2017; Fossion et al., 2018). Therefore, focusing on bio-signals that reflect these pathological network conditions’ efficient feedback signals to stabilize it might be designed.
In this study, we developed a method for stabilizing disturbed circadian rhythm in the circadian neural system, which are associated with BD. Although several limitations remain, this method highlights the potential usefulness of the chaos control method for treating BD.
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Key tissues are dysfunctional in obesity, diabetes, cardiovascular disease, fatty liver and other metabolic diseases. Focus has centered on individual organs as though each was isolated. Attention has been paid to insulin resistance as the key relevant pathosis, particularly insulin receptor signaling. However, many tissues play important roles in synergistically regulating metabolic homeostasis and should be considered part of a network. Our approach identifies redox as an acute regulator of the greater metabolic network. Redox reactions involve the transfer of electrons between two molecules and in this work refer to commonly shared molecules, reflective of energy state, that can readily lose electrons to increase or gain electrons to decrease the oxidation state of molecules including NAD(P), NAD(P)H, and thiols. Metabolism alters such redox molecules to impact metabolic function in many tissues, thus, responding to anabolic and catabolic stimuli appropriately and synergistically. It is also important to consider environmental factors that have arisen or increased in recent decades as putative modifiers of redox and reactive oxygen species (ROS) and thus metabolic state. ROS are highly reactive, controlled by the thiol redox state and influence the function of thousands of proteins. Lactate (L) and pyruvate (P) in cells are present in a ratio of about 10 reflective of the cytosolic NADH to NAD ratio. Equilibrium is maintained in cells because lactate dehydrogenase is highly expressed and near equilibrium. The major source of circulating lactate and pyruvate is muscle, although other tissues also contribute. Acetoacetate (A) is produced primarily by liver mitochondria where β-hydroxybutyrate dehydrogenase is highly expressed, and maintains a ratio of β-hydroxybutyrate (β) to A of about 2, reflective of the mitochondrial NADH to NAD ratio. All four metabolites as well as the thiols, cysteine and glutathione, are transported into and out of cells, due to high expression of relevant transporters. Our model supports regulation of all collaborating metabolic organs through changes in circulating redox metabolites, regardless of whether change was initiated exogenously or by a single organ. Validation of these predictions suggests novel ways to understand function by monitoring and impacting redox state.
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WHY IS A NETWORK PERSPECTIVE IMPORTANT?


Metabolic Changes Must Be Communicated

Traditional molecular and biochemical studies have focused on interactive processes involved in metabolic pathway fluxes in specific cells and organs. Elegant studies have provided important and detailed mechanistic evaluation of the pathways and proteins involved in metabolic regulation, documented changes in protein and RNA expression and identified important relationships, mainly at single points in time. These studies continue to provide detailed molecular mechanisms for metabolic pathway regulation and transcriptional control of metabolic functions. Modern unbiased omics technologies are poised to provide coordinated detailed information about genetic, proteomic, and metabolomic differences among large groups of individuals with specific identifying characteristics, diseases or treatments mainly at single moments in time. These data are potentially useful as markers of disease or treatment efficacy and to draw attention to biological pathways that are unexpected or different among different groups. Such correlations provide a sound basis for generating testable hypotheses regarding causation. However, neither the traditional nor the more modern approaches address the issue of how changes in metabolism are driven and communicated throughout the organism on a variety of time scales, including minute to minute regulation throughout the day.



Redox, an Energy-Sensitive Communication System

The relevance of neural and hormonal communication networks is well-established and essential for physiological function. However, it is also important that all tissues in the body are aware of the metabolic state and respond rapidly and appropriately to the metabolic energy status in order to maintain the continuous energy supply required for each to function optimally. It is also essential to understand the temporal patterns of change, their linkage and interaction, and often parallel or redundant routes, for achieving similar end results. This article will focus on redox as an initiator of metabolic change that provides communication systems that we hypothesize provides the critical link between several well-established steady-states and the driving force to acutely transition among steady states. Redox reactions involve the transfer of electrons between two molecules and in this work refer to commonly shared molecules that readily lose electrons, to increase, or gain electrons to decrease the oxidation state of molecules including NAD, NADH, NADP, NADPH, and the thiols in their reduced (SH) and oxidized (SS) forms. Metabolism alters all of these redox reactants both rapidly and transiently as well as in various long-term steady-states. Redox reactants comprise an energy-sensitive communication system within each cell and within cellular compartments. Variations in metabolic state can also impact the response of tissues to other communication network systems.



Redox Systems Adapt to Metabolic Change

Important systems, such as energy synthesis, are often redundant and usually have spare capacity, though they rarely operate at capacity: ATP is produced from ADP by both glycolysis and oxidative phosphorylation, and often both when demand is high as well as through adenylate kinase (Panayiotou et al., 2014). None of these pathways operate near capacity most of the time (Mookerjee et al., 2016). Mitochondria generally respire at 20–30% of capacity and increase or decrease their number and specific enzymes to adapt to high or low demand and fuel availability rather than increasing the percentage of their operating flux capacity. Skeletal muscle mitochondrial biogenesis, morphological changes, and increases in respiratory complex formation are triggered by exercise or need (Menshikova et al., 2006), for example. Obese humans have up to 5.0-fold higher maximal respiratory rates in liver mitochondria than lean persons and patients with fatty liver disease have higher mitochondrial mass, but lower maximal respiration, less well-coupled mitochondria and a greater proton leak (Koliaki et al., 2015). Thus, neither the capacity nor the protein levels of components of these pathways are generally rate-limiting even though increased usage frequently leads to increases in expression of key proteins (Mookerjee et al., 2016). Such alterations in spare capacity are protective of the network and rarely due to the inability of cells to maintain energy supplies. A common example of such time-dependent adaptation is the response of mitochondria to a switch from low fat to high fat in the diet (Iossa et al., 2003; Turner et al., 2007). The diet-induced obesity model most frequently used is the C57Bl6J mouse model (Fergusson et al., 2014) that may be highly responsive to overfeeding, due in part to the lack of the mitochondrial enzyme, nicotinamide nucleotide transhydrogenase (NNT), needed to effectively scavenge ROS (Fisher-Wellman and Neufer, 2012). ROS rises in response to high rates of β-oxidation (Quijano et al., 2016) and this mouse model may reflect a defect in redox/ROS regulation with unknown relevance to human disease. Thus, redox systems adapt and respond to changes in energy source and demand. Changes in mitochondrial content and expression of mitochondrial proteins are most often adaptations to such altered environmental signals.

The energy needs of individual organs must all be met at the same time and at all times in an optimally functioning organism. These include the continuous energy needs of heart and brain, the meal-induced energy needs for nutrient storage and processing by adipose tissue, gut and liver, the brief secretory responses of pancreas and other secretory organs, and the maximum energy needs of exercising muscle. Such highly varied demands, with only occasional nutrient intake, require a competent and rapid information sharing response system.



WHAT COMPRISES THE REDOX COMMUNICATION SYSTEM?


Redox Components

Redox components mediate the transfer of electrons between reduced and oxidized compounds. There are several major redox participants that reflect redox state (Jones and Sies, 2015): NAD+, NADP+, oxidized glutathione (GSSG), thioredoxin (Trxox) and peroxiredoxin (Prxox) in the oxidized forms, and NADH, NADPH, glutathione (GSH), Trx and Prx, in the reduced form (Figure 1). These redox components are compartmentalized with separate mitochondrial and cytosolic compartments that differ greatly in their redox potential (Jones and Go, 2010). NADH levels are relatively high in the mitochondria in order to provide the electrons or driving force to maintain ATP levels via oxidative phosphorylation, maintain a highly negative membrane potential and to generate the NADPH essential for ROS clearance, whereas NADH levels are relatively low in the cytosol to prevent inhibition of glycolysis (Table 1). In contrast, NADPH levels are high in the cytosol to facilitate synthetic reactions such as de novo lipid synthesis as well as functioning to maintain adequate antioxidant defense. The thiol couples are maintained in a reduced state in both compartments in order to protect against oxidative stress (Veech, 2006).
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FIGURE 1. Illustration of mitochondrial interactions among pyridine nucleotides, ROS and the thiol redox system. SOD, superoxide dismutase; NNT, nicotinamide nucleotide transhydrogenase; GPX, GSH peroxidase; Prx, peroxiredoxin; Trx, thioredoxin; R, reductase. Mitochondrial ROS is produced at high NADH levels. NADH is derived from available fuels and promotes ROS production when cellular ATP levels are sufficient. NNT plays a vital role in ROS removal driven by the proton gradient as indicated by red arrow.



TABLE 1. Illustration of Diet-Induced Changes in the NAD/NADH Ratio in Rat Liver [data from Veech (2006)].
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Illustration of Mitochondrial ROS Production

Reactive oxygen species is produced in the mitochondrial electron transport chain when ATP levels are sufficient and excess fuel generates elevated NADH. ROS, generated under these excess fuel conditions, serves as a transient signal of plenty that can be communicated within and outside the cell. Increased ROS subsequently activates the ROS scavenging reactions (Figure 1). This occurs appropriately when substrate availability is high (high NADH) but ATP needs have been fulfilled. Excessive mitochondrial ROS generation can result in H2O2 release from the cell into the circulation as demonstrated by Oshino and Chance using the perfused liver (Oshino et al., 1975). In their study, increasing the redox state of mitochondrial electron carriers by either high fatty acids or antimycin A increased the rate of H2O2 production up to four times the endogenous rate. It should be noted that external environmental influences and cytosolic enzymes can also lead to ROS generation (Oshino et al., 1975).



NNT

Nicotinamide nucleotide transhydrogenase provides an important link between pyridine nucleotide generation by glucose and FFA, ROS and the thiol redox state (Figure 1). Currently available tools are not adequate to measure the variety of specific ROS species in real-time, hence ROS is usually measured as H2O2, the most stable product of superoxide dismutase. NNT (Hoek and Rydstrom, 1988) is a ROS-scavenging enzyme driven by the proton gradient to convert mitochondrial NADH plus NADP to the NADPH needed to maintain thiols in the reduced state by converting oxidized thiols to their reduced form, thus permitting reduced thiols to convert H2O2 to H2O (Figure 1).



An Intracellular-Redox Communication System Among Pyridine Nucleotides, ROS and Thiols

The interactions among the pyridine nucleotides, ROS and thiols allow changes in one to impact the redox state of the others (Figure 1). ROS levels are usually tightly controlled through NNT and the activity of peroxidases that convert ROS to water as also illustrated in Figure 1. Metabolizing ROS to water oxidizes GSH. NADPH is required to restore resultant GSSG to active GSH. Thus, increases in ROS lead to thiol oxidation that in turn requires NADPH to maintain the pool of active state thiols. In the mitochondria, NADPH is derived largely from NADH through the activity of the NNT. Under basal conditions when fuel is plentiful and ATP demand minimal, NADH levels and the NADH/NAD ratio are high, ROS production is increased, however, the fuel supply is sufficient to provide the needed NADPH to maintain thiols in the reduced state and convert the ROS to water. Since NNT is a transmembrane protein that uses the mitochondrial proton gradient to drive the interconversion of NADH and NADPH, NADH is also required to restore the mitochondrial membrane potential that is used to drive NNT. This may explain a portion of the mitochondrial proton leak that is greater under basal than stimulated conditions when ROS is higher. Although NNT is not the only mitochondrial source of NADPH, it is a major component (Ronchi et al., 2016). A separate but analogous antioxidant system exists in the cytosol where the major sources of NADPH are the pentose phosphate pathway, malic enzyme and isocitrate dehydrogenase. These systems that produce and scavenge ROS, provide rapid and transient communication of nutrient availability through interactions among all of the redox components.



HOW IS ENERGY STATE COMMUNICATED?


Shared Cofactors Within Cells

Information within cells is shared via the common co-factors, just described, that are used by many enzymes and pathways (Corkey and Shirihai, 2012). These include pyridine nucleotides, adenine nucleotides, Coenzyme A esters, thiols such as GSH, Prx, and Trx, and ROS. This common currency is used for many enzymatic reactions involving pyridine nucleotides: NAD(P) and NAD(P)H; adenine nucleotides: ATP, ADP, AMP; coenzyme A derivatives: free CoASH, acetyl CoA, long-chain acyl CoA (LC-CoA); while ROS and thiols modulate the many reactive cysteines in proteins and impact translational activity (Marsboom and Rehman, 2016; Hopkins and Neumann, 2019). All participate in numerous reactions in all cells and cellular compartments. A simple illustration of the many reactions involving this shared currency is the citric acid cycle that includes multiple reactions with many shared common co-factors (Figure 2, highlighted co-factors). It is important to note that most of the metabolites and cofactors present in cells do not freely traverse cellular membranes but remained localized in their relevant compartments. Thus, additional mechanisms must be considered that permit sharing of the redox state among cellular compartments and into the circulation.
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FIGURE 2. Shared citric acid cycle cofactors. Shared factors are highlighted.




Shared Cofactors That Circulate in the Blood

Importantly, the mitochondrial metabolic state can be known through blood metabolites that are shared among different organs via circulating communication metabolites. These indicator metabolites readily traverse mitochondrial and plasma membranes out of the cell of origin and into destination cells where they impact the use of shared cofactors and reactions involving those shared cofactors, as previously illustrated (Figures 1, 2). Abundant membrane transporters are key to allowing specific metabolites to enter and leave cells rapidly, according to their concentration gradient, moving from higher to lower concentration compartments (Figure 3). Specific substrate-product pairs are in equilibrium with NAD and NADH in their respective compartments. Pyruvate (P) and lactate (L) are in equilibrium with a high NAD/NADH ratio (low NADH) driven by lactate dehydrogenase in the cytosol whereas acetoacetate (A) and β-hydroxybutyrate (β) are in equilibrium with a low NAD/NADH ratio (high NADH) driven by β-hydroxybutyrate dehydrogenase in the mitochondria. Because information about the cytosolic and mitochondrial redox states are reflected in the circulation through these common metabolites, this information is communicated from the cell of origin to other cells accessed by the circulation. As a consequence, the muscle cytosolic redox state, reflected in the L/P ratio, has the greatest impact on cytosolic redox throughout the system because of the large muscle mass. On the other hand, the liver mitochondrial redox state is a dominant influence on the mitochondria of other tissues because of its greater capacity to oxidize fat and to produce, but importantly, not use, the ketones, acetoacetate and β-hydroxybutyrate (Cahill, 1971). Thus, the pyridine nucleotide redox couples communicate directly in both directions between the cell and the circulation. The thiol redox state is regulated and communicated differently (Moriarty-Craige and Jones, 2004). Intracellular levels of GSH are in the high mM range and highly reduced in both the cytosol and mitochondria, while cysteine levels are lower in the range of 10–50 μM, and also reduced. Cysteine and cystine mainly function as precursors to GSH and other synthetic peptides and proteins within cells. In contrast, in plasma the reverse is true and cystine levels are present at higher concentrations, highly oxidized and the main indicator of an increased oxidation state due in part to the oxidizing impact of the plasma on thiols (Turell et al., 2013). The thiol transport systems are less well characterized although the transport of all 4 thiols is well-documented, however, the cellular thiol redox state is not directly reflected in the plasma thiol redox state. The time course of change in the blood thiol redox state has not been documented in vivo and may be slower than the pyridine nucleotide redox state. Cystine is readily imported into cells where it is converted to cysteine, the limiting precursor for GSH formation (Yin et al., 2016). GSH is mainly formed in the cytosol, however, GSSG is transported out of cells particularly when elevated possibly to maintain the high GSH/GSSG ratio although GSH is also transported out of liver cells possibly as a source of cysteine for other cells (Oestreicher and Morgan, 2019). Thus, changes in the cellular thiol redox state are best reflected in the plasma cysteine/cystine ratio despite the magnitudes of difference in their actual electrochemical potential (Go and Jones, 2013a,b) while changes in the intracellular pyridine nucleotide redox state are directly reflected in their interacting circulating metabolites. Thus, different tissues make distinct contributions to circulating redox levels that together communicate the metabolic state of the body.
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FIGURE 3. Illustration of how the intracellular redox state is communicated to the blood stream via common metabolites. The thiol ratio is reflected mainly in the cysteine to cystine ratio but also in the GSH/GSSG ratio. The mitochondrial pyridine nucleotide redox state is reflected in the β/A ratio and regulated mainly by liver mitochondria. The cytosolic pyridine nucleotide redox state is reflected in the L/P ratio and regulated mainly by muscle. All of these redox indicators are readily transported into and out of cells. Bold type indicates reaction is mainly regulated in that tissue.




INDUCTION OF CHANGES IN INTRACELLULAR ROS AND FUNCTION IN RESPONSE TO PHYSIOLOGICAL VARIATIONS IN EXTRACELLULAR REDOX COUPLES

A redox communication system that shares information among metabolically sensitive tissues predicts that physiologically relevant changes in the putative redox indicator ratios will impact tissue ROS production and function.


Oxidized Thiols and Disease

In the case of the thiol redox state, many publications by D. P. Jones and colleagues have shown that thiols become oxidized in many disease states. Oxidation affects cell proliferation, apoptosis, and proinflammatory signaling. Such effects have been observed in endothelial cells, fibroblasts, monocytes, and epithelial cells, with cell-specific responses (Go and Jones, 2010a). Both circulating GSH and cysteine systems become oxidized with aging, and a recent finding suggests that the cystine to GSH ratio in human plasma predicts the likelihood of death in coronary artery disease (Jones, 2015). Retinal pigment epithelial cells exposed to a more oxidized extracellular redox environment have increased susceptibility to oxidant-induced apoptosis (Jiang et al., 2005). Other results suggest a prominent role for the extracellular thiol redox status in regulation of cell invasion (Chaiswing et al., 2008).

Go and Jones (2010a) developed a technique to study intracellular signaling in response to extracellular redox potential changes, using a redox clamp in which thiol and disulfide concentrations are varied to obtain a series of controlled redox potentials. We applied these techniques using the thiols as well as the β/A and L/P ratios to further assess the impact of physiological changes in extracellular redox on function in human adipocytes and isolated mouse hepatocytes.



Hepatic ROS Production

Changes in ROS production occur in response to variations in pyridine nucleotide couples over a physiological range of electrochemical potentials (Nocito et al., 2015). As the thiol and β/A ratios become more oxidized, ROS production increases. It is noteworthy that the cytosolic redox couple, L/P, decreases ROS production as it becomes more oxidized, the opposite effect to changes induced by the thiol and mitochondrial redox couples. This is presumably due to the dominant ability of pyruvate to enter the mitochondria and increase NADH, although it has the opposite oxidizing effect in the cytosol. Thus, the lactate to pyruvate ratio effectively reports the cytosolic redox state but changes in external lactate and pyruvate cannot be used to change the cytosolic ratio without also impacting the mitochondrial redox state in the opposite direction.

In response to redox-induced ROS production, gluconeogenesis is inhibited over a physiological range of electrochemical potentials (Nocito et al., 2015). Since high ROS that accompanies the more oxidized state is normally an indicator of fuel excess, it is logical and appropriate that glucose production by the liver should be inhibited under these conditions. High ROS is usually a transient indicator of fuel excess that stimulates ROS scavenging using NADPH derived from NADH in the presence of active ROS scavenging capacity. Inadequate scavenging capacity, insufficient NADPH production or excessive ROS generation has highly detrimental consequences leading to uncontrolled oxidative stress (Ryter et al., 2007).



Adipocyte ROS Generation

Similar responses to variations in extracellular redox potential are also observed in adipocytes (Jones et al., 2016) and may be anticipated in many other cell types. Lipolysis requires ROS and is stimulated by the more oxidized, ROS-generating extracellular redox couples. Addition of the ROS scavengers, DPI, NAC or resveratrol, inhibit lipolysis under all conditions tested. At the same time ROS is also required for triglyceride synthesis. ROS removal with the ROS scavenger, DPI, blocks lipid synthesis in fat cells whose primary function is to store fat by this pathway. Thus, both lipid synthesis and breakdown require ROS and increase in response to increasing ROS production. Quantitation of the relative changes and comparison of the concentration dependence of ROS-mediated stimulation of lipid synthesis compared with lipolysis have not yet been determined.



WHEN DOES THE CIRCULATING REDOX STATE CHANGE?


Circulating Redox Changes

Circulating redox changes occur in response to fasting and following a meal (Williamson et al., 1967). A more oxidized state is observed in obese compared with lean subjects or in response to high fat feeding (Anderson et al., 2009a,b). During a 24 hr fast in humans as illustrated in Table 2, increases occur in the ketones, acetoacetate plus β-hydroxybutyrate, from less than 0.1 mM to more than 7 mM. These ketones are formed from FFA that also increase from about 0.7 mM to about 1.6 mM (Cahill, 2006). Changes in the β/A ratio also occur but do not correlate with total ketones since they reflect NADH availability in the mitochondria (Veech, 2006) rather than total ketones. In the illustration in Table 2, the increase in ketones is greater than 70-fold whereas the β/A ratio only increases 2.3-fold.


TABLE 2. The Effect of 24 h Fasting on Ketones, Redox, and FFA [data from Cahill (2006)].

[image: Table 2]


Blood Redox Metabolites Change Acutely as Illustrated in a Patient Fasted Overnight Then Fed High Glucose

Changes in the L/P ratio, lactate plus pyruvate, the β/A ratio, and total ketones occur rapidly in response to glucose feeding. Figure 4 illustrates data obtained from a single patient in our clinic. During the first hour, total ketones decrease rapidly as glucose replaces FFA as the main fuel source while lactate rises modestly as glucose, in excess of energy needs, is metabolized to lactate. The β/A ratio decreases slightly reflecting increased energy use but remains rather constant for the first 3 h while the L/P ratio gradually increases as fuel needs are met. The thiol redox state remains fairly constant (data not shown). These data illustrate that rapid responses to nutrient intake can be observed through the blood redox metabolome, in a time frame of minutes. These changes are consistent with expected variations in energy state and fuel use.
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FIGURE 4. Illustration of the time course of changes in blood metabolites in response to a glucose load. Data are from a single patient. (A) The β/A ratio; (B) the sum of β plus A; (C) the L/P ratio; and (D) the sum of L plus P. Assays were performed on neutralized acid extracts, prepared rapidly after blood samples were taken, and analyzed within 24 h (Williamson and Corkey, 1969, 1979).




Changes in Aging and Disease States

As elegantly documented by Dean Jones over many years (Jones, 2002; Moriarty-Craige and Jones, 2004; Go et al., 2009; Adimora et al., 2010; Go and Jones, 2010b, 2013a,b), the blood thiol redox state becomes more oxidized in diabetes, aging and cancer, presumably due at least partially to excessive ROS production or inadequate ROS scavenging. These changes are commonly viewed as markers of oxidative stress. ROS production also increases in response to excess fuels, as described in section “Redox components,” although the acute changes observed in pyridine nucleotide redox state in our patient were not reflected in marked changes in the thiol redox state during the 6 h procedure.



Regulation of Hepatic Redox State

Reactive oxygen species also increases in response to excess fuels, as described in section “Redox Components” in perfused liver: lactate plus pyruvate and FFA stimulate ROS production. Antimycin A, which inhibits the electron transport chain after the ROS generating step, further increases ROS production in the presence of excess fuel (Boveris et al., 1972) due in part to reverse electron flow. Mitochondrial redox state changes in liver in response to fasting, high sucrose and low carbohydrate feeding (Veech et al., 1969). In response to fasting and low carbohydrate feeding cytosolic and mitochondrial NADH increase while mitochondrial NADPH decreases. In contrast, sucrose feeding decreases cytosolic while increasing mitochondrial NADH with little or no effect on NADPH (Veech et al., 1969). Generally, increases in mitochondrial NADH occur in response to fuel availability within hepatocytes whether the fuel is fat, amino acid or carbohydrate. Figure 5 illustrates the increases in β/A ratios in isolated hepatocytes in response to the amino acids, leucine, valine and isoleucine, carbohydrate-derived lactate and pyruvate, as well as the FFA, oleate (Corkey et al., 1981, 1982). These hepatic mitochondrial changes can be communicated throughout the organism via the blood stream by the metabolites that circulate: β-hydroxybutyrate and acetoacetate. Note that although only FFA and leucine form ketones, the addition of other fuels that do not form ketones can, however, alter the β/A ratio. This occurs because all fuels produce NADH, which enters a common pool that can donate electrons to the electron transport chain to drive ATP production and also impact the β/A ratio via β-hydroxybutyrate dehydrogenase.
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FIGURE 5. Example of the changes in β/A ratios in isolated hepatocytes in response to the ketoacids of leucine, valine and isoleucine, carbohydrate- derived, lactate and pyruvate, and the FFA, oleate. Data derived from references (Corkey et al., 1981, 1982).




ENVIRONMENTAL FACTORS IMPACT β-CELLS AND ADIPOCYTES


The Altered Metabolic Environment

Environmental agents, known to cause oxidative stress, can also increase ROS and insulin secretion in the absence of a stimulatory fuel (Simmons et al., 2014). Many environmental changes have accompanied the current epidemic of obesity and diabetes. Much has changed in our world that might explain this epidemic, however, many of the changes have not yet been carefully studied. Our foods have changed, living conditions, activity levels, the air we breathe have all changed. It is important to consider the possibility that redox changes, similar to those that occur in response to nutrients, may also be induced by some food additives and may thus serve to mis-communicate the metabolic status to all tissues (Mangge et al., 2013; Chassaing et al., 2015; Laster and Frame, 2019). Such redox changes influence tissue specific functions at least in part through generation of ROS, which is normally an indicator of fuel sufficiency. The possibility that environmental impacts may lead to changes in circulating redox, is potentially an important and unrecognized form of inter-organ communication. More detailed investigations on pancreatic β-cell insulin secretion support such possibilities (Corkey, 2012a,b; Berdan et al., 2016; Erion and Corkey, 2018).



Bisphenol A, Contained in Plastics

The identification of endocrine disrupting chemicals or obesogens is a rapidly evolving field of research (Heindel and Blumberg, 2019). BPA is one of the most prevalent chemicals in our environment that leaches from plastic bottles and BPA-lined cans (Simmons et al., 2014). Strong positive correlations have been reported between urine BPA concentration and BMI (Elobeid and Allison, 2008). In vitro and in vivo studies have shown that BPA accelerates adipocyte differentiation and promotes lipid accumulation via alteration of glucose homeostasis (Wang et al., 2012). In addition, BPA has been shown to increase ROS production in blood and sperm cells (Silveira et al., 2019).



H2O2 Directly and Indirectly Increases Insulin Secretion in β-Cells

Increases in H2O2, like excess fuel, stimulate insulin secretion but in the absence of a stimulatory fuel (Pi et al., 2007, 2010). Our studies document stimulation of insulin secretion by low concentrations of H2O2, whether added to the outside of β-cells or generated within, without any change in glucose or other fuel concentration. In contrast, provision of ROS scavengers, such as cell permeant catalase or N-acetyl-L-cysteine, inhibit both glucose-stimulated H2O2 accumulation and insulin secretion. Furthermore, acute exposure of isolated mouse islets or INS-1(832/13) β-cells to the oxidative stressors, arsenite, 4-hydroxynonenal, or methylglyoxal, decreased insulin secretion (Adimora et al., 2010; Go and Jones, 2010b).

Circulating metabolites, like β-hydroxybutyrate that enter cells and increase NADH and ROS production in β-cells, increase insulin secretion (Figure 6A). Scavenging ROS with N-acetylcysteine inhibits insulin secretion by decreasing ROS (Figure 6A). These findings suggest that H2O2, whether derived from glucose metabolism or exogenous sources, is a sufficient and essential metabolic signal for insulin secretion.
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FIGURE 6. Effect of β-hydroxybutyrate (β-OHB) (A), Iron (B) and ROS removal (A) on stimulation of insulin secretion (A) and ROS generation (B) in clonal pancreatic β-cells (Adimora et al., 2010; Go and Jones, 2010b). Panel A shows insulin secretion at basal glucose in response to 20 mM β-OHB and concentration-dependent reversal with increasing NAC (n-acetyl cysteine). Panel B shows concentration-dependent ROS production from iron at basal and stimulatory glucose.




Iron, an Essential Mineral

Iron consumption has increased as the lean content of food animals has increased in response to nutritional recommendations for decreased fatty foods. Our data show that iron increased ROS production in β-cells at both low and high glucose (Figure 6B).



Mono-Oleoyl Glyceride (MOG) Stimulates Basal Insulin Secretion

Mono-oleoyl glyceride, is a natural product and a common additive to most dairy products, which is used as preservative and emulsifier that prevents cream from separating. ROS is generated when MOG is added to unstimulated β-cells (Saadeh et al., 2012; Berdan et al., 2016). MOG also increases the mitochondrial redox state and interestingly, basal insulin secretion, while ROS scavengers abrogate secretion. It was not determined precisely whether MOG or a compound derived from MOG was responsible for the increases in ROS since MOG is readily metabolized to glycerol and LC-CoA (Saadeh et al., 2012; Berdan et al., 2016).



Saccharin Increases ROS in β-Cells and Fat Cells

Artificial sweeteners affect insulin secretion in rat islets: All sweeteners tested generated ROS and increased insulin secretion at low non-stimulatory glucose. We observed that saccharin, sucralose, and aspartame elevated basal insulin secretion in rat islets (Corkey, 2012a,b) and increased ROS production (Figure 7A). In human adipocytes, saccharin increased ROS production at concentrations between 0.1 and 10 mM (Figure 7B). Also, addition of saccharin early in the adipocyte differentiation process promoted lipid accumulation. Saccharin-induced effects in β-cells and adipocytes were largely overcome using antioxidants implicating a ROS-related mechanism.
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FIGURE 7. Effect of saccharin on ROS production in clonal pancreatic β-cells (A) and human adipocytes (B). A, Dark circles are vehicle, light circles are 5 mM saccharin. B, Concentration-dependent ROS production in cultured, differentiated human adipocytes in response to increasing concentrations of saccharin. The positive controls are tert-butyl hydroperoxide (t-BOOH) with and without 10 mM saccharin.




SUMMARY AND IMPLICATIONS

Coordination of many processes is essential to fulfill the energy needs of all cells on a continuing basis. This article describes a redox network that can share information and elicit responses to that information in a coordinated manner throughout the entire body. Support for such a network involves specific intracellular shared indicators of metabolic state and describes how they interact with the circulation and how the circulation shares this information throughout the system. The specific redox couples, which are readily transported into and out of most cells, are present in the circulation and can interact with all cells that express metabolite transporters. Examples of physiological conditions where redox changes are well-documented and possible causes of environmentally-induced misinformation suggested. Documentation of a redox communication system has been demonstrated in β-cells, adipocytes and liver. ROS and redox changes occur rapidly and frequently and impact function in an organ-specific manner. The model presented here, introduces the novel concept of redox as a master early regulator of metabolism that may be the initiating step in modulating transcription and altering protein expression. This is perhaps analogous to the generally accepted concept of transcriptional master switches that regulate families of anabolic and catabolic genes. It would be interesting to assess the consequences of altered redox state on transcriptional regulation as this has not yet been rigorously investigated. Data also suggest that it is important to consider environmental factors that have arisen coincident with the current epidemic of metabolic dysfunction as potential modifiers of redox or ROS and purveyors of possible misinformation and inappropriate adaptation.
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Here we present a model capable of self-healing and explore its ability to resolve pathological alterations in biological tissue. We derive a simple analytic model consisting of an agent representing a cell that exhibits anabolic or catabolic activity, and which interacts with its tissue substrate according to tissue stiffness. When perturbed, this system returns toward a stable fixed point, a process corresponding to self-healing. We implemented this agent-substrate mechanism numerically on a hexagonal elastic network representing biological tissue. Agents, representing fibroblasts, were placed on the network and allowed to migrate around while they remodeled the network elements according to their activity which was determined by the stiffnesses of network elements that each agent encountered during its random walk. Initial injury to the network was simulated by increasing the stiffness of a single central network element above baseline. This system also exhibits a fixed point represented by the uniform baseline state. During the approach to the fixed point, interactions between the agents and the network create a transient spatially extended halo of stiffer network elements around the site of initial injury, which aids in overall injury repair. Non-equilibrium constraints generated by persistent injury prohibit the network to return to baseline and results in progressive stiffening, mimicking the development of fibrosis. Additionally, reducing anabolic or catabolic rates delay self-healing, reminiscent of aging. Our model thus embodies what may be the simplest set of attributes required of a spatiotemporal self-healing system, and so may help understand altered self-healing in chronic fibrotic diseases and aging.
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INTRODUCTION

Self-healing is the ability for spontaneous repair following injury and is a critical homeostatic feature of biological systems that allows them to survive the rigors of life’s experiences for extended periods. Biological self-healing involves a complex interplay between numerous cell types in the body (Carlson and Longaker, 2004; Vidmar et al., 2017), leading inexorably to complete resolution of whatever damage the injury caused (Mutsaers et al., 1997). Being able to harness the power of self-healing is thus of great importance for medicine, and it has even recently led to the bio-inspired development of artificial self-healing systems (Mutsaers et al., 1997; Hong et al., 2019). On the other hand, aberrant self-healing is also responsible for many chronic pathologies that at best leave behind an inconveniently remodeled tissue, and at worst can be progressive and eventually fatal. An example is idiopathic pulmonary fibrosis (IPF), an insidious disease typically associated with aging that has a median survival of 3.8 years from diagnosis (Raghu et al., 2014). Nevertheless, we still have a poor understanding of the essential components required of any system in order for it to exhibit the property of self-repair; therefore, how repair becomes dysregulated in a disease such as IPF remains a mystery.

What are the general features of self-healing systems necessary for successful repair? We propose that there are three: (1) the ability to detect injury and initiate local reparative processes in response, (2) the availability of sufficient material and energy reserves to complete the repair, and (3) the ability to cease reparative processes when injury is no longer present. In biological systems, all of these features are associated with various cell types together with certain properties of the extracellular matrix (ECM). All are necessary for self-repair to proceed efficiently. In the absence of damage detection, for example, reparative processes would have to be initiated at random locations throughout a tissue. This is much less efficient than targeted self-healing, as has been demonstrated, for example, with respect to the elimination of fibrotic lesions from the lung parenchyma (Suki et al., 2007). Likewise, the availability of resources is obviously critical if damage is to be repaired at all, and the ability to turn off the anabolic processes involved in repair when they are no longer needed is essential if chronic remodeling and inflammatory pathologies are to be avoided. Evolution tends to favor efficiency, so it is not surprising that the above three features are exhibited ubiquitously throughout the animal kingdom.

Here we focus on the repair of damaged ECM, and how it might become deranged in chronic fibrotic disease and aging. The autonomous self-healing of damaged lung parenchyma requires that the intactness of the ECM be constantly assessed by migrating cells. When such cells detect ECM fragments they can either initiate wound healing directly (Tolg et al., 2014) or release chemotactic factors to attract inflammatory cells that orchestrate the digestion and removal of damaged tissue (Nakagawa et al., 1999). Fibroblasts must then be recruited and activated to lay down new ECM in order to replace the tissue that has been lost (Hartupee and Mann, 2016). Subsequent changes in cross-linking between protein fibers then serve to stabilize the mechanical structure of the new tissue (Rief et al., 1997; Thompson et al., 2001). The final step, recognizing when repair is complete, is the least well understood, but likely involves a highly elaborate cell-cell signaling scheme that brings the inflammatory cascade to an end (Nathan, 2002). These are all functions that require a large number of cells and their products to function as a cohesive system within which self-healing arises as an emergent property.

The goal of this study is to develop a mathematical model of homeostatic ECM maintenance that is minimal in the sense of representing the processes outlined above in a general sense without undue regard for their precise details. Our premise is that this will abstract the general dynamic processes involved in self-repair of tissue and then provide a platform for investigating its breakdown in aging and the pathogenesis of chronic fibrotic disease.



MODEL DESCRIPTION

We first develop a simple 2-dimensional non-linear representation of biological soft tissue characterized by a local state variable, tissue stiffness of the ECM, and an activity variable representing a single cell interacting with the ECM. We find the fixed point of this system and analyze its stability. We then implement the equations of this model in an elastic network mimicking the mechanical properties of a macroscopic section of tissue and populate the network with discrete agents representing the cells that take part in tissue repair. These agents carry out the self-healing maintenance program as they migrate over the network by modulating the mechanical properties of the network members. By maintaining the system under non-equilibrium conditions to represent a persistent insult to the tissue, and altering model parameter values from baseline to represent pathological processes, we demonstrate both how fibrosis can develop and how self-healing can degrade with aging.


A Non-linear Dynamic Model of Self-Healing

Consider a single agent at a fixed location on a sheet of tissue. The agent is characterized by a single state variable, a′, representing its activity level, while the patch of tissue upon which it sits is characterized by another state variable, k′, representing the local stiffness of the tissue. Both a′ and k′ are functions of time, t′.

We assume that cellular activity modulates tissue stiffness, which in turn regulates cellular activity, so

[image: image]

where f and g are continuously differentiable non-linear functions. In the special case that the agent does not significantly affect tissue properties, the stiffness will remain essentially constant, and we let the activity of an activated cell decay exponentially toward a steady-state baseline level of β with rate-constant α. That is,

[image: image]

The solution to Eq. 3 is

[image: image]

where W is a constant determined by the initial conditions. Note that as t′→∞, the solution approaches β at an exponential rate α, which is independent of W.

In the more general case, where the activation state of the agent does significantly affect tissue properties, we assume that the steady-state activation level, β, increases with the stiffness, k′. However, activation cannot increase indefinitely because it requires energy, whereas tissue stiffness is a passive property that is less constrained in this regard. We therefore let the dependence of activation on stiffness exhibit first-order saturation behavior according to

[image: image]

In other words, a′ depends linearly on k′ for small k′, but approaches the saturation level A as k′ becomes large. The parameter Q represents the value of stiffness at which activity is half its maximum value.

Next, we want Eq. 2 to account for the homeostatic mechanism of enzymatic digestion of excess collagen in the case that tissue stiffness becomes too large, and conversely to allow for collagen deposition when stiffness becomes abnormally low. We thus define g such that k′ decreases when activity increases above a threshold q′, and increases when activity decreases below q′. This can be achieved by including a partitioning term (a′−q′) in g so that g(a′,k′) = (a′−q′)h(k′). To retain analytic solvability, we make h(k′) as simple as possible by giving it a linear dependence on k′ such that h(k′) = −D′k′, where D′ is a constant. These considerations lead to the rate equation for k′ being

[image: image]

where the constant P′ is a production term that serves to prevent (0,0) from being a fixed point of the system.

We now introduce the dimensionless variables for time t = αt′, activity [image: image], and stiffness [image: image]. Eqs 4 and 5 then become
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Normalization also leads to a dimensionless digestion rate [image: image], production rate [image: image] and activity threshold [image: image], yielding the final system of model equations

[image: image]

From Eqs 6 and 7 it is easily seen that if P=0, the fixed points are a∗ = q,  [image: image]. This has the undesirable attribute that the fixed point does not depend on the digestion rate D, and can be avoided by requiring that P≠0. Obviously, the threshold q at which cellular activity switches from production to digestion of ECM and the rate-constant P for production of ECM must also both be positive. Eqs 6 and 7, together with these constraints, thus constitute our model of self-healing that accounts for interactions between the cells that maintain the ECM and the stiffness of the ECM itself.



Fixed Point and Its Stability

The fixed point of the system corresponds to the condition under which the left-hand sides of Eqs 6 and 7 are both zero. From Eq. 6, this gives [image: image], which when substituted into Eq. 7 gives a quadratic equation for k having the two solutions

[image: image]

Since all model parameters are positive, and q < 1 (since a is always between 0 and 1), we have that [image: image]. This means that the only physically realistic (i.e., positive) stiffness solution for the fixed point is
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The corresponding activity fixed point is

[image: image]

The stability of the fixed point is determined by the Jacobian [image: image]. The trace of this Jacobian is τ = −1−D(a−q) and the determinant is [image: image]. For stability, we need Δ > 0 and τ < 0 at the fixed point. The condition on Δ is that [image: image], which gives [image: image]. The condition on τ is that 1 + D(a−q) > 0, which gives

[image: image]

Substituting for a∗ from Eq. 9 into the condition on τ gives

[image: image]

By setting D < 1, the right-hand sides of both Eqs 10 and 11 become negative, which guarantees stability. We used Eqs 8 and 9 to study the sensitivity of the fixed point to variations in the values of the model parameters. For time domain analysis, Eqs 6 and 7 were integrated using the ode23 solver of Matlab (R2018a, MathWorks, Natick, MA, United States).



Computational Network Model

We implemented the analytic model on a computational network model of soft tissue. The network consisted of a hexagonal lattice of identical pre-stressed Hookean springs with fixed boundaries. At baseline (i.e., healthy), each spring had spring-constant k∗. Injury was simulated by setting the spring-constant of a single central spring to 2k∗. Self-healing of the network was simulated by placing a number of agents at random nodes (spring junctions) on the network and then allowing them to migrate from node to node with each time step, as in our previous model of pulmonary fibrosis (Wellman et al., 2018). Agent migration was either random or biased by local network stiffness. In the latter case, the probability of an agent moving to a given adjacent node was equal to the stiffness of the intervening spring as a fraction of the sum of the stiffnesses of all 3 springs impinging on the current node. The initial activities of all agents were set equal to a∗. At each subsequent time step, the activity level of every agent and the stiffness of any spring that an agent had just passed across were simultaneously updated according to Eqs 6 and 7, respectively.

The elastic equilibrium configuration of the network was computed after a pre-selected number of time steps by finding the node positions that minimized the total strain energy of the system using simulated annealing (Cavalcante et al., 2005). The stiffness of the network was obtained as the ratio of the change in average network stress when the network boundaries were varied biaxially by ±0.2%.



RESULTS

Based on preliminary simulations, we chose the baseline parameter values q = 0.2,D = 0.32 and P = 0.1, which resulted in a∗ = 0.50559 and k∗ = 1.022612. Examples of the time evolution of activity and stiffness in the baseline model as well as following a 4-fold change in each model parameter are shown in Figure 1 when the initial value of stiffness was set to [image: image] to represent tissue damage and 2k∗ to represent tissue scarring. In all cases activity asymptotes toward the fixed point, sometimes with a brief early excursion in the opposite direction. A 4-fold decrease in D shifted the fixed point by the same amount as a 4-fold increase in P; however, the approach toward the fixed point was slower in the low D case. Beyond the 100th time point each simulation was within 0.1% of the fixed point, consistent with a self-healing system. Interestingly, none of these time courses is exponential (Figure 1B inset) or a power law (not shown). Figure 2 shows how the fixed point varies with alterations in the model parameters. As D increases, both a∗ and k∗ decrease (panels A and D) whereas as P increases, a∗ exhibited a sigmoidal behavior and k∗ increased linearly on the log-log plot. When q was gradually increased, a∗ was constant first then approached unity while k∗ increased without a limit as q→1 in agreement with Eq. 8.


[image: image]

FIGURE 1. Time evolution of non-dimensionalized activity (A) and stiffness (B). Baseline model parameters in these simulations were q = 0.2, D = 0.32 and P = 0.1 (black) corresponding to the dimensionless variables activity threshold, digestion rate and production rate, respectively. Additional simulations with low D (blue), high P (green) and high q (red) are also shown. The initial conditions were set to the fixed point in activity and half (solid dotted line) or double (solid line) the value of the corresponding stiffness fixed point. The inset plots the stiffness decays on a logarithmic scale. The dimensional parameters α,A and Q were set to unity.



[image: image]

FIGURE 2. Fix points of activity (A–C) and stiffness (D–F) as a function of the 3 model parameters D (A,D), P (B,E), and q (C,F) corresponding to the dimensionless variables digestion rate, production rate, and activity threshold, respectively. Notice that stiffness is plotted on a double logarithmic scale.


Figure 3 illustrates the resolution of fibrotic injury in the network model. A single central spring was initialized to have k = 2k∗. A total of 64 agents were then allowed to migrate over the network, which consisted of 252 nodes and 345 springs, while Eqs 6 and 7 determined how the network member stiffness and agent activity evolved in time. At each time step the agents moved randomly to an adjacent node with a bias toward stepping over stiffer springs. By the 4th time step, two agents had visited the injury site where their activation levels became elevated. They then moved to neighboring sites and so raised the stiffness of the springs that they stepped over in the process. As this process continued, a “halo” of stiffer springs formed around the original injury site (time step 8). The halo grew initially (time step 32), but eventually resolved completely. The network model thus displays the property of self-healing. Figure 4A shows that the rate of self-healing increases with the number of agents involved in the healing process. Figure 4B compares the average activity of 250 agents and the corresponding stiffness decline of the single spring that had initial injury to the evolution of a and k predicted by the differential equation of the baseline model in Figure 1. Although the stiffness decline in the network is nearly identical to that of the differential equation, the average activity is very different. This is due to the large number of agents whose activity is still equal to the fixed point producing an average activity close to that of the fixed point. The inset, however, shows that the time course of the average activity is similar to that of the differential equation.
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FIGURE 3. Resolution of an injury modeled as a single spring with a high stiffness (red line element) at iteration time 0 indicated in the top left corner. As unactivated agents (gray circles) visit the injury site, they become active (red circles at time 4) and after stepping off the injury site, they also stiffen the neighborhood creating a halo (defined as the set of spring with stiffess 0.1% higher than the fixed point) around the original injury site (time 8). Notice a yellow, a green, a red and several gray agents on or around the halo. Over the course of more time steps, the halo first increases (time 32), then gradually shrinks (time 128) and at time 256 there is only one network member left with a stiffness slightly higher than the fixed point. Eventually all members reach the fixed point. Colors from blue to red denote increasing agent activity and member stiffness. Gray members and agents represent fixed point values.
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FIGURE 4. (A) Time course of stiffness decay of the central spring for several values of the number of agents in the network. (B) Comparison of the time course of the activity and stiffness of the network with 250 agents to that of the differential equation. For the network, the average agent activity is plotted. The inset shows a magnified region of the activity of the network.


Next, we examined how the stiffness-biased agent migration and the presence of a temporary halo around an injury site influence the rate of self-healing. Figure 5A shows that the stiffness decay toward the fixed point produced by the pure random walk model (blue line) is significantly slower than that of the stiffness-biased walk (green line). We then eliminated halo formation by removing the ability of agents to modify spring stiffnesses, and instead imposing on the model the same stiffness decline in the central spring obtained from the pure random walk, while still updating agent activity at each time step. Figure 5B shows that activity was highest early on but then declined most rapidly with both stiffness-biased migration and the halo (green line), whereas the slowest decline is obtained with the pure random walk without a halo. To investigate the dynamics of halo formation, we repeated the stiffness-biased and pure random walk simulations 2,000 times and tracked halo size (defined as the number of springs for which k > 1.001k∗) in each simulation (Figure 6). Halo size increased initially to a peak value after which it slowly decreased for both the biased and random walks. However, the stiffness-biased walk reached the peak sooner and the halo also disappeared faster (the difference between the random and biased walks is highly statistically significant, p < 10–7). As more agents were working on the network, the curves shifted to the left completing the self-healing sooner. Figure 6B also demonstrates that the recovery phase is not a single exponential, and that increasing the number of agents yields faster halo resolution with less difference between random and biased walks.


[image: image]

FIGURE 5. (A) Stiffness decay of the central spring for 3 different models: halo formation allowed during pure random walk (blue), halo formation prohibited during pure random walk (red) and halo formation together with stiffness-biased random walk (green). (B) Average activity of 64 agents during the same simulations as in panel (A). The activities were smoothed with a running average filter.
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FIGURE 6. Evolution of the halo cluster size relative to the size of the network given in percent for the stiffness-biased (b: solid lines) and pure random (r: dotted lines) walks. Different colors represent different number of agents within the network. There is a statistically significant difference between the biased and random curves everywhere except the for smallest random walk step number. Panel (A) shows the random walk steps on log scale and panel (B) shows the halo size on log scale after the peak.


To investigate how maintaining the system under sustained non-equilibrium conditions affects self-healing, agent activity was set to 0 (representing a highly active agent) after every second time step in the baseline model. Agents performed both a stiffness-biased or a purely random walk and the overall network stiffness as well as the mean and standard deviation (SD) of the individual spring stiffnesses were recorded. Figure 7 demonstrates that the biased random walk increased network as well as average member stiffness at a faster rate than the pure random walk. Comparing panels C and F in Figure 7, it is evident that the heterogeneity of the network is also noticeably higher in the stiffness-biased random walk model. Thus, the network model under sustained non-equilibrium conditions develops heterogeneously increased stiffness consistent with progressive fibrosis.


[image: image]

FIGURE 7. (A–F) Network configurations during simulations using the self-healing model on the network while agent activity was set to 0 after every second iteration. Top (A–C) and bottom (D–F) rows show networks in which agent walk was stiffness biased or pure random, respectively. Gray network members have normal stiffness of ∼1. Colors from blue to red indicate increasingly stiffer springs. (G) Network stiffness as a function of iteration number which represents time for stiffness-biased (blue) and pure random (red) walks. (H) Mean and SD of spring stiffnesses for stiffness-biased (blue) and pure random (red) walks.


Finally, the behavior of our network model has implications for healing in the context of aging, which is associated with increased tissue stiffness, weakened interaction between cells and tissues, reduced cell migration speed, and most importantly a reduction in the rate of self-healing in response to injury. To account for these features, we first increase the stiffness fixed point to k∗ = 2. From Eq. 9 we obtain [image: image] which shifts the transition from ECM production to digestion to a higher level of agent activity. Setting the left-hand side of Eq. 7 to zero and using [image: image] leads to [image: image]. Finally, substituting these into Eq. 7 and setting the left-hand side to zero results in [image: image]. According to Figure 1, lowering D slows the approach to the fixed point. Thus, we set D = 0.08 and from [image: image], P = 0.0427, which guarantees no change in the fixed point. Using these parameters as a model of aging, we find significant changes in the halo dynamics (Figure 8A): compared to baseline, the halo reaches a larger cluster size with a peak that is delayed as computed from 2,000 repetitions of each random walk. Furthermore, elimination of the initial injury takes almost 10 times longer compared to baseline as the stiffness of the network also relaxes much slower in the aging model (Figure 8B). The total network stiffness computed from 20 repetitions is also sensitive to the type of random walk, demonstrating that the stiffness-biased walk further stretches out the self-healing time.
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FIGURE 8. Comparison of the dynamics of network properties in the baseline and the aging models following an initial injury of setting a single spring constant to a value twice the fixed point. (A) Evolution of the halo size relative to the size of the network given in percent for the stiffness-biased (b: solid lines) and pure random (r: dotted lines) walks for the baseline (BL, black) and aging (red) models. (B) Relaxation of network stiffness normalized to the value after the injury has been removed. Notice that the magnitude of the network stiffness barely increases beyond the equilibrium value because less than 4% of the network members are affected by the halo.




DISCUSSION

Recent advances in network theory and computational modeling have provided much insight into the two-way communication between sub-cellular, inter-cellular and integrated organ level mechanisms in physiological systems both in health and disease (Ivanov et al., 2016). The aim of this study was to investigate whether a computational model of cells communicating with their surrounding ECM network is capable of exhibiting behavior consistent with biological self-healing. We are not the first to attempt this, but previous studies have tended to focus on specific underlying processes or mechanisms (Huiskes et al., 2000; Taylor and Lee, 2003; Verberg et al., 2007; Bosia et al., 2014; Quattrociocchi et al., 2014; Shang, 2015), whereas our goal is to abstract the general principles of self-healing in their simplest form. To this end, we formulated an analytic model of the essential feedback process required for self-healing, and implemented it computationally in an elastic network representing the ECM of biological tissues. Our main findings are that: (1) properties of self-healing can be exhibited by dynamic non-linear interactions between only two variables, (2) when these interactions are incorporated into a spatially distributed network model of the ECM that is imbued with mobile agents, a halo of activity forms around a site of injury that attracts the agents and accelerates self-healing, (3) under sustained non-equilibrium conditions, the network model loses its capacity for complete self-healing and displays features of chronic progressive fibrosis, and (4) altering the strength of the interactions between agents and the network mimics the reduced rate of self-healing associated with aging.

We have identified three key attributes of a self-healing biological system, namely (1) automatic instigation of local reparative processes in response to injury, (2) sufficient material and energy reserves to complete the repair, and (3) cessation of the self-healing process when injury is resolved. The initiation of repair is inherent in the existence of the stable fixed point exhibited by Eqs 6 and 7, which causes the system to embark on a trajectory back toward “normality” when forced out of equilibrium (Figure 1). The availability of resources is not immediately evident from Eqs 6 and 7. In biology, a homeostatic fixed point (e.g., the stiffness of the skin or lung tissue) is an unlikely condition and according to the second law of thermodynamics, the order associated with the fixed point cannot be maintained unless external energy is utilized in the form of active maintenance. This, however, is not directly implemented in the model equations. Nevertheless, the equations represent a dissipative system due to the asymptotic approach toward the fixed point (Figure 1). Hence, the energy input associated with a given initial condition is dissipated during the return to the fixed point. Finally, the stability of the fixed point guarantees that reparative processes asymptotically approach zero as the system approaches its baseline equilibrium state. Of course, homeostasis in a real biological system is characterized by fluctuations within a local region of state space (Suki et al., 2020), so the single fixed point in our model corresponds to being within this region. Therefore, within the limitations imposed by its extreme simplicity, the dynamical system described by Eqs 6 and 7 displays the key features of self-healing.

Self-healing over the spatial extent of the network implementation of the model (Figure 3), requires that agents are able to reach every node of the network. If the agents are stationary, then a large number of agents is required so that an agent can be positioned ready to act at every node. Economically, this would require a large chunk of the total energy available for an organism. Far fewer agents are required if they have the ability to move around in the network, particularly if their movements can be directed to sites where agent activity is required. Nature’s solution to this question is to have key reparative cells, such as fibroblasts, continually migrating around within a tissue, and to be responsive to gradients in appropriate chemical or biological signals so as to home toward sites of injury. Accordingly, we implemented repair in our network model via a relatively small number of mobile agents whose behavior (their activity and preferential directions of movement) is influenced by the nature of the network (its local stiffness). The rate of repair of a damaged network depends, not surprisingly, on the concentration of the agents (Figure 4A). The dynamics of self-healing become similar to those of Eqs 6 and 7 as the number of agents approaches the number of nodes in the network (Figure 4B), but at lower agent concentrations we see the emergence of a new spatiotemporal phenomenon resulting from agent-network interactions. These interactions also allow agents to indirectly influence each other’s behavior; if an activated agent increases the stiffness of a given spring by passing over it, when this spring is subsequently visited by a second agent the activation level of the second agent will also increase. In other words, agent-agent communication emerges from spatial interactions of individual agents with the underlying ECM network. Furthermore, this communication causes the changes in ECM stiffness to become spatially correlated, giving rise to the halo effect (Figure 4), as agents carry information about local stiffness to surrounding regions. Intriguingly, this emergent behavior results in more efficient self-healing (Figure 5).

The halo effect (Figure 3) is reminiscent of how a physiological state is related to the underlying network dynamics (Bashan et al., 2012). Specifically, the halo describes the spatiotemporal evolution of inflammation that first grows around an initial injury site and then decays away as healing approaches completion. The same dynamics are evident in the halo (Figure 6). These dynamics coincide with the time decay of the injury itself (Figure 5A), and are significantly affected by cell-ECM interactions. For example, if the agents adhere to a stiffness-biased random walk, the spread of the halo peaks sooner, and both the halo and the initial injury resolve more quickly compared when there are no cell-ECM interactions in the case of a pure random walk (Figure 6A). Interestingly, when the time variation of halo size is plotted on a time scale normalized by the inverse of agent numbers, the halo dynamics become nearly independent of agent numbers (Figure 6B). The dynamics therefore result from the rate of local self-healing characterized by how fast the system approaches the fixed point relative to the speed of agent migration.

The existence of the halo demonstrates that our model exhibits a process known as durotaxis in which directed migration of cells is influenced by substrate stiffness (Lo et al., 2000). Our model results further demonstrate that durotaxis contributes to the efficiency of self-healing (Figure 5), suggestive of its evolutionary advantages. However, simulating sustained exposure to a noxious stimulus in the face of impaired reparative function (by periodically setting agent activity to zero representing highly active agents) prevents the network model from returning to equilibration after injury. Furthermore, durotaxis accelerates aberrant tissue remodeling (fibrosis formation) by providing a positive feedback through which cells preferentially migrate to stiffer members, which in turn increases the overall stiffness of halos. Indeed, comparing the images in Figures 7C,F, it is evident that durotaxis increases stiffness in the neighborhood of hot spots (red-colored members), which leads to a higher overall network stiffness.

The structural alterations that take place in fibrotic tissue reflect both excess collagen deposition (Kirk et al., 1986) and enhanced cross-linking (Reiser et al., 1986). Of these, dysregulated collagen cross-linking resulting in structurally and functionally abnormal collagen fibrils may bear most of the responsibility for the elevated stiffness seen in fibrosis (Jones et al., 2018). Imbalances in anabolic and catabolic processes are also a fact, however. For example, matrix metalloproteinase-1 (MMP-1), the key enzyme responsible for collagen digestion, was found to be significantly decreased and its inhibitor increased in a rat model of pulmonary fibrosis (Hu et al., 2015). These pathological changes can be represented in our network model by reducing D and increasing P, both of which elevate the fixed point in stiffness (Figure 1). In contrast, having agents perform a stiffness-biased random walk, to mimic how fibroblasts are activated on stiffer ECM (Asano et al., 2017) with a directionality toward stiffer regions (Lo et al., 2000), alters the dynamics of self-healing but not the value of the fixed point. These dynamics are accelerated during repair of a single isolated injury (Figure 6), but also accelerate the formation of chronic fibrosis in the face of a chronic insult (Figures 7G,H). We recently used an agent-based model to show that cell-ECM interactions can give rise to the characteristic honeycomb features seen in the lung periphery in pulmonary fibrosis (Wellman et al., 2018). The model of the current study complements this finding by showing that cell-ECM interactions can also contribute to the development of fibrosis in the presence of misguided self-healing due to the sustained application of non-equilibrium forces by an environmental insult.

Finally, our model also suggests insights related to the changing self-healing of biological tissue as an organism ages. When the parameter q is increased to reflect an elevation in the threshold at which agent activity switches between production and digestion, the stiffness fixed point increases and the rate of self-healing decreases. The same effect occurs when either the ECM digestion rate (D) or production rate (P, not shown) are reduced from their baseline values (Figure 1). The corresponding halo dynamics are distinctly different from the baseline (Figure 8A) suggesting that changes in internal signaling affect the spatial extent of the inflammatory response to injury as well as its resolution (Figure 8B). Reductions in D and P are biologically consistent with aging. For example, both the turnover of collagen (Pierce et al., 1967; Mays et al., 1991) and the activity of lysyl oxidase, a key extracellular enzyme in collagen and elastin processing, decrease with age (Poole et al., 1985). Additionally, β1 integrin, which plays a key role in ECM stiffness sensing (Gershlak and Black, 2015), is downregulated in aged human skin (Giangreco et al., 2010). Since integrins physically link cells to the ECM in order to allow bi-directional signaling (Hynes, 2002), the loss of integrins can be interpreted as decoupling the cell from the ECM in aging. In our model, ECM sensing by cells is represented by the stiffness-biased random walk of the agents. When this sensing is reduced in the model, the halo size further increases (Figure 8A) and the rate of self-healing becomes slightly slower (Figure 8B).

The simple model presented here has many limitations. First, the differential equations (Eqs 6 and 7) neglect all intracellular structures and processes as well as different cell types. Indeed, stable two-cell systems including macrophages and fibroblasts displaying cell-cell contacts are essential to homeostasis (Zhou et al., 2018). Our model utilized a single effective agent and we focused on its interaction with the ECM. The various cytokines and cell types of the immune system are known to contribute to self-healing locally (Brazzola et al., 2003; Anand and Tiwary, 2010; de-Campos et al., 2010; Wang et al., 2013) and to wound healing (Wilson et al., 2001). These responses are implicitly lumped together in our model as the single agent activity level, but this precludes the possibility of representing the individual relative roles of the different players, many of which can significantly modulate the time course of the healing process (Ohshima and Sato, 1998; Kato et al., 2011). Also, the network model is only a 2-dimensional system without the spatial heterogeneity of structure that is characteristic of real tissues, nor does it contain ancillary structures such as airways that can contribute to pulmonary fibrosis (Miller et al., 2019). Specific bond ruptures and physical self-healing by reforming bonds in the network, as in cross-linked nanogels, have been neglected (Duki et al., 2011). Although a previous model of chondrocytes included cellular random walk, cell behavior was not connected to tissue healing (Vaca-Gonzalez et al., 2017). In the present study, the interaction between the ECM and the cells is also greatly simplified. For example, although we allowed for durotaxis, no intracellular mechanisms are associated with it, and cellular migration itself is either purely random or biased walk based on only the single factor of stiffness. The processes associated with aging are also extremely complex. For example, aging may slow or completely block cell migration following injury (Moraga et al., 2015), which may further slow the self-healing dynamics, yet we considered only the removal of bias from cell migration as a consequence of aging in our model. Finally, in aiming to develop the simplest possible conceptual model capable of capturing the essence of self-healing, we have limited ourselves to a dynamic system with only a single fixed point. An interesting, but somewhat more complicated possibility for aberrant healing arises in systems with more than one fixed point in which an interaction with the environment may potentially push the system into the basin of attraction of a different attractor that represents chronic disease (Anafi and Bates, 2010). In the context of a two-cell system including macrophages and myofibroblasts, bi-stability of the circuit can help explain how stimulus magnitude, duration and its repetitive nature leads to fibrosis (Adler et al., 2020). While our analytic model neglects these details, the network approach allows us to explore the spatial aspects of the healing or fibrosis dynamics. Future work should investigate how a more detailed network-agent model is able to account for the specific cellular and macroscopic features of the tissue during the evolution of self-healing.

In conclusion, we have developed a computational model that exhibits three key properties necessary for successful self-healing. The model includes the non-linear interactions between two essential variables, agent activity and stiffness, imposed on a distributed elastic network. The model recapitulates the growth and resolution of inflammation and repair around a site of tissue injury, and shows how misguided self-healing leading to fibrosis can arise in the presence of a persistent external irritant, and how factors related to aging can impair and retard the healing process.
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Neuroendocrine axes display a remarkable diversity of dynamic signaling processes relaying information between the brain, endocrine glands, and peripheral target tissues. These dynamic processes include oscillations, elastic responses to perturbations, and plastic long term changes observed from the cellular to the systems level. While small transient dynamic changes can be considered physiological, larger and longer disruptions are common in pathological scenarios involving more than one neuroendocrine axes, suggesting that a robust control of hormone dynamics would require the coordination of multiple neuroendocrine clocks. The idea of apparently different axes being in fact exquisitely intertwined through neuroendocrine signals can be investigated in the regulation of stress and fertility. The stress response and the reproductive cycle are controlled by the Hypothalamic-Pituitary-Adrenal (HPA) axis and the Hypothalamic-Pituitary-Gonadal (HPG) axis, respectively. Despite the evidence surrounding the effects of stress on fertility, as well as of the reproductive cycle on stress hormone dynamics, there is a limited understanding on how perturbations in one neuroendocrine axis propagate to the other. We hypothesize that the links between stress and fertility can be better understood by considering the HPA and HPG axes as coupled systems. In this manuscript, we investigate neuroendocrine rhythms associated to the stress response and reproduction by mathematically modeling the HPA and HPG axes as a network of interlocked oscillators. We postulate a network architecture based on physiological data and use the model to predict responses to stress perturbations under different hormonal contexts: normal physiological, gonadectomy, hormone replacement with estradiol or corticosterone (CORT), and high excess CORT (hiCORT) similar to hypercortisolism in humans. We validate our model predictions against experiments in rodents, and show how the dynamic responses of these endocrine axes are consistent with our postulated network architecture. Importantly, our model also predicts the conditions that ensure robustness of fertility to stress perturbations, and how chronodisruptions in glucocorticoid hormones can affect the reproductive axis' ability to withstand stress. This insight is key to understand how chronodisruption leads to disease, and to design interventions to restore normal rhythmicity and health.

Keywords: CORT, fertility, GnRH pulse generator, glucocorticoids, hypercortisolism, KNDy network, stress, mathematical model


1. INTRODUCTION

A robust dynamic interplay between body rhythms is essential to sustain healthy states. This requires the coordination of several regulatory systems spanning multiple levels of organization, from molecular, to cellular, to the whole organism. Network physiology approaches employ analytical tools, such as mathematical modeling to investigate the interactions between organs and their integration into physiological systems. Neuroendocrine axes are the perfect example of such interlocked-regulatory systems controlling body rhythms, with the brain decoding circadian and stress inputs as well as integrating feedback signals from endocrine organs. The hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis are the major neuroendocrine systems underpinning stress and fertility, respectively. These axes control a range of hormonal and neural activity rhythms exhibiting ultradian (<24 h), circadian (~24 h) and infradian (>24 h) periodicity (Walker J. et al., 2010), as well as responses to environmental, biological and behavioral perturbations. For example, the HPA axis uses feedback control to regulate stress responses while sustaining ultradian and circadian glucocorticoid (CORT) rhythms (Walker J. J. et al., 2010; Spiga et al., 2017). On the other hand, the HPG axis controls infradian oscillations of reproductive hormones secreted in response to changes in the ultradian frequency of gonadotropin-releasing hormone (GnRH). GnRH secretion is controlled by a hypothalamic pulse generator (PG) (Voliotis et al., 2019), which is in turn modulated by gonadal hormones (Figure 1A). Mathematical modeling has significantly contributed to our understanding of this rhythmic behavior (Zavala et al., 2019; Clément et al., 2020), as well as the ability of these systems to respond to perturbations (Spiga et al., 2017). For instance, a mathematical model of rhythmic HPA axis activity has been introduced in Walker J. J. et al. (2010). In this model, ultradian CORT pulsatility is generated by a pituitary-adrenal feedback loop. The model predicts that, in contrast to the reproductive axis, in the stress axis the hypothalamus only needs to provide circadian amplitude modulation of ultradian CORT pulses to explain experimental observations (Walker et al., 2012). Regarding the HPG axis, a combination of mathematical modeling and experimental physiology has shown how the hypothalamic kisspeptin neuronal network generates and sustains pulsatile LH secretion (Voliotis et al., 2019). More recently, a generalized integrate and fire model has been postulated as a simple mechanism to generate a range of rhythmic neuroendocrine signals (Churilov et al., 2020).


[image: Figure 1]
FIGURE 1. Pictorial representation of the model. (A) Physiological model of the stress and reproductive neuroendocrine axes controlling ultradian, circadian, and infradian hormone oscillations. Includes the KNDy neuronal network controlling the GnRH pulse generator. Adapted from Zavala et al. (2019). (B) Network model of the systems-level cross-regulation between glucocorticoid (CORT) rhythms, the hypothalamic GnRH pulse generator and the estrous cycle, subject to stress and circadian inputs. Includes a mean-field model of the KNDy network from Voliotis et al. (2019).


Most of the evidence on the dynamic interactions between the HPA and HPG axes comes from animal studies (Acevedo-Rodriguez et al., 2018; McCosh et al., 2019). For example, experiments in ovariectomized rats show a reduction in circadian levels of CORT, which is restored to physiological levels with estradiol administration (Seale et al., 2004a,b, 2005a,b). Data from rodents also shows how physiological and psychosocial stressors can temporarily disrupt GnRH pulse generator activity. These stressors range from isolation and restrain, to insulin induced hypoglycemia and high exogenous CORT, with evidence suggesting the involvement of kisspeptin neuron activity (Li X. F. et al., 2004; Luo et al., 2016; Yang et al., 2017; Ayrout et al., 2019; Kreisman et al., 2019). Further studies in macaque have shed light on the sensitivity and resilience of the reproductive axis to stress signals (Herod et al., 2011a,b). Human studies have also highlighted the profound effect of glucocorticoid excess on the menstrual cycle (Ding et al., 1988; Suh et al., 1988; Saketos et al., 1993; Crofford et al., 1999). However, there is still a limited understanding of whether and how the HPA and HPG axes coordinate their hormone rhythms, how perturbations to one axis impact upon the other, what makes their dynamics robust to such perturbations, and in what circumstances chrono-disruptions can lead to disease.

In this manuscript, we investigate the dynamic control of stress and fertility by means of a mathematical model that accounts for the complex interactions between the HPA and HPG axes. First, we postulate that these neuroendocrine systems behave as a network of coupled oscillators that coordinate ultradian, circadian and infradian rhythms, and validate the model predictions against published physiological observations in female rodents. Second, we consider the evidence on stress-induced suppression of GnRH pulse generator activity dependent of estradiol, and use the model to understand the role of estradiol-dependent effects on the HPA axis (Seale et al., 2004b; Phumsatitpong and Moenter, 2018). We also simulate the simultaneous effect of exogenous estradiol and glucocorticoids on the dynamics of the GnRH pulse generator (Kreisman et al., 2019). Third, we use the model to explore how perturbations, such as stressors and chronic changes in gonadal steroids and glucocorticoid levels can disrupt normal rhythmicity and lead to dysregulations that propagate from one neuroendocrine system to the other. To do so, we consider typical restraint stress signals (Li X. et al., 2004) to brain regions that are connected to the hypothalamus, thus affecting both the HPA and HPG axes (Li et al., 2005; Herod et al., 2011b). Importantly, our model considers the signaling role of regulatory neuropeptides (e.g., Neurokinin-B and Dynorphin) within the KNDy neural network in stress-induced suppression of the GnRH pulse generator (Lehman et al., 2010; Grachev et al., 2014; Voliotis et al., 2019), which has implications for our understanding of how stress signals are decoded by the reproductive axis. Lastly, we predict an increase of the estrous cycle length under hiCORT and discuss how our model can help understand the mechanisms allowing robust control of ovulation despite the effect of stressors.



2. MODEL AND METHODS


2.1. Mathematical Modeling

We focus on the systems-level outputs and cross-regulation of the stress and reproductive axes, which in turn we model as a network of coupled oscillators (Figure 1B). We modeled this through a system of Ordinary Differential Equations (ODEs), where each oscillator represents an aspect of neuroendocrine rhythmic activity that can be characterized by a phase φ, a frequency ω, and an amplitude A. Our model consists of a master circadian oscillator in the hypothalamus, a glucocorticoid (CORT) oscillator with ultradian rhythmicity driven by the circadian oscillator, a pulse generator oscillator governed by the Kisspeptin, Neurokinin B, Dynorphin (KNDy) network regulating pulses of GnRH secretion, and an oscillator representing the estrous cycle. The equations for these oscillators are listed below, with coupling functions, parameter values, and further details of the model development described in the Supplementary Material.


2.1.1. Circadian Cycle

A fixed period hypothalamic oscillator to control the circadian rhythm of CORT:

[image: image]

where φH is the hypothalamic phase and ωH0 is the natural frequency of the hypothalamic circadian drive.



2.1.2. CORT Oscillator

Accounts for CORT ultradian oscillations originating from the pituitary-adrenal feedback loop (Walker J. J. et al., 2010). Its dynamics can be affected by stressors, exogenous CORT, and the estrous cycle. The phase φC is given by:

[image: image]

where ωC0 is the natural frequency of CORT ultradian oscillations, s(φH) is a function accounting for a transient acute stressor (equal to zero in the absence of stress), and α is a scaling factor accounting for how strongly such stressor temporarily disrupts CORT ultradian rhythmicity. The amplitude AC is given by:

[image: image]

where fH(φH) is a function representing hypothalamic circadian modulation. AE is the amplitude of the estrous cycle (representative of the level of sex steroids) which modulates AC through a Hill type function with coefficient n and half-maximum constant KE.



2.1.3. Pulse Generator

Accounts for the activity of the GnRH pulse generator. Its frequency is modulated by stressors, CORT levels, and the activity of the KNDy network (Voliotis et al., 2019), which is in turn influenced by the phase of the estrous cycle. The phase φPG is given by:

[image: image]

where ωPG denotes the varying frequency of the pulse generator. This is given by:

[image: image]

where ωPGm is the maximum frequency of the pulse generator and [image: image] is a function accounting for the regulation from the KNDy network and CORT. Equations for the excitatory (N; e.g., Neurokinin B and glutamate) and inhibitory (D; e.g., Dynorphin) signals regulating the frequency of the KNDy network, and the slow genomic CORT effects ([image: image]) are given in the Supplementary Material.



2.1.4. Estrous Cycle

Accounts for the activity of the reproductive cycle. The phase φE is given by:

[image: image]

where fPG(ωPG) is a function accounting for the effects of the pulse generator and ωEm is the maximum frequency of the estrous cycle. The amplitude AE is given by:

[image: image]

where ε is the basal activity of the estrous cycle, fE(φE) is a function representing the effects of the estrous cycle, and β is a scaling factor accounting for the strength of such effects.




2.2. Computer Simulations and Parameter Estimation

To simplify our analysis, CORT oscillations were normalized to the maximum levels observed in physiological conditions. That is, the CORT amplitude, which is modulated by the circadian drive, spans the range between 0 and 1 unless stressors or exogenous CORT act upon it. Similarly, the activity of the PG was represented by normalized oscillations, with a frequency that changes periodically according to the different stages of the estrous cycle.

For the scenarios in sections 3.2 and 3.3, we model the estrous cycle regulation of its amplitude and its effects on the KNDy network through a skewed sinusoidal function of the phase φE. This is given by:

[image: image]

where σ is the skewness of the estrous cycle. We fix fE(φE) to a constant value to simulate the OVX and OVX + E2 scenarios (Seale et al., 2004b; Kreisman et al., 2019). Note that in those cases, parameters ε and β in the equation for AE also need to change as indicated in Supplementary Table 3 to reflect estrous activity expected in the diestrus and proestrus phase.

The model equations were numerically solved and analyzed in MATLAB R2020a using ode45 routines. Details of the mathematical model development and parameter values are described in the Supplementary Material. The model parameters were estimated from the literature where available and manually calibrated to reproduce experimental observations of CORT and reproductive rhythms in rodents.

No new data involving animal or human subjects is presented in this paper.




3. RESULTS


3.1. Normal Physiological HPA and HPG Rhythms

We calibrate the model parameters to reproduce physiological HPA and HPG rhythms observed in rats (Walker J. et al., 2010). Accordingly, our model simulates CORT oscillations with a 75 min period, while the amplitude of these ultradian pulses is modulated in a circadian manner, reaching a maximum at the start of the dark period (Figure 2A). Furthermore, one full estrous cycle lasts ~4 days, matching the average cycle length measured in rats (McClintock, 1984). A recent study using fiber photometry calcium imaging from arcuate kisspeptin neurons in mice revealed the dynamic modulation of GnRH pulse frequency along the estrous cycle (McQuillan et al., 2019). Following these findings, the activity of the PG in the model remains inhibited (below 1 pulse/h) during the post-ovulatory, estrous phase, rises steeply at the start of metestrus, and levels off at 2 pulses/h for the rest of the cycle (Figure 2B).


[image: Figure 2]
FIGURE 2. The model reproduces physiological rhythms in the HPA and HPG axis. (A) Normalized CORT levels as a function of time. The light-dark cycle is represented with intermittent black bars on the top. (B) Normalized pulse generator activity (blue) and pulse generator frequency (red) as a function of time. The phases of the estrous cycle are marked on the top: estrus (E); metestrus (M); diestrus (D); and proestrus (P).




3.2. Recovery of CORT Dynamics Following Ovariectomy

Previous findings suggest that gonadal steroids are integral to the increased CORT levels seen in females compared to males. This has been demonstrated by showing the effects of estrogen replacement in recovering physiological CORT levels following ovariectomy in rats (Seale et al., 2004b). We investigate the dynamic effects of these hormones by simulating the inhibition of HPA axis activity resulting from ovariectomy (OVX) and its restitution following 17β-estradiol (E2) replacement. In the model, this is achieved by replacing the influx term in the right hand side of Equation (7) by a constant term representing a drop in E2 levels following OVX (causing AE to drop down to a constant level of 2% from the estrous peak) and by replacing the periodic sensitivity of the KNDy network to the estrous phase by a constant low value (Supplementary Material). The model predicts a drop in CORT levels down to ~30% from its physiological value without loss of circadian or ultradian CORT rhythmicity while keeping the PG frequency at a high constant value of 2 pulses/h (Figure 3A). We then simulated the effects of an E2 pellet on OVX rats by increasing the constant value of the influx term in the right hand side of Equation (7) (98% from physiological AE) and increasing the sensitivity of the KNDy network to the estrous phase (φE) by a constant value (Supplementary Material). In agreement with Seale et al. (2004b), the model predicts recovery of physiological CORT levels without loss of circadian or ultradian CORT rhythmicity while marginally reducing the PG frequency just below 2 pulses/h (Figure 3B).


[image: Figure 3]
FIGURE 3. The model explains how E2 replacement recovers physiological CORT levels in OVX rats. (A) Simulated OVX reduced CORT oscillations down to ~30% of the maximum physiological levels while keeping a constant high PG activity. (B) Simulated OVX + E2 recovered CORT oscillations to physiological levels while keeping a constant high PG activity.




3.3. Estradiol-Mediated Inhibition of HPG Dynamics by High CORT Doses

In a recent study, Kreisman et al. (2019) investigated the effect of chronic CORT administration on LH pulsatility and demonstrated the importance of gonadal steroid hormones in mediating the inhibitory effect of CORT on the HPG axis. The study showed that a pellet delivering a high dose of CORT over 48 h in OVX mice has no effect on LH pulsatility, whereas a significant reduction of LH pulse frequency is observed in OVX animals treated with a 17β-estradiol silastic implant (OVX + E2). In our model, we accounted for the OVX and OVX + E2 scenarios as described in the previous section, while the constantly high CORT levels were achieved by replacing the effective CORT levels modulating the KNDy network by a constant high value estimated from Kreisman et al. (2019) (see Supplementary Material).

Figure 4 illustrates the differential effect of chronically elevated CORT levels on the GnRH pulse generator frequency in OVX vs. OVX + E2 animals. In the case of OVX animals, elevated CORT levels do not alter the frequency of the pulse generator, whereas in OVX animals treated with estradiol the frequency is halved for as long as CORT levels are elevated. This effect is linked to the modulation of the GnRH pulse generator by gonadal steroids, which sensitize the system to inhibitory signals, such as CORT or acute stressors as we show below (Figure 4B).


[image: Figure 4]
FIGURE 4. The model reproduces estradiol-mediated inhibition of PG activity following high doses of CORT. (A) High exogenous CORT over 48 h does not affect the PG dynamics in OVX mice. (B) In the presence of estradiol, high CORT doses temporarily reduce PG activity in OVX mice.




3.4. Acute Stress Effects on the HPA and HPG Axes Depend on the Estrous Cycle Phase

To study the effect of acute stress on the dynamics of the HPA and HPG axes, we extend the model to include transient stress-related neuronal inputs affecting both axes (Yang et al., 2017). In our model, we account for these transient inputs by simulating a 2 h square pulse of amplitude 1, equivalent to a restraint stressor causing a CORT increase from its circadian nadir up to its circadian peak (Kitchener et al., 2004). The stressor affects the phase and amplitude of the CORT rhythm (function s(φH) in Equations 2 and 3) as well as the frequency of the GnRH pulse generator (function [image: image] in Equation 5 and Supplementary Material).

Figures 5A,B illustrate the effect that 2 h of stress activation has on the dynamics of the HPA and HPG axes when applied at different times along the cycle. Both CORT and GnRH pulse generator responses are dependent on the timing of the input pulse (Figure 5C). The amplitude of the CORT response shows a circadian dependency with stressors delivered during the circadian peak eliciting a stronger response. The GnRH pulse generator frequency response to acute stressors depends on the phase of the estrous cycle. In particular, the frequency of the pulse generator appears most sensitive to stressors during estrus to early diestrus phases, with little or no effect during the mid-cycle phase. This differential effect of acute stress on the frequency of the GnRH pulse generator activity highlights the cycle dependent modulation of the pulse generator dynamics, which makes the pulse generator more robust to perturbations in the diestrus and proestrus phases (Figure 5D).


[image: Figure 5]
FIGURE 5. The effect of acute stress on the dynamics of the HPA and HPG axes. (A,B) CORT levels and PG activity in response to a transient (2 h long) stressor initiated at two different times. (C) Peak CORT levels (black line) and mean PG frequency (continuous red line) elicited by a 2 h long acute stressor as a function of the time at which the stressor arrives during the estrous cycle. The PG frequency without any stress perturbation is shown for comparison (dashed red line). (D) State space diagram describing the effect of acute stress on the dynamics of the pulse generator. Points mark different stages along the estrus cycle: estrus midpoint (E); metestrus midpoint (M); and diestrus midpoint (D). The shaded gray area denotes the region of the state space corresponding to frequencies above 1 pulse/h under normal physiological conditions. Acute stress shrinks this region (red shaded area), but the dynamics of the pulse generator maintains robustness to perturbations during the diestrus phase.




3.5. CORT Excess Increases the Length of the Estrous Cycle and Modulates Responses to Acute Stressors

Last, we used the model to predict the effects of high excess CORT (hiCORT) —mimicking levels expected to be observed in people with hypercortisolism—on the estrous cycle. To do this, we considered the increase in baseline and maximum CORT amplitude with respect to physiological levels in humans (Vagnucci, 1979) and implemented the equivalent increase ratios for our simulations of CORT dynamics in rodents (Supplementary Material). Evidence from high frequency sampling in humans shows hypercortisolism is associated with a reduction in the ultradian period of CORT oscillations (Van Aken et al., 2005). Accordingly, we also adjusted this parameter when modeling hiCORT, while keeping circadian oscillations and all other parameters unchanged. Our simulations predict an increase in the period of the estrous cycle from a physiological value of Tphys = 4.2 days up to ThiC = 5.1 days under hiCORT, which is equivalent to a ~21% increase in the estrous cycle length (Figures 6A,C).


[image: Figure 6]
FIGURE 6. Enduring and transient dynamic changes under hiCORT. (A) CORT and PG rhythms in physiological conditions. (B) Mean PG frequency and maximum CORT levels elicited by 2 h long hypothalamic stressors arriving at different times across the estrous cycle. (C) Under hiCORT, the range of CORT levels is increased and the estrous cycle peak is delayed by ~21% compared to physiological values. (D) Mean PG frequency and maximum CORT elicited by 2 h long stressors under hiCORT. In this scenario, the period in which PG activity remains unchanged by stressors starts about half a day later and is shortened compared to normal physiological conditions.


We then used the model to investigate the transient changes in the GnRH pulse generator frequency and CORT amplitude elicited by exogenous acute stressors under physiological conditions and hiCORT. In particular, we look at the effects of the timing of stressors within the estrous cycle. To do this, we calculated frequency and amplitude response curves by simulating a 2 h long stressor elicited at different stages across the estrous cycle using 30 min time steps. In the physiological scenario (Figure 6B), the model predicts that acute stressors suppress PG activity during most of the estrous cycle except during the diestrus and early proestrus phases. These stressors also elicit an increase in peak CORT levels to a range between 1 and 2. While the model under the hiCORT scenario predicts a similar behavior, the region where PG activity remains unaffected by acute stressors is reduced and delayed by about half a day compared to its physiological counterpart (Figure 6D and Supplementary Figure 2). This is not surprising considering that the model also predicts that hiCORT prolongs the estrous cycle. Regarding the CORT response to stressors under hiCORT, our model predicts a ~2 to ~3.5 increase in CORT levels compared to the normal physiological scenario. This is due to a compounded effect of CORT surges over an excess CORT baseline.




4. DISCUSSION

We developed and studied a mathematical model that integrates components of the stress and reproductive axes at different spatial and temporal scales, from the molecular intricacies of the KNDy network, to GnRH and CORT oscillations, up to the estrous cycle (Figure 1A). Previous mathematical models of the HPA and HPG axes either focus on a specific process within an axis, or consider them as a whole, but isolated from each other (Walker J. J. et al., 2010; Spiga et al., 2017; Voliotis et al., 2019; Clément et al., 2020). In contrast, our model integrates these neuroendocrine axes by considering the complex interactions between them as a network of interlocked oscillators, hence enabling us to integrate different physiological observations and experiments into a single coherent theoretical framework and study the effect of transient perturbations on the overall dynamics. In particular, our model postulated a network architecture (Figure 1B) that reflects physiological observations of ultradian and circadian CORT rhythms, as well as ultradian and infradian rhythms of the GnRH pulse generator (Figure 2). The model reproduced the effects of ovarian hormone removal (OVX) and restitution (E2) on the HPA and HPG axes dynamics, both under physiological conditions (Seale et al., 2004b) (Figure 3) and under exogenous CORT excess (Kreisman et al., 2019) (Figure 4).

In addition to these slow timescale perturbations, we also investigated the fast timescale perturbations elicited by acute stressors. Our model predicted that exogenous stress perturbations not only cause transient increases in CORT levels, but also transiently inhibit GnRH pulse generator activity with the magnitude of this inhibition being dependent on the estrous and circadian phases (Figure 5). This has important implications about understanding how the timing of a stressor affects its ability to temporarily suppress the GnRH/LH ovulatory surge. According to our model, the pulse generator activity is robust to stress perturbations arriving between the diestrus and early proestrus stage, but is fragile to stressors arriving at estrus and metestrus stages (Figure 5C). Uncovering the origin of this robustness is beyond the scope of our phenomenological model, but we can speculate that molecular mechanisms ensure the resilience of the reproductive cycle during the key stages leading to ovulation. While our model suggests that the GnRH/LH surge should be delayed under frequent exposure to stressors, if the exposure occurs too close to the proestrus stage then these resilience molecular mechanisms ensure the surge continues as normal and triggers ovulation (Wagenmaker et al., 2010; Wagenmaker and Moenter, 2017).

We also used the model to investigate the potential detrimental effects on fertility elicited by chronic hypercortisolism. Our model predicted that hiCORT delays the increase in activity of the GnRH pulse generator, effectively prolonging the estrous cycle (Figures 6A,C). While evidence suggests that HPA axis hyperactivity—and specifically, increased circulating glucocorticoids—are unlikely to be the sole mechanism behind stress-induced reproductive dysfunction (Herod et al., 2011a), our simulations show the cycle length depends on the GnRH pulse generator's sensitivity to CORT (Supplementary Figure 1A). Thus, our model provides insight into how for example a hyper-sensitized HPG axis may explain amenorrhea secondary to high serum cortisol levels (Ding et al., 1988; Suh et al., 1988; Saketos et al., 1993). Interestingly, our model predicted that a period of robustness of the GnRH pulse generator in the presence of stressors is preserved under hiCORT, albeit the robust period occurs about half a day later in the cycle and is shorter in duration. Our model simulations of pulse generator activity suggest that prolonging the estrous cycle as predicted under hiCORT arises from a combination of longer estrus and metestrus stages while diestrus and proestrus stages are shortened (Figures 6B,D).

Our model considers essential features of HPA and HPG axes oscillators in a phenomenological way. This approach facilitates the simulation of a range of physio-pathological scenarios, but inevitably imposes certain limitations. In contrast to mechanistic models where parameters are often linked to chemical kinetic rates, the parameters in our model represent natural and maximum frequencies, phase relationships, as well as the coupling strengths between oscillators and sensitivities to perturbations. While our phenomenological approach limits the ability of the model to support discovery of specific molecular mechanisms, it can be used to suggest experiments that explore systems level properties involving both neuroendocrine axes. For example, evidence shows that in addition to exhibiting circadian and ultradian fluctuations, CORT levels also change across the estrous cycle, with maximum levels around the diestrus and proestrus phase (Carey et al., 1995; Atkinson and Waddell, 1997; Pilorz et al., 2009). While our model lacks the level of detail to describe the molecular mechanisms that underpin estrous changes on CORT, it does suggest this is mediated by a regulatory link from the estrous oscillator to the CORT oscillator, thus inferring that ovarian steroids may be the culprit of estrous regulation of CORT instead of the hypothalamic GnRH pulse generator (Figure 1). In our model, we only explored the scenario where the strength of this regulatory link allows for strong perturbations (e.g., stressors, OVX, E2) in the estrous oscillator to have an impact on the CORT dynamics, but not from milder estrous regulation of CORT levels (Supplementary Figure 1). We speculate that combining mechanistic modeling with experimental physiology to investigate the effects of estradiol and progesterone on CORT may uncover the origins of its estrous cycle modulation. The experiments could test the dosing effect, timing, and combined sensitivity of gonadal steroids on circadian CORT levels across the estrous cycle. The mechanistic model could in turn help understand the robustness of such regulatory mechanism to perturbations (Wagenmaker et al., 2010), and predict the scenarios in which chronodisruptions would lead to disease.

We believe that the first generation mathematical model presented here could be used to inform further investigations into the timing of stress perturbations in reproductive health, including dysregulations induced by strenuous exercise (Ding et al., 1988), mood disorders (Young and Korszun, 2002), as well as clinical interventions, such as in vitro fertilization (Massey et al., 2016). Our model is the latest of a class of mathematical models that can support or replace animal studies in endocrinology (Zavala et al., 2019). It can also help design new studies that reduce the number of experiments necessary to refine our understanding of the HPA and HPG axis. Furthermore, computational models like ours can be used to contextualize the results of clinical studies where experimentation is not possible. This can be done in combination with a range of tools from network physiology and machine learning that consider the dynamic links between coupled body rhythms, such as body temperature and sleep (Bashan et al., 2012; Bartsch et al., 2015; Ivanov et al., 2016). We anticipate that healthcare technologies, such as wearable devices and smartphone apps collecting vast amounts of data on body rhythms, together with computer algorithms characterizing inter-individual variability, will help refine and personalize neuroendocrinological models (Kim et al., 2020; Li et al., 2020; Wang et al., 2020).
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Skeletal muscle activity is continuously modulated across physiologic states to provide coordination, flexibility and responsiveness to body tasks and external inputs. Despite the central role the muscular system plays in facilitating vital body functions, the network of brain-muscle interactions required to control hundreds of muscles and synchronize their activation in relation to distinct physiologic states has not been investigated. Recent approaches have focused on general associations between individual brain rhythms and muscle activation during movement tasks. However, the specific forms of coupling, the functional network of cortico-muscular coordination, and how network structure and dynamics are modulated by autonomic regulation across physiologic states remains unknown. To identify and quantify the cortico-muscular interaction network and uncover basic features of neuro-autonomic control of muscle function, we investigate the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation during sleep and wake. Utilizing the concept of time delay stability and a novel network physiology approach, we find that the brain-muscle network exhibits complex dynamic patterns of communication involving multiple brain rhythms across cortical locations and different electromyographic frequency bands. Moreover, our results show that during each physiologic state the cortico-muscular network is characterized by a specific profile of network links strength, where particular brain rhythms play role of main mediators of interaction and control. Further, we discover a hierarchical reorganization in network structure across physiologic states, with high connectivity and network link strength during wake, intermediate during REM and light sleep, and low during deep sleep, a sleep-stage stratification that demonstrates a unique association between physiologic states and cortico-muscular network structure. The reported empirical observations are consistent across individual subjects, indicating universal behavior in network structure and dynamics, and high sensitivity of cortico-muscular control to changes in autonomic regulation, even at low levels of physical activity and muscle tone during sleep. Our findings demonstrate previously unrecognized basic principles of brain-muscle network communication and control, and provide new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation, with potential clinical implications for neurodegenerative, movement and sleep disorders, and for developing efficient treatment strategies.

Keywords: network physiology, dynamic networks, time delay stability, bursts, synchronization, brain waves, muscle tone, sleep


1. INTRODUCTION

The human body is composed of diverse organ systems, each with its own regulatory mechanisms and complex dynamical behavior. Organ systems continuously interact and coordinate their dynamics to ensure vital functions, to allow the body to perform daily activities, and facilitate restoring functions during night sleep. Organ-to-organ interactions occur at multiple levels and spatio-temporal scales to produce distinct physiologic states, e.g., wake and sleep. Mapping the network of organ interactions is thus of primary importance to fully understand basic physiologic states and functions, rigorously discriminate between healthy and pathological behaviors, and understand complex diseases associated with alterations and breakdown of networked interactions across levels in the human organism. A new field, Network Physiology, has been established to address the fundamental question of how distinct physiologic states and functions emerge out of organ network interactions (Bashan et al., 2012; Ivanov and Bartsch, 2014; Ivanov et al., 2016, 2017). Novel methodologies and approaches have been recently developed within the framework of Network Physiology to investigate brain-organ and organ-organ interactions and their association to different physiologic states (Faes et al., 2014, 2015; Bartsch et al., 2015; Liu et al., 2015b; Porta and Faes, 2015; Lin et al., 2016; Moorman et al., 2016).

In this context, the functional network involved in the neural control of the muscular system remains poorly understood. In particular, how different brain rhythms communicate and control diverse muscle groups, and how different frequency components of muscle tone activation respond to signals from the brain is to a large extent not known. The muscular system comprises hundreds of muscles of different types attached to the skeletal system, and is responsible for body stability, movement and control. Skeletal muscles are made of a collection of muscle fibers, which are broadly classified as fast and slow based on their speed of shortening (Scott et al., 2001). Muscles vary considerably in size, shape, and arrangement of fibers. Their common, predominant characteristic is contractibility, and nearly all movements in the body result from muscle contraction. Necessary inputs to achieve both simple and articulated body movements are coordinated by certain brain areas and transmitted to the different muscles by the motor neurons in the spinal cord, where distinct sets of locomotor modules control locomotion (Yokoyama et al., 2016; Rendeiro and Rhodes, 2018; Zandvoort et al., 2019).

It has long been known that movements induce frequency specific changes in the electroencephalography (EEG) (Jasper and Penfield, 1949; Chatrian et al., 1958). Changes in the spectral power in the α (8-14 Hz) and β (15-30 Hz) frequency bands can be observed during both voluntary and passive movements (Pfurtscheller and Aranibar, 1977; Leocani et al., 1997; Pfurtscheller and da Silva, 1999; Cheyne, 2013). Moreover, movement-related cortical activity in the γ band (30–100 Hz) has been demonstrated in both magnetoencephalography (MEG) (Tecchio et al., 2008) and scalp EEG recordings (Ball et al., 2008; Darvas et al., 2010), and increased γ activity in the electrocorticogram (ECoG) in awake patients performing sustained muscle contractions has also been reported (Crone et al., 1998). Human cortical 40 Hz rhythms were related to electromyographic (EMG) rhythmicity (Salenius et al., 1996), and cortical control of human motor neuron firing was associated with isometric muscle contractions (Salenius et al., 1997). Furthermore, studies on muscular coordination between the limbs provided applications for neurological rehabilitation after neurotrauma (Zehr et al., 2016). Recent works have focused on the synchronization between rhythmical activity in the motor cortex and muscular activity employing cortico-muscular coherence (CMC). CMC is usually observed during periods of muscular contraction, and has been reported in a number of studies involving both EEG and MEG (Conway et al., 1995; Boonstra et al., 2009; Cheyne, 2013). Specifically, it has been shown that oscillations in the motor cortex, particularly in the β frequency band, can exhibit coherence with peripheral EMG activity during sustained motor contractions, which suggests a possible role of cortical rhythms in direct cortico-spinal drive to the muscle (Conway et al., 1995; Brown et al., 1998; Baker et al., 1999). CMC has been also observed at higher γ band frequencies during dynamic movements (Omlor et al., 2007) or during sustained isometric contractions (Brown et al., 1998). Moreover, studies of neuromotor control showed that task-specific combinations of muscle activity are represented in the cortex, and that these representations are involved in balance control and short-term balance training (Zandvoort et al., 2019).

Current approaches to cortico-muscular coordination focus on associations and synchronous activation between individual brain rhythms at specific cortical areas (e.g., motor cortex, hyppocampus), and peripheral muscle activity during specific movement tasks or exercises (walking, running, etc.) (van Wijk et al., 2012; Rendeiro and Rhodes, 2018). EMG signal decomposition techniques have also been employed to better understand the muscle activation of different muscle groups during different locomotor modes (Yokoyama et al., 2016). However, the muscular system constantly supports the body across different vigilant or physiologic states, which are characterized by the coordinated synchronous activation of different muscle groups that is specific for each movement (Kerkman et al., 2018; Boonstra et al., 2019), as well as by an intense cross-talk among brain rhythms within and across different cortical areas (Bashan et al., 2012; Bartsch et al., 2015; Liu et al., 2015a; Wang et al., 2019; Lin et al., 2020; Lombardi et al., 2020a,b). Default control and coordination of hundreds of skeletal muscles in relation to distinct physiologic states must require both the collective behavior of large population of neurons, i.e., brain rhythms and brain rhythms cross-talk, and a communication network of functional interactions between cortical rhythms and muscular system. Such a network of interactions should provide the necessary brain-muscle coordination in the absence of specific body tasks or targeting movements during rest and sleep—e.g., for postural adjustments, adaptability, sensory feedback—as well as the adequate responsiveness in each vigilant state. Despite the fundamental role played by this network of communication in our basic daily activities and its relevance in achieving efficient motor rehabilitation strategies, the relationship between cortical rhythms and default muscles activity is largely not known. In particular, little is known on the dynamical cross-talk between brain rhythms across cortical areas and differentiated muscle tone rhythms, and on how these frequency-based communications integrate as a dynamic network of cortico-muscular interactions across physiologic states. Recent empirical investigations demonstrated that brain waves interactions are characterized by distinct coupling profiles and network plasticity that are essential to generate physiological states and functions (Liu et al., 2015a; Lin et al., 2020). Thus, we hypothesize that network interactions of brain waves and muscle activity may also reflect changes in physiologic regulation as a function of physiologic states. In these functional cortico-muscular networks we represent muscle activation through different frequency domains corresponding to the role and frequency of activation of slow and fast muscle fibers in a given muscle group (Garcia-Retortillo et al., 2020). Further, we ask how cortico-muscular networks hierarchically reorganize with transitions across physiologic states, e.g., wake and sleep, sleep stages.

We investigate the coupling between physiologically relevant brain rhythms at different cortical locations with peripheral EMG activity across four major, well-defined physiologic states—Wake, REM, Light Sleep (LS), Deep Sleep (DS). We aim to map the default brain-muscle interaction network corresponding to low level of physical activity and absence of directed and targeting movements during sleep and during quiet restful wake, and to uncover basic features of autonomic regulation of muscle activation. This communication network comprises the ensemble of frequency-specific pathways involved in the synchronous dynamics of the EEG and EMG signals. We study the brain-muscle cross-talk over long-term recordings during night-time sleep, when the muscle activation is low due to absence of conscious movements. Therefore, under these conditions changes in coupling dynamics reflect underlying mechanism of physiologic regulation specific for different physiologic states and are modulated by transition from one physiological state to another. By dissecting dynamical changes in the structure and topology of the brain-muscle interaction network across physiologic states, our study aims to establish the basic features of autonomic regulation of muscle activation. We hypothesize that, because of the different types of muscle fibers and the variety of fibers arrangements observed in the muscular systems (Scott et al., 2001): (i) the brain-muscle communication takes place over interaction channels corresponding to a range of physiologically relevant EEG and EMG frequency bands; and (ii) the strength of the interactions across these channels is modulated in relation to the transition from one physiologic state to another.

To uncover principles of control and basic functional pathways in the default communication network between brain and peripheral muscles, we focus on brain and muscle activity during night sleep, when influences of physical activity are minimal, and muscle tone activation is reduced. To this end, we utilize a Network Physiology framework (Ivanov and Bartsch, 2014; Ivanov et al., 2016, 2017) and a recently developed method based on the concept of Time Delay Stability (TDS) (Bashan et al., 2012). This approach is inspired by observations of coordinated bursting activity in the output dynamics of physiological systems, and infers coupling based on the stability of the time delay with which bursts of activation in the output dynamics of a given system are followed by corresponding bursts in the signal output of other systems. The TDS method is robust and can track changes in the intensity of interaction among organ systems with transitions across physiologic states (Bartsch and Ivanov, 2014; Bartsch et al., 2015; Liu et al., 2015b; Lin et al., 2016). This method provides a general framework—not limited to the analysis of bursting signals—that can be applied to diverse systems with very different types of output dynamics (oscillatory, stochastic or mixed), and does not have the limitations of synchronization methods applicable only to systems with oscillatory dynamics.

By probing the coupling through the time delay in the bursting dynamics in the brain represented by physiological relevant cortical rhythms and peripheral muscle output signals, we establish the first detailed brain-muscles interaction networks characterizing basic physiologic states, and we show that the default brain-muscle network comprises state-specific patterns of communication involving several frequency bands—not only beta or gamma as shown by CMC during motor contraction. Crucially, we discover key interaction profiles characterizing cortico-muscular communication under autonomic regulation even at low level of physical activity during rest and sleep, and we identify the main frequency bands through which the default brain-muscle communications are mediated during each physiologic state. Importantly, we find that cortico-muscular interaction profiles and the related networks change with transition from one physiologic state to another (sleep vs. wake, and different sleep stages), and thus, are a unique signature of physiologic state and function, allowing to discriminate different physiologic and pathologic conditions.



2. MATERIALS AND METHODS


2.1. Data

We analyze high-frequency output signals obtained from 36 healthy young subjects (ages between 20 and 40, average 29 years), synchronously and continuously recorded during night-time sleep (average record duration 7.8 h). Data were divided in 30 s epochs and scored as Wake, REM, LS, and DS. Sleep stage scoring was performed based on standard criteria (Bartsch et al., 2015; Liu et al., 2015b). Analyzed data include EEG (sampling rate 100 Hz for two subjects, 200 Hz for 15 subjects, and 256 Hz for 19 subjects) from six scalp locations (frontal left-Fp1, frontal right-Fp2, central left-C3, central right-C4, occipital left-O1, and occipital right-O2; reference electrodes are M1 for the right hemisphere and M2 for the left hemisphere) and the EMG (sampling rate 200 Hz for 17 subjects and 256 Hz for 19 subjects) of chin muscle and left leg muscle. Before the mounting of the EMG electrodes, the participants' skin is shaved and cleaned using alcohol and left to dry for the 60 s to reduce the myoelectrical impedance. The following muscles are investigated simultaneously during night sleep: the anterior tibialis (leg) and the mentalis (chin). The electrodes for the anterior tibialis (pre-gelled Ag/AgCl bipolar surface electrodes) are placed at 1/3 on the line between the tip of the fibula and the tip of the medial malleolus with an interelectrode distance of 20 mm. The orientation of the electrodes corresponds to the direction of the line between the tip of the fibula and the tip of the malleolus. The reference electrode is located in the ankle. For the mentalis muscle, 8-mm-diameter surface pre-gelled electrodes are placed on the mentalis equidistant to the median line with an inter-electrode distance of 10 mm. The ear lobe is used as a reference point. After the electrodes are secured, a quality check is performed to ensure EMG signal validity. Data used in this study are multi-channel physiologic recordings from EU SIESTA databases (Klösch et al., 2001). All participants provided written informed consent. The research protocol was approved (protocol number 3380X) by the Institutional Review Boards of Boston University (Boston, MA, USA) and was conducted according to the principles expressed in the Declaration of Helsinki.



2.2. Signal Pre-processing

Data were visually inspected to remove noisy segments. Such segments were usually located at the beginning and the end of the recordings, and are related to the procedure of electrode placement/removal, or to electrode misplacement. Power-line interferences were removed using a 50 Hz notch filter designed in Matlab (Mathworks), and signals were bandpass filtered in the range (0.5–98.5) Hz. To compare EEG and EMG signals and study their physiological interaction: the spectral power of seven frequency bands of both the EEG and the EMG was parallelly extracted in moving windows of 2 s with a 1 s overlap: δ (0.5–3.5 Hz), θ (4–7.5 Hz), α (8–11.5 Hz), σ (12–15.5 Hz), β (16–19.5 Hz), γ1 (20–33.5 Hz), and γ2 (34–98.5 Hz). This defines a time series Sν—with ν = 1, ..., N, and N number of windows—for each frequency band, with a temporal resolution of 1 s. The spectral power S(f) has been calculated as [image: image], where F(f) is the Fourier transform, W is the window size, and Fs is the sampling frequency. The Fourier transform has been evaluated using the fast Fourier transform (FFT) algorithm in Matlab. The spectral power in a given window ν and in a given frequency band Δf is defined as

[image: image]

where f1 and f2 are the lower and upper bound of the band.



2.3. Time Delay Stability (TDS) Method

The TDS method is a novel approach specifically developed to identify and quantify pair-wise coupling and network interactions of diverse dynamical systems (Bashan et al., 2012). This approach is inspired by observations of coordinated bursting activity in the output dynamics of diverse systems (Figure 1).


[image: Figure 1]
FIGURE 1. Schematic presentation of the Time Delay Stability (TDS) method. Based on the concept of time delay stability the TDS method is designed to quantify coupling in diverse physiological systems with bursting dynamics. (A) Segments of 10-15 min raw signals from brain central EEG C3, chin muscle tone EMG and leg muscle tone EMG channels during different physiological states. (B) Magnified section (5 min segments) of the raw signal with bursting morphology for brain C3 and chin and leg muscle tone during LS. (C) Spectral power S(f) for a combination of chosen frequency bands for the raw data shown in (B). (D) (top panels) Brain EEG spectral power S(f) in the γ2-band (from frontal Fp1 channel) and chin muscle tone EMG spectral power in the δ-band. Segments with synchronous bursts in S(γ2) and S(δ) lead to a pronounced peak in the cross-correlation C(τ) at time lag τ0 (shown in the left bottom panel for the 60 s window marked by vertical dashed lines in the top panels). Periods with stable time delay are characterized by constant τ0 (red dots in B, right panel). Cross-correlation C(τ) is performed for overlapping windows of 60 s with a moving step of 30 s, and the time lag τ0 corresponding to the peak of C(τ) in each window is recorded (shown in the right bottom panel), where consecutive red dots indicate periods of time delay stability with constant τ0 (see Materials and Methods section 2.3). Long periods of constant time delay τ0 indicate strong TDS coupling, represented by strong links in the network of physiologic interactions between cortical EEG rhythms and muscle tone frequency bands. The TDS approach is general, and can identify and quantify interactions between diverse systems with different dynamic characteristics across physiological states.


The TDS method is based on the concept of time delay stability. Integrated physiologic systems are coupled by non-linear feedback and/or feed forward loops with a broad range of time delays. Thus, bursting activities in one system are always followed by bursts in signals from other coupled systems. TDS quantifies the stability of the time delay with which bursts in the output dynamics of a given system are consistently followed by corresponding bursts in the signal output of other systems (Figure 1)—periods with a constant time delay between bursts in two systems indicate stable interactions. Correspondingly stronger coupling between systems results in longer periods of TDS (Figure 2). Thus, the links strength in the physiologic networks we investigate is determined by the percentage of the time when TDS is observed: higher percentage of TDS (%TDS) corresponds to stronger links.


[image: Figure 2]
FIGURE 2. TDS matrix representation of brain-muscle network connectivity across physiologic states. Group-averaged Time Delay Stability (TDS) matrices represent physiological interactions during wake, REM, light and deep sleep. Matrix elements show the coupling strength between seven physiologically-relevant cortical rhythms (δ, θ, α, σ, β, γ1, γ2) derived from six EEG channels (x-axis: Frontal Fp1 and Fp2; Central C3 and C4; Occipital O1 and O2) and the corresponding EMG frequency bands (y-axis) representing chin and leg muscle activation (shown in A,B). Coupling (network links) strength is quantified by the fraction of time (out of the total duration of a given sleep stage throughout the night) when TDS is observed. Matrix elements are obtained by quantifying the TDS for each pair of EEG vs. EMG bands after calculating the weighted average of all subjects in the group (Methods section 2.3). Color code indicates TDS coupling strength. The average number of synchronized bursts per minute corresponding to periods of time delay stability depends on the physiologic state: 0.21 ± 0.08 for Wake, 0.17 ± 0.07 during REM, 0.15 ± 0.05 during LS and 0.08 ± 0.04 during DS. Brain-chin and brain-leg network interactions exhibit pronounced sleep-stage stratification: strong coupling across all pairs of EEG vs. EMG bands during wake, intermediate for REM and light sleep, and weak coupling during deep sleep. Notably, high frequency cortical rhythms are the dominant mediator of both brain-chin and brain-leg interactions (warmer colors for vertical columns representing coupling of β, γ1, γ2 brain waves with EMG muscle bands)—characteristic that is consistently observed across all sleep stages.


The TDS method (Bashan et al., 2012) to quantify the interaction between distinct physiologic systems A and B consists of the following steps (Figure 1). Consider the output signals {a} of system A and the output signal {b} of system B, each of length N. Divide both signals {a} and {b} into NL overlapping segments ν of equal length L = 60s. Here we choose an overlap of L/2 = 30s, which corresponds to the time resolution of conventional sleep-stage-scoring epochs, and thus NL = ⌊2N/L⌋−1, where ⌊2N/L⌋ is the largest integer k such that k ≤ 2N/L. Normalize the signals separately in each segment ν to zero mean and unit standard deviation in order to remove constant trends in the data and to obtain dimensionless signals. This normalization procedure assures that the estimated coupling between the signals {a} and {b} is not affected by their relative amplitudes. Then, calculate the cross-correlations

[image: image]

between {a} and {b} in each segment ν using periodic boundary conditions. For each segment ν, we estimate the time delay [image: image] as the maximum in the absolute value of the cross-correlation function [image: image] in the segment (Figure 1).

These steps result in a new temporal series of time delays [image: image] describing the temporal evolution of the cross-talk between the signals {a} and {b}. Time periods of stable interrelation between two signals are represented by segments of approximately constant τ0 in the series of time delays. In contrast, the absence of stable coupling between the signals corresponds to large fluctuations in τ0. To identify periods of stable coupling, the series of time delays is scanned using a 5 points sliding window (corresponding to a window of 5 × 30 s consecutive segments ν) with step size 1. Periods are labeled as stable when at least four out of five points the time delay remains in the interval [τ0 − 1, τ0 + 1] (Figure 1). The %TDS is finally calculated as the fraction of stable points in the time series [image: image], and is a measure of the coupling strength between the two systems A and B.



2.4. Surrogate Tests and Significance Threshold for Network Links Strength

To test the statistical significance and physiological relevance of the network interactions identified by TDS method, we perform a surrogate test to establish a threshold of significance for links strength. Statistical significance is estimated by comparing the strength distribution of a given link obtained from all subjects in a given sleep stage with the distribution of the corresponding surrogate link representing “interactions” between the same two systems paired from different subjects.

A significance threshold for network links strength is determined performing the following steps: for each link in a given sleep stage, 200 surrogates are generated considering signals from two distinct and randomly chosen subjects, and a surrogate average link strength (%TDS) is obtained. The procedure is repeated for each network link to obtain a distribution of surrogate link strengths in each sleep stage. For each distribution the mean μsurr and standard deviation σsurr are estimated. Thus, the significance threshold at 95% confidence level for the network links strength is defined as μsurr + 2σsurr for each sleep stage. The significance threshold is represented by horizontal green lines in all figure panels showing bar plots of average links strength.



2.5. Cortico-Muscular Interaction Networks


2.5.1. TDS Matrix and Network Link Definition

The TDS matrix consists of the pairwise coupling strength between seven cortical rhythms (δ, θ, α, σ, β, γ1, and γ2) derived from an EEG channel and each EMG frequency bands representing chin and leg muscle activation (Figure 2). The coupling strength between two signals is defined as the percentage of time over which TDS is observed, i.e., [image: image] where si is 1 if the corresponding i-th segment is labeled as stable for the TDS measure (red dots in Figure 1) or 0 if the corresponding i-th segment is labeled as unstable for the TDS measure (black dots in Figure 1) and L is the total duration of signals.

For each physiologic state, we calculate a group-average TDS matrix for couplings of each chin EMG (leg EMG) frequency band with each cortical rhythm from each of the EEG channels (Frontal Fp1 and Fp2; Central C3 and C4; Occipital O1 and O2). In these matrices each element represents the TDS coupling strength between signal a and b during a given sleep stage s averaged over all subjects and defined as:

[image: image]

where [image: image] represents the total duration of a given sleep stage s for subject i, and TDSi stands for the TDS coupling strength between signal a and b for sleep stage s obtained from subject i.

To avoid artifacts related to the specific behavior of a subject (excessive movement, turning in bed, etc.) or to the specific record (electrode pops, poor electrode contact, salt bridge, etc.) affecting the estimation of coupling strength between two different signals during a given sleep stage, we remove the outliers according to the following procedure. We first calculate the mean M and standard deviation SD of the distribution of %TDS over all subjects for a given pair of signals during a given sleep stage, and then only subjects within the range [M − 2SD, M + 2SD] is included in the average procedure for this particular link.

In the cortico-muscular network (Figure 3), brain areas are represented by Frontal (Fp1 and Fp2), Central (C3 and C4), and Occipital (O1 and O2) EEG channels, where nodes with different color in each brain area represent distinct brain waves. Peripheral nodes indicate EMG frequency bands of chin and leg muscle tone shown in the same color code as the brain waves. Network links show the coupling strength of each cortical rhythm across cortical areas with an EMG frequency band. Links strength corresponds to the matrix elements in Figure 2 and is marked by line width: thin lines for 3% < %TDS < 12%; thick lines for %TDS > 12%.


[image: Figure 3]
FIGURE 3. Dynamic networks of cortico-muscular interactions across physiological states. Network maps are obtained based on the group-averaged TDS matrices in Figure 2 representing physiological interactions during wake, REM, light, and deep sleep. Network links correspond to the TDS matrix elements, and show the coupling strength between seven physiologically relevant brain waves (δ, θ, α, σ, β, γ1, γ2) across cortical locations and muscle tone EMG frequency bands. Brain areas are represented by Frontal (Fp1 and Fp2), Central (C3 and C4), and Occipital (O1 and O2) EEG channels, where color nodes in each brain area represent distinct brain waves. Peripheral nodes indicate corresponding EMG frequency bands of chin and leg muscle tone shown in same color code as the brain waves. Links reflect the coupling strength between cortical rhythms at different locations and EMG frequency bands as quantified by the TDS measure (Materials and Methods 2.3). Links strength is marked by line width—thin lines for 3% < %TDS < 12%; thick lines for %TDS > 12%. All links above the threshold %TDS = 3% are shown; link color corresponds to the color of brain wave node involved in the interaction. A complex reorganization of network topology and links strength is observed with transition from one sleep stage to another, indicating a remarkable association between functional networks of cortico-muscular interaction and physiological states.




2.5.2. Network of Interactions Between Cortical Rhythms and Integrated EMG Activity

To obtain information on the relative contribution of each brain rhythm on a given EEG channel with the integrated EMG activity, we consider the average coupling strength of a given brain wave from a given EEG channel with all EMG bands. We coarse-grain the matrices in Figure 2 by taking the average of the matrix elements along a given column, which means the average coupling of the integrated EMG activity with each cortical rhythm Δfj, j = 1, ..., 7 from a cortical location; the average is given by
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where h = 7(k − 1) + j, k = 1, ..., 6 corresponding to a given EEG channel, and %TDS[EMG(Δfi), Brain(Δfj)] is the group-average %TDS between the frequency band Δfi of EMG and the cortical rhythm Δfj at a given EEG channel.

We develop a radar-chart representation to map such interactions from across different brain areas (Figures 6, 8). This network consists of (i) six heptagons, one for each of the six brain areas corresponding to the locations of the EEG channels, and (ii) a centered hexagon representing the chin (Figure 6) or the leg (Figure 8). Nodes in the heptagons are color-coded according to the following scheme: dark blue for δ, light blue for θ, turquoise for α, green for σ, yellow for β, orange for γ1, and red for γ2. Brain heptagons are connected to the organ hexagon by links whose thicknesses encode the corresponding coupling strength. Networks include only links above a statistically significant threshold (section 2.4). The radar-chart centered in the organ hexagon represents the relative contribution to muscle control from different brain areas. The length of each segment along each radius in the radar-charts represents TDS coupling strength between each cortical rhythm at each EEG channel location and chin (Figure 6) or leg (Figure 8) muscle tone.



2.5.3. Network of Interactions Between EMG Frequency Bands and Integrated EEG Activity

Similarly, in order to obtain information on the relative contribution of each EMG frequency band on a given EMG muscle tone with the integrated EEG activity, we consider the average coupling strength of a given EMG frequency band with all brain waves from a given EEG channel. We coarse-grain the matrices in Figure 2 by taking the average of the matrix elements along a given row, which means for each EMG frequency band Δfi, i = 1, ..., 7 the average coupling strength with the k-th EEG channel is given by

[image: image]

This type of network represents the response of a EMG band to signals from the brain. The focus is to understand the role of each EMG band in the brain-muscle communication, for instance if there is preferential EMG frequency, and if there is physiologic state specific pattern in the cross-talk (Figures 11, 13). Each network is constituted by six heptagons representing the six EEG channels, whose spatial distribution reminds the physical locations of electrodes on the brain surface from an axial point of view (Fp1, C3 and O1 on the left side and Fp2, C4, and O2 on the right side). Each of them represents the entire power spectrum of the corresponding EEG channel. The peripheral nodes represent the 7 frequency bands identified in the power spectrum of the chin (Figure 11) or leg (Figure 13) EMG muscle tone. The links between each node and a heptagon represent interactions of a given EMG band with each cortical location averaged over all cortical rhythms as defined in Equation (3); color of links and nodes corresponds to the frequency bands. Only the links with a TDS ≥ 3% are plotted; the thickness depends on the coupling strength. In particular, there are three different types of link thickness: thin links with 3% ≤ TDS < 5%, intermediate links with 5% ≤ TDS < 7.5% and thick links with TDS ≥ 7.5%.




2.6. Statistical Tests

The following statistical tests are used to validate the results: ANOVA test for group comparison and t-test for pair-wise comparison in case data passed the Kolmogorov-Smirnov normality test; otherwise, Kruskal-Wallis One Way Analysis of Variance on Ranks (ANOVA on Ranks) for group comparisons, and Mann-Whitney Rank Sum (MW) test for pair-wise comparisons. We perform Student-Newman-Keuls (SNK) Algorithm for multiple pairwise comparisons, since this method is robust against violations of normality. All statistical tests are performed on SigmaStat.




3. RESULTS


3.1. Brain-Muscle Network and Its Dynamical Reorganization Across Physiologic States

We identify and characterize the brain-muscle interactions network across four major physiologic states: Wake, REM, LS and DS. We consider brain activity from six major cortical areas—frontal left-Fp1, frontal right-Fp2, central left-C3, central right-C4, occipital left-O1, and occipital right-O2, chin muscle tone, and leg muscle tone, simultaneously recorded over night-sleep using EEG and EMG (Materials and Methods section 2.1). To identify physiologic-state-specific communication pathways in the brain-muscle cross-talk, at each brain and peripheral muscle locations we decompose the recorded signals in seven physiologically relevant frequency bands—δ, θ, α, σ, β, γ1, and γ2. Thus, each location can be represented by seven network nodes, which may dynamically interact among them (intra-channel interactions) and with nodes in different locations (inter-channel interactions).

We then quantify pair-wise coupling and network interactions by means of the TDS method (Materials and Methods section 2.3). This novel approach is based on the concept of TDS (Bashan et al., 2012), and identifies periods of stable time delay between coordinated bursts in the output dynamics of diverse systems, as illustrated in Figure 1. Persistence of stable time delay between systems indicates stable interactions, and correspondingly stronger coupling between systems results in longer periods of TDS (Figure 1).

In Figure 2 we show the TDS matrices representing brain-chin and brain-leg interactions across physiologic states (Materials and Methods section 2.3). For each EEG channel, the matrix elements show the coupling strength between the seven physiological relevant cortical rhythms and the corresponding frequency bands of chin and leg EMG. We observe that both brain-chin and brain-leg TDS interaction matrices exhibit a clear stratification across sleep-stages: the coupling of cortical rhythms with EMG bands tends to be stronger during Wake and weaker during DS, and takes intermediate values during REM and LS (Figure 2). This observation demonstrates that, during Wake, bursts of cortical rhythms tend to be synchronized with a certain time delay with bursts of EMG activity, and the synchronization gradually decreases with transition to REM and LS, becoming minimal during DS. Indeed, the average number of synchronized bursts per minute—corresponding to periods of time delay stability—is 0.21 ± 0.08 for Wake, 0.17 ± 0.07 during REM, 0.15 ± 0.05 during LS, and 0.08 ± 0.04 during DS.

Importantly, the TDS matrices indicate that the contribution of specific cortical rhythms in brain-muscle communication depends on the particular physiologic state. During Wake, high frequency cortical rhythms, specifically γ1 and γ2, are the main mediators of the brain-chin and brain-leg interaction, strongly interacting with all EMG frequency bands (Figure 2). High frequency cortical rhythms play a dominant role also during REM, where they tend to be more strongly coupled to the corresponding high frequency bands of both chin and leg EMG.

In contrast to the high frequency cortical rhythms, we observe that slower cortical rhythms—i.e., δ, θ, α, and σ—become prominent in the brain-chin communication during light and deep sleep, and exhibit stronger interactions with the low frequency bands of the chin muscle tone (Figure 2). This pattern of interactions is not present in the brain-leg TDS matrices during light and deep sleep, where we find a predominance of γ2EEG − γ2EMG and γ1EEG − γ1EMG interactions. Such differences between brain-chin and brain-leg interaction patterns may relate to the differences between chin and leg muscle architecture, e.g., fiber types and fiber arrangement. The observed changes in the interaction pattern between brain waves and rhythms of muscle activation with the transition from one physiologic state to another reveal an intriguing dependence of cortico-muscular communications on physiologic states.

To better visualize and dissect the information provided by the TDS method, we next map the previously obtained TDS matrices into networks whose nodes and links represent the brain EEG and muscle EMG frequency bands and their pair-wise coupling (Figure 3). Nodes corresponding to EEG frequency bands in a specific scalp location form a heptagon. Six heptagons, each for one EEG channel, are located at the vertices of a hexagon representing the brain. Network nodes with different colors represent different cortical rhythms and EMG frequency bands. Network links show the interactions of cortical rhythms and EMG bands with thickness representing coupling strength and link color corresponding to the involved cortical rhythm (Figure 3).

We observe that the cortico-muscular network reorganizes across physiologic states. Specifically, the network is denser and exhibits stronger links during Wake, and tends to become sparser during LS and DS. Brain-chin network links are generally stronger than brain-leg links, in particular during Wake and REM (Figure 3). Importantly, we notice that cortico muscular links are strong also during REM, despite the muscle atonia that characterizes this physiologic state. This complex reorganization in the communication network is marked by the emergence of cortical rhythms and EMG frequency bands as main mediators of the brain-muscle interaction. During Wake and REM the strongest links correspond to interactions mediated by the high frequency cortical rhythms, and in particular γ2 (red links), indicating their prominent role in brain-muscle communication (Figure 3). We observe that the network markedly reorganizes with transition to LS, and strong links related to slower cortical rhythms appear in the network (dark and light blue links), in particular between the chin and the frontal region of the brain. Finally, the link number and strength abruptly decline during DS, revealing a marked difference between brain-chin and brain-leg communication (Figure 3).



3.2. Cortico-Muscular Interaction Profile of Network Links Strength as Hallmark of Sleep Stages
 

3.2.1. Coarse-Grained Interaction Networks of Cortical Rhythms With Integrated Muscle Tone

To identify the role of different brain rhythms in muscle control across cortical locations, we coarse-grain the TDS matrix by taking an average across rows, i.e., EMG frequency bands, for each cortical rhythm column (Figure 4, bottom panel). Similarly, in order to investigate the relative contribution of each EMG bands in the brain-muscle interactions, we coarse grain the TDS matrix by averaging the elements along each brain wave row (Figure 4, right panel). These two average coarse-grained matrices are referred to as brain-to-muscle and muscle-to-brain interaction matrices.
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FIGURE 4. Schematic presentation of coarse-graining procedure for brain-muscle network interactions. (Top left panel) Group-averaged Time Delay Stability (TDS) matrix representing interactions between different brain waves (δ, θ, α, σ, β, γ1, γ2) and the corresponding chin muscle tone EMG bands during wake (as shown in Figure 2A). Coarse-graining the TDS matrix is essential to assess the relative contribution of each brain wave or EMG frequency band in the network of brain-muscle interactions. (Top right panel) Coarse-grained matrix of brain-muscle interaction where each matrix element (horizontal red oval) shows the average coupling strength of a given EMG band with all brain waves derived from a particular EEG channel location. Coarse-graining the TDS matrix across brain waves provides information on the relative contribution of each muscle EMG band in the communication with different brain areas. (Bottom panel) Coarse-grained matrix of brain-muscle interaction where each matrix element (vertical red oval) shows the average coupling strength of a given brain wave from a given EEG channel with all EMG bands. This coarse-graining of the TDS matrix across EMG frequency bands quantifies the contribution of different brain waves and brain locations to the brain-locomotor cross-talk, identifying the main mediators of the brain-to-muscle interaction.


The results of such coarse-graining procedure are shown in Figure 5. The structure of the coarse-grained interaction matrices markedly changes across physiologic states, showing a reorganization in the communication pathways both in the brain-to-muscles (Figure 5, left panels) and muscle-to-brain networks (Figure 5, right panels). The brain-to-muscles interaction matrices clearly show the dominant role of high frequency cortical rhythms during Wake and REM, and a more relevant contribution of slower rhythms during LS in both chin and leg (Figure 5, left panels). Alternatively, the muscle-to-brain interaction matrices indicate that, while during Wake most frequency bands are significantly involved in the muscle-to-brain communication, low frequency EMG bands play an important role during REM, LS, and DS (Figure 5, right panels), in particular in the chin-to-brain communication over the frontal and central brain areas—Fp1, Fp2, C3, and C4 (Figure 5A, right panel).


[image: Figure 5]
FIGURE 5. Dominant channels of communication and reorganization in cortico-muscular network interactions across physiological states. Group-averaged matrices of coupling strength (measured as %TDS; see Materials and Methods 2.3) for (A) brain vs. chin muscle tone and (B) brain vs. leg muscle tone interactions coarse-grained as shown in Figure 4 to represent the average coupling of (i) each brain rhythm at a given cortical location with integrated spectral power of all EMG frequency bands (left panels in A,B), and (ii) each individual EMG frequency band with integrated spectral power of all cortical rhythms for different brain locations (right panels in A,B). Both brain-chin and brain-leg networks exhibit pronounced reorganization with transition across sleep stages—strong coupling during wake, intermediate during REM and light sleep, and weak coupling during deep sleep—consistently present for both types of coarse-grained matrices (left vs. right panels in A,B). Notably, for each sleep stage, high frequency cortical rhythms exhibit stronger TDS coupling across all cortical areas (EEG channels), playing role as dominant channels and main mediators in both brain-to-chin and brain-to-leg networks interactions (marked by warm colors in left panels in A,B).


Differently from chin, the leg-to-brain coarse-grained matrices exhibit a more uniform pattern of interactions across physiologic states (Figure 5B, right panel), and do not show predominance of low frequency EMG bands in the interaction with the brain during REM, LS, and DS.

On the one hand, changes in the mechanism of physiologic regulation impact the coordinated activation of different brain rhythms and their communication with myoelectrical activation (Figure 5, left panels). On the other hand, a particular mosaic of the profile of muscular rhythms interacting with a given brain location may uniquely define each physiologic state and different muscle groups (Figure 5, right panels).


3.2.1.1. Dynamic Networks of Cortical Rhythms and Integrated Chin-muscle Tone

The brain-to-chin networks derived from the coarse-grained TDS matrices are shown in Figure 6. The brain-to-chin interaction network significantly changes with transition across sleep, with strong interactions during Wake, intermediate during REM and LS, and weak during DS (Figure 6). Our analysis of the brain-to-chin interaction network shows symmetric interaction of chin with right and left brain hemisphere for all sleep stages. Furthermore, the average link strength across different brain areas exhibits a non-uniform pattern, with a prevalence in strength for the links between chin and frontal areas (Fp1 and Fp2), as indicated by the radar chart inside the chin hexagon in Figure 6. A One-Way ANOVA rank test for the average link strength over brain locations (frontal, central and occipital) (Figure 5B) shows a statistically significant difference between sleep stages, with p ≤ 0.001 for both hemispheres (pairwise multiple comparison test: p < 0.05 for all pairs but REM vs. LS in both hemispheres; similar results are obtained for multiple and pairwise comparison at each brain location). No significant differences are found between hemispheres in each sleep stage.
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FIGURE 6. Dynamic networks of interaction between cortical rhythms and integrated chin-muscle tone across physiological states. (A) Links in network maps represent group-averaged TDS coupling strength (section Materials and Methods 2.5.1) between each brain rhythm at a given cortical location and the chin muscle tone, after averaging over all chin EMG bands (see Figure 4 and section Materials and Methods 2.5.2), and correspond to the elements in the coarse-grained matrices shown in Figure 5A, left panels. Brain areas are represented by Frontal (Fp1, Fp2), Central (C3, C4), and Occipital (O1, O2) EEG channels, and network nodes with different colors represent seven cortical rhythms (δ, θ, α, σ, β, γ1, γ2) derived from the spectral power of each EEG channel. Links strength is illustrated by line thickness, and links color corresponds to the color of brain rhythms (network nodes). Shown are all links with strength %TDS ≥ 2.3%, corresponding to the significance threshold based on surrogate tests (section Method 2.4). Radar-charts centered in the hexagons represent the relative contribution from different brain areas to the strength of network links during different sleep stages. The length of each segment along each radius in the radar-charts represents the TDS coupling strength between each cortical rhythm at each EEG location and chin muscle tone. The segments are shown with the same color as the corresponding brain rhythms (network nodes). The brain-chin network interactions are mainly mediated through high frequency γ1 and γ2 cortical rhythms (thicker orange and red links), and are characterized with relatively symmetric links strength to all six cortical areas, as shown by the symmetric radar-chart in each hexagon, with stronger contribution from the Frontal and Central areas. Network reorganization is observed with transition across sleep stages: with overall stronger network links during wake (larger hexagon), intermediate during REM and light sleep, and much weaker interactions (smaller hexagon) during deep sleep. (B) Histograms of links strength in the brain-chin network during different sleep stages. Group-averaged links strength is obtained using the TDS measure, where each bar represents the average strength of interaction of all cortical rhythms from a given brain area (Frontal, Central or Occipital) with all chin muscle tone EMG bands. Error bars represent the standard error obtained for all subjects in the group; horizontal green lines in both panels mark a surrogate test threshold (%TDS = 2.3%; section Method 2.4) above which network interactions are physiologically significant. A pronounced sleep-stage stratification pattern is observed for the average links strength related to each cortical area, consistent for both left and right hemisphere (pair-wise comparison between sleep stages for the same brain area gives p ≤ 0.05 (MW test), except for REM vs. light sleep, and one-way ANOVA rank test comparison across all sleep stages gives p ≤ 0.001). Brain-chin muscle tone network interactions exhibit strong symmetry in links strength between the left and right hemisphere for all sleep stages (MW test, p ≥ 0.65).


To validate the results and the relation to underlying physiology, we performed additional tests. To confirm the physiological origin of cortico-muscular interaction pattern, we perform a surrogate test (Materials and Methods section 2.4), and obtain a significant threshold for coupling strength shown by green lines in each figure. All results presented in all bar plots show that the coupling strengths are above the physiological significance. Remarkably, the entire ensemble of cortico-muscular interaction profile is consistent when comparing all subjects in our database during the same physiologic state, indicating a universal mechanism underlying cortico-muscular interactions (error bars in Figure 6). These observations reveal that, at short time scales, there is a previously unrecognized complex organization of cortical and muscular rhythms interactions, which continuously coordinate during a given sleep stage and reorganize with transition across sleep stages.

Next, we study the characteristic profile of network links strength (Figure 7). We find that for a given physiologic state, the frequency profile of brain-to-chin network links remains stable for all brain areas (Frontal, Central, and Occipital). However, comparing different physiologic states, we observe significant differences in the characteristic frequency profiles for the strength of brain-to-chin interactions. Specifically, during Wake frequency profiles are characterized by strongest links for the high-frequency bands γ1 and γ2 and a gradual decrease in links strength for the lower-frequency bands, followed by a slight kink up in link strength for the δ band (One-Way ANOVA rank test on Fp1: p < 0.001; pairwise multiple comparison test: p < 0.05). With transition to REM and LS, the frequency profiles remain mostly stable for all brain areas, with only the links strength between different frequency bands reduced compared to Wake. This is particularly evident in the C3 and C4 channels, which are closer to the motor cortex (Figure 7). The observed differences among links are still significant both in REM and LS (One-Way ANOVA rank test on Fp1: p < 0.001; pairwise multiple comparison test for δ, θ, and α links: p < 0.05; pairwise multiple comparison test between δ, θ, α links and the subset {σ, β, γ1, γ2}: p < 0.05).
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FIGURE 7. Characteristic profiles of network links strength for cortical rhythms interactions with integrated chin-muscle tone. Group-averaged links strength is obtained using the TDS measure, where each link represents the interaction of chin muscle tone (averaged over all EMG bands, as shown in Figures 4, 5A, left panel) with each cortical rhythm at a given brain area. Link strengths are grouped by brain areas (Frontal Fp1 and Fp2, Central C3 and C4, Occipital O1 and O2), and are ordered from low- to high-frequency cortical rhythms for each area, matching the network graph presentation of links between network nodes (cortical rhythms) in each brain location and the radar-charts (sum of interactions with all chin EMG bands) as shown in Figure 6A. A characteristic profile of network links strength as function of cortical rhythms frequency is consistently observed for all brain areas in both left and right hemisphere—strongest network interactions mediated through the high-frequency γ2 cortical rhythm, a gradual decrease in links strength for the lower-frequency rhythms (γ1, β, σ, α, θ), followed by increase in links strength for the lowest-frequency δ brain wave. This characteristic profile is well-pronounced during wake, REM and light sleep (one-way ANOVA tests p ≤ 0.001), and gradually flattens for deep sleep (one-way ANOVA test p = 0.3). Notably, the profile is robust, exhibiting almost identical shape and matching strength of network links within the profile for both left and right brain hemisphere during each sleep stage. The pronounced sleep-stage stratification observed for the network links strength in the brain-chin radar-charts (shown as change in size of hexagons in Figure 6A) is consistently present for the links to all cortical rhythms and brain areas—stronger links during wake, intermediate during REM and light sleep, and weaker links during deep sleep. Error bars represent the standard error obtained for all subjects in the group; horizontal green lines in both panels mark a surrogate test threshold (%TDS = 2.3%; section Method 2.4) above which network interactions are physiologically significant.


During DS brain-to-chin interactions become weaker and the relative strength distribution is more homogeneous (Figure 7), although the high EEG frequency links remain stronger (One-Way ANOVA rank test on Fp1: p < 0.001; pairwise multiple comparison p = 0.310).

These distinct types of cortico-muscular networks indicate that interactions between different brain waves and integrated myoelectrical activity play different roles in physiologic regulation.



3.2.1.2. Dynamic Networks of Cortical Rhythms and Integrated Leg-muscle Tone

Structure and evolution of the brain-to-leg network across sleep stages closely resemble the brain-to-chin networks (Figure 8). The interaction network significantly changes with transition across sleep stages, with stronger links during Wake, intermediate during REM and LS, and weak during DS (Figure 8). A One Way ANOVA rank test for the average link strength over brain locations (frontal, central, and occipital) shows a statistically significant difference between sleep stages, with p ≤ 0.001 for both hemispheres. The average link strength is symmetric between left and right hemispheres, and exhibits a uniform distribution across different brain areas, as indicated by the radar chart inside the leg hexagon in Figure 8 (One-Way ANOVA rank test gives p ≥ 0.438). No significant differences are found between hemispheres in each sleep stage (MW test, p ≥ 0.67).
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FIGURE 8. Dynamic networks of cortical rhythms and integrated leg-muscle tone interactions across physiological states. (A) Links in network maps represent group-averaged TDS coupling strength (section Materials and Methods 2.5.1) between each brain rhythm at a given cortical location and the leg muscle tone, after averaging over all leg EMG frequency bands (see Figure 4 and section Materials and Methods 2.5.2). Links correspond to the elements in the coarse-grained matrices shown in figure 5B left panels. Brain areas are represented by Frontal (Fp1, Fp2), Central (C3, C4), and Occipital (O1, O2) EEG channels, and network nodes with different colors mark cortical rhythms (δ, θ, α, σ, β, γ1, γ2). Links strength is indicated by line thickness; links color corresponds to the color of cortical rhythms (network nodes). Shown are links with strength %TDS ≥ 2.3%, corresponding to the significance threshold derived from surrogate tests (section Method 2.4). Radar-charts centered in the leg hexagons represent the relative contribution of different brain areas to the strength of network links during different sleep stages. The length of each segment along each radius in the radar-charts represents TDS coupling strength between each cortical rhythm at each EEG location and the leg muscle tone averaged over all EMG bands. Segments in the radar-charts are shown with same color as the corresponding brain rhythms (network nodes). Brain-leg network interactions are mainly mediated through high frequency γ1 and γ2 cortical rhythms (thicker orange and red links), and exhibit relatively symmetric links strength to all six cortical areas, as shown by the symmetric radar-chart in each hexagon. Networks reorganize with transition across sleep stages: stronger network links during wake (larger hexagon), intermediate during REM and light sleep, and much weaker interactions (smaller hexagon) during deep sleep. The sleep-stage reorganization in brain-leg network interactions is consistent with the brain-chin network (Figure 6). (B) Histograms of links strength in the brain-leg network during different sleep stages. Group-averaged links strength is obtained using the TDS measure, where each bar represents the average strength of interaction of all cortical rhythms from a given brain area (Frontal, Central or Occipital) with all muscle tone EMG bands. Error bars represent the standard error obtained for all subjects in the group; horizontal green lines in both panels mark a surrogate test threshold (%TDS = 2.3%; section Method 2.4) above which network links are significant. A pronounced sleep-stage stratification pattern is observed for the average links strength related to each cortical area, consistent for both left and right hemisphere (pair-wise comparison between sleep stages for the same brain area gives MW test p ≤ 0.05, and one-way ANOVA rank test comparison across all sleep stages gives p ≤ 0.001). Brain-leg network interactions exhibit strong symmetry in links strength between the left and right hemisphere for all sleep stages (MW test p ≥ 0.67).


The analysis of the brain-to-leg network shows that the frequency profile of network links remains stable for all brain areas (Frontal, Central and Occipital) in a given sleep stage. During Wake, brain-to-leg interaction is characterized by strongest links for the high-frequency bands γ1 and γ2 and a gradual decrease in links strength for the lower-frequency bands, followed by a slight kink up in link strength for the δ band (One-Way ANOVA rank test on Fp1: p < 0.002; pairwise comparison between θ and all other frequency bands: p < 0.05; group comparison between the subsets {δ, α, σ, β}, and {γ1, γ2}: p < 0.05). A similar frequency profile characterizes the network of interactions both during REM, LS, and DS, and differences across frequency bands remain significant (One-Way ANOVA rank test on Fp1: REM, p < 0.002; LS and DS p < 0.001; REM pairwise comparison: δ, θ, and γ2 are different from each other—SNK test p < 0.05—, and they are significantly different from the subset {α, σ, β, γ1}). Importantly, high-frequency cortical rhythms dominate brain-to-leg communication in all sleep stages, in particular γ2, whose link strength is significantly higher also during DS (SNK test p < 0.05) (Figure 9).


[image: Figure 9]
FIGURE 9. Characteristic profiles of network links strength for cortical rhythms interactions with integrated leg-muscle tone. Group-averaged links strength is obtained using the TDS measure, where each link represents the interaction of the leg muscle tone (averaged over all EMG bands, as in Figures 4, 5B, right panel) with each cortical rhythm at a given brain area. Link strengths are grouped by brain areas (Frontal Fp1 and Fp2, Central C3 and C4, Occipital O1 and O2), and are ordered from low- to high-frequency cortical rhythms for each area. Groups of bar charts represent network links between nodes (cortical rhythms) in each brain location and the radar-charts (sum of interactions with all chin EMG bands) as shown in Figure 8A. A consistent profile of links strength as function of cortical rhythms frequency is observed for all brain areas—strongest interactions mediated through the high-frequency γ2 cortical rhythm, a gradual decrease in links strength for the lower-frequency rhythms (γ1, β, σ, α, θ), followed by slight increase in links strength for the lowest-frequency δ brain wave. This characteristic profile is well-pronounced during all sleep stages (one-way ANOVA tests p ≤ 0.002, indicating statistical significance when comparing all links in the profile). The sleep-stage stratification pattern observed for network links in the brain-leg radar-charts (change in size of hexagons in Figure 8) is also consistently present for all links mediated by cortical rhythms across brain areas—stronger links during wake, intermediate during REM and light sleep, and weaker links during deep sleep. A strong symmetry in the shape of network links profiles and links strength is observed between left and right hemisphere for each sleep stage. Remarkably, both brain-leg (panels above) and brain-chin (Figure 7) networks exhibit similar links strength profile for muscle tone and cortical rhythms interactions, indicating universal network dynamics and mechanism of regulation. Error bars represent the standard error obtained for all subjects in the group; horizontal green lines in both panels mark a surrogate test threshold (%TDS = 2.3%; Section Method 2.4) above which network interactions are physiologically significant.


Our findings demonstrate the need to extend the traditional framework of understanding physiologic states through the prism of interactions of cortical rhythms with muscle activation at large time scales. In addition to this classical picture, we find that for a given physiologic state, there is a unique interaction network structure of cortico-muscular communications. Further, the same sleep-stage stratification pattern in the strength of cortico-muscular network interactions is consistently observed for each individual subject as well as for the group average, indicating a universal mechanism underlying communications among brain waves and muscular rhythms.



3.2.1.3. Interaction Between Cortical Rhythms and Muscle Tone Frequency Bands

Our analysis of coarse-grained TDS matrices shows the role played by different brain rhythms in muscle control across physiologic states (Figures 5–9). Next, we analyze the fine structure of the brain-muscles interaction network and ask how different cortical rhythms interact with muscle activity in specific frequency bands.

In Figure 10 we show the strength of interactions between cortical rhythms and the corresponding EMG frequency bands of chin and leg muscle tone during each sleep stage. We observe that cortical rhythms do not interact with muscles uniformly through all EMG frequency bands. For instance, during Wake the γ2 EEG rhythm preferentially interacts with the γ2 EMG band, the θ EEG rhythm with the θ EMG band, and the δ EEG rhythm with the δ band of chin and leg EMG. During REM, LS, and DS, we find that each cortical rhythm tends to interact more strongly with the EMG activity in the same frequency band, particularly in the communication with the chin (Figure 10A).
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FIGURE 10. Network links of interaction between cortical rhythms and muscle tone frequency bands. Histograms of group-averaged of network links as measured by the TDS method (Materials and Methods section 2.3) representing the strength of interaction between brain cortical rhythms (δ, θ, α, σ, β, γ1, γ2) and the corresponding EMG frequency bands of (A) chin and (B) leg muscle tone for different sleep stages. Shown are network links for cortical rhythms from the Frontal Fp1 area. Links are grouped to present the interaction of each cortical rhythm with all EMG bands. Figure panels show the Fp1 profile of network links strength (Figures 7, 9) for different sleep stages—the average links strength of each group in a panel is presented as a separate bar in the Fp1 profile in Figures 7, 9. Histograms show an inhomogeneous distribution of links strength, where interactions tend to be stronger for links between same frequency cortical rhythms and EMG frequency bands—e.g., δEEG-δEMG, θEEG-θEMG, etc., where the γ2EEG-γ2EMG coupling is particularly pronounced. This tendency is more evident in the brain-chin compared to the brain-leg network, and during REM, light and deep sleep compared to wake (pair-wise comparison between links in each group gives p < 0.05 (MW test) for the γ2EEG-γ2EMG, indicating statistical significance of network links mediated by same EEG and EMG frequency bands).


Overall, we observe that the γ2EEG − γ2EMG interaction tends to be the strongest channel for the brain-muscle communication in all sleep-stages, for both chin and leg. However, the contribution of different cortical rhythms in brain-muscle communication depends on the particular physiologic state. During Wake, high frequency cortical rhythms generally show the strongest interactions with all EMG frequency bands (Figure 10). High frequency cortical rhythms play a dominant role also during REM, where they exhibit a stronger coupling with the corresponding high frequency bands of both chin and leg EMG.

On the other hand, during REM, LS, and DS, we observe that slower cortical rhythms—i.e., δ, θ, α, and σ—tend to have a similar contribution as γ1 and γ2, and same-frequency interactions become prominent.




3.2.2. Coarse-Grained Interaction Networks of Integrated Brain Activity at Cortical Locations and Muscle Activation Frequency Bands


3.2.2.1. Network Interactions of Cortical Areas With Chin-EMG Frequency Bands

To investigate the relative contribution of each muscle EMG band in the communication with different brain areas, we next consider the average coupling strength of a given EMG frequency band with all brain waves derived from a particular EEG channel (Figure 4, right panel). Similar to the brain-chin interaction network, chin-brain communication network also reorganizes across physiologic states (Figure 11). Comparing profiles of cortico-muscular interactions for different physiologic states, we discover that each state is characterized by a specific ensemble of profiles, universal for all subjects (error bars in Figure 12). During Wake, the distribution of links strength across EMG frequency bands for all cortical areas is rather uniform, with a corresponding nearly flat frequency profile (Figure 12) (One-Way ANOVA rank on the Fp1 bars group: p ≥ 0.211). On the other hand, we observe that the links corresponding to low-frequency δ and θ EMG bands tend to be dominant during REM, light and deep sleep (thicker dark and light blue links) (Figure 11). A One-Way ANOVA rank test shows that differences in link strengths are significant (p ≤ 0.002). In particular, pairwise comparison indicates that the interactions between chin θ band and Fp1 are significantly stronger than the interactions of Fp1 with all the other chin frequency bands during LS (SNK test, p < 0.05). Likewise, during DS interactions between δ and θ bands and Fp1 are significantly stronger than the interactions between Fp1 and all the other chin frequency bands (SNK-test, p < 0.05). Similar results are found on the central areas of the brain during REM, LS and DS in both hemispheres (Figure 12). Importantly, link strengths are symmetric between left and right hemispheres, with a dominant contribution in the frontal areas of both hemispheres.
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FIGURE 11. Dynamic networks of individual chin EMG frequency bands and integrated brain dynamics at cortical locations for different physiological states. Links in network maps represent group-averaged TDS coupling strength (section Materials and Methods 2.5.1) between each frequency band of chin muscle tone and a given cortical location, after averaging over all brain waves (see Figure 4 and section Materials and Methods 2.5.3), and correspond to the elements in the coarse-grained matrices shown in Figure 5A, right panels. Brain areas are represented by Frontal (Fp1, Fp2), Central (C3, C4), and Occipital (O1, O2) EEG channels, while peripheral network nodes with different colors represent the chin muscle tone frequency bands. Line thickness indicates link strength (thin links with 3% ≤ TDS < 5%, intermediate links with 5% ≤ TDS < 7.5% and thick links with TDS ≥ 7.5%), and links color corresponds to the color of the EMG network nodes. The chin-to-brain communication network and its dominant pathways depend on the physiologic state (sleep stage). All links across EMG bands are strong during wake independently of the brain area. During REM and LS we observe stronger links between low-frequency chin EMG δ and θ bands and the frontal (Fp1 and Fp2) and central (C3 and C4) brain areas. Links are generally weaker during DS, and the strongest links are those connecting δ and θ bands to the frontal areas.
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FIGURE 12. Characteristic profiles of network links strength representing interactions between integrated brain activity at cortical areas and individual chin-EMG frequency bands. Group-averaged links strength is obtained using the TDS method (Materials and Methods section 2.3), where each link represents the interaction of brain activity from a given cortical area (averaged over all brain waves derived from the EEG channel located at this cortical area) and each muscle tone rhythm (frequency band) derived from the chin EMG signal. Links are grouped by brain cortical areas in both left and right hemisphere (Frontal Fp1 and Fp2, Central C3 and C4, Occipital O1 and O2; marked on top of the panels), and are ordered from low- to high-frequency chin EMG bands. Bars indicate the strength of links shown on the network maps in Figure 11. The displayed profiles provide detailed information on the interaction between averaged cortical activity at a given EEG channel location with each individual chin EMG frequency band. Error bars represent the standard error; horizontal green lines mark a threshold %TDS = 2.3% based on a surrogate test (section Method 2.4) above which network interactions are physiologically significant with >97% confidence level. A characteristic profile of links strength is associated with each physiological state (sleep stage)—uniform distribution of links strength across EMG bands for all cortical brain areas during wake, and dominance of low-frequency chin EMG δ and θ bands during REM, light and deep sleep (pair-wise MW tests comparing links mediated by δ and θ EMG bands vs. any other links between EMG bands and a given cortical area show statistically significant difference with p ≤ 0.05). Links strength profiles show clear symmetry between left and right hemisphere (pair-wise MW tests p ≥ 0.65) with a gradual decline in links strength from the Frontal to Central and Occipital areas.




3.2.2.2. Network Interactions of Cortical Areas With Leg-EMG Frequency Bands

Our analysis of the leg-to-brain interaction network shows a rather uniform distribution of links over cortical areas, and a clear symmetry between left and right hemispheres (Figure 13). Differently from the chin-to-brain network, we do not observe dominant links in the interactions of leg EMG bands with cortical areas, and a flat profile of link strengths across EMG bands characterizes all cortical areas during all sleep stages (One-way ANOVA p ≥ 0.21). Links are generally stronger during Wake, and their strength gradually decreases from Wake to REM, LS and DS (Figure 14). Notably, these interaction profiles result from short scale synchronous modulation in brain waves and EMG amplitudes. The observed profiles of brain waves and EMG interactions indicate a hierarchical reorganization of the entire brain-muscle communication network with transition across physiologic states.
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FIGURE 13. Dynamic networks of individual leg EMG frequency bands and integrated brain dynamics at cortical locations for different physiological states. Links in network maps represent group-averaged TDS coupling strength (section Materials and Methods 2.5.1) between each frequency band of leg muscle tone and a given cortical location, after averaging over all brain waves (see Figure 4 and section Materials and Methods 2.5.3), and correspond to the elements in the coarse-grained matrices shown in Figure 5B, right panels. Brain areas are represented by Frontal (Fp1, Fp2), Central (C3, C4), and Occipital (O1, O2) EEG channels, while peripheral network nodes with different colors represent leg EMG frequency bands. Line thickness indicates link strength (thin links with 3% ≤ TDS < 5%, intermediate links with 5% ≤ TDS < 7.5% and thick links with TDS ≥ 7.5%) and links color corresponds to the color of leg EMG frequency bands (network nodes). Network links are generally stronger during wake, and their strength uniformly declines with transition to REM, LS, and DS, which exhibits weak interactions across all frequency bands. No clear dominant communication pathways are observed in any of the four physiologic states.
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FIGURE 14. Characteristic profiles of network links strength representing interactions between integrated brain activity at cortical areas and individual leg-EMG frequency bands. Group-averaged links strength is obtained using the TDS method (Materials and Methods section 2.3), where each link represents the interaction of brain activity from a given cortical area (averaged over all brain waves derived from the EEG channel located at this cortical area) and each muscle tone rhythm (frequency band) derived from the leg-EMG signal. Links are grouped by brain cortical areas in both left and right hemisphere (Frontal Fp1 and Fp2, Central C3 and C4, Occipital O1 and O2; marked on top of the panels), and are ordered from low- to high-frequency leg-EMG bands. Bars indicate the strength of links shown on the network maps in Figure 13. Note, that the average strength of each group of links in the panels corresponds to a separate bar in Figure 8B, and the displayed profiles provide detailed information on the interaction between averaged cortical activity at a given EEG channel location with each individual leg-EMG frequency band. Error bars represent the standard error obtained for all subjects in the group; horizontal green lines mark a threshold %TDS = 2.3% (based on surrogate test, section Method 2.4) above which network interactions are physiologically significant with >97% confidence level. Bar-charts show absence of dominant links in the interactions of leg-EMG bands with cortical areas, and a flat profile of links strength across EMG bands for all cortical brain areas during all sleep stages (one-way ANOVA p ≥ 0.21, indicating no significant difference between links in each profile). Links strength profiles show clear symmetry between left and right hemisphere (pair-wise MW tests p ≥ 0.67, indicating no significant difference).




3.2.2.3. Interaction Between Muscle Tone Frequency Bands and Cortical Rhythms

Next, we analyze the fine structure of the muscle-brain interaction network and ask how muscle activity in specific EMG frequency bands interacts with different cortical rhythms. In Figure 15 we show the strength of the interactions between EMG frequency bands of chin/leg muscle tone and cortical rhythms during each sleep stage. We observe that all EMG frequency bands preferentially interact with the γ2 cortical rhythm during Wake, especially in the chin (Figure 15A). During REM, LS, and DS, each cortical rhythm tends to interact more strongly with the EMG in the same frequency band. This interaction pattern is more pronounced in the chin-to-brain communication. These findings indicate that muscular rhythms coordinate their activation in response to changes in physiologic regulation during different sleep stages, dynamically interacting with different cortical rhythms.
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FIGURE 15. Network links of interaction between muscle tone frequency bands and cortical rhythms. Histograms of group-averaged network links as measured by the TDS method (Materials and Methods section 2.3) representing strength of interaction between each EMG frequency band of (A) chin and (B) leg muscle tone and brain cortical rhythms (δ, θ, α, σ, β, γ1, γ2 from the Frontal Fp1 area) for different sleep stages. Links are grouped to present the interaction of each EMG band with all cortical rhythms at the Fp1 channel location. Each figure panel corresponds to the links strength interaction profile of all EMG bands with the Fp1 cortical area (shown in Figures 12, 14) for a given sleep stage—the average links strength of each group in a panel is presented as a separate bar in the Fp1 profile in Figures 12, 14. Histograms show inhomogeneous distribution of links strength, where all EMG bands of both chin and leg muscle tone exhibit dominant interactions with the high-frequency γ1 and γ2 cortical rhythms during wake (one-way ANOVA for each separate group gives p ≤ 0.001), while REM, light and deep sleep are characterized by stronger same-frequency coupling of EMG bands with the corresponding cortical rhythms (δEEG-δEMG, θEEG-θEMG, etc.), a behavior more pronounced for chin-brain compared to leg-brain interactions (Method 2.6). Results are consistent for all brain areas (EEG channel locations), indicating universal patterns in cortical rhythm and muscle tone network interactions.







4. DISCUSSION

We present a systematic empirical study of the brain-muscles interaction networks during the four major physiologic states—Wake, LS, REM, and DS. Unlike previous studies focusing on CMC under particular conditions (Conway et al., 1995; Boonstra et al., 2009; Cheyne, 2013), e.g., muscular contraction, here we investigate the synchronous activation between cortical rhythms and peripheral muscle activity at the integrated cortical level during sleep, and map the default brain-muscle network across physiologic states. We consider chin and leg muscle tone, and identify basic functional pathways of communication characterizing each physiologic state with no external perturbation and no conscious movement initiation.

We note that according to empirical findings reported in the literature, during REM sleep we have muscle atonia. Nevertheless, we need to carefully re-examine the concept of muscle atonia, that is usually referred to muscle EMG activity with a very small amplitude. Indeed, in the data we show that the amplitude of EMG muscle activity during REM, even during LS, is very low compared to wake (Figure 1). However, what our method identifies and quantifies is synchronous modulations in the EEG and EMG signals that are independent of the amplitude of the EMG signal. For instance, two signals with relatively small amplitude can have synchronous modulations and synchronous bursts, and thus relatively strong coupling, while two signals with large amplitude may have no synchronous modulations and no synchronous bursts, and, as a result, weak coupling. In other words, the concept of having high activity reflected in the large amplitude of the EMG is different from the concept of presence of coupling and interactions between two systems, which is independent of the size of the amplitude of their output signals. These are two very different concepts, and even in situations where we have signals with small amplitude, or one dominant signal with a large amplitude and another one with very small amplitude, they still can be coupled because of the presence of synchronous modulations (bursts) in their respective dynamics, where synchronous modulation indicates presence of coupling in our TDS method. Our results show that the cortico-muscular coupling is stronger during wake, weaker during REM and LS, and weakest during DS. This finding indicates that in REM both the amplitude of the EMG and the cortico-muscular coupling are lower compared to wake. However, we note that the cortico-muscular coupling during DS is weaker compared to LS, although the amplitude of the EMG does not significantly change with transition from LS to DS (Figure 1A). Thus, our findings provide new insights on muscle activity and its coupling with cortical rhythms across different physiologic states, which complements the current knowledge of physiologic regulation impacting the amplitude of EMG signals.

As previous findings show that physiological couplings between systems change with transitions from one physiologic state to another (Bartsch et al., 2012; Bartsch and Ivanov, 2014), we also find that the cortico-muscular interaction network shows a complex structure that reorganizes with transitions from one physiologic state to another (Figures 3, 6, 8, 11, 13), and can be described by unique cortico-muscular interaction profiles (Figures 7, 9, 12, 14). Our analysis shows that during wake the cortico-muscular network exhibits high connectivity, and the coupling between cortical rhythms and EMG frequency bands is stronger. Network connectivity and link strength gradually decrease with transitions to REM and LS, and further during DS, where we observe very sparse networks of weak links (Figure 3).

Furthermore, we demonstrate the existence of preferred pathways of communication between brain and peripheral muscles that uniquely characterize the brain-muscle interaction network across physiologic state. Specifically, we find that contribution of cortical rhythms to brain-muscles communication depends on the physiologic state, and that cortical rhythms preferentially couple with specific EMG frequency bands. The reported results show that: (i) γ1 and γ2 rhythms play a prominent role in the communication with both chin and leg, particularly during wake and REM; (ii) slower rhythms—δ, θ, α, σ, and β—become strongly involved in the interaction between brain and muscles during REM, LS, and DS, and predominantly couple with the corresponding frequency bands of chin/leg. Remarkably, we observe that cortico-muscular links are rather strong also during REM (Figures 7, 9, 12, 14), indicating a considerable level of cortico-muscular synchronization despite the muscle atonia typical of REM sleep (Krenzer et al., 2011). In particular, we find that the brain-muscles interactions are stronger during REM than during DS, although muscles are more active during DS, a previously unrecognized characteristic in the autonomic regulation of skeletal muscles.

Overall, we observe that the interaction γ2EEG − γ2EMG tends to be the strongest channel for the brain-muscle communication in all sleep-stages, in both chin and leg (Figures 10, 15). Coupling between high-frequency cortical rhythms and high EMG frequency bands for both muscles is particularly strong in the C3 and C4 EEG channels across all sleep stages. This is due to the proximity of C3 and C4 to the primary sensorimotor cortex and the primary motor cortex, located immediately posterior and anterior to the central sulcus, respectively (Fox et al., 2001; Mayka et al., 2006).

Importantly, we find that cortical rhythms and EMG frequency bands involved in brain-muscle communication, as well as the strength of their mutual interaction, may also depend on the specific muscle fibers and on their structural arrangement. In particular, we show that the role of slow cortical rhythms is more pronounced in the brain-chin interaction network, a fact that may be related to chin muscle architecture and functions. Indeed, 84% of the chin muscle fibers are hybrid fibers, an unusual combination of fibers type I and II identified only in cranial muscles and responsible of unique functions like chewing, swallowing, respiration, and movements that require precise control over muscle activity (Takahashi et al., 2002). During sleep respiratory rate goes down and the suprahyoid muscles of the chin, which have the role of keeping the airway opened to facilitate breathing, work at low frequencies. Correspondingly, during LS and DS, we observe prominent interactions between slow cortical rhythms and equivalent frequency bands of EMG chin muscle tone—strong TDS coupling δEEG-δEMG, θEEG-θEMG, and αEEG-αEMG (Figures 10, 15). On the other hand, leg muscles do not play an active role during sleep, and the brain-leg interactions through low EMG frequency bands are weaker than interactions involving high EMG frequency bands. Moreover, we also observe that brain-leg interactions involving high EMG frequency bands are weaker than brain-chin interactions. This may relate to the fiber composition of the tibialis anterioris, which mostly consists of slow fibers (about 80%) (Jaworowski et al., 2002) contracting at low frequencies. Comprehensively, brain-leg interactions are generally weaker than brain-chin interactions, and this could be due to the non-primary role of leg muscles during sleep, while the submental muscle is involved in some crucial functions like jaw opening and respiration (Mu et al., 2004).

Our analysis shows that the default brain-muscle network comprises state-specific patterns of communication involving several frequency bands—not only β or γ as shown by CMC during motor contraction (Conway et al., 1995; Brown et al., 1998; Baker et al., 1999; Omlor et al., 2007). Our network approach provides a first demonstration of how brain rhythms coordinate collectively as a network to control muscle activation during different physiologic states. Muscle fibers activation is maintained even at resting conditions and in the absence of directed movements. Our findings of statistically significant difference in the group average of network links strength across different sleep stages indicate change in the mechanism through which the brain regulates muscle activation in different sleep stages, and thus demonstrate a physiologically relevant change that is associated with a given physiologic state. We note that we perform two types of statistical test: (i) a statistical test comparing the strength of brain-muscle network interactions across physiological states where we find statically significant difference, and (ii) a surrogate test in order to determine the level of link strength beyond which a given link strength is not a result of random factors. In the latter we investigate the spurious coupling between signals which are actually not coupled to each other, since coming from different subjects. Therefore, our indication based on surrogate tests shows that we can't distinguish whether a link with a %TDS below 2.3% is physiologically relevant or not, but every link with strength in TDS measure above 2.3% has physiological meaning because indicates stronger coupling than one would observe by random chance between two uncoupled signals coming from two different subjects.

Importantly, we identify the main cortical rhythms and EMG frequency bands through which the default brain-muscle communication occurs during each physiologic state, and demonstrate universal laws in brain control of locomotor system. Indeed, reported results are robust and consistent across subjects. Studying the interaction between brain and muscles during sleep—when the muscle tone is low and is not related to specific physical activity—we are able to uncover physiologic mechanisms of autonomic regulation that do not depend on active locomotion but are function of the physiologic state. The results reported here demonstrate a strong association between the network of coordinated cortico-muscular communications and physiologic states. The distinct profiles of brain waves and muscle interactions across sleep stages redefine sleep through a previously unrecognized hierarchical network organization of cortical rhythms interactions, and open new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation during sleep, with implications for novel biomarkers of sleep and movement disorders.
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A new concept of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep is proposed, that of multi-component integrative states that define stable and unstable sleep, respectively, NREMS, NREMUS REMS, and REMUS. Three complementary data sets are used: obstructive sleep apnea (20), healthy subjects (11), and high loop gain sleep apnea (50). We use polysomnography (PSG) with beat-to-beat blood pressure monitoring, and electrocardiogram (ECG)-derived cardiopulmonary coupling (CPC) analysis to demonstrate a bimodal, rather than graded, characteristic of NREM sleep. Stable NREM (NREMS) is characterized by high probability of occurrence of the <1 Hz slow oscillation, high delta power, stable breathing, blood pressure dipping, strong sinus arrhythmia and vagal dominance, and high frequency CPC. Conversely, unstable NREM (NREMUS) has the opposite features: a fragmented and discontinuous <1 Hz slow oscillation, non-dipping of blood pressure, unstable respiration, cyclic variation in heart rate, and low frequency CPC. The dimension of NREM stability raises the possibility of a comprehensive integrated multicomponent network model of NREM sleep which captures sleep onset (e.g., ventrolateral preoptic area-based sleep switch) processes, synaptic homeostatic delta power kinetics, and the interaction of global and local sleep processes as reflected in the spatiotemporal evolution of cortical “UP” and “DOWN” states, while incorporating the complex dynamics of autonomic-respiratory-hemodynamic systems during sleep. Bimodality of REM sleep is harder to discern in health. However, individuals with combined obstructive and central sleep apnea allows ready recognition of REMS and REMUS (stable and unstable REM sleep, respectively), especially when there is a discordance of respiratory patterns in relation to conventional stage of sleep.

Keywords: bimodal, hemodynamic, coupling, cardiopulmonary, sleep


INTRODUCTION

Although sleep is an integrated brain-body state involving multiple coupled physiological systems, it is still categorized into traditional electroencephalographic (EEG)-based subtypes of rapid eye movement (REM) and non-rapid eye movement (NREM). In humans, the latter state is graded, from stage N1 to N3, based on EEG sleep spindles, K-complexes and delta waves of ≥75 μV in amplitude and 0.5–2.0 Hz in frequency. In human scoring, attempts have been made to differentiate “deep” from “light” NREM sleep, most typically by combining N1 and N2 into the latter, but uncertainty persists. One challenge with the current definitions is that stage N3 requires above-threshold slow wave activity for only 20% of a 30-s epoch, leading to great physiological heterogeneity within epochs scored as stage N3. The cyclic alternating pattern (CAP) is one proposed heuristic for characterizing EEG NREM bistability (Parrino et al., 2014) as an alternative to the traditional grading of NREM stages. Other approaches have attempted to parse NREM sleep into finer delineations with 9 or more sub-stages of NREM sleep (Ogilvie, 2001), and a continuous analysis of sleep power bands [Odds Ratio Product] (Younes et al., 2015).

Infraslow activity patterns are key components of NREM sleep, having a major role in clustering of other oscillatory phenomena such as sleep spindles and slow waves (Lecci et al., 2017). The CAP is based on visually recognized repeated sequences of transient EEG events (CAP A) vs. tonic background EEG patterns (CAP B) on the infraslow time scale that show abrupt variations in their spectral composition (Terzano and Parrino, 2000). CAPs appear preferentially at moments of N2 onset or termination, whereas the 0.02-Hz oscillation runs throughout NREM periods (Fernandez and Luthi, 2020). The relation to sleep spindle dynamics is not fully established, but spindles occur preferentially during the B- rather than the A-phase of CAP (Fernandez and Luthi, 2020). The CAP periods are considered unstable periods of NREMS, during which activity in the periphery is increased and the tendency for sleep interruption is enhanced. Many autonomic parameters, such as heart and breathing rates, are modulated in phase with CAP dynamics. The tendency for arousals, leg movements, and bruxism is also enhanced during CAP periods.

Autonomic physiology presents an alternative window into sleep; e.g., hemodynamics, heart rate variability (HRV), and respiration are markedly sleep stage dependent, with vagal dominance, stable breathing, and blood pressure reductions (“dipping”) during slow wave sleep/N3 (Javaheri and Redline, 2012). However, scored N3 is not a reliable marker of these dynamics, which occur in large segments of scored N2 as well. Coupled with the fact that N3 makes up only a small fraction of NREM sleep, and markedly decreases with age even in healthy adults, this suggests an alternative, multi-physiology approach to sleep stability might be more informative than a legacy frontal EEG-based definition. Further, standard reporting of EEG-based stages as percentage of sleep time is an insensitive metric of sleep fragmentation (Bianchi and Thomas, 2013).

A fundamental electrophysiological signature of NREM sleep is the <1 Hz cortical slow oscillation (SO) and the associated defining “UP” and “DOWN” neuronal states, which is seen in virtually every cortical cell recorded intracellularly (Vyazovskiy and Harris, 2013). The slow oscillation can be recorded at subcortical and brainstem levels, and likely influences neural activity (Eschenko et al., 2012). Generally, the SO is enriched during stage N3, but is also present during stage N2. How does the SO relate to downstream autonomic effects of sleep state?

A method to categorize sleep independent of the EEG, based on cardiopulmonary coupling (CPC) analysis, combines HRV, and the ECG-derived respiration (EDR; Thomas et al., 2005). One regime of NREM sleep is characterized by high frequency cardiopulmonary coupling (HFC), breath-to-breath temporal stability of respiration, relatively high arousal thresholds, strong respiratory sinus arrhythmia, and a paucity of phasic EEG activity; this state we term stable NREM sleep (NREMS). High frequency coupling correlates with relative delta power across the entire night, not just N3 rich periods meeting consensus scoring criteria (Thomas et al., 2014). A contrasting regime demonstrates low frequency cardiopulmonary coupling (LFC), low frequency oscillations of tidal volume, cyclic variation in heart rate, abundant phasic EEG activity; we term this integrated state unstable NREM sleep (NREMUS), because it is associated with known features of sleep fragmentation such as arousals and sleep apnea. These HFC/LFC states are mutually exclusive, switch spontaneously within an individual NREM period, and occur throughout the night (Thomas et al., 2005). These state switches are clearly seen during transitions between stable and unstable NREM breathing in sleep apnea patients (Figure 1). Stable and unstable breathing periods have long been recognized in sleep apnea but have been ascribed to respiratory reflex than top-down brain mechanisms (Jordan et al., 2009; de Melo et al., 2017). An unknown component is the relationship of the NREM slow oscillation to CPC-determined sleep states and that of sleep hemodynamics (blood pressure) to NREMS and NREMUS. Watson et al. described “packets” of NREM sleep alternating with “microarousals,” interspersed within NREM epochs, characterized by increased firing rates of slow-firing neurons in mice (Watson et al., 2016). It is possible that these “packets” and “microarousals” are the murine counterpart of HFC/LFC switching seen in humans.
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FIGURE 1. Spontaneous state/respiration switching in NREM sleep. Unstable NREM sleep on the left, spontaneous switch to stable NREM sleep in the middle of this 5-min epoch. EEG montage is standard. LAT, left anterior tibial electromyogram; RAT, right anterior tibial electromyogram; EKG, electrocardiogram; SNORE, snoring microphone; PTAF, pneumotachogram air flow (nasal pressure); THERM, Thermistor airflow; THORACIC, chest effort; and ABDOMIN, abdominal effort.


Several methods which characterize sleep in alternate ways analyze a single physiological stream (EEG-CAP/non-CAP; EEG-ORP; blood pressure dipping periods; stable breathing periods in sleep apnea). However, there is ample data derived from network physiology research that sleep is a complex vertically (across subsystems) networked state with horizontal (over time of night) dynamics (Bartsch et al., 2015; Liu et al., 2015; Lin et al., 2016, 2020). Across physiological states of “deep” and “light” sleep, the network undergoes topological transitions associated with fast reorganization of multiple diverse physiological interactions on time scales of a few minutes (Bashan et al., 2012). Analysis of Time Delay Stability (TDS), a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings, differentiates “deep” and “light” NREM sleep, with far higher connectivity during “light” sleep (Bartsch et al., 2015). Similarly, there are multiple forms of cardiorespiratory coupling (Bartsch et al., 2012), but both autonomic activity and respiration are profoundly influenced by sleep state and thus coupling is markedly different in deeper vs. lighter sleep. Thus, network physiology principles make it entirely plausible that sleep can be bimodal.

In this study, we tested the hypothesis that: (1) slow oscillations would have distinct and different kinetics during NREMS and NREMUS; (2) blood pressure dipping would occur during NREMS, regardless of conventional sleep stage; and (3) REM sleep would demonstrate stable and unstable patterns, specifically that unstable REM sleep would show concomitant features of NREM physiology. Phasic and tonic REM sleep are readily recognized and differentiated by visual examination, but a substantial part of the scoring manual tries to force a 30-s epoch at the border-zone of REM sleep into discrete bins based on elaborate rules for REM/NREM/wake transitions. However, by combining these patterns with respiratory signals, greater clarity of state may be possible.



MATERIALS AND METHODS

Three sets of data were used to establish the relationships of NREMS and NREMUS with the SO and sleep hemodynamics. Analysis was performed on different data sets for the following reasons: (1) the differentiation of NREMS and NREMUS is very clear in patients with sleep apnea – and provides the best resource to establish SO dynamics in relation to electrocardiogram (ECG)-spectrogram defined NREM sleep states; (2) The relationship of HFC and blood pressure profiles is best demonstrated in healthy subjects, so that confounds from autonomic dysfunction seen commonly in sleep apnea patients are avoided; and (3) A third data set focused exclusively on the transition to REM sleep in patients with sleep apnea. IRB approval for retrospective analysis of clinical PSG data was obtained for performance of the studies and data analysis.


Datasets Overview and Motivation

Three datasets were used to develop the concepts elaborated in this paper, summarized in Table 1. The driving principles of selecting these datasets were as follows: (1) stable and unstable states of NREM sleep are most readily quantified in sleep apnea patients, where the switch from stable to unstable state is so abrupt and with such clear boundaries that it enables capturing segments of relatively pure state. (2) Healthy subjects are optimal for demonstrating hemodynamic associations of sleep state, as states of disrupted sleep may have abnormal autonomic regulation (as is common for example in sleep apnea). (3) The boundary between stable and unstable REM sleep is best seen in those with high loop gain obstructive sleep apnea, with admixed periodic breathing and obstructive pathology (Gilmartin et al., 2005). In these patients with NREM-dominant obstructive sleep apnea, the “central” influence is seen in NREM sleep, and any obstructive component in REM sleep, which eliminates the central component through complex physiological mechanisms. A typical example of “REMUS” is when obstructive respiratory pathology in NREM sleep stabilizes a few minutes prior the start of REM sleep – the EEG shows NREM sleep, but the respiration shows REM qualities.


TABLE 1. Subject characteristics, sleep stage and sleep state across datasets.
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High Frequency Coupling and the Slow Oscillation of NREM Sleep (Data-1)

As the cardiopulmonary states of sleep stability and instability are especially well defined in those with sleep apnea, we analyzed 20 patients from the clinical sleep laboratory with sleep apnea (13 male, age 36.1 ± 6.3 years, body mass index 36.2 ± 3.3 Kg/M2, apnea hypopnea index 46.3 ± 7.8/h of sleep). We also selected all night diagnostic PSG from three subjects (2 male, age: 24 ± 3 years, body mass index 24.6 ± 3.2 Kg/M2) who presented with fatigue but had normal PSG. Sleep stage, arousal and respiratory event scoring used AASM guidelines1 including respiratory event scoring that included respiratory effort related arousals. First, the raw data was reviewed, and tags placed manually to mark periods of at least 10-min duration with the following criteria: (1) The stage was NREM. (2) The slow oscillation was clearly visible after digitally filtering out frequencies greater than 1 Hz. (3) The segments were artifact- and wake-free.



Slow Oscillation Phenotyping

The C4-A1 channel was selected, and a high frequency filter of 1 Hz used to allow visualization of the <1 Hz slow oscillation during NREM sleep, scored as N1, N2, or N3 in 30 s epochs per standard clinical criteria. Periods of EEG, independent of other physiological signals, were visually characterized in 30-s epochs based on the state determined by the temporal evolution of the slow oscillation, to be either continuous or fragmented throughout the tagged periods. In the continuous mode of the slow oscillation, two EEG cycles with the minimum requirement of 50 μV and 0.1–0.9 Hz were present in every 5 s of the recording. In the fragmented mode, there were at least 5 s without slow waves. Examples are provided in Figures 2, 3. A given 30 s epoch was scored as continuous or fragmented slow oscillation if >50% of a 30-s epoch met the scoring threshold.


[image: image]

FIGURE 2. Consolidated/continuous slow oscillation/down states. A 90-s snapshot showing sleep state features of effective NREM, stage N2. Note occurrence of several cycles of the slow oscillation/cortical down states (arrow) within the 5-s vertical time stamps. The second trace (from above) is a duplicate C4-A1 with filters adjusted to remove frequencies >1 Hz. Note strong respiratory modulation of ECG amplitude, which is a key input signal (the ECG-derived respiration) for cardiopulmonary coupling analysis. At this compression, heart rate variability is not readily identified, but the spectrogram is high frequency coupling. Note stable respiration. C-FLOW: flow from positive airway pressure device. NPRESS: nasal pressure. C4, O1: central and occipital standard EEG sites. A: auricle/mastoid reference. EMG: chin electromyogram. LOC/ROC: left and right outer canthus. LEG: combined right and left tibialis anterior electromyogram. SaO2: oxygen saturation via finger probe. ECG: electrocardiogram.
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FIGURE 3. Fragmented slow oscillation and sparse down states. A 90-s snapshot showing sleep state features of ineffective NREM (NREMIE), stage N2. Note paucity of the <1 Hz slow oscillation/down states (the arrow identifies an isolated down state, a K-complex) within the 5-s vertical time stamps. The second trace (from above) is a duplicate C4-A1 with filters adjusted to remove frequencies <1 Hz. This is a sample from a patient with untreated sleep apnea, showing the key characteristics of NREMIE: a fragmented and sparse slow oscillation, cortical arousals, cyclic variation in heart rate and low frequency modulation of HRV and ECG-amplitude that drives detection of this state as “low frequency coupling.” THERM: thermistor airflow. NPRESS: nasal pressure. C4, O1: central and occipital standard EEG sites. A: auricle/mastoid reference. EMG: chin electromyogram. LOC/ROC: left and right outer canthus. LEG: combined right and left tibialis anterior electromyogram. SaO2: oxygen saturation via finger probe. ECG: electrocardiogram.




Sleep Spectrograms

The ECG was exported in ASCII or EDF (European Data Format) formats and used to generate sleep spectrograms. Analysis was performed in RemLogicTM (1.1, Embla Systems, now Natus). Briefly, the method is based on simultaneous analysis of HRV and EDR (Thomas et al., 2005). The latter is computed by measuring the variations in QRS complex amplitude due to shifts in the cardiac electrical axis relative to the electrodes during respiration and changes in thoracic impedance as the lungs fill and empty. The HRV and EDR measures are determined in a fully automated way from a single, continuous channel of ECG. A time series of normal-to-normal sinus (NN) intervals and the time series of the EDR associated with these NN intervals are then extracted from the RR interval time series. Fourier-based techniques are employed to analyze the NN interval series and its associated EDR signal. Outliers due to false or missed R-wave detections are removed using a sliding window average filter with a window of 41 data points and rejection of central points lying outside 20% of the window average. The resulting NN interval series and its associated EDR are then resampled at 2 Hz. using cubic spline interpolation. The cross-spectral power and coherence of these two signals are calculated over a 1024 samples (8.5 min) window. Specifically, each 1024 samples window is divided into 3 overlapping 512 samples sub-windows, and Fast Fourier Transform is used to estimate the cross-power and coherence within the 1024 window. The 1024 samples window is then advanced by 256 samples (2.1 min) and the calculation repeated until the entire NN interval/EDR series is analyzed. For each 1024 window the product of the coherence and cross-spectral power is used to calculate the ratio of coherent cross power in the low frequency (0.01–0.1 Hz) band to that in the high frequency (0.1–0.4 Hz) band. A preponderance of power in the low frequency band tends to be associated with periodic sleep behaviors regardless of etiology, while excess power in the high frequency band is associated with physiologic respiratory sinus arrhythmia and stable/deep NREM sleep. Low frequency coupling has been previously shown to be associated with CAP and high frequency coupling with non-CAP (Thomas et al., 2005).



Beat-to-Beat Blood Pressure and Sleep Stage/State (Data 2)

Polysomnography (PSG) was performed in 11 subjects, 9 were healthy volunteers. Scoring used the AASM guidelines, as above. The PSG system used SOMNOmedics (SOMNOmedics GmbH, Germany) includes Pulse Transit Time derived beat-to-beat blood pressure (Gesche et al., 2012). This was supplemented by intra-arterial blood pressure (2 subjects with hypercapnic sleep apnea monitored in the intensive care unit for accurate titration of positive airway pressure therapy) and Finometer-based beat-to-beat blood pressure in the 9 healthy subjects.

To align results, beat-to-beat blood pressure was averaged every 32 s, so there were 4 readings of beat-to-beat blood pressure for each 128 s moving window of CPC output of HFC vs. non-HFC state. This approach also allowed us to closely track 30 s sleep state epochs, with a small amount of rounding. Thus, each sleep stage epoch had one final reading of blood pressure (systolic or diastolic) and each CPC window had 4 blood pressure readings, which were then averaged.



Sleep Apnea and REM Border-Zones (Data – 3)

Fifty diagnostic or split-night PSGs of sleep apnea were reviewed to identify coexisting features of REM and NREM sleep but using respiratory patterns (obstructive apnea/hypopnea vs. periodic breathing) as a key guide (Figure 5). Thus, periodic breathing in REM sleep, NREM EEG during REM-type sleep apnea and stabilization of NREM periodic breathing at the edges of REM sleep, before conventional REM sleep, were examples of mixed states identified. Oximetry patterns (band-like desaturation for periodic breathing, V-shaped desaturation for REM-dominant obstructive disease) were also used to identify respiratory sleep stage (Figure 6). These mixed states are called “unstable REM sleep.” The minimum window size used to define this state was 60 s.



Statistical Methods

Statistical analysis using STATA12 generated summary measures (means/standard deviations), t-tests, and repeated measures Analysis of Variance, to assess blood pressure in relation to conventional sleep stage and ECG-spectrogram state.



RESULTS


Sleep Spectrogram and NREM Sleep < 1 Hz Slow Oscillation in Data-1

From a total of 20 subjects with sleep apnea and 3 subjects with chronic fatigue, a total of 1256.5 min of sleep was analyzed. There were 35 periods of sleep selected for analysis and scoring, the mean duration was 35.9 ± 21.1 min. The 7 periods visually scored as “fragmented” were 44.6 ± 21.7 min in duration, not significantly different in duration from the 28 periods scored as “continuous,” 33.7 ± 12.3, t-test p = 0.2. On conventional staging, 9 periods were stage N3 and 26 were stage N2; the N3 periods were significantly longer, 49.2 ± 12.5 vs. 31.3 ± 8.3 min, t-test p = 0.03.



Slow Oscillation, Conventional Stage, and High Frequency Coupling

In Data-1, high frequency coupling state dominated sleep periods where the <1 Hz slow oscillation was scored as “continuous.” The continuous mode showed increased high frequency coupling (83.1 ± 8.1 vs. 18.6 ± 6.7% for low frequency coupling, p < 0.001). There was no significant difference in HFC% when considering epochs scored by traditional N2 vs. N3 (70.1 ± 39.3% vs. 70.7 ± 40.8%, p: 0.97). There were no significant association between <1 Hz slow oscillation modes with conventional stage N2/N3 [Pearson Chi Square: 0.60, p: 0.50]. In Data-2, the slow oscillation continuous mode dominated periods of high frequency coupling contrasted with low frequency coupling (93.3 ± 3.4 vs. 12.7 ± 5.6%, p < 0.001).



Sleep Stage, Sleep Spectrogram in Data-2 (Tables 1, 2)

Sleep efficiency was lower and wake after sleep onset higher than that typical of research studies, likely reflecting the recording environment and mild discomfort with the Finometer cuff and intermittent calibration inflations of a blood pressure cuff which is part of the recording system. Adequate numbers of stages and states were obtained (Table 2). There was no significant sleep apnea, including in the two subjects studied during positive airway pressure titration in the intensive care unit.


TABLE 2. (Data -2): Epochs of artifact free conventional stage/interpolated CPC.
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EEG Delta Power, Sleep Stages, High Frequency Coupling

In Data-1, delta power, calculated using a Fast Fourier Transform applied every second and then averaged for the entire duration of the selected segment, was increased in stage N3 relative to stage N2 (47.3 ± 12.6 vs. 22.8 ± 3.9 μV2/Hz; p: 0.001). Periods of continuous vs. discontinuous slow oscillation had increased absolute delta power (51.6 ± 27.8 vs. 31.7 ± 6.3 μV2/Hz, p: 0.02) in Data-1 and Data-2 (78 ± 15.2 vs. 42.8 ± 13.9 μV2/Hz; p: 0.001).



Beat-to-Beat Blood Pressure and Sleep in Data 2 (Table 3)

For a total of 11 subjects, a total of 5832 epochs (2916 min) of artifact-free conventional sleep were analyzed (N1:386, N2:3177, N3:1272, REM: 997). Based on ECG-spectrogram analysis, 1875 interpolated epochs were HFC, vs. 3901 were non-HFC. The total spectrographic analysis was 5776 epochs, which is slightly less than the number of conventional stage epochs as the spectrographic windows are 2.1 min, needing a rounding off described above. A within-subjects repeated measures Analysis of Variance of the Finometer/intra-arterial was performed using epoch (of state or stage) as the repeated factor. N3 had the lowest blood pressure of the conventional stages [F(3, 5818): 90.05, p < 0.001]. High frequency coupling [F(1, 5807): 218.7, p < 0.001], regardless of conventional stages was associated with reduced mean blood pressure (Figure 4).


TABLE 3. (Data-2): Beat-to-beat blood pressure in relation to sleep stage and state (11 subjects).
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FIGURE 4. Blood pressure in relation to sleep stage and state. Intra-arterial (black) and PTT-derived (red) blood pressure during polysomnography shows a rise during REM sleep and reductions during periods of high frequency coupling during stage N2. In this individual, there is no N3 sleep, demonstrating the independence of high frequency coupling from conventional slow wave sleep. REM sleep results in an increase in blood pressure. The drop of blood pressure in the initial wake periods reflected the effect of quiet/relaxed state on cardiovascular hemodynamics. HFC, high frequency coupling periods; NREM, non-rapid eye movement; and REM, rapid eye movement.




Unstable REM Sleep – Data 3, Figure 5

For a total of 50 subjects with high loop gain apnea, the subject population characteristics were 37/50 males, BMI 32.3 ± 6.7 Kg/M2, age: 54.3 ± 8 years. There was a total of 127 REM periods of at least 15 min duration (mean: 22.2 ± 7.1 min). In 78/127 (61.4%) periods, a segment of unstable REM across EEG and respiratory domains, were noted. These occurred exclusively at the transition into REM sleep, never at the end of a REM period. In 12 REM periods, periodic breathing occurred at the edge of EEG-based REM sleep before converting into typical REM apnea.


[image: image]

FIGURE 5. REM breathing in NREM sleep. Periodic breathing with mild obstructive features is unresponsive to CPAP in NREM sleep. Approximately 2.5 min before the onset of classic REM sleep, respiration abruptly stabilizes and remains stable for the rest of REM sleep. Stabilization begins before the increase of CPAP from 10 to 11 cms H2O. EEG montage is standard. EKG, electrocardiogram; SNORE, snoring microphone; LAT, left anterior tibial electromyogram; RAT, right anterior tibial electromyogram; and NPT, nasal pressure (mask pressure). C-FLOW: flow signal from the CPAP machine; CHEST: chest effort; ABDOMI: abdominal effort Pleth: singer pulse plethysmogram.
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FIGURE 6. REM breathing in NREM sleep-hypnogram. Split-night polysomnogram showing REM-dominant sleep apnea. The second REM period is not seen on the surface conventional scoring yet demonstrates the classic desaturation pattern of REM sleep.




Gender Differences

Across all analyses, no statistically significant gender differences were noted.



DISCUSSION

The key results are as follows: (1) A bimodal pattern of NREM and REM sleep was evident using a multi-physiology approach. (2) The NREM sleep slow oscillation shows two modes, one mode dominated by nearly continuous slow waves/down states (conventional N3 and most of healthy N2) and another with intermittent slow waves/down states (K-complexes by conventional characterization; rarely N3, usually N2). (3) Blood pressure during sleep was lowest during stage N3, slow wave sleep. (3) Blood pressure was reduced during periods of HFC during subsets of N2 that exhibited HFC characteristics, similar to that seen during N3. (4) Utilizing respiratory patterns distinct to obstructive apnea and periodic breathing, unstable REM (or REMUS) was discernable.

Non-rapid eye movement sleep bimodality is readily visible in polysomnographic data. Delta power covaries with the high frequency component of HRV (Yang et al., 2002; Rothenberger et al., 2014). However, the evolution of HRV power across the sleep period and in relation to stages does not show sharp boundaries. Windowing HRV through respiration and respiratory control systems, which is what the CPC technique achieves, enables clear boundary distinctions of respiratory-autonomic-sleep integration. Viewing sleep through this lens, the results presented support the concept of bimodality rather than the multi-step depth approach to characterizing NREM sleep (Thomas and Mietus, 2011). The continuous mode of the slow oscillation was enriched during periods of HFC, a state we have previously shown to be correlated with delta power and requires stable breathing to be detected computationally (Thomas et al., 2014). If blood pressure dipping occurs only during these same periods, then periods of HFC simultaneously also demonstrate stable breathing, high delta power, and vagal HRV dominance. These are the properties we propose make up NREMS. As periods of HFC and LFC alternate and abruptly switch across the whole sleep period during NREM sleep, these results show a dimension and characterization of NREM sleep not previously recognized, but reminiscent of what has previously been called NREM “packets” (Watson et al., 2016). While the EEG is information rich, these “packets” of NREM sleep with desirable qualities may capture a complementary read-out of sleep physiology and quality.

Even in conditions associated with fragmented sleep, such as sleep apnea, delta power and vagal HRV dominance tends to ebb and flow in a correlated manner (Jurysta et al., 2006). How do cortical phenomena impact subcortical and brainstem function such that integrated multi-component states exist? Two possibilities are proposed. In one, the <1 Hz slow oscillation, which can be recorded in subcortical and brain stem neural sub-systems (Eschenko et al., 2012), provides a global synchronizing influence. The impact of cortical down states is possibly far more widespread across the neuraxis, beyond the characterization in the thalamus and striatum. Such influences would enable stable breathing, blood pressure dipping, vagal autonomic dominance, and high delta power to occur simultaneously. In another scenario, the thalamus may provide a multi-loop synchronizing function (Crunelli et al., 2014).

Our results on blood pressure across states of sleep reflects vertical integration of multiple physiologies from the cortex to the vasculature. A reduction in blood pressure during sleep (“dipping”) is considered a blood pressure-related biomarker of healthy sleep (Routledge et al., 2007; Salles et al., 2016). There is a progressive reduction of blood pressure from wake through slow wave sleep, with an increase in REM sleep or transiently in association with arousals. Ambulatory blood pressure measurement using intermittent cuff inflation has shown the amount of slow wave sleep to correlate with dipping (Sayk et al., 2010; Javaheri and Redline, 2012). We show that blood pressure reduction during sleep occurs only during periods of high frequency coupling, our proposed biomarker of NREMS. This correlation was observed independent of N3 sleep. The results strengthen the concept that the NREM slow oscillation has profound effects across the neuraxis, binding cortical, subcortical and brainstem mechanisms to form a state of sleep that can perform its functions, not well-captured by standard EEG-based staging.

The association of blood pressure dipping exclusively with NREMS is important as NREMS is in turn associated with a continuous mode of expression of the NREM slow oscillation. Non-dipping of blood pressure could in theory be caused by pathology at multiple levels of the system, from the cortex all the way down to the endothelium and arterioles. Conditions and stimuli that increase fragmentation of the slow oscillation, such as arousals (of which there are numerous causes) and intrinsic diseases such as neurodegeneration (Alzheimer’s disease, Parkinson’s disease, stroke) may alter hemodynamic profiles during sleep and impose a vascular burden on cortical health. Treatment of sleep fragmenting conditions can improve sleep hemodynamics. It is also possible that drugs which enhance high frequency coupling, such as benzodiazepines (Thomas et al., 2017) may benefit sleep hemodynamics, though other undesirable effects alter the risk benefit balance and may limit general use.

Rapid eye movement sleep bimodality is less intuitive but in retrospect should have been identified earlier. Transitions to and from REM sleep have elaborate rules and are often the areas where the lowest inter-scorer reliability occurs, especially N2 to REM (Rosenberg and Van Hout, 2013). Dissociated states where the distinction of REM and NREM is difficult or impossible are well described (Mahowald and Schenck, 1991; Vetrugno et al., 2009; Vetrugno and Montagna, 2011; Abgrall et al., 2015; Antelmi et al., 2016). Blurring of sleep states have been described in narcolepsy, where state instability is an important pathology (Diniz Behn et al., 2010; Olsen et al., 2017). Our data adds respiratory patterns to this analysis, and show that such transitional states, where there are features of coexisting REM and NREM sleep, are relatively common. Recognizing this transitional state as unstable REM or REMUS can provide insights into diseases where REM pathology may be of interest, such as post-traumatic stress disorder, REM behavior disorder, neurodegeneration in general, narcolepsy and sleep apnea.

Our study has some limitations. The EEG montages used, typical of clinical and research PSG, did not allow estimation of local vs. global slow wave activity (Nobili et al., 2012; Timofeev, 2013). Recording beat-to-beat blood pressure with high density EEG will be required to determine the relationship of cortical slow wave activity, CPC, and blood pressure at a finer resolution that we have been able to show. The standard filter settings on PSG also impose a cut-off at 0.3 Hz, filtering out some components of the <1 Hz slow oscillation (clinical PSG does not use a full-band EEG approach). We did not study children, who have an abundance of slow wave activity, or the elderly, who have reduced slow wave activity. However, HFC dominates healthy sleep in children (Lee et al., 2012; Cysarz et al., 2018) and adults including the elderly (Thomas et al., 2009).

In summary, we show that both NREM and REM sleep have cross-modal bimodal characteristics, with concordant occurrence of stable breathing, high delta power, a consolidated <1 Hz slow oscillation dominated by frequent cortical down states, and blood pressure dipping as a feature of an integrated “stable” NREM sleep. Readily recognizable admixtures of REM and NREM physiology are common in sleep apnea patients and provide support to the concept of REM bimodality. Such bimodal states are entirely consistent with the features of sleep described by network physiologists. Our results also point to the importance of using a multi-physiology approach to identify sleep states, than relying exclusively on EEG-based staging. Our results and those of other complementary sleep typing systems may also motivate a new look at neurocircuitry models of sleep regulation.



DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Institutional Review Board/Committee on Clinical Investigations, Beth Israel Deaconess Medical Center, Boston. The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

CW: Data collection, curation, tabulation, analysis, and manuscript review. MB: Theory conceptualization, manuscript writing, and editing and review. C-HY: Theory conceptualization, manuscript writing and review. CS: Theory conceptualization, manuscript writing and review. RT: Software development (cardiopulmonary coupling), theory conceptualization, data analysis, and manuscript writing and editing. All authors contributed to the article and approved the submitted version.



FUNDING

RC1HL099749-01 (National Heart Lung Blood Institute, United States).


FOOTNOTES

1
http://www.aasmnet.org/scoringmanual/default.aspx


REFERENCES

Abgrall, G., Demeret, S., Rohaut, B., Leu-Semenescu, S., and Arnulf, I. (2015). Status dissociatus and disturbed dreaming in a patient with Morvan syndrome plus myasthenia gravis. Sleep Med. 16, 894–896. doi: 10.1016/j.sleep.2015.03.017

Antelmi, E., Ferri, R., Iranzo, A., Arnulf, I., Dauvilliers, Y., Bhatia, K. P., et al. (2016). From state dissociation to status dissociatus. Sleep Med. Rev. 28, 5–17. doi: 10.1016/j.smrv.2015.07.003

Bartsch, R. P., Liu, K. K., Bashan, A., and Ivanov, P. (2015). Network physiology: how organ systems dynamically interact. PLoS One 10:e0142143. doi: 10.1371/journal.pone.0142143

Bartsch, R. P., Schumann, A. Y., Kantelhardt, J. W., Penzel, T., and Ivanov, P. (2012). Phase transitions in physiologic coupling. Proc. Natl. Acad. Sci. U.S.A. 109, 10181–10186.

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. (2012). Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3:702.

Bianchi, M. T., and Thomas, R. J. (2013). Technical advances in the characterization of the complexity of sleep and sleep disorders. Prog. NeuroPsychopharmacol. Biol. Psychiatry 45, 277–286. doi: 10.1016/j.pnpbp.2012.09.017

Crunelli, V., David, F., Lorincz, M. L., and Hughes, S. W. (2014). The thalamocortical network as a single slow wave-generating unit. Curr. Opin. Neurobiol. 31C, 72–80. doi: 10.1016/j.conb.2014.09.001

Cysarz, D., Linhard, M., Seifert, G., and Edelhauser, F. (2018). Sleep instabilities assessed by cardiopulmonary coupling analysis increase during childhood and adolescence. Front. Physiol. 9:468. doi: 10.3389/fphys.2018.00468

de Melo, C. M., Taranto-Montemurro, L., Butler, J. P., White, D. P., Loring, S. H., Azarbarzin, A., et al. (2017). Stable breathing in patients with obstructive sleep apnea is associated with increased effort but not lowered metabolic rate. Sleep 40:zsx128.

Diniz Behn, C. G., Klerman, E. B., Mochizuki, T., Lin, S. C., and Scammell, T. E. (2010). Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 33, 297–306. doi: 10.1093/sleep/33.3.297

Eschenko, O., Magri, C., Panzeri, S., and Sara, S. J. (2012). Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb. Cortex 22, 426–435. doi: 10.1093/cercor/bhr121

Fernandez, L. M. J., and Luthi, A. (2020). Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805–868. doi: 10.1152/physrev.00042.2018

Gesche, H., Grosskurth, D., Kuchler, G., and Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur. J. Appl. Physiol. 112, 309–315. doi: 10.1016/j.measurement.2018.04.047

Gilmartin, G. S., Daly, R. W., and Thomas, R. J. (2005). Recognition and management of complex sleep-disordered breathing. Curr. Opin. Pulm. Med. 11, 485–493.

Javaheri, S., and Redline, S. (2012). Sleep, slow-wave sleep, and blood pressure. Curr. Hypertens. Rep. 14, 442–448. doi: 10.1007/s11906-012-0289-0

Jordan, A. S., White, D. P., Lo, Y. L., Wellman, A., Eckert, D. J., Yim-Yeh, S., et al. (2009). Airway dilator muscle activity and lung volume during stable breathing in obstructive sleep apnea. Sleep 32, 361–368. doi: 10.1093/sleep/32.3.361

Jurysta, F., Lanquart, J. P., van de Borne, P., Migeotte, P. F., Dumont, M., Degaute, J. P., et al. (2006). The link between cardiac autonomic activity and sleep delta power is altered in men with sleep apnea-hypopnea syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1165–R1171.

Lecci, S., Fernandez, L. M., Weber, F. D., Cardis, R., Chatton, J. Y., Born, J., et al. (2017). Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 3:e1602026. doi: 10.1126/sciadv.1602026

Lee, S. H., Choi, J. H., Park, I. H., Lee, S. H., Kim, T. H., Lee, H. M., et al. (2012). Measuring sleep quality after adenotonsillectomy in pediatric sleep apnea. Laryngoscope 122, 2115–2121. doi: 10.1002/lary.23356

Lin, A., Liu, K. K., Bartsch, R. P., and Ivanov, P. (2016). Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374:20150182. doi: 10.1098/rsta.2015.0182

Lin, A., Liu, K. K. L., Bartsch, R. P., and Ivanov, P. C. (2020). Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function. Commun. Biol. 3:197.

Liu, K. K., Bartsch, R. P., Lin, A., Mantegna, R. N., and Ivanov, P. (2015). Plasticity of brain wave network interactions and evolution across physiologic states. Front. Neural Circuits 9:62. doi: 10.3389/fncir.2015.00062

Mahowald, M. W., and Schenck, C. H. (1991). Status dissociatus–a perspective on states of being. Sleep 14, 69–79. doi: 10.1093/sleep/14.1.69

Nobili, L., De Gennaro, L., Proserpio, P., Moroni, F., Sarasso, S., Pigorini, A., et al. (2012). Local aspects of sleep: observations from intracerebral recordings in humans. Prog. Brain Res. 199, 219–232.

Ogilvie, R. D. (2001). The process of falling asleep. Sleep Med. Rev. 5, 247–270. doi: 10.1053/smrv.2001.0145

Olsen, A. V., Stephansen, J., Leary, E., Peppard, P. E., Sheungshul, H., Jennum, P. J., et al. (2017). Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy. J. Neurosci. Methods 282, 9–19. doi: 10.1016/j.jneumeth.2017.02.004

Parrino, L., Grassi, A., and Milioli, G. (2014). Cyclic alternating pattern in polysomnography: what is it and what does it mean? Curr. Opin. Pulm. Med. 20, 533–541. doi: 10.1097/mcp.0000000000000100

Rosenberg, R. S., and Van Hout, S. (2013). The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring. J. Clin. Sleep Med. 9, 81–87. doi: 10.5664/jcsm.2350

Rothenberger, S. D., Krafty, R. T., Taylor, B. J., Cribbet, M. R., Thayer, J. F., Buysse, D. J., et al. (2014). Time-varying correlations between delta EEG power and heart rate variability in midlife women: the SWAN sleep study. Psychophysiology 52, 572–584. doi: 10.1111/psyp.12383

Routledge, F. S., McFetridge-Durdle, J. A., Dean, C. R., and Canadian Hypertension Society (2007). Night-time blood pressure patterns and target organ damage: a review. Can. J. Cardiol. 23, 132–138. doi: 10.1016/s0828-282x(07)70733-x

Salles, G. F., Reboldi, G., Fagard, R. H., Cardoso, C. R., Pierdomenico, S. D., Verdecchia, P., et al. (2016). Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension 67, 693–700. doi: 10.1161/hypertensionaha.115.06981

Sayk, F., Teckentrup, C., Becker, C., Heutling, D., Wellhoner, P., Lehnert, H., et al. (2010). Effects of selective slow-wave sleep deprivation on nocturnal blood pressure dipping and daytime blood pressure regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R191–R197.

Terzano, M. G., and Parrino, L. (2000). Origin and significance of the cyclic alternating pattern (CAP). REVIEW ARTICLE. Sleep Med. Rev. 4, 101–123. doi: 10.1053/smrv.1999.0083

Thomas, R. J., and Mietus, J. E. (2011). “Mapping sleep using coupled biological oscillations,” in Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology, Boston, MA (Piscataway, NJ: IEEE), 1479–1482.

Thomas, R. J., Mietus, J. E., Peng, C. K., and Goldberger, A. L. (2005). An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep. Sleep 28, 1151–1161. doi: 10.1093/sleep/28.9.1151

Thomas, R. J., Mietus, J. E., Peng, C. K., Guo, D., Gozal, D., Montgomery-Downs, H., et al. (2014). Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep. Sleep Med. 15, 125–131. doi: 10.1016/j.sleep.2013.10.002

Thomas, R. J., Weiss, M. D., Mietus, J. E., Peng, C. K., Goldberger, A. L., and Gottlieb, D. J. (2009). Prevalent hypertension and stroke in the Sleep Heart Health Study: association with an ECG-derived spectrographic marker of cardiopulmonary coupling. Sleep 32, 897–904.

Thomas, R. J., Wood, C., and Bianchi, M. T. (2017). Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea and insomnia. Sleep 41:zsx196.

Timofeev, I. (2013). Local origin of slow EEG waves during sleep. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova 63, 105–112. doi: 10.7868/s0044467713010139

Vetrugno, R., Alessandria, M., D’Angelo, R., Plazzi, G., Provini, F., Cortelli, P., et al. (2009). Status dissociatus evolving from REM sleep behaviour disorder in multiple system atrophy. Sleep Med. 10, 247–252. doi: 10.1016/j.sleep.2008.01.009

Vetrugno, R., and Montagna, P. (2011). From REM sleep behaviour disorder to status dissociatus: insights into the maze of states of being. Sleep Med. 12(Suppl. 2), S68–S71.

Vyazovskiy, V. V., and Harris, K. D. (2013). Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat. Rev. Neurosci. 14, 443–451. doi: 10.1038/nrn3494

Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N., and Buzsaki, G. (2016). Network homeostasis and state dynamics of neocortical sleep. Neuron 90, 839–852. doi: 10.1016/j.neuron.2016.03.036

Yang, C. C., Lai, C. W., Lai, H. Y., and Kuo, T. B. (2002). Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in humans. Neurosci. Lett. 329, 213–216.

Younes, M., Ostrowski, M., Soiferman, M., Younes, H., Younes, M., Raneri, J., et al. (2015). Odds ratio product of sleep EEG as a continuous measure of sleep state. Sleep 38, 641–654.


Conflict of Interest: RT: (1) Patent for a device to regulate CO2 in the positive airway pressure circuit, for treatment of central/complex apnea. (2) Patent and license for an ECG-based method to phenotype sleep quality and sleep apnea (to MyCardio, LLC, through Beth Israel Deaconess Medical Center). (3) Patent, past consultant – DeVilbiss-Drive, CPAP auto-titrating algorithm. (4) GLG Councils and Guidepoint Global– general sleep medicine consulting.

MB has received funding in the past from the Department of Neurology, Massachusetts General Hospital, the Center for Integration of Medicine and Innovative. Technology, the Milton Family Foundation, the MGH-MIT Grand Challenge, and the American Sleep Medicine Foundation. MB has had research contracts with MC10 and Insomnisolv, consulting agreements with McKesson, International Flavors and Fragrances, and Apple Inc., and has served as a medical monitor for Pfizer. MB has received payment for educational material from Oakstone Publishing and has provided expert testimony in sleep medicine. None of these entities were involved in the present work.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Wood, Bianchi, Yun, Shin and Thomas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 08 December 2020
doi: 10.3389/fphys.2020.596844





[image: image]

Cardiac Autonomic Dysfunction and Incidence of de novo Atrial Fibrillation: Heart Rate Variability vs. Heart Rate Complexity

Niels Wessel1*†, Karsten Berg1, Jan F. Kraemer1, Andrej Gapelyuk1, Katrin Rietsch2, Tino Hauser2, Jürgen Kurths1,3,4, Dave Wenzel5, Norbert Klein6, Christof Kolb7, Roberto Belke2†, Alexander Schirdewan8† and Stefan Kääb9†

1Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany

2BIOTRONIK, Berlin, Germany

3Potsdam Institute for Climate Impact Research, Potsdam, Germany

4Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia

5Clinic for Cardiology and Angiology, University Hospital Magdeburg, Magdeburg, Germany

6St. Georg Hospital, Leipzig, Germany

7Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Abteilung für Elektrophysiologie, Faculty of Medicine, Technische Universität München, Munich, Germany

8Sana Klinikum Lichtenberg, Berlin, Germany

9Medical Center of Ludwig-Maximilians-University of Munich, Munich, Germany

Edited by:
Plamen Ch. Ivanov, Boston University, United States

Reviewed by:
Ulrich Parlitz, Max-Planck-Institute for Dynamics and Self-Organization, Max Planck Society (MPG), Germany
Frida Sandberg, Lund University, Sweden

*Correspondence: Niels Wessel, niels.wessel@physik.hu-berlin.de

†Steering Committee REACT DX Registry

Specialty section: This article was submitted to Autonomic Neuroscience, a section of the journal Frontiers in Physiology

Received: 20 August 2020
Accepted: 13 November 2020
Published: 08 December 2020

Citation: Wessel N, Berg K, Kraemer JF, Gapelyuk A, Rietsch K, Hauser T, Kurths J, Wenzel D, Klein N, Kolb C, Belke R, Schirdewan A and Kääb S (2020) Cardiac Autonomic Dysfunction and Incidence of de novo Atrial Fibrillation: Heart Rate Variability vs. Heart Rate Complexity. Front. Physiol. 11:596844. doi: 10.3389/fphys.2020.596844

Background: The REACT DX registry evaluates standard therapies to episodes of long-lasting atrial tachyarrhythmias and assesses the quality of sensing and stability of the lead and the implantable cardioverter-defibrillator (ICD) (BIOTRONIK Lumax VR-T DX and successors) over at least a 1-year follow-up period.

Objective: To study the association between the risk of de novo device-detected atrial fibrillation (AF), the autonomic perturbations before the onset of paroxysmal AF and a 7-days heart rate variability (7dHRV) 1 month after ICD implantation.

Methods: The registry consists of 234 patients implanted with an ICD, including 10 with de novo long-lasting atrial tachyarrhythmias with no prior history of AF. The patients were matched via the propensity-score methodology as well as for properties directly influencing the ECGs recorded using GE CardioMem CM 3000. Heart rate variability (HRV) analysis was performed using standard parameters from time- and frequency-domains, and from non-linear dynamics.

Results: No linear HRV was associated with an increased risk of AF (p = n.s.). The only significant approach was derived from symbolic dynamics with the parameter “forbidden words” which distinguished both groups on all 7 days of measurements (p < 0.05), thereby quantifying the heart rate complexity (HRC) as drastically lower in the de novo AF group.

Conclusion: Cardiac autonomic dysfunction denoted by low HRC may be associated with higher AF incidence. For patients with mild to moderate heart failure, standard HRV parameters are not appropriate to quantify cardiac autonomic perturbations before the onset of AF. Further studies are needed to determine the individual risk for AF that would enable interventions to restore autonomic balance in the general population.
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INTRODUCTION

Atrial fibrillation (AF), the most common clinical arrhythmia, is associated with increased risk of stroke, heart failure (HF) and possibly dementia (Mozaffarian et al., 2016). There is growing evidence that cardiovascular disease (CVD) risk factors and CVD itself explains only 50% of AF occurrences (Agarwal et al., 2017), as the understanding of AF pathophysiology is still incompletely understood (Benjamin et al., 2009). Cardiac autonomic dysfunction has long been suspected in the development of AF (Coumel, 1994), therefore the direct observation of heart rate variability (HRV) immediately preceding the onset of arrhythmia will likely permit the documentation of the underlying mechanism(s). However, the role of the autonomic nervous system should be taken into consideration for optimal individual antiarrhythmic treatment.

Twenty years ago, the Task Force of the European Society of Cardiology (ESC) and the North American Society of Pacing and Electrophysiology published the HRV standards of measurement (Malik et al., 1996). The contemporary literature has a plethora of studies applying HRV methodologies and their successes in clinical applications. However, the identification of high-risk patients has been rather limited. Recently, the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society wrote a joint position statement about advances in HRV signal analysis (Sassi et al., 2015). They presented a critical review of newly developed HRV methodologies developed after publication of the initial Task Force HRV overview (Wessel et al., 2016) and their applications in different physiological and clinical studies.

In a letter (Wessel et al., 2016) in response to this review, we provided several potential explanations for the limited success that merits additional attention: (1) the importance of monitoring respiration for the interpretation of standard HRV analysis, (2) the need to address its complexities using improved signal processing method (Benjamin et al., 2009; Wessel et al., 2009, 2016; Sidorenko et al., 2016) for patients with mild to moderate HF, standard HRV parameters may not be suited due to the alternating sinus rhythm phenomena (Voss et al., 2006; Costa et al., 2017). Therefore, non-linear methods for the description of heart rate complexity may be more appropriate (Kurths et al., 1995; Voss et al., 1996; Wessel et al., 2000; Brindle et al., 2016).

To capture the parameters from these domains, it is necessary to focus on their physiological interpretation. Spontaneous fluctuations of cardiovascular signals were already described more than a 100 years ago (Ludwig, 1847; Koepchen and Thurau, 1959; Wolf et al., 1978) with fluctuations in both heart rate and blood pressure representing oscillations around fixed values and expressing several influences, e.g., respiration and different self-regulating rhythms.

Short-term heart rate regulation is mainly accomplished by neural sympathetic- and parasympathetic-mediated cardiac baroreflexes and peripheral vessel resistance whereas long-term regulation is achieved by hormonal pathways as well as other systems like the renin-angiotensin-system (Berntson et al., 1997). HRV measurements have proven to be independent predictors of sudden cardiac death after acute myocardial infarction, chronic HF or dilated cardiomyopathy (Kleiger et al., 1987; Malik et al., 1996; Tsuji et al., 1996; Szabó et al., 1997). Moreover, it has been shown that short-term HRV analysis yields a prognostic value in risk stratification independent of clinical and functional variables (La Rovere et al., 2003). However, the underlying regulatory mechanisms are still poorly understood. Further work includes the relevance of premature ventricular ectopic beats, which are associated with an increased risk of sudden cardiac death, as well as their sophisticated neuro-cardio-respiratory interactions (Schmidt et al., 1999; Schulte-Frohlinde et al., 2001, 2002), and different means to analyze HRV as stationary epochs (Bernaola-Galván et al., 2001; Camargo et al., 2014).

The main objective of the REACT DX registry was to evaluate different standard therapies to episodes of long-lasting device-detected atrial tachyarrhythmias (duration >6 min at a frequency >190 beats per minute) and assess the quality of sensing and stability of the lead and implantable cardioverter-defibrillator (ICD) (BIOTRONIK Lumax VR-T DX and successor) over the pre-defined 1-year follow-up period. In addition, cardiac autonomic perturbations before the occurrence of de novo AF were investigated. Therefore, the 7-day continuous ECGs recordings 1 month after ICD implantation were analyzed in all patients. Based on standard time- and frequency-domain parameters as well as from non-linear dynamics (Wessel et al., 2007), the study also analyzed the association between the risk of de novo AF and 7-day HRV (7dHRV).



MATERIALS AND METHODS


Cohort

Between November 2012 and June 2016, the multicentre REACT DX registry enrolled 234 patients before or ≤1 month after ICD implantation from 14 sites in Germany. Follow-up duration was at least 12 months and up to 24 months (18.8 ± 4.9 months).

Of these, 199 (85%) were male and 180 (77%) received the ICD for the primary prevention of sudden cardiac death. The mean (±standard deviation) left ventricular ejection fraction was 33.6 ± 12.8%, 154 (65.8%) had conorary artery disease, 78 (33.3%) had dilated cardiomyopathy and 172 (73.5%) had hypertension. Pharmacological HF therapy was optimized prior to study inclusion in all patients resulting in 218 (93.2%) patients receiving β-blockers, 196 (83.8%) angiotensin ± neprilysin inhibitors, 112 (47.9%) spironolactone, 172 (73.5%) diuretics and 151 (64.5%) statins. During follow-up, a total of 14 (6.0%) patients developed long-lasting atrial tachyarrhythmias (≥6 min). For 10 of these 14 patients, all clinical data as well as the 7-day long-term ECG were available, and they were defined as our de novo AF group (first AF occurrence 211 ± 120 day). From the 166 out of the 234 patients with primary prevention and without detected long-lasting atrial tachyarrhythmias, a control group of equal size was created.

The main inclusion criteria were (i) indications and contraindications for ICD implantation according to national and international guidelines, (ii) be available for follow-up visits on a regular basis at an approved investigational centre, (iii) have a first implantation of an ICD-system, (iv) sign the informed consent form, (v) implantation of a Lumax 740 VR-T DX or successor and (vi) have sufficient coverage of mobile phone network.

The main exclusion criteria were (i) presence of permanent atrial tachyarrhythmia, (ii) indication for cardiac resynchronization therapy, (iii) life expectancy of less than 6 months, (iv) expected cardiac surgery within 6 months after enrolment, (v) age less than 18 years and (vi) enrolment in another cardiac clinical investigation.

Device-detected episodes of atrial tachyarrhythmia were evaluated by the investigators and by a clinical event committee consisting of two experienced physicians.

The REACT DX registry was approved by the ethic committee. All patients signed informed consent. The registry was conducted according to GCP and the Declaration of Helsinki, and was registered in Deutschen Register Klinischer Studien (registration number DRKS00010898).



Pre-processing

The analysis of HRV is often difficult due to many artifacts of the arrhythmias signals. While occasional ectopic beats are treated successfully by most pre-processing methods, more complex arrhythmias or arrhythmias which are similar to normal fluctuations, may remain undetected. We therefore developed a method for data pre-processing which is described in detail elsewhere (Wessel et al., 2007).

A detailed motivation, physiological introduction and the purpose of the analysis of HRV analysis can be reviewed in the Task Force HRV (Malik et al., 1996). It is important to address each artifact with the appropriate tools without influencing the results and the simple exclusion of ventricular premature beats may lead to erroneous HRV parameters (Lippman et al., 1994).

An appropriate method to handle most of these problems is through adaptive filtering, which has been described in detail elsewhere (Wessel et al., 2007). The main advantage of this method is the spontaneous adaptation to variability changes, which enables a more reliable removal of artifacts, ventricular premature beats and VPCs. This filtering algorithm consists of three sub-procedures:


(i) the removal of obvious recognition errors

(ii) the adaptive percent-filter

(iii) the adaptive controlling filter



It must be mentioned our group has analyzed several thousand human and animal time series (Wessel et al., 2007). In those analyses, small variations of the controlling parameters did not significantly influence the filtering results. A MATLAB implementation of the pre-processing algorithm is available from tocsy.agnld.uni-potsdam.de.



Time- and Frequency-Domain Parameters

Standard methods of HRV analysis include time- and frequency-domain parameters that are linear methods. Time-domain parameters are based on simple statistical methods derived from the RR-intervals as well as the differences between them. Mean heart rate is the simplest parameter, but the standard deviation over the entire time series (sdNN) is the most prominent HRV measure for estimating overall HRV. A list of selected parameters with a short explanation is given in Table A1 and has been described before (Wessel et al., 2007).



Non-linear Analysis of Heart Rate Variability

Heart rate and blood pressure variability reflects the complex interactions of many different controlled loops of the cardiovascular system. In relation to the complexity of the sinus node activity modulation system, a predominantly non-linear behavior has to be assumed. Thus, the detailed description and classification of dynamic changes using time and frequency measures is often not sufficient. We have previously shown that symbolic dynamic is an efficient approach to analyze the dynamic aspects of HRV (Kurths et al., 1995; Voss et al., 1996). The first step in this analysis is the transformation of the time series into symbol sequences, with symbols given an alphabet letter. Although some detailed information is lost in this process, the broad dynamic behavior can be analyzed (Engbert et al., 1997). Wackerbauer et al. (1994) used the methodology of symbolic dynamics for the analysis of the logistic map where a generic partition is known. However, for physiological time series analysis, a more pragmatic approach is necessary. The transformations into symbols should be chosen in a context-dependent manner. For this reason, we have developed a series of complexity measures based on such context-dependent transformations which have a close connection to physiological phenomena and are relatively easy to interpret (cf. appendix A).

All statistical analyses were performed using the R System. In the case of missing data values, a decision was made on a case to case basis as to if imputation of the missing data was possible or if the variable should be removed. A thorough verification of all patient data was conducted.



Matching

To investigate autonomic perturbations visible through HRV measures, we matched a control group from those that did not register an AF episode during the follow-up period on two levels. To reduce the possible number of subjects, the first matching was based on criteria directly impacting the morphology and interpretation of the ECGs (Table 1). This specific matching was based on the propensity-score methodology (Imbens and Rubin, 2015) with the score used to represent the propensity of the patient to suffer an AF episode before the end of the follow-up period given the demographic and medical data known at enrolment. This matching was meant to account for any previously available information regarding outcomes. Any differences found during the subsequent analysis presented additional and previously unavailable information.


TABLE 1. Parameters available for use in matching via the propensity score methodology: Parameters indicated as: “Fixed matching category” are identical for each matched pair, “Allowed for propensity score” were included into the regression to calculate the propensity score which was used to create the match, “Completeness” indicates the availability of this parameter for the cohort (Checkmarks/crosses highlight accepted/rejected parameters).
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Propensity Score

A linear logistic regression model was selected to separate those who suffered from AF episodes before implantation and those who did not until at least after the follow-up period. This model only used demographic data and variables from the medical history captured during enrolment (variables implying previous AFs were excluded, Table 1). The remaining variables were verified for completeness and, in the case of missing values, they were included using a k-nearest neighbor approach (Templ et al., 2011). The variables that contained more than 25% missing values were excluded. All ordinal factors were translated to orthogonal polynomial contrasts (Chambers and Hastie, 1991) to allow the incorporation of the order relationship into the model. We performed repeated runs of glmnet cross-validation (Friedman et al., 2010) [α = 0.5, each using a rose resampled (Menardi and Torelli, 2014) variant of the data to account for imbalances] to select the appropriate λ. Finally, we fitted the model to the original, but weighted according to the outcome variable imbalance, dataset at the calculated λ. The selected variables, as used in the model and their coefficients, are presented in Table 1. The response value of this model is the propensity score used for the secondary matching process, the matching results are presented in Table 2.


TABLE 2. Clinical patient characteristics of the control, as well as the de novo AF group.
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All long-term ECGs were recorded for 7 days, 1 month after ICD implantation using GE Healthcare CardioMem CM 3000 devices. HRV analyses were performed separately for each of the 7 days. All HRV parameters described above were calculated on a 24-h basis as well as from windowed analyses. For the latter, the time- and frequency-domain parameters were calculated from successive 5-min windows and then averaged over 24 h. The window length for the non-linear HRV parameter was 30 min (Wessel et al., 2007).



RESULTS

The results presented in Table 3 were derived from the windowed analysis. No HRV parameter from time- and frequency-domain showed a consistent statistically significant differences between the de novo AF and the control group for all 7 days (p = n.s.). The only successful approach was based on symbolic dynamics. “Polvar10” showed significant differences on day 1 and 2 whereas the Shannon entropy Hk was significant on 5 days. The parameter “forbidden words,” however, significantly distinguished both groups on all 7 days of measurement as performed independently (p < 0.05; the probability for false statistical results is less than 1 to a billion: <0.05^7). This measure quantifies the heart rate complexity which is drastically lower in the de novo AF group. The averaged effects size over all 7 days of “forbidden words” is almost one, values greater than 0.8 are interpreted as strong effects. I.e., the mean values “forbidden words” for the de novo AF and the control group differ about one standard deviation. To emphasize the strong effect between de novo AF and the control groups, we performed the following Monte-Carlo experiment. From each subject we randomly chose one measurement (1 day out of 7) and compared the “forbidden words” values between both groups. Altogether we have seven one day measurements from 20 subjects (10 de novo AF + 10 controls), which offer 720 possibilities for such a random selection. To quantify the effect size, we performed a leave one out classification, i.e., a logistic regression model was trained on 19 subjects and the tested while one of the subjects was left out. This leave one out classification was performed 10000 times. In this way we got an overall accuracy of 0.72 (95% CI: 0.71–0.73, p < 0.001), a sensitivity of 0.64, a specificity of 0.8, a positive predictive value of 0.76 and a negative predictive value of 0.70. All values differ significantly high from a mere random effect.


TABLE 3. Standard time- and frequency-domain parameters as well as non-linear dynamics for all 7 days (means ± standard deviations are given only for day 1).

[image: Table 3]Figure 1 demonstrates the differences between HRV in long-term ECG recordings. It is well known that cardiac autonomic dysfunction, characterized by a high sympathetic tone as observed in Figure 1A and documented via an increased heart rate, is associated with a strongly decreased HRV and a strongly increased risk of AF occurrence (Jons et al., 2010; Nortamo et al., 2018). In this case, not only the HRV but also the heart rate complexity is low (FORBWORD = 12). Figures 1B, 2 show one example of a de novo AF patient with “normal” heart rate and HRV. A decrease in complexity is not readily visible at first glance, however, heart rate complexity is decreased due to the occurrences of alternating sinus rhythm patterns (Costa et al., 2017). The time series in Figures 1C, 3 are from a control patient with normal heart rate, HRV and heart rate complexity. The patterns of the two other patients are undistinguishable using only standard HRV parameters. Only non-linear parameters are able to show a strong decrease in HRC and an increase in FORBWORD due to alternating sinus rhythm patterns present in the times series of Figure 2, which are unremarkable for the time series in Figure 3.
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FIGURE 1. Heart rate variability (HRV) in long-term ECG recordings. (A) Time series is from a de novo AF patient with a high sympathetic tone. Heart rate is strongly increased (86 bpm) and HRV is clearly decreased (day time sdNN = 12 ms), (B) time series is also from a de novo AF patient but with normal heart rate and HRV (65 bpm, day time sdNN = 98 ms) and (C) time series is from a control patient with normal heart rate and HRV (64 bpm, day time sdNN = 105 ms).



[image: image]

FIGURE 2. Heart rate complexity of the de novo AF patient with normal heart rate and HRV from Figure 1B. Panel (A) shows the original time series from Figure 1 demonstrating a high HRV over the day. Panel (B) presents a time breakdown of the gray area from panel (A) and reveals the occurrence of alternating sinus rhythm patterns. The HRC is strongly decreased, therefore FORBWORD is increased to 8 which is comparable to the HRC value presented in Figure 1A. Panel (C) shows the ECG from the gray area from panel (B) showing sinus rhythm was maintained, (cf. Costa et al., 2017).
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FIGURE 3. Heart rate complexity of the control patient with normal heart rate and HRV from Figure 1C. Panel (A) shows the original time series from Figure 1 demonstrating a high HRV over the day. Panel (B) present a time breakdown from the gray area from panel (A). No alternating sinus rhythm patterns can be detected. The HRC is not decreased, therefore FORBWORD is equal to 1. Panel (C) shows the ECG from the gray area from panel (B) demonstrating sinus rhythm.




DISCUSSION

The objective of this investigation was to study the association between the risk of de novo AF and 7dHRV based of standard time- and frequency-domain parameters as well as from non-linear dynamics. Therefore, the long-term ECGs of 20 of the 234 patients with mild to moderate HF included in the REACT DX registry were analyzed. For all patients, the implantation of an ICD device was indicated suggesting all were high-risk patients. The main aim of the present study was to detect the patients with a high risk for de novo AF based on HRV parameters. This was a complex process for several reasons: (i) we did not have the simple task of separating patients from a healthy group as done previously (Costa et al., 2017), (ii) a high amount of ectopy was expected, (iii) patients often had high heart rates and low HRV, (iv) our patient match included different disease states, (v) we did not exclude inflammation and fibrosis, (vi) patient were prescribed different medication regimens and (vii) patients may have had different circadian HRV profiles. Therefore, standard HRV parameters failed to predict cardiac autonomic dysfunction and no parameter from time- and frequency-domain showed significant differences between the de novo AF and the control groups. In contrast, the only significant approach was derived from symbolic dynamics with the parameter “forbidden words” which distinguished both groups on all 7 days of measurements independently (p < 0.05), thereby quantifying the HRC as drastically lower in the de novo AF group.

It is known that cardiac autonomic dysfunction, as evidenced by severely diminished HRV, increases the risk of AF occurrence (Jons et al., 2010). However, these perturbations may not be detected by standard HRV analysis, but appear to be a marker of higher AF incidence (Table 2 and Figure 1). A decreased in heart rate complexity may be accompanied with a decreased in HRV. Researchers (Costa et al., 2017) recently referred to the alternating sinus rhythm pattern phenomenon as “heart rate fragmentation.” Applying standard HRV methods to such time series with alternating rhythms may have lead to false or incomplete interpretations as reported by (Bettoni and Zimmermann, 2002) who found a vagal predominance before the onset of AF, and (Vikman et al., 1999) who detected an altered complexity. Others (Costa et al., 2017) also reported abnormal patterns in Poincaré plots and other maps (Woo et al., 1992; Brouwer et al., 1996; Huikuri et al., 1996; Domitrovich and Stein, 2003; Stein et al., 2005, 2008; Gladuli et al., 2011; Makowiec et al., 2015). The pathophysiology of alternating sinus rhythm patterns remains to be determined. Different mechanisms may be involved such as the sinus node exit block, a very subtle atrial bigeminy and the sinus node parasystole and perturbations of internal pacemaker “clocks” in the SA node (Costa et al., 2017). Costa et al. (2017) speculated that heart rate fragmentation would be of high interest if it was an initial event leading to arrhythmias such as AF or other tachyarrhythmias. The results of our study confirmed this hypothesis.

Costa et al. (2017) raised the additional question whether abnormalities in breathing dynamics could be responsible for the fragmentation. An indirect indication of cardiorespiratory coupling involvement is that deep breathing may lead to alternating patterns in heart rate (Löwit, 1879). Following earlier work on cardio-respiratory synchronization changes with sleep and aging (Bartsch et al., 2012), we (Riedl et al., 2014) introduced the analysis of cardiorespiratory coordination (CRC) during sleep. They found, by using the advanced analysis technique of the coordigram, not only the occurrence of CRC was significantly more frequent during respiratory sleep disturbances than during normal respiration but also more frequent after these events. A further investigation of CRC (Krause et al., 2017) showed the new phenomenon of heartbeat-initiated inspiration at the end of an apnea, which provides new impulses to current approaches to obstructive sleep apnea characterization (Ivanov et al., 1996; Mietus et al., 2000).

The major limitation of our study is the low number of de novo AF events as only 10 patients were included. AF is a powerful risk factor for stroke, independently increasing risk about five-fold throughout all age groups (Mozaffarian et al., 2016). Because AF is often asymptomatic and likely frequently undetected, the risk of stroke attributed to AF may be substantially underestimated. In the setting of AF, important risk factors for stroke include advancing age, hypertension, HF, diabetes mellitus, previous stroke or TIA, vascular disease and female sex (Schmitt et al., 2009; Mozaffarian et al., 2016). Additional biomarkers such as high levels of troponin and BNP also increase the risk of stroke independent of the well-established clinical characteristics (Mozaffarian et al., 2016). Thus, further studies are needed to determine the individual risk for AF based on HRV, heart rate complexity, clinical characteristics and additional biomarkers.



CONCLUSION

Cardiac autonomic dysfunction denoted by low heart rate complexity may be associated with a higher AF incidence. For patients with mild to moderate HF, standard HRV parameters are not appropriate to quantify cardiac autonomic perturbations before the first occurrence of AF. Further studies are needed to determine the individual risk for AF that would enable interventions to restore autonomic balance in the general population.
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APPENDIX A


Symbolic Dynamics

While comparing different types of symbol transformations, we found that the use of four symbols, as explained in Eq. (1), was appropriate for our analysis. The time series x1, x2, x3…, xN is transformed into the symbol sequence s1, s2, s3…, sN, si ∈ A on the basis of the alphabet A = {0,1,2,3}.

[image: image]

The transformation into symbols refers to three given levels where μ denotes the mean beat-to-beat interval and a is a special parameter that we have chosen 0.05. We tested several values of a from 0.02 to 0.08, however the resulting symbol sequences differed not significantly (Wessel et al., 2007). Because there are several quantities that characterize such symbol strings, we analyzed the frequency distribution of words of length 3 (i.e., substrings which consist of three adjacent symbols leading to a maximum of 64 different words), which is a compromise between retaining important dynamical information and having a robust statistical estimate of the probability distribution.

We considered 3 measures of complexity:


(i) The Shannon entropy Hk calculated from the distribution p of words is the classic measure for the complexity in time series:

[image: image]

where Wk is the set of all words of length k. Larger values of Shannon entropy refer to higher complexity in the corresponding tachograms and lower values to lower ones.

(ii) The “forbidden words” in the distribution of words of length 3 which are the number of words that (almost) never occur (with probability of less than 0.1%). A high number of forbidden words reflects a rather regular behavior in the time series and, if the time series is highly complex in the Shannonian sense, only a few forbidden words are to be found.

(iii) The parameter “plvar10” characterizing short phases of low variability from successive symbols of another simplified alphabet B and consisting only of symbols “0” and “1.” In our study, “0” stands for a small difference between two successive RR-intervals (the resolution of the defibrillators) whereas “1” represents cases when the difference between two successive RR-intervals exceeds a certain specific limit.

[image: image]

Words consisting of a unique type of symbols (either all “0” or all “1”) were counted. To obtain a statistically robust estimate of the word distribution, we chose words of length six, defining a maximum of 64 different words. “Plvar10” represents the probability of the word “000000” occurrence and thus detects even intermittently decreased HRV.




TABLE A1. Description of the selected time- and frequency-domain parameters, standard and additional measures (Wessel et al., 2007).
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The controversy over the evolution of sex gap in sports stems from the reported that women’s performance will 1 day overtake men’s in the journal Nature. After debate, the recent studies suggest that the sports sex gap has been stable for a long time, due to insurmountable physiological differences. To find a mathematical model that accurately describes this stable gap, we analyze the best annual records of men and women in 25 events from 1992 to 2017, and find that power-law relationship could be acted as the best choice, with an R-squares as high as 0.999 (p ≤ 0.001). Then, based on the power law model, we use the records of men in 2018 to predict the performance of women in that year and compare them with real records. The results show that the deviation rate of the predicted value is only about 2.08%. As a conclusion, it could be said that there is a constant sex gap in sports, and the records of men and women evolve in parallel. This finding could serve as another quantitative rule in biology.

Keywords: power law, scaling invariance, sport events, sports records, sex gap


INTRODUCTION

Sport competitions are conducted to test the ability of individual athletes or teams, with the aim of quantifying and ranking their abilities. Since the athletic capacity of athletes is influenced by biology (MacArthur and North, 2005; Tanaka and Seals, 2008), training methods (Berthelot et al., 2015), environment (Haïda et al., 2013) and ecological rules, plus a touch of change, the annual best results of a given discipline will fluctuate over time. Although the athletic records are continuously breaking and re-forming, is the sex-based difference in sports also changing accordingly? For this problem, there have been many studies that investigate the past world records of different sport events to analyze the change of sex gap. Over the past 2 decades, the conclusions related to this topic have aroused fierce controversy. Finally, the debate focuses on the changing trends of sports sex gap.

A number of studies considered that men may continue to improve on some events, and believed that the sex gap may slightly increase before reaching full stability (Holden, 2004; Seiler et al., 2007; Lepers, 2008). Several previous studies used a linear model to predict that the progress of physical performance for men and women (Dyer, 1986; Whipp, 1992; Tatem, 2004). One of such studies used the linear regression to fit human performance in sprint in the 20-second century, and extrapolated the fitted line to subsequent years (Tatem, 2004). And this study predicted that the women’s 100 m race could be won in a time of 10.57 ± 0.232 s and the men’s event in 9.73 ± 0.144 s in 2008 Olympiad, and that women will surpass men for the first time in 2056 Olympiad. However, other studies had cast doubt on the illogical predictions obtained by using simple linear regression analysis (Reinboud, 2004; Cheuvront et al., 2005; Chang and Baek, 2011). For example, Cheuvront et al. (2005) compared historical world record running performances for men and women to include sprinting events, and found that including world record-setting running performances for women before and after 1985 results in a non-linear data fit. After analyzing sex differences from the physiology perspective, they believed that men possess a larger aerobic capacity and greater muscle strength, and the sex gap in sports is unlikely to narrow naturally.

More recently, to measure the evolution of sports sex gap, Thibault et al. (2010) compared the improvement of male and female world records and 10 best performances between 1896 and 2007, and they result shown that the sex gap in Olympic sport performance had been stable since 1983. Since then, Thibault’s views seem to have become the mainstream voice. In this paper, in addition to verify the correctness of Thibault’s conclusion, another purpose is to find a mathematical model to describe the phenomenon of stable sex gap in sports.

The fractal model describes a self-similar pattern in different space or time scale, also known as scale invariance (West, 2010). Fractal physiology is widely used to study how fractal temporal structures in physiological fluctuations generated by complex physiological networks (Ivanov et al., 1996; Bernaola-Galván et al., 2001; Hausdorff et al., 2001; Wang et al., 2005; Tolkunov et al., 2010). Some groups studied the scale-invariant properties of heartbeat sequences. It had been found that the observed multifractality was related to nonlinear features of the healthy heartbeat dynamics (Peng et al., 1993; Thurner et al., 1998; Ivanov et al., 1999, 2001). One of such studies had shown a clear loss of multifractality for congestive heart failure (Ivanov et al., 1999). In addition, the observation of scaling behavior also extended to other physiological time series, such as gait rhythm (Hausdorff et al., 2001), respiratory rhythms (Peng et al., 2002), wrist activity (Hu et al., 2004), and foot pressure (Gilfriche et al., 2018). The scaling laws strongly depend upon the state of the underlying physiologic control system (Ivanov et al., 2001), so the abnormal scaling behavior of the above physiological signals can be used as an important diagnostic approach for related diseases.

Scale invariance describes phenomena that are not associated with a particular or characteristic scale of length, energy, or other variables, and is mathematically equivalent to power law behavior. Many studies have used power law to analyze the law of sport (Katz and Katz, 1994; Sylvan Katz and Katz, 1999; Vincenzo and Sandra, 2001; Yamamoto, 2009; Fernández-Revelles and García Mármol, 2019). Among them, Katz’s research shown that the performance of male and female superior athletes exhibits a fractal relationship between world record running and swimming times and the distance of the even, and an exceptionally good linear fit (R
2 ≥ 0.999) was observed in the log-log plot (Katz and Katz, 1994). In the paper, we collect the annual best results of men and women in 25 events from 1992 to 2018, and will use power-law relationship to reveal the evolution law of sports sex gap.



DATA COLLECTION AND METHODS


Data Collection

The data collected in this study are the annual world’s records for men and women from the racing and jumping sports, including running, marathon, swimming, high jump, long jump, triple jump, and hurdles for a total of 25 events. Considering the low participation of women before the 1980s (Dyer, 1986; Thibault et al., 2010) and the use of drugs to enhance performance in sports had certainly occurred during the 1970s and 1980s, we only collected the annual records after 1992 (Holden, 2004). All data were obtained from the “International Association of Athletics Federations (IAAF) World Championships Doha 2019 Statistics Handbook” (Butler, 2019), the websites of the IAAF1 and Fédération Internationale de Natation Association (FINA; www.fina.org). A total of about 1,300 athletes were considered in the study.



Data Processing and Analysis

The data processing starts by organizing the downloaded data in a Microsoft Excel 2010 document (for data set, see Supplementary Table S1). To maintain consistency with the chronological records, such as running, swimming and hurdles, the records of high jump, long jump, and triple jump were rendered by the reciprocal transformation. In this study, it is used the power law equation (Harte, 1999; Sylvan Katz and Katz, 1999; Hu et al., 2004; Fernández-Revelles and García Mármol, 2019), namely y = axl
, to describe sex differences in sports. We define variables x and y to represent the male and female sports records of an event, respectively. The statistical software SPSS is used (Version 20, IBM) to organize the data in variables. Before visualizing the functional relationship between x and y, we first take log of them, then perform a linear fit, and finally draw a log-log plot. The effect of fitting is quantitatively described by the coefficient of determination. Each point in the plot corresponds to the male and female records of an event in a certain year. So, we will get a scatter plot with 650 points. Ideally, if the power law model is satisfied between x and y, all points will fall on a straight line, and the function of the line is log y = l log x + log a. The slope and intercept of the line will be determined by linear fitting, so that the parameters l and a in the power law equation can be calculated.

The above process is similar to the previous study in which the power law model is applied to athletic performance analysis (Sylvan Katz and Katz, 1999; Vincenzo and Sandra, 2001).




RESULTS


Evolution of Sports Sex Gap

Following the above procedure, we obtain the double-logarithmic coordinate plots describing the functional relationship between male and female records. To facilitate the identification of each sample point on the plot, firstly, we only analyze the male and female records of 25 events in 1992. As shown in Figure 1A, each circle in the figure represents an event (some have been marked). The results of linear regression analysis show that all circles fall on this fitting line, and exhibit an exceptionally good fitting degree (R
2 ≥ 0.999, p ≤ 0.001). Then, to quantify the parameters of the regression line, we present the male and female records of all events from 1992 to 2017 in a coordinate plot with 650 circles. Since many circles are overlapped together, so we plot with overlapped points offset, and the centers of the circles are shown by crosses. The result of linear fitting is shown in Figure 1B. The slope and intercept of regression line are 0.995 and 0.059, respectively. The SDs of both parameters are in the order of 10e−4. The coefficient of determination R
2 for linear regression is 0.9999 (p ≤ 0.001). This result shows that the fitness of the power law model is much higher than that of other reported mathematical models (Cheuvront et al., 2005; Thibault et al., 2010). In addition, according to the power law equation log y = l log x + log a, we can calculate the parameters l = 0.995 and a = 1.146.

[image: Figure 1]

FIGURE 1. The power-law relationship between male and female records in 1992 (A) and 1992 to 2017 (B), respectively.




Stable Ratio Between Male and Female Records

Beyond that, it is worth noting that the slope of regression line is approximately equal to 1, that is, the first-order form of the power-law relationship. The power law equation is rewritten as y = ax, which shows that a is the ratio of male and female records. So, maybe we can describe sports sex differences in a simpler form. Under first-order approximation, the ratio fluctuation of sex difference in 100 m racing is shown in Figure 2. Meanwhile, as a comparison, the difference fluctuation of the records is also given. We use the coefficient of variation (CV) to quantify the stability of the two different description methods. The calculated CV of the ratio and difference between male and female records are 0.922 and 9.466% respectively, and they have one order of magnitude difference. Therefore, compared to the difference, the ratio can correctly evaluate the law that sex differences tend to stabilize. This conclusion is consistent with research of Thibault et al. (2010) to describe the invariance of sex gap using relative differences. Difference and ratio are two forms to describe the difference of two certain values, and the former is more commonly used. In fact, the paper published in the journal of Nature extrapolated that women will soon outrun men based on the intersection of the fitting lines of their performances (Tatem, 2004), so they are essentially measuring sports sex gap in the form of difference.

[image: Figure 2]

FIGURE 2. The fluctuation of sports sex gap in 100 m racing. The coefficient of variation (CV) of the ratio and difference is 0.922 and 9.466%, respectively.




Forecasting World Records by Scaling Laws

Prior to this, we find that there is a power-law relationship between men’s and women’s sports records. Based on the data from 1992 to 2017, the parameters l and a in the power law model are calculated. Here, we will forecast the women’s performance in 2018 by using the men’s performance of that year, on the basis of the two parameters. The true and forecasting world records for 25 events are shown in Table 1. The highest deviation between the predicted value and the real value is 3.92% for running events and 2.03% for swimming events. Among them, the deviation for the 800 m middle-distance running events is the lowest, only 0.02%. In addition, we notice that although the relative deviations are only about 3.24% (23 ms) and 2.19% (24 ms) for 60 and 100 m running, respectively, this variation might be considered as a significant in this type of events. Considering the characteristics of sprint events, environment, especially wind speed, is the key factor affecting the performance (Janjic et al., 2017). For example, a typical trailing wind of 2 ms−1 will confer benefits (0.5–0.8%) on the three sprint events (Hollings et al., 2012). To this end, we review the wind speed information of men’s and women’s 100 m competition in 2018. It is found that the records of 100 m for men and women in 2018 are obtained at wind speeds of −0.3 and +1.5 m/s, respectively. Therefore, we believe that this is the main factor that leads to the actual record to be 24 ms less than the predicted value.



TABLE 1. Comparison of predicted and actual values of female records in the 2018 sports events.
[image: Table1]




DISCUSSION

In this study, a power-law relationship is presented between the sports performance of men and women for the collected data. In fact, since the human body involves complex interaction among many feedback systems (Bartsch et al., 2015); fractal distributions are found in a wide variety of physical and biological systems. There have been many previous studies investigating the power-law relationship between other sports variables. In one study, no less than five different fractals related to sports are mentioned (Katz and Katz, 1994), for example, the distance of the event, the reciprocal of the total energy expended, and the ratio of aerobic and anaerobic energy consumption all have this relationship with the running or swimming time. The authors suggest that sports observers may regard fractal analysis as an important new instrument in their analytic tools. So, the findings of this article further support their view.

It is worth noting that the results in Figure 2 show that the power law between men and women records, with an exponent close to one, which could also be interpreted as a simple linear proportionality between sex records. Therefore, we attempt to fit all collected the sports performance of men and women using a linear model with zero intercept (y = ax). As shown in Figure 3, each circle in the plot corresponds to the male and female records of an event in a certain year, with total of 650 circles. The fitting results show that a = 0.892 ± 0.0005 and R
2 = 0.9997 (p ≤ 0.001). We also zoom in on the local area of the figure (Area1, Area2, and Area3), and the three areas correspond to the data of 100 m running, 10,000 m running, and Marathon, respectively. As shown in the three sub-figures bellowed, it is easy to understand that the longer the running distance, the more circles deviate from the fitted line. Therefore, from the data collected so far, a linear model with zero intercept can be acted as a reasonable candidate for describing the evolution of sports sex gap. However, the predictive power of this approximate model will not be better than that of the power law model.

[image: Figure 3]

FIGURE 3. The linear correlation between male and female records in 1992 to 2017. The three sub-figures below correspond to the enlarged results of the three marked areas in the top figure.




LIMITATION AND PRACTICAL APPLICATIONS

Limitation to the current research study is acknowledged. Physiological differences between men and women, such as maximal oxygen uptake and muscle fiber cross-sectional area, are the main reasons for sex gap in sports (Cheuvront et al., 2005). If there is no any technological improvement specifically dedicated to one sex or the other, the gap will persist and become more and more stable as they reach their biological limits. However, the stability is also challenged by non-physiological factors, such as environmental conditions, sports participation, and doping. So, the accuracy of forecasting sports performance by power law model will be affected by these factors. Due to this limitation, a perturbation term or piecewise fitting can be selectively taken into account in the model in future.

As we know, the modern era of sport incorporates many technological elements, which promotes the steady improvements of athletes’ sports performance. But at the same time, the use of doping has become more and more hidden and sophisticated, which brings a lot of trouble to doping testing. Therefore, in order to maintain the fairness of the competition, international doping testing agencies should develop diversified testing methods to improve the technical level. In this paper, we find that the power-law relationship could be act as the best model for describing the evolution of sports sex gap. It indicates that the male and female sport records have the characteristics of parallel evolution, and one serious deviation from this law may be the result of using illegal performance-enhancing agents. Therefore, this discovery could provide an alternative method for performance forecasting and doping detection.

Finally, this article should emphasize that we are not in favor of treating female athletes differently. The data analysis in this paper only shows that there is a constant sex gap in sports that rely on physiological limits ability such as racing and jumping, while in other aesthetic sports such as synchronized swimming and rhythmic gymnastics, female athletes usually perform better than men. Furthermore, the level of sports performance does not mean who is better in cultural roles and social behaviors.



CONCLUSION

Sex is one of the main determinants of sport performance, so the evolution of sex gap can be indirectly analyzed through the development of sports records over the years. In this letter, we collected the world records of men and women in speed and jumping events over the past 27 years and for the first time comprehensively analyzed the evolution of sports sex gap. The results show that the evolution of male and female records satisfies the power-law relationship with an exponent close to one. It implies that both from a physical and physiological point of view, the sport records of men and women have the characteristics of parallel evolution under the selection of training techniques, sport rules, and current socio-economic conditions.

Following the finding of various fractal distributions in sports statistics, this study observes that sports sex gap has the property of scale invariance. Perhaps, sports observers may regard fractal analysis as an important new instrument in their analytic tools.
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The basic theoretical assumptions of Exercise Physiology and its research directions, strongly influenced by reductionism, may hamper the full potential of basic science investigations, and various practical applications to sports performance and exercise as medicine. The aim of this perspective and programmatic article is to: (i) revise the current paradigm of Exercise Physiology and related research on the basis of principles and empirical findings in the new emerging field of Network Physiology and Complex Systems Science; (ii) initiate a new area in Exercise and Sport Science, Network Physiology of Exercise (NPE), with focus on basic laws of interactions and principles of coordination and integration among diverse physiological systems across spatio-temporal scales (from the sub-cellular level to the entire organism), to understand how physiological states and functions emerge, and to improve the efficacy of exercise in health and sport performance; and (iii) to create a forum for developing new research methodologies applicable to the new NPE field, to infer and quantify nonlinear dynamic forms of coupling among diverse systems and establish basic principles of coordination and network organization of physiological systems. Here, we present a programmatic approach for future research directions and potential practical applications. By focusing on research efforts to improve the knowledge about nested dynamics of vertical network interactions, and particularly, the horizontal integration of key organ systems during exercise, NPE may enrich Basic Physiology and diverse fields like Exercise and Sports Physiology, Sports Medicine, Sports Rehabilitation, Sport Science or Training Science and improve the understanding of diverse exercise-related phenomena such as sports performance, fatigue, overtraining, or sport injuries.

Keywords: network physiology, exercise physiology, sport sciences, fitness, sports performance, sports medicine, dynamic networks, complex systems


INTRODUCTION

The human organism comprises various multicomponent physiological systems that interact through various feedback mechanisms across a range of nonlinear feedback mechanisms, operating across spatio-temporal scales to generate complex transient dynamics that continuously adapt to intrinsic and external perturbations. The traditional reductionist approach, employed to investigate physiological systems and their regulatory mechanisms based on classical cybernetics, is insufficient to provide a comprehensive understanding of the structure and dynamics of individual systems and how systems and subsystems coordinate their dynamics across various levels of interaction to generate integrated functions at the organism level. Synchronization and integration among physiological systems is essential to generate distinct physiological states (e.g., sleep and wake, rest and exercise, health, and disease) and, therefore, unraveling the underlying principles of physiological systems integration as a network is crucial to understand how various physiological functions emerge as a result of interaction among such systems. Recent research has shown that physiologic states emerge as a result of a very particular network organization, network topology, and network dynamics of interaction among systems and subsystems (Ivanov and Bartsch, 2014; Ivanov et al., 2017). This dynamic network-based approach to human physiology has the potential to broaden the scope and provide more comprehensive framework of investigations also in the field of Exercise and Sports Physiology and can help address fundamental questions: (i) How muscle fibers within muscle groups and different muscle groups in the human body coordinate their activation during exercise and how this coordination is affected by fatigue? (ii) How organ systems communicate and coordinate as a network to satisfy certain task demands? (iii) How training modifies physiological systems coordination at multiple spatio-temporal scales? (iv) Which are the coordination-related improvements produced by exercise and what are the associated risk factors, the effects on health, and prevention and treatment of chronic diseases? Addressing these questions would have important implications for both Basic Physiology and would open a new frontier of investigations in Exercise and Sports Physiology, Sports Medicine, Sports Rehabilitation, Sports Sciences, and all their different specialties and subfields.

There is an epistemological gap in the scientific research of physiological systems in the field of Sports and Exercise. The prevalent approach is the mechanistic one (Machamer et al., 2000; Bechtel and Richardson, 2010), which aims to uncover the physiological mechanisms responsible for the phenomena under consideration by reducing complex multicomponent system on their parts. The newer, and hence, less developed line of research in the field of Sports and Exercise Physiology is the complex dynamic systems approach, which focuses on the systems complex dynamics with the aim of discovering and formulating general principles on which biological system functionality is based. A crucial distinction between the reductionist and integrative approaches is how they treat the dynamics of biological systems.

Although integrative physiology recognizes the importance of interconnectivity across physiological systems (Sieck, 2017), its research methodologies have traditionally focused on statistical inference of static associations of vertical bottom-up mechanistic causation from the sub-cellular and cellular level to tissue, organ or organism level, and the regulatory functions that govern our physiological state and our health (Head, 2020). The natural evolution of Exercise Physiology toward Genetics and Molecular Biology, has emphasized the collection of integrated analytical approaches that composes the OMICS and contribute to the field of Molecular Exercise Physiology (Wackerhage, 2014; Gomes et al., 2019). As a consequence, there is a wide uncharted territory in research and absence of knowledge in the direction of dynamic characteristics of such vertical integration, as well as the horizontal integration of key organ systems network interactions.

A new field, Network Physiology, has recently emerged to fill in this gap (Bashan et al., 2012; Bartsch and Ivanov, 2014; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Liu et al., 2015b; Ivanov et al., 2016, 2017) and to address the fundamental question of how physiological systems and subsystems coordinate, synchronize, and integrate their dynamics to optimize functions at the organism level and to maintain health. It aims at uncovering the biological dynamic mechanisms (Chen et al., 2006; Ivanov et al., 2009; Bechtel and Abrahamsen, 2010; Bartsch et al., 2012) since it satisfies both the mechanistic requirement of structure and localization (e.g., nodes and edges/links in dynamic networks may represent localized integrated organ systems, subsystems, localized components or processes, and interactions among them across various levels in the human organism) and the requirement of dynamical invariance and generality that is enabled by dynamical systems approach (Meyer, 2020). Organ interactions are essential to produce health, and uncovering the underlying mechanisms of physiologic network dynamics and control is crucial to fully understand the effects of exercise on health, treatment of disease and sports performance.

Disrupting organ communications and their dynamic coordination as a network can lead to dysfunction in individual systems or the collapse of the entire organism during exercise (e.g., fatigue, task failure, and injuries; Hristovski and Balagué, 2010; Balagué et al., 2014b; Vázquez et al., 2016; Pol et al., 2018). Thus, in addition to the traditional approach in biology and physiology that defines health and disease states through structural, dynamic, and regulatory changes in individual systems, the new conceptual framework of Network Physiology focuses on the coordination and network interactions among systems as a hallmark of physiological state and function.

In dynamic networks of physiological interactions, the networks links represent interactions and synchronization between systems and subsystems, and exhibit transient time-varying characteristics (Bartsch et al., 2014; Lin et al., 2016, 2020). A key question is how physiological states and functions emerge out of the collective network dynamics of integrated systems (Bartsch et al., 2015). While network structure may play an important role in generating various states and functions, different global behaviors could emerge due to temporal changes in the functional form of physiologic interactions without reorganization in network topology. This poses new challenges to develop generalized methodology adequate to quantify complex dynamics of networks, where network nodes represent dynamic components of the system and network links reflect different forms of coupling that may change over a range of timescales.

Each physiological system exhibits complex dynamics with a remarkable amount of distinct rhythms that are coupled and coordinated over several magnitudes of timescales. Specifically, previous research has identified the presence of complex temporal organization and long-range power law correlations in the signal output of physiological systems and how temporal characteristics change with transition across physiological states (rest and exercise, sleep and wake, sleep stages, and circadian phases) in the cardiovascular system (Ivanov et al., 1996, 1999a,b, 2001, 2004; Amaral et al., 1998; Ashkenazy et al., 2001; Bernaola-Galván et al., 2001; Goldberger et al., 2002; Kantelhardt et al., 2002; Karasik et al., 2002; Ivanov et al., 2007), the respiratory system (Cernelc et al., 2002; Peng et al., 2002; Suki et al., 2003, 2005), the brain (Linkenkaer-Hansen et al., 2001; Lo et al., 2002, 2004; Beggs and Plenz, 2003; Angelini et al., 2004; Poil et al., 2008; Chialvo, 2010; Schumann et al., 2010; Lombardi, et al., 2012, 2020a,b; Palva et al., 2013; Arcangelis et al., 2014; Liu et al., 2015a), in gait dynamics (Hausdorff et al., 1995, 1997, 2001; Ashkenazi et al., 2002), in wrist motion (Hu et al., 2004; Ivanov et al., 2007), and in the musculo-skeletal system (Kerkman et al., 2018, 2020; Garcia-Retortillo et al., 2020). Investigations in Basic Physiology through the prism of system dynamics have revealed fundamental scale-invariant characteristics that are universal across subjects that encompass a broad range of timescales, indicating the presence of multi-scale mechanisms of physiologic regulation (Ivanov et al., 1998, 2004; Hausdorff et al., 2001; Lo et al., 2002; Kantelhardt et al., 2003; Schumann et al., 2010). Furthermore, every physiological system functions as a dynamic node interacting with other systems through multiple parallel links on a wide range of frequency domains (Bartsch et al., 2012, 2014; Liu et al., 2015b; Lin et al., 2016). The links within a given network adjust the intensity of information transfer (i.e., link strength), so that certain links play the role of major mediators of the interaction between two systems, while other links may present an auxiliary supporting function, thus leading to hierarchically structured organization and profiles of network links strength that are specific for each physiological state. Every physiological state under health or disease (e.g., wake and sleep, sleep stages, rest and exercise) is achieved by means of highly detailed adjustments in the multiple link interactions between dynamical systems – for instance, while during deep sleep brain-heart interactions are characterized by links with identical strength across frequency domains, high-frequency links are the main mediators of brain-heart interactions during wake (Bartsch et al., 2015); furthermore, during the same physiological state, the interaction between different pairs of organ systems can be mediated by dominant links in different frequency domains (Bartsch et al., 2015; Liu et al., 2015b; Ivanov et al., 2017).

In recent years, the Network Physiology framework has been utilized in various fields of basic Physiology and Clinical Medicine, including multiple organ failure and sepsis in critically ill patients (Asada et al., 2016; Moorman et al., 2016), neonatal intensive care (Lavanga et al., 2020; Lucchini et al., 2020), liver disease (Tan et al., 2020), epilepsy and neurological disorders (Lin et al., 2020), diabetes and obesity (Podobnik et al., 2020; Prats-Puig et al., 2020), cancer (Liu et al., 2020), or psychiatry (Bolton et al., 2020), and has the potential for broad applications in the field of Exercise Physiology and Sports Medicine to uncover how the key physiological systems interact pairwise, that is, which links are the major mediators in a given network and how these links adjust their strength with accumulation of fatigue, after a training intervention, or in response to a certain pathological condition (e.g., musculo-skeletal injury and neurodegenerative disease).

The aim of this article is to provide a vision and a new programmatic framework for basic research and practical applications of Network Physiology to Exercise and Sports Science. We propose a new theoretical framework for investigations in Exercise Physiology based on principles and approaches based on Network Physiology and Complex Systems Science. We discuss early works and provide a vision for future research directions in a new emerging field, Network Physiology of Exercise (NPE), utilizing examples of exercise prescription for health and disease, where we focus on exercise recommendations for healthy population and clinical patients (also relevant for sports performance), and we point toward the practical perspectives and future developments in NPE.



EXERCISE PHYSIOLOGY AND NETWORK PHYSIOLOGY OF EXERCISE: CONTRASTING APPROACHES

Figure 1 shows a schematic diagram for the vision of NPE. A hierarchical organization of embedded networks into networks (genetic, tissue, organ, systemic, etc. networks) interact dynamically (horizontally and vertically). Each of them has its own regulatory mechanisms but mutually interact and operate at different levels and timescales (Thompson and Varela, 2001; Tarasov, 2019). Upper and lower network levels are related through circular causality: bottom-up, new components (cells, tissues, organs, etc.), and their properties emerge through a self-organizing process. Top-down, the higher levels constrain the lower ones (Noble et al., 2019; Tarasov, 2019).

[image: Figure 1]

FIGURE 1. Schematic diagram for the vision on Network Physiology of Exercise. Hierarchically organized physiological network levels interact both horizontally and vertically through circular causality.


The network science-based vision of NPE is in contrast with that of current Exercise Physiology, strongly influenced by reductionism. In this section, we contrast the theoretical assumptions of both approaches focusing on some main misconceptions that affect the understanding of diverse exercise-related phenomena: the adaptive properties of the human organism, the understanding of the physiological states of health and fitness, the objective and principles of exercise training, the assessment of the physiological status, and the role of exercise professionals and users/patients. Table 1 summarizes the main traits.



TABLE 1. Contrast between theoretical and practical assumptions of training under Exercise Physiology and Network Physiology of Exercise (NPE) perspectives.
[image: Table1]


From Reductionism to Dynamic Networks Integrative Approach

Exercise Physiology, the most influential discipline in exercise and sports training, has remained resistant to the introduction of the science of complex systems in biology (Hristovski et al., 2014; Balagué et al., 2016; Pol et al., 2020). Reductionism has dominated the research and has shaped the way of thinking of exercise professionals. To understand any physiological phenomenon, reductionism breaks it down into increasingly smaller parts with the help of technological advances: organisms are dissected, cells isolated, etc. Its influence explains the persistent search for cellular, biochemical, and genetic mechanisms, and the causes of macroscopic phenomena like exercise-induced fatigue, strength or aerobic capacity, etc. For instance, even if there is strong scientific evidence that lactate and other exercise metabolites do not limit exercise performance, a good amount of current research continues to investigate this topic (Hristovski et al., 2014). The fragmentation of fitness in dimensions (endurance, strength, velocity, etc.) and sub-dimensions (maximal strength, explosive strength, etc.), and the isolation of muscle groups with training purposes are also common practices derived from reductionism.

Instead of the usually assumed causal bottom-up effects from micro‐ to macro-structures and processes, the NPE approach, applying the principle of circular causality, assumes a bottom-up/top-down relationship between micro and macro-components (Noble et al., 2019; Tarasov, 2019). For instance, genes affect organ functions and organ functions constrain gene expression.



Complex Adaptive Systems: Component vs. Interaction-Dominant Dynamics

The understanding of human organisms as complex adaptive systems (CAS), instead of complicated systems (e.g., machines or technical devices), has several theoretical and practical implications on exercise prescription. Contrary to what is usually assumed in Exercise Physiology, in CAS, the behavior emerges from the interaction among components and cannot be explained (or reduced) to any single component. Studying elements of complex systems in isolation is by definition incomplete, as interactions generate novel information that determines the future of elements and thus of the system itself (Gershenson and Fernández, 2012). This dominant interaction dynamics, in contrast with component-dominant dynamics (Van Orden et al., 2003), has been emphasized by several authors (Delignieres and Marmelat, 2012; Vázquez et al., 2016; Almurad et al., 2018). It means that the behavior of CAS cannot be simply explained through the variability of any single component, process, or local mechanism. For instance, exercise physiologists cannot rely on critical quantitative endpoints in cardiovascular, respiratory, metabolic, or neuromuscular systems to explain the limits of performance (Noakes, 2000; Venhorst et al., 2018; Pol et al., 2020) and should reformulate their research hypothesis accordingly.



Complex Adaptive Systems Interact Dynamically, Nonlinearly, and Co-adaptively With the Environment

This means that their interactions change in time, and not only quantitatively but also qualitatively. For this reason, there are neither clearly separable cause-effect or dose-response relations among components nor time-invariant mechanisms and regulation profiles. In Exercise Physiology, the integrative functions are studied within the framework of the traditional control theory, and concepts such as homeostasis, feedback loops and central programmers are usually evoked to describe system regulation during exercise (Lambert, 2005). The behavior predictions of this “engineering” approach are linear, i.e., proportional between inputs and outputs. The basic assumption is that of time-invariant encapsulated processes and regulation profiles. As long as one deals with conceptual, i.e., verbal, descriptive modeling, this approach based on explicit feedback loops seems fine, but when trying to model mathematically more than a couple of interlinked components together, then the system rapidly becomes impossible to treat in terms of explicit feedback circuits and presents serious prediction problems.

In NPE, as exercising individuals interact nonlinearly with their environment, the exercising unit is the performer-environment system (Araújo and Davids, 2016). This means that the individual adaptive responses to exercise are unique and contextually dependent. Feedback homeostatic mechanisms are replaced by the concept of homeodynamics or dynamic stability, i.e., a constantly changing interrelatedness of body components and processes while an overall equilibrium is maintained (Bassingthwaighte et al., 1995).

As nonlinear and history-dependent systems, physiological networks present hysteresis, a phenomenon that explains the delay in a system’s recovery of its initial state after a perturbation (Hristovski et al., 2010, 2014; Montull et al., 2020). The study of this phenomenon, a hallmark of complex systems, has revealed the limitations of the widely used linear and proportional regulation models in Exercise Physiology (Abrantes et al., 2012), and has shown the excessively simplified assumptions and artificially created contexts (e.g., in fitness testing). The same exercise perturbation (external load) does not have the same impact (internal load; Fullagar et al., 2019), depending on the previous exercise, the state of the network, and other contextual differences. The area of hysteresis has recently been pinpointed as a new non-invasive marker of exercise stress and tolerance to test the state of the network (Montull et al., 2020).



From Homeostasis of Individual Systems to Emergence and Self-Organization at the Organism Level

Qualitative changes occurring in CAS are the product of a widely ignored property in Exercise Physiology: self-organization. Physiological components and processes acting at multiple levels (from molecules to systems) are spontaneously coupled and there is no need for a template or internal (nor external) programmer to rule the relations. That is, our physiological systems, organs, tissues, and cells change spontaneously through their morphology and function, constrained by evolved genes and their expression, chemical species, natural and social environment, etc. (Sturmberg, 2019). Then, exercise regulation is better understood as a complex, goal-directed, and context-dependent dynamic mechanism adapting to continuous emerging organismic and environmental constraints. In such a framework, nonlinear, i.e., non-proportional, individual physiological changes, and training effects are produced when exposing the organism to exercise and training loads (Hristovski et al., 2010). The authors explain how the same workload, which may promote positive adaptations in a specific context of a given system, may produce overtraining effects and emergent behaviors in another context through coupling, feedbacks, and network interactions.



From Microscopic Functions to Macroscopic Behaviors

The term “training”, understood as the process of learning/acquiring specific skills has been recently proposed to be replaced by the term of “synergizing”: combining or working together to be more effective (Pol et al., 2020). Synergies are the spontaneously formed structural and functional couplings among components and processes to achieve the main goal in health: keeping the homeodynamics or dynamic stability (Riley et al., 2011; Kelso, 2017; Latash, 2019; Liu et al., 2019). During exercise, synergies operating at diverse scales are continuously re-organized, allowing the reciprocal compensation of components and processes to satisfy task goals. They have circular causal relations with components; that is, components form synergies and those synergies, in turn, govern the components’ behavior (Noble et al., 2019; Tarasov, 2019; see Figure 2). As shown in the figure, synergies manifest the property of degeneracy; different components can produce the same function and different synergies may be activated to achieve the same task goal (Edelman and Gally, 2001; Latash, 2019). For instance, different motor units cooperate and adjust their activation over several timescales to perform an effective or functional motor action over time. The self-assembled, adaptive interactions of CAS underpin also another robustness-enabling property: pleiotropy or multifunctionality, that is, the same components may be assembled to produce multiple functions; for instance, the skeletal muscle has contractile, immunological, and endocrine functions (Pedersen and Febbraio, 2012; Sallam and Laher, 2016). Such properties enable CAS to switch between diverse coordinative states and maintain a metastable dynamic (Bovier and Den Hollander, 2016).
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FIGURE 2. Formation of synergies across levels to satisfy task goals during exercise. Up: representation of different types of components of a certain physiological network. Down: system components, coupled by links, reorganize to form different structural and functional synergies (A,B) to achieve the same task goal under changing constraints. Network components are represented by symbols and their links through black lines.




From Developing Isolated Performance Markers/Dimensions to Increased Diversity Potential of Network-Based Measures

Physical fitness is defined as the ability to carry out daily tasks with vigor and alertness, which is better achieved by developing fitness attributes and producing a substantial increase in caloric requirements over resting energy expenditure (American College of Sports Medicine, 2009). In Exercise Physiology, fitness attributes are mostly associated with strength and conditioning. In contrast to this assumption, a new definition of fitness, inspired on theories of biological evolution, has been recently introduced (Pol et al., 2020). The authors sustain that the fittest is not necessarily the fastest or strongest but the most diverse. Accordingly, from a NPE perspective, fitness is defined as the ability to survive in a broad range of contexts, that is, to adapt to socio-psycho-biological challenges (Sturmberg, 2019). In neurobiological systems, dynamic stability, which means survival over long timescales, can only be achieved through a continuous process of complexification, i.e., diversification and specialization (Pross, 2016). Although higher strength or endurance levels imply higher functional (i.e., good variance) diversity, this property cannot be just reduced to these attributes because it embraces multiple dimensions. Furthermore, it may be attained through different processes and in different ways according to the degeneracy property (Edelman and Gally, 2001; Pol et al., 2020).

For instance, a gymnast has more chances to become dynamically stable (i.e., surviving in the competition) by specializing and diversifying the elements of their floor routine. This subsumes diverse functional synergies (reciprocal compensations) coping with diverse and challenging environments (mainly represented by the opponents). In sports, this process of complexification is defined by the athlete’s functional diversity/unpredictability potential (Hristovski, 2017; Hristovski and Balagué, 2020), being unpredictability, a relational variable that arises within the performer-environment system and cannot be reduced to the development of strength and conditioning. Accordingly, a change of focus is proposed in fitness programs. Gaining functional diversity, instead of developing aerobic capacity and muscle strength, is the main aim. Diversity can be developed in many ways, not simply through aerobic and strength training, and it is better achieved through varied, non-repetitive training stimulus (Pol et al., 2020).

Figure 3 represents how exercise may modulate communications among physiological systems across levels and timescales leading to changes in functional network connectivity, complexity, and diversity potential of the physiological systems and subsystems promoting health and performance. Physiological organ systems and their components operate at diverse scales (Bashan et al., 2012; Ivanov and Bartsch, 2014; Gosak et al., 2018), modify the number and strength of time-varying (Bartsch et al., 2012, 2014; Bartsch and Ivanov, 2014) couplings, reorganize and reconnect creating new synergies essential to generate distinct physiological states and functions at the organism level (Bartsch et al., 2015; Liu et al., 2015a) and to respond to various task demands or training workloads, thus contributing to the homeodynamics (Balagué et al., 2016; Garcia-Retortillo et al., 2019a). Recent studies have demonstrated that basic physiologic states (wake/sleep and sleep stages) are associated with specific physiological network topology and hierarchical structure of interactions among key organ systems and that physiological networks reorganize with transitions across states to facilitate change in physiological function (Liu et al., 2015b; Ivanov et al., 2017; Rizzo et al., 2020). In the context of exercise, overcompensation response to training (Verkhoshansky and Siff, 2009) may be reflected by increase in coupling intensity and overexpressed connectivity among physiological systems and subsystems leading to reorganization in physiological network structure and dynamics (Figure 3B). In contrast, weak or underexpressed connectivity (Figure 3A) could be hypothetically associated to sedentarism and injuries (Pol et al., 2018), while excessive exercise could be associated with a transitory underexpression of coupling network connectivity (i.e., imbalance: some processes are overexpressed and others underexpressed; Figure 3C). An example of such imbalance is the rigidity and reduction of diversity potential that accompanies exercise-induced fatigue (Vázquez et al., 2016). In a similar way, some pathological conditions (e.g., neuro-muscular disorders) could increase the density and/or strength of interactions among certain physiological rhythms, pushing the system toward a rigid order and reducing the robustness and adaptability to environmental changes (Ivanov et al., 1998, 2001; Stergiou et al., 2006; Stergiou and Decker, 2011).
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FIGURE 3. Effects of exercise on functional physiological network connectivity, complexity, diversity. From left to right: (A) weak or underexpressed connectivity, corresponding to unfunctional state, (B): functional connectivity, corresponding to healthy, fit state, and (C) underexpressed connectivity, corresponding to unfunctional state. Red nodes represent the different physiological network components and the links among them the couplings. The strength of the couplings is illustrated by the thickness of the links.




Health: From Additive Static Systems to Emergent States and Functions From Dynamic Network Interactions

The WHO defines health as a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity (World Health Organization, 2019). This additive definition, including the physical, mental and social dimensions, contrasts with that of Sturmberg (2019) that defines health as an adaptive, subjective, emergent state of the whole person that arises from hierarchical network interactions between different levels: ecological, social, physiological, genetic, etc. (see Figure 1). From this perspective, health is the result of dynamic interdependencies between the external environment and the internal physiology. According to the authors, it refers to adapting to socio-psycho-biological challenges and can occur in both absence or presence of objective disease. Due to its experiential and dynamic nature it may change in response to somatic conditions, social connectedness, emotional feelings and semiotic (or sense-making; Sturmberg, 2019). This means that a healthy state experience can be achieved in different ways and that there is no unique health state prototype. Thus, effective care must combine strategies centered on the person with those from the NPE perspective.



From Universal Training Program Recipes to Contextually Sensitive Training Criteria

On the basis of current research evidence and simplified assumptions of Exercise Physiology, universal training programs are prescribed for healthy and clinical populations (American College of Sports Medicine, 2009; World Health Organization, 2019). These one-size-fits-all recommendations assume the existence of decontextualized realities (Jones et al., 2017) and ideal or prototypic fitness and health states. However, maximization or minimization of CAS is very hard to define, and consequently to measure and prove due to their context-dependency. Thus, it is recommendable to focus on individual optimality, defined in space and time, and as such, evolving dynamically. Hence, one can speak about larger or smaller adequacy of interventions (see e.g., Chandler, 2018).

The application of the training principles of individualization, specificity, adaptivity, and periodization are a good example of excessively simplified assumptions of Exercise Physiology: (a) The exercise personalization is based on the objective evaluation of a patient’s baseline physiological status (American Thoracic Society and American College of Chest Physicians, 2003; Myers et al., 2015); (b) there are specific physiological adaptations to different types of exercise; (c) the adaptation to different intensities, durations, and training frequencies are based on a dose-response relationship, and (d) periodization subsumes the progressive overloading, adequate rest and recovery to maximize the adaptive response (Lorenz et al., 2010).

The principle of training periodization is particularly controversial in pre-established training programs (Kiely, 2018). The assumption that exercise sequencing and scheduling should be based on mechanical training stress ignores, for instance, the neuro-endocrine and bio-chemical consequences of the psycho-emotional stress that overlay training stimuli. This explains why there is no one-to-one mapping between training dose and training effects. The same load that promotes adaptivity may produce overtraining when the context changes (Hristovski et al., 2010). As many personal and environmental constraints change unexpectedly, a long-term training periodization cannot be sufficiently responsive to flexibly adjust to continuous and unpredictable co-adaptive performer-environment processes. In such variable contexts, it seems more adequate that the training process itself, and not the training program, leads and shapes the personalized workload adjustments (Orth et al., 2019). Although several nonlinear periodized prescriptions have proved their higher efficacy, compared to traditional ones, in improving cardiorespiratory fitness (and other important clinical outcomes) for different clinical populations (Jones et al., 2008; Klijn et al., 2013), a further progress in the direction of personalized adjustments is warranted.

Methodological criteria derived from NPE principles (e.g., stability, instability, constraints, change of state, etc.) and defined at multiple levels (Hristovski et al., 2014; Pol et al., 2020) can be used to personalize and coadapt fitness programs avoiding long-term periodization. They compress without fragmenting the huge complexity of dimensions (physiological, psychological, social, etc.), levels, and timescales involved in exercise training (Garcia-Retortillo et al., 2020; Pol et al., 2020).



From Prescribing Exercise Programs to Co-adapting Processes

As long as the training objective is focused on the diversification of complex physiological networks, and not on attaining pre-established fitness outcomes, the training process requires a redefinition of the role of the agents involved in it. Under the NPE perspective, exercise professionals and users/patients/athletes constitute a learning system, in which the exercise professional is not only the manager of the training environment but also a learning component (Orth et al., 2019). Since actions emerge from the performer-environment interaction, the continuous adjustments of workloads and constraints needs the active participation of the users/patients/athletes, which are expected to be not mere executers of the program but their codesigners (Pol et al., 2020). This active involvement of users/patients/athletes in the process supposes a collateral process of developing their somatic awareness (Pol et al., 2018). This skill is essential for capturing personal and environmental constraints changing at fast timescales (e.g., fatigue state, psycho-emotional state; climate, etc.; Balagué et al., 2019) and adapting workloads accordingly. The implementation of adequate subjective assessment tools with pedagogical and exploratory purposes can assist the exercise professional and contribute substantially to healthcare (Pol et al., 2018; Sturmberg, 2019). The implication of the user/patient/athlete as co-designer of the intervention is also crucial to increase their adherence, a key factor for the success of any training program. The exercise professional, in turn, should be mostly focused on selecting and providing adapted, varied, and sufficiently challenging proposals to develop the diversification potential of users/patients/athletes.



From Standardized Tests to Testing Methodologies Based on Functional Diversity

Cardiopulmonary exercise testing is the common assessment of choice for the accurate quantification not only of cardiorespiratory fitness but also for an integrative evaluation of the physiological response to exercise. Additional functional insights are also recommended through assessments of muscular strength, muscular endurance, and balance (American College of Sports Medicine, 2009).

The extracted quantitative variables from cardiopulmonary exercise testing (e.g., VO2max, ventilatory thresholds, etc.) are unable to capture the changes in the network dynamics produced by exercise and training. New methodologies based on continuous and synchronous recordings of multiple physiological parameters are needed to assess the qualitative network reorganization and compensatory synergies accompanying the exercise perturbations.

The assessment of correlation properties in the series produced by physiological parameters allows us to determine the possible alterations of complexity, either toward disorder (in which case correlations tend to extinguish in the series) or toward rigid order (in which case correlations tend to increase). From this point of view, complexity is conceived as an optimal compromise between order and disorder. This dynamic is characterized by long-range correlated series (1/f fluctuations; Delignieres and Marmelat, 2012), which can be detected using fractal analysis methods (Peng et al., 1995). The loss of complexity can be produced either by a decrease of the density of interactions between components or by the emergence of salient components that tend to dominate the overall dynamics (Figure 3). In the first case, the system derives toward randomness and disorder, and in the second toward rigidity. Complexity defines a fit state, characterized by robustness (or stability despite environmental perturbations) and adaptation to environmental changes. These relationships between complexity, robustness, adaptability, and health have been well illustrated by Goldberger et al. (2002) in the domain of heart diseases.




EARLY WORKS AND FUTURE RESEARCH DIRECTIONS IN NETWORK PHYSIOLOGY OF EXERCISE

The new NPE assumptions contrasted in “Exercise Physiology and Network Physiology of Exercise. Contrasting Approaches” section change not only the understanding of exercise-related phenomena but also the research questions, the research methodologies and data analysis, the research interpretations, and their practical consequences in diverse fields of knowledge related to exercise and sport.

Considering the interaction of dominant dynamics of CAS, NPE research is focused on the vertical as well as the horizontal dynamic integration of networks (see Figure 1). The vertical integration assumes the study of couplings between lower and upper level networks (e.g., genomics and metabolomics networks with tissue networks, organic networks, etc., and vice versa), and the horizontal integration of the study of interactions among network components belonging to the same level (e.g., between organs: muscles, liver, lungs, and brain). To identify and quantify adequately vertical and horizontal dynamic interactions during exercise, new data analysis methodologies should be developed.

Methods applied to study physiological states non-related to exercise (e.g., wake, sleep, and disease) include: (i) cross-correlations of instantaneous phase increments – cerebral autoregulation and stroke (Chen et al., 2006), and migraine (Angelini et al., 2004); (ii) cross-correlations based on local and global detrending (Podobnik et al., 2009); (iii) automated phase synchronization technique – patterns of synchronous behavior between respiratory and cardiovascular systems (Bartsch et al., 2012); (iv) major component analysis of dynamic networks of physiologic organ interactions (Liu et al., 2015b), or (v) the time-delay stability technique ‐ a novel approach to infer and quantify interactions among diverse dynamical systems that studies the time delay with which bursts of activation in the output dynamics of a given physiological system are consistently followed, with constant time delay, by corresponding bursts in the signal output of other systems (Bashan et al., 2012; Ivanov and Bartsch, 2014; Bartsch et al., 2015).

Together with the aforementioned data science methodologies, other methods such as bivariate methods may be useful for analysis of stochastic processes with two macroscopically defined variables. More methods such as multivariate transfer entropy may be applied to interacting components at microscopic level and used for inferring more complex directed network structures (e.g., Novelli et al., 2019). For systems whose important dynamics can be determined by a few dominant oscillatory modes, the method of coupling functions (Stankovski et al., 2017) may provide a relevant determination of causal mechanisms of interaction among components. The Karhunen-Loeve decomposition (i.e., PCA; Carver et al., 2002; Hacken, 2006) may further play a methodological significant role not only in data dimension reduction but also in the explanation of the system’s functioning by determining the collective variables that enslave lower placed component processes. Recent theoretical work in this direction (Tarasov, 2019) opens the possibility to methodologically tackle temporally nested and long memory processes with power law behavior. Network measures such as clustering coefficients may provide important information about the structure of the networks since it is simultaneously a significant constraint on the dynamics within the network (Fagiolo, 2007). Future advances in treating problems discussed in this paper may require approaches based on mutually related multilayer and nested networks (Kivela et al., 2014). These approaches could provide rich information about the existence of coherently behaving communities within the network across its layers. This aspect is crucial for indept formal analysis and modeling of systems with nested interacting constraints that dwell on many spatial and timescales (Balagué et al., 2019; Tarasov, 2019).

Further research is required to develop new tests based on interorganic (horizontal) and multilevel (vertical) interactions, to complement the current assessment protocols used to evaluate fitness and the effectiveness of different exercise interventions. A better understanding of the physiological responses to exercise may assist exercise professionals with the selection of the most appropriate and safe exercise interventions. With the aim of uncovering the effects of exercise on the interactions among different physiological systems, future research programs within the framework of NPE should collect data simultaneously recorded from key organs including the brain, heart, or muscle during exercise. High spatio-temporal resolution instruments such as electroencephalography, electrocardiography, electromyography, accelerometry, or 3D MRI are promising tools to reveal important insights and successfully apply the aforementioned data analysis methods.

Early works on NPE have focused on improving the sensitivity to training and detraining of current fitness markers extracted from cardiopulmonary exercise tests. Cardiorespiratory coordination, a novel concept based on the co-variation among cardio-respiratory variables, has been introduced to assess changes produced by different training programs (Balagué et al., 2016; Garcia-Retortillo et al., 2019a), testing manipulations (Garcia-Retortillo et al., 2017, 2019b; Zebrowska et al., 2020), and nutritional interventions (Esquius et al., 2019). Cardiorespiratory coordination has been determined through a principal component analysis performed on time series of cardiovascular and respiratory variables registered during cardiorespiratory exercise testing (expired fraction of O2, expired fraction of CO2, ventilation, systolic blood pressure, diastolic blood pressure, and heart rate) and through the information entropy measures (information compression; Haken, 2006). During exercise, the interacting systems tend to attune their complexities in order to enhance their coordination. However, when the exercise demands increase, coordination among cardiorespiratory variables decrease. The main findings of this set of studies point toward a higher sensitivity and responsiveness of cardiorespiratory coordination to exercise effects compared to isolated cardiorespiratory outcomes, such as VO2max and other gold standard markers of aerobic fitness. More recent research has investigated changes on cardiorespiratory coherence in response to hypoxic exposure and verified its dependence upon fitness status (Uryumtsev et al., 2020). These results indicate that strengthening connectivity among physiological systems provides optimal responses to hypoxic exposure and reflects the adaptive adjustment of the cardiorespiratory system in trained individuals. Furthermore, it has been recently demonstrated that the Network Physiology approach applied to exercise exhibits high sensitivity to quantify the performance of elite athletes participating at Olympic Games and to differentiate between fitness levels of those who win medals and those who do not (Pereira-Ferrero et al., 2019).

Perturbing the dynamic stability of the physiological network through exercise is crucial to test its health and fitness state because it provides a direct information about its adaptivity to changes. NPE methodologies may expand the knowledge on conditions of maladapted physiology provoked by excessive training load without adequate rest, such as overreaching or overtraining syndrome. Since these states result from a non-functional coupling between physiological subsystems (Kreher, 2016) and are not easily recognized through common physiological tests analyzing isolated outcomes (Meeusen et al., 2013), the tracking of changes on inter-organic interactions in response to training may contribute to develop new tools for early detection and prevention of such fatigue-related states. In fact, adaptivity is not necessarily linked to high maximal quantitative values achieved during cardiorespiratory exercise testing. For instance, an athlete affected by an overtraining syndrome will probably reach a high VO2max but their adaptation to training workloads will be impaired. In contrast, the exploration of different features of the network dynamics like stability, instability, critical phenomena (enhancement of fluctuations and critical slowing down), or hysteresis behavior (Hristovski et al., 2014) may provide a rich information about the personal (in space and time) adaptive and qualitative fitness state. These features have been already tested during exercise using kinematic and psychophysiological variables (see Hristovski and Balagué, 2010; Balagué et al., 2014a, 2015; Garcia-Retortillo et al., 2015; Slapsinskaite et al., 2016; Vázquez et al., 2016; Montull et al., 2020) and the approach should be enlarged to physiological data.

Another maladaptive effect linked to a relevant research area that might benefit from NPE methodologies and principles is muscle injuries prevention. Previous research has related the susceptibility to suffer overuse musculo-skeletal injuries with abrupt changes on the connectivity of microinjuries and the concomitant motor coordination reconfigurations within the musculo-skeletal system (Pol et al., 2018). Therefore, given that interorganic reconfigurations might precede changes on a macroscopic level (Balagué et al., 2016; Garcia-Retortillo et al., 2017; e.g., macroinjury), new research programs are needed to develop novel tools capable of identifying and quantifying the interactions between structures and processes in the musculo-skeletal system and other relevant physiological systems. This would be of key importance to detect critical regions of constraints that increase the musculo-skeletal system susceptibility to suffer an injury (Pol et al., 2018).

In relation with the vertical dynamic interaction, future research should focus not only on bottom-up relations (e.g., from genes or exercise metabolites to organism performance) but also on top-down influences (e.g., from organs or motor actions to genes), including the effects of environmental constraints on physiological states, physiological systems, organs, or genes (Alabdulgader et al., 2018; Noble et al., 2019; Sturmberg, 2019). There may be specific social interaction of physiological effects that affects the vertical as well as horizontal integration. Another fruitful direction of research may be the phenomenon of strong anticipation (Stephen and Dixon, 2011) within the vertical or horizontal integrative realm.

Concretely, current main research directions of NPE aim to: (1) investigate how each organ system coordinate and couple its own distinct physiological rhythms, at a range of different frequency domains and over several magnitudes of timescales in response to exercise-induced fatigue and training load (intra-organ interactions), for instance, how different muscle fibers in a given muscle interact with each other and adjust their activation to create an optimal contraction; (2) explore how different muscles synchronize their activation to optimally perform a certain task (inter-muscular interactions); and (3) uncover the mechanisms underlying the synchronized activation among different brain areas and cortical rhythms and distinct key organ systems (e.g., cardiovascular, respiratory, and musculo-skeletal) during exercise (inter-organ interactions).



PRACTICAL PERSPECTIVES


Assessing Patients and Athletes on the Basis of NPE

According to the basic assumptions and current theoretical framework of Exercise Physiology, the physiological assessment of patients and athletes is traditionally focused on the evaluation of quantitative markers extracted from isolated variables and functions. Such markers provide little information about the coordinated activity and synergies of the physiological systems that are essential to generate behavior at the organism level and appear to not be sensitive and sufficiently responsive to training effects (Balagué et al., 2016; Garcia-Retortillo et al., 2019a), fatigue (Garcia-Retortillo et al., 2017), or nutritional interventions (Esquius et al., 2019), as well as to the prevention and diagnosis of common dysfunctions among athletes (e.g., states of overtraining, injuries, etc.; Meeusen et al., 2013). The majority of investigations in Exercise Physiology utilize static measures (maximal, averages, and threshold values), and the dynamic component of physiological processes is neglected. The significance of gradual increase or decline of physiological parameters during exercise and the nonlinear effects they produce on physiological networks have not been explored from an Exercise Physiology perspective.

According to the interaction-dominant dynamics of neurobiological systems, an NPE approach may prove to have larger potential to evaluate the fitness and training states on a coordinative basis and inform more accurately about the risks of dysfunctions. In this line, the NPE-based assessment has two main objectives: (a) evaluation of physiological networks structure and dynamics, and their evolution in time during and after acute and chronic exercise, and (b) evaluation of the responsiveness of the physiological network interactions to exercise perturbations. The first objective may use connectivity, modularity, causality, and synergy measures (Tognoli, and Kelso, 2014; Varona, and Rabinovich, 2016; Pol et al., 2018), while the second objective would require the detection and quantification of adaptive properties of the physiological network (e.g., stability, metastability, instability, critical behavior and fluctuations, critical slowing down, flickering, and other phenomena such as hysteresis and relaxation time after perturbation) that can be used as coordinative markers of interactions among systems during exercise-related states and functions (Hristovski et al., 2014).

The development of adequate technology of wearable devices, which are able to provide continuous and synchronous recordings (time series) of selected coordinative variables (order parameters) extracted from different physiological levels, is needed to study physiologic network dynamics. Computational intelligence methods, comprising algorithms inspired by nature (Fister et al., 2015) and robust methods able to infer couplings among diverse systems with different type of dynamics (oscillatory, multiscale, deterministic or stochastic, linear or nonlinear) that communicate with time-varying bursting activity (time delay stability; Bashan et al., 2012), could be successfully applied to design future functional evaluation tools based on NPE principles. Such algorithms can be implemented in modern mobile devices supplemented with EEG, EMG, and ECG sensors that are able to determine interorganic interactions during exercise testing. Until then, the availability of continuous recordings in laboratory settings of behavioral variables (e.g., extracted from kinematic or phenomenological data) as order parameters that contain integrated information of all physiological levels can be used to detect modularity in vertical and horizontal integration of the network.



Current Limitations of Exercise Recommendations for Health and Disease

Principles of training derived from Exercise Physiology have remained largely impervious to the transdisciplinary and holistic insights emanating from complex systems approaches (Pol et al., 2018; Fullagar et al., 2019). In this section, the practical perspectives derived from the change of theoretical assumptions and research directions of NPE are illustrated through an example of exercise recommendations. Limitations of current guidelines of exercise prescription in health and disease are reviewed on the basis of NPE with the purpose of contributing to provide safer and more effective practical issues.

Physical activity is taking on an increasingly key role in the prevention and treatment of multiple chronic diseases, health conditions, and their associated risk factors. Despite its well-known health benefits, physical inactivity is considered a global pandemic and has been identified as one of the four leading contributors to premature mortality (American College of Sports Medicine, 2009). Governmental, academic, and research institutions: international organizations; sport associations; and the private sector recommend physical activity as part of a healthy lifestyle and for the prevention and treatment of a long list of chronic diseases. Overall, strong scientific evidence demonstrates that, compared to less active adults, individuals who are more active have lower rates of all-cause mortality and exhibit a higher level of cardiorespiratory and muscular fitness (Green et al., 2008; Wilson et al., 2016). New advances in precision medicine research show the beneficial effect of regular exercise at molecular, cellular, and whole-body levels (Friedenreich et al., 2016). However, there is limited research understanding exercising individuals as networked embedded systems and a clear absence of knowledge regarding the effects of exercise on the interactions among physiological systems.

Almost all studies testing the benefits of exercise for healthy persons and clinical patients closely adhered to the exercise guidelines of World Health Organization (2019) and American College of Sports Medicine (American College of Sports Medicine, 2009). Overall, the recommendations are similar for both healthy and clinical populations with few adaptations in function of the age and type of disease. The situation is not different in sports performance domain, where training recommendations for “optimal” (e.g., maximal) adaptation are proposed (Mujika et al., 2018).

Aerobic activity and strength training, prescribed as basic medication, are the core of programs addressed to healthy persons and clinical patients. Other type of activities related to flexibility such as Yoga or Pilates, which allow the improvement of range of motion and balance, are considered complementary. The recommendations are similar for Alzheimer’s disease, aneurysm, asthma, atrial fibrillation, bleeding disorder, blood lipid disorders, cancer, chronic kidney disease, chronic liver disease, chronic obstructive pulmonary disorder (COPD) depression or anxiety, heart failure, heart valve disease, HIV/AIDS, hypertension, fibromyalgia, inflammatory bowel disease (IBD), low back pain, mobility limitations, osteoarthritis, osteoporosis, overweight/obesity, pacemaker, Parkinson’s disease, peripheral arterial disease, prediabetes, pregnancy, rheumatoid arthritis, and Type 2 diabetes. Small load adjustments, in combination with some complementary practices, are recommended according to the specific disease.

Aerobic exercise, either alone or in combination with resistance training, at a moderate intensity (50–75% of a predetermined physiological parameter, typically age-predicted heart rate maximum or reserve), performed in two to five sessions per week with bouts equal or higher than 10 min is the general recipe. Ten to sixty minutes per session, with the ultimate objective of achieving at least 150 min/week is the minimum exercising time. Because of the assumed dose-response relationship, for more intense outcomes, the exercising time can be extended to 300 min/week or reduced to at least 75 min/week if the exercise has a more vigorous intensity. Strengthening activities performed at moderate or high intensity and involving all major muscle groups and practiced 2 days a week provide additional health benefits.

Despite the adoption of a relatively homogeneous prescription approach, aerobic and strength training have been, for the most part, associated with benefits across a diverse range of populations (e.g., Bishop et al., 1999; Voisin et al., 2015; Flannery et al., 2019; Klil-Drori et al., 2020; Maestroni et al., 2020). On this evidence, it is assumed that a standardized, largely homogeneous exercise prescription that adopts a conventional approach is safe, efficacious, and therefore sufficient.

Even though most studies present favorable results, systematic reviews and metaanalysis on exercise prescription point to the lack of high-quality studies showing the sustainability of standardized programs (Sørensen et al., 2006) and the need for personalizing the recommendations (Zimmer et al., 2018). The dominance of research based on comparisons of group data means evaluating quantitative changes of isolated variables in lab conditions is clearly limiting the application of a precision exercise medicine approach (Balagué et al., 2020).

Individuals respond and evolve in distinctive ways to standardized training programs (Mann et al., 2014), showing patterns of variability that are not captured by models based on statistical averages. Which people undergo positive effects? Average values mask inter-individual differences ‐ while some individuals respond with big positive effects, others have even detrimental effects. In addition, the attention in most evidence-based medicine and in particular in physical fitness research is almost exclusively restricted to inter-individual variations, neglecting intra-individual time-dependent variations (within each individual) which are better captured through time series recordings (Rose et al., 2013). As there is no equivalence between inter‐ and intra-individual variability, implementing precision medicine to exercise prescription requires focusing on this neglected time-dependent variation within single individuals. Only such recursive techniques allow personalizing treatments in place and time (Molenaar, 2004; Nesselroade and Molenaar, 2010).

The validity and reliability of tests based on inter-individual variability cannot be generalized to individual assessments of non-stationary processes like training and, thus, cannot provide the basis for individual counseling. The problems related to the biological and measurement variability of gold standard fitness markers like VO2 max, used in the evaluation of aerobic programs, have been widely discussed (Beltz et al., 2016). In fact, new variables of study, based on the covariation of time series of cardiorespiratory variables, have shown more sensitivity to training interventions than VO2max. (Balagué et al., 2016; Garcia-Retortillo et al., 2019a).

Another problem of current research on exercise prescription is derived from the bench to bedside approach. Numerous physical and social environmental factors affect fitness and health (World Health Organization, 2019) and the application of exercise programs tested under lab conditions may have a very different impact in real contexts. Motor actions emerge from the individual-environment interaction and, systematically, different patterns will emerge for different individuals (Araújo and Davids, 2016; Pol et al., 2020). Assuming that the behavior is stable, the available experimental models ignore the influence of context, focusing on averages to reveal “true” behavior. An 18-year longitudinal study has shown that comparable amounts of physical activity can lead to different effects on fitness or health status and have underlined the importance of contexts, content, and purposes of physical activity when health or fitness benefits are addressed (Schmidt et al., 2017). Accordingly, adaptation, not only from person to perso, but from moment to moment in space and time, is of utmost importance to produce effective results (Sturmberg, 2019).

Although systematic reviews and metaanalyses indicate that exercise therapy following a generic prescription is safe, tolerable, and efficacious (at improving symptom control outcomes), caution is recommended when interpreting these data: (1) the effects of exercise therapy are usually compared against a non-intervention control group with a sedentary lifestyle of recognized deleterious consequences, (2) metaanalyses and systematic reviews do not reduce but may enlarge the bias of studies that compound it (Weir et al., 2016).

Finally, research methodologies may also need to be improved to contribute to the development of personalized recommendations. The use of statistical inference techniques without enough criteria in available fitness research has produced a false belief that a significant result reflects the reality (Hristovski et al., 2017). This belief has led scientists and journal editors to privilege statistically significant results, thereby distorting the literature and leading to wrong interpretations (Wasserstein and Lazar, 2016; Amrhein et al., 2019). In research, when the posed question is wrong, multiple pathways cannot be detected initially because the alternatives are invisible to statistical techniques that rely on averages to characterize individual responses (Rose, 2016). Finally, systematic reviews do not solve the problem but may even make it worse because, rather than eliminating the bias, they compound it (Weir et al., 2016).

The significant benefit of a generically dosed exercise on heterogeneous populations reflects the remarkable pleiotropic physiological impact of exercise. In this sense, it is warranted to investigate further the therapeutic properties of exercise medicine to reveal its whole potential role in healthcare. Although it is still not known whether alternative prescriptions adopting a more personalized approach will confer superior efficacy to exercise treatments, several efforts have pointed toward this direction (Jones et al., 2017). In fact, exercise scientists are continuously exploring the tenets of performance to refine and personalize exercise training with the aim of minimizing injury and maximizing benefits.



Some Hypotheses for Future Applicative Research

Due to safety reasons, the current standardized training programs addressed either to healthy individuals, clinical patients, and athletes require the controversial quantification of the relative exercise intensity (Jamnick et al., 2020). And, accordingly, the use of ergometers and strength machines. These technical devices, mostly found in fitness facilitie where healthcare providers and trainers use to refer their users/patients/athletes, reduce the physical activity to cyclic (walking, running, stepping or cycling) and repeated local body movements. In such context, diversity is mostly minimized to volume and intensity changes. Although varying the volume and intensity of exercise increases the diversity potential of individuals, varied activities in natural environments, highly recommendable (Brymer et al., 2020) may help to enhance further this potential. As pointed by Hristovski and Balagué (2012), such open-air activities (mountain climbing, swimming in the sea, etc.) embed performers in a multi-time-scale fluctuation regime of resistance that provides high adaptive effects on body functions. Accordingly, the authors propose to implement in exercise machines (e.g., cycle ergometers, rowing machines, vibrating platforms, steppers, etc.) a multi-time-scale stimulator system to manipulate the variability dynamics and simulate the fractal dynamics found in nature.

In fact, the growing number of fitness specialties (46 in the 2020 ACSM’s Worldwide Health and Fitness Trends Survey) is a proof that many types of activities, not only those based on cyclic or repetitive movements, may contribute to fitness and health development. In particular, those activities chosen by users/patients/athletes and intrinsically motivating, if adequately adapted by an exercise professional (introducing progressively new challenges), may favor the adherence to practice (Balagué et al., 2020).

Intelligence in CAS has been recently described as a tendency to evade and escape states of reduced fitness, that is, states of reduced functional diversity potential (Hristovski and Balagué, 2020). This refers to richness of functional synergies and also fast recovery time after a perturbation (see hysteresis behavior of section CAS Interact Dynamically and Non-linearly, i.e., Co-Adaptively, With the Environment). The intelligent behavior may be expressed at diverse levels. For instance, bouts of exercise produce acute fatigue that temporarily decreases the diversity potential of the organism. However, the cell or organism reacts by a temporary increase of the diversity potential anticipating the possible future incoming perturbations. These types of biological behaviors have been modeled as strong anticipation phenomena (Dubois, 2003; Stepp and Turvey, 2010). These exercise effects can particularly compensate the tendency of aging and disease to reduce the diversity potential (Yogev et al., 2007; Rutenberg et al., 2018).

The growth of intelligence requires regular coupling to challenging and stimulating environments to evade the temporary stalemate, which may, on longer time scale, turn into decreasing functional diversity potential (Hristovski and Balagué, 2020). On the other hand, the diversity potential can be reduced due to unexpected perturbations (e.g., the pandemia effects) and the property of biological intelligence is to escape quickly from it through the creation of new synergies which may include new dimensions, not only those related to exercise modalities. In fact, exercise is not the only intervention that may increase the functional diversity potential and/or evade its reduction. Healthy diet, stress reduction, inspiring intellectual work, music, art, meditation, etc. may all contribute to it.

As health and fitness have also subjective dimensions (Sturmberg, 2019), they can be satisfied in multiple idiosyncratic personal ways. This means that the individual satisfying diversity potential is also associated to a subjective experience of wellbeing, and this experience can be recovered in many different ways due to available multidimensional compensations.

Some long-lasting personal or environmental constraints may produce a cascade of long-lasting effects on physiological levels (Balagué et al., 2019) and the response to physical activities may change according to it. Due to the multidimensionality, context-dependency and subjectivity of health and fitness, a personalized exercise recommendation may prove to be more adequate than current standardized exercise programs addressed either to healthy individuals or clinical patients.

It may become recommendable to reorient the main aim of prescribed exercise medicine toward gaining diversity through the development of multidimensional and multiscale synergies. Exercise dosage and formulation, as occuring in personalized medicine, may be adapted accordingly. The formula of an active life with varied stimulus, preferably at open air (Ryan et al., 2010), would then be shown to be more adequate than reducing the physical activity to 75–150 min/week repeating exercises.

As synergy formation is better captured through the interactions among the involved components and processes, variables related to connectivity (number and strength of couplings) can be suitable to test the exercise program effects. Because components of the network cooperate to accomplish the common fitness goal, if the number and strength of couplings is reduced, other components of the network may become overwhelmed and the system may respond less effectively to perturbations, bringing about dysfunction and increased susceptibility to injuries (Pol et al., 2018).

Exercise, in turn, having a profound impact on human metabolism (Koay et al., 2020), may produce very relevant perturbations on the network dynamics at multiple levels (see Figure 1), and thus, provide an accurate information about its resilience and antifragility of the organism, key properties to inform about its state. In summary, the NPE approach may transform not only the criteria for exercise prescription but also the comprehension of other fields of knowledge, typically studied under the framework of Exercise Physiology like functional evaluation, injury prevention or limits of performance. It also may provide a new understanding of many exercise-related phenomena as fatigue, overtraining, injuries, etc. currently influenced by a reductionist scientific approach.




CONCLUSION

Current Exercise Physiology, deeply influenced by reductionism, is limiting the understanding of exercise-related phenomena and hampering practical applications to sports performance and exercise as medicine. Integrative Exercise Physiology approaches, methodologically based on statistical inference techniques and focused on timeless vertical, bottom-up mechanistic causation (from the sub-cellular and cellular levels to organ and systemic functions), are not sufficient to improve substantially the current state of physiological research.

Inspired by the new field of Network Physiology and Complex Systems Science, NPE emerges to transform the theoretical assumptions, the research program and the current practical issues of current Exercise Physiology. It focuses the research efforts on improving the knowledge of the nested dynamics of the vertical network interactions and, particularly, the horizontal integration of key organ systems. Through the application of novel methods and approaches derived from recent advances in Network Theory, Nonlinear Dynamics, Computational and Statistical Physics, and Biomedical Informatics, it seeks to provide insights into Basic Physiology itself as well as for Exercise Physiology.

The critical view on the current one-size-fits-all approach of exercise prescription in health and disease, in contrast with a new proposal based on complex systems and NEP principles, illustrates the potential practical impact of the approach, which aims to provide: (a) a theoretical framework to address problems and challenges in Network Physiology, and particularly, in NPE, (b) data-driven discoveries of the basic physiological laws and control mechanisms that underlay network interactions for various states under both healthy and pathological conditions with focus on Exercise Physiology and Sports Medicine, and (c) a forum for developing new methodologies, a vision and a programmatic approach on applications of NPE. In this fashion, more qualitative research directions in Exercise Physiology may be developed and an original and fertile research program can emerge in the near future.
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The Network Physiology field frames the multi-scale multi-dimensional nature of the body system emerging in the interaction among organs, which interplay via hemodynamic and metabolic functions under hormonal and neuronal controlling communication (Bashan et al., 2012; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al., 2016; Lin et al., 2016). Thus, while the Network Physiology models networks consisting of organs (nodes) that are heterogeneous and connected by systems (connectors) of a still different nature, the brain is made up of elements that are at the same time nodes (soma of the neuron) and connectors (axons), so that the communicative—necessary and sufficient—nature confers to the sets of neurons the status of Network. Here we refer to Neuronal Networks [NN], which structurally include at least one node receiving inputs from the environment, and one node producing outputs to the environment; the NN connections are necessarily both negative and positive; every NN's node “necessarily” produces a pattern-OUT when the pattern-IN arrives, overall resulting in a specific local time course of the electrical neuronal activity, the local neurodynamics.

Here, grounding on existing knowledge, we propose a unique functional organizing principle—the feedback-synchrony-plasticity triad—which, governing the neuronal networks at multiple scales, emerges as a potential explanatory framework for the fractal properties exhibited by neurodynamics. In a translational perspective, via the strategy of “listening” to the body-brain organization by non-invasive electrophysiological techniques (electro- and magneto-encephalography and electromyography) integrated with “intervening” by non-invasive brain stimulation techniques, we exploited the communication means used by neuronal networks to enhance the capability of fighting symptoms secondary to neurodynamics dysfunctions. In other words, we introduce precision approaches to electroceuticals, i.e., the cure of ailments by means of electrical signals (Reardon, 2014).


THE FEEDBACK-SYNCHRONY-PLASTICITY TRIADIC PRINCIPLE (FeeSyCy) GOVERNS THE BODY-BRAIN SYSTEM

We consider the whole brain as a neurons' ensemble which coordinates the interaction of the body brain network with the environment, where input depends on the output and the other way round, the output depends on the input, working in a feedback loop. Via somatic, proprioceptive (Rossi et al., 1998; Fink et al., 2014), visual and auditory sensory receptors, our motor actions produce from the environment feedback, that our brain shapes dependently on the desired goal (Friston, 2018). This feedback loop stimulates our brain neurons inducing locally specific dynamic synchronizations among the nodes of dedicated functional networks (Tecchio et al., 2008; Gandolla et al., 2014). Such synchronizations within the network's subsystems imply a desynchronization of those very subsystems with the wider regions they are part of, resulting in a reduction of the resting-state high power of the cortical activity paced within the thalamocortical loops (Gent et al., 2018), e.g., alpha reactivity (Klimesch, 1999). In turn, these modulations of synchrony engage the system in adaptations either sustaining the execution as planned or enabling proper corrections (Fink et al., 2014). In this process, our neurons implement output changes following a key rule (Kandel and Schwartz, 1985): if two input signals reach the neuron together, the neuron increases its probability to fire (Hebb, 1949), that is to produce an action potential transmitting a message. Some authors indicate that the Hebbian rule subtends main trial-and-error (Hoerzer et al., 2014) and imitation (Keysers and Gazzola, 2014) learning mechanisms. This continuous adaptation capability shapes the ability of our neurons to change their output according to what is required, quantified depending on the distance between the expected outcome and the current one. When the distance is small, behavioral adaptations emerge through the current network setup [working adaptation (Wolpert et al., 2011)]. When the distance is big, new skill acquisitions emerge through even huge structural changes (plastic adaptation, i.e., learning). A richness and complexity of molecular and cellular phenomena and of signaling, in continuous discovery, underlie the cellular and network modifications that implement the plastic adaptations. Plasticity mechanisms occurring at the synapses' level with non-unitary interplaying potentiation and depression phenomena (Malenka and Bear, 2004) are integrated by intrinsic plasticity mechanisms (Zhang and Linden, 2003) and changes in myelin multi-laminar sheaths that modulate the timing of information transmission between relay points through neural circuits, inducing changes in spike arrival-time, with which a high degree of precision controls the probability of activation (Gibson et al., 2014; Fields, 2015). It is supposed that Hebbain rules acting in day time, are supported during sleep spontaneous activity, by renormalizations of net synaptic strengths (Tononi and Cirelli, 2014) implementing homeostatic plasticity (Turrigiano and Nelson, 2004).

Notably, the feedback-synchrony-plasticity (FeeSyCy) triadic principle that governs motor control, controls the whole body-brain system. We can recognize some paradigmatic examples of the breakup of one of the three links in the FeeSyCy chain, which generates the breakup of the whole process.


Feedback Link Breakup

The lack of auditory training and feedback condemned for centuries deaf individuals, despite owning intact motor executive functionality, to the inability to develop linguistic production, that is it condemned them to live as a deaf-mute (Sacks, 1989). The role of feedback is strongly proven by deaf people who grow nowadays. Starting from the last century, the teaching models and techniques -guided by neuroscientific comprehension–have definitely revolutionized the condition of deaf people, who now can, in parallel to the sign language, achieve an excellent production of language vocal expression by exploiting during their development the feedback about their produced words properly translated in signals from the spared sensory channels, mainly the visual one.



Synchrony Link Breakup

In dystonic individuals, despite proper sensory stimuli being transmitted via intact sensory systems, the impaired intracerebral synchronizations subtending the sensorimotor integration (Melgari et al., 2013), impairs the motor control (Abbruzzese and Berardelli, 2003).



Plasticity Link Breakup

Schizophrenic individuals are able to move and receive proper sensory feedback from the environment but cannot engage in proper adaptation due to neuronal inability to involve the metabolic chains and adapt the cells via plasticity (Ramocki and Zoghbi, 2008).




THE FeeSyCy TRIADIC PRINCIPLE MANIFESTS ITSELF RECURSIVELY AT MULTIPLE SCALES


Single Neurons' Network

In in-vitro primary cell culture of single cortical pyramidal neurons of postnatal rats, the synaptic changes implementing long-term potentiation and depression emerged as a function of incoming activity (Turrigiano et al., 1998; Sjöström and Nelson, 2002). Synaptic potentiation increases the postsynaptic firing rates in correlation with presynaptic activity, producing a positive feedback loop. Multiplicative scaling of synaptic strengths preserves relative differences between inputs, allowing a non-saturated implementation of Hebbian modifications (Hebb, 1949).



Neuronal Pools' Network

In functioning of multiple brain areas networks, a parallel capturing of bottom-up patterns of activation in sensory-motor areas occurs together with a top-down processing that selects sensory-motor activations to implement long-lasting storage. As memories organize themselves in central structures, they implement an active selection of sensory experience, proprioception and emotional knowledge for further learning (Barsalou, 1999).



Body-Brain Network

Deepening the paradigmatic example of motor execution, skilled actions require the actual gathering of sensory information, which is processed extracting what is relevant to the planned action. Such feedback comes from different types of information that the motor system uses as a learning signal, including error-based, reinforcement, observational and use-dependent information. In all cases, motor learning occurs implementing adaptations dependent on the distance between the expected and occurring inputs (Wolpert et al., 2011).

We can recognize an expression at the whole system level of the multi-scale recursive FeeSyCy principle in the human gait showing fractal dynamics (Hausdorff et al., 1996; Phinyomark et al., 2020) and also across species, in experimental data about food-searching strategies in insect, mammal and bird species (Edwards et al., 2007).




WORKING AT MULTIPLE SCALES, THE FeeSyCy PRINCIPLE SUBTENDS A FRACTAL NEURODYNAMICS

When a system presents the whole structure that is made up of single blocks, which are similar to the whole, and are in turn made of smaller blocks, similar to it and to the whole structure, it is a fractal. Its name comes from a non-integer number that quantifies its dimension. In our case, FD estimates on a time window the distance between the amplitudes of successive neuronal electrical activity points, in relationship with the time sampling.

Brain neurodynamics displays the so-called “power law” (He, 2011), i.e., the power of the signal generated by a neuronal population follows an exponential behavior. Among the multiple signals with a spectrum that distributes as power law, we propose the hypothesis that brain signals are fractal (Buzsaki and Mizuseki, 2014).

The findings from our laboratory support this hypothesis. We observed that the fractal dimension (FD) of EEG signals successfully senses the modulation of the brain activity in physiological conditions, related to aging (Zappasodi et al., 2015; Smits et al., 2016), circadian rhythm (Croce et al., 2018), behavioral states (Cottone et al., 2017) and neuronal networks' functional role (Marino et al., 2019), and the alterations of the brain activity in clinical conditions (Zappasodi et al., 2014; Smits et al., 2016; Porcaro et al., 2019). Notably, beyond being sensitive to the networks' state, FD offers a tool to parcel the cortex on the base of the local neurodynamics, complementing the Brodmann's cytoarchitectonics criterion (Cottone et al., 2017) (Figure 1).


[image: Figure 1]
FIGURE 1. The neurodynamics complexity measured via its fractal dimension (FD) is a single number enabling to characterize the state of a neuronal network node, even at rest. FD of the neurodynamics (2 s in each state) increases when passing from relax in absence of any stimuli (Left) to selective sensory perception, to active sensorimotor control (Right). The FD of a node mirrors its structural specificity: here, the primary somatosensory hand area (S1, blue) has smaller FD than primary motor hand area (M1, red) in all network states. Both the state-dependency and the cortical district-dependency are statistically significant in the 20 healthy volunteers' population, as reported in Cottone et al. (2017), where the data come from.




NEURONAL NETWORK SPOKEN LANGUAGE AND ELECTROCEUTICALS

Nowadays the ability to develop therapeutic procedures by intervening on the body physiology by electric signals gives rise to the innovative branch in the medical field: the Electroceuticals (Reardon, 2014). Parallel to the need for technological advancements, they require further knowledge about the correct signals to be provided to the appropriate targets. We propose here a hypothesis on this matter, in the case of neuromodulation, the change of neuronal excitability.

By linking theoretical and experimental studies, the neuroscientific community is revealing network dynamics properties attuned with FeeSyCy mechanisms (Destexhe and Marder, 2004; Deco et al., 2011) that inspired our model of communication within neuronal networks. The model states that every NN—were nodes can be made of neurons, groups of neurons or wider brain regions—develops a “language” shared by its nodes made of exchanged electric pattern, which dynamics' shape brings information (word, Neuronal Network Spoken Language). Notably, when assessing the fractal dimension of the bipolar EEG whole-brain signals we sensed phenomena sensed even by other measures. Noteworthy, when we assessed local neuronal ensemble neurodynamics, the fractal dimension, and not other measures, sensed in resting-state tiny changes with clinical relevance (Porcaro et al., 2019).

The neuroscientific community states that the efficacy of neuromodulation, the change of neuronal electric excitability, depends on the frequency of the stimulation in a region-dependent manner (Brinkman et al., 2016; Fusco et al., 2018), revealing that the intrinsic dynamics of the stimulation target enhances neuromodulation capability. In a seminal non-invasive transcranial electric stimulation (tES) study (Cottone et al., 2018), we proved that a current which mimics the endogenous dynamics of the target neuronal pools, neuromodulates more efficiently than the sinusoid at a locally-tuned frequency, suggesting that structured patterns transmit entrainment more than a non-structured stationary signal.

Near and more long-term future will see further electroceutical personalizations, by developing tools to “speak” the neuronal network language, thus better tuning the neuromodulation to the desired neuronal pool target and obtaining higher efficacy in compensating symptoms secondary to alterations of the neurodynamics, like depression, addiction, pain, fatigue.

This nature of the body-brain in continuous adaptive communication with the environment makes a continuously changing structure that is “to be is to become”.



AUTHOR CONTRIBUTIONS

FT conceived the paper and supervised the writing. FT and FZ contributed to the writing of the original draft. MB contributed to figures creation. MB, TL, EG, and LP contributed to the writing and the editing of the manuscript. All authors reviewed and approved the final manuscript.



ACKNOWLEDGMENTS

The authors would like to thank Carlo Salustri very much for his careful sharing of our reasoning and tuning in communicating the contents of the Opinion.



REFERENCES

 Abbruzzese, G., and Berardelli, A. (2003). Sensorimotor integration in movement disorders. Mov. Disord. 51, 427–436. doi: 10.1002/mds.10327

 Barsalou, L. W. (1999). Perceptual symbol systems. Behav. Brain Sci. 22, 577–609. doi: 10.1017/S0140525X99002149

 Bartsch, R. P., Liu, K. K. L., Bashan, A., and Ivanov, P. C. (2015). Network physiology: how organ systems dynamically interact. PLoS ONE 10:e0142143. doi: 10.1371/journal.pone.0142143

 Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. C. (2012). Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3:702. doi: 10.1038/ncomms1705

 Brinkman, L., Stolk, A., Marshall, T. R., Esterer, S., Sharp, P., Dijkerman, H. C., et al. (2016). Independent causal contributions of Alpha- and Beta-band oscillations during movement selection. J. Neurosci. 36, 8726–8733. doi: 10.1523/JNEUROSCI.0868-16.2016

 Buzsaki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278. doi: 10.1038/nrn3687

 Cottone, C., Cancelli, A., Pasqualetti, P., Porcaro, C., Salustri, C., and Tecchio, F. (2018). A new, high-efficacy, noninvasive transcranial electric stimulation tuned to local neurodynamics. J. Neurosci. 38, 586–594. doi: 10.1523/JNEUROSCI.2521-16.2017

 Cottone, C., Porcaro, C., Cancelli, A., Olejarczyk, E., Salustri, C., and Tecchio, F. (2017). Neuronal electrical ongoing activity as a signature of cortical areas. Brain Struct. Funct. 222, 2115–2126. doi: 10.1007/s00429-016-1328-4

 Croce, P., Quercia, A., Costa, S., and Zappasodi, F. (2018). Circadian rhythms in fractal features of EEG signals. Front. Physiol. 9:1567. doi: 10.3389/fphys.2018.01567

 Deco, G., Jirsa, V. K., and McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56. doi: 10.1038/nrn2961

 Destexhe, A., and Marder, E. (2004). Plasticity in single neuron and circuit computations. Nature 431, 789–795. doi: 10.1038/nature03011

 Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., et al. (2007). Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1048. doi: 10.1038/nature06199

 Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767. doi: 10.1038/nrn4023

 Fink, A. J. P., Croce, K. R., Huang, Z. J., Abbott, L. F., Jessell, T. M., and Azim, E. (2014). Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 509, 43–48. doi: 10.1038/nature13276

 Friston, K. (2018). Does predictive coding have a future? Nat. Neurosci. 21, 1019–1021. doi: 10.1038/s41593-018-0200-7

 Fusco, G., Scandola, M., Feurra, M., Pavone, E. F., Rossi, S., and Aglioti, S. M. (2018). Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution. Eur. J. Neurosci. 48, 3159–3170. doi: 10.1111/ejn.14174

 Gandolla, M., Ferrante, S., Molteni, F., Guanziroli, E., Frattini, T., Martegani, A., et al. (2014). Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage 91, 366–374. doi: 10.1016/j.neuroimage.2014.01.011

 Gent, T. C., Bandarabadi, M., Herrera, C. G., and Adamantidis, A. R. (2018). Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21, 974–984. doi: 10.1038/s41593-018-0164-7

 Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., et al. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304. doi: 10.1126/science.1252304

 Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. Y., and Goldberger, A. L. (1996). Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80, 1448–1457. doi: 10.1152/jappl.1996.80.5.1448

 He, B. J. (2011). Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J. Neurosci. 31, 13786–13795. doi: 10.1523/JNEUROSCI.2111-11.2011

 Hebb, D. O. (1949). Organization of Behavior. 1949th ed. New York, NY: John Wiley & Sons, Ltd

 Hoerzer, G. M., Legenstein, R., and Maass, W. (2014). Emergence of complex computational structures from chaotic neural networks through reward-modulated hebbian learning. Cereb. Cortex 24, 677–690. doi: 10.1093/cercor/bhs348

 Ivanov, P. C., and Bartsch, R. P. (2014). “Network physiology: mapping interactions between networks of physiologic networks,” in Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems, eds G. D'Agostino, A. Scala (Cham: Springer). doi: 10.1007/978-3-319-03518-5_10

 Ivanov, P. C. H., Liu, K. K. L., and Bartsch, R. P. (2016). Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 18:100201. doi: 10.1088/1367-2630/18/10/100201


 Kandel, E., and Schwartz, J. (1985). Principles of Neural Sciences. 2nd Edn. New York, NY, Oxford, Amsterdam: Elsevier.

 Keysers, C., and Gazzola, V. (2014). Hebbian learning and predictive mirror neurons for actions, sensations and emotions. Philos. Trans. R. Soc. B Biol. Sci. 369:20130175. doi: 10.1098/rstb.2013.0175

 Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195. doi: 10.1016/S0165-0173(98)00056-3

 Lin, A., Liu, K. K. L., Bartsch, R. P., and Ivanov, P. C. (2016). Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374:20150182. doi: 10.1098/rsta.2015.0182

 Malenka, R. C., and Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21. doi: 10.1016/j.neuron.2004.09.012

 Marino, M., Liu, Q., Samogin, J., Tecchio, F., Cottone, C., Mantini, D., et al. (2019). Neuronal dynamics enable the functional differentiation of resting state networks in the human brain. Hum. Brain Mapp. 40, 1445–1457. doi: 10.1002/hbm.24458

 Melgari, J. M., Zappasodi, F., Porcaro, C., Tomasevic, L., Cassetta, E., Rossini, P. M., et al. (2013). Movement-induced uncoupling of primary sensory and motor areas in focal task-specific hand dystonia. Neuroscience 250, 434–445. doi: 10.1016/j.neuroscience.2013.07.027

 Phinyomark, A., Larracy, R., and Scheme, E. (2020). Fractal Analysis of Human Gait Variability via Stride Interval Time Series. Front. Physiol. 11:333. doi: 10.3389/fphys.2020.00333

 Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., Zito, G., and Tecchio, F. (2019). Cortical neurodynamics changes mediate the efficacy of a personalized neuromodulation against multiple sclerosis fatigue. Sci. Rep. 9:18213. doi: 10.1038/s41598-019-54595-z

 Ramocki, M. B., and Zoghbi, H. Y. (2008). Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455, 912–918. doi: 10.1038/nature07457

 Reardon, S. (2014). Electroceuticals spark interest. Nature 511:18. doi: 10.1038/511018a

 Rossi, S., Pasqualetti, P., Tecchio, F., Sabato, A., and Rossini, P. M. (1998). Modulation of corticospinal output to human hand muscles following deprivation of sensory feedback. Neuroimage 8, 163–175. doi: 10.1006/nimg.1998.0352

 Sacks, O. (1989). Seeing Voices: A Journey into the World of the Deaf. 1989th Edn., ed. California, CA: University of California Press Berkeley.

 Sjöström, P. J., and Nelson, S. B. (2002). Spike timing, calcium signals and synaptic plasticity. Curr. Opin. Neurobiol. 12, 305–314. doi: 10.1016/S0959-4388(02)00325-2

 Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., and Tecchio, F. (2016). Electroencephalographic fractal dimension in healthy ageing and alzheimer's disease. PLoS ONE 11:e0149587. doi: 10.1371/journal.pone.0149587

 Tecchio, F., Zappasodi, F., Porcaro, C., Barbati, G., Assenza, G., Salustri, C., et al. (2008). High-gamma band activity of primary hand cortical areas: a sensorimotor feedback efficiency index. Neuroimage 40, 256–264. doi: 10.1016/j.neuroimage.2007.11.038

 Tononi, G., and Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34. doi: 10.1016/j.neuron.2013.12.025

 Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896. doi: 10.1038/36103

 Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107. doi: 10.1038/nrn1327

 Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011). Principles of sensorimotor learning. Nat. Rev. Neurosci. 12, 739–751. doi: 10.1038/nrn3112

 Zappasodi, F., Marzetti, L., Olejarczyk, E., Tecchio, F., and Pizzella, V. (2015). Age-related changes in electroencephalographic signal complexity. PLoS ONE 10:e0141995. doi: 10.1371/journal.pone.0141995

 Zappasodi, F., Olejarczyk, E., Marzetti, L., Assenza, G., Pizzella, V., and Tecchio, F. (2014). Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS ONE 9:e100199. doi: 10.1371/journal.pone.0100199

 Zhang, W., and Linden, D. J. (2003). The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4, 885–900. doi: 10.1038/nrn1248

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Tecchio, Bertoli, Gianni, L'Abbate, Paulon and Zappasodi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	 
	ORIGINAL RESEARCH
published: 17 December 2020
doi: 10.3389/fphys.2020.612325





[image: image]

EEG Functional Connectivity and Cognitive Variables in Premanifest and Manifest Huntington’s Disease: EEG Low-Resolution Brain Electromagnetic Tomography (LORETA) Study

Marianna Delussi*, Virgilio Nazzaro, Katia Ricci and Marina de Tommaso

Applied Neurophyiology and Pain Unit-AnpLab-SMBNOS Department, Bari Aldo Moro University, Bari, Italy

Edited by:
Plamen Ch. Ivanov, Boston University, United States

Reviewed by:
F. Argoul, Centre National de la Recherche Scientifique (CNRS), France
Chengyu Huo, Changshu Institute of Technology, China
Yuri Antonacci, Sapienza University of Rome, Italy

*Correspondence: Marianna Delussi, m.delussi@gmail.com

Specialty section: This article was submitted to Fractal and Network Physiology, a section of the journal Frontiers in Physiology

Received: 30 September 2020
Accepted: 25 November 2020
Published: 17 December 2020

Citation: Delussi M, Nazzaro V, Ricci K and de Tommaso M (2020) EEG Functional Connectivity and Cognitive Variables in Premanifest and Manifest Huntington’s Disease: EEG Low-Resolution Brain Electromagnetic Tomography (LORETA) Study. Front. Physiol. 11:612325. doi: 10.3389/fphys.2020.612325

Background: Scientific literature does not offer sufficient data on electroencephalography (EEG) functional connectivity and its correlations with clinical and cognitive features in premanifest and manifest HD.

Aim: This study tries to identify abnormal EEG patterns of functional connectivity, in conditions of “brain resting state” and correlations with motor decline and cognitive variable in Huntington’s disease (HD), in premanifest and manifest phase, looking for a reliable marker measuring disease progression.

Method: This was an observational cross-sectional study; 105 subjects with age ≥18 years submitted to HD genetic test. Each subject underwent a neurological, psychiatric, and cognitive assessment, EEG recording and genetic investigation for detecting the expansion of the CAG trait. EEG connectivity analysis was performed by means of exact Low Resolution Electric Tomography (eLORETA) in 18 premanifest HD (pHD), 49 manifest HD (mHD), and 38 control (C) subjects.

Results: HD patients showed a Power Spectral Density reduced in the alpha range and increased in delta band compared to controls; no difference was detectable between pHD and mHD; the Global Connectivity in pHD revealed no significant differences if compared to mHD. The Current Source Density was similar among groups. No statistically significant results when comparing pHD with C group, even in comparison of mHD with Controls, and pHD with mHD. mHD compared to Controls showed a significant increase in delta, alpha1, alpha2, beta2, and beta3. Lagged Phase Synchronization in delta, alpha1, alpha2, beta2, and beta3 bands was increased in HD compared to controls (t = −3.921, p < 0.05). A significant correlation was found in Regression Analysis: statistically significant results in pHD for the “Symbol Digit Modality Test and lagged phase synchronization” in the Beta1 (r = −0.806, p < 0.05) in the prefrontal regions. The same correlation was found in mHD for the Stroop Word Reading Test (SWRT) in the Alpha2 band (r = −0.759, p < 0.05).

Conclusion: Increased phase synchronization in main bands characterized EEG in HD patients, as compared to controls. pHD were not dissimilar from mHD as regard to this EEG pattern. Increased phase synchronization correlated to cognitive decline in HD patients, with a similar trend in pHD, suggesting that it would be a potential biomarker of early phenotypical expression.
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INTRODUCTION

Huntington’s Disease (HD) is an inherited autosomal-dominant, progressive neurodegenerative disorder with phenotypic expression consisting of invalidating motor, cognitive, and psychiatric symptoms. It’s kinked to the progressive dysfunction and neuronal death in corticostriatal circuits (Novak and Tabrizi, 2011). The genetic test provides for the identification of the causative gene (mutated huntingtin, HTT). HD is inherited in 50% of first-degree relatives. The disease’s onset is associated with the first appearance of chorea movements but the early cognitive or psychiatric impairment is often present in clinical practice, before HD diagnosis is done (Tabrizi et al., 2011). Testing the CAG replication it’s possible to predict age at onset (Rosenblatt et al., 2006), the early stage of neurodegeneration and pathophysiological changes is not evident in clinical practice (Henry and Mochel, 2012). Clinical and instrumental assessment of the presymptomatic stage may provide for a potential biomarkers, may improve the knowledge about the neuronal circuits which are affected by mutated HTT in presymptomatic phase. The clinical relevance of electrophysiological tests in HD patients has already been investigated (Lefaucheur et al., 2002). The most frequent electroencephalographic abnormality described in HD is an amplitude reduction or suppression of alpha activity (Streletz et al., 1990; Bylsma et al., 1994; de Tommaso et al., 2003; Bellotti et al., 2004). Few studies have focused attention on electroencephalographic anomalies in subjects affected by HD in the preclinical phase. Already over 20 years ago, the reduction of alpha activity was found in subjects suffering from HD (Streletz et al., 1990), and it was also shown that the reduction of the power in the alpha band and the increase of the power in the beta and delta band, on the frontal and temporal regions, correlated with the severity of cognitive and neurological impairment in HD subjects (Bylsma et al., 1994). In recent years, researchers have paid more attention to exploring the functional state of the brain of individuals with HD, re-evaluating the potential of electroencephalography (EEG) as a key, non-invasive and inexpensive neurophysiological investigation technique for dynamic analysis of changes in brain activity, in both physiological and pathological conditions. Studies performed using quantitative EEG signal analysis (Q-EEG) techniques, including power spectral analysis, have documented changes in brain electrical activity, in all frequency bands, in HD subjects, as summarized by Piano et al. (2017b). In a pilot study, a global increase in absolute power was found in the delta band, but contrary to other studies, also in the alpha band in subjects with HD compared to controls; a loss of the “antero-posterior gradient” of the relative power in both α and δ bands, and a direct correlation with motor, cognitive and functional decline and with the extent of CAG expansion was found (Hunter et al., 2010). Currently, few studies have analyzed EEG features in HD patients during the preclinical phase in order to evaluate the relevance of EEG anomalies as potential biomarkers of phenotypic expression and clinical evolution. The employment of advanced analysis of EEG datasets, using Artificial Neural Network, allowed the detection of reduced alpha activity even in the EEG of preclinical mutation carriers for HD (de Tommaso et al., 2003). A more recent study performed on pre-symptomatic subjects, showed a reduced relative power in a narrow theta-alpha frequency band (7–9 Hz), a positive correlation between the relative power in the delta and theta band and the extent of the CAG expansion and an inverse correlation between the relative power in the alpha band and the extent of the CAG expansion, in subjects with HD in the preclinical phase, compared to controls (Ponomareva et al., 2014). The HD progression, its neurological and cognitive impairment, is slow and general categorization of EEG aberrations does not reach a sufficient sensitivity for the detection and localization of abnormalities. EEG tomography techniques such as LOw REsolution Tomography (eLORETA) have been developed in order to identify brain regions involved in neuropsychiatric disorders (Pascual-Marqui et al., 1994, 1999, 2002). The EEG functional connectivity analysis allows a detection of dysfunction that is more sensitive than that provided by the common EEG. LORETA computes a unique three dimensional electrical source distribution by assuming that the smoothest of all possible inverse solutions is the most plausible, which is consistent with the assumption that neighboring neurons are simultaneously and synchronously active (Pascual-Marqui et al., 1994, 1999). In LORETA the solution space is restricted to cortical gray matter and the hippocampus, as determined in the digitized Probability Atlas (Brain Imaging Center, Montreal Neurological Institute) based on the Talairach human brain atlas. Numerous studies provide validation for LORETA (Yao and He, 2001; Pascual-Marqui et al., 2002; Phillips et al., 2002a,b). Thus, LORETA, now widely accepted, low-cost and non-invasive diagnostic tool, combines the high time resolution of the EEG with a source localization method that permits three-dimensional tomography and functional connectivity analysis of brain electrical activity. LORETA has been applied to pre symptomatic genetic carriers in wake and sleep EEG in a cohort of 23 HD patients, analyzing cortical sources by eLORETA; the author found an increase of delta representation in the bilateral motor cortex (Piano et al., 2017b). In a following study, authors studied EEG functional connectivity in the same HD cohort, using lagged phase synchronization algorithm provided by eLORETA software, and confirmed changes in delta rhythm synchronization localized in motor areas (Piano et al., 2017a). de Tommaso et al. (2007) examined the contingent negative variation in 14 mildly demented HD patients, and Beste et al. (2008) investigated executive functions related to response inhibition in 13 HD patients by using event-related potentials and LORETA.

The aim of this study was to identify abnormal EEG patterns of functional connectivity in conditions of “brain resting state” and to find correlations with motor decline and cognitive variable, by using LORETA, in subjects affected by HD and in pre-symptomatic subjects, to look for possible pathological evidences and biomarkers, important for an early diagnosis, as well as to monitor the progression of the disease.



MATERIALS AND METHODS


Study Design and Subject

This was an observational cross-sectional study, which was carried out at the Apulian Referral Center for HD between January 2014 and December 2018. We enrolled 116 consecutive non-medicated subjects, who came for the first time to our HD Center for admission to Daily Hospitalization for genetic and clinical investigation. The inclusion criteria taken into account for the present study were: age ≥18 years and the absence of previous treatment, first degree inheritance for HD, whereas the exclusion criteria included: presence of choreiform movements that affected the EEG recording, a past or ongoing history of medication, coexistence with other neurological and psychiatric conditions. According to the latter, 11 subjects were excluded from the study. The study sample thus consisted of a total of 105 subjects (50 m/55 f, M = 45.64 y, SD = 14.94). Each enrolled subject underwent a daily clinical evaluation, as reported below. Other diagnostic tests (biochemical and technical tests of neuroimaging including CT/MRI) useful for the differential diagnosis were also performed, in order to rule out other neurological and psychiatric conditions. Following the clinical-instrumental assessment and the genetic investigation, initially the study sample were divided into three groups, as detailed in Table 1. The Ethical Committee of Bari Policlinico General Hospital approved the study and each subject signed an informed consent.


TABLE 1. Demographic and clinical features of the 105 subjects included in the study sample.
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Clinical Evaluation


Neurological and Psychiatric Assessment

We performed the Diagnostic Confidence Level (DCL) of the Total Motor Score (TMS) as part of the Huntington’s Disease Rating Scale (UHDRS) (Huntington Study Group, 1996; Hogarth et al., 2005) and the Total Functional Capacity Scale (TFC) (Shoulson, 1981) in order to assess the presence of motor manifestations, which were clinically interpreted as “unequivocal signs of HD,” and the PBA-s (Kingma et al., 2008) for the psychiatric assessment.



Cognitive Assessment

Mini-Mental State Examination (MMSE) (Folstein et al., 1975), Symbol Digit Modality Test (SDMT) (Smith, 2007), Categorical Verbal Fluency (FAS) (Tombaugh et al., 1999), Stroop Test (ST) (Stroop, 1935) were administered.



Genetic Investigation

The genetic test was performed on peripheral blood lymphocytes in order to define the condition of certain carrier by detecting the expansion of the CAG trait 40 in an allele of the IT-15 gene.



Electroencephalographic Examination

The electroencephalographic (EEG) recording was performed with the subject at rest, positioned in a quiet room with an ambient temperature of 21–23°C, in an awake and relaxed state, in a sitting position, in a softly lit and soundproofed environment. The EEG recordings were obtained by placing 61 surface electrodes on the scalp, according to an extension of the International System 10–20 (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2, FC2, FC1, CP1, CP2, PO3, PO4, FC6, FC5, CP5, CP6, AF7, AF3, AFz, AF4, AF8, F5, F1, F2, F6, FT7, FC3, FCz, FC4, FT8, C5, C1, C2, C6, TP7, CP3, CPz, CP4, TP8, P5, P1, P2, P6, PO7, POz, PO8), by the use of a pre-wired headset, in which each electrode is referred to a common reference electrode positioned on the nasion (lead in common reference inactive), also applying two electrodes to detect eye movements (electro-oculographic channel or EOG) and an earth electrode on the back of the hand. The electrode impedances were kept below 5 kΩ and a sampling frequency of 256 Hz was used for the acquisition. The EEG signals were amplified, filtered, and saved on a biopotential analyzer (Micromed System Plus, Micromed, Mogliano Veneto, Italy). After 2 min of adaptation, we asked to subjects to remain relaxed for 3 min with eyes closed while EEG was recorded.



Data Analysis

Preprocessing was performed in MATLAB using the EEGLAB 14_1_1 tool. The data were first high-pass filtered at 1 Hz to remove slow drifts, with 70 Hz as low pass filter. Next, a notch filter at 50 Hz (L: 48, H: 52) was applied to remove power line noise artifacts. A preliminary visual inspection allowed to delete EEG segments affected by hyperkinetic movements, as indicated by the technician. Artifact components were then automatically removed considering 150 uV as critical value of amplitude and the components recorded on the electrooculogram (EOG) channels. In fact, blinking was present even in closed eyes conditions, especially in HD patients. Bad channels were identified by a semiautomatic method based on visual detection and channel statistics. To precompute channel measures, spherical interpolation of missing channels and deletion of Independent Component Analysis (ICA) artifact components pre-tagged in each dataset was performed. Channels presenting with distributions of potential values further away from the Gaussian distribution than other scalp channels were also removed. 60 s of artifact free EEG were selected in each case for the analysis reported below.



EEG Frequency Analysis

Electroencephalography frequency analysis was computed in Matlab using the spectopo parameters included into the EEGLAB 14_1_1 tool, with the computation of power spectral density [log10 (μV2/Hz)].



EEG Signal Source Analysis

The source analysis of the EEG signal (EEG rhythms), representative of the cortical distribution of the “current source density” starting from the EEG data recorded by surface electrodes, was performed using the last version of the LORETA software (Yao and He, 2001; Pascual-Marqui et al., 2002; Phillips et al., 2002a,b). LORETA uses a realistic head model and EEG electrode coordinates, based on the digitized atlas Talairach, provided by the Brain Imaging Center of the Montreal Neurological Institute (Mazziotta et al., 2001); the 3D solution space is limited to the cortical gray matter, divided into 6,239 voxels, with a spatial resolution of 5 mm3, within which it is possible to identify various cortical macro-regions of interest (ROIs), each of which can enclose different Brodmann areas (BA). For the present study, 61 electrode coordinates were created, starting from the 61 registering surface electrodes, on the basis of which an average head model was interpolated, necessary for the calculation of the “transformation matrix,” for the conversion of the electrical potential differences recorded at the scalp level into “current density.” The epochs of resting state – artifact free – EEG (rsEEG),were converted and imported into LORETA, to first create the “EEG cross-spectra” and subsequently, to calculate and elaborate the corresponding functional images of cortical distribution of the generators of oscillatory electrical activity in different frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–13 Hz), beta 1 (13–16 Hz), beta 2 (16–20 Hz), and beta 3 (20–30 Hz).



Functional Connectivity Analysis

The LORETA software was also used to analyze functional connectivity using a “voxel-wise” approach for the determination of the ROIs, created on the basis of the coordinates of the cortical voxels and centered, each one in respect to the coordinates of a given voxel, corresponding to the predetermined “ROI centroid.” Thus 61 ROIs were created, using as ROI centroids the coordinates of the voxels, at the level of which the highest levels of electrical activity were found in the various groups and in the various frequency bands. For the definition of the extension of each ROI, the “single nearest voxel” option was chosen (Table 2). As for the analysis of functional connectivity, for each pair of ROIs a new non-linear method was used, the “lagged phase synchronization,” which measures the “similarity” (correct phase synchronization value) between signals in the frequency domain based on the “normalized Fourier transforms,” which, following the breakdown of total connectivity into an instantaneous and a delayed component (“lagged”), eliminates the artifactual instantaneous component (low spatial resolution and conduction volume) responsible for “polluted” connectivity patterns and provides a more precise estimate of functional connectivity (Pascual-Marqui et al., 2011). Finally, the association between functional connectivity and decline in motor, cognitive, and psychiatric features was analyzed in pHD (premanifest HD) and mHD (manifest HD) subjects.


TABLE 2. The 61 ROIs created in LORETA for the analysis of functional connectivity in terms of “lagged phase synchronization.”
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Statistical Analysis

For power spectrum, we used statistical analysis provided by EEGLAB tool, which was the parametric statistic ANOVA test (mHD vs. pHD vs. C) with Bonferroni correction for multiple comparisons. For sLoreta current source density, the analysis was performed by means of the statistical non-parametric mapping methodology known as Fisher’s permutation test (Nichols and Holmes, 2002), integrated with Holmes’ non-parametric correction procedure for multiple comparisons (Holmes et al., 1996), both included in the LORETA software. As far as the measures of “current source density” are concerned, comparisons were made between pHD and control (C) subjects; mHD and C subjects; and mHD and pHD subjects. In this case, a “t-statistic on Log transformed data” test was chosen, with a variance smoothing parameter of 0 and a number of randomizations of 5,000. The test allowed to calculate the threshold values in terms of “log F-ratio” and yielded to a file containing the computed extremes of probability (ExtremePs), the corresponding maximal thresholds, and the thresholds at probability values of p < 0.01, p < 0.05, and p < 0.10, with p < 0.05 being indicative of statistical significance (Friston et al., 1991). The same group subdivision and the same comparisons were applied for the measurements of functional connectivity in terms of “lagged phase synchronization.” For this purpose, a “t-statistic” test was carried out, again with a variance smoothing parameter of 0 and 5,000 randomizations, and again a file was created containing the ExtremePs, the maximal thresholds and the thresholds at probability values of p < 0.01, p < 0.05, and p < 0.10. The LORETA software was also used to establish the correlations between the functional connectivity files in terms of “lagged phase synchronization” in the pHD and mHD groups individually and the variables assessed in clinical practice (Table 1). A regression analysis with 5,000 randomizations was made in order to calculate the Pearson’s coefficient “r” to define both the maximal thresholds and the thresholds at probability values of p < 0.01, p < 0.05, and p < 0.10, and the corresponding ExtremePs.



RESULTS

Power spectral density was reduced in the alpha range and increased in delta band in HD patients compared to controls (Figure 1). The pHD group was not significantly different from HD group (Figure 1). Analysis of “current source density” yielded to no statistically significant results when comparing pHD with C subjects, mHD with C subjects, and pHD with mHD subjects. Statistical significance was found in “lagged phase synchronization” when comparing mHD with C subjects; the threshold for significance was t = −3.921 (corresponding to p< 0.05), with significant modifications in delta, alpha1, alpha2, beta2, and beta3 bands. Compared to C, mHD subjects showed an increase in “lagged phase synchronization” in all of the above mentioned bands (Figures 2A–E and Table 3). In the comparisons between pHD and C subjects, and pHD and mHD subjects, no statistically significant results were found. In regression analysis, we found statistically significant results in pHD subjects for the SDMT (correct item) and in mHD subjects for the Stroop Word Reading Test (SWRT) (errors item), while in controls no relevant association between phase lagged synchronization and cognitive performance was found. In the pHD, the threshold of significance was r = −0.806 (corresponding to p< 0.05), with increased synchronization in Beta 1 band corresponding to a worse cognitive performance. The correlation was located in the right prefrontal regions (BA 46 corresponding to Middle Frontal Gyrus and the right BA 47 corresponding to Inferior Frontal Gyrus) (Figure 3a and Table 4). In the mHD, the threshold of significance was r = −0.759 (corresponding to p< 0.05), with a negative correlation in the Alpha2 band between the right BA 47 and BA 3 (corresponding Postcentral Gyrus, Parietal lobe) (Figure 3b and Table 5). We also performed a one way ANOVA model and the post hoc Bonferroni (P≤ 0.05) to check for SDMT and sub-items differences among pHD and mHD (F = 27.8, P = 0.012) and for SWRT and sub-items differences among pHD and mHD (F = 7.6, P = 0.018).
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FIGURE 1. Topographical maps and statistical analysis of power density in delta e alpha band. On the left side, results of three ways ANOVA with controls vs. pHD vs. mHD is reported. P values < 0.05 are represented in orange and red colors. The two ways ANOVA test comparing pHD vs. mHD and pHD vs. controls was not significant. At the bottom of the figure, example of power spectra averaged across O1, O2, and Oz channels in pHD and mHD are reported.
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FIGURE 2. Increase in “lagged phase synchronization” (red lines) in (A) Delta band; (B) Alpha 1 band; (C) Alpha 2 band; (D) Beta 2 band; (E) Beta 3 band, Specific BAs involved are reported in Table 3.



TABLE 3. Changes in “lagged phase synchronization” in mHD subjects compared to C subjects in all frequency bands and the involved BAs.
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FIGURE 3. Decrease in “lagged phase synchronization” (blue lines). (a) Correlations with SDMT (correct answer item) in pHD in the Beta 1 band between right BA 46 and right BA 47; (b) Correlation with SWRT (error item) in mHD patients in the Alpha 2 band between right BA 47 and right BA 3.



TABLE 4. Changes in “lagged phase synchronization” in pHD subjects following correlation with SDMT (correct answers item) in all frequency bands and the involved BAs.
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TABLE 5. Changes in “lagged phase synchronization” in mHD subjects following correlation with SWRT (errors item) in all frequency bands and the involved BAs.
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DISCUSSION

This was an observational cross-sectional study based on the analysis of the rsEEG functional connectivity index in pHD patients compared with mHD and C group by means of EEG LORETA. We tried to investigate if rsEEG functional connectivity could provide a quantification method for possible early detections of subcortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances in HD. As the solution space of LORETA is restricted to cortical gray matter and the hippocampus, we were primarily interested in the utility of LORETA in a subcortical disease such as HD. EEG spectral analysis confirmed reduced alpha rhythm and increased delta rhythms expression in mHD. In accord with previous studies (Bylsma et al., 1994; de Tommaso et al., 2003), pHD patients were not dissimilar from mHD, as well as from controls, as subtle brain changes occurring during the premanifest stage, could yield to an intermediate EEG phenotype. The origin of the alpha rhythm is still unclear but, in literature, the abnormality it’s associated with a primary dysfunction affecting the cortex (Lopes da Silva et al., 1980) or with a dysfunction of subcortical structures which modulate cortical activity, mainly the thalamus. The pathophysiological background in HD is the bilateral striatal atrophy, which leads to a disruption of the cortico-striato-thalamocortical circuits, causing a decrease in thalamic alpha activity (Hughes and Crunelli, 2005; Alper et al., 2006). Therefore, the results can be interpreted as an effect of abnormal subcortical modulation of the alpha rhythm due to the dysfunctional action of the thalamus on the cortical activities (Hughes and Crunelli, 2005; Alper et al., 2006). The observed increase in delta power in HD is present in the scientific literature (Bylsma et al., 1994) but alpha rhythm suppression seemed to better discriminate HD carriers from controls (de Tommaso et al., 2003). The analysis of current source density does not allow to separate pHD gene carriers from mHD and healthy controls, though different changes under the statistical significant threshold were detectable. This result could be in apparent contradiction to the power spectra density changes reported above, but it would indicate that the fundamental cortical sources of main rsEEG rhythms were not different from controls in mHD. Moreover, event related activity showed different cortical sources in mHD as compared to controls (de Tommaso et al., 2007). In a previous study, delta activity increase in HD was identified in motor areas (Piano et al., 2017b). Our HD series confirmed a bilateral frontal distribution with topographical distribution of delta activity increase, coherent with bilateral motor regions, though LORETA source analysis remained below the statistical significance. Changes in phase synchronization emerged when comparing mHD with C group. Increased phase synchronization involved delta, alpha1, alpha2, beta2, and beta3 bands. This analysis allowed to separate mHD from C subjects with good accuracy and precision. Disruption in the dynamical properties orchestrating local firing rates and global network oscillation changes are observed in neurodegenerative disorders, according to a unifying “oscillopathy” concepts (Nimmrich et al., 2015). This is particularly well illustrated in the basal ganglia (BG) functioning in Parkinson’s disease, where the loss of dopamine is associated with the abnormal oscillatory synchronization among and between basal ganglia nuclei; the synchronization abnormality primarily involves the beta rhythm (Crompe et al., 2020; Liu et al., 2020). In HD, neurodegeneration affects the inter-connectivity of striatal medium-sized spiny neurons (MSNs) (Tabrizi et al., 2009), and disrupted pattern of cortical oscillations induced by subthalamic nuclei were described in animal models (Callahan and Abercrombie, 2015). A decline in phase locking was also observed in PreHD patients during a cognitive “NoGo” task (Beste et al., 2011). Our results indicate a clear modification of resting state EEG (rsEEG) synchronization in mHD, while pHD confirmed an intermediate bioelectrical phenotype, with a lack of significant changes either in comparison to mHD or controls. The increased synchronization was clearly present in the most of considered bands, confirming to be a generalized phenomenon of altered cortical networks oscillation, probably due to the striatal degeneration and change in interconnectivity and synaptic connection efficiency with cortical regions (Tabrizi et al., 2009).

Increased synchronization in delta band involved several cortical regions, including the premotor area, according to previous studies (Piano et al., 2017a). We did not find a correlation with motor impairment, rather increased synchronization corresponded to worse cognitive performance in both mHD and pHD, in well localized BA areas in prefrontal regions. SDMT and SWRT are both relevant clinical markers in HD research and disease progression (Martinez-Horta et al., 2020). Considering that HD is characterized by an accumulation of subcortical and cortical dysfunctions with a disruption of cortico-subcortical circuits, the current neuroimaging findings are not able to detect in which exact area of the cerebral cortex meaningful neuronal loss firstly occurs. However, the frontal cortex and the basal ganglia are mainly seen as a functional unit in HD, with a possible disruption of a cortico-subcortical and cortico-cortical circuits (Painold et al., 2011). SDMT changes occur very early in the development of HD (Martinez-Horta et al., 2020). Our pHD subjects showed a quite normal SDMT performance, but subtle cognitive decline with worse scores, corresponded to a cortical dysfunction in the right prefrontal regions, consisting of increased synchronization in the fast EEG rhythms. In mHD, the SDMT was uniformly compromised among patients, while residual cognitive abilities in SWRT corresponded to a reduced abnormality in the pattern of alpha rhythm synchronization in the same prefrontal areas and connections with sensory motor regions. This was in accord with previous findings of disrupted connectivity between prefrontal and sensory motor regions in impaired processing speed (Krukow et al., 2018). The lack of correlation between phase lagged synchronization in main EEG bands and motor and functional impairment, as well as disease duration, could thus suggest that the abnormal modality of neural networks oscillations could vary among patients mainly in the cortical regions subtending cognitive impairment, as the prefrontal and dorsolateral prefrontal ones. Studies employing FMRI, confirmed altered connectivity between striatum and prefrontal regions in early and pHD gene carriers (Kronenburger et al., 2019), probably due to compensatory mechanisms occurring in those cortical regions subtending the complex sensory motor integration involved in the solution of cognitive tasks (Kronenburger et al., 2019).



STUDY LIMITATION

The small sample size of pHD group is the main limitation of this study. The unbalance of sample size between pHD, mHD and C groups could have negative impact on statistical analysis. Moreover, this limitation is frequent for rare genetic diseases.



CONCLUSION

The results of this observational cross-sectional study show that hypersynchronization is a feature of rsEEG in mHD. The altered connectivity pattern in the prefrontal cortex could subtend the onset and development of cognitive dysfunction in HD genetic abnormality carriers. Innovative approaches to EEG functional connectivity in the broader context of network physiology, based on interaction pattern among different rhythms (Liu et al., 2015; Lin et al., 2020), could provide for a unified hypothesis of brain dysfunction as a hallmark of early phenotypical changes. Longitudinal multicenter study designs could clarify the possible predictive role of rsEEG hyper synchronization in disease onset and progression.



DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethical Committee of Bari Policlinico General Hospital. The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

MD: study design, interview preparation, patient selection, manuscript preparation, and study coordination. VN: manuscript preparation and data analysis. KR: neurophysiopathology laboratory technique and data analysis. MT: study coordination, manuscript preparation, data analysis, and manuscript editing. All authors contributed to the article and approved the submitted version.



FUNDING

The study was supported by CHDI Foundation-Enroll HD Institutional Funding, SMBNOS Department, University of Bari Aldo Moro, Bari, Italy.


ABBREVIATIONS

HD, Huntington Disease; mHD, manifest HD; pHD, premanifest HD; C, Control group; MMSE, Mini-Mental State Examination; SDMT, Symbol Digit Modality Test; FAS, Categorical Verbal Fluency; ST, Stroop Test; SWRT, Stroop Word Reading Test; EEG, electroencephalography; ROIs, cortical macro-regions of interest; BA, Brodmann areas; rsEEG, resting state EEG; ExtremePs, extremes of probability.


REFERENCES

Alper, K. R., John, E. R., Brodie, J., Gunther, W., Daruwala, R., and Prichep, L. S. (2006). Correlation of PET and qEEG in normal subjects. Psychiatry Res. 146, 271–282. doi: 10.1016/j.pscychresns.2005.06.008

Bellotti, R., De Carlo, F., Massafra, R., de Tommaso, M., and Sciruicchio, V. (2004). Topographic classification of EEG patterns in Huntington’s disease. Neurol. Clin. Neurophysiol. 2004:37.

Beste, C., Ness, V., Falkenstein, M., and Saft, C. (2011). On the role of fronto-striatal neural synchronization processes for response inhibition–evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 49, 3484–3493. doi: 10.1016/j.neuropsychologia.2011.08.024

Beste, C., Saft, C., Andrich, J., Gold, R., and Falkenstein, M. (2008). Response inhibition in Huntington’s disease-a study using ERPs and sLORETA. Neuropsychologia 46, 1290–1297. doi: 10.1016/j.neuropsychologia.2007.12.008

Bylsma, F. W., Peyser, C. E., Folstein, S. E., Folstein, M. F., Ross, C., and Brandt, J. (1994). EEG power spectra in Huntington’s disease: clinical and neuropsychological correlates. Neuropsychologia 32, 137–150. doi: 10.1016/0028-3932(94)90001-9

Callahan, J. W., and Abercrombie, E. D. (2015). Relationship between subthalamic nucleus neuronal activity and electrocorticogramis altered in the R6/2 mouse model of Huntington’s disease. J. Physiol. 593, 3727–3738. doi: 10.1113/jp270268

Crompe, B., Aristieta, A., Leblois, A., Elsherbiny, S., Boraud, T., and Mallet, N. P. (2020). The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat. Commun. 11:1570.

de Tommaso, M., De Carlo, F., Difruscolo, O., Massafra, R., Sciruicchio, V., and Bellotti, R. (2003). Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clin. Neurophysiol. 114, 1237–1245. doi: 10.1016/s1388-2457(03)00074-9

de Tommaso, M., Difruscolo, O., Sciruicchio, V., Specchio, N., and Livrea, P. (2007). Abnormalities of the contingent negative variation in Huntington’s disease: correlations with clinical features. J. NeurolSci. 254, 84–89. doi: 10.1016/j.jns.2007.01.011

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.

Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. (1991). Comparing functional (PET) images: the assessment of significant change. J. Cereb. Blood Flow Metab. 11, 609–699.

Henry, P.-G., and Mochel, F. (2012). The search for sensitive biomarkers in presymptomatic Huntington disease. J. Cereb. Blood Flow Metab. 32, 769–770. doi: 10.1038/jcbfm.2012.17

Hogarth, P., Kayson, E., Kieburtz, K., Marder, K., Oakes, D., Rosas, D., et al. (2005). Interrater agreement in the assessment of motor manifestations of Huntington’s disease. Mov. Disord. 20, 293–297. doi: 10.1002/mds.20332

Holmes, A. P., Blair, R. C., Watson, J. D., and Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16, 7–22. doi: 10.1097/00004647-199601000-00002

Hughes, S. W., and Crunelli, V. (2005). Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11, 357–372. doi: 10.1177/1073858405277450

Hunter, A., Bordelon, Y., Cook, I., and Leuchter, A. (2010). QEEG measures in Huntington’s disease: a pilot study. PLoS Curr. 2:RRN1192. doi: 10.1371/currents.RRN1192

Huntington Study Group (1996). Unified Huntington’s disease rating scale: reliability and consistency. Mov. Disord. 11, 136–142. doi: 10.1002/mds.870110204

Kingma, E. M., van Duijn, E., Timman, R., van der Mast, R. C., and Roos, R. A. (2008). Behavioural problems in Huntington’s disease using the problem behaviours assessment. Gen. Hosp. Psychiatry 30, 155–161. doi: 10.1016/j.genhosppsych.2007.11.005

Kronenburger, M., Hua, J., Bang, J. Y. A., Ultz, K. E., Miao, X., Zhang, X., et al. (2019). Differential changes in functional connectivity of striatum-prefrontal and striatum-motor circuits in premanifest Huntington’s disease. Neurodegener. Dis. 19, 78–87. doi: 10.1159/000501616

Krukow, P., Jonak, K., Karakuła-Juchnowicz, H., Podkowiñski, A., Jonak, K., Borys, M., et al. (2018). Disturbed functional connectivity within the left prefrontal cortex and sensorimotor areas predicts impaired cognitive speed in patients with first-episode schizophrenia. Psychiatry Res. Neuroimaging 30, 28–35. doi: 10.1016/j.pscychresns.2018.03.001

Lefaucheur, J. P., Bachoud-Levi, A. C., Bourdet, C., Grandmougin, T., Hantraye, P., Cesaro, P., et al. (2002). Clinical relevance of electrophysiological tests in the assessment of patients with Huntington’s disease. Mov. Disord. 17, 1294–1301. doi: 10.1002/mds.10273

Lin, A., Liu, K. K. L., Bartsch, R. P., and Ivanov, P. C. (2020). Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function. Commun. Biol. 3:197.

Liu, C., Zhou, C., Wang, J., Fietkiewicz, C., and Loparo, K. A. (2020). The role of coupling connections in a model of the cortico-basal ganglia-thalamocortical neural loop for the generation of beta oscillations. Neural Netw. 123, 381–392. doi: 10.1016/j.neunet.2019.12.021

Liu, K. K., Bartsch, R. P., Lin, A., Mantegna, R. N., and Ivanov, P. C. (2015). Plasticity of brain wave network interactions and evolution across physiologic states. Front. Neural Circuits 9:62. doi: 10.3389/fncir.2015.00062

Lopes da Silva, F. H., Vos, J. E., Mooibroek, J., and van Rotterdam, A. (1980). Relative contribution of intracortical and thalamocortical processes in the generation alpha rhythms, revealed by partial coherence analysis. Electroencephalogr. Clin. Neurophysiol. 50, 449–456. doi: 10.1016/0013-4694(80)90011-5

Martinez-Horta, S., Horta-Barba, A., Perez-Perez, J., Sampedro, J., de Lucia, N., De Michele, G., et al. (2020). Utility of the Parkinson’s disease-cognitive rating scale for the screening of global cognitive status in Huntington’s disease. J. Neurol. 267, 1527–1535. doi: 10.1007/s00415-020-09730-6

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R Soc. Lond. B Biol. Sci. 356, 1293–1322. doi: 10.1098/rstb.2001.0915

Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation test for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25. doi: 10.1002/hbm.1058

Nimmrich, V., Draguhn, A., and Axmacher, N. (2015). Neuronal network oscillations in neurodegenerative diseases. Neuromolecular Med. 17, 270–284. doi: 10.1007/s12017-015-8355-9

Novak, M. J. U., and Tabrizi, S. J. (2011). Huntington’s disease: clinical presentation and treatment. Inter. Rev. Neurobiol. 98, 297–323.

Painold, A., Peter, A., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., et al. (2011). EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. J. Neurol. 258, 840–854.

Pascual-Marqui, R. D., Esslen, M., Kochi, K., and Lehmann, D. (2002). Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24(Suppl. C), 91–95.

Pascual-Marqui, R. D., Lehmann, D., Koenig, T., Kochi, K., Merlo, M. C., Hell, D., et al. (1999). Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic- naive, first-episode, productive schizophrenia. Psychiatry Res. 90, 169–179. doi: 10.1016/s0925-4927(99)00013-x

Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., et al. (2011). Assessing interactions in the brain with exact low resolution electromagnetic tomography. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3768–3784. doi: 10.1098/rsta.2011.0081

Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65. doi: 10.1016/0167-8760(84)90014-x

Phillips, C., Rugg, M. D., and Friston, K. J. (2002a). Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. Neuroimage 16, 678–695. doi: 10.1006/nimg.2002.1143

Phillips, C., Rugg, M. D., and Fristont, K. J. (2002b). Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage 17, 287–301. doi: 10.1006/nimg.2002.1175

Piano, C., Imperatori, C., Losurdo, A., Bentivoglio, A. R., Cortelli, P., and Della Marca, G. (2017a). Sleep-related modifications of EEG connectivity in the sensory-motor networks in Huntington disease: an eLORETA study and review of the literature. Clin. Neurophysiol. 128, 1354–1363. doi: 10.1016/j.clinph.2016.11.019

Piano, C., Mazzucchi, E., Bentivoglio, A. R., Losurdo, A., Calandra Buonaura, G., Imperatori, C., et al. (2017b). Wake and Sleep EEG in patients with Huntington disease: an eLORETA study and review of the literature. Clin. EEG Neurosci. 48, 60–71. doi: 10.1177/1550059416632413

Ponomareva, N., Klyushnikov, S., Abramycheva, N., Malina, D., Scheglova, N., Fokin, V., et al. (2014). Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. J. Neurol. Sci. 344, 114–120. doi: 10.1016/j.jns.2014.06.035

Rosenblatt, A., Liang, K.-Y., Zhou, H., Abbott, M. H., Gourley, L. M., Margolis, R. L., et al. (2006). The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66, 1016–1020. doi: 10.1212/01.wnl.0000204230.16619.d9

Shoulson, I. (1981). Huntington disease: functional capacities in patients treated with neuroleptic and antidepressant drugs. Neurology 31, 1333–1335. doi: 10.1212/wnl.31.10.1333

Smith, A. (2007). Symbol Digits Modalities Test: Manual. Los Angeles, CA: Western Psychological Services.

Streletz, L. J., Reyes, P. F., Zalewska, M., Katz, L., and Fariello, R. G. (1990). Computer analysis of EEG activity in dementia of the Alzheimer’s type and Huntington’s disease. Neurobiol. Aging 11, 15–20.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662. doi: 10.1037/h0054651

Tabrizi, S. J., Langbehn, D. R., Leavitt, B. R., Roos, R. A., Durr, A., Craufurd, D., et al. (2009). Biological and clinical manifestation of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 8, 791–801. doi: 10.1016/s1474-4422(09)70170-x

Tabrizi, S. J., Scahill, R. I., Durr, A., Roos, R. A., Leavitt, B. R., Jones, R., et al. (2011). Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 10, 31–42. doi: 10.1016/s1474-4422(10)70276-3

Tombaugh, T. N., Kozak, J., and Rees, L. (1999). Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch. Clin. Neuropsychol. 14, 167–177. doi: 10.1016/s0887-6177(97)00095-4

Yao, D., and He, B. (2001). A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs. Ann. Biomed. Eng. 29, 1019–1027. doi: 10.1114/1.1415526


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Delussi, Nazzaro, Ricci and de Tommaso. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 17 December 2020
doi: 10.3389/fphys.2020.583005





[image: image]

Linking ADHD and Behavioral Assessment Through Identification of Shared Diagnostic Task-Based Functional Connections

Chris McNorgan1*, Cary Judson1, Dakota Handzlik2 and John G. Holden3*

1Department of Psychology, University at Buffalo – SUNY, Buffalo, NY, United States

2Department of Computer Science, University at Buffalo – SUNY, Buffalo, NY, United States

3Department of Psychology, University of Cincinnati, Cincinnati, OH, United States

Edited by:
Andras Eke, Semmelweis University, Hungary

Reviewed by:
Angela Lombardi, National Institute for Nuclear Physics of Bari, Italy
Riccardo Pernice, University of Palermo, Italy

*Correspondence: Chris McNorgan, cpmcnorg@buffalo.edu; John G. Holden, holdenjn@ucmail.uc.edu

Specialty section: This article was submitted to Fractal and Network Physiology, a section of the journal Frontiers in Physiology

Received: 13 July 2020
Accepted: 16 November 2020
Published: 17 December 2020

Citation: McNorgan C, Judson C, Handzlik D and Holden JG (2020) Linking ADHD and Behavioral Assessment Through Identification of Shared Diagnostic Task-Based Functional Connections. Front. Physiol. 11:583005. doi: 10.3389/fphys.2020.583005

A mixed literature implicates atypical connectivity involving attentional, reward and task inhibition networks in ADHD. The neural mechanisms underlying the utility of behavioral tasks in ADHD diagnosis are likewise underexplored. We hypothesized that a machine-learning classifier may use task-based functional connectivity to compute a joint probability function that identifies connectivity signatures that accurately predict ADHD diagnosis and performance on a clinically-relevant behavioral task, providing an explicit neural mechanism linking behavioral phenotype to diagnosis. We analyzed archival MRI and behavioral data of 80 participants (64 male) who had completed the go/no-go task from the longitudinal follow-up of the Multimodal Treatment Study of ADHD (MTA 168) (mean age = 24 years). Cross-mutual information within a functionally-defined mask measured functional connectivity for each task run. Multilayer feedforward classifier models identified the subset of functional connections that predicted clinical diagnosis (ADHD vs. Control) and split-half performance on the Iowa Gambling Task (IGT). A sample of random models trained on functional connectivity profiles predicted validation set clinical diagnosis and IGT performance with 0.91 accuracy and d′ > 2.9, indicating very high sensitivity and specificity. We identified the most diagnostic functional connections between visual and ventral attentional networks and the anterior default mode network. Our results show that task-based functional connectivity is a biomarker of ADHD. Our analytic framework provides a template approach that explicitly ties behavioral assessment measures to both clinical diagnosis, and functional connectivity. This may differentiate otherwise similar diagnoses, and promote more efficacious intervention strategies.

Keywords: ADHD, functional networks, fMRI—functional magnetic resonance imaging, machine learning, Iowa Gambling Task


INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is the most commonly diagnosed psychological disorder among school-aged children and across the lifespan (Bell, 2010). Moreover, a study of children aged 8–16 years found that 70% of children with a clinical ADHD diagnosis also had some form of learning disability, highlighting the cognitive developmental challenges that often accompany attention disorders (Mayes et al., 2000). A clinical definition of ADHD is complicated by the prevailing view that it spans a continuum (Graham and Madigan, 2016) and exists as multiple subtypes (Garon et al., 2006). As of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), functional impairment became mandatory, however, even though the impact of ADHD has been well-studied, its fluid diagnostic criteria remain a challenge in research and clinical settings (Fortes et al., 2020). Moreover, though ADHD is diagnosable cognitive disorder in adults, the developmental stability of the diagnosis is quite poor (Todd et al., 2008).

The present study addresses these challenges with an exploration of brain-network and behavioral differences between a group of young adults with a childhood diagnosis of ADHD and an age-matched group of control participants. We apply a machine learning approach to analyzing these differences with the joint complementary goals of identifying a clinically diagnostic neural connectivity signature of ADHD and relating the underlying neural processing dynamics to performance on a commonly used behavioral diagnostic task. Furthermore, though connectivity is most commonly measured using linear correlations among time series, our use of cross-mutual information based measures of functional connectivity highlights the important role that alternative indices of functional connectivity can play in exploring brain-behavior correlations. By identifying task-related functional connections that are both diagnostic and predictive of clinically relevant task performance, we identify neural pathways that may be implicated in different ADHD subpopulations, and provide a means by which different populations may be behaviorally identified. Together, these results inform how multiple diagnostic tools may be integrated to better distinguish diagnostic subtypes, and evaluate potential interventions.


The Iowa Gambling Task as a Behavioral Indicator of ADHD

The Iowa Gambling Task (IGT) is a computerized assessment that presents individuals with realistic gambling decisions, and is used experimentally to investigate normal and disordered decision making and adapted for clinical use (Lin et al., 2019), including for clinical diagnosis of ADHD (Toplak et al., 2010). The task assigns the participant an initial imaginary monetary account, and asks them to select cards from one of four decks, causing a gain or loss from this account. Two of the decks are high-variance, and two are low-variance, with respect to potential gains or losses, introducing an element of risk (Bechara et al., 2005).

Evidence for behavioral ADHD-related differences in the IGT among adults and children is mixed; some studies show worse performance for ADHD participants, and others show no difference from controls (Groen et al., 2013). The task implicitness may be an important factor in its diagnostic accuracy for children. The IGT is theoretically motivated by the Somatic Marker Hypothesis (SMH) (Damasio, 1996), which maintains that physiological changes in the body (somatic markers; e.g., sweating palms) are correlated with and interpreted as emotional states. Somatic markers and their evoked emotions are associated with events and decision outcomes, and shape behavior (Damasio, 1994). The utility of the IGT in evaluating ADHD rests on the observation that abnormal emotion processing is associated with impaired decision-making (Bechara et al., 2005). Roshani et al. (2020) found that both significant differences in IGT score and in IGT decision making times discriminates ADHD from controls, with adult ADHD participants less likely to favor advantageous decks and making faster deck selections. This pattern suggests that the task taps ADHD participants’ proneness to making riskier and more impulsive choices related to abnormal emotion processing in ventromedial prefrontal cortex (vmPFC) (Bechara et al., 1994).



Neural Processing Dynamics as an Indicator of ADHD

In contrast to behavioral results, ADHD and control populations appear to show more reliable neural processing differences in the IGT. Conventional general linear model analyses (GLMA) test group or condition differences in regional blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals, which are indicators of neural activity. Within healthy controls, GLMA studies show the network of brain regions that are recruited by the task appears to dynamically change as the task progresses, and the task history changes participant’s expectations (Lin et al., 2008). When comparing ADHD to healthy controls, GLMA studies typically show that ADHD participants significantly under-activate the left and right precuneus, putamen and caudate when choosing higher-reward decks as compared to controls (Norman et al., 2018). These regions are implicated in the dopaminergic reward system, suggesting that irregular processing within this network may be a factor in the behavioral markers of ADHD. A recent GLMA study by Yang et al. (2019) examined group differences during the IGT in orbitofrontal cortex, a region that is sometimes grouped with the larger vmPFC, and is part of the putative reward network. This study found that adults with ADHD exhibited both lower orbitofrontal cortex activation and poorer performance on the IGT than healthy controls. Thus, though the behavioral literature supporting the clinical utility of the IGT in detecting ADHD is mixed, the neuroimaging literature suggests that the task’s sensitivity hinges on the recruitment of different networks in controls and ADHD populations.



Neural Circuitry Implicated in Attention Disorders

All networks are described in terms of nodes and the connections between them, but they differ in composition across domains. As appropriate graph-theoretic methods have been developed, cognitive neuroscientists have increasingly employed fMRI to undertake in vivo explorations of brain networks. In the neuroscientific domain, nodes in brain-based models of cognitive processes correspond to brain regions, and their connections refer to functional, effective, or anatomical connectivity among the brain regions, though we will primarily focus on functional connectivity—defined as a temporal coherence between activity in two regions (Honey et al., 2009). The literature implicating a role for networks in ADHD assumes that connectivity (of any sort) among brain regions critically determines how regional processing and interactions unfold in ADHD. Consequently, connectivity among and within several identifiable networks has been explored as a potential factor in ADHD (Castellanos and Proal, 2012).

Because it is often characterized as a self-regulation disorder, early investigations of ADHD focused on a dysfunctional frontal-subcortical circuit (Voeller, 2004), which is widely regarded to play a critical role in the regulation of attention and impulsivity (Chow and Cummings, 1999; Bonelli and Cummings, 2007). Additionally, activation in another frontal subnetwork implicated in reward processing correlates with ADHD symptom severity (Stark et al., 2011). This suggests that underactivity within the dopaminergic reward system may also play a role in ADHD symptomology.

Increasingly, ADHD has been viewed as a disorder of the default mode network (DMN), as inhibition of the default brain network is associated with poorer performance on many attention-dependent tasks (Buckner et al., 2008). The DMN is a task-negative (i.e., deactivated during task) network of regions believed to comprise distinct but connected subsystems (Buckner et al., 2008; Andrews-Hanna et al., 2010) that develop into adulthood, becoming increasingly integrated with age (Fair et al., 2008). Because the DMN can be explored using resting-state MRI, a clinical advantage of this paradigm is that it does not require patients to perform cognitively demanding tasks (Bullmore, 2012), which may be especially challenging for children with attentional deficits. That said, a review of studies of functional connectivity as a biomarker of ADHD between 2008 and 2017 found widely variable diagnostic accuracies, ranging from 0.55 to 0.95 (Du et al., 2018). Most of the reviewed studies employed black box classifiers that were applied with the goal of optimizing diagnostic accuracy, rather than uncovering theoretical mechanisms underlying specific functional connections.

Though the DMN is a task-negative network, task-positive activity is associated with increased functional connectivity relating the dorsolateral prefrontal cortex to the DMN (Buckner et al., 2008). Effortful attention during tasks requires a switch from the brain’s default mode to an active mode, and fMRI BOLD analyses indicate a pattern of alternating low-frequency activity between task-positive and task-negative activities (Fransson, 2005). Mind wandering is one of the prototypical characteristics of ADHD, and is argued to be negatively associated with activation of the ventral anterior cingulate cortex (ACC), the precuneus, and the temporoparietal junction—all regions within the DMN (Mason et al., 2007; Christoff et al., 2009). Because DMN activity normally decreases during tasks, Konrad and Eickhoff (2010) suggest that failure to inhibit DMN activity may be a neural signature of ADHD. The authors, however, note that the literature is inconsistent with respect to the causal role of functional connectivity, with different models characterizing ADHD as either hyperconnectivity (Tian et al., 2006) or, conversely as hypoconnectivity (Castellanos and Tannock, 2002) of the DMN.

Much of the work on functional connectivity focuses on resting state MRI (rs-MRI), and therefore on connectivity within the task-negative DMN. As observed by Castellanos and Aoki (2016), one of the challenges of rs-MRI studies is that, in the absence of a model task signal, statistical artifacts related to head motion introduce a confounding source of variability in the signal that is difficult to disentangle from signals of interest; the problem is compounded by the increased proneness of ADHD populations to excessive head movement. The authors argue that these obstacles necessitate development of novel analytic procedures on large open datasets. Moreover, Gonzalez-Castillo and Bandettini (2018) argue that important differences exist between resting-state and task-based functional connectivity, and that the reconfiguration that brain networks undergo during tasks inform the neural bases of cognitive processes. This point is especially relevant to the study of ADHD, given the studies cited earlier showing that the network recruitment under the IGT is dynamically dependent on the progression of the task, suggesting that network dynamics when inhibiting and exhibiting behaviors are important for understanding how those with ADHD perform the task.

The go/no-go task has been widely used in neuroimaging studies of ADHD, because it is assumed to rely heavily on the interaction between attention and response inhibition (Simmonds et al., 2008; Hwang et al., 2019). It has been argued more recently (Michelini et al., 2019) that atypical task-based functional connectivity in individuals with childhood ADHD may persist into adulthood. Taken together, these findings suggest that a neural signature of ADHD may be found within task-based functional connectivity from the go/no-go task, even from young adults, advancing this approach as a potential detector of biomarkers that may address the poor stability of ADHD diagnosis (Guo et al., 2020).



The Present Study: Identification of a Persistent Task-Based FC Signature of ADHD

The present builds upon previous neuroimaging studies exploring task-dependent connectivity from the go/no-go task to investigate the persistent connectomic signature of childhood ADHD in young adults. We use a series of multilayer feedforward classifier models to predict clinical diagnosis and performance on the IGT and the architecture of these models permit classification of embedded groups, and consequently accommodate otherwise inconsistent relationships. For example functional connection X might be diagnostic of ADHD if Y and Z are also strong, but not diagnostic otherwise. We will show that task-based functional connectivity reliably predicts ADHD diagnosis and IGT performance, and that a small number of the most diagnostic connections permitted nearly equivalent accuracy. Moreover, we will show that the machine learning classifiers can be constrained to take advantage of joint probability distributions to identify the functional connections that predict both ADHD diagnosis and IGT performance, establishing the neural bases for the diagnosticity of the IGT and a potential means of identifying ADHD subtypes on the basis of behavioral test performance.



MATERIALS AND METHODS


Archival Data Set and Participants

We analyzed archival MRI and behavioral data from the longitudinal follow-up of the NIMH-sponsored Multimodal Treatment Study of ADHD (MTA 168). The MTA was a multisite study designed to evaluate ADHD treatment strategies, and included nearly 600 children, ages 7–9, who were randomly assigned to one of four treatment modes: medication, behavioral, combination medication and behavioral, or routine community care. Parents heard about the study through health care providers, teachers or advertisements, and contacted the investigators who interviewed the children and parents to determine eligibility. Our dataset included the 80 adult participants (64 male) from the MTA 168 study who had completed the go/no-go fMRI task. Of these, 55 had received an ADHD diagnosis during childhood, and the remainder were age-matched controls. The mean age of the participant subset at scan time was 23.97 years (SD = 1.29). The MTA 168 study procedures for diagnosis, treatment specifics, and sample demographics have been described elsewhere (MTA Cooperative Group, 1999), and we used the diagnostic and behavioral metadata provided with the data set for model training.



MTA Design and Procedure

The archival Go/No-Go fMRI task data were generated from the study described in Rasmussen et al. (2016), and the reader should refer to the original study for further details. Briefly, the Go/No-Go task used a randomized jittered event-related design, and required participants to respond via button press when presented with a target image, but withhold response when presented with a non-target image. Echo planar functional images were acquired over 154 volumes using the following acquisition parameters: TR (repetition time; the period required for 1 complete volume acquisition) = 2,000 ms; TE (echo time; the period between an RF pulse and its gradient echo) = 30 ms; 32 axial slices; voxel size = 3.4 × 3.4 × 4.0 mm, Slice Gap = 1 mm. T1-weighted images were acquired using the following parameters: TR = 2170 ms; TE = 5.56 ms; 160 sagittal slices; voxel size = 1 × 1 × 1.2 mm. The MTA 168 study used the IGT procedure described in Bechara et al. (1994). For the MTA 168 study, IGT score was calculated by subtracting disadvantageous card choices from the advantageous card choices.



Functional Data Processing

We applied here the data processing pipeline used in a recent application of a multilayer machine learning classifier to functional connectivity and coarse-scale cortical pattern analysis (McNorgan et al., 2020). Functional images were co-registered with the 3D anatomical surface generated by FreeSurfer (Version 6.0) for each participant and mapped onto a common structural template for group analysis using isomorphic 2 mm voxels. Functional data were preprocessed using FS-FAST interoperating with FSL (Version 5.0) to apply motion-correction, slice-time correction and spatial smoothing using a 4 mm Gaussian kernel. Temporal signal filtering of functional data was applied only through regression of linear trends, white matter and CSF signal, and motion parameters, however, frequency-based filtering was not applied. Functional data were mapped to FreeSurfer’s template surface space for cortical regions, and then to the MNI305 3D template space for subcortical regions.



General Linear Model Analysis and Functional Region of Interest Generation

A general linear model analysis (GLMA) was performed in FreeSurfer’s template surface space and the MNI305 3D space at the participant level using an event-related design with the go and no-go trials included as conditions of interest (“task”) and participant motion parameters as regressors of non-interest, modeled using the SPM canonical hemodynamic response function to generate a contrast map for all task activity vs. an implicit rest baseline. This produced a functionally defined mask of cortical and subcortical regions with high signal-to-noise ratio, and we note that it included regions that were activated and deactivated relative to rest. Group-level contrasts were thresholded with a voxel-wise significance level of p = 0.001 and a Monte Carlo permutation simulation applied a cluster-size corrected significance level of p = 0.05. These whole-brain significance thresholds are commonly applied to GLMA contrasts for identifying regions showing group- or condition-differences, including previous studies of ADHD using the IGT and the go/no-go task (e.g., Suskauer et al., 2008; Yang et al., 2019).

Large cortical patches are unlikely to be homogenously organized, and so significant group-level clusters were mapped to surface space, which the FreeSurfer mris_divide_parcellation utility algorithmically subdivided into 302 (115 left, 144 right, 42 subcortical) regions of interest (ROI) of comparable size to the Lausanne parcellation ROIs. The algorithm subdivides the vertices within each ROI perpendicular to its longest axis so that all subdivisions have roughly equal number of vertices and cover up to a designated surface area (400 mm2 in our study). This approach has been used in previous studies of functional connectivity in surface space (Hagmann et al., 2008; Honey et al., 2009; Hagmann et al., 2010; McNorgan and Joanisse, 2014; McNorgan et al., 2020; Figure 1A).
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FIGURE 1. Functional data processing pipeline. Clusters showing significant task-related activation or deactivation relative to rest are sub-parcellated (A), and mean BOLD time series for voxels in each region is computed (B). Extracted time series are detrended, normalized and outlier values are clipped (C). Pearson correlations are computed between all-time series pairs for each functional run for each participant, and region pairs with significantly correlated time series in at least 30% of all correlation matrices were identified as connections of interest (D). Cross-mutual information (XMI) was calculated between the time series for each pair of regions in a connection of interest, to create a vector of XMI-based connectivity values for each functional run for each participant (E). These vectors were subsequently tagged with clinical diagnosis and IGT performance classifications for the associated participants.




Functional Connectivity and Pattern Generation


Correlation-Based Initial Feature Selection

As indicated earlier, functional connectivity corresponds to the temporal coherence between two brain regions, and is typically computed using the Pearson correlation between activation time series. Among n brain regions, we may compute n(n−1)/2 pairwise correlations, and this exponential relationship complicates the analysis and interpretation of functional connectivity: Superfluous predictors among a large number of functional connections may lead to models that overfit the training data and fail to generalize (Hawkins, 2004; Castellanos and Aoki, 2016), and it is challenging to summarize and construct a theoretical synthesis of thousands of functional connections. For these reasons, neuroimaging studies often restrict analyses to a subset of ROIs, or as appropriate for a connectivity study, a set of connections of interest (COIs). A common method of identifying meaningful functional connections within an adjacency matrix is to apply a statistical significance threshold (e.g., Tomasi and Volkow, 2011; Zeng et al., 2014). As will be explained shortly, cross-mutual information measures of dependency have several features that recommend them for use in exploration of functional connectivity. Unfortunately, in the absence of a parametric significance test for these values, they do not readily lend themselves to significance-based thresholding. For this reason, we used conventional linear correlations as an initial first pass filter in our feature selection.

Mean BOLD time series were computed across all voxels in each ROI (Figure 1B). Pairwise Pearson correlations between detrended and normalized regional time series vectors (Figure 1C) were calculated between all ROIs for each of the 4 runs, eliminating the redundant bottom triangle of the symmetric correlation matrix. The top 5% of the correlation values in at least 30% of all correlation matrices was used as a selection filter to ensure that the analyses included functional connections between brain regions that were strongly correlated in some—but not necessarily all—functional runs (Figure 1D). This selection criterion did not guarantee that the selected functional connections were strong across all individuals, or indeed, even among all functional runs for any single individual. This was by design, because a selection including only uniformly strong functional connections precludes group-related differences. Rather, this approach ensured that functional connectivity patterns varied from one another without introducing any statistical bias into the patterns associated with any classification. Moreover, because each selected functional connection was free to vary among runs within each participant, this approach prevented the classifiers from relying on idiosyncratic patterns associated with specific individuals, promoting generalizability.



Pattern Generation From Cross-Mutual Information Functional Connectivity

Though we used the selection filter to identify an initial set of COIs, connection strength was estimated as the cross-mutual information (XMI) (Abarbanel and Gollub, 1996) between ROI time series vectors because mutual information is more sensitive to the general dependency between two variables, which may or may not be linear (Li, 1990), is more robust to non-stationary processes commonly found in neural time series (Wollstadt et al., 2014), and may be more sensitive to synchronization in noisy systems (Paluš, 1997). Finally, mutual information values are always positive, which prevents anticorrelated regions from complicating the construction of input patterns.

The average cross mutual-information statistic is defined as
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Where P refers to probabilities greater than 0 on a 2-dimensional probability density: P(k) depicts the probability of the first variable, and P(l) the second variable. P(k, l) is the joint probability within a particular bin or range of values on the X and Y axes. Nc is the number of columns, representing separate bins or values across which the histogram or density function was computed for the X variable. Nr is the number of rows, representing the separate bins or values over which the histogram or density was computed for the Y variable. It is typically normalized by log(Total Bins), its maximum value for a given number of bins (i.e., Nc × Nr). While the mutual information statistic is able to capture a linear dependence between to variables, it also captures any general dependence between them. For this project, M was computed from the output of a two-dimensional Fast-Fourier Transform Gaussian-kernel density function. Previous work (McNorgan and Joanisse, 2014) found functional connectivity values to be normally distributed, and so the number of bins used in the XMI calculation was determined by Scott’s formula (Scott, 1979):
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where sX is the standard deviation of X and n is the number of values.

The XMI values were written to a connectivity vector (Figure 1E) and tagged with the clinical diagnosis (ADHD or Control) and median-split IGT score (high or low) for that participant. The classifier training data thus contained 80 participants × 4 runs = 320 tagged connectivity vectors. This dataset was augmented during training through application of feature dropout (Shorten and Khoshgoftaar, 2019), in which input features from each input pattern were set to zero with a probability of 0.4. Dropout thus simultaneously minimizes the influence of unreliably predictive features and introduces random distortions to the training patterns so that unique input patterns are presented over a large number of training events.



Classifier Training

Multilayer feedforward classifiers were trained using stratified k-folds cross-validation, a commonly used validation approach that ensured generalizability of model results (Figure 2A). The technique partitions the data set into training and test partitions once for each k-fold. Within each fold, the proportion of examples of each classifier category were matched in the training and test partitions. Across folds, the test folds are non-overlapping, such that all samples appear in exactly one validation set across all folds. This technique ensured that the classification accuracy reported across the entire simulation reflects the model’s ability to correctly classify all of the available data while simultaneously preventing the model from being exposed to the validation set data during training. We used fivefold cross-validation, with each fold generating one trained model and this procedure was repeated six times to produce 6 batches of 5 models (30 models total) to generate distributional statistics of model performance.
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FIGURE 2. Classifier training procedure. Six batches of stratified 5-fold cross-validated models were trained from the full input feature set (A), and validation-set performance was obtained for each of the resulting models (B). The weights between each of the layers were extracted and matrix multiplication was used to compute the summed path weight from each feature to the classifier units (C). Mean path weights were normalized (D), and those features in the 5% tails were identified (E) and used as features in the reduced feature set model (F).


Because there were more ADHD than Control participants, we avoided biasing classification decisions by equating the group sizes through under-sampling, including the four connectivity vectors for all 25 control participants and an equal number (100 total) of randomly selected connectivity vectors for ADHD participants, fixing chance classifier accuracy to 0.5. Each batch of models used a different random subset of the ADHD patterns.

Within multilayer models, there are multiple paths through successive hidden layers between each predictor variable and classification node. A variable’s influence on the classification is thus computed by summing weights over all possible paths through multiplication of the weight matrices (Figure 2C). Classifier units imply an activation function that transforms the summed input. We used the logistic sigmoid activation function (Eq. 3):
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This function scales input to the unit interval {0,1}, so that as the summed input approaches ± ∞, the output value approaches 0 or 1. Understanding this property is critical for interpreting the network weight structure, because strong negative weights are associated with the output class of 0, and strong positive weights are associated with the output class of 1. The classifier models can be thus seen as an extension of a conventional binomial logistic regression classifier to include a series of hidden layers, described below.

Classifier models were implemented in TensorFlow (Version 1.10)1. Input values fed forward through a sequence of four densely connected hidden layers, each containing 12 rectified linear units (Figure 3). Batch normalization was applied at each hidden layer (Ioffe and Szegedy, 2015). These activations fed forward to a two-unit classifier layer which simultaneously classified patterns with respect to both Clinical Diagnosis and IGT performance. This model architecture was informed by previously published applications of multilayer feedforward classifiers to neuroimaging data (Liu et al., 2018; McNorgan et al., 2020). The training set was balanced with respect to both classifications and the categories were orthogonal (i.e., knowing one classification was uninformative for the other). These models therefore identify functional connections that are predictive of both Diagnosis and IGT performance. Real-numbered output values are assigned to the category codes closest in value (e.g., an output less than 0.5 was treated as a categorization of “0”).


[image: image]

FIGURE 3. Model Architecture for networks performing mutually constrained classification. Selected functional connections within task-defined network regions were input patterns from which Clinical diagnosis (ADHD vs. Control) and IGT performance (high vs. low) was predicted. Model training iteratively adjusts the weights between the Input layer features the three Hidden layers, and the Classifier output units to minimize squared error between the target output values (0 or 1) and the classifier output values predicted for each functional connectivity pattern. Models performing only Clinical or IGT classification had only one output unit but were otherwise architecturally identical.



Reduced Models

Overfitting is a measurable empirical phenomenon closely related to generalizability. Prediction or classification error in a statistical or machine learning model is quantifiable by a difference metric, such as the summed squared error (e.g., in regression models) or cross-entropy (e.g., in classifier models) (Kline and Berardi, 2005). A statistical or machine learning model is said to have overfit if the error metric is small when the model is applied to the training data but large when it is applied to a novel cross-validation data set. Such a model would therefore not accurately predict outcomes for a random sample drawn from the population, limiting its utility for informing generalizable theories. It is not uncommon for machine learning models to achieve perfect performance for the training data, and thus some discrepancy between training and validation set performance is expected. However, overfitting is continuous and measurable, and so one approach is to measure validation set accuracy over a series of replications using randomized models to obtain distributional statistics for validation set accuracy.

The feature selection step described above generated input feature vectors containing 2265 features. For simple models such as standard two-layer support vector machines (SVMs) or logistic regression models, in which each input feature directly influences classification, high-dimensional input patterns might raise concerns of the potential for overfitting the training data in two related senses (Hawkins, 2004): First, superfluous input features provide additional opportunities for idiosyncratically predictive features to inflate model performance. Second, superfluous predictors lead to unparsimonious models that do little to advance theory. An advantage of our multilayer model architecture is that hidden layers introduce a bottleneck into the transmission of the input pattern to the classifier units. In addition to the feature selection step prior to training pattern generation, this architectural feature implements a feature reduction step by requiring the network to create a 12-dimensional non-linear independent components analysis (ICA) recoding of the input pattern (DeMers and Cottrell, 1993; Lotlikar and Kothari, 2000; Hyvärinen and Bingham, 2003). By implementing the feature reduction step within the model architecture, rather than as a preprocessing step, the contributions of individual features from the intact dataset may be evaluated. Moreover, because the ICA is trained by the same error signals that drive the classification boundaries, the discovered components should be optimized with respect to the classification decision. Though regularization techniques during training and ICA reduction improve generalizability to novel data, it remains challenging to meaningfully discuss more than a handful of individual functional connections. We thus further reduced the feature set, appealing to the logic of backward step-wise regression.

The feature selection procedure leaks information about the most informative features between models using the full set of features and those using a reduced feature set, however, this is not problematic for two reasons: First, feature selection was intended to facilitate interpretation, rather than improve accuracy; the survival and subsequent inclusion of predictor xi in the reduced model generation is analogous to the survival of predictor xi into the n + 1th step in a backward stepwise multiple regression. Second, each of the 6 model batches are independent, precluding information leakage between batches. The analyses that follow aggregate results across all model batches, permitting measures of predictive reliability for each functional connection, and more importantly, the evaluation of a model comprising the most informative features independently identified by each batch of models.

We first evaluated the performance of 30 trained models on the full input vectors (Figure 2B). Next, after normalizing the summed path weights (Figure 2D), we identified the functional connections with path weights to the ADHD classification unit in the ± 0.025 tails of the distribution of weights in all models (Figure 2E). This selection further reduced our input patterns to include only those XMI functional connectivity values that were most diagnostic of ADHD classification across all random models. Finally, we repeated the above fivefold cross-validation procedure, training on the reduced input space to generate six fivefold batches (30 models total) of Reduced-Feature Models (Figure 2F). We report the classification performance of the Reduced Models below.



Model Evaluation

Validation set accuracy was used to evaluate the efficacy of functional connectivity in the classification decisions on which the models were trained. The relative influences of individual functional connections on classification decisions were evaluated by computing the summed path weights from each input unit (each encoding the functional connectivity between a pair of brain regions) to each of the classifier units. In addition to parametric assessments of predictive functional connections under a normal distribution, a non-parametric assessment was performed by comparing classification performance for networks with weights from influential units selectively removed against performance of networks with an equivalent number of randomly selected weights removed. Classification performance should be more impacted by the selective removal of the input features we identified as highly diagnostic.



RESULTS

We report several measures of model performance, computed across all fivefold for each of the 6 batches (n = 30) of models. These measures include mean classification accuracy (M), hit rate, false alarm rates, and d-prime recorded for both clinical diagnosis and IGT classifications. Because ADHD was mapped to zero, a true positive was a correct classification of Control to category 1, and a true negative was a correct classification of ADHD to category 0. Signal detection theory measures of model performance were thus defined by formulas 4, 5, and 6 for hit rate (HIT), false alarm rate (FAR), and d-prime (d′):
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Where z(X) is the Z score corresponding to the right-tail p-values associated with proportion X. Single-sample right-tailed t-tests against chance (0.5) were Bonferroni-Holm corrected for multiple comparisons, which was chosen because it is the most conservative correction. Both full and reduced feature set models demonstrated very high classification performance on clinical diagnosis and IGT performance classifications, explicitly linking IGT performance with ADHD through a shared connectomic fingerprint.

Because model weights are shared between output categories, classifier training for both categories constrains the solution space to the set of functional connections that are optimally diagnostic for both types of classification (McNorgan et al., 2020). Both classifications were at well over chance accuracy (MClinical = 0.91, SD = 0.07, t(29) = 32.78, p < 0.00001; MIGT = 0.91, SD = 0.06, t(29) = 34.10, p < 0.00001). The HIT, FAR and d-prime scores indicate the models achieved high accuracy through both high sensitivity and high specificity (HITClinical = 0.86, FARClinical = 0.04, d′Clinical = 2.90; HITIGT = 0.83, FARIGT = 0.02, d′IGT = 3.03). Finally, we observe that these values represent per-run performance (i.e., for connectivity obtained from just one of four runs). Thus, if classification used the modal classification of all four connectivity matrices, participant-level accuracy rises to 0.991, or 99%. The high accuracy suggests a relatively robust consistency in the functional connections that distinguish the two groups.

We may compare our multilayer feedforward classifier architecture with classification performance for a more conventional linear SVM classifier, to appreciate the benefit of the embedded ICA enabled by the hidden layer transformations on the input pattern. With only a single classification hyperplane, series of SVM classifiers on random balanced subsets of the training data demonstrated worse validation set classification accuracy for both clinical diagnosis (MClinical = 0.58, SD = 0.05) and IGT performance (MIGT = 0.86, SD = 0.07). The classification performance is attributable to poor sensitivity for clinical diagnosis (HITClinical = 0.16, FARClinical = 0.00). We will clarify that the FAR is reported in the context of a “hit” mapped to the Control category: though the classes were balanced, the SVM models classified 93% of all patterns as ADHD, showing clearly biased classification decisions across all randomized simulations. The SVM FAR is thus indicative of a reluctance to assign any pattern to the Control diagnosis, rather than of very high specificity. This difference reinforces the importance of feature reduction for mitigating overfitting, and of non-linear relationships in the classification decisions—particularly for clinical diagnosis. We also observe that the linear SVM classifier cannot make simultaneous classification decisions of two orthogonal categories. These classifiers were trained to make clinical and IGT classifications independently, precluding the possibility of identifying interactions among predictive features for the two classifications.


Diagnostic Functional Connectivity

The ADHD classification was mapped to a Clinical output value of zero, and thus strong negative weights to the Clinical classifier unit was predictive of an ADHD diagnosis (by implication, weak positive connectivity was therefore predictive of an ADHD diagnosis). Low IGT performance was mapped to an IGT output value of zero. To facilitate interpretation, we normalized the summed path weights between each functional connection and classification output. Functional connections that are predictive of both Clinical and IGT classification would have high absolute value weights to both outputs. Thus, we identified functional connections with an absolute value of either normalized weight greater than | Z| = 1.65 (95th percentile), and highlight those for which the product of weights was greater than 1.652, indicating weights in the extreme tails for both classifications. These highly predictive functional connections for which strong connectivity is most diagnostic of an ADHD diagnosis are reported in Table 1, and those for which strong connectivity predicts a Control diagnosis—and therefore weak connectivity is diagnostic of an ADHD diagnosis—are reported in Table 2. In these tables, we report the normalized mean model path weights between each predictive functional connection and the classifier units for Clinical and IGT classifications. These weights are sorted by the product of their absolute values. Highly predictive functional connections are denoted with an asterisk.


TABLE 1. Normalized mutual constraint model weights for strong functional connections predictive of ADHD diagnosis.
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TABLE 2. Normalized mutual constraint model weights for strong functional connections predictive of Control diagnosis.

[image: Table 2]Though our highly predictive connections were identified using conventional parametric thresholds for determining significance, the assumptions underlying conventional parametric analyses may not be justified for direct parametric analyses of model weights (Luengo et al., 2009). Consequently, it does not necessarily follow that the highly predictive connections are significantly better for prediction than other functional connections within the task-defined network. A permutation test contrasted the predictive accuracy for a series of random networks trained using only the subset of highly predictive connections as inputs and an equal number of networks trained using an equal number of randomly selected functional connections. Mean test-set classification accuracy was computed for 10-fold of 10 sets of (highly predictive and random-feature) models trained using stratified cross-validation. Independent-samples t-tests found that the highly predictive functional connections predicted Clinical diagnosis with higher accuracy (M = 0.76, SD = 0.01) than did random feature networks (M = 0.70, SD = 0.02), t(18) = 8.10, p < 10–6. The highly predictive functional connections also predicted IGT performance with higher accuracy (M = 0.72, SD = 0.02) than did random feature networks (M = 0.69, SD = 0.01), t(18) = 4.13, p = 0.0003. Thus, the highly predictive functional connections were significantly better predictors for both classifications than were a comparable set of randomly selected functional connections from the reduced feature set.

If we interpret the functional connections listed in Table 2 as those for which low connectivity values are predictive of an ADHD diagnosis, we may instead group these weights with respect to IGT performance and compare functional connectivity profiles in terms of the hyper- and hypoconnectivity predicting an ADHD diagnosis. Figure 4A plots the functional connections predicting diagnosis and a high IGT score: ADHD hypoconnectivity appears in blue and ADHD hyperconnectivity appears in red. Network descriptions are derived from the Yeo et al. (2011) 7-network parcellation. For those with high IGT performance, models predict an ADHD diagnosis from interhemispheric hypoconnectivity between the visual and ventral attention network involving inferior occipital and fusiform cortex in posterior regions; interhemispheric hypoconnectivity within the anterior DMN, involving medial orbitofrontal cortex; and hypoconnectivity between the right motor network and the ventral attentional network involving the right supramarginal and precentral gyri. Additionally, hyperconnectivity within left ventral attention network predicts ADHD concurrent with high IGT performance. Figure 4B illustrates a different connectivity profile associated with low IGT performance concurrent with an ADHD diagnosis. This classification was associated with hyperconnectivity between the visual network and ventral attention network, involving left fusiform and bilateral inferior occipital cortex, and hypoconnectivity within the posterior DMN between lingual gyrus and posterior cingulate gyrus, and between lingual gyrus to regions outside the task-defined network.
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FIGURE 4. Task-related functional connections most predictive of Clinical Diagnosis and high IGT scores (A) and most predictive of Clinical Diagnosis and low IGT scores (B). ADHD hypoconnectivity appears in blue; ADHD hyperconnectivity appears in red. Regions involved in multiple predictive connections are labeled.




DISCUSSION

This study made several novel contributions to the understanding of ADHD. First, we applied machine learning classifiers to task-related functional connectivity from the go/no-go task. The high accuracy achieved by these models further suggests XMI-based measures as useful metrics of functional connectivity. Second, ours was the first study to make multiple orthogonal classifications from whole-brain neural activations, allowing us to establish the mutual relevance of functional connectivity for IGT performance and ADHD diagnosis. Because the classifications were based on shared model parameters, our results show not only that IGT performance is relevant to ADHD diagnosis, but by identifying the shared informative connections, also show why this task is behaviorally relevant. Finally, where IGT performance is one of several diagnostic tools, it may discriminate between ADHD subtypes and inform treatment.


Parametric Decisions

Our model architecture and training parameters were informed by previous work (Liu et al., 2018; McNorgan et al., 2020) and by iterative tuning of model hyper-parameters. Cross-validation explicitly guards against the primary concern with parametric tuning of mathematical models; namely, that model optimization comes the expense of external validity and generalizability to new data. Our modeling approach is not specific to our dataset, and may be applied to other measures or domains. Such applications may find our parametric choices to be a useful starting point, and automated tools for parametric space optimization, such as GPflowOpt (Knudde et al., 2017), which algorithmically explore the hyperparametric space, can facilitate development of optimized models without sacrificing generalizability.

Though we used conventional correlation-based measures of connectivity during feature selection, we chose to use XMI-based measures in our training patterns precisely because this measure is infrequently used in functional connectivity studies (and thus begs exploration) but also likely to be sensitive to the sorts of non-linear relationships we anticipated in a categorization problem built around non-linearly separable classes among time series that may be non-stationary (Wollstadt et al., 2014). Our results should not be construed to imply that XMI-based measures are necessarily superior to other univariate or multivariate measures, e.g., as described in Nieto-Castanon (2020). An exposition of the relative merits of alternative measures of functional connectivity is beyond the scope of this study and would require ground-truth knowledge of the connectivity in our data, but our results suggest that XMI may be worth consideration in the analysis of functional connectivity.



Relation to Previous Work

Aligning our results with a literature that has largely focused on rs-fMRI using seed-based approaches is a challenge compounded by our identification of predictive connectivity using a joint probability distribution function over clinical diagnosis and IGT performance. Nonetheless, several functional connections from the resting state literature were also predictive in our task data. High IGT performance concurrent with ADHD was predicted by hypoconnectivity between anterior cingulate and orbitofrontal cortex, regions implicated in reward-motivation and salience attribution, respectively. Hyperconnectivity between these regions was found by Tomasi and Volkow (2012) using rs-fMRI. This apparent contradiction can be reconciled by the fact that rs-fMRI is task-negative, suggesting that an inability to appropriately engage and disengage these two systems is a defining feature of some individuals with ADHD. Predictive hypoconnectivity between visual and ventral attention network we observed has also been found using rs-fMRI (Ergül et al., 2019) in adults with social anxiety disorder with comorbid ADHD, but not others.

Few studies have combined fMRI and machine learning to the exploration ADHD. SVM classification of DMN connectivity among children, adults with ADHD and age-matched controls found that ADHD is associated with delayed maturation of this brain circuit (Sato et al., 2012). The ADHD-200 Global Competition saw several groups (Cheng et al., 2012; Colby et al., 2012; Dey et al., 2012) apply SVM linear classifiers to functional connectivity measures derived from a multi-site rs-fMRI dataset2 to identify characteristic ADHD rs-fMRI connectivity profiles. Cheng and colleagues (Cheng et al., 2012) were able to classify ADHD participants with 76% accuracy, finding altered frontal and parietal connections were most diagnostic. Colby and colleagues (Colby et al., 2012) classified ADHD participants with 55% accuracy using only graph-theoretic metrics, precluding identification of diagnostic connections. Dey et al. (2012) achieved roughly 70% classification accuracy using predictive graph theoretic metrics, finding that voxel selection using a functional mask, as applied in the present study, greatly improved classification accuracy by eliminating potential sources of noise. The difference in classification performance between our study and these earlier studies suggests that, though summary metrics quantifying connectivity motifs in core functional networks are predictive of ADHD, information about specific connections provides a great deal of additional diagnostic information. Guo et al. (2020) demonstrated that SVM classifiers were able to identify ADHD male adults from rs-fMRI connectivity measured among ADHD children with 76% accuracy, after first selecting the top 2% of diagnostic features from alternative models—similar to the feature reduction step employed in the present study. The authors argue that, though the predictive features may vary somewhat across cohort, the reasonable cross-cohort performance suggests that resting state functional connectivity may be a developmentally stable biomarker of ADHD. Though no cross-cohort classification was performed in the present study, accurate discrimination of childhood ADHD diagnosis from task-dependent functional connectivity in young adults further supports functional connectivity as a developmentally stable biomarker for ADHD.

Our study design is most similar to recent studies by Wang et al. (2018) and Jung et al. (2019) that applied machine learning classifiers to whole-brain rs-fMRI functional connectivity. These studies achieved ADHD classification accuracy of 75 and 84%, respectively, and both identified bilateral visual to DMN hypoconnectivity associated with ADHD. The present study also found hypoconnectivity from the right visual network to a region within the anterior DMN was strongly predictive of ADHD, but only for those who did relatively poorly on the IGT; for those who did well on the IGT, interhemispheric hypoconnectivity within the visual network was predictive of ADHD, contrary to the pattern reported by Wang and colleagues. This is easily reconciled by observing that ADHD is typically associated with poor IGT performance, and thus that the parallel classifications enabled our model to categorically partition typical and atypical ADHD profiles. Both Wang and colleagues and Jung and colleagues additionally identified hyperconnectivity between several regions over several functional networks, whereas hyperconnectivity was seldom highly predictive in our fMRI-based connectivity data, found primarily within the visual network for individuals showing the characteristic poor IGT performance profile. Combined with our results, this pattern suggests that resting state hyperconnectivity but task-related hypoconnectivity may be characteristic of ADHD, indicating a general difficulty in task-appropriate engagement and disengagement of multiple functional networks, but that individuals with ADHD that perform atypically well on the IGT demonstrate a different connectivity profile within the visual processing network. Whether these individuals might constitute a distinct subgroup is a matter for further clinical investigation, but these results suggest that some behavioral profiles among those diagnosed with ADHD may respond differently to treatments that target different attentional systems.

We achieved superior classification accuracy compared to these earlier studies, and ascribe this improvement to several factors: First, as demonstrated by Dey et al. (2012), the restriction of our analyses to task-relevant voxels using a functional mask reduced noise among the classifier features, and likely optimized model performance. Second, and relatedly, there is a strong theoretical connection between the inhibitory processes implied by the go/no-go fMRI task and both the IGT and ADHD. By focusing on the neural substrates supporting these processes, our analyses may have been more likely to identify mutually predictive connectivity patterns. Third, our XMI measure may be more sensitive to non-linear coactivation relationships. Finally, multilayer feedforward models have the computational flexibility to encode conditional relationships that linear SVM classifiers cannot, by internally constructing a lower-dimensional representation of the input data that is optimized with respect to the classification decision. With multiple subtypes, it is widely accepted that ADHD is not a monolithic disorder, and different network dynamics may underlie different subtypes. We have demonstrated here the benefits of the increased flexibility and sensitivity afforded by multilayer networks over their simpler counterparts, and recommend their application for answering questions that cannot be addressed by more conventional approaches, such as SVMs and logistic regression.



CONCLUSION

The high classification accuracy, diagnosticity and specificity of our multilayer classifier models show ADHD is reliably predicted by task-based functional connectivity. Simultaneous prediction of IGT performance suggests that diagnosticity of the IGT is attributable to its shared reliance on clinically diagnostic functional connections. Our improved accuracy over earlier studies highlights the importance of connections involving task-positive regions and of non-linear relationships in understanding neural processing dynamics. Our multiple constraint network analysis is generalizable to other behavioral assessments and domains, and may guide development of more efficacious intervention strategies.
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The field of Network Physiology aims to advance our understanding of how physiological systems and sub-systems interact to generate a variety of behaviors and distinct physiological states, to optimize the organism's functioning, and to maintain health. Within this framework, which considers the human organism as an integrated network, vertices are associated with organs while edges represent time-varying interactions between vertices. Likewise, vertices may represent networks on smaller spatial scales leading to a complex mixture of interacting homogeneous and inhomogeneous networks of networks. Lacking adequate analytic tools and a theoretical framework to probe interactions within and among diverse physiological systems, current approaches focus on inferring properties of time-varying interactions—namely strength, direction, and functional form—from time-locked recordings of physiological observables. To this end, a variety of bivariate or, in general, multivariate time-series-analysis techniques, which are derived from diverse mathematical and physical concepts, are employed and the resulting time-dependent networks can then be further characterized with methods from network theory. Despite the many promising new developments, there are still problems that evade from a satisfactory solution. Here we address several important challenges that could aid in finding new perspectives and inspire the development of theoretic and analytical concepts to deal with these challenges and in studying the complex interactions between physiological systems.

Keywords: complex networks, time-series-analysis techniques, surrogate concepts, inverse problem, physiological systems, organ communications, network physiology


1. INTRODUCTION

Network physiology (Bartsch et al., 2012, 2015; Bashan et al., 2012; Ivanov et al., 2016) is a novel transdisciplinary research approach that focuses on how physiological systems and subsystems interact, thereby complementing the traditional approaches from systems biology and integrative physiology. Conceptually, it considers the human organism as an evolving complex network—a radically reduced description where the full system is described by an interaction network, whose vertices represent distinct physiological subsystems and whose edges represent time-dependent, observation-derived interactions between them (see Figure 1). This reduced description has been utilized in a number of scientific disciplines, and research over the last two decades has demonstrated that the network paradigm can advance our understanding of natural and man-made complex dynamical systems (see e.g., Boccaletti et al., 2006, 2014; Arenas et al., 2008; Barthélemy, 2011; Holme and Saramäki, 2012; Bassett and Sporns, 2017; Halu et al., 2019 for an overview). Although encouraging, the data-driven network approach to the human organism faces a number of challenges. Conceptually, the inference of interactions from observation of the organism's dynamics constitutes a fundamental inverse problem, which has no unique solution (von Helmholtz, 1853). State-of-the-art reconstruction methods require access to a model of the human organism or dynamical data at a preciseness that is not available. Another and more practicable path that is often taken in the network sciences, including network physiology, encompasses (i) a time-series-analysis-based characterization of interactions between all pairs of subsystems, (ii) a derivation of a network from estimated characteristics, and (iii) a characterization of the network with methods from graph theory. In the following, we discuss important challenges of this path from pairwise interactions to interaction networks.


[image: Figure 1]
FIGURE 1. Schematic of the human organism as an evolving complex network of dynamical interactions between organ systems. The dynamics of different organs exhibit a broad range of timescales, and physiological observables are typically based on different physical and/or chemical quantities. Time-dependent organ-organ interaction matrices are derived from a time-resolved time-series-analysis-based characterization of interactions from all pairs of observables. These matrices represent a network that evolves in time, with nodes representing organs and edges representing time-varying interactions between them.




2. CHALLENGES WITH CHARACTERIZING INTERACTIONS

The characterization of interactions between physiological systems faces several challenges:

• We often do not know exactly the systems' equations of motion;

• We lack knowledge as to how to merge/combine these equations (e.g., due to the issue of time-scale matching);

• We may have insufficient knowledge about relevant structural connections;

• We may not have direct access to interactions between systems (e.g., via probing).

Due to these (and possibly other) limitations, usually linear and non-linear time-series-analysis techniques are employed to quantify interaction properties from pairs of time series of appropriate system observables. Since interactions can manifest themselves in various aspects of the dynamics, analysis techniques originate from diverse fields such as statistics, synchronization theory, non-linear dynamics, information theory, statistical physics, and from the theory of stochastic processes (for an overview, see Pikovsky et al., 2001; Kantz and Schreiber, 2003; Reinsel, 2003; Pereda et al., 2005; Hlaváčková-Schindler et al., 2007; Marwan et al., 2007; Friedrich et al., 2011; Lehnertz, 2011; Lehnertz et al., 2014; Müller et al., 2016; Stankovski et al., 2017; Tabar, 2019). Interactions may impact on amplitudes, phases, frequencies, or even combinations thereof and for some cases it might be more efficient to consider interactions as flow of information. Beyond that, a more detailed characterization of interactions can in general be achieved with state-space-based approaches and with approaches that even allow for interactions in the stochastic (rather than the deterministic) part of the dynamics (Prusseit and Lehnertz, 2008; Rydin Gorjão et al., 2019).


2.1. Data-Driven Assessment of Pairwise Interaction Properties

Common linear time-series-analysis techniques (Carter, 1987) such as estimating the linear correlation coefficient, cross-correlation and cross-spectral functions as well as (linear) partial coherence are often used but can mostly provide information about the strength of an interaction since correlation does not imply causation. Linear indices for the direction of an interaction are usually based on the concepts of Granger causality (Seth et al., 2015) or partial directed coherence (Baccalá and Sameshima, 2001; Schelter et al., 2006b) that make use of parametric approaches to estimate (single and joint) properties of the power spectra (Lütkepohl, 2005). Note that linear approaches to characterize interactions are mostly based on amplitudes, and these approaches may not adequately account for the well-known non-linearities in physiological systems (Elbert et al., 1994; West, 2012).

Common non-linear time-series-analysis techniques can be subdivided into two main categories depending on the underlying concept for interaction: synchronization-based (SB) techniques (Pikovsky et al., 2001; Boccaletti et al., 2002; Stankovski et al., 2017) and information-theory-based (IB) techniques (Hlaváčková-Schindler et al., 2007; Amblard and Michel, 2013). SB techniques aim at assessing aspects of generalized synchronization (Čenys et al., 1991; Rulkov et al., 1995; Arnhold et al., 1999) or of phase synchronization (Huygens, 1673; Rosenblum et al., 1996). For generalized synchronization, at first the state spaces of the systems need to be reconstructed from time series of system observables (Kantz and Schreiber, 2003). This allows one to exploit various geometric or dynamic properties to quantify strength and direction of interactions (Arnhold et al., 1999; Pikovsky et al., 2001; Boccaletti et al., 2002; Marwan et al., 2007; Faes et al., 2008; Chicharro and Andrzejak, 2009). For phase synchronization, phase time series of the systems need to be derived from the time series of observables, and there are various approaches that allow one to extract phases from noisy broadband signals (see e.g., Bruns, 2004; Kralemann et al., 2008; Schwabedal and Kantz, 2016). The strength of interactions can then be estimated by exploiting phase differences (Tass et al., 1998; Lachaux et al., 1999; Mormann et al., 2000), and the direction of interactions can be quantified via a phase modeling approach (Rosenblum and Pikovsky, 2001; Smirnov, 2014). Recently, methods have been developed that allow the detection and reconstruction of coupling functions from measured data (Stankovski et al., 2017; Pietras and Daffertshofer, 2019; Rosenblum and Pikovsky, 2019; Bick et al., 2020). IB techniques aim at identifying common information contained in the systems' time series of observables as this would allow one to infer the direction of interaction (“causal relationships”) between systems (Schreiber, 2000; Staniek and Lehnertz, 2008; Vicente et al., 2011; Smirnov, 2014; Timme et al., 2014; Porta and Faes, 2015; Runge, 2018). Note that these techniques are only occasionally used to infer the strength of interaction (e.g., Liu, 2004; Monetti et al., 2009; Jafri et al., 2016), and we are missing techniques to detect and reconstruct coupling functions.

Despite the different concepts and the many time-series-analysis techniques, a discussion about their relative merit lasting for more than 15 years indicates that there is probably no single approach which is best suited to characterize properties of interactions between physiological systems (Smirnov and Andrzejak, 2005; Ansari-Asl et al., 2006; Kreuz et al., 2007; Paluš and Vejmelka, 2007; Smirnov et al., 2007; Osterhage et al., 2007a,b, 2008; Vejmelka and Paluš, 2008; Wendling et al., 2009; Florin et al., 2011; Wang et al., 2014; Zhou et al., 2014; Hirata et al., 2016; Stokes and Purdon, 2017; Xiong et al., 2017; Barnett et al., 2018; Beauchene et al., 2018; Dhamala et al., 2018; Krakovská et al., 2018; Bakhshayesh et al., 2019).



2.2. Current Limitations to a Data-Driven Assessment of Pairwise Interaction Properties

Conceptually, the majority of the aforementioned time-series-analysis techniques assumes the investigated systems to be stationary (or at least approximately stationary) and the interactions to be stable and persisting throughout the observation time. By their very nature, however, physiological systems are inherently non-stationary (Marmarelis, 2012) and interactions between them are mostly transient. In some cases, even multiple forms of couplings can coexist (Bartsch et al., 2014; Klimesch, 2018). So far, only a few time-series-analysis techniques were developed to characterize transient interactions between pairs of systems (Hesse et al., 2003; Andrzejak et al., 2006; Faes et al., 2008; Wagner et al., 2010; Hempel et al., 2011; Lehnertz, 2011; Martini et al., 2011; Bartsch et al., 2012; Ma et al., 2014; Liu et al., 2015; Lin et al., 2016; Kostoglou et al., 2019), and it is not yet clear whether there is one single approach that is best suited to characterize all relevant properties of transient interactions between non-stationary physiological systems.

Most physiological systems operate on very different time scales (an der Heiden, 1979; Batzel and Kappel, 2011; Gosak et al., 2018) (cf. Figure 1), and due to distance- and function-related characteristic features, delayed interactions need to be taken into account. The exact delay between physiological systems is usually not known a priori and may be time-dependent. Time-series-analysis techniques designed to characterize delayed interactions thus make use of exhaustive/brute force search methods to identify potential delay(s) (Müller et al., 2003; Silchenko et al., 2010; Dickten and Lehnertz, 2014; Faes et al., 2014; Ye et al., 2015; Lin et al., 2016; Coufal et al., 2017; Ma et al., 2017; Li et al., 2018; Rosinberg et al., 2018). The, in general, high computational burden may limit real-time analyses of delayed interactions. Addressing the issue of different time scales, methods have been proposed recently that aim at a multiscale description of interacting systems (Lungarella et al., 2007; Ahmed and Mandic, 2011; Humeau-Heurtier, 2016; Faes et al., 2017; Paluš, 2019; Jamin and Humeau-Heurtier, 2020).

Interpreting findings from pairwise interaction measurements is a challenging task. Among others, statistical fluctuations and systematic errors may impinge on findings of some interaction property. Moreover, misapplying or misinterpreting time-series-analysis techniques may lead to inappropriate conclusions. Surrogate testing is a crucial tool to ensure the reliability of the results (Schreiber and Schmitz, 2000). Nevertheless, although extensions and new development of surrogate techniques can help to avoid misinterpretations about the strength of an interaction (Andrzejak et al., 2003; Lancaster et al., 2018; Ricci et al., 2019), causal relationships are notoriously difficult to identify (Mayr, 1961; Laland et al., 2011). Although some approaches have been proposed to test the significance of directionality indices (Thiel et al., 2006; Romano et al., 2009; Faes et al., 2010; Jelfs and Chan, 2017), we still lack reliable surrogate techniques for directionality indices as well as for techniques to detect and characterize coupling functions.




3. CHALLENGES WITH DERIVING AND CHARACTERIZING AN INTEGRATED NETWORK OF PHYSIOLOGICAL SUBSYSTEMS

Network physiology considers the human organism as an integrated network, whose vertices are associated with distinct physiological subsystems (i.e., different organs) and edges represent time-varying interactions between vertices. This initial assignment of vertices and edges can have major implications on how an integrated network of interacting physiological subsystems is configured and interpreted (Butts, 2009; Bialonski et al., 2010; Hlinka et al., 2012; Timme and Casadiego, 2014; Wens, 2015; Papo et al., 2016; Nitzan et al., 2017), and a number of challenges arise when identifying and quantifying networks of diverse subsystems with different types of interactions.


3.1. Vertices

The definition of vertices of the spatially extended dynamical system human organism is notoriously difficult. Although the assignment of vertices to distinct physiological subsystems appears rather intuitive, in practice, vertices are usually associated with sensors that are assumed to be placed such that they sufficiently capture the dynamics of subsystems. This ansatz, which is often not even questioned, requires appropriate spatial and temporal sampling strategies, insights into the physical processes and the statistical properties of the system. Identifying adequate sampling strategies is closely related to issues such as accessibility and non-invasiveness and, more importantly, to what is actually a good observable for a given organ to allow insights into the relevant physical processes. Often used physiological observables range from electric and/or magnetic fields to thermodynamic properties such as temperature, pressure, or volumes as well as to chemical properties such as pH or concentration (cf. Figure 1). Observables often dictate the type of sensor, and there might be limitations concerning their size, positioning, or combinability. Due to their very nature, physiological observables can capture vastly different timescales, ranging from milliseconds to days and months, and we lack appropriate concepts and analysis techniques to match these timescales. Recordings of observables are typically noisy and prone to technical and physiological artifacts.

For single organs, there exists a large number of guidelines and recommendations for the sampling of their activities (e.g., Camm et al., 1996; Kligfield et al., 2007; Seeck et al., 2017; Harford et al., 2019; Tankisi et al., 2020). Nevertheless, with the development of novel sensing technologies (Andreu-Perez et al., 2015), guidelines and recommendations are often challenged (Trägårdh et al., 2006; Garćıa-Niebla et al., 2009; Xia et al., 2012; Grover and Venkatesh, 2016), and by now, we lack commonly accepted guidelines for the spatial and temporal sampling of interactions between different organs to allow insights into the relevant physical processes and the statistical properties of the human organism.

An alternative ansatz, which is often pursued in the neurosciences and in cardiology, would consist in replacing estimations of interaction properties in sensor-space with those in source-space (see e.g., Van Mierlo et al., 2019 and references therein). This approach requires localizing the sources of electric/magnetic activities that generate the potentials/fields that can be recorded non-invasively on the surface of the body. It constitutes another inverse problem with early explorations dating back to the 1950s using electric field theory. The lack of a unique solution to this inference problem is reflected by a large set of analysis methods that were developed since then to find an appropriate approximation (Jatoi et al., 2014).



3.2. Edges

A natural way to define edges of the networked human organism would be to relate them to structural connections within and between physiological subsystems (e.g., synapses, nerve tracts, or the lymph or blood stream). Since we lack non-invasive access to these structural edges and their dynamics, a widely used ansatz is to infer functional edges via a data-driven assessment of pairwise interaction properties from the subsystems' dynamics using the aforementioned time-series-analysis techniques in an attempt to elucidate the underlying coupling mechanisms (cf. Figure 1). Note that there are by now no commonly accepted genuine multivariate approaches to assess interactions properties from the dynamics of more than two physiological subsystems. Moreover, the assessment may be hampered by the as yet unsolved problem to reliably distinguish between direct and indirect interactions, with the latter being mediated by another—even unobserved—(sub-)system. This can lead to serious misinterpretations of possible causal relationships. The severity of this issue is expressed in a large number of time-series-analysis techniques—based on partialization analysis—that have been proposed over the last two decades to overcome this problem of transitivity (see e.g., Langford et al., 2001; Eichler et al., 2003; Chen et al., 2004; Schelter et al., 2006a,b; Frenzel and Pompe, 2007; Smirnov and Bezruchko, 2009; Vakorin et al., 2009; Nawrath et al., 2010; Jalili and Knyazeva, 2011; Zou et al., 2011; Runge et al., 2012; Stramaglia et al., 2012; Kugiumtzis, 2013; Leistritz et al., 2013; Ramb et al., 2013; Kralemann et al., 2014; Elsegai et al., 2015; Faes et al., 2015; Mader et al., 2015; Zhao et al., 2016; Leng et al., 2020; Marinazzo et al., 2012). All these techniques involve estimating interaction properties between two systems, holding constant the external influences of a third. Their efficiency, however, is severely limited by volume conduction effects, asymmetric signal-to-noise ratios (Albo et al., 2004; Nolte et al., 2004; Xu et al., 2006) as well as by the number of interacting subsystems and the density of connections between them (Rubido et al., 2014; Zerenner et al., 2014; Rings and Lehnertz, 2016).

Spurious indications of strength and direction of interactions can be considered as another related issue which can lead to severe misinterpretations. These indications can result from an instantaneous mixture of activities, i.e., a common source, which may be caused by, e.g., a too close spatial sampling of some organ with multiple sensors. Likewise, it may be due to an—often unavoidable—referential recording as in case of measurements of an organ's electric fields. While a number of proposed extensions to and modification of particularly phase-based time-series-analysis techniques (Stam et al., 2007; Vinck et al., 2011; Stam and van Straaten, 2012; Hardmeier et al., 2014) appear to be less affected by such influences, their general suitability, however, continues to be matter of debate (Yu and Boccaletti, 2009; Peraza et al., 2012; Gordon et al., 2013; Porz et al., 2014; Colclough et al., 2016).



3.3. Choosing the Type of Network

Once edges and vertices are defined sufficiently, they are then used to set up a binary or weighted and undirected or directed network, depending on which interaction properties between physiological subsystems have been characterized. An undirected binary network characterizes interacting physiological subsystems in terms of connected or disconnected. For such a network, a pair of subsystems is said to be connected by an edge, if an estimated strength of interaction exceeds some threshold. Despite the simplicity of this ansatz, we still lack commonly accepted criteria for the choice of the threshold (Ioannides, 2007; Kramer et al., 2009; Rubinov and Sporns, 2010; Zanin et al., 2012; Fornito et al., 2013).

An undirected weighted network characterizes interacting physiological subsystems in terms of how strongly they interact with each other. In such a network, all edges are usually considered to exist, again due to the lack of a reliable definition of a threshold to exclude edges with non-significant interaction strengths. Commonly, the weight of an edge and the estimated strength of an interaction between vertices connected by that edge are set to be equal. While many estimators for the strength of an interaction are normalized, in general, the weight matrix associated with the weighted network is not; hence, it is advisable to suitably normalize this matrix. Furthermore, the distribution of estimated strengths of interaction can have a dominant effect on network properties of interest and need to be taken into account (Ansmann and Lehnertz, 2012; Stahn and Lehnertz, 2017).

Adding information about the direction of interaction to a binary network expands this to a directed binary network. As in the undirected case, an appropriately chosen threshold may help to separate significant from non-significant indications of directionality. Even more problematic, the modulus of an estimator for the direction of an interaction typically lacks physical interpretability; often only the sign indicates the direction.

Deriving a weighted and directed network by merging both interaction properties—strength and direction—would be preferable, as such a network conveys most information about interacting physiological subsystems. As yet, this task is not solved in a conclusive manner and one needs to keep in mind that strength and direction are distinct but related properties of interactions (Elsegai et al., 2015; Lehnertz and Dickten, 2015; Dickten et al., 2016). While in some specific situations the modulus of an estimator for the direction of an interaction might be interpreted as strength of an interaction, this is not generally valid and has been shown to lead to severe misinterpretations, particularly for uncoupled and for strongly coupled systems (Osterhage et al., 2008; Lehnertz and Dickten, 2015). Both interaction properties should thus be estimated separately but using analysis techniques that based on the same concept (e.g., synchronization theory or information theory). A mixing of different concepts might be ill-advised, as it remains unclear how different concepts translate to each other (Dickten et al., 2016). Moreover, there is no commonly accepted method for how weights should be allocated to an edge's forward and backward direction. While the strength of an interaction has no directionality and is consequently invariant under exchange of vertices, the direction of an interaction is not.



3.4. Network Characterization

Graph theory provides a large spectrum of approaches that can be used to characterize an integrated network of physiological subsystems (see e.g., Boccaletti et al., 2006; Arenas et al., 2008; Fortunato, 2010; Barthélemy, 2011; Newman, 2012, for an overview). Characteristics range from local ones, which describe properties of network constituents, e.g., individual vertices or edges to global ones, which assess properties of the network as a whole. Most characteristics, however, were initially developed for binary networks, and an extension to weighted and/or directed networks is usually not straightforward. As an example, consider the shortest path between two vertices l and k in a binary network which is the smallest number of edges one has to traverse to reach vertex l from vertex k. The length of a single path between two vertices in a weighted network is oftentimes defined as the inverse of the edge weight. This definition relies on the observation that the ratio between the weights of two edges equals the ratio between their lengths; other definitions, however, might be equally valid. Influencing factors such as common sources and indirect interactions were shown to impact on the definition of shortest paths (Ioannides, 2007; Bialonski et al., 2011). Similar arguments hold for the clustering coefficient; despite several suggestions for an extension to weighted (Saramäki et al., 2007) and directed networks (Fagiolo, 2007), their suitability for the analysis of an integrated network of physiological subsystems remains to be shown.

Clustering coefficient and mean shortest path are oftentimes used to decide upon a network's small-worldness (Bassett and Bullmore, 2006), and this property has repeatedly been reported for networks from diverse scientific disciplines. Given the many factors that impact on clustering coefficient and mean shortest path, however, these findings continue to be matter of considerable debate (Bialonski et al., 2010; Gastner and Ódor, 2016; Hilgetag and Goulas, 2016; Papo et al., 2016; Hlinka et al., 2017; Zanin et al., 2018).

Since characteristics of networks (as well as of time series from which networks were derived) can be affected by a number of influencing factors, surrogate testing can be applied to eliminate or at least minimize those influences (Schreiber and Schmitz, 2000; Stahn and Lehnertz, 2017). Although such an approach is strongly recommended to avoid severe misinterpretations, we lack surrogate schemes that are appropriate for networks of interacting physiological subsystems and that address the challenges referred to here.

Eventually, an integrated network of physiological subsystems can be regarded as an evolving network, whose vertices (and/or edges) change with time. Although it is of utmost importance to understand how the network changes from time step to time step, its investigation requires appropriate methods that would allow a comparison of networks (Mheich et al., 2020). Developing such methods, however, is highly non-trivial, since a network's topological properties necessarily depend on the number of edges and the number of vertices. When both quantities change with time, an unbiased comparison between networks remains difficult.




4. CONCLUSION AND SUMMARY

The challenges arising on the path from pairwise interactions to interaction networks call for concerted efforts of all involved communities to advance network physiology. There is an urgent need for sensing concepts and technologies that allow time-locked recordings of relevant physiological observables thereby taking into account their various physical origins as well as their vastly different time scales. Similarly, appropriate concepts and analysis techniques need to be developed to match these time scales and to allow multimodal data fusion (Lahat et al., 2015). Time-series-analysis techniques require further improvements to allow an unambiguous characterization of properties of interactions between more than two systems and under the constraints related to investigating the human organism during (patho-)physiological conditions. Ultimately, the strong heterogeneity of organs and their dynamics calls for better suited network concepts (e.g., based on multilayer/multiplex networks, Boccaletti et al., 2014; Kivelä et al., 2014; Castellani et al., 2016) and possibly requires novel network characteristics and statistical tools. To be successful, these efforts should be scrutinized with the question whether the network framework tells us anything new about the human organism we did not knew before.
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Parkinson’s Disease patients suffer from gait impairments such as reduced gait speed, shortened step length, and deterioration of the temporal organization of stride duration variability (i.e., breakdown in Long-Range Autocorrelations). The aim of this study was to compare the effects on Parkinson’s Disease patients’ gait of three Rhythmic Auditory Stimulations (RAS), each structured with a different rhythm variability (isochronous, random, and autocorrelated). Nine Parkinson’s Disease patients performed four walking conditions of 10–15 min each: Control Condition (CC), Isochronous RAS (IRAS), Random RAS (RRAS), and Autocorrelated RAS (ARAS). Accelerometers were used to assess gait speed, cadence, step length, temporal organization (i.e., Long-Range Autocorrelations computation), and magnitude (i.e., coefficient of variation) of stride duration variability on 512 gait cycles. Long-Range Autocorrelations were assessed using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). Spatiotemporal gait parameters and coefficient of variation were not modified by the RAS. Long-Range Autocorrelations were present in all patients during CC and ARAS although all RAS conditions altered them. The α-DFA exponents were significantly lower during IRAS and RRAS than during CC, exhibiting anti-correlations during IRAS in seven patients. α-DFA during ARAS was the closest to the α-DFA during CC and within normative data of healthy subjects. In conclusion, Isochronous RAS modify patients’ Long-Range Autocorrelations and the use of Autocorrelated RAS allows to maintain an acceptable level of Long-Range Autocorrelations for Parkinson’s Disease patients’ gait.

Keywords: gait disorders, rhythmic auditory stimulations, cueing, gait variability, long range autocorrelations, Parkinson’s disease, fractals


INTRODUCTION

Several physiological signals, apparently randomly organized, are in fact governed by dynamic phenomena organized between order and disorder (Goldberger et al., 2002; Hu et al., 2004). This complex self-organization is the result of multiple interactions between different elements of the system (Delignieres and Marmelat, 2012; Stergiou, 2016). Such complexity of organization is visible in the study of the temporal organization of human gait (Hausdorff et al., 2001; Ivanov et al., 2009; Stergiou and Decker, 2011). Indeed, gait variability organization is the result of multiple interactions between internal (nervous system, biomechanical structure) and external (proprioceptive, visual, auditory information) components (Hausdorff et al., 2000, 2001; Ashkenazy et al., 2002; Gates et al., 2007; Dotov et al., 2017; Lheureux et al., 2020). The study of the magnitude (using linear mathematical methods) and of the temporal organization (using nonlinear mathematical methods) constitute complementary ways to assess gait variability, and stride duration variability in particular (Delignieres et al., 2006; Stergiou and Decker, 2011). Stride duration varies in the short and long term according to a complex dynamic of temporal variations (Hausdorff, 2007). These variations present Long-Range Autocorrelations (LRA) (Stergiou et al., 2006; Hausdorff, 2007; Cavanaugh et al., 2017) involving a long-memory process which means that every stride duration depends on the duration of the previous strides (Hausdorff et al., 2001; Hausdorff, 2007). Nevertheless, the origin and control of LRA in human locomotion remain elusive. While some attribute their origin to biomechanical structures (Gates et al., 2007), the most common theory is that LRA reflect a control from the central nervous system (Hausdorff et al., 2000). Indeed, a degradation of LRA has been shown in Parkinson’s and Huntington’s disease suggesting that the phenomenon would come from supraspinal centers (Hausdorff et al., 1997; Hausdorff, 2009; Warlop et al., 2016). Other theories suggest the existence of Central Pattern Generators (CPGs) at spine level to describe dynamics of human gait (Ashkenazy et al., 2002). After years of research, some authors have suggested that LRA are markers of healthy stable but still adaptive gait and a breakdown of LRA would be a sign of gait disorders and loss of adaptability as suggested in Parkinson’s Disease (PD) (Goldberger et al., 2002; Stergiou and Decker, 2011; Cavanaugh et al., 2017).

Among motor symptoms, PD patients suffer from gait disorders such as shorter step length, reduced gait speed, and increased randomness in temporal organization of gait (Hausdorff, 2007). Indeed, a breakdown of LRA (reduced fractal scaling α exponent) in stride duration variability in PD gait and strong correlations between LRA, disease severity and postural instability were demonstrated (Ota et al., 2014; Warlop et al., 2016). Diminished α exponent would be linked to basal ganglia degeneration (Hausdorff et al., 1997; Goldberger et al., 2002; Hausdorff, 2007; Sarbaz et al., 2012) involved in the regulation of gait, posture and rhythm control (Hausdorff, 2009; Takakusaki, 2017). LRA measurement would therefore be a biomarker of gait instability and risk of falling, which is of particular clinical interest in PD (Hausdorff, 2009; Warlop et al., 2016). Given that PD patients’ gait disorders are partially responsive to medication (Nieuwboer et al., 2007; van der Kolk and King, 2013), there is a need for rehabilitative approach (Tomlinson et al., 2014).

As previously mentioned, gait is organized according to the interactions between internal and external components, such as proprioceptive, visual or auditory information. Rhythmic Auditory Stimulations (RAS) acting as an external cue by means of a metronome, have been studied for years for their effects on PD patients’ gait (Ghai et al., 2018). This cueing would act like an external rhythm generator bypassing the basal ganglia that can no longer properly act as an internal rhythm generator in PD patients (Nieuwboer et al., 2007). It is then suggested that a broader use of isochronous RAS should be beneficial in PD patients’ gait rehabilitation (Spaulding et al., 2013). However, it has been demonstrated that the use of isochronous RAS modify LRA in young (Kaipust et al., 2013; Marmelat et al., 2014) and older (Kaipust et al., 2013) healthy subjects and in PD patients (Hove et al., 2012; Dotov et al., 2017).

Some authors tried to study the effects of autocorrelated RAS (i.e., rhythm variability presenting with LRA) on healthy subjects’ (Kaipust et al., 2013; Marmelat et al., 2014) and PD patients’ LRA computed from gait tasks (Dotov et al., 2017; Marmelat et al., 2020). Although some studies showed that autocorrelated RAS are beneficial for stride duration variability, these results should be interpreted with caution given the short acquisition times used (except for Marmelat et al., 2020). Indeed, a long acquisition time (at least 512 gait cycles) is necessary to show the presence of LRA with a high level of evidence (Crevecoeur et al., 2010; Warlop et al., 2017; Marmelat et al., 2018; Marmelat and Meidinger, 2019; Ravi et al., 2020). Series length has a clear effect on the statistical precision and the sensitivity of scaling exponents (Warlop et al., 2017). Shorter series lengths lead to loss of accuracy and are too short to be statistically different from short-range correlated processes (Warlop et al., 2017; Marmelat and Meidinger, 2019). In this sense, there is a risk that LRA computations using short series could not reflect the results on long series (Warlop et al., 2017; Marmelat and Meidinger, 2019).

Dotov et al. (2017) and Marmelat et al. (2020) tested autocorrelated RAS on PD patients. Dotov et al. (2017) showed that autocorrelated RAS allow to maintain similar level of LRA (similar α exponent) than during their control condition without RAS and that isochronous RAS deeply modify LRA. However, their findings require confirmation given their short acquisition time (5 min per condition). It should also be noted that their method to produce their autocorrelated RAS remains unknown and that their RAS frequency was set 10% faster than each participant’s preferred cadence, which will both differ in this present study. Also, Dotov et al. (2017) used a 21.6 m track, probably imposing a constant strong steering while our 42 m track should allow smoother steering. This could be of importance since steering is known to influence LRA (Dotov et al., 2016). Unlike Dotov et al. (2017), Marmelat et al. (2020) found significantly higher α exponent values during their autocorrelated RAS condition (the 1:1 step-to-beat ratio version) compared to their control condition. In their study, music was used to deliver RAS when a simple beat will be used in this study. This is not negligible since music is composed of multiple “layers” including the rhythmic beat itself, melody and harmony. Furthermore, Marmelat et al. (2020) used an α exponent = 1.02 as a reference while an α exponent similar to normative data of healthy subjects will be used in this study.

The purpose of this pilot study is to analyze the effects of three different RAS (isochronous, random and autocorrelated RAS) on PD patients’ spatiotemporal gait parameters and stride duration variability (magnitude and temporal organization) using suitable acquisition times to compute LRA. Our main hypothesis is that the autocorrelated RAS will be more efficient than the isochronous RAS and the random RAS to maintain LRA in the temporal organization of stride duration variability of PD patients.



METHODS


Ethics, Consent, and Permissions

This study obtained ethical approval from the local ethical board (B403201318916/clinicaltrials.gov registration: NCT03716674). Participants gave written informed consent prior to data collection and this study adhered to the Declaration of Helsinki.



Participants

Nine PD patients were included in this pilot study. Inclusion criteria were: PD diagnosis made according to United Kingdom Brain Bank criteria (Hughes et al., 1992), stages I–III on the modified Hoehn and Yahr scale (Goetz et al., 2004), ability to walk for a minimum of 512 gait cycles (±15 min) in a row without walking aids, stable dopaminergic medication for a minimum of 4 weeks before assessments, no other pathology that could interact with motor capacities and gait performance, a minimum of 24/30 on the Mini-Mental State Examination (MMSE) (Dick et al., 1984).

Patients’ anthropometric and clinical characteristics are summarized in Table 1.


TABLE 1. Characteristics of the study population.

[image: Table 1]


Stimulus

In addition to a control walking condition without cueing [i.e., Control Condition (CC)], three conditions involved walking with three different RAS: Isochronous RAS (IRAS), Random RAS (RRAS), and Autocorrelated RAS (ARAS). Each of them was composed with an internally developed software (Matlab 2014R, Mathworks, United States) and adapted to each patient according to their spontaneous cadence determined before the experiment with 10 Meters Walking Tests. For each patient, these three RAS had the same mean interbeat duration [Mean (s) = 0.54 ± 0.05] but different magnitude (i.e., coefficient of variation, CV) and temporal organization of rhythm variability. During IRAS, the RAS presented no variation of the interbeat intervals [CV (%) = 0.00 ± 0.00]. During ARAS, autocorrelated interbeat intervals were used with α exponent similar to healthy subjects’ data of α exponent measured during gait in a previous study using the evenly spaced averaged Detrended Fluctuation Analysis [α-DFA = 0.78 ± 0.00; CV (%) = 0.92 ± 0.00] (Warlop et al., 2018). During RRAS, a random variability of the interbeat intervals was used and obtained by shuffling the interbeat intervals used for each patient during the ARAS [α-DFA = 0.46 ± 0.00; CV (%) = 0.92 ± 0.00].



Procedure

Prior to data collection, patients listened to the RAS and were asked to mark the rhythm with a finger tapping task to ensure that the rhythm of the RAS was detected. Then, each patient walked in the four conditions in a randomized order. During RAS conditions, patients were listening to the RAS through earphones by the mean of a MP3 player. Standardized instructions to “walk accordingly to the proposed rhythm,” the foot contact of each step corresponding to each beat of the metronome, were given to each participant. During each condition, patients walked around on an oval indoor track of 42 m during ±15 min. The heading direction (clockwise or counterclockwise) was randomized but each patient kept the same heading direction for all conditions. A maximum of two conditions were tested during 1 day with a minimum break of 5 min between each of the conditions to avoid a fatigue effect and to limit a potential order effect. Patients came back a second day (2–14 days apart from the first session) to perform the other two conditions. The experiment was always performed at the same time of the day for the same patient during ON phase of dopaminergic treatment to avoid drug effect.



Data Acquisition

Two unidimensional accelerometers were taped on patients’ both lateral malleoli in the antero-posterior direction and connected to a recording device (Vitaport 3 – Temec Instruments B.V., Kerkrade, The Netherlands) attached to the patients’ waist. Ankle accelerations were recorded while walking at a sample of 512 Hz and were then transferred onto a computer. Each peak of acceleration, corresponding to each foot contact, was detected by an homemade software to determine stride durations (i.e., peak detection method; Terrier and Dériaz, 2011).



Functional Assessment

Functional assessment was performed before the beginning of the first walking condition. A 10 Meters Walk Test was used to calculate the patients’ spontaneous cadence used to individually adapt the RAS. Patients also completed the Activities-Specific Balance Confidence Scale (ABC scale) (Powell and Myers, 1995) to assess their balance-confidence, the Balance Evaluation Systems Test (BESTest) (Maia et al., 2013) to test their balance, the Movement Disorder Society sponsored Unified Parkinson’s Disease Rating Scale Revision (MDS-UPDRS) (Goetz et al., 2008) to globally assess the severity of motor and non-motor symptoms, the Postural Instability and Gait Disorder (PIGD) (Parashos et al., 2015) which groups five items (#13–15 and #29–30) of the UPDRS and the number of falls during the last 6 months before the experiment (see Table 2).


TABLE 2. Absolute mean values of the spatiotemporal gait parameters and stride duration variability assessed during Control Condition (CC), Isochronous Rhythmic Auditory Stimulations condition (IRAS), Random Rhythmic Auditory Stimulations condition (RRAS), and Autocorrelated Rhythmic Auditory Stimulations condition (ARAS) and comparison between these walking conditions.
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Gait Assessment

Gait was assessed through the measurement of the spatiotemporal gait variables, the magnitude and the temporal organization of the stride duration variability.

The data was extracted from 512 consecutive gait cycles which is recommended to assess temporal organization of the stride duration variability (Crevecoeur et al., 2010; Warlop et al., 2017; Ravi et al., 2020).

Spatiotemporal gait parameters were assessed as follow:

[image: image]
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To assess magnitude of stride duration variability, CV was calculated using the mean stride duration and standard deviation (SD) : [image: image].

Temporal organization of stride duration variability was assessed by LRA computation using the evenly spaced averaged DFA (Almurad and Delignières, 2016) to obtain α-DFA exponent. This method was chosen among others given its robustness regarding stationary and non-stationary processes (Phinyomark et al., 2020; Ravi et al., 2020).

The original time series size was N ≥ 512. Then, the series was divided in subsets of size t, from t = 10 to t = N/2. The number of points used to calculate the slope in evenly spaced averaged DFA was based on Almurad and Delignières (2016). This method consists in selecting the data used for the regressions as follows:

[image: image]

Where k represents the number of points to include in the diffusion plot, the k interval lengths are noted [ni (i = 1, 2,…k)] and nmax and nmin correspond to the maximum and the minimum interval lengths. We used nmin = 10, nmax = N/2 and k = 18 to follow the study by Almurad and Delignières (2016). After selecting evenly spaced data points, the linear regressions can be performed on these selected points (evenly spaced), or on the average data across the data points that are between selected points (evenly spaced averaged).

LRA are present when α-DFA is between 0.5 and 1 which implies persistence in the variations meaning that large stride duration fluctuations tend to be followed by other large fluctuations, and vice-versa. α-DFA <0.5 is the sign of anti-persistence and α-DFA = 0.5 corresponds to randomness (i.e., white noise). An α-DFA = 1 (i.e., 1/f noise) is the boundary between stationarity and non-stationarity (Hausdorff et al., 1996). In this context, 1/f noise is interpreted as “a ‘compromise’ between the complete unpredictability of white noise (α = 0.5) (very rough ‘landscape’) and the very smooth ‘landscape’ of Brownian noise (α = 1.5)” (Peng et al., 1995). Then, α-DFA = 1 is considered as the optimal state of variability characterizing healthy gait according to the theoretical framework of optimal movement variability (Harrison and Stergiou, 2015; Ravi et al., 2020).



Statistical Analysis

A power analysis was made based on a previous study of Dotov et al. (2017) using PASS software, in the idea of performing a one-way repeated measures ANOVA. Total sample of nine participants achieved 80% power to detect differences among the means vs. the alternative of equal means using an F-test with a 0.05 significance level.

Statistical analyses were conducted using Sigmaplot 13.0. After verification with a Shapiro-Wilk normality test, a one-way repeated measures ANOVA was applied to determine the effect of each RAS type on all the gait parameters. When a significant difference between groups was detected, a post-hoc Tukey Test was performed. Effect size between conditions regarding α exponents was assessed using Cohen’s d. For the linear measures of stride duration variability, the results of the coefficient of variation (CV) did not pass the normality test (p < 0.05). A Friedman Repeated Measures ANOVA on ranks was then applied. The results were considered statistically different for p < 0.05. Results of α-DFA were also normalized using Z-scores. The mean α-DFA of the healthy population used to compute Z-scores was taken from the meta-analysis of Ravi et al. (2020) (α-DFA = 0.81 ± 0.14). They studied the effect of PD on α-DFA by compiling the results of 7 studies including a total of 177 PD patients and 135 healthy subjects.



RESULTS


Spatiotemporal Gait Variables

No significant difference was found between each condition for gait speed [F(3, 8): 1.427; p = 0.260], gait cadence [F(3, 8): 0.709; p = 0.556], step length [F(3, 8): 1.224; p = 0.323], and mean stride duration [F(3, 8): 0.674; p = 0.577] (Table 2).



Stride Duration Variability

Regarding the magnitude of the stride duration variability, CV [F(3, 8): 1.787; p = 0.177] was similar in all four conditions (Table 2).

Concerning temporal organization of stride duration variability, α-DFA during ARAS was higher than during RRAS and IRAS and was the highest during CC. Indeed, a significant difference was found [F(3, 8): 21.487; p < 0.001] (Table 2 and Figure 1). LRA were present for all patients during CC (Figure 2). The mean α-DFA was the highest during this condition (0.76 ± 0.09) and within normative data of healthy population according to Z-scores (Table 2 and Figures 1, 2). Also, Cohen’s d was always >1 between CC and the three other RAS conditions, indicating large effect sizes (Figure 1).


[image: image]

FIGURE 1. Error bars comparing mean values ± standard deviation of α-DFA obtained during each condition. X-axis represents the walking conditions. Y-axis represents mean α exponent value during each condition and calculated using the evenly spaced averaged version of the Detrended Fluctuation Analysis (α-DFA). Horizontal lines represent significant differences between conditions. Each p-value is indicated on the left of each line and Cohen’s d represents the effect size between conditions on the right (d). The black dashed line placed at 0.5 on the Y-axis delimit the area above which there are LRA.



[image: image]

FIGURE 2. Scatter plots comparing α exponent of each of the nine patients during Control Condition (CC) to α exponents obtained during each walking condition: (A) Isochronous Rhythmic Auditory Stimulations condition (IRAS), (B) Random Rhythmic Auditory Stimulations condition (RRAS), and (C) Autocorrelated Rhythmic Auditory Stimulations condition (ARAS). X-axis represents the subject number and the Y-axis represents α exponent value during each condition and calculated using the evenly spaced averaged version of the Detrended Fluctuation Analysis (α-DFA). The black dashed line placed at 0.5 on the Y-axis delimit the area above which there are LRA. Each graph is divided into three parts representing a stage of the modified Hoehn and Yahr scale (mH&Y) from smallest (left) to largest (right).


During ARAS, LRA were present for all patients (Figure 2) and mean α-DFA (0.66 ± 0.09) was lower than α-DFA during CC but remained above −1.96 Z-scores, indicating LRA within the normative data (Table 2 and Figures 1, 2). Furthermore, α-DFA during ARAS was significantly higher than during IRAS and RRAS.

During IRAS, LRA were lowered (α-DFA = 0.44 ± 0.09) compared to CC and Z-scores were below −1.96 which means below normative data (Table 2 and Figure 1). During this condition, α-DFA was <0.5 for seven patients, meaning anti-persistence. Similarly, α-DFA was close to 0.5 for the last two patients suggesting that stride duration variability was getting closer to complete randomness during IRAS (Figure 2).

During RRAS, α-DFA (0.54 ± 0.18) was significantly lower than during CC, close to 0.5 and not significantly higher than during IRAS for α-DFA (Table 2 and Figures 1, 2). Z-scores were very close to −1.96 Z-scores during this condition suggesting that α-DFA during RRAS was almost out of the normative data (Table 2).



DISCUSSION

This study investigated the extent to which auditory stimuli with different temporal organizations could influence PD gait. First, this study did not show difference concerning spatiotemporal gait parameters and magnitude of stride duration variability between all conditions. On the contrary, this study highlighted that the three RAS influence the temporal organization of stride duration variability differently. Indeed, LRA were markedly modified during IRAS and RRAS, whereas α-DFA was maintained within normative data and less modified during ARAS.

The spatiotemporal gait parameters were similar between all conditions. These results are reassuring since these parameters have not been degraded during the RAS conditions, whatever the rhythm used. In other studies, PD patients presenting with spatiotemporal gait disorders have improved these parameters using isochronous RAS over several weeks (Arias and Cudeiro, 2008; Dalla Bella et al., 2015). Likewise, improvements were obtained when the RAS had a frequency 10% higher than patients’ spontaneous gait cadence (Dalla Bella et al., 2015).

The analysis of stride duration variability using linear mathematical methods (mean, CV) revealed that the magnitude of the fluctuations was not influenced by the conditions (Table 2). These results are in agreement with those of Uchitomi et al. (2013) but contrary to those of Dotov et al. (2017) and Marmelat et al. (2020) who had shown an increase in the CV.

On contrary, all RAS influenced PD patients’ temporal organization of stride duration variability differently highlighting further the importance of supraspinal centers in the regulation of gait variability given the influence of these interacting external stimulations. LRA were present in all patients during CC with normal α-DFA according to the normative data of healthy population (Warlop et al., 2017; Ravi et al., 2020). This study showed that the use of IRAS led to anti-persistence among seven out of the nine patients. For the others, during IRAS, α-DFA was close to 0.5 indicating a temporal organization close to randomness. As stated in the introduction, it has been shown LRA were positively correlated with balance status (BESTest and ABC scale) (Warlop et al., 2016). In this hypothesis, PD patients’ postural stability could be impaired when α-DFA is lowered. As a corollary, the use of an isochronous metronome would potentially induce greater postural instability for these patients (Hausdorff, 2007). This should be confirmed with longitudinal clinical studies. Unlike during IRAS and RRAS, LRA were present for all patients during ARAS. Although a significant decrease in α-DFA could be demonstrated during this condition compared to CC, the results remained within the normative data oh healthy population (Warlop et al., 2017; Ravi et al., 2020).

Recently, it has been suggested that the presence of LRA in biological systems would represent its healthy status marked by abilities to flexibly adapt to the daily stresses imposed on the body (Goldberger et al., 2002; Stergiou et al., 2006; Hausdorff, 2007). While the metronome is widely used in PD patients’ gait rehabilitation, this study confirmed that it could lead to less persistence in the temporal organization of gait, whatever the rhythm used. According to Stergiou et al. (2006), among other biological signals, healthy gait would present with an “optimal movement variability.” Deviation from this optimal level in either the direction of randomness or over-regularity would represent a loss of adaptative capabilities of the locomotor system (Stergiou et al., 2006; Stergiou and Decker, 2011). The next line of reasoning will follow this theoretical model. Each RAS imposed a rhythm on the patients, a limiting constraint that reduced degrees of freedom during gait. Indeed, patients were asked to synchronize steps with the RAS and had to readjust the timing of each step in relation to the next in accordance with the imposed rhythms. This could therefore explain why α-DFA during each condition is close to that of the different RAS. In this context, the absence of variation of the isochronous metronome would be contrary to the natural fluctuations present in healthy subjects’ gait and compels the patient to synchronize to stereotyped and less complex RAS (Hausdorff, 2007; Kaipust et al., 2013). In the same way, the use of a random metronome would make the temporal organization of gait noisier and more unstable because of a complete lack of structure in the RAS. Both situations are marked by an absence or decrease in persistence. Whether it is an excess of order or complete disorder, this could induce a loss of adaptability in patients’ gait (Stergiou et al., 2006). Then, the compromise between excessive order and disorder would be the use of an autocorrelated metronome. Autocorrelated RAS would allow PD patients to have a necessary structure during walking while giving them a certain freedom in carrying out gait, a repertoire of adaptative motor behaviors for the same situation. This is illustrated by an α-DFA within the normative data of healthy subjects during ARAS and therefore closer to 1. According to this theoretical framework (Peng et al., 1995; Harrison and Stergiou, 2015; Ravi et al., 2020), α-DFA close to 1 (i.e., 1/f noise) would be considered as an optimal state of variability and a sign of a strong coordination between the sub-elements composing the system generating and organizing gait. Therefore, getting closer to 1 could be a rehabilitation goal for these patients. Previous studies supported this assumption since it would be possible to discriminate elderly fallers from non-fallers using LRA computation (Hausdorff, 2007) and as mentioned above, correlations were found between a low α-DFA and poor balance test scores in PD patients (Ota et al., 2014; Warlop et al., 2016). Further longitudinal studies should be conducted to confirm this hypothesis.

Several authors also studied the effects of different RAS on gait variability among healthy young (Kaipust et al., 2013; Marmelat et al., 2014) and old (Kaipust et al., 2013) subjects’ and on PD patients’ LRA (Dotov et al., 2017; Marmelat et al., 2020). On one hand, their results clearly showed that the use of an isochronous metronome lead to less persistence in gait (Kaipust et al., 2013; Marmelat et al., 2014; Dotov et al., 2017). On the other hand, the use of autocorrelated RAS allowed either to maintain α exponent at the level of non-cued gait, or even to have a more persistent stride-to-stride variability. However, these results cannot be compared perfectly with those of the present study since some of these studies (Kaipust et al., 2013; Marmelat et al., 2014) only included healthy subjects and since the acquisition times used were all short to compute LRA in a robust manner (5–6 min).

Dotov et al. (2017) and Marmelat et al. (2020) also tested ARAS on PD patients. As already discussed in the Introduction section, this study differs methodologically from theirs. Indeed, this study differs with the one of Dotov et al. (2017): longer acquisition time, RAS frequency set according to participants’ comfort cadence, known α-DFA used to create ARAS and longer track with less steering. Lastly, Dotov et al. (2017) did not asked patients to synchronize their step to the beats while this was the case for this present study. On the other hand, despite these differences, our results were similar. Unlike our results and those of Dotov et al. (2017), Marmelat et al. (2020) found significantly higher α-DFA values during ARAS (the 1:1 step-to-beat ratio version) compared to their CC. In their study, music was used to deliver ARAS when a simple beat was used in this study. As notified in the Introduction, music is composed of multiple “layers” giving music multiple frequency ranges making it a more complex auditory cue. This greater complexity could offer more degrees of freedom to patients compared to an usual metronome that could constitute a more rigid framework, even with an autocorrelated rhythm organization (Cavanaugh et al., 2017). This could partly explain why Marmelat et al. (2020) noticed an increase in the α-DFA during their ARAS. Also, music evokes emotions (Zatorre et al., 2007), improves motivation (Terry et al., 2012) and it is not currently possible to rule out potential effects of these features on the LRA. The second difference lies in the α-DFA used to produce the ARAS. Indeed, Marmelat et al. (2020) used an α-DFA ∼ 1 which is believed to be an optimal state of variability (Peng et al., 1995; Harrison and Stergiou, 2015; Ravi et al., 2020). The present study opted for an α-DFA = 0.78 representing the natural temporal organization of healthy gait as seen in previous studies (Warlop et al., 2017, 2018) and confirmed by the meta-analysis of Ravi et al. (2020). Based on the results of this study, that of Dotov et al. (2017) and Marmelat et al. (2020), the question that remains is which α-DFA to choose to get the optimal temporal organization of the autocorrelated RAS to be used with PD patients. This should be answered with future transversal and longitudinal studies evaluating the long-term effects of RAS using different α exponents as references.

This pilot study included nine mildly impaired patients with α-DFA within normative data of healthy patients (Warlop et al., 2017; Ravi et al., 2020). It would then be interesting to analyze the influence of the different RAS on a greater number of PD patients and at more advanced stages of the disease. Also, the long-term effect of RAS should be analyzed following a training program to determine whether short-term results are maintained or changed over the long term. Third, no analysis of synchronization between steps and RAS has been performed. This should be done in future similar studies. Lastly, even though the PD patients served as their own control group with CC, no control group composed with healthy subjects was included in this study. One of the prospects for the future is the use of new technologies, such as the smartphone, to produce RAS. These technologies would be able to assess patient’s gait continuously and to deliver ARAS structured with α-DFA adapted in real-time to the patient’s needs and situations as suggested by Hove et al. (2012) and Hristovski and Balagué (2012). Such a system should be tested with PD patients in future studies.

In conclusion, the temporal organization of the RAS has a marked impact on temporal organization of stride duration variability among PD patients. IRAS and RRAS lead to less persistence, whereas ARAS allowed to maintain gait variability closer to baseline. Given the results of this study and those of previous ones, the use of an autocorrelated metronome could therefore be an alternative when proposing auditory cueing to patients. However, future transversal and longitudinal studies must be conducted in order to determine the optimal α exponent used to produce autocorrelated RAS and to investigate the clinical utility of this type of metronome in comparison with each other RAS.
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Multimorbidity, the presence of two or more diseases in a patient, is maybe the greatest health challenge for the aging populations of many high-income countries. One of the main drivers of multimorbidity is diabetes mellitus (DM) due to its large number of risk factors and complications. Yet, we currently have very limited understanding of how to quantify multimorbidity beyond a simple counting of diseases and thereby inform prevention and intervention strategies tailored to the needs of elderly DM patients. Here, we conceptualize multimorbidity as typical temporal progression patterns of multiple diseases, so-called trajectories, and develop a framework to perform a matched and sex-specific comparison between DM and non-diabetic patients. We find that these disease trajectories can be organized into a multi-level hierarchy in which DM patients progress from relatively healthy states with low mortality to high-mortality states characterized by cardiovascular diseases, chronic lower respiratory diseases, renal failure, and different combinations thereof. The same disease trajectories can be observed in non-diabetic patients, however, we find that DM patients typically progress at much higher rates along their trajectories. Comparing male and female DM patients, we find a general tendency that females progress faster toward high multimorbidity states than males, in particular along trajectories that involve obesity. Males, on the other hand, appear to progress faster in trajectories that combine heart diseases with cerebrovascular diseases. Our results show that prevention and efficient management of DM are key to achieve a compression of morbidity into higher patient ages. Multidisciplinary efforts involving clinicians as well as experts in machine learning and data visualization are needed to better understand the identified disease trajectories and thereby contribute to solving the current multimorbidity crisis in healthcare.

Keywords: comorbidity networks, disease trajectories, population aging, diabetes mellitus, machine learning, data visualization, multimorbidity


1. INTRODUCTION

Multimorbidity might well be one of the defining challenges for healthcare systems of high-income countries in the twenty-first century (Pearson-Stuttard et al., 2019). Fueled by an aging population, the percentage of people with two or more health conditions is steadily increasing which in turn drives morbidity and mortality (Soh et al., 2020; Whitty et al., 2020). One of the drivers of the rise of multimorbidity is diabetes mellitus (DM) due to its large number of physical and mental risk factors and complications (Chiang et al., 2020). For instance, heart disease and stroke are well-established complications of diabetes whereas overweight, hypertension, or tobacco use are known risk factors for diabetes (Xu et al., 2018). These complications and risk factors might interact with each other in ways that have yet to be understood. Consequently, we currently have limited knowledge of how multimorbidity develops in type 2 DM (T2D) patients over their life course.

One of the reasons for this knowledge gap is that it is not at all clear how to define multimorbidity (Nicholson et al., 2019). Conventionally, multimorbidity is often defined as the occurrence of two or more health conditions in a patient. However, prognosis and treatment of a patient depend on which diseases actually do co-occur (Steinhaeuser and Chawla, 2009; Chmiel et al., 2014). Recent research showed that patients describe disease progression patterns in the form of typical sequences of diseases over their life course; so-called disease trajectories (Jensen et al., 2014; Kannan et al., 2016; Giannoula et al., 2018; Haug et al., 2020). For instance, using electronic health records a typical trajectory toward T2D has been identified in which patients acquire hyperlipidemia, hypertension, impaired fasting glucose and finally DM, in that order (Oh et al., 2016). This and related research shows that multimorbidity is better understood in terms of typical disease trajectories, rather than a simple count of diagnoses.

The emerging field of network medicine (Barabàsi et al., 2011) has greatly helped our understanding of how such trajectories might look like based on EHR or medical claims data (Jensen et al., 2012). A number of works sought to identify pairs or groups of diseases with a statistical tendency to co-occur (Hidalgo et al., 2009; Park et al., 2009; Chmiel et al., 2014; Fotouhi et al., 2018). In brief, at younger age patients typically acquire fewer and physiologically closely related disorders (e.g., mental disorders that co-occur with substance abuse). The situation changes drastically for elderly patients with multi-factorial chronic disorders, including DM, that serve as risk factors for other diseases across the entire diagnostic spectrum (Chmiel et al., 2014). The existence of such disease networks is a direct consequence of the complex networks of physiological processes that underlie most diseases (Menche et al., 2015). For instance, the OMIM database currently lists around 30 genetic locations that are believed to have a causative impact on DM (Hamosh et al., 2005). Most of these genes are involved in other diseases as well, meaning that multimorbidity arises due to shared pathophysiological processes of the cooccurring diseases (Klimek et al., 2016). To factor such findings into improved medical strategies for early prognosis and treatment of patients, we have yet to understand how these trajectories vary between patients having a certain disease or not. That is, is a certain trajectory specific for patients that will acquire, say, DM later in their life or not?

The interrelatedness of many different diseases across the entire spectrum hints at an interconnectedness of the organ systems underlying the individual diseases. The emerging field of network physiology seeks to improve our understanding of how organ systems affect and interact with each other (Bashan et al., 2012; Bartsch et al., 2015). Physiological systems have non-stationary, intermittent, scale-invariant, and nonlinear behaviors. Therefore, their output dynamics transiently change in time with different physiologic states and under pathologic conditions (Ivanov et al., 2016). The dynamics of these complex systems are further complicated by various coupling and feedback interactions among different subsystems, which are not fully understood (Ivanov et al., 2016). Also in DM complex interactions of different organ systems could lead to specific comorbidities.

Here, we identify disease trajectories that are specific for DM patients over their entire life course using a hierarchical temporal clustering procedure. A cluster is given by a set of diseases that all patients in that cluster must have been diagnosed with so far, and another set that none of the patients has been diagnosed with so far. When patients acquire yet another disease, they might “move” to a new cluster, which can be described by transition probabilities between individual clusters. This induces a network structure in which the disease clusters can be represented as nodes and links indicating how likely a patient is to progress from one cluster to the next. Walks on this network that end at a specific cluster therefore encode the temporal information of all typical disease trajectories of patients with a corresponding set of diseases. By utilizing a hierarchical clustering algorithm (Chavent et al., 2007), we can further investigate these trajectories on multiple resolution levels.

By performing a matched comparison of the disease trajectories of DM patients with non-diabetic patients, we can identify those trajectories that are specific for DM. Due to the high number and hierarchical organization of disease clusters and their associated transition network, it is a considerable challenge to enable an exploration of these results for non-technical experts. We, therefore, also developed an interactive network visualization solution that allows, e.g., clinical practitioners, to perform controlled comparisons of DM and non-DM trajectories. We conclude this work by showing that our analysis and visualization system indeed recovers meaningful diabetic disease trajectories, from early risk factors to late-stage complications and show how our work can be used to generate new hypotheses on sex-specific differences of these trajectories.



2. DATA AND METHODS


2.1. Study Population

Our study is based on a medical claims dataset covering approx. 45,000,000 hospital stays of about 9,000,000 Austrians over the time period from 1997 to 2014 (Haug et al., 2020). For each stay we consider patient age (5 year groups), sex and pseudo-ID, the main and side diagnoses associated with the stay, its date and type of discharge (e.g., normal release, transfer, or death). Diagnoses are provided as three digit ICD-10 codes. For the analysis we use 1,074 codes ranging from A00 to N99 and group them into 131 disease blocks as defined by the WHO.

The DM patient cohort consists of the 250,498 patients who (i) did not receive a diagnosis with ICD-10 code from A00–N99 between 1997 and 2002, (ii) and who did receive a diagnosis with ICD-10 code from E10 to E14 (DM) during the observation period from 2003 to 2014. The mean age of the patients at the beginning of the observation period is 60 y; 53% of the patients are male. Each cohort patient is matched with 2 non-diabetic control patients of the same age, sex, and region of origin, who (i) did not receive a diagnosis with ICD-10 code from A00 to N99 between 1997 and 2002, and (ii) who did not receive a diagnosis with ICD-10 code from E10 to E14 during the observation period.



2.2. Clustering

The health state of each patient at the end of each half-year within the observation period is represented by a binary row vector v = (v1, v2, …, vM) of length M = 131, where each dimension corresponds to one of the 131 ICD-10 code blocks considered (see Supplementary Material). For 1 ≤ d ≤ M, we have vd = 1 if the patient has received a diagnosis from diagnosis block d until the end of that half-year and 0 else. The vectors representing the health states of each patient at the end of each half-year are then clustered using a divisive clustering algorithm called DIVCLUS-T, which was introduced in Chavent et al. (2007). The same clustering method has been used in Haug et al. (2020). This method defines a cluster by means of a set of inclusion and exclusion criteria (presence or absence of certain diagnoses) that all patients in the cluster have to fulfill. Each clustering step therefore divides an existing cluster by introducing an additional inclusion or exclusion criterion in a way that minimizes intra-cluster variance (Chavent et al., 2007). We use the elbow method to identify the optimal size of the set of disease clusters and hierarchically group these clusters into eleven so-called macro-clusters. The result is a multi-level hierarchy of a few macro-clusters (defined by distinct inclusion and exclusion criteria), each macro-cluster can further be divided into more fine-grained clusters using additional inclusion/exclusion criteria. More details on the clustering can be found in the Supplementary Material.

Note that the clustering is performed on the cohort of DM patients; control patients are subsequently assigned to the obtained clusters according to their diagnoses.



2.3. Matched Disease Trajectory Comparison

Disease trajectories of patients are described by sequences of clusters and transitions between them (Haug et al., 2020). If a patient of sex s and age group a is assigned to cluster j in one half-year period and to cluster k in the next half-year, we say the patient steps from j to k. For each sex and age group this gives rise to the cluster transition rate qs, a, k, j (Haug et al., 2020), which is the probability that a patient in cluster k with age a and sex s steps to cluster j in each half-year. We compute the tensor qs, a, k, j for two different patient populations. First, the tensor qDM describes disease trajectories for DM patients. Second, the tensor qC describes disease trajectories for their matched control group. The element-wise tensor difference, [image: image], gives the risk difference between disease trajectories of diabetic and non-diabetic patients. The absolute risk difference RD measures whether DM patients are more (RD > 0) or less (RD < 0) likely to progress from one multimorbid health state (disease cluster) to the next compared to their non-diabetic controls. By taking the average of RD over all age groups a and/or sex s, we compute age- and/or sex-independent risk differences. To measure differences between disease trajectories of male and female DM patients, we consider sex risk difference [image: image], which we again average over all age groups to obtain an age-independent sex risk difference.



2.4. Visualization Strategy

As a means to intuitively explore the results of our analysis, we have built an interactive exploration tool where users can perform controlled trajectory comparisons by themselves. The tool shows the composition of clusters and allows one to filter trajectory data by sex and age groups, to specify thresholds for transition probabilities and to re-arrange the network layout. Two groups of patients (specified by DM or non-DM and male, female, or both) can be compared with each other and the results can be downloaded for further analysis. A detailed description is given in section 3.6.




3. RESULTS


3.1. Baseline Characteristics

We identify 250,498 DM patients in our study population and 500, 996 in the matched control group. Of the study population, 116, 758 (47%) are female. The median age of the population at the beginning of the observation period is 67 (54–77) for females and 58 (48–67) for males; values in brackets give the range from lower to upper quartiles. The median number of diagnoses per patient is 8 (5–12) for females and 8 (4–11) for males in the DM group, whereas in the control group we find 3 (1–7) for females and 3 (1–6) for males.



3.2. Multi-Level Clusters for Multimorbid Health States

We identify 128 disease clusters that can be grouped into 11 macro-clusters. Each cluster and macro-cluster is described by a set of diagnoses that all patients in that cluster must have (inclusion criteria) and diagnoses that none of the patients have (exclusion criteria). For the 11 macro-clusters these conditions are reported in Supplementary Tables 1–11. Each of these macro-clusters contains a variable number of clusters listed with their inclusion and exclusion criteria in Supplementary Tables 12–139.

To give an overview of these results, we give a list of all macro-clusters with diagnoses that appear at least once as inclusion criteria in a sub-cluster of that macro-cluster in Table 1. The macro-clusters are labeled with short names and roughly correspond to the inclusion criteria of the most populated cluster in each macro-cluster. The clusters are hierarchically ordered in a way such that macro-clusters with a higher ID tend to have more inclusion criteria, i.e., the patients in that cluster typically have more diagnoses.


Table 1. For each macro cluster, the table lists the diagnosis blocks which appear as most frequent inclusion criteria in at least one cluster belonging to that macro cluster, along with a descriptive short name and mean patient age.

[image: Table 1]

In brief, we first find a macro-cluster of miscellaneous diseases, cluster 0. We then have a series of macro-clusters characterized by metabolic disorders, disorders of lens, cerebrovascular diseases, malignant neoplasms, obesity, diseases of esophagus, and heart diseases, respectively. Finally, we have three macro-clusters in heart diseases combined with chronic lower respiratory diseases, cerebrovascular diseases, and renal failure, respectively.



3.3. Disease Trajectories

Results for the transition rates between the 128 identified clusters are shown in Figure 1 as a heat map, aggregated over age, and sex. First, we note the by construction upper-triangular shape of the matrix indicating that patients always step to a cluster with a higher ID than their current one. Second, we can clearly see the macro-clusters as blocks along the diagonal with comparably high transition rates. This means that most steps (health state transitions) take place within the same macro-cluster and steps from one macro-cluster to another occur more seldomly.


[image: Figure 1]
FIGURE 1. Heatmap of cluster transition rates aggregated over age and sex. The transition matrix is of triangular shape, meaning that there is a by construction hierarchical order of how patients progress in their multimorbid health states. The multi-level hierarchy is clearly discernible by the triangular blocks with increased transition rates along the diagonal, the macro-clusters.


In Figure 2, we show the network of disease trajectories for DM patients, filtered to links with a minimum weight (transition rate) of 0.007. Node size gives the number of patients in the cluster, color describes the in-hospital mortality in the cluster. Again, we note the hierarchical order of macro-clusters. In general, there is a clear trend that the higher the cluster ID, the higher the mortality. Highest mortality is found in the macro-cluster for patients with heart diseases and renal failure, where the patients also acquired respiratory or cerebrovascular diseases before stepping into that macro-cluster. An exception to this general trend is the macro-cluster of malignant neoplasms, where mortality is particularly high in cluster 51 (see Supplementary Table 63) when cancer combines with aplastic anemia.


[image: Figure 2]
FIGURE 2. Trajectories of DM patients. The macro-clusters are shown as green squares containing a variable number of disease clusters. Cluster size is proportional to the number of patients in that cluster; color gives mortality (the more intense the red, the higher the mortality). We show links for transitions between macro-clusters or between clusters of the same macro-cluster with a weight (transition rate) of at least 0.007. DM patients typically start in the “Misc” cluster and progress via metabolic disorders and eye diseases toward heart diseases that combine with respiratory and cerebrovascular diseases, as well as renal failure.


The general pattern of disease trajectories in DM patients can be described as follows. Patients start their journey in the macro-cluster “Misc” which is defined by exclusion criteria for neoplasms, obesity, metabolic disorders, disorders of lens, heart diseases, cerebrovascular diseases and diseases of the esophagus, stomach and duodenum. Loosely speaking, patients are at their “healthiest” in this cluster. For instance, the disease cluster 0 consists solely of exclusion criteria and has no inclusion criteria (Supplementary Table 12). Next, they often acquire either metabolic disorders or disorders of the lens. These diseases are typically followed by neoplasms, cerebrovascular diseases, or diseases of oseophagus, stomach, and duodenum. The subsequent stage is the acquisition of heart diseases, particularly if diseases from the obesity cluster are also present. From the combination of diabetes with heart diseases we see the development of highly multimorbid patient states with additional diagnoses of, e.g., stroke (cluster 105, Supplementary Table 117), chronic lower respiratory diseases coupled with pneumonia (cluster 99, Supplementary Table 111) or renal failure (cluster 113, Supplementary Table 125).

The dynamics within the individual macro-clusters is typically of the following form. Patients “start out” in a cluster that has the same inclusion criteria as the corresponding macro-cluster, e.g., cluster 111 (Supplementary Table 123) that contains patients with heart diseases and renal failure. With a transition rate of 0.0074 patients step into cluster 118 (Supplementary Table 130) where they are additionally diagnosed with diseases of the arteries and disorders of the skin and subcutaneous tissue. Other patients of cluster 111 acquire organic mental diseases (such as dementia) and other degenerative diseases of the nervous system and step with a transition rate of 0.005 to cluster 122 (Supplementary Table 134). In summary, we see that all patients in a macro-cluster share a certain set of diabetic comorbidities and then branch into different additional comorbidities within the same macro-cluster. Occasionally we observe similar trajectories within different macro-clusters. For instance, cluster 110 (Supplementary Table 122) has the same inclusion criteria as cluster 122, with cerebrovascular diseases instead of renal failure.



3.4. Comparing Trajectories of DM Patients With Their Non-diabetic Controls

A graphical summary of the results of a matched trajectory comparison between diabetes patients and their non-diabetic controls is shown in Figure 3. We show cluster and macro-clusters as in Figure 2, however, here link weights represent the absolute risk difference RD of the corresponding cluster transition. In principle, we show transitions that are more frequent for DM patients as blue and those more frequent for non-DM patients in red. However, the network is clearly dominated by blue links indicating that DM patients have higher rates for almost all cluster transitions compared to non-diabetic controls. This means that diabetes patients progress faster along their disease trajectories.


[image: Figure 3]
FIGURE 3. Controlled trajectory comparison of DM patients with their non-diabetic controls. We show the unfiltered disease trajectory network with weights giving the difference in cluster transition rates, RD. The more intense the blue (red), the more (less) frequent is the corresponding cluster transition in DM patients compared to non-DM patients. Almost all cluster transitions are overrepresented in DM patients, meaning that diabetes patients overall progress within shorter time-periods toward highly multimorbid health states. This is particularly the case for macro-clusters with heart diseases.


We observe particularly large differences for macro-clusters that include heart diseases, i.e., that have a cluster ID of 7 or higher. For instance, patients with heart diseases in cluster 7 step at rate 0.016 to cluster 10 (heart diseases and renal failure) if they have DM, whereas the rate for the controls is 0.0084. From cluster 8 (heart diseases and chronic lower respiratory diseases) DM patients step at rate 0.020 to cluster 10; non-diabetes patients at rate 0.012. Similarly, from macro-cluster 9 (heart diseases and cerebrovascular diseases) DM patients have a rate of 0.016 for transitions to cluster 10; for non-DM patients the rate is 0.0097.

Considering the dynamics within macro-clusters, there are clearly discernible clusters with concentrated DM trajectories.

These can be seen in Figure 3 as clusters with many incoming and/or outgoing links with a high RD (blue color). This includes cluster 94 (Supplementary Table 106), which contains ischaemic heart diseases, other forms of heart diseases and diseases of arteries, and “attracts” patients from its surrounding clusters much stronger if they have DM. There is an abundance of DM trajectories leaving from cluster 58 (Supplementary Table 70, obesity and metabolic disorders) and leading to clusters that also contain ischaemic heart diseases (59, Supplementary Table 71) or episodic and paroxysmal disorders (62, Supplementary Table 74).



3.5. Comparing Trajectories of Male and Female DM Patients

Figure 4 compares the trajectories of male and female DM trajectories. The cluster layout is again taken from Figure 2; link weights now indicate the sex risk difference SRD for the individual cluster transitions. Transitions that are dominated by male DM patients (SRD > 0) are shown in blue, female dominated ones in red (SRD < 0). Overall, we see that there is a clear tendency for most transitions between macro-clusters to be slightly overrepresented in female DM trajectories. One exception to this general trend are malignant neoplasms, which have a stronger in-flow of male DM trajectories. For reference, we show the trajectory network for the sex risk differences computed in the control group, instead of the DM group, in Supplementary Figure 1. There we see the same general tendency of more female inter-macro-cluster transitions but more male transitions toward malignant neoplasms. This means that these sex-specific features of the macro-cluster transitions are not specific to the DM population and rather describe general sex differences in the population.


[image: Figure 4]
FIGURE 4. Controlled trajectory comparison of male and female DM patients. Here, link weights are given by the age-averaged sex risk difference SRD. Blue (red) links indicate that the corresponding cluster transition is more (less) frequently observed in trajectories of male DM patients compared to female DM patients. We see that certain cluster transitions in the highly multimorbid macro-cluster 10 is dominated by male DM patients, whereas some trajectories in the obesity macro-cluster are dominated by female patients.


On the level of individual clusters, we observe a couple of substantial sex risk differences between male and female DM patients that cannot be observed in the non-diabetic control. For male DM patients this includes trajectories toward cluster 95 (Supplementary Table 107) with ischaemic heart diseases, other heart diseases and diseases of the intestines and trajectories originating from cluster 118 (Supplementary Table 130, diseases of the heart, arteries, skin, and renal failure). There are also male-dominated DM trajectories that combine heart diseases, cerebrovascular diseases, diseases of the arteries and dorsopathies (toward cluster 107, Supplementary Table 119), which cannot be observed in non-diabetic controls.

Females trajectories are particularly over-represented for DM patients in the obesity macro-cluster. These trajectories involve cluster 60 (Supplementary Table 72) where obesity occurs with arthropathies and eventually combines with dorsopathies toward cluster 65 (Supplementary Table 77).



3.6. Visual Exploration of Results

In order to provide medical practitioners with an intuitive way to gain insights into our analysis results, we developed the Disease Net Viewer1, an online interactive visualization tool. The viewer gives users an overview of the cluster distributions within the hierarchy (see Figure 2), as well as the option to explore details, e.g., on in- or exclusion criteria, and the possibility to compare disease trajectories as shown in Figures 3, 4.

To convey the cluster hierarchy and disease trajectories, our tool displays clusters and their interrelations within a hierarchical node-link diagram. Clusters are represented as nodes that inform users about the cluster size (i.e., the number of patients within a cluster) and the cluster mortality. The cluster size is thereby represented in the node size. Cluster mortality is represented in the node color, by a gradient between white (low mortality) and red (high mortality). The detailed values can be accessed in a tooltip on mouse-over. Macro-clusters describing a set of clusters that share common inclusion and exclusion criteria, are represented by compound nodes that encompass all associated cluster nodes. The mean age of patients within a macro-cluster can be accessed on mouse-over.

The probability of a patient transitioning from one (macro-)cluster to another, is conveyed by the link between a pair of cluster nodes. The link's thickness and color-intensity thereby informs a user about the transition probability. The actual probability value can be accessed via tooltip. The minimum probability threshold for links to be included in the visualization can be adjusted by the user.

For a clean overview of clusters and their interrelations, we position macro clusters in an elliptical layout that highlights the flow of patients between clusters. We thereby place macro cluster 0 (lowest mortality) in the top left corner and macro cluster 10 (highest mortality) in the bottom right corner. Low-level clusters are placed in sequential order on a rectangular grid within their encompassing compound nodes. To further facilitate the exploration of the disease network topology, the selection of a cluster node visually highlights all its down-stream neighbor clusters.

Detailed information on cluster conditions, i.e., their inclusion and exclusion criteria, is provided in the cluster and macro cluster tables (see Figure 5), providing the criterion (diagnose) description and the ICD-10 range. The tables and the node-link representation are linked to support more efficient exploration of the underlying data: browsing the table highlights the cluster node that corresponds to the currently selected table row. Selecting a node in the network, filters the table content to display the matching cluster criteria. The table content can also be searched, e.g., to find specific clusters that include or exclude certain ICD-10 codes.


[image: Figure 5]
FIGURE 5. The Disease Net Viewer side bar hosts the data selection (and comparison) panel (Top), the macro cluster table (Middle), and the cluster table (Bottom). The data selection panel controls, which data (sub)set is displayed in the network view's node link representation: average, sex specific average, age groups, DM cohort/control group, male/female. The cluster tables display inclusion and exclusion diagnose criteria for cluster memberships.


Finally, the Disease Net Viewer enables users to compare trajectory probabilities between two different data (sub)sets; for instance between male and female DM patients, different age groups, or the DM cohort and the control group. The difference in probabilities is thereby visually highlighted in each transition link's color: a negative difference is indicated by a color gradient from white toward red; and a positive difference by a color gradient toward blue. The exact difference can again be accessed in the link's tooltip.




4. DISCUSSION

While the challenge of multimorbidity in an aging population has long been recognized in medical research, it is not clear yet how we can properly quantify multimorbid health states beyond a simple counting of the number of diseases. Consequently, we currently have limited understanding on how multimorbidity in DM patients differs from the general population in terms of disease trajectories and how they lead to highly multimorbid health states and high mortality. This requires not only an adequate formal framework to quantify multimorbidity in patients, but also a way to compare different patient populations.

To fill this current knowledge gap, we built on a recently developed framework to quantify disease trajectories in patients (Haug et al., 2020). The main idea here is that diseases do not appear randomly and independent in patients, but in specific temporal patterns that can be identified using a hierarchical clustering approach. This procedure leads to disease clusters that can easily be interpreted by non-technical experts in terms of inclusion and exclusion criteria for certain diseases. Moreover, the hierarchical ordering of clusters encodes the disease history of patients within a cluster to some extent, as there are logical constraints on which cluster transitions are possible (e.g., it is not possible to step from a cluster where a certain disease is an inclusion criterion to another cluster where the same disease is an exclusion criterion).

Here, we extended this disease trajectory framework in a way that allows for matched comparisons of the trajectories of different patient populations. In particular, we considered DM patients and compared them to a cohort of matched non-diabetic controls. Furthermore, we compared the trajectories of male and female DM patients. To identify those sex differences that are specific for DM patients, we compared these results to sex differences in the matched control group.

We showed that the trajectories of DM patients can be organized in a multi-level hierarchy of macro-clusters and more fine-grained disease clusters. Thereby DM patients start their trajectories in a cluster with no or very few inclusion criteria for diseases at an age of around 61 y. As they age, they progress from early diabetic complications and comorbidities (metabolic disorders, eye disorders) to more multimorbid health states characterized by cardiovascular diseases in combination with cerebrovascular diseases, respiratory diseases, and/or renal failure.

By comparing the trajectories of DM patients to those of their non-diabetic controls, we find that DM patients show in general substantially higher rates at which they transition between clusters. This means that the progression from relatively healthy clusters of low mortality to highly multimorbid clusters with high mortality occurs at a much faster pace in DM patients compared to their non-diabetic controls. In this sense, DM accelerates the unhealthy aging process substantially. This acceleration is particularly strong for trajectories that involve heart diseases. This finding clearly suggests that DM (or its absence) plays an important role in the so-called compression of morbidity, i.e., the hypothesis that healthy aging can be achieved by compressing the burden of lifetime illness into a shorter period of time before death (Fries, 1980). We find that patients without DM might “end up” in the same highly multimorbid high-mortality disease clusters as DM patients, but they move toward these clusters at a much slower rate. In this sense, (cardiovascular) morbidity of non-diabetic patients is compressed toward higher ages.

The complex and highly multimorbid disease trajectories (spanning health conditions across the entire diagnostic spectrum) we identified in this work strongly suggest that DM with its precursors and complications arises due to cascading failures in the network of interconnected and interacting organ systems that make up the human organism (Ivanov and Bartsch, 2014). The topological structure of these networks of organ system is yet to be understood in particular from a mathematical and modeling point of view (Ivanov et al., 2016). Our novel statistical approach for matched cohort comparisons of disease trajectories might further the network physiology agenda by enabling the generation of new hypotheses regarding how such networks might differ from each other in different patient cohorts.

In particular, our novel framework also allowed us to compare the trajectories of male and female DM patients which can now be interpreted in terms of how the observed differences might be related to physiological differences. We find a tendency that females have overall higher cluster transition rates than males. Given the higher life expectancy of females compared to males, this finding is maybe surprising. However, recent research repeatedly showed that diabetes is a stronger risk factor for a number of complications in females compared to males. Females with DM had a higher mortality rate for cardiovascular diseases, coronary heart disease and stroke compared to male DM patients (Wang et al., 2019), even though studies claim that estrogen has a protective effect against DM (Tramunt et al., 2020). However, the general population of DM patients is over 60 years old and therefore already underwent menopause. The decrease of estrogen in postmenopausal women is known to increase the risk of impaired glucose tolerance, obesity and insulin resistance (Tramunt et al., 2020). That could be the reason why female DM patients show a faster progression along their trajectories in particular for disease clusters that involve obesity in combination with arthropathies and/or dorsopathies. Two key factors of developing diabetes and progression to its complications are overweight and obesity. Studies reported that women had a higher average BMI than men when first diagnosed with diabetes (Logue et al., 2011; Paul et al., 2012). Therefore, women might have more complications and diseases related to obesity. However, also social factors could play a role. For instance, a US study revealed that women were less likely to adhere to antidiabetic medication compared to men (Kirkman et al., 2015). Further it has been demonstrated that women with diabetes still receive less guideline-recommended care than men, even in the most developed countries (Peters and Woodward, 2018).

The investigation of multimorbidity and its associated trajectories also requires the development of novel tools to visualize and communicate its properties. In the scope of this work, we thus developed an interactive online viewer for illustrating cluster compositions and trajectories in an intuitive way for non-technical audiences, available under the address https://csh.ac.at/vis/diseasenet_viewer/. The visual interface currently is limited to representing the results of our analysis. In the future, however, it might be interesting to increase the tool's capabilities, in order to also support data scientists and medical professionals alike already during the data analysis process. To this end, the extension of our tool to support interactive clustering and statistical evaluation of the raw patient data will be of interest. Furthermore, at the moment our tool is only capable to compare DM patients with the general population though it is straight-forward to extend the analysis to focus on cohorts defined by other diagnoses (combinations) than DM and compare those with the general population.

With the use of medical claims data come a number of limitations concerning our study. Diagnoses might be misclassified or underrepresented particularly if they are not relevant for billing purposes. As diagnoses are only available for hospital care, also health problems that are typically treated in outpatient settings will likely be underreported in the data. Further, our study does not include information on socio-economic (education, family history, migration status, socio-economic status, etc.) and clinical parameters (BMI, HbA1c, etc.). Information on diagnoses made before the start of the observation period are also not reported in the data.

In conclusion, we have presented a novel methodological framework to perform matched comparisons between different patient populations in terms of their disease trajectories. We find that early prevention and treatment of DM is a key factor to enable healthy aging by compressing cardiovascular diseases, respiratory diseases, cerebrovascular diseases, renal failure, and a combination thereof toward higher ages. Further interdisciplinary efforts that bring clinical knowledge together with machine learning and high-dimensional data visualization are necessary to better understand how to treat an aging population.
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The analysis of human brain functional networks is achieved by computing functional connectivity indices reflecting phase coupling and interactions between remote brain regions. In magneto- and electroencephalography, the most frequently used functional connectivity indices are constructed based on Fourier-based cross-spectral estimation applied to specific fast and band-limited oscillatory regimes. Recently, infraslow arrhythmic fluctuations (below the 1 Hz) were recognized as playing a leading role in spontaneous brain activity. The present work aims to propose to assess functional connectivity from fractal dynamics, thus extending the assessment of functional connectivity to the infraslow arrhythmic or scale-free temporal dynamics of M/EEG-quantified brain activity. Instead of being based on Fourier analysis, new Imaginary Coherence and weighted Phase Lag indices are constructed from complex-wavelet representations. Their performances are first assessed on synthetic data by means of Monte-Carlo simulations, and they are then compared favorably against the classical Fourier-based indices. These new assessments of functional connectivity indices are also applied to MEG data collected on 36 individuals both at rest and during the learning of a visual motion discrimination task. They demonstrate a higher statistical sensitivity, compared to their Fourier counterparts, in capturing significant and relevant functional interactions in the infraslow regime and modulations from rest to task. Notably, the consistent overall increase in functional connectivity assessed from fractal dynamics from rest to task correlated with a change in temporal dynamics as well as with improved performance in task completion, which suggests that the complex-wavelet weighted Phase Lag index is the sole index is able to capture brain plasticity in the infraslow scale-free regime.

Keywords: human brain temporal dynamics, functional connectivity, infraslow, arrhythmic, scale-free, fractal connectivity, complex-wavelet, MEG data


1. INTRODUCTION


1.1. Human Brain Univariate Temporal Dynamics

The dynamics of Human brain activity can be studied non-invasively using electro- and magnetoencephalography (EEG and MEG, respectively). Interpreted as resulting from the synchronous activation of neuronal populations in specific frequency bands, these fluctuations are often analyzed as fast (10 Hz and above) oscillatory rhythms now associated with cognitive functions, such as perception, attention, or decision making (cf. e.g., Freeman, 2000; Jensen and Colgin, 2007), described by band-limited models, and analyzed by classical Fourier transform-based spectral analysis.

At the turn of the 21st century, the large-band infraslow activity of the brain (typically below 1 Hz), which for long had been considered as either instrumental or head-movement noise, received growing interest; it has now been documented as a prominent part of recorded electromagnetic brain signals and a critical component of brain activity (Gong et al., 2003; Stam and De Bruin, 2004; Vanhatalo et al., 2004; Miller et al., 2009; Werner, 2010). This large-band infraslow activity in the brain differs significantly from band-limited oscillations in the sense that it is not characterized by specific frequencies or scales of times but rather corresponds to arrhythmic, or scale-free, temporal dynamics. While exact scale-free dynamics remains debatable (Dehghani et al., 2010; Ignaccolo et al., 2010), it has been proposed by an abundant literature (cf. e.g., Vanhatalo et al., 2004; Dehghani et al., 2010; He et al., 2010; Van de Ville et al., 2010; He, 2011, 2014; Zilber et al., 2012; Buzsáki and Mizuseki, 2014; Gadhoumi et al., 2015; La Rocca et al., 2018b) that infraslow macroscopic brain activity is better described by a scaling exponent (historically the power-law exponent of the Fourier spectrum and more recently and relevantly the selfsimilarity exponent H) that relates together dynamics across a large continuum of slow time scales (or low frequencies). While most oscillatory regimes are only observed in evoked activity, elicited by stimuli, infraslow scale-free brain temporal dynamics are persistent, observed both at rest and during task performance or even in unconscious states (e.g., sleep stages). It was also shown that infraslow scale-free brain temporal dynamics are modulated when contrasting rest and task-related brain activity, task-inducing systematically a decrease in H and faster infraslow dynamics (Bhattacharya and Petsche, 2001; Linkenkaer-Hansen et al., 2004; Vanhatalo et al., 2004; Popivanov et al., 2006; Bianco et al., 2007; Buiatti et al., 2007; He et al., 2010; Zilber et al., 2013; La Rocca et al., 2018b). Infraslow scale-free brain activity has thus been hypothesized to be functionally associated with neural excitability (He, 2014). Altered scale-free brain dynamics has also been reported in a specific condition, such as Alzheimer's disease for which larger selfsimilarity exponents were reported in multiple brain areas (e.g., lateral temporal lobes, insula, etc.) involved early in the neurodegenerative process (Maxim et al., 2005).

Infraslow arrhythmic brain activity can be efficiently described with large-band scale-free models, such as selfsimilar processes (fractional Brownian motion and fractional Gaussian noise) (Mandelbrot and van Ness, 1968). It is also now well-established and documented that, while Fourier analysis can be used to assess 1/f power-law spectra at low frequencies, accurate and robust assessments of scale-free dynamics requires replacing Fourier-based spectral estimation with multiscale wavelet analysis. Interested readers are referred to Flandrin (1992), Muzy et al. (1993), Veitch and Abry (1999), Kantelhardt (2008), and Abry et al. (2019b) for methodological developments and to Ciuciu et al. (2008, 2012, 2014), and La Rocca et al. (2018b) for applications to neuroimaging data. Further, it has recently been shown that the self-similar description of scale-free temporal dynamics could be enriched by combining the concept of multifractality with that of selfsimilarity (Wendt et al., 2007; Abry et al., 2019b), requiring the use of wavelet-leaders, consisting of non-linear non-local transforms of wavelet coefficients, for practical analysis. The potential interest of multifractality for the analysis of fMRI and M/EEG signals has been investigated in e.g., Shimizu et al. (2004), Popivanov et al. (2005), Popivanov et al. (2006), Shimizu et al. (2007), Ciuciu et al. (2008, 2012), Proekt et al. (2012), and La Rocca et al. (2018b).



1.2. Human Brain Multivariate Temporal Dynamics: Functional Connectivity

Remote brain regions are known to interact within large scale functional networks (e.g., the default Mode Network at rest), which mediate the information flow inside the brain integrating the activity of functionally segregated modules that are activated in particular mental states, task execution, or health condition (Power et al., 2011). These interactions (correlations, delays, phase synchronization, etc.) between different brain regions are quantified by indices of similarity computed from signals collected in each region and are referred to as functional connectivity. Assessing functional connectivity thus entails performing a multivariate analysis of the temporal recordings, thus complementing univariate analysis of each signal separately. Classically, functional connectivity is assessed mostly from band-limited signals reflecting the oscillatory activity of the brain, by measures of cross (bivariate) second-order statistics (correlation coefficient, cross-correlation function, etc.). However, M/EEG measurements suffer from the so-called volume conduction effects: Linearity in Maxwell equations and electromagnetic quasi-static approximation (for the forward model below 100 Hz) induces a linear mixing of electromagnetic sources on M/EEG sensors with negligible temporal delays. Close-by EEG electrodes or SQUID MEG sensors thus redundantly capture brain activity from a given current cortical dipole, inducing spurious correlations amongst recordings and thus precluding a relevant assessment of functional connectivity (Nolte et al., 2004; Stam et al., 2007; Vinck et al., 2011). Source-space reconstructed signals are documented to still suffer from residual volume conduction effects because of the approximate and imperfect nature of inverse problem resolutions (Siebenhühner et al., 2016; Palva et al., 2018). The design of indices robust to such spurious correlations has been based on measuring average phase delays, such as in the Phase Locking Value (Stam et al., 2007), and also naturally calls for the use of Fourier-based cross-spectral estimation. Indeed, the Fourier transform, being by definition based on complex numbers, permits us to automatically incorporate phases and thus delays in the assessment of functional connectivity: zero delay between correlated signals corresponds to zero phase and imaginary part but non-zero real part for the cross-Fourier spectrum (on average). Therefore, the moduli of the cross-Fourier spectrum and the coherence function (F-COH) are affected by volume conduction effects, but their imaginary parts and phases are robust to such spurious effects and in theory depart from zero only for dependent sources with actual delays: a crucial property for assessing functional connectivity. This observation has led to the design, study, and use of the Imaginary Coherence function (F-ICOH) (Nolte et al., 2004) and the (weighted-)Phase Lag Index (F-wPLI) (Vinck et al., 2011) as relevant indices to assess functional connectivity for the band-limited oscillatory brain activity measured by M/EEG measurements. Interested readers are referred to e.g., Engel et al. (2001), Varela et al. (2001), Nolte et al. (2004), Stam et al. (2007), Vinck et al. (2011), and Siegel et al. (2012) for thorough reviews and further details (see also section 2.1 for definitions). Beyond second-order statistics and linear correlation, higher-order (non-linear) dependencies have also been investigated using directed partial correlations; moreover, the Granger causality approach has been used to infer causal links, see Sakkalis (2011) for a review.

Functional connectivity has so far mainly been measured via the band-limited oscillatory activity of the brain and has hardly been applied to characterize the infraslow arrhythmic brain activity. Preliminary attempts in that direction (Achard et al., 2008; Ciuciu et al., 2014), though based on wavelet representation, remained tied to the coherence function, hence essentially to direct correlation, and are thus severely impaired by volume conduction effect in functional connectivity assessment in M/EEG. This lack of functional connectivity tools dedicated to the infraslow regime is partly due to the role infraslow arrhythmic temporal dynamics to brain activity remaining controversial but also because conceptual and practical tools reconciling the modeling and analysis of both multivariate and scale-free dynamics were lacking. This situation changed recently with the theoretical definition and formal study of multivariate selfsimilarity (Didier and Pipiras, 2011) as well as with the design and assessment of multivariate wavelet transform based practical tools (Wendt et al., 2017; Abry and Didier, 2018a,b; Abry et al., 2019a,b), thus permitting the investigation of functional connectivity within the infraslow arrhythmic brain activity, at the core of the present work.



1.3. Goals, Contributions, and Outline

The present work aims to revisit the analysis of functional connectivity in human brain activity in two ways:

First, functional connectivity assessment will be based on the on-going (or spontaneous) infraslow arrhythmic (or scale-free) activity of the human brain rather than on stimulus-induced band-limited oscillatory faster rhythms. This will be referred to as functional connectivity assessed from fractal dynamics (see La Rocca et al., 2018a for a preliminary attempt).

Second, indices quantifying functional connectivity from fractal dynamics will be constructed from multivariate complex wavelet transforms rather than from Fourier-based cross-spectral analysis. The key intuitions underlying the design of these indices are double: Based on wavelet transforms, these tools will inherit from their well-documented performance and robustness for the analysis of scale-free dynamics (Flandrin, 1992; Abry and Veitch, 1998; Veitch and Abry, 1999, 2001; Abry et al., 2000, 2019b); Complex wavelets allow us to incorporate phase information in the analysis of multivariate cross-temporal dynamics.

To that end, after a brief recall of Fourier-based spectral estimation and the classical Fourier-based functional connectivity indices (F-ICOH and F-wPLI) in section 2.1, Complex wavelet transforms and the corresponding Complex Wavelet-based functional connectivity indices (W-ICOH and W-wPLI) are defined in section 2.2. The performance of several Complex Wavelet-based functional connectivity indices proposed here are compared against the others, and against their corresponding Fourier counterparts, by means of Monte Carlo numerical simulations, involving a large number of independent drawings of synthetic signals, sampled from stochastic processes commonly used to model scale-free temporal dynamics, multivariate fractional Brownian motions, and multivariate fractional Gaussian noises (cf. section 2.3). Several scenarios (different temporal dynamics, connectivity networks, additive trends) are investigated to assess the interest and relevance of the proposed Complex Wavelet indices (W-ICOH and W-wPLI) compared to Fourier-based ones in terms of estimation performance and robustness to trends.

The proposed Complex Wavelet indices assessing functional connectivity from fractal dynamics are extensively tested on MEG data, collected on 36 individuals, both at rest and during a visual discrimination learning task. The experimental data are described in section 3 (see also Zilber et al., 2014).

Analyses of functional connectivity assessed from fractal dynamics within infraslow arrhythmic cross temporal dynamics regime, ranging from 0.1 to 1.5 Hz for this data set (La Rocca et al., 2018b), are reported in section 4 and discussed in section 5. The proposed Complex Wavelet indices are demonstrated to have a high sensitivity in capturing significant and meaningful group-level functional connectivity assessed from fractal dynamics networks both at rest and during task performance, which present long-range spatial interactions between fronto-occipital and temporo-parietal brain regions. Further, a significant increase in functional connectivity assessed from fractal dynamics is shown to be positively correlated with behavioral performance in the task and to be reinforced by the training stage and thus by learning. Finally, our results suggest an interplay between temporal and spatial dynamics: Arrhythmic infraslow brain activity evolves from strongly and globally structured slow temporal dynamics for each region individually at rest, related across the brain by a clear functional network, to faster and less globally structured temporal dynamics per region, yet with significantly stronger spatial couplings across the brain, during a task.

The proposed Complex Wavelet tools constitute, to the best of our knowledge, the first operational tools for a relevant assessment of functional connectivity from fractal dynamics, i.e., functional connectivity in scale-free cross-temporal dynamics for the large-band infraslow arrhythmic brain activity recorded in M/EEG. MATLAB codes, designed and implemented by ourselves, for the synthesis of multivariate scale-free synthetic data and for the computation of Complex Wavelet-based indices to assess functional connectivity from fractal dynamics, will be made publicly available at the time of publication.




2. METHODOLOGY: FUNCTIONAL CONNECTIVITY ASSESSMENT


2.1. Frequency Domain Functional Connectivity Assessment

The M-variate data (Xm(t)m = 1, ..., M, t ∈ ℝ) available for analysis are assumed to be real-valued finite power realizations of stochastic processes with well-defined power cross-spectral density [image: image]. The Welch periodogram constitutes one of the classical non-parametric spectral estimation procedures (Papoulis, 1977), and it is based on the use of a windowed Fourier transform. This Fourier-based estimate S(F) of the cross-spectrum S is indeed defined as a time average of the squared-moduli of the windowed (or short-time) Fourier transform coefficients gX(ℓ, k) = ∫X(t)ϕℓ, k(t)dt:

[image: image]

where ϕℓ,k(t) = ϕ(t − kT0) exp (−21ℓν0t) denotes the collection of translated and frequency-shifted templates of a reference pattern ϕ(t), and T0 and ν0 are positive constants that can be arbitrarily chosen provided that they satisfy T0 ν 0 ≤ 1/(4π).

Straightforward calculations yield

[image: image]

with [image: image] denoting the Fourier transform of ϕ and 𝔼 the ensemble average. This thus shows that [image: image] provides a biased estimate of [image: image]. The time and frequency resolutions of the functions ϕℓ,k being uniformly controlled by the choice of the function ϕ, S(F) achieves a fixed absolute-frequency resolution multivariate spectral analysis.

From [image: image], three functions are classically involved in functional connectivity assessment, the modulus (F-COH), the Imaginary (F-ICOH) part of the coherence function (Nolte et al., 2004), and the weighted Phase Lag Index (F-wPLI) (Vinck et al., 2011) (with ℑ the imaginary part of a complex number):
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To quantify functional connectivity on MEG signals, the corresponding indices are practically computed as sums of the absolute values of these functions over the range of frequencies defining the targeted band-limited oscillations. Large values (above predefined thresholds) are used as markers of functional connectivity at the individual level, which are usually followed by statistical testing for assessing group-level significance.



2.2. Wavelet Domain Functional Connectivity Assessment


2.2.1. Complex Wavelet Transform

The classical discrete wavelet transform relies on the use of a real-valued mother-wavelet (cf. e.g., Mallat, 1998). To assess phases and delays amongst signals, it is proposed here to use a complex wavelet transform, defined as follows. Let ψ(r) denote a real-valued oscillating and sufficiently smooth reference pattern, referred to as the mother wavelet, and let it be constructed such that the collection of dilated and translated templates [image: image] of ψ form an orthonormal basis of L2(ℝ) (cf. e.g., Mallat, 1998). From ψ(r), an analytic complex mother-wavelet can be defined as ψ = ψ(r) + 1ψ(1), where ψ(1) consists of the Hilbert transform of ψ(r). The design of a complex, invertible, and analytic mother wavelet is not straightforward. In the present work, we build on the excellent approximate solution proposed in Kingsbury (2001) and Selesnick et al. (2005), which is referred to as the dual-tree complex wavelet transform.

For a signal X, the coefficients of the dual-tree complex wavelet transform are defined as [image: image], with [image: image] and [image: image]. Computing a dual-tree complex wavelet transform thus amounts to computing two standard Discrete Wavelet Transforms, with the two real mother-wavelets ψ(r) and ψ(1), respectively, independently.



2.2.2. Wavelet Cross-Spectrum and Functional Connectivity

It has been well-documented that the study of univariate scale-free temporal dynamics should be performed using a wavelet-based spectral estimation rather than a Fourier-based one (cf. e.g., Flandrin, 1992; Abry and Veitch, 1998; Veitch and Abry, 1999, 2001). This has recently been extended to multivariate scale-free temporal dynamics analysis and wavelet cross-spectrum estimation (cf. e.g., Wendt et al., 2017; Abry and Didier, 2018b; La Rocca et al., 2018a; Abry et al., 2019b). Given a pair of signals Xm, [image: image], the multivariate wavelet (cross-)spectrum can be defined as

[image: image]

where [image: image] are the number of coefficients available at scale j, and * stands for complex conjugate.

It has been shown (Abry et al., 2019b) that

[image: image]

with [image: image] denoting the Fourier transform of ψ. This indicates that [image: image] estimates [image: image] around frequency [image: image] and achieves a fixed relative-frequency resolution multivariate spectral analysis (Abry and Veitch, 1998; Abry et al., 2019b).

Equations (2) and (7) combined together show that Fourier-based [image: image] and (Complex) Wavelet-based [image: image] constitute two biased estimates of the power spectral density [image: image], that can be compared theoretically and practically, as illustrated in Figure 1. Interested readers are referred to Abry and Veitch (1998) and Abry et al. (2019b) for further discussions. As an illustration, the wavelet spectra and cross-spectrum of the two MEG signals displayed in Figures 1A,B are shown in Figures 1C–F and compared to Fourier spectra and cross spectrum (cf. Figures 1G–J), using Equations (2) and (7) and converting scales a = 2j into frequencies as [image: image], where fs is the data sampling frequency and f0 a constant that depends on the specific choice of the mother wavelet. Readers interested by further theoretical and practical discussions on comparing Fourier and wavelet-based spectral estimations, are referred to e.g., Abry and Veitch (1998), Veitch and Abry (1999), Veitch and Abry (2001), Abry et al. (2000), Ciuciu et al. (2012), and Abry et al. (2019b).


[image: Figure 1]
FIGURE 1. Fourier vs. wavelet spectral estimation on actual source-reconstructed MEG time series. Top: Two source-reconstructed MEG time series X1 (A) and X2 (B). Middle: Wavelet spectra (C,F), cross spectrum (D), and coherence function (E) as functions of the (log of the) scales (top row, red lines). Bottom: Comparison to Fourier spectra (G,J), cross-spectrum (H), and coherence function (I) (solid black lines) after remapping scales into frequencies (bottom row). The scale-free (or arrhythmic) regime is marked by linear behaviors of the power spectra across coarse scales, 8 ≤ j ≤ 12 corresponding to low frequencies, 0.1 ≤ f ≤ 1.5 Hz, in these log log plots.




2.2.3. Wavelet-Based Functional Connectivity Indices

From the wavelet-based estimate of the power spectrum, wavelet-based indices can be constructed to assess functional connectivity, as was the case with Fourier spectrum and mutatis mutandis:

[image: image]
 [image: image]
 [image: image]

Unlike the standard discrete wavelet transform coherence function used in, e.g., Whitcher et al. (2000) and Wendt et al. (2017), [image: image] is complex-valued.



2.2.4. Functional Connectivity Assessed From Fractal Dynamics

Functional connectivity for scale-free infraslow temporal dynamics consists of averaging the absolute values of these functions over the corresponding range of octaves j1 ≤ j ≤ j2 (equivalently over the range of scales a = 2j or frequencies [image: image]) where scale-free dynamics are observed:

[image: image]

Remapping scales into frequencies, calculations inspired from those leading to Equations (2) and (7) permit to compare theoretically and practically W-COH, W-ICOH and W-wPLI to F-COH, F-ICOH, and F-wPLI, as illustrated in Figures 2–4 on synthetic data.


[image: Figure 2]
FIGURE 2. Complex Wavelet-based connectivity on synthetic bivariate fractional Gaussian noise with correlation but no delay. W-COH (A), W-ICOH (B), and W-wPLI (C) as function of octaves j and correlation coefficient ρ. As it should, W-COH correctly assesses correlations with no delays and thus departs from 0 at all scales. W-COH would hence lead to incorrectly assessing functional connectivity. In contrast, W-ICOH and W-wPLI show averages values of 0 at all scales and across all correlation levels, thus leading to assess no connectivity, which is as expected for non-delayed components.


This is here critical to emphasize that functional connectivity assessed from fractal dynamics as defined and used in the present work is associated with (the statistics of) cross-temporal dynamics. It should not be confused with the so-called fractal networks, as studied in, e.g., in Bassett et al. (2006) and Varley et al. (2020), which are related to topological (thus static) properties of a spatial graph.




2.3. Functional Connectivity From Fractal Dynamics Performance Assessment


2.3.1. Monte Carlo Numerical Simulations

To assess the performance of the proposed indices aiming to quantify functional connectivity from fractal dynamics, Monte Carlo numerical simulations were conducted. They make use of synthetic bivariate fractional Brownian motion, a specific instance of the multivariate selfsimilarmodel recently introduced in Didier and Pipiras (2011) and studied in Abry and Didier (2018a,b). Bivariate fractional Brownian motion consists of a pair of fractional Brownian motions BH1 and BH2, with possibly different selfsimilarity parameters H1 and H2, with pointwise correlation ρ. In addition, one component is delayed by Δ. Correlation coefficient ρ is set to range within ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9} and delays range in Δ = {0, 1, 2, 4, 8, 16, 32, and 64} samples. Sample size is n = 214, chosen to match the size of the infraslow regime of the MEG data (cf. sections 3 and 4).

To model MEG data as those analyzed in section 4 and as commonly indicated in the literature (He et al., 2010), one needs to use both fractional Gaussian noise (fGn), the increments of fractional Brownian motion (fBm), with parameter H ranging from say 0.6 to 1 and fractional Brownian motion itself with parameters ranging from 0 to 1. Therefore, the numerical simulations conducted here were based on bivariate processes, each component being either fGn or fBm, with 0 < H < 1. For the Fourier-based spectral estimation, the classical averaged windowed periodogram estimate of the power spectral density was computed, with Hanning windows of a width corresponding to the frequency bands of the complex wavelet filters, to enable relevant comparisons of the tools. For the Complex-Wavelet based estimation, q-shift complex wavelets were used, as described in Selesnick et al. (2005) and references therein (see, e.g., Lina and Mayrand, 1995 for an alternative choice).

Indices assessing functional connectivity from fractal dynamics (both Fourier and wavelet-based) were computed as average over a range of frequencies and scales that match those of the infraslow scale-free range observed on the MEG data described and analyzed hereafter. Performances are reported as means (and confidence intervals) computed from N = 1, 000 independent realizations of bivariate fractional Gaussian noise.



2.3.2. Spurious Connectivity

To start with, we analyzed scenarios where the two components of bivariate fractional Gaussian noise were correlated but not delayed: Δ ≡ 0. Figure 2 reports the averaged (over realizations) values of W-COH, W-ICOH, and W-wPLI as functions of octaves j and correlation coefficients ρ. Figure 2A shows that W-COH correctly assesses correlations between components as predicted by theory when they are not delayed. W-COH thus leads to an incorrect assessment of functional connectivity since it is sensitive to 0-delay correlation and thus to the volume conduction effect. This spurious connectivity consists of a well-documented fact for the classical (Fourier-based) coherence function index F-COH, which is, as theoretically expected, not corrected by the use of W-COH. Figures 2B,C also shows that W-ICOH and W-wPLI average to 0 at all scales, and across all correlation levels, thus correctly leading to the assessment of no functional connectivity, as expected for non-delayed components. Again, this is consistent with observations made when using the Fourier-based F-ICOH and F-wPLI. This rules out the use of W-COH (and F-COH) to assess functional connectivity.



2.3.3. Functional Connectivity Assessed From Fractal Dynamics

We then analyzed signals with delays amongst components. Figures 3, 4 report, for different sets of synthetic data and for given delays Δ, the averaged values (over realizations) of W-ICOH and W-wPLI as functions of octaves j and correlation coefficients ρ [left column, see panels (A) and (E)], complemented with slices for fixed ρ as functions of j [second column, see panels (B) and (F)], slices for fixed j as functions of ρ [third column, see panels (C) and (G)], and functional connectivity indices averaged across scales 3 ≤ j ≤ 7 [right column, see panels (D) and (H)]. Figures 3, 4 show that:

(i) Both W-ICOH and W-wPLI do depart from 0 across j and ρ when Δ ≠ 0 (left column).

(ii) As functions of j, W-ICOH and W-wPLI display different patterns that depend on Δ. However, these patterns both show independently maximum absolute deviations from 0 at scales that vary with Δ (second column). This was quantified for W-ICOH and used as a delay estimation procedure (Didier et al., 2019).

(iii) When a scale 2j in relation to Δ is chosen, both (the absolute values of) W-ICOH and W-wPLI are proportional to (the absolute value of) ρ (third column). This shows not only that W-ICOH and W-wPLI depart from 0 when delays amongst components exist but also that the amplitude of the departure is proportional to the correlation ρ between components, a crucial property to assess quantitatively functional connectivity, clearly and originally quantified in these numerical simulations.

(iv) The conclusions stemming from comparing the performance of Fourier-based F-ICOH and F-wPLI to Complex Wavelet-based W-ICOH and W-wPLI depend on the parameters used for simulating bivariate synthetic time series. When the latter consist of bivariate fGn with H1 = 0.7 and H2 = 0.8 (Figure 3), F-ICOH vs. W-ICOH and F-wPLI vs. W-wPLI, show comparable performance either in bias (second and third columns) or in terms of root mean square error (RMSE) (right column). When synthetic data consists of bivariate fBm with H1 = 0.7 and H2 = 0.8 (Figure 4), F-ICOH and F-wPLI show significantly degraded performance compared to W-ICOH and W-wPLI, both in bias and variance (second and third columns) and in terms of RMSE (right column). Notably, RMSE of F-ICOH and F-wPLI can be 10 times greater than RMSE of W-ICOH and W-wPLI for small values of ρ. Complex Wavelet-based indices thus outperform Fourier-based ones for data with large scaling exponents, i.e., large powers at very low frequencies or, in other words, very slow dynamics. Similar conclusions can be drawn from other values of delays Δ ≠ 0 tested here but not shown (available upon request).


[image: Figure 3]
FIGURE 3. Complex Wavelet-based connectivity on synthetic bivariate fractional Gaussian noise with correlation and delay Δ = 8. Top row: W-ICOH results. Bottom row: W-wPLI results. From left to right: W-ICOH (A) and W-wPLI (E) as functions of octaves j and correlation coefficient ρ; W-ICOH (B) and W-wPLI (F) as functions of octaves j, for a given ρ; W-ICOH (C) and W-wPLI (G) as functions of ρ for given octaves j; Ratio of the RMSE of F-ICOH to W-ICOH (D) and ratio of RMSE of F-wPLI to W-wPLI (H), averaged across scales 3 ≤ j ≤ 7, and color-coded in red as functions of delay Δ and correlation coefficient ρ. A ratio larger than the value of 1 (made explicit to ease comparisons by horizontal blue plans) indicates poorer performance for Fourier-based estimates compared to wavelet-based ones. Synthetic data consists of bivariate fGn with H1 = 0.7 and H2 = 0.8.



[image: Figure 4]
FIGURE 4. Complex Wavelet-based connectivity on synthetic bivariate fractional Brownian motion with correlation and delay Δ = 8. Top row: W-ICOH results. Bottom row: W-wPLI results. From left to right: W-ICOH (A) and W-wPLI (E) as functions of octaves j and correlation coefficient ρ; W-ICOH (B) and W-wPLI (F) as functions of octaves j, for a given ρ; W-ICOH (C) and W-wPLI (G) as functions of ρ for given octaves j; Ratio of the RMSE of F-ICOH to the RMSE of W-ICOH (D) and ratio of the RMSE of F-wPLI to the RMSE of W-wPLI (H), averaged across scales 3 ≤ j ≤ 7, and color-coded in red as functions of delay Δ and correlation coefficient ρ. A ratio greater than the value of 1 (made explicit to ease comparisons by horizontal blue plans) indicates poorer performance for Fourier-based estimates compared to wavelet-based ones. Synthetic data consists of bivariate fBm with H1 = 0.7 and H2 = 0.8.




2.3.4. Functional Connectivity Assessed From Fractal Dynamics in the Presence of Additive Trends

We finally analyzed more complicated scenarios with correlation and delays amongst components as well as additive smooth slow trends superimposed as noise to the actual scale-free components. Figure 5 reports, for a given delay Δ = 8, the averaged (over realizations) values of W-ICOH and W-wPLI as functions of octaves j and correlation coefficient ρ [left column, panels (A) and (E)], complemented with slices for fixed ρ as functions of j [second column, panels (B) and (F)] and slices for fixed j as functions of ρ [third column, panels (C) and (G)]. Focusing the analysis of Figure 5 on ρ = 0 or on the small values of ρ shows the following:

(i) F-ICOH and F-wPLI depart from 0 across scales when there is no correlation while the Complex Wavelet-based W-COH and W-wPLI do not (second column);

(ii) F-ICOH and F-wPLI significantly overestimate correlations at small ρ while W-COH and W-wPLI do not (third column);

(iii) The RMSE of F-ICOH and F-wPLI becomes up to ten times larger than RMSE of W-ICOH and W-wPLI for small values of ρ (fourth column).


[image: Figure 5]
FIGURE 5. Complex Wavelet-based connectivity on synthetic bivariate fractional Gaussian noise with correlation and delay, and additive trends. Top row: W-ICOH results. Bottom row: W-wPLI results. From left to right: W-ICOH (A) and W-wPLI (E) as functions of octaves j and correlation coefficient ρ, W-ICOH (B) and W-wPLI (F) as functions of octaves j, for a given ρ, and W-ICOH (C) and W-wPLI (G) as functions of ρ for given octaves j. The ratio of the RMSE of F-ICOH to the RMSE of W-ICOH (D) and the ratio of the RMSE of F-wPLI to the RMSE of W-wPLI (H), averaged across scales 3 ≤ j ≤ 7 and color-coded in red as functions of delay Δ and correlation coefficient ρ. A ratio greater than the value of 1 (made explicit to ease comparisons by horizontal blue plans) indicates poorer performance for Fourier-based estimates compared to wavelet-based ones. Synthetic data consists of bivariate fGn with H = 0.8 and fBm with H = 0.2.




2.3.5. Functional Connectivity From Fractal Dynamics Assessment Performance

In addition, Figure 6 compares the ratio of the RMSE of W-ICOH to the RMSE of W-wPLI over several synthetic data sets and shows that both indices perform comparably. However, W-ICOH shows a slightly smaller RMSE for small values of ρ and conversely, a slightly larger RMSE for large values of ρ and for the largest delays Δ tested here. This (slight) superiority of W-wPLI is much more visible when additive smooth trends are present (right plot). In sum, these numerical simulations yield the following conclusions for the assessment of functional connectivity from fractal dynamics.

(i) They indicate that W-COH cannot be used to assess functional connectivity as it is fooled by zero-delay (volume conduction effect) correlations, thus confirming an already documented observation for F-COH in the literature (Nolte et al., 2004; Stam et al., 2007). To the converse, W-ICOH and W-wPLI (and F-ICOH and F-wPLI) are much less affected by these spurious correlations.

(ii) The Complex Wavelet W-ICOH and W-wPLI can be used to assess functional connectivity for scale-free temporal dynamics.

(iii) The Complex Wavelet W-ICOH and W-wPLI perform significantly better than the Fourier-based F-COH and F-wPLI first when the signals show very large scaling exponents β in their f−β power spectral density behavior, as is the case with fBm-like time series and second when additive noise in the form of smooth and slow trends are superimposed to data with scale-free dynamics, which is a situation commonly observed in recordings collected from neuroimaging techniques.

(iv) W-ICOH and W-wPLI perform comparably with (slightly) better performance of W-wPLI when ρ or Δ increases, or when smooth trends are superimposed to scale-free dynamics, as often the case on MEG data. This will be further discussed in section 4.


[image: Figure 6]
FIGURE 6. Ratio of the RMSE of W-ICOH to the RMSE of W-wPLI, averaged across scales 3 ≤ j ≤ 7, as functions of delay Δ and correlation coefficient ρ, for the synthetic data in Figures 3–5. Horizontal blue plans indicate the constant level of 1 to ease reading.






3. EXPERIMENTAL MEG DATA

The proposed complex wavelet-based assessment of functional connectivity in infraslow arrhythmic brain activity was tested on MEG measurements, consisting of non-invasive recordings of simultaneous time-series reflecting the whole brain activity, both at rest and during the completion of a task. All details about the experimental paradigm and the task can be found in Zilber et al. (2014).

In short, the task was designed from a short-term learning paradigm and consisted of visual coherence discrimination. Two sets of colored (green and red) dots were mixed and shown on a screen, each dot with random and independent movement. After a variable duration interval (0.3–0.6 s) of incoherent motion, a fraction of randomly chosen dots belonging to either of the two sets (also randomly chosen at each trial) followed a coherent motion during 1 s. Participants were asked to tell which of the red or green clouds had a coherent motion by pressing a button of the same color. Task difficulty was increased by decreasing the rate of dots in coherent motion.

The experiment was organized as interleaved MEG blocks alternating rest and task measurements: It started with a 5-min rest recording (RESTi), followed by a 12-min pre-training block (TASKi); this was followed by four successive 5-min long individualized training blocks. Another 5-min resting-state block (RESTf) was recorded prior to a final 12-min post-training block (RESTf), consisting of the same visual coherence discrimination task as in TASKi. During TASKi and TASKf, the motion coherence discrimination accuracy of each participant was assessed. Pre-training and post-training behavioral thresholds were computed for each participant as the visual coherence level associated with 75% of correct responses (hit rate). During REST blocks, participants were instructed to keep their eyes open, and they were not following any other explicit instruction, thus permitting the analysis of spontaneous fluctuations of brain activity from MEG recordings.

For the experiment, 36 healthy participants (mean age: 22.1 ± 2.2) were recruited. All participants were right-handed, had normal hearing, and had normal or corrected-to-normal vision. Before the experiment, all participants provided written informed consent in accordance with the Declaration of Helsinki (2008) and the local Ethics Committee on Human Research at NeuroSpin (Gif-sur-Yvette, France).

Brain activity was recorded via MEG modality in a magnetically shielded room using a 306 MEG system (Neuromag Elekta LTD, Helsinki). MEG signals originally sampled at 2 kHz were downsampled at 448 Hz and preprocessed to remove external and internal interferences in accordance with accepted guidelines for MEG research (Gross et al., 2013). Signal Space Separation (SSS) was applied with MaxFilter to remove exogenous artifacts and noisy sensors (Taulu and Simola, 2006). Ocular and cardiac artifacts (eye blinks and heartbeats) were removed using Independent Component Analysis (ICA) on raw signals. ICA were fitted to raw MEG signals, and sources matching the ECG and EOG were automatically found and removed before signals reconstruction, following the procedure described in Jas et al. (2017). Source localization from MEG signals was used to reconstruct source cortical activity using the mne_analyze tools within MNE (Gramfort et al., 2013). Details regarding the source localization technique are reported in Zilber et al. (2014). Finally, following analyses reported in Zilber et al. (2014) and La Rocca et al. (2020), 28 cortical regions-of-interest (ROIs), recruited in task performance (including frontal, somato-sensory, temporal, parietal, and occipital areas) were retained for the analysis of functional connectivity in infraslow temporal dynamics.




4. FUNCTIONAL CONNECTIVITY ASSESSED FROM FRACTAL DYNAMICS IN INFRASLOW ARRHYTHMIC MEG-RECORDED BRAIN ACTIVITY


4.1. Infraslow Scale/Frequency Range and Functional Connectivity From Fractal Dynamics Assessment Methodology


4.1.1. Infraslow Scale/Frequency Range

Following the systematic inspections of the wavelet spectra and cross-spectra reported in La Rocca et al. (2018b) for the same MEG data, the scale-free range of scales is set uniformly for the 28 times series and across the 36 participants for the analysis of arrhythmic functional connectivity to 8 ≤ j ≤ 12, thus corresponding to frequencies in 0.1 ≤ f ≤ 1.5 Hz or equivalently to time scales ranging roughly from 1 to 10 s. This scale-free regime is illustrated in Figure 1 for arbitrarily chosen MEG signals shown in Figures 1A,B.



4.1.2. Experimental Conditions

Infraslow functional connectivity was assessed for several experimental conditions: resting-state (RESTi), pre-training (TASKi), and post-training (TASKf) tasks, thus enabling us to assess changes in functional interactions from rest to task and modulations related to learning.



4.1.3. Functional Connectivity From Fractal Dynamics Indices

Three proposed complex wavelet based indices were then computed to assess infraslow functional connectivity by averaging across octaves corresponding to the scale-free regime, 8 ≤ j ≤ 12, and the functions W-COH(j), W-ICOH(j), and W-wPLI(j), resulting in three sets of 28 × 28 × 36 indices.


4.1.3.1. Tests

These indices were filtered at the group-level (N = 36), using a recently introduced network density threshold method, the Efficiency Cost Optimization (De Vico Fallani et al., 2017), thus yielding group-level 28 × 28 fractal dynamics-based functional connectivity matrices across the brain for each experimental condition independently. See also La Rocca et al. (2020) for further details on the use of such technique.

To investigate significant differences in infraslow functional connectivity between two different experimental conditions (e.g., TASKi − RESTi) independently for each chosen index, a group-level paired t-test was performed, with a demanding preset significance level: p < 0.01. The false discovery rate (FDR) procedure was used to correct p-values for multiple comparisons across the 28 × 27/2 possible connections.



4.1.3.2. Comparisons Against Fourier-Based Indices

To compare Fourier-based F-ICOH and F-wPLI to Complex Wavelet-based W-ICOH to W-wPLI, Fourier-based spectral estimation was conducted using Welch Periodogram procedures (as described in section 2.1), using a windowed Fourier transform with a Hanning-type window of duration 80s.





4.2. Fractal Dynamics-Based Functional Connectivity Networks

Figure 7 reports the 28 × 28 thresholded connectivity networks yielded by the Complex Wavelet based indices defined in section 2, W-wPLI (left), W-ICOH (middle), and W-COH (right), for two different experimental conditions RESTi (top row) and pre-training TASKi (center row). Further, Figure 7 (bottom row) reports the FDR-corrected statistically significant differences between indices measured during TASKi and RESTi. Figure 7 leads to the following observations:

(i) The connectivity networks yielded by W-COH predominantly display short-range and inter-hemispheric interactions throughout the cortex and most notably amongst frontal regions on one hand and temporo-occipital regions on other hand, both for RESTi and TASKi.

(ii) The connectivity networks yielded by W-ICOH and W-wPLI display similar structures, dominated by long-range spatial interactions, that differ significantly from those of the networks produced by W-COH, dominated by shorter-range spatial interactions. These differences in network structures can be quantified using the Average Degree, i.e., the average number of connections per node, as a network structure metrics. For RESTi, the Average Degrees for the graphs obtained by W-COH, W-ICOH, and W-wPLI are of 0.95(±0.37), 0.21(±0.24), and 0.44(±0.52), respectively. Medians distributions of the number of links per node differ significantly between W-COH and W-ICOH (p < 10−11) or between W-COH and W-wPLI (p < 10−6). The same holds for TASKi, with average degrees of 1.0(±0.49), 0.25(±0.24), and 0.52(±0.50), respectively, and significances of p < 10−8 and p < 10−3, respectively.

(iii) While yielding comparable networks, W-wPLI and W-ICOH differ insofar as the former yields larger connectivity indices than the latter. In addition, connectivity networks using W-wPLI or W-ICOH differ in structure; however, they differ much less than when comparing W-wPLI vs. W-COH or W-ICOH vs. W-COH. Indeed, for RESTi the Average Degrees of W-wPLI and W-ICOH are 0.44(±0.52) and 0.21(±0.24), respectively, yielding a quantifiable difference (p = 0.04), and for TASKi the Average Degrees of W-wPLI and W-ICOH are 0.52(±0.50) and 0.25(±0.24), respectively, yielding a clearer difference (p = 0.01).

(iv) When comparing TASKi vs. RESTi, W-wPLI and W-ICOH both indicate an increase in functional connectivity during task performance. This increase in functional connectivity assessed from fractal dynamics highlights interactions between regions recruited in the achievement of the task, notably fronto-temporal couplings [between the right ventro-lateral prefrontal cortex (vlPFC) and inferior temporal cortex (ITC)], interactions linking temporal regions [anterior superior temporal sulcus (aSTS) and auditory cortex] with the intra-parietal sulcus (IPS), motor-occipital couplings between the left frontal BA6 (including premotor and supplementary motor regions), and primary visual areas (V1/V2). Interaction between the key region hMT+, sensitive to visual motion, and the associative area, pSTS, is also significant in the left hemisphere.


[image: Figure 7]
FIGURE 7. Functional connectivity assessment from fractal dynamics: Group-level functional connectivity in infraslow MEG-source reconstructed brain dynamics. Filtered 28 × 28 connectivity networks measured from Complex Wavelet based W-wPLI (left), W-ICOH (middle), and W-COH (right), for RESTi (top row) and pre-training TASKi (center row). The red color intensity codes for the values of the connectivity indices (ranging from 0 to 1 by construction). Functional connectivity differences between conditions TASKi and RESTi when assessed as significant by a group level FDR corrected t-test are displayed in the bottom row. Color codes for the TASKi − RESTi differences in the values of indices from blue (negative) to red (positive), thus indicating that only increases in functional connectivity are observed from RESTi to TASKi.


Focusing on the W-wPLI index only, Figure 8 shows the additional comparisons of the post-training task TASKf to the initial rest RESTi, which, compared to the contrast TASKi − RESTi (cf. Figure 7 bottom left plot), indicates first that functional interactions in infraslow temporal dynamics are globally strengthened by the training and second that new intra- and inter-hemispheric couplings emerged with training involving much more the parieto-occipito-temporal network (IPS, primary visual cortex, and anterior STS). We also noticed new interactions between the left fronto-polar region and the left IPS, the right frontal eye fields (FEF) and the pSTS, and the BA6 complex and hMT+ region.


[image: Figure 8]
FIGURE 8. Fractal dynamics-based functional connectivity assessment (W-wPLI) differences between RESTi and TASKi and between RESTi and TASKf. The increase in functional connectivity assessed from fractal dynamics from rest to task is strengthened with training, i.e., from TASKi to TASKf, and emerged between several intra- or inter-hemispheric pairs of regions (Frontal polar/IPS, ITC/MT, FEF/pSTS) involved in task performance.




4.3. Functional Connectivity Assessed From Fractal Dynamics and Selfsimilarity

In La Rocca et al. (2018b), selfsimilarity was systematically quantified by wavelet-based measurements of the selfsimilarity exponent H and a global decrease from rest to task was observed over the whole brain (see Figure 4E in La Rocca et al., 2018b). This result, obtained from 24 participants, is here strengthened by using 36 subjects. Figure 9 reports a decrease in H not only between RESTi and TASKi but also between RESTi and TASKf. Further, Figure 9 shows a strengthening of the decrease in H from TASKi to TASKf in the parieto-occipital regions involved in task performance, notably the bilateral hMT+ regions, the visual cortices including V1/V1 and V4 for the visual color detection. Interestingly, after training, these regions are also more strongly coupled with others during task performance (TASKf vs. RESTi).


[image: Figure 9]
FIGURE 9. selfsimilarity (H) differences between RESTi and TASKi and between RESTi and TASKf. The decrease in selfsimilarity from rest to task is strengthened with training, i.e., from TASKi to TASKf, and more heavily in the parieto-occipital (hMT+, visual cortices, V1/V2/V4) regions involved in task performance. Note that a value of H was computed per cortical label here. See La Rocca et al. (2018b) for methodological details.


To investigate a potential training-induced relation between the decrease in selfsimilarity and the increase in W-wPLI, ΔH= HTASFf − HRESTi and ΔW-wPLI = W-wPLITASFf − W-wPLIRESTi were averaged across the whole brain for each subject. Corresponding averages are shown in Figure 10 which interestingly suggests a significant (p = 0.05) anticorrelation of r = −0.33. When averages are restricted to the part of the brain where statistically significant changes in W-wPLI between RESTi and TASKf can be assessed (after false discovery rate-based corrections for multiple hypothesis testing), the relation between ΔH and Δ W-wPLI is strengthened, r = −0.35 and p = 0.04.


[image: Figure 10]
FIGURE 10. Decrease of selfsimilarity vs. increase in functional connectivity assessed from fractal dynamics from rest to task. ΔH= HTASKf-HRESTi as a function of Δ W-wPLI = W-wPLITASKf − W-wPLIRESTi, averaged across the whole brain for each of the 36 participants (each marked as a dot), shows that the decrease of selfsimilarity correlates negatively (r = −0.33, p = 0.05) with the increase of functional connectivity assessed from fractal dynamics.




4.4. Functional Connectivity Assessed From Fractal Dynamics and Task Performance

Finally, functional connectivity in the infraslow range of temporal dynamics can be related to task performance, and this is notable after training. Figure 11 reports, for each participant, post-training performance in achieving the task quantified by a percentage of correct responses (detection of the color associated with the coherent visual motion), referred to as hit rate, as a function of the variation in the W-wPLI indices measured in TASKi and TASKf. It shows that participants with the larger increase in functional connectivity assessed from fractal dynamics induced by training, i.e., the larger increase of W-wPLITASKf − W-wPLITASKi, are also those achieving the better performance in post-training task.


[image: Figure 11]
FIGURE 11. Functional connectivity assessment from fractal dynamics vs. Task Performance. Individual performance in the post-training task shows significant (p = 0.01) positive correlation (r = 0.45) with the difference in functional connectivity assessed from fractal dynamics from pre- to post-training, i.e., W-wPLITASKf − W-wPLITASKi. Each participant is represented as a dot, and outliers are marked with a ×.




4.5. Functional Connectivity From Fractal Dynamics: Fourier-Based vs. Complex-Wavelet Assessment

Averaging (the absolute values) of F-wPLI across a range of frequencies that match the range of scales associated with the infraslow scale-free scaling range permits us to compare Fourier-assessed functional connectivity from fractal dynamics. Figure 12 reports the density networks obtained from F-wPLI for RESTi and TASKi, showing significant differences with those obtained using W-wPLI. The network topography associated with the F-wPLI index are denser compared to W-wPLI. Indeed, using the Average Degree, used as a graph structure metric, it was found that for RESTi, the Average Degrees of W-wPLI and F-wPLI are 0.44(±0.52) and 1.62(±1.11), respectively, yielding a very significant difference, assessed by a p-value below 6 × 10−6, and for TASKi, the Average Degrees of W-wPLI and F-wPLI are 0.52(±0.50) and 1.65(±1.21), respectively, yielding also a significant difference assessed by a p-value of 5 × 10−5. Further, the number of significant interactions with F-wPLI is more balanced between the two hemispheres during RESTi in contrast to W-wPLI, which captures more couplings in the right one. Also, the resting-state W-wPLI-based network configuration is more dominated by fronto-occipital couplings, whereas the F-wPLI-based shows a greater number of inter-hemispheric interactions. During the pre-training task TASKi, the W-wPLI and F-wPLI network topographies both show similar connections but also strong differences: the former is more dominated by fronto-parieto-occipital couplings with a hub role played by the visual cortices, while the latter does not strongly differ from the F-wPLI network found during RESTi. Finally and more importantly, no statistically significant difference in F-wPLITASKi-F-wPLIRESTi can be evidenced (see Figure 12-bottom), while a significant increase in W-wPLI was found from RESTi to TASKi between fronto-parieto-occipital regions that are involved in task performance (see Figure 9-top). The coupling between V4 and MT in the right hemisphere reflects the color-motion binding, while the significant interactions involving the anterior STS, IPS, and vlPFC are likely due to their role in multisensory processing. The W-wPLI index thus provides much more meaningful information when contrasting rest to task brain activity.


[image: Figure 12]
FIGURE 12. Fourier-based wPLI estimator in the scale-free regime. No significant difference between F-wPLITASKi and F-wPLIRESTi in arrhythmic regime can be found.





5. DISCUSSION


5.1. Functional Connectivity From Fractal Dynamics Assessment

At the methodological level, the results presented in section 4 clearly showed that W-COH fails to characterized correctly functional connectivity, which is in clear agreement with the numerical simulations reported in section 2.3 on synthetic data fGn/fBm and with results reported in the literature (cf. Stam et al., 2007; Vinck et al., 2011).

More interestingly, compared to W-ICOH, W-wPLI was observed to more accurately quantify functional connectivity assessment from fractal dynamics, both at rest and during a task in MEG data, as well as to better highlight relevant changes in functional connectivity assessed from fractal dynamics between rest and task. This is in agreement with previously reported results, showing that for band-limited oscillatory activities, F-wPLI was a better index to assess functional connectivity than F-ICOH. This was attributed to the denominator of F-wPLI being different from that of F-ICOH and less sensitive to (residual) volume conduction effects (Stam et al., 2007; Vinck et al., 2011). These arguments straightforwardly extend to W-wPLI and W-ICOH, and they thus likely explain the enhanced ability of W-wPLI to assess functional connectivity from fractal dynamics compared to W-ICOH. Interestingly, the numerical simulations conducted in section 2.3 on synthetic fGn/fBm data showed only a moderate superiority of W-wPLI over W-ICOH to quantify functional connectivity from fractal dynamics, except for slightly improved estimation (RMSE) performance. This suggests that fGn/fBm, even with delays, correlations, and possible additive trends, are not rich enough models to account for all the difficulties encountered in modeling real MEG data. This is calling for richer modeling, potentially involving multifractality. This will be further explored.

The benefits of using wavelet-based (multiscale) tools to analyze scale-free temporal dynamics and estimate the corresponding scaling exponent compared to classical Fourier-based spectral estimation have been abundantly documented elsewhere (cf. e.g., Abry and Veitch, 1998; Veitch and Abry, 1999, 2001; Ciuciu et al., 2008, 2012; Abry et al., 2019b). First, they provide better (unbiased and controlled variance) estimates of H; second, by tuning the so-called number of vanishing moments of the mother wavelet (Mallat, 1998), wavelet-based spectral estimation is robust to additive smooth slow trends in data which are, to the converse, strongly altering Fourier-based spectral estimation. These benefits are straightforwardly inherited by the wavelet-based indices for assessing functional connectivity from fractal dynamics. This was evidenced by the numerical simulations reported in section 2.3 showing the robustness of trends and improved performance for large scaling exponents of Complex Wavelet-based indices over Fourier-based ones.



5.2. Functional Connectivity Assessed From Fractal Dynamics in Time Relates to Long-Range Spatial Interactions

On MEG data, functional connectivity in the infraslow arrhythmic regime assessed by W-COH, i.e., based on direct correlation, was observed to yield mostly spatial short-range connectivity networks across the brain, notably with spurious short-range functional intra- and inter-hemispheric interactions, visible between frontal regions both at rest and during a task. This is likely a consequence of residual common source effects, strongly biasing the real part of thecoherence function, and thus yielding spurious connectivity measures, in agreement with results reported in Stam et al. (2007). In contrast, functional connectivity assessed by W-ICOH and W-wPLI indices, i.e., based on phase coupling, did not show such short-range links, but rather functional connectivity patterns dominated by long-range spatial interactions. This yields the first major result of the present work: Functional connectivity pertaining to the large-band infraslow arrhythmic temporal dynamics (from 1 to 10 s, or equivalently from 0.1 to 1 Hz), reveals long-range spatial interactions, notably evidencing couplings between frontal, parietal, and occipital brain regions. Functional connectivity assessed from fractal dynamics thus permits to quantify phase couplings and interactions associated with large lags. This departs from functional connectivity networks produced by the analysis of band-limited oscillatory temporal dynamics, that pertains to the fast (high frequency) brain activity and thus focuses on short time delays.



5.3. Functional Connectivity Assessed From Fractal Dynamics Increases During Task Performance and With Training

Compared to F-wPLI, W-wPLI showed an enhanced statistical sensitivity as it revealed a positively engaged parieto-temporo-occipital network in infraslow temporal dynamics when contrasting rest to pre-training activities. This network comprises previously identified key brain regions (e.g., hMT+, ITC, vlPFC, and pSTS) during task performance. Interestingly, such regions also consistently identified as beubg recruited by a task when using standard temporal or spectral data analysis (Zilber et al., 2014; La Rocca et al., 2020). However, W-wPLI was the only index further showing that functional connectivity assessed from fractal dynamics actually increased during task performance in these regions. A second key result consists of the observation of the strengthening of this functional connectivity from fractal dynamics based functional network with training, i.e., when contrasting rest to post-training activity. It shows the rising of new key couplings between frontal and parieto-temporal cortices, which suggests that some cortical representations of the visual detection and decision-making process may emerge even at slow time scales (1–10 s) and may be used as a substrate for facilitating faster dynamics in oscillatory regimes. Such increased functional connectivity assessed from fractal dynamics is a hallmark of brain plasticity induced by the training stage.

The third finding of this study is the positive correlation between the increase in functional connectivity assessed from fractal dynamics and task performance when contrasting pre- to post-training brain activity. This suggests that the consolidated network eases task completion for each individual, experiencing averaged increase in functional couplings within the infraslow regime.



5.4. Functional Connectivity From Fractal Dynamics and Selfsimilarity Quantifying an Interplay Between Temporal and Spatial Dynamics

Finally, the increase in functional connectivity assessed from fractal dynamics was shown to be correlated with a decrease in the selfsimilarity from rest to task. These results on functional connectivity assessment from fractal dynamics, combined with the univariate (regionwise) analysis of scale-free temporal dynamics of the same data (La Rocca et al., 2018b), lead to the following global picture for the large-band arrhythmic infraslow temporal dynamics of brain activity.

At rest, each region displays a globally very structured and slow activity in time (large selfsimilarity exponent H and thus strong temporal autocorrelation) with no transient structures (no burstiness and no multifractality, La Rocca et al., 2018b). The regions are connected across the brain by a clear spatial structure, that of functional connectivity assessed from fractal dynamics, constructed on measures of infraslow arrhythmic interactions.

During task performance, temporal dynamics in each region independently become less globally structured and faster (decrease in H hence globally less correlated) with transient dynamical structures for regions involved in the task (burstiness and multifractality, La Rocca et al., 2018b). These changes in regionwise temporal dynamics are accompanied by stronger functional connectivity assessed from fractal dynamics, i.e., by stronger spatial structures connecting regions.

This permits us to conjecture an interplay between temporal and spatial dynamics for the large-band infraslow arrhythmic brain activity: A decrease in global temporal structures induces faster and transient temporal dynamics and is associated with an increase in spatial structures and interactions between remote brain regions. Interestingly, these modulations are further strengthened with training, i.e., when contrasting the post-training to the resting-state activity in comparison with the pre-training vs. rest contrast. Overall, such modulations of brain spatio-temporal dynamics can be conjectured as a hallmark of brain plasticity.




6. CONCLUSIONS

In this work, we have introduced the notion of functional connectivity assessment from fractal dynamics for MEG data, defined as functional connectivity associated with the large-band infraslow (typically below the Hz) arrhythmic (scale-free) cross-temporal dynamics, in contradistinction with the classical functional connectivities associated with the band-limited rapid oscillatory rhythms (α−, β−, γ− bands).

It has been argued and demonstrated that complex wavelet (multiscale) based analyses permit to construct indices to assess functional connectivity from fractal dynamics that inherit from the theoretical and practical benefits of wavelet representations for scale-free (cross-temporal) dynamics analysis, notably in terms of robustness to trends and large selfsimilarity parameters H. It was confirmed that wPLI outperforms ICOH, as commonly observed, and that COH is not suited for functional connectivity assessment.

While Fourier-based tools are natural to use to assess functional connectivity in band-limited rapid oscillatory rhythms, it was shown, using simulated synthetic data and mostly on MEG data, that the assessment of functional connectivity for large-band slow scale-free cross-temporal dynamics is better achieved by complex wavelet based indices. Therefore, Fourier and complex wavelet-based spectral estimation must be regarded as complementary, rather than as mutually exclusive, tools.

Complex wavelet-based analyses of functional connectivity assessment from fractal dynamics conducted on MEG data recorded on 36 participants at rest and during a visual discrimination task with individualized training, yielded several key conclusions. First, large-band infraslow arrhythmic cross-temporal dynamics can be associated with long-range (fronto-temporo-occipital) spatial interactions. Second, functional connectivity from fractal dynamics increases during task performance (in a set of brain regions consistent with those evidenced by other analyses performed on the same data with different tools) and is strengthened with training. Interestingly, a larger overall fractal dynamics-based functional connectivity increase correlates with better task performance (larger hit rate). Third, the increase in spatial structure (quantified by the increase in functional connectivity assessed from fractal dynamics) is accompanied by changes in temporal structures, combining a decrease in the global temporal correlations (quantified by a decrease in the selfsimilarity index) and the increased occurrence of local transient structures (quantified by an increase in multifractality). These spatiotemporal modulations are reinforced with intensive and individualized training for the task.

Routines (in MATLAB) to synthesize (correlated and delayed) bivariate fractional Gaussian noise, to perform Fourier and complex-wavelet based analysis and to compute indices quantifying functional connectivity from fractal dynamics, on synthetic or MEG data, have been developed by ourselves and will be made publicly available at the time of publication.

Such tools could further be used to examine the relevance of functional connectivity assessed from fractal dynamics in the context of network physiology, and networks of networks, relating brain activity to other physiological functions (heart rate, respiration, sleep, ocular, and motor systems, etc.) (cf. e.g., Bartsch and Ivanov, 2014; Bartsch et al., 2015; Liu et al., 2015; Catrambone et al., 2020).
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Mathematical modeling is seen as a key step to understand, predict, and control the temporal dynamics of interacting systems in such diverse areas like physics, biology, medicine, and economics. However, for large and complex systems we usually have only partial knowledge about the network, the coupling functions, and the interactions with the environment governing the dynamic behavior. This incomplete knowledge induces structural model errors which can in turn be the cause of erroneous model predictions or misguided interpretations. Uncovering the location of such structural model errors in large networks can be a daunting task for a modeler. Here, we present a data driven method to search for structural model errors and to confine their position in large and complex dynamic networks. We introduce a coherence measure for pairs of network nodes, which indicates, how difficult it is to distinguish these nodes as sources of an error. By clustering network nodes into coherence groups and inferring the cluster inputs we can decide, which cluster is affected by an error. We demonstrate the utility of our method for the C. elegans neural network, for a signal transduction model for UV-B light induced morphogenesis and for synthetic examples.

Keywords: complex systems, open systems, fault detection, error localization, input reconstruction


1. INTRODUCTION

The dynamic systems we have to handle today, like ecological, biochemical or epidemiological networks, electric circuits or economic relations, are growing larger and more complex than they have ever been before (Kunegis, 2013; Rossi and Ahmed, 2015). The COVID-19 pandemic has highlighted one of the key limitations in our understanding of large and interconnected networks: An initially small disturbance can spread rapidly, which makes it difficult or impossible to reconstruct the root cause of the original perturbation. Modeling such processes is difficult in practice because it is hardly possible to understand each single interaction within a complex network, to monitor all external inputs, and to isolate the system from unwanted perturbations. In nearly all cases we have to deal with the presence of unknown structural model errors. We call these model errors structural, for they can lie in the functional form or in the very network topological structure of a system and can not be fixed by adjusting the parameters, compare (Engelhardt et al., 2016, 2017; Kahl et al., 2019; Villaverde et al., 2019).

Structural model errors impair the prediction of the future evolution of the system and also the estimation of the state from measured outputs. If the model is not trustworthy, it becomes questionable, whether the mathematical model reflects the reality at all (Tsigkinopoulou et al., 2017). Like in the pandemic, where the backtracking of infection chains plays a central role to keep the virus spreading under control—or at least to keep in sight—the reconstruction of structural model errors would aid manifoldly: We could recover the system's state, the location of the structural model error, and understand, which part of the system is affected. If we could infer a quantitative or qualitative description of the model error, we might be able to gain knowledge about the origin of the error.

Closely related to the problem of structural model errors is the theory of fault detection, an important topic in the engineering literature, see for instance Isermann (2011) and Blanke et al. (2016) for textbooks on fault detection, Fonod et al. (2014) and Chakrabarty et al. (2017) for works on unknown input observers. Geometrical and algebraic (Sain and Massey, 1969; Hirschorn, 1979; Fliess, 1988) treatments of the theory behind unknown input observers and fault detection of linear and non-linear systems have found renewed interest (Martinelli, 2019; Villaverde et al., 2019). A fault of the system, e.g., a mutation impairing a chemical reaction in a signal transduction network, can be seen as an endogenous model error. The practically most common approach to fault detection is to utilize unknown input observers. But those make strong assumptions about the system and especially about the ability to precisely understand the interactions and to collect data, see for instance Fonod et al. (2014) and Chakrabarty et al. (2017). These assumptions may be justified for systems which went through a design process, but they become questionable as soon as we work with biological systems like a cell or even an organ, which permanently interact with their exterior, whereas we do not even oversee the vast number of internal processes.

Dynamic systems in continuous time are often formulated as systems of ordinary differential equations,
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where x(t) ∈ ℝN represents the current state of the system at time t, x0 is the initial state, and y(t) ∈ ℝP represents the directly observable outputs at time t. Often we are not able to monitor each and every state variable xi, but we can only measure some state variables or combinations of them. As the observables are the only experimentally accessible quantities of the system, any knowledge about the system can only be inferred from a comparison between the model output y and the measured data ydata. Henceforth, we assume that we have experimental data ydata for the system of interest, whereas y describes the output expected from our theoretical model (1). In reality, the system might be affected by structural model errors, i.e., a mis-specification of the vector field f encoding the interactions between the state variables. As a consequence, data and model output do not coincide, ydata ≠ y. Due to this discrepancy, conclusions and predictions based on the model (1) can be incorrect or inaccurate.

Algorithms for recovering the errors of a given model (1) from data implicitly assume that the root cause for an error can uniquely be identified (Kolodziej and Mook, 2005; Engelhardt et al., 2016, 2017; Villaverde et al., 2019; Newmiwaka et al., 2020). However, this uniqueness assumption is often violated because the output function c does not provide sufficient information (Engelhardt et al., 2016; Kahl et al., 2019) about the root cause for the observed discrepancy y − ydata between model and data. Based on the representation of model errors as unknown inputs (Kolodziej and Mook, 2005; Engelhardt et al., 2016) to the system (1), it was possible to relate the problem of error reconstruction to the problem of system invertibility (Kahl et al., 2019). This enabled us to utilize algebraic and graph theoretic results (Fliess, 1988; Wey, 1998) to derive conditions on the system (1), which guarantee the unique reconstruction of model errors (Kahl et al., 2019, 2020). The analysis of biological systems revealed that the unique reconstruction of model errors is often difficult, unless the measurements [i.e., c in (1)] are carefully selected (Kahl et al., 2019). This lead to a powerful sensor node placement algorithm, which can drastically improve the invertibility properties of a given system (Kahl et al., 2019). However, this algorithm is restricted to the case that we know already the potential location of the error in the system.

In this paper, we present a strategy to handle systems for which it is impossible to pinpoint the exact state variables affected by model error. To the best of our knowledge, this problem has not been discussed before. First, we provide a new measure of input coherence between two different state variables in the system (1). This coherence quantifies, how difficult it is to decide which of the two state variables is targeted by an error with unknown location. The coherence measure is based on the concept of weighted gammoids as a representation for dynamic input-output systems. We use the pairwise coherence between all states in the system to group system states into input clusters. Whereas we are not able to recover the model error, we will at least be able to localize it up to the level of input clusters. In duality, we also form output clusters of coherent outputs. This will help to identify redundant measurements and to select new observables that yield complementary information. Finally, we show that an iterative strategy of clustering error sources and sensors can narrow down the possible error sources successively until we, in the best case, are able to pin it down exactly.



2. METHODS


2.1. Background on Input-Output Networks and the Reconstruction of Model Errors

If the system (1) does not correctly describe the observed data ydata, it is affected by a structural model error. Such errors include endogenous errors like missing or wrongly specified interactions in the vector field f as well as exogeneous errors originating from interactions of the system with the environment. Mathematically, all these errors can be represented by unknown inputs w(t) acting additively on the vector field (Engelhardt et al., 2016; Kahl et al., 2019). Thus, we modify (1) to
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Can we reconstruct the error w(t) from the measured output data ydata? A unique reconstruction of the error requires that there is only one possible input function [image: image] generating the measured output ydata. This means, that the input-output map Φ:w ↦ y needs to be injective (one-to-one).

Assume for the moment that we know, which state variables are affected by an error. This means that we know at least the non-zero components of the underlying true model error w*(t) which we are aiming to reconstruct. If we denote the index set of all the states x ∈ ℝN in (2) as [image: image] we will call the subset [image: image] of states affected by an error the input set. In a similar way, we define the output set [image: image] of state variables appearing in the output function c(x). Mathematically, this means that i ∈ Z is equivalent to [image: image] for some output index j ∈ {1, …, P} and at some state x. The output nodes in Z are also often called sensor nodes in the literature and we will use these terms synonymously (Liu and Barabási, 2016).

It turns out that under the (unrealistic) assumption of zero measurement noise in the data, the question of unique error reconstruction can be answered from a purely graphical condition (Kahl et al., 2019). The vector field of a dynamic system of the form (1) or (2) can be represented by an influence graph g (see e.g., Lin, 1974; Dion et al., 2003; Boukhobza et al., 2007; Lunze, 2016). This directed graph g is formed by identifying the state variables xi with the nodes [image: image] of g. The directed edge xi→xj exists in g if xi appears in the differential equation for xj, i.e., if ∂fj/∂xi ≠ 0. The set of all such edges [image: image] in g indicates, which states interact with each other.

The condition for the unique recovery of the model error w for a known input set S is related to the invertibility (Sain and Massey, 1969; Fliess, 1988) of the dynamic system (2). One can derive a graphical condition for the invertibility (Wey, 1998) of a non-linear system and thus decide, whether the error w can uniquely be recovered (Kahl et al., 2019): If there is a set of node disjoint paths linking each node in the input set S with a node in the output set Z, then the system is invertible. From the graphical condition (Kahl et al., 2019) one can conclude a necessary condition on the minimum of number of sensor nodes, i.e., the cardinality P = |Z| of the output node set Z. For invertibility, we need |Z |≥| S|, i.e., at least as many measurements as inputs. However, this is not always sufficient. Many badly placed sensors can also prevent us from reconstructing the unknown input. A very efficient sensor node placement algorithm to select a minimum output set Z which guarantees invertibility is available (Kahl et al., 2019).

The graphical condition for model error recovery (Kahl et al., 2019) is limited to the case that the input set S is known and that there is no measurement noise. If the measurement data ydata are noisy, then we can ask whether we can minimize the error [image: image] between the output y(t) = Φ(w)(t) from (2) and the data with respect to the unknown input w. However, one can show that even in the invertible case the inverse of the input-output map Φ is highly sensitive to measurement noise. Thus, the reconstruction requires a suitable regularization (Kahl et al., 2020).

The most challenging case is that the input set S is unknown and that the data ydata are corrupted by noise. Recently, we derived conditions that the minimization of the error functional
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recovers the correct unknown input w* to a certain level of accuracy from the data (Kahl et al., 2020). These conditions, however, require two additional assumptions: The first one is invariable sparsity of the input w. This essentially means that the unknown input set S is assumed to have a maximum cardinality and to be constant over time. This assumption, is, however, reasonable for structural model errors and also for system faults, because the location of an error or fault (not the error signal itself) is unlikely to change over time. This is to be distinguished from other definitions of sparsity in control theory, where the input location can jump between different states (Nagahara et al., 2016). The second, more severe, assumption for the recovery of the model error by minimizing (3) is the linearity of the input-output map Φ. This does not mean that the minimization of (3) or related cost functions (Kolodziej and Mook, 2005; Engelhardt et al., 2016) for non-linear systems is impossible. It only says that we have currently no guarantee to recover the correct model error w*(t).

In many cases, it is hard to decide whether the recovery of the true model error w* is possible or not (Boukhobza et al., 2007; Villaverde et al., 2019; Kahl et al., 2020). As described above, it is sometimes useful to divide the problem into two parts: First, one needs to find the input set S and second one needs to recover the error signal w (Kahl et al., 2020). However, in this text we will take a slightly more pragmatic approach: For a given model (1) augmented by an unknown input (2), is it possible to narrow down the input set S to a smaller subset? That means, can we at least identify a region in the network (influence graph g) which is affected by the model error?



2.2. Gammoids and Coherence of Dynamic Systems

For a given system with errors or unknown inputs, we assume that we have at least the influence graph g, the output set Z and time course data ydata(t) for these data. Typically, these are taken at discrete time points t1, …, tT. In addition, we might have weights F(i → j) indicating the strength of the interaction between the states xi and xj. For a dynamic model (12) we can obtain the weights from the Jacobian
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at a certain reference point x(r). This reference point could, for instance, be a stationary state or an initial condition. The weights might also be obtained from other sources, see our example in section 3.1.

If the input node set S is unknown, we have to consider all nodes [image: image] in g as potential input nodes. However, unless we measure all states or make further assumptions, we can not reconstruct the location S of the unknown input (Kahl et al., 2019). To isolate at least the regions in the network g, where errors or inputs are located, we need a measure of independence between potential input nodes [image: image]. We will refer to this set [image: image] of potential input locations as the ground set. If we have some prior information on the location of the error, the ground set could be a proper subset of the set of state nodes [image: image]. However, in the absence of any prior knowledge, [image: image] is also possible in our approach.

The available structural information can be collected in a mathematical structure called a gammoid.

 DEFINITION 1. Let [image: image] be the influence graph of a dynamic system (2), [image: image] an input ground set and [image: image] an output set. We call [image: image] the gammoid of the system.

The gammoid of the system combines all possible input sets into one structure. The idea of the input ground set [image: image] is that it comprises all allowed input nodes, such that each subset [image: image] serves as a candidate for the true input set. If we combine the weight function [image: image] given by (4) with the gammoid Γ, one can show that we obtain a so called weighted gammoid (Kahl et al., 2020). Thus, a weighted digraph with inputs and outputs can be regarded as a weighted gammoid.

The advantage of the additional abstraction to gammoids is the fact, that they give rise to an abstract independence structure on the input ground set (Perfect, 1968; Pym, 1969a,b; Mason, 1972). This independence structure can be used to derive conditions on the recovery of invariable sparse inputs to non-linear systems in the case that the input set S is unknown (Kahl et al., 2020). These conditions are, however, still restricted to perfect data ydata without measurement noise. It does not make any statements about the numerical stability of a numerical recovery algorithm like minimizing (3). Here we will exploit the independence structure to detect groups of potential input nodes in [image: image] which can not be distinguished from any measured output data ydata acquired at the sensor nodes Z of the gammoid.


2.2.1. Concatenation of Gammoids

For a gammoid [image: image] we can introduce the transposed gammoid [image: image] in the following way (Kahl et al., 2020): For each node [image: image] we introduce a node [image: image]. Here, the prime helps to distinguish the nodes in [image: image] and the transposed graph [image: image]. Then, g′ is obtained from g by flipping all the edges and the corresponding weights. Thus, for each edge [image: image] there is a flipped edge [image: image]. Accordingly, the weights of Γ and Γ′ are related by F(i→j) = F(j′ → i′). At the same time, also the ground set [image: image] and the output set change roles in [image: image]. The output nodes Z in Γ correspond to the inputs of Γ′ and the inputs of Γ to the outputs of Γ′.

Then, one can concatenate Γ with its transpose Γ′ by identifying each output node zi ∈ Z with the corresponding input node [image: image]. Thereby we obtain again a gammoid, denoted [image: image], where g ∘ g′ is the resulting graph produced by identifying Z with Z′.



2.2.2. The Shortest Path Coherence and Clustering of Similar Input Nodes

The composed gammoid Γ ∘ Γ′ will be used in the following to compute a measure of coherence between different potential inputs.

 DEFINITION 2. Let Γ be a weighted gammoid with ground set [image: image]. For two nodes [image: image] let ψij denote the shortest path from li to [image: image] in (Γ ∘ Γ′). We call

[image: image]

the shortest path coherence between li and lj.

The shortest path coherence can readily be computed even for large (N > 100) networks. One simply computes the shortest path between the two nodes and the corresponding weight and normalizes this according to (5).

The shortest path coherence can be used as a measure for the similarity of the output patterns that can be generated from state node i and j. The larger [image: image] is, the harder it is to decide from the output data ydata, whether there is an input wi(t) at state i or an input wj(t) at j. An exact proof for this is beyond the scope of this paper, see our more theoretical exposition (Kahl et al., 2020). There, we also show how the shortest path coherence can also be used for testing, whether an error can exactly be localized, or not.

If there is a high pairwise shortest path coherence between different nodes, it is natural to combine these nodes into a group of highly coherent states. Thus, we try to identify clusters of nodes which are highly coherent to each other, i.e., where we can not decide, which of the states within the cluster is targeted by an error or unknown input. For clustering, it is often easier to work with a distance measure between the input nodes i, j. Thus, we define the (shortest path) distance as

[image: image]

The corresponding shortest path distance matrix D = (d)ij can readily be used as a distance matrix for standard hierarchical clustering algorithms. We used complete linkage clustering, i.e., the distance between a node i and a cluster [image: image] is the maximum of dij for all [image: image]. For our computations we used the python package networkx for graph theoretical algorithms and scipy and seaborn to perform a hierarchical clustering of the distance matrix. Sometimes it is helpful to rescale D and use the normalized variant [image: image] for visualization purposes. It shall be noted that it is not unusual to find some shortest path coherences μij to be zero or close to zero. This results in a divergence of the distance matrix. It has proven practical to work with an appropriate upper bound for the distances.





3. EXAMPLES


3.1. Coherences in the Caenorhabditis elegans Neural Network

Caenorhabditis elegans (C. elegans) is a small worm. Its connectome, i.e., the network of neurons and synapses was completely mapped and is available as a comprehensive resource (Altun et al., 2002–2020; Corsi et al., 2015) and a network scientific treatment of the C. elegans connectome in Varshney et al. (2011) and Yan et al. (2017). But, a neural structure like the one of C. elegans does not only offer a network interpretation. Due to the input-output structure it naturally induces a weighted gammoid: For the network interpretation, the neurons are the nodes and the synapses are directed edges which allow for a direct information transfer from one neuron to the following one. Some links comprise several synapses, so that we can take the number of synapses between two neurons i and j as the weight of (i → j). Finally, neurons are divided into sensor neurons which are sensible to inputs, inter neurons which process the input, and motor neurons which finally pass the processed information to the muscles and induce the locomotion of the worm. Please note, that sensor neurons are the inputs in this example. They should not be confused with the sensor nodes or outputs (here motor neurons). See Figure 1A for a view on the C. elegans neural network (Varshney et al., 2011) in a simplistic three layer illustration with the sensor neuron layer on top, the inter neuron layer in the middle, and the motor neuron layer at the bottom [data obtained from the worm atlas (Altun et al., 2002–2020)].


[image: Figure 1]
FIGURE 1. Neural input clusters for C. elegans. (A) The C. elegans connectome plotted in three layers of neurons [presented in Varshney et al., 2011, data set available (Altun et al., 2002–2020)]. Red nodes indicate sensor neurons, black nodes represent inter neurons, blue nodes are the motor neurons. (B) A heat map of the distance matrix D = (dij) of the 82 sensor neurons. Nodes of low distance (high coherence) are difficult to distinguish by their outputs. Thus stimuli to nodes within the same cluster are likely to induce the same movements. We used a distance bound [image: image] and distance threshold [image: image].


An individual of C. elegans is either of male sex or hermaphrodite. These two differ slightly in their connectome. Here, we used the hermaphrodite data with a total node number of N = 283. Figure 1B presents a heat map of the distance matrix obtained from the shortest path coherence of the 82 sensor neurons of C. elegans already sorted into clusters. We find that the input ground set, i.e., the sensor neurons, fall into few (four to five) large clusters which cover most of the 82 input nodes. Inputs to nodes within the same cluster cannot be distinguished by the outputs of the network. Thus, stimuli targeting sensor neurons of the same cluster are likely to generate the same signal in the motor neurons and thus the same movement. This result is consistent with earlier work (Stephens et al., 2008), where it was shown that 95% of the worm's locomotion can be described by only four characteristic movements.

This example illustrates the ability of our gammoid approach to define highly coherent input nodes, i.e., nodes which will induce the same outputs. In this way, the coherence clustering can be used to classify the set of potential output patterns and to investigate the generalizing effect characteristic for neural networks. In principle, the same approach can be used for other directed and weighted networks.



3.2. Cluster Localization of Perturbations in a Model for Signal Transduction in Response to UV-B Light

In this example we use an ODE based model of a signal transduction network for the induction of photomorphogenesis by UV-B light (Ouyang et al., 2014). There are 11 state variables x1, …, x11 and five outputs y1, …, y5, see the Supplementary Material for the equations. We first generate pseudo-experimental data for a system that is perturbed by two model errors. We randomly chose [image: image] and [image: image] acting on the state variables x3 and x6, respectively. The error signals [image: image] and [image: image] are documented in the Supplementary Material. We initialized the model close to the stationary point by setting the initial value to x(r) = (1.89, 0.17, 0.0007, 34.34, 1.63, 0.048, 0.098, 2.27, 0.40, 8.17, 11.82)T and added Gaussian measurement noise to each measurement yi(tk) with a relative standard deviation of 5% of yi(tk). Here, tk is the time of the k-th data point.

We used a hierarchical clustering on the distance matrix for the input ground set [image: image]. See Figure 2A for the influence graph of the system. The node coloring encodes the assignment to the six clusters

[image: image]

The asterisk marks the input nodes that are affected by the model error.


[image: Figure 2]
FIGURE 2. Cluster based localization of unknown inputs in a signal transduction model of UV-B light induced photomorphogenesis (Ouyang et al., 2014). (A) The influence graph for the model with 11 state variables. The states x6 and x3 are targeted by a simulated model error. Computing the coherence matrix (5) at a stationary point and clustering yields six input clusters [image: image]. For state nodes within the same input cluster it is difficult to distinguish them as the sources of the error. (B) The time courses of the true inputs [image: image] and [image: image] together with the input reconstruction by the recovery algorithm based on the minimization of the error functional (3), with β = 10−2. The strong coherence within the different clusters makes a reconstruction of the input impossible. (C) The input strength (7) for the different input clusters using the reconstructed input signals in (A). Clearly, the input clusters [image: image] and [image: image] are reconstructed. These are also the clusters containing the true inputs at nodes [image: image] and [image: image].


To mimick a situation, where the location of the errors is unknown and has to be inferred from the output time courses y1(t), …, y5(t), we minimized the error functional (3) and obtained estimates for the unknown inputs w1, …, w11. We used the python implementation of the CasADi package for optimization and optimal control (Andersson et al., 2019). The regularization parameter can be chosen by the discrepancy method (Honerkamp and Weese, 1990; Engelhardt et al., 2016). One can also incorporate an invariable sparsity assumption and check, how many non-zero input nodes are needed to recover the output data [image: image] with sufficient accuracy.

As shown in Figure 2B, this unknown input reconstruction seems to be a failure. This is not caused by numerical problems, but by the high coherence of the states within the inputs clusters [image: image]. States within one and the same cluster can in principle generate the same output functions, what prevents us from reconstructing inputs and their localization.

Nevertheless, let us compute an input strength for each cluster by summing the signal norms within each cluster according to

[image: image]

In this paper, we chose p = 3, however, this parameter is theoretically arbitrary. The input strengths of each input cluster are plotted in Figure 2C with colors corresponding to the clusters shown in (A). Clearly, we can identify clusters [image: image] and [image: image] as the ones of highest input strength. These clusters indeed contain the true inputs nodes 3 and 6.

So, one strategy to narrow down the location of errors is to group the state nodes in the influence graph into input clusters based on their coherence. Then, we minimize (3) to compute the input strength (7) of these clusters. Now, we can see from the input strength, which clusters are most likely to be targeted by errors or other perturbations. We will further illustrate and extend this strategy in the next two examples.



3.3. Iterative Error Localization of an 1-Sparse Model Error

In this and the next example, we consider a linear dynamic system of N = 30 state variables. The equations can be found in the Supplementary Material, the influence graph is also shown in Figure 3C. The system has five outputs y1, …, y5 as indicated by the square shaped output nodes in the figure. To simulate a structural model error, we added a single additional input to one of the differential equations of the system.


[image: Figure 3]
FIGURE 3. Error localization at the level of input clusters. (A) A direct application of the recovery algorithm Δ yields estimates ŵi for the model error, w* shows the ground truth, β = 10−2. (B) The normalized distance matrix of the system presented as a heatmap. Highly coherent state nodes were grouped together by hierarchical clustering. (C) The influence graph of the system. The square shaped nodes represent the five outputs y1, …, y5. The node coloring encodes the affiliation to input clusters. We chose a clustering depth that produces five input clusters. (D) The total input strength (7) for each of the five input clusters.


Our aim is to localize and recover this artificial model error. We will first apply the recovery algorithm and see that it does not lead to the desired outcome due to the high coherence of the input nodes. Next, we will cluster the input nodes by their coherence and identify the cluster targeted by the model error. To further narrow down the location of the error, we need a different set of output nodes. We show, that output nodes can be clustered in a similar way as inputs into groups of redundant outputs. Then, we can relocalize the sensor nodes to have non-redundant output measurements. The output clusters also allow to decide, whether more observables are needed. This enables us to iteratively narrow down the possible sources of the model error. Finally, we are able to pin down the location of the model error exactly and to compute an appropriate estimate of the ground truth error signal.


3.3.1. Direct Recovery Attempt

Without prior knowledge about the model error, we must consider each of the N = 30 nodes to be a potential input node, hence the input ground set is [image: image]. Again, we minimize the error function (3) to recover the unknown inputs. We will use a symbolic notation for this recovery algorithm, the expression

[image: image]

means, that we use time course measurements [image: image] to reconstruct the outputs in the ground set [image: image].

As can be seen from Figure 3A, the result of this direct reconstruction attempt is not satisfactory.



3.3.2. Localization of the Erroneous Cluster

Figure 3B reveals why the direct recovery attempt of the model error was bound to fail: In the (normalized) distance matrix (6) of the system one can see a strong cluster hierarchy. The output signal [image: image] can be caused by inputs from different nodes within one and the same input cluster. This makes a reconstruction of the model error impossible. Heuristically, we have found that a clustering into P clusters is usually a robust choice, where P is the number of sensors. In this example we work with P = 5 sensors.

In Figure 3C, we depict the influence graph of the system with the nodes colored according to the five input clusters of the system. The nodes within one and the same cluster are indistinguishable by the outputs of the system. Thus, it is impossible to localize the model error at a finer resolution than this given by the clusters. When computing the total input cluster strength (7), we see that the input to cluster [image: image] is significantly larger than the input strength estimated for the other clusters (Figure 3D). Though we are not able to detect the model error exactly, we deduce that it must lie somewhere in cluster [image: image].



3.3.3. Sensor Replacement

Remember that we have computed the distance matrix for the input nodes using Γ ∘ Γ′ (see section 2.2.1). Due to the notion of the transposed gammoid we can also do a reverse action and compute a distance matrix for the output nodes via Γ′ ∘ Γ. More precisely, we perform the following procedure: Let [image: image] be an output ground set, i.e., the set of all nodes that can potentially be monitored. For this example, say [image: image]. Since we have already deduced a new input ground set [image: image], we will work with [image: image] to compute a distance matrix for [image: image].

Output nodes with a high coherence provide redundant information, i.e., they can not help distinguishing inputs from different input nodes. See Figure 4A for the output clusters of the system. The output nodes y3 and y5 lie within the same output cluster. To enhance the informative value of our data, we replace y3 as indicated in Figure 4B such that it now covers a different output cluster.


[image: Figure 4]
FIGURE 4. Iterative error reconstruction. (A) The influence graph of the same system as in Figure 3C. Here, the node coloring indicates output clusters. Measuring nodes within the same cluster provides only redundant information about errors. (B) The influence graph with node coloring indicating input clusters w.r.t the new ground set [image: image] identified from the previous clustering in Figures 3C,D. The gray nodes do not lie in the input ground set and are therefore not considered. (C) The total input strength (7) for each new cluster in (B). (D) The estimated model error ŵ6 compared to the ground truth w*, β = 0.1.




3.3.4. Final Localization and Recovery of the Model Error

We have already found that the model error is located in input cluster [image: image]. With this information we can define a new input ground set [image: image] and in combination with the less redundant output nodes we can try to further narrow down the source of the model error.

To this end, we perform again an input clustering using [image: image] as ground set with the result shown in Figure 4B. Then, we apply the recovery algorithm Δ using the new output data and the (smaller) ground set [image: image]. The cumulated input strength (7) for each cluster is shown in Figure 4C. It turns out that input cluster [image: image] plays the predominant role so that we again reduce the input ground set and obtain [image: image].

The new input ground set [image: image] consists of only one node. Hence, we have pinned down the source of the model error to only one possible input node. Figure 4D presents the estimate obtained from Δ with [image: image] as input ground set as well as the ground truth. The accuracy of the estimate clearly relies on the chosen recovery algorithm Δ as well-stochastic uncertainties in the data.




3.4. Iterative Error Localization of a 2-Sparse Model Error

As another example, let us again consider the same N = 30 model as before. Now, we add two artificial model errors affecting state variables x6 and x30. Again, these nodes are not chosen with any preference and the same procedure will work comparably for other choices. However, with more input nodes, the high coherence and indistinguishability will diminish the ability to localize and reconstruct the model errors. In this example of two model errors, we will see that the number of sensor nodes is too small to obtain an accurate estimate. Still, we will be able to narrow down the set of potential inputs to a much smaller set using the same number of sensors.


3.4.1. Direct Recovery Attempt

Without prior knowledge, each of the N = 30 nodes is considered a potential input node, hence the input ground set is again [image: image]. The sensors are placed at the output node set Z = {7, 13, 20, 21, 26}. Figure 5A shows the ground truth as well as the result of the direct error reconstruction. Due to thigh coherence of input nodes (compare Figures 3B,C) the input estimates do not approximate the ground truth.


[image: Figure 5]
FIGURE 5. Iterative error reconstruction for the same system as in Figure 3, but now with two unknown inputs. (A) The true model errors [image: image] and [image: image] and the input estimates ŵ1, …, ŵ30 for the sensor as described by the set Z (see B), β = 0.1. Each node was considered a potential input node. (B) The total input strength for each of the input clusters [image: image] w.r.t. the output set Z. (C) The true and estimated inputs, where only nodes from [image: image] were considered as potential input nodes, again β = 0.1. The output set remained the same, i.e., Z′ = Z. (D) The total input strength for each of the new clusters [image: image], when the ground set is restricted to [image: image], but the sensor locations Z′ = Z remain the same. (E) The true and estimated inputs, where only nodes from [image: image] were considered as potential input nodes, but the new output set Z″ was chosen to cover distinct clusters, again β = 0.1. (F) The total input strength derived from (E) for the new input clusters [image: image] w.r.t. the less coherent output set Z″.




3.4.2. Detection of the Erroneous Clusters

Figure 5B shows the input cluster strength (7) for each of the five input clusters [image: image]. Cluster [image: image] plays the dominant role so that we chose the new input ground set to be [image: image].



3.4.3. The Need for Sensor Replacement

Let us first see what happens, if we are not able to replace the sensors. Figure 5C shows the input estimates with the unchanged output set Z′ = Z = {7, 13, 20, 21, 26}. A clustering of the adjusted input ground set leads to three clusters [image: image], [image: image], and [image: image]. Figure 5D shows the total input strength for each cluster. Clearly, the input estimates do not describe the ground truth appropriately and the input strength of each cluster is also not informative about the true location of the error.

As the new input ground set [image: image] has already been identified as the target of the perturbations, it is not surprising that the input estimation for the large input ground set [image: image] (see Figure 5A) and for the reduced ground set [image: image] (see Figure 5C) produce nearly the same result. Since the sensor set is the same as before, Z′ = Z, the measurements suffer from the high coherence of the input nodes and Figure 5D shows that we are unable to improve the localization of the inputs.



3.4.4. Localization With Sensor Replacement

As seen in the previous example, the sensor set Z is not a good choice, because the observables monitoring x20 and x26 yield redundant information. We exchange the sensor on x20 with a sensor measuring x2. Again, choosing the new sensor is subject to practical issues, e.g., in an experiment. From the theoretical point of view, we should just try to place the sensors such that they cover different input clusters. We change the output set to Z″ = {2, 7, 13, 21, 26}. The new input estimates can be found in Figure 5E. One will see that the estimates shown there come closer to the ground truth but are not accurate. The new output set Z″ implies a new clustering of the input ground set [image: image] into [image: image] as presented in Figure 5F. The input strength for each of the clusters indicates that the two clusters [image: image] and [image: image] have the largest total input strength. Indeed, these two clusters contain the nodes 6 and 30, which are targeted by the added perturbations.

Though we were unable to accurately reconstruct the true model errors, we have still succeeded to narrow down the list of potentially perturbed states. With an initial ground set [image: image] of 30 nodes and only five sensors, the system is highly under-determined. With an iterative input estimation and sensor replacement we have found that the perturbations lie within the much smaller clusters [image: image] of size two and [image: image] of size four. Thus, we can exclude the remaining 24 nodes and declare them as non-perturbed. A further reduction would only be possible with a higher number of output sensors.





4. DISCUSSION

Developing sufficiently accurate models for large and complex dynamic networks is often difficult because we neither know all the details about the endogenous interactions in the system nor can we be sure that the system acts in isolation. This limited information inevitably causes structural model errors which include misspecified couplings, system faults as well as unknown inputs from the exterior. Localizing and identifying these errors is a crucial step toward better estimates for the current and future behavior of a system and to reliable mathematical models.

We have presented a coherence measure for dynamic networks, which indicates how difficult it is to decide for two different nodes, whether an error targets the one or the other node. This coherence is based on a weighted gammoid representation of the dynamic system and can efficiently be computed even for very large dynamic systems. The coherence can be used to cluster network nodes into groups of state variables which can not be distinguished as potential sources of error. By combining this clustering with an optimization based inference of cluster inputs, we are able to localize structural model errors and unknown inputs down to the level of these input clusters. We demonstrated for the C. elegans neural network that this approach can identify meaningful input clusters which we predict to correspond to the four different movements previously reported (Stephens et al., 2008). We would like to emphasize, that our coherence measure can be used for any directed weighted network with known output nodes.

By using the dual approach for sensor nodes, we can identify non-redundant sensors which can be used to further narrow down the exact position of the error. This motivates an algorithm iterating between input clustering, output clustering and sensor node selection. We demonstrated that this procedure can efficiently select non-redundant measurements. If there are enough sensors, it can even be possible to finally pinpoint the exact location of an unknown input. In other cases, when the number of outputs is not sufficient, it might be only possible to reduce the possible nodes to a smaller set. Please note, however, that one limitation of our work is the lack of an exact proof for the convergence of this iterative procedure. This is left as a direction for future research.

The localization and reconstruction of errors and unknown inputs in a model of a dynamic system is a crucial step to systematically extend models. If we know, where a model is incorrect, we can systematically improve it. An interesting question is, how to best combine model error analysis with data driven model discovery (Brunton et al., 2016). Despite the recent progress (Brunton et al., 2016) in model discovery, it is likely that the data sets required for a de novo reconstruction of the governing equations of a model will not always be available in biology, medicine, or physiology. Thus, we believe that a combination of modeling, data driven model error reconstruction, and data driven model extension will be the most promising approach toward an understanding of complex dynamic systems in the biomedical field.
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Currently, research in physiology focuses on molecular mechanisms underlying the functioning of living organisms. Reductionist strategies are used to decompose systems into their components and to measure changes of physiological variables between experimental conditions. However, how these isolated physiological variables translate into the emergence -and collapse- of biological functions of the organism as a whole is often a less tractable question. To generate a useful representation of physiology as a system, known and unknown interactions between heterogeneous physiological components must be taken into account. In this work we use a Complex Inference Networks approach to build physiological networks from biomarkers. We employ two unrelated databases to generate Spearman correlation matrices of 81 and 54 physiological variables, respectively, including endocrine, mechanic, biochemical, anthropometric, physiological, and cellular variables. From these correlation matrices we generated physiological networks by selecting a p-value threshold indicating statistically significant links. We compared the networks from both samples to show which features are robust and representative for physiology in health. We found that although network topology is sensitive to the p-value threshold, an optimal value may be defined by combining criteria of stability of topological features and network connectedness. Unsupervised community detection algorithms allowed to obtain functional clusters that correlate well with current medical knowledge. Finally, we describe the topology of the physiological networks, which lie between random and ordered structural features, and may reflect system robustness and adaptability. Modularity of physiological networks allows to explore functional clusters that are consistent even when considering different physiological variables. Altogether Complex Inference Networks from biomarkers provide an efficient implementation of a systems biology approach that is visually understandable and robust. We hypothesize that physiological networks allow to translate concepts such as homeostasis into quantifiable properties of biological systems useful for determination and quantification of health and disease.

Keywords: physiological networks, complex inference network, homeostasis, anthropometric measures, blood test biomarkers


INTRODUCTION

Communication and interaction between physiological systems and organs are the essence of physiology (Ganong, 1969; Bashan et al., 2012; Bartsch et al., 2015; Ivanov et al., 2016). This integration of organisms as a whole results in an inherent complexity of physiological phenomena (Burggren et al., 2005) that has implications for the behavior of physiological systems in health and disease. For example, it has become clear that the simultaneous occurrence of diseases in the same individual (comorbidity) occurs more often than would be expected from the individual prevalence of each disease by chance alone (Alberti et al., 2009). Additionally, when a comorbid state is present, the clinical expression of each individual disease is usually more difficult to treat and associated with worsened outcomes (Wu et al., 2019). Although these observations are common in medical practice, relatively few health conditions are regarded with an extensive perspective. Some of the most common examples are the metabolic syndrome (Alberti et al., 2009), and the asthma-obesity-diabetes triad (Wu et al., 2019). Mainstream methodology in disease diagnosis and disease treatment employs a reductionist approach to physiology, where at most two variables are studied simultaneously. This presents an immediate challenge for the study of complex comorbidities where several physiological systems are involved. An emerging paradigm for this problem is the systems biology perspective, where the organism is visualized as an open system composed of interacting components (Von Bertalanffy, 1968). The integration of these body components generates physiological states that can be studied in health and disease through complexity approaches (Ivanov et al., 2016). A way of representing and conceptualizing systems is through networks. This approach facilitates the visualization and analysis of potentially large numbers of interactions (Pavlopoulos et al., 2011). Networks have been applied in very diverse fields of science, including economy, sociology, ecology, and they have been generalized recently for the study of biomedical sciences (Albert and Barabási, 2002; Boccaletti et al., 2006). Currently, most approaches to network analysis in biomedical science are restricted to homogeneous datasets, i.e., where all the variables and interactions are of the same kind, e.g., differential gene expression networks. However, physiology is not constructed from interactions between components that are all of the same kind. Some novel approaches to address physiological networks have been developed where physiological integration of different systems within the organism is demonstrated through time-series analysis (Ivanov and Bartsch, 2014). Multiple time scales may be involved in different physiological interactions and their measurements (Bartsch et al., 2014). For instance, some physiological interactions occur in seconds and are measured with great accuracy in fractions of seconds. Other physiological interactions occur in cycles of days or months and may only be quantified as isolated point measurements and not continuously as time series (Barajas-Martínez et al., 2020). Moreover, while networks are usually constructed through links that are associated with known, experimentally verified interactions, such as the Kyoto Encyclopedia of Genes and Genomes, KEGG (Ogata et al., 1999), it is likely that certain important interactions in biological systems remain unknown. The methodology of Complex Inference Networks allows the construction of networks where the links are inferred, instead of being directly observed. Correlation networks are a common and widespread method to make such inferences (Batushansky et al., 2016) that may be later verified through conventional mechanistic studies. A network approach provides also a new level of study where global properties of the system, that are not apparent at the local level, emerge from the interactions of the multiple components. These interactions are revealed by changes in topology and connectivity (Ivanov and Bartsch, 2014).

How to approach multivariate datasets to generate insight in physiology is an area under development. Principal Component Analysis (PCA) and network analysis are two current data analysis techniques that have been transferred to biology from other areas of science (Liu et al., 2015; Asada et al., 2016). The coupling between physiological variables can be explored through the change in the covariance observed in different samples (Hofer and Sliwinski, 2001). For correlation networks, an association would be found between those variables that interact directly or indirectly within the physiological network. Here, the physiological network is modeled as a continuous association of pairs of variables. For this correlation model, a correlation matrix was constructed for the chosen physiological parameters. These variables are often of different nature, ions in solution, mechanical forces and hormones. Their interactions are also of different kinds, direct and indirect, through very different physiological mechanisms. In summary, physiological variables are correlated along all their biologically plausible spectrum. In this scenario, the associations between parameters are present even for healthy values and represent a continuum. From the systems biology perspective, the network structure is a direct result of the coordination, or lack thereof, of components that are linked by homeostatic feedback (Goldstein, 2019). For example, in a simple negative feedback a change in a regulated variable is detected by a comparator in the organism that through effector variables counteracts the perturbation (Fossion et al., 2018). These variables, along with buffer variables, result in the covariance of multiple variables in biological systems.

The aim of this work is to generate a mainstream workflow for developing physiological networks from heterogeneous datasets including endocrine, mechanic, biochemical, anthropometric, vital signs, and cellular elements that are readily accessible and already being employed without a holistic perspective. In this contribution we have constructed a physiological network for control subjects (young adults, asymptomatic, clinically diagnosed as healthy) from physiological, biochemical, and anthropometric data.



METHODOLOGY


Ethics Statement

The study was developed according to Good Clinical Practice guidelines and the Declaration of Helsinki. All procedures involving participants were in accordance with these ethical standards and followed the procedures required by the corresponding ethics committees. All the participants signed a written informed consent form with full knowledge of the interventions involved in this protocol. All databases employed here were constructed with authorization of the Ethics Committees as detailed below.



Databases

In the present contribution, 2 different datasets of multivariate and heterogeneous physiological data were analyzed (C22_14 and Project_42) allowing to compare the physiological networks obtained from different datasets and to confirm the robustness of the approach and the consistency of the results obtained. The C22_14 database comprised 81 variables of which 46 were unique; the Project_42 database recorded 55 variables of which 19 were unique; 36 variables were in common between both datasets (see Table 1). The physiological network corresponding to the 36 variables in common was also constructed to allow comparison between both datasets.


TABLE 1. Description of physiological variables.
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C22_14 Database


Ethical and human research considerations

This study was carried out in accordance with current regulation of the Mexican Official Normativity, NOM-012-SSA3-2012. The Ethics Committee of the “Instituto Nacional de Enfermedades Respiratorias” (INER) approved the procedures and protocols for this study as project C22_14, all the participants provided a written informed consent.



Demographic description of the participants

134 participants from Mexico City and surroundings were evaluated, corresponding to 43 men and 91 women with an age ranging from 25 to 67 years old (median age = 46 years old). Overweight and obesity were highly prevalent, being present in 42% and 39% of the participants, respectively. 81 independent variables were measured through anthropometry, bioimpedance, spirometry, complete blood count, blood chemistry and ELISA (see list of variables in Table 1). Several derived variables of common use in medical practice were calculated for the database (see list of derived variables in Table 2).


TABLE 2. Description of derived variables.
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Measurement of physiological variables

Approximately 10 mL of venous blood was taken from each participant in fasting conditions and stored in darkness throughout the biospecimen handling process. EDTA or heparin was used as an anticoagulant according to the determinations to be made. The samples were centrifuged, plasma was obtained and routine clinical analysis was performed to know the health state of individual subjects. The set of bioclinical tests included hematologic analyses, biochemistry, C-reactive protein, which were carried out in the local clinical laboratory in compliance with current quality standards. Additionally, analyses by ELISA were performed. Spirometry was carried out in the Clínica de Ayuda para dejar de Fumar at the INER.



Project_42 Database


Ethical and human research considerations

This study was carried out in accordance with current regulation contained in the Mexican Official Normativity, NOM-012-SSA3-2012. The Ethics Committee of the Facultad de Medicina of the Universidad Nacional Autónoma de México (UNAM) approved the procedures and protocols for this study as project FM/DI/023/2014. All the participants provided a written informed consent.



Demographic description of the participants

This sample was based on first and second year students at the School of Medicine at the UNAM, all living in Mexico City and its surroundings. 69% of the sample were women, with an age ranging from 18 to 28 years old (mean age of 20 ± 2 years-old). 54 independent variables were measured through anthropometry, bioimpedance, hematic biometry, blood chemistry (see list of variables in Table 1). Derived variables used commonly to characterize meaningful relations between variables are present in the database (see list of derived variables in Table 2).



Measurement of physiological variables

After a medical check-up, all samples and anthropometric measurements were realized in fasting conditions from 7:00 to 9:00 h. Anthropometric measurements were performed employing the corresponding WHO guidelines. All participants were advised to abstain from alcohol and other substances 24 h prior to the measurements. All blood samples were stored at 4°C and processed the same day. A full description of the methods employed for this dataset is available in Barajas-Martínez et al. (2020).



Data Processing

Databases were constructed manually in excel and validated at random as quality control.

All the physiological variables obeyed asymmetric and leptokurtic distributions, such that the median value (Me) was considered to be the best measure of the distribution center, and the range (difference between maximum (Max) and (Min)) to be the best representation of the dispersion. For each variable from the data we obtained the normalized value xi applying the following normalization to the original data Vi :

[image: image]

Outliers and implausible data were screened using the ROUT method where Q = 1%. Given the leptokurtic distributions, both databases presented various outlying values. However, most of these outliers were within expected ranges of biological variability. In the C22_14 database no outliers were discarded. In the Project_42 database, 3 values each were discarded for waist circumference, systolic blood pressure, and glucose, 2 values for hip and 1 value each for creatinine, arm and wrist temperature.



Network Construction

All physiological variables were tested for normality using the Shapiro-Wilk test and they were screened as well for extreme values. Since the data sets were not normally distributed and presented outlying values within ranges of biological variability, the Spearman rank correlation ρ (Batushansky et al., 2016) was selected as a measure of correlation (Figures 1, 2). The Spearman rank correlation is a nonparametric measure of the statistical dependence between the rank values of the variables considering monotonic relationship (not necessarily linear) and is not affected by the normalization. For each pair of physiological variables, X and Y, rank (rkX, rkY, respectively) and standard deviation (σrk_X, σrk_Y) were evaluated, and the Spearman rank correlation was calculated as the ratio between covariance (coν) and deviations:


[image: image]

FIGURE 1. Adjacency matrix for the C22_14 database. Spearman correlation values were squared to obtain only positive values. The strength of each link is shown in the heatmap as a heat gradient. Numerical ID and short name are presented next to rows and below columns. The shared physiological variables between both databases are encased within the black rectangle in the upper left side of the heatmap.



[image: image]

FIGURE 2. Adjacency matrix for the Project_42 database. Spearman correlation values were squared to obtain only positive values. The strength of each link is shown in the heatmap as a heat gradient. Numerical ID and short name are presented next to rows and below columns. The shared physiological variables between both databases are encased within the black rectangle in the upper left side of the heatmap.
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To test if the Spearman rank correlation is significantly different from zero, a Student’s t-distribution with (n-2) degrees of freedom was employed. Significant correlations were established below a threshold value of p < 0.001, indicating that the relation does not support the null hypothesis that the independent and dependent variables are unrelated. The Spearman rank correlation coefficient ρ was squared in order to obtain only positive values (Figure 3). An adjacency matrix was constructed with matrix elements corresponding the ρ coefficients between each pair of physiological components such that the resulting network was weighted (Figure 3). Data-set normality testing, linear regression and chi-squared tests for trends were realized with Prism 8.1.2(277), GraphPad Software, La Jolla, CA, United States, www.graphpad.com. For the network construction RStudio, an R language programming suite and igraph package were employed (Csárdi et al., 2016; R Core Team, 2020; RStudio Team, 2020). A glossary of terms used in this paper is given in Table 3.


[image: image]

FIGURE 3. Network construction workflow. The range and distribution of values recorded in the raw database as Tukey box-plots are shown in (A). Variables are normalized, resulting in the box-plots shown in (B). The resulting Spearman ρ correlation matrix, with squared values to represent correlation between variables regardless of sign, is shown as an adjacency matrix heatmap in (C) with a hierarchical dendrogram on the left. After choosing a p-value threshold to discard insignificant links, a network can be constructed as illustrated in (D). Network structures can be enriched with several features, e.g., clusters (shadowed areas) and strength of the spearman correlation (width of the links).



TABLE 3. Glossary. A brief description for quick reference of network’s specialized terms.

[image: Table 3]Nodes within a network can be ranked according to several centrality definitions that fall into two main groups, radial measures and medial measures. These centrality values allow for a direct comparison of either the influence of nodes (radial measure) or gatekeeping (medial measure) within the network (Borgatti and Everett, 2006). Eigencentrality corresponds to the value of the first eigenvector of the graph adjacency matrix and was interpreted as a measure of influence within the undirected networks. Inferring causality exclusively from centrality within networks requires caution, although eigencentrality has been found to be the best centrality measurement for this purpose, especially for small networks with less than 30 nodes (Dablander and Hinne, 2019). Furthermore, eigencentrality is resilient to incomplete sampling of the underlying network (Costenbader and Valente, 2003). For radial measures eigenvectors were selected for the undirected networks and hubscores for the directed networks, whereas for medial measures flow betweenness was used. Flow betweenness was used as a measurement of intermediation within the network. These values were obtained using the SNA package (Butts, 2019). Univariate conditionally uniform graph tests (CUG test), more in particular the cug.test function from the SNA package, were employed in order to test whether the eigencentrality and flow betweenness values obtained would be seen in a random graph with the same number of vertices, edges or dyads. Assortativity of these centralities, i.e., the tendency of nodes with similar centrality to link together, was calculated. NetSwan package was used for studying network robustness, resilience, and vulnerability. Differences were assessed with a paired Friedman’s test using Dunn’s post hoc test. Topological properties were assessed as follows: density, reciprocity and characteristic path length of the networks were calculated using the igraph package. For the calculation of the weighted transitivity and the clustering coefficient in directed and undirected weighted networks the DirectedClustering package was employed (Clemente and Grassi, 2018). CUG tests were also performed for network density, efficiency, transitivity and characteristic path length. The small world index and smallworldness as calculated by qgraph, were used as a summary metric of the network topology (Watts and Strogatz, 1998). Scale-free fitting index was calculated to show fit to scale-invariant distribution using WGCNA package (Langfelder and Horvath, 2008).

In order to generate a common layout to both networks the edge lists of both networks were merged. The resulting network contained all 100 nodes from both datasets with their corresponding edges. This network was outlined with Fruchterman-Reingold force-directed layout (Fruchterman and Reingold, 1991). As a result of this procedure, the relative position of each of the shared nodes between the different networks was the same. This allowed an easy side-by-side contrast between networks. When clusters were collapsed into nodes, they were placed in the location of the node with greatest strength in each cluster to retain the general arrangement of the network.


Cluster Detection

Determining whether a natural division of nodes is present in a network entails practical and useful insight of the studied system that is not accessible in reductionist approaches. A cluster is a set of nodes with many edges inside and few edges outside the cluster. This condition must also meet the requisite of surpassing what would be expected in an equivalent network where links are placed at random (Newman, 2006). This is tested through positive values of modularity in a network. Clusters can be detected by using a suitable algorithm, that groups vertices within a graph that are more densely connected to one another than to other vertices (Figure 3; Csárdi et al., 2016). There are several alternative algorithms for discovering communities of vertices within graphs. In the present contribution, 2 clustering algorithms were employed that are included in the igraph package, Louvain and MAP (Blondel et al., 2008; Rosvall and Bergstrom, 2008). The results were compared using the igraph::compare function for the calculation of the Rand Index (Rand, 1971) and variation of information (Meilă, 2007). The results of this unsupervised clustering were then examined against current literature to find the functional systems that best described the nodes.


Construction of clusters based on unsupervised classifiers

Communities may also be found through walks, simulated annealing, or greedy algorithms, that are supposed to converge iteratively to the best result. 2 clustering algorithms were employed that are included in the igraph package, Louvain, a greedy algorithm, and MAP, a method based on walks and information theory (Blondel et al., 2008; Rosvall and Bergstrom, 2008). The Louvain algorithm optimizes modularity, the ratio between density of links inside the community, compared to the links between communities. To do so, at first, each node is a community of its own. With each step, nodes are re-assigned to communities in a local greedy way. Each node is placed in the community where modularity is increased most. When all nodes are assigned, each community follows the same merging and relocating procedure until modularity cannot be further optimized (Blondel et al., 2008). In contrast, InfoMap clustering tries to minimize the description length of a random walker’s movements on a network (Rosvall and Bergstrom, 2008). To increase the detail of the generated clusters, each cluster subgraph was clustered as an independent network, generating subclusters. Additionally, force-directed layouts such as a Linear logarithmic layout (Linlog) and a Fruchterman-Reingold layout may complement the representation of the community structure of a network (Noack, 2009).



RESULTS


Network Topology Changes With Significance Threshold

The reliability of the present approach was tested by checking whether data normalization or a variation in the p-value threshold resulted in substantial changes in the network topology or in the centrality of individual variables (Figures 4, 5). Spearman correlation matrices resulted to be very similar and largely independent form of data treatment. This is an indication of the robustness of the correlations between variables. As intuitively expected, without a threshold, the result is a fully connected network. However, by lowering the p-value required to indicate a significative relationship between two variables, the topology of the network changed abruptly, until reaching a value p < 0.05 (Figures 4A,C, 5A,C). For constructing physiological networks, connectivity is a desirable feature, since little can be said of isolated nodes. On the other hand, also a deletion of redundant links is needed because correlations arise from collinearity of the variables. The best compromise between these needs was p < 0.001. This was remarkable because the density of the network continued to decrease exponentially whereas the strength of the nodes did not decrease at the same rate. This indicated that lowering the p-value of the network removed preferentially the weakest links. As a result, the efficiency of the network increased, and the connectedness only decreased slightly until p < 0.001, where connectedness and efficiency began to decrease (Figures 4A, 5A). Characteristic path length (L) increased with the p-value threshold (Figures 4B, 5B). At p < 0.001 some relatively stable value of transitivity and clustering coefficient was obtained (Figures 4B, 5B). Moreover, although transitivity and characteristic path length remained similar, small world index increased steadily (Figures 4E, 5E). This indicated that the underlying topology of the network is not a product of the threshold but is actually a phenomenon of high significance. The R2 value for fitting a scale-free network was above 90% until p < 10–6, when it decreased abruptly (Figure 4F). Regarding centrality measurements, eigenvectors were stable across all the range of p-values, making it a centrality measure robust to any data processing. On the other hand, betweenness centralities were dependent on walks, paths or flows that, being macro-scale properties, relied on the overall structure of the network. As such, flow betweenness was more variable. The best Freeman centralization for the flow betweenness was also reached at p < 0.001. Despite the similarity of the correlation matrices of raw and normalized data, modularity was visibly improved by normalization procedures. This indicated an increase in intra-cluster correlations and decrease of inter-cluster correlations. It was concluded that data normalization provided the best results to find community structures in these networks.
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FIGURE 4. Dependence of topology on the p-value threshold for the C22_14 database. For all panels, shadowed areas show the windows employed for examining the networks, from p < 0.05 to p < 0.0001. Our selected threshold, p < 0.001, is shown as a vertical dotted line. Relationship of connectedness and efficiency of the network is shown in (A). Topology indicators such as characteristic path length (L), global Barrat’s weighted transitivity (T) and clustering coefficient (CC) are shown in (B). A comparison between density (number of connections) and strength (sum of weights of links for each node) is presented in (C). Modularity quantified by 2 different clustering strategies, Louvain clustering and InfoMAP, increases as a function of the p-value threshold (D). Small-world index increase with p-value threshold (E). Node’s degree frequency distribution fitting to a scale-free model is shown in (F).



[image: image]

FIGURE 5. Dependence of topology on the p-value threshold for the Project 42 database. For all panels, shadowed area shows the window we employed for examining networks, from p < 0.05 to p < 0.0001. Our selected threshold, p < 0.001, is shown as a vertical dotted line. Relationship of connectedness and efficiency of the network is shown in (A). Topology indicators such as characteristic path length (L), global Barrat’s weighted transitivity (T) and clustering coefficient (CC) are shown in (B). The decrease of networks number of connections (density) is contrasted against the sum of the links weight for each node (strength) is presented in (C). Modularity increase with p-value threshold is presented in through 2 clustering strategies, Louvain clustering and InfoMAP (D). Small-world index increase with p-value threshold is presented in (E). Node’s degree frequency distribution fitting to a scale-free model is shown in (F).




Network Comparison

At the selected significance threshold of p < 0.001, C22_14 database resulted in a correlation matrix with 523 links, while Project_42 had 368 links. Overall, links in C22_14 database were stronger, but this difference was small (mean difference 8 ± 1.4, p < 0.0001). In contrast, node strength (weighted degree, the sum of links weight) was greater in Project_42 (mean difference 131 ± 46, p < 0.001). However, strength of both nodes and edges were highly correlated in the 36 nodes and 80 links that both networks had in common (Spearman’s rho = 0.69, p < 0.0001 for nodes and Spearman’s rho = 0.5, p < 0.0001 for edges).

To test whether node centrality measures were similar between networks the values obtained in the full networks and in the shared network were compared, built from the common subset of variables studied in both databases. For full networks eigencentrality values were similar for both datasets (Spearman’s rho = 0.74, p < 0.0001) while flow betweenness was dependent on the specific network (Spearman’s rho = 0.03, p = 0.8, see Figures 6A,B). Similar to the comparison of the full networks, when comparing networks comprising only shared nodes large correlations were found for eigencentrality (Spearman’s rho = 0.77, p < 0.0001) while there was no correlation for flow betweenness (Spearman’s rho = 0.22, p = 0.2, see Figures 6C,D). These shared networks with the same number of nodes were directly comparable. The Quadratic Assignment Procedure (QAP) test showed a significant correlation which was not observed in networks with shuffled rows and columns (Figure 6E). Clusterings obtained with the Louvain method were compared with igraph::compare for the Rand Index (0.74) and variation of information (1.5), without differences using the Wilcoxon paired ranked test (T = 174, W = −6, p = 0.9414) and significant spearman correlation (r = 0.49, C.I. [0.18, 0.71], p = 0.002, pairs = 36). Therefore, both networks had consistent clusters as well as high correlation. This is in spite that the correlation between networks was only moderate (gcor = 69%). Nonetheless, this correlation was greater than expected from permuted networks by QAP test, indicating that this similitude was not a product of chance (Figure 6E). Differences between networks may be expected by the decrease in transitivity that we have observed with age and/or disease (Barajas-Martínez et al., 2020).


[image: image]

FIGURE 6. Matching between centrality measures in networks. Centrality measures, eigencentrality and flow betweenness, correlation between C22_14 and Project 42 full networks are shown in (A) and (B) respectively. After extracting the subgraph of the matching 36 shared physiological variables in both datasets the comparison was repeated in (C) and (D). Linear regression (continuous curves) with 95% confidence intervals (dashed curves) are shown together with the values of all physiological variables (dots). The color of the dot indicates the specific variable. The density of the distribution of Montecarlo draws for correlation between networks in Quadratic Assignment Procedure test (QAP test) is presented in (E). The dashed line indicates the correlation values between C22_14 and Project_42 shared networks.




Physiological Clusters

Several community detection algorithms for networks were tested and evaluated through their modularity scores. Seven clusters were identified within the network (Figures 7, 8). The first cluster included anthropometric, bioimpedance and spirometry variables related with body size. This cluster has most of the nodes with high eigencentrality in the network. Most of these nodes with high influence belong to bioimpedance and spirometry variables. Three subclusters are identifiable here. First, bioimpedance and anthropometric variables, along with four biomarkers, uric acid, CRP, PON-1 and HDL. The second subcluster comprises spirometry variables, while the third includes blood biomarkers like hematocrit, erythrocytes, platelets, albumin, urea and creatinine. In contrast, only few nodes in this cluster have high flow betweenness. Platelets, erythrocytes and CRP numbers were prominent in this regard. The second cluster includes elements of endocrine regulation such as the hormones of the adipoinsular axis and endothelial activation biomarkers. Eigencentrality values in this cluster are low, with insulin as the most influential node. This cluster has two nodes with high flow betweenness, insulin and arginase activity. Only one bioimpedance parameter is included here, the impedance value (Z). A third cluster, comprising lipidic biomarkers as well as club cell protein 16 (CC16), is present and exhibits a very low eigencentrality overall. The fourth cluster includes white blood cells and the two glycemic variables, glucose and HbA1c. This cluster has many high flow betweenness nodes. Eosinophils, lymphocytes and leukocytes were important intermediaries in the network. The fifth cluster involves the four red cell indices. From these, MCHC has a high flow betweenness. A sixth cluster around carbon monoxide is present. As this node is mostly peripheral in the network, glucagon and GST had high flow betweenness by linking these variables to the main component. For the Project_42 database network there was one main difference related to the variable set that was employed (Figure 8). The cluster encompassing the red cells indices cluster is merged with the immune cells cluster. Figures and tables for each cluster described here are provided in supplementary material (Supplementary Figures 1–11).
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FIGURE 7. Physiological network for C22_14 database. The physiological network constructed from the correlation matrix once the p-value discards connections without statistical significance. Clusters are presented as shadowed areas. Links within the same cluster are black while links between clusters are red. Node centrality is represented as size for the eigencentrality and color for the flow betweenness. Edge width represents the weight of the Spearman correlation. Nodes are labeled according to Table 1 numerical ID.
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FIGURE 8. Physiological network for Project 42 database. The physiological network constructed from the correlation matrix once the p-value discards connections without statistical significance. Clusters are presented as shadowed areas. Links within the same cluster are black while links between clusters are red. Node centrality is represented as size for the eigencentrality and color for the flow betweenness. Edge width represents the weight of the Spearman correlation. Nodes are labeled according to Table 1 numerical ID.


Next, to highlight inter-cluster connections, that reflect the coordination between different systems within the organism, nodes inside the same cluster were contracted into a single node (Figure 9). For both networks, the body size cluster (C1) and the visceral adiposity cluster (C6) were the most closely interrelated. For the C22_14 network, the endocrine regulation cluster (C2) is closely related to the visceral adiposity cluster (C6), the red blood cells indices (C3) and the lipids cluster (C5). For Project_42 network, the immune cells cluster (C4) and C5 are densely connected with C1 and C6. Novel interactions between physiological systems were found. For instance, the connections between C2 and C3 in C22_14 network represent correlations with a single red cell index, the mean corpuscular hemoglobin concentration (MCHC). Salient inter-cluster connections present in both networks were diastolic blood pressure (DBP) relation to insulin and body weight, and HbA1c correlation with total lymphocytes and red cell distribution width (RDW). Nodes that had a high number of inter-cluster connections were waist, body fat, DBP, weight, HDL and triglycerides (Figure 9). This suggests that these physiological variables are located at the crossroads between the physiological modules. This observation is reinforced by the position of waist circumference, body fat, weight, and HDL for C22_14 and insulin for Project_42 in the spaces between topological clusters in the Linlog Layout (Supplementary Figures 12, 13).
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FIGURE 9. Cluster interactions network for Project 42 (A) and C22_14 (B). Interactions between clusters are presented as a multigraph, where more than one link between two given nodes are possible. All nodes within a cluster are contracted into a single node whereas all individual links remain displayed. This new node is placed in the position of the node with greatest strength in the original network. The shadow of the original cluster remains in place for comparison with the physiological networks presented previously. The edge betweenness – the number of shortest paths that pass through a link- is presented with the color of the link, while the width represents the strength of the Spearman correlation. The new nodes centrality and flow betweenness are presented by node size and color, respectively.




Physiological network characteristics

The correlation matrix of the 81 unique variables studied from C22_14 database has 523 correlations (of the possible 3240 = 80∗81/2) with p < 0.001, resulting in a network density of 16% (Table 4 and Figure 1). The correlation matrix of Project_42 database has 55 unique variables studied has 368 correlations (of the possible 1485 = 54∗55/2) with p < 0.001 (Table 5 and Figure 2), resulting in a network density of 25% (Table 4 and Figure 1). Only myeloperoxidase (MPO) was found to be disconnected from the main component of the network for the C22_14 network, and serum phosphorus for the Project_42 network. With a threshold p < 0.01 this variable is correlated with Club cell protein 16 (CC16) and malondialdehyde (MDA). The physiological networks had an efficiency of 84% and 75%, greater than would be expected from a random network of the same size. Despite the low density of the network, it has a high transitivity of 72% and 52%, larger than would be expected in a random network with the same size, density, or number of dyads (Supplementary Figures 14, 15). Characteristic path length of 3 and 2, respectively, was higher than a random network with the same size, density, or number of dyads (Supplementary Figures 14, 15). Network architecture was evaluated for small world and scale invariance properties (Tables 4, 5). The physiological network has a small world index of 3.2, and 2 with a smallworldness of 1.9 and 1.2. Scale-free fitting index, employed as a scale invariance measurement, shows both networks approach this fitting (Tables 4, 5). As expected for a network with these topological properties, eigencentrality has a high assortativity, while flow betweenness has a low assortativity (Table 4). In turn, this assortativity, while making the network very robust against random errors, results in large susceptibility to directed attacks, particularly cascading attacks (Figures 10A,B). The elevated modularity of the physiological network results in susceptibility to betweenness-directed attacks but implies robustness to degree-directed attacks (10A and 10B). It can also be observed that the physiological network follows a scale-free distribution (Figures 10C,D). Taken altogether, the physiological network has a complex structure that satisfies the biological requirements of robustness and adaptability.


TABLE 4. Network topology summary for C22_14 database.
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TABLE 5. Network topology summary for Project_42 database.
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FIGURE 10. Topological characteristics of the networks. Analysis of network strengths and weaknesses is presented in (A) and (B) showing the difference between connectivity decrease in random failure (purple inverted triangles) against three different attacks, cascading (green upward triangles), betweenness (black circles) and degree (pink squares). Encased in each figure is the Tukey’s box and whiskers presentation of the data, with the Friedman’s test with Dunn’s post hoc test significance between groups. ** indicates p < 0.01, *** p < 0.0001. Node degree frequency distribution fitting to a scale-free model is shown in (C) and (D) for networks constructed with p-value thresholds of 0.001. Panel (A) and (C) for C22_14 and (B) and (D) for Project_42.




DISCUSSION

Physiological networks are an area of increasing interest for the study of biological systems. These networks relate inferred interactions between systems that may be constructed from co-occurrence of observations. This co-occurrence may be observed in time, as in networks constructed from time series for dynamical understanding of physiology (Liu et al., 2015), within populations through point measurements as is the case of our networks (Barajas-Martínez et al., 2020), but also between individuals as shared characteristics to generate phenotypic clusters (Mihaicuta et al., 2017). While most networks in biomedical sciences are constructed of nodes and links of the same nature, our network is closer to classical physiological interactions between systems. In human physiology, hormones (and other regulatory systems) exert effects over a wide array of variables regulated variables -blood pressure, electrolytes, protein expression, cellular responses etc., in response to internal needs and to external perturbations. These interactions are very different from usual network approach where only genes, proteins or metabolites are considered, or in the case of neurosciences where different channels of FMRI or EEG are used to construct functional networks. Here we propose a general framework for approaching multivariate datasets of physiological nature that are commonly analyzed through conventional approaches.

Networks are information-rich representations where meaningful characteristics are present in the network topology, layout, clustering, node centrality and edge characteristics. This provides a rich context for interpretation of physiological data. We show that there are robust interactions (links) between physiological variables (nodes), that are preserved between datasets and have very high significances, even for relatively small samples. The analysis of these networks results in similar clustering even when networks are constructed from different datasets. These clusters are not a product of random chance, but are rather built from related variables with underlying mechanisms related to specific functions. Clustering approaches have been used before in the literature, where at least two strategies have been well described. Nodes may be conglomerated through force-directed layouts to generate topological clusters, and through modularity optimization algorithms (Noack, 2009). For an adequate analysis and successful rendering of functional clusters network filtering is critical (Mihaicuta et al., 2017). Here we use the p-value, a widely validated strategy to sort significant correlations between variables, to filter the physiological network. Through a modularity optimization algorithm, we clustered physiological variables into functional groups.


Cluster 1

The variables within this cluster are related to the size of the organism (Supplementary Figures 1, 2). One of the main drivers of body size differences in humans is sexual dimorphism. Males tend to have larger bodies than females with immediate mechanical consequences. For instance, body compartments are larger, including thoracic dimensions, and all the spirometry measurements where anatomic size is important (FVC, FEV1, COadj, AV, kCO, TLC, RV). A larger body also increases some anthropometric characteristics (neck, height, and weight), and bioimpedance measurements (skeletal muscle mass, lean body mass, total body water and intracellular water). Furthermore, a relation between pulmonary function and bioimpedance measurements is present only for lean mass measurements but not for body fat measurements (Park et al., 2012). Sex association with size has also a hormonal context that results in differences in complete cell count and chemistry (HDL, hemoglobin, hematocrit, albumin, and platelets). For the Project_42 database bilirubin measurements are also present in this cluster, as they are product of degradation of the hemoglobin. Finally, a large lean mass also implies an increased number of metabolites associated with protein and aminoacid replacement (urea, uric acid, and creatinine). These parameters are subject to a hormonal context as they are altered with chronic abuse of androgenic hormones (Navidinia and Ebadi, 2017).



Cluster 2

This cluster contains nodes related to endocrine regulation. The adipoinsular axis comprehends incretins (Ghrelin, GIP, GLP-1), that signal the food bolus composition, and adipokines, that signal storage state of the adipose tissue (leptin, resistin, visfatin), to tailor the homeostatic response of the pancreatic islet (Kieffer and Habener, 2000). Embedded in this modulation environment, pancreatic beta cells secrete the only hormone that lowers glucose in hyperglycemia (insulin, equimolarly with c peptide), and pancreatic alpha cells secrete a contra-regulatory hormone in hypoglycemia (glucagon). Visceral fat accumulation induces a pro-inflammatory state, resulting in endothelial activation (PAI-1, ICAM-1, VCAM-1, endothelin-1) which allows for circulating immune cells diapedesis (passage from the blood to the tissues) where arrival perpetuates the pro-inflammatory state and produces insulin resistance (Meigs et al., 2004). These closely related functional interactions result in a dense endocrine regulation cluster for the C22_14 network (Supplementary Figure 3).



Cluster 3

Erythrocyte characteristics are summarized in clinical settings through red cell indices. Of these, the red cell blood distribution width (RDW) is one of the most recent indices (Salvagno et al., 2015). Mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC) and mean corpuscular hemoglobin (MCH) represent average values of volume and hemoglobin content, whereas RDW is a variability-based metric (Sarma, 1990). Together these four parameters allow for classification of anemic disease and provide clinical orientation and are found clustered in the C22_14 network (Supplementary Figure 4).



Cluster 4

White blood cells (leukocytes) are the cellular component of the immune system that flows through the blood. These cell types are orchestrated in several immune responses but have been more or less well categorized in specialized functions and are clustered in the C22_14 network (Supplementary Figure 5). For instance, neutrophils and monocytes are part of the innate immune response. An “always ready” system for immediate deterrence of infectious pathogens. On the other hand, lymphocytes, eosinophils and basophils participate in the adaptative immune response. A tailored cellular response to effectively resolve infectious processes that have overcome responses of the innate immune system. For the Project_42 network, Cluster 3 physiological variables are included in this cluster, along with platelets and mean platelet volume (MPV), comprising al cellular components in the blood (Supplementary Figure 6). These physiological parameters have been related to cardiovascular risk, placing them in the context of a wider set of interactions beyond infection response (Hansen et al., 1990; Madjid and Fatemi, 2013). Nitric oxide in exhaled breath is present in this cluster and relates to eosinophils, as expected since eosinophils are a major source of NO in asthma (MacPherson et al., 2001).



Cluster 5

Lipids present in blood, and their associated carrier proteins, are classical biomarkers of cardiovascular risk and were clustered in both networks (Supplementary Figures 7, 8). Triglycerides and total cholesterol were first identified. Later, cholesterol was separated into fractions according to weight, unveiling a transport system composed of lipoproteins that carry lipids from their storage depots to the cells, VLDL, IDL, and LDL, and lipoproteins that carry lipids from the cells into the storage depots, HDL (Ito and Ito, 2020). In epidemiological studies HDL levels have shown to be protective against cardiovascular disease, while LDL levels represent a risk factor. ApoA and ApoB, the protein envelopes that carry the lipids in these fractions, showed better predictive results. However, upon increasing knowledge of the physiopathology of vascular disease new biomarkers have been assessed such as lipoperoxidation products, serum phospholipids and oxidized LDL (Ngoc-Anh, 2009). As Project_42 has less lipidic variables this cluster comprises only LDL, HDL and cholesterol.



Cluster 6

Visceral adiposity is the main driver of metabolic disease. It has been measured through several proxies including body weight and waist circumference either as individual measurements or as composed indices (BMI, height/waist ratio), and by indirect measurement using bioimpedance (total body fat, visceral fat, fat free mass, body fat, superficial body fat). These variables are clustered in both networks (Supplementary Figures 9, 10). Over time, excess of visceral adipose tissue triggers a low-grade chronic pro-inflammatory state, as revealed by high sensitivity but low specificity C reactive protein, an acute phase pentraxin produced in the liver (Pettersson-Pablo et al., 2019). Increased visceral adiposity is also related to high blood pressure (systolic and diastolic blood pressure) through several mechanisms even in young adulthood (Takeoka et al., 2016). The variables in this cluster share the property of being very stable over time. Body fat deposits, resting blood pressure and glucose levels are rather stable variables that vary only over very long periods of time. For Project_42 anthropometric measurements, such as hip and arm circumference, as well as all skinfolds of plicometry, are located in this cluster (Supplementary Figure 10).



Cluster 7

Carbon monoxide cluster. There is a final cluster that comprises the relation between exhaled carbon monoxide (CO) and hemoglobin irreversibly bound to CO in blood (COHb) (Wald et al., 1981). As none of the participants in the C22_14 dataset were smokers this cluster is relatively well isolated from the network (Supplementary Figure 11). Nonetheless, breath profiles including CO and NO have been proposed for monitorization of whole body states (Maiti et al., 2019).

The inter-cluster correlations manifest the integration between these different functional systems within the organism, as well as some physiological variables placed as intermediaries in the network between clusters (Figure 9). As force-directed algorithms may work as energy-models (Noack, 2009), location of the nodes within the layout is also informative of the role nodes may have in the functional cluster, either deep inside or in the periphery (Supplementary Figures 12, 13). The robust agreement between the present network approach and medical knowledge invites us to extend network analysis to physiological phenomena. It has been suggested previously that topology characteristics of a network have functional implications that are not observable by reductionist approaches (Ivanov and Bartsch, 2014). A network framework for physiological understanding may facilitate immediate comprehension of distant interactions and emergent properties of living systems.

Living systems are neither completely random nor fully ordered. This property has been noted at multiple levels of observation. For example, from a time-series perspective, the analysis of continuous heart rate data reveals that balance between robustness and adaptability of the cardiovascular system is an important biomarker of health (Rivera et al., 2018). For networks, this is the essence of a complex topology, such as small world or scale-free, since they feature patterns of connection between their elements that are neither purely regular nor purely random. In Figure 10 we show that both networks have a scale-free topology (with some degree of both random and orderly structure). In summary, the complex behavior of living systems in time series appears to be reflected also in network physiology.

The limitation of our study is the small size of our datasets, nevertheless our methodology combines parameters that are not usually related to build a physiological network. Moreover, the physiological network constructed is robust and similar for both datasets.



CONCLUSION

Textbooks on basic physiology present homeostatic regulation of cardiovascular, respiratory, metabolic and other subsystems as if they were independent mechanisms coordinating the dynamics of closely related variables in order to create a stable local environment that can be studied from the perspective of separate medical disciplines (Ganong, 1969; Hall, 2011). This is of course a coarse approximation because it is implicit that the different subsystems must interact in order to assure a system-wide homeostatic state, remaining outside the scope of the reductionist approach to physiology. Systems biology, on the other hand, suggests that systemic homeostasis “emerges” from an underlying network and interactions between variables that span the whole system (Goldstein, 2019). Figures 7–9 show 6 distinct clusters, where the intra-cluster interactions between related variables may well represent the textbook examples of local subsystem homeostasis, whereas the inter-cluster interactions between very distinct variables most probably convey new and unexplored information of how homeostasis is established at the system level in the optimal conditions of youth and health, and how the loss of homeostasis arises with aging and/or disease.



DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by The Ethics Committee of the “Instituto Nacional de Enfermedades Respiratorias” (INER) approved the procedures and protocols for this study under project C22_14. The Ethics Committee of the Facultad de Medicina of the Universidad Nacional Autónoma de México (UNAM) approved the procedures and protocols for this study under project FM/DI/023/2014. The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

AB-M, EI-C, and ALR performed data analysis, network modeling, and wrote this work. CRS did the conceptualization of the project for dataset of Project_42 and funding acquisition. AB-M participated in methodology and data collection. MPS-V did the conceptualization of the project for dataset C22_14, funding acquisition, and resources. OGA-A and YD-G did the data curation. OGA-A and MPS-V did the investigation. CV-D, RG-T, KB, OGA-A, and MPS-V did the methodology. ALR, EI-C, RF, VMG, OAL, AOM-G, and AF participated in the complexity interpretation and analysis of the results. MANM, DAMO, CEL-C, IC-B, PA-V, and CAA-S participated in data analysis and medical interpretation in this work. All authors contributed with the manuscript revision, read and approved the submitted version.



FUNDING

This work was partially supported by the CONACyT through the grants FORDECYT-PRONACES/610285/2020, Fronteras grants FC-2015-2/1093, Fondo Sectorial de Investigación en Salud y Seguridad Social, grant SALUD-2014-1-233950 and by the Universidad Nacional Autónoma de México through DGAPA Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) AG101520, IV100120, IN113619, and PAPIME PE103519. We also acknowledge support from SECTEI CDMX grant SECIT/093/2018 and a donation from Academic Relations, Microsoft Corporation.



ACKNOWLEDGMENTS

We appreciate the services to carry out respiratory function tests provided by the Clínica de Ayuda para dejar de Fumar at the Instituto Nacional de Enfermedades Respiratorias. We thank the participation of Kathia Marie Pellerin Flores, José Eduardo Hernández Paniagua, Roxana Stephanie García Sotelo, and Claudia Karen Gómez Romero from the national program of Medical Social Service, and of Itzel Abigail Corona Galván from the master’s program in Health Sciences, Romel Calero and Juan Antonio López-Rivera for computational aid.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2020.612598/full#supplementary-material



REFERENCES

Albert, R., and Barabási, A. L. (2002). Statistical mechanics of complex networks. Rev. Mod. Phys. 74:47. doi: 10.1103/RevModPhys.74.47

Alberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644

Arihan, O., Wernly, B., Lichtenauer, M., Franz, M., Kabisch, B., Muessig, J., et al. (2018). Blood Urea Nitrogen (BUN) is independently associated with mortality in critically ill patients admitted to ICU. PLoS One 13:e0191697. doi: 10.1371/journal.pone.0191697

Asada, T., Aoki, Y., Sugiyama, T., Yamamoto, M., Ishii, T., Kitsuta, Y., et al. (2016). Organ system network disruption in nonsurvivors of critically Ill patients. Crit. Care Med. 44, 83–90. doi: 10.1097/CCM.0000000000001354

Barajas-Martínez, A., Easton, J. F., Rivera, A. L., Tapia, R. J. M., De la Cruz, L., Cabrera, A. R., et al. (2020). Metabolic physiological networks: the impact of age. Front. Physiol. 11:587994. doi: 10.3389/fphys.2020.587994

Barrat, A., Barthelemy, M., Pastor-Satorras, R., and Vespignani, A. (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752. doi: 10.1073/pnas.0400087101

Bartsch, R. P., Liu, K. K., Bashan, A., and Ivanov, P. C. (2015). Network physiology: how organ systems dynamically interact. PLoS One 10:e0142143. doi: 10.1371/journal.pone.0142143

Bartsch, R. P., Liu, K. K., Ma, Q. D., and Ivanov, P. C. (2014). Three independent forms of cardio-respiratory coupling: transitions across sleep stages. Comput. Cardiol. 41, 781–784.

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. C. (2012). Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 1–9. doi: 10.1038/ncomms1705

Batushansky, A., Toubiana, D., and Fait, A. (2016). Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. Biomed. Res. Intern. 2016, 1–9. doi: 10.1155/2016/8313272

Blondel, V. D., Guillaume, J.-L. L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Statist. Mech. 2008, 1–12. doi: 10.1088/1742-5468/2008/10/P10008

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U. (2006). Complex networks: structure and dynamics. Phys. Rep. 424, 175–308. doi: 10.1016/j.physrep.2005.10.009

Borgatti, S. P., and Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Soc. Netw. 28, 466–484. doi: 10.1016/J.SOCNET.2005.11.005

Burggren, W. W., Monticino, M. G., and Oliveras, D. (2005). Assessing physiological complexity. J. Exp. Biol. 208(Pt 17), 3221–3232. doi: 10.1242/jeb.01762

Butts, C. T. (2019). Sna: Tools for Social Network Analysis (R Package Version 2.5). Available online at: https://cran.r-project.org/package=sna (accessed April 14, 2020).

Chumlea, W. C., Guo, S. S., Zeller, C. M., Reo, N. V., Baumgartner, R. N., Garry, P. J., et al. (2001). Total body water reference values and prediction equations for adults. Kidney Int. 59, 2250–2258. doi: 10.1046/j.1523-1755.2001.00741.x

Clemente, G. P., and Grassi, R. (2018). Directed clustering in weighted networks: a new perspective. Chaos Solitons Fract. 107, 26–38. doi: 10.1016/j.chaos.2017.12.007

Costenbader, E., and Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Soc. Netw. 25, 283–307.

Csárdi, G., Nepusz, T., and Airoldi, E. M. (2016). Statistical Network Analysis with Igraph. Berlin: Springer.

Dablander, F., and Hinne, M. (2019). Node centrality measures are a poor substitute for causal inference. Sci. Rep. 9:6846. doi: 10.1038/s41598-019-43033-9

DeMers, D., and Wachs, D. (2020). Physiology, Mean Arterial Pressure: StatPearls. StatPearls Publishing. Available online at: http://www.ncbi.nlm.nih.gov/books/NBK538226/ (accessed August 4, 2020). D. DeMers and D. Wachs (2020). “Physiology, mean arterial pressure,” in StatPearls, (Treasure Island, FL: StatPearls Publishing).

Eppstein, D., and Strash, D. (2011). Listing all Maximal Cliques in Large Sparse Realworld Graphs. arXiv [Preprint]. Available online at: https://arxiv.org/abs/1103.0318 (accessed August 15, 2020).

Fagiolo, G. (2007). Clustering in complex directed networks. Phys. Rev. E 76:026107. doi: 10.1103/PhysRevE.76.026107

Fossion, R., Rivera, A. L., and Estañol, B. (2018). A physicist’s view of homeostasis: how time series of continuous monitoring reflect the function of physiological variables in regulatory mechanisms. Physiol. Meas. 39:084007. doi: 10.1088/1361-6579/aad8db

Freedman, D. S., Thornton, J. C., Pi-Sunyer, F. X., Heymsfield, S. B., Wang, J., Pierson, R. N., et al. (2012). The body adiposity index (hip circumference ÷ height(1.5)) is not a more accurate measure of adiposity than is BMI waist circumference or hip circumference. Obesity 20, 2438–2444. doi: 10.1038/oby.2012.81

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239. doi: 10.1016/0378-8733(78)90021-7

Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph drawing by force-directed placement. Softw: Pract. Exper. 21, 1129–1164. doi: 10.1002/spe.4380211102

Fukuoka, Y., Narita, T., Fujita, H., Morii, T., Sato, T., Sassa, M. H., et al. (2019). Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. J. Diabetes Invest. 10, 322–330. doi: 10.1111/jdi.12908

Ganong, W. F. (1969). Review of Medical Physiology, 4th Edn, New York, NY: Lange Medical Publications.

Gólczewski, T., Lubiński, W., and Chciałowski, A. (2012). A mathematical reason for FEV1/FVC dependence on age. Respir. Res. 13:57. doi: 10.1186/1465-9921-13-57

Goldstein, D. S. (2019). How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R301–R317. doi: 10.1152/ajpregu.00396.2018

Hall, J. E. (2011). Guyton and Hall Textbook of Medical Physiology, 12th Edn, Philadelphia: Saunders Elsevier.

Hansen, L. K., Grimm, R. H. Jr., and Neaton, J. D. (1990). The relationship of white blood cell count to other cardiovascular risk factors. Int. J. Epidemiol. 19, 881–888. doi: 10.1093/ije/19.4.881

Hofer, S. M., and Sliwinski, M. J. (2001). Understanding ageing. An evaluation of research designs for assessing the interdependence of ageing-related changes. Gerontology 47, 341–352. doi: 10.1159/000052825

Ito, F., and Ito, T. (2020). High-Density Lipoprotein (HDL) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants 9:362. doi: 10.3390/antiox9050362

Ivanov, P. C., and Bartsch, R. P. (2014). “Network physiology: mapping interactions between networks of physiologic networks,” in Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems, eds G. D’Agostino and A. Scala (Cham: Springer), doi: 10.1007/978-3-319-03518-5_10

Ivanov, P. C. H., Liu, K. K. L., and Bartsch, R. P. (2016). Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 18:100201.

Jabłonowska-Lietz, B., Wrzosek, M., Włodarczyk, M., and Nowicka, G. (2017). New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 75, 1185–1191. doi: 10.5603/KP.a2017.0149

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika 18, 39–43. doi: 10.1007/BF02289026

Kieffer, T. J., and Habener, J. F. (2000). The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 278, E1–E14. doi: 10.1152/ajpendo.2000.278.1.E1

Kleinberg, J., and Tardos, É (1998). Approximations for the disjoint paths problem in high-diameter planar networks. J. Comput. Syst. Sci. 57, 61–73. doi: 10.1006/jcss.1998.1579

Koschützki, D., Lehmann, K. A., Peeters, L., Richter, S., Tenfelde-Podehl, D., and Zlotowski, O. (2005). “Centrality indices,” in Network Analysis. Lecture Notes in Computer Science, eds U. Brandes and T. Erlebach (Berlin: Springer).

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9:559. doi: 10.1186/1471-2105-9-559

Liu, K., Bartsch, R. P., Ma, Q., and Ivanov, P. C. (2015). Major component analysis of dynamic networks of physiologic organ interactions. J. Phys. 640:012013. doi: 10.1088/1742-6596/640/1/012013

MacPherson, J. C., Comhair, S. A., Erzurum, S. C., Klein, D. F., Lipscomb, M. F., Kavuru, M. S., et al. (2001). Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J. Immunol. 166, 5763–5772. doi: 10.4049/jimmunol.166.9.5763

Madjid, M., and Fatemi, O. (2013). Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update. Texas Heart Instit. J. 40, 17–29.

Maiti, K. S., Lewton, M., Fill, E., and Apolonskiy, A. (2019). Human beings as islands of stability: Monitoring body states using breath profiles. Sci. Rep. 9:16167. doi: 10.1038/s41598-019-51417-0

Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., and Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419. doi: 10.1007/BF00280883

McCormack, M. (2020). “Diffusing capacity for carbon monoxide,” in UpToDate, eds J. K. Stoller and H. Hollingsworth, Available online at: https://www.uptodate.com/contents/diffusing-capacity-for-carbon-monoxide (accessed August 7, 2020).

Meigs, J. B., Hu, F. B., Rifai, N., and Manson, J. E. (2004). Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291, 1978–1986. doi: 10.1001/jama.291.16.1978

Meilă, M. (2007). Comparing clusterings—an information based distance. J. Multiv. Analys. 98, 873–895. doi: 10.1016/j.jmva.2006.11.013

Mihaicuta, S., Udrescu, M., Topirceanu, A., and Udrescu, L. (2017). Network science meets respiratory medicine for OSAS phenotyping and severity prediction. Peerj 5:e3289. doi: 10.7717/peerj.3289

Navidinia, M., and Ebadi, P. (2017). Medical consequences of long-term anabolic-androgenic steroids (AASs) abuses in athletes. Biomed. Res. Tokyo 28, 5693–5701.

Newman, M. (2006). Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582. doi: 10.1073/pnas.0601602103

Ngoc-Anh, L. (2009). Oxidized lipids and lipoproteins: indices of risk or targets for management. Clin. Lipidol. 4, 41–54. doi: 10.2217/17584299.4.1.41

Noack, A. (2009). Modularity clustering is force-directed layout. Phys. Rev. E 79:102. doi: 10.1103/physreve.79.026102

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34. doi: 10.1093/nar/27.1.29

Onnela, J.-P., Saramäki, J., Kertész, J., and Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71:065103. doi: 10.1103/PhysRevE.71.065103

Park, J. E., Chung, J. H., Lee, K. H., and Shin, K. C. (2012). The effect of body composition on pulmonary function. Tubercul. Respir. Dis. 72, 433–440. doi: 10.4046/trd.2012.72.5.433

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., et al. (2011). Using graph theory to analyze biological networks. Biodata Min. 4:10. doi: 10.1186/1756-0381-4-10

Pettersson-Pablo, P., Nilsson, T. K., Breimer, L. H., and Hurtig-Wennlöf, A. (2019). Body fat percentage is more strongly associated with biomarkers of low-grade inflammation than traditional cardiometabolic risk factors in healthy young adults - the Lifestyle, Biomarkers, and Atherosclerosis study. Scand. J. Clin. Lab. Invest. 79, 182–187. doi: 10.1080/00365513.2019.1576219

Physiopedia (2020). Available online at: https://www.physio-pedia.com/home/ (accessed August 7, 2020).

Prediletto, R., Fornai, E., Catapano, G., and Carli, C. (2007). Assessment of the alveolar volume when sampling exhaled gas at different expired volumes in the single breath diffusion test. BMC Pulm. Med. 7:18. doi: 10.1186/1471-2466-7-18

R Core Team (2020). R: A Language and Environment for Statistical Computing (4.0.1). Vienna: R Foundation for Statistical Computing.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66, 846–850. doi: 10.1080/01621459.1971.10482356

Reichardt, J., and Bornholdt, S. (2006). Statistical mechanics of community detection. Phys. Rev. E 74:016110. doi: 10.1103/PhysRevE.74.016110

Riley, L. K., and Rupert, J. (2015). Evaluation of Patients with Leukocytosis. Am. Fam. Phys. 92, 1004–1011.

Rivera, A. L., Estañol, B., Robles-Cabrera, A., Toledo-Roy, J. C., Fossion, R., and Frank, A. (2018). “Looking for biomarkers in physiological time series,” in Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues, eds L. Olivares-Quiroz and O. Resendis-Antonio (Cham: Springer International Publishing), 111–131. doi: 10.1007/978-3-319-73975-5_6

Rosvall, M., and Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–1123. doi: 10.1073/pnas.0706851105

RStudio Team (2020). RStudio: Integrated Development for R: PBC (1.3.959). Boston, MA: RStudio.

Salvagno, G. L., Sanchis-Gomar, F., Picanza, A., and Lippi, G. (2015). Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 52, 86–105.

Sarma, P. R. (1990). “Chapter 152: red cell indices,” in Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd Edn, eds H. K. Walker, W. D. Hall, and J. W. Hurst (Boston: Butterworths).

Silva, A. M., Heymsfield, S. B., Gallagher, D., Albu, J., Pi-Sunyer, X. F., Pierson, R. N., et al. (2008). Evaluation of between-methods agreement of extracellular water measurements in adults and children. Am. J. Clin. Nutr. 88, 315–323. doi: 10.1093/ajcn/88.2.315

Takeoka, A., Tayama, J., Yamasaki, H., Kobayashi, M., Ogawa, S., Saigo, T., et al. (2016). Intra-abdominal fat accumulation is a hypertension risk factor in young adulthood: a cross-sectional study. Medicine 95:e5361. doi: 10.1097/MD.0000000000005361

Vargas, H. O., Nunes, S. O., Barbosa, D. S., Vargas, M. M., Cestari, A., Dodd, S., et al. (2014). Castelli risk indexes 1 and 2 are higher in major depression but other characteristics of the metabolic syndrome are not specific to mood disorders. Life Sci. 102, 65–71. doi: 10.1016/j.lfs.2014.02.033

Vaz Fragoso, C. A., Cain, H. C., Casaburi, R., Lee, P. J., Iannone, L., Leo-Summers, L. S., et al. (2017). Spirometry, static lung volumes, and diffusing capacity. Respir. Care 62, 1137–1147. doi: 10.4187/respcare.05515

Vermesi, I., Restuccia, F., Walker, C., and Rein, G. (2018). Carbon monoxide diffusion through porous walls: evidence found in incidents and experimental studies. Front. Built Environ. 4:44. doi: 10.3389/fbuil.2018.00044

Von Bertalanffy, L. (1968). General System Theory. New York, NY: George Braziller, Inc.

Wald, N. J., Idle, M., Boreham, J., and Bailey, A. (1981). Carbon monoxide in breath in relation to smoking and carboxyhaemoglobin levels. Thorax 36, 366–369. doi: 10.1136/thx.36.5.366

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature 393, 440–442. doi: 10.1038/30918

Welch, A. A., Kelaiditi, E., Jennings, A., Steves, C. J., Spector, T. D., and MacGregor, A. (2016). Dietary magnesium is positively associated with skeletal muscle power and indices of muscle mass and may attenuate the association between circulating C-reactive protein and muscle mass in women. J. Bone Miner. Res. 31, 317–325. doi: 10.1002/jbmr.2692

West, D. B. (1996). An Introduction to Graph Theory. Upper Saddle River, NJ: Prentice-Hall.

Wu, T. D., Brigham, E. P., Keet, C. A., Brown, T. T., Hansel, N. N., and McCormack, M. C. (2019). Association between prediabetes/diabetes and asthma exacerbations in a claims-based obese Asthma cohort. J. Allergy Clin. Immunol. 7, 1868–1873.e5. doi: 10.1016/j.jaip.2019.02.029


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Barajas-Martínez, Ibarra-Coronado, Sierra-Vargas, Cruz-Bautista, Almeda-Valdes, Aguilar-Salinas, Fossion, Stephens, Vargas-Domínguez, Atzatzi-Aguilar, Debray-García, García-Torrentera, Bobadilla, Naranjo Meneses, Mena Orozco, Lam-Chung, Martínez Garcés, Lecona, Marín-García, Frank and Rivera. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 12 January 2021
doi: 10.3389/fphys.2020.612709





[image: image]

Interlimb Coordination: A New Order Parameter and a Marker of Fatigue During Quasi-Isometric Exercise?

Pablo Vázquez1, Monika Petelczyc2*, Robert Hristovski3 and Natàlia Balagué1

1Complex Systems in Sport Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain

2Cardiovascular Physics Group, Faculty of Physics, Warsaw University of Technology, Warsaw, Poland

3Complex Systems in Sport Research Group, Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia

Edited by:
Plamen Ch. Ivanov, Boston University, United States

Reviewed by:
Drandreb Earl Juanico, DataSc/ense TechnoCoRe, Technological Institute of the Philippines, Philippines
Agne Slapsinskaite, Lithuanian University of Health Sciences, Lithuania

*Correspondence: Monika Petelczyc, monika.petelczyc@pw.edu.pl

Specialty section: This article was submitted to Fractal and Network Physiology, a section of the journal Frontiers in Physiology

Received: 30 September 2020
Accepted: 04 December 2020
Published: 12 January 2021

Citation: Vázquez P, Petelczyc M, Hristovski R and Balagué N (2021) Interlimb Coordination: A New Order Parameter and a Marker of Fatigue During Quasi-Isometric Exercise? Front. Physiol. 11:612709. doi: 10.3389/fphys.2020.612709

Although exercise-induced fatigue has been mostly studied from a reductionist and component-dominant approach, some authors have started to test the general predictions of theories of self-organized change during exercises performed until exhaustion. However, little is known about the effects of fatigue on interlimb coordination in quasi-isometric actions. The aim of this study was to investigate the effect of exercise-induced fatigue on upper interlimb coordination during a quasi-isometric exercise performed until exhaustion. In order to do this, we hypothesized an order parameter that governs the interlimb coordination as an interlimb correlation measure. In line with general predictions of theory of phase transitions, we expected that the locally averaged values of the order parameter will increase as the fatigue driven system approaches the point of spontaneous task disengagement. Seven participants performed a quasi-isometric task holding an Olympic bar maintaining an initial elbow flexion of 90 degrees until fatigue induced spontaneous task disengagement. The variability of the elbow angle was recorded through electrogoniometry and the obtained time series were divided into three segments for further analysis. Running correlation function (RCF) and adopted bivariate phase rectified signal averaging (BPRSA) were applied to the corresponding initial (30%) and last (30%) segments of the time series. The results of both analyses showed that the interlimb correlation increased between the initial and the final segments of the performed task. Hence, the hypothesis of the research was supported by evidence. The enhancement of the correlation in the last part means a less flexible coordination among limbs. Our results also show that the high magnitude correlation (%RCF > 0.8) and the %Range (END-BEG) may prove to be useful markers to detect the effects of effort accumulation on interlimb coordination. These results may provide information about the loss of adaptability during exercises performed until exhaustion. Finally, we briefly discuss the hypothesis of the inhibitory percolation process being the general explanation of the spontaneous task disengagement phenomenon.

Keywords: order parameter, task disengagement, percolation, coordination, bivariate analysis


INTRODUCTION

Despite the overwhelming amount of research published over the last decades on exercise-induced fatigue1, little is known about its impact on performance (Enoka and Duchateau, 2016). A reductionist and component dominant approach, searching for central and peripheral mechanisms as causes of muscle force reduction during effort, could not reach clear conclusions about the specific mechanisms responsible for the phenomenon (Gandevia, 2001; Enoka and Duchateau, 2016) and the real causes of fatigue-related task failure (Hristovski and Balagué, 2010; Balagué et al., 2014).

One main characteristic of component-dominant based research on fatigue is the assumption that the variation of a single component or process can explain the whole variability of the measured task or performance output. Accordingly, the available research has been mainly oriented toward the study of continuous quantitative changes that arise at different levels (from cells to organs) during the developing fatigue. However, these continuous changes cannot, by themselves, explain the discontinuous qualitative nature of changes occurring during the process, like the spontaneous task failure or task disengagement (Hristovski and Balagué, 2010; Balagué et al., 2014).

Under the framework of a network physiology approach (Bartsch et al., 2015; Ivanov et al., 2016), an interaction-dominant dynamic of the exercise-induced fatigue phenomenon is assumed (Delignières and Marmelat, 2012). Accordingly, the possibility that many component processes can lose or gain in significance during the developing fatigue, and that non-linear self-organized changes may occur in the network, is considered. In order to test the general predictions of theories of macroscopic self-organized change (e.g., Haken, 1978), some authors have already experimentally discovered the existence of critical behavior before the fatigue-induced spontaneous task disengagement. In these early studies, the elbow joint angle was treated as an order parameter, i.e., a collective control variable that macroscopically governed the activity of components of the neuromuscular axis of performers (see Figure 1). By analyzing the fatigue-induced changes in the Fourier spectra of upper limb fluctuations, Hristovski and Balagué (2010) discovered the critical phenomenon of enhanced fluctuations in the vicinity of the spontaneous task disengagement point. Subsequently, by the analysis of changes in the temporal structure of upper-limb elbow angle fluctuations, Vázquez et al. (2016) found enhanced persistent correlations in the vicinity of task disengagement, which is a hallmark of the critical slowing down phenomenon2 (see e.g., Koide and Maruyama, 2004; Scheffer et al., 2009, 2012; Rigamonti and Carretta, 2015). Hence, it became theoretically plausible to treat the spontaneous task disengagement as belonging to the class of non-equilibrium phase transitions. Based on the discovery of these key properties, the phenomenon of task disengagement was interpreted as a primitive, evolutionary stabilized, protective decision mechanism by which the organism spontaneously removes the cause of the perceived discomfort and the possible injury (Vázquez et al., 2016; Slapsinskaite, 2017; Pol et al., 2018).
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FIGURE 1. Participant in preparation for the task. The sensors of the electrogoniometer were placed on the upper arm and forearm of both extremities.


Studying the time-variability properties of the elbow angle during a quasi-isometric exercise (Figure 1) performed until exhaustion, Vázquez et al. (2016) found a continuous evolution from an anti-persistent to a persistent time structure dynamic of the goal coordinative (i.e., order parameter) variable as fatigue developed. The authors interpreted these results as a loss of the initial fine-grained temporal control as spontaneous task failure approached. At the level of the central nervous system (CNS) spatio-temporally nested inhibition-excitation networks, which initially compete at short time scales, shift the competition toward longer-term intervals with fatigue accumulation. That is, a coalition of inhibitory effects acting at multiple nested network levels accumulate and cannot be adequately quickly compensated by excitatory intention-motivation control loops which function on longer time scales (Kiebel et al., 2008). The result is a progressively delayed possibility of adjusting the goal variable (i.e., increase of the relaxation time) that finally results in spontaneous task disengagement for a minimal additional increase of effort accumulation.

During the previously mentioned quasi-isometric exercise, both arms cooperated with compensatory movements and adjustments of the limbs to maintain the task and stabilize the control of the elbow angle (Hristovski and Balagué, 2010; Vázquez et al., 2016). Such adaptive actions included the recruitment of additional motor units and the engagement of energy transfer from other body structures to the limbs. In particular, under competitive conditions or when a real task failure is approached, a larger number of structures (from muscles to limbs) are progressively engaged with time on task or effort accumulation. The increment in the number of structures cooperating to satisfy the task goal also found that testing other coordinative variables during dynamic exercises (Balagué et al., 2014) signifies a more coherent competitive behavior in the physiological network as the task disengagement approaches. Such processes can only be identified when the motor task is prolonged enough while striving to maintain the same performance level.

The effects of effort accumulation on temporal properties of different potential coordinative collective variables (e.g., elbow joint angle, revolutions per minute during cycling, and acceleration during running) for different types of exercise have already been studied (Balagué et al., 2014; Barbosa et al., 2018; Montull et al., 2020). However, little is known about the effects of fatigue on interlimb coordination, particularly in the view of spontaneous task-disengagement. Several works have analyzed the interactions between limbs during maximum force production (Archontides and Fazey, 1993) while pedaling (Sato et al., 2019), or inter-muscular and inter-joint coordination during hammering (Côté et al., 2008), but these timeless approaches were not able to capture and explain the dynamics of the exercise-induced changes of interlimb coordination, especially to give an account on the phenomenon of fatigue-induced task disengagement.

The use of a few macroscopic variables that govern the behavior of the innumerable neuro-musculo-skeletal degrees of freedom has been shown to be a viable interpretation of the strategy that the brain-body system uses to control actions (Kelso, 1995). Thus, the search for such variables (also known as order parameters, collective, essential, or coordinative variables) is one of the key interests in motor control and learning research. While the interlimb coordination in the class of oscillatory movements has a long research tradition (e.g., Kelso, 1984, 1995), the interlimb coordination in quasi-isometric actions is still uncharted territory. For the oscillatory class of actions, the relative phase has been defined as the collective coordinative control variable. In this paper, to our knowledge for the first time, we make an attempt to define the collective variable that the brain-body system uses to coordinate the limbs in tasks that require prolonged quasi-isometric effort in order to manipulate environmental objects, such as an Olympic bar. In heterogeneous complex systems with networked interactions, such as the brain-body system, correlation (or more generally, similarity) measures have been used as order parameters (Krauth and Mézard, 1989; Parisi, 2006; Arenas et al., 2008; Hristovski et al., 2011). Hence, here we hypothesize that the brain-body system may use the same type of macroscopic action control variable in order to efficiently manipulate events and objects in the environment. More concretely, since the general prediction for complex systems is that long-range spatial correlations develop and enhance as the system approaches the tipping point (Sethna, 2006), we hypothesize that interlimb correlations will also enhance as the fatigue driven system approaches the critical point of spontaneous task disengagement.

This aim poses some methodological issues that have to be resolved first. The temporal changes in the variability of complex psychobiological time series are characterized by non-stationarity, which is not captured by traditional available techniques of analysis (e.g., frequency analysis), and thus, more sophisticated methods of non-stationarity reduction are required (Amoud et al., 2008). In addition, univariate approaches may have a limited perspective on complex fluctuations whose source is often unknown. The analysis of the simultaneously recorded data can be used to reveal the properties of underlying mechanisms: delays, loops, directed dependences. The multivariate studies can put the light on the identification of the structure of interactions in a system of multiple components (Müller et al., 2016). Such methods are useful for the causality assessment (in the Granger sense) and for understanding the information flow (Gencaga et al., 2015) between variables (by Shannon formalism). Running correlation function (RCF) and bivariate phase-rectified signal averaging (Bauer et al., 2010) methods can be used to study the interrelations between two time series recorded simultaneously. The following analysis is dedicated to the assessment of the magnitudes (strength) of temporal interrelations to reflect coordination during the task.

The aim of this study was to investigate the effect of exercise-induced fatigue on the upper interlimb coordination during a quasi-isometric exercise performed until spontaneous task disengagement. Particularly, we were interested in the possibility of defining the potential task specific order parameter that is used by performers in the goal-directed control of the brain-body-environment coordination.



MATERIALS AND METHODS


Participants

Seven voluntary physical education students (four females and three males M = 22.41 years old, SD = 1.2) participated in the study. All of them were familiar with strength training and conditioning. Prior to taking part in the study, they completed a questionnaire to confirm their health status (Sánchez-López and Dresch, 2008). All the experimental procedures were explained to the participants before they gave their written consent for the experiment. The Local Research Ethics Committee approved the study (072015CEICEGC) according to the Helsinki Declaration.



Procedure

On three different days over a period of three weeks (one day per week), participants performed a quasi–isometric task consisting of holding an Olympic bar with 80%3 weight of one-repetition maximum (1RM) in an arm curl position until fatigue-induced spontaneous task failure (Figure 1). The one-repetition maximum test was performed one week prior to the start of the study to determine the maximum weight that they were able to move on a complete arm-curl exercise (M = 33.43 kg, SD = 3.16 kg). Then, 80% of the 1RM weight was calculated for each participant and used during the task. Participants were encouraged to intentionally maintain an elbow joint angle as close as they can to the initial angle of 90°. A virtual competition was organized in order to increase the likelihood that the real fatigue-induced spontaneous task disengagement was reached in all trials. Participants sat on an inclined-forward bench in order to prevent possible spinal injuries and a reference cord was placed at the level of the participant’s wrist to facilitate haptic and visual feedback on the initial position and its loss. Before the task started, the bench position and the reference cord were adjusted for each participant on every trial. The elbows of the participants were not fixed, allowing them to move freely in all three dimensions. To record the elbow angle variations, an electrogoniometer (SG110, Biometrics Ldt, Gwent, United Kingdom) was used. As shown in Figure 1, the sensors of the electrogoniometer were placed on marked points of the upper arm and forearm of both arms and were adjusted to the required starting flexion of 90°. The elbow angle variations were recorded using Ebiom software (Biometrics Ldt, Gwent, United Kingdom) for further analysis. The sampling frequency was set at 50 Hz and the amplitude resolution was 0.1 deg. for each extremity. Figure 2 shows an example of the variations of the elbow angle degrees of one participant recorded during one of the trials.
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FIGURE 2. Example of the fluctuations of the elbow angle of both arms during one trial. Vertical blue lines divide the trial into three segments preceding the task disengagement. The first segment (BEG) and the last one (END) were selected for the analysis.




Data Preprocessing

As the participants were unable to maintain the 90° elbow flexion throughout the trial, a trend reduction of the elbow angle series was performed before the correlation analysis. The point of spontaneous task disengagement was determined in the data sets as an abrupt and persistent switch toward negative values of the differenced time series calculated as y = x − x(lag = 1), where x denotes the elbow angle, x(lag = 1) the lagged elbow angle for 1 data point, and y denotes the angle change (Hristovski and Balagué, 2010). This negative trend was determined from a linear fit performed in overlapping windows with a 50-points length starting from the end of the recording. The fatigue-induced spontaneous task disengagement point was detected from the time series of both elbows separately. In case of any divergence between its position in the left (L) and right (R) datasets, the task disengagement point was set for the earlier position in time. The time series of both elbows after the determination of task disengagement had the same length.

The linear trend was removed from the time series by the first order polynomial fit. Subsequently, the detrended recordings were raised by the minimum of original data to obtain the referential values of the elbow angle.

As the time length to task disengagement occurrence was different between participants, the recordings were divided into three segments to compare them. The first (BEG) and the third (END) segments had the same number of points, which reflected the percentage of time evolution preceding the task disengagement. For comparison purposes the first 30% (BEG) and the last 30% (END) of the preprocessed data were selected for further analysis (see Figure 2).



Running Correlation Function

A RCF was applied to BEG and END segments. For all calculations, a common procedure of overlapping windows was performed. The correlation coefficient was determined with respect to a predefined window width W. Then, the window was moved one point forward through the time series and the correlation coefficient was determined again. The procedure was repeated until the window reached the end of the selected data segment (BEG and END, separately). The described sliding approach for the temporal correlation coefficient determination is known as RCF. To obtain the limited ranges of RCF values varying between −1 and +1, the normalization by local standard deviations in the n-th segment σR(n) and σL(n) was introduced:
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In Eq. (1), μL(n) and μR(n) refer to the local mean determined for the left and right elbow, respectively. Note, however, that the means and standard deviations in Eq. (1) were calculated only for the current window, where left limit is n-th data point in the time series segment. Five windows were predefined and selected for the analysis W = {50, 100, 150, 200, 250, 300}, which are multiplicities of 1second due to the experimental sampling rate. Finally, we decided to verify the delays in the correlations. It was obtained by introduction of time lag τ in Eq. (1). The range of τ depends on window width W. The maximal τ was set for each case at W/2. The τ can be easily recalculated to seconds because 50 points are equal to one second. In such a realization the current windows in both signals overlapped.

For the statistical comparison between BEG and END segments, the analysis of RCF distributions was proposed. The RCF was given in the constant range < −1;1 >, and the number of data points in BEG and END segments were the same. The analysis of the correlations relies on its magnitudes in selected segments. We proposed a marker which reflected high correlations between the left and right arm, respectively. Therefore, we calculated the percentage of the RCF values which followed the rule RCF(n) > 0.8 in BEG and END segments separately. It was denoted as %RCF > 0.8. The constant number of data points in BEG and END segments showed that the results for each participant were not sensitive to the length of the signal.

For statistical assessment of the RCF, we determined the coefficient of variation (CV). It is defined by the quotient of standard deviation and mean values. CV is introduced in the analysis to reflect the variability and homogeneity of the marker (i.e., the percentage of the RCF > 0.8 in the two segments: BEG and END). A low value of CV indicates a small statistical dispersion of the %RCF > 0.8 marker in the studied segment.



Bivariate Phase Rectified Signal Averaging (BPRSA) Method

In order to support the symmetric properties of the coordination represented by the RCF data analysis, the bivariate phase rectified signal averaging (BPRSA) method (originally used for the assessment of the baroreflex sensitivity; Bauer et al., 2010) was adopted. It was applied here for the estimation of the fluctuations of interrelations between the recorded data of both arms simultaneously. One recording was treated as trigger and the second as target. The changes in the target signal were estimated in accordance to increments detected in the trigger. The BPRSA computation process was modified and divided in a few successive steps:


a)The anchor points were denoted in the trigger signal and reflected in the target signal at synchronous positions in time. Anchor points were defined as values in the trigger signal which were larger than the previous ones. They were found in the sliding windows W, which widths were used in the RCF analysis,

b)The close surrounding of anchor points was required for further analysis: two points backward and one forward. Such surroundings for following anchor points may overlap,

c)Surroundings were aligned at anchors of target signals,

d)Averaging within the aligned surroundings was performed,

e)Finally, the marker for BPRSA was determined from four points of the averaged surroundings:



[image: image]

Points of target signal X(−1), X(−2), and X(1) surrounded the increase in the trigger signal in time. The increase reflected in the target signal was positioned in an anchor X(0). We performed computations in both possible directions, from right (trigger) to left (target) arm and in the opposite way, because the BPRSA analysis was used here to support the symmetric properties of the coordination represented by the RCF study. Therefore, we proposed a unique marker, which estimates the magnitude of fluctuations taking into account possible interrelations between data. First, the differences in the BPRSA analysis between the arms, i.e., the difference between the BPRSA (right over left) minus the BPRSA (left over right): diff(BPRSA) = BPRSAR →L − BPRSAL →R, were calculated. In the next step, we estimated the ranges between 5th and 95th centiles of diff(BPRSA) values for BEG segment. We determined the diff(BPRSA) for ENG values that exceeded the centile limits given in BEG and presented them in percentages. This variable was denoted as %Range (END − BEG). Assuming larger variations in the END segment than in BEG, the expected percentages of %Range (END – BEG) should exceed 10%. Note that in such calculus, the sign of the diff(BPRSA) parameter was not taken into account. It can be treated as a single and symmetric measure of the magnitude of simultaneous fluctuations from both signals.



RESULTS

The results are divided into two sections. In the first one, the analysis of the window length in the RCF and adopted BPRSA calculus (Table 1 and Figures 3–6) are presented. In the second part, the influence of the time lag is discussed (Figure 7). In both cases, the calculations were done to BEG and END segments separately.


TABLE 1. The mean, SD, and CV of %RCF > 0.8 for different windows W.
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FIGURE 3. Example of RCF results for the elbow angle series from one participant in one trial. (A) The RCF plot of dataset until fatigue-induced spontaneous task disengagement with no time lag and window W = 150. (B) Probability distributions for RCF in the BEG segment and (C) probability distributions at the END segment. For better visualization, the distributions were constructed with constant number of bins equal to 40 in (B,C).
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FIGURE 4. Results of mean product σL(W)⋅σR(W) obtained for the different analyzed windows (W) in the initial and final segments of the trials. BEG: initial segment of the trial and END: final segment of the trial.
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FIGURE 5. Example of adopted BPRSA results until the fatigue-induced spontaneous task disengagement for one participant with no time lag and window W = 300. The violet time series represents the influence of the right arm in the left arm fluctuations. Green time series represents the influence of the left arm in the right arm fluctuations. An increment in the variations between arms in the last part of the time series, close to the task disengagement, is observed.
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FIGURE 6. Mean of %Range (END – BEG) determined for the analyzed windows (W). Each point represents the value of the percentages characterizing the deviations in the END segment in relation to BEG. Error bars represent the standard deviation.
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FIGURE 7. Mean %RCF > 0.8 for the BEG and END segments with increasing time lags 0, 0.2, 0.4…1.4 s for one selected window (W = 150). The results for the final part are shifted and dotted line is plotted to visualize the trend. Error bars represent the standard deviation. BEG: initial segment of the trial and END: final segment of the trial.


Figure 3 shows an example of the RCF and its distributions in selected window W = 150 for one participant. It reflects the typical properties of the RCF: wide range of correlation values (positive and negative as well) and visible domination of higher RCF in the END segment than BEG segment. Each point in the plot of RCF (Figure 3A) corresponds to the correlation coefficient determined for the left and right arms datasets in the sliding window. Figures 3B,C are the histograms of RCF from the BEG and END segments. In general, we observed a domination of positive correlations. According to the marker introduced in section “Running Correlation Function,” the percentage of the high correlation magnitude (i.e., %RCF > 0.8) equals 4.6% for BEG segment and 55.1% for END segment. This means that the correlations of high magnitude (i.e., values higher than 0.8) were less probable in the BEG segment and more probable in the END segment. After determining the marker %RCF > 0.8 for each trial and each participant, the group statistics of the RCF in BEG and END segments was performed.

Table 1 shows the mean and SD of the %RCF > 0.8 marker for the windows 50, 100, 150, 200, 250, and 300. The mean of the BEG segment increased with the increment of the window length, while the mean of the END segment reached the maximum for window W = 200 and started to decrease for the next windows (W = 250 and 300). In both segments, the SD values increased with window length, but their magnitude was larger for the END segment in comparison to the BEG segment.

The results of the coefficient of variation (CV) show that the BEG segment was not sensitive to the window’s length (very small fluctuations in the third row of Table 1). However, the CV for END increased with the window’s enlargement. Note that in the latter case, the CV for W = 300 was twice as large than for W = 50. That is, while the CV was stable in the BEG segment, it increased in the END segment with the windows’ length. This can be mainly explained by the magnitude of the SD for the END segment.

To support the results of RCF and its variations in BEG and END segments (Table 1), the product σL(n)⋅σR(n) (Eq. 1) was calculated using the same window size. As observed in Figure 4, the mean product increased more slowly with the window’s width in the BEG segment (W50 = 0.19; W100 = 0.35; W150 = 0.46; W200 = 0.55; W250 = 0.63; W300 = 0.70) than in the END segment (W50 = 0.29; W100 = 0.69; W150 = 1.07; W200 = 1.38; W250 = 1.64; W300 = 1.80).

Figure 5 shows an example of the results for the adopted BPRSA analysis in a selected window (W = 300). As it is observed, the influence of the right arm on the variations of the left (violet line) and the left arm on the right (green line) increased in the last part of the task preceding the fatigue-induced task disengagement.

Figure 6 shows the mean values and SD of the proposed marker of change percentage [%Range (END − BEG)] (see section “Bivariate Phase Rectified Signal Averaging (BPRSA) Method”), which was calculated for each window (W50 = 16.01; W100 = 20.22; W150 = 23.83; W200 = 25.94; W250 = 25.92; W300 = 29.31). The results showed that the differences between END and BEG segments exceeded 10% in all windows. When %Range (END − BEG) exceeds 10%, the END segment is characterized by larger magnitude of adopted BPRSA differences than BEG. It can be interpreted as occurrence of increasing variations between arms in the last segment of effort in comparison to initial (corresponding to BEG) segments of the experiment. The SDs in Figure 6 confirms large variability between participants in adopted BPRSA determination. These results are in line with the increment obtained in the product σL(W)⋅σR(W) (Figure 4).

Observing the means of %RCF > 0.8 in the END segment (Table 1), we focused on the selected window W = 150 and introduced the time lags in temporal correlation determination (Figure 7). The lags were established at 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, and 1.4 s. The results showed a decreasing profile of %RCF > 0.8 with time lag for both segments (see Table 2). However, the larger effect of decrease was for the END segment with a relative change of 20.4%, (i.e., the difference between the time lag 0 s and the time lag 1.4 s) compared to the BEG segment, with a relative change of 11.2%. Note that the mean of %RCF > 0.8 was smaller than 10% for time lags > 0.8 s. The decrease of SD in BEG and END segments was also observed.


TABLE 2. Mean time lag differences in the %RCF > 0.8 marker for a window 150.
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DISCUSSION

The interlimb coordination during a quasi-isometric exercise performed with upper extremities until spontaneous task disengagement was studied. Two different analyses were performed (RCF and adopted BPRSA) to compare the initial 30% (BEG) and final 30% (END) segments of the obtained electrogoniometry time series of both arms in different time windows. The results showed a common increment in the correlation magnitudes between both arms and between the BEG and the END segments. The findings from RCF also indicated that the level of correlations was higher on longer timescales. Based on the task goal stabilizing synergy approach (Latash, 2008; Kelso, 2009), the increase in the interlimb correlation during the final segments revealed lower interlimb independence close to task disengagement, and thus, a decreased interlimb coordination. This has been related to the impaired ability of the psychobiological system to maintain its independent control during a motor task performed until exhaustion (Vázquez et al., 2016). The increase of the correlation in the END segment of the time series, compared to the BEG segment, means that, on average, any variation in one arm is associated with variation in the same direction in the other arm. This is well observed by the values of %RCF > 0.8 (Figure 3), which indicate that the lower correlation of high magnitude and thus smaller influence between the arms were found in the BEG segment. On the contrary, higher values were found in the END segment, showing greater influence (i.e., crosstalk) between the arms, and hence, more correlation of a high magnitude.

These results show a similar development of fatigue in both limbs and are in line with previously reported results supporting the hypothesis that the task goal stabilizing synergy spreads over long time periods (Hristovski and Balagué, 2010; Vázquez et al., 2016). In both studies, the authors observed that the effort accumulation had an important role in the regulation and control of the task goal.

Previous works define fatigue as an inhibitory (neural and metabolic) protective mechanism in competition with activation, with excitatory processes acting at a neuromuscular level (Hristovski and Balagué, 2010; Balagué et al., 2014; Vázquez et al., 2016). During fatigue, this competition is produced between the intention to sustain the Olympic bar (activation process) and the loss of neuro-muscular tension (protective inhibitory process). This is manifested by the increments in the elbow angle fluctuations during the END segment: σL(W)⋅σR(W) (Figure 4), and %Range (END − BEG) (Figure 6). Whereas in the BEG segment these processes compete over short time scales, resulting in a stabilizing effect (i.e., small fluctuations around the task goal); as the exercise proceeds the competition gradually shifts toward longer time scales (i.e., the participants need larger periods to recover the initial elbow angle). This general mechanism may be explained by the presence of negative feedback loops, where small positive (upward) deviations from the local average, as a consequence of central excitation, is being compensated for by subsequent negative (downward) fluctuations as a result of the coupling between the inhibitory processes and the pull of gravity (Balagué et al., 2014; Vázquez et al., 2016; Montull et al., 2020). As fatigue develops, the neural, metabolic, and muscular network changes are reflected by lower muscle contractile ability due to a larger neural and metabolic inhibitory effect. Thus, as the accumulated effort increases the inhibitory influences become more prominent. To compensate for this inhibition, the larger involvement of networked supra-spinal activation processes became necessary. For example, the supra-spinal activation recruits new motor units in order to synergistically compensate for those which are already exhausted (Taylor and Gandevia, 2008). This compensatory activation is generated by processes that need larger time scales for their development and manifestation, such as the motivational processes (Kiebel et al., 2008). Hence, the competition between spatio-temporally nested inhibitory and excitatory networks of processes continuously shifts on ever-increasing time intervals (Hristovski and Balagué, 2010; Balagué et al., 2014; Vázquez et al., 2016). The time resolution of control becomes impaired, and the mutual influence (measured by RCF) between both arms rises to higher magnitudes in the END segment. Note that this process characterized by the temporal RCF marker has a dynamic profile in time (Figure 3), which is expressed even more by magnitudes of SD products (i.e., σL(W)⋅σR(W)) and %Range(END − BEG). As a result of this process, the mutual dependence of both limbs increases, impairing the ability of the interlimb system to flexibly negotiate the task constraints.

This increment in correlations close to the critical point is characteristic for a vast number of condensed matter and complex systems (e.g., Patashinskii and Pokrovskii, 1979). The interlimb correlations are a sort of spatial correlations (i.e., different limbs are associated with different spatial neuro-musculo-skeletal areas), which also increase as the system approaches criticality. Close to the critical point, long-range spatial correlations enhance (Sethna, 2006). Hence, our results, although not conclusive, may point to the task-specific macroscopic variable that the brain-body system uses to control the class of quasi-isometric actions. Moreover, taking into account the above, we can tentatively propose the hypothesis that at the level of brain-body multilayered networks at the critical point a process of inhibitory percolation takes place. In exercising biological systems, percolation has already been proposed as a self-organizing mechanism that leads to the emergence of macroscopic musculo-skeletal injuries (Pol et al., 2018). The phenomenology of task disengagement in these kinds of tasks strongly suggests the existence of a phase transition of first order (abrupt shift of the order parameter value) (Hristovski and Balagué, 2010; Balagué et al., 2014). However, in both works, it has been noted that there is also a tendency toward a drift of the stable state (elbow-angle) to lower values. This is suggestive of a system approaching the phase transition of second order (continuous shift to the new stable state). On the other hand, it is already an established fact that in multilayered complex networks both types of phase transitions may be present (Kivelä et al., 2014). These networks of the brain-body system may show various levels of fragility or robustness to targeted or random inhibitory influences depending, among others, on the structural properties of the network and its layers and to the type of potential percolation process (site, bond, or site-bond percolation) (Callaway et al., 2000). From this point of view, it would be of high importance to investigate the different models of targeted inhibition (e.g., chained inhibition of neural hubs) in the brain-body system, or randomly dispersed inhibition, and how these differ in their degree of involvement for different task constraints for this general task. It will not be a surprise if both processes compete over different time scales, and the final approach to the task disengagement depends on the type of interaction between some key personal, task, and environmental constraints (Hristovski et al., 2014).

%Range (END − BEG) within the segments represents the fluctuations of both limb’s angles and their common influence. Values exceeding 10% of %Range (END − BEG) in the END segment suggest the development of fatigue preceding task disengagement. Higher magnitudes of %Range (END − BEG) in END reflect larger sensitivity of the target to increments defined as anchor points in trigger signal. It may also reflect the loss of independence between limbs. Furthermore, the results of the CV (Table 1) showed a constant mean increase with window enlargement, suggesting the preservation of correlation between left and right arms in the BEG segment when the impact of fatigue development was low. On the contrary, the correlation magnitude was larger for END in all studied windows. Our findings corroborate previous results showing that larger fluctuations and variability (i.e., deviations from the average elbow angle) increase in all participants close to the fatigue-induced spontaneous task disengagement (Hristovski and Balagué, 2010). According to the authors, the enhancement in the elbow angle variability is related to an increased activity of the neuromuscular system constrained to find new functional synergies as a result of the initial elbow-angle destabilization provoked by the effort accumulation.

The time lags introduced in the analysis corroborate the last observations and indicate that the high levels of correlation between left and right arms measured by %RCF > 0.8 are short term, and is confirmed by the sudden drop observed for time lag < 0.8 s. This higher magnitude in time lag < 0.8 s reflected the quick adjustments and reconfigurations made by participants to maintain the task goal. However, we observed that for the longer time lags (τ = 1, 1.2, 1.4 s) the %RCF > 0.8 decreased very slowly and was characterized by smaller SD. These findings support the notion that the correlation between limbs is observed and produced over shorter time scales, due to the small adjustments that participants made to maintain the elbow angle. However, this effect was not observed for larger lags.

In summary, the dynamics within the upper limb system became increasingly critical, pointing toward a mutually aligned, more coherent behavior between the cooperative and competitive processes within the neuromuscular axis (Balagué et al., 2014). The smaller magnitudes of RCF and adopted BPRSA for the BEG segment meant potential for more independent and flexible spatio-temporal control of the coordinative variable, i.e., elbow angle (Vázquez et al., 2016). On the contrary, the higher values of the %RCF > 0.8 and a higher percentage in the %Range (END − BEG) for the END segment indicated a more rigid control of the task. We demonstrate that close to exhaustion, the interlimb system becomes excessively coupled compared to the beginning of the exercise where the independent, more refined, control of the upper limbs is possible. Furthermore, the enhancement in the correlation and mutual dependence between the arms can be proposed as a new marker of the approaching exhaustion.

The results of this study can help to understand the dynamics of the correlation between different systems under the presence of constraints and strengthen previous research findings about the different strategies that participants use to negotiate fatigue. Our findings demonstrate that the accumulation of effort cannot be explained by simple, component-dominant approaches but by an integrative, network interaction-dominant approach of the phenomenon. However, caution should be taken in the interpretation of the results because the values of the SD found in the larger windows warn that the last observation is only valid for lower windows width (<200). The higher amplitude of the elbow angle fluctuations during the last part of the exercise observed in the time series, and the different strategies made by the participants to maintain the exercise until spontaneous task disengagement, could explain this observation. Further investigations are needed to study how the correlation between different psychobiological signals is modified due to effort accumulation.

From a practical point of view, as the enhancement of fluctuations is connected phenomenologically to interlimb correlations, some effort phases can be detected during quasi-isometric types of exercises. These phases, which may be used with training and rehabilitation purposes, may help to detect the phases of stable and metastable states of effort, and predict with a high likelihood the spontaneous task disengagement. The first phase is characterized by lower interlimb correlations and lower fluctuations; the second is characterized by enhanced interlimb correlations and fluctuations. The third is characterized by an excessive increase of these two markers of fatigue and the vicinity of the spontaneous task disengagement (Balagué et al., 2014). Thus, practitioners can control the exercise volume through such markers to attain their training or rehabilitation purposes. Exercise volumes that include only the first phase may be used when no significant neuro-muscular restructuring is planned, for example, in warm-up or recovery sessions. The volumes, including the middle phase, may be used for fostering larger intra and interlimb coordinative restructuring, and exercise volumes (including the last phase) may be included when more drastic reconfigurations and adaptations are planned.

In conclusion, the study reveals an increment of the interlimb correlation of upper extremities during a quasi-isometric exercise performed until fatigue-induced spontaneous task disengagement. The increment of interlimb correlations close to the critical task disengagement point suggests analogies with critical processes in other networked systems (e.g., Arenas et al., 2008). This points to the possibility that the RCF may be the macroscopic variable that the brain-body system uses for coordination and control of the vast number of neuro-musculo-skeletal degrees of freedom during quasi-isometric classes of action. The bivariate analyses showed that the developed fatigue influenced the coordination between the arms, resulting in a loss of their initial autonomy to control the task. The enhancement of the interlimb correlation at the end of the task showed a more aligned, mutually influenced behavior between the limbs as a consequence of fatigue. The results also point toward the use of bivariate methods of analysis to assess the correlation between different psychobiological signals that fluctuate during exercise.
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FOOTNOTES

1In line with a network physiology of exercise approach, in this paper the common term “muscle fatigue” was replaced by the term “exercise-induced fatigue” to avoid centering the muscle as the cause of fatigue.

2Critical slowing down is a phenomenon that arises as a consequence of the increased relaxation time of the system toward its stable state after a perturbation has been applied. The outcome of the slower relaxation toward the stable state is the enhancement of persistent temporal correlations between subsequent fluctuations (see e.g., Koide and Maruyama, 2004; Scheffer et al., 2009, 2012; Rigamonti and Carretta, 2015).

3The task constraint of 80% of 1-RM was applied because it provided a sufficient data sample and guaranteed the emergence of task disengagement in a short testing time.
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Head-down tilt (HDT) bed rest elicits changes in cardiac circadian rhythms, generating possible adverse health outcomes such as increased arrhythmic risk. Our aim was to study the impact of HDT duration on the circadian rhythms of heart beat (RR) and ventricular repolarization (QTend) duration intervals from 24-h Holter ECG recordings acquired in 63 subjects during six different HDT bed rest campaigns of different duration (two 5-day, two 21-day, and two 60-day). Circadian rhythms of RR and QTend intervals series were evaluated by Cosinor analysis, resulting in a value of midline (MESOR), oscillation amplitude (OA) and acrophase (φ). In addition, the QTc (with Bazett correction) was computed, and day-time, night-time, maximum and minimum RR, QTend and QTc intervals were calculated. Statistical analysis was conducted, comparing: (1) the effects at 5 (HDT5), 21 (HDT21) and 58 (HDT58) days of HDT with baseline (PRE); (2) trends in recovery period at post-HDT epochs (R) in 5-day, 21-day, and 60-day HDT separately vs. PRE; (3) differences at R + 0 due to bed rest duration; (4) changes between the last HDT acquisition and the respective R + 0 in 5-day, 21-day, and 60-day HDT. During HDT, major changes were observed at HDT5, with increased RR and QTend intervals’ MESOR, mostly related to day-time lengthening and increased minima, while the QTc shortened. Afterward, a progressive trend toward baseline values was observed with HDT progression. Additionally, the φ anticipated, and the OA was reduced during HDT, decreasing system’s ability to react to incoming stimuli. Consequently, the restoration of the orthostatic position elicited the shortening of RR and QTend intervals together with QTc prolongation, notwithstanding the period spent in HDT. However, the magnitude of post-HDT changes, as well as the difference between the last HDT day and R + 0, showed a trend to increase with increasing HDT duration, and 5/7 days were not sufficient for recovering after 60-day HDT. Additionally, the φ postponed and the OA significantly increased at R + 0 compared to PRE after 5-day and 60-day HDT, possibly increasing the arrhythmic risk. These results provide evidence that continuous monitoring of astronauts’ circadian rhythms, and further investigations on possible measures for counteracting the observed modifications, will be key for future missions including long periods of weightlessness and gravity transitions, for preserving astronauts’ health and mission success.
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INTRODUCTION

Long duration spaceflights present a number of physiological and psychological stressors that deeply challenge astronauts’ health and performance in space. From the Latin words “circa diem,” meaning “approximately a day,” circadian rhythms are non-random fluctuations having a period of approximately 24 h found in almost every physiological processes (Richards and Gumz, 2013). These rhythms are autonomous, and thus persisting in absence of external synchronizers, but they also entrain to environmental and social cues. In particular, together with the light-dark cycle, a number of factors contribute in maintaining a correct entrainment of circadian rhythms on Earth, such as working and feeding hours, wake/sleep and activity/rest cycles, social interaction, ambient temperature (McKenna et al., 2017), as well as gravity (Fuller et al., 1994). During spaceflight, these conditions are removed: the light-dark cycle is altered, the pull of gravity is reduced, and the regular alternation between standing and supine position is eliminated. A reduction in the strength of the synchronizers directly impacts the characteristics of the circadian rhythms, in terms of altered midline, amplitude and phase, leading to a reduced capacity of adaptation to incoming environmental fluctuations (McKenna et al., 2017). Additionally, circadian rhythm impairment has been correlated on Earth to long-term health problems, including sleep disorders, obesity, diabetes, depression, seasonal affective disorder and aging (Logan and McClung, 2019), with the severity of the consequences increasing with the level of circadian disruption (Gazendam et al., 2013).

Alertness and performance also exhibit circadian rhythmicity (Johnson et al., 1992): as studied in pilots (Caldwell, 2005) and shift workers (Boivin and Boudreau, 2014), when rhythms desynchronization occurs, an increase in the level of fatigue is observed, consequently impairing performance and accentuating the risk of accidents (Flynn-Evans et al., 2016). Episodes of sleep loss, fatigue, and circadian rhythms disruption have been observed in astronauts during past space missions (Manzey and Lorenz, 1998; Monk et al., 1998; Casler and Cook, 1999; Dijk et al., 2001; Flynn-Evans et al., 2016), and have been related to the intense work schedule as well as to environmental factors, such as microgravity, confinement and motion sickness (Guo et al., 2014). Since the maintenance of high level health status and alertness are crucial for the success of a mission, the “Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload” has also been included in the most recent NASA Human Research Program Integrated Research Plan (NASA Human Research Program, 2020), thus highlighting the need for identifying possible consequences due to circadian desynchronization for individual health and investigating measures for mitigating this risk, particularly in the scenarios of deep space exploration and planetary operations.

Due to the limited possibilities of in-flight research, ground-based analogs are used for reproducing and studying the effects of microgravity on the human body. For example, limb casting and limb suspension have been used to study bone density reduction and neuromuscular alterations due to inactivity and unloading (Kitahara et al., 2003; De Boer et al., 2007; Sanseverino et al., 2018), while bed rest and dry immersion are the most widely used ground analogs for simulating the effects of prolonged weightlessness exposure on the different physiological systems. In particular, Head-Down (−6°) Tilt (HDT) bed rest elicits extensively reduced motor activity (Sandler and Vernikos, 1986), as well as the elimination of the regular alternation between 1 and 0 Gz along the head-to-foot axis, and the characteristic fluids redistribution occurring during sustained exposure to microgravity (Montgomery, 1993). The further neutralization of axial loading and body support is achieved by dry immersion protocols (Navasiolava et al., 2011; Watenpaugh, 2016; Tomilovskaya et al., 2019), which involve immersing the test subject, covered with a highly elastic waterproof cloth, in a tank of thermoneutral water (Shulzhenko et al., 1980; Tomilovskaya et al., 2019). Despite similarities in the effects induced by HDT bed rest and dry immersion (Watenpaugh, 2016; Tomilovskaya et al., 2019), the magnitude of changes on cardiovascular, postural and neuromuscular systems induced by dry immersion resulted up to seven times larger than with HDT bed rest (Tomilovskaya et al., 2018). However, due to its convenience and ease of use (Watenpaugh, 2016), also allowing easier access to countermeasures tested on the subjects, the HDT protocol became the preferred and most utilized ground-based analog of microgravity.

As evidenced in the NASA Human Research Program Integrated Research Plan, there is currently a lack of circadian phase biomarkers easily collectible during spaceflight. Accordingly, HDT bed rest can be used to this aim, by investigating circadian entrainment.

In previous studies during HDT bed rest, we showed that cardiovascular deconditioning is possibly affecting cardiac electrical activity by increasing ventricular repolarization heterogeneity, and thus the risk of inducing rhythm disorders (Caiani et al., 2016). In the same pooled group of subjects examined in this paper, we also showed that, when the normal gravity field is restored, T-wave alternans indices increased after 60-day HDT (but not for shorter durations), indicative of incipient electrical instability on ventricular repolarization (Martín-Yebra et al., 2019).

In addition, our preliminary results on 12 subjects undergoing a 60-day HDT bed rest showed that also the circadian rhythms of both beat-by-beat duration (RR interval) and ventricular repolarization duration (QTend interval) were affected, with a reduction in day/night differences already after 5 days of HDT (Solbiati et al., 2020). As in mice the deficiency or excess of Krüppel-like factor 15, with a role in the transcriptional control of the rhythmic genes expression required for generating the transient outward potassium current, has been related to loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias (Jeyaraj et al., 2012), the importance of further studying in humans the circadianity of RR and QT duration during HDT bed rest as biomarkers appears evident.

Accordingly, our aim was to investigate the changes in the circadian rhythms of cardiac electrical activity from 24-h Holter ECG recordings acquired during six HDT bed rest studies of different duration in a large pooled group of normal subjects, thus expanding the previous results in Solbiati et al. (2020), by evaluating the degree of circadian desynchronization along the HDT, as well as focusing on the changes elicited at HDT discontinuation, as a consequence of the restoration of the gravity field.

This paper is structured as follows: in section “Materials and Methods” the study design and population, data acquisition and processing, as well as the methods utilized for the analysis of circadian rhythms and statistical analyses are described. In section “Results” the results are presented, organized into three sub-sections: (1) focusing on the effects during HDT, considering its different duration; (2) examining the post-HDT bed rest recovery dynamics HDT, separately for the different HDT durations; (3) comparing the effects of gravity field restoration observed after 5-day, 21-day, and 60-day HDT. In section “Discussion” the discussion of the observed changes in the cardiac circadian rhythm is presented, following the same structure adopted in section “Results,” together with a description of the study limitations, and finally in section “Conclusion” the main conclusions are reported.



MATERIALS AND METHODS

The data utilized in this study consisted of 12-lead Holter ECG recordings previously acquired in several HDT bed rest campaigns to which our research group participated during the last 10 years. Details on the study design, population, and ECG acquisition protocol will be described in the following sub-sections.


Study Design and Population

In the context of the European Space Agency head-down bed rest strategy, an only male healthy population was recruited for two short-duration (5 days), two mid-duration (21 days), and two long-duration (60 days) HDT bed rest studies, performed at the Institut de Médecine et de Physiologie Spatiales (MEDES) in Toulouse (France), or at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt e.V, DLR) in Cologne (Germany). All subjects were not taking medication of any kind.

Volunteers were randomly assigned to a control (CTRL) or to a countermeasure (CM, depending on the study, different interventions were applied to the subjects during HDT to test effectiveness in preventing changes) group. Each study included a period of baseline data collection (PRE), a period of strict 6° HDT bed rest 24 h a day, and a period of post-bed rest recovery, whereas lying in bed during the day was not allowed before and after the HDT period. For detailed description of the design relevant to each campaign, please refer to the Supplementary Material.

The present study considered only the ECG data acquired from the subjects assigned to CTRL groups, for a total of 63 subjects. Sleeping hours were scheduled from 11:00 pm to 6:30 am at DLR and from 11:00 pm to 7:00 am at MEDES, and napping was not allowed during the day. All the performed procedures were in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For each bed rest campaign, all volunteers provided written informed consent to participate in the study, approved by the respective Ethical Committee for Human Research at each of the hosting institutions.

Anthropometric information relevant to the subjects enrolled as CTRL in the 5-day, 21-day, and 60-day HDT campaigns are reported in Table 1, and presented as median [25th percentile; 75th percentile].


TABLE 1. Total number of male subjects enrolled in the control group for 5-day, 21-day, and 60-day HDT campaigns, together with their age and Body Mass Index (BMI) expressed as median [25th percentile; 75th percentile].

[image: Table 1]


ECG Data Acquisition and Pre-processing

For each bed rest campaign, 12-lead 24-h Holter ECGs (1000 Hz, H12+, Mortara Instrument Inc.) were acquired for each subject at specific epochs before, during, and after the HDT period, as schematized in Figure 1. Of note, longer campaigns preserved the same intermediate acquisition days as in shorter campaigns, thus resulting in: 63 subjects from 5-day, 21-day, and 60-day HDT campaigns studied at PRE and HDT5 (i.e., the 5th day of HDT bed rest), of which 41 subjects studied also at HDT21 (i.e., the 21st day of HDT bed rest), and 21 subjects studied also at HDT58 (i.e., the 58th day of HDT bed rest). In addition, all 63 subjects were studied in the 24 h following gravity reinstatement, namely R + 0, as well as several days after, from R + 3 (i.e., the 4th day of recovery) to R + 7 (i.e., the 8th day of recovery), according to the campaign duration, as specified in Figure 1.


[image: image]

FIGURE 1. Schematization of the 24 h Holter ECG experiment conducted during the 5-day, 21-day, and 60-day Head-down tilt (HDT) bed rest campaigns. Specific days in which the ECG acquisitions were performed are indicated by the arrows. PRE: baseline data collection (BDC) before the beginning of HDT; HDTx: acquisition performed at day x of the HDT; R + 0: acquisition starting immediately after the conclusion of HDT; R+x: acquisition performed x days after the end of HDT (see section “ECG data acquisition and pre-processing” and Supplementary Materials for details).


For each recording, the fiducial points corresponding to the Q, R, and T wave end (Tend) of the ECG signal were extracted, and beat-to-beat RR and QTend interval series (ms) were computed using the proprietary Mortara Instrument research software SuperECG (Mortara, 2009). The extracted variability series were pre-processed in order to exclude outliers or artifacts due to acquisition problems (i.e., electrode detaching, cable interference, others): an outlier rejection method based on the standard deviation was applied, aimed at eliminating samples exceeding four times the standard deviation of the preceding 50 samples.

Additionally, Bazett’s correction (Bazett, 1920) was applied to compute beat-to-beat QTc interval series, according to the formula:

[image: image]

being N the number of RR and QTend intervals in the series.

Afterward, RR, QTend, and QTc series were realigned to the time of the beginning of the day, and the median values of consecutive, non-overlapping 15-min segments were computed for each subject at each acquisition epoch. Additionally, the minimum and the maximum RR, QTend, and QTc values over the 24 h were computed for each recording, as well as the median value during the diurnal and the nocturnal periods.



Methods for the Analysis of Circadian Rhythms

The characteristics of circadian rhythm in the cardiac electrical activity were evaluated by performing the single component Cosinor analysis. The Cosinor analysis is a widely used regression method for the evaluation of non-random rhythms in time series, which consists in fitting the original equidistant or non-equidistant series with a periodic function (Cornelissen, 2014), defined by the equation:

[image: image]

where MESOR (Midline Statistic of Rhythm) represents a rhythm-adjusted mean, OA is the oscillation amplitude, measuring half variation within a night-day cycle, φ is the acrophase, that is the temporal value at which the amplitude of the fitting sinusoid reaches its maximum value, τ is the period representing the duration of one cycle, and e(t) is the fitting error term at each time point, defined as an independent random variable with mean equal to zero and variance σ2.

In addition to the Cosinor model, frequency-based approaches such as the Fourier spectral analysis, the Lomb–Scargle periodogram or the autoregressive spectral analysis, allow to perform the spectral decomposition of the series, identifying as circadian those series whose spectrum correlates with a period of 24 h (Leise, 2017). Furthermore, other more specialized methods have been developed in support to the analysis of series characterized by time-variant amplitude or phase, including spectrograms and wavelet transforms (Leise, 2015), as well as empirical (Huang et al., 1998) and non-linear mode decomposition (Iatsenko et al., 2015), in which the original series is decomposed into set of non-linear modes, starting from the time-frequency representation of the series obtained by windowed Fourier transform or wavelet transform.

Unlike the Cosinor analysis, however, the cited methods require at least 3 or preferably more consecutive cycles acquired from the same source or individual. In the present study, multiple, non-consecutive, 24-h-long series were available, and thus the analysis of the changes in the circadian period was not allowed. Accordingly, the circadian period τ was assumed to be equal to 24 h (Cornelissen, 2014), being synchronized to the external 24-h light-dark cycle, which was fixed and imposed by the experimental protocol in all the considered studies. Thus, being τ assumed as known, the equation (2) can be re-written as:

[image: image]

where β = A(cosφ), γ =−A(sinφ), x = cos(2πt/τ), z = sin(2πt/τ). Afterward, the least squares method is used to minimize the residual sum of squares (RSS), i.e. the sum of squared differences between measurements Y(ti), for i = 1, 2, …, N, and the values estimated from the model (Cornelissen, 2014):

[image: image]

Trigonometric formulae are then used to derive estimates of the amplitude (OA) and acrophase (φ) from [image: image] and [image: image].

Consequently, in the present work, the circadian rhythm of 24-h RR and QTend series was evaluated for each recording by performing the single component Cosinor analysis on the computed 15-min medians, to minimize fitting errors of the least square method in presence of possible outliers, thus resulting in a value of MESOR, OA and φQTend and φRR for each subject at each epoch. Recordings having less than 60% of available signal over the 24 h were excluded from the analysis. In all other cases, linear interpolation was performed to fill missing samples.

Additionally, the difference in minutes between the RR and QTend acrophases was computed as:

[image: image]



Statistical Analysis

The performed statistical analyses are described in detail in the following sub-sections. For all tests, p < 0.05 was considered as level of significance (α) to reject the null hypothesis.


Presence of Circadian Rhythms

The presence of circadian rhythmicity in RR and QTend series was assessed by the Zero-Amplitude test (Cornelissen, 2014), with the null hypothesis that the amplitude of the series is zero, and thus that there is no rhythm in it.



Effect of HDT Bed Rest Duration

In order to test the null hypothesis that HDT, independently of its duration, did not produce any effect on the computed parameters, the non-parametric Kruskal–Wallis test for independent samples (due to the different number of subjects in each group for this comparison) was performed to compare values obtained at PRE, HDT5, HDT21, and HDT58, with the post hoc Mann–Whitney test with Bonferroni correction.



Post-HDT Bed Rest Recovery

To test the null hypothesis that in the same subject HDT did not produce any effect on the computed parameters at its conclusion and in the following days, the non-parametric Friedman test for repeated measures was applied, together with post hoc Wilcoxon Signed Rank test with Bonferroni correction, to compare values at PRE, at R + 0 and at the following available R+x epoch (with x depending from the HDT duration – see Figure 1), separately after 5-day, 21-day, and 60-day HDT. In case of missing data, the relevant subject was excluded from the paired comparison.



Effects of Gravity Field Restoration

To test the null hypothesis that HDT discontinuation, independently of its duration, did not produce immediate effects on the computed parameters, the difference (expressed as Δ%) between the last available HDT acquisition and the respective R + 0 was computed for 5-day, 21-day, and 60-day HDT campaigns separately, according to the formulae:

[image: image]

Thus, the Kruskal–Wallis test (p < 0.05) was performed to compare Δ5–day HDT, Δ21–day HDT, and Δ60–day HDT, together with post hoc Mann–Whitney test with Bonferroni correction.



RESULTS

Results are presented as median [25th percentile; 75th percentile], and detailed information about statistical analyses results are reported in the tables. In the text, only significant variations are underlined (unless otherwise specified) in terms of median of the relative change (in %) compared to respective values at PRE.

Due to acquisition problems, the recordings specified in Table 2 were not available for the analyses. Consequently, the results available from those subjects with missing recordings were excluded from all the analyses involving paired comparisons, while they were still considered in unpaired tests.


TABLE 2. List of the number of subjects and corresponding head-down tilt (HDT) bed rest campaign (using its acronym as defined in Supplementary Material) in which day, night or Cosinor analyses were not performed for certain epochs because of missing data.

[image: Table 2]Locally missing data within the 24 h, reported both as % in respect of the whole acquisition and as median [25th percentile; 75th percentile] durations, were found at PRE (1.04%, 15[0;90] minutes), at HDT58 (2.08%, 30[0;94] minutes), and at R + 0 in 21-day HDT bed rest (2.08%, 30[15;67] minutes).


Effect of HDT Bed Rest Duration

Both at PRE and at each HDT bed rest epoch, RR and QTend interval series exhibited a marked circadian pattern, as visible in Figure 2 in which the distributions over the 24 h (represented as a median [25th-75th] value every 15-min) of the RR and QTend intervals for the pooled population are shown. In particular, as confirmed by the Zero-Amplitude test, the null hypothesis was rejected and the circadian rhythm was maintained in all subjects at both PRE and at all HDT epochs. As expected, shorter RR intervals were visible during the day, denoting higher heart rate, followed by a steep increase toward the higher values observed at night, with QTend interval following RR variations.


[image: image]

FIGURE 2. Cumulative results (each value represents the 15-min median with its 25th and 75th percentiles) of heart beat duration (RR) and ventricular repolarization duration (QTend) computed from the corresponding pooled population before (PRE) the beginning of head-down tilt (HDT) and at the x-th day of HDT bed rest (HDTx).


However, the characteristics of the circadian rhythm changed during the HDT period. Table 3 provides a summary of day, night, maximum and minimum values of RR, QTend and QTc intervals, as well as of the Cosinor parameters for RR and QTend, at PRE and at each HDT epoch.


TABLE 3. Results expressed as median [25th percentile; 75th percentile] of the analysis of the effects of head-down tilt (HDT) duration on the parameters computed from heart rate (RR) and ventricular repolarization duration, as original values (QTend) and corrected using the Bazett formula (QTc), in the pooled population before HDT was started (PRE: 63 subjects day, 62 subjects night, 61 subjects Cosinor) and at each available HDT epoch during the bed rest (HDT5: 63 subjects day, 62 subjects night, 61 subjects Cosinor; HDT21: 41 subjects day, 40 subjects night and Cosinor; HDT58: 21 subjects).

[image: Table 3]Major changes were observed at HDT5, with increased RR and QTend MESOR compared to PRE (+11.4% and +2.3%, respectively), mostly related to a lengthening occurring during the diurnal period (RR: +16.8%; QTend: +3.7%), as also evidenced by the increased minima (RR: +39.4%; QTend: +8%). On the other hand, no changes were observed in RR and QTend maxima and in nocturnal values for any of the HDT epochs. With the prolongation of HDT a gradual recovery toward baseline values was observed: for the RR interval, this was manifested at HDT58 as decreased diurnal (−13.5%), nocturnal (−9.2%), and MESOR (−11.4%) values compared to HDT5. However, the RR interval was still lengthened compared to PRE at HDT21 during the day (+9.7%), and both RR and QTend minima remained higher than at PRE up to HDT58, showing only a trend toward the baseline (RR: +35.8% at HDT21, +30.1% at HDT58; QTend: +6.8% at HDT21, +5.9% at HDT58).

The increased minimum and diurnal values, and the simultaneous unchanged maximum and nocturnal values, during the entire HDT caused a dampening in the amplitude of day-night oscillations (OA) for RR (between −23.8 and −30%) and QTend (between −24 and −32%) from baseline as the HDT was prolonged.

The φQTend occurred earlier during the HDT compared to PRE, and a similar trend (significant only at HDT58) was observed in φRR.

Also the QTc interval was affected during the HDT, being particularly shortened at HDT5 compared to the baseline (Day −2.4%; Night −2.8%; Maximum −5.8%) reaching values lower than the 390 ms normality limit for short QT syndrome (Rautaharju et al., 2009). Afterward, only maximum QTc remained shortened at HDT21 (−4.3%), while day and night values trended toward recovery, being greater at HDT58 when compared to HDT5.



Post-HDT Recovery

In this paragraph, the results relevant to the analysis of post-HDT recovery are presented in terms of comparison between the baseline and the recovery epochs, for 5-day, 21-day, and 60-day HDT campaigns separately.


Recovery After 5-Day HDT

The results relevant to the 5-day HDT bed rest are reported in Table 4.


TABLE 4. Relative changes of the immediate (R + 0) effects of recovery, and following same days (R + 3/4), after a 5-day head-down tilt (HDT) on the parameters computed from heart rate (RR) and ventricular repolarization duration, as original values (QTend) and corrected using the Bazett formula (QTc), compared to baseline values (PRE) as reference.

[image: Table 4]At R + 0, the diurnal and nocturnal RR interval decreased with respect to the baseline (Day −8.3%, Night −3.9%), as well as in terms of minimum (−29.7%), maximum (−3.5%), and MESOR (−6.7%) values, with QTend following RR variations (Day −4.1%, Night −1.1%, Minimum −9.5%, MESOR −2.6%). Moreover, the OA of both RR and QTend was increased at R + 0 by +28.1 and +26.9%, respectively. At R + 3/4, a trend toward recovery was observed. In most of the cases, this was visible as a return toward baseline values, that for RR maximum and MESOR was manifested as an increase compared to PRE (+5.1 and +3.5%, respectively). No changes were detected in RR and QTend acrophases and in their difference, as well as for the QTc.



Recovery After 21-Day HDT

The results relevant to the 21-day HDT bed rest are reported in Table 5.


TABLE 5. Relative changes of the immediate (R + 0) effects of recovery, and following same days (R + 4/5), after a 21-day head-down tilt (HDT) on the parameters computed from heart rate (RR) and ventricular repolarization duration, as original values (QTend) and corrected using the Bazett formula (QTc), compared to baseline values (PRE) as reference.

[image: Table 5]At R + 0, the RR interval appeared shortened compared to PRE, in terms of day (−11.2%), night (−11.5%), maximum (−8.3%), and MESOR (−11%) values. Conversely, the QTend interval resulted shortened only during the day (−2.9), while diurnal and nocturnal QTc lengthened (+3.3 and +2.1%, respectively). Afterward, at R + 4/5, RR and QTend intervals recovery toward baseline values was reached, except for diurnal, nocturnal and minimum QTc that continued to be higher than PRE (+2.9, +3.2, and +4%). The RR acrophase was slightly anticipated compared to PRE while that of QTend was not modified.



Recovery After 60-Day HDT

The results relevant to the 60-day HDT bed rest are reported in Table 6.


TABLE 6. Relative changes of the immediate (R + 0) effects of recovery, and following same days (R + 5/7), after a 60-day head-down tilt (HDT) on the parameters computed from heart rate (RR) and ventricular repolarization duration, as original values (QTend) and corrected using the Bazett formula (QTc), compared to baseline values (PRE) as reference.

[image: Table 6]At R + 0, both RR and QTend intervals significantly shortened compared to baseline, in terms of diurnal (RR: −27.5%; QTend: −10%), nocturnal (RR: −22.5%; QTend: −7.0%), maximum (RR: −21%; QTend: −6.4%), minimum (RR: −26.4%; QTend: −11.9%), and MESOR (RR: −24.6%; QTend: −8.3%) values. Conversely, the QTc resulted prolonged at R + 0 with respect to the baseline (Day +5.3%; Night +3.9%; Minimum +4.1%). These changes in RR and QTc still persisted at R + 5/7, showing only a slight trend toward recovery.

While the OA of RR did not show significant variations at R + 0, the OA of QTend resulted increased by +38.4% compared to PRE, and then recovering at R + 5/7.

Both RR and QTend acrophases resulted postponed at R + 0, but recovered at R + 5/7, where a slight anticipation of RR over QT in Δφ was evidenced.



Effects of Gravity Field Restoration

A comparison of RR, QTend and QTc values among 5-day, 21-day, and 60-day HDT campaigns at the respective R + 0, i.e., immediately after gravity restoration, is reported in Figure 3.


[image: image]

FIGURE 3. Comparison of the effects of early recovery (R + 0) for the 5-day, 21-day, and 60-day duration head-down tilt (HDT) bed rest campaigns in diurnal, nocturnal, maximum, minimum and Midline Statistic of Rhythm (MESOR) values obtained from the beat-to-beat series of heart beat (RR) and ventricular repolarization duration, expressed as original values (QTend) or corrected using the Bazett formula (QTc). In the textbox, the p-value of the Kruskal–Wallis test is indicated. *p < 0.05/3 post hoc Mann–Whitney tests with Bonferroni correction.


After 60 days of HDT, the RR interval appeared more reduced compared to after 5-day HDT (Day −20.6[−30.1;−10.3]%, Night −16.2[−20.6;−10.3]%, Maximum −13.5[−18.2;−6.4]%, MESOR −17.1[−21.1;−12.8]%) and to after 21-day HDT (Day −18.3[−22.9; −11.7]%, Night −10.2[−27.8; −6.4]%, Maximum −10.4[−25.4; −2.2]%, MESOR −12.9[−23.7; −9.3]%). A similar behavior was observed in QTend day (−7.8[−11.4; −2.3]% compared to 5-day HDT, −7.0[−12.4; −3.8]% compared to 21-day HDT), night (−3.9[−7.9; −0.1]% compared to 5-day HDT), maximum (−3.8[−9.0;1.2]% compared to 5-day HDT), and MESOR (−6.2[−9.3; −0.3]% compared to 5-day HDT, −7.3[−11.3; −0.7]% compared to 21-day HDT) values. No differences were observed in the OA, nor in the acrophase.

Diurnal and nocturnal QTc appeared prolonged after 60 days of HDT than after 5-day HDT (Day +3.7[1.7;6.4]%, Night +2.6[0.7;7.3]%), with a positive trend as HDT duration increases.

Figure 4 displays the linear regression between the median QTc over the 24 h and the OA of the QTend (Figure 4A, including all acquisitions), as well as between the respective variation Δ(%) between the last HDT day and R + 0 (Figure 4B). In particular, the former showed that higher OA of the QTend were associated with longer QTc (p < 0.0001), while only a slight, non-significant rising trend in OA was observed with increasing QTc from the last HDT day to R + 0.


[image: image]

FIGURE 4. (A) Linear correlation between the median value of the Bazett-corrected ventricular repolarization duration (QTc) over the 24 h and the Oscillation Amplitude (OA) of the circadian rhythm in the ventricular repolarization, and (B) between the respective Δ(%) computed between the last HDT day and R + 0. Every dot represents one subject, while the red line represents the linear fit to the data.


The effect of the deconditioning perceived at bed rest discontinuation was also studied in terms of Δ (%) between the last HDT day of 5-day (HDT5), 21-day (HDT21), and 60-day (HDT58) HDT, and the respective R + 0. As displayed in Figure 5, negative variations were found for the majority of the parameters, thus reflecting the decrease at R + 0 compared to the last day of HDT bed rest.
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FIGURE 5. Changes (Δ %) in diurnal, nocturnal, maximum, minimum Midline Statistic of Rhythm (MESOR), and Oscillation Amplitude (OA) values for heart beat (RR, left) and ventricular repolarization (QTend, right) durations between the last day of head-down tilt (HDT) bed rest and the first day of recovery (R + 0) in 5-day, 21-day, and 60-day HDT campaigns. Dashed line indicates a null variation (Δ = 0%). In the textbox, the p-value of the Kruskal–Wallis test is indicated. *p < 0.05/3 post hoc Mann–Whitney tests with Bonferroni correction.


In particular, a larger decrease at R + 0 in the diurnal values of RR and QTend was elicited after 60-day HDT (RR: −30.5[−37.9; −23.3]%; QTend: −11.5[−15.8; −9.3]%) compared to what elicited after a 5-day HDT (RR: −17.2[−22.3; −13.8]%; QTend: −5.9[−7.7; −4.3]%) or a 21-day HDT (RR: −19.2[−22.8; −16.2]%; QTend: −6.6[−7.9; −3.2]%), while a trend with increasing HDT duration was visible during the night (RR: −7.4[−9.3; −2.6]% in 5-day, −13.1[−17.1; −10.3]% in 21-day, −18[−23.3; −14.8]% in 60-day HDT; QTend: −1.1[−1.8;0]% in 5-day, −4.5[−6.0; −1.8]% in 21-day, −6.1[−7.0; −5.1]% in 60-day HDT). Also, a trend with HDT duration was present in the maximum values, which exhibited a larger decrease after 60-day HDT (RR: −15.6[−19.6; −12.6]%; QTend: −4.2[−7.7; −3.1]%), both compared to 5-day (RR: −6.3[−9.1; −4.7]%; QTend: −1.8[−2.7;1.1]%) and 21-day HDT (RR: −11.4[−14.8; −8.4]%; QTend: −3.3[−6.4;6.8]%). As regards minimum values, no difference in QTend reduction was found, while a lower Δ was visible for RR in 60-day HDT (−38.4[−43.3; −29]%) compared to 5-day HDT (−46.3[−51.8; −40.2]%). In addition, 60-day HDT elicited a larger MESOR reduction (RR: −25.3[−34.0; −18]%; QTend: −8.5[−14.2; −6.8]%) both compared to 5-day (RR: −13.6[−16.8; −11.2]%; QTend: −4.5[−5.4; −3]%) and 21-day HDT (RR: −16.5[−19.6; −14.2]%).

As regards the OA, larger values were observed at R + 0 compared to the baseline, as evidenced by positive Δ(%). In particular, larger Δ(%) were found in 5-day HDT (RR: +55.4[26.7;93.1]%; QTend: +87.4[50.4;113.1]%) compared to 21-day HDT campaigns (RR: +13[−22;40.8]%; QTend: +24.8[−15;73.1]%).

No differences in the variation of acrophases and neither in QTc were found.



DISCUSSION

In this study, we retrospectively analyzed the 24 h Holter ECG acquired at different epochs during six HDT bed rest campaigns (two of 5 days, two of 21 days, and two 60 days), aiming at evaluating the effects of the HDT duration on the circadian rhythms of RR and ventricular repolarization (QT) for a large population of normal young males. To the knowledge of the authors, this study includes the widest pooled population in which the analysis of the changes induced by HDT in the circadian rhythms of cardiac electrical activity has ever been conducted.

The cumulative results confirmed our previous findings observed on data of a single campaign only (Solbiati et al., 2020), showing that the characteristics of RR and QTend circadian rhythms were affected by HDT in terms of increased RR and QTend midline and shortened QTc, reduced amplitude of day/night oscillations and slightly anticipated circadian acrophase, with larger changes visible already after the first 5 days of HDT bed rest. The conclusion of the HDT elicited opposite changes, including the shortening of RR and QTend, and the prolongation of the QTc, as well as the increased OA and a slightly delayed acrophase during the recovery stage. In addition, we were able to evaluate the degree of positive dependence of post-HDT changes with increasing HDT duration.


Effects on Intervals Duration

Within the first 5 days of HDT, the midline value (MESOR) of RR and QTend intervals over the 24 h recording increased, mostly due to the substantial lengthening of the RR interval during the day and to the increased minimum values with unaffected maxima. These results are in accordance with the study of Liang et al. (2014) on eight healthy men performing a 45-day head-down bed rest, evidencing that the heart rate decrease over the 24 h mainly occurred at the beginning of the HDT. The detected tendency toward bradycardia well reflects what observed in short-duration spaceflights (Fritsch-Yelle et al., 1996; Beckers et al., 2003) and is mainly attributable to the physiological adaptation to the new condition of tilted, bedridden immobilization, including circulatory unloading and decreased daily activity. In turn, this resulted in a prolongation of the QTend interval, while the QTc resulted shortened, suggesting the existence of an effect of HDT on the repolarization phase.

Afterward, a progressive trend toward baseline values was observed, with the QTend recovered already at HDT21, and RR at HDT58. A similar progressive recovery was also described in other bed rest studies, with heart rate resulting even increased after 35–45 days of bed rest (Pavy-Le Traon et al., 2007; Liang et al., 2014; Liu et al., 2015). In particular, Liang et al. (2014) concluded that this readjustment could be attributed to the chronic head-down position, since it occurred under constant level of activity within the bed rest, recorded by a wrist accelerometer. On the contrary, results from long duration spaceflights reported no changes in inflight heart rate obtained from Holter ECG recordings both during daily activities (Fraser et al., 2012) and during sleep (Xu et al., 2013), from early (2–4 weeks after launch) to later in-flight (2–4 weeks before landing) acquisitions compared to pre-flight, as well as in resting heart rate extracted from 10-min recordings (Baevsky et al., 2007). Additionally, Yamamoto et al. (2015) found that the mean RR interval from 24-h Holter ECG, after an initial increase observed in 5 out of 7 astronauts during ISS expeditions 1 month after launch, progressively modified in a subject-specific way, with three astronauts developing high bradycardia, two with mild bradycardia, and two with tachycardia.

The subsequent restoration of the orthostatic position elicited opposite variations, independently from the HDT duration, with abrupt RR and QTend shortening when the normal level of gravity on the head-to-foot axis and body fluid distribution were restored, confirming what observed after a period of permanence under real (Beckers et al., 2003) or simulated (Liang et al., 2014) microgravity. Results from 5-day HDT campaigns indicate that even a short exposure to a simulated microgravity environment is enough for eliciting the deconditioning of the cardiac circadian timing system, resulting in the inability to compensate for the re-established gravitational condition, as highlighted by the increased RR and QTend intervals still 4/5 days after the HDT conclusion. Similarly, 5/6 days and 6–8 days after HDT termination, respectively in 21-day and 60-day, were not sufficient for restoring the circadianity of RR and QTend intervals to baseline values. Indeed, data from short duration (10–14 days) space flights revealed that a period between 5 (Beckers et al., 2009) and 25 days (Verheyden et al., 2007) is needed for a complete recovery and, similarly, maximum and minimum heart rate values remained increased also 10–12 days after a 45-day head-down bed rest (Liang et al., 2014).

Interestingly, the shortening of RR and QTend intervals was visible also during the night period, when the subjects were in horizontal position as before the HDT, similarly to what observed after long-duration spaceflight (Xu et al., 2013): this suggests a bed rest-induced impairment of the autonomic control system, confirmed by long-duration spaceflight studies (Fritsch-Yelle et al., 1994; Baevsky et al., 2007), possibly maintaining altered RR and ventricular repolarization intervals also at night, when the head-to-foot gravity load is removed. In addition, similar and simultaneous variations in RR and QTend were observed, indicating that the relation between RR and cardiac repolarization is maintained.

Additionally, the magnitude of post-HDT changes appeared to increase with prolonged HDT duration, with the differences between the last day of the HDT and R + 0 being significant in 5-day, 21-day and, even more markedly, in 60-day HDT campaigns. As circadian desynchronization could be related to a decrease in astronaut’s performance, this observation can be relevant for future manned space exploration scenarios, including the return to the Moon and missions to Mars, where the return to a gravitational field (hence reduced compared to the Earth) after a period (for Mars, at least 9 months) of permanence in weightlessness could generate abrupt perturbation of the cardiac electrical activity circadianity in respect to the previous homeostasis reached during space flight. This could also be put in relation with the increased electrical instability, reflected by the increase in T-wave alternans indices computed on the 24-h, after 60-day exposure to bed rest that we found in a previous study (Martín-Yebra et al., 2019) conducted on the same pooled population, thus revealing that ventricular repolarization mechanisms may also be altered during this period.

Moreover, the QTc resulted significantly increased after the HDT, particularly after 21-day and 60-day HDT, when the maxima exceeded the 450 ms physiologic limit defined by the AHA/ACCF/HRS Consensus Document (Rautaharju et al., 2009) for long QT. Similarly, other studies have observed a prolongation of the QTc during long duration spaceflight (D’Aunno et al., 2003; Golubchikova et al., 2003), while no prolongation was reported in short duration spaceflight (Mitchell and Meck, 2004). The prolongation of the Bazett-corrected QT interval has been related to increased risk of developing torsade de pointes, a life-threatening polymorphic ventricular tachycardia, possibly degenerating into ventricular fibrillation (Kallergis et al., 2012). Generally, the non-hereditary QT prolongation is observed with the exposure to an environmental stressor that, in the case of HDT studies or spaceflight, could corresponds to the restoration of Earth-like, or partial (Moon or Mars) orthostatic gravitational stimuli after a period of permanence in microgravity, respectively.

Normally, prompt intervention could be life-saving in case of adverse cardiac electrical event. However, in the scenario of a return to the Moon, an emergency re-entry to the Earth or to a low Earth orbit base (if any) could take days, and would be unfeasible in missions to Mars. For this reason, the development of effective countermeasures for preventing the spaceflight-induced cardiovascular deconditioning will be paramount.



Effects on the Circadian Amplitude

An important feature of circadianity in a time series is represented by the amplitude of day-night fluctuations. It was previously observed that the amplitude of 24-h heart rate significantly reduced during a 45-day HDT bed rest (Liang et al., 2012), both compared to baseline and to post-HDT, as well as during a 60-day HDT bed rest (Solbiati et al., 2020).

In this study we confirmed a significant reduction in the oscillation amplitude (OA) of both RR and QTend circadian rhythms in both early (5 days), mid (21 days), and late (58 days) HDT. The reduced physical activity/rest cycle and the chronic elimination of the upright/supine postural cycle, both important environmental synchronizers, may have contributed to the observed loss in physiological RR and QTend day-night oscillation during the HDT. Interestingly, this reduction was already present after only 5 days of immobilization, and kept stable with the continuation of HDT bed rest. A reduction in the circadian amplitude may additionally underline an autonomic disfunction. Also, it is associated to a decreased capacity of adaptation of the physiological system to the presentation of new external stimuli, which manifested as increased QTend OA immediately after 5-day and 60-day HDT, a condition that has been associated to increased risk of arrhythmic events in cardiac patients (Du Pre et al., 2017). A recent study (Du Pre et al., 2017) showed that the day-night QT oscillation amplitude was higher in patients with confirmed or potential (Solatol-induced) QT prolongation. Similarly our results showed that the observed rise in the oscillation amplitude at R + 0 was concurrent with the prolongation of the QTc.



Effects on the Circadian Acrophase

In this study, a backward shift of the RR and QTend acrophase was visible particularly at early (5th day) and late HDT (57th–58th day), while it was postponed at R + 0 after both 21-day and 60-day HDT, similarly to what observed by Liang et al. (2014) in a 45-day HDT bed rest campaign. Interestingly, the described variations occurred under controlled and fixed sleep-wake and feeding schedule, thus underlying that the reduced physical activity and circulatory unloading may have a role in the temporal entrainment of cardiac circadian rhythms.

The reduced daily physical activity and the elimination of the upright/supine postural diurnal changes contributed to the acrophase alterations, while the preservation of controlled lighting and feeding times possibly helped maintaining the rhythm entrained around the 24 h. However, during spaceflight, the absence of the 24-h light/dark cycle, which is the major synchronizer, could lead toward a free-run, possibly disrupting the physiological circadian rhythms. A desynchronization of the circadian rhythm is a risk factor for chronic diseases such as metabolic syndromes, diabetes, hypertension, obesity, cardiovascular disease, cancer, behavioral disorders, impaired hormonal, endocrine, immune and autonomic functions (Buijs et al., 2016), and critical outcomes have been observed also in long-term shift workers (Haus and Smolensky, 2013). Additionally, the difference (Δφ) between φQTend and φRR reduced at HDT5, as well as at R + 5/7 after 60 days of HDT, thus indicating that the phase of RR and QTend circadian cycle coupling may be also affected by microgravity.



Limitations

The Bazett formula is currently the most widely QT correction method used in clinical standards (Vandenberk et al., 2016). However, the utilization of Bazett correction may not be appropriate, as it is known to overcorrect the QT interval at fast heart rates, such as during the recovery phase, and to undercorrect at lower heart rates, as within the first days of bed rest (Malik, 2001).

In the present study, the availability of only 24-h ECG recordings duration prevented the application of other non-linear, frequency or time-frequency domain analysis methods (i.e., requiring availability of multi-days recording) to investigate possible changes induced in the circadian period.

As the respiratory activity was not directly monitored during the experiments, baroreflex interactions, cardio-respiratory coupling and synchronization were not taken into account and were beyond the aim of this study. Alterations in the baroreflex sensitivity, governing the cardio-respiratory coupling through respiratory sinus arrhythmia, were also observed in chronic exposure to HDT bed rest (Iwasaki et al., 2000, 2004). As well, respiratory frequency was found decreasing during long-term spaceflight and considerably increasing after landing, as observed by 10-min acquisitions (Baevsky et al., 2007). Accordingly, further studies could integrate this investigation by extracting the respiratory frequency indirectly from the ECG (Helfenbein et al., 2014), thus providing additional insights to the deconditioning of autonomic modulation and cardio-respiratory interaction elicited by microgravity.



CONCLUSION

In this study, a retrospective analysis on the changes in the circadian rhythms of RR and ventricular repolarization intervals induced by head-down bed rest was conducted. A particular strength of this work is the availability of a large number of 24-h Holter ECG recordings acquired during six past HDT campaigns from a pooled group of normal subjects (n = 63 in the non-intervention group), which is, to the knowledge of the authors, the widest population ever studied in related literature.

The first aim was to evaluate the degree and the progression of circadian desynchronization from 5 to 60 days of HDT. Major changes were observed within the first days of the HDT, with increased RR and QTend intervals and decreased QTc. Afterward, a progressive trend toward baseline values was observed: the recovery was reached already at HDT21, except for the RR and QTend minima and the QTc maxima. Conversely, the amplitude of day-night oscillations resulted significantly decreased from acute to chronic HDT, showing no tendency to recover, and the acrophase anticipated.

The restoration of the normal head-to-foot gravity field elicited opposite variations, including the shortening of RR and QTend intervals and QTc prolongation, notwithstanding duration of the period spend in HDT. However, the entity of the changes observed at R + 0, as well as the perceived deconditioning expressed as difference between the last HDT day and R + 0, showed a trend of dependence with HDT duration, where longer HDT producing major deconditioning at gravity restoration, and 5–7 days being not sufficient for recovering after 60-day HDT. Interestingly, the increased OA at R + 0 after 5-day and 60-day HDT suggests impaired ability to compensate for the re-established gravitational condition as a consequence of the HDT, with possible involvement of the autonomic control of cardiac activity, and possibly leading to increased arrhythmic risk.

These results provide evidence of the importance of monitoring astronaut’s circadian rhythms, as an impaired circadian timing system could generate adverse health outcomes and decreased performance. The investigation of measures aimed at counteracting the observed modifications would be paramount for preserving astronauts’ health and mission success in manned space exploration, including the return to the Moon and missions to Mars.
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We propose a mathematical model of the human cardiovascular system. The model allows one to simulate the main heart rate, its variability under the influence of the autonomic nervous system, breathing process, and oscillations of blood pressure. For the first time, the model takes into account the activity of the cerebral cortex structures that modulate the autonomic control loops of blood circulation in the awake state and in various stages of sleep. The adequacy of the model is demonstrated by comparing its time series with experimental records of healthy subjects in the SIESTA database. The proposed model can become a useful tool for studying the characteristics of the cardiovascular system dynamics during sleep.
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INTRODUCTION

The study of the dynamics of the circulatory system during sleep attracts a lot of attention (de Zambotti et al., 2018; Tall and Jelic, 2019; Kontos et al., 2020; Nano et al., 2020). It was shown that scaling properties of the cardiac dynamics are different during sleep and wake periods (Ivanov et al., 1999). Characteristics of rapid eye movement (REM) sleep are correlated with exacerbation of ischemic heart disease, sometimes even leading to myocardial infarction (Schumann et al., 2010). These events are most common in patients with coronary artery disease (Nowlin et al., 1965). Of particular importance is the change in the dynamics of the loops of the autonomous control of blood circulation, due to the influence of the higher nervous centers on them (van Roon et al., 2004; Ivanov, 2006). In experimental studies (Nowlin et al., 1965; King et al., 1973), it was shown that in animals with aortic stenosis, sympathetic activation can lead to decreased myocardial perfusion. The development of pathologies such as apnea is associated with dysfunction of the autonomic control of the cardiovascular system (Aydin et al., 2004; Khoo and Blasi, 2013; Roder et al., 2018).

Despite numerous studies, the functioning of the cardiovascular system (CVS) during sleep is essentially terra incognito. This is due to the complexity of CVS, which includes a large number of interacting non-linear elements, as well as technical difficulties and ethical limitations of experimental studies. Therefore, the development of mathematical models based on “first principles,” i.e., using physical and physiological laws, is of great importance (Wolkenhauer, 2014). Such models allow one to simulate complex CVS dynamics and generate stationary time series of any length (Karavaev et al., 2019). Using models, it is possible to simulate various pathologies (Karavaev et al., 2016), drug effects (Karavaev et al., 2016), physiological tests (Ishbulatov et al., 2020), changes in physiological conditions (van Roon et al., 2004), and the influences of brain activity (van Roon et al., 2004) and respiration (Wessel et al., 2009; Cheng et al., 2010). The development of such models is promising for solving the problems of personalized medicine, when some parameters of the model can be estimated directly from the experimental data of a particular patient. The use of personalized mathematical models expands the possibilities of medical diagnostics and therapy, making it possible to predict the course of diseases and simulate the patient’s response to medications.

A number of mathematical models of CVS are known, which take into account the dynamics of the loops of autonomic control of blood circulation (Guyton et al., 1972; Ivanov et al., 1998; Seidel and Herzel, 1998; Ursino, 1998; Ottesen, 2000; Kotani et al., 2005). However, only a few studies are aimed at modeling the dynamics of autonomic control loops and CVS during sleep (van Roon et al., 2004). The most well-known model of CVS during sleep is PNEUMA (Cheng et al., 2010). It is the eleventh-order system, which contains more than 80 algebraic terms and more than 200 parameters, most of which are estimated empirically and have no physical or physiological meaning. The PNEUMA model has shown its adequacy and importance (Khoo et al., 2013). However, its complexity complicates the interpretation of the results. Moreover, the model is too cumbersome to be personalized and fitted to a particular patient.

A number of studies suggest that adequate simulation of CVS dynamics in different stages of sleep requires taking into account the effects associated with autonomic control. In experimental studies, it was shown that non-REM sleep (especially stage 4) is characterized by a decreased tone of sympathetic activity, a decrease in heart rate and average level of blood pressure, and a decrease of blood pressure variability (Sommers et al., 1993). Other studies reported pronounced respiratory sinus arrhythmia caused by parasympathetic activity (Zemaityte et al., 1984).

Rapid eye movement sleep is characterized by more complex dynamics, for which epochs of sharp increase in sympathetic activity, alternating with intervals of decreased sympathetic activity, are typical (Sommers et al., 1993). As shown by direct measurements from sympathetic nerves, on average, there is an increase in sympathetic activity, leading to an increase in blood pressure variability, but the heart rate corresponds to a waking person at rest. These results were confirmed in active experiments with blocking of sympathetic or parasympathetic autonomic control, which compensated for the corresponding changes in the dynamics of CVS (Zemaityte et al., 1984).

It is known that the transition to sleep is associated with the activity of the higher nervous system. In model studies (van Roon et al., 2004) and (Cheng et al., 2010), potential ways for the influence of higher nerve centers on autonomic control during sleep are presented.

In the present paper, we propose a more compact model describing the dynamics of CVS in different stages of sleep and during wakefulness. In contrast to our earlier models, the new model for the first time takes into account the effect of the cerebral cortex on blood circulation in the awake state and in sleep. The proposed model consists of four differential equations with time delay. The model has 55 parameters, 39 of which have physiological meaning and can be estimated experimentally. Despite the relatively simple structure, the model takes into account the non-linear properties of the autonomic control and simulates with good accuracy the time series of real arterial blood pressure and interbeat intervals of healthy resting subjects. As well as our earlier models, it reproduces the pathological changes that lead to arterial hypertension (Karavaev et al., 2016), reaction to the passive orthostatic test (Ishbulatov et al., 2018), and reaction to the autonomic blockade due to administration of Arfonad (Karavaev et al., 2016). Moreover, the model simulates the chaotic dynamics of heart rate (Karavaev et al., 2019) and phase synchronization between the autonomic control loops (Ishbulatov et al., 2017), which is observed in humans (Bartsch et al., 2012) and is important for diagnostics and understanding of some circulatory diseases (Prokhorov et al., 2003; Kiselev et al., 2016a,b, 2020).

The paper is devoted to the description of the proposed model and the study of its dynamics in the awaking state, during REM sleep, and during non-REM sleep. We also compared the simulated data with the experimental data from the known SIESTA database (Klösch et al., 2001).



MATERIALS AND METHODS


Study Participants

Our study included recording of 20 healthy subjects that fulfilled the following criteria: no regular shift work, usual bedtime before midnight, and no acute depressive or anxious symptoms. Each subject was monitored by wrist-worn actigraphs (Actiwatch, Cambridge Neurotechnology, England) one-week prior and one-week after the recording session. Quality control ensured that there are no outliers in the final data set, and all signals were recorded with no protocol violations.

For each subject, we analyzed a set of three 20-minute ECG signals, one recorded in the waking state, one during REM sleep, and one during stage 4 of non-REM sleep. Each signal was recorded at the sampling rate of 200 Hz. The high-pass cutoff frequency was set between 1.6 Hz and 16 Hz.



Mathematical Model

To modify the previously proposed model (Karavaev et al., 2019), we used the ideas proposed in Cheng et al. (2010) and van Roon et al. (2004). In the equations of autonomic control of blood circulation, we added eight parameters characterizing the influence of the higher nervous centers. These parameters were set equal to zero for the awake state, but they took non-zero values during REM and non-REM sleep in order to simulate the increase and decrease in autonomic control activity. Figure 1 depicts the scheme of the model, where the places where the parameters are added are shown in red.


[image: image]

FIGURE 1. Structure of the model. Elements of the autonomic control are shown in black. Red color shows the inputs from the higher nervous centers.


We used integrate-and-fire model to simulate the heart rate:

[image: image]

where φ(t) is the phase of the sinoatrial node, T0 = 1.5 s is the heart rate, fs(t) and fp(t) are the sympathetic and parasympathetic factors, respectively, which modulate T0, and ξ is the 1/f noise (Ivanov et al., 1998), which is added to simulate myocardial and humoral control. Spectral properties of noise were chosen to match experimental signals (Bezerianos et al., 1995; Goldberger, 1996). In the absence of noise or autonomic control, the sinoatrial node generates periodic saw-like impulses with the period T0.

Within the first Tsys seconds (0.125 s) after the initiation of heart cycle, the arterial pressure rapidly grows and is described by the following equation:

[image: image]

where Di–1 is the systolic pressure at the end of the previous cardiac cycle, Ti–1 is the moment of time when the previous cardiac cycle ended, Tsys is the duration of the current systolic phase, ti is the time since the beginning of the current cardiac cycle, B(t) is the respiratory signal, [image: image] is a non-dimensional amplitude of respiration, and S(t) is the cardiac contractility (Wessel et al., 2009) defined as follows:

[image: image]

where [image: image] is the resting heart contractility, nc is a fitting parameter, and [image: image], where S0 is the contractility of the denervated heart, cc(t) is the concentration of noradrenaline in blood that circulates in the heart, cv(t) is the concentration of noradrenaline in vessels, [image: image] and [image: image] are the parameters that characterize sensitivity of contractility to changes in the noradrenaline concentration, [image: image] is the parameter that characterizes sensitivity of contractility to changes of the heart rate, and Li–1 is the duration of the previous cardiac cycle. The values of all model parameters used for simulation are presented in Table 1.


TABLE 1. Parameters of the model and their description.

[image: Table 1]Respiratory signal B(t) is defined as follows:
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where Tbr is the mean duration of respiratory cycle and ζ is a non-correlated Gaussian zero-mean noise that is used to modulate the rate of respiration after each cycle.

After Tsys seconds, the systolic phase of cardiac cycle ends and arterial pressure begins to slowly decrease in accordance with the Windkessel model (Frank, 1899):
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where C is the parameter that reflects elastic properties of aorta and R(t) is the peripheral resistance, which is modulated by the sympathetic activity:
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where R0 is the resistance of unstressed vessels and [image: image] is the parameter that describes sensitivity of peripheral resistance to changes of noradrenaline concentration in vessels walls cv(t).

The absolute value and rate of change of arterial pressure (Warner, 1958) are sensed by two baroreceptor nodes located in carotid sinus and in the major vessels of the lower body. Activities of these baroreceptor nodes [vb(t) and [image: image], respectively] are defined as follows:

[image: image]

[image: image]

where p0 and [image: image] are the lowest pressure the baroreceptors react to and k1, k2, [image: image], and [image: image] are the sensitivity of arterial baroreceptors to arterial blood pressure and the rate of its change.

The higher nervous centers process the inputs of baroreceptors and adjust the activity of heart rate autonomic control vs(t) and vessel tone autonomic control [image: image]. To describe their activity, we used equations with time delay and sigmoidal non-linearities as in Ringwood and Malpas (2000):
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where [image: image], [image: image], [image: image], and [image: image] are the parameters, which characterize the influence of higher nervous centers, as, bs, ys, [image: image], [image: image], and [image: image] are the parameters of the non-linear transfer function in the feedback loops of the baroreflex control, [image: image] is the resting afferent tone of the heart rate sympathetic control, [image: image] is the resting afferent tone of the vascular tone sympathetic control, and [image: image] and [image: image] are the parameters characterizing the influence of respiration. Activity of parasympathetic autonomic control vp(t) is described as follows:
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where [image: image], [image: image], and [image: image] are the sympathetic and parasympathetic activity under resting conditions, [image: image] and [image: image] are the parameters that reflect the influence of higher nervous centers on the parasympathetic control of heart rate, [image: image] characterizes the influence of baroreflex activity, and [image: image] characterizes the influence of respiration. Changes in the levels of sympathetic activation affect cardiac concentration of noradrenaline cc(t) and vascular concentration of noradrenaline cv(t):
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where τc and τv are the time constants, θc and θv are the time delays caused by finite speed of neural transition and secretion of noradrenaline, and [image: image], [image: image], and kv are the transfer coefficients. Changes of concentration of noradrenaline and activity of parasympathetic control affect the heart rate through the sympathetic factor fs(t) and parasympathetic factor fp(t):

[image: image]
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where θp is the time delay, [image: image] and [image: image] are the parameters that reflect the influence of higher nervous centers on the parasympathetic and sympathetic factors of heart rate control, respectively, and [image: image], [image: image], [image: image], ns, [image: image], and np are the dimensionless factors. No separate equation was introduced to model the changes in concentration of acetylcholine (parasympathetic transmitter) because the rate of its secretion is faster than the dynamics on which the model is focused. The phase effectiveness curve represents the changes in the sinoatrial node sensitivity to parasympathetic control throughout the cardiac cycle:

[image: image]

where φ is the phase of the cardiac cycle.

To simulate the sleep stages and awake state, we set the corresponding parameter values and generated long time series with the fixed parameters. To exclude the transient process, we did not analyze the first 1,000 s of time series. The length of the model time series was equal to the length of the experimental time series from the SIESTA database.



Methods

The model data were compared with the experimental data from the SIESTA database using statistical measures, spectral analysis, and calculation of the largest Lyapunov exponent. The spectral analysis was carried out for the interbeat interval time series, which were extracted from the ECG signals by detecting the duration of time intervals between successive R-peaks. Since the dynamics of the heart in our model is described by a simple integrate-and-fire Eq. 1, in which the moment of sinoatrial node excitation corresponds to the reset of the cardiac cycle phase to zero, the location of R-peaks was defined by detecting the moment of such reset of the phase. We analyzed the spectral power in the ranges 0.05–0.15 Hz and 0.15–0.4 Hz to calculate the low-frequency (LF) and high-frequency (HF) indices, which reflect the activity of the sympathetic and parasympathetic control, respectively (Heart Rate and Variability., 1996).

Complexity is another important characteristic of CVS dynamics (Porta et al., 2017). To estimate the complexity, we calculated the largest Lyapunov exponent (Rosenstein et al., 1993) from the interbeat interval time series filtered in the range 0.05–0.4 Hz. The largest Lyapunov exponent was estimated using the Rosenstein algorithm (Rosenstein et al., 1993), which is well suited for the analysis of short time series. The first step was to find a nearest neighbor for each point of the reconstructed phase space, but the neighbors close in time were excluded from the analysis (Rosenstein et al., 1993). In dynamical systems, the average rate of divergence of the trajectories of the nearest neighbors obeys the following expression:

[image: image]

where L0 is the initial distance between the nearest neighbors, λ0 is the largest Lyapunov exponent, and t is the time of calculation. Then, λ0 is defined as follows:

[image: image]

To reconstruct the phase space, we used the method of time delays. The dimension of the phase space was equal to 13. The time series were analyzed in windows having the length 1,000 s. A detailed explanation of the choice of this set of parameters is presented in Karavaev et al. (2019).



RESULTS

The mathematical model was used to simulate the healthy subjects in the awake state, during REM sleep, and stage 4 of non-REM sleep. The parameters of autonomic control were constant throughout all stages. We only changed the values of those parameters that were introduced to take into account the inputs from the higher nervous centers. The values of these parameters for each studied stage are presented in Table 1.

Figure 2 shows the model and experimental time series of arterial pressure and interbeat intervals. It can be seen in Figure 2 that arterial pressure variability and interbeat interval variability are most pronounced in the awake state. These results agree well with the data from literature (Zemaityte et al., 1984; Heart Rate and Variability., 1996) and reflect the higher activation of sympathetic control during the wakefulness.
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FIGURE 2. Model time series of arterial pressure and interbeat intervals. (A) Arterial pressure in the awake state (bold black line) and in REM sleep (thin red line). (B) Arterial pressure in the awake state (bold black line) and in non-REM sleep (thin blue line). (C) Interbeat intervals in the awake state (bold black line) and in REM sleep (thin red line). (D) Interbeat intervals in the awake state (bold black line) and in non-REM sleep (thin blue line).


The power spectra of model and experimental interbeat intervals are shown on Figure 3. In the model power spectra, the peaks at the frequencies of about 0.1and 0.29 Hz are significantly more narrow, sharp, and pronounced. This is explained by the fact that our model does not take into account the humoral control of CVS. However, the model qualitatively simulates the difference between the experimental spectra during wakefulness and at different stages of sleep. The power of the 0.1-Hz spectral component, which is associated with the sympathetic activation, takes the highest value in the awake state. The power of the 0.29-Hz component, which is associated with the parasympathetic control, takes the highest value during the stage 4 of non-REM sleep. These results are in good agreement with the known results of other studies (Zemaityte et al., 1984; Sommers et al., 1993).


[image: image]

FIGURE 3. Logarithmic power spectra calculated from the model (A) and experimental (B) interbeat intervals in the awake state (bold black line), in REM sleep (thin red line), and in stage 4 of non-REM sleep (thin blue line).


The spectral and statistical indices calculated from model and experimental data are presented in Table 2.


TABLE 2. Spectral and statistical indices obtained from the model and experimental data (mean ± standard error of the mean).

[image: Table 2]


DISCUSSION

PNEUMA is one of the most famous models that simulate the influence of higher nervous centers on the dynamics of autonomic control during sleep stages and awake state (Cheng et al., 2010). The PNEUMA model takes into account many factors, such as respiration, chemoreceptors, and blood hydrodynamics. As a result, the PNEUMA model is high-dimensional and complex, which makes it difficult to interpret the results of model studies and observed effects. The high order of the model makes it almost impossible to reconstruct the model parameters from the data of a particular patient and to individually fit the model. The authors themselves stated that there is no available database that can be used to verify their model, and many parameters do not have physiological meaning (Cheng et al., 2010).

We have proposed a mathematical model that allows one to simulate the heart rate variability and arterial pressure oscillations under the influence of respiration and autonomic control loops. Earlier, it was shown that taking into account the non-linear properties and self-oscillatory dynamics of these loops it is possible to explain the experimentally observed complex chaotic dynamics of the heart rate and synchronization processes within the CVS (Ringwood and Malpas, 2000; Prokhorov et al., 2003; Karavaev et al., 2009, 2016, 2019; Kiselev et al., 2016a, 2020). In the present paper, a modified model is proposed that takes into account the influence of the activity of the cerebral cortex on autonomic control in the states of sleep and wakefulness. The respiratory process and some other factors are included into the model in a simplified form. Nevertheless, the proposed model allows us to simulate complex oscillatory dynamics of the interbeat intervals associated with the autonomic control of circulation.

For simplicity of the model, we have accepted a number of limitations: the model does not account for humoral control (Ganten and Stock, 1978; Chopra et al., 2011), blood hydrodynamics, and local control mechanisms (Clifford, 2011; Hong et al., 2020), such as the Bowditch effect (Usman et al., 2020). This explains the lower λ0 in the model compared to the experimental data. The narrower peaks in the model power spectrum compared to the experimental one (Figure 3) can be explained in a similar way. Moreover, the model is stationary, while real CVS is not.

Despite the aforementioned limitations, we consider the model to be an adequate representation of the dynamics of autonomic control during sleep and wakefulness. For experimental interbeat intervals, LF index, which is associated with the activity of the sympathetic autonomic control, typically takes the larger value in the awake state than in REM sleep and the smaller value in non-REM sleep than in REM sleep (Kantelhardt et al., 2002). The proposed model shows similar properties of the LF index. The model HF index, which is associated with the activation of the parasympathetic control, takes the largest value in the 4th stage of non-REM sleep. We obtained similar results for many experimental signals.

Our experimental data did not contain records of arterial pressure, but the known results (Sommers et al., 1993) report that both systolic and diastolic arterial pressure during REM sleep is slightly lower or the same as in the awake state, while during non-REM sleep, the arterial pressure is significantly lower. The results of our model agree well with this experimental observation.

Estimations of the largest Lyapunov exponent λ0 from the model and experimental data in both REM and non-REM sleep are in a good agreement. However, in the awake state, the estimations of λ0 differ for the model and experimental data. This disagreement is due to the simplicity of the model compared to the real system.

Some more compact models use stochastic components to simulate the elements of blood circulation (Ivanov et al., 1998; Kantelhardt et al., 2003). Such approaches may have advantages in the compactness of equations, but they do not allow one to study the non-linear dynamics of blood circulation and build personalized models.

In further research, we plan to develop a method for reconstructing the parameters of our model from experimental signals of ECG, blood pressure, and respiration. For example, the delay times of model equations can be estimated using different techniques (Prokhorov et al., 2005; Sysoev et al., 2016). However, to propose such a technique, it is necessary to have a good understanding of the capabilities and limitations of the model. In the present study, we took a step in this direction by taking into account the influence of brain activity on CVS during sleep and wakefulness. Such personalized mathematical model can be used in the future for the development of personalized medicine and will provide a new tool for the study of autonomic control.



CONCLUSION

We have proposed a mathematical model of autonomic control in a form of fourth-order system of non-autonomous differential equations with time delay. Despite its compact structure, the model is able to simulate the dynamics of autonomic control during sleep stages and in awake state and related changes in interbeat intervals. The adequacy of the proposed model is demonstrated by comparing its time series with experimental records of healthy subjects in the SIESTA database.
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We address the problem of efficiently and informatively quantifying how multiplets of variables carry information about the future of the dynamical system they belong to. In particular we want to identify groups of variables carrying redundant or synergistic information, and track how the size and the composition of these multiplets changes as the collective behavior of the system evolves. In order to afford a parsimonious expansion of shared information, and at the same time control for lagged interactions and common effect, we develop a dynamical, conditioned version of the O-information, a framework recently proposed to quantify high-order interdependencies via multivariate extension of the mutual information. The dynamic O-information, here introduced, allows to separate multiplets of variables which influence synergistically the future of the system from redundant multiplets. We apply this framework to a dataset of spiking neurons from a monkey performing a perceptual discrimination task. The method identifies synergistic multiplets that include neurons previously categorized as containing little relevant information individually.

Keywords: information theory, transfer entropy, dynamical systems, spiking neurons, partial information decomposition


1. INTRODUCTION

High-order interdependencies are at the core of complex systems. In many biological systems, pairwise interactions have been found to be insufficient for explaining the orchestrated activity of multiple components (Crutchfield, 1994; Ohiorhenuan et al., 2010; Katz et al., 2011; Yu et al., 2011; Daniels et al., 2016). This may be crucial also in relation with the important question of how biological systems dynamically interact and collectively behave as a network to produce health or disease, the core business of network physiology (Bashan et al., 2012; Lin et al., 2020). The abundance of available data is pushing nowadays the development of effective algorithms for the inference of higher order interactions from data (Bettencourt et al., 2008; Stramaglia et al., 2012). When an information theoretical point of view is adopted, the problem of higher order interactions becomes related with the decomposition of the information flow in redundant and synergistic components, an issue which cannot be addressed within the Shannon framework unless further assumptions are made (Williams and Beer, 2010). Partial Information Decomposition (PID) algorithms have been proposed (Bertschinger et al., 2014; Barrett, 2015; Lizier et al., 2018) based on the idea that synergies are statistical relationships which can be seen only if the whole set of driving variables is considered. Unfortunately, the practical use of PID is greatly limited by the super-exponential growth of terms for large systems, and many works limit the analysis to triplets of variables (Marinazzo et al., 2019).

All the approaches described above assume that polyadic relationships are important for the complex system under consideration and they thus query the validity of complex networks (taking into account only dyadic relationships) as a theoretical model for large-scale systems, James et al. (2016). For the estimate of information flow, the dyadic quantity which is commonly used is the transfer entropy (Schreiber, 2000), related to the concept of Granger causality (Barnett et al., 2009), which has been proposed to distinguish effectively driving and responding elements and to detect asymmetry in the interaction of subsystems. With the appropriate conditioning of transition probabilities this quantity has been shown to perform better than time delayed mutual information to infer interactions, as delayed correlations often fail to distinguish information that is actually exchanged from shared information due to common history and input signals (Bossomaier et al., 2016). Attempts to generalize the notion of transfer entropy beyond the network description have been made: the expansion of the transfer entropy from a multiplet of variables to a given target has been developed in Stramaglia et al. (2012) to highlight subgroups of variables which provide redundant and synergistic information to the target. For triplets of variables, the exact calculation of multiscale PID for Gaussian processes has been presented in Faes (2017). Merging concepts of PID and integrated information, the integrated decomposition framework has been developed in Mediano et al. (2019).

In a recent paper (Rosas et al., 2019), a novel quantity has been introduced to study statistical synergy, the O-information, a metric capable of characterizing synergy- and redundancy-dominated systems and whose computational complexity scales gracefully with system size, making it suitable for practical data analysis; the O-information has been used to study brain aging in Gatica et al. (2020). We remark that the O-information uses equal-time samples of variables, so its output depends only on equal-time correlations in the data-set and is insensitive to dynamic transfer of information; moreover the estimation of O-information does not require a division between predictor and target variables.

In this work we propose a dynamical generalization of the O-information to handle multivariate time series which, apart from equal-time correlations, takes into account also the lagged correlations with a given variable which is assumed to be the target. The proposed approach highlights informational circuits which dynamically influence the target variable in a synergistic or redundant fashion, with a much lighter computational burden, for large systems, than those required by the exact expansion of Stramaglia et al. (2012) or PID approaches in the spirit of Williams and Beer (2010) or the dynamic frame PhiID introduced in Mediano et al. (2019). We apply this quantity, that will be denoted as dO-information, to study the neural spiking dynamics recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task, which has been already considered in Daniels et al. (2017) in the frame of Dual Coding Theory; here will analyze this data-set with the aim of characterizing how the dynamic transfer of information is shaped by redundant and synergistic multiplets of variables. Our main result is that a class of neurons, not encoding any information on the decision at the individual level, are otherwise important in the construction of synergistic circuits.



2. METHODS


2.1. Dynamic O-Information

Given a collection of n random variables X = {X1, …, Xn}, the O-information (shorthand for “information about Organizational structure”) is defined as follows (Rosas et al., 2019):

[image: image]

where H stands for the entropy, and X \ Xj is the complement of Xj with respect to X. If Ωn > 0 the system is redundancy-dominated, while if Ωn < 0 it is synergy-dominated. Let us now add the stochastic variable Y to the set of X variables. The O-information now reads
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where

[image: image]

I denoting the mutual information. Δn is the variation of the total O-information when the new variable Y is added, measuring the informational character of the circuits which link Y with variables X: if Δn is positive, then y receives mostly redundant information from X variables, whilst a negative Δn means that the influence of X on y is dominated by synergistic effects.

Let us now consider a multivariate set of n time series {xk}k = 1, …, n and a target series y. Choosing an order m for the time series, we consider as the random variables X the state vectors

[image: image]

where varying the time index t we get different samples of X. The role of the variable Y is now played by the target time series, i.e., samples of Y are obtained as Y(t) = y(t + 1) varying the time index t. With these definitions, Δn measures the character of the information flow from the x variables to the target y. However, in order to remove shared information due to common history and input signals, one should condition on the state vector of the target variable, thus leading to the definition of the dynamic O-information from the group of variables {xk}k=1, …, n to the target series y:
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where Y0(t) = (y(t)y(t−1)⋯y(t−m+1)) are the samples of Y0.

Some properties of the dO-information are in order. In the case of two driving variables, we have:

[image: image]

coinciding with the second order term of the expansion of the transfer entropy developed in Stramaglia et al. (2012). Expression (4) may be seen as a dynamical generalization of the interaction information, a well-known information measure for sets of three variables (McGill, 1954). Another property: let us suppose that the variable xn is statistically independent of the others, i.e.,
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then the dynamic O-information does not change under inclusion of xn, i.e.,

[image: image]

Since dΩ1 = 0, the property above ensures that the dO-information is not sensitive to pure pairwise interactions.



2.2. The Optimization Problem

We use the expression of the dO-information to define the optimization problem of determining the set of k variables which maximizes dΩk, with k < n; this search leads to the most redundant circuit of k+1 variables, assuming y as the target. The value of the dO-information for the multiplet of k variables maximizing dΩk will be called redundancy.

Analogously, the search for the set of k variables which minimizes dΩk leads to the most synergistic circuit of k+1 variables. The opposite of value of the dO-information for the multiplet of k variables minimizing dΩk will be called synergy.

We remark that what we call redundancy and synergy here refers to the dynamic (conditioned on the past) version of the quantities defined in Rosas et al. (2019), and should thus contain a d- prefix. For simplicity and in the spirit of what already accepted in the Partial Information Decomposition field, we decided to omit it.

As the extensive search for these motifs is unfeasible for large k, we adopt a greedy search strategy, where the extensive search is performed for k = 2, and larger k are handled adding one variable at a time to the best multiplet of k-1 variables.

In order to define a criterion to stop the greedy search for the redundant k variables motifs, one can estimate the probability that the increment dΩk − dΩk−1 is lower than those corresponding to the inclusion of a randomized time series (obtained, e.g., by a random circular shift of the k-th selected x time series). The k-th variables is thus added to the multiplet when such probability is lower than a given threshold. A similar criterion can be applied also to stop the search for synergistic k variables motifs.



2.3. Toy Example

As a toy example, let consider a system of four binary variables σi(t) such that σ1 σ2 and σ3 are 0 or 1 with equal probability at each time, whilst P(σ4(t+1)|σ1(t), σ2(t), σ3(t)) is given by the following probabilities:

[image: image]

The conditional probabilities reported above have been chosen so as to have two informational circuits in the system: the variable σ4 receives dynamically synergistic information, by construction, from the pair {σ1, σ2} and from the triplet {σ1, σ2, σ3}, depending, respectively, on the parameters b and a.

Indeed, for b = 0, with probability a the variable σ4 at time t+1 is given by the majority rule applied to the three driving variables at time t, unless the three variables are equal: if the three driving variables are all equal, then σ4 becomes the opposite of them with probability a. Therefore the information provided by {σ1, σ2, σ3} is synergistic and all the three variables must be known in order to improve the predictability of σ4.

On the other hand, for a = 0, σ4, with probability b, is given by the XOR applied to {σ1, σ2}. When both a and b are non vanishing, two synergistic circuits of three and two variables influence the target σ4.

In Figure 1, we depict the dΩ3 from the triplet as well as the dΩ2 from the pair of synergistic drivers, for a = 0.7 and varying b. For b = 0, just the triplet {σ1, σ2, σ3} is correctly recognized as driving the target. As b increases, also the pair {σ1, σ2} is recognized as a synergistic driver. Note that also dΩ3 decreases with b: indeed the dynamic O-information dΩn by construction sums up the contributions from the informational circuits corresponding to subsets of the n variables.


[image: Figure 1]
FIGURE 1. For the toy model described in the text, consisting of four binary variables, we depict the dynamic O-Information from the pair of drivers and from the triplet of synergistic drivers as a function of the parameter b; a is fixed at 0.7. At b = 0, only the multiplet of three drivers is recognized by the proposed approach; as b increases, also the circuit of two drivers σ1-σ2 is recognized. The proposed method is thus capable to reveal the simultaneous presence of two informational circuits influencing the target variable.


Crucially, in situations like this one, where the information flow is dynamic, the O-information fails to provide a description of the system, and a dynamical approach like dΩ is mandatory.



2.4. Further Comments on Methods

The dO-information is designed to probe higher-order lagged influences, and provides a picture of a complex system complementary to those provided by the information flow network as measured by the pairwise transfer entropy (Schreiber, 2000):

[image: image]

It is worth mentioning that the relation between dO-information and transfer entropy is of the same nature as the one between O-information and mutual information (the condition-on-the-past operator is applied to both in the same way). In order to assess the significance of the pairwise transfer entropy, for each pair driver-target we consider surrogate interactions (obtained by blockwise circular shift of the target time series) and accept a non-zero value only if the probability that randomization of the target leads to a value of the transfer entropy higher than the measured one is < 0.05. Recently another estimator, based on a theoretical framework for TE in continuous time and extended to event based data, connected to a local permutation surrogate generation strategy, was proposed (Shorten et al., 2020).

For the application considered in this work, we have computed the conditioned mutual information terms, composing the dO-informations, using the Gaussian Copulas approach described in Ince et al. (2017).

It is worth stressing the conceptual difference between the search for the most informative variables for a given target (i.e., the n variables X maximizing I(y; X|Y)), and the search for the most synergistic multiplet (i.e., the variables X minimizing dΩn). Suppose that, during the greedy search, one has already selected n-1 variables and now has to look for the n-th variable. If the new variable is selected so as to maximize the information about the target, then the information gain due to its inclusion may be due to synergistic interactions with the previously selected n-1 variables, or to unique information from the new variable, where unique information means a contribution to the predictability of the target that can be obtained from that variable even when it is treated as the only driver. Inclusion of variables providing unique information does not give us further insights about the system beyond what we already knew from the pairwise description. Minimization of dΩn is instead tailored to take into account only synergistic interactions, and thus to elicit informational circuits of variables which influence the target: in other words, minimizing dΩn leads to discover (even small) improvements of the predictability of the target which can be ascribed to the joint action of groups of driving variables, thus allowing a picture of the system beyond the pairwise description.

We like also to stress that our approach may be also seen as a computationally light method for an exploratory search of synergistic multiplets of variables, and in this sense it might also be seen as a pre-processing stage for further processing of the multiplet, e.g., by the approach PhiID described in Mediano et al. (2019) to address issues like dynamical complexity or integrated information.




3. DATASET

We use data from the Random Dot Motion discrimination task (Shadlen and Newsome, 2001; Kiani and Shadlen, 2009; Kiani et al., 2014, 2015), in which the subject must decide which direction dots on a screen are moving. This dataset comes from the sample T33 on the data sharing website https://www.cns.nyu.edu/kianilab/Datasets.html and has been already analyzed in an information theory framework in Daniels et al. (2017). We analyze the activity of 169 neural channels in a macaque monkey performing the task, across 1,778 trials. Data consist of spike times measured at a resolution of 1/30 ms, subsequently binned in intervals spaced 100 ms. In each trial, after the perceptual stimulus, a go cue is given to the subject to prompt it to indicate its decision. In Daniels et al. (2017) the analysis had decision as the target, and neurons were divided in three groups according to the information that their dynamics provide about the decision: those in Class H encode information before the go cue, those in Class M encode information after but not before the go cue, and those in Class L never encode information. Here, we will not take into account the decision as a variable, retaining only the classification of neurons in the three classes H, M, and L.

As an example application of the proposed method, we will consider the internal dynamics of the neuronal system. For each H neuron, taken as the target, we will study the higher order interactions from the rest of the measured neurons, concentrating on the most redundant circuits as well as the most synergistic ones.



4. RESULTS

For the following analyses we used m = 1 as lag for conditioning in the past, namely a bin one time step in the past, because the temporal correlations in data rapidly decay at lag 2, corresponding to 200 ms. In Figure 2, we depict the pairwise transfer entropy as a function of time, where the target is an H neuron and the driver is a neuron belonging to one of the three classes; the curves are averaged over the target neuron and over the driver belonging to each of the three classes. We observe that the information flow peaks around 300 ms after the go cue, when the saccade has on average just happened, and the information on the decision in the neurons H and M is maximized, and that most of the effective influence arise from the other H neurons and (to a lesser extent) from M neurons. The pairwise transfer entropy from L neurons is negligible, hence at the bivariate level L neurons seem to play no role in the construction of the dynamical response of the system: indeed by definition L neurons, differently from H and M neurons, do not carry information about the decision. The lower panel of the figure depicts the global transfer entropy (Barnett et al., 2013) averaged over all the H neurons as targets; the global transfer entropy measures the information flow about the target when all the other variables are simultaneously taken as the driving set.


[image: Figure 2]
FIGURE 2. Top: The average pairwise transfer entropy toward H neurons is depicted vs. time, for three classes of driver: H neurons, M neurons, and L neurons. Bottom: The global transfer entropy is depicted vs. time.


Let us now turn to consider higher order interactions, and start with the O-information, the approach introduced in Rosas et al. (2019) which considers only equal time correlations. In Figure 3, we depict, as a function of time, the O-information of the three sets of neurons as well as the O-information of the whole system of neurons. We note that H neurons (and M neurons as well) increase their redundancy (as measured by O-information) with a latency of 400 ms, where also the whole system of neurons displays a clear peak. On the other hand the system of L neurons do not show any reaction to the go cue at the level of O-information. Hence Figure 3 shows that equal time higher order correlations are dominated by redundancy. The peak at 400 ms is consistent with the peak of TE at 300ms, indeed at time t TE measures the information flow from t to t+1.


[image: Figure 3]
FIGURE 3. The O-information is depicted vs. time for the three systems of neurons H, M, and L, as well as for the whole system of neurons.


Turning to consider take the dynamic transfer of information, we apply the methodology described in section 2.1 and in Figure 4 we depict the redundancy and the synergy, as a function of time and for k (the cardinality of the multiplet) ranging from 2 to 10; this figure shows that the response to the stimulus is also shaped by higher-order influences, both of the redundant and synergistic types. Also higher-order influences peak at 300ms, and the synergistic influences seem to show a slower decay after the peak.


[image: Figure 4]
FIGURE 4. Top: the redundancy (dΩk) from the optimal k-multiplet to an H neuron, as found by greedy search, is depicted as a function of time for k ranging from 2 to 10; the plotted quantity is the average over all the H target neurons. Bottom: the synergy (−dΩk) from the optimal k-multiplet to an H neuron, as found by greedy search, is depicted as a function of time for k ranging from 2 to 10; the plotted quantity is the average over all the H target neurons.


In Figure 5, we plot the distributions of latencies of maximal redundancy and synergy in optimal multiplets of 10 variables, suggesting that the synergistic response occurs, on average, slightly later than the redundant response.


[image: Figure 5]
FIGURE 5. Each H neuron experiences a peak of the redundancy (synergy) whose latency can vary from neuron to neuron. In this figure, we consider the optimal multiplet of 10 variables, plotting the distribution of latencies both for the redundant (left) and synergistic one (right). According to Cliff's method to estimate difference scores (Wilcox, 2016), the null hypothesis of no difference between the distributions could not be rejected (p = 0.23).


In Figure 6, we depict, as a function of the number of driving variables k, the fraction of variables in the best redundant multiplet belonging to the three classes. We observe that redundant circuits are made of H and M neurons, L neurons rarely appearing in the redundant circuits. On the other hand, we see that L neurons can play a relevant role in synergistic circuits as k becomes larger, and are more important than H and M neurons in the construction of synergistic circuits.


[image: Figure 6]
FIGURE 6. Left: As a function of the size of the optimal multiplet, we depict the typical fraction of H, M, and L neurons constituting the multiplet, both for redundancy (left) and synergy (right).


In some instances one may be interested in a particular target neuron and to assess the optimal size of the redundant and synergistic multiplets acting on it. For example, in Figures 7, 8, we show how to do it, choosing as the target a randomly selected H neuron. While adding a variable to the redundant multiplet with the greedy search, we also evaluate the redundancy that would be obtained using a randomized version of that variable, and we accept that variable if the probability to get an higher value of the redundancy, after randomization, is less than 0.05 after Bonferroni correction. For the target neuron under consideration we find that the multiplet with 7 driving variables can be considered statistically significant, as the null hypothesis can be rejected for k ≤ 8. Here we chose one of the most conservative corrections for multiple comparisons, but the partial dependence across variables could justify more lenient approaches.


[image: Figure 7]
FIGURE 7. For a representative H neuron, the red line represents the redundancy as a function of the size of the optimal multiplet. Each violin plot represents 30.000 realizations of dΩk obtained by a random circular shift of the k-th variable of the multiplet. We accept as truly redundant the multiplets with significance of 5% after Bonferroni correction. Since the null hypothesis cannot be rejected at k = 8, we conclude that a redundant circuit of 7 driving variables exists influencing the given H neuron.



[image: Figure 8]
FIGURE 8. For a typical H neuron, the red line represents dΩk in the synergistic search, as a function of the size of the multiplet. Each violin plot represents 30.000 realizations of dΩk obtained by a random circular shift of the k-th variable of the multiplet. We accept as truly synergistic the multiplets with significance of 5% after Bonferroni correction. Since the null hypothesis cannot be rejected at k = 6, we conclude that a synergistic circuit of 5 driving variables exists influencing the given H neuron.


In Figure 8, we do the same for the synergy using the same target neuron. Since the null hypothesis cannot be rejected at k equal to six, we conclude that the synergistic circuit of five driving variables influencing the target is the largest synergistic multiplet that we can assess statistically.

Some of the figures were generated with Gramm (Morel, 2018).



5. DISCUSSION

We have proposed an approach to analyze higher-order dynamical influences in multivariate time series, and to highlight redundant and synergistic groups of variables influencing a given target variable. Our method generalizes to the dynamic case a recently introduced quantity, named O-information, which was proposed to assess the informational character of equal-time correlations in a set of random variables (Rosas et al., 2019). Our conditioned approach has the main advantage of allowing the distinction of information that is actually exchanged from shared information due to common history and input signals. Compared with the expansion in Stramaglia et al. (2012) or PID decompositions in the spirit of Williams and Beer (2010), the proposed approach is computationally much more feasible. However our approach focuses only on finding multiplets that are synergy-dominated or redundancy-dominated, and the corresponding values of synergy and redundancy do not come from an exact decomposition of the information flow. For this reason their magnitudes cannot be easily compared for varying k, but in our opinion this is a reasonable price to pay in order to have a fast algorithm that can handle big data sets.

We believe that our approach can have wide applicability in physiology, in particular at the system level where higher-order interactions may play a role in the collective regulation of dynamical rhythms in the human body (Bartsch et al., 2015).

It is worth mentioning that the global transfer entropy of a kinetic Ising model has been shown to have a maximum in the disordered phase (Barnett et al., 2013). Successively it has been shown (Marinazzo et al., 2019) that it is the synergistic component of it that is responsible for this peak, which can be considered as an early warning of a transition toward order. Intuitively, learning processes (storage of new memories by, e.g., Hebbian learning) may be seen as transitions disorder→order, and in some sense the response to stimuli described in this paper may be seen as a sequence of transitions disorder→order→ disorder where the control parameter is part of the dynamical process.

The relation between mutual information and synergistic information processing in spiking neurons from organotypic cultures of mouse neocortex was recently addressed in Sherrill et al. (2020), and was found to depend on the timescale and the degree of correlation in neuronal interactions. As an example of application of dO-information, we have considered the response of a neural system to an external stimulus. We have shown that, in addition to higher order equal time interactions, which show a peak for the redundancy (as probed by the O-information) 400 ms after the go cue, the system displays also significant dynamic transfer of information consisting in synergistic and redundant circuits peaking 300 ms after the go cue. A recent study on computing TE between spiking neurons (Shorten et al., 2020) presented some results on the dependency of the values of TE on the firing rate. Based on these estimations, and given the number target events in the present experiment we can expect that the height of the peak of the TE in Figure 2 could be slightly overestimated, given the increased firing rate in the same interval. On the other hand the bias is stronger, and toward positive values, with a reduced number of spikes, and the low values before and after the peak are an indication that the TE peak itself is meaningful. The results are further backed up by the surrogate procedure.

Concerning the dynamics of H neurons,from the point of view of pairwise influence, H neurons are the most important drivers, M neurons are also relevant but to a lesser extent, whilst L neurons do not play any role. Going beyond the pairwise description, as far as the redundancy is concerned we find the same relative contributions in terms of the composition of redundant multiplets: the abundance of H neuron is higher than those of M neurons whilst the contribution of L neurons is negligible. On the other hand, considering the synergy the relative importance of the three types of neurons is changed: for large multiplets the abundance of L and M neurons is higher than those of H neurons, thus suggesting that surprisingly also L neurons may play a role in shaping the dynamics of H neurons by participating in synergistic groups of variables. We have shown that synergy of multiplets of variables can take values up to 0.03 bits. It is worth stressing that dO is not derived from an exact decomposition of transfer entropy and that this value cannot be interpreted as a gain in predictability of the target; however it suggests that the role played by synergistic circuits is small but not negligible when compared with 0.25 bits which is the peak of the global transfer entropy to H neurons, when all the other neurons are simultaneously taken as the driving set. Further investigations are certainly needed to confirm the role of M and L neurons in the higher order description of dynamics of H neurons; our analysis shows that the proposed approach is capable of highlighting these effects while requiring a reasonable computational effort.
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Genes communicate with each other through different regulatory effects, which lead to the emergence of complex network structures in cells, and such structures are expected to be different for normal and cancerous cells. To study these differences, we have investigated the Gene Regulatory Network (GRN) of cells as inferred from RNA-sequencing data. The GRN is a signed weighted network corresponding to the inductive or inhibitory interactions. Here we focus on a particular of motifs in the GRN, the triangles, which are imbalanced if the number of negative interactions is odd. By studying the stability of imbalanced triangles in the GRN, we show that the network of cancerous cells has fewer imbalanced triangles compared to normal cells. Moreover, in the normal cells, imbalanced triangles are isolated from the main part of the network, while such motifs are part of the network's giant component in cancerous cells. Our result demonstrates that due to genes' collective behavior the structure of the complex networks is different in cancerous cells from those in normal ones.

Keywords: gene regulatory networks, cancerous cells, stability, sign network, balance theory, max entropy, inverse problem


INTRODUCTION

Cancers are a large family of diseases that involve abnormal cell growth with the potential to invade or spread to other parts of the body (Pezzella et al., 2019). From the reductionist perspective, cancer is known as a disease of the genes. From this perspective, related studies focus on finding particular genes for each type of cancer and, consequently, diagnosing or curing cancer face formidable challenges. On the other hand, from the complexity theory perspective, collective behaviors emerged from the interactions of systems with many interacting units, are not describable solely by knowing the behavior of the system's building blocks (genes), and we cannot understand what happens at a higher level of organization by just studying how each element works at a lower scale. In other words, we need a holistic point of view to study the collective behavior of the genes (Zhou et al., 2014). The human body contains more than 10 trillion (1013) cells, originating from a single one. Cells differ from each other, depending on which genes are turned on (Bianconi et al., 2013). The process by which information from a gene is used to synthesize functional gene products (often proteins) is called gene expression. Today, there are several projects globally, compiling genomic information related to cancers, and recent advances with sequencing technology reveal the high importance of these projects. Despite all the advances in technology and analysis in genome sequences, it seems that cancer remains indomitable to a large extent. While we know some genes play an essential role in specific cancers, we are often far from controlling, let alone curing them (Goh et al., 2007; Jeyashree Krishnan et al., 2020).

Gene expressions are not independent (Demicheli and Coradini, 2011). They communicate with each other through regulatory effects, in a sense that some genes can up-regulate or down-regulate the expression level of other genes. These complex interactions between the genes can lead to collective behavior and result in changing the state of the cell. Complex systems consist of heterogeneous agents mutually influenced via interactions of different intensities over multiple spatio-temporal scales. This heterogeneity encompassed in both the participating components and their varying interactions makes complex systems difficult to decipher. To understand and control these complex systems, the network theory provides an effective mathematical modeling framework that enables the encoding of the entities (nodes) of a complex system and their heterogeneous interactions (links) of different strength (weights) into a topological network configuration implicitly embedded in metric spaces, where the distance among nodes is decided both by the structural configuration of the system (topology) and the intrinsic nature of the inter-node couplings (e.g., social affinity, chemical bonds, traffic intensity, or neural connectivity strength). In some cases, the properties of the inter-couplings among system components and the corresponding spatial embeddings even play a far more dominant role in regulating the overall system behaviors and dynamics. For instance, the atomic and molecular interactions among a chain of amino acids definitively dictate not only the dynamical spatial conformation of the corresponding protein but also its biological functionality. The disturbance of normal protein interactions can lead to irreversible pathological consequences known as proteopathies like Alzheimer's, Parkinson's, and Huntington's disease. Therefore, the study of structural organization, formation and dynamics of the complex systems can benefit from studying their geometrical properties and discovering new relationships between geometrical characteristics and network problems (e.g., community structure identification; Xue and Bogdan, 2017). In this scenario, there is a network of interactions, in which each gene is represented as a node, and its regulatory effect on other genes is considered the links connecting it to other nodes. These links can have zero (no effect), positive (up-regulation), or negative (down-regulation) weight, forming a weighted signed network. Such networks are called Gene Regulatory Networks (GRN) (Barabasi and Oltvai, 2004; Hempel et al., 2011; Walhout, 2011; Peter and Davidson, 2015; Costanzo et al., 2016; Liesecke et al., 2018; Huynh-Thu and Sanguinetti, 2019; Tieri et al., 2019). Different methods exist to build a GRN by computing a similarity, correlation or information-theory-based measure between the vectors associated to genes (Hempel et al., 2011).

Since the advent of high-throughput measurement technologies in biology in the late 90s, reconstructing gene regulatory networks' structure has been a central computational problem in systems biology (Huynh-Thu and Sanguinetti, 2019). Despite the efforts, the exact causal relationships between each pair of genes are unknown. Previous studies report the individual gene expression dynamics as well as the cross-dependency between them in the context of gene regulatory network the dynamics between genes are fractal and long-range cross-correlated (Ghorbani et al., 2018). Advanced analytical tools to analyse the multiscale patterns that occur in natural and synthetic biological systems, such as the methods reported in previous study (Xue and Bogdan, 2017), will be needed to develop a more complete and predictive understanding of the mechanisms and consequences of collective behavior in biological networks. Furthermore, discussion of gene expression and interactions is highly complex, which is why higher-order interactions are expected. One of the simplest interactions of a higher than two orders is a third-order called Balance theory (Marvel et al., 2011). We use Balance theory as the simplest model that does not consider interactions independent of each other and regards them as triadic interactions (Fritz, 1958; Antal et al., 2005; Moradimanesh et al., 2020). Thus, we use the simplification of considering the network as undirected and independent of time.

In this step, Even though we know there are time lags in our case, as we use Balance theory to discuss the characteristics of the weighted gene networks, we need to consider the interaction of genes statically, and this may be the next step in how to incorporate the effect of time lag into the theory of balance. This action requires improving and modifying the theory of balance. One of the other limitations that we confronted was our computational calculations limitation, which forced us to reduce our network size. We tried to use methods that reduce the quality of the deleted information as much as possible and achieve significant results in the end. To assess the pairwise interaction network structure, we use a maximum-entropy (Abellán and Castellano, 2017) probability model to explore the properties of the GRN. Such maximum entropy models have been widely used in statistical physics, e.g., for Ising type interacting models (Belaza et al., 2017; Nguyen et al., 2017). Physical systems in thermal equilibrium are described by the Boltzmann distribution, which has the maximum possible entropy given the mean energy of the system (Jaynes, 1957; Hedayatifar et al., 2017).



METHOD


From Real Data to Gene Interaction Network

The mRNA data (expression level) of 20,532 genes in the case of Breast Cancer (BRCA: Breast invasive carcinoma) has been downloaded from The Cancer Genome Atlas (TCGA) project (NIH, 2006-2014; Weinstein et al., 2013). The data contain 114 normal and 764 cancerous samples, and the measurement of the expression levels has been done with the technique of RNA sequencing (RNA-Seq). We have used the Reads Per Kilobase transcript per Million reads (RPKM) normalized data. RPKM puts together the ideas of normalizing by sample and by the gene. When we calculate RPKM, we are normalizing for both the library size (the sum of each column) and the gene length. In the following we had to reduce the number of genes because it was difficult to handle a 20,532*20,532 matrix computationally. For each gene, we have calculated the variance of its expression level over its samples, and finally we have stored the first 483 genes with the highest variance, which is due to more different activity patterns these genes show (CCNSD, 2019). Note that there are so-called housekeeping genes that typically get transcribed continually. These genes are required to maintain basic cellular function and are expressed in all cells of an organism under normal and pathophysiological conditions (Butte et al., 2001; Eisenberg and Levanon, 2003; Zhu et al., 2008). Some housekeeping genes are expressed at relatively constant rates in most non-pathological situations.

Measuring interactions is difficult within a living cell, but measuring abundances of components (mRNA levels) is considerably easier. Therefore, from the experimental data we wanted to reconstruct the gene-gene interactions computationally based on a model, following the practice that collective behaviors in such systems are described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions (Schneidman et al., 2006). By assuming a maximum entropy pairwise model, we were looking for the interaction matrix J, whose every element Jij is the strength of the net interaction between gene i and gene j. In other words, the strength and sign of the interaction represent the mutual influence on each other of a pair of genes' expression levels. From the maximum entropy probability distribution, we have constructed the energy function, which in this case is an Ising-like model with long-range Ferro- as well as antiferromagnetic couplings, which may lead to frustrated triangles. The energy function for our problem can be written as:

[image: image]

where the expression level of gene i as a continuous real-valued variable (a Gaussian field) is represented by Si. Using the energy function above, we can write down the Boltzmann equilibrium distribution as:

[image: image]

Z is the partition function, and we have subsumed temperature into the couplings Jij without loss of generality. The interaction matrix, J, is not known, and we wanted to learn/infer it (Nguyen et al., 2017) from the experimental data. We want to infer all the Jij as the parameters of our model. To this end, we have restricted ourselves to a probabilistic model with terms up to second order, which we have derived for continuous, real-valued variables. In other words, our model is constrained to generate the first and the second moments which are exactly the same as what we find from the experimental data (Stein et al., 2015). Thus, P must maximize the Gibbs-Shannon entropy to infer the parameters of the model.

[image: image]

Using Lagrange multipliers, it can be shown (Stein et al., 2015) that the desired model is a multivariate Gaussian distribution, twice of its covariance is minus the inverse of the interaction matrix.

[image: image]

So, within this approximation, we can write [image: image]. L is the number of genes based on which we have built the distribution. The elements of the matrix J are, by definition, the effective pairwise gene interactions that reproduce the gene profile covariances (Lee et al., 2014) exactly while maximizing the entropy of the system. The inverse of the covariance matrix, C−1, which is commonly referred to as the precision matrix, displays information about the partial correlations of variables. In practice, the precision matrix can be estimated by simply inverting the sample covariance matrix, if a sufficiently large number of samples are available. In our study, due to the lack of enough samples, the inverse of the covariance matrix has been obtained by means of the Graphical Lasso (GLasso) algorithm (Friedman et al., 2008). GLasso is an algorithm to estimate the inverse of the covariance matrix from the observations from a multivariate Gaussian distribution. In statistics and machine learning, lasso [least absolute shrinkage (Peterson and Ford, 2012) and selection operator] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the statistical model it produces. G-Lasso sparse the network in such a way that it does not disrupt the overall properties of the network. In sparsing a matrix, One of the problems is that the threshold method in the network is severe. In this way, in networks the threshold may eliminate weak links in favor of solid links. But we know that some links are fragile, and their share in the network is very high. For example, it connects part of the network to another part, but it can be a strong link between the network and the node that does not matter to us. The threshold method eliminates the important weak link that connects the two network parts—in contrast, keeping a strong link connected to the trivial part of the network. We know that removing a strong link that is only connected to an insignificant node does not destroy the network properties while removing a weak link that affects the network properties, G-Lasso is wary of such issues.

Following are step by step calculations in brief:

• Import Row data from TCGA Database, The mRNA data(expression level) of 20,532 genes.

• Dimension reduction, keep genes with the highest variance (483 genes).

• Calculate the covariance matrix of genes (483*483).

• Calculate J, inverse of the covariance matrix by G-Lasso (Mazumder and Hastie, 2012) approach to make it sparse, with penalty = 0.09.

• Calculate Energy-Energy matrix.

All of the calculations have been done in Python and MatLab. All codes and results are available upon request1.



Frustration in Interaction Network

The positive (negative) value of the interactions implies that increasing (or decreasing) a gene's expression results in up-regulating (down-regulating) of the other gene(s)'s expression(s), respectively. J is the generalized adjacency matrix (Newman, 2018), representing the presence and weight of a link. Jij is the strength of the interaction between gene i and gene j or in network terms, the weight of the link i − j.

Let us now consider the local triangles; Groups with three interacting genes forming a triangle of interactions in the network. The triangle Δ(i, j, k) is defined as balanced if the sign of the product of its links is positive; JijJjkJki > 0, otherwise, the triangle is imbalanced or frustrated; JijJjkJki < 0. We define a triangle to be of type Δk if it contains k negative links. Thus, Δ+++ and Δ−+− are balanced, while Δ+−+ and Δ−−− are imbalanced (Heider, 1946). The statistics of the analoges of these imbalanced triangles have been shown to be relevant in systems with signed interactions like random magnets (Fischer and Hertz, 1991) and social networks (Antal et al., 2005).

The notion of balance allows us to define an “energy landscape” for such networks (Marvel et al., 2009; Górski et al., 2017). For a triangle this is:

[image: image]

and by summing over all the Eijk the energy of the whole network can be obtained (Krawczyk et al., 2019).

[image: image]

Note that this energy is different from that of (1) and serves to characterize the triangles, while H was used to calculate the interactions from the measured expression strengths. Energy counts the number of triangles and does not indicate where the triangles are. The correlation between triangles shows which triangle with energy Ek has a common link with which triangle with energy El.

[image: image]

This equation answers the question that a triangle with preferred energy is adjacent to which triangle. Ckl can be positive, negative, or zero. A positive Ckl means that a balanced triangle links to another balance triangle. A negative Ckl indicates that a balanced triangle links to another imbalance triangle. Finally, Ckl zero means there is no preference and link between two triangles.




RESULTS

We have calculated the distributions of the energies of different types of triangles in both cancerous and normal data-sets and observed the following results (Figure 1). (i) In all the cases, the energy distributions of all types of triangles are fat-tailed. (ii) The distributions of imbalanced (frustrated) triangles, Δ+−+ (Figure 1B) and Δ−−− (Figure 1A), do not show noticeable differences between cancerous and normal data. (iii) In the cancerous network Δ+++ (Figure 1C) triangles and normal network Δ−+−-types (Figure 1D) are less. The total energy of the cancerous network is 27,239 units and total energy of the normal network is 35,984 units. So the total energy of the cancerous network is lower than that of normal network.


[image: Figure 1]
FIGURE 1. (A–D) Log-log plot of the distributions of triangles vs their absolute energy. All distributions are fat-tailed. (A) Δ−−−, (B) Δ+−+, (C) Δ+++, and (D) Δ−+−. Note the differences in the profile of Δ+++ and Δ−+− in cancerous and normal case. (E,F). In cancerous (right) and normal (left) cells triangles with different energies are connected to each other differently. The energy pattern in the normal case is more localized and assortative.


In order to see if the effect comes from structural correlations specific to the differences between the normal and cancerous data, we have shuffled the links in the networks. This was carried out by swapping endpoints of randomly selected pairs of links many times, which is a standard procedure to produce degree preserving random reference networks. The energy difference between the shuffled networks is 280 units which is one order of magnitude less than in the original case. Moreover, the distribution profiles change dramatically for the shuffled network.

The next question we have studied was about the distribution of triangles with different energies in the networks and their relationships. For this purpose, we coarse grain the network such that balanced and imbalanced triangles are represented as green and red nodes, respectively. Two coarse-grained nodes are connected if their corresponding triangles have one edge in common. We calculate the energy-energy mixing pattern (Newman, 2002) between the triangles. The plots in Figures 1E,F shows how many triangles with different energies are connected. Notice that this matrix is rather sparse reflecting that only low number of the triangles have links in common. In the normal network, frustrated triangles are packed together and they form a kind of module while in the cancerous network they have a more heterogeneous pattern of connections and they are mixed with balanced triangles. Moreover, triangles with higher absolute valued energies are connected to ones with lower absolute valued energies. In both cases, we see triangles with lower energies are more connected to each other. Triangles in the cancerous network do not tend to distribute evenly in a particular region of energy-energy space. In fact the energy pattern in the normal case is more localized and assortative. Another result is that in both of the networks so many triangles do not have a link in common.

Having more energy for a cell, in this context, means that there is more tendency toward changing the states of the triangles. In the case of cancerous network, we have seen that triangles exhibit a lower chance of being changed. On the other hand, we see frustrated triangles are somehow uniformly distributed in the cancerous coarse-grained network while they are more localized in the normal coarse-gained case. These facts are mimicked in the Figure 2. Inspired by the concept of Balance theory in social science (Sheykhali et al., 2020), we saw that the interaction network of the normal case has more imbalanced (frustrated) triangles and more energy as a consequence. This energy has been defined in a social context giving a good clue to look at the system of genes as a social system. Not only genes cannot live independent of each other, but they also must pay the cost of living together! Note that changing the expression of a gene can have drastic consequences (Witthaut and Timme, 2013). Our analysis reveals the fact that to get a true picture of biology at the cell level, it is essential to know the connections and their type between the genes.


[image: Figure 2]
FIGURE 2. A representation of energy-energy matrix and a schematic diagram of how high-energy frustrated (imbalanced) triangles are distributed in the network of triangles (frustrated triangles, red nodes and balanced triangles, green nodes) in the normal and cancerous network. Compared to the cancerous cell, the normal cell is at a higher energy level, resulting in more likely altering the configuration of the triangles. On the other hand, frustrated triangles are more connected to the cancerous triangle network.


Applying maximum entropy and Ising models for identifying the interactions between genes and the use of balance theory is a new perspective discussed in this article, which also has its limitations. One of the limitations is that the maximum entropy assumes the gene expression as an equilibrium process which lacks time-varying properties. Several studies have mentioned the existence and implications of multi-fractal dynamics in gene expression, proteomics, and physiological processes. However, there are various valuable studies on GRN as well that, despite this limitation, have considered gene expression in equilibrium. In this step, even though we know there are time lags in our case, as we use balance theory to discuss the characteristics of the weighted gene networks, we need to consider the interaction of genes statically. Incorporating the effect of time lag into the theory of balance may be the next step, which requires the extension and modification of the balance theory. The other limitation we have confronted was the computational calculations limitation, which forced us to reduce the network size. We have conducted methods that reduce the quality of the deleted information as much as possible and achieve significant results in the end.



CONCLUSION

Cancer has been commonly known as a group of diseases of the genes and there has been a huge effort to find the effective genes responsible for different cancers. Thanks to such reductionist approaches, we now know some specific genes for some cancers. Genes, however, are not independently functioning in the cell and their expressions are strongly correlated with each other. Recently, it has been recognized that the regulatory effects between the genes can be represented by a gene-gene interaction network and the structure of this network is essential in understanding the collective phenomena, which play a role in developing cancer-related studies. Our results contribute to this line of research (Rabbani et al., 2019). We have presented a formalism, by which we arrived from the data about gene expressions to an interacting network model, where the interactions were inferred using the maximum entropy principle. The resulting signed weighted network (Saeedian et al., 2017) was analyzed from the balanced and imbalanced triangles perspective. We have found significant differences between normal and cancerous cell GRN-s: There are more imbalanced triangles in normal GRN-s than in cancerous ones and the correlations between such triangles are also different in these two networks. Further investigations are indeed valuable to study when the observed differences develop and whether our observations can be used for diagnostic purposes.
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Physical connections between nodes in a complex network are constrained by limiting factors, such as the cost of establishing links and maintaining them, which can hinder network capability in terms of signal propagation speed and processing power. Trade-off mechanisms between cost constraints and performance requirements are reflected in the topology of a network and, ultimately, on the dependence of connectivity on geometric distance. This issue, though rarely addressed, is crucial in neuroscience, where physical links between brain regions are associated with a metabolic cost. In this work we investigate brain connectivity—estimated by means of a recently developed method that evaluates time scales of cross-correlation observability—and its dependence on geometric distance by analyzing resting state magnetoencephalographic recordings collected from a large set of healthy subjects. We identify three regimes of distance each showing a specific behavior of connectivity. This identification makes up a new tool to study the mechanisms underlying network formation and sustainment, with possible applications to the investigation of neuroscientific issues, such as aging and neurodegenerative diseases.
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1. INTRODUCTION

The application of network analysis methods on structural and functional brain connectivity is a widely used tool to investigate the topology of complex brain networks emerging during both resting state and cognitive engagement in a task. This approach led to strong evidence of human brain networks exhibiting a small-world topology (Bullmore and Sporns, 2012; Gastner and Ódor, 2016; Bassett and Bullmore, 2017) and challenged the general assumption of network stationarity (Chang and Glover, 2010; Bassett et al., 2011; Bullmore and Sporns, 2012; Nicol et al., 2012; Brookes et al., 2018) suggesting a dynamic continuous reconfiguration of brain complex networks both in cognitive tasks and at rest. Moreover, small-world topology supports the well-established principle of segregated/integrated information processing (Bullmore and Sporns, 2012). Instantiating and running a functional brain network has a metabolic cost in term of glucose and oxygen consumption required to sustain information processing and circulation. This wiring cost is ultimately related to the distance between communicating brain regions and is supposed to be minimized by the brain, while preserving the crucial computational advantages conferred by network complexity (Bullmore and Sporns, 2012; Gollo et al., 2018). Moreover, an unbalance between wiring cost and complexity has been shown to act as a potential source for neuropsychiatric disorders (Gollo et al., 2018). As a result of the tradeoff between network complexity and wiring cost, brain connectivity and its strength turn out to depend on physical distance between communicating nodes (Bullmore and Sporns, 2012). While actual anatomical link length does not coincide with a straight segment, Euclidean distance appears to be a relevant parameter in the study of brain topology and connectivity (Ghosh et al., 2008; Supekar et al., 2009; Kaiser, 2011; Cabral et al., 2014), making up a lower bound to the real anatomical distance (Avena-Koenisberger et al., 2018). Since the discovery of resting state networks, like the Default Mode Network (Damoiseaux et al., 2006), resting state activity has been extensively used to probe general properties of brain networks. However, despite the relevance of the topic, to our best knowledge only a few studies addressed directly the dependence of connectivity on geometric distance in the brain.

Salvador et al. (2005a,b) analyzed fMRI resting state activity of 12 young healthy adults. They computed partial correlation between 90 cortical and subcortical brain regions, demonstrating for the first time that the intra-hemispheric connectivity was generally related to Euclidean distance by an inverse square law. This result was confirmed by another study (Fair et al., 2009) focused on the development of long distance integrated processing in healthy children and young adults. Authors defined networks from correlation coefficients matrices of resting state fMRI data, confirming that connectivity strength in active links depends on the inverse of the square of Euclidean distance, as found in Salvador et al. (2005a,b). These results were challenged by subsequent studies pointing to different degrees of interplay between distance and connectivity. In Expert et al. (2011) the authors investigated scale invariance in brain networks by analyzing time series from fMRI resting state activity of seven young healthy adults. By computing correlation coefficients between brain areas at different levels of spatial granularity, they found, for short distances, a self-similar behavior of the network, which corresponds to a power-law dependence of correlation on distance in the form of the inverse of the square root of Euclidean distance. Moreover, the self-similar regime, and thus the power-law dependence, is lost for long distances (about > 50 mm). Furthermore, in another paper, it was found that the global mean Euclidean distance of links from a brain network defined by correlating resting state fMRI activity increases when weaker links are included in the network by lowering the threshold that defines the adjacency matrix (Alexander-Bloch et al., 2013). In that work the authors considered results from resting state fMRI activity and found that an exponential curve reasonably fits the cumulative distribution of distances of network links.

Besides results being not consistent, there are also some limitations in the above mentioned studies. On the one hand, using fMRI resting state time series might not reveal the contribution of networks operating at time scales faster than the typical time resolution of magnetic resonance imaging, whose contribution is convoluted with the hemodynamic response. In addition, as pointed out also in Coquelet et al. (2017), confounds might be introduced by the different neurovascular coupling in different healthy and clinical population, or even within the analyzed population. Using a direct electrophysiological measure of brain activity, such as magnetoencephalography (MEG)—characterized by a higher sampling rate can be more efficient in addressing the dependence of connectivity on distance.

In a recent paper by our group (Perinelli et al., 2019), we used a novel method to evaluate connectivity between two brain nodes by means of the time scale, henceforth referred to as “time scale of observability,” in which a correlation is observed. Starting from MEG recordings of cortical activity of healthy subjects in resting state, we obtained a time series for each examined node in the brain and, consequently, a time scale of observability of links. The results hinted at a power-law dependence of the time scale of observability with respect to geometric distance.

In this paper, we improved our previous analysis by using a larger dataset containing MEG recordings from 100 healthy subjects in resting state and, in addition, upgraded analytical tools. The subjects have an age ranging from 18 to 88 years and were chosen to yield an approximately uniform age distribution. A number of 72 nodes was randomly selected on the cerebral cortex and correlation among all possible 42 pairs of nodes was evaluated as a function of pair distance. In addition node pairs were distinguished into inter-hemispheric and intra-hemispheric in order to highlight possible differences in connectivity in cross-hemisphere or intra-hemisphere communication.

We obtained evidence of three different regimes of linear dependence of the time scale of observability on the natural logarithm of geometric distance. This result proves to be statistically significant and makes up an interesting base point for further investigation, aiming, for example, at relating the different regimes to the small-world network supported principle of segregated/integrated information processing. Our novel approach detects communication links between pairs of brain regions by assessing the time scale of observability as the shortest time window during which the two time series have to be observed to significantly detect a correlation (see section 2.2 for a detailed discussion about that). Because typical values are in the range between 0.2 and 30 s, our approach is more efficient than standard correlation analysis of slow fMRI time series in including potential networks that operate at different time scales and provides a more complete metrics for the characterization of the dependence of connectivity strength on distance.

As in all the relevant previous literature about the dependence of connectivity strength on distance, we use here resting state data. While this is a limitation because, in principle, networks with different properties and topologies can emerge in response to stimuli or in executing actions (Bullmore and Sporns, 2012), we believe that a general property of network brain communication, like the dependence of connectivity strength of distance, does not dramatically change whenever subjects are cognitively engaged in a task. Nevertheless, further investigations are required to confirm this property, especially with regards to the validity of the three-regime dependence mentioned above.

The present paper is organized as follows. Section 2 deals with the description of the available dataset and the related preprocessing, a summary of the method for the evaluation of zero-delay cross-correlation, and the analysis of the functional relation between time scale of observability and distance. The outcomes of this analysis are the topic of section 3. Conclusive remarks on the implications of our results are presented in section 4.



2. MATERIALS AND METHODS


2.1. Dataset and Pre-processing

Data used in the present work were obtained from the CamCAN repository (available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Shafto et al., 2014; Taylor et al., 2016). Data collection was conducted in compliance with the Helsinki Declaration and was approved by the University of Cambridge ethics committee (Cambridgeshire 2 Research Ethics Committee—reference: 10/H0308/50) (Shafto et al., 2014).

We selected data from 100 healthy volunteers (49 females, 51 males), with an approximately uniform age distribution ranging from 18 to 88 years. From the data available in the CamCAN repository, we retrieved MEG resting state and empty room recordings together with MRI anatomical scan for each subject. All data were collected and partially preprocessed at the MRC Cognition and Brain Sciences Unit of the University of Cambridge as follows. Individual anatomical MRI images (T1 weighted, 1 mm of resolution) were collected using a 3 T Siemens TIM Trio scanner with a 32-channel head coil. MEG data were recorded using a 306-channel VectorView MEG system (Elekta Neuromag, Helsinki), with 102 magnetometers and 204 orthogonal planar gradiometers, located in a magnetically shielded room. MEG data were natively sampled at 1 kHz with an high pass filter of 0.03 Hz. Resting state recordings were obtained with the participant in seated position and with eyes closed. Temporal Signal Space Separation (correlation threshold 0.98, 10 s sliding window) has been used to reconstruct missing channels, to filter data and to correct continuous head movement (200 ms time window) (Taulu and Kajola, 2005; Taulu et al., 2005; Taulu and Simola, 2006; Shafto et al., 2014). Vertical and horizontal electro-oculogram (EOG) and electrocardiogram were also available from the database.

We further preprocessed and prepared data using FieldTrip (Oostenveld et al., 2011) and custom MATLAB code (The Mathworks, Natick, MA, USA). Continuous resting state MEG data were filtered (0.5–125 Hz band-pass filter; 49–51 Hz notch filter; Butterworth 4-th order two-pass) and resampled at 250 Hz. Identification of physiological artifacts has been performed by using conservative automatic procedures. Muscular activity was detected by filtering data through a 90–110 Hz band-pass filter (Butterworth 9-th order two-pass), converting the time series to z-score and averaging results over channels. Segment having an average z-score higher than 10 were considered as muscular artifacts and removed from the data. Eye related activity and cardiac activity were removed using an automatic procedure based on Independent Component Analysis (ICA) (Hyvarinen et al., 2001). Independent components were computed for magnetometers and gradiometers separately using an extended infomax algorithm (Lee et al., 1999). Thereupon, variance-stabilized correlation coefficients between each component and cardiac/electroocular channels were first evaluated and then transformed to z-scores. Components yielding scores that exceed a threshold, here set to 2, were considered as artifactual and rejected. This identification/rejection procedure was performed twice to ensure that no artifactual components remain within the data. In the following analysis, only data from planar gradiometers are used. MEG empty room data were preprocessed following the same procedure as for human resting-state data.

Individual anatomical MRI scans, which are provided along MEG data, were processed to obtain head models for the solution of the inverse problem. A model of the cortical mantle (20,484 vertices, 3.1 mm of average source spacing) was obtained by segmenting, correcting and extracting the external surface of the gray matter using SPM (Friston, 2007) and the CAT12 SPM toolbox.1 Sulci information was extracted and used to compute an interpolation matrix for the projection of the individual source space to a MNI FreeSurfer average common space (5-th order recursive icosahedron, 20,484 vertices) (Fischl et al., 1999). Each vertex in the MNI common space was labeled as belonging to one of the 360 regions of interest defined in a reference atlas by Glasser et al. (2016). The atlas identifies 360 brain regions by combining structural, diffusion, functional and resting state MRI data from 210 healthy young individuals. In addition, surfaces of the enclosing brain and of the scalp, each made of 20,000 vertices, were extracted for forward model solution and co-registration with MEG data, respectively. All extracted surfaces were co-registered to the position of the participant head in the MEG resting state session by aligning anatomical landmarks (nasion, left/right pre-auricular points). The co-registration was further refined by aligning the scalp surface to the points digitized during the MEG acquisition (see Shafto et al., 2014; Taylor et al., 2016) for further details about head digitization during MEG acquisition).

Source activity was reconstructed on each of the 20,484 vertices from MEG data using a Minimum Norm Estimate method (Ilmoniemi and Sarvas, 2019). An orientation free source model was used, thus leading to three time series for each vertex pointing to the x-, y-, and z-coordinates, respectively. Normalized lead fields were obtained using a single shell model (Nolte, 2003), while the covariance matrix was computed from empty room data. A noise normalized MNE kernel matrix for the inversion of sensors data into brain sources was estimated according to Equation (5.39) of Ilmoniemi and Sarvas (2019). Noise covariance matrix was regularized by 10% and the prior source covariance matrix was estimated from the trace of the leadfield matrix as in Hämäläinen (2005). Finally, we reduced the estimated neural activity by considering the norm of the time vector at each vertex so that for each source, a time series corresponding to the norm of the current dipole vector reconstructed at that location is available.

Before proceeding with correlation analysis, data prepared for each subject were visually inspected to ensure no errors in the preparation process. Sensors data were inspected to confirm, given above mentioned automatic thresholds, the correct rejection of artifacts. Extracted surfaces were plotted and checked, together with MEG sensors and projection of individual sulci data on MNI space, to ensure correct co-registration and interpolation. Finally, the CAMCaN repository also provides MEG data with passive audio and visual stimulation. As a further validation, for each subject, sources were reconstructed using these auxiliary sensor data and the computed kernel, and results were visually inspected to check that the corresponding brain activity was correctly localized in auditory and visual cortices.

A set of 72 sources was selected out of the 20,484 available ones provided by the reconstruction process. For each subject, these 72 sources were selected as the closest ones to 72 brain nodes, namely the centroids of 72 brain regions chosen among those defined in the reference atlas (Glasser et al., 2016). Limiting the analysis to 1/5 of the available regions stems from a trade-off between computational cost and adequate coverage of the whole brain. The selection of the 72 brain nodes was carried out randomly and in compliance with a procedure thoroughly described in Perinelli et al. (2019) (section “Dataset and preprocessing” therein). The procedure yields nodes whose pairwise distance is larger than 1 cm, in order to obtain a uniform coverage of the brain cortex. The 72 brain regions extracted through random selection and analyzed in the present work are listed in Table 1, while Figure 1 shows the corresponding anatomical positions.


Table 1. Brain areas selected for the present analysis and whose anatomical position is shown in Figure 1.

[image: Table 1]


[image: Figure 1]
FIGURE 1. Position, represented on a default anatomy, of the areas listed in Table 1. Colors are related to the functional group of the corresponding area according to the reference atlas (Glasser et al., 2016) considered in the present work.


Muscular artifacts rejection yielded, for each subject, a set of epochs having different duration. Analyzed sequences were extracted by trimming the longest available epoch (having duration T1) for a given subject, as follows. If T1 ⩾ 240 s, samples are contemporarily removed from the beginning and from the end of the epoch until the resulting duration is 240 s. If 180 s ⩽ T1 < 240 s, the same trimming process is carried out until the resulting duration is 180 s. If T1 < 180 s, the two largest epochs are considered: segments are selected out of these two epochs by means of the same procedure so that their total duration is 180 s. For 10 subjects out of 100, because of insufficient epoch length, the total duration is 160 s. To summarize, analyzed sequences have total duration 240 s for 29 subjects, 180 s for 61 subjects, and 160 s for 10 subjects. The restriction of the analysis to no more than two segments is due to the need of limiting computational cost. Alternatively, one might choose the same minimum duration of 160 s for all subjects. While such a choice would provide a uniform dataset, we rather chose to maximize, whenever possible, the amount of data included in our analysis. It is worth mentioning that the cross-correlation method applied here—and described in section 2.2—yields as outcome a time scale of observability that is independent of the underlying sequence length, provided that such length is much larger than the maximum probed time scale (in this work 30 s).



2.2. Link Assessment via Zero-Delay Cross-Correlation Analysis

In the present work, the existence of a link between a pair of nodes is assessed out of the corresponding pair of sequences. The assessment is carried out by means of a recently-developed method (Perinelli et al., 2018; Perinelli and Ricci, 2019) based on the evaluation of zero-delay cross-correlation over moving windows having different widths. Cross-correlation is quantified as the sample Pearson correlation coefficient, whereas its significance is estimated through surrogate-based hypothesis testing (Schreiber and Schmitz, 2000). The method is extensively described in Perinelli et al. (2018) and in Perinelli et al. (2019). An implementation of the method is provided in the publicly available NetOnZeroDXC package (Perinelli and Ricci, 2019). The method is here summarized as follows: given a pair of nodes and their corresponding sequences, both of size N and sampled with period T, the sample Pearson correlation coefficient r(k,w) is evaluated on a moving window of width w and centered at time tk. The window width takes on values given by mw0, where w0 is the minimum width and m is an integer number between 1 and M. The center point of the first window is set to [image: image], whereas the successive center points are iteratively set according to tk+1 = tk + w0 up to the last window that is centered at [image: image]. The center points and, consequently, the number of same-sized windows used to cover the sequences, are the same independently of the window width w. The set of center points {tk} are ultimately fixed by the size of the sequences N and the choice of w0 and M. In the present work, w0 was set to 0.2 s and M to 150, so that the window width covers a range from 0.2 to 30 s.

These last parameters also set the lower and upper time scale limits within which a link is observable. The upper limit of 30 s is a consequence of the finite duration (several minutes) of the available sequences. The lower limit is instead constrained by the necessity of having a sufficient number of samples in each windows so as to evaluate cross-correlation. In this work, because the sampling period is 4 ms, the minimum window width of 0.2 s corresponds to 50 samples. Smaller time scales could be probed by increasing the sampling rate by one or more orders of magnitude, a possibility hampered by the limitations of current MEG technology.

Given the Pearson correlation coefficient diagram r(k,w), a p value diagram p(k,w) is obtained by testing a null hypothesis of independence on a number of 200 surrogates for each pair of sequences. Upon setting a p-value threshold at 0.05, we defined an efficiency function η = η(w) which gives the percentage of windows of size w showing a significant cross-correlation. Efficiency can be interpreted as an index of how efficient a window width—and therefore the related time scale—is in detecting significant cross-correlations between a pair of sequences (Perinelli et al., 2018). As shown in Figure 2, the efficiency function η(w) increases monotonically with w. In the present work, a link is deemed to exist if η(w) overcomes the efficiency threshold of 0.5. In other words, given a pair of nodes, the existence of a link is acknowledged provided that a window width w exists such that the majority of windows detect a significant correlation in the corresponding pair of sequences. The minimum value of w at which this crossing occurs is taken as the time scale of observability of the corresponding link and is henceforth referred to as W. If η(w) does not overcome the efficiency threshold for any value of w, no link is deemed to exist between the pair of nodes.


[image: Figure 2]
Figure 2. A,B) P-value diagrams p(k,w) of sections of sequences belonging to two pairs of nodes. The diagram in (A) corresponds to a pair that is not deemed to be linked, while a link exists in (B). The green dashed line shows the link time scale W = 15 s. (C) Efficiency η as a function of the window width w: the blue and red lines corresponds to the diagrams in (A,B), respectively. The efficiency threshold of 0.5 is reached by the red efficiency curve at w = 15 s. (D) Scatter plot, for one subject, of the assessed links: each point (link) is identified by the corresponding Euclidean distance d and time scale of observability W. The pair of nodes exhibiting a link contributes to the scatter plot with a point of abscissa given by the distance d between the two nodes (32 mm) and ordinate given by the resulting time scale W (15 s). Two histograms, showing the sample marginal probability distributions of d and W, are also shown.


While W is a measure of time scale of brain dynamics, it is not related to the signal propagation speed within the brain (Fransson, 2005; de Pasquale et al., 2010; Perinelli et al., 2018), which is instead characterized by time scales that are three orders of magnitude smaller than the time interval range considered in the evaluation of W. The source of correlation are segments that are shared by the two sequences and are strong enough to overcome the noisy background. The window width W is indeed an integration time: increasing it does not affect signal components but progressively lowers noisy contributions. From this point of view, W is inversely proportional to a threshold value of the signal-to-noise ratio (SNR) at which the link becomes observable. Two nodes having maximum connectivity so that their sequences are identical would correspond to a vanishing time scale of observability W. On the other hand, two unconnected nodes would produce an infinite W. Figure 2 shows the p value diagram p(k,w) and the resulting time scale of observability W in the case of two nodes that do not exhibit a link and in the case of two nodes exhibiting a link with time scale W = 15 s. The time scale of observability W, or better its reciprocal, can be considered as a measure of the connectivity strength.

Given a number N of nodes within the brain, the number of possible node pairs, and thus of links, is N(N − 1)/2: the analysis described above is carried on each of the possible pairs. While the results, for example in terms of an adjacency matrix, can be used as a starting point for investigating possible network structures (Gastner and Newman, 2006; Barthélemy, 2011; Perinelli et al., 2018), the goal of the present work is the assessment of the dependence of connectivity, quantified by means of W, on the geometric distance between nodes, as discussed below.

For each of the 100 available subjects, 2,556 node pairs are present. For each pair, the link length d, i.e., the Euclidean distance between the nodes, was computed out of the corresponding MNI coordinates (Glasser et al., 2016). Given a pair of nodes, the related d differs among subjects due to anatomical variability. Consequently, the whole set of 100 subjects results in ~250,000 values of d within the range from 5 to 175 mm. For each subject and pair of nodes, the time scale of observability W of the corresponding link was assessed out of the related pair of time series. A number of about 150,000 assessments were discarded from further analysis because they did not deliver a finite value of W. The described skimming process could be “less severe” by both enhancing the p-value threshold to assess cross-correlation and reducing the efficiency threshold. However, any such action would imply a larger number of spurious correlations to be identified as actual links. On the other hand, an infinite value of W does not rule out the possibility of a real connection between the related nodes. Increasing the upper limit of time scale W that can be assessed, however, would require longer sequences. The analysis was therefore carried out on the remaining set of observable links, having a size of ~100,000.



2.3. Subject Dependence of Relative Link Occurrence

In order to check the variability of the percentage of observable links among subjects, we computed for each subject the ratio R of the number of detected links and the number of available pairs of nodes. Figure 3A shows a scatter plot of the ratio R and the average W for each subject. Moreover, the subject-wise averages of both R and W, as well as the related standard deviations, are also shown. The clustering observed in the scatter plot of Figure 3A suggests that our results exhibit little subject-to-subject variability.


[image: Figure 3]
FIGURE 3. (A) Scatter plot of the ratio R and the average W for each of the 100 subjects. Each point corresponds to one subject. The coordinates of the black square dot correspond to the average R and W over all subjects, while errorbars show the related standard deviations. (B) Bar plot of the average [image: image] of the ratio R for subjects grouped by age decade. The green solid line shows the grand-mean value of [image: image], while green dashed lines bound the 95% (2 σ) confidence region for [image: image].


In addition, in order to highlight any age-related variability, the value of R was averaged over subjects grouped by age. Figure 3B shows the average value of R for sets of subjects grouped by decades (18–27, 28–37 years, …). The average value of [image: image] turns out to be (0.40 ± 0.09). While two decades, namely 18−28 yrs and 68−78 yrs, show fluctuations larger than the standard error, there is no clear hint of a systematic age-related variability.



2.4. Functional Relationship Between W and d

As a preliminary analysis step, the sample distributions of d and W are considered. Figure 4A shows the sample distribution of link lengths d. Two histograms are reported: the first one refers to the whole set of available distances, while the second one includes only observable links, i.e., node pairs for which the assessment of W provided a finite value. The histograms of Figure 4B are instead built by evaluating the logarithm of distances. The sample distribution of d evaluated by including only observable links is shifted toward smaller d values, thus implying that smaller distances correspond to a higher probability of observing a link.


[image: Figure 4]
FIGURE 4. (A) Histograms of the ~250,000 available values of link length d (red lines) and of the ~100,000 values of d corresponding to observable links (blue lines and shaded areas). (B) Histograms of the values of log[d(mm)]; color meaning is the same as in (A).


Taking into account observable links only, Figures 5A,B show the histograms of the time scale W and its logarithm log[W(s)], respectively. The comparison of the histograms shown in Figures 4, 5 prompts us to set some constraints on the form of the mathematical expression of the relationship between W and d. First, no linear mapping of the abscissa axes can lead to an overlap between the histograms shown in Figures 4A, 5A. Therefore, there is no evidence of a linear relationship between d and W. Second, a similar argument applied to the histograms of the logarithm of the two variables d and W, respectively shown in Figures 4B, 5B, rules out a power-law relationship. Finally, exponential or logarithmic relationships are also ruled out because of the impossibility of mapping Figure 4A onto Figure 5B or Figure 4A onto Figure 5A, respectively, via a linear rescaling of the abscissa axes.


[image: Figure 5]
FIGURE 5. (A) Histogram of the ~100,000 available values of time scale W. (B) Histogram of the ~100,000 available values of log[W(s)].

 
To further investigate the relationship between link length d and time scale of observability W, following the approach introduced in Perinelli et al. (2019), the characterization of the dependence of W on d is carried out by assessing sample conditional probability distributions f (W | d). Figure 6A shows the joint sample probability distribution f (d, W) obtained by partitioning both the d range and the W range in 25 bins each. The two sample marginal distributions gd(d) and gW(W), which are obtained by integrating f (d, W) along the W and d axis, respectively, are shown as solid lines in Figures 6B,C. Taking the ratio f (W | d) = f (d, W)/gd(d) yields the sample conditional distribution f (W | d) shown in Figure 6D. For the sake of clarity, the color map representing f (W | d) is also displayed in Figure 6E, in which the number of bins along each direction is increased to 50.


[image: Figure 6]
FIGURE 6. (A) Joint sample probability distribution f (d, W). The surface plot and the corresponding color map projection on the d, W plane are obtained by partitioning both the d and the W range in 25 bins each. Integrating f (d, W) along W yields the sample marginal probability distribution of d, which is shown by means of a blue line (B). Similarly, the red line (C) shows the marginal sample probability distribution of W. (D) Sample conditional probability distribution f (W | d) of W given d, evaluated as f (d, W)/gd(d). (E) Color map representation of the sample conditional probability distribution f (W | d); the d and the W range are partitioned in 50 bins each. White dots show the average value [image: image] of W given d. White dashed lines bound the 68% confidence region for W, namely the region within 1σ from the average [image: image].


Figure 7 shows the sample conditional probability distribution f (W | log d) obtained by considering the logarithm of distance expressed in millimeters (henceforth, log[d(mm)] is simply written as log d). As for Figures 6E, 7 also shows the average value of W, henceforth referred to as [image: image], evaluated as a weighted sum:

[image: image]

where the sum runs over all W bins having the same log d (the evaluation of [image: image] in the linear case of Figure 6E is computed in a similar way). Beside [image: image], the related standard deviation is also evaluated. In principle, one might consider the median of W instead of the sample mean. However, relying on sample means allows to associate an uncertainty—and therefore a confidence interval—to the estimated value [image: image] by computing the related standard deviation.


[image: Figure 7]
FIGURE 7. Conditional sample distribution f (W | log d) of W given log d (the d axis is in log scale) obtained by partitioning both the log d range and the W range in 50 bins. White dots show the average value [image: image] of W given log d. White dashed lines bound the 68% confidence region for W, namely the region within 1σ from the average [image: image]. Black solid lines stem from a best-fit procedure (see section 3) concerning a piecewise-linear relationship between W and log d. Black dashed lines correspond to the log d values at which the slope of the piecewise-linear relationship changes.


While the dependence of [image: image] on d in the linear case shows at least six different slopes, and, in addition, an irregular sequence of transitions from concavity to convexity, the dependence of [image: image] on log d appears to be more regular: the functional shape of [image: image] evaluated out of the sample conditional distribution f (W | log d) appears to be well-described by a piecewise linear curve, made of three segments. Section 3 describes the results of the assessment of this piecewise-linear curve on different sets of data.



2.5. Independence of the Results on the Selected Nodes

In order to test whether the results of the present analysis are independent of the set of randomly chosen nodes, we extracted additional 72 nodes as a control set. This control set was extracted with the same procedure of the original set with the only additional constraint that no nodes of the control set belong to the original one. Upon selecting seven subjects, each randomly chosen within a uniform age distribution, we computed the joint sample probability distribution f (d, W) both on the original set and on the control set. Thereupon we implemented a 2-dimensional Kolmogorov-Smirnov test (Press et al., 1997) to test the null hypothesis that the two sample distributions f (d, W) are mutually compatible: for 6 of the 7 subjects, the resulting p value was above 5%, while for a single subject the p value was 2%. This subject can be considered as an expected outlier by virtue of a Bonferroni corrected significance level of 0.05/7 ≈ 0.01.

The compatibility between the results of the original set of nodes and of the control one suggests that an increased number of nodes does not lead to significant changes in the outcomes of the analysis discussed in the present work. On the other hand, selecting too a smaller set of nodes would unreliably sample the f (d, W) distribution.




3. RESULTS

Three distinct regimes are revealed by representing [image: image] as a function of log d. The regimes are henceforth defined as d ⩽ d12 (first regime), d12 < d ⩽ d23 (second regime), and d > d23 (third regime). As introduced in section 2.4, the sample conditional distribution f (W | log d) is here described by means of a piecewise linear curve. It is worth mentioning that alternative functional forms can be considered as candidates to describe the observed dependence of time scale on distance. However, a piecewise linear relationship turns out to adequately capture the three-regimes behavior while relying on as few as six parameters, four describing the offset and the three slopes and two describing the boundaries of the three regions.

To identify and characterize these regimes, a two-steps best-fit procedure was implemented as follows. First, upon a manual setting of d12 and d23, three straight lines are fit over the three resulting ranges. The two abscissae of intersection between these straight lines, which are highlighted in Figure 7 by means of green dashed lines, are taken as the new estimates of d12 and d23, thus correcting the preliminary manual settings. Finally, on the three improved ranges stemming from the previous step, a second fit procedure is carried out to assess the final values of the slope of the three straight lines. The outcome of this two-steps procedure is a piecewise-linear best-fit curve.

In Figure 7 the piecewise-linear curve fitted on the whole set of data is shown by means of a black solid line. The slope-changing abscissa values turn out to be d12 = (44 ± 2) mm and d23 = (68.3 ± 0.9) mm. The slopes of the three regimes are m1 = (7.0 ± 0.1) s, m2 = (19.1 ± 0.5) s, m3 = (6.7 ± 0.5) s.

The results presented above concern the whole set of observable links and subjects and are reported also in Table 2. However, one might wonder whether these outcomes change if the analysis is carried out by considering inter-hemisphere or intra-hemisphere links. We therefore investigated three disjoint sets: a first set containing links for which both nodes are located in the left hemisphere; a second set made of links for which each node belongs to an opposite hemisphere; a third set made of links for which both nodes are located in the right hemisphere. Figure 8 shows the resulting maps of the sample conditional probability distribution f (W | log d) for these three sets of links. Again, three regimes, corresponding to three slopes of a linear [image: image] relationship, can be identified. The characterization of the three regimes, in terms of best-fit parameters, leads to the three slopes and the two slope-changing abscissa values that are also reported in Table 2.


Table 2. Results of the characterization of the piecewise-linear relationship for four different conditions.
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FIGURE 8. Conditional sample probability distribution f (W | log d) (the d axis is in log scale) obtained by partitioning both the log d range and the W range in 50 bins. Each color map corresponds to a different sets of links. (A) Links for which both nodes are located in the left hemisphere. (B) Links for which the two nodes are located in opposite hemispheres. (C) Links for which both nodes are located in the right hemisphere. White dots show the average value [image: image] of W given log d. White dashed lines bound the 68% confidence region for W, namely the region within 1σ from the average [image: image]. Black solid lines stem from a best-fit procedure to assess the piecewise-linear relationship between W and log d.


The outcomes of the analysis provide a robust evidence of the existence of three distinct regimes of W as a function of d. Consequently, the three-regime separation turns out to be a shared property of all kinds of links, either concerning nodes belonging to the same hemisphere (intra-hemisphere) or to opposite hemispheres (inter-hemisphere).

More in detail, the slope-changing abscissa values d12 and d23 are mutually compatible among the four sets of links listed in Table 2. The same occurs for the first two slopes m1, m2, a fact that might be interpreted in terms of hemisphere-independent processes that govern network topology for “small” and “intermediate” distances. The remaining slope m3 exhibits a higher variability: the larger slope in the Right-Right case with respect to the Left-Right and Left-Left ones might be due to a different mechanism underlying link formation. The fact that m3 < m2 can be also due to saturation, namely to the geometric boundedness of brain.


3.1. Comparison With Previous Assessments

A previous paper by our group (Perinelli et al., 2019) described a similar approach and suggested a power-law relationship between W and d, which can be expressed as [image: image]. Upon setting d0 = 75 mm, a best-fit procedure resulted in γ = (0.44 ± 0.1) and W0 = (20.9 ± 0.2) s. This equation is highlighted in Figure 9, which also shows the sample conditional probability distribution f (W | d) of the dataset used in the present work. It is worth noticing that, while the curve is shifted with respect to the values of [image: image], the curve slope for large values of d is approximately the same. This was confirmed by performing a best-fit procedure with the equation from Perinelli et al. (2019) on the points belonging to the third regime d > d23. The fit resulted in a value of γ = (0.46 ± 0.02), which is compatible with the previous results. The reason for the different behavior in the case of the points corresponding to smaller distances could be due to the improved preprocessing techniques implemented in the present work, particularly in terms of higher SNR. As a result, a greater number of links at lower time scales W was detected, which allowed to increase the resolution in the low W, and consequently, in the low d regime.


[image: Figure 9]
FIGURE 9. Conditional sample distribution f(log W | log d) of log W given log d obtained by partitioning both the log d range and the log W range in 50 bins. White dots show the average value [image: image] of log W given log d. White dashed lines bound the 68% confidence region for log W, namely the region within 1σ from the average [image: image]. The black dashed line corresponds to the log d value marking the separation between the second and third regimes. The black solid line stems from a best-fit procedure of the same power-law equation on points belonging to the third regime. The light blue solid line shows the results of the analysis from a previous work (Perinelli et al., 2019) concerning a power-law relationship between W and d.





4. CONCLUSIONS

In this paper, we investigated the functional relation between brain connectivity and geometric distance. We used MEG recordings from 100 healthy subjects in resting state to reconstruct time series of cortical activity in 72 randomly chosen nodes. For all possible pairs of nodes, besides the Euclidean distance, we assessed, if any, the degree of connectivity between the nodes by relying on a novel method based on zero-delay cross-correlation. The relationship between geometric distance and connectivity was then analyzed by inferring joint and conditional sample probability distributions. The analysis was also performed separately on inter-hemispheric pairs and intra-hemispheric pairs.

While previous works hinted at a power-law relationship between distance and connectivity, our results suggest that distances can be distinguished in three regimes and that, in each regime, connectivity depends on the logarithm of distance. A logarithmic dependence might hint at the involvement of information-related mechanisms, while the multiple regimes can be related to small-world modular network architecture supporting integrated/segregated processing.

The results presented in the present work can be improved by taking into account more detailed definitions of distance. In this framework one could rely, for example, on diffusion imaging or g-ratio methods to assess physical connections between nodes. This possibility, though not in the scope of the present manuscript, makes up an interesting future development.
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Networks of oscillating processes are a common occurrence in living systems. This is as true as anywhere in the energy metabolism of individual cells. Exchanges of molecules and common regulation operate throughout the metabolic processes of glycolysis and oxidative phosphorylation, making the consideration of each of these as a network a natural step. Oscillations are similarly ubiquitous within these processes, and the frequencies of these oscillations are never truly constant. These features make this system an ideal example with which to discuss an alternative approach to modeling living systems, which focuses on their thermodynamically open, oscillating, non-linear and non-autonomous nature. We implement this approach in developing a model of non-autonomous Kuramoto oscillators in two all-to-all weighted networks coupled to one another, and themselves driven by non-autonomous oscillators. Each component represents a metabolic process, the networks acting as the glycolytic and oxidative phosphorylative processes, and the drivers as glucose and oxygen supply. We analyse the effect of these features on the synchronization dynamics within the model, and present a comparison between this model, experimental data on the glycolysis of HeLa cells, and a comparatively mainstream model of this experiment. In the former, we find that the introduction of oscillator networks significantly increases the proportion of the model's parameter space that features some form of synchronization, indicating a greater ability of the processes to resist external perturbations, a crucial behavior in biological settings. For the latter, we analyse the oscillations of the experiment, finding a characteristic frequency of 0.01–0.02 Hz. We further demonstrate that an output of the model comparable to the measurements of the experiment oscillates in a manner similar to the measured data, achieving this with fewer parameters and greater flexibility than the comparable model.

Keywords: networks, oscillations, metabolism, cells, non-autonomous oscillators, Kuramoto oscillators, non-linear dynamics, synchronization


1. INTRODUCTION

Analyzing the energy metabolism of a cell can be key to understanding more about its functions, states and health. A malfunctioning metabolism is indicative of a wide range of pathological states, from diabetes, to Alzheimer's, to cancer (Seyfried and Shelton, 2010; Akter et al., 2011; Bosco et al., 2011; Kembro et al., 2018). A healthy metabolism also plays a significant role in other higher order processes through its production of adenosine triphosphate (ATP), which, for example, allows the generation of a membrane potential. The membrane potential is itself crucial for a variety of functions, including maintaining the cell's structural integrity and the firing mechanism of neurons (Macknight, 1988; Kuwahata, 2004).

Cellular ATP is generated mainly through glycolysis in the cytosol, consuming glucose, and oxidative phosphorylation (OXPHOS) in the mitochondria, consuming oxygen (Wilson, 2017; Chaudhry and Varacallo, 2020). Like many biological processes, experimental observations have established that these reactions are oscillatory (Betz and Chance, 1965; Jung et al., 2000; Kennedy et al., 2002; Richard, 2003; Tu et al., 2005; Jafri, 2006; Olsen et al., 2009; Ganitkevich et al., 2010; Kurz et al., 2010a; Ozalp et al., 2010; Bechtel and Abrahamsen, 2011; Porat-Shliom et al., 2014; Thoke et al., 2015; Lancaster et al., 2016). Not only this, but there is further evidence to suggest these oscillations may be non-autonomous (O'Rourke et al., 1994; Tu and McKnight, 2006; Kurz et al., 2010b; Battle et al., 2016; Rupprecht and Prost, 2016; Amemiya et al., 2017): that their frequencies vary over time. Modeling this behavior is a challenge for many traditional techniques, which often rely on perturbations of a steady state to give rise to oscillations, and the addition of noise to simulate non-autonomous variation. We present here an alternative approach to modeling non-autonomous oscillations in living systems, and what we can learn from such models.

The time variation of biological oscillations is often neglected, even where the existence of oscillations is acknowledged. Many modeling theories assume this variation to be due to noise, arising either from experimental methods or from the complexity of the system's interactions, and therefore that it can be averaged out when considered over asymptotic time. Time sensitive analysis of such data can show that the variation in a process's oscillations, induced by interactions with its surroundings and otherwise, is often deterministic (Lucas et al., 2018, 2019). Lucas et al. (2018) and Lucas et al. (2019) further showed that allowing for this deterministic variation in a model's architecture, and analyzing it over the finite time scales within which biological systems actually exist, can reveal dynamics that would be missed in a solely asymptotic approach. In particular, an intermittent synchronization, where oscillators are synchronized at some times and not others, without any change of parameters, can only exist when oscillations are allowed to be non-autonomous and only found when they are analyzed with finite time techniques.

The origins of our cellular metabolism model lie in the work of Lancaster et al. where glycolysis and OXPHOS are each represented by bi-directionally coupled non-autonomous Kuramoto oscillators (Kuramoto, 1984), and each driven by a non-autonomous oscillator depicting the supply of glucose and oxygen, respectively (Lancaster et al., 2016). This model was built on the theory of chronotaxicity (Suprunenko et al., 2013), which studies the effects of non-autonomicity to stabilize oscillators in spite of perturbations, an important ability for biological processes.

However, like most biological processes, neither glycolysis nor OXPHOS are a single process, but many (Kurz et al., 2017, 2018; Cortassa et al., 2018; Kembro et al., 2018; Vetter et al., 2020). Glycolysis occurs distributed throughout the cytosol, while OXPHOS is localized within the many mitochondria of the cell. These processes further communicate between themselves as well as one another. Glycolysis was found to signal inter- and intra-cellularly through the exchange of acetaldehyde (Richard, 2003; Madsen et al., 2005; Weber et al., 2012), while OXPHOS is thought to interact in many possible ways, including molecular exchange, common regulation and inter-mitochondrial nano tunnels (Kohnhorst et al., 2017). Here, we extend the Lancaster et al. (2016) model to consider glycolysis and OXPHOS as all-to-all coupled networks of oscillators. These networks are furthermore weighted such that oscillators closer to each other around a ring are connected more strongly than those further from one another, to reflect the nature of molecular exchange over a range of distances. We also draw from the work of Petkoski and Stefanovska (2012); Petkoski et al. (2013). who introduced a method of phase coupling through mean fields of ensembles of oscillators.

We present here a summary of the Lancaster et al. (2016) non-autonomous oscillator model for cell energy metabolism the details of its adaptation to weighted networks of oscillators, informed throughout by our alternative approach to modeling oscillating living systems. We will discuss further the analysis that had and can be done on these models, and what they can reveal about the biology of the cellular production of ATP and its role in wider processes.



2. MATERIALS AND METHODS

Our modeling approach consists of four main principles, which are summarized in Table 1. We consider the cell to be the minimal functioning biological unit: processes within the cell cannot be isolated and still function and more macroscopic functions can be built from a cellular level, but the cell itself can survive provided the appropriate molecular supply in its environment. It is crucial however that the cell is able to expel waste and absorb needed molecules. This makes the cell a thermodynamically open system: matter and energy must cross its boundaries in order for the cell to survive. One of the principles of our approach is therefore to treat the cell and its internal processes as open, constructing a model that does not impose a constant mass on the system. While many models make mass their subject, it is much easier to achieve the aim of an open system by focusing the phase of the processes instead, and so in our model we consider the phase of oscillations.


Table 1. Summary of the principles informing our modeling approach contrasted to those of mainstream approaches.

[image: Table 1]

Our second principle is to treat oscillating systems as not just a temporary perturbation from a steady state, but as fundamentally defined by their oscillations. We therefore do not construct our model as a non-oscillating set of processes and subsequently find sets of parameters that induce oscillations, but set oscillations as the foundation of the model by representing each process with a phase oscillator. Cellular processes are also inevitably characterized by their non-linearity (Carballido-Landeira and Escribano, 2016), and modeling these non-linearities is essential to understanding their dynamics. We therefore use Kuramoto oscillations to model these interactions.

Unlike theories that assume variations in the features of these oscillations, in particular frequency, are due solely to noise endemic to the complexity of biological systems, we treat much of these observable variations as deterministic. Our modeling approach to these systems is to represent them as non-autonomous Kuramoto phase oscillators.


2.1. Cell Energy Metabolism

The biological system as considered in this model is summarized in Figure 1A, and represented in the model's format in Figure 1B. It is constituted by four key processes: glycolysis, converting glucose, ATP and ADP into NADH, pyruvate and ATP, OXPHOS, converting oxygen, NADH and pyruvate into ATP, and the supplies of glucose and oxygen. The main purpose of this mechanism is the creation of ATP, which is primarily used to fuel ion pumps. Ion pumps actively transport ions across the cell's boundary against the electrochemical gradient, without which the cell would be forced to maintain an ionic equilibrium with its surroundings. Instead, the cell is able to accept the ions it needs for survival, and prevent itself from being flooded with an unhealthy quantity. Neuronal firing also relies on the ability of ion pumps to dramatically and rapidly change the balance of ions between the cell interior and exterior: the process is triggered only once the cell's membrane potential crosses the action potential threshold, typically requiring a change of some 100mV (Catterall et al., 2012).


[image: Figure 1]
FIGURE 1. (A) The cellular energy metabolism considered in the model, reprinted with permission from Lancaster et al. (2016). (B) An oscillator model diagram of (A), where each circle represents an oscillator, and each line a coupling. MO denotes the mitochondrial oscillator, GO the glycolysis, G the glucose driving, and O the oxygen.


Communication between the metabolic processes is also well-established (Richard, 2003; Madsen et al., 2005; Weber et al., 2012; Kohnhorst et al., 2017). Glycolysis enzymes exist all around the cytosol, each facilitating an element of the wider glycolytic reaction. Not only do these distributed enzymes rely on regulation and supply common to them all, but the exchange of acetaldehyde molecules has been observed to drive coherence between glycolytic processes. Mitochondria, housing the OXPHOS process, exist in a more fixed state than the glycolysis enzymes of the cytosol, but are similarly thought to mutually organize their processes for the efficient running of the cell. Mapping precisely the exact positions and connections of these processes however would be challenging, if not impossible. In our model we therefore focus on the importance of molecular exchanges in their communication, and the diffusive nature of these exchanges making distance a key consideration. Hence, we have assumed all-to-all coupled networks, but weighted these connections such that if were they considered around a ring, coupling strength would decrease the further apart any two given oscillators were.



2.2. Defining the Model

Each of these four metabolic processes is represented by a Kuramoto oscillator. Kuramoto oscillators are a type of non-linearly interacting phase oscillators, which are a reduction of ordinary differential equations featuring self-sustaining oscillations from many degrees of freedom to just one: the phase of the oscillation. The phase of an oscillator is defined as its position along its cycle at a given time. This cycle can be represented in phase space, as shown in Figure 2A, where the meaning of any particular phase value can easily be seen.


[image: Figure 2]
FIGURE 2. (A) An oscillatory cycle in phase space, at a phase value of θ. (B) A point perturbed from an oscillatory cycle, returning along isochron I to the cycle at a point with phase φ. The perturbed point is therefore also assigned the phase φ.


Here phase has only been defined on the cycle of the oscillator equation. However, when oscillators interact or are driven by external forces, they will be perturbed away from this cycle. The phase in the vicinity of the cycle must therefore also be defined, which can be done for stable oscillators using isochrons. When a stable oscillator is perturbed its phase will initially leave its cycle, but will return to it over time if not further perturbed. Isochrons connect the point to which a phase is perturbed to the point on the cycle it will first return to after the decay of the perturbation, assigning both the same phase value. This is demonstrated in Figure 2B. In order to remain in this region of attraction of the cycle, where isochrons can be used, the perturbations must be sufficiently weak, placing constraints on the strength of couplings between oscillators and drivers (Pikovsky et al., 2001; Strogatz, 2001).

This definition requires further extension to allow for the phases of non-autonomous oscillators. As the frequency, also known as the velocity of the phase, of the oscillator changes at each moment in time the system is transformed from one autonomous system to another. To maintain a consistent definition of phase across these systems, we must require that each system resides in the region of attraction of the one proceeding it, in order to use the same reasoning as the isochrons of perturbations. As with the weak coupling requirements of interactions, this definition constrains the system to only small changes in the frequency of oscillation from second to second (Kloeden and Rasmussen, 2011).

This theory was applied to the biology of cellular ATP production by Lancaster et al. (2016) in the following equations for the oscillators' phases

[image: image]

where the subscript GO represents the glycolytic oscillator, MO the OXPHOS, G the glucose driving and O the oxygen. ωX is the frequency of oscillator X, ϵ the relevant oscillator coupling strength, θX the phase, t time, η(t) a noise term and σ the scaling parameter of the noise. These are hence two oscillators as described above, coupled to one another and their respective metabolic drivers, with their frequency rendered non-autonomous by the addition of a time-dependent noise parameter.

We convert this model to now consist of networks of oscillators, weighted such that neighbors around a ring interact with a maximal coupling strength, and those opposite with a minimal strength. This is shown diagrammatically in Figure 3.


[image: Figure 3]
FIGURE 3. The network cellular metabolism model, with each circle representing an oscillator and each line a coupling.


We also consider, instead of the stochastic non-autonomicity in Lancaster et al. (2016), a deterministic variation of the oscillation frequencies. This gives the glycolysis and OXPHOS phase equations as

[image: image]

respectively, where θGOni is the phase of the oscillator i due to network interactions, N is the number of glycolytic oscillators, M the number of OXPHOS oscillators, KX the relevant network coupling strength and Wij the weighting function between oscillators i and j.

The oscillators are organized into all-to-all couple networks, with a certain weight applied to each coupling. Each oscillator is further assigned an index, to create a ring structure where oscillator i and i+1 are considered neighbors, as are the first oscillator, index 1, and the final, index N. The weight of the coupling between these oscillators is determined by their indices, such that the larger the difference between the indices, the smaller the weighting of their coupling. This weighting function is defined, for [image: image], as
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and for [image: image] as
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where W is a constant to be chosen.

The glucose and oxygen drivers are

[image: image]

where θGOGi is the phase of glycolysis oscillator i due to glucose coupling. The inter-network interactions arise through coupling each network to the mean field of the other (Strogatz and Mirollo, 1991; Petkoski and Stefanovska, 2012; Petkoski et al., 2013). This mean field arises as the average of each individual oscillation, characterizing their collective state. It can be defined through the Kuramoto order parameter, [image: image], where Ψ is the phase of the mean field. rX = 1 hence indicates a totally ordered network with all oscillators at the same phase of their cycle, while rX = 0 represents a totally disordered network. The inter-network equations therefore are

[image: image]

where FX is the inter-network coupling strength and the average phase of network X is [image: image].

The four governing differential phase equations are hence

[image: image]

where ωGi(t) = ωG + AGsin(ωGmt + ti), and ωO(t), ωGO(t) and ωMO(t) have equivalent expressions for their respective elements, is the time-varying natural frequency of each oscillator i. In this paper we use the deterministic variation formulation for these frequencies, but any other time varying formulation, such as random noise, are also valid methods provided that the variation is slow. ωG is the mean frequency around which the non-autonomous frequency is modulated, AG is the amplitude of modulation of the frequency, ωGm is the frequency of modulation and ti is a perturbation of the modulation in time, taking a random number between 0 and [image: image]s. This perturbation ensures a distribution of frequencies within each element, while assigning the oscillators the same mean frequency and deterministic cycle of modulation.



2.3. Analyzing Synchronization

The phenomenon of synchronization between oscillators is a key part of understanding their dynamics. Oscillators can be considered synchronized when the difference between their phases remains constant. This is well-established in the context of permanent synchronization, where the phase difference between two oscillators does not ever change unless the parameters of the system change or a new influence is introduced (Pikovsky et al., 2001; Strogatz, 2001). Lucas et al. (2018) and Lucas et al. (2019) however found a different form of synchronization, intermittent, where a pair of oscillators can transition repeatedly between synchronized and unsynchronized states without the system being changed. This phenomenon has only been observed for non-autonomous oscillators, and only when examined over finite time periods. When observed in an asymptotic, averaging time scale, it can easily be mistaken for complete desynchronization.

For living systems, synchronization between oscillators represents a state of stability and cooperative working between oscillators. Synchronized oscillators are, to an extent, able to resist perturbation away from this state and coordinate their oscillations for a variety of ends, including temporally compartmentalizing conflicting processes (Tu et al., 2005; Lloyd et al., 2018). As in, for example, Lancaster et al. (2016), certain combinations of synchronization can be considered as the “healthy” state of a cell, and the parameters at which they do and do not exist can therefore inform us about the mechanisms of pathological transitions. We will apply these methods of synchronization analysis to our cellular metabolism model.



2.4. Numerical Simulations

We conducted analysis of the model to determine the impacts on the dynamics made by the additions of weighted networks and deterministic non-autonomicity to the Lancaster et al. (2016) model. These simulations involved numerical integration of the differential phase equations, defined in Equation (7). This was conducted using the inbuilt Matlab ode15s algorithm, which is a partially implicit numerical integration scheme using a variable integration step and evaluates errors through interpolated backwards differences (Shampine and Reichelt, 1997). The equations were integrated for a period of 10,000 s at a sampling frequency of 0.1 s. The first 5,000 s were discarded, assuming they were dominated by transient dynamics, and then the final 5,000 s analyzed to determine what, if any, modes of synchronization were present.

This analysis involved calculating the phase coherence, as defined in Bandrivskyy et al. (2004) and Sheppard et al. (2012), between the glycolysis and OXPHOS oscillators and their glucose and oxygen drivers, respectively, and between the network oscillators and the mean field driving of the other network. The phase difference between these components was also calculated, as was the Kuramoto order parameter of each network.

For autonomous systems, time series are defined as coherent at a phase coherence value of or close to 1. However in non-autonomous systems, series may be coherent yet exhibit a time-averaged phase coherence of significantly less than 1 due to their modulation in time away from their coherent mean. Additionally, slight numerical simulation errors and noise can make it impossible to attain a numerical phase coherence of precisely 1. Through observations of numerical simulations, we have therefore defined coherence greater than 0.9 and phase difference within a bounded 2π region for the entire 5,000 s as indicative of permanently synchronized oscillators. If the coherence value was greater than 0.9 but the phase difference unbounded, we instead categorized the oscillators as intermittently synchronized. Networks were considered synchronized when their time-averaged Kuramoto order parameter exceeded 0.5, the threshold at which a network is more ordered than disordered. This was considered permanent if the parameter varied by less than 0.2 over the entire 5,000 s, and intermittently if it varied by more than this. Similarly to phase coherence, the Kuramoto order parameter of non-autonomous oscillations will naturally vary in time due to frequency modulation, even in highly ordered networks, and so simulations indicated that only variations of greater than 0.2 are due solely to intermittency or disorder.



2.5. Experimental Comparison

We have also analyzed data collected by Amemiya et al. (2017) on glycolytic oscillations of starved HeLa cells. In this experiment, the optical NADH fluorescence of numerous cells was measured over time after glucose was added to their environment. We calculated the group phase coherence, as defined by Sheppard et al. (2016), of groups of cells around the culture. This coherence was further tested against 19 WIAAFT surrogates, as defined in Lancaster et al. (2018), such that any non-zero coherence is considered significant. We analyzed both groups near to one another and far from one another, to identify any significant differences between the two. These groups were constructed using hierarchical agglomerative clustering with the “complete” linkage method, which considers the furthest Euclidean distance between groups of cells when defining the clusters. The culture was 1400μm by 1200μm in area, and near groups were defined as having 300–400μm between their average positions, while the average positions of far groups were 900–1, 200μm apart.

Simulations of this experiment were also conducted, using some of the results of the group coherence analysis and the general numerical simulations. This was done by numerically integrating a realization of the system at a certain parameter set using a four step Runge-Kutta algorithm. The results of this and all the above methods are presented in the following section.




3. RESULTS

There are six possible modes of synchronization within our cellular metabolism model: glycolysis to glucose, glycolysis network, glycolysis to OXPHOS, OXPHOS network, and OXPHOS to oxygen. While it would not be possible for glycolysis to be synchronized to OXPHOS, but OXPHOS to not synchronize to glycolysis in an individual oscillator model, it is possible for a network to become synchronized to a mean field driving, without the network from which that mean field arises becoming synchronized to the network it is driving.

We examined whether each of these synchronizations occurred, and whether they were permanent or intermittent, at 2,500 different combinations of the parameters FGO and FMO, as defined in Equation (2). This is similar to the analysis conducted in Lancaster et al. (2016), and hence provides some understanding of the impact of each of the changes we have made in this model.

The parameters for which these simulations were conducted are given in Table 2. Most of these parameters, ϵG, ϵO, FGO, FMO, ωG, ωGO, ωMO, ωO, are identical to those used in Lancaster et al. (2016) to allow a direct comparison, revealing the effects of the changes from that model. KGO and KMO did not exist in the Lancaster et al. model, and they have been set to be equal to the other non-varied coupling parameters. The frequencies and amplitudes of modulation were determined by their ratio to the mean frequencies, as studied by Lucas et al. (2019). W may be set to 1 as the relevance of the weighted coupling is in the relative weighings between different oscillator pairs. N and M cannot be determined purely biologically: the glycolysis oscillators represent a collection of often-distributed glycolytic enzymes that are not realistically quantifiable, while the number of a mitochondria in a cell type can vary significantly (Wilson, 2017; Chaudhry and Varacallo, 2020). Instead, the network sizes are chosen such that there a sufficiently many oscillators to validate the mean field approximation (Strogatz and Mirollo, 1991), and not so many as to make computational simulation infeasible.


Table 2. Parameters of the non-autonomous weighted network simulations.

[image: Table 2]

We present first the analysis of the individual oscillator model of Lancaster et al. (2016) in Figure 4A, for parameters ϵ2 and ϵ1 as defined in Equation (1).


[image: Figure 4]
FIGURE 4. Analysis of the synchronization regimes at different parameter values, at parameter steps of 0.006 between each simulation, (A) for the modified Lancaster et al. (2016) model. (B) for the Lancaster et al. individual oscillator model with added deterministic non-autonomous frequencies and intermittent synchronization analysis. (C) for the unweighted network model. (D) for the weighted network model. Regimes are defined in Table 3.


Introducing each new element of our model in turn to examine this same parameter space, we first include our deterministic variation of the frequency and analyse for intermittent synchronization, as well as permanent, but otherwise maintain the Lancaster et al. (2016) model. The results are in Figure 4B, and the main regimes described in Table 3. This results in the splitting of the red region in the Lancaster et al. (2016) analysis into three regimes, two new: permanent synchronization between glycolysis and glucose only, and oxygen and OXPHOS only. The dark blue region, where only glycolysis and OXPHOS are synchronized, is also made significantly larger, and there are spots of intermittently synchronized regimes that appear only briefly throughout the parameter space.


Table 3. Synchronization regimes for each simulated model.

[image: Table 3]

The next step is to introduce unweighted networks of glycolysis and OXPHOS oscillators. The result is in Figure 4C. This introduces a new regime, where only the networks are internally synchronized, and converts the dark green regime, where there is no synchronization, into the even further increased dark blue regime. Once again, intermittent regimes are spotted briefly throughout the parameter space.

The final step in constructing our full model, is to weight the glycolysis and OXPHOS networks according to Equations (3) and (4). Figure 4D shows the results of this final simulation. This splits the new regime observed in the previous simulation into the purple, green and cyan regimes: the purple representing the same permanent synchronization within each network, the green a new intermittent synchronization of the OXPHOS network, and the cyan a new intermittent synchronization of the glycolysis network. The weighting reduces the size of the dark blue region, giving more space to the blue and light blue, and as in the previous simulations produces small regimes of intermittent synchronization.


3.1. Experimental Comparison

In Amemiya et al. (2019) constructed a model of cellular glycolysis to explain the glycolytic oscillations they had observed in HeLa cells. This model adopted an approach more similar to the mainstream discussed in the previous section. We therefore offer a comparison between this model and the one we have presented here, to help illuminate further the differences between our approach and ones more characteristic of the cellular modeling mainstream, applied in the context of this experiment.

The Amemiya et al. (2019) model constructs glycolysis as two main processes: the phosphofructokinase 1 (PFK) reaction and the pyruvate kinase (PK) reaction. The former is modeled as the first step, converting glucose and ATP into intermediaries, while the second is the last reaction, converting these intermediaries into ATP and pools of NADH and other products. The model focuses on the masses of the metabolites required for these reactions, from their entry into the cell to their consumption in the metabolic process. This technique consists of seven autonomous linear differential equations and twenty two parameters to model the glycolysis metabolic branch only, which contrasts to the four non-autonomous non-linear oscillator equations of Equation (7) and the thirteen parameters of Table 2 to model both the glycolysis and OXPHOS branches.

In addition to a measure of coherence within a network, the order parameter may also be considered the amplitude of the network's mean field. We can therefore consider it both an indication of the amplitude of our system, and the degree to which the glycolysis and OXPHOS networks are operating effectively. We introduce a modified Kuramoto order parameter s, where

[image: image]

which takes into account both networks. This parameter can be compared to the time series of NADH fluorescence from a single cell in the Amemiya et al. (2017) experiment, as NADH production in the cellular metabolic system is maximized when glycolysis and OXPHOS are able to act coherently. We provide this comparison in Figure 6, and this can be further compared to an equivalent output of the model in Figure 2 of Amemiya et al. (2019). The Amemiya et al. (2019) model considers just glycolysis, and is built on 7 autonomous differential equations tracking the change in quantities of a range of metabolites, relying on 22 parameters In contrast, the model we have presented here accounts for both glycolysis and OXPHOS through two types of non-autonomous differential phase equations, using 21 parameters.

The parameters used in this simulation are given in Table 4, where A = 9.511 × 10−7 and B = 1.931 × 10−3 are the coefficients of the quadratic and linear terms, respectively, of the curve in Figure 6B, as found by quadratic curve fitting. The modulation frequency of the glycolysis oscillations was extracted from group coherence analysis of the Amemiya et al. data, which found that for both cell groups close to and far from one another there was significantly coherent oscillations in the range 0.01–0.02 Hz. This analysis is presented in Figure 5. The other frequencies were selected to maintain the same ratio with the extracted glycolysis modulation as discussed in Lancaster et al. (2016). The coupling parameters were chosen to reflect the dynamics shown in the experimental time series and identified in Figure 4: the simulation begins with FGO = FMO = 0.6, and all other parameters at 0.025 to re-create the dark blue regime of synchrony between the networks found in Figure 4D, resulting in the initial amplitude spike as glucose is first introduced to the environment. Over the next 355.9s these couplings decrease according to the gradient of Figure 6B and ϵGO equivalently increases, as the damage the cells sustained during their starvation period inhibits their processes and reducing metabolite supplies leaves the system less stable to fluctuations in these quantities. This results in a trending decrease in the networks' amplitude and the emergence of oscillations. After 382.9 s the supply of glucose is almost entirely exhausted, flat-lining ϵGO at 0.7 and causing the oscillations to begin to degrade into more noise-like behavior. For the final 517s of the simulation FGO and FMO have reached 0 as the cells begin to die, their oscillations continue to diminish, and their NADH production dries up.


Table 4. Parameters of the HeLa experiment simulation.

[image: Table 4]


[image: Figure 5]
FIGURE 5. Surrogate tested coherence between groups of cells examined in Amemiya et al. (2017), calculated with the coherence algorithm presented in Sheppard et al. (2016). Red coloring indicates groups of cells far from one another, 900–1, 200μm distance between their average positions, and blue close to one another, 300–400μm distance between their average positions. The dimensions of the culture were 1, 400 by 1, 200μm. The solid colored lines are the median coherence of each pair of groups, and the shaded regions the range from the minimum to maximum coherence. The cell groups were constructed using hierarchical agglomerative clustering with the “complete” linkage method.



[image: Figure 6]
FIGURE 6. (A) Simulation of the HeLa experiment using a modified order parameter. (B) The time series of NADH fluorescence in a single cell in the Amemiya et al. (2017) experiment.


While the curve presented in Figure 6A depends on the initial phases of each oscillator, which are randomized, and therefore will not be identical from simulation to simulation, its oscillator features and overall trend are indicative of the parameters in Table 4. And while this simulation is not an identical reflection of the experiment in every feature, it is an indication of the capacity of our model to reproduce the oscillating nature of biological processes, and the ease with which it can be adapted to a plethora of different cells and circumstances.




4. DISCUSSION

The conversion of established metabolic models, such as that of Lancaster et al. (2016), to consider networks of processes offers both greater biological realism and a resulting transformation of the dynamics we expect to see from such models. The step from Figures 4B,C for example overhauls the parameter space, introducing entirely new regimes and destroying once-firm fixtures of the non-network model. It is clear from all of these results that networks result in an even greater area of the parameter space featuring synchronization, with the only regime of total desynchronization disappearing once networks are introduced, and the networks themselves never being desynchronized. This aligns well with the imperative of such biological processes to remain robust against significant external perturbations, and the expectation that these parameter values do not represent catastrophic departure from the healthy state of the system. More significant perturbations of the coupling parameters, to both higher values and the entire elimination of more coupling modes, are likely required to completely desynchronize the networks, which would represent even further departures from the healthy parameter states of the cell.

In healthy human cells, ATP is produced primarily through OXPHOS, with support from glycolysis. In our model, this may be represented by synchronization between the networks, and between the OXPHOS network and its oxygen driving (Lancaster et al., 2016). Internal synchronization of both networks is also required to characterize a healthy condition: disregulation within the metabolic processes is a key indicator of a malfunctioning cell. This state is represented in the bottom right of each graph in Figure 4, but is significantly diminished in area with the addition of deterministic frequency modulation from Figure Figures 4A,B. A cancerous state, may be indicated by an opposite state: a mode switch to the dominance of glycolysis, known as the Warburg effect, is reflected by synchronization between the networks and between glycolysis and glucose, but not OXPHOS and oxygen (Lancaster et al., 2016). Due to the decreased relevance of OXPHOS to the metabolic process in cancer, it may be represented by either ordered or disordered OXPHOS networks. This regime is found in the top left of each of Figure 4, similarly decreasing in area between Figures 4A,B as with the bottom right regime.

Network models also offer greater potential for oscillator systems: while reducing oscillating differential equations to just their phase provides a much simpler system that still contains the key dynamics, only at the mesoscopic level of networks of many oscillators can the system amplitude be rebuilt. Further work on this model could therefore provide not just an order parameter of the network indicative of its activity, but an amplitude of its production.

The turn to deterministic non-autonomous frequencies and finite time synchronization analysis similarly promises a significant change to the dynamics of metabolic models. Intermittent synchronization allows greater nuance between the states of “healthy” and “pathological,” more reflective of the complexity of living systems, yet further ways for the processes to stabilize in spite of significant perturbation and ever more complex and effective ways for them to compartmentalize. However, with the introduction of this non-autonomicity comes greater challenges for numerical simulations: the numerical integration of non-linear oscillating differential equations is an already delicate task, and the addition of another dimension of time sensitivity requires alternative methods.

Further work with more sensitive numerical integration algorithms and more sophisticated methods for identifying intermittent synchronization would be likely to find a far greater role of the phenomenon in the model's parameter spaces, and further clarify exactly which dynamic we can expect to find at each parameter combination. The integration scheme used in this work has resulted in multiple “islands” of synchronization regimes, which are unrelated to the regimes at all neighboring parameter values, and yet are reproduced under the same simulation conditions. Non-autonomous oscillations pose a particular challenge to numerical integration schemes due to their two highly distinct frequency modes. Schemes designed to adapt to this situation may be able to provide greater clarity on our model, with which we may be able to further identify parameters leading to pathological states and more complex dynamics within the model.
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Actin is the major cytoskeletal protein of mammal cells that forms microfilaments organized into higher-order structures by a dynamic assembly-disassembly mechanism with cross-linkers. These networks provide the cells with mechanical support, and allow cells to change their shape, migrate, divide and develop a mechanical communication with their environment. The quick adaptation of these networks upon stretch or compression is important for cell survival in real situations. Using atomic force microscopy to poke living cells with sharp tips, we revealed that they respond to a local and quick shear through a cascade of random and abrupt ruptures of their cytoskeleton, suggesting that they behave as a quasi-rigid random network of intertwined filaments. Surprisingly, the distribution of the strength and the size of these rupture events did not follow power-law statistics but log-normal statistics, suggesting that the mechanics of living cells would not fit into self-organized critical systems. We propose a random Gilbert network to model a cell cytoskeleton, identifying the network nodes as the actin filaments, and its links as the actin cross-linkers. We study mainly two versions of avalanches. First, we do not include the fractional visco-elasticity of living cells, assuming that the ruptures are instantaneous, and we observe three avalanche regimes, 1) a regime where avalanches are rapidly interrupted, and their size follows a distribution decaying faster than a power-law; 2) an explosive regime with avalanches of large size where the whole network is damaged and 3) an intermediate regime where the avalanche distribution goes from a power-law, at the critical point, to a distribution containing both 1) and (ii). Then, we introduce a time varying breaking probability, to include the fractional visco-elasticity of living cells, and recover an approximated log-normal distribution of avalanche sizes, similar to those observed in experiments. Our simulations show that the log-normal statistics requires two simple ingredients: a random network without characteristic length scale, and a breaking rule capturing the broadly observed visco-elasticity of living cells. This work paves the way for future applications to large populations of non-linear individual elements (brain, heart, epidemics, … ) where similar log-normal statistics have also been observed.
Keywords: random network, avalanches, log-normal distributions, power-law, cell plasticity, cytoskeleton ruptures
1 INTRODUCTION
Avalanche processes are very common in living systems, such as firing rates in brain [1], fractures in living cells cytoskeleton (CSK) [2], but also in amorphous [3] and random media [4], or earthquakes. Actually, all the systems that can be considered as composed by elementary threshold units, which are connected and can transfer information to each other, are subject to avalanches. Indeed, as soon as a unit reaches its threshold it can cause other units to do the same in turn.
In statistical physics, avalanches are often treated in the framework of critical systems. This is justified by the observation of critical behavior of avalanche statistics, with distributions usually approximated by power-laws, at least for some length or energy scales. Power-laws are reminiscent of self-organized criticality [5], and are ubiquitous for avalanches in solids and amorphous materials [6–9], describing for example the avalanche sizes of a granular material falling apart. Self-organized criticality has also been associated to neural dynamics (first in [10] and later in [11, 12]), showing widely spread power-law statistics with a typical exponent invariant among different species [12] and in different environmental situations. Lately, sleep-wake micro-architecture and regulation have been identified as non-equilibrium processes to maintain a critical state of the brain network [13, 14]. In all these examples, fluctuations, and thus their distribution, play a major role in triggering the system to the critical state. Recently, some doubts about the ubiquity of power-law distributions have been advanced [15], pointing out that many real system’s data are actually better fitted by other skewed, fat-tailed distributions, such as the log-normal. This is true for network degree distributions, in social, biological or technological networks [15], but also for avalanche statistics, in neural networks [16, 17] or living cells cytoskeleton [2]. Indeed, the growth of a network can be seen itself as an avalanche process, thinking for example of the preferential attachment rule [18]. In general, power-law distributions are difficult to irrefutably hold for any kind of real data. Remarkably, power-law and log-normal distributions are closely related to each other and small variations in the generative mechanisms can lead to one or the other [19, 20].
Nevertheless the power-law, with some adaptations, has been the largely dominant model in the last decades for all data showing a fat-tailed distribution, either for network theory or for avalanche processes. There are mainly two reasons for the large predominance of the power-law modeling up to now: 1) because much is known about the modeling of power-laws, thanks to the statistical physics of phase transitions, leading to an ease of data treatment and interpretation. Concerning network science theory, the same is true for scale free networks [21], justifying a power-law interpretation of real data distributions, while models for other fat tail distributions do not exist so far [15, 22]; 2) due to the difficulty to fit real data with fat-tailed distributions, because a power-law tail is only visible beyond a given threshold of the random variable, and not in the whole domain. Actually, any skewed distribution can be approximated by a power-law, if only a finite and small scale range is taken into account (see Figure 1C). In Figure 1, comparing the distributions of hippocampal firing rates in a linear scale (Figure 1A), in a log-lin scale (Figure 1B) and in a log-log scale (Figure 1C), we realize that focusing on the tail of the distribution in a log-log representation increases the risk of missing some essential features of the underlying process [17].
[image: Figure 1]FIGURE 1 | (A) Non-normalized distribution of firing rates of hippocampal CA1 pyramidal neurons during slow-wave sleep. The firing rate is measured in Hz; (B) Distribution (non-normalized) of the logarithm of the firing rate as in (A); (C) Distribution of the firing rate as in (A) in a log-log plot. Notice that by taking into account only the tail of the distribution (black dots), the distribution could be fitted by a power-law, even though we may be missing some important information; (D) Distribution of the spine size in arbitrary units (AU) (top), and probability density of the logarithm of the spine size (bottom); (E) Distribution of the new number of Ebola cases per week (week incidence); (F) Probability density of the lag times at which 2 vehicles waiting at rest at a traffic light pass the stop line. This is what is called headway. The distributions are reported for the lag between two successive vehicles considering the second position (top) and the fourth position (bottom) of the line: for instance the bottom plot describes the distribution of the difference of times at which the third and the fourth vehicle of the queue cross the stop line. All times are given in seconds; (A) (B) and (C) are adapted from [17] (D) is adapted with permission from [23] (E) is reproduced with permission from [24] and (F) from [25].
The point 2) led to an ongoing debate about what is the most appropriate fitting distribution for the considered data. Some concepts such as low-degree saturation and large-degree cutoff have been developed for example in network-science theory, in order to account for important characteristics of real systems, such as their finite size [22]. This solves point 2), adapting the power-law distribution to be applied to real systems. On the other hand, point 1) reveals the need of an alternative modeling framework which could validate the choice of other fat-tail distributions, in order to understand the underlying mechanisms leading to one distribution or the other. In the same way as degree distributions of networks, so far there are no models accounting for log-normal distributions of avalanches on networks, while there is strong evidence that log-normally distributed avalanches exist. In Figure 1, we show a few examples of processes related to an avalanche dynamics showing log-normal distributions: the distribution of the spine (small dendritic protrusion crucial in the transmission of electrical signals) sizes in neural networks [23] (Figure 1D); the distribution of new numbers of Ebola cases per week [24] (Figure 1E); the distribution of lags between two consecutive vehicles to cross the stop line at a crossroad [25] (Figure 1F).
Beyond power-laws and log-normals, other skewed distributions are sometimes used to model biological data. For example, it is worth mentioning the Gamma distribution used to model inter-spike intervals of neurons [26] or the inter-beat interval variation of heartbeats [27, 28]. We should notice that statistically it is not always easy to distinguish log-normal from gamma distributions. In any case both are alternative to the power-law framework.
Originally motivated by the experimental observation of log-normal statistics in avalanches of fractures of the CSK of living cells [2, 29], we focus in this paper on the modeling of log-normal avalanches on random networks. Our model is inspired by our previous 1-D model [2] and by works on epidemics spreading on networks [30, 31], in our case the population is represented by actin filaments, being in two possible states: cross-linked or not. The network structure models the CSK structure and the avalanche is a model for rupture mechanics in living cells, when plastic deformations are considered. Given that we do not consider here active cross-linking carried out from myosin filaments, the same framework can be applied to other cross-linked polymers with glassy dynamics. Therefore similar conclusions can be applied to amorphous glassy materials, like polymers, metallic glasses or colloidal glasses, which all share slow dynamics, and long mechanical relaxation delays [32]. This can be useful for understanding all processes not showing good power-law statistics, and in general what makes a distribution shifting from power-law to log-normal, highlighting the characteristics that a process needs to have to deviate from the most common power-law modeling.
2 EVIDENCE FOR LOG-NORMAL STATISTICS IN CELL MECHANICS
2.1 Brief Introduction on Cytoskeleton Mechanics
Among all the fascinating properties of living cells, we must emphasize their ability to constantly remodel their structural organization to withstand forces and deformations and to promptly adapt to their mechanical environment [33, 34]. This versatility is fundamentally required for many vital cellular functions, such as migration, mitosis, apoptosis or wound healing, and an alteration of the cell mechanical properties can participate in pathogenesis and disease progression, such as cancer [35, 36].
The mechanical properties of living cells are mediated by their CSK, a dynamic network of filamentous proteins composed of actin filaments, microtubules, and intermediate filaments [37–42].
We focus here with more details on the actin cytoskeleton. These filaments are the most relevant for our modeling, since they cover the perinuclear zone of cells, which is the cell compartment poked by our micro-indenting tips. They present a polar structure [43], a quite fast, with respect to global active reorganization processes, polymerization rate (larger than one per minute) and a depolymerization rate a little slower, of the order of one per a few minutes [44]. Moreover they can build a cross-linked network whose mechanical properties depend in general on the cross-linker proteins density and on the network structure.
Actin filaments networks are designed by a wide variety of actin-binding protein cross-linkers, which can be passive or active, i.e., activated by ATP (Adenosine Triphosphate) hydrolysis, the latter having a slower dynamics (time scale of tens of minutes) [37–42, 45, 46]. This cross-linked network gives to living cells some properties of soft-glassy materials [47, 48], such as the weak power-law dependence of the shear relaxation modulus G with both time and frequency. This behavior was first modeled by an empirical law known as structural damping from material engineering [49] and later on associated to the fractional visco-elastic Kelvin-Voigt model (a springpot and a dashpot in parallel), see e.g., [50]. The power-law decay (in time) is quite impressively not depending much on the particular experimental technique, neither on the different type of cell: the decay exponent α mostly belongs to the interval [0.2–0.4] [47, 51–54]. Notice that [image: image] corresponds to a purely elastic response and [image: image] to a purely Newtonian fluid response. Other models for cell rheology have been used (see for instance [50, 55]), but they all require a fractional visco-elasticity to capture the cell response, resulting in a power-law decay [image: image] or in more complicated functions such as the Mittag-Leffler function [56], which can be approximated for [image: image] by the stretched exponential [57]:
[image: image]
For our purposes the three functional forms will be considered as equivalent, since they all account for a slow relaxation dynamics given by the glassy structure and thus a memory of the past deformation.
Considering cells as soft glassy materials, we can extrapolate that they are constructed from a disordered structure of connected discrete elements by weak attractive interactions. Each of these elements would be in a metastable state [48], allowing cells to flow, and therefore prone, for instance by an external forcing, to generate avalanches of fractures, which are typically out of equilibrium processes. Indeed, by tuning the proportions of passive or active actin-binding proteins, and reorganizing the network structure, living cells can control their power-law (scale-free) CSK rheology [37, 58]. Interestingly, cells exhibit both solid and liquid-like properties. Solid-like behavior is associated with strongly cross-linked actin filaments which resist sliding and accumulate tension [44, 59], while weakly cross-linking proteins produce actin filaments which slide more readily, enabling the network to flow as a liquid [60].
This paradox can be solved within the theory of soft glassy materials, by considering that, upon external deformations, the CSK of a living cell can undergo deep structural transformations such as the unfolding of protein domains, the unbinding of cytoskeletal cross-linkers, and the breaking of weak sacrificial bonds. All these structural changes are inelastic (non-reversible in a strict sense), they dissipate locally the elastic energy of the CSK network (structural damping) [61, 62].
The ability of cells to switch quickly from fluid-like responses to more brittle solid-like responses [2] is directly linked to the interplay between stability/rigidity and flexibility, in a way similar to what happens in neural networks [63]. This fast switch is likely driven by avalanche processes, which allow fast transfer of information. At the same time, such events reduce the connectivity of the CSK and may result in permanent plastic deformations or even more dramatic irreversible failures [38, 39] which, for instance, could be at the origin of the recently observed incomplete shape recovery of living cells after repeated creep [64]. These effects are reminiscent of those in cyclically loaded solids which can lead to fatigue-induced failure [4, 6, 7].
The observation of universal relationships governing cell (and not only) rheology is evocative of the universality of statistical mechanics systems, such as the Ising model [65], in which individual details of the filaments and particular molecular interactions are unimportant to identify global behaviors.
2.2 Poking Living Cells With a Sharp Atomic Force Microscopy Tip
Previous experiments done in our group motivated this study [2, 66, 67]. We introduce here the main characteristics of these experiments useful for the modeling. Atomic force microscopy (AFM) was operated in force-spectroscopy mode, therefore giving as result the force indentation curves, i.e., the plot of the instantaneous force against the indentation length inside isolated adherent cells. The indentation was stopped at a certain set-point force, after which the motion of the AFM tip was inverted. This was achieved after some calibration steps whose details can be found in [2, 66, 67]. It was important to carry out this indentation with very sharp tips (pyramidal or conical) with a tip curvature radius of only a few nanometers, allowing their penetration inside the meshes of the cross-linked network. The indentation was performed at constant velocity [image: image], and therefore constant strain rate, so that one indentation-retract experiment lasted for only a few seconds.
The cell compartment poked by the AFM tip was the region just above the nucleus (perinuclear), which besides being better recognizable, is also very rich of actin stress fibers and cross-linked filaments. As previously noted [2, 66, 67] this indentation caused locally a strain stiffening, signature of an increased tension in the network, eventually resulting in local singularities in the force indentation curves, interpreted as avalanche of fractures. We were able, thank to the wavelet transform mathematical microscope [68–70], to quantify these singular events and characterize them, by their force drop, indentation length and finally energy released [2].
2.3 Rupture Event Statistics From Two Primary Cell Lines
Some examples of the statistics of these singular fracture events, together with global shear relaxation moduli distributions are shown in Figure 2. We can see that both the force drop [image: image] (Figure 2A), caused by the avalanche of failures, and the indentation length [image: image] (Figure 2C) over which the avalanche takes place are log-normally distributed (the plots show the distribution of the logarithm of the variable, then a log-normal in a log-log representation is a parabola). For the indentation length [image: image] we could separate two different regimes of avalanches both of which approximately log-normally distributed. This log-normal statistics was found with different cell lines: in Figure 2A are shown myoblasts (red), myotubes (blue) and ATP depleted myoblasts (black), while in Figure 2C are shown immature CD34+ hematopoietic cells (blood cells) healthy (blue) and leukemic (red). It follows that the energy released [image: image], not shown here, is also log-normally distributed. The same log-normal distribution is also observed on global quantities such as the global shear relaxation modulus [image: image] (see Figure 2B,D), extracted by the identification of the whole force indentation curve with the Sneddon model [71].
[image: Figure 2]FIGURE 2 | (A) Probability distributions of the logarithm of the local force drops [image: image] estimated from local disruption events collected from sets of myoblasts (red), myotubes (blue) and ATP depleted myoblasts (black); (B) Probability distributions of the logarithm of shear relaxation modulus [image: image] estimated by a parabolic fit of the Force-Indentation Curves (Sneddon model [71]), from healthy (blue) and leukemic (red) immature CD34+ hematopoietic cells; (C) Distribution of the indentation lengths of the rupture events detected from healthy (blue) and leukemic (red) immature CD34+ hematopoietic cells; (D) Probability distributions of the logarithm of shear relaxation modulus [image: image] on the same sets of cells as in (A). Note that plots (A) and (C) are in log-log scale and plots (B) and (D) are in semi-log scale. All the logarithms are here in base 10. Panels (A) and (D) are adapted from [67] (B) from [2] and (C) from [2].
We speculate that the log-normal statistics observed in different living cell types on macroscopic elastic moduli (see also results on breast tissue cells from [55]) is strictly connected to the microscopic processes taking place in the polymer network, i.e., avalanches of reorganization fractures. Indeed, the log-normal statistics of avalanches would reflect in a log-normal noise (skewed fluctuations are observed also e.g., in [55]) biasing the estimation of the global elastic moduli. We can thus interpret the shear-relaxation modulus as the response of a sum of microscopic avalanches, as results of a dynamical reorganization of the network structure. This interpretation is supported by Sollich’s theory of soft glassy rheology [48], in which the glassy polymer is interpreted as composed of individual units in metastable energetic states (with different energy depths) and in which rearrangements are due to disordered interactions summarized by an effective temperature.
3 RANDOM NETWORK PRESENTATION
3.1 A Random Network Model for the Cell Cytoskeleton
Let us now introduce our random network model for the cell CSK. We consider a network with N nodes, being identified as the actin filaments, connected by randomly assigned (in a way explained hereafter) links, identified as the cross-linker proteins. In light of what we said previously about CSK mechanics (see section 2.1), if we want to build a random network model for the cytoskeleton we need the network to be in a percolating regime. Indeed, since a cell can be seen as a soft glassy material there needs to be a giant, percolating cluster of connected nodes, allowing for the transition between a fluid material and a glassy one. A second important condition that we ask the network to satisfy is the correct degree distribution (i.e., the distribution of cross-links per filament) as observed in real living cells CSK. Unfortunately, precise data on this distribution do not seem to be available to our knowledge. However, from the literature [72], we can deduce that the degree distribution would not be well approximated by a power-law and therefore the CSK could not be modeled as a scale-free random network. There is also another reason why the scale-free network may not be a good model for cell CSK: it has been proved [73] that on scale-free networks the critical threshold for an epidemic is exactly 0, meaning that avalanches would always affect a finite proportion of the population (in the large N limit), thus implying irreversibly a large proportion of cross-linkers, scaling as the size of the system. This is not what is observed for avalanches of fractures in cells, since their distributions are of finite size.
For all these reasons, we propose a Gilbert [74] random graph to model the CSK structure. A Gilbert graph is a variant of the Erdős-Rényi graph [75], and the two graphs are equivalent in the large N limit. The network is constructed in the following way: 1) we define a network of N isolated nodes, with N fixed; 2) we connect each possible pair of nodes with probability [image: image].
This process creates a network with a binomially distributed degree of connections:
[image: image]
where the binomial factor takes into account all the possible pairs of nodes having a degree of k, out of all possible [image: image] links coming out from a node. The probability [image: image] indicates the probability that a randomly picked node has k links. The average degree of the random network can then be computed:
[image: image]
In the limit of [image: image], keeping [image: image] fixed, the binomial degree distribution is well approximated by the simpler (one parameter) Poisson distribution, noted [image: image], with parameter [image: image]. The average connectivity [image: image] will be a control parameter of our model, since its value is not well-known from experiments.
The average global number of links of the network, and thus of cross-linkers available for the avalanche, can also be computed by multiplying the probability of connection of pair of nodes [image: image] with the number of all the possible pairs (by excluding double counting):
[image: image]
and then for a network of [image: image] nodes, and [image: image], the average number of links is [image: image]. The distribution of the number of links is also a binomial.
Before moving on and describing the avalanche process, we would like to observe some characteristics of this network useful for our modeling. From probabilistic arguments it can be noticed (see [75]) that, in the limit of [image: image], with fixed [image: image] (as in all the simulations of this article), the fraction u of nodes not belonging to the largest connected component of the network is given by the transcendental equation:
[image: image]
This can be found by considering that the fraction of nodes u is composed by the sum of two separated events. A node i not belonging to the giant component is: i) either disconnected to an other node j because the link [image: image] does not exist, and this happens with probability [image: image], ii) or connected to a node j that also does not belong to the giant component, and this occurs with probability [image: image]. Therefore [image: image], because j can represent [image: image] different nodes. From Eq. 5 it can be proved [22, 75] that for [image: image] a giant percolating cluster exists and its size scales as the network size N.
At this point we can work out the probability [image: image] that we pick up a random link not belonging to the giant cluster:
[image: image]
where the right hand side is the ratio of the average number of links not belonging to the giant cluster [image: image] and the average number of links of the network [image: image].
On this network structure, an avalanche of ruptures is described by the following algorithm. Notice that while the probability of connection [image: image] remains constant, the probability of breaking [image: image] can depend on time, and therefore is able to capture time relaxing processes.
• we pick at random a link of the network and we break it (removing it from the network), this initiates the avalanche
• look for the links coming out from both extremities of the broken link;
• we break all of them with a probability [image: image], where at the first time step [image: image];
• we consider the links coming out from the ones broken at the previous time step from both extremities and break them with probability [image: image].
We repeat the last point and increase the time step by one unit, until the avalanche stops when there are no more links that break, either because the probability of breaking is too low or because of the damage caused to the network, which will have decreased the abundance of unbroken links. The time at which the avalanche stops, [image: image], defines the duration of the avalanche and the total size of the avalanche Z is the total number of broken links. Here, we focus on the distribution of Z, which is, up to some conversion factors, equivalent to the energy released during the avalanche. Overall the stochastic process has two sources of randomness: the random structure of the network and the avalanche process itself which is a stochastic process.
Rupture avalanches propagate on networks that remain static during the rupture process, since actin polymerization and active cross-linkers act on time scales much longer than the time scale of the experiment, which is of the order of 1 s. Nevertheless this assumption is relaxed in section 3.4, to account for the fact that cross-linkers can be restored on very short time scales even by physical contact.
Statistically speaking an avalanche is a binomial process of probability [image: image] of success, with a random number of trials (the number of available links). If the number of available links were always drawn from the same Poisson distribution, with parameter [image: image] (the factor 2 is because we consider both extremities of a broken link), we could conclude that the distribution of broken links at time t is also a Poisson distribution with a new parameter [image: image]. The choice of the Poisson distribution is motivated by the degree distribution, which, as we said, is approximately Poissonian in the [image: image] limit keeping [image: image] fixed, and the parameter [image: image] corresponds to the average number of links available at the first time step. This can be shown by applying the law of total probability to the probability of having k broken links:
[image: image]
The probability of having k broken links is then given by the product of the Poisson distribution, giving the probability of having n links available for breaking, times the binomial distribution giving the probability of having k successes out of n trial. To include all possible disjoint events we have to sum over [image: image], up to [image: image], which in the considered limit tends to infinity.
The problem with this reasoning is that the number of available links is not drawn from the same distribution as far as the avalanche moves forward. Indeed the number of available links depends on the particular path of the avalanche, since the broken links disappear from the network. Therefore as far as the avalanche progresses, the number of available links may not even follow a Poisson distribution, making the analytic expression of the number of broken links impossible. The same is true if we consider the restoration of crosslinks, as in section 3.4, because the avalanche process introduces an effective and uncontrolled time dependence of p on t, by changing the actual number of available links. This effect is the main reason why we do not find perfect log-normals in our model, as in our first 1D model [2] or related models without a network structure [20]. Actually, this was checked on a random multiplicative process with a multiplicative factor drawn at each time step from the same distribution as in Eq. 7 for different parameters [image: image] proving that, as expected from [20], there is a region where the avalanche size distribution is exactly log-normal.
We considered [image: image] in all our simulations, in order to have a giant component in the network, as explained previously. We also checked the effect of picking the first link initiating the avalanche out of the giant component. Indeed, from Eqs 5, 6 we can compute [image: image]. For [image: image] for instance [image: image] is already irrelevant for our results, and for [image: image], [image: image], is completely negligible. This was checked numerically in all the following simulations and the results do not change by running the avalanches only on the giant component. We should also mention that avalanches containing only the first randomly chosen link are not taken into account for the statistics, this making even more negligible the effect stated above.
It is conceptually interesting to note that the proposed avalanche model is actually equivalent to an epidemic model running with probability [image: image] on the line graph of the original network, i.e., on the graph obtained by transposing links into nodes and nodes into links.
Simulations of avalanches were done with self-written codes using open source software R version 4.0.2 and Python 3.6. Figures and data analysis were done with Python 3.6 using basic packages and a customized version of the module powerlaw [76] with a corrected computation of the cumulative distribution function and added graphical features. For all the following simulations it was checked that changing the size of the network N ((but keeping the same values of [image: image]), the phase diagram did not change significantly, showing always the same types of distribution for [image: image]. It was also checked that running the avalanche algorithm on the same network for each stochastic realization (of course with all links restored), was equivalent, since the first initiating link is chosen randomly, to run the avalanche on a different network for each realization. The first option is computationally faster and was then used for detailed results.
3.2 Avalanche Statistics With Constant Probability of Breaking
First we implemented the avalanche model with a probability of breaking [image: image] constant with time. We detected three regimes with different distributions of the avalanche size. A phase diagram is shown in Figure 3B. The three phases are pop (blue), mixed (purple), explosive (red). The pop regime presents avalanche size distributions which decrease faster than a power-law, containing then small avalanches, with a low number of broken links of less than 100. On the other hand the explosive regime is composed of large avalanches, scaling as the system size and then causing global damage to the network. In between these two regimes the mixed regime is composed of avalanches distributions made of a mixture of the two previous regimes.
[image: Figure 3]FIGURE 3 | (A) Picture of the random network model, embedded in a sphere. Notice that this is just a choice of representation, the shape of the network is not fixed: our network model is only a set of connections, it can be embedded in any metric space. Dots are the nodes of the network and lines are the links. For better visibility the network has here only [image: image] nodes and a probability of connection [image: image]; (B) Phase diagram of the possible resulting avalanche size distributions with respect to the model parameters [image: image] (the average number of connections of the network) and p (the probability of breaking a link). The three identified regimes are: pop (blue), which has an avalanche distribution statistically compatible with a log-normal tail; mixed (purple) where a mixture of the two different behaviors, i.e., big large size avalanches and pop avalanches, are observed at the same time; explosive (red) where almost only big avalanches spanning all the network size are observed. For details about the detection of the transitions between regimes see text. The number of nodes of the network is [image: image] and the statistics is done out of [image: image] repetitions. Symbols indicate the points taken to show some distribution examples in the remaining panels. Star has coordinates [image: image], triangle [image: image], diamond [image: image] and doughnut [image: image]; (C) Avalanche size distribution exactly at the transition between pop and mixed. At this transition the distribution is a power-law for a range of almost 3 decades, more precisely the distribution is a truncated power-law, given the finite size of the system. Dots show the simulation distribution and the dashed (resp. full) line shows the maximum of likelihood fit with a trucated power-law (resp. power-law) distribution; (D) Avalanche size distribution in the pop regime. Dots show the simulation distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal (resp. truncated power-law) distribution; (E) Typical distribution in the mixed, regime, the inset shows a zoom on the distribution of large size avalanches not visible in the main panel; (F) Typical distribution in the explosive regime.
A likelihood-ratio test, based on the ratio of the likelihood of the model fitted by two different distributions, can be done to compare possible outcome distributions [77]. In Figure 3D, we show the maximum of likelihood (ML) fit for the log-normal distribution and the truncated power-law distribution, with density function [image: image] (a power law with an exponential cutoff with λ decay rate and k normalization constant).
When applying the likelihood-ratio test to compare the two distributions it turns out that the log-normal is always a better fit than the truncated power-law. For the example of Figure 3D, the p-value is [image: image], rejecting the null hypothesis that the likelihood ratio is equal to 1, and indicating that none of the selected distributions is preferable. This result is coherent with those obtained on 1-D models in [20], where for low multiplicative factors, the size distribution is approximately log-normal, with the difference that here the process is discrete (not allowing sizes [image: image]). Therefore we have only the right tail of the distribution, while in the 1-D models, the multiplicative process is continuous. We can thus conclude that in the pop regime the distribution is statistically compatible with a log-normal tail.
The boundary between the pop and mixed regimes is computed by an algorithm detecting for which parameters [image: image] and p the avalanche size distribution is better fitted by a truncated power-law over the whole domain. We chose this criterion because power-law distributions are typical of critical points and we wanted to include the finite size cutoff (see for instance Ch. 4 of [23]). Moreover, when comparing the tails of the distributions (by using the algorithm described in [78] and implemented in [76]), at the boundary the most likely distribution is the truncated power-law, with always a very significant p-value [image: image]. The null hypothesis is again of a likelihood ratio equal to 1 (between log-normal, exponential, power-law). In Figure 3C is shown a typical distribution of the avalanche size at the boundary between pop and mixed. For comparison we also show the maximum of likelihood fit with a power-law.
In the mixed regime the size distribution consists of two separated parts: a small size part similar to the pop regime distribution and a large size part corresponding to a very narrow bump. In Figure 3E we show the full Z distribution in a log-log plot, in the inset is shown in detail the distribution of the large avalanche size narrow bump, represented by only one dot in the large field view. In this regime, moving toward the explosive regime causes a shift to the right of the large avalanche size bump and a decrease of importance of the small avalanche size part. Notice that the large avalanche size bump is not disappearing in the large N limit: if we take a distribution in the mixed regime for a given p and k and we increase the size of the network N (we did it for [image: image]) the proportion of avalanches in the bump stays the same, even though the bump shifts to the right, because those avalanche sizes are proportional to the system size.
Finally the explosive regime, of which a typical distribution is shown in Figure 3F is detected by the criterion of less than 1% of small size avalanches. In this regime the distribution of avalanche sizes is a very narrow bump having a size comparable to the number of links of the system. The integrity of the whole network is therefore compromised and only a few sparse links are intact.
Note that even though it could be tempting to say that the bump in mixed and explosive regimes is a log-normal distribution (remember that in a log-log representation a log-normal becomes a parabola), this cannot be assessed, because the distribution is very narrow and therefore a log-normal cannot be distinguished from a normal distribution. In none of the three regimes observed so far we can recognize avalanche size distributions similar to those observed experimentally, i.e., approximately log-normal and of finite size. Nonetheless, we observe that the distributions of the pop regime (showing a log-normal tail) are strikingly similar to those observed for avalanches of firing rates in freely behaving rats in [16]. In that work, even though the firing rate distributions were also claimed to follow a log-normal tail, it was justified from data undersampling, keeping the hypothesis of a critical state (and therefore power-law distributed). Our simulation results suggest another possible reason of the observed distributions, as given either by a small connectivity of the network or by an extremely fast absorption of the avalanches stress here the fact that our network model does not have a metric, hence no concept of distance, it is only a network of interactions. It does not matter if the links are close in space (see Figure 3A), but only if they format of <<>>. However, it is possible to embed the random network model in any metric space and in any shape, considering for example nodes that are connected to each other closer than others, without impacting our results: as far as the interactions follow this structure the shape of the network does not matter. With this interpretation the small pop avalanches in the mixed regime can be thought as a boundary effect: they represent avalanches where the starting randomly chosen link is in a less than average connected region.
3.3 Avalanche Statistics by Introducing Visco-elasticity
We now introduce the exponential relaxation coming from fractional visco-elasticity (see section 2.1). We let then the probability of breaking be dependent on time in the following way:
[image: image]
The [image: image] coefficient in Eq. 1, is here embedded in the constant τ. This relation imposes some temporal correlation during the avalanche, added to the interaction structure. Conceptually, Eq. 8 assumes that the local fracture mechanics follows the same mechanical response as the global network given by the shear-relaxation modulus (see section 2.1). It is important to note that the limit [image: image] is equivalent to setting [image: image], since in both cases [image: image] loses the dependence on time and we recover the results of section 3.2. We can thus interpret the model in section 3.2 as a purely elastic response.
In Figure 4 we show the results after introducing a time dependent [image: image]. The phase diagram also shows three different regimes. The pop and the explosive regimes have the same statistics as in section 3.2, and an example of them is shown in Figure 4C,D.
[image: Figure 4]FIGURE 4 | Phase diagram of the resulting avalanche size distributions with respect to the model parameters [image: image] and [image: image], the constant pre-factor of the breaking probability (see Eq. 8). The time constant is [image: image] and the rheological exponent is [image: image]. Symbols indicate the points taken to show some distribution examples in the remaining panels. The pop (blue) and explosive (red) regimes are the same as in Figure 3, while the mixed regime changes, becoming composed of a broader bump, approximately log-normally distributed (in magenta), together with some small avalanches reminiscent of the pop regime. This regime is called here log-normal bump (magenta); (B) Example distribution of the log-normal bump regime with coordinates at the diamond point [image: image]; (C) Example distribution of the pop regime, with coordinated at the triangle point [image: image]. Dots show the simulation distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal (resp. truncated power-law) distribution; (D) Example distribution of the explosive regime, with coordinates at the doughnut point [image: image].
The important difference introduced by a fractional visco-elastic relaxation is in the mixed regime, which shows now the emergence of an approximately log-normal finite size bump, and it is thus called the log-normal bump regime, in magenta. Indeed the very narrow bump observed in the non-visco-elastic model broadens here due to the time relaxing probability and it is not at a size comparable to the size of the system, therefore not causing a global destruction of the network. Observing Figure 4B we can see that there are still some small avalanches of pop type in the distribution. These may still be an effect of picking low reticulated zones as starting point of the avalanche, but as previously said, even running the avalanches only on the giant cluster they are still present. Notice that while moving toward the red region the log-normal bumps shrinks and moves to larger sizes becoming then similar to the distribution in Figure 3E.
The boundaries between the regimes are detected with the same algorithms as described in section 3.2. Notice that here we can let the probability [image: image] become larger than 1, since the stretched exponential decay will always make [image: image] converge toward 0. Simulations in Figure 4 are shown for [image: image], and the influence of varying t has also been studied. Increasing τ produces a shift of the distribution to the right, since the avalanche tends to last longer. However for having a log-normal bump in the size distribution, τ must not be too large, because otherwise the distribution would tend to that one shown in Figure 3, with a larger proportion of small avalanches similar to the pop regime and a very narrow large avalanche size bump. On the other hand, decreasing τ would make the relaxation very fast and shift the distribution toward the pop region. If decreasing τ is compensated by an increase of [image: image] the weight of the small size avalanches in 4B is decreased, making the log-normal bump even more pronounced (see Figure 5), and broadening the magenta region. As a rule of thumb, [image: image] (in arbitrary units) is a good compromise to find an approximately log-normal bump. The value of α, coherently to rheological experiments on living cells, is set to 0.3 in all the simulations. Therefore the best receipt to have log-normal without having small pop avalanches is then to decrease τ in such a way that if increasing [image: image] or [image: image] the avalanche stops fast enough to escape from the red regime (and then a very narrow large avalanche size bump) possibly together with a few pop avalanches, but still [image: image] or [image: image] has to be large enough to quit the blue region. In other words we get log-normal avalanches if the avalanche starts explosive and relaxes fast, ending gently. We showed this in Figure 5, where the same simulations as before were run, but with [image: image]. Comparing Figures 4, 5 we can observe that the magenta region is broadened, and in the new area, which from red became magenta, distributions with a very low proportion of pop avalanches emerge.
[image: Figure 5]FIGURE 5 | (A) Phase diagram of the resulting avalanche size distributions with respect to the model parameters [image: image] and [image: image], the constant pre-factor of the breaking probability (see Eq. 8). The time constant is here [image: image] and the rheological exponent is again fixed at = 0.3. Symbols indicate the points taken to show some distribution examples in the remaining panels. The pop (blue) and explosive (red) regimes are the same as in Figure 3, while the log‐normal bump regime is composed of approximately log-normally distributed avalanche sizes (in magenta). Note that here this regime is much wider than in Figure 4 because of the choice of τ. (B) Example distribution of the log-normal bump regime with coordinates at the diamond point [image: image]; (C) Example distribution of the pop regime, with coordinated at the triangle point [image: image]. Dots show the simulation distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal (resp. truncated power-law) distribution; (D) Example distribution of the explosive regime, with coordinates at the doughnut point [image: image].
We note that these new distributions are not exactly log-normal, but only approximately. It is for example possible that they could be as well approximated by other skewed distributions, as the Gamma distribution, but for sure not by power-laws. It is interesting that these skewed distributions of the log-normal bump region are originated by both the introduction of time correlation (in the form of visco-elastic relaxation) and the non-linear dynamics of the avalanche propagation. Similar arguments (but instead of time correlations it was for phase correlations) were used in [27, 28] to explain the appearance of skewed distributions for the temporal variability of the heart rate, suggesting that an avalanche process may also be latent in that case.
3.4 Avalanche Statistics With Local Restoring of Cross-Linkers
In order to test the effects of local cross-linkers restoring on the final avalanche size distribution, we consider the most extreme case, where all broken links are restored after only one time step. Therefore the broken links disappear from the network only for the first time step after their rupture. This could be interpreted as an extremely fast network restoring. In this scenario, the probability of breaking must relax with time, otherwise the avalanche would never stop as soon as [image: image] (see Eq. 7). We thus take the same law of breaking as in Eq. 8, with [image: image].
The phase diagram and the resulting avalanche size distributions, when propagating avalanches with local restoring of cross-linkers, are almost the same as in section 3.3 (compare Figures 4, 6). We have chosen exactly the same points in the phase diagram as in Figure 4 for ease of comparison. The pop region is very similar to the one in Figure 4. The two other distributions have the same shape as before, but they are shifted to larger values, because the number of links available for the avalanches is more abundant than in Figure 4, this is a direct consequence of the link repair mechanism introduced for these simulations. We can thus conclude that our results about the log-normal bump regime are robust and do not seem to depend on the details of the particular avalanche algorithm, provided a visco-elastic relaxation is included in the model. However these details can be important to tune the average and the width of the resulting distributions.
[image: Figure 6]FIGURE 6 | (A) Phase diagram of the resulting avalanche size distributions with respect to the model parameters [image: image] and [image: image] (see Eq. 8), in the case of link restoring. The time constant is [image: image] and the rheological exponent is [image: image]. Symbols indicate the points taken to show some distribution examples in the remaining panels. The pop (blue) and explosive (red) regimes are the same as in Figure 3, while the log‐normal bump regime is composed of approximately log‐normally distributed avalanche sizes (in magenta), together with some small avalanches reminiscent of the pop regime. Compared to Figure 3 the phase diagram does not show significant differences. (B) Example distribution of the log-normal bump regime with coordinates at the diamond point [image: image]; (C) Example distribution of the pop regime, with coordinated at the triangle point [image: image]. Dots show the simulation distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal (resp. truncated power-law) distribution; (D) Example distribution of the explosive regime, with coordinates at the doughnut point [image: image].
4 DISCUSSION AND FUTURE DIRECTIONS
Our phenomenological model shows that it is possible to model approximately log-normal avalanches, as experimentally observed. We showed this on a network structure which does not have a natural metric, but it is primarily a structure of interactions. Therefore interactions are not necessarily due to physical contacts, but can for example be given by vibrational modes, or other forms of interaction. However, this characteristic should not be thought of as a limitation, but rather as a feature that makes the model more general. Indeed, the network structure can always be embedded in some metric space if desired, e.g., on a 3-D sphere, and the same results would remain valid.
Interestingly, in order to have approximately log-normal avalanches, an elastic-instantaneous breaking mechanism is not sufficient. With this first rule we only get small pop avalanches, explosive avalanches leading to a global destruction of the network, or a mixture of both regimes. Along the critical line, where large avalanches proportional to the network size start being present, the distribution looks like an exponentially truncated power-law, typical of critical systems in physics. A key ingredient for having log-normal type avalanches is the introduction of a breaking rule taking into account the visco-elastic memory of cells (or other glassy materials), thus introducing time correlations. This behavior is shown to be robust even with different avalanche propagation rules, as for example by introducing the local restoration of cross-linkers. We should also mention that even with a completely different breaking rule the qualitative avalanche behavior is the same. We did preliminary studies on avalanches with a propagation rule consisting in breaking at each time step only the weakest link (by setting randomly attributed <<strength>> to the links), supposing that the avalanche propagates along the weaknesses of the material, and we could again recognize the same three regimes. We were then able to obtain avalanche size distributions closer to a log-normal by imposing faster relaxation times as in Figure 5. In this way the log-normal bump region becomes larger, thus showing slightly new distributions with a less important proportion of small pop avalanches, while the other resulting distributions stay the same.
Our model does not give quantitative information, because we did not make the link with physical units. Accounting for this, however, may be possible by introducing an appropriate scaling factor to make the size of the avalanche a physical measurable quantity (as the released energy). At the same time the correspondence of the lasting time of the avalanche with the experimental one can be done. This would attribute a unit to τ, hence leading to an estimation of the physical relaxation time needed to have log-normal avalanches. Altogether, these results suggest that, for cells, the local fracture mechanism resembles that of the global mechanical response of the cytoskeleton network. The global shear-relaxation modulus can thus be interpreted as a sequence of local avalanches of ruptures.
We conclude by saying that, in contrast to simpler 1-D models without a network structure (see [2, 20]), here the resulting distributions are not exactly log-normal. It is for example possible that they can as well be approximated by skewed distributions other than the log-normal, as the Gamma distribution, yet our model is an alternative to the power-law modeling. Furthermore our avalanches follow a skewed distribution which does not depend on the system size. Notably, these skewed distributions in the log-normal bump region are originated by both the introduction of time correlations (in the form of visco-elastic relaxation) and non-linear dynamics in the avalanche propagation. These are the same ingredients (but instead of time correlations it was for phase correlations) identified to cause the appearance of skewed distributions for the variations in the heart-rate signal in [27, 28], behind which an avalanche process may also be latent. This paves the way to possible applications to physiological data, where non-linear units are organized in a networked communicating structure, such as brain seizures, heartbeats or chemical signaling inside cells.
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In this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency domain are considered. We compare the separation power of each feature set after nonlinear dimensionality reduction using t-distributed stochastic neighbor embedding and demonstrate that ordinal pattern-based measures yield results comparable to frequency-based measures applied to preprocessed data, and outperform them if applied to raw data. Our analysis yields no significant differences in performance between single-channel features and functional connectivity features regarding the question of age group separation.

Keywords: EEG - Electroencephalogram, t-SNE (t-distributed stochastic neighbor embedding), ordinal pattern statistics, nonlinear dimensionality reduction, biomarkers, functional connectivity, coherence, mutual information


1. INTRODUCTION

The study of physiological networks is of great interest in biomedical sciences. Especially functional brain networks, extracted from MRI- or EEG-recordings, are a frequent subject of studies. We obtain functional networks from EEG recordings and compare these networks to features of single EEG channels in their function as biomarkers.

Neurobiological changes in healthy and pathological aging and their electrophysiological correlates (EEG) are still a hot topic in the neuroscience community, particularly since the incidence and prevalence of mild cognitive impairment and dementia increase alongside life expectancy (Ricci, 2019). Although some consensus has been reached regarding some electrophysiological correlates of aging, such as the reduction of occipital alpha power (Babiloni et al., 2006) and a shifting of the individual alpha peak towards lower frequencies in elderly subjects (Scally et al., 2018), an electrophysiological marker with which we can confidently discriminate between young and elderly individuals is yet to be established.

Thus, the study of age group differences in EEG recordings has been of interest for several decades and has been addressed by many authors over the years. While some considered differences in single-channel (SC) measures (Waschke et al., 2017), others used functional connectivity (FC) (McIntosh et al., 2013) or a combination of multiple feature groups (Al Zoubi et al., 2018). All methods successfully extracted significant differences between two age groups or significant correlations between the measure of choice and age. This is why we wanted to directly compare the discriminating power of FC and SC features in this study.

In recent years, studies aiming not only at differentiating between age groups but also between individuals based on features extracted from EEG recordings have become available (Rocca et al., 2014; Demuru and Fraschini, 2020; Suetani and Kitajo, 2020; Wilaiprasitporn et al., 2020). In all mentioned works, the features of choice were based in the frequency domain.

A problem for commonly used features extracted from EEG signals is the observation that in most cases, extensive preprocessing of the data is required and done, which has recently been shown to possibly lead to different results (Robbins et al., 2020). Thus, a method of feature extraction where the amount of preprocessing can be reduced would be desirable. Therefore, we used ordinal pattern (OP) statistics (Bandt and Pompe, 2002) for characterizing our data which has been shown to be a robust method for analysing physiological time series (Keller et al., 2007a, 2014; Parlitz et al., 2012; Amigó et al., 2015; Unakafov, 2015). For example, OP analysis has been used to separate healthy subjects from patients suffering from congestive heart failure (Parlitz et al., 2012) or to differentiate between different experimental conditions in EEG recordings (Unakafov, 2015; Quintero-Quiroz et al., 2018).

The discriminating power of OP distributions of single channels is compared to FC measures given by the mutual information (MI) based on OP distributions. These time domain features are compared to spectral features given by power spectral densities (PSDs) of single channels and coherence characterizing interrelations of pairs of channels. As a benchmark task we aim at separating individuals and age groups based on different sets of features extracted from EEG recordings. To illustrate and quantify the separation the high dimensional features (feature vectors) are mapped to a two-dimensional plane using the nonlinear dimensionality reduction algorithm t-SNE (van der Maaten and Hinton, 2008).



2. MATERIALS


2.1. Data Set

The data set analyzed in this study was on a set of recordings from 45 participants, divided into two different age groups, who participated in an image recognition task. We will refer to this data set as the Image Recognition data set.

Twenty-two young (12 female, mean age: 24.8 years ± 3.9 SD) and 23 elderly (11 female, mean age: 62.4 years ± 7.2 SD) healthy subjects were included. All subjects had normal or corrected-to-normal vision, normal contrast sensitivity and no color vision weakness/blindness. None of the participants had a history of neurological or psychiatric diseases. Normal visual acuity, contrast sensitivity and color vision were corroborated with the Snellen chart (Snellen, 1862), the Mars Letter Contrast Sensitivity test (Arditi, 2005), and a version of the Stilling, Hertel, and Velhagen color panels test (Broschmann and Kuchenbecker, 2011), respectively. To select the hand with which participants would answer the tests, handedness was assessed using the Edinburgh Handedness Inventory (Oldfield, 1971). Additionally, subjects were screened for cognitive impairment and depression using the Mini-Mental State Examination (MMSE) (Folstein et al., 1975) and the Beck Depression Inventory II (BDI-II) (Beck et al., 1996). A score of ≤ 24 points in the MMSE and/or a score of ≥9 points in the BDI-II were considered exclusion criteria.

The subjects participated in a modified version of the image recognition task described in Miloserdov et al. (2020). Subjects were shown images from three different categories: cars, faces and scrambled images. The images were shown on two different contrast levels, high (100% contrast) and low (10% contrast), giving six different conditions in total. The subjects were asked to categorize each image they were shown. Each condition was repeated a total of 80 times, resulting in a total of 480 trials.



2.2. Measurement and Preprocessing of EEG Data

The EEG data was recorded at a sampling rate of 1,000 Hz using a 64-channel Brain Products system elastic cap. The cap includes a reference electrode located at FCz. The FieldTrip toolbox for Matlab (Oostenveld et al., 2010) was used for data preprocessing. Continuous EEG data was segmented into 1,500 ms long epochs (either 1,500 ms prestimulus or 1,500 ms poststimulus). What we will refer to as “raw” data was analyzed without going through any additional preprocessing steps.

What we will further refer to as the “preprocessed” data went through the following additional steps. An offline 0.1 Hz–220 Hz band-pass filter (butterworth, hamming window) and a 50 Hz notch filter were applied. Jumps and clips were automatically detected using a amplitude z-value cutoff of 20 in the case of jumps and a time threshold of 0.02 s for clips. The data points identified as clips or jumps were then linearly interpolated. Muscle artifacts were detected automatically by first applying a band-pass filter of 120 Hz–140 Hz and selecting an amplitude z-value threshold of 5. The trials marked as having muscle artifacts were afterwards visually inspected and rejected. Blink artifacts were corrected for using Independent Component Analysis (ICA). Data was re-referenced to the common average, i.e., the average across all EEG channels is subtracted from the EEG signal of each individual channel.




3. METHODS

The aim of this study was to compare the results from classical frequency-based neuroscientific features as coherence and power spectra to features extracted on the basis of symbolic dynamics and information theoretical measures. From each domain, we took one single-channel measure and one functional connectivity measure that takes into account the relationships between different areas in the brain.


3.1. Functional Connectivity in EEG Recordings

Functional connectivity (FC) quantifies the temporal statistical dependence between signals in different brain regions (Sakkalis, 2011) and there exists an abundance of different measures that are used in the neuroscientific community. Generally, FC can be measured in time domain or frequency domain. In both domains, linear and non-linear measures exist. In this study, the non-linear time domain based measure mutual information (MI, Cover and Thomas, 1991) is compared to one of the most popular measures in EEG analysis, the frequency domain-based linear coherence (Bastos and Schoffelen, 2016). These two measures will be introduced in the following.


3.1.1. Ordinal Pattern Statistics and Mutual Information

Ordinal patterns (OPs) are a symbolic approach to time series analysis that was originally introduced by Bandt and Pompe (2002). Since then, OP based methods have successfully been used in the analyses of biomedical data (Keller et al., 2007b; Amigó et al., 2010, 2015; Parlitz et al., 2012; Graff et al., 2013; Kulp et al., 2016; McCullough et al., 2017) and specifically EEG recordings (Keller et al., 2007a, 2014; Ouyang et al., 2010; Schinkel et al., 2012, 2017; O'Hora et al., 2013; Rummel et al., 2013; Shalbaf et al., 2015; Unakafov, 2015; Cui et al., 2016; Quintero-Quiroz et al., 2018). Statistics based on ordinal pattern have been shown to be robust to noise (Parlitz et al., 2012; Quintero-Quiroz et al., 2015) and can be used to define advanced concepts for quantifying information flow (Staniek and Lehnertz, 2008; Amigó et al., 2016) or to derive transition networks in state space from observed time series (McCullough et al., 2015; Zhang et al., 2017).

In ordinal pattern statistics, the order relations between values of a time series are considered rather than the values themselves. An ordinal pattern for a given length w and lag l describes the order relations between w points of a time series, each separated by l − 1 points. For a length w, there are w! possible different patterns, that can each be assigned a unique permutation index as illustrated for w = 4 in Figure 1. The permutation index characterizes the permutation π that is needed to get from a sample xt, xt+l, …, x(w−1)(t+l) of the time series to a sample xπ(t), xπ(t+l), …, xπ((w−1)(t+l)) that is ordered ascendingly according to the amplitude of the sample in the time series.


[image: Figure 1]
FIGURE 1. All 24 ordinal patters of length w = 4.


An important parameter is the lag l which can be used to address different time scales as illustrated in Figure 2.


[image: Figure 2]
FIGURE 2. Illustration of ordinal patterns on different time scales in raw EEG data with sampling rate 1,000 Hz. The colored interval in the right column covers the same time span (0.06 s) as the entire window in the left column.


Ordinal patterns are easy and inexpensive to compute and have been shown to be robust to noise (Bandt and Pompe, 2002; Parlitz et al., 2012). From a sequence of ordinal patterns, the probabilities of occurrence of specific patterns, given a lag l and length w, can be used to characterize the underlying time series. Commonly, complexity measures as permutation entropy (Bandt and Pompe, 2002; Parlitz et al., 2012) or conditional entropy (Unakafov, 2015) are applied to the resulting pattern distributions.

Here, the question asked is not about the complexity of a univariate time series, but about the similarity of channels in one multivariate EEG recording. The similarity measure that is used here is the mutual information (MI) (Shannon, 1948; Cover and Thomas, 1991). Mutual information can be expressed by the Kullback-Leibler divergence (Kullback and Leibler, 1951) between the joint probability distribution pX, Y of two jointly varying random variables X and Y and the product of their marginal distributions:

[image: image]

For independent variables, the joint distribution is equal to the product of the marginal ones, resulting in a mutual information of I(X; Y) = 0. Accordingly, mutual information can be interpreted as a quantity that measures to what degree two random variables are not independent.



3.1.2. Coherence

In contrast to OP statistics and MI, coherency (Bastos and Schoffelen, 2016) measures functional connectivity in the frequency domain. The coherency of two time series yi and yj, for example two EEG channels i and j, is defined as the normed expectation value of the cross-spectrum

[image: image]

where ŷi(f) is the Fourier transform of the signal yi(t) and * denotes the complex conjugate.

The expectation value 〈·〉 is usually approximated by taking the average over multiple trials from an EEG sample. In this study, we will consider the absolute value of Equation (2), and call it coherence.




3.2. Single-Channel Features in EEG Recordings

We compare the introduced FC measures to measures only taking into account single channels, but no relations between them. For this, we consider the PSDs as done by Suetani and Kitajo (2020), as well as OP distributions for each channel. In both cases, (not necessarily normalized) distributions per channel are considered. As a metric to compare them, we use the generalized KL-divergence. A vectorized, symmetric version of this was introduced by Suetani and Kitajo (2020) as a metric, which is given by

[image: image]

where the generalized KL-divergence DB(P||Q) between two not necessarily normalized densities P and Q is given according to

[image: image]

dnm gives the distance between two vectors of dimension Nch, where each dimension contains a distribution [image: image], which will either be a PSD or a OP distribution. It is a special case of the beta-divergence (Basu et al., 1998; Mihoko and Eguchi, 2002) used in Suetani and Kitajo (2020) with β = 1.



3.3. Dimensionality Reduction

Dimensionality reduction aims to visualize such high-dimensional data in a low-dimensional space, preferably by extracting the most important features and representing each data point only by those. While the idea of dimensionality reduction dates back more than 100 years (Pearson, 1901), recently, more and more techniques have surfaced (van der Maaten et al., 2007).

In this study, the non-linear algorithm t-distributed stochastic neighbor embedding (t-SNE, van der Maaten and Hinton, 2008) is used to project features extracted from EEG time series. These features are adjacency matrices in case of functional connectivity and vectors of distributions in case of single-channel measures.


3.3.1. Nonlinear Dimension Reduction (t-SNE)

T-distributed stochastic neighbor embedding was first introduced by van der Maaten and Hinton (2008) as an extension of stochastic neighbor embedding (SNE) (Hinton and Roweis, 2003) to avoid the crowding problem and simplify optimization.

The algorithm projects a set of L samples x1, x2, …, xL from a high-dimensional into a low-dimensional space so that [image: image], considering the so-called neighbor probabilities

[image: image]

for high-dimensional data points xn and xm. Here, ||·|| is typically the Euclidean norm. For projections of single-channel features, where one high-dimensional data point consists of Nch distributions, we use ||·|| = dnm in Equation (3). In case of connectivity matrices, we flatten1 the upper triangular part of the matrix and use the Euclidean norm as a measure of distance. N is an arbitrary integer value and M ∈ {2, 3} in general, we use M = 2 in this study. The probability pm|n describes the probability that xm is a neighbor of xn and is proportional to a Gaussian centered at xn. The standard deviation σn of the high-dimensional probability distributions is calculated so that it satisfies a given value of the perplexity k. More specifically, the entropy of the conditional probability pm|n as a function of m must be approximately equal to log2(k), or

[image: image]

where H is the Shannon entropy (Shannon, 1948). The goal of t-SNE is now to minimize the sum of the Kullback-Leibler divergences between the symmetric probabilities pnm = (pm|n+pm|n)/2 in the high-dimensional space and the neighbor probabilities qnm of the projections into low-dimensional space,

[image: image]

where qnm is proportional to a Student-t-distribution (Student, 1908) with mean yn. The cost-function then becomes

[image: image]

This cost-function is minimized using the gradient descent method, thus aligning the high- and low-dimensional neighbor probabilities. As a consequence, data points that are close in high-dimensional space will be projected closely together.

Because t-SNE is a stochastic method that starts out the projection with randomly assigning low-dimensional coordinates to data points and then minimizing the cost-function given in Equation (8), the resulting projection depends on the initial conditions of the projection. If one only considers a single projection, it is possible that this projection is not necessarily representative for all projections. Thus, if one wants to quantify effects in the t-SNE projections, one must average over many projections with different initial conditions.




3.4. Analysis Scheme

The EEG recordings were cut into trials. These trials were 1.5 s long, either directly before or directly after the subjects were shown a picture. These steps were done both for the raw and preprocessed versions of the data set.

OP sequences with patterns of length w = 4 were calculated for each trial. From all trials belonging to the same condition, histograms of the probability of occurrence were extracted, giving one histogram per EEG-channel, per condition and per subject. On the basis of the OP sequences, one single-channel feature and one functional connectivity feature were extracted:

• The marginal ordinal pattern distributions were used as single-channel features for dimensionality reduction with t-SNE. Here, we calculated the distance between two samples, each characterized by Nch OP distributions, with Equation (3).

• We also used (joint) OP distributions to calculate MI-values between each pair of EEG channels, resulting in an Nch × Nch symmetric adjacency matrix per stimulus type per subject, containing the MI before or after each stimulus.

Additional to the time-domain measures, features were extracted from the frequency domain. For each trial, power spectra were calculated by performing a fast Fourier transform (FFT). Based on this, we again extracted one single-channel feature and one functional connectivity feature:

• The power spectral densities of each electrode were calculated as the squared absolute value of the Fourier transform of the signal and averaged over all trials. Again, we calculated the distance between two samples, each characterized by Nch PSDs (either full PSD or only the bins of specific frequency bands), with Equation (2) where only the frequency bins of specific frequency bands were contained (alpha: 8 Hz–12 Hz, beta: 15 Hz–30 Hz, theta: 3 Hz–7 Hz, gamma: 30 Hz–50 Hz). We consider different frequency bands for comparability with findings in literature.

• Adjacency matrices based on the coherence between EEG channels were composed by calculating the average coherence over all trials per frequency-band.

The above described dimensionality reduction algorithms were applied to each feature set. In case of the adjacency matrices, the flattened upper triangular part of the matrices was used as input for the algorithms with the Euclidean distance as a metric. We also projected the vectors containing PSDs and OP distributions with the vectorized KL-divergence as distance measure as introduced in Equation (3).

It is important to mention that the different feature sets (FC and SC) involved in the comparison have different numbers of features which itself might influence dimensionality-reduction methods.

To quantify the effect of subject separation in the 2d-projections the ratio ρ between the average distances within a subject-cluster to the average distances to its three next neighbors was calculated. This ratio gives insight on how much closer data points of the same subject are projected together than data points of different individuals.

As a quantification of the separation of age groups we used a kernel density estimation (KDE; Silverman, 1986) with a Gaussian kernel and a bandwidth selection according to Scott (2015) for the distributions of the two age groups in the projections. An illustration of such estimated densities is given in Figure 4.

We then calculated the Jensen-Shannon divergence (Lin, 1991) between the two distributions. The Jensen-Shannon divergence quantifies differences between probability distributions. It is bound by unity in case of a base-2 logarithm and can be derived from the KL divergence via

[image: image]

The square root of the Jensen-Shannon divergence is a metric that is often called the Jensen-Shannon distance (JSD, Endres and Schindelin, 2003). This was done, in all cases, for 100 t-SNE projections of the ensemble with different random seeds.




4. RESULTS

T-SNE projections of similar experimental conditions from the Image Recognition data set, i.e., samples after a high-contrast stimulus, are displayed in Figure 3. Four different feature types were projected. The results for the two FC features MI and Coherence (alpha band) are displayed in the left column, and the projections of the single-channel features, OP distributions and filtered PSDs (theta band), are depicted in the right column. In all cases, separations of age groups and individuals can be observed visually. We observe that the three conditions (face, car, scrambled image) are projected together closely for each individual. This effect is similar to the one observed in Suetani and Kitajo (2020) and is further quantified in Figure A1 in the Appendix. The two age groups (Elderly in red and Young in blue) appear to be loosely separated.
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FIGURE 3. t-SNE projections of features obtained from the EEG time series of the Image Recognition data set (k = 30). We compare time-domain measures (A,B) to frequency domain measures (C,D). The time-domain measures are extracted from raw data by calculating OP sequences, the frequency-domain measures are taken from frequency bands of the preprocessed data. In each case, a projection for the parameter (lag/frequency band) yielding the best group separation for the method is shown. (A) Projection of functional connectivity vectors obtained from OP statistics (τ = 100 ms), (B) Projection of OP distribution-vectors (τ = 15 ms) with the generalized KL-divergence as a metric, (C) Projection of functional connectivity vectors obtained from average coherence (alpha-band), (D) projection of power spectral density-vectors (theta-band) with the generalized KL-divergence as a metric.


As will be detailed in the following section we find that the separation of the two age groups, based on the JSD, are comparable for all feature sets, with a tendency toward higher separations for the OP based methods. The separation of individuals is clearly more distinct for OP based measures than for frequency based measures, both for FC and single channels.


4.1. Age Group Separation

In Figure 3, a separation of the two age groups in the t-SNE projections can be observed visually. As an example, in Figure 4, the estimated densities of the age groups are plotted for the same parameters as in Figure 3A. One can observe that the densities barely overlap.


[image: Figure 4]
FIGURE 4. Exemplary plot of a the estimated kernel densities for the same parameters as in Figure 3A; a distinction is made only between age groups, not conditions.


The Jensen-Shannon distances between the two estimated distributions, depending on time or frequency scales, are displayed in Figure 5 for both raw and preprocessed data. For all feature sets, an average JSD larger than zero can be observed, with the highest values being achieved by the OP based measures.
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FIGURE 5. Quantification of the separation of Elderly and Young in 2d t-SNE projections (k = 30) for both raw (red) and preprocessed (blue) EEG data. We consider group separation based on (A,C) functional connectivity and (B,D) single channels. Results from OP based measures are displayed in the upper row, and from frequency-based measures in the lower row. The solid lines describe the separation when using the full PSD, otherwise only the frequency bins of one specific band are considered. The error bars display the standard deviation over 100 t-SNE projections with different random seeds.


While for the OP based measures, no increase of the best performance across time scales through artifact removal can be observed, artifact correction clearly leads to an overall increase of performance for frequency based measures. This is yet another illustration of the robustness of OP statistics.

We found no significant dependency of the separation of age groups on the perplexity k for the t-SNE projections. In case of individuals, we found the same dependency as Suetani and Kitajo (2020), where for larger values of k (up to k = 100), the separation is less distinct than for smaller values, but still observable.




5. DISCUSSION

In this study, we obtained differences between age groups (Elderly, Young) and individuals subjected to similar experimental conditions based on both functional connectivity and single-channel measures obtained from multichannel EEG time series. We found that t-SNE as a method for dimensionality reduction and feature extraction does not only reflect individuality but also appears to represent inter-individual relationships, given by age groups in this case.

It should be emphasized that the separation of individuals is restricted to the separation of recordings from the same individual under similar conditions (post high contrast stimulus). Separate checks using pre-stimulus recordings and resting state recordings from the same session, revealed that the data points of the same individual are not necessarily projected closely together.

Regarding the separation between age groups, one could consider that a difference between brain age, which is a descriptor of the physiological condition of the brain, and the chronological age of the subject has been hypothesized (Irimia et al., 2015; Steffener et al., 2016). If the chronological age and the brain age of some individuals in the study differ, this could explain apparent outliers in the projections.

Since the aim of t-SNE is to find a low-dimensional projection of a high-dimensional data set that represents the distances between high-dimensional points, it can be assumed that the projected ensemble does not only represent the two features with highest variance and omits the others, but is rather a representation of the whole feature set.

We showed that OP analysis can obtain results comparable to classical EEG feature sets, and even outperform them if both methods are applied to raw data. For the OP based measures, the applied preprocessing pipeline partially even leads to a decrease in performance regarding the separation of age groups, while for the frequency-based measures, there is always an increase observable. This supports previous observations that OP based methods yield promising results if applied to raw data sets. Preprocessing could thus be reduced to avoid potential differences of analyses in different labs.

The question answered here is “Is the average or best performance of one feature set comparable to the average or best performance of another feature set?” This appears to be the case for the age group separation, and also for the separation of subjects.

Given the observation that there appears to be no significant difference between FC and SC measures, the question arises whether the obtained functional networks actually contain the information that we assume they do. In light of these findings, the interpretation of other studies that obtained age group differences based on functional connectivity (Wada et al., 1998; McIntosh et al., 2013; Al Zoubi et al., 2018, amongst others) could be reconsidered.

If the age differences are also contained in single-channel measures, and the separation power of functional connectivity does not outperform the single channel measures, it must be thoroughly investigated how these group differences are related to one another.

A possible explanation for the lack of differences between functional connectivity and single-channel measures would be that the main information that is contained in the functional connectivity measures that are considered here is due to shared sources between the different EEG channels. This information would also be contained in single-channel features. To verify this, further tests must be done.

Furthermore, future studies should include a comparison with other measures of network physiology like time delay stability (Bartsch et al., 2015; Liu et al., 2015; Lin et al., 2016) and transfer entropy (Schreiber, 2000; Staniek and Lehnertz, 2008; Vicente et al., 2011; Wibral et al., 2013) measures.
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APPENDIX

To quantify the effect of subject separation and its dependency on considered time scales, the ratio ρ of intra- and inter-cluster-distances was calculated on different time scales. For each projection, the ratio between the mean intra- and inter-cluster-distances was calculated. The average ratio ρ and the standard deviation, depending on the lag for the OPs or the frequency band, is displayed in Figure A1.


[image: Figure ]
Figure A1. Quantification of separation of subjects in the t-SNE projections (perplexity k = 30) data set for raw and pre-processed EEG data. Both FC measures (A,C) and single-channel measures (B,D) were projected. For each projection, the ratio between the mean intra- and inter-cluster-distances was calculated. We call the Euclidean distances between points belonging to the same subject intra-cluster-distances, and the distances between the center of one cluster and its three next neighbors inter-cluster-distances. The error bars display the standard deviation over 100 t-SNE projections with different random seeds.
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While most connectivity studies investigate functional connectivity (FC) in a scale-dependent manner, coupled neural processes may also exhibit broadband dynamics, manifesting as power-law scaling of their measures of interdependence. Here we introduce the bivariate focus-based multifractal (BFMF) analysis as a robust tool for capturing such scale-free relations and use resting-state electroencephalography (EEG) recordings of 12 subjects to demonstrate its performance in reconstructing physiological networks. BFMF was employed to characterize broadband FC between 62 cortical regions in a pairwise manner, with all investigated connections being tested for true bivariate multifractality. EEG channels were also grouped to represent the activity of six resting-state networks (RSNs) in the brain, thus allowing for the analysis of within- and between- RSNs connectivity, separately. Most connections featured true bivariate multifractality, which could be attributed to the genuine scale-free coupling of neural dynamics. Bivariate multifractality showed a characteristic topology over the cortex that was highly concordant among subjects. Long-term autocorrelation was higher in within-RSNs, while the degree of multifractality was generally found stronger in between-RSNs connections. These results offer statistical evidence of the bivariate multifractal nature of functional coupling in the brain and validate BFMF as a robust method to capture such scale-independent coupled dynamics.

Keywords: scale-free, bivariate, multifractal, functional connectivity, network physiology, electroencephalography


INTRODUCTION

Physiological systems are integrated through a series of intricate connections giving rise to networks of dynamically interacting elements. These may emerge at various scales from molecular pathways (Covert, 2006; Prentki et al., 2020) to the brain connectome (Sporns, 2011) and even at the level of the entire organism (Bashan et al., 2012; Bartsch et al., 2015). The universality of this organizing principle gave birth to the field of network physiology (Bashan et al., 2012; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al., 2016), aiming at unfolding the mechanisms through which diverse physiological systems interact. This goal may be achieved through characterizing various aspects of the temporal coupling between such systems and processes. Novel bivariate analytical methods (Bashan et al., 2012; Schulz et al., 2013; Jalili, 2016) kept advancing the research in this field. Even though many of these methodologies have been proven invaluable for the investigation of scale-specific interactions, they largely neglect the plausible broadband nature of the functional coupling itself (i.e. coupling that spans across a wide range of frequencies). This may, however, become relevant, as many biological processes have been shown to express broadband, scale-free dynamics; examples include the variability of heart rate (Ivanov et al., 1999, 2004; Nunes Amaral et al., 2001; Bartsch et al., 2005), spontaneous brain activity (Ivanov et al., 2009; Lin et al., 2020) or gait variability (Bartsch et al., 2007), to name a few. While these biological functions may contain narrowband components that can also be of interest, their broadband dynamics indicate scale-free (or fractal) behavior (Eke et al., 2000). Scale-free features may reveal fundamental aspects of complex systems – such as the human organism – that otherwise remain hidden from traditional methods of analysis. The ubiquity of the univariate fractal dynamics in physiological processes warrants the application of bivariate scale-free time series analysis to study the complexity of coupling between such processes.

Among fields where the human organism (or subsystems thereof) is modeled as a network of functionally coupled elements, brain functional connectivity (FC) studies probably gained the most momentum in past decades (Friston et al., 1993; Biswal et al., 1995; Rubinov and Sporns, 2010; Sporns, 2011; Finn et al., 2015; Lowe et al., 2016; Preti et al., 2017). In that, the network theoretical approach has been shown by many studies to be a powerful tool for the analysis of neural activity patterns (Bullmore and Sporns, 2009; Stam, 2014). According to this framework, the investigated brain regions are considered as nodes of the reconstructed network, while its edges represent the statistically estimated functional coupling between these regions (Rubinov and Sporns, 2010). However, a ‘static’ assessment of FC poses a limitation since the strength of functional coupling between neuronal assemblies has been shown to change over time (Chang and Glover, 2010; Hutchison et al., 2013). Therefore, characterizing the temporal organization of brain network topology requires a model that can account for these time-dependent aspects of FC. This led to the introduction of various tools capable of capturing the dynamic characteristics of brain networks (Dimitriadis et al., 2010; Tagliazucchi et al., 2012; Yu et al., 2015; Preti et al., 2017). Additionally, the ubiquitous presence of scale-free dynamics in the resting-state brain (Werner, 2010; Fraiman and Chialvo, 2012), – especially in the electroencephalogram (EEG) (Lutzenberger et al., 1992; Preißl et al., 1997; Gong et al., 2003; Stam and de Bruin, 2004; Racz et al., 2018b) – encouraged the investigation of power-law scaling in time-varying network properties. Utilizing a combination of dynamic graph theoretical analysis and multifractal time series analysis, we recently revealed that both global (Racz et al.,2018a,b) and local (Racz et al., 2019) properties of functional brain networks fluctuate according to a multifractal pattern, which may also be affected in pathological conditions (Racz et al., 2020). However, a different aspect of connectivity dynamics, namely the scale-free nature of the inter-regional coupling itself, remained inaccessible to these approaches, which mainly utilized a sliding window technique. In contrast to the univariate approach, bivariate multifractal methods – such as detrended cross-correlation analysis (Podobnik and Stanley, 2008) or wavelet-based analysis (Abry et al., 2019; Jaffard et al.,2019a,b)– characterize fractal properties of the coupling between dynamic processes; therefore, they would be able to capture these aspects of functional connections. Furthermore, such approaches could be adapted to the graph-theoretical framework of FC analysis, where edge weights in the network would be assigned as the fractal characteristics of the functional coupling between the investigated brain regions. Networks reconstructed by this approach would inherently represent the fluctuating nature of the connections, in contrast to the traditional way of reconstructing dynamic connections by calculating static indices of interdependence in a sliding window approach. Despite this, to date only a handful of studies investigated the scale-free aspects of functional brain connectivity (Achard et al., 2008; Wang and Zhao, 2012; Ciuciu et al., 2014; La Rocca et al., 2021). In this present work, we set out to address this issue by applying multifractal covariance analysis – introduced earlier by Mukli et al. (2018) – for assessing resting-state functional connectivity reconstructed from EEG measurements.

Some precautions must be addressed, however, when assessing the scale-free properties of empirical signals. In the case of univariate multifractal analysis, it is critical to verify that the obtained indices indeed characterize an inherent property of the observed process, and they not only represent noise or numerical instabilities of the analysis itself (Kantelhardt et al., 2002; Kwapień et al., 2005; Grech and Pamuła, 2012; Rak and Grech, 2018). Similar considerations must be made in the case of bivariate multifractal analysis. Therefore, it is indispensable to verify the presence of true bivariate scale-free coupling by carrying out appropriate statistical tests of power-law cross-coherence (Kristoufek, 2014) and cross-correlation (Wendt et al., 2009; Podobnik et al., 2011; Blythe et al., 2016). Although true multifractality can be confirmed with statistical certainty by extending the testing framework applied for univariate analytical tools (Kantelhardt et al., 2002; Clauset et al., 2009; Roux et al., 2009; Racz et al., 2019, 2020), these methods do not provide much insight into the generating mechanism of bivariate multifractality. Depending on the mechanism, bivariate multifractality could be considered as a consequence of independent univariate dynamics (Wendt et al., 2009; Jaffard et al., 2019a). On the other hand, an appropriate testing framework may identify the genuine scale-free nature of the coupling. This type of bivariate multifractality corresponds to an inherent aspect of the relationship between the processes that otherwise remains undetectable to univariate fractal analysis. For this purpose – namely, to confirm the source of bivariate multifractality –, we devise a testing procedure building on previous studies (Wendt et al., 2009; Kristoufek, 2011) that compares the bivariate fractal measures with their univariate equivalents obtained from the investigated time series to reveal their origin.

So far, the majority of bivariate fractal studies has focused on the analysis of financial time series (Podobnik and Stanley, 2008; Oświęcimka et al., 2014; Pal et al., 2014; Kwapień et al., 2015), while only a few studies applied these tools on physiological datasets (Wang and Zhao, 2012; Ciuciu et al., 2014; La Rocca et al., 2021). Moreover, to the best of our knowledge there have been no studies statistically validating the existence of bivariate multifractality in coupled processes in the human brain or body. Here we apply a novel bivariate method – exploiting the focus-based regression scheme of Mukli et al. (2015) – to investigate if functional connectivity, as reconstructed from EEG recordings, may exhibit a coupled multifractal nature. First, we design and perform a series of statistical tests to confirm true scale invariance and multifractality of individual connections. Second, we assess between-subject and within-subject (i.e., regional) variability of bivariate multifractal indices in order to explore the consistency and discriminatory power of the presented method. Third, we explore whether scale-free coupling displays a topology at the level of large-scale functional networks in the brain. By confirming the plausible bivariate multifractal nature of neural interactions, the present study may not only enhance our understanding of how neural activity is organized in time and space but also provide an efficient analytical pipeline for capturing long-term interdependencies of physiological processes even outside the human brain, on the level of the entire organism.



MATERIALS AND METHODS


Data and Participants

The EEG database analyzed in this study was made publicly available by Sockeel et al. (2016) and consisted of recordings from 12 right-handed, healthy participants (aged 26.6 ± 2.1 years, six females). Each recording contained a 5-minute long segment of resting-state, eyes closed neural activity in which the subjects were lying supine and were listening to an audio recording equivalent to the sounds of an MRI system. EEG tracing was carried out using a 62-channel BrainAmp amplifier, in which the electrodes were arranged according to the international 10–10 system. The sampling rate was set to 5 kHz with the ground and reference electrodes placed at Oz and Cz positions, respectively. Electrode impedance was kept under 10 kΩ during the recordings. The original study was approved by the local ethics committee (Comité de Protection des Personnes–Ile-de-France under the number CPP DGS2007-0555), with measurements being carried out in accordance with the Declaration of Helsinki. All participants provided written informed consent before the measurement. For further details on participants and data collection the reader is referred to the original article of Sockeel et al. (2016).



Preprocessing

All preprocessing was carried out using Matlab (The Mathworks, Natick, MA, United States). The procedure followed steps of the Batch Electroencephalography Automated Preprocessing Platform (Levin et al., 2018), which uses functions of the EEGLAB toolbox (Delorme and Makeig, 2004) along with custom functions and scripts. First, the data was visually inspected; artifact-free segments of length approximately 55 s long were selected and band-pass filtered with lower and upper cut-off frequencies of 0.5 and 250 Hz, respectively. Additional notch filters at 50, 100, and 200 Hz were applied for line noise removal. Subsequently, the signals were downsampled from 5 kHz to 500 Hz. Further artifact removal was performed using the Harvard Automated Processing Pipeline for Electroencephalography (HAPPE) (Gabard-Durnam et al., 2018). HAPPE implements a series of steps, including wavelet-enhanced independent component analysis followed by independent component analysis with Multiple Artifact Rejection Algorithm (Winkler et al., 2011, 2014). Thus, signal components that likely originate from sources other than neural activity, such as eye movements or scalp muscle contractions, were excluded. Finally, the pruned data was re-referenced to the common average reference. Subsequently, the first 214 datapoints (approximately 33 s) were selected from every preprocessed dataset for further analysis.



Bivariate Focus-Based Multifractal Analysis

The focus-based multifractal (FMF) analysis framework was introduced by Mukli et al. (2015) in order to provide a robust and efficient way of multifractal time series analysis. Originally, FMF was put forward as a univariate method, i.e., to analyze a single time series. The concept of FMF was then extended to the bivariate domain in a later study (Mukli et al., 2018), with the new method termed bivariate focus-based multifractal analysis (BFMF). Such modification (as detailed below) made the analysis of the multifractal aspect of coupled dynamics feasible and robust, and constitutes the main advantage of BFMF over other bivariate multifractal tools.

Specifically, BFMF is implemented in the time domain using statistical moments (of order q) of the scale-wise covariance of sampled time series X and Y (covxy) calculated at various window sizes. In that, the scaling function, SXY, is defined according to
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with Ns being the number of non-overlapping windows of size s indexed by v and L = 214 the length of the time series in data points. The cumulatively summed signal is bridge-detrended in each temporal window prior to calculating the covariance. Values of q are set to range from −15 to 15 with increments of 1, as this selection of moment orders is sufficient to reliably capture multifractality (Grech and Pamuła, 2012). Scales are defined according to a dyadic scale, i.e., as 2n with n ranging from 4 to 9; higher scales were excluded to avoid artifacts due to band-pass filtering. Setting the scale s equal to the total signal length L renders the sum in (1) independent of q. Consequently, in the limit of s = L, values of S(q,s) converge to one point termed the Focus (Figure 1). The Focus serves as an iterated reference point in the regression model – based on the equations (18–21) of Mukli et al. (2015) – that simultaneously estimates the best-fitting linear function of log(s) to obtain log(S(q, s)) for all values of q. The fitting procedure yields a set of power-law exponents (i.e., the slopes of the fitted linear functions), the generalized Hurst exponent function (Barunik and Kristoufek, 2010):
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FIGURE 1. End-point parameters of bivariate focus-based multifractal analysis. Log-log transform of the scaling function [SXY(q,s)] vs. scale (s) relationship is plotted. The generalized Hurst exponent [H(q)], for several statistical moments (q), is acquired via linear regression with the Focus (solid red circle) used as a reference point. H(2) expresses the long-term correlation between the two time series. At the same time, the degree of multifractality (ΔH15) is captured by the difference between H(q) at the minimal (–15) and maximal (15) statistical moments.
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From the estimated H(q), the ones of particular interest in this study are H(2), H(−15), and H(15). H(2) is a measure of global long-term interdependence between X and Y with the particular case of H(2) = 0.5, indicating uncoupled dynamics. H(2) < 0.5 shows long-term anticorrelation while H(2) > 0.5 positive long-term correlation of the two processes. Since multifractality refers to the temporally altering nature of long-term (cross-) correlations, the degree (or strength) of multifractality can be considered as to what extent this property might change in the process. Since positive and negative moment orders emphasize the contributions of large and small covariance, respectively, a measure characterizing the degree of multifractality can be obtained by calculating the difference between the scaling exponent obtained at the minimal and maximal moments (Grech and Pamuła, 2012; Mukli et al., 2015). Therefore, in our study multifractal strength was captured in ΔH15 = H(-15) – H(15), which provides a good and robust approximation of the theoretical limit [image: image] (Grech and Pamuła, 2012; Mukli et al., 2015).



Assessing Multifractality

In order to verify the true multifractal nature1 of the functional connections, an array of tests was utilized. The purpose of these tests was to differentiate the true, time-varying scale-free nature of these connections, emerging from the presence of long-term cross-correlations, from those appearing as spurious multifractality (Kantelhardt et al., 2002). First, we tested the power-law dependence of the cross-spectral power on the scale, based on the work of Clauset et al. (2009). In the case of a fractal process, the spectral index (β) of its power spectrum represents the slope of the fitted linear regression of the logarithmic amplitude vs. frequency plot and is proportional to its univariate Hurst exponent, Huniv(2) [β = 2Huniv(2)-1] (Eke et al., 2002). This relationship also holds in the bivariate case, as the spectral index of the cross-power spectrum of two processes expressing fractal coupling is equivalent to β = 2Hbiv(2) −1 (Kristoufek, 2014), where Hbiv(2) is the bivariate Hurst exponent. Therefore, the cross-power spectrum of the two processes is suitable for identifying the plausible power-law dependence in their coupling. For each pair of time series, 40 surrogates were generated whose value of Huniv(2) was equal to that of Hbiv(2), according to the spectral synthesis method (Saupe, 1988). Then, a linear regression model was fitted to the log-log transformed power-spectrum and a Kolmogorov distance was calculated for every generated time series denoting its maximal distance from its power-spectrum (Duniv). The distribution of Duniv was compared with the maximal distance of the linear function fitted to the log-log transformed cross-power spectrum of the original connection (Dbiv). The original connection was considered scale-free (successful test), if

[image: image]

where μ(Duniv) and σ(Duniv) are mean and standard deviation obtained from the Duniv distribution. Onward, μ() represents the mean and σ() indicates the standard deviation of the distribution in question.

In addition, we examined the detrended cross-correlation coefficients (ρ) calculated for each scale by adopting a method proposed by Podobnik et al. (2011):
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where SX(2,s), SY(2,s), and SXY(2,s) are the scaling function values for scales s and the 2nd order statistical moment of time series X, Y and their connection, respectively. We used a stochastic binomial cascade algorithm (Schumann and Kantelhardt, 2011) to generate a population (100 pairs) of multifractal signals with L, H(2) and ΔH15 adjusted to the univariate time series concerned. In line with the refinement of Blythe et al. (2016), all coefficients were tested simultaneously for every scale. Thus, the null hypothesis was only rejected if statistical analysis confirmed that the original ρ(s) exceeded that of the surrogate population of cross-correlation coefficients for each scale, yielding an overall p < 0.05. Accordingly, the individual significance levels were set to (0.05)1/6. Connections that passed the test were considered to have genuine long-term interdependence.

To test if the observed multifractality was due to non-linearities, the following phase randomization scheme was applied. Forty surrogates for each time series were generated by: (i) Fourier transforming the data of all channels and (ii) randomly permutating the phases before inverse Fourier transformation of the spectrum (Prichard and Theiler, 1994). Since the same permutation was carried out to randomize the phases of data from all channels, this procedure destroyed the non-linear interdependencies between the signals while the linear dependencies remained intact. If the original ΔH15 (ΔH15,orig) did not satisfy the inequality
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true multifractality due to non-linearity could not be confirmed.

Shuffling of time series is necessary to distinguish between correlation- and distribution-type bivariate multifractality (Wang et al., 2012). Since shuffling destroys all long-term correlations within (Kantelhardt et al., 2002) and between (Louis et al., 2010) the signals, the shuffled time series are expected to show diminished multifractal profile if their bivariate multifractality is due to long-term correlations. Forty shuffled surrogates were generated from every original signal that resulted in a distribution of H(2) and ΔH15 values for every connection. Consequently, the following inequalities between the original and shuffled datasets were investigated:
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If inequalities (6a) and (6b) hold, then the multifractal character of the connection can be attributed to long-term cross-correlations.

The final assessment was the bivariate-univariate Hurst exponent relationship test, which investigated if further information could be retrieved from bivariate multifractal analysis compared to univariate multifractal analysis. Assume two time series X and Y with HXY(2), HX(2), and HY(2) being their bivariate and univariate Hurst exponents, respectively. If HXY(2) does not differ significantly from the arithmetic mean of HX(2) and HY(2), then the bivariate exponent refers to a scale-free coupling whose Hurst exponent can be predicted from its univariate equivalents (Kristoufek, 2011). In this test, 40 datasets were generated for each time series with the same univariate H(2) as that of the original signal, according to the spectral synthesis method (Saupe, 1988). Afterward, the true scale-free nature of the EEG signal was evaluated by performing a univariate power-law test [for details see Racz et al. (2018b)]. For every pair of time series that passed the univariate power-law test, the average of their Hurst exponents, HXY,gen(2), was calculated in each of the 40 generated datasets resulting in a distribution. The original HXY(2) was then compared in the following fashion:
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If any of the two inequalities was met, then the pair of time series passed the test and their bivariate multifractality was considered intrinsic to the connection. Conversely, a connection failing the bivariate-univariate test was viewed as a case of extrinsic multifractality. This extrinsic multifractality possibly belongs to a functionally non-significant type of bivariate multifractality due to autocorrelation effects (Kristoufek, 2011; Arbabshirani et al., 2014).



Brain Parcelation and Graph Construction

To reduce the dimensionality of data while also providing a basis for physiological interpretation, a brain parcelation scheme proposed by Giacometti et al. (2014) was applied. The 62 EEG electrodes were grouped based on electrode proximity to seven – functional magnetic imaging (fMRI) labeled – resting-state networks (RSNs) as specified by Thomas Yeo et al. (2011)2. Due to the great degree of overlap in electrode locations between the ventral attention and limbic system networks, these were combined into a ventral attention-limbic network (Figure 2), as in Racz et al. (2019). This parcelation thus resulted in 6 RSNs and 15 RSN-to-RSN connections, whose indices were obtained by averaging the obtained values [H(2) and ΔH15] of corresponding connections. We examined connections within each RSN (within-RSNs) and connections between different RSNs (between-RSNs) separately.
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FIGURE 2. Resting-state networks (RSNs). Electrodes were grouped to represent six RSNs: the visual network (VN, 10 channels), the somatomotor network (SM, 10 channels), the dorsal attention network (DA, 9 channels), the combined ventral attention and limbic networks (VAL, 12 channels), the frontoparietal network (FP, 8 channels) and the default mode network (DMN, 13 channels). Brain maps were created using the BrainNet Viewer software (Xia et al., 2013) after electrode positions were transformed to match a template head using SPM 12b (Penny et al., 2007). The figure originally appeared in Racz et al. (2019).




Statistical Analyses

Following the previously described analytical pipeline and brain parcelation scheme, the obtained results were organized into a 12 × 6 within-RSNs matrix (12 subjects, 6 RSNs) and a 12 × 15 between-RSNs matrix (12 subjects, 15 RSN-to-RSN connections) for H(2) and ΔH15, separately. To evaluate the consistency of results among subjects, Kendall’s coefficient of concordance (W) was calculated in every matrix. As to verify if cortical localization affected multifractal connection dynamics (i.e., to investigate if multifractal properties of functional connections vary according to various brain regions), we performed the Friedman test with level αs = 0.05 and pairwise comparisons (paired sample t-test if distributions were normal, Wilcoxon signed-rank if at least one distribution was non-normal, normality was evaluated by Lilliefors test) followed by Benjamini–Hochberg correction (αs = 0.05) (Yekutieli and Benjamini, 2001).

Finally, to further confirm the significant effect of spatial localization, 100 surrogate datasets were generated, where in every iteration the labels of the channels were randomly permuted before performing the brain parcelation. Subsequently, the Friedman tests were carried out and Kendall’s coefficient of concordance was calculated. The effect of localization was considered statistically significant if the p-value obtained from the Friedman test failed to reach significance (i.e., p > 0.05) in at least 95 out of 100 cases. W values of the original dataset were validated as statistically significant only if they were above the 95th percentile of the W resulted from the distribution of the 100 generated datasets.



RESULTS


Verifying Bivariate Multifractality

The results of the bivariate multifractality assessment tests are summarized in Table 1. At the subject level, 86.5 ± 5% (mean ± standard deviation) of the total connections passed the power-law test, validating their scale-free nature. The detrended cross-correlation coefficients of all links were found to be significantly higher than those of the surrogate datasets, validating the existence of long-term cross-correlations. All connections passed the phase randomization test, which verified true multifractal coupling due to non-linear interactions. The shuffling test revealed that inequalities (6a) and (6b) held for 99.7 ± 0.3% and 100% of all connections, respectively. These results confirm that the observed multifractality was attributed to long-term cross-correlations.


TABLE 1. Success rate of the different scale-free assessing tests at the subject level (mean ± standard deviation).

[image: Table 1]


Intrinsic vs. Extrinsic Multifractality of Connections

We considered bivariate multifractality as having extrinsic origin if it failed the bivariate-univariate Hurst exponent relation test (equations 7a and 7b) and intrinsic otherwise. The results revealed that a relevant proportion (52.4 ± 6.9%) of the observed functional connections had intrinsic scale-free characteristics. Group-averaged H(2) networks separately reconstructed from intrinsic and extrinsic multifractal connections are shown in Figure 3. There is a clear distinction between the two networks [the correlation between the bivariate H(2) values consisting of the two networks expressed in Pearson’s r = −0.98, p < 0.001]. Specifically, within-RSNs connections tend to have stronger intrinsic multifractality, while the between-RSNs links show a higher degree of extrinsic multifractality.
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FIGURE 3. Z-scores of intrinsic and extrinsic H(2) network connections. The intrinsic network consisted of the H(2) values of connections that passed the bivariate-univariate Hurst exponent relationship test, connections that failed were represented as 0. The extrinsic network consisted of the H(2) values of connections that failed the bivariate-univariate Hurst exponent relationship test, connections that passed were represented as 0. Subsequently, the Z-scores of the connections were calculated. Z-scores represent deviation from the population average and their values are indicated by the color bar. The edges serve as the between-RSNs connections with color representing the strength of the connection. The outer ring comprises of the 6 RSNs with the color indicating the Z-score of within-RSN connections.


To further illustrate these results, for every connection we calculated its averaged probability of expressing intrinsic multifractality when compared to the distribution of surrogates characterized only by extrinsic multifractality (Figure 4). Two RSNs stood out from the rest, namely the default mode network (DMN) and the dorsal attention network (DA). Not only connections within these RSNs showed a higher probability of intrinsic multifractality when compared to other RSNs, but also the same could be observed for connections linking these to RSNs in comparison to other between-RSNs connections.
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FIGURE 4. Probabilistic network of intrinsic multifractality. The probability was obtained through the Z-score of the original bivariate Hurst exponent of the connection compared to the surrogate distribution created in the bivariate-univariate Hurst exponent relationship test. The edges serve as the between-RSNs connections with color representing the population average probability of the connection showing intrinsic multifractality. The outer ring comprises of the 6 RSNs with the color indicating the population average probability of within-RSNs connections being intrinsically multifractal.




Network Comparison

Two networks were constructed from the results obtained by BFMF analysis, one from H(2) and one from ΔH15 values of functional connections (Figure 5). The two networks showed markedly different patterns (the correlation between the two networks expressed in Pearson’s r = −0.6609, p < 0.01). Specifically, it appeared that H(2) and ΔH15 of functional connections were inversely related, as within-RSNs connections expressing higher H(2) values could be characterized with lower ΔH15, and vice versa. The same inverse relationship could be observed for the multifractal properties of between-RSNs connections, although less prominently.
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FIGURE 5. Z-scores of constructed networks using H(2) and ΔH15 as functional connectivity estimators. Z-scores represent deviation from the population average and their values are indicated by the color bar. The edges serve as the between-RSNs connections with color representing the strength of the connection. The outer ring comprises of the 6 RSNs with the color indicating the population average strength of the within-RSNs connections.




Effect of Subject and Regional Variability

The between- and within-subject variability of connections in both network types were analyzed using Kendall’s W, Friedman tests and paired difference tests. For the H(2) network, Kendall’s W values of 0.72 and 0.65 were obtained for between- and within-RSNs connections, respectively, indicating strong concordance among subjects. Friedman tests revealed a significant main effect of localization (p < 0.0001). 68.6% of the between-RSNs and 73.3% of the within-RSNs of the pairwise post hoc tests were found significant. The W values of the ΔH15 network were 0.44 and 0.47 for between- and within- RSNs connections, suggesting moderate subject agreement. Friedman test again indicated a significant main effect of localization for the ΔH15 values of functional connections (p < 0.0001), while 40% of the paired tests of between- and within-RSNs connections indicated a significant difference. Moreover, the two different networks displayed mostly different connections as statistically different (Figure 6). Table 2 summarizes the results of the statistical tests performed on H(2) and ΔH15 networks.


[image: image]

FIGURE 6. Effect of regional variability. Significance of connection-to-connection comparisons of within- (A) and between- (B) RSNs after the appropriate correction for H(2) and ΔH15. Blue: Only ΔH15 comparison test was significant. Orange: Only H(2) comparison test was significant. Green: Both H(2) and ΔH15 comparison tests were significant.



TABLE 2. Results of Kendall’s W, success rate for individual paired difference tests after correction and Friedman test for H(2) and ΔH15 for between- and within- RSNs.

[image: Table 2]To further validate that cortical localization significantly impacted connection dynamics, the parcelation scheme was evaluated against n = 100 spatially shuffled surrogates (see section “Materials and Methods”). In that, only 1% of the generated datasets showed p-values smaller than 0.05 after shuffling the channel labels. Moreover, Kendall’s W values for between-RSNs and within-RSNs for both H(2) and ΔH15 were found significantly higher than those obtained from randomized data. These results further confirm that functional connections linking various regions of the brain express different scale-free characteristics.



DISCUSSION

In this study, we present a novel bivariate adaptation of focus-based multifractal time series analysis and show its applicability for studying the spatiotemporal organization of functional brain networks. The main contribution of this work, therefore, lies with the utilization of the BFMF method and its associated statistical framework for the reconstruction of brain networks based on scale-free coupled dynamics. In that, using detrended covariance as a time-domain measure for BFMF, we examined the fractal connectivity by calculating bivariate H(2) and ΔH15 for each pair of processes, thereby assessing linear and non-linear aspects of their scale-free dynamics, respectively. The applied tests were essential in validating our findings and confirming that most of the connections were indeed multifractal. Moreover, with a combined application of bivariate and univariate focus-based multifractal analysis, we revealed whether the observed cross-regional temporal dynamics emerged from genuine scale-free interactions intrinsic to the connection, or were simply a consequence of long-term autocorrelation present in both processes. The reconstructed networks and their topology were highly consistent among subjects, while significant regional variability over the cortex was also observed. Our findings demonstrate that BFMF is an analytical tool capable of capturing scale-free coupled dynamics of physiological networks, a feature that may otherwise remain undetected by univariate fractal analytical methods.


Bivariate Multifractality in the Brain

Despite the ubiquity of scale-free characteristics in neural dynamics (He et al., 2010), only a limited number of studies investigated the fractal nature of the functional coupling between these processes. Ciuciu et al. (2014) assessed scale-free coupling of neural dynamics from fMRI datasets using frequency- and wavelet-based measures, thereby having to resort to an inherently low temporal sampling rate limiting both the precision and possible interpretation of their results. Other functional connectivity studies verified the presence of scale-free coupling in magnetoencephalography recordings using wavelet coherence function (La Rocca et al., 2021). The only bivariate scale-free study of EEG datasets was an exploratory investigation reporting significant differences in the bivariate multifractal profiles between young and elderly populations (Wang and Zhao, 2012).

Although these works reported on relevant aspects of neural dynamics, they did not provide statistical tests for the validation of the true multifractal nature of the investigated connections. This study aimed to rectify this limitation by adapting univariate scale-free assessment tests in the bivariate setting, as well as improving already-existing bivariate equivalents. Most of the analyzed connections in our study showed genuine multifractal coupling due to long-range cross-correlations, as indicated by the high success rates in the power-law, detrended cross-correlation, phase randomization and shuffling tests. It was indispensable to examine the presence of power-law relationship since coupled oscillatory dynamics confined to a specific time scale/frequency range might be present in our dataset. Robust detection of this feature was ensured by a statistical framework implemented in the frequency domain (Clauset et al., 2009). Moreover, the detrended cross-correlation coefficients of the original connections were significantly different from those of surrogate data at every scale, directly indicating the presence of scale-free long-term cross-correlations in the time domain (Podobnik et al., 2011). The purpose of phase randomization was to yield a population of surrogate data with abolished non-linearity (Prichard and Theiler, 1994). Comparing the multifractal characteristics of the surrogate population with those of the original data revealed that multifractality was indeed a consequence of the non-linear nature of the coupling between processes. The shuffling test, which distinguished between correlation- and distribution-type multifractality (Kantelhardt et al., 2002), indicated that most of our connections were of the former type. However, the bivariate multifractality of EEG-signals observed in this study can be attributed only partly to long-term cross-correlations, since the finite size effect will always contribute to the observed multifractality (Grech and Pamuła, 2012). To the best of our knowledge, our study is the first to statistically validate the existence of multifractality between elements of a physiological network, in this case the brain. However, our findings may also open the way for the investigation of other networks of the human organism, whose constituents also express scale-free dynamics [such as heart rate variability (Ivanov et al., 1999, 2004; Nunes Amaral et al., 2001; Bartsch et al., 2005), gait variability (Bartsch et al., 2007), muscle activity (Santuz and Akay, 2020), breathing (Fadel et al., 2004), or blood glucose level fluctuations (Weissman and Binah, 2014)]. By applying BFMF to assess the coupling in such systems, novel aspects of their interactions could be revealed that have not yet been accounted for.

An essential aspect of scale-free interactions is whether the observed multifractality is an intrinsic property of the relationship. Considering the fact that covariance estimation is influenced by the autocorrelation of the signals (Arbabshirani et al., 2014), we can safely assume that the intrinsic multifractality of a connection represents true statistical interdependence between the different brain regions while a large part of extrinsic multifractality could be ascribed to autocorrelation effects (Kristoufek, 2011). According to Figures 3, 4, while the between-RSNs connections showed a mostly extrinsic type of multifractality, the within-RSNs connections mainly featured intrinsic multifractality. This finding to some extent can be evident since a higher number of intrinsic (i.e., true) multifractal connections could be expected to exist within functionally cohesive neural populations, such as RSNs (van den Heuvel et al., 2010), as opposed to the links between them. These results may further support the notion that cortical regions that are considered to form RSNs are: (i) indeed functionally coupled and (ii) segregated from the rest of the brain (to some extent). Another noteworthy finding illustrated by Figure 4 is that the default mode network, dorsal attention network and the connections between them showed the highest probability of intrinsic multifractality. DMN comprises of brain regions with increased FC during idling (Chen et al., 2008), and considering that the analyzed datasets were obtained in the resting-state, we can expect strong within-DMN connectivity. On the other hand, DA has increased FC during tasks that require attention (Vossel et al., 2014), making the high probability of intrinsic multifractality of connections both within DA and between DA and DMN unexpected. A recent study (Murphy et al., 2020) indicated an indirect functional connection between DMN and DA mediated by the frontoparietal network, providing partial support for our findings of a high chance of intrinsic multifractality in the DMN-DA connections. Although our parcelation scheme prevents us from drawing stronger conclusions on the activities of RSNs, our findings still allow a clear demonstration of the regional variability of scale-free coupling in large-scale brain networks.

The origin of scale-free/multifractal nature in brain activity is still an active field of research, which yet remains to be fully resolved. One plausible explanation may be provided from the study of critical systems. Accordingly, the brain can be considered as a complex system that exists at the brink of order and chaos (Weil, 1994; Beggs and Timme, 2012; Hesse and Gross, 2014), with its fine-tuned equilibrium and 1/f-dynamics indicating the presence of self-organized criticality (SOC) (Bak et al., 1987; Buzsáki, 2006). The concept of SOC emphasizes that the brain tends to operate in a critical state (Bonachela et al., 2010; Hesse and Gross, 2014), where even a local perturbation can elicit a global response. In SOC-based interpretations of neural dynamics, criticality is achieved by fine-tuning a control parameter inherent to the brain. Despite options emerging from electrophysiological experiments (Freeman, 2004; Buzsáki, 2006), the identity of this control parameter remains elusive, sustaining a dispute within the neuroscience community over the relevance of SOC in explaining the observed dynamics (Beggs and Timme, 2012; Hesse and Gross, 2014). A likely candidate is a balance between incoming excitatory and inhibitory signaling of the neuronal populations. It has already been demonstrated that power-law scaling at local field potentials and global electromagnetic brain signals (Beggs and Timme, 2012; Poil et al., 2012) can emerge through such equilibrium of incoming excitatory and inhibitory stimuli. A similar model, attributed to the balance between the two divisions of the autonomic nervous system, has been suggested as the source of the scale-free fluctuations of the heart rate variability (Ivanov et al., 1998; Nunes Amaral et al., 2001). In line with these considerations, the stochastic influx of excitatory/inhibitory signals may be a possible source of bivariate multifractality of the brain networks, however this hypothesis requires further research.



Aspects of Functional Coupling Captured by BFMF

In this study, BFMF was used as a functional connectivity estimator, from which two brain networks were reconstructed. A network was defined by assigning the bivariate H(2) values as edge weights, reflecting the topology of long-term cross-correlation. Similarly, bivariate ΔH15 values were assigned to all connections forming a network that displays the topology of the multifractal strength. It should be emphasized that the obtained scale-free pattern of functional connections appeared highly consistent among subjects, in agreement with previous studies (Gong et al., 2003). Moreover, our results indicated significant regional variability for both within- and between- RSNs connections. This regional variation was notably different between the H(2) and ΔH15 networks (Figure 6), emphasizing that these two measures of scale-free dynamics are complementary to each other also in the bivariate setting. The complementary nature of H(2) and ΔH15 has already been demonstrated in the univariate fractal analysis (Mukli et al., 2015; Racz et al., 2018b). Furthermore, the two networks yielded opposite patterns regarding their topologies, i.e., those connections with high H(2) values were found to express low ΔH15 values and vice versa (Figure 5). A similar relationship between univariate H(2) and ΔH15 was found in an earlier study; however, only for delta band connections (Racz et al., 2018b). In that work, synchronization likelihood was used as a dynamic functional connectivity estimator and multifractal properties of time-varying synchronization levels (i.e., dynamic functional connections) were estimated using the univariate FMF method. Since three out of the six scales (128, 256, 512 data points) used in the current analysis fall within the delta band (0.5–4 Hz), this may explain the observed similarities with the study discussed above.

A source of inconsistency among FC studies may emerge from the application of various thresholding schemes. In that, most studies use some form of pruning procedure to exclude connections from the reconstructed networks that may be spurious or originating from noise (Rubinov and Sporns, 2010; van den Heuvel et al., 2017). Given that the primary goal of the study was to demonstrate the existence of multifractal coupling in brain networks as well as the introduction of a new method for its assessment, our main analytical pipeline did not contain a thresholding step. Nevertheless, in order to explore the plausible effect of thresholding on scale-free network topology we applied a parallel pipeline, which included thresholding as follows. The ΔH15 networks only included connections that passed all four multifractality assessment tests. H(2) networks consisted of links that successfully passed the power-law, detrended-cross correlation and shuffling tests. Further details about this parallel analysis are provided in the Supplementary Material. Notably, the localization of intrinsic multifractality and the H(2) and ΔH15 networks architectures were highly similar to the unthresholded case, while the regional variability and subject concordance was found diminished (Supplementary Figures S1–S3 and Supplementary Table S1). The inference of this comparison is that intrinsic multifractality only marginally depends on the thresholding procedures while between- and within-subject variability of H(2) and ΔH15 networks is clearly influenced.



Comparison of BFMF With Scale-Dependent FC Estimators

Given the novelty of our method, it is important to compare our results to those obtained by other FC methods commonly used in the literature (van den Heuvel and Fornito, 2014). For this purpose, we also reconstructed brain networks with the aid of Pearson correlation (r) and Mutual Information (MI) (details found in Supplementary Material). The purpose of this testing was to investigate if BFMF could reveal network architectures different from those obtained with scale-dependent linear or non-linear methods, thus implying its utility in capturing novel aspects of spatio-temporal neural dynamics. Since r and MI are indeed scale-dependent, we analyzed our signals at the same six scales as in BFMF analysis (16, 32, 64, 128, 256, and 512 data points) in a non-overlapping windowed manner. While the r networks showed a similar distribution of FC as the H(2) network (Figure 5 and Supplementary Figure S4), the MI networks did not resemble any of the two BFMF networks (Figure 5 and Supplementary Figure S5). Moreover, regional variability was more significant in the r and MI networks (Supplementary Table S2), suggesting the influence of oscillatory dynamics. These oscillatory dynamics, despite their physiological correlates, cannot capture the scale-independent network connectivity evaluated by BFMF. To conclude, these results call for the careful interpretation of observed functional connectivity patterns pertinent to the estimator used for their assessment, while also highlight the fact that BFMF captured patterns of neural dynamics that remained undetected by r or MI.



Limitations and Future Perspectives

Finally, the limitations of this study should also be addressed. The 5-minute eyes-closed resting-state EEG recordings did not allow for a comparison of networks under different mental states, which have been shown to influence the fractal properties of neural dynamics (Ciuciu, 2012; Ciuciu et al., 2014). Nevertheless, as the primary objective of this study was to demonstrate the applicability of BFMF as a novel tool for reconstructing physiological networks of functional significance. For that purpose, a homogenous resting-state EEG dataset was sufficient, while subsequent research should indeed consider more elaborate experimental paradigms. Even though more than half of the connections showed intrinsic multifractality in every subject, at the population level there was only a tendency (maximal probability was 0.91) of localization of intrinsically multifractal connections within the resting-state networks (Figure 4). A possible explanation of this could be the low sample size of the study. It is reasonable to assume that future studies with a larger subject cohort could further confirm enhances the significance of this dichotomous model. Due to limitations of the applied parcelation scheme in demonstrating RSN-dependent contrast of bivariate multifractal measures, more elaborate experimental paradigms are needed for a thorough investigation of the origin of the scale-free character between and within the different RSNs via source-reconstruction (La Rocca et al., 2021). Infra-slow neural activity (<0.5 Hz) was not considered in this study since our preliminary investigations showed that breakpoints of the scaling function appear around 0.5 Hz (for further details in bimodal multifractal analysis, see Nagy et al., 2017). In future investigations, low-frequency EEG could be examined by a scaling-range adaptive, bimodal extension of BFMF, which appears as a reasonable next step considering recent advances in the analysis of multimodal fractal time series (Nagy et al., 2017; Mukli et al., 2018). These investigations should include high-pass filtering with a much lower cut-off frequency, which however will also require appropriate measurement length and sampling rate. The relevance of this consideration is supported by findings from fMRI recordings indicating that frequencies closer to 0.01 Hz contribute to multifractal functional connections to a greater extent (Ciuciu et al., 2014). Our study investigated only one exemplary case of physiological networks, namely functional networks of the human brain. In general, investigation of any biological process observed for a sufficiently long period of time and sampled at adequate temporal resolution could benefit from this method, as the BFMF framework enriches the analytical repertoire suitable for investigating dynamic physiological networks. In fact, multifractal covariance analysis has revealed a genuine scale-free coupling between oxy- and deoxyhemoglobin fluctuations (Mukli et al., 2018) that could be ascribed to mechanisms of neurovascular coupling. A certainly important direction of further research should be to implement this methodology in clinical studies, especially in psychiatry, where new biomarkers with good performance and reliability in individualized treatment are much needed (Topol, 2019). Finally, even though BFMF was developed for the study of physiological networks, it can still be applied in a variety of other disciplines, like in the field of economics on which the bivariate multifractal analysis has been focusing so far (Oświęcimka et al., 2014; Pal et al., 2014).



CONCLUSION

Here we introduced the bivariate focus-based multifractal analysis for the dynamic investigation of physiological networks and showed that it captures novel features of resting-state brain network dynamics. Namely, supported by statistical testing, BFMF could reveal true multifractality in most of the functional connections estimated from EEG signals. Moreover, topological patterns identified with BFMF appeared robust, as indicated by high subject concordance and strong regional variability. Our results could facilitate further research on brain networks under different experimental conditions using bivariate multifractal analysis, as well as on extended physiological networks at the level of the entire organism.
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FOOTNOTES

1The multifractal nature of the coupling was based on the dichotomus model of fractional Gaussian noise and fractional Brownian motion (Eke et al., 2000) extended to the multivariate setting (Lavancier et al., 2009).

2Note that the optimal method of matching EEG channels to RSNs (or more correctly to regions of interest) is by source-reconstruction (Michel and Brunet, 2019) and subsequent generation of time-series for each RSN. Our parcelation targeted mainly the dimensionality reduction and hence no strong conclusions about RSNs should be made based on this. For a source-reconstructed scale-free functional connectivity study we suggest reading (La Rocca et al., 2021).
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Electroencephalographic activity over the sensorimotor cortex has been one of the best studied targets for neurofeedback therapy. Parkinson’s disease patients display abnormal brain rhythms in the motor cortex caused by increased synchrony in the basal ganglia-cortical pathway. Few studies have examined the effects of sensorimotor-based neurofeedback therapy in humans with PD. In this pilot study, one patient, diagnosed with Parkinson’s disease 10 years prior, participated in two consecutive days of EEG neurofeedback training to increase sensorimotor rhythm (SMR) power over the motor cortex. Using a visual display connected to ongoing EEG, the patient voluntarily manipulated SMR power, and he/she was awarded with points to positively reinforce successful increases over a predefined threshold. Recorded EEG data were source localized and analyzed for the occurrence of high amplitude bursts of SMR activity as well as bursts in the beta frequency band in the precentral cortex. The rate of SMR bursts increased with each subsequent training session, while the rate of beta bursts only increased on the final session. Relative power in the beta band, a marker of PD symptom severity, decreased over the motor cortex in the later session. These results provide first evidence for the feasibility of SMR neurofeedback training as a non-invasive therapy for reducing Parkinson’s disease related activity and upregulating SMR in the human motor cortex.
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INTRODUCTION

There is an increasing interest in developing non-invasive therapies for treating Parkinson’s and other motor-related disorders (Lee and Lozano, 2018). Current gold-standard treatments include deep brain stimulation (DBS) which involves an invasive surgical procedure (Larson, 2014; Fox et al., 2018). Development of therapies that rely on non-invasive methods would be easier to implement in a clinical or at-home setting and would reduce cost to the patient and provider. Lack of verifiable clinical measures has slowed progress in this area (Geraedts et al., 2018).

Parkinson’s Disease (PD) is often characterized as an abnormal synchrony between basal ganglia and cortical areas, especially in the beta frequency range (Eusebio et al., 2009). DBS targeting the subthalamic nucleus aims to disrupt this synchrony (Wilson et al., 2011). How this subcortical activity is related to ongoing EEG measures from the scalp is less understood. Various studies have shown both an increase and a decrease in beta activity from sensorimotor areas (George et al., 2013; Cao et al., 2020). Recently, research has suggested that physiological mechanisms producing short high-amplitude bursts in the beta band are sensitive to Parkinson’s medication and correlate with symptom severity for bradykinesia and rigidity (Feingold et al., 2015; Tinkhauser et al., 2017a,b). There is evidence that the occurrence of these short bursts of activity before the initiation of movement correlate inversely with movement speed (Lofredi et al., 2019). Therefore, the dynamics of beta activity in the motor cortex offer a potential target for improving motor-related symptoms.

Neurofeedback can offer potential therapeutic benefit by training specific brain activity using classical conditioning. Patients receive feedback from their own EEG signals, usually in the form of visual or auditory cues. One well established target of neurofeedback is the sensorimotor rhythm (SMR) relating to activity over the sensorimotor cortex (Marzbani et al., 2016). This activity is shown to be associated with motor planning, initiation, and imagery (Roth et al., 1967). SMR was one of the first targets of neurofeedback shown to change because of training (Sterman, 1977). Recently, neurofeedback experiments in MPTP-induced Parkinsonian monkeys have shown that reinforcing the occurrence of short bursts of activity in the SMR frequency range, recorded from two implanted epidural sensorimotor cortex bipolar electrodes, results in a protective effect for the development of motor symptoms (Philippens et al., 2017). Monkeys were trained to voluntarily control SMR activity through positive reinforcement of spontaneously occurring SMR spindles, which led to decreased symptom severity following induction of PD. Whether reinforcement of this brain rhythm influences PD symptoms in humans has limited evidence (Thompson and Thompson, 2008).

To translate the SMR neurofeedback protocol successfully applied to Parkinsonian monkeys (Philippens et al., 2017) for clinical tests in PD patients and demonstrate feasibility, in this case study, we use an established method for rewarding increased SMR activity which has been demonstrated in healthy participants (Doppelmayr and Weber, 2011). Over two consecutive days, a single PD patient underwent multiple rounds of training, both off and on regular medication. SMR activity was recorded from electrodes on and around the sensorimotor cortex. The patient received visual feedback in the form of a constantly updating bar graph and a point system rewarding short increases of SMR activity. PD motor symptoms were measured at regular time points using the Universal Parkinson’s Disease Rating Scale subscale III (UPDRS-III). EEG was recorded during each session and analyzed offline to examine both changes in relative power spectral density (RPSD) and burst dynamics across days of training.



METHOD


Participants

One patient with idiopathic PD participated in the EEG study and an additional patient participated in a pilot of the neurofeedback protocol. The EEG patient was in his/her mid-fifties and was diagnosed with PD 10 years prior to the start of this study. Both patients signed a written informed consent form which explained the potential risks and benefits and described the procedure of the study. The patient was made aware that he/she could withdraw from the study at any time without fear of repercussion. The EEG patient was in Hoehn & Yahr stage 2 which was assessed using a 12-h dopa challenge. He/she was taking two doses of 25 mg carbidopa and 100 mg levodopa every 3–4 h.



Procedures

The EEG patient performed two consecutive days of EEG neurofeedback. On each day, this patient arrived in the morning having withdrawn from his/her fast-acting medication for 12 h (off condition). Motor-related symptoms were assessed using UPDRS-III. The patient was briefed about the neurofeedback protocol, and then performed one session of EEG neurofeedback training lasting approximately 1 h. Following the training, another assessment of motor symptoms was performed while still in an off medication state. The patient was given a 1-h break where he/she was instructed to take a normal dose of two pills carbidopa/levodopa 25/100. The second session of neurofeedback was performed approximately 1 h after medication was taken and the patient felt he/she was in an on state (on condition). These procedures were performed again on the second day. The off then on medication procedure was used due to the patient being unable to tolerate the extended periods of unmedicated state. Also, it is important to examine whether neurofeedback training is feasible in both conditions because dopaminergic medication is thought to affect the reward system. The drawback to this method is the difficulty in separating effects of neurofeedback and medication. The pilot patient participated in the same procedure on two separate 2-day visits. However, this patient came in off medication for 24 h on the first day and remained off medication for the second day of each visit (48 h).



EEG Acquisition

EEG was acquired using a 256-channel EEG (HydroCel GSN, EGI, Inc., Eugene, OR, United States). For neurofeedback, EEG signals were acquired from 26 electrodes including and surrounding C3 and C4 referenced to mastoid electrodes. EEG was sampled at a rate of 1,000 Hz. Five minutes of recorded data from each round of neurofeedback were used for analysis. Resting-state EEG was used for threshold finding in the neurofeedback sessions but not recorded. Data were average referenced offline and pre-processed using the EEGLAB toolbox (Delorme and Makeig, 2004) in MATLAB (Mathworks). Source signals were extracted from the ROIs precentral right and precentral left using the Desikan-Killiany atlas (Desikan et al., 2006) taking the mean over the entire region.



Neurofeedback Protocol

Neurofeedback training generally follows the method described in Doppelmayr and Weber (2011). Online EEG signals were processed using NeuroPype (Intheon) software. Signals were bandpass filtered for the sensorimotor frequency (12–17 Hz) used from the previous monkey study (Philippens et al., 2017), but human studies generally use 12–15 Hz (Schabus et al., 2014). Power averaged over the electrodes was calculated online to provide a single value for SMR activity (see Supplementary Methods in Supplementary Material). Muscle activity was monitored using power in motor-related frequency ranges (22–30 Hz and 45–60 Hz) and eye blinks were monitored from eye electrodes in the range 3–5 Hz. These running values were displayed using a Python script showing a single bar graph in the center of the screen that increased and decreased with the SMR value. The bar began as a neutral gray and became green for SMR and red for movement when these values were above a specified threshold described below. A point counter was displayed at the top right of the screen to provide motivation and reward of successful SMR increase (Figure 1). Before each session of neurofeedback, initial power thresholds were calculated over a 1-min resting period (see Supplementary Methods in Supplementary Material). Following thresholding, the patient was instructed to attend to the computer screen and keep movement to a minimum. The patient was instructed to try to raise a bar graph on screen until it turns green and keep it green as long and often as possible. Success in this task would be rewarded with points, which were visually displayed beside the bar graph. He/she was also told that no points were awarded when the bar would turn red indicating excessive movement. Each neurofeedback round lasted 5 min. The patient was given approximately 1 min to rest between rounds. Points were awarded if the SMR power value remained above threshold for 250 consecutive milliseconds without dropping below the threshold. The Python script was programmed such that no points were awarded for 3 s following the previous point. This assured that points would not accumulate too rapidly, which would be confusing for the patient. Thresholds were increased between rounds if the patient exceeded 55 points on the last round and decreased if he/she was awarded less than 45 points, otherwise the threshold remained constant. Thresholds were adjusted by about 3% increments, but this value was at the discretion of the experimenter to keep the patient engaged and motivated. Each session of neurofeedback consisted of five rounds.
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FIGURE 1. Simplified schematic of the experimental set-up. The patient sat facing the visual display while EEG electrodes relayed ongoing brain activity to the acquisition computer for processing. This activity then influenced the height and color of a bar graph on the display closing the feedback loop.




Relative Power Spectral Density

Power spectral density was calculated for each round in each frequency band (delta: 2–4 Hz, theta: 5–7 Hz, alpha: 8–12 Hz, SMR: 12–17 Hz, high beta: 17–29 Hz, low gamma: 30–59 Hz, high gamma: 60–90 Hz) using the Welch method. RPSD was calculated for each round in the SMR and high beta bands defined as the power in the band divided by the total power spectrum, and the values for the left and right hemispheres were averaged. RPSD was also calculated for 500 ms preceding and 500 ms following the presentation of a point to identify learning effects.



Defining Burst Characteristics

Burst characteristics were calculated offline with the method described in Vinding et al. (2020). One threshold was used for each ROI of the source signal (see Supplementary Methods and Supplementary Figure 1 in Supplementary Material). High amplitude bursts were defined as a peak above this threshold.

Four burst characteristics were extracted from each 5-min neurofeedback round. First was the burst rate during the 5 min. This was used to track changes in the number of bursts across sessions of neurofeedback. The second was burst duration, defined as the full width at half maximum of the peak amplitude. This was used to track the time that high amplitude activity lasts. Multiple peaks that are less than one cycle apart at 12 or 17 Hz for SMR and high beta respectively were counted as a single burst. Third was the inter-burst interval. This was defined as the length of time between the end of one burst to the beginning of the next. The fourth measure was the peak amplitude of the burst.

Threshold finding and burst characteristic extraction were carried out with a custom MATLAB script. This method was repeated for both high beta (17–30 Hz) and SMR (12–17 Hz). Values were averaged across left and right hemispheres.



Statistical Analysis

All statistical analyzes were accomplished with R statistical software (R Development Core Team, 2020). Paired, two-tailed t-tests compared day one to day two for each medication condition (on and off) separately with degrees of freedom = 4. All measures, including RPSD and all burst characteristics, were tested to discover which features of brain activity are influenced by neurofeedback training. Significant p-values were assessed using a critical alpha of 0.05. The effect size was assessed using Cohen’s d.



RESULTS


Neurofeedback Performance

The initial average power threshold, as well as the adjusted thresholds for each subsequent round, are displayed by day and condition in Figure 2. The thresholds for the pilot patient are in Supplementary Results and Supplementary Figure 2 in Supplementary Material. Supplementary Table 1 shows all mean thresholds and mean point values for each neurofeedback round for both patients.
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FIGURE 2. Group statistics for the power thresholds used in each neurofeedback session on each day and in each medication condition. Thresholds are in mV.




Precentral Relative Power Spectral Density

RPSD was calculated for each session and each frequency band. There was no significant change in high beta power in the off condition from the first day (M = 0.09, SD = 0.02) to the second day (M = 0.07, SD = 0.01). The decrease in power in the on condition was significant (First: M = 0.1, SD = 0.002, Second: M = 0.07, SD = 0.02; t(4) = 4.87, p = 0.008, d = 2.18). There were no significant differences in RPSD in the SMR frequency for the off condition (First: M = 0.08, SD = 0.01, Second: M = 0.08, SD = 0.01). The decrease in the on condition was significant (First: M = 0.09, SD = 0.01, Second: M = 0.05, SD = 0.01; t(4) = 7.45, p = 0.002, d = 3.33). The RPSD as well as PSD for each frequency band and total PSD for all frequency bands can be seen in Supplementary Figure 3.

RPSD just before the awarding of a point was compared for the first two rounds and the last two rounds of neurofeedback for each session. The time periods immediately before and immediately after the point were also compared. However, no significant differences were found in any session of training for either comparison. Randomly selected representative EEG traces and coinciding source signals are displayed in Supplementary Figure 4.



Burst Rate

In the off condition, the mean rate of high beta bursts on the first day was 1.04 bursts/sec (SD = 0.12) and 0.91 bursts/sec (SD = 0.10) on the second day, showing no difference. The mean rates for the on condition were 1.05 bursts/sec (SD = 0.19) and 3.34 bursts/sec (SD = 0.96) for the first and second days respectively, with a significant increase [t(4) = −4.64, p = 0.010, d = −2.07] from day one to day two.

In the SMR band, mean rates changed in both the off condition (First: M = 0.42 bursts/sec, SD = 0.03, Second: M = 1.07 bursts/sec, SD = 0.12) and the on condition (First: M = 0.77 bursts/sec, SD = 0.11, Second: M = 1.84 bursts/sec, SD = 0.28). Both of these constitute significant increases [off: t(4) = −12.56, p < 0.001, d = −5.62, on: t(4) = −7.57, p = 0.002, d = −3.39]. The group statistics can be seen in Figure 3.


[image: image]

FIGURE 3. Group statistics for each day and each medication condition of all burst characteristics in the high beta band and the SMR band. Amplitude units are for sLORETA.




Burst Duration

High beta burst durations show a difference only in the on condition. In the off condition the mean duration on the first day was 113.28 ms (SD = 1.98). On the second day, the mean was 114.89 ms (SD = 1.46). In the on condition the first day mean was 115.57 ms (SD = 2.87) and the second day mean was 98.30 ms (SD = 4.92). This is a large decrease in duration, t(4) = 9.76, p < 0.001, d = 4.37. The group statistics can be seen in Figure 3.

The SMR band shows significant decreases in burst duration from day one to day two. In the off condition, the mean on the first day was 213.15 ms (SD = 3.68), and the mean on the second day was 200.82 ms (SD = 2.28), t(4) = 8.15, p = 0.001, d = 3.64. In the on condition the first day mean was 207.90 ms (SD = 6.05), and the second day mean was 187.81 ms (SD = 3.54), t(4) = 4.70, p = 0.009, d = 2.10.



Inter-Burst Intervals

The length between bursts for high beta showed a decrease across days. Intervals ranged from a few seconds to a few hundred milliseconds. For the off condition in the beta band the first day mean was 3,923.53 ms (SD = 594.58), and the second day mean was 1,691.49 ms (SD = 206.73), t(4) = 7.35, p = 0.002, d = 3.29. For the on condition, the mean on the first day was 1,406.76 ms (SD = 420.28) and 234.32 ms on the second day (SD = 115.51), t(4) = 5.35, p = 0.006, d = 2.39.

In the SMR band, the means for the off condition were 2,404.09 ms (SD = 267.05) and 861.62 ms (SD = 125.55) for the first and second day respectively. This is a significant decrease, t(4) = 16.82, p < 0.001, d = 7.52. For the on condition there was also a significant decrease from the first day (M = 1184.37 ms, SD = 219.36) to the second day (M = 362.92 ms, SD = 77.52), t(4) = 7.52, p = 0.002, d = 3.37. Group statistics are shown in Figure 3.



Burst Amplitudes

Peak burst amplitudes show a general increasing pattern resembling the burst rates. In the high beta band, there was no difference between the first day (M = 2.99 × 10–9, SD = 2.13 × 10–11) and the second day (M = 3.07 × 10–9, SD = 9.34 × 10–11) for the off condition. However, there was a significant increase for the on condition from day one (M = 3.10 × 10–9, SD = 7.91 × 10–9) to day two (M = 3.73 × 10–9, SD = 2.15 × 10–10), t(4) = −4.88, p = 0.008, d = −2.18.

There was a slight increase in amplitude for the SMR band in the off condition [t(4) = −3.27, p = 0.031, d = −1.46] from day one (M = 2.00 × 10–9, SD = 2.65 × 10–11) to day two (M = 2.07 × 10–9, SD = 4.57 × 10–11). There was also a significant increase in the on condition [t(4) = −5.29, p = 0.006, d = −2.37] from the first day (M = 2.08 × 10–9, SD = 9.72 × 10–11) to the second day (M = 2.34 × 10–9, SD = 4.75 × 10–11). All group statistics are shown in Figure 3.



UPDRS-III

Results of the UPDRS scoring show mixed results. On the first day, before neurofeedback a total score of 13 was recorded. After neurofeedback, the patient scored 16 while still off medication. On the second day, the patient recorded a score of 21 before neurofeedback, and a score of 16 after neurofeedback off medication. Pilot patient scores are found in Supplementary Results in Supplementary Material and all UPDRS scores are in Supplementary Table 2.



DISCUSSION

Burst characteristics were analyzed across sessions of reward-based SMR neurofeedback training in a single PD patient. The signal was filtered into high beta (17–30 Hz) and SMR frequency ranges (12–17 Hz) which is associated with motor inhibition and imagery. The rate of high beta bursts only increases from the first to second day when the patient is on dopaminergic medication. The same trend is seen in the peak amplitude. This increase occurs despite there being a decrease in RPSD in this frequency range. There were significant decreases in the inter-burst interval across days in both medication conditions. This suggests while bursts did not occur more frequently overall while off medication, they may occur closer together when activity becomes more “bursty.” The duration of these bursts also decreases on the second day, but only when the patient is on medication. While burst rates change dramatically on different days, the burst durations show similar ranges in all conditions, with both long and short bursts occurring despite changes in frequency. It has been shown that burst durations in the beta band are related to symptom severity, with less severe symptoms correlated with shorter durations (Tinkhauser et al., 2017b, 2018).

Burst rates in the targeted SMR frequency range also show a significant increase from the first day to the second day when the patient is on medication, and a significant increase when the patient is off medication. The trend across all four sessions of neurofeedback training shows an increasing rate of bursts. This trend was not tested for significance because of the limited scope of this feasibility study. Peak amplitudes increased for both on and off medication conditions. This occurred while RPSD in the SMR frequency range decreased in the on condition and remained constant in the off condition. The same trend in the opposite direction was seen for SMR burst duration and inter-burst intervals. Changes across days in both medication conditions show a significant decrease.

The changes in the SMR band represent the most obvious findings in this case study. The neurofeedback training targeted this frequency range using scalp electrodes placed over the motor cortex. The patient was rewarded with feedback of success when bursts of SMR exceeded a threshold based on resting power for a duration of at least 250 ms. Representative traces provide visual illustration of the increasing SMR activity across training sessions. There were no significant changes in SMR power before a point was awarded from the beginning of one training round to the end of that round, suggesting learning effects build gradually over many rounds rather than occurring early on then plateauing at the end. The neurofeedback thresholds generally increased for both patients over sessions, requiring higher amplitude SMR activity to achieve feedback reward. This is reflected in the EEG results when examining burst activity in the SMR frequency range, but it is less clear whether this produced a change in non-targeted beta frequencies. However, by examining RPSD in the precentral region there appears to be a reduction of beta activity at the end of training when the patient is on medication (see Supplementary Discussion in Supplementary Material). This change becomes clearer when looking at RPSD across the entire cortex, showing diminishing dominance of beta power over the midline (Figure 4). Meanwhile, SMR power is initially distributed in posterior regions, and, while it diminishes in power over time, it becomes more dominant over the motor regions where neurofeedback is targeted.
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FIGURE 4. Relative power spectral density for each day and each medication condition in four frequency bands of interest. Units are for sLORETA.


Changes in the spatial distribution of theta and alpha RPSD also suggest that the patient may be learning cognitive control strategies to affect ongoing brain activity. There is some consensus that frontal-midline theta oscillations are involved in integrating feedback information with expected outcomes (Cavanagh and Frank, 2014; Luft, 2014), and this may be especially important for sensorimotor information in Parkinson’s (Meissner et al., 2018; Singh et al., 2020). The consolidation of theta in the frontal area seen in this patient could reflect an increased ability to monitor and respond to feedback for control of sensorimotor activity. Similarly, there is evidence that alpha activity in the right posterior hemisphere is correlated with increased internal attention (Benedek et al., 2014), which is also seen on the second day of training. While these results are related to well-known effects, it remains to be seen whether the changes occurring in one patient would be significant in a larger sample population. The patient self-reported an increased feeling of control over the neurofeedback outcome, with greater ease of predicting when successful feedback would occur. The patient was never told that a threshold change was made, however, he/she was occasionally informed that the next round would be more or less challenging. Despite this, the patient was still able to sense when a point would be awarded on more challenging rounds after some training.

The clinical significance of this approach will also need to be studied further before drawing strong conclusions. Acute changes in the UPDRS scores for each day show some mixed effects. On the second day, however, there were improvements in rigidity and gait after the first training session. From observation, the patient had severe mobility symptoms in the morning, but he/she was able to walk with moderate start and stop freezing of gait after 1 h of neurofeedback training. The short duration of the study makes it challenging to draw conclusions about the clinical measures. The scope of this study is to determine the technical feasibility and safety of neurofeedback training in Parkinson’s patients. Because neurofeedback effects are the result of long-term learning effects, it would be interesting to conduct a long-term study using neurofeedback, which should reveal whether there are stable decreases in motor symptoms over a period of weeks or months.

These results provide some initial evidence that neurofeedback targeting the SMR frequency, in analogy to the Parkinsonian monkey SMR neurofeedback training by Philippens et al. (2017), is feasible in humans with PD, both off and on medication. In future studies, computational models for burst mechanisms (Powanwe and Longtin, 2019) could be used for interpretation of findings and optimization of feedback protocols (see Supplementary Discussion in Supplementary Material). The scope of this feasibility study is limited, and a larger sample population would give more credence to these results. Sham protocols should be used to ascertain whether these changes in brain activity are a result of ongoing EEG biofeedback, or just a byproduct of the visual display and task instructions. Still, the evidence from one patient’s experience combined with the evidence in monkeys and healthy populations warrant further study of SMR neurofeedback as an adjunct therapy for PD.
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In this work, we extend to the multivariate case the classical correlation analysis used in the field of network physiology to probe dynamic interactions between organ systems in the human body. To this end, we define different correlation-based measures of the multivariate interaction (MI) within and between the brain and body subnetworks of the human physiological network, represented, respectively, by the time series of δ, θ, α, and β electroencephalographic (EEG) wave amplitudes, and of heart rate, respiration amplitude, and pulse arrival time (PAT) variability (η, ρ, π). MI is computed: (i) considering all variables in the two subnetworks to evaluate overall brain–body interactions; (ii) focusing on a single target variable and dissecting its global interaction with all other variables into contributions arising from the same subnetwork and from the other subnetwork; and (iii) considering two variables conditioned to all the others to infer the network topology. The framework is applied to the time series measured from the EEG, electrocardiographic (ECG), respiration, and blood volume pulse (BVP) signals recorded synchronously via wearable sensors in a group of healthy subjects monitored at rest and during mental arithmetic and sustained attention tasks. We find that the human physiological network is highly connected, with predominance of the links internal of each subnetwork (mainly η−ρ and δ−θ, θ−α, α−β), but also statistically significant interactions between the two subnetworks (mainly η−β and η−δ). MI values are often spatially heterogeneous across the scalp and are modulated by the physiological state, as indicated by the decrease of cardiorespiratory interactions during sustained attention and by the increase of brain–heart interactions and of brain–brain interactions at the frontal scalp regions during mental arithmetic. These findings illustrate the complex and multi-faceted structure of interactions manifested within and between different physiological systems and subsystems across different levels of mental stress.

Keywords: network physiology, brain–heart connection, cardiovascular oscillations, EEG waves, physiological stress, time series analysis, wearable devices


INTRODUCTION

Network physiology is a novel research field describing the human organism as an integrated network in which nodes correspond to the organs and edges map organ interactions (Bashan et al., 2012; Bartsch et al., 2015; Ivanov et al., 2016). Since the human physiological network is highly dynamic, the strength of the interactions among organs changes over time across different physiological states as a response to cognitive or homeostatic control mechanisms (e.g.: rest or stress; emotion elicitation; consciousness or unconsciousness; wake, sleep, sleep stages), or due to pathological conditions (Jänig, 2008; Bashan et al., 2012; Waterhouse, 2013; Valenza et al., 2016; Zanetti et al., 2019b). The continuous and dynamic interaction among organs is fundamental for maintaining the individual in good health; a failure in such interaction mechanisms could provoke diseases related to organ dysfunctions or, in the worst case, even the collapse of the whole organism (Ivanov et al., 2016). Therefore, taking into account the human body as a whole and investigating the interactions among multiple organs can provide additional information to that obtained focusing on each physiological system individually (Bartsch et al., 2015). This can now also be easily achieved in non-clinical conditions thanks to the widespread adoption of wearable sensors and systems allowing the non-invasive synchronous acquisition of multiple signals from different physiological districts (Heikenfeld et al., 2018; Jovanov, 2019; Pernice et al., 2019c; Vinciguerra et al., 2019).

Among the variety of organ system interactions, brain–heart interactions play an important role since they underlie the activity of the autonomic nervous system (ANS) and the central nervous system (CNS), which are strictly interconnected through anatomical and functional links and influence each other continuously (Thayer et al., 2012; Beissner et al., 2013; Silvani et al., 2016). Effects of such interactions have also practical importance, as, for instance, cerebral diseases like ischemic stroke and transient ischemic attacks can be due to cardiac arrhythmias such as atrial fibrillation (Marini et al., 2005; Buchwald et al., 2016). On the other hand, the heartbeat dynamics are typically affected by the ANS response to emotional stress, arousal, and physical activity (Dimsdale, 2008; Silvani et al., 2016). In particular, it has been shown that both mental load and physiological stress produce repeatable variations not only in the brain activity (Gevins et al., 1998; Berka et al., 2007; Al-shargie et al., 2018), but also in the dynamic control of the cardiovascular function and heart rate variability (HRV) (Petrowski et al., 2017; Kim et al., 2018; Pernice et al., 2018, 2019a); these effects can be of clinical relevance as they can ultimately increase the risk of heart attacks and stroke (Steptoe and Kivimäki, 2013; Al-Shargie et al., 2016). Moreover, besides the interplay between brain and heart, the network of interactions sub-serving the regulation of the homeostatic function encompasses other physiological rhythms, such as the respiratory drive (Pfurtscheller et al., 2019; Javorka et al., 2020), the cardiovascular and baroreflex functions (Krohova et al., 2019, 2020; Ringwood and Bagnall-Hare, 2020), and other less studied but significant vital signs, e.g., including muscular and ocular activities (Ivanov et al., 2017; Boonstra et al., 2019).

In this context, a main challenge that has emerged in the last years is the development of proper time series analysis techniques capable of suitably quantifying the interactions among different physiological systems starting from the output signals measured from the different organs. The pioneering works in the emerging field of network physiology have used simple cross-correlation measures, showing that they can be a reliable tool to quantify brain–body and brain–brain interactions across different sleep states (Bashan et al., 2012; Lin et al., 2020). In fact, cross-correlation is a well-established tool that has been widely used in many fields of biomedical signal processing, e.g., for assessing the connection between pairs of brain areas in functional magnetic resonance imaging (fMRI) (Cao and Worsley, 1999; Li et al., 2009). Crucially, this approach has also been extended to take into account one or more control variables through the so-called partial correlation (Marrelec et al., 2006; Wang et al., 2016). The latter has been widely employed for the study of brain connectivity, where the coupling between two time series is often assessed removing indirect effects from other multiple series through the use of partial correlation matrices (Marrelec et al., 2006; Oliver et al., 2019). More sophisticated analysis techniques have been proposed for the study of dynamic brain–heart and brain–body interactions, e.g., information-theoretic-based measures able to assess the information produced by each physiological system and transferred to the other connected systems starting from their output time series, which exploit, for example, Granger Causality or penalized regression (we refer the reader to Faes et al., 2014; Duggento et al., 2016; Greco et al., 2019; Zanetti et al., 2019a; Antonacci et al., 2020 for further details) or different approaches like the one calculating the maximal information coefficient (Valenza et al., 2016). However, correlation-based measures have the advantage of being simple, computationally efficient, and usable also for short data sequences. These advantages are highly desirable in the field of network physiology where often only short stationary sequences can be obtained in the challenging analysis conditions where physiological states change transiently with time (Ivanov et al., 2016; Valente et al., 2018). Moreover, the availability of efficient estimators favors their implementation in non-invasive IoT applications using wearable sensors and providing real-time evaluations (Baig et al., 2017; Baker et al., 2017; Pernice et al., 2019c; Vinciguerra et al., 2019).

In the present study, the correlation-based approach to the study of physiological interactions is extended to the multivariate case, providing a formalism and a set of measures for quantifying how blocks of time series are correlated, how the correlation between a “target” time series and multiple “source” series can be dissected into meaningful contributions, and how a multivariate implementation of the concept of partial correlation allows to infer the topology of networks of physiological interactions. Specifically, extending our preliminary analyses carried out in Pernice et al. (2019d), we measure the overall brain–body interactions as the multivariate correlation between the time series representative of the different brain rhythms [δ, θ, α, and β electroencephalographic (EEG) power] and the time series of heart rate, respiratory, and pulse arrival time (PAT) variability. Then, for each target time series from one of the two physiological subnetworks (brain or body), we compute interaction measures explaining how the multivariate correlation between the target and the other series arises from within- and between-subnetwork interactions, or from pairwise interactions. Our analysis is performed in a group of young healthy subjects monitored at rest and during different levels of mental stress, mapping the interaction measures across the scalp EEG electrodes to evidence possible regional effects, and assessing the statistical significance of the proposed measures to reconstruct the topology of brain and body interactions in the different physiological states.



MATERIALS AND METHODS


Hardware Used for Data Acquisition

Data used in this study were acquired using non-invasive wearable sensors (Zanetti et al., 2019b). In detail, the signals consisted of electrocardiographic (ECG), EEG, respiratory, and blood volume pulse (BVP) waveforms recorded using different devices. A sensorized t-shirt provided by Smartex (Prato, Italy) was employed for acquiring both the ECG (lead II, sampling frequency of 250 Hz) and the breath signal (sampling rate of 25 Hz). The E4 wristband provided by Empatica (Milano, Italy) with a photoplethysmographic (PPG) sensor has been used for BVP signal (sampling rate of 64 Hz). Finally, for EEG data, the EPOC PLUS wireless headset provided by Emotiv (San Francisco, CA, United States) has been employed, recording 14 signals from electrodes positioned on the scalp according to a reduced version of the 10-20 international placement system (see Figure 1A). All the data were acquired synchronously and sent wirelessly via Bluetooth to a personal computer for the subsequent post-processing and analyses. Particular care has been paid to ensure the correct positioning of the wearable devices on the body. Moreover, an appositely designed method for ensuring synchronization of the different acquired biosignals has been employed, based on the linear warping of the time axis with respect to the Smartex signal taken as a reference. We refer the reader to Zanetti et al. (2019b) for further details and the complete synchronization procedure.
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FIGURE 1. Schematic representation of the data acquisition and analysis steps. (A) Graphical representation of the positioning of the 14 EEG electrodes over the scalp. (B) Physiological systems and variables considered in this work: cardiac variable η (R–R interval of the ECG), respiratory variable ρ (respiration amplitude), and cardiovascular variable π (pulse arrival time) for the body subnetwork X; amplitude of the δ, θ, α, and β EEG waves for the scalp subnetwork Y; the two subnetworks form the overall physiological network Z. (C) Venn diagrams depicting the multivariate interaction measures used in this work: on the left, multivariate brain–body interaction, quantifying the variability shared by the two subnetworks X and Y (light green area); in the middle, “direct” interaction between two individual variables (here, the cardiac and respiratory variables η and ρ), when all other variables are considered (orange area); on the right, decomposition of the interaction between one target variable (here, the cardiac variable η) and all other variables (green + blue areas) as the sum of the interactions internal to the target subnetwork (here, the body subnetwork X; green area) and the interactions exclusive of the other subnetwork (here, the brain subnetwork Y; blue area).




Measurement Protocol

Eighteen young healthy volunteers (13 males, five females; age range: 20–30 years) were monitored during a measurement protocol consisting of three experimental conditions corresponding to different levels of mental stress (Zanetti et al., 2019a):

(i) A resting condition (REST), lasting 12 min and consisting in watching a video showing landscapes with relaxing background music;

(ii) A sustained attention task (GAME) lasting 12 min and consisting in playing a serious game, i.e., following a cursor on the screen while trying to avoid some obstacles;

(iii) A mental arithmetic test (MENTAL) lasting 7 min during which the volunteer had to carry out the maximum possible number of three-digit sums and subtractions.

The three above-described conditions actually correspond to an increasing level of stress, since a sustained attention task produces higher mental involvement than a fully relaxed state, still not being as stressful as carrying out fast and continuous arithmetic calculations (Zanetti et al., 2019a).

The experiment was approved by the Ethics Committees of the University of Trento. All volunteers participating in this study provided written informed consent. Further details on the measurement protocol employed for this study can be found in Zanetti et al. (2019a).



Time Series Extraction

Data processing was carried out offline employing MATLAB R2019b (MathWorks, Natick, MA, United States). To allow the analysis of brain–body interactions, the acquired physiological signals were processed extracting synchronous time series representative of the dynamical activity of the body and brain intended as separate physiological districts (sub-networks). ECG recordings were first preprocessed to correct for artifacts and to remove baseline wander and high-frequency noise, respectively, using a high-pass filter (half power frequency of 1 Hz) and a low-pass filter (half power frequency of 20 Hz); zero-phase filtering was adopted to avoid group delays. Afterward, a template matching algorithm (Dobbs et al., 1984; Speranza et al., 1993; Oweis and Al-Tabbaa, 2014; Zanetti et al., 2019a) was employed to extract the R peaks and thus obtain R-R interval (RRI) time series (variable η). R peaks detection was carried out finding the local maxima of the cross-correlation between a template of the QRS complex and the ECG, applying a threshold on the cross-correlation, and finally locating the time of the R peak at the time of the maximum value of the aligned template (Dobbs et al., 1984; Oweis and Al-Tabbaa, 2014). Tachograms were visually inspected to assess the accurate detection of R peaks, or otherwise to correct for missing and ectopic beats (Zanetti et al., 2019a). The breathing signal was sampled at the same time instants of the R peaks in the ECG to obtain the respiratory time series (variable ρ). To assess the dynamical activity of the cardiovascular system, the PAT time series (variable π) was extracted as the sequence of consecutive time intervals between the ECG R peak and the maximum derivative of the BVP signal for each given cardiac cycle (Gao et al., 2016). As regards the brain district, the power spectral density (PSD) was calculated for each EEG signal using a 2-s sliding window with 50% overlap. In each window, the spectral power in the frequency bands 0.5–3, 3–8, 8–12, and 12–25 Hz (respectively, δ, θ, α, and β) was measured through integration of the spectral profile within each band, extracting brain time series which resulted sampled at 1 Hz. The procedure was repeated for the signals recorded from all electrodes, to extract the spatial distribution of the EEG band-power time series. Maps were generated through interpolation, over a 100 × 100 grid, of the values of EEG band-power time series using the MATLAB built-in biharmonic spline method. The interpolation was used only for visualization purposes, while all the analyses were carried out on the acquired data. The brain time series extracted in this way were synchronous with those obtained resampling at 1 Hz the three cardiovascular time series using spline interpolation (Zanetti et al., 2019a). The rate of 1 Hz, which sets a time scale for the analysis which is compatible with the spectrum of heart rhythms, has already been used in previous studies in the field of network physiology for analyzing the time series from different body locations (Bashan et al., 2012; Bartsch et al., 2015). The uniformity of the final sampling rate and the synchronization of the signals acquired from the different devices, carried out according to the procedure described in Section “Hardware Used for Data Acquisition,” permitted to obtain synchronous time series for all the physiological districts. Each time series consisted of 300 samples (corresponding to 5 min of signal recording) and particular care was taken to avoid transient phenomena during the different conditions. This has been accomplished starting the considered time window 3 min after the beginning of the REST phase, and from 1 to 2 min after the start of a MENTAL or GAME condition (not more to avoid habituation of the volunteer to the more stressful condition). All time series were checked for a restricted form of weak sense stationarity using the algorithm proposed in Magagnin et al. (2011), which randomly extracts a given number of sub-windows from each time series and assesses the steadiness of mean and variance across the sub-windows.

In the following, we will denote X as the body subnetwork, consisting of the η, ρ, and π variables, while Y denotes the brain subnetwork (scalp areas), consisting of the δ, θ, α, and β variables. We are aware that recent studies have highlighted that particular care should be assumed making inferences about brain regions when using EEG signals acquired on the scalp (Lai et al., 2018; Van de Steen et al., 2019), and will discuss this issue in Section “Discussion.” Figure 1 schematically depicts the approach followed in this study, with the time series analyzed (Figure 1B) and the measures of multivariate interaction (MI) (Figure 1C) which are presented in detail in the next subsection.



Multivariate Interaction Analysis

In this work, the time series measuring the output values of the different physiological systems introduced in the previous section are interpreted as consecutive observations of random variables mapping the system states. A typical approach used in network physiology to study the interactions between two physiological variables x and y is to quantify their linear correlation (Bashan et al., 2012; Lin et al., 2020). The most common measure is the squared Pearson’s correlation coefficient, defined as:
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where Σx = 𝔼[(x−mx)2] and Σy = 𝔼[(y−my)2] are the variance of x and y being mx = 𝔼[x] and my = 𝔼[y] their mean values, and Σx;y = 𝔼[(x−mx)(y−my)] is their covariance (𝔼 represents the expectation operator). The squared correlation is a symmetric normalized measure of linear dependence between x and y, i.e., ρ2(x;y) = ρ2(y;x), which ranges from 0 to 1 moving from the absence of correlation to full correlation.

While Eq. 1 is the most commonly known expression for the squared correlation, it can also be formulated in terms of the determinant of the covariance matrix of the vector variable concatenating x and y, W = [xy], as
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or in terms of the residuals of a simple linear regression model of the type x=ay + b + u, where a and b are the regression coefficients and u is the prediction error, as
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in which Σx|y is the so-called partial variance, i.e., the variance of the error of the regression of x on y. The derivation of Eqs 2 and 3 is reported in the Appendix.

In the present work, we extend the above measures to the multivariate case, considering the random vectors X and Y that collect the variables of the so-called body subnetwork composed by the cardiac, respiratory, and cardiovascular processes, and the variables of the brain subnetwork composed by the EEG power-band processes. With the notation introduced above, the body and brain variables are the P-dimensional vector X = [ηρπ] and the Q-dimensional vector Y = [δθαβ] (P = 3,Q = 4), which are further grouped in the vector describing the state of the whole physiological network, Z = [XY]=[Z1⋯ZM] (M = P + Q = 7). Then, denoting as ΣX = [cpsbreak]𝔼[(X−mX)T(X−mX)], ΣY = 𝔼[(Y−mY)T(Y−mY)] and ΣZ = 𝔼[(Z−mZ)T(Z−mZ)] the P × P, Q × Q, and M × M covariance matrices of X, Y, and Z, we define the multivariate correlation between X and Y extending Eq. 2 as follows:
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This definition also has a straightforward interpretation in terms of linear regression. Indeed, considering the regression X = YA + B + U, where A and B are parameter vectors of dimension Q × P and 1 × P, and U is an 1 × P vector of residuals, and defining the so-called partial covariance of X given Y as [image: image] being ΣX;Y and ΣY;X the cross-covariance matrices (Barnett et al., 2009), it can be shown (see Appendix) that the multivariate correlation can be formulated in analogy to Eq. 3 as
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From Eq. 5, it is clear that the squared multivariate correlation is related to the covariance matrix of the prediction error of a multivariate linear regression. Moreover, it is symmetric (ρ2(X;Y) = ρ2(Y;X)) and ranges from 0 to 1, indicating, respectively, uncorrelation (obtained when A = 0) and full linear dependence (obtained when U = 0) between X and Y. Here, we further define a logarithmic version of the multivariate correlation between X and Y, which we denote as MI:

[image: image]

The MI measure defined in Eq. 6 is null when X and Y are uncorrelated and, contrary to the squared correlation, it tends to infinity when X and Y are completely correlated. Also, we note that the MI can be expressed as the difference between two terms related to the covariance structure of the vector variables as:
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where V(X) = ln|ΣX| is a logarithmic form of the so-called generalized variance of X and V(X|Y) = ln|ΣX|Y| is the logarithmic generalized partial variance of X given Y (Barrett et al., 2010), quantifying, respectively, the overall variability within X and the part of such variability that remains after regressing X on Y. Eq. 7 is depicted graphically in the Venn diagram of Figure 1C (left). The MI measure defined in Eqs 6 and 7 is motivated by its link to information-theoretic quantities when the variables are jointly Gaussian (see Appendix), and because it offers the possibility to decompose in a meaningful way the variability shared between group of variables, as seen in the following.

Next, to quantify how a single physiological process is linked to the others, we derive measures of the MI between a scalar variable and a vector variable. To this end, let us consider a “target” scalar variable in the body subnetwork, xi ∈ X, and denote as Xi=X\xi the remaining variables in X (i = 1,…,P); similarly, a target variable yj ∈ Y can be chosen in the brain subnetwork, separating it from the other variables Yj = Y\yj (j = 1,…,Q). Then, the interaction between the target variable and all other variables in the network is defined as:
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where the generalized variances and partial variances are V(xi) = lnΣxi, V(yj) = lnΣyj, and V(xi|Xi,Y) = lnΣxi|Xi,Y, V(yj|Yj,X) = lnΣyj;Yj,X. For example, for the cardiac variable xi = η, such that Xi = [ρπ], we have R(η;ρ,π,δ,θ,α,β) = ln(Ση)−ln(Ση|ρπδθαβ) [Figure 1C (right), blue + green]. In a similar way, the interaction between a target variable of a given subnetwork (brain or body) and the remaining variables in the same subnetwork is quantified as
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a graphical example with xi = η is in Figure 1C (right, green). Moreover, conditional interactions can be measured to assess the link between two variables after removing the common effect that a group of other variables has on them. Here, we measure the interaction between one target variable in a subnetwork and all variables in the other subnetwork, conditioning on the remaining variables in the first subnetwork, as follows:
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a graphical example with xi = η is in Figure 1C (right, blue). We note that Eqs 9 and 10 achieve a decomposition of Eq. 8, i.e., R(xi;Xi,Y) = R(xi;Xi) + R(xi;Y|Xi) and R(yj;Yj,X) = R(yj;Yj) + R(yj;X|Yj). For instance, Figure 1C (right) depicts how the extent of common variability shared between the cardiac variable and all other physiological variables, R(η;π,ρ,Y), can be expanded as the sum of the variability the cardiac variable shares with the two other variables of the body subnetwork, R(η;π,ρ), and the variability that it shares with the brain subnetwork but not with the body subnetwork, R(η;Y|π,ρ).

Finally, we define a measure of the “direct” interaction between two individual physiological processes zi,zj ∈ Z conditioned to all other processes in the overall network as the quantity:
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which quantifies the extent of common variability between z_j and z_i that is not shared with any other variable in the network Z. For instance, the direct interaction between the cardiac and respiratory variables is given by R(η;ρ|π,δ,θ,α,β) = ln(Ση|π,δ,θ,α,β)−ln(Ση|ρ,π,δ,θ,α,β) (Figure 1C, middle).



Data Analysis and Statistical Analysis

All the measures presented in the previous subsection were computed from the M = 7 time series collected from each of the 18 subjects in the three analyzed experimental conditions (REST, MENTAL, and GAME). Moreover, for all measures involving the brain processes (vector variable Y), the computation was repeated, for each of the 14 scalp electrodes, extracting the Q = 4 brain time series δ, θ, α, and β from the EEG signal acquired on that electrode while considering the same P = 3 body time series (see Figure 1A). For each set of time series, the analysis was computed using the ordinary vector least squares approach to identify the linear regression models needed for the computation of the generalized partial variances in Eq. 7 and of the partial variances in Eqs 8–11.

After computation of each interaction measure, its statistical significance was tested, individually for each computation, by using a parametric Fisher statistic (Brandt and Williams, 2006) under the null hypothesis that the coefficients of the considered linear relationship are all zero (Montalto et al., 2014; Siggiridou and Kugiumtzis, 2015). In all those cases in which it is necessary to solve two different linear regression problems with scalar predicted variable, i.e., for the computation of R(xi;Y|Xi), R(yj;X|Yj) and R(zi;zj|Z\{zi,zj}), the test statistic is:
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where RSSR and RSSF are the residual sum of squares of the reduced and full regression (leading to compute the first and second V(⋅|⋅) terms, respectively), p_R and p_F are the number of coefficients used in the reduced and full regression, and N is the time series length. The interaction measure is considered statistically significant if F is larger than the critical value of the Fisher distribution with (p_F-p_R, N-p_F) degrees of freedom at the significance level α0.05. When it is necessary to solve only one linear regression problem, i.e., for the computation of R(yj;Yj), R(y;Yj,X), R(xi;Xi), and R(xi;Xi,Y), the RSSR reduces to the variance of the predicted variable, ΣX. Lastly, for the computation of R(X;Y) in which X and Y are both multivariate, RSSR is the generalized variance of X, |ΣX|, and RSSR is the generalized partial variance of X given Y, [image: image].

As regards the statistical analysis, the deviation from homogeneity of the spatial distribution of each interaction measure was assessed using the non-parametric Kruskal–Wallis test, which was also used to assess the statistical significance of the difference across conditions (REST, MENTAL, and GAME) of the median of the distribution of the measure computed over the 18 subjects, followed in this case by post hoc Dunn–Šidák test with correction for multiple comparisons (Šidák, 1967; Sawilowsky, 2007) to assess pairwise differences (REST vs. MENTAL, REST vs. GAME, MENTAL vs. GAME). Non-parametric tests were used because the hypothesis of normality of the distribution of each measure was rejected according to the Anderson–Darling test (Anderson and Darling, 1952).



RESULTS

Results are presented showing the median values, across the subjects, of the various interaction measures in the three considered conditions (REST, MENTAL, and GAME). The spatial distribution of each measure is obtained performing the analysis at every EEG electrode location, and is represented with color-coded values carrying out an interpolation over the schematic of the scalp. In addition, figures show the results of the statistical significance analysis, reporting the number of subjects for which the measure was found to be significantly larger than zero according to the Fisher F-test. We refer the reader to the Supplementary Material for the complete table of results in terms of median MI values, p-values of Kruskal–Wallis and post hoc pairwise comparison test, and of number of subjects with statistically significant MI according to Fisher F-test for the Figures 2–8.
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FIGURE 2. Spatial distribution of (A) the median multivariate interaction between brain and body, R(X; Y), and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST).
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FIGURE 3. Spatial distribution over the scalp of (A) the median multivariate interaction between a target x_i of the body subnetwork and all remaining variables, R(xi;Xi,Y), and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the cardiac process η (upper row panels), to the respiratory process ρ (middle row panels), and to the cardiovascular process π (lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME.
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FIGURE 4. Spatial distribution over the scalp of (A) the median multivariate interaction between a target y_j of the brain subnetwork and all remaining variables, R(yj;Yj,X), and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the EEG power band processes δ,θ,α,β (from upper to lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).
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FIGURE 5. (A) Distributions of the multivariate interaction between a target x_i of the body subnetwork and the two other variables of the same subnetwork, R(xi;Xi), and (B) number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the cardiac, respiratory, and cardiovascular processes η,ρ, and π. In (A), pKW indicates results of Kruskal–Wallis test, while hash symbols indicate a p-value lower than 0.05 obtained using post-hoc test for the analysis between REST and the considered condition (#: p < 0.05 MENTAL vs. REST or GAME vs. REST).
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FIGURE 6. Spatial distribution over the scalp of (A) the median multivariate interaction between a target y_j of the brain subnetwork and the three other variables in the same subnetwork, R(yj;Yj), and (B) number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the EEG power band processes δ,θ,α,β (from upper to lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).
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FIGURE 7. Spatial distribution over the scalp of (A) the median multivariate interaction between a target x_i of the body subnetwork and all variables of the brain subnetwork, conditioned on the two remaining variables of the body subnetwork, R(xi;Y|Xi), and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the cardiac process η (upper row panels), to the respiratory process ρ (middle row panels), and to the cardiovascular process π (lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).
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FIGURE 8. Spatial distribution over the scalp of (A) the median multivariate interaction between a target y_j of the brain subnetwork and all variables of the body subnetwork, conditioned on the three remaining variables of the brain subnetwork, R(yj;X|Yj), and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the EEG power band processes δ,θ,α,β (from upper to lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).



MI Between Each Subnetwork as a Whole

Figure 2 shows the median MI index R(X;Y) computed between the brain and body subnetworks (Figure 2A), and the number of subjects which showed statistically significant MI (Figure 2B), mapped across the scalp in the three analyzed conditions. The index R(X;Y)can be thought as a measure of the overall connectivity between the body and brain subnetworks, each one considered as a whole. In almost all subjects and especially during the REST and MENTAL conditions, the two subnetworks share statistically significant amounts of information at all the EEG electrodes positions (Figure 2B). In each condition, the Kruskal–Wallis test showed homogeneity (p-value > 0.05) for the spatial distribution of the MI index (the visually heterogeneous patterns in Figure 2A may be due to interpolation effects due to the limited number of non-uniformly distributed electrodes). The overall connectivity tends to decrease going from REST to MENTAL and then to GAME (Figure 2A); compared to REST, the decrease is statistically significant for the AF4 frontal electrode during MENTAL and for the F7 electrode during GAME.



MI Between a Target and All Other Processes in the Brain–Body Network

Figure 3 reports the spatial distribution on the scalp of the median values of the MI between a target i of the body subnetwork and all other processes, i.e., R(xi;Xi,Y) (a), alongside with the number of subjects which showed statistically significant MI according to the F-test (b). This measure evaluates the degree of connectivity between the considered body process and all other processes in the overall network. Considering the cardiac variable η or the respiratory variable ρ as the target, the MI value was found to be high and statistically significant in all subjects during REST and MENTAL (with a slight decrease in the median values during MENTAL), while it decreased markedly in magnitude during GAME, also resulting statistically significant in a lower number of subjects. The decrease from REST to GAME was statistically significant at all locations with target η, and at the locations of the electrodes AF3, F7, T7, FC5, FC6, P7, P8, O1, and O2 with target ρ. On the contrary, when the cardiovascular process π was taken as the target, the MI value was low and was significant in a smaller number of subjects (around 50%), without displaying any significant variations across conditions. The Kruskal–Wallis test showed homogeneity (p-value > 0.05) for spatial distributions ofR(xi;Xi,Y) in all the cases. These results denote a high degree of connectivity between the cardiac and respiratory processes and the other network processes, decreasing with the GAME task, and an overall low connectivity for the cardiovascular process.

Figure 4 reports the spatial distribution on the scalp of the median values of the MI between a target j of the brain subnetwork and all other processes, i.e., R(yi;Yj,X) (a), alongside with the number of subjects which showed statistically significant MI according to the F-test (b). The measure evaluates the connectivity between the considered brain rhythm and all other processes in the overall network. The MI relevant to the δ, θ, and α brain variables showed a tendency to increase, when assessed for electrodes located in the frontal area of the scalp, during the mental arithmetic condition compared to the resting state, and to return to baseline values during the serious game condition. The index R(yi;Yj,X) increased significantly at the AF3, AF4, and F7 electrodes for θ and at the AF3 and F7 electrodes for α, moving from REST to MENTAL, reflecting an increased interaction between such rhythms and the whole network during mental workload in the frontal region, and decreased significantly at AF3, AF4, and F7 electrodes for δ, θ, and α moving from MENTAL to GAME; the decrease was statistically significant also at the left parietal P7 and right occipital O2 electrodes when yj = α and comparing GAME to REST. A different behavior was observed taking the process β as target, with no variations of the median MI values going from REST to MENTAL, a decrease at the P7, P8, and O2 electrodes going from REST to GAME, and a decrease at the O2 electrode going from GAME to MENTAL; this suggests a decreased connectivity between the β rhythm and all others localized to the parietal and right occipital regions. The Kruskal–Wallis test showed a heterogeneous spatial distribution of R(yi;Yj,X) (p-value < 0.05) when yi = θ during all three conditions, when yi = δ during REST and MENTAL, when yi = α during MENTAL, and when yi = β during GAME. The F-test showed statistically significant values of R(yi;Yj,X) for almost all subjects when yi = θ, yi = α, and yi = β (in particular during REST and MENTAL), while it was significant for a lower number of subjects (around 60%) when yi = δ (especially during GAME).



MI Between a Target and All Other Processes in the Brain or Body Subnetwork

Figure 5 depicts the distribution of the MI between a target in the body subnetwork and the two other variables belonging to the same subnetwork, R(xi;Xi), in the three conditions, together with the number of subjects with statistically significant MI. This index assesses the internal connectivity of the body subnetwork, measured between one process and the two others, while pairwise “direct” connectivity can be inferred from Figure 9. For each target node, its interaction within the body subnetwork was found high and significant at REST and decreased progressively during the MENTAL and GAME conditions. The decrease of MI values from REST to GAME is statistically significant for η and ρ taken as targets. The values of R(xi;Xi) computed with xi = η and xi = ρ were statistically significant in almost all subjects during REST and MENTAL, and decreased slightly during GAME; when xi = π, the statistical significance was lower in all conditions and reached the minimum of 50% of subjects during GAME. Overall, these results suggest a strong connectivity within the body subnetwork, mainly arising from cardiorespiratory interactions and declining during mental workload.
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FIGURE 9. Topological representation of the interaction between pairs of nodes z_i and z_j of the physiological network (zi,zj ∈ Z = {η,ρ,π,δ,θ,α,β}), provided by the statistically significant values of the conditional MI measure R(zi;zj|Z\{zi,zj}), during the three considered states (REST, MENTAL, and GAME). Thickness of the lines is proportional to the number of subjects for which the corresponding link is statistically significant (p < 0.05, Fisher’s F-test). Red, blue, and black lines denote the links relevant to body–body, brain–brain, and brain–body interactions.


Figure 6 depicts the distribution of the MI between a target in the brain subnetwork and the three other variables belonging to the same subnetwork, R(yj;Yj), as well as the number of subjects with statistically significant MI. This index assesses the connection of the considered brain rhythm with all the others taken together, while the pairwise connectivity between rhythms can be inferred from Figure 9. For this measure, results are similar to those obtained for the global measure R(yj;Yj,X), showing a tendency of the measure to increase from REST to MENTAL in the frontal region of the scalp (statistically significant at the AF3, AF4, and F7 electrodes when yj = θ, at the AF3 and F7 electrodes when yj = α, and at the AF3 electrode when yj = δ), and a tendency to decrease in the same region moving from MENTAL to GAME (significant for AF3, AF4, and F7 when yj = δ and yj = α, and also for F8 when yj = θ); other significant changes for yj = α involved the P7 and O2 electrodes when comparing GAME and REST, and for yj = θ the electrode FC5 when comparing GAME and MENTAL. These results indicate an increased connectivity of δ, α, and especially θ rhythms with all the others during mental workload in the frontal region, and a decreased connectivity of α with all the others during GAME in the left parietal and right occipital zones. Different trends were shown when yj = β: the MI was substantially unchanged from REST to MENTAL, and decreased during GAME (with significant changes at the electrodes P7, P8, and O2 when compared to REST, and at O2 when compared to MENTAL), thus showing a decreased connectivity of β rhythm with all the others during GAME in the parietal and right occipital regions. The Kruskal–Wallis test showed spatial inhomogeneity (p-value < 0.05) with regard to δ and θ power in all the three conditions, only during MENTAL with regard to α power, and only during GAME with regard to β power. According to the F-test, the interaction values were statistically significant in the large majority of subjects for all measures and conditions.



Conditional MI Between a Target in a Subnetwork and the Whole Other Subnetwork

Figure 7 reports the spatial distribution on the scalp of the median values of the conditional MI between a target i of the body subnetwork and the whole brain subnetwork, given the remaining variables in the body subnetwork, i.e., R(xi;Y|Xi) (Figure 7A), alongside with the number of subjects which showed statistically significant conditional MI according to the F-test (Figure 7B). This measure evaluates the strength of the connection of a body process with all the brain rhythms, after conditioning on effects of the other body processes. Contrary to the MI measures previously analyzed, the conditional MI showed overall lower values, as R(xi;Y|Xi) was on average an order of magnitude smaller than R(xi;Xi), and weaker statistical significance, as the F-test rejected the null hypothesis only for few subjects (always less than 50%) in all the conditions and electrodes. The conditional MI showed a tendency to decrease during GAME when xi = η (significantly lower values at F8 compared to REST) and when xi = ρ (significantly lower values at F7 compared to REST, and at F7, F3, and P7 compared to MENTAL), while it was uniformly low when xi = π. The Kruskal–Wallis test showed homogeneity (p-value > 0.05) for the spatial distributions ofR(xi;Y|Xi) in the three considered conditions.

Figure 8 reports the spatial distribution on the scalp of the median values of the conditional MI between a target j of the brain subnetwork and the whole body subnetwork, given the remaining variables in the brain subnetwork, i.e., R(yj;X|Yj) (Figure 8A), alongside with the number of subjects which showed statistically significant conditional MI according to the F-test (Figure 8B). This measure evaluates the strength of the connection of a brain rhythm with all the body processes, after conditioning on effects of the other brain rhythms. Also in this case, the values of R(yj;X|Yj) were much weaker than those of the unconditional measure R(yj;Yj) and exhibited markedly lower statistical significance (compare Figure 8 with Figure 6). The conditional MI showed a tendency to increase during MENTAL when yj = δ and when yj = β (significantly higher values compared to REST, respectively, at P7 and at AF3), and to decrease during GAME when yj = θ and when yj = α (significantly lower values compared to REST, respectively, at F7 and at F7, O2); an increase from MENTAL to GAME was observed at AF4 when yj = θ. These results, together with those of Figure 7, highlight the presence of weak connectivity between the brain and body processes, with no precise trends in terms of spatial localization and just a few statistically significant variations during MENTAL or GAME. The Kruskal–Wallis test showed homogeneity (p-value > 0.05) for the spatial distributions ofR(yj;X|Yj) in almost all of the cases, except than the case yj = α during GAME.



Direct Interactions Between Pairs of Processes Based on Conditional MI

Figure 9 reports the network representation of the direct interactions between pairs of variables of the physiological network across the three analyzed conditions, depicted on the basis of the conditional MI measure R(zi;zj|Z\{zi,zj}). This measure evaluates the pairwise connectivity between two processes in the context of all other processes in the whole physiological network. In the figure, networks are constructed counting the subjects for which the measure was statistically significant, and for visualization purposes are reported for the subset of the scalp electrodes for which most significant variations were observed in the previous analyses (frontal: AF3, AF4, F7; central: FC5; parietal: P7, P8; occipital: O2; temporal: T7, T8).

The network analysis allows to investigate the topological structure underlying the MIs detected previously, as well as their changes across conditions. As regards the body subnetwork (red links), the topology is quite consistent across electrodes for any considered experimental condition. At REST, strong interconnections are observed between the η and ρ nodes, and significant (though generally weaker) connections are also observed between η and π and between π and ρ. During MENTAL, the connection η–ρ remains significant in almost all subjects, while the two other links (η–π and π–ρ) are generally less evident. The weakening of the links in the body subnetwork is even more evident during GAME, involving also a decrease in the number of the connections between η and ρ.

Analyzing the brain subnetwork (blue links), we found that it is fully connected (i.e., it shows absence of isolated nodes) for any scalp electrode and experimental condition. The most evident connections are those involving the pairs of nodes δ–θ, θ–α, and α–β, while the connections δ–α, δ–β, and θ–β are weaker and less consistent across spatial locations. This topology is present in all conditions at REST and persists in the other conditions, even though with some noticeable anatomical variations moving from one condition to another. During MENTAL, the connections δ–θ, θ–α, and α–β were reinforced in the frontal areas of the scalp (AF3, AF4, F7, FC5) and in the right temporal area (T8). A slightly larger variability in the topology was observed during GAME, with connection strength similar to REST although with some local difference (e.g., emergence of θ–β connections at F7, decrease of α–β connections at P7, increase of δ–θ connections at T7, and decrease at T8).

Brain–body interactions (black links) are less evident and more sparse, supporting in terms of the fully multivariate measure R(zi;zj|Z\{zi,zj}) the results of Figures 7, 8 where a limited number of significant values of R(xi;Y|Xi) and R(yj;X|Yj) were observed. Though weak, interactions between the brain and body subnetwork were almost always detected (the two subnetwork were isolated only at AF3 during REST, and at AF3, F7, P8, O2 during GAME). Such interactions were mostly involving the η node of the body subnetwork (in 29 out of the 40 brain–body connections shown in Figure 9), often linked to the β node of the brain subnetwork (in 13 cases), or the δ node of the brain subnetwork (14 connections), and only sporadically the remaining nodes. Overall, brain–body connections increased moving from REST to MENTAL (from 13 to 19 links shown in Figure 9) and decreased during GAME (eight links); the scalp electrodes where this behavior was more striking are located in the frontal (AF3, F7) and temporal (T7, T8) areas.



DISCUSSION

The main results of this work can be summarized as follows: (a) the brain and body subnetworks of the human physiological network exhibit significant degrees of internal and reciprocal interaction; (b) internal interactions (brain–brain and body–body) are predominant, confirming the existence of significantly correlated variations in the amplitude of the different brain waves on one side (Lin et al., 2020), and of cardiovascular and cardiorespiratory interactions on the other side (Porta et al., 2012; Schulz et al., 2013); (c) cardiorespiratory interactions are the predominant form of interaction within the analyzed body subnetwork, and decrease significantly during sustained attention (and less evidently during mental stress); (d) brain–brain interactions are sustained by a quite consistent topological structure, and are significantly stronger in the frontal scalp areas during mental stress; (e) brain–body interactions are weaker than within-subnetwork interactions, but are often statistically significant and are modulated by the physiological state, being stronger during the mental stress task and weaker during the sustained attention task.

Our results suggest the presence of strong interactions within and between the brain and body subnetworks which vary according to the stress level elicited by the adopted protocol, as highlighted by the analysis of the MI measure R(X;Y) (Figure 2). This finding is in line with those of several investigations in the field of network physiology showing that significant degrees of interaction within and between organ systems sustain the physiological regulation in different physiological states, e.g., including sleep stages (Ako et al., 2003; Bashan et al., 2012; Bartsch et al., 2015; Lin et al., 2020) or physiological stress (Faes et al., 2017b; Valente et al., 2018; Krohova et al., 2019). Nevertheless, exploiting the decomposition of the overall MI measure into measures eliciting the correlations relevant to a single target variable and selected groups of other variables, it has been possible to infer that the interactions within each subnetwork prevail over brain–body interactions. This fact is documented by the low absolute values and fraction of subjects with statistically significant interaction observed for the conditional MI measures R(xi;Y|Xi) and R(yj;X|Yj) (see Figures 7, 8), as well as from the similar trends obtained for MI (Figures 3, 5) and conditional MI measures (Figures 4, 6). Weaker interactions between the brain and body subnetworks were observed in the same experimental settings also in recent studies performing dynamic analyses (Zanetti et al., 2019a; Antonacci et al., 2020).

The interactions occurring within the body subnetwork formed by cardiac, cardiovascular, and respiratory dynamics (Figure 5 and red links in Figure 9) were remarkable and quite consistent across conditions, evidencing a predominance of cardiorespiratory coupling and a weakening during mental stress and particularly during sustained attention. The strong link between the cardiac and respiratory variables, corresponding to the heart period and respiratory amplitude time series, is due to the respiratory sinus arrhythmia (RSA), a well-known physiological mechanism whereby the breathing activity modulates the variability of the heart rate (Yasuma and Hayano, 2004; Ben-Tal et al., 2012; Porta et al., 2012; Krohova et al., 2019). Our results are in agreement with those obtained in previous works using different and more sophisticated techniques, e.g., in Zanetti et al. (2019a) computing the information the information exchanged dynamically between heart period and respiration, and in Krohova et al. (2019) applying multiscale entropy methods. In the latter study, the weakening of the influence of respiration on heart rate has been ascribed to the inhibition of parasympathetic activity provoked by stress challenges and, when compared to other stressors like postural changes, to the lack of activation of baroreflex-mediated RSA mechanisms. We also found that the cardiovascular variable analyzed here, i.e., the PAT, strongly interacts with the cardiac period and the respiration amplitude. This link is mostly probably due to the known influence of heart rate on stroke volume and blood pressure that in turns varies the PAT, which is also influenced by respiration (Drinnan et al., 2001; Wang et al., 2014); the mechanism is such that respiration affects the intra-thoracic pressure provoking changes in blood pressure and then also heart rate, with PAT variations following some beats later (Cavalcanti, 2000; Drinnan et al., 2001).

Considering the interactions of the processes belonging to the brain subnetwork (Figure 6), our results highlight a marked increase in the frontal region occurring during the mental arithmetic task (but not during the attention task) for the links involving the δ, θ, and α EEG power time series. This finding supports from the point of view of connectivity between different brain rhythms the well-known fact that mental arithmetic tasks and operations with numbers produce an activation of specific prefrontal cortical areas (Inouye et al., 1993; Menon, 2010; Arsalidou and Taylor, 2011; Friedrich and Friederici, 2013). Moreover, the decrease observed in the parietal and right occipital regions moving from rest to serious game when the MI term R(yj;Yj) was computed for the α and β EEG rhythms is in accordance with previous findings in the literature showing that parietal cortical regions, mainly in the right hemisphere, are involved in sustained attention tasks (Lawrence et al., 2003; Molteni et al., 2007; Klimesch, 2012; Saalmann et al., 2012; Behzadnia et al., 2017; Mitko et al., 2019); the modulation of EEG rhythms during sustained attention was previously observed regarding high-frequency waves (in the β and gamma ranges) in Molteni et al. (2007), with changes localized mostly in the right hemisphere and in the parietal region, and regarding the α rhythm in Behzadnia et al. (2017), showing that a greater decrease in the α power is associated with better performance during the task. Our study goes beyond the above described findings, also showing that the observed changes in the coupling strength between brain wave dynamics are supported by the topology of the brain–brain network and to its reorganization during mental stress and sustained attention. Remarkably, structured reorganizations of the connectivity and topology of physiological networks consequent to transitions across different physiological states have been previously reported in the context of sleep analysis (Bashan et al., 2012; Faes et al., 2015b; Lin et al., 2020). Bashan et al. (2012) demonstrated that the strength of brain–brain links is high during light sleep and deep sleep, and is lower during rapid eye movement (REM) sleep; Lin et al. (2020) reported strong β–α and θ–α links in awake subjects and when significant positive correlation is present between a pair of brain waves; in Faes et al. (2015b), strong dynamical interactions along the directions β->α and δ->θ were revealed during sleep employing time-lagged causality measures such as Granger causality and transfer entropy.

The analysis of brain–heart interactions, evidenced particularly by the network topology in Figure 9, documented an increased connectivity between the brain and body subnetworks during mental stress (especially in the frontal scalp areas), and a reduction during sustained attention when conditions of isolation of the two sub-networks were often encountered (e.g., at electrodes AF3, F7, P8, and O2). The increased brain–body connectivity during the mental arithmetic task is likely related to the widely studied compensatory responses co-occurring in the central and ANSs to the internal and environmental stimuli evoked by stress (see, e.g., Silvani et al., 2016 for a review on the topic). As regards the use of multivariate time series analysis techniques, findings similar to those reported here were obtained performing a dynamic analysis based on Granger causality in Zanetti et al. (2019a); moreover, stronger bidirectional interactions between brain and heart dynamics were reported during emotional elicitation (Greco et al., 2019). As regards the nature of brain–body interactions, we find that those occurring more frequently are involving the variability of the heart period and of the β EEG waves. This finding is in accordance with what reported in Mather and Thayer (2018) where it is stated that oscillations in heart rate modulate brain oscillatory activities, especially in brain regions associated with emotion regulation, which can lead to enhanced functional connectivity. Other studies, mostly related to sleep analysis, also suggest the existence of relations between EEG rhythms and HRV arising from common effects driven by the ANS (Ako et al., 2003; Faes et al., 2014; Kuo et al., 2016; Dzhebrailova et al., 2017). In particular, the β waves seem to play a main role in mediating brain–heart interactions, likely due to their dependence on autonomic arousals and sympathetic activation (Faes et al., 2014; Kuo et al., 2016). In addition, considering that cardiorespiratory interactions are typically very strong, an indirect effect (i.e., an effect mediated by RSA) of respiration on the brain subnetwork seems also plausible. Such an effect is also supported by evidences about the rhythmic modulation of the neuronal activity of the neocortex exerted by respiration-locked sensory inputs (Heck et al., 2017; Varga and Heck, 2017). On the contrary, the interaction between π and the other variables is quite limited (as demonstrated by the low MI values in Figure 3A and the few connections in Figure 9). This is also in agreement with recent results (Pernice et al., 2019d; Zanetti et al., 2019a) obtained using information-theoretic measures, suggesting a limited coupling between pulse wave velocity in the cardiovascular system and brain dynamics.

Methodologically, the results of this work highlight the usefulness of the proposed MI measure to investigate the functional connection between different subnetworks in the human body. The MI measure under certain assumptions is also directly proportional to mutual information (see Appendix), and this is useful to allow comparisons with other previous works in the field, since information-theoretic-based measures have already been used in the past for this aim (Barnum et al., 2010; Faes et al., 2014, 2017a,b; Barrett, 2015). For example, in our previous work (Zanetti et al., 2019a) we have investigated the information generated, stored, and transferred among different nodes in a physiological network taking into account only one electrode, while in Pernice et al. (2019b), we have carried out a multilevel stress assessment based on the concept of network physiology using time-domain measures (mean and standard deviation) and self-entropy. Also, in Antonacci et al. (2020), we have applied a more sophisticated technique consisting of a penalized regression performed through the Least Absolute Shrinkage and Selection Operator (LASSO) before calculating measures of information dynamics. All these approaches are dynamic, meaning that they account for time-lagged interactions. Compared to such approaches, the MI measures proposed here can be defined “static,” since only instantaneous (zero-lag) interactions are taken into account. Static analysis in some sense subsumes dynamic analysis, since time lagged effect typically determine zero-lag ones; moreover, the performed zero-lag correlation analysis is easier to implement and computationally efficient. While instantaneous or-single lag interactions are the basis of the main studies in the field of network physiology (Bashan et al., 2012; Lin et al., 2020), in this study, we have extended their investigation to the multivariate case, allowing the study of interactions between groups of sub-systems (through the MI measures involving blocks of variables) and the distinction between direct and indirect/mediated connections (through conditional MI measures). Our results document how this approach leads to describe exhaustively not only the interactions occurring between different subnetworks (brain–body), but also those occurring internally in a subnetwork (brain or body).

The main limitation of the current study consists in the fact that the analysis of EEG signals has been carried out on a scalp-level, as previously stated in Section “Time Series Extraction.” We are aware that recent studies have highlighted that particular care should be assumed making inferences about brain regions since EEG scalp level connectivity does not permit a perfectly reliable interpretation of interacting brain areas as they can be corrupted by volume conduction effects or by confounding factors (Lai et al., 2018; Reid et al., 2019; Van de Steen et al., 2019). However, neural time series obtained starting from the oscillations recorded on the scalp—even if affected by confounding factors—can still represent a starting point for estimating brain network interactions (Reid et al., 2019). From this point of view, the analysis carried out in this work represents a first step to be confirmed in the future using source-reconstructed signals (Van de Steen et al., 2019), or even exploiting frameworks for the computation of source connectivity measures directly from scalp recordings (Kotiuchyi et al., 2020). Other limitations of the current study consist in the relatively small number of subjects analyzed, in the possibility of a not so-clear distinction between the elicited level stress evoked by GAME and MENTAL situations which may affect the obtained results and in the fact that blood pressure was not acquired on the subjects, which could give additional useful physiological indications.



CONCLUSION

The aim of this work was to extend the analysis of functional brain–body interactions based on simple correlation tools to the multivariate case, allowing to dissect such interactions into contributions originated within and between the two physiological districts. Taken together, the proposed measures of “MI” elicit transitions across different physiological states as well as spatial features, and constitute a tool easy to implement and with low computational cost. Practical and clinical applications of this tool range from a better understanding of the links and working principles of central and autonomic neural regulation (Silvani et al., 2016), or of the physiological mechanisms underlying stressful conditions (Dimsdale, 2008), to the real-time and automatic classification in real-life scenarios using non-invasive or wearable devices (Jovanov, 2019; Pernice et al., 2019c; Vinciguerra et al., 2019).

Future developments consist in the implementation of a more complete protocol able to elicit other different levels of mental stress to better investigate on the changes in the strength of the interactions between brain and peripheral subnetworks. Such protocol should also include intermediate resting phases between stressful situations to assess whether elicited stress still produces effects during time in a consequent resting phase. Future methodological work is also envisaged regarding: (a) a thorough validation on simulations of the MI measures presented here performed also through a direct comparison with more sophisticated analysis techniques including the use of time-delayed techniques employing tools of information dynamics to retrieve directional information (Faes et al., 2014) and of non-linear model free entropy estimators (Faes et al., 2015a); (b) the frequency-specific decomposition of the proposed measures (e.g., following Faes et al., 2020) to investigate how MIs can reflect oscillatory rhythms with specific physiological meaning; and (c) the analysis on source-reconstructed signals to obtain better anatomically-localized estimates of the strength and topology of brain–body interactions (Lai et al., 2018; Van de Steen et al., 2019; Kotiuchyi et al., 2020).
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APPENDIX

In this Appendix, we report the derivation of the alternative definitions of squared correlation for two scalar variables (Eqs 2 and 3) and their generalization in the case of vector variables (Eq. 5), and we draw the connection between the interaction measures and information measures.

In the case of scalar random variables x and y, the covariance of W = [xy] is the 2 × 2 matrix

[image: image]

and its determinant is |Σ[xy]|=|ΣW|[image: image]. Then, Eq. 2 follows easily inserting [image: image] in Eq. 1. Moreover, relating x and y through the linear regression model x = ay + b + u, under the typical assumptions that u has zero mean and is uncorrelated with y, the variance of x and the covariance between x and y can be written, respectively, as Σx = 𝔼[(x−mx)2]=a2Σy + Σu, and Σx;y = 𝔼[(x−mx)(y−my)]=aΣy, which combined together yield [image: image]. This latter expression inserted into Eq. 1 yields Eq. 3.

Extending the above derivation to the multivariate case, the vector variables X and Y are related through the multivariate linear regression X = YA + B + U from which, assuming mU = 0 and 𝔼[YTU]=0, the covariance of X and the cross-covariance between Y and X can be written, respectively, as ΣX = 𝔼[(X−mX)T(X−mX)]=ATΣYA + ΣU and ΣY;X = 𝔼[(Y−mY)T(X−mX)]=ΣYA, which combined together yield [image: image]. Moreover, considering that the covariance matrix of the overall variable Z = [XY] is a block matrix with form

[image: image]

its determinant can be obtained using the block determinant identity (Horn and Johnson, 2012) as [image: image]. This last expression leads easily to recover Eq. 5 from the definition of multivariate correlation of Eq. 4.

Finally, we note that both the classic squared correlation and its multivariate extension proposed here have a link with information-theoretic measures when the observed variables have a joint Gaussian distribution. In fact, it is well known that, for scalar Gaussian variables, the variance of x is related to the entropy by the equation H(x) = 0.5ln(2πeΣx), and the partial variance of x given y is related to the conditional entropy of x given y by the equation H(x|y) = 0.5ln(2πeΣx|y) (Faes et al., 2017a); as a consequence, the squared correlation between x and y is related to the mutual information by the equation

[image: image]

In the multivariate case when the jointly Gaussian vector variables X and Y are considered, the relations become H(X) = 0.5ln((2πe)P|ΣX|) and H(X|Y) = 0.5ln((2πe)P|ΣX|Y|), which similarly yield

[image: image]

Therefore, under the hypothesis of joint Gaussianity of X and Y the MI measure of Eq. 6 is equivalent, up to a factor of two, to the mutual information I(X;Y) between the two variables, i.e., R(X;Y) = 2I(X;Y), and the generalized variances appearing in Eq. 7 are related to the entropy H(X) and to the conditional entropy of H(X|Y) via the equations V(X) = 2H(X)−Pln2πe and V(X|Y) = 2H(X|Y)−Pln2πe (Faes et al., 2015c, 2017b). These relations extend to all measures defined in the following in the main text (Eqs 8–11); for instance, in the Gaussian case, the measure of direct interaction between two scalar variables conditioned on all other variables (Eq. 11) takes the form of a conditional mutual information, i.e., I(zi;zj|Z\{zi,zj}) = H(zj|Z\{zi,zj})−H(zj|Z\{zj}) = 0.5V(zj|Z\{zi,zj})−0.5V(zj|Z\{zj}) = 0.5R(zi;zj|Z\{zi,zj}).
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Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. It is observed as changes in the heart rate in synchrony with the respiration. RSA has been hypothesized to be due to a combination of linear and nonlinear effects. The quantification of the latter, in turn, has been suggested as a biomarker to improve the assessment of several conditions and diseases. In this study, a framework to quantify RSA using support vector machines is presented. The methods are based on multivariate autoregressive models, in which the present samples of the heart rate variability are predicted as combinations of past samples of the respiration. The selection and tuning of a kernel in these models allows to solve the regression problem taking into account only the linear components, or both the linear and the nonlinear ones. The methods are tested in simulated data as well as in a dataset of polysomnographic studies taken from 110 obstructive sleep apnea patients. In the simulation, the methods were able to capture the nonlinear components when a weak cardiorespiratory coupling occurs. When the coupling increases, the nonlinear part of the coupling is not detected and the interaction is found to be of linear nature. The trends observed in the application in real data show that, in the studied dataset, the proposed methods captured a more prominent linear interaction than the nonlinear one.

Keywords: respiratory sinus arrhythmia, heart rate variability, support vector machines, nonlinear methods, biomedical data processing, electrocardiogram, cardiorespiratory interactions


1. INTRODUCTION

In the context of network physiology, three independent forms of cardiorespiratory coupling have been described, namely, cardiorespiratory phase synchronization, time delay stability, and respiratory sinus arrhythmia (RSA). These have been demonstrated to be independent and to have effects in different time scales. Furthermore, biomarkers to quantify these interactions have been shown to be better to evaluate certain conditions and diseases compared to the analysis of the cardiac and respiratory systems individually (Bartsch and Ivanov, 2014). RSA is the most studied one and it is the main focus of this paper. It is observed as changes in heart rate (HR) in synchrony with the respiratory cycle. During inhalation the HR accelerates and during exhalation it decelerates. Despite the fact that RSA was already described in 1733 (Billman, 2011), the mechanisms producing it and its function are not yet fully understood. However, RSA has been suggested as a biomarker for illnesses and conditions such as diabetes (Mackay, 1983), aging (Hrushesky et al., 1984), sleep apnea (Bonsignore et al., 1995), heart failure (Peltola et al., 2008), anxiety disorders (Gorka et al., 2013), and stress (Varon et al., 2018).

The non-invasive evaluation of the RSA can be done using the tachogram (i.e., time intervals between consecutive R-peaks) as a heart rate variability (HRV) representation (Sörnmo and Laguna, 2005). The power spectral density (PSD) estimation of the tachogram is used to derive indices of HRV in the frequency domain (Berry et al., 2012). Here, the level of activity of the sympathetic and parasympathetic branches of the autonomic nervous (ANS) system can be assessed by analyzing different frequency power bands. The low frequency (LF: 0.04–0.15) band has been hypothesized to contain information of both, sympathetic and parasympathetic modulators. The high frequency (HF: 0.15–0.4 Hz) band is widely accepted to reflect the parasympathetic modulation and the action of the respiration (Akselrod et al., 1981; Camm et al., 1996). However, this interpretation of the HF might result in misleading interpretations, in particular when the respiratory rate appears outside the HF (Brown et al., 1993; Schipke et al., 1999; O'Callaghan et al., 2015; Shader et al., 2018). If the respiratory rate is higher than the upper limit of the HF, such as during exercise, the parasympathetic activation is underestimated. Furthermore, during activities in which a slower breathing rate is observed, such as during relaxation, the physiological interpretation of the power bands in the PSD of the HRV according to the standard can be misleading because the respiratory rate goes below the HF band. As a result, the sympathetic activation is overestimated and the vagal component is underestimated (Camm et al., 1996).

To overcome this limitation, the unconstrained methodology to assess the ANS, described in Varon et al. (2018), can be used. With this method, the HRV is decomposed into a component linearly correlated with respiration, and a residual one that captures possibly nonlinear respiratory influences as well as the action of HRV modulators different from respiration. Even though this method has been shown to better quantify the RSA as well as the sympathetic and parasympathetic activity during different conditions, it is not able to separate the possible nonlinear respiratory influences of the respiration in the HRV.

The analysis of these nonlinear components has been shown to be important for some applications. For instance, the work in Loula et al. (1994), presents an interpretation of the non linear part of the RSA during anesthesia, finding differences between measurements taken during baseline and propofol administration. This work was then extended in Chen et al. (2009), where the non linearities of the cardiorespiratory coupling were analyzed for different propofol doses. The latter paper found that the nonlinear part of the RSA remains constant at different drug levels. Another example is the work presented by Caicedo et al. (2014) which shows that a quantification of the nonlinear respiratory influence in HRV using Kernel principal component regression improved the performance of the classification of apnea events compared to a pure linear model. A last example is the work shown in Yeh et al. (2019) where an important contribution of RSA in the fractal properties of HRV is evidenced. This was then applied to improve the assessment of patients with congestive heart failure. These applications suggest that a framework to evaluate the linear and nonlinear components of the RSA would be useful.

To answer to this need, the unconstrained estimator described in Varon et al. (2015b) was extended in Varon et al. (2019), where a method based on least-squares support vector machines was proposed to extract the linear and nonlinear components of the cardiorespiratory interactions from a dataset recorded during autonomic blockade. Results suggested that the nonlinear interactions are mediated by different control mechanisms. In addition, the quantification of the linear part of the interaction is shown to underestimate the RSA due to the suppression of the nonlinear component.

In Varon et al. (2019), the coupling was described for a specific dataset of autonomic blockade with a limited number of subjects. The current paper complements this work presenting a method to quantify RSA based on support vector machines (SVM). It allows to analyze the linear and non linear contributions of the respiratory influences in the HRV representations. These methods are applied in simulated data in which the strength of the linear and nonlinear components of the coupling are controlled. Furthermore, the methods are used to analyze the change of coupling during sleep stages in a dataset of sleep apnea patients. The paper is organized as follows: section 2 describes the datasets and methods. Section 3 shows the results and discusses them. Finally, section 4 presents the conclusions and future directions.



2. MATERIALS AND METHODS


2.1. Simulation

A simulation model is used in this paper to evaluate the proposed methodology for the estimation of signal interactions. The goal is to understand the way in which the proposed parameters quantify the interaction between two systems when linear and nonlinear components are present. It uses the model given by the following equations (Papana et al., 2013):

[image: image]

[image: image]

with [image: image] a Gaussian noise with zero mean and unitary standard deviation. Here, an interaction between x1 and x2 is simulated. It consist of a linear and a nonlinear component. The strength of the linear part is defined by the coefficient C1 and the strength of the nonlinear part by the coefficient C2. Two scenarios are tested. In the first one, the coefficient C2 is set to zero to consider only linear interactions. In the second, the nonlinear effect is included using C2 = 2−C1. This bounding to the value of C2 was imposed to always have linear and nonlinear interactions, and being able to control the weight of one component compared to the other. For both scenarios, 20 realizations of signals are generated while varying C1 in the interval [0 1.8], in steps of 0.2.



2.2. Real Data

The procedure to preprocess the data and extract the segments used to calculate and evaluate the RSA estimates is illustrated in Figure 1.


[image: Figure 1]
FIGURE 1. Steps followed to built the datasets. The parameter [image: image] is a state-of the-art quantification of the RSA used in this paper as reference. It quantifies the proportion of power in the HRV linearly correlated with the respiration.



2.2.1. Reference RSA Estimation

A state-of-the-art RSA estimate is used as gold standard to built a dataset of HRV and respiratory segments with known linear coupling level. It is based on orthogonal subspace projections (Varon et al., 2018) and, to compute it, two vectors x and y containing the samples of the respiration and HRV respectively, are defined. These are used to decompose y into one component linearly correlated to x and a second one with residual information. To this end, a time-delay embedding of x is constructed to generate a subspace Q. Afterwards, Q is used to calculate a projection matrix P, given by,

[image: image]

With this, the component in the HRV linearly correlated with the respiration is derived as,

[image: image]

yr allows to calculate the percentage of variance relative of the linear respiratory influences on the HRV with respect to the total HRV variance as,

[image: image]
 

2.2.2. Data and Preprocessing

The datasets analyzed in this paper were derived from 110 Polysomnography recordings of OSA patients with different severities of OSA and associated comorbidities. The recording of this dataset and its inclusion in this study was approved by the ethical committee of the university hospital UZ Leuven (S53746, S60319). More details about the recordings are given in Deviaene et al. (2020). Sleep specialists provided annotations of apneas and sleep stages. The OSA severity was assessed with the Apnea Hypopnea Index (AHI), i.e., average number of apneic events per hour of sleep. The apneas were annotated according to the AASM 2012 scoring rules (Berry et al., 2012). The demographics are shown in Table 1. The ECG and thoracic respiratory inductive plethysmograph signals were acquired with a sampling frequency of 500 Hz. The R-peaks in the ECG were detected using the approach described in Varon et al. (2015b). Afterwards, these were used to calculate the RR interval time series, which were then interpolated to a sampling frequency of 2 Hz, and used as the HRV representation. The respiratory signals were downsampled to 2 Hz after applying an antialiazing filter. Both, HRV and respiration, were then filtered to preserve only frequency components between 0.03 and 1 Hz with a 4th order butterworth filter. This filter was applied in forward and backward directions to avoid phase distortion. Next, the respiratory and HRV signals were segmented into 5-min epochs. In addition, the power spectral density (PSD) estimation of the respirations on each segment was derived using the Welch algorithm with a hamming window of 40 and 20 s overlap.


Table 1. Demographic information.

[image: Table 1]



2.2.3. Derivation of the Datasets

With the aforementioned segments, three datasets are constructed. For the first one, the cardiorespiratory coupling is estimated using [image: image]. The epochs are then grouped by their [image: image] level in 9 bins of 0.1, ranging from 0 to 0.9. Next, 50 randomly selected epochs per bin are visually chosen ensuring that they do not contain artifacts, irregular beats nor apneas. In addition, respiratory signals with an irregular pattern are discarded by visual inspection of the PSD. The second dataset is made following the same steps, but only segments containing apneas are included. Figure 2 illustrates examples of typical respiratory segments included in the datasets with their PSD estimation. In the third dataset, 50 randomly selected clean segments per sleep stage are chosen using the annotations given by the sleep specialists. For some groups, there are <50 segments meeting the conditions to be included. The distribution of the epochs is summarized in Table 2.


[image: Figure 2]
FIGURE 2. Examples of some of the respiratory segments used in this study. (Left) A case of an epoch free of apnea. (Right) An epoch during an apneic event.



Table 2. Distribution of the segments per dataset.

[image: Table 2]




2.3. Quantification of the Cardiorespiratory Coupling

In this paper, the hypothesis that the linear and nonlinear components of the RSA are the result of different mechanisms is tested. To this end, a method based on multivariate autoregressive models built with support vector machines (SVM) is used. The goal is to predict the present samples of the HRV using the past information in the respiration. The change of the proportion of variance captured by the prediction resulting from modifying the kernel of the model might reflect the type of relationship between the cardiac and respiratory systems1.


2.3.1. SVM for Function Estimation

To build the SVM regression model, the samples in the HRV are estimated using the past respiratory information. Given are [image: image] ∈ IRL, a vector of L past samples of the respiration, and yn the corresponding present sample of the HRV signal, with L the model order. The definition of L will be described in section 2.3.2.

Given a training set [image: image], the following regression problem in the primal space can be formulated using the SVM framework as,

[image: image]

where w is a vector of weights, [image: image] is a function that maps [image: image] into a higher dimensional feature space of dimension Lh, ξk as well as [image: image] are slack variables, b is a bias term, c is a regularization term determining the tolerance to regression errors, and ϵ is the required accuracy for the solution of the problem. In order to solve these equations, the Lagrangian and the conditions for optimality are applied to formulate the following dual problem,

[image: image]

where [image: image], is the kernel function and the α's correspond to the Lagrange multipliers, with α > 0 for the support vectors, and α = 0 otherwise. These can be interpreted as weights applied to the samples used to train the model. Finally, the solution to (6) becomes,

[image: image]

It is hypothesized that the estimation of yn using [image: image] is better if the coupling between the two signals is stronger.

The selection of the kernel function, determines if the regression problem is solved considering only the linearities or both, the linearities and nonlinearities. For this, two kernels are used. The first one is the linear kernel, defined as,

[image: image]

The second one is the radial basis function (RBF) kernel, defined as,

[image: image]

As a result of the application of the RBF kernel, the regression problem is solved taking into account the linear as well as the nonlinear relationship between the signals.

It is important to mention that, to build the regression models, it is necessary to tune some parameters. The kernel bandwidth, σ2, was tunned using the value that maximized the Shannon entropy of the kernel matrix (Varon et al., 2015a). The regularization term, c of Equation (6), was given by the interquartile range of the HRV divided by 1.349. This calculation is a robust measure of scale, that quantifies the standard deviation of the response variables. The accuracy parameter, ϵ of Equation (6), was set to c/10. This selection of the parameters is a rule of thumb used in previous works (Ruta et al., 2019), and resulted in more consistent results over different executions than other tuning approaches.

After training the regression model, this is used to make two predictions, namely yl and yk, using a different Kernel each time. With these, two parameters are calculated:

[image: image]

The hypothesis here is that [image: image] quantifies the percentage of variance in the HRV linearly explained by the respiration and [image: image] captures the portion of the variance in the HRV explained by both the linear and possibly nonlinear interaction with the respiration.



2.3.2. Model Order Selection

The selection of the parameter L is important because it defines the number of past samples in the respiration considered to be relevant to predict the HRV. For this reason, L determines the dynamics that can be captured by the regression model. Methods exist to select this parameter. Two of them are the Akaike's information criterion and the minimum description length. These two approaches have been found to produce inconsistent results in previous studies of the authors. More research on the best alternative to tune this value is needed and is out of the scope of the current work. For these reasons, a more empirical approach initially proposed in Morales et al. (2020), was used. To select L, a frequency (Fr) representative of the respiratory dynamics is found. To this end, the frequency band in the PSD of the respiration containing the 90% of the total power is identified. Afterwards, the local maxima inside this band are found. If the number of local maxima is lower than 3, Fr is defined as the frequency with maximum power. In case of more than 3 maxima candidates, Fr is defined as the one with the lowest frequency. However, if Fr < 0.1 Hz, it is fixed to 0.1 Hz. The order L is calculated as the number of samples required to capture two periods of Fr (Morales et al., 2020).




2.4. Statistical Tests
 
2.4.1. Analysis of Surrogates

To evaluate if the nonlinear quantifications with [image: image] are significant, analysis of surrogates for multivariate data are used (Theiler et al., 1992; Schreiber and Schmitz, 2000). With this approach, pairs of surrogate segments of the HRV representations and respiratory signals are generated. The phases in the signals are randomized to eliminated the possible nonlinear interactions between them. This is done in such a way that the individual distributions are matched. In addition, the autocorrelation function of each signal, as well as the cross-correlation between the pairs are maintained.

In this paper, 24 surrogates are generated for each pair of segments. [image: image] is computed in the original signals as well as in their surrogates. Then, the upper limit of the confidence interval for the mean value of the quantification in the surrogates is defined as the 95th quantile. If the parameter with the original signals is outside this upper limit, the quantification with [image: image] in the segments is considered significantly different to the quantifications in the surrogates. Then, it is assumed that the time series interact in a linear and nonlinear way.



2.4.2. Differences Between the Linear and Nonlinear Quantifications

First, differences between [image: image] and [image: image] are evaluated using the Friedman test for repeated measures. The same test is used to evaluate [image: image] with respect to its linear counterparts. Second, to evaluate the existence of linear and possible nonlinear interactions in different sleep stages (in dataset 3), the Kruskall-wallis test is applied. In both cases, multiple comparisons with Bonferroni correction are done. A p < 0.05 was considered significant. The p-values are marked in the figures as follows: a p < 0.05 is shown with a asterisk (*), a p < 0.01 is marked with two asterisks (**) and a p < 0.001 is illustrated with three asterisks (***).





3. RESULTS AND DISCUSSION


3.1. Simulation

The top plot in Figure 3 illustrates the results in the first scenario, in which only a linear part of the interaction is considered. It was expected to see values of [image: image] always higher or equal than [image: image]. The figure shows that this is true only when the coupling is weak. However, when the coupling gets stronger, the quantification with [image: image] becomes significantly lower. The analysis of surrogates confirmed that the nonlinear interactions quantified by [image: image] are not significant in most of the cases.


[image: Figure 3]
FIGURE 3. Results obtained in simulation 1. C1 models the strength of the linear part of the coupling. C2 models the nonlinear part. The figure on top shows the results in scenario 1, when C2 = 0. The bottom plot is the scenario when C2 = 2 − C1. In both cases, C1 is varied in the interval [0 1.8], in steps of 0.2.


In the second scenario, the interaction between the systems is composed of a linear and a nonlinear part. The bottom plot of Figure 3 shows the results. It is seen that [image: image] is significantly higher than [image: image] up to C1 = 0.8. Afterwards, when the linear component gets stronger, the linear kernel produces a significantly higher quantification. Despite that the quantification with [image: image] was higher in a wider interval in this case, it is also seen that this parameter varies less with an increased linear interaction. It is well-known that the RBF kernel can act as an universal approximator. In other words, it can approximate a linear as well as a non linear type of interaction. However, the results suggest that indeed it is able to capture the more general behavior while avoiding to over fit the data. This can be seen when C1 > 1.4, when the model captures more the linear behavior.



3.2. Real Data

Dataset 1 includes only the clean segments without apneas and irregular heart beats. It was used to study the occurrence of nonlinear interactions when regular respiratory patterns occur. Figure 4 shows the results. As expected, an increasing trend is observed in all the parameters when the quantification of the linear coupling calculated with [image: image] increases. Despite the significantly larger quantification obtained with [image: image] when compared to the one with [image: image], the surrogates suggested that the interactions were purely linear. Another observation is that significant differences between [image: image] and [image: image] were not found. This means that both parameters quantify the linear part of the cardiorespiratory interactions in a similar way. The results suggest that the linear component of the RSA is more prominent in this dataset.


[image: Figure 4]
FIGURE 4. Results using the dataset of clean segments, free of apneas, and with regular respirations.


Dataset 2 was used in order to assess if respiratory signals with broader bandwidths result in a higher nonlinear component in the RSA. Figure 5 shows the results. As shown in Varon et al. (2019), in this case [image: image], [image: image], and [image: image] are preferred to quantify the RSA than the standard HF band to avoid the effect of the broadband respiratory frequency components. As shown in the figure, significant differences between [image: image] and [image: image] were not found. However, it is also seen here that both parameters might quantify the cardiorespiratory coupling differently in this case, since the quantification with [image: image] has less variance than the one with [image: image]. On the other hand, [image: image] was significantly higher than [image: image] in most of the coupling levels. Despite this, the nonlinear quantification was, in general, not significant according to the analysis of surrogates. This result suggests that [image: image] might be over fitting the data.


[image: Figure 5]
FIGURE 5. Results using the dataset of segments with apneas.


The last evaluation aimed to analyze the change of the linear and nonlinear components of the cardiorespiratory quantifications during sleep stages. The results are in agreement with the findings presented in Bartsch et al. (2012). Figure 6 displays the results. The work presented in Penzel et al. (2016) shows that the regulation of the autonomic nervous system is different during each sleep stage. It is shown that the HR decreases during sleep, reaching a minimum during deep sleep, suggesting an increased parasympathetic activity. During REM sleep, mental activities are more active and thus a higher level of sympathetic activation is expected, resulting in a higher mean HR. In addition, the RSA is found significantly less active in REM sleep than in Non-REM sleep.


[image: Figure 6]
FIGURE 6. Results in the dataset of segments during different sleep stages. Significant differences between the parameters are marked with *. Significant differences between sleep stages are marked with ⋆.


This works confirms some aspects of these observations (see Figure 6). First, it is seen that RSA is significantly stronger during NREM compared to REM sleep. An interesting trend observed in the figure is a significantly stronger coupling during wake than in REM. This might have been due to the spectrum of the respiratory signals. In order to see the distribution of the respiratory patterns among the sleep stages, the frequency characteristic of the respiratory segments on each case were analyzed. Figure 7 shows the results. No significant differences were found. While the respiratory frequency has been shown to be an important confounder in cardiorespiratory analysis, this figure suggests that the characteristics of the respiratory patterns in the selected segments are similar and should not have a confounding effect. A second relevant observation is that the difference between the quantifications using [image: image] and [image: image] is smaller during deeper sleep stages. This result might suggest that the nonlinear influence of the respiration is more noticeable during lighter sleep stages in this dataset. However, it is important to highlight that the nonlinear quantification of the RSA with [image: image] was not significantly different to its surrogates in most of the cases. Despite of this, as observed in the figure, the quantification with [image: image] is significantly different to the part quantified by [image: image] in all cases except NREM1. Finally, the significant differences between sleep stages are the same with all the parameters, with a significantly lower coupling only during REM.


[image: Figure 7]
FIGURE 7. Fr for the selection of the model order in the third dataset as described in section 2.3.2.


The paper in Loula et al. (1994) suggested differences in the nonlinear part of the cardiorespiratory coupling during the application of anesthesia to healthy subjects. On the other hand, the paper in Chen et al. (2009) indicates that the nonlinear part of the cardiorespiratory coupling did not change significantly with different doses of propofol. Taking these works into account, the current paper tested the hypothesis that in the used dataset, the nonlinear part of the RSA might change according to the sleep stage. The results suggest that a nonlinear coupling component is not present in the interactions or that it might be too small to be captured using the proposed approach.

It is important to mention that this work has some limitations. First, the segments are extracted from OSA patients. The same study in healthy subjects might show different results. Second, the selection of the σk was found to be consistent. However, the tuning of the regularization term in the SVM problem is challenging. This is an open problem, not only for this application, and more research is required to investigate a more standard methodology to select this parameter.




4. CONCLUSIONS

In this work, a method to quantify the respiratory sinus arrhythmia based on regression models built with support vector machines, is presented. It allows to quantify the dominant form of coupling. The methods are a framework that will allow to analyze the nature of the regulatory mechanisms of the cardiorespiratory interactions in different conditions and diseases. The proposed approach was tested in simulated data. Taking into account the results obtained from the simulation, real data extracted from obstructive sleep apnea patients was analyzed. The results suggest that the nonlinear components of the RSA are not prominent during sleep stages and that the linear components are dominant in the analyzed datasets. The work in this paper is an application in which the evaluation of a physiological network provides insights of the functioning of the interactions between systems and demonstrates the added value of this framework. As a future work, the indexes described in this paper will be compared to other approaches such as linear and nonlinear calculations of transfer entropy.
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Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms return shortly after cessation of HF-DBS. Recently developed decoupling stimulation approaches, such as Random Reset (RR) stimulation, specifically target pathological connections to achieve long-lasting desynchronization. During RR stimulation, a temporally and spatially randomized stimulus pattern is administered. However, spatial randomization, as presented so far, may be difficult to realize in a DBS-like setup due to insufficient spatial resolution. Motivated by recently developed segmented DBS electrodes with multiple stimulation sites, we present a RR stimulation protocol that copes with the limited spatial resolution of currently available depth electrodes for DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously to L randomly selected stimulation sites out of a total of M stimulation sites, which will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity by means of theoretical and computational analysis. We find that L/M-RR stimulation yields parameter-robust decoupling and long-lasting desynchronization. Furthermore, our theory reveals that strong high-frequency stimulation is not suitable for inducing long-lasting desynchronization effects. As a consequence, low and high frequency L/M-RR stimulation affect synaptic weights in qualitatively different ways. Our simulations confirm these predictions and show that qualitative differences between low and high frequency L/M-RR stimulation are present across a wide range of stimulation parameters, rendering stimulation with intermediate frequencies most efficient. Remarkably, we find that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR stimulation with low resolution performs even better at low stimulation amplitudes. Our results provide computational evidence that L/M-RR stimulation may present a way to exploit modern segmented lead electrodes for long-lasting therapeutic effects.

Keywords: random reset stimulation, spike-timing dependent plasticity (STDP), desynchronization, segmented electrodes, long-lasting effects


1. INTRODUCTION

Synchronization of coupled oscillators is observed in various fields of the natural sciences, for instance, in neurosciences (Steriade et al., 1990; Haken, 2006), medicine (Tass, 1999), physics (Pikovsky et al., 2001; Haken, 2012), biology (Winfree, 2001), and chemistry (Kuramoto, 2003). In the nervous system, synchronization of neuronal activity is critical for successful motor control (Andres and Gerloff, 1999) and information processing (Singer, 1990). However, excessive synchronization is associated with several neurological disorders, e.g., essential tremor, Parkinson's disease (PD) (Alberts et al., 1969; Nini et al., 1995), epilepsy (Mormann et al., 2000), and chronic subjective tinnitus (Eggermont and Tass, 2015).

High-frequency deep brain stimulation (HF DBS) is the standard of care for patients with advanced PD. HF DBS is delivered to target brain regions, such as the subthalamic nucleus (STN), through implanted lead electrodes. The mechanism of action of DBS is still a matter of debate (Ashkan et al., 2017; Jakobs et al., 2019; Lozano et al., 2019). As PD symptoms return shortly after cessation of stimulation, permanent delivery of HF DBS is required for persistent symptom suppression (Temperli et al., 2003). On the other hand, permanent stimulation increases the risk of side effects such as depression, cognitive decline, speech difficulty, instability, dyskinesia, and gait disorders (Rodriguez-Oroz et al., 2005; Temel et al., 2006). The risk of unwanted side effects may be reduced by a substantial reduction of the delivered stimulation current.

Early studies on desynchronization focused on single pulses delivered to a vulnerable phase of a collective oscillation (Mines, 1914; Winfree, 1977, 1980; Warman and Durand, 1989; Tass, 1999), followed by the development of composite single-channel (Tass, 2001, 2002; Zhai et al., 2005) and multi-channel stimuli (Tass, 2003) to further improve the robustness of the desynchronizing effects. In addition, linear or non-linear delayed feedback was used to desynchronize model networks (Rosenblum and Pikovsky, 2004a,b; Hauptmann et al., 2005a,b,c; Popovych et al., 2005, 2006a,b; Pyragas et al., 2007; Popovych and Tass, 2010). The latter approaches might clinically be applied by using the linear or non-linear delayed feedback as an envelope of pulse trains (Popovych et al., 2017a,b). By estimating phase response curves, researchers also identified well-tuned periodic stimulation (Wilson et al., 2011), and the delivery of well-timed stimulation bursts as possible desynchronizing stimulation approaches (Holt et al., 2016). A desynchronization approach that does not rely on well-timed stimuli is coordinated reset (CR) stimulation (Tass, 2003). During CR stimulation, desynchronization is achieved by delivering phase-shifted stimuli to multiple subpopulations of oscillators.

Originally, the mentioned desynchronization techniques have been developed for networks of oscillators with fixed connection strengths. In the brain, however, neuronal networks are subject to synaptic plasticity that alters synaptic weights according to neuronal activity. A prominent mechanism leading to adaptive connectivity is spike-timing dependent plasticity (STDP), which modifies the coupling strengths based on the relative timing of post- and presynaptic spikes (Markram et al., 1997; Abbott and Nelson, 2000; Caporale and Dan, 2008). In several brain areas, STDP strengthens synapses if the postsynaptic neuron fires shortly after the presynaptic one, otherwise the connections become weaker (Markram et al., 1997; Bi and Poo, 1998). Plasticity mechanisms can stabilize certain activity patterns, such as synchronized activity (Karbowski and Ermentrout, 2002) and may lead to the formation of strongly connected neuronal assemblies (Litwin-Kumar and Doiron, 2014). A recent study showed that in presence of STDP, self-organized clusters could emerge, whereby the clusters divide the networks into groups that are synchronized at different firing frequencies (Röhr et al., 2019). Furthermore, the interplay of network adaptation and collective spiking activity can lead to the coexistence of distinct stable states, such as synchronized, desynchronized, and cluster states (Seliger et al., 2002; Zanette and Mikhailov, 2004; Tass and Majtanik, 2006; Maistrenko et al., 2007; Masuda and Kori, 2007; Aoki and Aoyagi, 2009; Röhr et al., 2019; Berner et al., 2020; Yanchuk et al., 2020).

Stimulation-induced changes of synaptic connectivity may drive the network into an attractor of a stable desynchronized state and cause long-lasting desynchronization (Tass and Majtanik, 2006). Such long-lasting desynchronization may follow after coordinated reset stimulation as shown by extensive theoretical (Tass and Majtanik, 2006; Kromer and Tass, 2020; Kromer et al., 2020) and computational studies (Tass and Majtanik, 2006; Hauptmann and Tass, 2009; Popovych and Tass, 2012; Lourens et al., 2015; Manos et al., 2018). Corresponding long-lasting desynchronization and therapeutic effects have been confirmed experimentally (Tass et al., 2009), as well as in preclinical (Adamchic et al., 2014; Wang et al., 2016) and clinical studies (Adamchic et al., 2014).

In preclinical and clinical studies, the frequency of CR stimulation has been adjusted to the frequency of the synchronous rhythm as measured by the dominant peak in the power spectrum of the local field potential (Tass et al., 2012; Adamchic et al., 2014; Wang et al., 2016). This parameter choice is motivated by the original idea of CR stimulation; to excite higher-order modes of the Kuramoto order parameter (Tass, 2003). Additionally, recent computational studies indicate that long-lasting desynchronization effects of CR stimulation are more pronounced for well-adjusted CR frequencies (Manos et al., 2018; Kromer and Tass, 2020; Kromer et al., 2020), this includes adjusting the stimulation frequency to the dominant neuronal rhythm (Tass, 2003; Adamchic et al., 2014; Manos et al., 2018) or the STDP time scale (Kromer et al., 2020). This may limit the clinical applicability of CR stimulation as a treatment for PD as different symptoms are associated with pathological synchrony in different frequency bands. In more detail, excessive synchronization of basal ganglia activity in the theta band (3−10 Hz) is associated with symptoms such as dyskinesia and tremor (Brown, 2003; Steigerwald et al., 2008; Tass et al., 2010; Contarino et al., 2012), while synchronized activity in the beta band (13−30 Hz) is associated with rigidity and bradykinesia (Kühn et al., 2006; Weinberger et al., 2006).

In order to increase the robustness of long-lasting effects with respect to stimulation parameters, such as the stimulation frequency, Kromer and Tass (2020) suggested a Random Reset (RR) stimulation protocol. RR refers to the delivery of stimuli in a temporally and spatially randomized manner. In their theoretical work, temporal randomization was realized by delivering stimuli at random times, with exponentially distributed interstimulus intervals. Thus, stimulation times followed a Poisson spike train. Spatial randomization was realized by randomly selecting 50% of the neurons for stimulus application at each stimulation time—irrespective of the neurons' locations relative to realistic spatial stimulation profiles. This implicitly assumed “microscopic control,” i.e., that even nearby neurons can be stimulated independently, which is not possible in DBS-like setups. Remarkably, the suggested RR stimulation method led to robust, long-lasting desynchronization effects after stimulation ceases even though the neurons remained partially synchronized during the entire stimulation period. This was achieved by a pronounced stimulation-induced decoupling of the neurons. Therefore, decoupling stimulation was suggested as the primary goal in order to weaken synaptic connections rather than counteracting synchronization as in previous approaches (Kromer and Tass, 2020).

Segmented depth electrodes for DBS enable spatially selective steering of stimulation current (Krack et al., 2003; Buhlmann et al., 2011; Steigerwald et al., 2019; Krauss et al., 2020). However, so far, a pressing question regarding a possible implementation of RR stimulation using available DBS electrodes is that to which extent the observed decoupling effects rely on the spatial randomization. In particular, whether it is really necessary to deliver randomly timed stimuli to individual neurons or whether delivery to macroscopic neuronal subpopulations is sufficient. Experimentally using segmented DBS electrodes that allow for independent activation of multiple stimulation contacts, one can deliver stimuli to neuronal subpopulations. Traditionally DBS is delivered through a flexible cylinder with 4 stimulation contacts (Gielen, 2001; Butson and McIntyre, 2005). In order to deliver stimuli to individual neuronal subpopulations, modern electrodes are capable of directional current steering (Buhlmann et al., 2011; Steigerwald et al., 2019; Krauss et al., 2020)

Directional steering allows for realizing spatiotemporal current profiles by superposition of stimuli delivered to individual stimulation contacts (Buhlmann et al., 2011; Steigerwald et al., 2019). To improve spatial selectivity, recent research in electrode design is devoted to segmented multisite electrodes with increasing numbers of stimulation contacts (Buhlmann et al., 2011; Steigerwald et al., 2019; Krauss et al., 2020). For instance, certain designs allow for selective activation of up to 32 stimulation contacts (Contarino et al., 2014; Steigerwald et al., 2019).

In the present paper, we study a new implementation of RR stimulation using available DBS electrodes, where we introduce a version of RR stimulation in which individual stimuli are simultaneously delivered to L out of M randomly selected spatially coherent neuronal subpopulations, here called L/M-RR stimulation. This approach only requires “mesoscopic control,” i.e., independent stimulation of neuronal subpopulations, and not “microscopic control,” i.e., independent stimulation of single neurons, as in the approach of Kromer and Tass (2020). For our analysis, we use a combination of theoretical predictions and simulations of networks of leaky integrate-and-fire (LIF) neurons with STDP. While our theory predicts efficient decoupling for a wide range of stimulation parameters, it reveals qualitative differences between low and high-frequency L/M-RR stimulation, section 3.1. While low-frequency L/M-RR stimulation yields parameter robust decoupling and related long-lasting effects, the performance of high-frequency L/M-RR stimulation is limited to small numbers of simultaneously stimulated subpopulations. These qualitative differences are present for a wide range of stimulation amplitudes and render strong high-frequency L/M-RR stimulation ineffective in terms of long-lasting after-effects, see section 3.2. Finally, in section 3.3, we analyze how the size of individual subpopulations influence the long-lasting effects. Remarkably, we find that stimulation of large subpopulations yields better results for weak stimulation, see section 3.3. Simultaneous stimulation of large neuronal subpopulations may hence be advantageous for possible realizations of L/M-RR for DBS.



2. MODELS AND METHODS


2.1. Neuronal Network Model

We consider a network of N conductance-based LIF neurons with STDP previously presented in Kromer et al. (2020). Throughout the paper, we fix the network size to N = 1, 000. Neurons are organized along the x-axis. Individual neurons' center locations xi are uniformly distributed in the interval xi ∈ [−2.5, 2.5] mm, which is motivated by the width used in an ellipsoidal volume approximation of the STN in detailed computational studies of STN DBS (Ebert et al., 2014). Random excitatory synaptic connections are added such that the total connectivity is 7%. The probability for two neurons to form a synaptic connection depends on the distance between the neurons as p∝exp((|xj − xi|)/0.5mm) (Ebert et al., 2014).

The subthreshold dynamics of the membrane potential vi of neuron i obeys

[image: image]

Ci is the membrane capacitance, vrest the resting potential, gleak = 0.02 mS/cm2 the leakage conductance, [image: image] the synaptic input current, Si(t) the stimulation current, and [image: image] the noisy input current.

Spiking occurs when vi crosses a dynamic threshold potential [image: image] given by

[image: image]

Here, τth is the threshold time constant and [image: image] the stationary threshold potential. Artificial spikes are realized by setting the membrane potential vi → vspike for a time period of tspike after a threshold crossing. Afterwards, a reset is performed by setting vi → vreset and [image: image].

Throughout the paper, we use the same parameters as in Kromer et al. (2020): vrest = −38 mV, [image: image] mV, tspike = 1 ms, τth = 5 ms, vspike = 20 mV, Vreset = −67 mV. The Ci's follow a normal distribution with a mean value of 〈Ci〉 = 3 μF/cm2 and a standard deviation of 0.05〈Ci〉.

Excitatory synaptic input [image: image] to neuron i, is given by

[image: image]

where [image: image] is the synaptic conductance, κ = 8 mS/cm2 is the coupling strength, vsyn = 0 mV is the synaptic reversal potential, τsyn = 1 ms the synaptic time scale, wji ∈ [0, 1] is the synaptic weight between presynaptic neuron j and postsynaptic neuron i. The first sum runs over all presynaptic neurons, and the second sum runs over the spikes of the presynaptic neuron j. Gi is the set of indices of all presynaptic neurons to neuron i. [image: image] is the ljth spike time of neuron j. We consider homogeneous synaptic delays of td = 3 ms.

In addition to presynaptic input from other neurons in the network, each neuron i receives noisy input, e.g., from other brain regions. The resulting input current [image: image] is obtained by feeding independent presynaptic Poisson spike trains with firing rate fnoise = 20 Hz into excitatory synapses on each neuron i (Ebert et al., 2014)

[image: image]

Where [image: image] is the synaptic conductance, τsyn = 1 ms, and vsyn = 0 mV. The noise intensity is controlled by the parameter D = 0.026 mS/cm2 scaling the strength of the Poisson input.



2.2. Spike-Timing Dependent Plasticity (STDP)

During ongoing spiking, synaptic weights wij evolve according to a nearest-neighbor STDP scheme (Burkitt et al., 2004). Following previous studies on CR stimulation (Popovych and Tass, 2012), we consider a scheme where each arrival of a presynaptic spike at a postsynaptic neuron j (at time t = ti + td) and each postsynaptic spike (at time t = tj) cause an update of the synaptic weight, i.e., wij → wij + W(tj − (ti + td)). Here, ti denotes the spike time of the presynaptic spike. W(t) is the STDP function and is given by two exponentials (Song et al., 2000; Kromer and Tass, 2020)

[image: image]

Δt = tj − (ti + td) is the time lag between postsynaptic spike times and presynaptic spike arrival times. η = 0.02 scales the weight update per spike, τ+ = 10 ms and τ− = τ+τR are the STDP decay times for long-term potentiation (LTP) and long-term depression (LTD), respectively, τR = 4 yields asymmetry in STDP decay times, and β = 1.4 scales the ratio of overall LTD to LTP. These STDP parameters lead to bistability between a strongly connected state with synchronized neuronal activity and a weakly connected state with asynchronous neuronal activity (Kromer and Tass, 2020; Kromer et al., 2020).



2.3. Quantification of Synchronization

In order to quantify the degree of in-phase synchronization, we calculate the time-averaged Kuramoto order parameter (Kuramoto, 1984)

[image: image]

Here, ψk(t) is a phase function that increases linearly in time during individual interspike intervals of neuron k, i.e., [image: image] for [image: image] (Rosenblum et al., 2001). ρΔ quantifies the degree of synchronization of a population of N neurons during the time interval Δ = 10 s. Perfect in-phase synchronization results in ρΔ = 1 whereas ρΔ ≈ 0 refers to absence of in-phase synchronized neuronal activity.



2.4. L/M-Random Reset Stimulation

Throughout the paper, we deliver RR stimulation to a randomly selected group of neuronal subpopulations. RR stimulation is characterized by the delivery of temporally and spatially randomized stimulus patterns. Temporal randomization is realized by delivering stimuli at random times sk. Interstimulus intervals Sk = sk+1 − sk are distributed according to an exponential distribution with minimum interstimulus interval τΛ (Kromer and Tass, 2020)

[image: image]

Where τΛ = 1/130 s is the minimum interstimulus interval which corresponds to a maximal stimulation frequency of 130 Hz. This frequency is often used in clinical DBS studies (Krauss et al., 2020).

Θ(t) is the Heaviside step function, τRR determines the average stimulation frequency fRR by fRR: = 1/(τΛ + τRR). Figure 1A shows the distribution of interstimulus intervals for fRR = 30 Hz.


[image: Figure 1]
FIGURE 1. RR stimulation: (A) the probability distribution of interstimulus intervals for fRR = 30 Hz. The dashed line shows the minimum interstimulus interval, [image: image]. (B) The schematic of RR stimulation for M = 4 total sites where 2 sites are activated simultaneously at random times. The excitatory pulse has a duration of νe = 0.5 ms and an amplitude of [image: image]; separated by a gap of 0.2 ms, the inhibitory pulse has a duration of νi = 1.5 ms and an amplitude of [image: image].


In the present study, spatial randomization is realized by delivering each stimulus (at time sk) to a randomly selected group of L out of M neuronal subpopulations. Neurons are assigned to subpopulations according to their centers' locations. In particular, neuron i is considered to be part of subpopulation l if [image: image] mm, l = 1, 2, ..., M. Hence, M scales the required spatial resolution. This setup is motivated by the shape of commonly used cylindrical DBS electrodes with equidistantly placed stimulation contacts (Gielen, 2001; Krauss et al., 2020). Figure 2 illustrates the division into subpopulations for M = 4 sites. At each stimulation time sk, a stimulus is delivered to L out of M randomly selected subpopulations without replacement. Thus, at each stimulation time the first electrode is selected uniformly at random with a probability of [image: image], and for the second one we select one of the remaining electrodes with the probability of [image: image] and so on. If not stated otherwise, we use M = 32 throughout the paper. This mimics a recently developed DBS lead electrode with up to 32 stimulation contacts that can be activated independently (Steigerwald et al., 2016).


[image: Figure 2]
FIGURE 2. Schematic of intrapopulation and interpopulation synapses for a total of M = 4 subpopulations. The blue arrows represent the intrapopulation synapses where both pre- and postsynaptic neurons are within the same group. The red arrows show the interpopulation synapses where the pre- and postsynaptic neurons are in different subpopulations. Note that neurons are distributed along the x-axis and the vertical axis is merely symbolic.


Individual stimuli are charge-balanced and consist of an excitatory and an inhibitory rectangular pulse. The excitatory pulse has a duration of νe = 0.5 ms and an amplitude of [image: image]; separated by a gap of 0.2 ms, the inhibitory pulse has a duration of νi = 1.5 ms and an amplitude of [image: image] where μ = (Vth,spike − Vreset)/〈Ci〉. Thus, a stimulus of stimulation strength Astim = 1 will elevate the membrane potential above the spiking threshold no matter when the last spike of the neuron occurred. Figure 1B shows a schematic of our L/M-RR stimulation protocol for the case where each stimulus is delivered to L = 2 (out of M = 4) stimulation sites.



2.5. Calculation of Mean Rate of Weight Change

The development of RR stimulation was originally based on theoretical predictions of the stimulation-induced synaptic weight dynamics during randomized stimulation. The corresponding theoretical study can be found in Kromer and Tass (2020). In the following, we briefly state the main steps and expand their results to our L/M-RR stimulation protocol.

The approach of Kromer and Tass (2020) and others (Kempter et al., 1999; Burkitt et al., 2004) is based on the mean rate of weight change [image: image] for a single synaptic weight wij with presynaptic neuron i and postsynaptic neuron j. Averaging over a long time interval and a large number of realizations of the spike train, and assuming that post- and presynaptic neurons have the same mean firing rate r, the mean rate of weight change can be written as

[image: image]

For the case of different firing rates of neurons i and j, we refer to Kromer and Tass (2020). Here Gij(t) is the average number of time lags t per spike in the infinitesimal interval t ∈ [t, t + dt) that contribute to weight updates for the chosen STDP scheme. Note that Gij(t) is in general not normalized to one, but to the mean number of time lags per spike that contribute to weight updates.

Kromer and Tass (2020) derived results for Gij(t) in the limit of strong and fast stimulation, where each stimulus triggers a spike, and all spikes are triggered by stimuli. Here strong refers to large stimulation amplitudes Astim ≈ 1 and fast to stimulation frequencies that are large compared to the firing rate in the synchronous state.

In the limit of strong and fast stimulation, the neurons' firing rates equal the frequency of stimulus administration ri = rj = fRRL/M, and the distribution of time lags that lead to weight updates due to STDP results from the distribution of interstimulus intervals between stimuli delivered to the post- and presynaptic neurons, respectively (Kromer and Tass, 2020). We distinguish between two contributions to these time lags t by setting t = S + ξ. Here, S is the difference between post- and presynaptic stimulation times and ξ characterizes the difference in delayed spiking responses to stimuli. Note that only time lags that lead to weight updates are considered. Therefore, S does not denote any interstimulus interval between stimuli delivered to the post- and presynaptic neurons, but only those for which the time lag between the triggered post- and presynaptic spike results in a weight update. Then, Gij(t) results from the distributions of ξ and S. First, we consider the distribution of ξ. In the limit of strong and fast stimulation, each stimulus triggers a spike of a stimulated neuron and each spike is triggered by a stimulus. We assume that the time lag t′ between stimulus delivery and spiking response of the stimulated neuron is distributed according to a distribution λ(t′). Further, assuming that spiking responses of the pre- and postsynaptic neuron follow this distribution, we find that ξ is distributed according to [image: image]. Second, we denote the distribution of S as pij(S, ξ). Note that, in general, pij(S, ξ) depends on the realization of ξ. This is because certain realizations of ξ may change the order of spike and spike arrival times of the pre- and postsynaptic neurons' spikes. The latter may affect which time lags contribute to weight updates, and therefore, which interstimulus intervals S need to be considered.

In order to calculate pij(S, ξ), we follow the approach of Kromer and Tass (2020) and consider possible pairings of a presynaptic (postsynaptic) spike that is triggered by the nth stimulus with postsynaptic (presynaptic) spikes. We distinguish between two scenarios. In the first scenario, both post- and presynaptic neuron are stimulated simultaneously, while in the second one either the postsynaptic or the presynaptic neuron receives the nth stimulus.

In Kromer and Tass (2020) results for pij(S, ξ) for either case were derived. In the first case, the distribution of interstimulus intervals is given by

[image: image]

with

[image: image]

Here the kth summand contains the (k − 1)th convolution with the zeroth convolution referring to P(S) itself. The latter is given in Equation (7). δ(x) denotes the Dirac delta distribution.

As can be seen in Equation (9), the realization of ξ determines which interstimulus intervals S are considered for weight updates resulting from the current presynaptic spiking event. If ξ is larger than the synaptic delay td the presynaptic spike arrives before the postsynaptic spike and the arrival time is paired with the current postsynaptic spike (positive update) and the latest postsynaptic spike, triggered by an earlier stimulus delivered to the postsynaptic neuron (negative update). F(−S) denotes the probability that the latest stimulus was delivered to the postsynaptic neuron with an interstimulus interval S relative to the current stimulus. In contrast, if ξ is smaller than the delay time, the presynaptic spike arrives after the postsynaptic one and its arrival time is paired with the current postsynaptic spike (negative update) and the next postsynaptic spike that results from the next stimulus delivered to the postsynaptic neuron (positive update).

In the second case, pij(S, ξ) does not depend on ξ, if synaptic delays are short compared to interstimulus intervals and λ(t) is narrow compared to interstimulus intervals. pij(S, ξ) given by

[image: image]

Here, the current presynaptic spike arrival time is paired with postsynaptic spikes triggered by the latest (negative update) and the next stimulus delivered to the postsynaptic neuron (positive update), respectively.

Using Equations (9), (11), and (10), the distribution of time lags Gij(t) results from

[image: image]

We separate synapses into two groups based on the probability of receiving stimuli simultaneously during L/M-RR stimulation. The first group consists of synapses that connect neurons within the same subpopulation. This group will be referred to as intrapopulation synapses. The second group consists of synapses between neurons belonging to different subpopulations. These synapses will be referred to as interpopulation synapses. The classification of intra- and interpopulation synapses is illustrated for a toy network in Figure 2.

First, we consider intrapopulation synapses. Corresponding quantities will be marked by the suffix “intra” in the following. Neurons connected by intrapopulation synapses always receive stimuli simultaneously. In consequence, the distribution of time lags is given by

[image: image]

Here the average is taken over all intrapopulation synapses. Using Gintra(t) in Equation (8) yields the expected rate of weight change for intrapopulation synapses

[image: image]

Accordingly, we mark quantities related to interpopulation synapses by the suffix “inter”. Neurons that are connected by interpopulation synapses belong to different subpopulations and only receive stimuli simultaneously when both subpopulations are selected for stimulus delivery. Given that one of the subpopulations is already selected, the probability to select the other one as well is (L − 1)/(M − 1), which yields

[image: image]

The average is taken over all interpopulation synapses. We introduce the expected rate of weight change for interpopulation synapses as

[image: image]
 

2.6. Simulation Details

Numerical integration of the LIF model presented in section 2.1 is performed using an explicit Euler integration scheme with an integration time step of 0.1 ms.

Equation (10) is evaluated numerically using a discretization of the time axis with bin size of 5*10−3 ms (Figures 4A,B,E,F,G). Plotted histograms in Figures 4C,D were obtained using a bin size of 0.5 ms. The sum is truncated after kmax summands, where kmax is the first integer larger than 500.0ms/τΛ. Convolutions are calculated using the python method numpy.convolve of numpy version 1.16.2.




3. RESULTS

To study long-lasting desynchronization by L/M-RR stimulation, we perform numerical simulations of networks of LIF neurons with STDP. For the chosen parameters, a stable synchronized state with strong synaptic connections coexists with a stable desynchronized state with weak connections; see (Kromer et al., 2020). Networks with high initial mean weight approach the synchronized state, while networks with low initial mean weight approach the desynchronized state.

To prepare the network in the synchronized state, we choose a high initial mean weight, 〈w〉(t = 0) = 0.5. This was realized by selecting 50% of the synapses at random and setting their weights to one, while the other synaptic weights were set to zero. Then, the network is simulated for 500 s in order to reach the synchronous state, see (Kromer et al., 2020) for details.

After preparation, L/M-RR stimulation is delivered for 500 s. Afterward, we continue the simulation for another 1, 000 s to explore potential long-lasting effects of L/M-RR stimulation. To quantify the effect of L/M-RR stimulation, we analyze its acute and long-lasting effects by evaluating the mean synaptic weight 〈w〉 and the time-averaged Kuramoto order parameter ρΔ, Equation (6). To quantify acute effects, we evaluate 〈w〉 and ρΔ when the stimulation ceases (t = 995 s and Δ = 10 s in Equation 6). Furthermore, to quantify long-lasting effects, 〈w〉 and ρΔ are evaluated 1, 000 s after cessation of stimulation (t = 1, 995 s and Δ = 10 s in Equation 6).

Figure 3 shows representative time traces of the mean synaptic weight and the time-averaged Kuramoto order parameter obtained from simulations for different stimulation periods T. While the Kuramoto order parameter decreases within seconds after stimulation onset (Figure 3B) the dynamics of the mean synaptic weight is significantly slower, as shown in Figure 3A. As a consequence, the system might not reach the attractor of the stable desynchronized state for short stimulation periods due to insufficient decoupling. Throughout the paper, we fix the stimulation time to 500 s, which turned out to be sufficient for most parts of the parameter space.


[image: Figure 3]
FIGURE 3. Time traces for different stimulation durations. (A) The mean weights, 〈w〉, and (B) the order parameter, ρΔ, for four different stimulation durations T. The dashed line in (A) characterizes the weights in the stable synchronized state. Here, fRR = 10 Hz, Astim = 1, L = 5, and M = 32. The Kuramoto order parameter in (B) is calculated every 10 s by averaging over non-overlapping time windows Δ = 10 s.


Throughout the paper, we time-average the order parameter over Δ = 10 s. Furthermore, results are averaged over three network realizations. We find that results agree qualitatively among these random network realizations. Therefore, and due to the high computational costs, averaging over a large ensemble of network realizations was not performed.


3.1. Robust and Long-Lasting Desynchronization for Strong Stimulation

First, we consider the case of strong stimulation Astim = 1 in which neuronal spikes follow the stimulus pattern. Theoretical predictions for the mean rates of weight changes of intrapopulation synapses, [image: image], and interpopulation synapses, [image: image], are shown in Figures 4A,B for a wide range of stimulation frequencies and fractions of simultaneously stimulated subpopulations L/M. Negative rates of weight change, [image: image], and [image: image], indicate a weakening of corresponding synapses during stimulation.


[image: Figure 4]
FIGURE 4. Theoretical predictions for synaptic weight dynamics. (A,B) Expected mean rate of weight change for intrapopulation synapses [image: image], Equation (14) (A), and interpopulation synapses [image: image] (B), Equation (16). Colored curves separate regions with expected strengthening from those with expected weakening of synaptic weights. (C,D) Predicted distributions of time lags Gintra(t) (C), Equation (13), and Ginter(t) (D), Equation (15) (dotted black curves), compared to simulation results (colored histograms). (E–G) Theoretical predictions (lines) of mean synaptic weights for intra- (blue) and interpopulation (orange) synapses compared to simulation results (circles) for different stimulation frequencies fRR and fractions of simultaneously stimulated subpopulations L/M. Parameter combinations correspond to the three possible qualitative effects of L/M-RR stimulation: (i) weakening of all synapses (E), (ii) weakening of intrapopulation synapses (F) and (iii) strengthening of all synapses (G). (H–K) Overall mean synaptic weight (H,J) and time-averaged Kuramoto order parameter (I,K) as function of fRR and L/M. Acute values (H,I) are compared to long-lasting ones (J,K). Colored curves from (A,B) are shown to separate parameter regions (i)–(iii) with predicted strengthening and weakening of intra (blue) and interpopulation (orange) synapses, respectively. Parameters: M = 32 with L = 15 and fRR = 60 Hz (C–E); L = 15 and fRR = 100 Hz (F); and L = 25 and fRR = 100 Hz (G). We used λ(t) = δ(t) for theoretical predictions. “ac” and “ll” refer to acute and long-lasting effects, respectively.


A detailed comparison between simulation results and theory is presented in Figures 4C–G. We find an excellent quantitative agreement for the distributions of time lags, Figures 4C,D, and trajectories of the mean synaptic weights of both intra- and interpopulation synapses after the onset of stimulation, Figures 4E–G.

In Figures 4H,I, we show results for the mean synaptic weight, Figure 4H, and the Kuramoto order parameter, Equation (6), Figure 4I, shortly before stimulation ceases. Our theory separates the parameter space into three regions: (i) a region with [image: image] and [image: image] where L/M-RR stimulation decouples all neurons, (ii) a region where only intrapopulation synapses are weakened ([image: image] and [image: image]), and (iii) a region where all synapses are strengthened ([image: image] and [image: image]), see Figure 4H. Our simulation results show that in region (i) L/M-RR stimulation causes long-lasting desynchronization, while the system returns to the synchronized state in regions (ii) and (iii), see Figures 4J,K.

Next, we analyze the impact of the fraction of simultaneously active subpopulations L/M on long-lasting effects. Two qualitatively different frequency ranges can be found in Figures 4A,B. For low stimulation frequencies, fRR < 60 Hz, stimulation improves as L/M increases. In contrast, most pronounced long-lasting effects for high stimulation frequencies, fRR > 60 Hz, are observed at finite values of L/M.



3.2. Moderate Stimulation Yields Most-Pronounced Long-Lasting Effects

We study the impact of the stimulation amplitude Astim on acute and long-lasting effects of L/M-RR stimulation for low and high stimulation frequencies. Results are shown in Figure 5. We find that the long-lasting effects of low-frequency stimulation differ significantly from those of high-frequency stimulation. For low stimulation frequencies, stronger stimulation yields better results, see Figures 5A–C. Furthermore, for a smaller fraction of L/M, stronger stimulation is required to get sustained long-lasting effects. In contrast, for high stimulation frequencies, moderate stimulation yields pronounced long-lasting desynchronization, see Figure 5F, while weak and strong stimulation does not induce long-lasting desynchronization for a wide range of fractions L/M. Remarkably, we also find that the system returns to the synchronized state after L/M-RR stimulation with very low and very high ratios L/M, Figure 5F. Therefore, L/M-RR stimulation is most efficient for moderate stimulation amplitudes and intermediate ratios of simultaneously stimulated neuronal subpopulations.
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FIGURE 5. Acute and long-lasting effects of L/M-RR stimulation. Effects of low-frequency (A,B) and high-frequency stimulation (D,E) shortly before the cessation of stimulation. Mean synaptic weight (A,D) and time-averaged Kuramoto order parameter (B,E) are shown. Additionally, we show results for the time-averaged Kuramoto order parameter evaluated 1, 000 s after cessation of stimulation in (C) (low-frequency stimulation) and F (high-frequency stimulation) to quantify long-lasting desynchronization effects. Parameters: fRR = 30 Hz (low-frequency stimulation, A–C) and fRR = 100 Hz (high-frequency stimulation, D–F). Stimulation duration is 500 s and M = 32. Results were averaged over three network realizations. The acute effects are measured shortly before cessation of stimulation and long-lasting effects 1, 000 s after cessation of stimulation. “ac” and “ll” refer to acute and long-lasting effects, respectively.


Next, we explore the dependence of long-lasting effects on the stimulation amplitude, Astim ≤ 1, and the stimulation frequency, fRR. We find that weak and moderate stimulation are most efficient for intermediate stimulation frequencies, as shown in Figure 6. In contrast, strong stimulation only entails long-lasting desynchronization if applied at low stimulation frequencies.


[image: Figure 6]
FIGURE 6. Acute and long-lasting effects of L/M-RR stimulation. Acute mean weight (A) and time-averaged Kuramoto order parameter (B) as function of stimulation strength Astim and stimulation frequency fRR. (C,D) Same as (A,B) but evaluated 1, 000 s after cessation of stimulation. Parameters: stimulation is delivered for 500 s, L = 16, and M = 32. “ac” and “ll” refer to acute and long-lasting effects, respectively.




3.3. Stimulation With Low Spatial Resolution Performs Better at Low Stimulation Amplitudes

Next, we vary the spatial resolution M, scaling the distance between adjacent stimulation sites (Figure 2). To this end, we fix the fraction of simultaneously stimulated subpopulations L/M and consider different spatial resolutions M. Results for low and high stimulation frequencies fRR are shown in Figure 7. We find that the spatial resolution strongly impacts weight reduction for weak and strong stimulation. Low resolutions (small M) seem to be advantageous for weak stimulation, where smaller amplitudes are sufficient to achieve a pronounced weakening of synapses. In contrast, a large M leads to more synaptic weakening for moderate stimulation and a low fraction of simultaneously stimulated sites (Figures 7A,C). Results for strong low and high-frequency stimulation differ significantly. For low stimulation frequencies, we observe pronounced decoupling for all considered spatial resolutions. Contrastingly, for high-frequency stimulation, the mean synaptic weight shortly before stimulation ceases possesses a complex dependence on the fraction of simultaneously activated sites and the spatial resolution. Here, low resolutions result in higher mean weights for small fractions (Figure 7C). For high fractions, however, high spatial resolution may even strengthen synaptic weights, rendering stimulation not suitable for inducing long-lasting desynchronization. This can be seen in Figure 7D, where strong high-frequency stimulation results in large values of the mean synaptic weight. The latter increases with increasing resolution M. Hence, stimulation approaches with low spatial resolution may be advantageous for weak and very strong stimulation.


[image: Figure 7]
FIGURE 7. Acute effect of L/M-RR stimulation on the mean synaptic weight for different values of total numbers of subpopulation, M. Results for the mean synaptic weight shortly before cessation of stimulation for low-frequency (A,B) and high-frequency (C,D) stimulation are shown. Colors indicate different total numbers of subpopulations, M. Columns contain results for different fractions of simultaneously stimulated neuronal subpopulations L/M. Parameters: Stimulation is delivered for 500 s. “ac” and “ll” refer to acute and long-lasting effects, respectively.





4. DISCUSSION

We studied desynchronization in networks of leaky integrate-and-fire (LIF) neurons with spike-timing dependent plasticity (STDP) by Random Reset (RR) stimulation, a decoupling stimulation technique (Kromer and Tass, 2020). RR stimulation was designed to specifically target synaptic weights and drive plastic neuronal networks into the attractor of a stable desynchronized state with weak synaptic connections. This stabilizes desynchronized activity after cessation of stimulation and may lead to long-lasting desynchronization effects (Kromer and Tass, 2020). The original RR stimulation paradigm suggests the delivery of temporally and spatially randomized stimulus patterns. To realize spatial randomization, (Kromer and Tass) delivered each stimulus to 50% of the neurons. These neurons were selected at random, irrespective of their locations in space and their distance to stimulation contacts (Kromer and Tass, 2020). In a DBS setup, however, such a microscopic selection process is not possible due to limited spatial resolution. There, each stimulus affects a finite tissue volume, while the approach of Kromer and Tass (2020) would require that even nearby neurons can be stimulated independently.

Here, we present a version of RR stimulation that copes with limited spatial resolution. Specifically, each stimulus is delivered to a spatially coherent group of L out of M randomly selected stimulation sites, denoted as L/M-RR stimulation. This setup mimics the delivery of DBS through modern segmented lead electrodes with multiple stimulation contacts (Steigerwald et al., 2016). L/M-RR stimulation does not require single-neuron stimulation as the approach presented in Kromer and Tass (2020), where stimuli were administered to 50% of the neurons that were randomly selected without considering their distribution and location in space.

In order to analyze the performance of L/M-RR stimulation, we apply a recently developed theoretical framework to predict the mean rate of the stimulation-induced reshaping of intrapopulation and interpopulation synapses. The latter connect neurons in the same and different subpopulations, respectively (Kromer and Tass, 2020). We find an excellent agreement between theoretical predictions and numerical simulations for strong stimulation amplitudes, Astim ≈ 1, where neuronal spiking follows the stimulus pattern.

L/M-RR stimulation causes parameter-robust long-lasting desynchronization effects. We find stimulation-induced decoupling and related long-lasting desynchronization in the major part of the parameter space spanned by the stimulation frequency and the fraction of simultaneously stimulated subpopulations L/M (Figure 4). Only for high stimulation frequencies and large fractions, L/M-RR stimulation does not entail long-lasting desynchronization, i.e., it is ineffective. Here, stimuli are delivered at a high pace, which causes high neuronal firing rates and short time lags between post- and presynaptic spiking events. As these time lags become of the order of the STDP decay time for LTP, τ+, synaptic weights start increasing, and stimulation becomes ineffective. This effect causes a qualitative difference between low and high frequency stimulation that is well-described by our theory. Based on our results, we would expect a qualitatively similar outcome for the original RR stimulation protocol presented in Kromer and Tass (2020). There, the percentage of simultaneously stimulated neurons might be comparable to the fraction L/M of simultaneously stimulated subpopulations in the present paper. However, this percentage was not varied systematically in Kromer and Tass (2020). We further expect our results to be robust with respect to the specific choice of the distribution of interstimulus intervals, Equation (7), as long as the resulting distributions of time lags lead to a sufficiently negative rate of weight change, Equation (8).

Qualitative differences between low- and high-frequency stimulation, observed for strong stimulation, are also present for moderate stimulation amplitudes. While strong high-frequency stimulation is ineffective, at moderate stimulation amplitudes, it leads to long-lasing effects. This is because neurons do not spike in response to stimuli of moderate strength that are delivered shortly after spiking. This leads to longer time lags between post- and presynaptic spikes, which reduces the contribution of LTP to the synaptic weight dynamics and supports stimulation-induced decoupling. This effect leads to a trade-off between strong and weak stimulation. For the former, stimuli hardly impact neuronal spiking, whereas the latter induces short time lags that lead to LTP. As a consequence, L/M-RR stimulation performs best at intermediate stimulation amplitudes. This trade-off differs significantly from those presented in earlier studies reporting optimal performance of coordinated reset (CR) stimulation at intermediate stimulation amplitudes (Lysyansky et al., 2011; Popovych and Tass, 2012; Ebert et al., 2014; Zeitler and Tass, 2015). These studies considered spatial stimulation profiles, where strong stimulation affects larger neuronal populations (Butson and McIntyre, 2008). The latter reduces the decoupling effects of CR stimulation. In contrast, the performance of L/M-RR stimulation becomes worse at strong stimulation amplitudes due to an increased contribution of LTP to the synaptic weight dynamics, due to shorter time lags.

That high stimulation frequencies can lead to qualitatively different synaptic weight dynamics was also observed in our recent study on multisite CR stimulation (Kromer et al., 2020). There, high stimulation frequencies could lead to time lags between post- and presynaptic spikes that are even shorter than the synaptic transmission delay. This led to highly non-linear weight dynamics as a function of the stimulation frequency and the number of stimulation sites, i.e., the spatial resolution (Kromer et al., 2020). In contrast, in the present paper we limited the minimum interstimulus interval to τΛ > td. This ensures non-overlapping stimuli. Therefore, observed time lags are always larger than the delay time. Nevertheless, we observe synaptic strengthening for strong high-frequency stimulation and large numbers of stimulation sites, which is in accordance with the results presented in Kromer et al. (2020) for high-frequency CR stimulation. By the way, very similar results were obtained for a minimum interstimulus interval τΛ = 1/250 s.

An interesting question is to which extent our results for strong high-frequency L/M-RR stimulation translate to HF DBS. It is widely observed that symptoms return shortly after cessation of HF DBS therapy in Parkinson's patients (Temperli et al., 2003); hence HF DBS may not stabilize physiological activity after cessation of stimulation. RR stimulation represents a temporally and spatially randomized stimulation approach (Kromer and Tass, 2020). This raises the question of whether long-lasting effects may be caused by sufficient randomization of HF DBS. So far, temporally randomized versions of HF DBS were analyzed in a few experimental studies; however, there are mixed results on its efficacy. Furthermore, to our knowledge, all studies were intraoperative and limited to acute effects during stimulation. In Dorval et al. (2010), a randomized HF DBS pattern was used to treat bradykinesia in PD patients. In their study, interpulse intervals were distributed according to a gamma distribution. The authors hypothesized that regular HF DBS leads to symptom alleviation by reducing the firing irregularities in the basal ganglia; they argue that randomized HF DBS fails to regularize the firing and is therefore inferior to regular HF DBS. Birdno et al. (2012) and Brocker et al. (2013) considered five different irregular types of HF DBS. Two deterministic patterns in which a regular pulse train was either interrupted by periods of silence or periods of high-frequency bursts (Birdno et al., 2012; Brocker et al., (2013); and three randomized pulse trains in which interpulse intervals where distribution according to log-uniform distributions of two different widths (Birdno et al., 2012; Brocker et al., 2013) and according to a bimodal distribution where the inverse interpulse intervals were either shorter or longer than the range of therapeutic frequencies (Birdno et al., 2012). Birdno et al. (2012) found that irregular HF DBS is inferior to the regular one in treating tremor. They argue that pathological activity may propagate during long interpulse intervals. In contrast, Brocker et al. (2013) studied the performance of PD patients in a simple motor task (finger tapping) and reported improved performance during irregular HF DBS. Moreover, their computational model showed that these randomized DBS patterns significantly suppressed beta band power. However, as acknowledged by the authors, the intraoperative setting of their clinical trials limits the duration of the experiment. Therefore, possible effects might not fully develop, and the therapeutic effects of irregular HF DBS might be underestimated.

It is unclear whether experimental results on irregular HF DBS apply to the L/M-RR stimulation protocol suggested in the present study. Furthermore, the L/M-RR stimulation differs in two ways from the studies on irregular DBS. First, L/M-RR stimulation targets pathological connectivity rather than pathological neuronal activity. Long-lasting changes due to randomized HF DBS, however, have yet to be studied. As shown in Figure 3, L/M-RR stimulation needs to be administered for a sufficient amount of time to drive the network into the attractor of the stable desynchronized state. For too short stimulation time, the full potential of long-lasting effects might not be released (Figure 3). Furthermore, as pointed out by our theory for strong stimulation, the stimulation-induced weight dynamics is closely related to the statistics of the interstimulus interval, see Equation (8). Whether the irregular HF DBS protocols studied in Dorval et al. (2010), Birdno et al. (2012), and Brocker et al. (2013) cause a reduction of synaptic weights further depends on the underlying plasticity mechanism. Once the latter has been explored, Equation (8) might be used to predict the potential long-lasting outcome. Second, L/M-RR stimulation combines temporal and spatial randomization, while only temporally randomized HF DBS was considered. In fact, we find that high-frequency L/M-RR stimulation is ineffective for large fractions of simultaneously activated stimulation sites, while low fractions result in pronounced long-lasting effects (Figures 5D–F).

The fraction of simultaneously activated subpopulations L/M controls the degree of spatial randomization. A fraction of L/M = 1 corresponds to spatially regular single-site stimulation, while low fractions result in a high degree of spatial randomization. This fraction also impacts the frequency at which individual subpopulations receive stimuli. In particular, neurons receive stimuli at higher rates if this fraction is increased for fixed stimulation frequency. However, our computational results show that this only improves long-lasting effects for low stimulation frequencies (Figures 5A,B). In contrast, increasing this fraction yields worse performance for high-frequency stimulation (Figures 5C,D). Improvement of long-lasting effects at low stimulation frequencies results from the so-called decoupling through synchrony, which occurs for asymmetric Hebbian plasticity functions if the distribution of spike times within collective spiking events becomes narrow compared to axonal delays (Lubenov and Siapas, 2008; Knoblauch et al., 2012). In the present paper, we use short stimuli that cause such narrow distributions of spike times during collective spiking events (Kromer and Tass, 2020). This supports decoupling when stimuli are simultaneously delivered to a large number of subpopulations, i.e., L/M ≈ 1, see Figure 5A. For high stimulation frequencies, however, this effect is balanced by LTP due to short time lags, as described in detail above. Therefore, high-frequency stimulation is ineffective for L/M ≈ 1. As a result, spatial randomization resulting from intermediate fractions L/M increases the robustness of long-lasting desynchronization by L/M-RR stimulation with respect to changes in the stimulation frequency.

Of particular interest with respect to a possible implementation of L/M-RR stimulation using a DBS setup is the impact of the number of stimulation sites, represented by the spatial resolution M. Commonly used DBS electrodes possess 4–8 stimulation contacts that are arranged equidistantly along the electrode axes (Gielen, 2001; Butson and McIntyre, 2005). Recently, Steigerwald et al. (2019) presented an electrode with up to 32 stimulation contacts that can be activated independently. For strong stimulation, the impact of the number of stimulation sites M can be analyzed theoretically. Our theory predicts that the dynamics of intrapopulation weights solely depends on the fraction of simultaneously activated subpopulations L/M, see Equations (9), (10), and (13). In contrast, the probability of simultaneous activation of different subpopulations, and therefore the dynamics of interpopulation weights depends on (L − 1)/(M − 1), see Equations (15) and (16). Thus, changes of the spatial resolution, M, while keeping the fraction L/M constant, only affect the dynamics of interpopulation weights. As a consequence, after sufficiently long stimulation different mean synaptic weights can be attained, depending on the combination of signs of the mean rates of weight change [image: image] and [image: image], i.e., whether stimulation reduces all weights ([image: image] and [image: image]), increases all weights ([image: image] and [image: image]), or whether only one type of weights is reduced while the other one increases. While this determines the outcome of strong stimulation, our simulation results provide evidence that low spatial resolution is favorable for weak stimulation, as shown in Figure 7. We hypothesize that this is because simultaneously stimulated subpopulations consist of bigger localized groups of neurons and such groups are more likely to follow the applied stimulus pattern. Since sufficient decoupling is already achieved for weak stimulation with low spatial resolution, L/M-RR stimulation may be suitable for implementation in a conventional DBS setup. There, weak stimulation reduces the risk of side-effects (Rodriguez-Oroz et al., 2005). Furthermore, low spatial resolution, i.e., a smaller number of stimulation sites, is advantageous because it allows the usage of common DBS electrodes and reduces the time for preparation and parameter tuning. In addition, using a smaller number of simulation sites may increase feasibility given the anatomical and topological constraints of currently available chronically implantable depth electrodes and the related consequences on therapeutic effects and side effects (Volkmann et al., 2006; Krauss et al., 2020).

So far, segmented electrodes were mainly used intraoperatively for directional HF DBS stimulation. During directional DBS, the current flow can be directed in both the vertical and in the horizontal plane by activation of a select number of individual contacts. This results in high spatial selectivity (Contarino et al., 2014; Pollo et al., 2014; Steigerwald et al., 2019). These intraoperative studies suggest that directional DBS may lower the threshold current for beneficial HF DBS (Contarino et al., 2014; Pollo et al., 2014). However, the full potential of segmented electrodes for multisite stimulation methods such as CR or L/M-RR stimulation is yet to be explored. In the present paper, we suggest L/M-RR stimulation as one way to realize the recently developed RR stimulation paradigm by means of segmented electrodes. Our theoretical and computational results indicate that separate stimulation of a large number of neuronal subpopulations, which may correspond to a large number of stimulation contacts, improves long-lasting desynchronization by L/M-RR stimulation for low stimulation frequencies, Figure 7A.

In future studies, we anticipate exploring L/M-RR stimulation in a detailed biophysical model of the subthalamic nucleus, a major target region for therapeutic HF DBS stimulation in Parkinson's patients (Benabid et al., 1991) using more detailed models of stimulation contacts accounting for spatial current profiles. Furthermore, we plan to use large-scale neuronal network models, to study how STN stimulation affects interactions between different nuclei in the basal ganglia region. We hope that our encouraging results motivate experimental and preclinical studies on RR stimulation as a potential treatment for neurological disorders that exploits recently developed segmented electrodes (Steigerwald et al., 2019).
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Physiological and biochemical networks are highly complex, involving thousands of nodes as well as a hierarchical structure. True network structure is also rarely known. This presents major challenges for applying classical network theory to these networks. However, complex systems generally share the property of having a diffuse or distributed signal. Accordingly, we should predict that system state can be robustly estimated with sparse sampling, and with limited knowledge of true network structure. In this review, we summarize recent findings from several methodologies to estimate system state via a limited sample of biomarkers, notably Mahalanobis distance, principal components analysis, and cluster analysis. While statistically simple, these methods allow novel characterizations of system state when applied judiciously. Broadly, system state can often be estimated even from random samples of biomarkers. Furthermore, appropriate methods can detect emergent underlying physiological structure from this sparse data. We propose that approaches such as these are a powerful tool to understand physiology, and could lead to a new understanding and mapping of the functional implications of biological variation.
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INTRODUCTION

Complex systems theorists have long viewed biological networks as one of the prime examples of complex systems (Holland, 1992; Mobus and Kalton, 2014), but biologists themselves, with some notable exceptions (e.g., Kitano, 2002; Tieri et al., 2010), have often been more reticent, preferring to understand biological signaling pathways from a more linear and reductionist perspective. This is starting to change, with systems biology gradually moving from simple inventories of large numbers of molecules to network-based approaches [e.g., Ingenuity Pathway Analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG)-pathways, gene ontology (GO)-terms (Kanehisa and Goto, 2000; Harris et al., 2004; Krämer et al., 2014)]. Indeed, this entire Research Topic, one of the largest in the history of Frontiers Research Topics, is devoted to Network Physiology.

Indeed, drawing on insights from classical network theory (Albert and Barabási, 2002), over the last ∼10 years, network physiology, and the related field of network medicine, have been making great strides in bringing network thinking into the biomedical realm [Network medicine tends to focus more on genetic and molecular networks (Barabási et al., 2011), while network physiology focuses more on the temporal coordination of physiological function across systems, often at higher levels of organization, such as organs and organ systems (Ivanov et al., 2016), though the distinction is not always clear]. These methods are contributing numerous insights, such as coordination of sleep cycles across brain waves and muscle groups (Bashan et al., 2012) or understanding motor neuron function in Caenorhabditis elegans (Yan et al., 2017). Perhaps one of the most important insights is simply the repeated validation that there is coordination across biological networks, and thus that networks must be studied as ensembles, not as pieces. For example, there is now clear evidence that temporal dynamics of organ function show clear coordination across organ systems (Bartsch et al., 2015). Accompanying such insights come methods to quantify these network dynamics, such as time delay stability (TDS) and accompanying graphical methods (Bashan et al., 2012; Bartsch et al., 2015). It doesn’t require much thinking about the principles of evolution, optimization, and organismal function to understand why this is expected; the surprise is that physiology existed for so long without looking for this coordination, or without considering the higher-order perspective that it implies. For the purposes of this review, an additional key insight is that this coordination leads to a limited number of largely discrete states of the larger system, with multiple subsystems changing together in abrupt and coordinated fashion (Bashan et al., 2012; Bartsch et al., 2014, 2015). For example, multiple organ systems change together at transitions between sleep stages (Bartsch et al., 2015). Similar principles apply at other hierarchical levels of biology, for example in β-cell regulation in response to glucose (Podobnik et al., 2020). This leads to the important conclusion that there are biological attractor states, discrete states toward which physiology/biology converges, and between which it shifts.

Nonetheless, there are still major challenges in applying classical network theory to many aspects of biological networks. Classical network theory is based on the ability to map networks relatively exhaustively in order to estimate properties such as connectedness, modularity, etc. (Strogatz, 2001; Barabási, 2016), but biological networks imply multiple levels of organization, interactions of different types of structure (physical, informational, etc.), and networks that, on the molecular level, are still very poorly mapped. Additional approaches are thus needed for when our sparse understanding of network structure limits the applications of classical approaches. Here, we briefly discuss the structure of organisms from a complex systems perspective and how much we do and don’t know about their underlying networks. There are obviously a daunting variety of organisms and many levels of organization within them; we try to stay at a general level to enunciate principles that will apply to studies of any biological systems at the organism level or lower that are composed of networks, whether they be biochemical networks within cells or networks of tissues or brain regions. We then argue that, despite an imperfect knowledge of the finest-scale details, there is a coherence to biological states that suggests that we should be able to measure organismal state even with highly imperfect knowledge of the underlying networks. We use this framework to review a number of methods to infer organismal state via sparse sampling of networks, and to suggest future avenues for further development of such methods. Our previous research in aging leads us to use examples primarily from this field, but the conclusions are much more general.



AN ORGANISM AS A COMPLEX DYNAMIC SYSTEM

There can be little doubt that organisms are complex dynamic systems, as they exhibit all the hallmarks of such systems: they are composed of multiple elements which interact with feedback (and also feedforward) mechanisms; the elements are organized both hierarchically and modularly; and there are clear emergent properties at the various hierarchical levels which emerge from the underlying dynamics at adjacent levels (e.g., Podobnik et al., 2017, 2020). These properties are also shared by other key examples of complex dynamic systems: economies, ecosystems, weather systems, societies, traffic systems, etc. However, organisms—and, more broadly, sub-organismal biological systems—exhibit some unique features that are not shared by all complex dynamic systems:


1.They are highly optimized via natural selection (Kriete, 2013). While systems such as economies or ecosystems may undergo weak selective pressure that affects their evolution, biological systems have had billions of years to become fine-tuned, with progress made in each generation conserved and transmitted via the genetic code. Molecular signaling pathways, for example, are much more fine-tuned than economic regulatory policy.

2.Accordingly, they are goal-directed. Weather systems, ecosystems, and most other complex dynamic systems simply exist, without an effort to achieve anything. Biological systems, however, have been fine-tuned for a reason: to maximize organismal fitness (roughly speaking). And in turn, for most of the biological machinery, this equates to optimizing physiological/biological equilibrium in the face of constant internal and environmental variation (Cohen et al., 2012; Podobnik et al., 2017, 2020), as denoted by concepts such as homeostasis, homeodynamics, robustness, and resilience (Ives, 1995; Sterling, 2015; Ukraintseva et al., 2016). In other words, biological systems are designed (though not in a theological sense) to maintain organismal balance.

3.Biologically relevant information is conserved over long timescales. The genetic code permits the conservation of information across very long timescales—billions of years. Many other complex dynamic systems do not really conserve information at all, and those that do are either much more recent (e.g., writing in economic systems, code in computer systems), and/or the information is much less precisely transmitted (cultural transmission).

4.Accordingly, biological systems are perhaps the most complex systems that exist. The combination of natural selection, very long timescales, goal-directedness, and information conservation has permitted biological systems to become what is likely the most structured complex system known. New levels and layers of biological organization are constantly being discovered (see below).



It is this last point, perhaps, that explains why biologists are so far behind other fields in adapting complex systems thinking. There was simply too much information, and too much structure, for classic complex systems methodologies to be broadly useful. The advent of -omics and imaging technologies and big-data capabilities are changing this now, but the challenge remains that our basic knowledge of biological organization is still rudimentary.



WHAT WE DO AND DON’T KNOW ABOUT BIOLOGICAL ORGANIZATION

At least since the discovery of the structure of DNA, our knowledge of biological organization has been increasing rapidly. As this process has unfolded, there has been a repeated theme: scientists at each stage fail to appreciate how much more detail has yet to be uncovered. For example, new hormones—key molecules for regulatory coordination—are regularly discovered, such as hepcidin (Nemeth et al., 2003) and apelin (Vinel et al., 2018). Perhaps the best example is the changes that have occurred to biochemistry’s “central dogma” over the years. Once it was established that DNA is transcribed into messenger RNA (mRNA), and that mRNA is translated into proteins, this transfer of information (genes—> mRNA—> protein) became known as the “central dogma” (Crick, 1970). Proteins were considered the key biological effectors. However, it was not long before this dogma began to break down at a number of levels: reverse transcriptases from viruses such as HIV can reverse the flow of information (Spiegelman et al., 1971). Perhaps more importantly, the central dogma radically underestimates the sophistication of the information processing. A single gene can be spliced into multiple mRNAs (Chow et al., 1979). Many new types of RNAs, such as micro RNAs and snoRNAs, are being discovered, often with key signaling roles (Scott and Ono, 2011).

Here, we will look in detail at the recent discovery of “alternative proteins” (Brunet et al., 2020), a telling example of how new layers of biological organization are constantly being uncovered, and how each time they are, our understanding as relates to the application of complex systems methods to biology would need to be re-thought. Since the discovery of alternative mRNA splicing in eukaryotes– i.e., that a single gene could produce many mRNA isoforms—part of the revised central dogma, implicit or explicit, has been that a mature mRNA (i.e., one that has already undergone all splicing and processing before being translated into a protein) codes for one and only one protein. A few exceptions had been detected, but they were considered just that: exceptions. However, with the advent of high-throughput technologies, it was recognized in the early 2010s that most mature mRNAs contained multiple start codons, the series of three nucleotides in the mRNA that signals the ribosome to start translation (Ingolia et al., 2011; Vanderperre et al., 2013). As a result, it was possible that multiple proteins were being translated from a single eukaryotic mRNA. By combining the presence of start and stop codons in the mRNA sequences, it was predicted that the average mature mRNA might code for 7.8 proteins, with some mature mRNAs coding for as many as 89 (Open Prot database v1.6: Brunet et al., 2019), leading to the possibility that the proteome was many-fold larger than previously thought. Indeed, subsequent experiments have shown that many of the so-called “alternative proteins”—proteins that are coded by a mature mRNA, other than the “reference protein” that was canonically expected—are indeed produced by cells. They have been detected by mass spectrometry and by ribosomal profiling, are often highly conserved evolutionarily, and in some cases they have been shown to have crucial roles in biological processes and diseases, often working in tandem with other proteins produced by the same mRNA (Samandi et al., 2017; Chen et al., 2020). Hence, in contrast to the general belief that polycistronic mRNAs are restricted to prokaryotes, an ever-increasing fraction of mRNAs in eukaryotes are known to encode at least two different proteins.

Not all alternative proteins predicted by mRNA sequences have been shown to be translated or to have important biological roles, and there is currently substantial uncertainty as to how many of the alternative proteins will prove biologically important, but the number would certainly appear to be in the thousands, if not much higher. Indeed, the line between “biologically important” and “translational noise” may not be so clear: many alternative proteins likely arise via mutations generating random start codons, but the proteins so-generated may have some biological activity. If that activity is strongly harmful, natural selection should quickly eliminate the mutation, but if the novel protein, due to biochemical stochasticity, is anywhere close to neutral, there may exist a long period where it is produced in small quantities and subject to gradual selection toward a beneficial role, even if it does not play a core regulatory function. There is thus substantial potential for alternative proteins to play broad but hard-to-pinpoint regulatory roles, even beyond the substantial number that are in the process of being identified as key players.

Among those alternative proteins that are emerging as having clear functions, recent work is permitting us to understand how they integrate into biological networks. Briefly, data generated by high throughput mass spectrometry (MS) experiments have been re-analyzed with the inclusion of alternative proteins in the library used at the spectra-peptides matching step (Leblanc et al., 2020). When these data result from separate purification of multiple tagged proteins followed by MS analysis it is possible to confidently identify alternative proteins in a network of protein physical interactions. Interestingly, a surprising number appear to have roles linking what otherwise appear to be separate modules, or as hubs (Figure 1). In other words, the structure of the regulatory network, including important higher-order network properties, could completely change with or without the inclusion of the alternative proteins. Indeed, the addition of alternative protein IP_688845 in the interactome of the ELP6 protein may yield insight surrounding its recent association with tumorigenesis and migration of melanoma cells (Close et al., 2012; Figure 1Aii). The re-analysis shows that the novel interactor bridges this member of the elongation complex to protein clusters which include S100A9, recently identified as biomarker up-regulated in metastatic melanomas (Wagner et al., 2019) and TSPAN33, a protein which modulates cell adhesion and migration through its effect on plasma membrane mechanical properties (Navarro-Hernandez et al., 2020). Several hypotheses could be explored with this larger subnetwork as a starting point. While it is not yet proven whether these changes in our understanding of network structure are expected to lead to changes in the predicted functional dynamics, there is every reason to expect that this would be the case. In similarly generated data, alternative proteins have even been observed in the interaction network of viral proteins in Zika virus infected human cells (Leblanc and Brunet, 2020).
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FIGURE 1. (A) Subnetworks of alternative proteins identified in the most comprehensive human protein-protein interaction network (Leblanc et al., 2020). Direct neighbors and neighbors of neighbors (here called second neighborhood) are shown around alternative proteins encoded by genes of “non-coding” biotypes revealing previously unknown physical interaction network structure. Alternative protein IP_672618 relates regions otherwise not connected (i). The authors speculate that the bridging role of IP_688853 between ELP6 and other proteins could yield insight into the mechanism of tumorigenesis recently associated with this gene. Bait proteins are reference (annotated) proteins expressed with a tag for purification from which prey proteins are identified. “IP_” protein accessions refer to OpenProt 1.6 unique identifiers for alternative proteins. (B) Second neighborhoods of two reference proteins extracted from the same network with (right) and without (left) alternative proteins. Inclusion of an alternative protein from the dual coding gene BEND4 reveals the addition of a hub around the protein ZCCHC7 (i). Addition of two alternative proteins in the second neighborhood of ILK increases the betweenness centrality of the ILK-RSU1-PARVA clique (ii).


The changes in biological paradigm implied by the existence of a broad range of functional or semi-functional alternative proteins should have been expected. Why would occasional mutations not have produced additional start codons? Why would those additional proteins not have been translated? And why would natural selection not have then subsequently acted on them, leading in all likelihood to the sharing of a mature mRNA as a way to improve coding efficiency of the genome and coordination of related regulatory functions? We would argue that this example is a clear microcosm of how the combination of stochasticity, biological information conservation, and billions of years of natural selection has added multiple layers to the structure of biological organization.

We have clearly not reached the bottom yet, and even once (if?) we do identify all the molecular players, a full functional mapping of their interactions, including the weak non-primary relationships, is certainly still well in the future. Moreover, network structure itself may not be a fixed property of an organism. Recent developments have shown that the structure of protein-protein interaction (PPI) networks correlates with cell type (Huttlin et al., 2020). In this study, the authors of the BioPlex network have constructed PPI networks of two different cell types using the method described above and observed largely the same proteins engaged in different interactions. In other words, rewiring of PPI networks correlated with system state, adding another major challenge and level of complexity in our ability to infer biological network structure.

In turn, this lack of ability to fully map biochemical networks could be an important barrier for our ability to apply key tools from complex systems theory—notably network theory/graph theory—to these networks. Of course, we do not mean to imply that network theory has no applications in biology. Indeed, there will be clear applications in the simplest systems (Nijhout et al., 2017), or when emergent phenomena are clear enough to create higher-order networks that can be mapped (Bashan et al., 2012). But while the ability to predict and control nematode behavior through a network of 40 neurons is on the one hand an excellent and impressive demonstration of the power of network theory (Yan et al., 2017), it is also a humbling demonstration of how much more would be required to achieve similar prediction/control of human behavior, particularly when the number of neurons and their connection structure is not fixed from one individual to another.

In short, we argue that most models of biological networks are—and, for the foreseeable future, are likely to remain—sparsely sampled systems, systems in which the nodes and their edges are insufficiently known or sampled to robustly and directly characterize network-level properties. In such systems, insights will need to come not through exhaustive data, but through judicious use of methods to extract the relevant signals despite the sparseness of the data. This is true despite the advent of massive -omics, and despite the data processing tools that are being developed to manage that information.



DATA TOOLS FOR SPARSELY SAMPLED NETWORKS

While the above situation might sound pessimistic with regard to our potential to make progress in understanding biology, it is anything but. In fact, the same system properties that make biology so complex and hard to map also make it potentially more tractable as a complex system with the right analytical tools. It is the goal-directedness of biological systems that gives their components teleological functions: hearts are for pumping blood through the circulatory system, B-cells are for generating the antibodies in the adaptive immune response, and ribosomes are for translating mRNA into proteins (teleological is used here in the sense that purposeful behavior of systems can arise from purposeless evolution via natural selection, a shorthand that allows reduction of otherwise intractable, purely descriptive, mechanistic models). There is no equivalent set of functions in, say, an ecological network: what are flower-pollinator relationships, or plankton communities in marine ecosystems, “for”? And indeed, rightly or wrongly, for centuries biologists have relied on this kind of teleological understanding of biological components without a second thought.

More generally, we can conceive of most biological regulation as adjusting the condition of the organism to maintain broad-sense homeostasis. This regulation can occur across two types of dimension: discrete and continuous (Figure 2). For example, migratory birds arriving for the breeding season go through a discrete transition to a breeding state (Jacobs and Wingfield, 2000; Williams, 2012). This involves not just changes to sex hormones and gonad size, but also changes in immune function, diet, metabolism, and likely a host of other aspects of physiology that have not been studied extensively. We can thus conceive of breeding vs. non-breeding state as two “attractor states” of the system, in complex systems terminology. Small changes in physiology within a state are generally not sufficient to make the organism jump from one “attractor basin” to the other—only the right, and sufficient, stimulus can affect the change. Other discrete states could include sleeping vs. wakefulness, an immune system fighting acute infection, or the dauer stage of C. elegans.
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FIGURE 2. Hypothetical example of continuous and discrete latent biological states measured with three proxy biomarkers. Color represents the latent continuous state, and circles vs. triangles represent the discrete state. The proxy biomarkers x and y but not z are associated with the continuous state, and the proxy biomarkers y and z but not x are associated with the discrete state.


Continuous variation occurs along a gradient. The chronic low-grade inflammatory response characteristic of mammalian aging is a good example (Franceschi et al., 2000), as is hunger, or the metabolic changes that accompany continuously increasing levels of exercise intensity. Both continuous and discrete processes are reflected in multiple, connected aspects of biology. Biological changes rarely happen in a vacuum, but involve coordination across multiple components that need to take into account what other parts of the system are doing (Csete and Doyle, 2004). And this is the property of biological systems that opens them up to tractability: the coherence of the overall system state. A biological system is, at any moment, in a state that reflects all the discrete and continuous dimensions of which it is composed: for example, a bird might be breeding, experiencing an acute infection of type X, under conditions of abundant food, while resting, etc. We do not yet have a complete enumeration of all these dimensions for any organism, and perhaps not even for any biological component. And these dimensions may not be additive: the presence of one state may preclude or modify others, and many of the biochemical components that help determine states are in fact shared. For example, the inflammatory molecule C-reactive protein (CRP) is involved in both acute infections, and in low-grade chronic inflammation associated with aging. CRP level is thus not a simple measure of either of these processes, but must be integrated with other information to give information about either (Bandeen-Roche et al., 2009; Morrisette-Thomas et al., 2014).

Broadly speaking, we can summarize the situation as follows: we have a set of biomarkers (taken here to mean any indicators of biological state, but likely individual molecules in biological networks), and we would like to make robust inferences about the state of the organism/cell/other biological component (let’s call it an organism for simplicity). On the one hand, we have the threefold challenges of (1) imperfect knowledge of the states the organism might be in, (2) imperfect knowledge of how the biomarkers might interact with each other and/or overlap in how they signal different states; and (3) a marked undersampling of the relevant molecules (we assume). On the other hand, the associations among the biomarkers should reflect the structure of the underlying networks and the covariation in the biomarkers this generates: the coherence of the system state. Below we discuss several statistical approaches that can be used to extract information from such ensembles of biomarkers representing sparsely sampled networks.


Principal Components Analysis

Principal components analysis (PCA) is a data reduction technique that reorganizes the information in a large set of semi-redundant variables, permitting the user to extract a (much) smaller number of variables that explain the bulk of the variation in the original set. It is related to many other methods, such as factor analysis and t-SNE (Van Der Maaten and Hinton, 2008), that can obtain similar objectives through slightly different approaches. Our discussion here applies equally to all these methods.

While PCA is primarily considered or used as a way to reduce the number of dimensions in a dataset, it is also a powerful tool to understand those dimensions. For example, application of PCA to epidemiological data on malaria in India showed that seven indices could be effectively reduced to one, not two, PC axes (Cohen et al., 2010). This meant that indices showing the balance between the two main malaria species and those showing the abundance were actually moving largely in tandem, implying an ecological gradient dynamic in which one species dominates when abundance is high, and another dominates when abundance is low. Similarly, PCA analysis of inflammatory markers in human cohort data has shown that a single key axis describes much of the variation in a population of largely older adults, and that pro- and anti-inflammatory markers positively co-vary along this axis: chronic inflammation is not characterized by high pro-inflammatory markers and low anti-inflammatory markers, but by high levels of both, an activation of the system in which the anti- markers chase the pro- markers without ever really catching up (Bandeen-Roche et al., 2009; Morrisette-Thomas et al., 2014; Varadhan et al., 2014; Cohen et al., 2018a). Similarly, PCA applied to standard clinical biomarkers has revealed a surprisingly stable structure that integrates multiple physiological systems (Cohen et al., 2015b). The first principal component is multi-systemic, with high scores indicating anemia, low calcium, low protein transport (e.g., albumin), and high chronic inflammation, and was termed “integrated albunemia.” Integrated albunemia scores increase with age and predict mortality risk and clinical frailty but not chronic diseases. They are also elevated acutely during hospitalizations, etc. The correlation structure among the main implicated systems appears stable, such that integrated albunemia is a more robustly measurable phenomenon than its component markers. For example, its correlation with age and disease is more stable than that of the component markers. This appears to be a good example of a continuously varying attractor state.

While PCA, when used appropriately, can be a powerful tool to uncover structure in biological data, it needs to be used with caution. In particular, it can be sensitive to population composition, and structure can also vary depending on conditions or population (Pigeon et al., 2013). For example, application of PCA to 13 circulating biomarkers in wild European starlings (Sturnus vulgaris) showed that the correlation structure—and thus the axes one might extract—varied across years and breeding season (Fowler et al., 2018). This is to be expected: changes in food abundance, diet composition, or parasite burden should be expected to vary across seasons and years, and also to cause changes in which biomarkers correlate with which. But if the correlation structure is unstable, how can we extract axes? One answer is that partial correlation structures can be extracted. For example, in bighorn sheep (Ovis canadensis), milk composition varies across both years and across individual mothers, and it was possible to extract a correlation structure for each of these aspects using appropriate hierarchical models (Renaud et al., 2019).

However, more generally, care should be used to apply PCA and related methods with appropriate cross-population validation to ensure that any findings are true reflections of biological organization rather than artifacts of sampling, population composition, or environmental heterogeneity (Cohen et al., 2018b). In the case of the Fowler et al. (2018) study, no meaningful axes could be extracted due to the strong changes in correlation structure and the limited samples sizes in the relevant subgroups to robustly estimate structure. In contrast, integrated albunemia has been validated in multiple populations (Cohen et al., 2015b) and even species (Wey et al., 2019). Likewise, there have multiple validations of inflamm-aging as a continuous process that can be identified by PCA and related methods (Bandeen-Roche et al., 2009; Cohen et al., 2015b, 2018a). The simplest test is to repeat the PCA in distinct populations or population subsets, extract the loadings, and then cross-apply them to the other populations to generate scores. This generates multiple versions of the PCA scores as calibrated based on, say, men, women, population 1, population 2, etc. A correlation matrix or correlogram can then be used to assess how well the same axis is extracted. In the case of integrated albunemia, for example, these correlations are generally greater than 0.95, even from populations on different continents. Further confirmation can be obtained by ensuring that the interpretation of the axis via its loadings is similar. Graphical approaches to this can be found in Cohen et al. (2015b).



Statistical Distance

Statistical distances are ways of quantifying how different an individual or group is from another individual or group, usually across a series of variables. In the context of measuring biological or physiological state, the principal application has been to quantify how different an individual’s multivariate biomarker state is from some reference state, often the population average or some reference healthy state. This requires statistical distances that can quantify a distance between an individual and a group. The two main methods that do this are Euclidean distance and Mahalanobis distance (De Maesschalck et al., 2000). Euclidean distance does not take into account any correlations between the biomarkers, and thus, if redundant markers are included, will double-count that information. Mahalanobis distance assumes multivariate normality, and then uses the inverse of the correlation matrix to eliminate redundancies among highly correlated variables. This has the effect of down-weighting redundant variables.

Mahalanobis distance has, accordingly, been more widely used to measure physiological state. To our knowledge, the first application was to measure physiological declines prior to death in fruit flies (Drosophila melanogaster) (Shahrestani et al., 2012). It was subsequently and independently applied to human biomarker data for similar purposes, and has also been applied in wild animals, both with (Milot et al., 2014) and without (Fowler et al., 2018) success. The assumption in all these cases is that average state is close to optimal state, and that individuals far from optimal are likely to be more unhealthy. This assumption is related to theory suggesting that homeostatic states are relatively homogeneous, whereas there are numerous ways that homeostasis can be lost and thus a diversity of ways to diverge from the norm (Cohen, 2016). Accordingly, Mahalanobis distance has been proposed as a measure of homeostatic or physiological dysregulation. This proposition makes a number of predictions. First, Mahalanobis distance should increase with age. Second, it should predict a wide variety of adverse health outcomes after controlling for age. Third, this signal should not depend strongly on any single biomarker, implying that (a) the choice of biomarkers to include is not crucial, and (b) the signal should increase monotonically (but with diminishing marginal returns) as the number of biomarkers is increased. All of these predictions have now been confirmed by multiple studies (Cohen et al., 2013, 2014, 2015a, 2018c; Arbeev et al., 2016; Dansereau et al., 2019; Kraft et al., 2020; Liu, 2020). The third prediction is particularly important from a complex systems perspective, as it implies that the signal is diffuse or distributed in the physiological networks, and thus robustly estimable from subsamples of biomarkers even without detailed knowledge of network structure. It does thus appear that Mahalanobis distance is a valid metric of homeostatic dysregulation, though it certainly involves substantial measurement error. However, an advantage of the Mahalanobis distance approach is that it makes no prior assumptions about “good” or “bad” levels of biomarkers, and does not calibrate based on age or anything else (unless a specific reference population is chosen). This makes it agnostic and neutral for subsequent physiological inferences.

Mahalanobis distance can also be applied to particular physiological systems by dividing biomarkers into groups based on a priori knowledge. Indeed, a priori knowledge does a reasonably good job of distinguishing systems with minimally correlated dysregulation levels (Li et al., 2015). Net of age, correlations among physiological systems measurable with standard clinical human biomarkers are generally significant but weak (r < 0.2), implying feedback effects among the systems. This led to the prediction that similar types of systems might be identified in -omics data, notably DNA methylation, gene expression, or proteomics. However, this has not yet been proven, and indeed in gene expression data from human blood samples, the opposite pattern emerged: most systems identified via gene ontology did not show any significant correlations with age, and those that did show correlations that replicated across datasets were uniformly negative rather than positive (Dufour et al., 2020). This might be indicative of these systems losing responsiveness to stimuli with age, but that remains speculation at this point.



Cluster Analysis

While PCA and Mahalanobis distance are both good measures of continuous processes, cluster analysis is more appropriate for detecting discrete states. Like PCA and Mahalanobis distance, many clustering algorithms are largely agnostic/uncalibrated/unsupervised, generating clusters based on similarities or differences in the data rather than an external target. There are many clustering algorithms, each with strengths and weaknesses, and a review is beyond the scope of this article (Scheibler and Schneider, 1985; Budayan et al., 2009). Hierarchical clustering, for example, has been profitably applied to biomarker data (Sebastiani et al., 2017). In some sense, clustering can be thought of as a discretized version of PCA, for when the target process states are discrete rather than continuous. A challenge here is that it is not always possible to know whether the states/processes of interest are continuous or discrete a priori. In fact, in some cases, the set of biomarkers in question may capture both discrete and continuous processes (Figure 2). When there is doubt, it may be advisable to try both methods, with the objective of assessing the discreteness of the phenomena in question. Because of measurement error, biologically discrete processes may in fact appear overlapping, so the criterion for use of cluster analysis should be the presence of clear, though potentially overlapping, aggregates in multidimensional space. Fuzzy clustering methods may be appropriate in such cases (Budayan et al., 2009). Also, given that biological networks are both weighted and directed, it may be relevant to apply clustering methods specifically designed for such networks (Clemente and Grassi, 2018; Barajas-Martínez et al., 2020).

A second challenge with cluster analysis is the diversity of methods available. These methods often give discordant results, identifying clusters that are not necessarily similar in their composition from one method to the next. This is, to some extent, to be expected. If we choose a group of 100 people and try to cluster them based on similarity, our groups could look very different if we base the similarity on demographics, on health state, on music preferences, etc. There is no “true” way to cluster the people. Even with the same set of variables, the way they are weighted and treated should be expected to have an impact. Nonetheless, if the clusters reflect true biologically discrete states, we should expect a certain reproducibility across methods. In this sense, cross-method validation of cluster analysis could prove an important tool for identifying important biological attractor states.



Statistical Network Inference

It is possible to combine analysis of correlation structure and clustering methods to infer network structure. This has been done both with general physiological biomarkers (Barajas-Martínez et al., 2020), and with -omics data, for example using the weighted gene coexpression network analysis (WGCNA, Zhang and Horvath, 2005; Hariharan et al., 2014). The idea here is that the correlation structure of variables reveals the network structure, and in the context of high-dimensional -omics data may also reveal discrete modules. We view this approach as one with great potential, but also one that needs to be used with caution. In particular, substantial work needs to be done to assess the robustness of the estimation of network structure to data stochasticity. The Cohen lab has unpublished analyses on gene expression data in which WGCNA failed to produce even minimally similar structures across different datasets; this may be due to the difficulty correcting for batch effects and how this impacts correlation structure, or to population differences in correlation structure (Dufour et al., 2020). It is well-known that correlation structures do change, across age (Barajas-Martínez et al., 2020), across environment (Fowler et al., 2018), and across cell type (Huttlin et al., 2020), among others. Such instability of the basic network structure could be problematic, but also could be the feature of interest (Fowler et al., 2018; Barajas-Martínez et al., 2020). It is also worth noting that such methods generally characterize the network structure of a population, but do not permit direct evaluation of an individual’s physiological state. If network structure is itself malleable, network structure may simply be one more indicator of the attractor state of the individual, in which case methods that quantify individual state could serve as a proxy for network structure after appropriate validation. This could open up many potential research directions.



Machine Learning

PCA, Mahalanobis distance, and cluster analysis are relatively neutral methods that make few assumptions about the data. They do need to be used in biologically informed ways—for example, choice of variables and appropriate cross-population validation for PCA, and choice of reference population for Mahalanobis distance—but beyond this they are largely agnostic, or, in machine learning terms, unsupervised. In contrast, there are a host of supervised machine learning methods that have arisen in the last decades that permit the generation of precise algorithms to predict targets. For example, chronological age or measures of health status have been used to train random forests and deep neural nets applied to clinical biomarkers (Putin et al., 2016; Bello and Dumancas, 2017), and elastic nets or other regression-linked approaches applied to DNA methylation data and metabonomics data (Horvath, 2013; Hertel et al., 2016). However, such methods present substantial challenges when there is not a clear biological framework to link the biomarkers to the prediction target (Hertel et al., 2019), a symptom of a much more general challenge in artificial intelligence (Mitchell, 2020). These techniques are thus undoubtedly powerful, but work best when the biological nature of the prediction target is crystal clear, and are thus of limited interest in the context of this review. That said, there are many applications of the newer machine learning methodologies that can be applied in an unsupervised way for the characterization of complex biological systems. They are too numerous to enumerate here, as our objective is less an exhaustive review than a demonstration of principle which we hope our readers will take in new directions.




DISCUSSION

We have argued here that a complex systems perspective on biological structure leads to reasons for both pessimism and optimism in terms of our ability to measure important biological states. On the pessimistic side, we are a long way from even identifying all the key molecules in the relevant biological networks, much less a full map of their pairwise interactions. Furthermore, the complexity of the underlying networks (and experience) both indicate that single biomarkers will often be generally poor indicators of system state (Cohen et al., 2018b). This is partly because the underlying networks are generally structured to adjust multiple outputs as a function of multiple inputs, requiring a regulatory network structure that involves multiple intermediary pathways that balance the potentially competing signals of the inputs, much as in a neural network or autoencoder (Csete and Doyle, 2004; Cohen et al., 2020). Because of this, it is rare that a single molecule has a universal interpretation. For example, interleukin-6 (IL-6) is widely considered the best marker of chronic inflammation. However, there are different types of inflammation, and IL-6 can even have anti-inflammatory roles in some contexts (Bandeen-Roche et al., 2009). It is a decent marker on average, but performs worse than multivariate approaches designed to integrate across numerous inflammatory cytokines (Cohen et al., 2018a).

On the optimistic side, the basic coherence of biological function implies that key biological states should be measurable with small ensembles of molecules, often arbitrarily chosen within the sphere of general interest. Full knowledge of the network is not needed to make progress. This assertion bears some qualitative similarities to the field of compressed sensing (Donoho, 2006), though we note that in that case there is an assumption of “sparseness” in a technical sense (i.e., most coefficients are zero), whereas we have referred to sparseness not of coefficients, but of data, and in a more colloquial sense. We thus do not believe, though cannot yet prove, that there is no formal link between our assertions here and compressed sensing.

Between the optimism and the pessimism lies the notion of biological function, the teleological glue that holds together most of our understanding of biology. Physical structures (e.g., tissue organization) and network structures (e.g., biochemical pathways) are thought to have functions, in some cases patently obvious, in some cases discovered through careful research, but in many cases still obscure. The approaches outlined here are examples of ways to elucidate network structures that may have gone unremarked, and in particular to link such structures to functions. For example, if cluster analysis of single-cell gene expression reveals three stable yet heretofore unremarked profiles of what was previously thought to be a homogeneous cell type, there would be good reason to conduct further research on these three types in order to elucidate their respective roles.

In some sense, this assertion is completely unremarkable—of course we would explore the functions of such cell types if we found good evidence of distinctions, and cluster analysis is hardly new—and yet it also opens the door to a new framework for how we should explore biological variation. To date, we have tried to fit biological variation into our notions of how biology is organized, with varying degrees of success. For example, as noted above, many machine learning approaches have been applied to various kinds of data in an effort to quantify the aging process, without questioning the assumption that there is an aging process that could be measured. However, the existence of “aging” as a biologically (as opposed to culturally) meaningful concept is now being questioned (Cohen et al., 2020). Occasionally when efforts to map data onto existing concepts fails, a new paradigm emerges from the data, such as the alternative proteins discussed above. But the judicious use of methods such as those described here offers the potential for much more: a systematic and data-driven exploration of the structure, and thus function, of biological organization.

In short, we are proposing a broad effort to map biological variability based on several principles:


(1)Analyses should be largely data-driven and conceptually agnostic. We often do not understand the key structures, states, and processes, and these may or may not map well to the concepts and words we employ to describe them. However, general biological knowledge should be used to structure the analyses. Note that the annotations underlying the data are reflections of our biological conceptions and assumptions (Brunet et al., 2018), so there is no perfectly agnostic approach.

(2)Replicable patterns in the data indicate key aspects of biological organization.

(3)Identifying structures and patterns will point to function (Han, 2008). And function, once determined, will give meaning to the findings.

(4)Collect information on context. For example, information on an organism’s sex, age, environment, etc. could prove essential to uncovering the functional relevance of different states.



Note that the approach we propose also avoids one of the primary criticisms possible for a teleological or functional (as opposed to mechanistic) understanding of biology: that our conceptions of function are biased by cultural or other subjective factors. In fact, a data-driven approach to identifying functional biological units could help actively identify cases where subjective factors have unduly influenced our understanding, while simultaneously permitting us to harness the explanatory power of natural selection as a force that shapes networks to achieve certain functional objectives.

The methods illustrated above—PCA, statistical distance, and cluster analysis—are examples, not recommendations: many others could be employed, and new ones will be developed, particularly as we move toward integration of multi-omics. The key point is that even standard, well-known techniques can reveal hidden structures in biological data, allowing the data to tell us a story that is often quite different from what we expected. For a long time, biological research has been largely hypothesis driven, an approach that works well with smaller data scales and when every variable is carefully chosen and laboriously measured. But in the world of big data and -omics, we are faced with the scale of our ignorance and the impossibility of generating enough well-founded hypotheses. The approach we propose here offers a way forward, a basic mapping of the landscape of biological function through networks, on which future hypotheses can be built.
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Prefrontal cortex (PFC) are broadly linked to various aspects of behavior. During sensory discrimination, PFC neurons can encode a range of task related information, including the identity of sensory stimuli and related behavioral outcome. However, it remains largely unclear how different neuron subtypes and local field potential (LFP) oscillation features in the mouse PFC are modulated during sensory discrimination. To understand how excitatory and inhibitory PFC neurons are selectively engaged during sensory discrimination and how their activity relates to LFP oscillations, we used tetrode recordings to probe well-isolated individual neurons, and LFP oscillations, in mice performing a three-choice auditory discrimination task. We found that a majority of PFC neurons, 78% of the 711 recorded individual neurons, exhibited sensory discrimination related responses that are context and task dependent. Using spike waveforms, we classified these responsive neurons into putative excitatory neurons with broad waveforms or putative inhibitory neurons with narrow waveforms, and found that both neuron subtypes were transiently modulated, with individual neurons’ responses peaking throughout the entire duration of the trial. While the number of responsive excitatory neurons remain largely constant throughout the trial, an increasing fraction of inhibitory neurons were gradually recruited as the trial progressed. Further examination of the coherence between individual neurons and LFPs revealed that inhibitory neurons exhibit higher spike-field coherence with LFP oscillations than excitatory neurons during all aspects of the trial and across multiple frequency bands. Together, our results demonstrate that PFC excitatory neurons are continuously engaged during sensory discrimination, whereas PFC inhibitory neurons are increasingly recruited as the trial progresses and preferentially coordinated with LFP oscillations. These results demonstrate increasing involvement of inhibitory neurons in shaping the overall PFC dynamics toward the completion of the sensory discrimination task.
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INTRODUCTION

The prefrontal cortex (PFC) is known to be critically involved in decision making, and damage to the PFC leads to various cognitive deficits (Miller, 2000; Miller and Cohen, 2001; Dalley et al., 2004; Rossi et al., 2007; Gregoriou et al., 2014; Duan et al., 2015; Hanks and Summerfield, 2017; Gritton et al., 2020). PFC activity, both individual neuron’s spiking patterns and population local field potential (LFP) oscillation dynamics, have been correlated with many aspects of goal-orientated decision making process, such as attention, sensory processing, rule utilization, working memory, task progression tracking, and outcome anticipation. Recent studies using optogenetics to manipulate the activity of genetically defined cell types have showed that different PFC cell types are associated with distinct aspects of cognitive tasks (Hussar and Pasternak, 2009; Kvitsiani et al., 2013; Sparta et al., 2014; Murray et al., 2015). In general, excitatory neurons encode task components, whereas different subtypes of inhibitory neurons seem to be preferentially recruited during different stages of a task. Calcium imaging of PFC neurons in a go/no-go task further revealed that excitatory neurons exhibit heterogeneous responses, while inhibitory neurons tend to be more correlated within their subtypes (Pinto and Dan, 2015; Kamigaki and Dan, 2017), presumably due to gap junction coupling (Gibson et al., 1999). Parvalbumin-expressing (PV) neurons were shown to respond to various aspect of a task (Pinto and Dan, 2015; Lagler et al., 2016), especially to reward (Kvitsiani et al., 2013; Sparta et al., 2014), whereas somatostatin-expressing (SST) neurons tend to be more selective and respond primarily to sensory stimuli and motor activity (Kvitsiani et al., 2013; Pinto and Dan, 2015).

LFP oscillations in PFC have also been associated with a range of cognitive functions, and have been related to oscillations in other cortical and subcortical areas. In general, theta oscillations (∼5–10 Hz) are closely linked to working memory (Liebe et al., 2012), and are thought to coordinate long range connections between PFC and the hippocampus (Dejean et al., 2016). PFC Beta oscillations (∼15–30 Hz), largely associated with status-quo and rule application (Buschman et al., 2012), are often synchronized between PFC and other cortical areas. Higher frequency gamma oscillations (∼35–100 Hz) are found to be mainly local within the PFC, and are thought to be primarily involved in working memory (Lundqvist et al., 2016) and attention.

It has been suggested that LFP oscillations may organize neurons into functional ensembles (Watrous et al., 2015; Helfrich and Knight, 2016). For example, coherence between PFC spikes and sensory cortex LFPs was increased during covert attention, and spike-LFP coherence within the sensory cortex was found to be correlated with behavioral performance. Recent optogenetic studies showed that abnormal activity of inhibitory neurons can disrupt gamma oscillations in the PFC and lead to cognitive deficiency (Cho et al., 2015). While the PFCs in humans, monkeys, and rats are highly specialized, and extensively characterized during various cognitive tasks, the involvement of PFC in mice during cognitive behavior remains much less explored. A vast number of non-human primate studies have identified anatomically specified PFC subregions important for specific aspects of cognition. In contrast, the smaller mouse brain has fewer anatomically distinct cortical areas, and the mouse PFC is much less anatomically segregated and more functionally heterogenous. With the rapid progress of genetic tools developed for mice, mice are increasingly explored as a model organism for neural circuit analysis during behavior. However, it is largely unknown how mouse PFC neurons participate in cognitive behaviors. To investigate how mouse PFC neurons participate in sensory discrimination, we recorded both spikes and LFPs in the PFC, while mice were performing a 3-choice auditory discrimination task in an open field. With tetrode recordings, we identified well-isolated individual PFC neurons and distinguished putative excitatory neurons from putative inhibitory neurons using spike waveform features. We found that a large fraction of mouse PFC neurons and LFP oscillations were dynamically modulated during sensory discrimination, as observed in other animal models and humans. Inhibitory neurons were increasingly recruited toward trial completion, suggesting that the inhibitory neural population is particularly engaged as sensory discrimination progressed. In addition, we found that inhibitory neurons overall showed higher coherence with LFPs than excitatory neurons, highlighting the greater impact of inhibitory neurons over ensemble PFC population dynamics.



RESULTS


A Majority of Individual PFC Neurons Exhibited Task Related Spiking Activities During a Three-Choice Sensory Discrimination Task

To understand how distinct cell types are recruited during sensory discrimination, we designed a 3-choice auditory discrimination task (“Task”), which required freely moving mice to associate a specific auditory stimulus with a predefined “reward” location (Figure 1A). Briefly, mice self-initiated each trial by stepping into the “initiation” location to trigger one of the three auditory cues (10 kHz sine wave, 25 click/s, and 100 click/s), which was presented until trial completion. After trial initiation, mice were given 5 s to reach the “reward” location on the other end of the arena to receive a reward (correct trial). If mice reached the other two incorrect “reward” locations (incorrect trial) or failed to reach any “reward” location within 5 s (incomplete trial, excluded in this study), they were presented with a 5 s timeout, with bright light illuminating all “reward” locations. After training, all mice maintained a performance of >60% correct rate over the recording period (Figure 1B). Most mice were able to complete each trial within 3 s, with an average time of 1.31 ± 0.57 s across all completed trials in 6 mice (Figure 1C). This auditory discrimination task involves identification of auditory information, association of auditory stimuli and reward location, and locomotion to the rewarded location.
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FIGURE 1. Three-choices auditory discrimination task and putative neuron classification. (A) During the auditory discrimination task, mice self-initiated each trial by triggering a motion detector at the “initiation” location (left, “Task”). Upon trial-start, one of the three auditory stimuli was initiated. On the other end of the arena, there were three reward locations, each paired with a specific auditory stimulus. Mice were given 5 s to reach one of the three reward locations. If mice reached the correctly paired reward location, a reward was provided. If mice failed to reach the correct reward location, they experienced a 5 s timeout period, with a bright light illuminating the arena. Auditory stimuli were played throughout the entire trial, until mice reached one of the reward locations or trigged the timeout period. During “No Task” blocks, both initiation and reward locations were covered with a different floor. The same auditory stimuli were present for 1.5–3 s, followed by a 1.5–3 s intertrial interval, while the mice were freely moving in the arena. (B) Behavioral performance during the first three recording sessions (left) and the last three recording sessions (right). All mice had correct rates above random chance of 33% (N = 6 mice). (C) The trial duration, the time from trial-initiation when mice self-initiate a trail at the initiation location until trail-completion when they reach the reward location, during the first three recording sessions (left) and the last three recording sessions (right). Each gray line represents mean ± standard deviation of an individual mouse. (D) Representative waveforms of excitatory and inhibitory neurons recorded with tetrodes. (E) Binomial distribution of the width of spike waveforms, with a clear separation at 0.4 ms between the two peaks, which was used as a threshold to identify putative excitatory (blue) and putative inhibitory (red) neurons.


We performed 251 recording sessions in 6 mice, with tetrodes targeting PFC bilaterally, and identified 711 single neurons based on simultaneously recorded waveforms from four closely positioned tetrode wires. Among these 711 neurons, 552 (78%) showed significant changes in their firing rates during the task, when compared to their activity during the inter-trial interval (ITI) (p < 0.05, Wilcoxon rank sum test). To understand how different PFC neurons are selectively modulated during the sensory discrimination task, all subsequent analysis was performed on responsive neurons only. To explore the difference in excitatory and inhibitory neural responses, we sorted the recorded individual neurons based on their spike waveforms. Of the 552 task-relevant neurons, the width of their spike waveforms followed a bi-normal distribution, with one peak centered at 0.45 ms, consistent with the general observation of putative excitatory neurons, and another peak centered at 0.25 ms, consistent with the general observation of putative inhibitory neurons (Figures 1D,E; Cardin et al., 2007; Mitchell et al., 2007; Han et al., 2009; Lee et al., 2017). Thus, based on spike width, we identified 441 excitatory neurons (80%) and 111 inhibitory neurons (20%), using 0.4 ms as a threshold. The recorded excitatory neurons exhibited a lower average firing rate comparing to the inhibitory neurons (excitatory: 1.66 ± 1.84 Hz, inhibitory: 2.62 ± 2.68 Hz; p < 0.05, Wilcoxon Ranksum test), consistent with the corresponding characteristics of these two neuron populations.

We first examined the timing of PFC spiking relative to the stage of a trial. When aligned to trial start, some neurons showed an immediate increase in firing rates at trial start with firing rates gradually decaying toward the end of the trial (Figure 2A, with individual trials sorted by trial duration from shortest to longest for visualization), some exhibited an increase after trial start and primarily fired during the middle of the trial (Figure 2B), and some exhibited small increase at trial start followed by a sharp rise toward the end of the trial (Figure 2C). Given the variable duration for a mouse to complete each trial, to capture dynamic changes of PFC neurons during different stages of trial progression, we normalized PFC firing rate as percent activity change throughout the entire trial length, from trial initiation to trial completion. We found that individual neuron firing rates were dynamically modulated at different stages of the task. However, as a population, PFC neurons responses were present across all stages of the trial, suggesting that the PFC is engaged throughout the entire sensory discrimination task period (Figures 2A3,B3,C3).
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FIGURE 2. Excitatory and inhibitory neuron spiking during a three-choice auditory discrimination behavioral task. (A) A representative excitatory neuron with elevated firing rates at trial start. Raster plots of spike activities from all trials were aligned to the trial start during the auditory discrimination “Task” block (A1 top) and during the “No Task” block (A1 bottom). Trials were sorted by trial durations from the shortest to the longest. Each blue or red dot represents a spike, and the gray and black dots indicate trial start and trial end, respectively. The average firing rates of the same neuron across all trials during the auditory discrimination tasks (dark line, “Task”) and during “No Task” (light line), aligned to the trial start (A2 top), and to the trial end (A2 bottom). Normalized firing rates throughout the entire trial duration of the “Task” block (A3 dark line) and of the “No Task” block (A3 light line). (B) Similar to (A), but from a representative excitatory neuron with elevated firing rate in the middle of the task. (C) Similar to (A), but from a representative inhibitory neuron with elevated firing rate at the trial end.


To confirm that the observed PFC activity was indeed task related, we included a “No Task” block, where mice were placed in the same arena, but with a different floor that covered all the sensors at the “initiation” and “reward” locations. The same auditory stimuli were played, but mice cannot access the operant and reward components of the discrimination task during the “No Task” block. The “No Task” block contained 200–250 trials. During each trial, one of the same three auditory stimuli was randomly presented for a duration of 1.5–3 s, followed by a 1.5–3 s long ITI. Trial duration for the “No Task” condition was defined as the duration when auditory stimuli were present. To be able to compare the activity of the same neuron during the discrimination task vs. without the task, the “No Task” block was performed either before or after the “Task” block in the same recording session. Of the 422 task-modulated neurons that were also recorded during the “No Task” block, only 12 (3%) neurons showed significant changes in firing rate (Figure 2). Together, these results demonstrate that a large fraction of PFC neurons are selectively modulated during the sensory discrimination task, but not during the “No Task” condition with passive presentation of sound. In addition, although individual PFC neurons are transiently activated during different stages of the task, the overall PFC neural dynamics is engaged throughout the entire task period.



Inhibitory Neurons Were Preferentially Modulated Toward Trial Completion

To examine how excitatory and inhibitory neurons are differentially modulated during the discrimination task, we sorted neurons according to the relative timing of their peak firing rates. We found that both excitatory and inhibitory neurons were transiently modulated throughout the task from trial initiation to reward retrieval, with different neurons exhibiting peak firing rates at different phases of the task (Figure 3A1). Excitatory neurons tended to be active throughout the entire trial period, with two-thirds of neurons peaking in activity during the beginning 50% of the trial. In contrast, we found substantially more inhibitory neurons were recruited toward the end of the trial (Figure 3B; p < 0.01, χ2 test, between the distribution of excitatory and inhibitory neurons). PV positive inhibitory neurons are strongly activated when animals are approaching reward, receiving reward, and these neurons can encode trial outcome (Kvitsiani et al., 2013; Sparta et al., 2014). Our results are consistent with these previous findings. Not only did we find increased activation of inhibitory neurons toward discrimination task completion, but such increase in inhibitory activity was also accompanied with the suppression of local PFC excitatory neuron activity.
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FIGURE 3. Context and stage-dependent modulation of spiking activity. (A) Normalized population firing rates during the discrimination task (A1) and during the “No Task” condition (A2, sorted in the same order as in A1. The 130 neurons recorded only in auditory discrimination task without corresponding “No Task” block were filled with dark blue). Neurons were grouped by type (excitatory and inhibitory) and sorted based on the timing of their peak firing rates. For each neuron, the firing rate was normalized by its z-score over the −20 to 120% stage. (B) Distribution of excitatory (blue bars) and inhibitory neurons (red bars), based on the timing of their peak firing rate during the task (p < 0.01, χ2-test).


When we examined these same task responsive PFC neurons during the “No Task” block, we found that none of these cells were significantly modulated, confirming that PFC neurons exhibit task-specific modulation, rather than simply responding to bottom-up auditory stimuli alone (Figure 3A2). While PFC neurons are known to respond to auditory stimuli during passive conditions (Romanski and Goldman-Rakic, 2002; Miller et al., 2015), in our study, the three auditory stimuli at ∼70 dB delivered over an ambient environment of ∼60 dB were not sufficient to evoke significant passive responses in the PFC neurons.

We further compared excitatory vs. inhibitory neuron firing rates during correct vs. incorrect trials, and found that both neuron subtypes showed clear sequential activity during the correct trials (Supplementary Figure S1A1), but not during the incorrect trials (Supplementary Figure S1A2), confirming that both excitatory and inhibitory neurons contribute to encoding task outcomes. Together, these results demonstrate that both excitatory and inhibitory neurons in the PFC encode task stage specific information that correlates with behavioral outcome. The fact that an increasing fraction of inhibitory neurons are recruited toward trial completion, accompanied with suppressed excitatory neural activities, suggests that inhibitory neurons exhibit greater influence over PFC network dynamics toward the completion of the auditory discrimination task.



PFC Neurons Encode Auditory Stimulus Identify, and Inhibitory Neuron Populations Exhibit Increasing Discrimination Ability Toward the Completion of the Trial

While PFC neurons are broadly tuned to auditory stimuli, they are known to discriminate sensory stimuli and to categorize sensory inputs (Freedman et al., 2001; Miller and Cohen, 2001; Lee et al., 2009). To examine whether mouse PFC neurons are selectively modulated by different auditory cues, we compared their responses to the three cues used in the task (Figures 4A,B). We observed that PFC neurons exhibited highly heterogeneous responses to different auditory cues. Some PFC neurons responded to only one auditory cue but not to the other two (Figure 4A), whereas some responded to two cues but not to the third one. This demonstrates that individual PFC neurons can encode cue identity with highly heterogeneous response profiles, highlighting that PFC networks could utilize the heterogeneity of individual neurons to expand the coding capacity of a large variety of cues using a population coding strategy. Consistent with the observation that PFC spiking responses are dynamic during the task, tone specific responses were often restricted to certain stages of the task.
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FIGURE 4. PFC neurons discriminate different auditory cues. (A) A representative neuron with increased response to the presentation of one auditory cue (25 click/s), but not to the other two (10 kHz sine wave and 100 click/s). Left: spike raster plot for trials presented with different auditory cues (blue: 10 kHz sine wave; red: 25 click/s; green: 100 click/s), and sorted by trial durations. Right: normalized firing rate during each auditory stimulus across trials. (B) Another example neuron responded to two auditory cues (10 kHz sine wave and 100 click/s), but not to the third (25 click/s). (C) Discriminatory ability of each neuron presented as discrimination scores, defined as one minus the p-values calculated with one-way ANOVA between the firing rates to the presentation of the three auditory cues at different trial stages. Neurons were grouped as excitatory (top) and inhibitory (bottom), and sorted by the total duration when they were discriminative. Discriminative responses of individual PFC neurons only occurred during the discrimination task (C1), but not during “No Task” condition (C2, the neurons are sorted in the same order as C1). (D) The percentage of excitatory (blue) and inhibitory (red) neurons showing sound discrimination throughout trial stages.


To quantify the auditory cue selectivity of each PFC neuron, we calculated the discrimination score, defined as 1 minus the p-value from One-way ANOVA test, between the firing rates upon the presentation of the three auditory cues at the different stages of the trial. A larger selectivity score indicates that the firing rates of a neuron exhibit greater difference in response to different auditory cues. We then plotted the selectivity scores of each neuron over the entire trial length, and calculated the fraction of neurons that exhibit significant discriminatory selectivity during the trial (Figures 4C1,D). Overall, we found that an increasing number of excitatory and inhibitory neurons become more sound discriminative as the trial progressed (Figure 4D). However, inhibitory neurons show an enhanced ability to distinguish tone identity later in the trial compared to the excitatory neurons, with ∼50% of the interneuron population being auditory stimulus selective by trial end (Figure 4D, excitatory: dark blue, inhibitory: dark red, χ2−test, p < 0.01). During the “No Task” condition, these same PFC neurons did not discriminate sound identity (Figure 4C2), and the percentage of modulated neurons stayed low and constant throughout the auditory stimuli presentation (Figure 4D, dot lines). Together, these results demonstrate that both excitatory and inhibitory PFC neurons’ spiking activity evolves to encode the identity of sensory stimuli when it was relevant to the sensory discrimination task, consistent with the idea that PFC activity plays a prominent role in facilitating the identification and utilization of sensory stimuli. We found that the proportion of inhibitory neurons that ultimately exhibits sensory discrimination was greater than the excitatory neuron population (Figure 4D), and this discrimination coincided with the period of peak activity of interneurons near the end of the trial period (Figure 3B), both of which suggest a greater impact of inhibitory neural population in facilitating sensory discrimination.



Excitatory and Inhibitory PFC Neurons Are Differentially Coordinated With PFC LFP Oscillations at Different Frequency Bands

PFC LFP oscillations have been broadly associated with many cognitive functions. We next examined LFP power across a variety of frequency ranges to examine whether mouse PFC LFPs are modulated during the auditory discrimination task. We observed that LFP power across all frequencies was transiently decreased upon trial initiation, and then slightly recovered in the middle of the trial, followed with a sharply decrease again by trial end (Figure 5A). To further quantify LFP oscillation changes during different phases of the trial progress, we compared the power at Theta (5–8 Hz), Beta (15–30 Hz), and Gamma (30–50 Hz) frequencies. Upon trial initiation, the reductions in frequency powers were significant for all frequency bands analyzed (Figure 5C; comparison between the averaged powers during the 500 ms time windows pre and post trial start: N = 5 mice, paired t-test, p < 0.05). At trial end, the decrease in frequency power was also broad brand across all frequencies analyzed (Figure 5C; comparison between the averaged powers during the 500 ms time windows pre and post trial end: N = 5 mice, paired t-test, p < 0.05). Conversely, during “No Task” block, LFP power analysis revealed a small but significant increase across all frequencies at trial start (N = 5 mice, paired t-test, p < 0.05), in contrast to the reduction in oscillation powers at this stage during the discrimination task block (Figure 5B, N = 5 mice, paired t-test, p < 0.05).
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FIGURE 5. LFP oscillations and selective coherence with excitatory vs. inhibitory neurons during auditory discrimination. (A) Average LFP power spectrum during the auditory discrimination task from one example recording session, aligned at trial-start (left) and trial-end (right). (B) Average LFP power spectrum during “No Task” block from the same recording session as (A). (C) Normalized LFP oscillation powers at theta (C1, 5–8 Hz), beta (C2, 15–30 Hz), and gamma frequencies (C3, 30–50 Hz), aligned at trial-start (left), and at trial end (right), during auditory discrimination (black line). LFP powers were normalized as z-scores to the 2 s window analyzed. Shaded areas indicate standard error (N = 5 animals). (D) Spike-field coherences of excitatory neurons (blue, mean ± standard error of mean) and inhibitory neurons (red, mean ± standard error of mean), aligned at trial-start (left), and at trial-end (right), during the discrimination task, at theta (D1), beta (D2), and gamma frequencies (D3), aligned to trial start (left) or to trial end (right). (Excitatory = 331 neurons, inhibitory = 91 neurons, two tailed, unpaired, t-test, *p < 0.05).


While we observed LFP power changes across multiple frequency bands, inhibitory neurons have been linked to oscillations at specific frequencies (Cho et al., 2015). To investigate how spiking patterns were temporally associated with particular LFP frequencies, we calculated spike-field coherence between individual neurons and the LFPs recorded from the adjacent electrode within the ipsilateral hemisphere (Figure 5D). Interestingly, while LFP power is reduced across all frequencies at trial start, the reductions differentially impacted the coherence of excitatory vs. inhibitory neurons. Inhibitory neurons exhibited significantly higher coherence only at gamma frequencies, but not at theta and beta frequencies (Figure 5D). This result is similar to the finding that inhibitory neurons are important for PFC gamma oscillations during rule shifting behavior (Cho et al., 2015), highlighting the general coupling of inhibitory neurons and PFC gamma oscillations during cognitive tasks. The fact that gamma frequency power is reduced at this stage, but inhibitory neurons were more coherent with gamma frequencies, highlights that the PFC inhibitory neurons show greater coupling to gamma oscillations at the initiation of the sensory discrimination task even though gamma power is relatively reduced.

As trial progresses toward completion, spike-field coherence at theta frequency increased in both neuron types, with inhibitory neurons showing a higher coherence than excitatory neurons, which sustained beyond trial completion (Figure 5D1). At beta and gamma frequencies, the divergence of spike-field coherence between excitatory and inhibitory neurons only occurred after the trial end, where inhibitory neurons again showed stronger coherence than excitatory neurons (Figures 5D2,D3). In summary, these results demonstrate that inhibitory neurons show stronger coherence with LFPs than excitatory neurons across multiple frequency bands during the behavioral task, suggesting a more coordinated inhibitory neuron network irrespective of the frequency band analyzed. It is possible that different inhibitory neuron subtypes are preferentially recruited at distinct timepoints within the task, which could account for the observation of the spike-field coupling with distinct frequency components as previously suggested (Gibson et al., 1999; Pinto and Dan, 2015; Kamigaki and Dan, 2017).



PFC LFP Oscillation Changes Are Behavioral Outcome-Dependent

To understand the role of LFP oscillations in task performance, we investigated whether LFP oscillations were differently modulated by task outcomes. When aligned to trial start, LFP oscillation power showed similar trends during the correct and incorrect trials (Figures 6A left vs. 6B left). We then further quantified the dynamics of LFP power at trial start, by comparing the average power at theta, beta and gamma frequencies during the 500 ms time window before trial start vs. the 500 ms window after trial start. We found that while the power is reduced on both correct and incorrect trials, the reduction is greater on correct trials than incorrect trials, across all frequencies (Figures 6C,D, N = 5 mice, paired t-test, ∗p < 0.05).
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FIGURE 6. LFP oscillation power diverged between correct and incorrect trials. (A) Spectrogram of the correct trials from one representative recording session, aligned to trial-start (left) and to trial-end (right). (B) Spectrogram of the incorrect trials from the same recording session as (A), aligned to trial-start (left) and to trial-end (right). (C,E) Normalized population LFP oscillation powers of correct (black line) and incorrect (gray line) trials, aligned to trial-start (C) and to trial end (E). (D,F) The difference of LFP power, defined as the averaged z-scores of 500 ms windows before minus after at trial start (D), at trial end (F). (N = 5, paired t-test, *p < 0.05).


Interestingly, at trial end, changes in oscillatory power diverged based on the trial outcome. On correct trials, oscillation powers continued to decrease and remained low over a prolonged period into the ITI, across all frequencies (Figure 6E, blue line). For the incorrect trials, oscillation powers first decreased, similar to that observed in the correct trials, but then rose across all frequency bands (Figure 6E, red line). As a result, the power changes at the trial end were bifurcated and significantly different, where the averaged powers showed reductions in correct trial, but exhibited an opposite relationship on incorrect trials (Figure 6F, N = 5 mice, paired t-test, ∗p < 0.05). Together, these results demonstrate that PFC LFP oscillation activity is linked to task performance, and the prolonged difference in LFP oscillations after each trial may serve as a feedback signal associated with reporting trial outcome.



DISCUSSION

Understanding the different dynamics of excitatory vs. inhibitory neuronal populations in PFC is of great interest in studying PFC involvement in cognitive functions. Here we designed a three-choice auditory discrimination task, and performed tetrode recordings from well-identified individually PFC neurons in task performing mice. We distinguished putative excitatory neurons and putative inhibitory neurons based on spike waveforms, and found that inhibitory neurons on average showed peak activity later in the trial compared to excitatory cells. For both neuron populations, encoding of auditory stimuli was prominent during the discrimination task but not when these stimuli were irrelevant. These results demonstrate that both excitatory neurons and inhibitory neurons were recruited in a context-dependent manner, across different stages of the auditory discrimination task. Not only did we detect an increasing fraction of inhibitory neurons activated as the trial progressed, but we found that inhibitory neurons as a population were more selective in auditory discrimination and preferentially associated with LFP oscillations. Together, these results demonstrate that inhibitory neuron populations play a prominent role in shaping overall PFC dynamics during sensory discrimination.

PFC neurons exhibit diverse response profiles during cognitive tasks, from task progression (Ma et al., 2014), to different aspects or stages of a task (Asaad et al., 1998). PFC neurons modulate their firing rates with varying temporal dynamics, when anticipating task-relevant sensory stimulation (Rodgers and DeWeese, 2014), responding to sensory stimuli presentation (Ninokura et al., 2004; Russ et al., 2008a; James et al., 2019), maintaining working memory (Rainer et al., 1998; Romo et al., 1999; Constantinidis et al., 2001; Kopec et al., 2015), predicting and/or anticipating reward (Matsumoto et al., 2003; Toda et al., 2012), or outcome (Amiez et al., 2006; Russ et al., 2008b; Hayden et al., 2011; Del Arco et al., 2017), which can linger into the inter-trial interval (Marcos et al., 2016). We here show that mouse PFC neurons exhibit transient increases at specific stages of a 3-choice discrimination task, suggesting that different PFC neurons can be sequentially recruited to process task-relevant information. The 3-choice auditory discrimination task allows us to examine more complex features of PFC encoding ability. We found that while some neurons increased their firing rate specifically to only one auditory cue, others could be modulated by a combination of cues. The ability for individual neurons to respond to multiple cue combinations could expand PFC population coding capacity, as each specific sensory information could be collectively represented from the combined selectivity of an ensemble of neurons.

In our experiment, mice were provided with different environmental contexts for the “Task” blocks, and the “No Task” blocks. Although mice were presented with the same auditory stimuli in both blocks, mice only had access to the operant and reward apparatus during the “Task” blocks, but not the “No Task” blocks. In our study, we found only 3% of PFC neurons were modulated during the “No task” blocks, in contrast to the 78% observed during discrimination task blocks, confirming that PFC neural activity is dependent on the context of the discrimination task. Such context-dependent modulation has been shown when animals were exposed to different environments, or were performing tasks requiring different rules. However, it is possible that PFC activity could represent the association rules between the auditory stimuli and the reward locations. These rules were context-dependent and were only utilized during the task. Alternatively, PFC could also be involved in motor planning to obtain the reward. For example, even though in the open-space square box area, mice could follow different traveling path from the start location to the reward location to complete each trial, mice may develop fixed movement patterns associated with specific auditory stimuli. Thus, it is difficult to assigned specific PFC neuron activity patterns to a particular task component, beyond the overall context of the task. In addition, the mice may exhibit different movement patterns during the “Task” block and during the “No Task” block, which may result in the difference in the observed PFC activity between the two conditions, since movement is an inherent component of our “Task” condition. The difference in context-dependent PFC activity observed here may also involve many neuromodulators, such as acetylcholine and dopamine that have been shown to mediate attentional states.

Over the years, many in vivo electrophysiology studies have classified neurons into putative excitatory and inhibitory groups based on extracellularly recorded spike waveforms, since morphological, genetic and molecular features informative for cell classification are not accessible by extracellular recording electrodes. Spike waveform based cell classification is broadly supported by evidence from in vitro brain slice recordings and in vivo intracellular recordings in animals, which have in general demonstrated that excitatory neurons, and a very small fraction of interneurons, have wide action potentials that can be recorded as broad spike waveforms extracellularly, whereas fast-spiking inhibitory neurons exhibit narrow action potentials leading to narrow spike waveforms recorded extracellularly (McCormick et al., 1985; Kawaguchi and Kubota, 1997; Henze et al., 2000; Gonzalez-Burgos et al., 2005; Mitchell et al., 2007; Ferrante et al., 2017; Keaveney et al., 2020). Using spike waveform-based classification method, many in vivo studies have revealed distinct physiological functions between putative excitatory vs. inhibitory neurons. However, waveforms alone remain an incomplete classification method. For example, cultured excitatory and inhibitory neurons could exhibit indistinguishable action potential width, likely due to the developmental features unique to cell cultures (Weir et al., 2014), in contrast to the results of many in vitro brain slice studies (McCormick et al., 1985), highlighting the importance of considering a wide range of features in cell classification. Recent in vivo recording studies also demonstrated that many somatostatin positive interneurons exhibited similar spike width as excitatory neurons (Ma et al., 2010; Weir et al., 2014; Li et al., 2015), even though some somatostatin positive interneurons have been shown to exhibit narrow action potentials (Yavorska and Wehr, 2016; Keaveney et al., 2020). It is possible that our classified putative excitatory neurons with broad waveforms include subpopulations of somatostatin positive or other interneuron subtypes, but these interneurons represent a very small fraction of the overall putative excitatory cell population (Rudy et al., 2011; Pfeffer et al., 2013). Thus, the waveform classification method deployed here should allow us to capture the major differences between the excitatory neuron populations and the inhibitory neuron populations.

Different types of PFC neurons have been shown to exhibit distinct task-related responses (Hussar and Pasternak, 2009; Hussar and Pasternak, 2012; Murray et al., 2015). Excitatory neurons tend to increase their firing rates with less variability upon sensory stimulation, whereas inhibitory neurons are more correlated with the later stage of a task, such as reward (Kvitsiani et al., 2013). Most recently, using optogenetics, Sparta et al. (2014) demonstrated that selective activation of PV neurons facilitated extinction learning that involves the dissociation of cue-reward relationships. We found that an increasing proportion of neurons, both excitatory and inhibitory, became discriminative to the identity of the auditory cues as trials progressed, suggesting gradual recruitment of PFC neurons during sensory discrimination consistent with the general idea that the PFC accumulates information during decision making (Freedman et al., 2001). Interestingly, we also found that inhibitory neurons showed higher spike-field coherence than excitatory neurons. Inhibitory neurons have been implicated in supporting LFP oscillations in the PFC (Lodge et al., 2009; Kim et al., 2016) and other brain areas (Cardin et al., 2009; Miller et al., 2015). Our observation that a larger fraction of inhibitory neurons exhibited cue selectivity, together with the finding that inhibitory neurons possessed a stronger spike-field coherence, suggest that inhibitory networks have increasing impact as discrimination progressed.

While we found that LFP power was altered similarly across multiple frequency bands, the coherence between LFP oscillation and spike activity was however neuron type specific. Inhibitory neurons showed stronger spike-field coherence than excitatory neurons at higher LFP oscillations frequencies (gamma) at task onset but at lower frequencies (theta) during the trial. The fact that inhibitory neurons exhibited a higher degree of coherence across all frequency bands is suggestive of inhibitory neural networks in supporting PFC oscillations, which may play a crucial role in organizing cell assemblies within the PFC in a context-dependent manner as postulated for the general functional significance of LFP oscillations.

LFP oscillations at specific frequencies have been related to different aspects of behavioral tasks and states, and LFP synchrony within the PFC and between the PFC and other brain areas has been observed in many tasks (Antzoulatos and Miller, 2016). In addition to single neuron responses in the PFC, we also observed wide spread changes in LFP power across all frequencies. Even though oscillations across multiple frequency band seem to have similar power dynamics during the task, a more detailed examination revealed that their coherences with the excitatory and inhibitory neurons differ, depending on the task stage and the frequency band analyzed. Moreover, the dynamics of LFP power were also associated with task performance. As LFPs capture the collective contribution from populations of nearby neurons, changes in LFP dynamics could be indicative of enhanced coherence amongst ensembles of PFC neurons crucial for different aspects of the task for successful task performance.

In general, our results showed that mice PFC encodes task-relevant information in a context dependent manner, similar to the PFC in other species (Hyman et al., 2012; Ma et al., 2016). Interestingly, comparing to excitatory neurons, inhibitory neurons exhibit higher coherence with LFP oscillations across all frequencies, highlighting their roles in shaping overall PFC population activity during the task, likely via direct connections to surrounding excitatory neurons within the PFC. The exact mechanisms by which inhibitory neurons modulate overall PFC network dynamics remain elusive and need further investigation. In our study, it is possible that as mice move toward a reward location, inhibitory neurons encoding the rewarded location can actively suppress excitatory neurons representing other non-rewarded location choices. In fact, we detected concomitant suppressions of excitatory neuron populations at the later stage of a trial, when inhibitory population responses increased, which provides some support, though indirect, for local interactions between excitatory and inhibitory neurons within the PFC. It is also possible that sound discriminatory inhibitory neurons could further increase the fraction of sound discriminatory excitatory neuron at trial end, by suppressing the firing rates of excitatory neurons to different auditory stimulus. Future exploration of these specific hypothesis using causal optogenetic analysis could reveal informative insights on the interaction dynamics between excitatory and inhibitory neurons within the PFC.



MATERIALS AND METHODS


Three—Choice Auditory Discrimination Task


Behavior Arena

The behavior arena (12 × 12 inch) was constructed with black plastic walls and a mesh floor. The start location was located at one side of the arena (1 inch away from the wall), and three reward locations were at the opposite side (1 inch away from the wall) (Figure 1). Each location was equipped with an IR beam sensor and a white LED light on the floor. A speaker was located outside of the box, at the reward side, and delivered a 70 db auditory cue when the animal initiated the task. The room had a consistent background noise of approximately 60 db. LabVIEW (2012, National Instruments, Austin, TX) scripts were used to control the sensors and LED lights in the behavior arena via a NiDAQ board (NI USB-6259, National Instruments, Austin, TX) and recorded behavior events. For the “No Task” behavioral condition, a black plastic floor was placed above the IR beam sensors to prevent animal access to these apparatuses.



Behavioral Training

All animal procedures were approved by the Boston University Institutional Animal Care and Use Committee. Female C57BL/6 mice (Taconic, Hudson, NY), were water-restricted during behavioral testing, and were closely monitored to ensure that they maintained at least 85% of their pre-experiment body weight. Adult female mice (2–3 months old at the start of the experiments) were trained to perform the 3-choice auditory discrimination task in following steps:

Step 1: Obtain water from reward port. At this step, only the middle reward port was accessible to the animal. It delivered a water reward whenever an animal reached the reward location and triggered the IR beam sensor in front of the water port.

Step 2: Detection of the first auditory cue. A white LED at the start location was illuminated to indicate trial initiation. Mice learned through trial and error to initiate a trial by reaching the start location, which triggered the IR beam sensor and the first auditory cue was presented. Mice were allowed to reach the reward location to obtain the reward without any time limit.

Step 3: Detection of the second auditory cue. After the animal learned initiating the task and responding to the first cue, we made the reward location associated with the second cue accessible, while blocking the reward locations for the other two cues. At this step, when animals initiated a trial, only the second cue was presented, and animals were required to reach the corresponding location for reward with no time limit.

Step 4: Two-choice auditory discrimination task. At this step, the reward locations for both the first and the second cues were accessible. When animals initiated the trial, one of two auditory cues would be presented randomly, and mice were required to reach the corresponding reward location for reward with no time limit. When animals reached the incorrect reward location, a 5 s timeout occurred, indicated by white LED lights around the reward locations.

Step 5: Detection of the third auditory cue: After the animal learned the 2-choice discrimination task, we repeated Step 3 to introduce the third auditory cue. At this step, only the third reward location was accessible and the other two were blocked. When an animal initiated the trial, only the third auditory cue was played, and the animal was required to reach the third reward location to complete the trial and receive the reward with no time limit.

Step 6: Three-choice auditory discrimination task. All three reward ports were accessible. When animals initiated the trial, one of the three auditory cues was presented, and mice were required to reach the corresponding reward location to obtain reward. At this stage, a trial duration limit of 5 s was introduced. Failure of reaching the reward location within 5 s would cause a timeout, indicated by white LED lights around the reward locations. To obtain a balanced number of trials with each cue, auditory cues were presented in a group of three, and within each group, each auditory cue was presented once in a random order.

During training, each mouse was trained 20 min per day. Once well-trained, defined as performing over 60% correct rate per day over 3 consecutive training days and capable of completing a minimum of 100 trials per day, animals were provided free water access in their home cage for a week and then underwent tetrode implantation. After tetrode implantation and recovery from surgery, animals were briefly re-trained using the procedures described in Steps 2–6 until their performance reached 60%, and then recordings were performed.



Electrophysiology

Custom tetrode devices (16 channels) were assembled in house, which contained four tetrode bundles, two bundles targeting each hemisphere. The four tetrode bundles were designed to target the PFC bilaterally (AP: +1.8, ML: +0.2; AP: +2.2; ML +0.2; AP: 2.2; ML: -0.2; AP 2.2, ML: +0.2). A tetrode bundle was made by twisting together 4 tetrode wires (Sandvik-Kanthal, Ahmerst, NY), and adjusting the impedance to 0.5–1 MOhm with gold plating (SIFCO 5355, SIFCO ASC, Independence, Ohio). Tetrodes were implanted with the center positioned at the midline (AP: 2, ML: 0), so that the tetrode bundles targeted the PFC bilaterally (AP: 2+/-0.2, ML: +/- 0.2). We advanced tetrode bundles gradually during the re-training period, so that the tip of the tetrode bundles reached the PFC at the recording stage (AP: 1.0–1.9). All recordings were performed in freely-moving mice. During recording, the tetrode device was connected to a commutator (ACO32, Tucker-Davis Technologies, Alachua, FL) to ensure free movement in the behavior arena. The raw wideband signals were acquired with a Plexon OmniPlex system at 40 kHz (Plexon Inc, Dallas, TX). The Plexon OmniPlex recorded local field potentials at 1 KHz sampling rate using a low pass filter at 200 Hz, and spike signals at 40 kHz sampling rate using a high pass filter at 300 Hz. Individual spike waveform snippets were obtained by amplitude-thresholding the continuous spike signals with a manually selected threshold value in the negative range during recording. The Plexon OmniPlex system also received time stamps from a NiDAQ board (National Instrument) to record timing of behavioral events. The recorded LFP, spike waveform, and behavior timestamps were then analyzed offline as described below.

Mice underwent one recording session a day. Each recording session constituted one “discrimination task” block and one “No Task” block in random orders. Animals could move freely in the behavioral arena during the entire recording session. The “discrimination task” block lasted for about 20 min, and animals were allowed to initiate the task as many times as they desired. In general, mice performed 100–200 trials within 20 min. During the “No Task” block, mice were placed in the same behavioral arena with a plastic floor positioned above all IR beam sensors and LEDs, so that mice had no access to any sensors or water ports. The same three auditory cues (∼70 db) used in the “discrimination task” were played in pseudo-random order for 200–250 trials. The durations of the auditory cues were randomized from 1.5 to 3 s with random 1.5–3 s inter-trial intervals.



Data Analysis

Spikes were sorted with Offline Sorter (Plexon Inc, Dallas, TX) and then imported into Matlab (2014, MathWorks, Natick, MA) for further analysis. Spike width was defined as the duration between the valley and the peak of a spike waveform. Due to the difference in lengths of each trial, to calculate the firing rate throughout trial progression, we first normalized each trial based on its duration, so that trial start and trial end were aligned at 0 and 100% of trial progression, respectively. We then calculated the firing rate from −20 to +120% of trial progression using a 1% moving window, and smoothed the results by averaging each data point with its two adjacent data points. When presenting the population data, we further normalized the firing rate between −20 and 120% of trial progression by calculating the z-scores for each neuron with its own mean and standard deviation.

LFPs were imported into Matlab with the Matlab custom script provided by Plexon, and then analyzed with the Chronux toolbox1. The power spectrogram of each LFP trace was calculated with mtspecgramc function [moving window size: 500 ms, moving window step: 5ms, tapers: (Ninokura et al., 2004)] in Chronux. In a few occasions, animal movement caused artifacts in our tetrode recording, such as when the tetrode devices bumped the arena walls, which created large voltage deflections in our recordings. To eliminate the impact of such movement artifact in our analysis, we identified these artifact periods as having at least 5% maximum amplitude, either positive or negative, of the whole recording session. Trials that contained these artifact periods were excluded from all analysis involving LFPs.

The spectrogram examples were log-normalized [10∗log(power/max)], with the maximum power of the examined time window (2 s, centered at either trial start or end). To compare the powers at specific frequency bands across mice, the powers within the examined time window (2 s, centered at either trial start or end) of each trial were first normalized by converting to their z-scores and then averaged within a given frequency band to obtain the power for each trial. The power across all trials from the same animal were then averaged for each animal. In our analysis, we examined three frequency bands, and the ranges of each frequency bands were defined as: theta (5–8 Hz), beta (15–30 Hz), and gamma (30–50 Hz).

Spike-field coherence was calculated with cohgramcpt function [moving window size: 500 ms, moving window step: 5ms, tapers: (Ninokura et al., 2004)] in Chronux toolbox1. For each neuron, we calculated spike-field coherence (session coherence) between its spike activity and the ipsilateral LFP recorded at another electrode during the entire recording session. To obtain trial averaged coherence of each neuron at selected frequency bands at trial start, we first aligned the coherences at trial start and then averaged across trials. The trial averaged coherence values within the desired frequency band were then averaged across neurons, and binned with the 300 ms time window, centered at trial start. The population coherence was calculated by averaging the population coherence at selected frequency band and time point. To obtain the population coherence at selected frequency band at trial end, we aligned the session coherence to the trial end and performed the same procedure as described above.



Statistical Testing

For spike rate modulations, we used one-way ANOVA to compare the firing rates at the same trial progression period for trials with different auditory cues. For LFP power spectrum comparisons, we used a paired t-test to compare the power during the 500 ms before and after either trial start or trial end. For spike-field coherence, we used a non-paired t-test to compare the coherence at the same trial progression period between the “discrimination task” blocks and the “No Task” blocks. All analyses were performed in Matlab. Details for each test are presented throughout the section “Results.”
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Supplementary Figure S1 |
PFC spiking activity during correct vs. incorrect trials. (Related to Figure 2). Normalized population firing rates of excitatory (blue) and inhibitory (red) neurons during correct trials (A1), and incorrect trials (A2).
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Dynamic interdependencies within and between physiological systems and subsystems are key for homeostatic mechanisms to establish an optimal state of the organism. These interactions mediate regulatory responses elicited by various perturbations, such as the high-pressure baroreflex and cerebral autoregulation, alleviating the impact of orthostatic stress on cerebral hemodynamics and oxygenation. The aim of this study was to evaluate the responsiveness of the cardiorespiratory-cerebrovascular networks by capturing linear and nonlinear interdependencies to postural changes. Ten young healthy adults participated in our study. Non-invasive measurements of arterial blood pressure (from that cardiac cycle durations were derived), breath-to-breath interval, cerebral blood flow velocity (BFV, recorded by transcranial Doppler sonography), and cerebral hemodynamics (HbT, total hemoglobin content monitored by near-infrared spectroscopy) were performed for 30-min in resting state, followed by a 1-min stand-up and a 1-min sit-down period. During preprocessing, noise was filtered and the contribution of arterial blood pressure was regressed from BFV and HbT signals. Cardiorespiratory-cerebrovascular networks were reconstructed by computing pair-wise Pearson-correlation or mutual information between the resampled signals to capture their linear and/or nonlinear interdependencies, respectively. The interdependencies between cardiac, respiratory, and cerebrovascular dynamics showed a marked weakening after standing up persisting throughout the sit-down period, which could mainly be attributed to strikingly attenuated nonlinear coupling. To summarize, we found that postural changes induced topological changes in the cardiorespiratory-cerebrovascular network. The dissolution of nonlinear networks suggests that the complexity of key homeostatic mechanisms maintaining cerebral hemodynamics and oxygenation is indeed sensitive to physiological perturbations such as orthostatic stress.

Keywords: network physiology, orthostatic stress, cardiorespiratory, cerebrovascular, near-infrared spectroscopy, transcranial Doppler, nonlinear, surrogate testing


INTRODUCTION

The original concept of homeostasis (Bernard, 1858) refers to the concerted actions of physiological processes in assuring the constancy of the “milieu intérieur,” the internal environment of the organism. Dynamic interdependencies within and between physiological systems and subsystems are essential for the organism to maintain its steady-state via a plethora of homeostatic mechanisms (Cannon, 1929). Due to continuous perturbations, the system operates in non-equilibrium with its controlled parameters drifting away from their set-point, which characterizes an optimal or desired state of the system. In contrast to this single steady-state concept (Cannon, 1929), a physiological system in fact exhibits dynamic fluctuations even under natural conditions that can be readily traced across a homeostatic space, which is a multidimensional metric space spanned by a set of regulated parameters (Keramati and Gutkin, 2014). In this state-space representation, the resting-state dynamics of the system—emerging from active (physiological) and passive (physical) processes—evolves along a trajectory embedded in a homeodynamic space (Rattan, 2014). Perturbations elicit regulatory responses that attempt to restore the optimum of the internal environment. Such control of physiological parameters is usually achieved by multiple negative feedback loops that feature a distribution of time scales resulting in a delayed response typically with an amplitude proportional to the deviation from the set-point (Ivanov et al., 1998; Ashkenazy et al., 2002; Lo et al., 2002).

An abrupt change in body position triggering a rapid fluctuation in central arterial pressure can be viewed as a typical perturbation, which activates circulatory adaptation mechanisms that are essential to stabilize cerebral perfusion. Indeed, in a wide range of arterial blood pressure, global cerebral blood flow is tightly regulated by the cerebrovascular system; a phenomenon referred to as pressure autoregulation (Lassen et al., 1978). To a large extent, tolerance to the orthostatic stress also invokes autonomic control adjustments by baroreflex mechanisms that accelerate heart rate (Chapleau, 2012). This will stabilize blood pressure and prevent the transient hypoperfusion in the brain that otherwise would result in orthostatic syncope. In addition to its influences on the vasomotor tone at specific frequencies (0.1 Hz, Traube-Hering-Mayer-wave; Julien, 2006) the autonomic nervous system provides coordination between cardiac and respiratory dynamics—such as respiratory sinus arrhythmia and cardiorespiratory phase synchronization (Bartsch and Ivanov, 2014) –, which is essential for optimal performance of these transport systems. In summary, the interactions between and within cardiorespiratory and cerebrovascular systems are established by distinct mechanisms operating at different time scales, thus bringing about coupling of various type and strength. The recently introduced concept of Network Physiology offers a novel framework for an enhanced characterization, quantification, and understanding of the dynamical interactions between organ systems underlying homeostatic adaptation (Bashan et al., 2012; Bartsch et al., 2015; Lin et al., 2020). In this concept, a network is created by organ systems, represented by nodes, each having complex output dynamics; whose functional interactions are captured in measures of interdependencies and are represented by edges between nodes.

According to this novel perspective, a thorough characterization of the investigated physiological systems can be achieved by defining this network as a representation of the actual state in the homeodynamic space. Furthermore, the network response to a specific challenge, such as orthostatis in our case or mental workload (Zanetti et al., 2019), could reveal integrated and quantitative features of dynamic adaptation of the organism to specific perturbation.

In this study, we examined the cardiorespiratory-cerebrovascular network by assigning simple relationship measures as links for quantifying linear and nonlinear interactions. We use this framework to test the hypothesis that postural changes induce alterations in the topology of cardiorespiratory-cerebrovascular network. We report on a frequency-specific linear and nonlinear network response to a sudden change in body position and we address the question whether topological changes in these networks could indicate altered physiological regulation.



MATERIALS AND METHODS


Participants

This study was approved by the Regional and Institutional Committee of Science and Research Ethics of Semmelweis University (ethical approval number: 53/2009) and was conducted in compliance with the Helsinki Declaration. A total of 10 healthy young adults were recruited for participation in this study; none of them reported neurological, psychiatric or cardiovascular diseases or living with the condition of orthostatic hypotension. Five-five female (age: 26.2 ± 4.6 years, height: 1.67 ± 0.07 m weight: 58.8 ± 9.7 kg BMI: 20.9 ± 2.6) and male subjects (age: 26.6 ± 3.8 years, height: 1.79 ± 0.07 m weight: 76.0 ± 9.7 kg BMI: 23.9 ± 2.5) participated in the study. Two female subjects were taking oral contraceptive regularly. One male subject was excluded due to a lack of acoustic window necessary for transcranial Doppler (TCD) measurements (see below). Written informed consent was obtained from all subjects prior to participation.



Measurement Protocol

Mean arterial blood pressure (MAP) was monitored continuously and non-invasively by an array of transducers according to the tonometric principle (Colin BP-508, Colin Medical Technology Corporation, Komaki City, Japan). The subject’s left wrist was positioned in an elastic brace that was secured firmly but comfortably with straps. The tonometer was placed over the radial bone of the participant in a manner that at least three adjacent sensors detected pulsations from the radial artery by an oscillometric measurement at navel height. Breathing was recorded by an uncalibrated capnograph (Colin BP-508, Colin Medical Technology Corporation, Komaki City, Japan) using a soft plastic mask, which was mounted on the subject’s face. Blood flow velocity (BFV) in the left and right middle cerebral arteries (MCAs) was monitored by TCD sonography. The transducers (2-MHz pulsed-wave DWL Multidop-T, Sipplingen, Germany) were fitted on an elastic headband that was adjusted to obtain signals from 35 to 60 mm depth for a range of linear flow velocities between 50 and 74 cm/s (Aaslid et al., 1982). The above-described analog signals were relayed to a data acquisition device (DT9816, Data Translations, Marlborough, Massachusetts, United States) for sampling with a frequency of 100 Hz (Winview LE, Team Solutions Inc., Grande Vista Ave Laguna Niguel, California, United States).

Cerebrocortical hemodynamic fluctuations were monitored continuously by near-infrared spectroscopy (NIRS) (Bunce et al., 2006). We employed a 16-channel continuous-wave NIRS research instrument (by courtesy of Professor Britton Chance; NIM Inc., University of Pennsylvania, Philadelphia, United States) equipped with a set of four light emitting diodes operating at three different wavelengths (730, 805, and 850 nm) (Chance et al., 2007) and a set of 10 photodiodes with 2.5 cm separation from their corresponding light source (resulting in a 1.25 cm penetration depth, see Figure 1A; Firbank et al., 1998). Before measurement, the optode was mounted on the forehead with appropriate shielding from ambient light and its position was secured with Velcro. Hence, light intensities were measured from 16 regions of the prefrontal cortex (PFC) and were converted into digital signals with a sampling rate of 3 Hz.


[image: image]

FIGURE 1. Schematic representation of NIRS and TCD measurements. NIRS-optode layout over the prefrontal cortex (A). Four light-emitting diode sources (S) and ten photodetectors (D) are arranged in a square array forming 16 channels altogether. Of these 16 channels, ultimately 5 regions of interests are defined (by averaging the obtained relationship parameters within that region) to reflect the features of blood supply in the prefrontal cortex (B, yellow blocks). The main relevant arterial supply routes are shown in red. MCA Right, right middle cerebral artery; MCA Left, left middle cerebral artery; ACA, anterior cerebral artery; MIX Right, region supplied by MCA Right and ACA; MIX Left, region supplied by MCA Left and ACA; TCD Right and Left, sites of transcranial Doppler sonography measurement (B, green blocks).


The measurements took place in a darkened room with participants seated in a comfortable armchair. The protocol was adopted from the work of Narayanan et al. (2001) and it consisted of 30-min resting awake period with eyes open while seated with feet touching the floor (resting). When instructed, the subjects quickly rose to an upright position for 1 min (stand-up). Subsequently, the participants were instructed to sit quickly with the measurement continuing for another minute in this position (sit-down).



Data Preprocessing

Data preprocessing and analysis were carried out in MATLAB (The Mathworks, Natick, MA, United States) using custom scripts written by authors and taken from the BP_Annotate toolbox. Cardiac cycle duration time series (CCD, using an estimate of RR-interval) was derived from the blood pressure recording using the algorithm described in Pan and Tompkins (1985) and Sun et al. (2006). From the respiratory record, we created the breath-to-breath interval time series (BB) by using the peakfinder function of MATLAB. Finally, TCD, CCD, and BB time series (signals for short) were resampled at 3 Hz and synchronized with the NIRS signals using time stamps corresponding to light intensity values and markers set during the measurement protocol.

Cerebrovascular time series were preprocessed to attenuate the contribution of blood pressure changes that would establish an obvious link when investigating their relationships. Accordingly, we estimated the BFV signal component as a linear derivate of blood pressure oscillations by adopting a spectral analytical approach (Zhang et al., 1998). To calculate the power spectral densities, we used the Welch method with a window width of 128 data points and 50% overlap, and estimated the transfer function between changes in arterial blood pressure and cerebral blood flow velocity from their spectra. Filtered BFV was then determined according to

[image: image]

where ⊗ is the convolution operator, ℱ−1 denotes the inverse Fourier-transformation, SABP–BFV is the power of cross-spectral density of the ABP and BFV signals and SABP is the power of auto-spectral density of the ABP signal.

NIRS channels with out of range gain values indicated poor contact quality and thus were excluded from further analyses. These cases of low signal-to-noise records were also confirmed by visual inspection that eventually resulted in 13–16 channels kept for the subsequent analysis. A discrete wavelet filter was applied to remove motion artifacts from the measured light intensity signals for each source-detector pair and each wavelength (Molavi and Dumont, 2012). A fifth-order zero-phase Butterworth filter (Kirilina et al., 2013) was utilized to bandpass filtering in the frequency ranges for representing low- and high-frequency components of the NIRS signal (Tian et al., 2009): 0.02–0.4 Hz (LF), 0.4–1.5 Hz (HF). While HF component mainly reflects contribution from respiratory and cardiac cycle, LF component originates from endothelium-related metabolic activity, neurovascular coupling, vasomotion and autonomic control (Li et al., 2013). Optical density (OD) as a peripheral component was then identified based on the procedure outlined in Mesquita et al. (2010). Taking the ABP signal as a regressor, we estimated its contribution to the NIRS signal and subtracted it from the measured changes (Δ) in optical density, yielding a filtered signal:
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where ΔODn is the observed change in optical density of the n-th channel influenced by ABP considered as a regressor; I denotes the identity matrix, superscript T denotes transpose operation and λ is the regularization parameter that was set to 0.1 times the maximum of the diagonal elements of ABPT⋅ABP. Subsequently, concentration changes of total hemoglobin in the brain tissue were calculated by the revised form of the modified differential Beer-Lambert law (Cope et al., 1988; Kocsis et al., 2006; Cooper et al., 2012), yielding a total tissue hemoglobin concentration time series denoted as HbT. Finally, we further enhanced the component of NIRS signals associated with neurovascular coupling by performing correlation-based signal improvement (CBSI) (Cui et al., 2010) that is an additional procedure aimed at eliminating artifacts unrelated to resident processes of regional hemodynamics, such as motion artifacts.



Reconstructing Cardiorespiratory-Cerebrovascular Networks

We selected 30 non-overlapping artifact-free segments from resting, one from the stand-up and one from the sit-down period, with duration of 50 s each. The starting points were chosen 5 s after the stand-up/sit-down maneuver in the task periods. Dependencies between signals were assessed between the standardized time series and a population of surrogate time series pairs (n = 40) that were generated to preserve all properties of the original pair but the tested one. The presence of linear or nonlinear dynamics was evaluated separately by statistically comparing the relationship measure obtained from the original pair to its distribution derived from the surrogate population. This approach enabled statistical assessment of changes in the reconstructed physiological networks after postural changes also at the individual level.

A network reflecting the strength of linear relationships between the concerned physiological signals was reconstructed in each frequency band using cross-correlation analysis (low: 0.02–0.4 Hz, high: 0.4–1.5 Hz). The Pearson-coefficients (r) were determined using the entire selected time period (of 50-s length) according to:
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where X and Y represent the physiological processes of interest and r follows a Student’s t-distribution. Each pair of time series were compared with pairs from uncorrelated bivariate normal distribution with the aid of t-test, yielding a p-value for each r; only signal pairs with significant (p < 0.05) correlation was used in the calculation of network.

Another network consisting of the same physiological signals was reconstructed in each frequency band using cross mutual information analysis (Shannon, 1948; Steuer et al., 2002), which can capture both linear and nonlinear dependencies. Having two time series (X and Y) of length N, we first replaced their numerical values by their rank order—thus converting X and Y to A and B, respectively –, and plotted the obtained ranks in perpendicular axes. Each axis was partitioned into z smaller components called elements, with Ai and Bj representing the i-th and j-th element of the X and Y, respectively. Each element contained N1 data points except the z-th element, which contained N2 datapoints. The intersection of the Ai and Bj element creates the (Ai, Bi) grid. The partitioning was carried to yield 5 data points in each grid, except the grids of the last elements of each axis that contained 5 or fewer data points. Then Cij was obtained as the sum of every value of the data points in (Ai, Bi). Finally, the mutual information (MI) between the two time series was obtained by:
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where N(i,j) = N1N2 if i = z or j = z, [image: image] if i = j = z and [image: image] in any other case. The obtained MI value was then assigned to each recorded pair of physiological processes using the same selected segments as in the case of Pearson-networks. Note that the above-described algorithm was adopted from and discussed in detail in Jiang et al. (2010).

Nonlinearity was tested by using a surrogate population of signal pairs generated by phase randomization (Theiler et al., 1992). Fourier-transformation of the original pair of signals yielded phase spectra that were shuffled by the same random permutation sequence for all time series, prior to being transformed back into the time domain. This procedure resulted in the destruction of the nonlinear interdependencies between the signals, while the linear dependencies remained preserved (Prichard and Theiler, 1994). The original MI values were compared to the distribution of surrogate MI populations, and the presence of nonlinearity was confirmed if MIoriginal > μ(MIsurrogate) + 2σ(MIsurrogate), where μ denotes the mean and σ denotes the standard deviation.

Based on these relationships, cardiorespiratory-cerebrovascular networks were reconstructed, yielding a Pearson- and an MI-network for both the low- and high-frequency ranges separated at 0.4 Hz. The resampled CCD and BB signals were used as nodes associated with the dynamics in the cardiorespiratory system. Blood flow velocity in the middle cerebral artery (MCA) and the preprocessed NIRS signals were regarded as nodes of the cerebrovascular network. To reduce redundancies within NIRS records we reconstructed networks for 16-channel data first and then combined channels according to the scheme displayed in Figure 1B. This process enables the restructuring of the entire network—from a limited number of nodes—excluding channels with poor signal quality. Thus, the obtained measures of statistical dependencies were then averaged across NIRS-channels corresponding to different vascular territories as follows. The obtained measures of statistical dependencies were then averaged across NIRS-channels corresponding to different vascular territories in the following manner (Figure 1B). Channels in the most lateral position (2–2 on each side) were considered as measuring changes in brain cortex mainly supplied by the middle cerebral arteries (MCAs), the four channels around the midline were considered belonging to supply territories of anterior cerebral arteries (ACAs), while the regions probed by the remaining 4–4 channels were considered receiving perfusion both from MCA and ACA (MIX) on the left and right side, respectively. Ultimately, this arrangement resulted in seven nodes representing macro- (TCD) and microcirculation (NIRS) dynamics in the brain (Figure 2). The interactions within this network were evaluated separately between cardiorespiratory and cerebrovascular networks (CRN) and within the cerebrovascular networks (CVN).


[image: image]

FIGURE 2. Structural and functional aspects of the cardiorespiratory and cerebrovascular networks.




Statistical Tests

Descriptive statistics are reported as μ ± σ. The continuous variables were analyzed for normality using Shapiro-Wilk test, homogeneity of variances was checked by Levene’s test. If the null hypothesis of normality was rejected, we performed Friedman test to evaluate the effect of change in body position. If the assumption of sphericity was found to be violated (according to Mauchley-test), we used Greenhouse-Geisser correction in order to adjust the signals for lack of sphericity. Repeated measures ANOVA was performed for evaluating the dependence of the relationship parameters on the different states brought about by the experimental maneuvers within the same subject (i.e., resting, stand-up, sit-down). The within-subject factor had 32 levels (30 resting, 1 stand-up, 1 sit-down). Significant differences were identified with Dunnett post-hoc test by comparing the obtained p-values to a preset level of significance: αs = 0.05, if p < αs also held for the repeated measures ANOVA (using stand-up or sit-down as control conditions). The false discovery rate was controlled by the Benjamini-Hochberg procedure at level αs in case of multiple comparisons (Benjamini and Hochberg, 1995). Statistical analyses were carried out in Statistica (TIBCO Software Inc., Palo Alto, Californa, United States) version 13.4.



RESULTS


Changes in Physiological Parameters Upon Standing Up and Sitting Down

The average values of arterial blood pressures, cardiac cycle duration and breath-to-breath interval for each period are summarized in Table 1. In the resting state, these values were calculated as averages of the 30 selected segments. Systolic blood pressure (SBP) showed a marked, transient reduction (p = 0.0007, confirmed by post-hoc tests, too) exerting a major influence on changes of mean arterial blood pressure that followed a similar pattern with non-significant effect of changing body position. Conversely, diastolic blood pressure was slightly higher after standing up, which further increased after sitting down. Cardiac cycle duration changed in the same direction as SBP and MAP via the high-pressure baroreflex mechanism. Accordingly, the heart rate (the inverse of CCD) was elevated in the standing position and was reduced upon sitting down. Breath-to-breath intervals were not affected by postural changes significantly.


TABLE 1. Hemodynamic and respiratory parameters of the participating subjects, # indicates significant difference compared with the resting group.

[image: Table 1]
After standing up, cerebral blood flow velocities showed a decrease in both MCAs, which restored gradually in the sit-down period. Simultaneously, average HbT concentration (both with and without CBSI) lowered in the majority of cortical regions in the time window of observation, but these changes were not significant due to large variability (Table 2). Representative preprocessed physiological time series acquired in steady state, stand-up and sit-down periods are shown in Figure 3.


TABLE 2. Cerebrovascular variables derived from NIRS- and TCD-measurements.
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FIGURE 3. Breath-to-breath interval (BB), cardiac cycle durations, preprocessed blood flow velocity signals acquired from the middle cerebral artery (TCD Left and TCD Right) and preprocessed NIRS signals from different vascular territories are displayed for a representative subject in the resting state, and right after standing up and sitting down. All signals were resampled at 3 Hz and bandpass filtered in the 0.4–1.5 Hz range, blood pressure fluctuations were regressed from all cerebral hemodynamic (i.e., macro- and microcirculatory) signals as described in “Materials and Methods” section. Background colors of the signal panels are the same used in Figure 2.




Effect of Postural Changes on Cardiorespiratory-Cerebrovascular Networks

In the LF range, the majority of Pearson coefficients were significant (i.e., it was possible to distinguish them from those obtained from signal pairs following an uncorrelated bivariate normal distribution) in the resting state (∼77%), which decreased after the postural change (stand-up: 73%, sit-down: 59%). In contrast, a much smaller fraction of r values were found significant in the HF range (resting: 36%, stand-up: 31%, sit-down: 31%). The majority of significant coefficients indicated positive correlation (r > 0). Corresponding networks determined at different measurement conditions did not differ, as shown on the upper panels of Figures 4, 5. Although the strengths of several relationship showed a notable decrease in the low-frequency range (CCD vs. MCA Left, TCD Left vs. MCA Left, TCD Left vs. MIX Right, TCD Right vs. MIX R, MIX L vs. MIX R), after changes in body position (p < 0.05) these were not significant taking multiple comparisons into account (false discovery rate correction at level 0.05).


[image: image]

FIGURE 4. Cardiorespiratory-cerebrovascular networks reconstructed for the low-frequency range (0.02–0.4 Hz) after surrogate thresholding. Connection strength was assessed using Pearson correlation analysis (upper panels: negative correlations, middle panels: positive correlations) and mutual information analysis (MI, lower panels) and is coded in grayscale. CCD, Cardiac cycle duration; BB, Breath-to-breath interval; TCD, transcranial Doppler (denoting the BFV signal recorded from MCA); ACA, anterior cerebral artery; MCA, middle cerebral artery; MIX, NIRS channels sampling regions supplied by ACA and MCA.



[image: image]

FIGURE 5. Cardiorespiratory-cerebrovascular networks reconstructed for the high-frequency range (0.4–1.5 Hz) after surrogate thresholding. Strength of connection was assessed using Pearson correlation analysis (upper panels: negative correlations, middle panels: positive correlations) and mutual information analysis (MI, lower panels) and is coded in grayscale. CCD, Cardiac cycle duration; BB, Breath-to-breath interval; TCD, transcranial Doppler (denoting the BFV signal recorded from MCA); ACA, anterior cerebral artery; MCA, middle cerebral artery; MIX, NIRS channels sampling regions supplied by ACA and MCA.


We also investigated the qualitative nature of correlation based on the change of r’s sign; for example, if a previously correlated process becomes uncorrelated/anticorrelated or vice versa. Coupled dynamics between CCD and BB in the LF range became uncorrelated after standing up which was not restored until the end of the measurement in both frequency ranges. In the upright posture, a loss of correlation was found between the interaction of respiration with cerebrovascular processes except for TCD Right and MCA Left only in the LF range, where the positive correlations were preserved. The linear interactions were perturbed more by standing up in the HF range followed by a partial restoration in terms of nature of correlation. As to the LF range, we found a rather delayed effect of postural changes: three and nine functional connections in cerebrovascular network were altered—in terms of r’s sign—after standing up and sitting down, respectively. It is noteworthy that hemoglobin signal only from the MCA left showed an anticorrelated dynamics mainly in the LF range that was preserved after postural changes.

Phase randomization tests indicated that nonlinear coupling within the investigated processes was only present in the resting state. Nonlinear dependence was found only for a few connections in the LF networks (CCD vs. TCD Right and between ACM Left and MIX Right) after sitting down. However, according to surrogate testing, it was completely absent in the HF networks following postural changes. Due to weak coupling, as indicated by low MI values even in the resting condition, the effect of standing up and sitting down was non-significant for the following relationships: BB vs. TCD (both), BB vs. MCA Right, CCD vs. TCD (both), CCD vs. MIX Left, CCD vs. ACA, TCD Left vs. (TCD Right, MCA Left, MIX Left, MCA Right), TCD Right vs. (MCA Left, MCA Right), MCA Left vs. (MIX Left, ACA, MIX Right), MIX Left vs. ACA, ACA vs. MCA Right, MIX Right vs. MCA Right (the statistical power averaged across connections was 0.642, effect size: 1.010). However, in the HF networks the absence of nonlinearity was seen associated with a significant effect of postural changes when compared with resting condition for all pairs of examined physiological processes (average statistical power was 0.943, effect size: 2.458).



DISCUSSION

In this study, we investigated the effect of orthostatic stress on the cardiorespiratory-cerebrovascular network. We confirmed that sudden postural changes did not have a significant impact on the cardiorespiratory-cerebrovascular network topology as defined by linear interactions, neither in the low- nor in the high-frequency range; nevertheless, a clear tendency was seen for several connections. In contrast, we demonstrated vanishing nonlinear interactions in the investigated coupled dynamics upon standing up and sitting down clearly distinct from what was observed in the resting state. In spite of preserved homeostatic regulations aimed at maintaining arterial blood pressure and cerebral blood flow, the postural challenge resulted in a complete dissolution of these physiological networks comprising of nonlinear interactions among their components.

Correlated and anticorrelated linear dependencies were more abundant in LF networks, while the majority of connections showed uncorrelated dynamics in the HF range, especially after postural changes. Although none of the connections in the resting Pearson-networks averaged between subjects were statistically different, when compared across different states (Figures 4, 5, upper left panel), these qualitative changes still do provide insight into the response of the CRN and CVN to orthostatic stress. Hence, we propose that the obtained linear relationship parameters in the three states feature the coupled dynamics of the examined processes that were influenced directly by standing up/sitting down and indirectly by physiological regulations. Importantly, these patterns of changes show a remarkable difference when comparing the statistical interdependencies of breath-to-breath intervals and the rest of the links in the Pearson-networks associated with heart rate and those of cerebral macro- and microcirculation. Accordingly, during orthostatic challenge respiratory dynamics became swiftly independent of the cardiac and cerebrovascular dynamics. In contrast, heart rate maintained its relationship with the rest of the examined physiological processes except in the HF range, where the beat-to-beat regulation of blood pressure is a prevailing mechanism. Thus, postural changes affected the cerebrovascular network differently, suggesting the role of frequency-specific response in the pressure autoregulation of cerebral blood flow (Giller and Mueller, 2003). In line with that, further investigation of LF range revealed that postural changes had marginally more impact on the 0.15–0.4 Hz then oscillations of 0.06–0.15 or 0.02–0.06 Hz (spectral ranges commonly used in analysis of NIRS records). However, since the lower frequencies are less represented in 50 s records, the observed differences between the physiological states rather refer to the HF and LF range applied in this study. Given that blood pressure fluctuations were eliminated from cerebrovascular signals consisting our physiological networks, the observed changes reflect an indirect effect of ABP changes and ABP-independent effects of orthostatic stress on BFV and HbT dynamics assessed by TCD and NIRS, respectively. The origin of the two-tiered responses of the Pearson-network can also be attributed in part to this preprocessing step (see differences of surrogate testing results) as well as to the impact of frequencies inherent to various mechanisms mediating systemic effects of postural changes, which are more prevalent in the LF range (Orini et al., 2012).

The cerebrovascular dynamics observed during orthostatic challenge emerges from a combination of promptly developing passive and active changes manifesting with a delay, particularly evoked by arterial baroreflex mechanism. Accordingly, we observed a noticeable reduction of SBP accompanied by reflex tachycardia (Table 1), which among our healthy young participants in the initial phase of the stand-up period should be regarded as part of the underlying physiological adaptation to the orthostatic challenge (Stewart, 2013). The extent of this drop is comparable to the value of ∼30 mmHg reported in a similar study (Olufsen et al., 2005) and should be distinguished from that of orthostatic hypotension as defined by consensus statement (Freeman et al., 2011; Moloney et al., 2020). Since standing up resulted in a larger decrease of blood flow velocity in the MCA than that of ABP, the cerebrovascular resistance (estimated as ABP/BFV with cross-section area of MCA assumed remaining unaltered during the maneuver; Aaslid et al., 1989) must have led to perturbed cerebral hemodynamics invoking pressure autoregulation of global cerebral blood flow. The observed changes in our study (Table 2) correspond well with previous findings of Sorond et al. (2009), who also examined cardio- and cerebrovascular adaptation to orthostatic stress among elderly normo- and hypertensive subjects.

Analysis of transfer function between blood pressure and blood flow velocity changes (Panerai et al., 1999) showed that standing up yielded gain values dropping clearly below 1 (consistent with the case of negative feed-back regulation), especially for slow oscillations of these signals. This indicates the presence of pressure autoregulation that is more effective in the low-frequency range, similarly to what Sammons et al. (2007) have found with the same method. Moreover, the moderate coherence between MAP and BFV in both frequency ranges implies the presence of nonlinearity or the influence of a hidden linear regressor, which could explain their even weaker relationship below 0.4 Hz due to vasomotion. As to NIRS measurements, tissue HbT concentrations decreased after standing up in parallel with a reduction of blood pressure, which is an apparent short-term passive effect of postural change. In case of measurements carried out in the resting and sit-down positions, we found that HbT changes (which without CBSI follow changes in cerebral blood volume) were rather anti- or uncorrelated with blood pressure changes. Since cerebral autoregulation dilates brain vessels in case of decreased blood pressure, cerebral blood volume—at unchanged tissue hematocrit—increases marked by an elevated tissue HbT levels. Thus the latter should be regarded as a signature of cerebrovascular reactivity—that is assessed in a 5 min time window (Lee et al., 2009)—although in the evolving phase of this compensation.

Given that MI is a model-free measure (Steuer et al., 2002), we also reconstructed mutual information networks to evaluate the contribution of nonlinear dynamics. MI analysis depicts a consistent effect of orthostatic stress in both frequency ranges either on the group or the individual level. Lower panels of Figures 4, 5 show that standing up disintegrates the MI networks, which practically remains unchanged until the end of the measurement. In fact, phase randomization emphasized the qualitative differences between different physiological states yielding a remarkable contrast while it was not evident for the significance of Pearson correlations. Thus, to a large extent, it is the surrogate testing approach applied to these networks that accounts for this pattern. Recall that MI captures both linear and nonlinear dependencies (Smith, 2015) and that we performed a variant of phase randomization that tests nonlinearity, only (Prichard and Theiler, 1994). In other words, in spite of a preserved linear dependency also captured by MI, the absence of nonlinear coupled dynamics rendered the weight of this functional link in the corresponding physiological network to 0. Taken together, our analytical framework demonstrated vanishing nonlinear interactions in response to orthostatic challenge, which prompts questions for future research about the nature of the physiological mechanisms at play.

The duration of the cardiac and respiratory cycle dynamics are interrelated via several intricate relationships (Voss et al., 2009). One of the most apparent patterns in the coupled dynamics of these oscillatory systems is known as respiratory sinus arrhythmia, which refers to a decrease in CCD during inspiration and increase in CCD during expiration due to altered parasympathetic tone. This periodic influence was present in the observed dynamics throughout the measurement independent of postural changes, most likely due to multiple uncontrolled factors apart from those associated with the vagal activity (e.g., change in tidal volume). Moreover, Bartsch and Ivanov (2014) demonstrated a phase synchronization between heart rate and respiratory rate, which is a nonlinear form of interaction contributing to the fine structure of the examined physiological networks. Thus, the absence of coupled nonlinear dynamics confirmed by our surrogate testing (phase randomization) also excludes phase synchronization between CCD and BB after standing up and sitting down, which results in impaired coordination between these physiological systems playing a role in homeostatic mechanisms. Nonlinear interactions between cardiovascular signals have been shown to be suppressed by the baroreflex mechanism after head-up tilt resulting in their simplification and increased predictability (Faes and Nollo, 2006). Numerous studies evidenced the presence of nonlinearities in the cerebral hemodynamics (Panerai et al., 1999; Mitsis et al., 2004). Mitsis et al. (2002) identified frequency-dependence of dynamic cerebral autoregulation and its attenuation during orthostatic stress (Mitsis et al., 2006). Our findings fundamentally agree with these observations since the measured physiological processes became more independent after postural changes indicating their weakening regulations.

Evaluating both linear and nonlinear interactions is indispensable for a detailed reconstruction of physiological networks (Faes et al., 2015). We characterized cardiorespiratory-cerebrovascular networks by combining qualitative assessment of linear and non-linear dependencies with simple (Pearson-correlation) or model-free measures (mutual information) of coupling, which does not directly allow for the assessment of causality. There is an abundance of such bivariate methods that have been utilized in recent studies of physiological networks (Bashan et al., 2012; Bartsch et al., 2015; Zanetti et al., 2019), for a review see Schulz et al. (2013). The relatively short time series (150 data points) were insufficient for adopting alternative bivariate measures such as symbolic transfer entropy (Dickten and Lehnertz, 2014; Lucchini et al., 2020), Granger causality (Faes et al., 2008) or measures of scale-free coupled dynamics (Stylianou et al., 2021) with suitable surrogate testing capable of identifying causal relationships (Schreiber and Schmitz, 1996). Adequate data representation is also necessary for using fractal models based on capturing spatio-temporal cross-dependencies between coupled physiological processes in order to identify physiological networks by utilizing fractional differencing operators (Xue et al., 2016; Bogdan, 2019). Hence, we preferred using stochastic measures known to be insensitive to short data and thus offering a more flexible description of physiological networks compared to deterministic models under our experimental conditions. Our framework captured fundamental changes in the topology of the CRN-CVN brought about by orthostatic stress and in future studies it is of high interest to investigate its directional couplings. Ultimately, it can be readily applied to any kind of physiological networks either for exploration or identifying effects of perturbation where a more elaborate model cannot be utilized due to unmet assumptions about representation or statistical properties of data.

As to limitations of our study, it is important to note that because the maneuvers were inherently associated with perturbations generating large, transient motion artifacts in the physiological records, we had to exclude the very early phase of the postural challenge from the analysis. While the subsequently recorded data (right after postural changes) became artifact-free, we could secure a sufficiently long segment for the network reconstruction, thus our analysis necessarily skipped the time window associated with the immediate dynamic autoregulatory response combating the very early effects of the perturbations. Furthermore, the short time spent in the perturbated states is of another concern. With a longer stand-up period, one might have been able to observe whether the MI cardiorespiratory-cerebrovascular network recovered to its resting-state topology at all. Although the final number of participants was relatively low it was still comparable to that in other human network physiological studies (Faes et al., 2015) in addition to being balanced by the within-subject design of our experimental protocol. Finally, given that electrophysiological data (such as electroencephalography) was not collected during our measurements, this circumstance did not allow us to disentangle subsystems within the investigated physiological network with respect to brain activity changes.

Globally adequate delivery of nutrients and oxygen matching the needs of brain tissue is a vital homeostatic mechanism established by a fine-tuned interaction between respiration and systemic regulations of circulation. Hence, despite the above limitations, incorporating components of central, macro- and microcirculation into a physiological network is a novel adaptation of the network physiology concept, which could contribute to a deeper understanding of healthy regulatory mechanism maintaining homeostasis. These dynamics show intricate dependencies that were found challenged by orthostatic stress, which raises questions about linear and nonlinear network topologies associated with physiological perturbations in other organ systems, too.



CONCLUSION

In the present study, we found that postural changes induced radical topological reorganization in the nonlinear cardiorespiratory-cerebrovascular network. The interdependencies between cardiac, respiratory and cerebrovascular dynamics showed a two-tiered response: non-significant changes in the Pearson and a marked weakening in the mutual information network topologies reconstructed from linear and nonlinear coupled dynamics, respectively. The disruption of nonlinear networks suggests that the complexity of key homeostatic mechanisms maintaining cerebral hemodynamics and oxygenation is indeed susceptible to physiological perturbations such as orthostatic stress.



DATA AVAILABILITY STATEMENT

The datasets generated for this study – entitled “Two-tiered response of cardiorespiratory-cerebrovascular networks to orthostatic challenge” – can be requested from the corresponding author or can be found in the PhysioNet online repository under the same name: http://physionet.org/content/.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Regional and Institutional Committee of Science and Research Ethics, Semmelweis University. The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

PM performed the measurements and analysis and wrote the first draft of the study. ZN carried out the measurements. FR performed the preprocessing of the data. IP helped with the data collections. AH and FR wrote the scripts for time series analysis. OS created the figures and contributed to the statistical assessments. RD helped with the experimental setup. DB provided the research instruments and guidance in the data collection. AE conceptualized and organized the study, and contributed to the manuscript revisions and data visualizations. All authors reviewed and edited the manuscript, and approved its final version.



FUNDING

FR and PM acknowledge financial support from the Development of Scientific Workshops for Medical, Health Sciences and Pharmaceutical Training Project (EFOP-3.6.3-VEKOP-16-2017-00009).



REFERENCES

Aaslid, R., Lindegaard, K. F., Sorteberg, W., and Nornes, H. (1989). Cerebral autoregulation dynamics in humans. Stroke 20, 45–52.

Aaslid, R., Markwalder, T. M., and Nornes, H. (1982). Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 57, 769–774. doi: 10.3171/jns.1982.57.6.0769

Ashkenazy, Y., Hausdorff, J. M., Ivanov, P. C., and Stanley, H. E. (2002). A stochastic model of human gait dynamics. Phys. A 316, 662–670. doi: 10.1016/S0378-4371(02)01453-X

Bartsch, R. P., and Ivanov, P. C. (2014). Coexisting forms of coupling and phase-transitions in physiological networks. Commun. Comput. Inform. Sci. 438, 270–287.

Bartsch, R. P., Liu, K. K. L., Bashan, A., and Ivanov, P. C. (2015). Network physiology: how organ systems dynamically interact. PLoS One 10:e0142143. doi: 10.1371/journal.pone.0142143

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. (2012). Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3:702. doi: 10.1038/ncomms1705

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300.

Bernard, C. (1858). Leçons sur la Physiologie et la Pathologie du Système Nerveux: Cours de Médecine du Collége de France. par M. Claude Bernard. Paris: J.-B. Baillière et fils.

Bogdan, P. (2019). Taming the unknown unknowns in complex systems: challenges and opportunities for modeling, analysis and control of complex (biological) collectives. Front. Physiol. 10:1452. doi: 10.3389/fphys.2019.01452

Bunce, S. C., Izzetoglu, M., Izzetoglu, K., Onaral, B., and Pourrezaei, K. (2006). Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. 25, 54–62. doi: 10.1109/MEMB.2006.1657788

Cannon, W. B. (1929). Organization for physiological homeostasis. Physiol. Rev. 9, 399–431. doi: 10.1152/physrev.1929.9.3.399

Chance, B., Nioka, S., and Zhao, Z. (2007). A wearable brain imager. IEEE Eng. Med. Biol. 26, 30–37. doi: 10.1109/MEMB.2007.384093

Chapleau, M. W. (2012). “Chapter 33 – Baroreceptor reflexes,” in Primer on the Autonomic Nervous System, 3rd Edn, eds D. Robertson, I. Biaggioni, G. Burnstock, P. A. Low, and J. F. R. Paton (San Diego, CA: Academic Press), 161–165.

Cooper, R. J., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K., et al. (2012). A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front. Neurosci. 6:147. doi: 10.3389/fnins.2012.00147

Cope, M., Delpy, D. T., Reynolds, E. O., Wray, S., Wyatt, J., and Van Der Zee, P. (1988). Methods of quantitating cerebral near infrared spectroscopy data. Adv. Exp. Med. Biol. 222, 183–189. doi: 10.1007/978-1-4615-9510-6_21

Cui, X., Bray, S., and Reiss, A. L. (2010). Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 49, 3039–3046. doi: 10.1016/j.neuroimage.2009.11.050

Dickten, H., and Lehnertz, K. (2014). Identifying delayed directional couplings with symbolic transfer entropy. Phys. Rev. E 90:062706. doi: 10.1103/PhysRevE.90.062706

Faes, L., Marinazzo, D., Jurysta, F., and Nollo, G. (2015). Linear and non-linear brain-heart and brain-brain interactions during sleep. Physiol. Meas. 36, 683–698. doi: 10.1088/0967-3334/36/4/683

Faes, L., and Nollo, G. (2006). Bivariate nonlinear prediction to quantify the strength of complex dynamical interactions in short-term cardiovascular variability. Med. Biol. Eng. Comput. 44, 383–392. doi: 10.1007/s11517-006-0043-3

Faes, L., Nollo, G., and Chon, K. H. (2008). Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann. Biomed. Eng. 36, 381–395. doi: 10.1007/s10439-008-9441-z

Firbank, M., Okada, E., and Delpy, D. T. (1998). A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. Neuroimage 8, 69–78. doi: 10.1006/nimg.1998.0348

Freeman, R., Wieling, W., Axelrod, F. B., Benditt, D. G., Benarroch, E., Biaggioni, I., et al. (2011). Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 21, 69–72. doi: 10.1007/s10286-011-0119-5

Giller, C. A., and Mueller, M. (2003). Linearity and non-linearity in cerebral hemodynamics. Med. Eng. Phys. 25, 633–646. doi: 10.1016/s1350-4533(03)00028-6

Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L., and Stanley, H. E. (1998). Stochastic feedback and the regulation of biological rhythms. Europhys. Lett. 43, 363–368. doi: 10.1209/epl/i1998-00366-3

Jiang, A. H., Huang, X. C., Zhang, Z. H., Li, J., Zhang, Z. Y., and Hua, H. X. (2010). Mutual information algorithms. Mech. Syst. Signal Process. 24, 2947–2960. doi: 10.1016/j.ymssp.2010.05.015

Julien, C. (2006). The enigma of Mayer waves: Facts and models. Cardiovasc. Res. 70, 12–21. doi: 10.1016/j.cardiores.2005.11.008

Keramati, M., and Gutkin, B. (2014). Homeostatic reinforcement learning for integrating reward collection and physiological stability. Elife 3:e04811. doi: 10.7554/eLife.04811

Kirilina, E., Yu, N., Jelzow, A., Wabnitz, H., Jacobs, A. M., and Tachtsidis, I. (2013). Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex. Front. Hum. Neurosci. 7:864. doi: 10.3389/fnhum.2013.00864

Kocsis, L., Herman, P., and Eke, A. (2006). The modified Beer-Lambert law revisited. Phys. med. Biol. 51, N91–N98. doi: 10.1088/0031-9155/51/5/N02

Lassen, N. A., Ingvar, D. H., and Skinhøj, E. (1978). Brain function and blood flow. Sci. Am. 239, 62–71.

Lee, J. K., Kibler, K. K., Benni, P. B., Easley, R. B., Czosnyka, M., Smielewski, P., et al. (2009). Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40, 1820–1826. doi: 10.1161/STROKEAHA.108.536094

Li, Z., Zhang, M., Xin, Q., Luo, S., Cui, R., Zhou, W., et al. (2013). Age-related changes in spontaneous oscillations assessed by wavelet transform of cerebral oxygenation and arterial blood pressure signals. J. Cereb. Blood Flow Metab. 33, 692–699. doi: 10.1038/jcbfm.2013.4

Lin, A., Liu, K. K. L., Bartsch, R. P., and Ivanov, P. C. (2020). Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function. Commun. Biol. 3:197. doi: 10.1038/s42003-020-0878-4

Lo, C. C., Amaral, L. A. N., Havlin, S., Ivanov, P. C., Penzel, T., Peter, J. H., et al. (2002). Dynamics of sleep-wake transitions during sleep. Europhys. Lett. 57, 625–631. doi: 10.1209/epl/i2002-00508-7

Lucchini, M., Pini, N., Burtchen, N., Signorini, M. G., and Fifer, W. P. (2020). Transfer entropy modeling of newborn cardiorespiratory regulation. Front. Physiol. 11:1095. doi: 10.3389/fphys.2020.01095

Mesquita, R. C., Franceschini, M. A., and Boas, D. A. (2010). Resting state functional connectivity of the whole head with near-infrared spectroscopy. Biomed. Opt. Express 1, 324–336. doi: 10.1364/BOE.1.000324

Mitsis, G. D., Poulin, M. J., Robbins, P. A., and Marmarelis, V. Z. (2004). Nonlinear modeling of the dynamic effects of arterial pressure and CO/sub 2/variations on cerebral blood flow in healthy humans. IEEE Trans. Biomed. Eng. 51, 1932–1943. doi: 10.1109/TBME.2004.834272

Mitsis, G. D., Zhang, R., Levine, B. D., and Marmarelis, V. Z. (2002). Modeling of nonlinear physiological systems with fast and slow dynamics. II. Application to cerebral autoregulation. Ann. Biomed. Eng. 30, 555–565. doi: 10.1114/1.1477448

Mitsis, G. D., Zhang, R., Levine, B. D., and Marmarelis, V. Z. (2006). Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J. Appl. Physiol. (1985) 101, 354–366. doi: 10.1152/japplphysiol.00548.2005

Molavi, B., and Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol. Meas. 33, 259–270. doi: 10.1088/0967-3334/33/2/259

Moloney, D., O’connor, J., Newman, L., Scarlett, S., Hernandez, B., Kenny, R. A., et al. (2020). Clinical clustering of eight orthostatic haemodynamic patterns in The Irish Longitudinal study on Ageing (TILDA). Age Ageing afaa174. doi: 10.1093/ageing/afaa174

Narayanan, K., Collins, J. J., Hamner, J., Mukai, S., and Lipsitz, L. A. (2001). Predicting cerebral blood flow response to orthostatic stress from resting dynamics: effects of healthy aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R716–R722.

Olufsen, M. S., Ottesen, J. T., Tran, H. T., Ellwein, L. M., Lipsitz, L. A., and Novak, V. (2005). Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99, 1523–1537. doi: 10.1152/japplphysiol.00177.2005

Orini, M., Laguna, P., Mainardi, L., and Bailón, R. (2012). Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time–frequency analysis. Physiol. Meas. 33:315. doi: 10.1088/0967-3334/33/3/315

Pan, J., and Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng 32, 230–236.

Prichard, D., and Theiler, J. (1994). Generating surrogate data for time-series with several simultaneously measured variables. Phys. Rev. Lett. 73, 951–954. doi: 10.1103/PhysRevLett.73.951

Rattan, S. I. S. (2014). Aging is not a disease: implications for intervention. Aging Dis. 5, 196–202. doi: 10.14336/AD.2014.0500196

Panerai, R. B., Dawson, S. L., and Potter, J. F. (1999). Linear and nonlinear analysis of humandynamic cerebral autoregulation. Am. J. Physiol. Heart Circ. Physiol. 277, 1089–1099.

Sammons, E. L., Samani, N. J., Smith, S. M., Rathbone, W. E., Bentley, S., Potter, J. F., et al. (2007). Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation. J. Appl. Physiol. 103, 369–375. doi: 10.1152/japplphysiol.00271.2007

Schreiber, T., and Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77, 635.

Schulz, S., Adochiei, F.-C., Edu, I.-R., Schroeder, R., Costin, H., Bär, K.-J., et al. (2013). Cardiovascular and cardiorespiratory coupling analyses: a review. Philos. Transact. A Math. Phys. Eng. Sci. 371:20120191. doi: 10.1098/rsta.2012.0191

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27, 379–423.

Smith, R. (2015). A mutual information approach to calculating nonlinearity. Stat 4, 291–303. doi: 10.1002/sta4.96

Sorond, F. A., Serrador, J. M., Jones, R. N., Shaffer, M. L., and Lipsitz, L. A. (2009). The sit-to-stand technique for the measurement of dynamic cerebral autoregulation. Ultrasound Med. Biol. 35, 21–29. doi: 10.1016/j.ultrasmedbio.2008.08.001

Steuer, R., Kurths, J., Daub, C. O., Weise, J., and Selbig, J. (2002). The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18, S231–S240.

Stewart, J. M. (2013). Common syndromes of orthostatic intolerance. Pediatrics 131, 968–980. doi: 10.1542/peds.2012-2610

Stylianou, O., Racz, F. S., Eke, A., and Mukli, P. (2021). Scale-free coupled dynamics in brain networks captured by bivariate focus-based multifractal analysis. Front. Physiol. 11:615961. doi: 10.3389/fphys.2020.615961

Sun, J., Reisner, A., and Mark, R. (2006). “A signal abnormality index for arterial blood pressure waveforms,” in Proceedings of the 2006 Computers in Cardiology, (Valencia: IEEE), 13–16.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Doyne Farmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Phys. D 58, 77–94. doi: 10.1016/0167-2789(92)90102-S

Tian, F., Chance, B., and Liu, H. (2009). Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy. J. Biomed. Opt. 14, 054016. doi: 10.1117/1.3241984

Voss, A., Schulz, S., Schroeder, R., Baumert, M., and Caminal, P. (2009). Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Transact. A Math. Phys. Eng. Sci. 367, 277–296. doi: 10.1098/rsta.2008.0232

Xue, Y., Rodriguez, S., and Bogdan, P. (2016). “A spatio-temporal fractal model for a CPS approach to brain-machine-body interfaces,” in Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), (New York, NY: IEEE), 642–647.

Zanetti, M., Faes, L., Nollo, G., De Cecco, M., Pernice, R., Maule, L., et al. (2019). Information dynamics of the brain, cardiovascular and respiratory network during different levels of mental stress. Entropy 21:275. doi: 10.3390/e21030275

Zhang, R., Zuckerman, J. H., Giller, C. A., and Levine, B. D. (1998). Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol. 274, H233–H241.


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Mukli, Nagy, Racz, Portoro, Hartmann, Stylianou, Debreczeni, Bereczki and Eke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	
	ORIGINAL RESEARCH
published: 02 March 2021
doi: 10.3389/fphys.2021.612245






[image: image2]

Effect of Stress on Cardiorespiratory Synchronization of Ironman Athletes

Maia Angelova1*, Philip M. Holloway2, Sergiy Shelyag1, Sutharshan Rajasegarar1 and H. G. Laurie Rauch3


1D2I Research Centre, School of IT, Deakin University, Geelong, VIC, Australia

2Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, United Kingdom

3Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Edited by:
Andras Eke, Semmelweis University, Hungary

Reviewed by:
Chi-Keung Chan, Institute of Physics, Academia Sinica, Taiwan
 Arcady A. Putilov, Independent Researcher, Novosibirsk, Russia

*Correspondence: Maia Angelova, maia.a@deakin.edu.au

Specialty section: This article was submitted to Fractal and Network Physiology, a section of the journal Frontiers in Physiology

Received: 30 September 2020
 Accepted: 02 February 2021
 Published: 02 March 2021

Citation: Angelova M, Holloway PM, Shelyag S, Rajasegarar S and Rauch HGL (2021) Effect of Stress on Cardiorespiratory Synchronization of Ironman Athletes. Front. Physiol. 12:612245. doi: 10.3389/fphys.2021.612245



The aim of this paper is to investigate the cardiorespiratory synchronization in athletes subjected to extreme physical stress combined with a cognitive stress tasks. ECG and respiration were measured in 14 athletes before and after the Ironman competition. Stroop test was applied between the measurements before and after the Ironman competition to induce cognitive stress. Synchrogram and empirical mode decomposition analysis were used for the first time to investigate the effects of physical stress, induced by the Ironman competition, on the phase synchronization of the cardiac and respiratory systems of Ironman athletes before and after the competition. A cognitive stress task (Stroop test) was performed both pre- and post-Ironman event in order to prevent the athletes from cognitively controlling their breathing rates. Our analysis showed that cardiorespiratory synchronization increased post-Ironman race compared to pre-Ironman. The results suggest that the amount of stress the athletes are recovering from post-competition is greater than the effects of the Stroop test. This indicates that the recovery phase after the competition is more important for restoring and maintaining homeostasis, which could be another reason for stronger synchronization.

Keywords: synchronization, cardiorespiratory, athletes, empirical mode decomposed, ECG, respiratory signal


1. INTRODUCTION

An Ironman race is a long-distance triathlon consisting of a 2.4-mile swim, a 112-mile bicycle ride and a 26.2-mile marathon run raced in that order with no break in between sections. It takes a participant a long time to recover from the physiological stress of completing an Ironman race. Such heavy exertion undoubtedly has a negative effect on the body's immune system with sustained inflammatory response to muscle fatigue, increased risk of respiratory tract infections, weight loss, and other medical conditions (Ren and Zhang, 2019). In this study we measured the effect of extreme physical stress on the cardiorespiratory system of athletes, while they performed a cognitive test to prevent them from cognitively controlling their breathing rates.

We studied the performance of the cardiorespiratory system by investigating the effects of the Ironman competition on cardiorespiratory synchronization. The cardiovascular and respiratory systems are coupled by several mechanisms (Berne et al., 1998; Ren and Zhang, 2019), where the interactions between these two systems involve a large number of feedback and feed-forward mechanisms. In healthy subjects, the heart rate increases during inspirations and decreases with expiration, which is the well-known, and well-studied phenomena (Anrep et al., 1936) respiratory sinus arrhythmia (RSA). However, for cardiorespiratory system, it is unlikely to find continuous synchronization, as the respiration is neither the governing mechanism, nor is the only system affecting the heart rate dynamics. In fact, synchronizations is only expected to be observed either when one of the systems is forced (i.e., by controlled breathing) or when synchronizations are necessary for the regulation of homeostasis (i.e., after events that induce stress in one or both of the systems).

Earlier studies of cardiorespiratory synchronization support its existence (Pokrovskii et al., 1985; Rosenblum et al., 2004; Wu and Hu, 2006; Bartsch et al., 2007; Angelova et al., 2017) and as shown in Bartsch et al. (2012) cardiorespiratory synchronization and RSA represent different aspects of the interaction between the cardiac and respiratory systems. Cardiorespiratory synchronizations were shown to exist in humans during rest (Schafer et al., 1998; Lotric and Stefanovska, 2000; Stefanovska et al., 2001; Ren and Zhang, 2019), Zen meditation (Cysarz and Bussing, 2005), Dharma-Chan meditation (Chang and Lo, 2013). Desynchronizations were reported following myocardial infarctions (Leder et al., 2000; Hoyer et al., 2002), as well as reduced cardiorespiratory coordination with obstructive sleep apnoea (Kabir et al., 2010) and acute insomnia (Angelova et al., 2020).

As with most physiological time series, when investigating the coupling of the cardiorespiratory systems, noise will occur. This noise originates not only from measurements and external disturbances, but also from the fact that there are other subsystems that take part in the cardiovascular control (Stefanovska and Bracic, 1999; Angelova et al., 2020). These influences, when considering cardiorespiratory synchronizations, are also considered as noise.

Cognitive stress is known to affect the physiological functioning of the cardiovascular system suppressing heart rate variability (HRV) (Wood et al., 2002; Hansen et al., 2003; Ren and Zhang, 2019). In physiology, HRV is the variation in time interval between heartbeats, measured by the variation in the beat-to-beat interval (Hon and Lee, 1965). Raschke et al. suggested that coordination between the cardiac and respiratory systems would be at its strongest during states of relaxation and stated that this coordination was easily disturbed under conditions of stress or disease (Raschke, 1987). However, there is little knowledge of the effect that cognitive stress exerts on cardiorespiratory synchronizations and no study thus far has investigated neither the effect of extreme physical stress on cardiorespiration, nor of cognitive stress during or after an extreme physical stress such as the Ironman competition. In this study, the participants were asked to complete a Stroop test in order to impose stress and draw attention away from consciously controlling one's breathing and instead focus on completing the task. Our hypothesis is that we will see a decrease in the amount of synchronization during the Stroop test, due to the physical stress of the Ironman event.

After the first Stroop test, the participants completed the Ironman competition, after which a second Stroop test was administered. Thus, we observed the effect of the extreme physical task on the concentration and cognitive abilities. Coordination between the cardiorespiratory systems has been reported in healthy adults (Lotric and Stefanovska, 2000; Kotani et al., 2002), athletes (Schafer et al., 1998, 1999) as well as in sleeping humans (Cysarz et al., 2004a; Bartsch et al., 2007). A high degree of synchronization was reported for subjects during meditation with very little coordination seen during spontaneous breathing (Cysarz and Bussing, 2005). Raschke (1987) suggested that coordination between the cardiac and respiratory systems would be at its strongest during states of relaxation and reported strong coordination between the cardiorespiratory subsystems during sleep, (Sweeney-Reed and Nasuto, 2007), also stating that this coordination was easily disturbed under conditions of stress or disease. Kabir et al. showed a reduction in phase coupling in patients with severe obstructive sleep apnoea (OSA) compared with mild OSA, synchronization levels also seemed to correlate with sleep stages (Kabir et al., 2010).

Although neither the underlying mechanisms governing the coordination nor the physiological significance of such results is understood, its quantification could prove to have clinical merit, e.g., estimating the prognosis of cardiac diseases in patients having suffered myocardial infarctions (Leder et al., 2000; Hoyer et al., 2002).

In this study, we investigate the effects of extreme physical stress on cardiorespiratory synchronizations using the concept of phase locking with synchrogram and Empirical Mode Decomposition (EMD) analysis.

We apply synchrogram analysis and EMD to respiration (RR) and electrocardiogram (ECG) time series in order to find a mode that encapsulates the key features of the original signal. The phase of this mode is calculated via the Hilbert transform and is compared with the phases from all modes of the corresponding ECG signal, after which the synchronization analysis is carried out. Specifically, we analyse the RR and ECG signals of Ironman athletes before and after the Ironman race, when a Stroop test is administered. The ECG and RR data are taken before and after the athletes perform a Stroop test. Our results consistently illustrated a rise in synchronizations after the competition. Furthermore, we evaluate the control effect on synchronizations, we expect to see an increase in synchronizations between the cardiorespiratory systems after the race due to an increased breathing rate, to which the heart adjusts its rhythm to beat at an equal rate (Pokrovskii et al., 1985). In both scenarios cardiorespiratory systems are trying to maintain homeostasis.

The paper is organized as follows. Section 2 introduces the experimental settings and data collection methods. Section 3 considers the techniques applied for analyzing the cardio- and respiratory time series data, followed by the results and discussion in section 4 and final conclusions in section 5.



2. EXPERIMENTAL DESIGN AND DATA


2.1. Experimental Design

The study investigated 14 Ironman athletes before and after the race. The physical performance of the athletes was judged by the synchronization of the cardio- and respiratory systems. This was measured by taking the ECG and RR signals and studying their synchronization using time series analysis. Stroop test was administered before and after the race to induce cognitive stress. Stroop mistakes were counted as a measure of cognitive performance.

Simultaneous ECG and RR signals were recorded from all participants for two settings: one during a Stroop test before and one after the Ironman race.

To remove the noise, we applied a zero-phase filter to the time series signals using an IIR filter. The IIR filter has an 4th order and the cutoff frequency is 0.4.



2.2. Stroop Test

Cognitive stress is known to affect the physiological functioning of the cardiovascular system suppressing heart rate variability (HRV) (Wood et al., 2002; Hansen et al., 2003). In physiology, HRV is the variation in time interval between heartbeats, measured by the variation in the beat-to-beat interval (Hon and Lee, 1965). Raschke et al. suggested that coordination between the cardiac and respiratory systems would be at its strongest during states of relaxation and stated that this coordination was easily disturbed under conditions of stress or disease (Raschke, 1987).

The Stroop effect is a demonstration of interference in the reaction time of a test (Stroop, 1935). Essentially, the name of a color, e.g., “red,” is printed in a color not denoted by the name. The example in Figure 1 shows the word “blue” printed in the color red, and the word “red” printed in color “green.” Naming the color of the word takes longer and is more prone to errors than when the color of the word and the name of the color match. The Stroop test was applied in this study in order to turn the participants' attention away from consciously controlling their respiration depth and rate and instead to focus on completing the task at hand. In doing this, the unconscious, homeostatic mechanisms can be investigated and their influence on cardiorespiratory synchronizations found.


[image: Figure 1]
FIGURE 1. Example of a Stroop test. Participants were required to state the color of the word instead of reading the word. For example the first line would be red, blue, red.


In this study, the participants were asked in the first stage to complete a Stroop test—in order to impose stress and draw attention away from consciously controlling one's breathing and instead focus on completing the task—pre Ironman event; and in the second stage they completed a Stroop test post Ironman event.

We expect to see a decrease in the amount of synchronization during the Stroop test, due to the extreme physical stress.



2.3. Data

ECG was measured with three electrodes, positioned in Einthoven's triangle configuration, and recorded at 1,000 Hz. ECG and RR time series were recorded continuously using AcqKnowledge software (version 2.1). The signals were pre-processed using Matlab in order to extract the R-peaks. As the time series were noisy and strongly non-stationary, EMD was implemented to decompose and reconstruct the respiration signal free of noise. The respiratory signal was recorded via a force transducer fixed to a belt around the chest. Subjects were asked to expel air from their lungs as the transducer was first fit, and then were instructed to breathe normally. ECG and RR signals were recorded simultaneously for 6 min—1 min prior to a Stroop test and 5 min during the test. The descriptive statistics of each individual in the study is given in Table 1. All individuals had to perform two Stroop tests, one before and one after the Ironman event.


Table 1. Descriptive statistics of 14 Ironman athletes.

[image: Table 1]




3. METHODS


3.1. Descriptive Statistics

Statistical analysis was performed on the data for 14 Ironmen using the package R. The arithmetic mean (mean), standard deviation (STD) and the median (Med) of the eight variables: Age in years, Gender, Height in meters, Weight in kilograms, Body Mass Index (BMI), Fitness(Fit) in hours per week, Race Time in minutes and Recovery time in minutes are given in Table 1.

Pearson correlation coefficients were computed for all pairs of variables. There was no linear correlation between variables, except some correlation between Race time and Recovery (0.6198), Age and Recovery (−0.6998), and Age and BMI (0.7949). The distribution of Recovery shows that only two athletes have a Recovery time significantly higher than the average—#10 almost double the average and #14 almost 50% above the average. This indicates that the majority of the athletes are recovering in a similar way from the extreme race. While the race time for athlete #10 is just above the average, the race time for #14 is way above the average. The Fit for #14 is significantly above the average while the same variable for #10 is below the average. The remaining variables for these two athletes are in line with those of the remaining 12 athletes. The histograms of Race and Recovery time, Fit and BMI are given on Figure 2.


[image: Figure 2]
FIGURE 2. Histograms of (A) Race and (B) Recovery time, (C) Fitness and (D) BMI for the athletes.


As the sample size is small, we will focus the analysis on the signals measured. For each athlete we have 5 min of each ECG and RR signals measured twice, namely during the Stroop tasks completed before and after the competition. This gives us a sufficiently large sample size to analyse the signals using advanced methods of signal processing (EMD) and synchrograms. Traditional statistical methods are not appropriate for the signal processing due to the amount of noise and complexity of the signals.



3.2. Synchronizations

The synchronization is a basic phenomenon in nature (Rosenblum et al., 1996, 2004; Pikovsky et al., 1997; Cysarz et al., 2004b). Through the detection of synchronous states we may be able to achieve a better understanding of physiological functioning. In the classical sense of periodic, self-sustained oscillators, synchronization is usually defined as the locking (entrainment) of the phases with a near constant phase difference that persists over time:

[image: image]

where n and m are integers, Φ1, Φ2 are phases of the two oscillators and ϕn,m is the generalized phase difference (Tass et al., 1998). In such cases, the n:m phase locking demonstrates itself as a variation of ϕn, m around a horizontal plateau. We will use the length of this plateau as a measure of synchronization.

The phase ϕ(t) is easily estimated from any scalar time series. A problem arises if the signal contains multiple component or time-varying spectra, thus making phase estimation difficult. The EMD method overcomes this as it breaks a signal down into a finite set of components for which the instantaneous phase can be defined.

As with most physiological time series, when investigating the coupling of the cardiorespiratory systems, noise can occur. This noise originates not only from measurements and external disturbances, but also from the fact that there are other subsystems that take part in the cardiovascular control (Stefanovska and Bracic, 1999). These influences, when doing synchronization analysis, are also considered as noise.



3.3. Hilbert-Huang Transform

To study the phase synchronization of the cardiorespiratory system we use Hilbert-Huang Transform (HHT) (Huang et al., 1998; Huang and Attoh-Okine, 2005; Huang and Wu, 2008). It is superior to the Fourier-based methods, which are the simplest and most popular methods of decomposing a signal into energy-frequency distributions. The Fourier methods lose track of time-localized events and are proven ineffective when analyzing physiological systems with non-stationary processes. A popular alternative to Fourier methods is wavelet analysis. It overcomes problems with non-stationarity, however, due to the use of single, basic wavelet is non-adaptive and therefore needs to be applied with care to non-linear data. HHT is used in order to analyse non-linear and noisy signals as it describes them more locally in time. HHT is also capable of measuring instantaneous frequency and phase, which makes it particularly suitable for physiological time series. Hilbert-Huang transform applies Hilbert transform to intrinsic mode functions obtained from the EMD decomposed signals.

In the standard Hilbert Transform (HT), yi, can be written for any function xi as follows,

[image: image]

where P indicates the Cauchy principal value. Gabor et al. determined that an analytical function can be formed with the HT pair (Gabor, 1946),

[image: image]

with amplitude Ai(t) and instantaneous phase ϕi(t),
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The instantaneous frequency can be presented as the time derivative of the phase,

[image: image]

When determining the instantaneous phase, an assumption is made that the system studied can be modeled as weakly-coupled oscillators (Stefanovska and Bracic, 1999). We also assume that their interactions can be investigated by analyzing such phases (Kuramoto, 1984). We should note that the Hilbert transform is not the only method to estimate phase relationships, this can also be done by using wavelet transform or marked events methods (Stefanovska and Bracic, 1999; Le Van Quyen et al., 2001; Clemson and Stefanovska, 2014). Another main advantage of the HT is that it can find the phase of a single oscillation directly.



3.4. Synchrograms

In 1998, Schafer et al. developed the cardiorespiratory synchrogram in order to analyse n:m synchronizations in the cardiorespiratory systems, where the heart beats n times in m respiratory cycles (Schafer et al., 1998, 1999). The synchrogram analysis is very effective to study phase synchronization between a point process (heartbeat) and a continuous signal (respiration). This technique has been used to look at synchronizations in infants (Mrowka et al., 2000), in adults during poetry recitation (Cysarz et al., 2004b) and desynchronizations following myocardial infarction (Leder et al., 2000). A high degree of synchronization was reported for subjects during meditation with very little coordination seen during spontaneous breathing (Cysarz and Bussing, 2005). Bartsch et al. (2012) used the synchrogram method to investigate the response of cardiorespiratory synchronization to changes in physiological states through sleep.

After cleaning the signal with a low pass filter, Matlab code was employed to the respiratory signal, to detect R-peaks from the ECG time-series. The Hilbert transform was used to calculate the instantaneous phase of the respiration signal Φnr from (14). We then considered the respiratory phase at times tk—the r-peak of the kth heartbeat. The cardiorespiratory synchrogram can be constructed by observing the phase of the respiration at each tk, and wrapping the phase into a [0, 2πm] interval. In the simplest case of n:1 synchronization, there are n heartbeats in each respiratory cycle. Plotting these relative phases Ψn,1 as a function of time against tk, we observe n horizontal lines (representing the number of heartbeats) in one respiratory cycle. This is illustrated in Figure 3. The relative phase is given by,
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[image: Figure 3]
FIGURE 3. An example of how the cardiorespiratory synchrogram works. On the top is the respiration, in the middle the corresponding ECG signal and at the bottom, the formation of the synchrogram. The position of each heartbeat in relation to its appearance in the phase of the respiratory cycles can be clearly seen. Red broken vertical lines indicate picks in the heart beats and black vertical broken lines indicate 1 s interval. This example illustrates n:1 synchronization.




3.5. Empirical Mode Decomposition

As it has been noted above, HHT consists of two stages in order to analyse a time series. The first stage, EMD, decomposes a time series into a set of simple oscillatory functions, defined as intrinsic mode functions (IMFs). Typically, an IMF is a function that fulfills the following:

• In the entire dataset, the number of extrema and the number of zero-crossings must be either equal or differ by at most one

• At any point, have a mean value of zero between its local maxima and minima envelopes.

The IMF components are obtained by applying an iterative technique known as “sifting,” this process is as follows:

1. Localize all the local maxima in the time series (x(t)) and connect them with a cubic spline, this is the upper envelope. Repeat the procedure with the local minima defining the lower envelope.

2. Calculate the mean of the upper and lower envelopes m1(t) and determine the first component by subtracting the mean from the original time series x(t).
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• If the condition for an IMF are met then the component c1(t) is an IMF.

• If the conditions are not met, repeat the process from step 1 until an IMF is found.

3. Finally, subtract the IMF component from the original time series to find the residue, r1(t).

[image: image]

4. Repeat the sifting process using r1(t) as the new time series.

5. Continue this process until all of the intrinsic modes (ci) are found. This process can be terminated when the nth residue is a monotonic function that doesn't present any extrema and no more IMFs can be extracted. This last residue is called the trend of the data. It is important to note that any residue constitutes a trend for the previously extracted oscillation. i.e., ri is the trend followed by the ci oscillation.

After this procedure it is possible to express the original data in terms of the obtained IMFs,

[image: image]

Orthogonality of the EMD is not guaranteed theoretically, but is satisfied in a practical sense as the IMFs are orthogonal within a certain period of time. In this sense the process only ensures time localized orthogonality.

The instantaneous phase can be calculated by applying the Hilbert transform to each IMF, ci(t). The procedures of the Hilbert transform consist of calculation of the conjugate pair of ci(t), i.e.,

[image: image]

where P, as in Equation (2), indicates the Cauchy principal value. With this definition, two functions ci(t) and yi(t) forming a complex conjugate pair, define an analytic signal zi(t):

[image: image]

with amplitude Ai(t) and the instantaneous phase ϕi(t):
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An illustration of EMD decomposition into EMFs is given on Figure 4.


[image: Figure 4]
FIGURE 4. Illustration of EMD decomposition into IMFs for athlete #14.


EMD was applied to corresponding ECG and RR time series in order to find the synchronized modes. The underlying theory is that in the decomposition of the ECG, lies an IMF (or set of IMFs) that describe the influence that respiration has on the dynamics of the heart. Once the IMFs for both time series have been found, a particular IMF is found from the decomposition of the respiration signal which contains the key features of the original signal, while neglecting the faster oscillations as noise. The decomposition in IMFs is illustrated on Figure 4. The Hilbert transform is applied to this mode as well as all the other modes from the ECG signal and the instantaneous phases, ϕi(t), are calculated with (14). A vector matrix is constructed showing the phase differences between the respiration IMF and all of the IMFs from the ECG decomposition (1) where areas of plateaus show synchronous periods between the cardiorespiratory systems, see Figure 5. Here, the phase differences between IMF5 from the respiration signal and IMFs from the ECG signal were computed. For the practical purpose of this paper, IMF5 was chosen as the base RR IMF to compute the differences with the ECG IMFs, as it just starts showing significant difference with the previous IMFs from the RR spectrum (Huang and Attoh-Okine, 2005).


[image: Figure 5]
FIGURE 5. Phase differences between one IMF (IMF5) from respiration decomposition and several IMFs from the ECG decomposition (athlete # 14 post-race).




3.6. Data Analysis

The steps of data processing were done with as follows:

1. EMD was applied to corresponding ECG and RR signals taken from athletes performing a Stroop test both before and after the Ironman competition. The number of sifting times depends on the data quality, and it varies case by case. Since, the ECG and RR signals were pre-processed to a sampling rate of 100 Hz, we set the sifting time as 100.

2. Visually the resulting IMFs decomposed by the EMD were inspected. If the amplitude of a certain model is dominant and the wave form is well-distributed, the data are said to be well-decomposed and the decomposition is successfully completed. Otherwise, the decomposition may be inappropriate, and we have to repeat step (1) with different parameters.




4. RESULTS


4.1. Synchrograms

The cardiorespiratory synchrograms were calculated for each athlete pre- and post-Ironman race for one and two respiration cycles, m = 1, 2. Exemplary synchrograms for one athlete #14 completing a Stroop test before and after competition are shown in Figures 6, 7, respectively. The synchronization level for this athlete changes from 3:1 to 4:1. Figure 6 shows numerous regions of 3:1 phase locking where the heart beats 3 times for every respiratory cycle. In contrast, the synchrogram results after the competition for the same athlete on Figure 7, illustrate that not only have the regions of synchronization become longer and increased in stability, but the n:m ratio has increased to 4:1.


[image: Figure 6]
FIGURE 6. The cardiorespiratory synchrogram for an athlete #14 completing a Stroop test before Ironman Competition, 3:1 phase locking.



[image: Figure 7]
FIGURE 7. The cardiorespiratory synchrogram for an athlete #14 completing a Stroop test after Ironman Competition, with 4:1 phase locking.


The synchrograms for athlete #3, shown in Figures 8, 9, support these findings with synchronization of 4:1 locking observed both pre- and post-race. However, in Figure 8 we see far more regions containing no synchronization at all. The regions of synchronization seen post-competition are with significantly increased length and of 4:1 locking.


[image: Figure 8]
FIGURE 8. The cardiorespiratory synchrogram for an athlete #3 completing a Stroop test before Ironman Competition, with 4:1 phase locking.



[image: Figure 9]
FIGURE 9. The cardiorespiratory synchrogram for an athlete #3 completing a Stroop test after Ironman Competition, with 4:1 phase locking but longer time.


The performance of the Ironman athletes in the Stroop test before and after the competition was not found to be different. This indicated that they were focused on the cognitive task and did not control their breathing. As the purpose of the test was to turn the participants' attention away from consciously controlling their respiration depth and rate and instead to focus on completing the task, we have not included in the analysis the number of errors for each participant.



4.2. Phase Difference

Here we compute the phase difference with n:m as n:1 and n:2 for all athletes and using HHT to determine the instantaneous phase difference (5). The lengths of the plateaus, determined by the change of phase being a constant, is a measure for each of the synchronization phase locking for both pre- and post-Ironman exercise are provided. We computed the phase difference of ECG and respiration signals directly for both pre- and post-Ironman test. Figures 6, 7 give the phase difference of participant #14 before and after the competition. They show the phase of ECG is near constant in both pre- and post-competition, but the phase of respiration was improved. Meanwhile, the post-competition phase difference is smaller than that of the pre-competition one. For comparison, the results of athlete #3 are given on Figures 8, 9 for pre-and post-competition respectively. The synchrograms show that for Athlete #3 the synchronization is stronger for post-competition. We analyzed this difference of all participants and found they all show the above phenomenon. In other words, the synchronization between ECG and respiration signals appears to be stronger after the Ironman competition. However, as the signals are complex, the synchrograms are difficult to read and interpret. This is rectified by using EMD with HHT phase locking as shown in Figure 10 which represents athlete #3 in the upper panels (a) pre- and (b) post-competition. The lower panels of (a) and (b) show the variance of the phase difference.


[image: Figure 10]
FIGURE 10. EMD decomposition with data for athlete #14 showing the plateau in pink for (A) Pre-race upper panel and (B) Post-race upper panel. The length of synchronizations, given by the length of the plateaus (in pink) is larger in the post-race indicating that the athlete is more relaxed after the competition and shows a better synchronization between cardiac and respiratory systems. The lower panel in (A,B) represents the variance in phase difference.


Table 2 illustrates synchronization results pre- and post-competition for all athletes, stating the duration of synchronization (in seconds) along with the level of synchronization. Shown are those levels n:m where plateaus were observed for n = 2, 3, …, 9 and m = 1, 2. Out of the 14 participants, only one (#8) displayed longer regions of synchronization prior to the Ironman competition. Participant 10 exhibited 1 min of 3:1 synchronization pre-competition but following the Ironman race had over 4 min of synchronization at the same level. The table clearly demonstrates that the synchronization is stronger (the synchronization periods are longer) for all except one (#8) athletes. The difference is significant with the ratio of post- to pre-competition total synchronization periods of 1.7. Furthermore, an increase in synchronization for smaller synchronization levels 2:1 to 5:1 is 1.54, which is more than twice as small compared to the increase of 3.4 for synchronization levels 5:2, 7:2, and 9:2.


Table 2. Summary of synchronization results for the Ironman athletes.

[image: Table 2]

Further on, Pearson and Spearman rank correlation coefficients were computed between the duration of synchronization periods and individual parameters from Table 1. The results, together with the p-value for Spearman rank correlation are presented in Table 3.


Table 3. Pearson and Spearman rank correlation coefficients between the duration of synchronization periods pre- and post-competition (Table 2) and the individual parameters of the athletes (Table 1).

[image: Table 3]

As is evident from the data presented in the table, there are no strong linear correlations between the parameters of the athletes and their synchronization times. The strongest Spearman correlation of 0.53 with the p-value of 0.06 is observed in weight—post-competition synchronization time parameter pair. Therefore, it can be concluded that physiological properties of each tested individual do not play a significant role in synchronization levels. It should be, however, noted that participating in Ironman competition already includes some implicit pre-selection.

Figure 11 displays box plots for the cardiorespiratory synchronization times both before and after the Ironman race. The figure shows a clear difference with the synchronization times being significantly higher post-race with a p-value of 0.009.


[image: Figure 11]
FIGURE 11. Box plots displaying the times the cardiorespiratory systems spent synchronized pre- and post-Ironman race. Outliers are presented by star (*). The length of synchronizations, given by the length of the plateaus is larger in the post-race indicating that the athlete is more relaxed after the competition and shows a better synchronization between cardiac and respiratory systems.


These results led to the conclusion that the synchronization is stronger post-competition.




5. DISCUSSION AND CONCLUSION

A new method for visualizing the synchronizations between the cardiorespiratory system was proposed through the implementation of EMD and HHT. The moving variance also allows quantification of the stability of these synchronized regions.

Strong synchronizations were observed in the Ironman athletes post-competition, these periods were significantly longer and more pronounced than the synchronized regions witnessed prior to the competition for 13 out of the 14 athletes. Although the Stroop test was impeding any conscious efforts to regulate the cardiorespiratory systems, unconsciously the body's need to recover homeostasis after the race meant that the control mechanisms are still working to regulate the heart and breathing rates—in order to restore them to a normal rate.

The Ironman competitors displayed the highest levels of synchronization during periods when their bodies were recovering from a state of stress. This is contrary to our hypothesis because the athletes showed longer, more stable periods of synchronization, presumably partly due to a superior level of fitness and respiratory control.

Another factor to consider is the amount of stress the individuals are recovering from, for example the effects of an Ironman competition are far greater than those of a single Stroop test. Therefore, the recovery phase after competition is much more important for restoring and maintaining homeostasis. This heightened importance, we believe, is another reason for stronger synchronizations.

Finally, seeing such high levels of synchronization in the Ironman athletes after competition—when completing a Stroop test - indicates the controlled breathing is not a requirement for cardiorespiratory synchronizations. Moreover, the synchronizations seen suggest even more cardiorespiratory coordination in the absence of conscious control.
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There is an increasingly widespread use of biomarkers in network physiology to evaluate an organism’s physiological state. A recent study showed that albumin variability increases before death in chronic hemodialysis patients. We hypothesized that a multivariate statistical approach would better allow us to capture signals of impending physiological collapse/death. We proposed a Moving Multivariate Distance (MMD), based on the Mahalanobis distance, to quantify the variability of the multivariate biomarker profile as a whole from one visit to the next. Biomarker profiles from a visit were used as the reference to calculate MMD at the subsequent visit. We selected 16 biomarkers (of which 11 are measured every 2 weeks) from blood samples of 763 chronic kidney disease patients hemodialyzed at the CHUS hospital in Quebec, who visited the hospital regularly (∼every 2 weeks) to perform routine blood tests. MMD tended to increase markedly preceding death, indicating an increasing intraindividual multivariate variability presaging a critical transition. In survival analysis, the hazard ratio between the 97.5th percentile and the 2.5th percentile of MMD reached as high as 21.1 [95% CI: 14.3, 31.2], showing that higher variability indicates substantially higher mortality risk. Multivariate approaches to early warning signs of critical transitions hold substantial clinical promise to identify early signs of critical transitions, such as risk of death in hemodialysis patients; future work should also explore whether the MMD approach works in other complex systems (i.e., ecosystems, economies), and should compare it to other multivariate approaches to quantify system variability.

Keywords: network physiology, critical transition, early warning sign, multivariate statistical approaches, variability, early intervention


INTRODUCTION

Recent research on physiology increasingly shows that physiological systems do not operate independently. The coordination among different organs and systems maintains body homeodynamics; similarly, the proper functioning of each organ and system requires a healthy organism (Kennedy et al., 2014; Cheikhi et al., 2019; Franceschi et al., 2019). This is the purpose of network physiology, an emerging research field dedicated to the study of coordination among diverse systems at the organism level and dynamical transition of physiological states (Ivanov et al., 2016). Such coordination is critical; however, the dynamic complexity is challenging to untangle (Bashan et al., 2012). One approach to network physiology is to consider the organism as a single network of molecules (Cohen et al., 2012). While the structure of this network is far from being elucidated and many nodes are still unidentified, it may nonetheless be possible to infer much about the network via sampling of small subsets of nodes (i.e., molecules), due to the emergent properties of the network as a whole that lend coherence to its state and dynamics (Cohen, 2016; Cohen et al., 2021). This approach can be linked to a more general area of complex systems theory that has recently gained substantial attention: critical transitions (Dakos et al., 2008, 2012; Scheffer et al., 2009; Bashan et al., 2012; Ghalati et al., 2019). In complex systems, system dynamics such as a change in variability may provide early warning signs (EWSs) of impending state changes known as critical transitions (e.g., ecological collapse, financial crises, and shifts in climate regime). Only a few studies have explicitly applied this framework to health and disease (Gijzel et al., 2017; Ghalati et al., 2019; Nakazato et al., 2020), though many studies have reported higher variation in various biomarkers preceding the onset of adverse outcomes in subjects with chronic diseases (Holzel, 1987; Ma et al., 2012; Mendez et al., 2013; Myers et al., 2018; Woo et al., 2018), including Chronic Kidney Disease (CKD; Yang et al., 2007; Flythe et al., 2013; Selvarajah et al., 2014; Corte et al., 2015; Nakazato et al., 2017). Increased variance is indeed one of the main characteristics of resilience loss (Gijzel et al., 2017). Additionally, most studies of critical transitions evaluate univariate indices. A network physiology perspective implies coordination across systems in timing and dynamics, suggesting that a multivariate approach would allow better assessment of the coordinated physiological shifts.

One of the challenges in using clinical biomarker-based models of critical transitions in physiology is that detection of EWSs requires detailed time series in order to detect features such as increases in variance, autocorrelation, loss of resilience, etc. Chronic kidney disease (CKD) represents an excellent opportunity to circumvent this challenge: patients on hemodialysis are generally treated three times per week, with blood work conducted approximately every 2 weeks depending on local protocols. The health consequences of repeatedly missing visits can be severe, and treatment can continue for years or even decades. Accordingly, electronic medical records can provide time series with bi-weekly values for fixed biomarker panels spanning many years, with relatively few missing data for the core blood panels, and with little to no bias in terms of health state (i.e., the same markers are measured at the same time regardless of the presence or absence of other health problems). This is in contrast to cohort study data collected explicitly for research in humans, which rarely provide a dense enough time series, and to most other types of clinical data, where there are problems with the regularity of measurement, variation in the biomarkers measured, and a bias toward measurement only when health problems are suspected (i.e., sicker individuals).

Given the growing aging population, age-related chronic diseases like CKD are increasingly becoming a burden (O’Callaghan et al., 2011; Hill et al., 2016; Webster et al., 2017; Luyckx et al., 2018), and thus a prominent research topic. CKD does not solely consist of kidney dysfunction, but also leads to various systemic complications: cardiovascular disease and stroke, anemia, etc (Thomas et al., 2008; Webster et al., 2017). Usually, CKD-related complications, rather than CKD itself, lead to death (Muntner et al., 2002; Go et al., 2004; Nordio et al., 2012; Hill et al., 2016). Moreover, diabetes and hypertension, along with glomerulonephritis, are known to be the primary causes of CKD (Webster et al., 2017), stressing the importance of holistic approaches to age-related diseases (Kennedy et al., 2014). If EWSs were successfully assessed, early diagnosis and treatment adjustments could be performed in a timelier manner. In particular, patients with end-stage kidney disease (ESKD, the last stage of CKD) are often hospitalized, suffering substantial health comorbidities as individuals and representing an important burden on the health care system (Nordio et al., 2012; Webster et al., 2017; Luyckx et al., 2018). Hospitalizations and death may often represent what we term here “physiological collapse,” a critical transition in which the homeostatic/homeodynamic mechanisms are pushed outside the bounds they can properly respond to and thus require external intervention to maintain life. Early detection of impending physiological collapse events could provide the potential for less burdensome, less costly, and more effective interventions. For example, an algorithm to detect EWSs of physiological collapse could be built directly into electronic medical records systems, providing an alert when appropriate. Many dynamic signals of EWSs have been identified in critical transition literature more broadly: increased variability, decreased resilience, increased autocorrelations, increased cross-correlations, and critical slowing down. However, the accuracy and sensitivity of the establishment of such signals are still challenging (Scheffer et al., 2012), and medical applications are not well developed.

Here, we focus on one EWS indicator: the increase in variability of a complex system, which is often linked to loss of resilience (Scheffer et al., 2012). Increase in variability reflects the longer time that the system with low resilience takes to recover from perturbations and return to an equilibrium state, a phenomenon named critical slowing down and which causes higher fluctuations (Scheffer et al., 2012; Kéfi et al., 2014). However, change in variability is still being studied one biomarker at a time (Ma et al., 2012; Flythe et al., 2013; Mendez et al., 2013; Nakazato et al., 2017; Woo et al., 2018), even though a multivariate signal would likely be more powerful. Within organisms, biomarkers are integrated into a complex physiological system in which levels of one depends on the levels of many other biomarkers; hence no single marker can truly reflect the underlying physiological state (Cohen et al., 2012; Cohen, 2016). Moreover, biomarkers can be sensitive to population composition, a problem that can be partially circumvented by integrating the interdependence of biomarkers into the equation (Cohen et al., 2017). More broadly, approaches to measure EWSs for critical transitions are generally univariate even though the systems in question (ecosystems, economies, etc.) are generally high-dimensional and interconnected. Multivariate EWSs are thus an important untapped field, and would link critical transition theory to network physiology, where synchronization across physiological systems is a major subject of interest. We have previously demonstrated the utility of statistical distance in measuring multivariate physiological dysregulation (PD) and predicting mortality, either at the organism level (Cohen et al., 2013, 2014, 2015; Milot et al., 2014) or in specific systems (Li et al., 2015). However, the previous work, based on Mahalanobis Distance (Mahalanobis, 1936), had only considered the deviation of biomarkers from an average population norm. Here, we hypothesized that intraindividual changes in biomarker variability could be captured with the same approach, but by calculating the distance of an individual’s multivariate position from that of the previous visit, instead of the distance from the population mean (Figure 1 and Supplementary Figure 1). We defined this measure as Moving Multivariate Distance (MMD) and tested it in a population of 763 patients with CKD under long-term hemodialysis. We hypothesized that intraindividual variability in biomarkers, as measured by MMD, would increase before a critical transition (in this case, death).


[image: image]

FIGURE 1. Explanations of Mahalanobis Distance and MMD. (A) A two-dimensional example of Mahalanobis distance. (B) A low dynamic movement of Moving Multivariate Distance (MMD), i.e., low intraindividual variability. (C) A high dynamic MMD movement, i.e., high intraindividual variability. (D) A two-dimensional autocorrelation.




MATERIALS AND METHODS


Dataset

Our study population consisted of 2565 patients who underwent hemodialysis from 1997 to 2017 at the Centre Hospitalier Universitaire de Sherbrooke (CHUS) in Quebec, Canada. Data were extracted from the CIRESSS platform, which aggregates all electronic hospital data for clinical and administrative purposes. Because the CHUS hospital system is the only tertiary hospital in the region, these data can be considered a nearly exhaustive representation of hemodialysis patients in the Eastern Townships region of Quebec (population ∼325K) for the period in question. From the 2565 patients, we excluded 1694 who were no longer treated by in-center hemodialysis at 6 months (potentially indicating death, recovery within 6 months and thus acute rather than chronic kidney failure, or transition to another renal replacement modality or to conservative care), and 58 patients with irregular hemodialysis visits and/or an acute or unspecified kidney failure diagnosis, leaving us with 813 patients having CKD and on long-term hemodialysis. For all the patients, we excluded the first 6 months on hemodialysis since dialysis initiation has been reported to represent a critical transition in itself (Broers et al., 2015), but for 26 patients, we were left with less than three blood sampling visits and thus excluded them. We also excluded 24 patients with incomplete biomarker data, yielding a total of 763 patients for analyses (Table 1). We define these 763 long-term hemodialysis patients as the “Full” dataset in the study, in contrast to the “Individuals 65+” dataset, those aged 65 years or more at their last data collection, from the 763 hemodialysis patients. However, some patients were lost to follow-up or had missing data (either they moved or stopped blood work due to palliative care) in the period just preceding their death. We expected that physiological signals would be strongest just prior to death, and thus created additional data subsets excluding individuals who did not have a visit within the last 30, 60, 90, 183, or 365 days preceding the date of death (loss to follow up, Supplementary Table 1). We also created a subset of “Kidney transplant” patients. As opposed to all censored patients which contain patients who were censored for unknown reasons or due to the end of the study period, which may happen not long before their death, this subset strictly contains patients censored by a kidney transplant. It was generated by selecting patients who had no hemodialysis visit and did not die in the 2 years following their kidney transplant. All trend plots only considered the last 5 years’ biomarker profiles for each patient (i.e., preceding death, kidney transplant, or loss to follow-up).


TABLE 1. Characteristics of study participants at first visit included in analyses (i.e., after excluding the first 6 months of dialysis).
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Biomarker Selection

Patients under dialysis treatment have regular blood sampling, generally every 2 weeks; however, not all biomarkers are measured with the same frequency. We thus generated three blood schedule-based biomarker sets according to intervals at which they were available (Table 2). Therefore, the “Two weeks” biomarker set only includes the biomarkers that are tested every 2 weeks. The “One month” biomarker set includes the biomarkers that are tested every 2 weeks or every month. The “Four months” biomarker set includes all the biomarkers that we consider. Because the frequency of blood sampling was not perfect in our dataset, we considered all visits that occurred within 12 to 16 days as a two-week interval, 25 to 35 days as a one-month interval, and 100 to 140 days as a four-month interval. We excluded the following biomarkers because they were irregularly measured or had many missing values in our dataset: uric acid, ionized calcium, carbon dioxide, iron-binding capacity, iron, ferritin, iron saturation, transferrin, urea, glycated hemoglobin, partial carbon dioxide pressure, partial oxygen pressure, pH, intact parathyroid hormone, and thyroid-stimulating hormone.


TABLE 2. Biomarker information.

[image: Table 2]According to the physiological features of the biomarkers, we also classified them into three physiological systems (Table 2). Creatinine is commonly used to report estimated glomerular filtration rate (eGFR), which is the most important indicator for estimating general kidney function in clinical practice (Webster et al., 2017). Albuminuria, which implies continuous urinary loss, indicates pathological kidney damage which is caused by elevating membrane permeability (Webster et al., 2017). In addition, albumin level is decreased secondary to uremic state, chronic inflammation and malnutrition, which are present in ESKD, and is a marker of mortality (Zoccali et al., 2005; Honda et al., 2006; Phelan et al., 2008).Therefore, we classified these two biomarkers into the “Kidney health” group (Table 2). Impaired kidney function can also lead to electrolytic alteration (i.e., potassium derangement, dysnatremia, and dysmagnesemia; Dhondup and Qian, 2017). The reduced potassium excretory capacity, which usually causes hyperkalemia, has been shown to be significantly associated with hospitalization and the prognosis of CKD patients (Luo et al., 2016; Dhondup and Qian, 2017). Therefore, we also included potassium and sodium in the “Kidney health” group (Table 2). Kidney dysfunction could interfere with erythropoietin (EPO) production; this could further lead to anemia, which is one of the complications of CKD (Webster et al., 2017). Accordingly, we included seven biomarkers describing red blood cells in the “O2 transport” group (Table 2). Similarly, the kidney plays an essential role in regulating calcium and phosphate metabolism (Dhondup and Qian, 2017; Webster et al., 2017), and mineral bone disease is indeed one of CKD’s possible complication (Dhondup and Qian, 2017; Webster et al., 2017). We thus created a third group named “Mineral Bone Disease” which includes calcium and phosphate (Table 2). For each physiological group, we used the visit interval of the least frequently measured biomarker as the interval for MMD calculation (i.e., we use “Four months” as the visit interval for the “Kidney health” group since it includes “Albumin”). Lastly, MCH, MCHC, and MCV are mathematically redundant, since they can be calculated from hemoglobin, RBC count, and HCT. To check the effect of this redundancy on MMD, we conducted sensitivity analyses excluding the three redundant biomarkers from both the blood schedule-based biomarker sets and physiological system biomarker sets and then performed Cox proportional hazard models (see details in section “Survival Analysis”).



Moving Multivariate Distance Calculation

We previously demonstrated that Mahalanobis distance can serve as a global measure of physiological dysregulation by calculating the distance of one’s biomarker profile relative to a population norm, essentially serving as a measure of aberrant physiological profile (Cohen et al., 2013, 2014, 2015; Milot et al., 2014; Li et al., 2015). In this previous work, we used a reference population (either the entire dataset or a younger and healthier population) to calculate the variance-covariance matrix (S) among biomarkers and mean values for each biomarker included in the Mahalanobis distance calculation (1). Since we were interested in measuring intraindividual rather than interindividual variation, here we used the individual biomarker profile of each previous visit xt–1 rather than the population mean μ as the reference for calculating the distance to its following biomarker profile xt (Figures 1B,C), though the covariance among biomarkers S was still calculated at the population level (2).
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Therefore, a higher MMD represents higher intraindividual multivariate variability. By using the previous state rather than the population mean as a reference population, and by using a time series, MMD measures something completely different than traditional Mahalanobis distance: the variability of an individual’s profile in physiological space (Supplementary Figure 1). However, S–1 is identical in Eqs 1, 2, calculated from all observations of x within each biomarker set, as it is assumed the physiological space defined by correlation structure is largely invariant across individuals.

The stationarity of the covariance matrix (=correlation matrix, since all variables are normalized) is a strong assumption in our model; future work will assess how the correlation structure may also evolve prior to critical transitions. Here, in order to test the importance of this assumption, we varied the variance-covariance matrices in three ways. First, we adjusted all the covariance values to 0 while keeping the variance (diagonal) in the variance-covariance matrix, var-cov (I). Then, we calculated the variance-covariance matrices by using only biomarker profiles from the last 3 months before death var-cov (II), and by using only those at least 2 years before death, var-cov (III).

Some biomarkers were log (white blood cell count, red cell distribution width, and glucose) or square-root (platelet count) transformed to better approach the assumption of multivariate normality in Mahalanobis distance, and all biomarkers were z-transformed according to the entire population mean and standard deviation before MMD calculation. We calculated the average among all the individual MMDs every half-year before death (or last contact for censored individuals, i.e., those who ceased hemodialysis after having a kidney transplant or were lost in follow-up before the end of the study) with 95% confidence intervals to visualize the MMD trend over time. Formal statistical tests of these trends are provided by the survival analysis in the next section. The R packages of “ggplot2”, “ggpubr” were used for visualization.



Survival Analysis

To assess MMD’s predictive power of mortality, we ran Cox proportional hazards models with the package “survival (3.2-7)”, using years before death or last contact as the time-to-event variable. We controlled for sex and diabetic diagnosis, for age with a cubic spline (bs function, “fda” package), and for individuals using the cluster argument in the “coxph” function. We log-transformed MMD (log-MMD) for survival analysis since MMD is not normally distributed, and the calibration curve (“calibrate” function, “rms” package) of the log-transformed version showed a much more linear prediction in most cases, especially for the “Two weeks” biomarker set (data not shown). In a few cases, biomarker values at two consecutive visits yielded MMD equals to zero, which indicates no observed change in physiological condition from one visit to the next. In this case, we used half of the minimum value for the individual MMD, and then further performed log-transformation. We calculated the difference in hazard ratio (HR) between the 97.5th percentile and the 2.5th percentile (“HR95”) of log-MMD to illustrate the magnitude of the effect regardless of the scale of a continuous independent variable. We also checked whether the proportional hazards (PH) were constant over time, and thus that the model met the PH assumption by using the “cox.zph” function. We used the function “forestplot” for plotting. All analyses were run in R version 3.6.0. All code is available upon request.



RESULTS

Characteristics of our study population are shown in Table 1. Briefly, our study population was comprised of 763 patients on long-term hemodialysis (“Full” dataset) for an average of 3.3 years. 525 (68.8%) of the patients died before the end of the study, while the rest were censored (future outcome was unknown). One hundred forty-nine patients had at least once successful kidney transplant (i.e., no subsequent dialysis 2 years after having a kidney transplant). Half of the patients were diabetics (51.2%), nearly two thirds were men (62.8%). It should also be noted that, while the population had a large age range (16.2 to 94.6 years), more than half (67.8%). of the participants were aged 65 or older at their last visit included in analyses (“Individuals 65+” dataset).


MMD Trends Over Time

Figure 2 shows MMD trends prior to last contact, kidney transplant, or death. For deceased individuals, the MMD of each three blood schedule-based biomarker sets shows an upward trend during the last year before death (Figure 2C). A similar but much less marked trend is visible for some analyses for the censored individuals (Figure 2A); however, no important trend is seen in biomarker sets for the individuals before receiving a kidney transplant (Figure 2B). Such trends were also evident when grouping the biomarkers by physiological system (Figures 2D–F). Such upward trends of the MMD prior to death were replicated regardless of whether individuals with missing data before death were excluded at different intervals (Supplementary Figures 3, 4), or the individuals’ age factor (Supplementary Figures 2, 4), or regardless of the covariance matrix used (Supplementary Figure 7).
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FIGURE 2. MMD half-year trends for different biomarker sets of hemodialysis patients. (A,D) show MMD of the censored individuals until their last contact. (B,E) show MMD of the individuals before receiving a successful kidney transplant (without subsequent dialysis 2 years after kidney transplant performed). (C,F) show MMD of the deceased individuals before the death, excluding individuals whose biomarker profile was missing during the last 30 days before the death. (A–C) used blood schedule-based biomarker sets, while (D–F) used physiological system biomarker sets. All the panels above were made based on the “Full” dataset (all the 763 hemodialysis patients). Note that the best statistical test for the differences observed here is the Cox models presented in Figure 3, Supplementary Figure 5, and Supplementary Tables 2–10. The trend graphics here are for illustrative purposes only.




Survival Analysis

MMD was found to be a strong predictor of mortality, regardless of detailed analytical decisions. Among the blood schedule-based biomarker sets, the “Two weeks” biomarker set gives the highest HR95 (Figure 3A). Generally speaking, signal increases slightly but not meaningfully as we are increasingly stringent about excluding individuals with missing visits prior to death (Figure 3A). Such results were replicated on the “Individuals 65+” dataset (Supplementary Figure 5). MMD in all three physiological systems was also associated with increased mortality risk (Figure 3B), though effects were generally much more modest than when combining all biomarkers. The O2 transport group gave the greatest HR95 among the physiological systems tested. Most Cox models were acceptable in terms of the PH assumption, though the PH assumption tended to be violated in models that did not exclude individuals missing data just prior to death (Supplementary Tables 2, 3 and 4). Results were also broadly replicated using different covariance matrices; results were somewhat stronger using an identity matrix for the variance (Supplementary Tables 7–9), and a bit weaker using the var-cov (II) (calculated based on individual’s biomarker profile from the last 3 months before death), but qualitative results are similar.
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FIGURE 3. Survival analysis of the “Full” dataset. We ran Cox hazard proportional models in (A) the blood-schedule based biomarker sets and (B) the physiological system biomarker sets, using different cut offs (i.e., excluding individuals based on the time length of unavailable biomarker profiles). Points represent the difference in hazard ratio between the 97.5th percentile and the 2.5 percentile, and segments represent 95% confidence intervals.


For the sensitivity analyses excluding the redundant biomarkers, results were qualitatively similar, and the “Two weeks” biomarker set and “O2 transport” physiological system biomarker set showed a higher HR95, indicating an even a stronger effect (Supplementary Tables 5, 6), however, both with a lower acceptance in terms of PH assumption (Supplementary Tables 5, 6). To test for any potential hidden bias in the data or the proposed methodology, notably a boundary effect where apparent but not real variability increases close to a data boundary, such as death, we calculated MMD by randomly shuffling visit order for each individual and found no evidence for such bias (Supplementary Figure 6 and details in Supplement).



DISCUSSION

Here, we defined the concept of MMD as a way to quantify the variability of an individual’s biomarker profile over time (or, more generally, the multivariate variability of a time series). MMD applies the concept of Mahalanobis distance, but rather than comparing a set of biomarkers to a population mean, it compares it from one visit to the subsequent one within one individual. A greater MMD thus indicates higher intraindividual multivariate variability. We showed that MMD increases markedly in the period preceding death in patients on hemodialysis, starting at 1 year before death but increasing exponentially in the few last months. Moreover, MMD is a strong predictor of mortality risk, and results were replicated using different sets of biomarkers based on their measurement frequency, with stronger effects using biomarker sets measured every 2 weeks compared to every month and every 4 months. These findings recapitulate the ones from Nakazato et al. (2017) showing greater changes in albumin variability in CKD patients, rather than changes in albumin levels per se (Nakazato et al., 2017). This finding was further supported with a similar approach but combining multiple biomarker coefficients of variation through principal components analysis (Nakazato et al., 2020).

From a network physiology perspective (Bashan et al., 2012; Ivanov et al., 2016), our findings confirm a synchronicity of variance increases prior to death across distinct physiological systems (Figures 2F, 3B). This synchronicity observed here appears largely due to changes in the variance rather than the covariance of markers, as the result is qualitatively similar when assessed with various covariance structures (Supplementary Figure 7). Future work will examine whether changes in the covariance structure might also be harnessed to improve predictions. Hemodialysis data such as we use here are not likely to be fine-scale enough to evaluate how signals propagate from one system to another, but other types of physiological data such as vital signs might permit this.

Additionally, mortality risk increases and the PH assumption is generally better respected as data become more complete prior to death, suggesting that we may be underestimating the true effects, or what might be detected with biomarker data at a finer time scale (Wen et al., 2018). Further validation in other medical conditions or datasets should be done to assess the sensitivity and efficiency of our approach. The poorer performance of specific physiological subsets compared to the full set of biomarkers suggests that signal increases substantially as more biomarkers are included, but this requires further validation and direct comparison. Also, as has been shown for clinical frailty (Fried et al., 2009; Ghachem et al., 2020), the additive dysfunction of many physiological systems might cause organismal collapse, rather than individual system dysfunction; hence a measure combining different physiological systems may better capture the underlying physiology and the synchronization of larger networks of systems. We also found an upward MMD trend in censored individuals in the few months preceding the end of the study period, though such trend appears later and is less obvious than for the deceased individuals. It probably reflects that all patients involved in the study were suffering from CKD and thus some, if not many, censored individuals were probably heading toward death. Another possible interpretation was that there could be a hidden bias in the data or the method that creates an artificial trend, but this was not supported by our results on shuffled visits (Supplementary Figure 6 and details in Supplement).

Various approaches have been developed to study critical transitions of complex systems in various domains. In neuroscience, Bashan et al. (2012) demonstrated that several integrated physiological systems play part in topological transition in sleep stages. Ghalati et al. (2019) used the Surprise Loss (SL) approach to characterize the critical transition that occurs before a septic shock. Dakos et al. (2008) illustrated the critical slowing down that precedes tipping points in climate transitions, using a time-series autocorrelation approach. Moreover, Dakos et al. (2012) compared different methods to predict critical transitions in ecological time series data, proposing a methodological guide that should be applicable in various fields. Nonetheless, none of the proposed approaches to critical transitions involved a multivariate description of the system.

In clinical practice, a reliable early diagnostic approach is in high demand since the current early diagnosis of chronic disease is still far from perfect (Webster et al., 2017). For CKD, many patients are asymptomatic and can only be detected by screening tests or at an advanced stage (Webster et al., 2017), which usually leads to a poor prognosis. Likewise, in patients with ESKD (GFR < 15 mL/min, per 1.73 m2, Webster et al., 2017), there are no current reliable indicators of physiological collapse. Management of CKD, particularly in older patients, remains a challenge, notably due to the interaction of CKD with other comorbidities (Anderson et al., 2009). Several mortality risk factors have a higher prevalence in CKD subjects, including lower physical activity level (Johansen et al., 2000), anemia (Astor et al., 2002; Ble et al., 2005), as well as cognitive decline and dementia (Seliger et al., 2004; Kurella et al., 2005; Hailpern et al., 2007). In this study, we have shown that the newly defined MMD approach can measure temporal intraindividual multivariate variability and may thus serve as an EWS in CKD patients. This model supposes a network physiology structure in which there is coordination across systems. The MMD approach can be used to quantify the global variability of multiple biomarkers, which indicate the dynamic from different physiological systems; thus, physiological network variability. Early prediction of underlying physiological change may help clinicians to manage these patients by indicating the need for further investigation or treatment. Before the system collapses, there are opportunities for the system to reverse to the equilibrium state or alternative stable states (Scheffer et al., 2001; Trefois et al., 2015).

There are also some limitations to this study. Time intervals in our study cohort were not always as precise as the prescribed blood test schedule, due to hospitalization events and other unknown reasons. To circumvent this problem, we only selected blood tests that felt into regular intervals but set a range of a few days to maximize the sample size. The smallest interval we used in the study was 2 weeks. However, a two-week interval is still a relatively long period from a physiological perspective, and the capacity to predict such a critical transition could be more powerful and precise if we could use a shorter interval (Wen et al., 2018). All patients in our study population were suffering from the same condition, even at the beginning of the study; thus, we did not compare our results with healthy participants, nor did we have records prior to the chronic kidney condition. Future studies should aim to make such comparisons. Lastly, we use a stationary covariance matrix for MMD calculation, a strong assumption in a dynamic network system. While results don’t change markedly with changes in the covariance matrix, future work will explore how changes in covariance might also be related to impending critical transitions.

Our multivariate approach shows promise for predicting critical transitions. Such detectable EWSs might prevent hospitalizations and complications, thereby saving lives and costs to the healthcare system by indicating the need for early interventions. Beyond CKD patients, our approach could also be applicable in other medical contexts (intensive care, congestive heart failure, cognitive decline, clinical frailty, or perhaps aging more generally), to predict non-adverse critical transitions (e.g., sleep and waking, or different sleep cycles), and even in other fields such as ecology (ecosystem collapses), economy (financial crises), and climate change. Thus, future work should validate our approach with other data and within other contexts and compare it to other methods for predicting critical transitions.
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Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components. How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue slices with time series analysis and network science approaches to unveil the glucose-dependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks.

Keywords: islets of Langerhans, beta cell network, calcium oscillations, multimodal activity analysis, confocal imaging, functional connectivity, multiplex network


INTRODUCTION

Rhythmicity is a hallmark of many organs within the human body, a process manifested from molecular reactions to whole body rhythms. An important example is the oscillatory nature of insulin secretion (Lang et al., 1979). Insulin is an anabolic hormone secreted from pancreatic beta cells, mainly postprandially. Since insulin is secreted in the portal vein, the liver is the first organ exposed to it, and up to 80% of secreted insulin is cleared by the liver by the receptor-mediated process during the first liver passage (Eaton et al., 1983). The amplitude of insulin release directly defines hepatic insulin clearance as well as consecutive systemic insulin amount (Meier et al., 2005). The oscillatory pattern of insulin delivery to the target tissues is essential for insulin action, ensuring a higher level of sensitivity of target tissues compared with the same amount of insulin administered at a constant dose (Matthews et al., 1983b). In the liver, pulsatile insulin delivery suppresses hepatic glucose production more effectively (Matveyenko et al., 2012) and prevents insulin receptor desensitization (Li and Goldbeter, 1992). Fluctuations in hepatic glucose production determine oscillations in the plasma glucose concentration, representing a possible feedback mechanism for pancreatic insulin secretion (Goodner et al., 1982; Pedersen et al., 2005). The changes in the normal pattern of plasma insulin oscillations are an early marker of insulin resistance and diabetes mellitus and can be found in diabetic animal models, such as ob/ob mice (Ravier et al., 2002) and ZDF rats (Sturis et al., 1994), as well as in diabetic patients (Lang et al., 1981; Polonsky et al., 1988) and even their relatives (O’rahilly et al., 1988). Besides disrupted pulsatility of insulin release, the hepatic extraction of insulin is impaired in diabetic patients (Sando et al., 1980; Bonora et al., 1983).

Insulin concentration in vivo oscillates with a period of 5–15 min (Matthews et al., 1983a; Porksen et al., 1995; Song et al., 2000) and elevated plasma glucose increases the amplitude but not the frequency of plasma insulin oscillations (Matthews et al., 1983a; Juhl et al., 2000). It has been confirmed that oscillations of plasma insulin can be due to an intrinsically pulsatile release of insulin from the pancreas (Stagner et al., 1980). The oscillatory nature of insulin release has also been observed in isolated islets, further suggesting that oscillatory insulin secretion does not rely on external or intrapancreatic neural stimulation, but it is an intrinsic property of pancreatic islets, although several external factors may modulate it in vivo (Dean and Matthews, 1970; P. Gilon et al., 1993). However, there are still some open questions regarding the regulation and synchronization of insulin release from individual beta cells within an islet and between different islets that enable the appearance of pulsatile plasma insulin levels with a period of 5–15 min. Besides these oscillations, slower ultradian rhythms with a period of about 2 h (Simon et al., 1987) and circadian rhythms of insulin secretion, have also been observed (Peschke and Peschke, 1998).

The stimulus-secretion coupling in pancreatic beta cells involves the entry of glucose into the cell and glucose metabolism, resulting in increased ATP, which in turn decreases the open probability of ATP-dependent potassium (KATP) channels (Nilsson et al., 1996). This brings about membrane depolarization, the opening of voltage-dependent Ca2+ channels, and increased cytosolic Ca2+ concentration, which triggers the beta cell secretory machinery and insulin secretion. In addition to these so-called triggering pathways, additional metabolic and neurohormonal pathways exist (Henquin, 2011; Skelin Klemen et al., 2017). Individual beta cells respond to increased glucose concentration with oscillations in membrane potential, Ca2+, and insulin secretion. Mouse beta cells in isolated islets, in pancreas tissue slices, and in vivo oscillate at three different temporal scales when exposed to stimulatory glucose concentration above 6 mM glucose (Santos et al., 1991; Gilon and Henquin, 1992; Bergsten et al., 1994; Dolenšek et al., 2013; Stožer et al., 2013; Salem et al., 2019; Jacob et al., 2020). The slowest Ca2+ oscillations with a frequency of 0.06–0.2 min–1 and duration of 5–15 min lie in a range similar to the plasma insulin oscillations and are thought to underlie the pulsatility in plasma insulin. These slow oscillations most probably reflect metabolic activity and drive the oscillatory ATP production, which in turn affects the intermittent activity of KATP-channels (Nilsson et al., 1996; Tornheim, 1997). In pancreatic beta cells, like in many other living cells, the phosphofructokinase-catalyzed step is one of the candidates responsible for the oscillatory nature of the metabolic activity (Westermark and Lansner, 2003) and has been found crucial for normal insulin secretion (Ristow et al., 1999). Superimposed on the slow oscillations are the so-called fast Ca2+ oscillations with a frequency of about 5 min–1 and a duration of about 2–15 s. It is currently believed that these oscillations result from Ca2+ feedback on ion channels, and therefore reflect the bursting pattern of electrical activity. The frequency and the duration of these oscillations are glucose-dependent (Meissner, 1976; Santos et al., 1991; Nunemaker et al., 2006; Scarl et al., 2019; Dolenšek et al., 2020) and are considered essential for setting the amplitude of the slow plasma insulin oscillations (Bergsten, 2002; Hellman, 2009; Satin et al., 2015). Both slow and fast oscillations are well synchronized between different beta cells of the same islet (Satin et al., 2015; Skelin Klemen et al., 2017; Bertram et al., 2018). Finally, it should be noted that there exist even faster Ca2+ oscillations with a duration of around 100 ms, which are superimposed on the fast oscillations or bursts and are called spikes. They correspond to individual action potentials, observed during a burst of membrane potential depolarization.

To ensure the pulsatile profile of plasma insulin, both inter- and intra-islet synchronization seem to be essential. How different islets within the pancreas are coordinated to produce pulsatile plasma insulin is still not completely understood. Since plasma glucose fluctuates with a similar period as plasma insulin (Lang et al., 1979), the glucose feedback to pancreatic islets could account for the synchronization of the islets (Westerlund and Bergsten, 2001; Gilon et al., 2002; Pedersen et al., 2005). Besides classical feedback mechanisms, neural mechanisms with parasympathetic and sympathetic neurons exhibiting the opposite effect on islet function (Ahrén, 2000) and signals from other non-pancreatic tissues, like the intestine (Drucker, 2007), liver (Imai et al., 2008), fat tissue (Morioka et al., 2007), bones (Lee et al., 2007), and others, seem important for normal islet function (Eberhard and Lammert, 2009). On the other hand, synchronization between individual beta cells within a single islet is believed to be achieved via gap-junctional coupling through Connexin36 and through additional means of intercellular communication (Meda et al., 1979; Moreno et al., 2005; Eberhard and Lammert, 2009; Benninger et al., 2011; Almaça et al., 2020). This coupling enables neighboring beta cells to communicate and, in part, synchronize their dynamics. The diffusion of intermediate products of glycolysis, in particular glucose-6-phosphate, is probably responsible for the coupling of slow oscillations (Tsaneva-Atanasova et al., 2006), while electrical depolarization with a space constant in the order of a few beta cell diameters accounts for the alignment of fast oscillations and explains the experimentally observed Ca2+ waves (Meissner, 1976; Meissner and Preissler, 1979; Eddlestone et al., 1984; Santos et al., 1991; Aslanidi et al., 2001; Benninger et al., 2008; Zhang et al., 2008; Skelin Klemen et al., 2017; Šterk et al., 2021). Furthermore, it was proposed that the electrical coupling increases with glucose concentrations (Eddlestone et al., 1984).

Investigating the collective activity of beta cell populations is gaining attention, primarily because of the increasing amount of data showing that the pathogenesis of diabetes comprises disruptions of regulated collective cellular activity and the consequent disturbance in insulin secretion (Head et al., 2012; Hodson et al., 2013; Skelin Klemen et al., 2017; Westacott et al., 2017a; Adams et al., 2020; Akalestou et al., 2020). However, the pancreatic islets are characterized by multiple facets of complexity in the cytoarchitecture and cellular dynamics, as well as with the presence of heterogeneity and biological variability, which makes the overall function of these highly interconnected structures difficult to understand. Noteworthy, in the last few years, combining the complex networks theory with advanced imaging techniques has proven to be an advantageous tool for quantifying multicellular dynamics in these micro-organs (Hodson et al., 2013; Stožer et al., 2013; Johnston et al., 2016; Gosak et al., 2018; Salem et al., 2019). By these means, functional networks constructed on the basis of statistical similarity between simultaneously measured signals of multiple cells are used to embody intercellular communication patterns. The methodology was not only found useful for demonstrating that beta cell networks share many similarities with several other biological networks, such as small-worldness, modularity, and a heterogeneous degree distribution (Stožer et al., 2013; Johnston et al., 2016; Gosak et al., 2018), but also that there are important relations between beta cell metabolic activity and the orchestration of collective islet behavior (Gosak et al., 2015; Johnston et al., 2016). Moreover, it turned out that beta cell networks are rather segregated, which is most probably linked to cellular variability and the existence of sub-populations (Markovič et al., 2015; Dwulet et al., 2019; Dolenšek et al., 2020; Nasteska et al., 2020). The beta cell connectivity architectures were also found to be very heterogeneous with a small fraction of very well connected cells, i.e., hub cells, which are believed to substantially affect the collective cellular activity (Johnston et al., 2016; Lei et al., 2018; Loppini and Chiodo, 2019; Salem et al., 2019; Nasteska et al., 2020), even though the precise mechanisms are still incompletely understood (Satin et al., 2020). Therefore, how various intercellular coupling mechanisms and the interplay between electrical and metabolic activity in populations of heterogeneous cells shape the complex spatio-temporal dynamics in islets and how these functions are impaired in diabetes is a matter of ongoing research. One of the main limitations in the field of complex network approaches to understanding beta cell synchronization is that different groups employ different types of Ca2+ oscillations as the basis for constructing functional networks.

In the present study, we, therefore, aim to further explore the multimodal nature of oscillatory activity in pancreatic beta cells that is governed by interactions of various physiological regulatory systems. We distinguish between the metabolically driven low-frequency component of Ca2+ oscillations (order of minutes) and the high-frequency component, which is governed by the membrane electrical activity (order of seconds). We focus particularly on the relationship between both oscillatory components and to what extent their collective rhythmicity is coordinated on the multicellular level. For this purpose, we combine time series analysis with network-theoretical approaches to examine glucose-stimulated oscillatory Ca2+ dynamics measured in beta cells from acute mouse pancreas tissue slices.



MATERIALS AND METHODS


Ethics Statement

The study was carried out in strict accordance with all national and European recommendations related to work with experimental animals, and all efforts were made to minimize the suffering of animals. The protocol was approved by the Administration of the Republic of Slovenia for Food Safety, Veterinary Sector and Plant Protection (permit number: 34401-35-2018/2).



Tissue Slice Preparation

Pancreas tissue slices were prepared from adult NMRI male mice kept in individually ventilated cages (Allentown, PA, United States) on a 12 light/12 dark cycle, as described previously (Speier and Rupnik, 2003; Stožer et al., 2013). In brief, after sacrificing the animals by a high concentration of CO2, the abdomen was exposed via laparotomy and low-melting-point 1.9% agarose (Lonza Rockland Inc., Rockland, ME, United States) in extracellular solution (ECS, consisting of (in mM) 125 NaCl, 26 NaHCO3, 6 glucose, 6 lactic acid, 3 myo-inositol, 2.5 KCl, 2 Na-pyruvate, 2 CaCl2, 1.25 NaH2PO4, 1 MgCl2, 0.5 ascorbic acid continuously bubbled with a gas mixture containing 95 % O2 and 5 % CO2 at barometric pressure to ensure oxygenation and a pH of 7.4) at 40°C was retrogradely injected into the pancreatic ductal tree via the proximal common bile duct clamped at the papilla of Vater. Subsequently, following immediate cooling with ice-cold ECS and extraction, small blocks of tissue (0.1–0.2 cm3 in size) were cut and embedded in agarose at 40°C. The tissue was cut at 0.05 mm s–1 and 70 Hz into 140 μm-thick slices (VT 1000 S vibratome, Leica, Nussloch, Germany), and the obtained slices collected in HEPES-buffered saline at room temperature (HBS, consisting of (in mM) 150 NaCl, 10 HEPES, 6 glucose, 5 KCl, 2 CaCl2, 1 MgCl2; titrated to pH = 7.4 using 1 M NaOH) until incubation in the dye-loading solution. All chemicals were obtained from Sigma-Aldrich (St. Louis, MO, United States) unless indicated.



Dye Loading and Ca2+ Imaging

Slices were incubated in the dye-loading solution [6.87 μM Calbryte 520AM (Calbryte, AAT Bioquest, CA, United States), 0.03% Pluronic F-127 (w/v), and 0.12% dimethylsulfoxide (v/v) dissolved in HBS] at RT for 50 min. Following the staining protocol, the slices were transferred into HBS containing 6 mM glucose and stored for up to 8 h until Ca2+ imaging. For Ca2+ imaging, individual tissue slices were transferred to the perfusion system delivering carbogenated ECS with varying glucose concentrations, according to the stimulation protocol, and kept at 37°C. The protocol consisted of initial exposure to the non-stimulatory 6 mM glucose, followed by either 8 or 12 mM glucose for 45 min, and washout with 6 mM glucose. The Ca2+ imaging was performed on a Leica TCS SP5 AOBS Tandem II upright confocal system (20x HCX APO L water immersion objective, NA 1.0) and a Leica TCS SP5 DMI6000 CS inverted confocal system (20X HC PL APO water/oil immersion objective, NA 0.7). The acquisition was set to 10 Hz at 512 × 512 pixels to make the precise quantification of Ca2+ oscillations feasible. The dye was excited by argon 488 nm laser line and emitted fluorescence was detected by Leica HyD hybrid detector in the range of 500–700 nm (all from Leica Microsystems, Germany), as described previously (Stožer et al., 2013). Additionally, a higher resolution (1,024 × 1,024 pixels) image was acquired. Beta cells identification was done by selecting regions of interest (ROIs) off-line using microscope software or third-party software. ROIs were selected based on cell morphology using a higher resolution image or alternatively, based on maximal projection image from time series and cell activity observed by replaying the time-lapse videos. Time-series data were corrected for photobleaching, employing a combination of linear and single exponential fit, and signals were expressed as (F–F0)/F0 ratios, where F0 is the initial fluorescence intensity, and F is the fluorescence signal recorded at an individual time point during the experiment.



Processing of Recorded Ca2+ Traces

The recorded time series of Ca2+ signals were first corrected for photobleaching of the dye employing a combination of linear and single exponential fit as described previously (Stožer et al., 2013). A Butterworth filter of the 5th order was then used to extract the fast and slow dynamical component from the recorded signals. To attain the low-frequency, i.e., slow, component, we applied the band-pass filter with 1×10−3 and 5×10−3 Hz for the lower and upper cutoff frequency, respectively. For the high-frequency, i.e., fast, component, we used 4×10−2 and 4×10−1 Hz for the lower and upper cutoff frequency, respectively.

For further analyses, we discretized both dynamical components. The fast component was binarized so that the values from the onset to the end of individual oscillations were 1, and values between the oscillations were 0. The binarized signals were then used to characterize the fast oscillatory activity, i.e., to calculate the average frequency, the average duration of oscillations, and the relative active time. The latter defines the fraction of time that the cells spend in an active state with increased intracellular Ca2+. Moreover, each oscillation of the slow component, i.e., the interval between two local maxima, was discretized to 12 segments, representing the phase intervals of the pseudo-sinusoidal wave function. More specifically, the time of the j-th local minimum and j-th local maximum of the i-th cell is denoted by [image: image] and [image: image], respectively. We divided the ascending part of the slow component [image: image] into six equidistant intervals and assigned values 1,2,…,6 (corresponding to the phase intervals [image: image]. Similarly, we divided the descending part of the slow component [image: image] into 6 equidistant intervals and assigned values 7,8,…,12 (corresponding to the phase intervals [image: image]). See Figures 1C–E for further insight.


[image: image]

FIGURE 1. Inferring dynamical components of beta cell calcium activity. Panel (A) shows an acute pancreas tissue slice under the stereomicroscope with islets of Langerhans indicated by arrowheads. In panel (B), a representative confocal image with well stained cells in the islet of Langerhans using calcium dye Calbryte 520AM is presented. The blue circle indicates a beta cell. In panels (C,D), a raw recorded trace from an exemplary cell is shown in gray after stimulation with 8 mM glucose. Blue lines in panels (C,D) signify the extracted slow and fast component signals, respectively. The gray shaded areas denote the plateau phase of sustained activity, TS and TP specify the activation delay and the onset of sustained activity, respectively. Panel (E) visualizes the ascending and descending phases of two succeeding slow component oscillations and the corresponding activity of fast oscillations. Black dots on the curve denote local extremes, and the colored background indicates the corresponding ascending and descending phases. In panels (F,G), polar plots show the activity of fast oscillations with respect to the phase of the slow component oscillations featured in panel (E).




Functional Network Analysis

Based on the extracted fast and slow dynamics of individual cells, we construct the corresponding fast and slow functional network layers. Nodes represent individual beta cells, and their positions correspond to physical locations of cells in tissue slices. Edges between node pairs are created on the basis of the temporal similarity of Ca2+ dynamics, given with the correlation coefficient between the i-th and j-th cell, Ri,j, computed as:

[image: image]

where fi(t) and fj(t) represent the slow or fast traces of the i-th and j-th cell. By computing Ri,j among all node pairs, we create the correlation matrix, R, with the ij-th element being the correlation coefficient Ri,j. To enable a direct comparison between different networks, we used variable thresholds to extract the binary adjacency matrix, so that the average node degree in each network was k=8. Conventional tools from the complex network theory were then used to quantify functional beta cell networks (Boccaletti et al., 2006), as described previously (Gosak et al., 2018). In brief, the relative degree distribution was calculated to explore the connectivity of cells in different network layers. For the evaluation of the network’s functional segregation, we computed the average clustering coefficient and modularity, which reflect the level of clique-like structures within interconnected cell assemblies and the extent of division into smaller subpopulations, respectively. To characterize the level of functional integration, we computed the relative largest component, which quantifies the fraction of cells in the islet that are either directly or indirectly connected. In addition, we calculated the average physical length of functional connections.



Statistical Analysis

Statistical analyses were performed using the statistics package in SigmaPlot 11 (Systat, Software Inc., IL, United States). We compared groups by using the t-test or the Mann–Whitney test (for non-normally distributed data). All significances are expressed as exact values and the number of islets included in analyses indicated accordingly. All significances are expressed as exact p values (p) and the number of islets included in analyses is indicated accordingly. We estimated effect sizes by calculating the values of Cohen’s d (d) by dividing the difference in sample means by the pooled standard deviation, according to the original definition (Cohen, 2013). Our judgements about effect sizes are in accordance with a recent classification (Sawilowsky, 2009).




RESULTS

We studied the effect of stimulation with two glucose concentrations: a physiological concentration that is commonly observed in vivo, i.e., 8 mM, and a supraphysiological concentration, i.e., 12 mM. First, we focused on the temporal aspect of the glucose-evoked oscillatory Ca2+ activity measuring the classical physiological measures, whereas in the second part of our analyses, we examined the synchronicity and collective activity of beta cell populations utilizing correlation analysis and network-based approaches. Particular emphasis was devoted to the interrelationship between the slow and the fast oscillatory component in both approaches.


Assessing the Multimodal Oscillatory Intracellular Ca2+ Activity in Pancreatic Beta Cells

In acute mouse pancreas tissue slice, islets of Langerhans are recognized under the stereomicroscope as white spots (Figure 1A) and therefore easily distinguished from the surrounding exocrine tissue. In an individual tissue slice up to five or six islets could be found, but only one of these islets per slice was used for calcium imaging. This islet was selected based on the size, successful loading with calcium dye and preserved architecture of the islet. A representative confocal image of an islet used for calcium imaging is shown on Figure 1B. Pancreatic beta cell Ca2+ response to glucose stimulation was recorded by means of multicellular confocal imaging in acute tissue slices as described in Materials and methods. The cells responded to stimulation with a delay in the onset of Ca2+ activity (TS), and they reached a state of sustained activity after a slightly longer time interval (TP, Figures 1C,D). The latter is termed the plateau phase and is characterized by repetitive well-aligned fast oscillations lasting a few seconds (MacDonald and Rorsman, 2006; Stožer et al., 2013, 2019). Most importantly, as it can be inferred from the recorded Ca2+ traces (gray lines in Figures 1C,D), this fast oscillatory activity is superimposed on a low-frequency oscillatory component. Using proper band-pass filters, we could extract individual dynamical components from the raw signals (see blue lines in Figures 1C,D for the slow and the fast component, respectively). At first glance, it can be observed that there was an order of magnitude difference in the frequency of both components and that the low-frequency component correlated with the behavior of the high-frequency oscillations, which will be addressed in more detail in continuation. To explore the relationship between both oscillatory components, we defined individual phases of slow oscillations, as illustrated in Figure 1E. This way, the activity of fast oscillations could be studied in the context of the slow component phases, as presented in Figure 1F.

Ca2+ activity of four exemplary cells from different islets is presented in Figures 2A,B for stimulation with 8 mM glucose and in Figures 2C,D for stimulation with 12 mM glucose. In panels below (Figures 2E–H), the corresponding polar density plots displaying the average relative density of fast oscillations as a function of the phase of the slow component are shown. Each plot includes the behavior of all cells and all slow oscillations in the given islet. It can be noticed that in both glucose concentrations, the relationship between the fast and slow oscillatory part can be either well-defined (see Figures 2A,E,C,G) or pronounced only weakly (see Figures 2B,F,D,H). However, irrespective of how apparent the correlation between both oscillatory components was, a very similar phase-dependency of the fast oscillations was attained. Namely, in all four cases, the highest density of fast oscillations was detected around the maxima and the lowest around the minima of slow oscillations. To provide a general insight into this behavior and investigate how it depends on the glucose concentration, we plot in Figures 2I,K, the average phase relationship pooled from all islets for a given glucose concentration. Evidently, a rather strong phase-dependency was observed in 8 mM glucose, whereas the correlation between the fast Ca2+ activity and the phase of the slow oscillations was, on average, only weakly pronounced in 12 mM glucose. To elaborate on this issue further, we show in Figure 2J the minimal value in the phase plots for each islet. This number reflects to what extent the frequency of fast oscillations is modulated by the slow oscillatory component. It can be observed that in 8 mm glucose, there was a very broad spectrum of oscillatory phenotypes, whereas, under 12 mM glucose in the majority of the islets, the relationship between the fast and slow oscillations was rather weak, as reflected by significantly higher values of the Ffmin parameter in 12 mM glucose and by a large effect size (p = 0.047, d = 1.05).
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FIGURE 2. Quantifying oscillatory intracellular Ca2+ activity in pancreatic beta cells. Dynamics of two different oscillatory phenotypes of pancreatic beta cells stimulated with 8 mM glucose (A,B) and 12 mM glucose (C,D). Blue and red lines in panels (A–D) show average calcium signals of all beta cells in a given islet (before filtering). Panels (E–H) feature the corresponding relative phase-dependent activity of fast oscillations, i.e., relative density of fast oscillations at different phases of the slow oscillatory component. Islets presented in panels (A,C) exhibit well-pronounced slow oscillations, and the frequency of fast oscillations depends profoundly on the phase of the slow component. In contrast, the islet in presented panels (B,D) exhibits rather weakly pronounced slow oscillations and a very subtle slow-phase-dependency of fast oscillations. Panels (I,K) show the relative phase-dependent activity of fast oscillations obtained from pooled data of all beta cells and all islets for 8 and 12 mM glucose concentrations, respectively (927 traces from 9 islets for 8 mM glc and 743 traces and 8 islets for 12 mM glc), irrespective of their response phenotype. In panel (J), the lowest value of slow-phase-dependent relative density of fast oscillations, Ffmin, is shown separately for each islet and both glucose concentrations. Cohen’s d value is 1.05. Islets 2 and 8 for 8 mM and 1 and 4 for 12 mM correspond to data from panels (E–H). Panels (L–R) feature the calcium signaling parameters: frequency of slow oscillations Fs (L), frequency of fast oscillations Fs (M), time required for the cells to respond to stimulation TS (N), time required for the cells to reach the phase of sustained activity, i.e., the plateau phase, TP (O), duration of individual oscillations (P), and the average active time (R). Cohen’s d values are 0.14 (L), 1.80 (M), 1.38 (N), 1.36 (O), 0.76 (P), and 2.89 (Q). Black dots denote average values in individual islets, error bars reflect the standard deviation, and the column height displays the average value over all islets.


Next, we quantified the Ca2+ signaling parameters, separately for each glucose concentration. In both glucose concentrations the frequency of slow oscillations was around 0.2 min–1 (Figure 2L) and was not affected by the stimulation level (the difference was insignificant and the effect size very small, p = 0.782, d = 0.14). In contrast, the frequency of fast oscillations depended significantly and with a very large effect size (p = 0.002, d = 1.80) on the stimulation level and was, on average, 4.8 and 8.4 min–1 in 8 and 12 mM glucose, respectively (Figure 2M). The durations of individual oscillations tended to be higher under 12 mM glucose, but due to rather high levels of variability, the difference did not reach statistical significance despite a medium effect size (Figure 2P). However, the relative active time, a metric being affected by both frequency and duration, was almost twofold higher under higher stimulatory conditions (Figure 2Q). This difference was significant and characterized by a huge effect size (p < 0.001, d = 2.89). Apparently, only the activity of the fast oscillatory component is modulated by stimulatory glucose levels. Finally, we characterized the beta cell responses to stimulation by calculating the average time lag until the cells in a given islet responded to stimulation, TS, and the average time required for the cells to reach the phase of sustained activity, i.e., the plateau phase, TP. Both of these parameters were significantly higher under lower stimulation levels and the effect sizes were very large (p = 0.012, d = 1.38; p = 0.014, and d = 1.36). In 8 mM, values of TS and TP were approximately 5 and 8 min, whereas in 12 mM glucose, they shortened on average almost twofold (Figures 2N,O). These results are in good agreement with our previous reports (Dolenšek et al., 2020; Podobnik et al., 2020).

It should be noted that the beta cell activity is well synchronized between different cells in the same islet, particularly in the phase of sustained activity. We have therefore used the islet averages to statistically evaluate the differences in cellular signaling parameters. However, to gain a more detailed insight and to additionally assess the intra- and inter-islet variability, we present in Supplementary Figures 1–7 separate data for all islets and the results that are based on pooling data from individual cells. The results reveal that in the domain of fast oscillatory activity the intra-islet variability is clearly lower than inter-islet variability for both glucose concentrations. For the frequency of slow oscillations, for the relationship between the fast and the slow component, and for the time required for the cells to reach the plateau phase, no such obvious conclusions can be drawn. Most importantly, irrespective of the signaling parameter, single-cell-based analyses corroborate the main findings that are based on islet averages, but due to very large sample sizes with a much higher statistical significance.



Synchronicity and Network Analysis of Multiple Oscillatory Rhythms in Beta Cell Collectives

To capture the collective temporal activity patterns of beta cell populations, we show in Figure 3 raster plots of binarized fast Ca2+ activity and color-coded values of the phases of the slow oscillatory component, for two exemplary islets stimulated with different glucose concentrations. In the domain of fast oscillations, following either of the stimuli, beta cells exhibited a biphasic response (Pedersen et al., 2019; Stožer et al., 2019; Jaffredo et al., 2021). In the first activation phase, the cells were progressively recruited, and Ca2+ waves of different sizes were noticed. In the subsequent plateau phase, the islet activity was characterized by dominating global Ca2+ waves and rather regular oscillations. Moreover, under physiological stimulation levels, the transition period to the plateau phase was considerably shorter than under supraphysiological stimulation (see also parameter TP in Figure 2O). The collective intercellular activity is also visualized in Supplementary Videos 1, 2, showing animations of binarized spatiotemporal Ca2+ dynamics in representative islets. Evidently, the fast oscillatory activity was well-coordinated and spread across the islets in the form of rather well organized and directed Ca2+ waves. In the domain of slow oscillations, synchronized spatiotemporal dynamics was observed as well (see lower panels in Figure 3 and Supplementary Videos 3, 4), which, however, is qualitatively different from the fast Ca2+ waves. In general, the slow oscillatory events were more global and encompassed the whole islet, but the oscillations were phase-shifted. Most importantly, these shifts changed with time, and there seemed to be a tendency of nearby cells being less phase-shifted than remote ones, although distant cells were found to be in the same phases as well. In continuation, we explore these complex and coherent spatiotemporal patterns in more detail.
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FIGURE 3. Visualization of collective fast and slow beta cell activity. Raster plots of binarized fast Ca2+ oscillations (upper row) and the corresponding color-coded phases of the slow oscillatory activity (lower row) in typical islets stimulated with 8 mM (A) and 12 mM (B) glucose. The blue and red lines superimposed on the raster plots denote the temporal evolution of the average relative active time, as specified by the scale on the right-hand side of the graph.


To characterize the level of synchrony in the slow and fast temporal scales of Ca2+ dynamics in islets, we computed the average correlation coefficient for all possible pairs of cells within individual islets, separately for each oscillatory component and for both glucose concentrations. On the scale of slow oscillations, the difference in average synchronicity at different stimulation levels was not significant and the effect size was small (p = 0.529, d = 0.31) (Figure 4A). On the contrary, higher glucose concentrations evoked more synchronized responses of the fast component (Figure 4B), which corroborates our previous findings (Markovič et al., 2015; Gosak et al., 2018; Dolenšek et al., 2020). The difference was statistically significant and the effect size large (p = 0.048, d = 1.05). On average, the correlation of the fast oscillatory activity was higher when compared to the slow component. For both dynamical components, the average correlation between cell pairs is a monotonically decreasing function of the intercellular distance, irrespective of the stimulatory glucose concentration (Figures 4C,D). In other words, the correlation in Ca2+ activity between nearby cells was roughly twice as high as between remote ones, for both the fast and the slow component. However, for the fast component, this result is expected, because well-defined propagating Ca2+ waves serve as the main synchronizing mechanism (Aslanidi et al., 2001; Benninger et al., 2008; Santos et al., 1991; Šterk et al., 2021). For that reason, the average correlation also decreases slower with increasing distance under 12 mM than under 8 mM glucose, since supraphysiological levels of stimulation evoke mainly global waves, which give rise to higher correlations also at higher intercellular distances. In contrast, under physiological glucose levels, there is also a certain fraction of localized Ca2+ waves, which do not facilitate global synchronicity (Stožer et al., 2019). Notably, a similar trend was observed for the slow oscillatory component as well, except that the average level of intercellular synchrony was lower. This result does not only corroborate previous observations of slow activity being often coordinated among nearby cells (see Figure 3 and Supplementary Videos 3, 4), but also implies that intercellular communication has an important role by orchestrating the collective activity of the slow oscillatory behavior as well.
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FIGURE 4. Intercellular synchronicity of slow and fast oscillatory beta cell activity. The average correlation coefficient between the slow (A) and fast (B) oscillatory components for both glucose concentrations. Black dots denote average values of individual islets, error bars reflect the standard deviation, and the column height displays the average over all islets in the given group. Cohen’s d values are 0.31 and 1.05 for average correlation of slow and fast component, respectively. In panels (C,D), the average correlation as a function of the Euclidean distance between cell pairs is shown for 8 mM (C) and 12 mM (D) glucose, separately for each dynamical component. The heights of the columns represent the average over all cell pairs in all islets belonging to a certain spatial interval.


To further characterize the collective beta cell activity of both dynamical components, we constructed functional connectivity profiles for both glucose concentrations. Both types of Ca2+ traces from all cells were statistically compared in a pairwise manner to build correlation matrices (Figures 5A–D). Functional networks are shown in Figures 5E–H and were obtained by adjusting the connectivity thresholds, so the average connectivity was k = 8 in all beta cell networks. The node degree distributions are presented in Figures 5I,J and were found to be rather heterogeneous and similar for both dynamical components and stimulation levels. Moreover, a weak correlation was identified between the node degrees in networks extracted from fast and slow oscillatory activity. The tendency of better-connected cells harboring more functional connections in both networks was more pronounced under 12 mM than under 8 mM glucose. A comparison of network characteristics showed that the average lengths of functional connections are more than twofold higher in the slow component network layer (Figures 5M,N). This difference was significant and the effect size huge (p < 0.001, d = 2.82 for 8 mM and p = 0.002, d = 1.86 for 12 mM glucose). In both glucose concentrations, the fast component network layer exhibited higher clustering levels in comparison to the slow component network (Figures 5O,P; p = 0.092, d = 0.85 for 8 mM and p < 0.001, d = 2.20 for 12 mM glucose). Moreover, the network architecture of the fast component was found to be less cohesive (lower relative largest component, Figures 5Q,R), but only under physiological stimulation levels, where the difference compared with the slow component was significant with a large effect size (p = 0.053, d = 0.98). Under supraphysiological glucose levels the difference was not significant and characterized by a medium effect size (p = 0.479, d = 0.36). This can be attributed to the fact that high stimulatory conditions evoke high fractions of global waves in the domain of fast activity, which results in very integrated functional connectivity patterns (Markovič et al., 2015; Gosak et al., 2018). Modularity, another network fragmentation metric, also suggested lower levels of integration in the fast component network layer (Figures 5S,T) (p = 0.111, d = 0.79 for 8 mM and p = 0.192, d = 0.70 for 12 mM glucose). A higher dispersion of data in this case can probably be attributed to morphological heterogeneity of islets and the resulting inhomogeneous distribution of beta cells in tissue slices.
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FIGURE 5. Multiplex network representation and analysis of functional beta cell connectivity maps. Matrix plots of pairwise correlation coefficients in a typical islet stimulated with 8 mM (A,B) or 12 mM (C,D) glucose, separately for the slow (A,C) and fast (B,D) oscillatory components. The corresponding functional beta cell network representation is shown in panels (E–H) for islets stimulated with 8 mM (E,F) and 12 mM (G,H) glucose. Nodes signify positions of beta cells within an islet, and connections stand for functional associations between the slow (E,G) and fast (F,H) oscillatory components. Panels (I,J) display the degree distributions for all islets stimulated with 8 mM (I) and 12 mM (J) glucose, separately for the slow and fast components. Note that the average degree of functional networks in all islets was set to k = 8. The correlation between node degrees in the fast- and slow component derived networks is featured in panels (K,L) for 8 and 12 mM glucose stimulation, respectively. Only nodes with k >  0 were considered. The gray dotted lines represent a linear fit (R2 was 0.15 for low and 0.31 for high stimulatory conditions, p <  0.001). Panels (M–T) feature the average pooled data of network parameters for all islets under the given stimulatory glucose concentration, separately for both oscillatory components: physical length of functional connections (M,N), average clustering coefficient (O,P), global efficiency (R,Q), modularity (S,T). Cohen’s d values: 2.82 (M), 1.86 (N), 0.85 (O), 2.20 (P), 0.98 (Q), 0.36 (R), 0.79 (S), and 0.70 (T).


We wish to suggest that the observed discrepancies in the functional network structures reflect the differences in the spatiotemporal dynamics of intercellular Ca2+ waves that coordinate both types of oscillations among different cells. The fast oscillatory activity is being coordinated mostly by gap junction–mediated electrical coupling, resulting in propagating Ca2+ waves, which were not always global and encompassed sometimes only a part of the beta cell syncytium. This led to more locally clustered and segregated network structures. While the slow oscillatory component is influenced by gap junctional communication as well, the slow waves were mostly global and occurred over a broader temporal scale. This brought about more long-range connections and more cohesive functional connectivity patterns. However, a systematic analysis and comparison of the nature Ca2+ waves coordinating both types of oscillations, as well as the exploration of the underlying mechanisms, is beyond the scope of this article. Finally, it should be noted that in our study we have used variable thresholds to construct functional networks in order to be able to compare the connectivity patterns from different dynamical components, which differ in the degree of correlations between Ca2+ signals. We have used an average degree k = 8 to mimic realistic beta cell network architectures (Zhang et al., 2008) and to obtain adequately dens networks suitable for analyses. However, within reasonable limits the conclusions do not depend on this rather arbitrary choice of the average degree (see Supplementary Figure 8).




DISCUSSION

In the present work, we demonstrated that the pancreatic beta cells in mouse tissue slices express a bimodal oscillatory activity of the intracellular Ca2+ concentration. Such bimodality of the oscillatory activity was previously described for other stimulus-secretion cascade parameters: the metabolic profile of a beta cell follows the slow oscillatory pattern, and the membrane potential follows the fast temporal pattern (Dean and Matthews, 1968; Santos et al., 1991; Gilon and Henquin, 1992; Liu et al., 1998; Bergsten, 2002; Gilon et al., 2002; Tengholm and Gylfe, 2009; Satin et al., 2015; Skelin Klemen et al., 2017; Bertram et al., 2018). Focusing on the intracellular Ca2+ concentration as a surrogate for both metabolic and electrical beta-cell activity, experimental and mathematical modeling studies provided evidence for the Ca2+ oscillations resembling the slow metabolic, the fast membrane potential oscillations, or combination of the two. Some studies suggested that our understanding of the two dynamical components might be an experimental artifact. More specifically, it has been suggested that cultivation of isolated islets triggers a phenotype transformation from cells that display fast or compound oscillations to cells with a prevailing slow temporal pattern, likely attributed to the degradation of key membrane proteins by enzymes during the isolation protocol or the conditions used for cultivation of isolated islets (Gilon et al., 1994; Rupnik, 2009). In this study, we employed the acute tissue slice preparation that entirely omits any enzymes during tissue isolation and overnight culture, while preserving both homo- and heterotypic cell-to-cell contacts (Dolenšek et al., 2015). We demonstrated in all preparations and for both stimulatory concentrations of glucose that the beta cells simultaneously display both the slow and the fast Ca2+ oscillations. The slow pattern was also detected in basal 6 mM glucose (Figure 3). Together with the glucose-insensitivity of slow oscillations (Figure 2), the above findings present valuable experimental confirmation for similar findings in isolated cells and islets (Gilon et al., 2002; Beauvois et al., 2006; Satin et al., 2015; Bertram et al., 2018; Rorsman and Ashcroft, 2018) and verification for beta-cell models that predict these features (Pedersen et al., 2005; Pedersen, 2009; Merrins et al., 2010; McKenna et al., 2016; Bertram et al., 2018).

In contrast with the slow oscillations, the fast oscillations were modulated by both physiological (8 mM) and supraphysiological (12 mM) stimulation. Both the frequency and the phase duration of the fast component increased with increasing glucose concentration (Figure 2), corroborating earlier studies on isolated islets (Santos et al., 1991; P. Gilon et al., 1993; Antunes et al., 2000; Nunemaker et al., 2006), in acute tissue slices (Markovič et al., 2015; Dolenšek et al., 2020), and of mathematical modeling (Nunemaker et al., 2006; Stamper and Wang, 2019). To study the interplay of the two, we correlated the two frequency domains from the same beta cells (Figure 2). Especially for the physiological concentration (8 mM) and a portion of islets exposed to 12 mM glucose, the slow activity strongly influenced the fast component. More specifically, there was a phase-dependency between both dynamical components, with the highest bursting activity around the maxima and the lowest around the minima of slow oscillations (Figures 2A,C,E,G). The correlation was weaker in other islets in which the fast component seemed less influenced by the slow oscillations (Figures 2B,F,D,H). Increasing stimulation to the supraphysiological levels (12 mM) decreased the overall correlation (Figure 2K), pushing more islets to a more continuous bursting pattern. As in our previous work and studies by others, supraphysiological concentrations were typically used (>11.1 mM), this might explain why the modulation of the fast component was largely overlooked previously. Importantly, our finding that in higher glucose, the fast oscillations also continue during the minima of slow oscillations with almost unaltered frequency implies that increasing glucose increases insulin release through an extension of beta cell activity to otherwise silent or less active periods, but probably at the cost of attenuating the pulsatility of insulin release (Matthews et al., 1983a; Juhl et al., 2000, 2001).

The rhythmogenesis of the oscillatory activity in beta cells has been a controversial topic for decades and has attracted the attention of experimentalists as well from theoretical and computational scientists (Bergsten, 2002; Gilon et al., 2002; Satin et al., 2015; Bertram et al., 2018; Zavala et al., 2019; Grubelnik et al., 2020). For the fast component, it has been proposed that the mechanism involves feedback of Ca2+ ions on ion channels. A rise in the intracellular Ca2+ concentration activates the calcium-dependent K (KCa) channels, causing hyperpolarization and closure of the voltage-dependent Ca2+ channels. The latter decreases Ca2+ influx triggering a decrease in the Ca2+ concentration that ultimately removes the inhibitory drive of the KCa channels, and the cycle can repeat (Nunemaker et al., 2006; Satin et al., 2015). There is no clear consensus on the origin of the beta cell activity’s slow component. These were reported to be in phase with the slow oscillations of the insulin secreted in vitro and in vivo (Bergsten, 2002; Gilon et al., 2002; Bertram et al., 2018), and are thought to reflect the oscillations in metabolism; therefore, the terms slow and metabolic oscillations are often used interchangeably (Satin et al., 2015). Different studies demonstrated that both the slow and the fast pulses of insulin correlate well with the respective time domains of the Ca2+ oscillation dynamics in beta cells. Insulin secretion perfectly matches the slow Ca2+ oscillations in isolated islets from mice (Bergsten et al., 1994; Gilon et al., 2002) and humans (Hellman, 2009). Although cultured isolated islets generally exhibit slow oscillations, in a few isolated islets that exhibited frequencies similar to the fast component observed in our preparation (approx. 6 oscillations/minute), the insulin dynamics also perfectly matched these faster Ca2+ dynamics (Bergsten, 1995; Barbosa et al., 1998), suggesting that the insulin dynamics can follow Ca2+ dynamics even in the faster domain. There is also no clear consensus on whether the oscillatory pattern of the Ca2+ drives the slow component (Ca2+-driven metabolic oscillations) or vice versa (metabolism-driven Ca2+ oscillations) (Watts et al., 2014). Experimental data to date provided evidence for either scenario. On the one hand, the oscillations in Ca2+ were shown to be a prerequisite for the metabolic component (Gilon et al., 2002; Kennedy et al., 2002; Bertram et al., 2007). On the other hand, perturbing the metabolic oscillations with the a-ketoisocaproic acid (KIC), which enters metabolism at the citric acid cycle, bypassing glycolysis and clamping metabolism levels to a steady-state, affected (albeit inconsistently) the Ca2+ oscillations (Bertram et al., 2018). While some studies reported KIC-induced slow oscillations (Martin et al., 1995), others failed to reproduce the KIC effect (Lenzen et al., 2000; Dahlgren et al., 2005). In this study, we found a clear glucose-dependence of fast Ca2+ oscillations with respect to time required for their initiation, their frequency, and the active time. In contrast, the slow oscillations did not show any glucose-dependence, at least in the investigated range of concentrations, and they also existed in the absence of the fast component (in 6 mM glucose). Moreover, the frequency of the fast component depended on the phase of the slow component. These facts, taken together, imply that the mechanism driving the slow activity of intracellular Ca2+ concentration is distinct from the one responsible for the fast component, that the slow component influences the fast, but that the presence of fast oscillations and their characteristics do not influence the slow oscillations. More specifically, the slow oscillations cause shifts in the frequency of the fast oscillations, but the average value of these fast oscillations is set by a glucose-dependent mechanism, distinct from the one responsible for slow oscillations. This corroborates the recent developments in computational models of beta cell activity, suggesting that the slow oscillations may originate from intrinsic mechanisms, in addition to Ca2+ effects on the enzymes involved in beta cell metabolism (McKenna et al., 2016; Bertram et al., 2018; Fazli et al., 2020). We wish to point out that our method of measuring changes in Ca2+ does not enable assessments of absolute changes in amplitudes and thus we cannot completely exclude the possibility that the amplitude of the slow oscillations may be glucose-dependent. We also never observed fast oscillations without any underlying slow oscillations, but this does not mean that such a pattern of activity does not exist.

Proper pulsatile secretory responses require the beta cells to work in synchrony, which is ensured by gap junctions, other modes of intercellular communication, and by paracrine signals (Bavamian et al., 2007; Benninger et al., 2011, 2014; Bosco et al., 2011; Head et al., 2012; Skelin Klemen et al., 2017; Benninger and Hodson, 2018; Almaça et al., 2020; Lammert and Thorn, 2020). The former is the main synchronizing mechanism of the fast oscillatory domain by facilitating the propagation of depolarization and Ca2+ waves across the islets. Collective behavior of fast oscillations is receiving much more attention from the scientific community, especially because inherent beta cell heterogeneity and the existence of subpopulations lead to complex spatio-temporal activity patterns, characterized by heterogeneous and non-stationary intercellular waves, which are also accessible to experimental and modeling approaches (Hraha et al., 2014; Cappon and Pedersen, 2016; Gosak et al., 2017; Westacott et al., 2017b; Šterk et al., 2021). These waves are typically initiated from subregions with elevated excitability (Benninger et al., 2014) and with increasing glucose concentration, they become more global (Stožer et al., 2019), which results in more integrated functional network structures, as we have also observed in the present study (Figure 5). In contrast, the characteristics of slow collective activity and the underlying mechanisms are much less known. Our results clearly indicate that the slow oscillations are not only rather well aligned across the islets, but also that nearby cells are better synchronized than remote ones (see Figures 3, 4). More specifically, our results imply two conclusions: first, in the slow oscillations domain, not all cells in the islet are simultaneously in the same phases. Second, there must be some synchronizing mechanism that promotes the coordination of slow oscillations among neighboring cells. This might be the diffusion of glucose-6-phosphate or some other metabolic intermediate (Tsaneva-Atanasova et al., 2006; Loppini et al., 2015) or the indirect influence of the feedback of well-aligned fast component oscillations. Theoretically, it has been suggested that gap junction-mediated electrical coupling, diffusion of glycolytic intermediates, or a combination of both can contribute to the synchronization of slow oscillations (Pedersen et al., 2005). However, to what extent different means of intercellular communication shape the complex spatio-temporal activity in islets, remains to be elucidated. Moreover, we argue that the first point about the different phases of the slow component might refer to the multifaceted heterogeneity of beta cells, which results in the existence of subpopulations with similar cellular signaling characteristics (Dwulet et al., 2019; Stožer et al., 2019; Da Silva Xavier and Rutter, 2020; Rutter et al., 2020). This would also explain the relatively high abundance of long-range connections in the network extracted from the dynamical slow component (see Figures 4E,G), which link different subpopulations with similar metabolic profiles. In contrast, in the fast component network, connections interconnect particularly cells within the same subgroup, whereas long-range connections are manifested mostly only by specific hub cells (Markovič et al., 2015; Johnston et al., 2016; Gosak et al., 2018). From a functional point of view, the slow component seems to set the pace for all cells within an islet and ensure that cells in different regions are all active during the same periods, whereas the fast component probably fine-tunes the number of cells that are recruited during an active period, as well as their level of activity. Nevertheless, further studies will be necessary for elucidating the precise mechanisms that govern the intercellular synchronicity of different dynamical components in beta cells, for instance by systematically comparing the characteristics of intercellular Ca2+ waves synchronizing the fast and slow oscillations. We will also have to define the roles that beta cells play across networks extracted from different temporal domains, find out whether these roles are stable and dependent on long-term processes, such as differentiation, or more flexible and dependent on local cues, and explore how they contribute to normal and pathological endocrine function.

To conclude, insulin secretion, as well as other metabolic and hormonal rhythms, are ubiquitous and vital for maintaining normal physiological functions. These rhythms result from the interplay between several feedback systems and occur at multiple timescales and levels of organization (Corkey and Shirihai, 2012; Bertram et al., 2018). The recently emerging fields of network physiology and network medicine show great potential to address such issues and to provide new insights into how global behavior at the organism level can arise out of micro-mechanisms on the cellular and tissue level (Bashan et al., 2012; Ivanov et al., 2016). Metabolic systems make excellent candidates for being studied by these novel interdisciplinary approaches (Zavala et al., 2019; Corkey and Deeney, 2020; Martinez et al., 2020). Understanding how the multimodal activity of beta cells acts in synchrony and integrates to the organ level, how heterologous interactions with other islet cells affect the pancreatic output, how the complementary action of other hormones contributes to the dynamic crosstalk between metabolic organs, and how all these pathways are impaired in diabetes, are some of the main questions in islet and in specific metabolic diseases research (Rorsman and Ashcroft, 2018; Rutter et al., 2020). We firmly believe that addressing these issues will require new perspectives and integrative frameworks based on tools developed in the field of network science and computational physiology, which will support and complement experimental endeavors.
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Supplementary Video 1 | Animation of binarized fast spatiotemporal Ca2+ activity in a representative islet under stimulation with 8 mM glucose and the corresponding raster plot of all binarized traces in the islet.

Supplementary Video 2 | Animation of binarized fast spatiotemporal Ca2+ activity in a representative islet under stimulation with 12 mM glucose and the corresponding raster plot of all binarized traces in the islet.

Supplementary Video 3 | Animation of slow spatiotemporal Ca2+ activity in a representative islet under stimulation with 8 mM glucose and the corresponding color-coded plot of phases of the slow oscillatory components for all cells in the islet.

Supplementary Video 4 | Animation of slow spatiotemporal Ca2+ activity in a representative islet under stimulation with 12 mM glucose and the corresponding color-coded plot of phases of the slow oscillatory components for all cells in the islet.
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The crosstalk between organs plays a crucial role in physiological processes. This coupling is a dynamical process, it must cope with a huge variety of rhythms with frequencies ranging from milliseconds to hours, days, seasons. The brain is a central hub for this crosstalk. During sleep, automatic rhythmic interrelations are enhanced and provide a direct insight into organ dysfunctions, however their origin remains a difficult issue, in particular in sleep disorders. In this study, we focus on EEG, ECG, and airflow recordings from polysomnography databases. Because these signals are non-stationary, non-linear, noisy, and span wide spectral ranges, a time-frequency analysis, based on wavelet transforms, is more appropriate to handle this complexity. We design a wavelet-based extraction method to identify the characteristic rhythms of these different signals, and their temporal variability. These new constructs are combined in pairs to compute their wavelet-based time-frequency complex coherence. These time-frequency coherence maps highlight the occurrence of a slowly modulated coherence pattern in the frequency range [0.01–0.06] Hz, which appears in both obstructive and central apnea. A preliminary exploration of a large database from the National Sleep Research Resource with respiration disorders, such as apnea provides some clues on its relation with autonomic cardio-respiratory coupling and brain rhythms. We also observe that during sleep apnea episodes (either obstructive or central), the cardiopulmonary coherence (in particular respiratory sinus-arrhythmia) in the frequency range [0.1–0.7] Hz strongly diminishes, suggesting a modification of this coupling. Finally, comparing time-averaged coherence with heart rate variability spectra in different apnea episodes, we discuss their common trait and their differences.

Keywords: time-frequency analysis, correlation, wavelet coherence, electrocardiogram, electroencephalogram, breath, polysomnogram, rhythms


1. INTRODUCTION

During the past decades, the possibility to capture in real time physiological signals from many tissues (brain, heart, muscles, breath, vessels, intestines, lungs, blood …) has opened new medicine fields, and has brought physicians to a more global view of human beings as complex and multiscale networks of interactions, contributing synergistically to the preservation of health [1–3]. Each organ can be considered as a dynamical system per-se with non-linear and complex oscillations and its interaction with nearby or distant tissues may lead to spatial and/or temporal correlations [4, 5]. These correlations and their adaptation to the environment appear as decisive for human beings survival [6]. Self-organized criticality concepts have been introduced for biological rhythms in the late nineties by physicists [7–12]. Non-linear neuronal feedback interactions and networked structure of central and autonomous nervous systems have been suggested as essential factors for emergent scale-invariant organization at the system level [1, 13–17]. The subtle balance between coherent oscillatory (synchronous) and highly disorganized (asynchronous) patterns of brain activity and their time-frequency entanglement could help enlarge our concept of criticality used for about 30 years, including a dynamical reinterpretation of the concept of homeostasis of living organisms [6, 18–22]. The analysis of non-linear dynamical systems has also given rise to numerous practical measures based on the idea of entropy [23]. In relation with these information theoretic approaches, the concepts of predictability and Granger causality have been applied to the study of sleep apnea from breathing, heart rate variability (HRV) and EEG band signals [24]. Recent progresses have linked the localization of these measures in the spectral domain with the concept of coherence, and its partial, multiple, and directed versions [25–28]. Their integration into a time-frequency formalism thus seems more appropriate than ever.

Sleep disorders are nowadays becoming a serious public health problem; health consequences from sleep disorders and sleepiness are staggering. Being able to recognize in its early stage a sleep disorder and to propose a treatment is of paramount importance. During sleep, the physiological interaction network is orchestrated by automatic and involuntary processes, and the variety of electrical and mechanical signals recorded by polysomnography are precious markers for deciphering the complexity of these interactions. It was previously shown that the coupling of heart and respiration across sleep stages is intermittent and occur through multiple interaction mechanisms [29, 30]. Above this non-stationarity and variability of physiological records, comparing signals of different nature, from distant zones of the body (for example ECG with EEG, air flow with EMG, ECG with blood pressure …), adds a supplementary complexity. Even for the same rhythm, these signals have quite different spectral distributions: the cardiac rhythm measured from the electromagnetic impulses in thoracic electrodes (ECG) is much more non-linear (farther from a pure sine wave) than the signal of blood pressure collected in a catheter. The EEG signals represent the integration of a network of multiple neurons throughout the brain that exhibits both erratic (noisy and/or scale-free) and rhythmic behaviors in the wide range of frequencies. For these signals, it is not possible to define a single time-modulated fundamental mode, contrarily to ECG and respiration signals. To compare physiological signals of very different natures, and find out common characteristics (spectral and/or temporal similitudes) between them implies introducing sophisticated versions of the standard (Pearson) correlation and coherence. Because physiological signals can cover several frequency decades with a diversity of temporal dynamics, a generalization to time-frequency markers was introduced in the eighties. Time-frequency estimators were proposed, based on temporal or spectral windowing [31], short time Fourier transform (STFT) [32, 33] or wavelet transform (WT) [34].

In this study, we focus on neural (EEG), cardiac (ECG) and respiration rhythms recorded during sleep. In the second section, we describe the two PSG databases (MIT-BIH and NSSR) from which we have selected the signals. In the third section, we introduce the wavelet formalism and describe how it can be applied to complex and non-stationary physiological signals, such as EEG, ECG, and respiration, to characterize their rhythms and extract their temporal rate modulations. In the fourth section, we compute and describe the wavelet-based time-frequency complex coherence of either the previous rates or the raw signals. The significance of our coherence estimator is discussed in relation to the chosen wavelet and time-smoothing kernel. This original method, based on a two-step time-frequency decomposition, can be used to capture the rhythm modulations of any physiological signal and requires no signal-specific adjustment, other than the possibility to restrict the spectral range. Applied on the PSG record of a subject affected by obstructive apnea, this method shows how repeated apnea events during the NREM sleep stage 2 are associated to very coherent modulations across all possible pairs of rate signals (slow mode apnea modulation), at a very low frequency (~0.035 Hz). Interestingly, the phase of this slow mode is also computed by our method and gives a direct access to the phase shift between the selected signals. We also propose a combined color-shading coding that highlights both the phase and the amplitude of the coherence in the time-frequency plane. Finally, in the last section 5 of this manuscript we perform a preliminary statistical survey of the large shhs2 database from NSSR, by reconstructing the averaged coherence spectra for subpopulations of patients with sleep apnea disorders. These coherence spectra not only confirm the statistical validity of the first observation on the selected subject of the smaller slpdb (MIT-BIH) database, but also draw our attention to two other key elements, (i) the coherence spectra around the slow mode apnea modulation is bimodal, meaning that the frequency band [0.02–0.06] Hz is the combination of two slow modes, (ii) another band appears in the heart-respiration coherence spectra (around 1/4 Hz) for normal or hypopneic sleep intervals which vanishes for more severe apnea levels [obstructive sleep apnea (OSA) or central sleep apnea (CSA)]. Finally, comparing time-averaged coherence with HRV spectra in different apnea episodes, we discuss their common trait and their differences.



2. DATABASES FOR PSG RECORDINGS

A cardiorespiratory polysomnography (PSG) [35, 36] generally includes a minimum of 12 physiological signals, among which EEG, ECG, and respiration on which will be focused this analysis. The polysomnographic signals were downloaded from the PhysioNet Research Resource for Complex Physiological Signals (https://physionet.org) [37] (MIT-BIH database) and from the National Sleep Research Resource (Sleep Heart Health Study) [38, 39]. These signals were used after ethics review board's (IRB) approval. All the samples were annotated with sleep events, such as sleep stage, movements (only in MIT-BIH database), arousal, apnea, etc. The MIT-BIH polysomnographic database (slpdb) [37, 40] includes 16 male subjects, aged 32 to 56 (mean age 43), with weights ranging from 89 to 152 kg (mean weight 119 kg), and most of them were affected by a severe sleep apnea. Recordings in slpdb were all sampled at 250 Hz, whereas various sampling frequency were used in shhs2 (EEGs at 125 Hz, ECG at 250 Hz and airflow at 10 Hz). The Sleep Heart Health Study [38], visit 2 (shhs2), includes 2650 annoted samples. Participants of SHHS were recruited from nine existing epidemiological studies with pre-collection of cardiovascular risk factors [39, 41]. The recordings saturate rarely in slpdb, more frequently in shhs2. We use here the latest classification of AASM [36], that divides the NREM sleep in three stages: N1 for light sleep, N2 for middle-deep sleep and N3 for deep sleep, combining the previous N3-N4 annotations when necessary.


2.1. Respiratory Rhythm

The respiration is measured from both air flow temperature changes on a nasal thermistor, thoracic or abdominal motion/inductance plethysmography. Occasional artifacts occur due to sleep position changes, affecting mainly the amplitude of the oscillations. We select the air flow signal, which can be found in both databases, and has less motion artifacts than other signals in shhs2. In slpdb, the unit is calibrated in liter per second (l·s−1), the resolution is about 10−3l·s−1, certainly with an instrumental filter as in shhs2 (not specified). In shhs2, the unit is arbitrary (in [−1, 1]), the resolution is 8·10−3, the sampling frequency is 8 or 10 Hz and there is an instrumental high pass filter at 0.05 Hz.



2.2. Cardiac Rhythm

We concentrate on cardiac signals, recorded from electrocardiography (ECG) in millivolts (mV), in both databases. A blood pressure signal (invasive measure from a catheter in the radial artery) in also available in slpdb. In slpdb, the resolution is 2.10−3 mV, the sampling frequency is 250 Hz, without specification of an instrumental filter. In shhs2, the resolution is 10−3 mV, the sampling frequency is 250 or 256 Hz and there is an instrumental high pass filter at 0.15 Hz. The ECG oscillation is a sharp pulse train, which can be affected by saturation, limited time sampling, as well as sleep position changes.



2.3. Neural Rhythms

The brain activity is measured from electroencephalography (EEG) in millivolts (mV) or microvolts (μV). In slpdb, a single EEG is available, measured between different points depending on the subject (C4-A1, O2-A1, or C3-O1), the resolution is about 10−4mV, without specification of an instrumental filter. In shhs2, the electric potential is measured between the points C4-A1 for the first EEG and C3-A2 for the second one, the resolution is 1μV, the sampling frequency is 125 or 128 Hz and there is an instrumental high pass filter at 0.15 Hz.

Given that these signals have different sampling frequencies, they were interpolated in time at the highest sampling frequency, for instance the one of ECG before further time-frequency analysis.



2.4. Subjects Selection

The signal chosen for illustration of the computation method and the manifestation of sleep apnea on time-frequency coherence corresponds to subject slp04. Several criteria have been considered for this selection among the 15 subjects of the slpdb database affected by sleep apnea. First, body motions result in temporal singularities (vertical artifacts), especially in the EEG signals, from low (<1 Hz) to high frequencies. When these artifacts have a strong amplitude, the saturation of the signal can occur, erasing relevant signal components from the recording. Such saturation effects are minimal in the selected signal. Second, the presence of both ECG impulses [42] and respiration oscillations is commonly observed in EEGs, at various intensities. We found appropriate to avoid these effects as much as possible. In the course of this study, it is made clear however that such intrusion of a rhythm in the recording of another one is a widespread phenomenon (respiration oscillations in the ECG is another example).

The statistical analysis reported in section 5 was obtained from a large selection of subjects from the full shhs2 database. The selection of typical apneic subjects was based on respiratory events scored by clinicians when the amplitude of the air flow drops for more than 10 s, below 70% of the baseline for hypopnea or below 25% of the baseline for apnea. Obstructive sleep apnea (OSA) is distinguished from central sleep apnea (CSA) by a greater amplitude in the thoracic or the abdominal effort signal.

The proportion of the cumulated duration of sleep apnea is first computed for each person (between the first and the last sleep stage). Then, the groups are selected from the 2650 persons in the shhs2 databased using criteria on these proportions. Group H corresponds to the 87 subjects affected by hypopnea more than 20% of their sleep time while the other apneas last <1%. Group O corresponds to the 153 subjects affected by OSA more than 10% of their sleep time. Group C corresponds to the 189 subjects affected by CSA more than 1% of their sleep time and OSA <10%. These three groups have comparable sizes: group H contains 25277 hypopneas lasting 161 h out of 647 h of total sleep time, group O contains 25627 OSA lasting 217 h out of 1152 h of total sleep time, and group C contains 10480 CSA lasting 61 h out of 1,463 h of total sleep time. Two other groups are defined; a fourth control group of 129 subjects which are very few affected by any type of apnea: <3% of sleep time (3851 events lasting 19 h over a total of 957 h) and a fifth group (all) which includes the whole shhs2 database without any conditioning, and cumulates the 20114 h of sleep time over 2650 subjects. The proportion of apneas in sleep time in the shhs2 database are as follows: 12.1% of hypopnea, 2.3% of obstructive apnea, and 0.4% of central apnea (469264 scored respiratory events in total).




3. WAVELET-BASED TIME-FREQUENCY DECOMPOSITION OF NON-STATIONARY SIGNALS

To introduce the wavelet transform [43, 44] for this application to physiological rhythms, we discuss an important aspect of the wavelet time-frequency analysis, often implicit or hidden in other processing methods and rarely discussed in that context, namely the quality factor. It has the specificity to be constant across frequencies, fixing a constant relative frequency uncertainty (or log-frequency resolution) and a time resolution that adapts to the frequency so that it corresponds to a fixed number of oscillations. This “scale-free” resolution is the main and noteworthy difference with alternative approaches based on short time Fourier transform.


3.1. The Continuous Wavelet Transform

We define the continuous wavelet transform (CWT) of x(t) as

[image: image]

where a is the scale parameter, b is the shift parameter and ψ is the analysing wavelet. An analytic wavelet [image: image] is defined as a real windowing function over positive frequencies only, it is very useful to decompose the phase and amplitude behavior of a multi-frequency signal x(t) into analytic signals at each scale a with a certain amplitude [image: image] and phase [image: image]. A paradigmatic, yet largely ignored, analytic wavelet is the log-normal wavelet of only parameter the quality factor Q, and reference (peak maximum) frequency f0:

[image: image]

where θ is the Heaviside step function. Besides its log-frequency Gaussian shape, illustrated in Figure 1 for two values of Q (25 and 5), this wavelet has numerous convenient properties related to its ability to turn the dilation of frequencies by the scale parameter a into a shift in log-frequencies. See the reference [45] for an insightful introduction of this wavelet, that we refer thereafter as the Grossmann wavelet, in contrast to the well-known Morlet wavelet [46–48]. The Grossmann wavelet is related, as a limit case, to a two-parameter family of analytic wavelets, the Morse wavelets [49, 50]. The single remaining parameter, the quality factor Q, quantifies the frequency localization of the wavelet.


[image: Figure 1]
FIGURE 1. Grossmann log-normal wavelets of quality factor Q = 25 and 5 (in blue and red, respectively), represented in frequency in logarithmic scales (A) and in time (B), with the reference frequency f0 = 1. In (B), the real part of the wavelet is represented with a blue (respectively red) line, in quadrature, the imaginary part is a light blue (respectively light red) line, and the envelope ±|ψQ(t)| is delimited by dotted lines. The uncertainty time-frequency relation is clear here: the higher the quality factor, the more the wavelet is localized in frequency and the more it has oscillations in time. The effective number of oscillations of the wavelet are N25 ≈ 10 and N5 ≈ 2.


The CWT of the signal can be given a time-frequency interpretation when the wavelet is well-localized in the frequency domain. Indeed, while the parameter b naturally represents a time, the scale a can be associated to a frequency fp/a where fp is a characteristic frequency of the wavelet. In general, there are many ways to define this characteristic frequency [51], but for ψQ they all belong to the same family of weighted frequency average indexed by an exponent p:

[image: image]

The “center instantaneous frequency” f1 is obtained from the derivative of the phase of an analytic wavelet in the time domain (when this wavelet is positive in the frequency domain), the “energy frequency” f2 is used for the Heisenberg uncertainty relation, and the limit case f∞, “the peak frequency” is the frequency at the maximum of [image: image]. For the Grossmann log-normal wavelet, the characteristic frequency is a function of f0 and Q: [image: image] and it agrees exactly with its reference f0 frequency at its peak frequency f∞ = f0. We note also that all these frequencies fp converge to f0 for a large quality factor Q.

Notwithstanding the different frequency interpretations at low quality factor, we choose for the Grossmann wavelet the peak frequency f0 to define the frequency associated to the scale a as f = f0/a, and we denote the time-frequency representation of x(t):

[image: image]

Its squared modulus provides one way to define a time-varying power spectral density:

[image: image]

The power spectral density Sx(f) (PSD) of a stationary signal is obtained by a temporal averaging (see Supplementary File section 1):

[image: image]

Notice the factor |f| that appears here; it is related to the scale normalization convention chosen in the definition of the CWT. Equation (6) integrates to the power with respect to the integrator [image: image], i.e., with respect to dlogf for positive frequencies, which suggests a logarithmic (geometric) frequency sampling. This sampling is indeed natural for the CWT because the log-frequency width of its analytic wavelet is constant at all scales. Thus, we call the product Sx(f)|f| the power log-frequency density, so that the power is directly read from the area under its curve on a log-frequency axis.



3.2. Resolution Trade-Off and Time-Frequency Atom

Note that, contrary to more common fixed size moving temporal windows, the temporal and frequency widths of the analysing wavelet scale with the frequency [43, 44]. The square modulus of the wavelet transform XQ at point (f,t) provides a smoothed realization of the time-varying power spectral density Sx(f, t; Q). The widths of this time-frequency smoothing region are commonly estimated, similarly to f2 in Equation (3), from the variances (Δt)2 and (Δf)2 associated to the un-normalized distributions |ψ(t)|2 and [image: image]. A quality factor of the wavelet can be defined as [image: image] [52] and the smoothness region is well-described by the Heisenberg uncertainty relation [image: image]. It means that the time and frequency resolutions cannot be both chosen arbitrarily small. In the case of the Grossmann wavelet, we can compute Δf and get [image: image] up to a term of order [image: image] when Q is large enough, which confirms the interpretation of its parameter. We cannot, however, get an expression for Δt. Instead, we find numerically that the effective number of oscillations at full-amplitude of ψQ(t) is very close to [image: image]. For this reason, we define an effective wavelet duration [image: image], and associate to it an effective log-frequency width, very close to the full width at half maximum (FWHM) of the wavelet: [image: image]. The equality fδt·δlogf = 1 is a practical variant of the Heisenberg uncertainty relation for ψQ, and it defines a time-frequency atom. This atom is interesting for sampling XQ(f, t) in a given time-frequency domain Ω, because it gives an indication of the minimum sampling points density in the time and log-frequency directions (more than one per atom).



3.3. Illustration of the Wavelet Transform on a Pedagogical Signal

We illustrate the time-frequency representation XQ(f, t) on a pedagogical signal x(t) = s(t)+ξ(t) in Figure 2. The signal represented in Figure 2A is the sum of a deterministic oscillation s(t) of increasing frequency (a chirp) and decreasing amplitude, and of a pink noise ξ(t) of lower amplitude [the “1/f” noise, in reference to the behavior of its power spectral density Sξ(f)]. Since [image: image] is a complex value, it is represented by the amplitude A (or its square) and the phase ϕ. The factor 2 can be computed from a simple harmonic signal Acos(2πf0t) for which the modulus of the CWT is [image: image], i.e., at most [image: image] for f = f0.


[image: Figure 2]
FIGURE 2. Graphical representations of the CWT on a pedagogical signal x(t). The signal x(t) is represented in (A), and its CWT (Equation 4) of quality factor Q = 5 is computed. The amplitude is color-coded in a logarithmic scale in (B), and the phase with the chromatic circle in (C). Note that we represented twice the amplitude of the CWT in (B) so that it is directly comparable to the amplitude of the time signal (A). Both dimensions of the complex value of the CWT are combined in (D) with a two-dimensional shaded-color coding: the phase is still associated to a hue in the chromatic circle and the amplitude is coded by the saturation of the color.


The image in Figure 2B is the amplitude of the CWT, that is maximum for t>0 at the frequencies of the chirp. The amplitude of the chirp trace decreases while its frequency increases in time. With a color-coding of A(f, t) = 2|XQ(f, t)| we observe that the maximum amplitude of the chirp in Figure 2B matches closely the amplitude of the oscillation in Figure 2A. Since we code the amplitude on a logarithmic scale, the image of its square, called the scalogram, is identical. The regions of lower amplitude appear more noisy, corresponding to the pink noise ξ(t), the amplitude of which is invariant with frequency. This is a specificity of the pink noise: it has a constant power density per decade [Sξ(f)f is constant] and has a strong physiological interest since it has been proposed to describe the scale invariance of many natural stochastic signals, such as EEGs [16, 42, 53, 54]. The pink noise was generated from a MATLAB library, applying to a white Gaussian noise a filter optimized so that the noise remains Gaussian with a constant power log-frequency density Sξ(f)|f|.

The next image in Figure 2C represents the phase of XQ(f, t), i.e., the complex argument ϕ(f, t) = ℑ{logXQ(f, t)}, which is conveniently represented with the hues in the chromatic circle since the phase is a circular quantity. In this work, the phase 0 is represented in green, ±π is in magenta and the interval from −π to π follows the progression of the colors in the visible light spectrum (at the exception of the magenta, which is not in the physical spectrum since it closes the circle). The phase in time and frequency has a particular behavior. It always increases continuously and monotonously in time, at a rate that is consistent with the frequency f: [image: image]. This behavior fails near singular points in time and frequency, namely phase vortices (of unit charge), for which the phase is not defined (and the amplitude vanishes). These singular points are distributed randomly with a global density of 1 per time-frequency atom, and they are repelled from high amplitude regions. These properties result in a structure of tree for the lines of constant phase, that is branching at each singular point toward higher frequencies. “Channels” made from the repulsion of the singular points out of the high amplitude region can be noticed, where the phase progression directly represents the phase of the chirp oscillation. Remark the fast progression of the phase at a high frequency f which blurs its visualization at very large time-scales compared to the period f−1.

The last image in Figure 2D combines both the amplitude and the phase of the complex value XQ(f, t) in a two-dimensional color map. This type of shaded-color coding, possible because the color space is at least two-dimensional (three-dimensional for at least 96% of human beings), could be represented in polar coordinates (in ℂ) as a chromatic disc where the phase angle is the hue and the radius (amplitude) is the saturation of the color (no defined hue/phase if no saturation/amplitude). Here the color of vanishing amplitude is set to white, the low amplitude of the noisy regions indeed appears with very faint and pastel colors, whereas the chirp has a more intense color.

This shaded-color coding is a synthetic way of representing a map of complex values at the scale of few oscillations (otherwise the colors would hardly be distinguishable). While less suited for illustrating XQ(f, t) at large scale (only the amplitude is represented as in Figure 2B), the shaded-color coding will be ideal for time-frequency coherence maps (see reference [55] for a similar use for fMRI signals).



3.4. Wavelet Based Time-Frequency Decomposition of EEG, ECG, and Respiration Signals

We focus here on three types of signals; EEG, ECG, and respiration from the PSG databases. Among these, the EEG remains the most complex, because its spectral signature is a mixture of rhythms of different natures: some of them have been recognized with a physiological origin, others which are more volatile (unsteady) can be interpreted falsely from spectral decomposition [56]. The cross-correlation of these EEG “rhythms” with other physiological signals (such as the heart and respiration rates) can help discriminate artifacts from steady rhythmic sources. Our study proposes a methodology to assist this clarification. The cardiovascular system is vital for feeding and clearing the whole body organs, its failure in the brain or other neuronal tissues leads rapidly to irreversible issues, it must therefore be finely regulated to keep a correct flux and filtration of blood. The cerebral blood flow has been reported to increase during sleep, both in slow wave sleep (4–25%) and in REM sleep (25–80%) [57]. Recently, it was also shown that the brain rhythms can be placed in resonance with the HRV and respiration when modulating the respiration frequency to lower bands [58].

Wake-sleep phases (wake, REM, and NREM) have been classified in subclasses (stages) related to different patterns of brain electrical activity, we used this classification to overlay the hypnogram from a clinician annotation (Figure 3A) with the corresponding EEG, ECG, and respiration signals (Figures 3B–D). The hypnogram is a simplified representation of sleep, based on a set of criteria about the behavior of the power density of the EEG (possibly complemented by the EOG and EMG) in the time-frequency domain, roughly discretized in frequency bands (δ up to 4 Hz, θ from 4 to 8 Hz, α from 8 to 12 Hz, σ from 12 to 16 Hz, β from 16 to 20 Hz, and γ above 20 Hz) estimated from 30 s time epochs. It is an approximation that cannot account for the continuous dynamics and the micro-structures of sleep (such as sleep spindles and K-complexes). It has been shown in reference [59] that the use of a continuous time-frequency representation of an occipital EEG can simplify considerably the scoring of the sleep stages but also their reading at the global scale of sleep, while conserving the information about micro-structures.


[image: Figure 3]
FIGURE 3. Comparison of three polysomnographic signals of subject slp04 selected from the database slpdb. (A) Hypnogram of the person (black line), who is shifting from NREM sleep stage 2 (N2) to wake phase (W) between 3,060 and 3,090 s. Leg movements, which were annoted by the clinician in this 30 s epoch, are represented by a green bar. (B) EEG (C3-O1) in millivolt, (C) ECG in millivolt, and (D) nasal respiration in liter per second.


We choose the EEG, ECG, and respiration signals from the same person (slp04) of the PSG database slpdb. In Figure 3, the transition from NREM stage 2 to wake phase can be noticed on the three signals. A visual inspection of the signals shows a drastic change around 3,070 s. We also note that the 30 s length epochs cannot designate with accuracy the time of this transition on the hypnogram (Figure 3A).

The scalograms (CWT-based spectrograms) corresponding to these three signals are shown in Figure 4 (same time interval). We recognize the fundamental modes of ECG (~20 = 1 Hz) and respiration signals (~2−2 = 1/4 Hz) in Figures 4D,F, and some of their harmonics (two harmonics for the ECG which are visible during the whole time interval and two harmonics for the respiration in the 3,000–3,060 time interval). The scalogram of the EEG signal is completely different, there is no clear fundamental mode. As expected, this means that the EEG is a mixture of complex dynamics spread over a large frequency range (at least up to 125 Hz and down to the instrumental cut-off visible near 1/16 Hz, illustrated in this example). On the wake stage (beyond 3,090 s) a very thin frequency band near 10 Hz corresponds to α waves, typical of the phase of wakefulness with closed eyes [59]. If we look more precisely in the N2 stage (Figure 4B) we can guess a similar band much more intermittent and less intense: it is the σ band constituted of bursts of sleep spindles. This time-frequency representation is very helpful to recognize different components; singular events are expressed as vertical structures, whereas periodic components translate in horizontal bands. Below 4 Hz we observe localized bursts (with vertical cone rather than horizontal band shape) corresponding to sharp and sudden events in the signals. The comparison in Figures 4C,E,G of the log-frequency densities estimated either directly from the squared Fourier transform (thin gray line) or from the CWT (Equation 6) (thick black line), highlights the interest of the CWT method to get a better differentiation of the peaks and of their power ratio with other non-periodic components.


[image: Figure 4]
FIGURE 4. CWT's amplitude (twice its modulus) (B,D,F) and spectral densities (C,E,G) of the signals presented in Figure 3. (A) Hypnogram. (B) amplitude of the EEG (C3-O1) (color bar in mV) and (C) power log-frequency density (in mV2). (D) Amplitude of the ECG (color bar in mV) and (E) power log-frequency density (in mV2). (F) Amplitude of the nasal respiration signal (color bar in l·s−1) and (G) power log-frequency density [in (l·s−1)2]. The CWTs are computed with the Grossmann wavelet of quality factors Q = 10, sufficient to appreciate the frequency localization of the α EEG waves. The corresponding power log-frequency density Sx(f)|f| is estimated either directly from the squared Fourier transform (thin gray line) or from the CWT (Equation 6), (thick black line).




3.5. From Raw Signals to Rhythm Modulations: Capturing Their Amplitude and Phase

EEG signals are quite complex, they combine both noisy frequency bands, and aperiodic or quasiperiodic local rhythms embedded in a rather wide frequency range. The amplitude or power density changes with time within various frequency bands are straightforwardly computed from a (complex) analytic wavelet transform [60], namely the modulus |XQ(f, t)| or its square. The natural bandwidth at any frequency f is given by the width of the wavelet δlogf, which can be broadened by decreasing the quality factor Q or by mean of an integration over a larger frequency range.

Alternatively, instantaneous frequencies can be systematically extracted from the respiration and heart beat signals, yielding the respiration and heart rates. Preprocessing operations are required to obtain these signals of interest from the recordings. The extraction of the instantaneous frequency of a rhythm is generally aimed at detecting quasiperiodic oscillations (such as the ECG's peaks); it is subject to threshold choices, instabilities in certain situations and requires an homogeneous resampling. More sophisticated techniques using masking and synchrosqueezing operations (such as in [61]) are often tedious and computationally intensive. We propose here an alternative and fairly simple approach, based on the idea of slowly modulated carrier waves, that uses the CWT XQ(f, t) of a measured signal x(t).

For an ideal harmonic oscillation x(t) = Acos(2πf1t), the time-frequency representation is simply [image: image], from which we estimate the frequency as [image: image] (ℑ is the imaginary part and the dot stands for a time derivative). We expect this relation to hold approximately when the frequency is slowly modulated, f1 = f1(t). This frequency estimated from the phase derivative is called an instantaneous frequency, and the time-frequency coordinate points such that f1(t) = f, called the phase ridges [51, 62] (very close to the ridge of peak amplitude). When the envelop of the oscillation is also slowly modulated, A = A(t), the CWT can be approximated by [image: image] and the amplitude modulation is estimated from the real part of the logarithmic derivative: [image: image]. Therefore, the logarithmic time derivative of the CWT characterizes both the frequency and the amplitude modulations (assumed to be slow).

Note that [image: image] is not expected to depend heavily on f in the above idealized case. A careful selection of this frequency parameter is however essential for the estimation of the amplitude and frequency modulations in real signals, either because the signal-to-noise ratio is only high near the time-frequency ridge of the mode, or because of multiple simultaneous modes. However, we argue that these modulations can be captured in a generic way, without the help of signal-specific information, by means of a frequency average:

[image: image]

where w(f) is the frequency weight function. The power density of the signal at each time t is a natural choice, w(f) = |X(f, t)|2, which emphasizes the modulations of the more intense components (typically the signal) rather than the less intense ones (typically the noise). For this particular weighting, we get the simpler expression

[image: image]

where ẊQ(f, t) is straightforwardly computed by replacing the wavelet [image: image] by [image: image] in the numerical implementation of the CWT. The weight function can include a frequency band selection window, [image: image], such as a simple rectangle function on the band interval [image: image]. Such band-limited frequency average will be of strong interest for screening specific EEG frequency bands and cross-correlate them with the heart and respiration rhythms. Note that reducing the band to a single frequency, χf0(f) = δ(f−f0), replaces the frequency average by an evaluation at f0: [image: image]. [image: image] is complex with the dimension of a rate (Hz), so that we choose to refer to it as the complex rate of a signal (given a weight function and an analytic wavelet). It can be decomposed into real and imaginary parts:

[image: image]

interpreted as real and instantaneous modulations of the rhythm in the signal x(t) (at the scale of the NQ ≈ Q/2.5 oscillations): [image: image] is the average rate of exponential growth or decay and [image: image] is the average instantaneous frequency. [image: image] provides a direct and quick estimation of the HRV [63].

To test Equation (8), let us define model signals of the form A(t)z(ϕ(t)), where A(t) is the amplitude, ϕ(t) is the phase and z(t) is a periodic triangle wave. Two modulated signals will be illustrated here, x(t) with a constant amplitude and y(t) with a constant characteristic frequency:

[image: image]

[image: image]

The triangle wave z(ϕ) has the specificity of containing only harmonic frequencies of odd orders (n = 1, 3, 5, …), with an amplitude that decays as n−2 (comparable with the respiration signal).

The time-frequency analysis of these two model signals for the parameters (f0, f1, f2) = (1, 1/20, 1/60) Hz, and (a1, a2) = (0.2, 0.1), reported in Figure 5 with a quality factor Q = 5, confirms that modulations are indeed slow compared to the chosen wavelet. At higher quality factor, the modulations are not resolved entirely by the wavelet, leading to a confusion between amplitude and phase modulations. The modulated amplitude A(t) is precisely estimated by

[image: image]

up to an integration constant A0 (set by hand in Figures 5A,B, black lines), and the characteristic frequency [image: image] is slightly overestimated by [image: image] (Figures 5E,F). This separation between the average instantaneous and fundamental frequencies is due to the harmonic modes in the frequency average (Equation 8), and it increases with their weight (i.e., with the non-linearity of the oscillation). The bias is +3.6% here and it could be predicted from the oscillation's spectrum: [image: image] for the triangle wave. Yet, its correction would not improve a correlation or coherence analysis since the signal will be standardized (centered and reduced). Around the ideal modulations given in Equations (10) and (11), small and fast periodic oscillations at the fundamental frequency of the rhythm can also be noticed in both types of rate signal. This non-linear effect finds its origin in pulses in the CWT (Figures 5C,D), caused by high harmonic frequencies that are not resolved by the wavelet (as soon as their harmonic order exceeds the number of wavelet oscillations NQ ≈ Q/2.5).


[image: Figure 5]
FIGURE 5. Idealized modulated signals: triangle waves. (A) Signal x(t) of modulated frequency and constant amplitude. (B) Signal y(t) of modulated amplitude and constant frequency. In (A,B) the amplitude modulation (estimated from Equation 12) is plotted in black lines. (C,D) Color-coded illustration of the amplitudes of the signal CWTs (twice the modulus), with their estimated frequency modulation [image: image] (black lines). (E,F) Real and imaginary parts of the complex rates (Equation 8): [image: image] and [image: image] in black lines, are compared to the ideal values of the instantaneous frequency (blue dashed line centered to 1 Hz) and exponential rate (blue line centered to 0 Hz), see definitions in Equations (10) and (11). The Grossmann wavelet of quality factor Q = 5 is used for the CWTs and for the rates computations.


When the model signal has a much stronger non-linearity (see Supplementary Figure 2), the deviations from the ideal modulations are so important that the rate signals can not be compared directly to the true modulated amplitude and frequency. More concerning, this fast oscillation could dominate the correlation analysis of the estimated modulations, if its amplitude exceeds that ones of the true modulations.

That is precisely where the coherence analysis is helpful, since it can easily discriminate these artifacts of well-defined frequency. Amazingly, from our computations on model and real physiological signals, we have reached the conclusion that these periodic perturbations are even beneficial since they enrich the complex rate with a repetition of the carrier wave. No such oscillations are included in the usual rate estimation methods (that use lower sampling frequency).

Compared to peak extraction and re-sampling methods, common for the study of the respiration and heart rates variability, the method presented here requires no signal-specific adjustment, other than a possible frequency band selection. It also provides for free the amplitude variability (instantaneous exponential rate) in addition to the average instantaneous frequency.



3.6. Complex Rates of Physiological Rhythms Estimated From Recordings

The extraction of the rhythm modulations is required in order to explore their correlations beyond (lower than) their natural frequency bandwidths. These modulations are given by the complex rate [image: image] (Equation 8). For illustration, we apply this method to the EEG, ECG, and respiration signals of subject slp04 from the database slpdb (see Figures 6, 7).


[image: Figure 6]
FIGURE 6. Illustration of the complex rate of the ECG (A,C) and of the respiration signals (B,D), from subject slp04 of slpdb near the transition from deep sleep stage to wake phase represented in Figures 4, 5. In (A,B), the physiological recording is plotted with a blue line, the amplitude estimated using [image: image] (Equation 12) is the black line, and the alternative estimated amplitude is the black dotted line (see details below). (C,D) Color-coded amplitude of the signals CWT, with their frequency modulations estimated as the imaginary parts of the complex rates [image: image] (Equation 8) (black lines), and the alternative estimations (black dotted line). In each panel, the alternative estimation (black dotted line) aims at reducing the non-linearity-induced oscillations (see text and Supplementary Figure 2). The Grossmann wavelet of quality factor Q = 5 is used for the CWTs. The frequency ranges shown in (C,D) are the ones used for the complex rates computation.



[image: Figure 7]
FIGURE 7. Modulation analysis extended to the EEG. (A) Hypnogram of the subject slp04 of slpdb during a sleep cycle: the subject falls asleep around 20 min and wakes up around 50 min. (B) EEG signal (C3-O1) in black line. (C) Color-coded amplitude of the EEG signal CWT (twice the modulus) during the selected time interval, computed with a quality factor Q = 5. The color bar gives the amplitude in millivolt. (D) Natural logarithm of the EEG band powers defined in the text and in Equation (13): Pδ in blue, Pθ in red, Pα-σ in orange, Pβ-γ in purple. The black line is the power integrated on the full frequency range (from 0.04 to 125 Hz), PEEG. (E) Average instantaneous frequency [image: image] on the full frequency range. (F) Average rate of exponential growth [image: image] computed in the same frequency bands as in (D). In (D,F), the central value of each signal has been aligned to the position in (C,E) of the middle frequency of its band. These signals have no dimension and are scaled in the same way.


The previous computation of [image: image] from model signals (Figure 5 and Supplementary Figure 2) is reproduced easily for the respiration rhythm, yielding two additional respiration fluctuation signals [image: image] and [image: image], compared in Figures 6B,D to the original respiration signal and its CWT. Extracting [image: image] from an ECG perturbed by its strongly non-linear nature (Figure 7A). This non-linearity takes the form of sharp pulses of high amplitude simultaneous to the ECG pulses.

For the sake of pedagogy, a quick attempt of attenuating of this non-linear effect is proposed in Figures 6A–D (black dotted lines), using an alternative weight function [image: image] (in Equation 7) to damp the high frequencies. Although the resulting average instantaneous frequencies are closer to the fundamental mode during the deep sleep stage, they are markedly shifted by low frequency perturbations, favored by the average. This is especially the case for the ECG signal when the person wakes up (Figure 6C, after 3,090 s). This alternative computation of the complex rate has the additional side effect of contaminating the modulated amplitude estimation by the opposite of the frequency modulation (as observed for the model signal in Supplementary Figure 2).

The fast oscillations in [image: image] and [image: image] (black lines in Figures 6A,C), are produced by the high harmonic frequencies that are not resolved by the wavelet. Those which are resolved are continuous harmonic lines that follow the modulations of the fundamental mode. They all contribute to the final complex rate [image: image] proportionally to their spectral power. In the following, we will prefer this original weight function for computing the complex rate (Figure 6, black lines) to the damped version (black dotted lines) that lacks all fine details. Although these new physiological fluctuation rate signals do not compare directly to the idealized cardiac and respiration rates, their spectral richness capture all the modulations that are resolved by the wavelet in the considered frequency range (plus the carrier wave).

For the EEG, we select a longer time interval for which the subject falls asleep (around 20 min) and wakes up (around 50 min), see the hypnogram in Figure 7A. These transitions are well observable in Figure 7C from the changes of high and low frequency contents of the scalogram at these times, as in the average instantaneous frequency (Figure 8E), summarizing this behavior as the hypnogram in a suprisingly close way. Notice that we can access much more information from the CWT than from the hypnogram, such as micro-states of arousal during sleep at 40 and 46 min, yielding transient high amplitudes at the high frequencies. A conventional way to deal with the complexity of an EEG signal x is to divide it into band-limited power signals, computed straightforwardly from its CWT (Equation 5) as:

[image: image]

While the conventional frequency bands [image: image] (δ, θ, α, σ, β, γ) are quite even in a linear frequency scale (with a width of about 4 Hz), this is not the case on a logarithmic frequency scale. For this reason, we slightly adapt the bands in this study as follows: the δ band from 0.25 to 4 Hz, θ from 4 to 8 Hz, α−σ band from 8 to 16 Hz, and the β−γ band above 16 Hz (up to 125 Hz, the Nyquist frequency limit), see Figure 7D. Since the real part [image: image] of the complex rate computed in each band (Figure 7F) is used to estimate the log-amplitude in the band once integrated, we expect that [image: image] describes the same modulation as the power signal (a squared amplitude) in the same band. As we can see in Figures 7D,F, [image: image] and logPband are indeed indistinguishable (except for the factor 2 due to the square in Equation 13). Therefore, both kinds of signal can be used interchangeably to study the modulation of the amplitude in the EEG bands. The imaginary part of the complex rate in each band, not used in the following and hence omitted in Figure 7, could nonetheless be useful to distinguish α waves from sleep spindles in our custom α−σ band.


[image: Figure 8]
FIGURE 8. CWT of the physiological rate signals of subject slp04 from the database slpdb, computed as the real and imaginary parts of Equation (8). (A) Surrogate signal of (B) [image: image], the amplitude modulation in the θ band, (C) amplitude modulation in the β−γ band [image: image], (D) frequency modulation in the ECG [image: image], (E) frequency modulation in the respiration signal [image: image]. The color codes for the amplitude (twice the modulus) of the CWTs, computed with the Grossmann wavelet of quality factor Q = 5. The amplitude has the unit of the signal: no dimension in (A–C), in radian per second in (D,E). At the top row, the hypnogram is marked with red dots corresponding to annotated events of obstructive apnea with arousal.




3.7. CWT of the Respiration, Cardiac, and EEG Band Modulations

The complex rates are computed for the full overnight records of subject slp04. In particular, we discuss the modulations of the cardiac frequency, respiratory frequency, and EEG log-amplitude in the δ and β−γ bands, captured, respectively by the rate signals [image: image], [image: image], [image: image] and [image: image] (from Equations 8 and 9). The contributions from multiple scales, superimposed in these modulation estimators, are revealed by their CWT.

The wavelet transform is performed on two distinct levels to obtain this time-frequency rates coherence: a first CWT of each recording is required to compute its complex rate, and a second CWT is applied on the real and imaginary parts of this new complex signal. Even though the choices of the parameters could be distinct in these two rounds of CWT, we use as previously the Grossmann wavelet ψQ of quality factor Q = 5, which seems again a good compromise between a precise time localization and a sufficient frequency resolution. This fixes the wavelet widths to [image: image] oscillations and [image: image] (1.65 being the least distinguishable frequency ratio). The amplitudes of these CWTs are represented in Figures 8B–E. In addition, we construct a the phase-randomized surrogate of [image: image], shown in Figure 9A for Figure 8A for comparison.


[image: Figure 9]
FIGURE 9. Time-frequency coherence γxy(f, t; Q, n) (A,C,E) and spectral coherence γxy(f) (B,D,F) computed from pairs of CWTs (see Supplementary Figure 5) for subject slp04 from the database slpdb. (A,B) EEG vs. ECG, (C,D) EEG vs. respiration signal, (E,F) ECG vs. respiration signal. The ranges of coherence moduli |γxy| for the color saturation coding are delimited by the lower thresholds γ(10−1) ≈ 0.21, γ(10−3) ≈ 0.36, 0.5, 0.7. The wavelet and smoothing kernel parameters are Q = 5 and n = 50. For each coherence image, a black line materializes a distance nδt from the initial and final times, beyond which border effects are possible. The spectral coherence γxy(f) (right column) computed from Fourier transforms (thin gray line for its modulus) is compared to the one computed from CWTs (black line for its modulus and colored dots for its phase). See text for details.


At this stage of the analysis, [image: image] (Figure 8B) is hardly distinguishable from its surrogate signal (Figure 9A); they both exhibit a quite homogeneous distribution of the modulation's amplitude in the time-frequency plane (especially for the surrogate). The amplitude Figure 9B vanishes when approaching the upper frequency 8 Hz of the θ band selected for the for the θ-EEG rate computation. As observed in Figure 6, the most intense oscillations in [image: image] (Figure 8D) are localized at the cardiac frequency (and its harmonics): this is the carrier frequency of the cardiac modulations in the strongly non-linear ECG signal. The information about the HRV is nonetheless present at lower frequencies: a mode of varying amplitude at 0.2 Hz confirms the known fact that the heart rate is modulated by the respiration frequency. We note that the respiration modulation intensifies, becomes unsteady and extends toward low modulation frequencies in the time interval between 50 and 180 min (NREM sleep stage 2). Apart from the respiration mode due to the non-linear carrier wave frequency, [image: image] (Figure 8E) exhibits in this time-frequency region an intense mode at about 0.035 Hz. The subject slp04 is severely affected by sleep apnea, and this time interval corresponds to an uninterrupted sequence of such events (“obstructive apnea with arousal” are marked with red dots in the hypnogram). The presence of a clear mode at ~0.035 Hz means that the corresponding apneic events occur with a quite regular period: approximately every 30 s. For this reason, we refer to this phenomenon as the “apneic rhythm”. So far, we can anticipate that this apneic rhythm causes correlations between the rate signals, since it is noticeable in all rates (Figures 8B–E).




4. TIME-FREQUENCY COHERENCE


4.1. Computing the Time-Frequency Coherence With the Wavelet Transform

The time-frequency coherence can be viewed as a generalization of both Pearson correlation and traditional (spectral) coherence and has the advantage to preserve both temporal and spectral components of the compared signals. A rigorous definition of these quantities can be found in Supplementary Section 1. A time-frequency coherence appears to be more appropriate for the correlation analysis of single trial, non-stationary, non-linear, and/or multiscale signals produced by physiological rhythms.

This time-frequency coherence is extended from the non-stationary cross-spectrum (Equation S8), replacing the non-stationary cross Sxy(f, t) and auto-spectra Sx(f, t) and Sy(f, t) of the two signals x and y by their CWTs, XQ(f, t) and YQ(f, t):

[image: image]

This equation computes averages over multiple realizations of the signals, which is not applicable in general to physiological signals, apart from rather rare cases [64]. Even though the wavelet transform already performs a smoothing in both time and frequency, this averaging is of fundamental importance since it defines a finite size box over which the spectral and temporal coherence is evaluated. This quest for a correct coherence evaluation emerged from the sixties with the introduction of spectral methods in neurology [65, 66] and led to an abundant literature. We will only mention here two lines of researches which are closely related to our time-frequency approach, namely (i) single and multi-taper methods [59, 67–70] and their application to time-frequency coherence [32, 71–74] and (ii) wavelet-based coherence [55, 75–81].

Given that the wavelet effectively performs a smoothing in both time and frequency, we will use the quality factor Q for spectral smoothing and introduce another kernel (see Supplementary Section 2) with a larger size than the effective wavelet duration δt, defined in section 3.2. The width of this kernel determines both the temporal resolution of the coherence analysis and the level of spurious coherence (expected background noise of the estimator). The statistical distribution of this spurious coherence is essential to the evaluation of the coherence (see Supplementary Section 2 and Supplementary Figure 1).

The temporal smoothing of a time-frequency representation S(f, t) is performed by convolution with a positive kernel χ:

[image: image]

The normalized kernel is adapted to the time resolution of the CWT; note its similarity with the wavelet in Equation (1). It leads to the following estimators of the time-frequency power densities and coherence with respect to the kernel χ:

[image: image]

Remarkably, the temporal smoothing in Equation (15) preserves an homogeneous level of spurious coherence in the time-frequency plane (see Supplementary Section 2), while a smoothing kernel of constant duration at all frequencies implies a much greater spurious coherence at low frequencies than at higher ones as described in Torrence and Compo [77] and Gurley et al. [78].

More explicitly, we use a Gaussian time-smoothing kernel χn with a temporal spread of n times the width of the Grossmann wavelet:

[image: image]

for which the root mean square of the spurious coherence |γsp| is found to be very close to [image: image]. The significance of the estimator [image: image] is given by the distribution of the squared spurious coherence, simulated by two independent jointly stationary Gaussian noises. This spurious coherence follows a beta distribution with a single parameter β = β(Q, n), which turns out to be practically independent of Q and very close to n (when >10): β ≈ n. A simple expression for the p-value of any squared coherence level is obtained from the beta distribution:

[image: image]

As proposed in the context of a multi-wavelet estimator [75], it provides the threshold coherence value [image: image] above which [image: image] exceeds a p-level of significance. See Supplementary Section 2 and Supplementary Figure 1 for more details. As a consequence, the higher the value of n ≈ β, the more significantly we can distinguish low coherence values from the background (spurious), but the lower the time resolution. Equation (18) serves to calibrate the phase-amplitude shaded-color coding of the complex-valued map shown in Figure 2D, and thus build a synthetic visualization of the significant time-frequency coherence. The computed significance levels are then assessed from the coherence map obtained from a phase-randomized surrogate. It is worth mentioning here that well-constructed surrogates can also serve to estimate the significance directly, see for instance reference [82].



4.2. Wavelet-Based Time-Frequency Coherence From Raw Signals

The physiological interpretation of the time-frequency coherence highly depends on the choice of the compared signals. The time-frequency coherence computed directly from the CWTs of the original records includes all the components from physiological and instrumental sources. It provides a way to locate the oscillations that are jointly collected by both measuring apparatus, regardless of their intensity in each recording. Regions of significant coherence may also indicate cross-talks between the sensors (which are preferably minimized for an optimal specificity of each measure).

We compute the CWT of the EEG, ECG, and respiration signals of subject slp04 from database slpdb with a quality factor Q = 5 (see Supplementary Figure 5). The time-frequency coherence, computed from pairs of signal CWTs with the Gaussian kernel of parameter n = 50, is represented in Figure 9. See also Supplementary Section 5 and Supplementary Figure 8 for another detailed example of coherence computation between 2 EEGs. In the panels of Figures 9B,D,F, we also compare the spectral coherence γxy(f) (Equation 8), computed from “Fourier” spectral densities (first method) and from CWTs (second method). The spectral densities are estimated in the first method from cross and squared Fourier transforms computed in 1 min windows with 30 s overlap and averaged (Welch's method), whereas in the second method, cross and squared CWTs are averaged over all times.

The most coherent region (|γxy|>0.7) lies around 0.2 Hz between the ECG and the respiratory signal (Figures 9E,F) which corresponds to repeated apneic episodes for this subject. This imprint of respiration on the ECG signal around 0.2 Hz is reminiscent of the complex interaction between autonomic system, mechanical and other factors on the excitable cells located in the sinoatrial node (respiratory sinus-arrhythmia RSA [83]). The shaded-color representation of Figure 9E shows that the phase of the coherence gets closer to π/2 (phase quadrature) during the longer NREM sleep stage 2 (N2) (typically between 100 and 180 min, in the first half of night), whereas it is in phase opposition (π or −π) when the N2 sleep stages are shorter. This heart-respiratory coordination vanishes in the wake or REM phases. Interestingly, this coordination is more visible in the EEG-respiratory pair coherence in Figure 9C in the second part of the night, with a narrower band of coherence around 0.2 Hz, and again in phase opposition.

Cardiac pulses that appear in the EEG yield another significant coherence (up to |γxy|~0.5) (Figure 9A). The high cardiac harmonic frequencies are particularly coherent with the EEG oscillations above the δ band, with a phase relation to the frequency which follows the linear trend ϕEEG−ϕECG = ±π+2πτf, where τ ≈ 14 ms. This means that the cardiac pulses in the EEG seem to appear slightly early compared to the ones in the ECG. This phenomenon is related to the one of heart-beat evoked response/potential [84].

Finally, we notice in Figure 9C two interesting features, (i) the imprint of respiration on ECG appears also in the EEG-respiration pair coherence but is more visible in the last part of the night, and it also gives a phase opposition of these two signals, (ii) another coherent mode (|γxy|~0.5) in phase opposition (magenta) between the EEG and the respiration signal appears in the very low frequency range (~0.035 Hz). An intermittent mode at 0.035 Hz is indeed noticeable in the CWT of the respiration signal (Supplementary Figure 5C), sign of a periodic loss and recovery of the lung capacity at every apneic cycle (about six respiration cycles). Such a mode can hardly be observed directly from the CWT of the EEG because of its damped amplitude at such a low frequency. In spite of this instrumental attenuation of slower oscillations, the coherence normalization compensates the loss of EEG power as long as the very weak oscillations are resolved in the signal. A close inspection of the EEG CWT (Supplementary Figure 5A) uncovers bursts (vertical singularities) about every 30 s across higher frequencies, the low frequency roots of which could produce such weak but regular oscillations at 0.035 Hz. The phase opposition with the respiration signal means that the EEG bursts occur precisely when the lung capacity is at its lowest level. The study of the very low frequency band, complicated in raw signals by their instrumental high-pass filtering, is however unleashed in modulation signals, which can oscillate arbitrarily slowly (no low frequency decay in Figure 8).



4.3. Time-Frequency Coherence From EEG, ECG, and Respiration Modulation Signals

We extract first the modulations of the respiratory and cardiac frequencies and of the EEG bands with a wavelet time-frequency decomposition described in section 3.5, and we compute the cross and auto power spectral density from their wavelet transforms and the coherence from them. We use the Gaussian time-smoothing kernel χn (Equation 17) with a duration of n = 10 wavelets, giving a time-localization of 10δt ≈ 20/f, sufficient to identify the respiration rate at a resolution of 1 or 2 min and to resolve the variability of the apneic rhythm. However, the spurious coherence at a 90% level of significance (p <10−1) associated to this quite local estimator is as high as γ(10−1) ≈ 0.46 (see Equation 18): this time-frequency coherence analysis is therefore limited to rather strong correlations. The resulting time-frequency coherence of different pairs of modulation signals for the subject slp04 are represented in Figure 10.


[image: Figure 10]
FIGURE 10. Time-frequency coherence analysis of the physiological rate signals pairs, obtained from their CWTs represented in Figure 8. In the following, the coherence of signal x vs. signal y corresponds to the quantity γxy(f, t; Q, n), the EEG band signals are the log-amplitude modulations estimated as [image: image], and the cardiac and respiratory rates are the frequency modulations estimated from the ECG and respiration signals as [image: image]. (A) Hypnogram; the red dots corresponds to annotated events of obstructive apnea with arousal. (B) Band θ surrogate (phase-randomized signal) vs. θ. This control coherence illustrates the level of significance of the spurious coherence. (C) β−γ vs. θ band, (D) cardiac vs. respiratory rate, (E) β−γ band vs. cardiac rate, (F) θ band vs. cardiac rate. (G) β−γ band vs. respiratory rate. (H) θ band vs. respiratory rate. The ranges of coherence moduli |γxy| for the color saturation coding are delimited by the lower thresholds γ(10−1) ≈ 0.46, γ(10−3) ≈ 0.71, 0.8, 0.9. The quality factor of the Grossmann wavelet is Q = 5 and the Gaussian time-smoothing parameter is n = 10. For each coherence image, a black line materializes a distance nδt from the initial and final times, beyond which border effects are possible.


The most striking observation in Figure 10 is an intermittent but strong coherence in the frequency band near 0.035 Hz, between 50 and 180 min, in all pairs of physiological rate signals (Figures 10C–H) (which can extend to 200 min, and is also visible around 340 min). By comparing the time intervals in which this apneic rhythm appears with the annotations of the hypnogram (Figure 10A), we notice that it only occurs during the NREM sleep stage 2 (N2) and that the coherence decreases or disappears when the person wakes up (W). coherence decreases or disappears when the person wakes up (W). The different colors of this region indicate different phase shifts between rates. For instance, in Figure 10C, the EEG β−γ band is [image: image] to [image: image] radians delayed (late) compared to the EEG θ band. This means that not only these two EEG frequency bands behave coherently, but also that they are quite in phase opposition; while the EEG signal in the θ band reaches its maximum, the EEG signal in the β−γ band increases progressively from its lowest value. In Figure 10D, the small phase shift between [image: image] and [image: image] indicates that the decreases and increases of the cardiac and respiratory rhythms occur quasi in-phase at each cycle of apnea (or the cardio-apneic rate variation slightly precedes the respiratory one). The light green color of the apneic coherent region in the next panels (Figures 10E–H) indicates that the cardiac and respiratory modulations evolve nearly in phase with the EEG β−γ band, while it is rather in phase opposition with the EEG θ band (purple blue color).

We can also observe in Figure 10G a region of strong coherence (|γ|~0.8−0.9) in phase opposition (magenta), from 250 to 340 min at very low frequencies (below 2−6~0.02 Hz, i.e., at the scale of a few minutes). As can be checked in Supplementary Figures 5A,C, this region corresponds to isolated events of apnea (at times 250, 265, 292, 303, 306, 324 min), with relatively quick drops and restoration of the respiration frequency and simultaneous rise and disappearance of β−γ amplitude in the EEG. These kinds of micro wake states may constitute a different recovery mechanism, slower than the apneic rhythm around 0.035 Hz.

Other regions of significant coherence can be observed. In Figure 10D, the modulation of the cardiac rate by the respiration in the frequency range 0.1–0.4 Hz is also observed in some time intervals (from 30 to 40 min and from 270 to 320 min). Amazingly, the strong coherence which was computed from the CWTs of the raw signals (Figure 9E) has quite disappeared, in particular during the sleep apnea episodes. Comparatively, the coordination of the apneic rhythm has a much stronger echo in the EEG signals.

In Figure 10E, in-phase coherent lines at the cardiac fundamental and harmonic frequencies highlight the presence of cardiac impulses in the β−γ band of the EEG (also visible but less significant in the θ band). Interestingly, a slight coherence of phase shift [image: image], at the respiratory frequency from 100 to 150 min, also appears between the cardiac rate and the β−γ amplitude.

This evidence questions the relation of the apneic rhythm to a dysfunction of the autonomic regulation of cardio-pulmonary coupling during sleep apnea [83, 85]. The fact that the coherence phase changes in subject slp04 when comparing different EEG frequency bands [β−γ and θ illustrated in Figures 10E–H] could suggest a different implication of sub-groups of neurons in this regulation. Brain inter-band EEG correlation patterns have recently been demonstrated in different sleep stages [86], by the computation of a Pearson correlation coefficient ρxy from pairs of frequency bands. This distinguishes well in-phase fluctuations from those in phase opposition, however both positive or negative phase quadrature (e.g., due to a differential relation) lead to a vanishing correlation. Extending the Pearson correlation ρxy to a complex correlation coefficient (or global coherence) [image: image] (Equation S6), that takes values in the unit disk, could restore a whole 2π interval of phase-shift values. The observation of heterogeneous EEG inter-band coherence in Figure 10 and Supplementary Figure 7 further suggests the importance of introducing the spectral localization (i.e., the coherence γxy) for contributions of slow and fast modulations [87]. Finally, in (Figure 10C) a wide domain of in-phase coherence (green) appears between the θ and β−γ bands when the person is awake (from 190 to 240 min), while this type of correlation damps out during sleep (apart from the apneic rhythm). An explanation could be found in the singular events crossing the full frequency range, possibly related to motions of the waked person. The complete EEG inter-band coherence analysis (for all EEG band pairs) is presented in the Supplementary Figure 7.

The richness of the proposed time-frequency method offers more analytic perspectives than those tested in here. In the case of EEGs for instance, the modulation of the amplitude (or power) in each band could be compared to the EEG itself; such a choice of input signals for a coherence analysis could help understand the relations between the phase of slow waves (e.g., δ) and the modulations of faster ones (e.g., sleep spindles).

This thorough coherence analysis of the subject slp04 points out the interest of the method proposed in this work, generalizing it to the shhs2 polysomnography database in next section 5, brings a statistical confirmation of its validity, as compared to other analysis of the HRV published in the last two decades [88–90].




5. STATISTICAL CONFIRMATION OF THE APNEIC RHYTHM IN THE SHHS2 DATABASE

Finally, we complete this study with a statistically robust analysis of a large selection of subjects from the shhs2 database, distributed in five groups defined by their type of sleep apnea (see section 2.4).

Before selection, an individual analysis of the rates coherence (Figure 10) is performed from all the subjects of the shhs2 database. The statistics is performed in each group by averaging in time, over the selected and cumulated intervals, the time-frequency squared coherence [image: image]. This reduces the huge amount of generated individual data to the typical intensity of synchrony defined as the squared coherence between the physiological rate signals, across frequencies and apnea groups. Note that the square is essential here to focus on the average instantaneous coherence strength. It prevents the sleep stages and inter-personal variabilities of the coherence phase (complex argument) from reducing the global mean intensity, as would be the case when estimating the (stationary) spectral coherence. The distribution of the phase can be studied separately.


5.1. Averaged Synchrony Between Physiological Rate Modulations

The coherence profiles, resulting from the conditional averaging of [image: image] over the full cumulated times of apnea in each group, are compared in Figure 11 for three pairs of modulation signals from the heart, breathing and brain activity. The total duration of these averaging intervals (for each sub-group H, O, and C) is very long compared to the width of the (time) smoothing kernel (of characteristic duration [image: image] s for our estimate), which makes these profiles very robust. They can further be compared to the expected spurious coherence level [image: image] (gray thick dashed line in Figure 11) fixed by the time smoothing parameter n = 10.


[image: Figure 11]
FIGURE 11. Comparison of typical squared coherence profiles for different sleep apneas and from different rate signals pairs, obtained from the full database shhs2. In each panel, colored lines are obtained by averaging the squared modulus of the time-frequency coherence, [image: image], over the time duration of apneic events in distinct groups: 87 subjects strongly affected by hypopnea (blue lines), 153 by OSA (red lines) and 189 by CSA (green line). See text for details of the selection. The black line is the average over the full sleep duration of a control group very mildly affected by any type of apnea, the black dotted line is the unconditional average over the full sleep duration of all 2,650 subjects in the database, and the gray thick dashed line traces the expected level of spurious coherence. These profiles are mean squared coherences between (A) the cardiac vs. respiratory rate, (B) the θ band vs. the respiratory rate and (C) the θ band vs. the cardiac rate modulation signals, as shown for a single subject in Figures 10D,F,H before squaring and time averaging.


CSA and OSA are associated with the rise of a peak of coherence between all pairs of rate signals, maximum around 0.02 Hz, on the group C and O (green and red lines in all panels of Figure 11). This mode is much less prominent in the group H (blue line) and absent from the control group (black line); instead the baseline of coherence at very low frequency is enhanced. This band corresponds to the “apneic rhythm” in the breathing and heart rates and in every band of the EEG activity (only θ band, shown in Figures 11B,C). In contrast, a peak of coherence at the respiratory frequency (near 1/4 Hz) is visible in Figure 11A only, meaning that the heart rate is modulated by the breathing cycle [this is the respiratory sinus arrhythmia (RSA)]. Contrary to the slower coherent mode, this modulation is most coherent in the control and the H group, whereas it is almost incoherent in the C and O groups.

The asymmetric shape of these two coherent modes can be explained as follows: (i) the bandwidth of the Grossmann wavelet δlogf covers less than an octave (from the quality factor Q = 5), and imposes a log-normal shape and a minimum width to isolated and non-averaged coherence peaks; (ii) the variability of the frequency of both coherent modes over times and subjects in each group is likely to spread the averaged peaks on larger widths (>1 octave); (iii) before averaging, a second peak (harmonic mode) of lower coherence can be distinguished, with frequency shifted one octave higher than the fundamental one.

Furthermore, a coherent mode at the cardiac frequency (at 1 Hz and above) is visible in panel B for all group averages. It is due to the presence of cardiac pulses in the EEG (studied as the heart-beat evoked response/potential [84]). Finally, a decrease of the coherence level below the expected spurious level can be noticed between the breathing and cardiac frequencies in Figures 11A,B.



5.2. Comparison to HRV Power Spectral Density

We use the PhysioNet cardiovascular signal toolbox [91] to compute the HRV signals from the ECG's RR intervals (jqrs algorithm), corrected automatically for ectopic and non-normal beats. We then compute the typical power spectral density profiles corresponding to each group as in Figure 11 as follows: (i) we obtain the CWT squared modulus (Q = 5) of the heart rate signal of each subject in shhs2, (ii) we select the subjects of each group and the time intervals with sleep apnea as previously (section 5.1), (iii) we perform the (conditional and unconditional) time averages for each subject. Figure 12A is then obtained by averaging individual spectra in each group, weighted by the duration of each individual time selection, whereas in Figure 12B the individual spectra are normalized prior to the group average (also weighted by individual duration). As a result, the profiles in (A) give mean absolute values for these HRV spectra, whereas (B) shows the mean profiles relative to the strength of the HRV (by normalizing out strong or weak individual HRV).


[image: Figure 12]
FIGURE 12. Comparison of typical HRV power spectral densities, obtained from the full database shhs2. (A) Power log-frequency density of the HRV signal, in bpm2, obtained by averaging its squared CWT in time (see Equation 6) over the selected time durations for the same subject groups as those used for Figure 11 (using the same color coding). (B) Time-averaged spectra, normalized for each subject prior to the group average (weighted by individual durations). The heart rate signals are estimated for each subject's ECG from the corrected RR interval.


The only difference between the data selection in Figures 11, 12 lies in an additional data exclusion of all 10-s epochs of non-physiological RR intervals (outside 0.375 to 2s during more than 15% of the duration, before correction). This mask excludes about 5–10% of the total durations in each group. The mean normalized HRV spectra in Figure 12B are nearly insensitive to this procedure compared the ones obtained without any data exclusion or with a stricter selection criterion (sqi>0.9, excluding 25–30% of the heart rate duration that does not coincide with the alternative estimation from the sqrs algorithm). These selections, supposedly affected by detection artifacts, tend to have strong amplitudes, so that their exclusion leads to a global decrease of the values of the mean HRV spectra in Figure 12A.

A first observation is the clear correspondence between rates coherence and HRV power spectra profiles, in particular we note the presence of a peak at low frequencies in Figures 11, 12, especially prominent in the case of obstructive and central sleep apneas. In the respiratory frequency band, however, differences between the groups are much harder to grasp from the HRV power spectra: the control group seems to have a significantly higher proportion of respiratory HRV (RSA) than the apneic groups (Figure 12B). This inversion of intensity from the low frequency to the respiratory bands between apneic and healthy subjects was much easier to discriminate in the rates coherence profiles (Figure 11A).

While these two measures both describe a certain intensity of the physiological activity in these frequency bands, their interpretation is very different. The HRV power spectra is limited to quantify the extent of the HRV amplitudes across frequencies, while the cardio-respiratory rates coherence of Figure 11A characterizes the quality of the synchrony, regardless of these amplitudes.

Based on all the above presented profiles for central and obstructive sleep apnea, we finally give our estimation of the localization of the fundamental apneic (low frequency) mode: the global maximum lies at 0.019±0.002 Hz (i.e., a period of 12–15 breathing cycles), and the widths suggests a variability of this rhythm among subjects ranging from 0.011 to 0.038 Hz (i.e., 1.8 octave).




6. CONCLUSION

We addressed the question of characterizing the coherence between distinct dynamics inside a physiological network. As suspected quite early (250 years for the heart rate), the variability (modulation) of these rhythms is at the core of neural regulation of organ systems, such as the cardiovascular and respiratory systems considered in this study. Analysing pair-wise interactions under the angle of a coherence analysis, we highlighted the high level of complexity of polysomnography database signals. Their non-stationarity, their nonlinearity and their wide frequency ranges are all taken into account without needing any pre-processing treatment (such as spectral whitening/detrending, or rank statistics). Moreover, this time-frequency extension of the correlation analysis is a starting point for the study of interaction network (see for instance [92]), which directly benefits from analytic expressions for the significance of the estimators, multidimensional refinements, such as multiple and partial correlations [93], as well as more recent directed versions of the coherence [25, 94]. We believe this is the natural framework to recast the questions of correlations, synchronization, delays, and the search for their stability and persistence, strengthening their physical roots.

It has been recognized since the sixties that the autonomous nervous system is undergoing profound changes during sleep [95], and that these changes can be traced in the sleep stages [96]. The autonomic nervous system regulation of the cardiovascular system changes from N1 to N3 sleep stages, the parasympathetic nervous system getting predominant at deeper sleep stages. Spectral analysis of the HRV was widely used in the last decades [8, 63, 97], and led to distinguishing three frequency bands: (i) a low frequency band (LF) (0.04–0.15 Hz), representing both sympathetic and parasympathetic (vagal) regulation, (ii) a high frequency band (HF) (0.15–0.40 Hz) where the parasympathetic regulation dominates and (iii) a very low frequency band (VLF) (below 0.04 Hz) where sleep-related respiration disorders, thermo or vasomotor regulation mechanisms could be involved [63, 98].

We proposed a novel method, namely the complex rate, to extract the instantaneous temporal variation of frequency and amplitude of rhythms directly and simultaneously from the wavelet transform of the original (raw) records, and we described how they differ from the signals extracted by other methods. From these modulation signals, we computed a time-frequency coherence based on the Grossmann wavelet and we revealed both the spectral and temporal structure of the correlation between the cardiac, respiratory rates variability, and the neural activity in distinct frequency bands. Our wavelet-based computation of the complex rate [image: image] was straightforward and did not require usual preprocessing steps [98]. The manipulation of complex-valued maps, such as XQ(f, t) or γxy(f, t) was shown to be of major importance to account for the richness of the dynamics under consideration. Their high dimensionality can however discourage their full visualization which could explain the few attempts existing in the literature (the color coding is often limited to the real-valued squared modulus). For this reason, we believe that our use of a polar color-shaded coding (saturation and hue) for the modulus and the phase was also a useful achievement of this work, yielding a synthetic graphical visualization.

We first focused on a subject affected by obstructive sleep apnea to illustrate how slow rhythmic events related to apnea and recovery were ubiquitous in the modulations from all the records (EEG in all bands, ECG and respiration), pointing out the strong interaction of different organs involved in the mechanisms associated to apnea. After exploring the rich phenomenology of individual polysomnographic recordings, we repeated this analysis on all subjects of the shhs2 database and we exposed a statistical analysis of the rates squared coherence profiles for different types of sleep apnea in a large database of apneic subjects, and compared it to averaged HRV spectra.

Without any preprocessing or filtering of the data, we showed that apnea intervals were unambiguously related to an apneic modulation in the VLF frequency band of the neural, cardiac and respiratory rhythms. For severe sleep apnea, this modulation is most coherent and rhythmic, with a quite well-defined fundamental frequency localized not farther than an octave from 0.02 Hz (depending on the subject). It is also easily observable from the oxygen saturation (SpO2) recordings provided by the slpdb database, and it clearly corresponds to a peak in the HRV power spectra at the same frequency. The increase of this rate coherence and HRV power in the VLF band is concomitant with the decrease of a second coherent mode a decade higher: the well-known heart rate modulation by the breathing cycle (respiratory sinus arrhythmia (RSA) [83] in the HF band). This trade-off between the activities in the VLF and the HF bands, which is harder to grasp from the HRV power spectra, corresponds to an increased sympathetic activity and decreased vagal (parasympathetic) activity [4, 5] during sleep apnea (and hypopnea to a lesser extent).

Finally, the HRV power spectra, which can be computed from ECGs only, are therefore easier to capture and to analyse. However, they measure only the extent of the HRV amplitudes across frequencies, while the cardio-respiratory rates coherence characterizes the quality of their synchrony, regardless of the amplitude of the modulations. This can be used to capture intervals of synchronization from a pair of oscillators, also giving access to their phase shift. Cardio-respiratory synchronization is not generally recorded in rest or sleep, it has been observed during specific breathing and/or vocal exercises [99, 100].

The analytic wavelet decomposition that underlies our time-frequency method shares a deep connection with the Hilbert transform, used in other phase detection methods. For instance, at the basis of the construction of synchronization indices and coupling functions between the heart and breathing phases [101, 102], the non-linear Hilbert protophase is transformed into a genuine (linear) phase from the preliminary estimation of the noise-free oscillation shapes. In the analytic wavelet transform of a rhythmic oscillation, this genuine phase is estimated “on the fly” from the phase of the fundamental mode, while harmonic modes account for non-linearities (i.e., the mismatch between the recorded oscillations and our generic wavelet shapes). Preliminary estimations, such as correct window sizes for highly noisy and non-stationary signals can be the most difficult task. They reduce in our approach to the choice of a quality factor Q for the wavelet transform, and the size of the time-averaging kernel n in the coherence analysis. We have discussed their role in the compromises between resolutions and significance.

We showed how the time-frequency coherence can overcome the comparisons of signals of very different spectral and temporal signatures and uncover otherwise hidden or mixed correlations. In particular, the cardiac and respiration rhythms were identified in the EEGs with different intensities, overlaps which are rarely taken into account [42]. Such a cross-talk is also expected between EEGs recorded at distant locations, and their alternating coherence patterns (strong or weak, in-phase or out-of-phase, in different frequency bands), could be used to study sleep stages. This is illustrated in the Supplementary Material for two EEG signals recorded contralateraly from a subject of the shhs2 database. In spite of their expected very strong and global correlation, we observe in Supplementary Figures 8, 9 the emergence of different patterns related to the phases of sleep. The rate coherence from other EEG frequency bands have also been investigated (Supplementary Figure 7), and we have been rather amazed by the variety and richness of cross-couplings (in phase and intensity) that our rather simple method could uncover. This reinforces the complementarity of the time-frequency coherence for physiology signals investigation to other methods aiming at reconstructing phases coupling [101, 102] for characterizing sleep disorders and their organic or central nervous system origin [29, 97]. It also provides a complete and visual picture of correlations between distant zones and should help addressing new issues in Network Physiology [3, 103, 104].
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Does the Brain Function as a Quantum Phase Computer Using Phase Ternary Computation?
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Here we provide evidence that the fundamental basis of nervous communication is derived from a pressure pulse/soliton capable of computation with sufficient temporal precision to overcome any processing errors. Signalling and computing within the nervous system are complex and different phenomena. Action potentials are plastic and this makes the action potential peak an inappropriate fixed point for neural computation, but the action potential threshold is suitable for this purpose. Furthermore, neural models timed by spiking neurons operate below the rate necessary to overcome processing error. Using retinal processing as our example, we demonstrate that the contemporary theory of nerve conduction based on cable theory is inappropriate to account for the short computational time necessary for the full functioning of the retina and by implication the rest of the brain. Moreover, cable theory cannot be instrumental in the propagation of the action potential because at the activation-threshold there is insufficient charge at the activation site for successive ion channels to be electrostatically opened. Deconstruction of the brain neural network suggests that it is a member of a group of Quantum phase computers of which the Turing machine is the simplest: the brain is another based upon phase ternary computation. However, attempts to use Turing based mechanisms cannot resolve the coding of the retina or the computation of intelligence, as the technology of Turing based computers is fundamentally different. We demonstrate that that coding in the brain neural network is quantum based, where the quanta have a temporal variable and a phase-base variable enabling phase ternary computation as previously demonstrated in the retina.

Keywords: plasticity, action potential, timing, error redaction, synchronization, quantum phase computation, phase ternary computation, retinal model


INTRODUCTION

Traditionally a nerve impulse has been considered to be an electrochemical phenomenon with experiments dating back 250 years to Galvani (Bresadola, 1998). However, this assumption has prevented contemporary consideration of the issues surrounding computation and assumes the temporal and communicative aspects of nervous activity can be resolved by electrical theory. In other words, much has been done to understand the biophysical mechanisms underlying action potentials, but not enough is known about neural computation, which is a separate issue.

The assumption that ionically based electrical communication within neurons is the fundamental processor of computation has inevitably led to models of both intelligence and computation being created using this technology in computing sciences and more recently in artificial intelligence (AI). Thus, contemporary models of nerve conduction rely on the original work of Hodgkin and Huxley (HH) and their excellent work on the action potential (Hodgkin and Huxley, 1952) that has led to the peak of the action potential as the temporal marker for computation and propagation of the action potential assumed by cable theory. The orthodox action potential (Figure 1) is comprised of a spike with a peak at about 0.2ms from its inception. It is evident from this curve that activation begins close to the resting potential. At resting potential, the sodium channel activates with little delay (Almog et al., 2018). The scale below Figure 1 shows approximate distances along the axon indicating that no charge from the spike could affect activation as the main charge is prior to the point of initiation. In addition, the exponential rise of the Na+ current demonstrates that activation of the exponential release of ions commences with little or no charge. i.e., at threshold. The molecular distances between ion channels far exceed the distance required to allow the level of charge (Hodgkin and Huxley, 1952) needed to activate progressive ion channels to achieve propagation. This is in agreement of our earlier study (Johnson, 2015; Johnson and Winlow, 2018a) where distances taken from patch clamp studies confirm that HH cable theory cannot account for propagation. At the time of HH inter-channel distances were unknown.


[image: image]

FIGURE 1. The conventional textbook action potential showing the sodium and potassium currents with which it is associated.


The HH equations are a set of nonlinear differential equations that approximate the electrical characteristics of excitable cells and can describe the electrical potential caused by exponential passage of ions notably Na+ and K+ when Na+ enters through ion channels in the surface membrane. Later work indicates that some action potentials are also calcium dependent (Hayer, 1981). The equations describe the itemised potential changes of these ions over time. Propagation of the action potential along the membrane is assumed in HH to be directly due to charge from the ensuing spike opening proximal ion channels. Opening and closing of the ion channels must result in morphological changes to the ion channels proteins entailing force on the membrane. We have previously suggested that this model is insufficient to explain the activation of channels (Johnson and Winlow, 2018b) and that the activation actually moves ahead of the charge at a position where the charge is ineffective. In the HH model, propagation is assumed to be a result of capacitance change creating enough charge to affect the next ion channel on the membrane. We dispute that this is possible (Johnson and Winlow, 2018a,b) and have proposed an alternative theory for propagation (Johnson and Winlow, 2018b).



ACTION POTENTIALS PLAY MORE THAN ONE ROLE IN CNS FUNCTION

We do not dispute that HH action potentials are driven by the entry and exit of ions acting down their concentration gradients, as shown in Figure 1, or that action potentials serve a number of functions such as:

wiring the nervous, sensory effector and neurosecretory systems during development (Pineda and Ribera, 2010);


• formation and maintenance of synaptic connections in the adult (Forehand, 2009; Dickins and Salinas, 2013; Andreae and Burrone, 2014); and

• modulation of synaptic function during and after learning (Kennedy, 2016; Rama et al., 2018).



However, it is not yet broadly accepted that action potentials are associated with underlying pressure pulses, known as solitons (Johnson and Winlow, 2018b). Taken together they form the action potential pulse (APPulse) which allows very rapid computation, as we have suggested for the retina (Johnson and Winlow, 2019). This is an important concept, given the plasticity and multiple formats of action potentials.



TIMING PLASTICITY AND ERROR

The non-uniformity of both neurons and their transmission properties is an important determinant in the type of information conveyed by them and the possible types of computation available. The brain is a large mass of neurons whose coupling, connections and form are inherently plastic. This plasticity takes various forms depending upon the timing periods sampled. Neurons may change or be replaced over weeks and months, synaptic connections may change over minutes, and conduction across synapses changes after milliseconds, ion channels within the neurons may disperse over the membrane and are regularly replaced. Many forms of plasticity affect both the temporal position of spiking neurons and their amplitude, repetitive activation inevitably changes the concentrations across the membrane which go to define the shape and timing of the conventional spike (Figure 1). Any change to the temporal position of the spike peak will thus affect computation (Figures 2, 4). Therefore, it is absolutely essential that for any computation to take place within a neural network this temporal plasticity must be negligible in comparison to the temporal timing. This is especially true when considering parallel processing within a network where parallel threads of information must be synchronised. For any useful consecutive computation to occur the structure must be stable, within the relatively short timeframe of computation, i.e., microseconds rather than milliseconds.
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FIGURE 2. Examples of action potential plasticity from identified neuronal somata of the great pond snail Lymnaea stagnalis (L.) (for locations and properties and functions (where known) of neurons and cell clusters, see Slade et al., 1981; Winlow and Polese, 2014). (A) Action potentials from a fast-adapting pedal I cluster cell, which was normally silent and was activated by a 3 s, 0.4 nA pulse injected into the cell via a bridge balanced recording electrode. The same five spikes are shown in each case: (a) on a slow time base, (b) on a faster time base. The red and green arrows indicate the first and last spikes respectively in each case. Note the temporal variability between spike peaks (previously unpublished data provided from William Winlow’s data bank). (B) Different types of action potentials have different spike shapes (a and c) and trajectories as demonstrated in phase plane portraits (b and d) (a and b) demonstrate the same type 1 action potentials from an RPeF cluster neuron, while (c and d) demonstrate type 2 action potentials from an RPeB cluster neuron (adapted from Winlow et al., 1982 with permission). In the phase plane portraits, the rate of change of voltage (dV/dt) is plotted against voltage itself and the inward depolarizing phase is displayed downward, maintaining the voltage clamp convention. The technique is very useful for determining action potential thresholds (see Holden and Winlow, 1982 for details of the phase plane technique as shown here).



Action Potential Plasticity

Action potentials are thought of as the means by which cellular communication takes place within the nervous system and serve to trigger secretions from nerve terminals. They are generated by powerful ionic driving forces created by metabolic pumps such as the sodium-potassium pump, which instigate the membrane potential (Figure 1). However, action potentials are plastic phenomena (Figure 2A), whose properties vary substantially from one neuron to the next (Winlow et al., 1982; Bean, 2007; Figure 2B) and are often compartmentalised within neurons (Figure 3; Haydon and Winlow, 1982) such that the action potentials of cell bodies, dendrites, axons and nerve terminals may be quite different from one another in terms of their ionic makeup. They should be considered as a signalling mechanism for the release of secretory products at a distance from the soma (Winlow, 1989). The excellent work of Hodgkin and Huxley (1952) (HH) in determining the ionic nature of action potentials has largely obscured the accruing evidence that the plasticity of action potentials in cell bodies, nerve terminals (Winlow, 1985; Bourque, 1990; Spanswick and Logan, 1990), and axons (Rama et al., 2018) makes them unsuitable for computation within the nervous system (Winlow and Johnson, 2020). Indeed, action potential trajectories differ so much from one another that they have been used to classify different neuronal types in the neuronal somata of the pulmonate mollusc Lymnaea stagnalis (Winlow et al., 1982) and in vertebrates (Bean, 2007). In particular the variable position action potential peak is well documented (Bourque, 1990; Bean, 2007; Figure 2A) and the maximum rates of depolarization (V̇d) and repolarization (V̇r) are highly variable phenomena and are clearly frequency dependent (Figure 4A) as can be demonstrated using the phase plane technique (Holden and Winlow, 1982), which is very useful for determining the threshold of action potentials (Bean, 2007; Trombin et al., 2011; Li et al., 2014; Xiao et al., 2018; Winlow and Johnson, 2020). Frequency changes result in a shift of the action potential peak and both V̇d and V̇r are modifiable by excitatory and inhibitory synaptic inputs (Winlow, 1985, 1987; Bourque, 1990; Bean, 2007; Figure 4B). In addition, neurons lie close to one another in nerve trunks and central nervous systems, so that modification of the extracellular medium by neuronal activity may alter ionic concentrations, thus modulating action potential trajectories.
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FIGURE 3. An example of compartmentalization of axons from a multipolar pleural D group neuron of Lymnaea stagnalis. (A) Spontaneous discharges recorded from the soma of a multipolar pleural D group neuron. The discharge varies between subthreshold depolarisations of varying amplitude to large overshooting action potentials (from Winlow, 1989, with permission). (B) Diagrammatic model of pleural D group neurons. The filled boxes in the axons represent spike initiation sites and the cross hatching represents regions of propagation failure. Each radial axon is spontaneously active and can act to generate spikes independently of the others. The electrical synapses appear to keep the axons functionally compartmentalised from one another (Reproduced, with permission, from Haydon and Winlow, 1982).



[image: image]

FIGURE 4. Modulation of action potential frequency, shape and trajectories from identified Lymnaea neurons by (A) depolarising currents and (B) inhibitory synaptic inputs. (A) In a right pedal A (RPeA) cluster neuron, action potential frequency, shape and phase plane trajectory are modified by maintained depolarizing and hyperpolarizing currents, which modify the action potential properties. All spikes in the traces at left are superimposed in the middle trace and in the phase plane portraits at right. Note how the action potential peak at [image: image] shifts either side of the superimposed orange line, while threshold (superimposed green line) remains temporally constant and [image: image] is even more clearly variable in the phase plane representations. Similar effects are produced by excitatory and inhibitory synaptic inputs (adapted from Winlow et al., 1982 with permission). (B) Effects of monosynaptic i.p.s.p.s from the giant dopamine-containing neuron, RPeD1 (right pedal dorsal 1), on visceral J cell action potentials (for detail see Winlow and Benjamin, 1977). (a) Upper trace, J cell; lower trace RPeD1 (ac coupled and filtered). (b) Phase plane portraits of J cell action potentials: 1. pre-control; 2. phase plane portraits of 32 successive action potentials (peak of spike 1 denoted by red arrow, spike 3 by green arrow); 3. post-control of the last 10 action potentials shown above. After inhibition by RPeD1 both [image: image] and [image: image] were increased, but as the cell accelerated following inhibition both [image: image] and [image: image] declined below control values (adapted from Winlow, 1987, with permission).


Binary computational models of nervous systems usually use the peak of the spike to initiate activity (Taherkhani et al., 2020), but given the variability of V̇d, this is clearly an inaccurate method of computation. We have shown elsewhere that ternary phase computation is much more appropriate in modelling nervous activity where threshold is the instigator of the computational action potential (CAP): the three phases are thus: resting potential, threshold and the time-dependent refractory period, which is an analogue variable (Johnson and Winlow, 2017, 2018a,b).



SEQUENTIAL AND PARALLEL NETWORK COMPUTATION


Turing Machines

Almost all contemporary computers are designed around a Turing machine (Turing, 1937), a mathematical model of computation that defines an abstract machine, which manipulates symbols on a strip of tape according to a table of rules. The programme is provided on successive sections of the tape each synchronised externally by a clock precise to each command. Whether in using an abacus to count numbers, or a modern computer to type a scientific paper the basis of computation remains identical. At its most simple any defined set of independent inputs leading to a defined set of outputs is computation. Figure 5A illustrates clock timed Turing machines in binary (0,1) and in ternary notation (−1, 0, +1) (Figure 5C).
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FIGURE 5. In quantum computation network timing does not require an external clock. This form of computation only requires input to reflect consistent outputs for given values and here we compare it with Turing computation where clock speed synchronises input with output. Panel (A) is an illustration of conventional binary computation of inputs and outputs. The exact network that separates the input from the output is indicated by (?) and the most obvious pathways are shown as dotted lines and gating within the network (?), forms this pathway. This gating represents a single command and must be executed within the set time allocated between the input and output as defined by some external clock. (?) May represent a complex network, flow through the network is defined node to node by precise timing between those nodes in exactly the same way and the outputs are always synchronised by clock-speed (as in the central processing unit of a computer). Panel (B) illustrates binary computation in a conventional space split between input nodes with binary properties of (0) and (1) respectively and giving a result of (0). (t1) Represents the timing from input nodes (0) and (1) respectively. (t2) Represents the time taken for the gated node at (t2) to react to the inputs (0) and (1) according to a set program that defines the output from these specific inputs as being (0). (t3) Represents the time from the gated output to the exit node. Quantum computing applied to 5 panel (B) combines t1 + t2 to represent one quanta of binary information in a parallel network. In a conventional neural network computer as used in AI or SpiNNaker (Furber and Temple, 2007) an emulator using spiking AP, where latencies of timing are fixed and arranged so that (t1) and (t3) are uniform t1 + t2 +t3 are equivalent to clock speed effectively synchronising each command. This is the mechanism apparent from the definition of a Turing type machine and evident in all practical applications of modern computing. Panel (C) is an illustration of a ternary Turing machine, note synchronisations are performed by external clock and this is not applicable to a brain neural network. Panel (D) illustrates a non-Turing quantum machine such as evidenced in the brain neural network. P is a point of convergence thus computation in the network and timing between nodes a and b to P of quanta (in red) is determined by the speed at which quanta flow between the nodes (black dots). Computation at P depends upon the quantal information (which may be any base), the mechanism at P, and the timing of interference between quanta. In a binary Turing machine (B) the quanta are fixed between t1+t2 by clock speed. In a brain neural network timing is defined by the speed of neurons and not by a clock. For the APPulse or action potential, x to z, and x2 to z2 are represented by the threshold to refractory periods of each quantum, respectively: computation at the P is defined by the timing of each quantum and how they react on collision. In the case of the action potential and the APPulse collision between threshold and refractory periods results in annulment of the succeeding quanta. This results in computation through the network. This is a fundamental process in quantum computation and can be applied to all base and temporal computation in a neural network where the rules at P may differ.


The philosophy of Turing compatible machines when conceived in 1936 (Copeland, 2004) was heavily influenced by not only the hardware architecture available, but also the applications to which the technology could be applied. Research into computation has always followed man-made hardware and the applications it can deliver. The establishment and acceptance of the action potential as the mechanism for nerve transmission was unavailable to Turing and his contemporaries. Unfortunately, contemporary research has largely ignored the fundamental differences between a Turing compatible machine and the brain. Recent attempts to re-imagine the brain as a Turing compatible environment are therefore a product of this process. Each step of a Turing compatible computer programme is timed by repetition of this logic by clock-steps. In parallel processing each parallel thread must also be precisely synchronised to produce logical output. Furthermore, conventional computation in neural networks, both real and artificial, relies upon selective gating of distinct routes through the network that are timed. For consistent computation to occur among parallel inputs successive parallel inputs must be synchronised precisely so that their activities can be executed.



QUANTUM PHASE COMPUTING—ANOTHER TYPE OF SYNCHRONISATION FOR THE NETWORK

Quantum phase computing occurs when temporal phase quanta, comprising base information, interact to provide a consistent output. This defines theoretical computation but does not describe the physical components needed. All modern-day computers can be visualised as quantum phase computers where the base is binary and the clock timing defines the temporal position of the quanta. In contemporary quantum computing this takes place at the subatomic level at very low temperatures and is very fast. Nevertheless, the basic computational theory is identical to that of the nervous system as we describe below. In the nervous system quanta are in the form of quantum ternary structures (i.e., the CAP is a temporal quantum of ternary information). The CAP in the form of either the action potential or the APPulse, are quantum phase ternary structures able to interfere and synchronise within a parallel network of neurons. Synchronisation can be achieved by quantum interference in a parallel network with almost any base coding of the information. In a conventional Turing computer synchronisation occurs in binary coding because clock speed is always equal to the time taken for each phase. The levels of synchronisation are a function of the temporal precision of impulses as they collide and their format.

Quantum phase ternary computing, as in the proposed retinal model (Johnson and Winlow, 2019 and see below) is just one of an infinite number of quantum phases capable of computing depending upon phase length and base. Quanta in each case will have the form: t (base). Time t is a temporal phase variable and base can be any base. (t) is a time constant at the point of computation equivalent to relative clock speed in a Turing machine. In a Turing machine the time (t), the clock time, is the same as the phase in each computation so (t) is 1, if base is base 2. However, this is not the case in the nervous system where there is no centralised clock, because the effective clock speed (t) varies between points of convergence in a neural network as refractory periods will change at each convergence. Connected nodes in a brain neural network are therefore computing in different clock frequencies. Furthermore, in parallel processing (t) must be a consistent for each node so that during computation plasticity does not affect the network environment, as illustrated in Figure 5D.


Timing vs Synchronisation

Figure 5A illustrates some of the rules of parallel computation that occur within a network. The hidden neural network (?) is a combination of nodes that form into a parallel network. Parallel computation has substantial advantages over consecutive computation in terms of speed and the ability to synchronise. The values of changing parallel inputs must always reflect the synchronised changed output. The precision of synchronisation is fundamental to effective computation. For an efficient parallel network any input combination must be capable of creating a unique output and the process must be replicable. For computation to occur there must be interference between the distinct sets of inputs as they pass the nodes on the network. A pathway must be available from each input that reflects the collisions and programming within the network. In AI, a network can have programmed rules of pathways according to clock-timing. However, in the brain, clock-timing is unavailable and so another rule must exist to synchronise activity.

Figure 5A deliberately does not specify the processes or timing that must take place as indicated by the ? symbol. This implies that more than one process may take place and that further divisions of time may be present within the system. A large neural network such as the brain will have billions of connections, but to reduce error and maintain efficiency the number of components must be kept to a minimum. Synchronicity to enable successive commands in the case of a Turing machine is by a clock. This is possible because time between processes in a Turing system is not phase dependent but absolute time dependent and thus determined by clock speed. Each process in a conventional computer is therefore separated equally by time. The rule that synchronicity of processing must be centrally timed cannot apply within the central nervous system of an animal where peripheral ganglia, such as the retinal ganglia, have the ability to compute independently but must synchronise with the central nervous system. Thus, the combined output from all the neurons in the optic nerves must synchronise for us to understand the whole picture.



NEURONS IN BIOLOGICAL NEURAL NETWORKS

In contrast with an artificial neural network, a real neural network (RNN) is comprised of many neurons whose function follows their form and where neuronal morphology and function are interrelated and depend on each other (Ofer et al., 2017; Grbatinić et al., 2019). Detailed analysis of the membrane structure and function have been discussed elsewhere (Hodgkin and Huxley, 1952; Johnson and Winlow, 2018a,b, 2019). The transmission of information takes place along the membrane of the neuron and there is a finite time taken for information to pass from one point to another, this is often termed latency. A typical speed of an action potential along an unmyelinated axon in the CNS is about 0.3 m/s. From this the minimum distance between the start of the action potential and the peak of the spike can be calculated, interferometry has recorded action potential at about 30 mm/s (Ling et al., 2018; Boyle et al., 2019). Previously, Johnson and Winlow (2017) discussed how the phase ternary action potential both synchronised and corrected for error. Later we identified that the action potential exists as a phase ternary pulse (Johnson and Winlow, 2017, 2018a,b) and is defined as such by HH (Hodgkin and Huxley, 1952).

The action potential is a base 3, phase ternary structure (Johnson and Winlow, 2017, 2018a,b). The structure resembles that of a Qutrit (Xiao and Li, 2013; Almog et al., 2018) with the exception that an action potential refractory period has no effect on the resting potential – both are similarly capable of computation. We have indicated that the action potential is always accompanied by a synchronised pressure pulse (Johnson and Winlow, 2018a,b, 2019) which we refer to as a soliton. Furthermore, deformations to the membrane in the form of a pressure pulse have recently been confirmed with interferometric imaging (Ling et al., 2018; Boyle et al., 2019). We consider that for propagation to occur it is probable that this pressure pulse does not need to form a soliton only a disturbance in the membrane sufficient to open adjacent ion channels (Johnson and Winlow, 2018a). This pressure pulse is sufficient to account for conduction of information in non-spiking, spiking neurons and in hyperpolarising cells such as the cones of the retina. The temporal precision of this synchronised pulse is much greater than that of the HH action potential as its speed is determined by the structure of the membrane that has a rate of change many times slower than that of either computation or even action potential conduction. Basically, the soliton activates the ion channels that then add entropy to the pulse; the speed of the pulse is then defined by static membrane components. Temporal plasticity of membrane transmission occurs at a far slower rate than that of the ionic exchanges in HH. Temporal error is therefore minimised in the APPulse. The component structures of the APPulse were then deconstructed into computational component parts to form The Computational action potential CAP (Johnson and Winlow, 2017). The CAP is a mathematical representation of a ternary quantum pulse where, during a collision of two impulses, if a threshold crosses a refractory period the threshold is annulled. The CAP is equally valid for ternary quantum computation by either HH or the APPulse. The difference between the two lies in the temporal precision of successive impulses up to 10,000 times greater with a pressure pulse than with HH and cable theory (Johnson and Winlow, 2018b). Importantly the CAP assumes that the temporal pulse starts on activation and not from the spike peak as shown in Figures 2A, 4A.


Activation of Propagation

As shown above, assuming the peak of the action potential to be the timing cue of the nerve impulse is a fundamental oversimplification of the mechanics of propagation because the underlying statistical event triggering the action potential must be the point of temporal precision for computation and synchronisation, i.e., threshold. To be effective across parallel inputs determined by phase, temporal precision is critical to phase computation. The accuracy of phase at the point of convergence must take place within a substantially reduced timeframe where temporal plasticity of membrane micro-structure is close to zero.



Parallel Computation

One functional test of whether the transmission of information is performed by HH cable theory or by the APPulse is whether they are capable of computation within the known neural networks of the body. Neural networks in the brain process information between parallel inputs across disordered networks (Figure 6). The phase at which each CAP arrives at a point of computation is thus a quantum of ternary information. CAPs moving within a neural network compute by collision diffraction along specific pathways defined by temporal geometry forming patterns and changing outputs (Johnson and Winlow, 2018a,b).


[image: image]

FIGURE 6. Examples of quantum phase ternary interference between CAPs. Panels (A–E) are illustrations of CAP’s travelling along the surfaces of the neuron membrane just before collisions at the axon hillock (h). The threshold of each CAP is highlighted in red while the refractory period is coloured blue. These are not to scale. Panel (A) illustrates a single neuron with three axons converging on an axon hillock or cell body. Two CAP’s (i) and (ii), move in the direction of the axon hillock where they will collide. In this case both CAP’s (i) and (ii), are in phase with the thresholds overlapping. These CAPs will fuse and continue a single CAP. (B) The same two CAP’s (i) and (ii), are in phase with the thresholds overlapping and will fuse and continue as one CAP as in panel (A), but a third CAP (iii) arrives slightly after the other two and its threshold encounters the refractory period of the other two and is annulled. (C) The same two CAP’s (i) and (ii), are in phase with the thresholds overlapping. These CAP will fuse and continue as one CAP as before, but in this case the threshold of the third CAP (iii) arrives at the axon hillock after the first two have fused and their respective refractory periods have no effect on it. The result is that two CAPs will pass into the axon at right. In panel (D) (L) represents the refractory time of each CAP, whilst in panel (E) (t) represents the timing of the activation-threshold at (z), the point of computation. In a parallel network (D) where CAP’s converge any time greater than (t) and less than (L) will result in phase change. This phase change changes the distance between successive CAP’s and therefore frequency. Where activation-thresholds become desynchronised phases become annulled.


Computation of CAPs in a neural network occurs naturally through the phenomenon of phase cancellation at each node (Johnson and Winlow, 2018b), where CAP’s interfere with each other. The mathematics of these interferences is defined by the precision of the activation point of the CAP, i.e., what is assumed to be a threshold in HH. To understand this crucial element of parallel processing it is necessary to look more closely at the molecular level of the components. The effects of interference between CAPs is illustrated in Figure 5. This illustration is equally valid for computational precision across multiple neurons in a network where interference must temporally synchronise. In Figure 6D CAP’s flow from left to right across the surface of the three-dimensional axon of the neuron. When the activation-threshold encounters a refractory section of membrane it is annulled.



THE RETINAL MODEL OF NEURAL COMPUTATION

In a previous paper, Johnson and Winlow (2019) described the neural coding in the retina and further details and references are to be found in that paper. Figure 7B is a schematic diagram of the relevant central elements of the retina. Light from the right of the diagram falls on grouped light receptors GLR (large coloured ovals that can be rods or cones). These light receptors are connected through a static array of bipolar neurons to retinal ganglion cells (RGC). Light receptors have an average of 12 per group and up to 25 that connect to a single bipolar cell whose output is usually observed in the RGCs (Behrens et al., 2016). When all other connections are supressed each ganglion cell is activated by connected light receptors as shown in the diagram. Circular patterns of light receptors lie adjacent to one another or overlap each other and each is connected to a ganglion cell.
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FIGURE 7. Neural networks in the retina. (A) Illustration of a brain neural network showing changes in latency between nodes (from Johnson and Winlow, 2019). Panel (B) shows 12 cones (blue lines) converging upon a single bipolar cell (red lines). Here time, t1, changes relative to t. Panel (C) is an enlargement showing a succession of CAPs arriving at the point of computation (p). During fixed light intensity each cone will cause CAP’s to flow towards the point of computation (p) and CAPs are moving from left to right. Activation-thresholds that allow a CAP to continue after computation are shown by the red lines. All CAP in neurite (ii) are annulled. The time (p) to (x) is equivalent to the refractory period of the CAP of neuron (i). Refractory period (s) is selective and all other CAPs are annulled during this period. The result is that time between points of computation (z) to (p) is dependent upon only the time from the end of refractory period (x) to the next activation-threshold (z). This is then reflected in the spike timing from the RGCs. The interval (x) to (z) over any time period is a mean sample when calculated between successive CAPs. This results in the calculation of mean sampling by quantum phase ternary computation. Before collision the timing of each successive CAP along a neuron can be considered as a minute change in frequency. Panel (D) illustrates a straightened disordered brain neural network such as in Panel (A). Frequencies of inputs (a) and (b) result in changes to frequency outputs (c), (d), and (e). In the network of (d) distances have been resolved into phase lengths of quanta. The network represents computation between different time dimensions illustrated by λ. As quanta arrive at different time at each node (between nodes quanta may arrive asynchronously but are digitised) convergence and interaction will take place where phases differ. This interaction will result in distinct changes in frequencies of output for distinct changes in frequencies of input.



Observations From the Retina

Adjustments in light intensity results in a corresponding frequency change of action potential in the RGCs. The frequency of synaptic discharge from the cones is also similar to that of output t and t1 in Figure 6B. The frequency of discharges of all the light receptors attached to a bipolar cell result in a mean change to output frequency RGC (t) and (t1), respectively. Light on the retina and mean light receptor discharge frequency is therefore proportionally related to output at the RGCs. In Figure 6B changes in light intensity on the grouped light receptors results in a mean frequency change of action potential at the output from the bipolar cells (t1). For this computation to occur there must be a point of computation (Johnson and Winlow, 2019).

There appears to be only one mathematical mechanism that can generate the mean frequency of parallel streams of action potentials arriving at the LGN, i.e., mean sampling at the point of convergence of the bipolar cells. At the point of convergence, the refractory period of one CAP will block any succeeding CAPs for that period of time. This refractory period is dependent upon the membrane constituents and its timing is critical to computation. In a parallel system where CAPs converge when the first CAP passes through a point its refractory period blocks further action potential. When this CAP’s refractory period ends there is a space in time before the next CAP’s activation threshold, this is equivalent to the mean sampling of cone CAPs.



Digitisation of Light Receptor Outputs by Phase

Using the known speed of CAP in the bipolar cells and the frequency of discharge, the minimum distance between each successive discharge can be calculated. The frequency rate of discharge from the bipolar cells has been measured at 2–100 Hz. Velocity of action potentials vary from neuron to neuron, measurements for an unmyelinated axon vary from over 25 m/s in the squid to 0.3 m/s or below in brain tissue. The neural networks of the CNS and retina contain small unmyelinated neurites and the smaller figure is used in our calculations. The velocity of action potential for an unmyelinated axon has been measured by interferometry in nerve tissue at about 0.3 m/s (Boyle et al., 2019).



Calculation of Precision

The maximum frequency of the CAP is determined by the timing of the refractory period. If the maximum frequency is 100 Hz and the speed is 0.3 m/s then the distance from the threshold-activation to the end of refractory period is: 0.3/100 = 0.003 m or a time of 1 ms. This figure corresponds to observed measurements of the absolute refractory period (Purves et al., 2001). The activation mechanism for activation-threshold is likely to be timed less than 1–10 μs.

Single action potentials are not temporally accurate to less than 0.1 milliseconds measured from the spike peak, or even threshold, so computation in the eye is incompatible with the action potential, where reliability of temporal measurement is in order milliseconds. However, a pressure pulse or soliton is formed at the molecular level of the membrane and travels through the membrane at a constant speed with a greater accuracy than required (Heimburg and Jackson, 2005) for quantum phase ternary computation.

For the observed changes(Grimes et al., 2014) in frequency when light shines on the cones, CAPs must be formed and compute at the convergences of the bipolar cells and the CAP must have an activation-threshold of below 10 μs. This timing is critical when we consider attempts to mirror nervous communication using models of spiking neurons obeying HH cable theory. In parallel processing the temporal precision is critical to operation. In a conventional view of nerves where computation takes place at the synapses.



Information Contained Between Nodes

Figure 5B illustrates a conventional binary neural network. During time, as defined by clock speed, one bit (0 or 1) is connected to the output. In a neural network this means that node to node contains one bit. Figure 7C illustrates quantum ternary phase pulses represented by CAP. If each refractory period is separated digitally into 12 (as above) then CAP (s) can be subdivided into 12 positions of phase change. In Figure 7A, CAP (r) is annulled because its activation-threshold at point (m) will cross the refractory of CAP (s). The position of (m) is critical to computation because phases from (x) to (z) have been redacted. Each of the 12 subdivisions of the refractory period therefore code for one trit of information. In conventional computing terms the effective clock speed of computation for the bipolar cells is about 10 μs during which time each neuron connected to a convergence conveys 1 trit of information base 3. The space along a neuron of two impulses conveys base 9 information. The information contained is therefore much greater than possible with binary. There are many areas of the nervous system where connections similar to that of the bipolar cells are apparent for example the bipolar connections of the auditory system(Petitpré et al., 2018).



QUANTUM PHASE TERNARY COMPUTATION IN A NETWORK

Figure 7D illustrates a straightened disordered brain neural network such as Figure 6A. Frequencies of inputs (a) and (b) result in changes to frequency outputs (c), (d), and (e) as described in Figure 7C. The nodes are the convergences. In Figure 7C distances between all nodes have been annotated with the phase length of the frequency λ of CAP showing different distances. The phase length is the distance between two CAP activation thresholds (analogous to spike timing). Between any two nodes this phase length will remain constant during minimum plasticity, as it is dependent upon the integrity of the membrane. Between (a) and (c) λ = 3 so there are 3 CAP. Between (a) and (e) λ = 6. Time for CAP between (a) and (c) is half that of (b) to (e). If the frequency of (a) changes from 1 to 2 the frequency of (a) to (c) changes 3 to 6 while frequency of (a) to (e) changes 6 to 12 or a change of 3 or 6 Hz depending upon the route. Interference between quanta in this system annul and change the direction of CAP within this network. As the frequency changes at inputs (a) or (b), output frequencies at (c), (d), and (e) change accordingly such that they provide a unique reference to the frequency inputs.



CONCLUSION


• In neural computation the action potential peak is unreliable for calculations because of action potential plasticity. Threshold is much more clearly temporally defined.

• The frequency of action potentials at the retinal ganglion is a result of interference between action potentials temporally measured only from the point of activation-threshold eliminating peak action potential-timed computation. In addition, the temporal accuracy of threshold activation must be less than 10 μs indicating that the Hodgkin Huxley action potential alone is incapable of computation.

• At the set point on the membrane where activation takes place charge from the spike is minimal. Thus, activation is the cause of the action potential and must be responsible for adjacent further activation.

• Computation during plasticity results in error in a neural network, which must be redacted, and we have proposed a method of phase ternary redaction. Spike timed computation is untenable because the spike arrives after the activation-threshold and the spike is a plastic phenomenon.

• The implication in terms of computer science is that in a parallel neural network, Turing based machines are a small subset of Quantum Phase Computing.

• Computation within brain neural networks is most likely by quantum phase ternary process, distinct from and much more precise than the action potential.
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Using information theoretic measures, relations between heart rhythm, repolarization in the tissue of the heart, and the diastolic interval time series are analyzed. These processes are a fragment of the cardiovascular physiological network. A comparison is made between the results for 84 (42 women) healthy individuals and 65 (45 women) long QT syndrome type 1 (LQTS1) patients. Self-entropy, transfer entropy, and joint transfer entropy are calculated for the three time series and their combinations. The results for self-entropy indicate the well-known result that regularity of heart rhythm for healthy individuals is larger than that of QT interval series. The flow of information depends on the direction with the flow from the heart rhythm to QT dominating. In LQTS1 patients, however, our results indicate that information flow in the opposite direction may occur—a new result. The information flow from the heart rhythm to QT dominates, which verifies the asymmetry seen by Porta et al. in the variable tilt angle experiment. The amount of new information and self-entropy for LQTS1 patients is smaller than that for healthy individuals. However, information transfers from RR to QT and from DI to QT are larger in the case of LQTS1 patients.

Keywords: repolarisation, heart rhythm, information flow, conditional entropy, diastolic interval


INTRODUCTION

Repolarization in the ventricles of the heart is a process allowing the muscle cells of the ventricles to regain their ability to depolarize again. Repolarization entails movement of the ions, which entered the cell during the depolarization phase of the cycle, to flow out of the cell. Specific ion channels (especially several K channels and Na/K exchangers) are responsible for this process. Repolarization may be perturbed also in the presence of heart diseases, for example, hypertrophic cardiomyopathy, coronary artery disease, and others (Dispersion of Ventricular Repolarization in Hypertrophic Cardiomyopathy) (Zareba et al., 1994; Christiansen et al., 1996; Savelieva et al., 1999).

The global or averaged electric potentials that appear on body surface electrodes (the ECG trace) are a function of the depolarization of the ventricle tissue and then of the repolarization processes in this tissue. The duration of the QRS complex is a measure of the depolarization time in the ventricles of the heart. The so-called JT interval lasting from the end of the QRS complex to the T interval is a measure of the repolarization processes in the ventricles. Ventricle repolarization interval (QT interval) duration depends importantly on the heart rate. However, the corrected QT interval (QTc) contains information on the heart rate and will not be used below for the analysis of the information flow. Another ECG interval of interest is the diastolic interval (DI)—the time between the end of the T segment and the beginning of the next QRS complex (Imam et al., 2015). During this time interval, no electrical activity occurs in the ventricles.

The interaction of the heart rate (i.e., heart rhythm as the RR interval length) and the repolarization time as measured by the QT interval are a manifestation of a single connection of the physiological network that moderates the heart cycle. The main other connections in this network are the humoral activity and the actions of the autonomic nervous system together with that of the central nervous system. Several intrinsic and extrinsic mechanisms may be linked to the interaction between the RR and QT intervals (Nollo et al., 1992; Padrini et al., 1997).

Our aim is to study the information flow between QT interval, RR interval, and DI time series (shown in Figure 1) using conditional entropies (Faes et al., 2015). We do not expect practical results of our research. Rather, we aim to verify on a larger group of healthy individuals than that used by Porta et al. (2017). In addition, we study the effect of the long QT syndrome type 1 (LQTS1) on the information flow.


[image: image]

FIGURE 1. A schematic drawing of the ECG signal with marked RR interval, QT interval, and DI time series.


Several authors have studied information transfer related to heart rate variability (represented by time series of RR intervals) in different contexts (Zheng et al., 2017; Javorka et al., 2018; de Abreu et al., 2020). Information flow between the QT and RR intervals was discussed by Porta et al. (2017), interval for a group of 15 healthy individuals as a function of the angle at which the tilt table is placed. They found an asymmetry between the two possible directions of the information flow between the RR intervals and the QT intervals with the information flow from the heart rhythm to the repolarization process dominating. In addition, we study information flow between these time intervals and the DI. Here, the study group of healthy individuals is larger than that analyzed by Porta et al. (2017). We are interested in the asymmetry of the information flow found by Porta et al. (2017). We also study the effect of age on the information flow between these variables and the information flow between the RR as well as the QT intervals and the DIs (Ozimek et al., 2020).



MATERIALS AND METHODS

RR intervals and the Q and Tend points were extracted using an algorithm based on Hermans et al. (2017). In the original version of the algorithm, it was used to determine the length of intervals in a 12-lead ECG recording. In our case, 3-lead recordings were available. The algorithm (Hermans et al., 2017) was used without calculating the root mean square of the signal for all leads. Each signal from each lead was treated separately, and QT intervals were determined for it. The lead for which the percentage of wrongly determined QT intervals for all the tested records was the lowest was used for the analysis. For all the individual leads, baseline deviations were subtracted from the individual ECG leads to correct for baseline wander using the algorithm in Ning et al. (2014). The filter used for baseline wander was BEADS (Ning et al., 2014), the filter order was set to 1, and the filter cut-off frequency was 0.006 cycles/sample (Ozimek et al., 2020).

The QT interval length indicates the speed at which repolarization processes in the ventricles occur. The speed of repolarization processes is a function of the heart rate. Thus, usually QT is corrected for the length of the RR interval. However, such a QTc contains information not only on the repolarization process but also on the heart rate, and so it is not suitable for studies on information flow between the heart rate and repolarization. No QT correction for heart rate was done in this paper (Ozimek et al., 2020).

To detect R waves, the Pan-Tompkins algorithm (Pan and Tompkins, 1985; Sedghamiz, 2014) was used for every individual ECG lead. The QRS onset was detected as the maximum or minimal peak of the second ECG derivative found in the window that precedes the R wave by 10–30 ms. To detect the position of the Q wave in the vicinity of ±20 ms around the R peak, the minimum of the second derivative was searched for.

To determine the T wave maximum and its end for each lead, the data were smoothed using a second order Savitzky–Golay filter (Hermans et al., 2017) in a 50 ms window. To find the T wave, the positions of the R peaks determined earlier were used. The highest or lowest value (T peak) was searched for in the range starting 150 ms after an R wave (R peak position +150 ms) ending at a point corresponding to 70% of the distance between this wave and the next R peak (R peak position +70% of the RR interval) of the smoothed signal (Hermans et al., 2017). After determining the position of the T wave, the end of the T wave was searched for. In the range from the determined T peak to a point shifted by a value equal to 30% of the distance between the surrounding R waves (T peak + 30% of the RR interval), the slope of the maximum deflection was calculated using numerical differentiation in the 10 ms window [f′(t) = (f (t+5)− f (t−5))/10]. A tangent through the point with the maximum slope was determined. The intersection of this tangent with the isoelectric line was marked as the end of the T wave (T end). The isoelectric line was locally determined as the median of amplitudes occurring from 30 ms before the onset of the QRS complex (Hermans et al., 2017).



DATA

Two databases from the THEW Project were used to provide the RR interval, QT interval, and DI series: E-HOL-03-0202-0031 (202 ECGs of healthy individuals) and E-HOL-03-0480-0131 (480 ECGs of the LQTS patients forming 4 subgroups by genotype). In this paper, we analyze only the LQTS1 patients—this is the most frequent type of the LQTS.

However, it is well known that automatic algorithms extracting the QT interval rarely work well. Below, we analyze only those ECG recordings for which our algorithm worked well. This was verified for each individual recording. We also limited the range of age of the subjects studied to 18–50 years, obtaining 84 (42 women) ECGs for healthy individuals and 65 (45 women) cases for the LQTS1 case (Ozimek et al., 2020).



ENTROPY METHODS

The following information theoretical methods were used (Porta et al., 2017).

The target process contains information at the present time n:

[image: image]

Using the chain rule for information (Faes et al., 2017b), one can decompose the target information as:

[image: image]
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where PY is given by the mutual information due to the past of the whole network and the present of the target process, whereas NY is the new information generated in the target process as a result of the transition from the past states to the present. The mutual information PY can be decomposed into self-entropy SY and transfer entropy (TE; Faes et al., 2017b).

Self-entropy (Porta et al., 2017; Xiong et al., 2017) is a measure of the part of information that is given by the present of the target process Y that can be predicted by its own past. Self-entropy was calculated for each individual time series: RR intervals, QT intervals, and DIs:

[image: image]

where the superscript “-” at yn means the past of the target time series, vertical bars indicate conditional probability, and a bold character means that a time series was used (vector).

The information transferred from the past of the process X to the current state of the process Y is measured by the TE (Faes et al., 2015, 2017b):
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where H(|) means conditional entropy.

To assess in a simple way the asymmetry in the information flow from the signal X to the signal Y and in the opposite direction, we introduced the measure dTE:

[image: image]

Conditional TE was used to assess the effect of the series Z on information transfer between time series X and Y; X, Y, Z = RR intervals, QT intervals, and DIs, respectively. Conditional information transfer (Faes et al., 2017b) in the form:
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and the difference of the conditional information flow in both directions was calculated:

[image: image]

We introduced dTE as a simple way to show the direction of the flow. Note that this measure in some cases may be misleading as TE does not always exclusively represent the coupling strength (Faes et al., 2017b).

To estimate all conditional entropies, we used the model-free estimator based on binning (Lizier, 2014).

Information transfer decomposition–interaction information transfer (Faes et al., 2017b) [image: image] shows information, which is contained in the past of X1 and X2 that can be used to predict the present state of Y when X1 and X2 are taken individually. This is a measure of how the interaction of the past of X1 and X2 is transferred to the target.
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When TX1,X2→Y < TX1→Y + TX2→Y then [image: image] that refers to redundant interactions contributing to the transfer of information. When TX1,X2→Y > TX1→Y + TX2→Y then [image: image] that refers to synergistic interactions contributing to transfer (Faes et al., 2017b).

We normalized the data to set 0 mean and 1 standard deviation. All signals were divided into non-overlapping windows of length 600, and in all windows, we checked if the signal is mean-stationary. After the division of the signal into non-overlapping windows, the empirical mode decomposition was used to separate from signal the four last intrinsic mode functions (IMFs), to achieve mean-stationarity in a higher number of windows. The window length was chosen to maximize the number of windows for which mean-stationarity is present. We obtained slightly better results for window 400, but then we had problems with correctly calculating IMFs, so we chose the second-best result.

Because we analyzed only nighttime parts of the recordings, the average length was limited to 21,000 intervals. TE and cTE values for signals were estimated using the non-overlapping windows. Following Luca Faes in the ITS Toolbox,2 we set the number of quantization levels to 10, and we used embedding based on the non-uniform procedure. We checked at the beginning of our research that this value is optimal because using higher or lower values can be problematic because of calculations of conditional probability. The number of lags for each system was set to 5. During the procedure that updates the conditioning vectors, the significance test using shift surrogates was used2. The instantaneous effects were allowed for our analysis (Faes et al., 2015). As presented in Figure 1, the instantaneous effects go only from QT to RR.

We present results between healthy individuals and LQTS1 patients using the Kolmogorov–Smirnov test (p < 0.05).



RESULTS


Entropy H(Y) and New Information N(Y)

The Shannon entropy HY calculated for the individual processes (Figure 2) shows that in all cases, it is larger for healthy individuals. We obtained statistically significant differences between healthy individuals and LQTS1 patients for RR interval, QT interval, and DI series. Figure 3 presents the boxplots of the new information Ny for all three time series. This corresponds with the amount of information that is produced at each moment in time when the past states are known (Faes et al., 2013). The information produced in all processes is larger for healthy individuals, but for N(RR) and for N(DI), we did not obtain statistically significant results.
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FIGURE 2. Shannon entropy H of the individual processes given by single time series: RR intervals, QT intervals, and diastolic intervals, respectively. The Kolmogorov–Smirnov test was used, p-values: H(RR): 0.04348, H(QT): 1.41241E-7, H(DI): 0.0998.
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FIGURE 3. New information produced in the processes: RR intervals, QT intervals, and diastolic intervals, respectively. The Kolmogorov–Smirnov test was used, p-values: 0.3517 [N(RR)], 0.01124 [N(QT)], and 0.11007 [N(DI)].




Self-Entropy SE

The properties of the self-entropy (Figure 4) for the three types of time series were as expected: the regularity was larger for the heart rate than for the repolarization processes, and the properties of the DIs follow essentially those of heart rate variability. The larger regularity of cardiac time series for healthy individuals was reported in works studying the fluctuations in RR time series (Ivanov et al., 1999, 2001; Faes et al., 2019).


[image: image]

FIGURE 4. Self-entropy of the processes: RR intervals, QT intervals, and diastolic intervals, respectively. p-Values: SE(RR): 0.00394, SE(QT): 4.91195E-10, SE(DI): 0.06205.




Transfer Entropy

For the majority of healthy individuals, TE from RR to QT was between 0.1 and 0.4. On average, TE in the direction from QT to RR was significantly smaller for LQTS1 patients and for healthy individuals, most often with TE less than 0.05 (Figures 5A, 5B). Similarly as Porta et al. (2017), we observed an asymmetry in the information flow between heart rhythm and the QT time series for LQTS patients: the parameter dTE = TE(RR→QT)−TE(QT→RR) for a majority of the patients was positive. The results for the information flow between DI and RR are similar, but TE values of QT→DI flow are higher (Figure 6). However, rather surprisingly, for LQTS1 patients, we observe higher values of dTE(RR, QT) than for healthy individuals: this can be seen in the histogram of dTE(RR, QT) (see Figure 7A below). On average, the information flow from the repolarization process to the heart rhythm was much smaller (Figure 8A). The flow itself was also small: the majority of the TE values were less than 0.05. The asymmetry was present in our results: the expectation value of the difference dTE(RR, QT) was larger for the LQTS1 group and remarkably close to 0 for the healthy group. The results for DI follow the results for RR intervals (Figures 7B, 8B). We did not observe statistically significant difference between healthy individuals and LQTS1 patients in the case of QT→DI flow.
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FIGURE 5. (A) Transfer entropy from the RR intervals to the QT intervals and in the opposite direction (B) for healthy individuals and for LQTS1 patients. p-Values: RR->QT: 8.46283E-9, QT->RR: 0.07761.
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FIGURE 6. (A) Transfer entropy from the diastolic intervals to the QT intervals and in the opposite direction (B) for healthy individuals and for LQTS1 patients. p-Values: DI->QT: 1.60104E-9, QT->RR: 0.94574.
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FIGURE 7. (A) Probability density of the difference in the transfer entropy from the RR intervals to the QT intervals and in the opposite direction for healthy individuals and for LQTS1 patients. (B) Probability density of the difference in the transfer entropy from the diastolic intervals to the QT intervals and in the opposite direction for healthy individuals and for LQTS1 patients.
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FIGURE 8. (A) Boxplot of the difference between TE in both directions for the heart rhythm (RR intervals) and the repolarization (QT intervals). (B) Boxplot of the difference between TE in both directions for the diastolic interval series (diastolic intervals) and the repolarization (QT intervals). p-Values: dTE(RR,QT): 8.57094E-9; dTE(DI,QT): 7.55201E-8.


For the LQTS1 patient group, the flow is very asymmetric, dTE(RR,DI) is larger than zero with a significant dispersion (Figure 9). Information flow between DI and QT is practically opposite to the behavior of the flow between DI and heart rhythm. In all cases, the information flow from the DI series to the heart rhythm dominates.


[image: image]

FIGURE 9. Boxplot difference between TE in both directions for the diastolic intervals and heart rhythm (RR intervals). p-Value: 2.74318E-6.




Conditional TE

Conditional information transfer provides information on how the information flow between two variables depends on the time evolution of a third variable. We present the differences dTE between the respective conditional entropies calculated in both directions.

Figure 10B shows that a strong asymmetry between the flow from the QT interval and the DI series occurs. The flow from QT to DI dominates, and the asymmetry is smaller for the LQTS1 group. We obtained a different result for dTE(QT, RR| DI) that is presented in Figure 10A. The flow from the QT interval to the heart rhythm (RR intervals) is small. In Figure 10B, it can be seen that the information flow given the heart rhythm from the repolarization processes (QT intervals) to the DI for healthy individuals dominates over the flow in the opposite direction. On the other hand, for LQTS1 patients, this asymmetry is much smaller so that the flow from the DIs to the QT time series given the heart rhythm is much less pronounced. At the same time (Figure 10A), the conditional information flow from the repolarization processes in the ventricles to the heart rhythm given the DI series is about the same in both healthy individuals and LQTS1 patients. The conditional dTE is positive so that the flow from the repolarization processes (QT intervals) to the heart rhythm dominates although much less than for the results shown in Figure 10B.
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FIGURE 10. (A) Conditional transfer entropy for the information flow between repolarization (QT) and heart rhythm (RR intervals) given the diastolic intervals (DIs) for healthy individuals and for LQTS1 patients. (B) Conditional transfer entropy for the information flow between repolarization (QT) and the DIs given the heart rhythm (RR intervals) for healthy individuals and for LQTS1 patients. p-Values: dTE(QT,RR| DI): 0.52989, dTE(QT,DI| RR): 0.00205.


Conditional transfer entropy difference dTE(RR,DI| QT) is negative, and the modulus of this difference is on average larger for healthy individuals than for LQTS1 patients (Figure 11).
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FIGURE 11. Conditional transfer entropy difference for the information flow between heart rhythm (RR intervals) and the diastolic intervals given the repolarization (QT intervals) for healthy individuals and for LQTS1 patients. The Kolmogorov–Smirnov test was used, p-value = 0.002.




Redundancy and Synergy (Faes et al., 2017b)

Using the theory of interaction information decomposition (Faes et al., 2017a), one can decompose the information that a vector of values X = {X1,X2} provides about system Y into terms, which are connected with information contributed individually by X1,X2 and jointly.

Interaction information for the time series studied here may be written as:
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Figure 12 shows that for [image: image] and [image: image], one can observe rather redundant interactions, which are stronger for the healthy individual group for [image: image] and for the LQTS1 patient group for [image: image]. In the case of [image: image], one can observe synergetic interactions. For the average result for [image: image] in the LQTS1 group, synergy is the lower. There is also a remarkable group of cases for which we observe redundancy.


[image: image]

FIGURE 12. Information interaction for healthy individuals and for LQTS1 patients for three combinations of the variables: RR intervals, QT intervals, and diastolic intervals. The Kolmogorov–Smirnov test was used, p-values: [image: image]: 2.105E-13, [image: image]: <  10−3, [image: image]: <  10−3.




DISCUSSION AND CONCLUSION

A part of the cardiovascular physiological network (the relation between heart rhythm, the DI series, and the uncorrected QT time series) was analyzed for two groups: healthy individuals and LQTS1 patients.

For single time series, calculations of new information show that both for healthy individuals and for LQTS1 patients the heart rhythm as well as the DI series have similar properties, and that the main difference between the two groups is seen in the repolarization process. For the QT intervals, we obtained a larger new information N(Y) for healthy individuals. This can be associated with a higher complexity of the process dynamics (Zanetti et al., 2019).

For self-entropy estimations, we observed that QT regularity in healthy individuals is larger than that in LQTS1 patients and heart rate regularity for healthy individuals is on average larger and more complex than that for LQTS1 patients. This difference in regularity may result from larger vagal reactivity for LQTS1 patients (Bari et al., 2014) (Cairo et al., 2019). However, removing the trend using the EMD method may have some influence on this result. We expect the opposite—greater QT regularity in the group of LQTS1 patients (Seethala et al., 2015; DeMaria et al., 2020). Moreover, for a regularity parameter, such as SE, the sequential order of data is very important in contrast to variability measures (Pincus and Goldberger, 1994). For LQTS patients and for healthy individuals, DI regularity shows no statistically significant differences between groups.

In the case of RR and QT intervals analysis, calculations of TE confirm well-known results (Porta et al., 2017). We observe an asymmetry in the information flow between heart rhythm and the QT time series.

The behavior of the DI series is similar to the behavior of heart rate variability that is also to be expected. DI is a function of other factors than the RR interval. The RR interval is moderated by autonomic regulation depending on the requirements for body function, whereas DI is more related to internal processes occurring inside the heart. Hence, the difference seen in Figure 13, for example. This indicates that both for healthy individuals and for LQTS1 patients the heart rhythm as well as the DI series have similar properties, and that the main difference between the two groups is seen in the repolarization process. On average, for LQTS1 patients, more information flows between heart rhythm and the QT time series than it does for healthy individuals—in both directions. For the LQTS1 group (except for a small group of outliers), the information from heart rhythm to QT dominates (dTE > 0). For healthy individuals, the distribution of dTE(RR,QT) has lower dispersion. The flow from QT to heart rhythm is a new result, but TE in the direction from QT to RR is much slower than that from RR to QT.


[image: image]

FIGURE 13. (A) Transfer entropy from the RR intervals to the diastolic intervals and in the opposite direction (B) for healthy individuals and for LQTS1 patients. p-Values: RR->DI: 0.3764, DI->RR: 0.20194.


Conditional TE shows that the flow between the QT interval and the DI series when RR interval is given is asymmetric. The flow from QT to DI is much larger than in the opposite direction. However, the flow between QT and RR time series when DI is known shows no statistically significant difference between healthy individuals and LQTS1 patients. For healthy individuals, the conditional information flow from the DIs to the heart rhythm dominates—given the repolarization processes. This effect is larger for healthy individuals than for LQTS1 patients indicating that the LQTS pathology decreases the adaptability of the physiological network decreasing the interaction between the heart rhythm and the DIs. For interaction information decomposition, we observe in most cases redundant interactions. For [image: image], the combination of RR intervals and QT intervals gives additional information on the DIs, which is not available from either time series alone. In this case, synergy is observed. However, it should also be remembered that histogram-based methods of estimation of probabilities have the problem of a large bias (Panzeri et al., 2007; Faes and Porta, 2014). It could affect the results because it is not compensated while many entropy terms are summed together. The results for [image: image] could be affected the most—TE values from the QT intervals to the DIs are characterized by many outliers, and joint information transfer from RR and QT to DI is also high; however, these values can be inflated by histogram-based estimator.
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