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Editorial on the Research Topic

Coarse Graining in Quantum Gravity: Bridging the Gap Between Microscopic Models and

Spacetime-Physics

Historically, a large number of approaches to quantum gravity take their starting point in the
observation that perturbative renormalizability breaks down for the Einstein Hilbert action. This
has triggered developments of various paradigms and frameworks that in a more or less radical
sense depart from more standard quantum field theoretic ideas. Yet, early on, several ideas already
existed on how to formulate quantum gravity as a local quantum field theory with a focus on its
Renormalization Group (RG) behavior, including Weinberg’s asymptotic-safety idea and Stelle’s
asymptotically free higher-derivative gravity. Today, the RG is experiencing a renaissance in
quantum gravity. This goes significantly beyond the concept of renormalization as a systematic
procedure for removing divergences. Rather, the RG plays a central role in the very definition of
the quantum theory. In short, technical breakthroughs in various formulations of coarse graining
enable a search for universality and scale symmetry in a broad range of setups. In the modern
formulation of RG tools for quantum gravity, the notion of scale is implemented in several distinct,
intricate ways that are even applicable to a pre-geometric setting.

In summary, a range of distinct approaches to quantum gravity are converging toward the
point of view that coarse-graining and the associated notion of scale symmetry could enable us
to probe properties of quantum space-time. This convergence in itself could prove to be a catalyst
for breakthroughs: while every single approach to quantum gravity is facing open questions and
challenges, both of conceptual and of technical nature, many insights obtained within the distinct
approaches are in fact complementary. Questions that are seen as technically and/or conceptually
challenging in one given approach, might be more easily tackled in another one. Therefore, the
development of a common language like the RG and the associated unified conceptual framework
holds the promise that important insights could be translated between approaches.

Moreover, there is the distinct possibility that what we now perceive of as different approaches
to quantum gravity are in fact simply mathematically different formulations of the same physics.
More specifically, different approaches could give rise to the same universality class, thus resulting
in the same infrared physics. At the same time, a continuum limit encoded in that universality class
could ensure the restoration of diffeomorphism symmetry in discrete approaches. We consider
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the confluence of quantum-gravity approaches at this RG-
vantage point a promising research area that is still in its
relatively early stages. The special issue “Coarse graining in
quantum gravity: Bridging the gap between microscopic models
and spacetime physics” provides an incomplete snap-shot of
this evolving field, highlighting novel ideas, pointing out open
challenges and reviewing recent developments. The diverse
perspectives brought together in this issue highlight the broad
set of research lines converging toward each other as well as the
broad range of research opportunities that are opening up.

A series of papers focuses on various aspects of the
asymptotic-safety approach, both with continuum and
lattice techniques.

In Donoghue provides a constructive criticism of the
asymptotic-safety program and discusses a key open question
of the current state of the art of the asymptotic safety program,
namely the Lorentzian signature of space time. In Bonanno
et al. the authors critically reflect on the state of the art in
asymptotically safe quantum gravity, providing a comprehensive
list of open questions and critically reviewing potential pathways
to finding answers both within the functional RG approach and
lattice techniques. These two papers exemplify the usefulness of
constructive criticism across research lines in quantum gravity.

In Ambjorn et al. use the Causal Dynamical Triangulation
approach as a concrete framework to search for asymptotic safety
in quantum gravity. They use measurements of the correlation
function of the spatial volume profile of the emergent effective
spacetime to define lines of constant physics and search for a UV
fixed point.

Two papers deal with two aspects of background
independence in functional RG techniques for quantum
gravity. In Pawlowski and Reichert provide a comprehensive
review of fluctuation field calculations in the functional RG
framework for asymptotically safe quantum gravity. The
fluctuation field arises within the background field methods that
enables the definition of a local coarse graining procedure in a
background independent manner. In Pagani and Reuter explore
the peculiarities and physical implications of background-
independent RG flows using field theoretic degrees of freedom
like the metric. The requirement of background independence
is encoded in self-consistent backgrounds. Both technically
and conceptually this constitutes a departure from standard
coarse-graining procedures on a fixed background. Specifically,
the authors discuss how the so-called naturalness problem
regarding the cosmological constant is profoundly different from
this perspective.

In Platania reviews developments that tackle a central
question in any approach to quantum gravity, namely its
phenomenological viability. More specifically, she explores
potential consequences of gravitational anti screening, associated
with the UV limit in asymptotically safe quantum gravity,
in early-universe cosmology. The current state of the art in
the field does not yet allow a robust derivation of effects in
cosmology from a fundamental gravity theory, instead one
can develop and analyze quantum-gravity inspired models.
The tentative nature of the link between a fundamental
theory and cosmological observations also makes a quantitative

comparison between distinct approaches to quantum gravity
challenging. In the absence of experimentally measurable
observables, the comparison of characteristic properties of the
quantum geometry between approaches to quantum gravity is
a potential pathway to find commonalities or differences. In
this spirit, Kurov and Saueressig link functional RG techniques
to the analysis of geometric operators and observables in
quantum gravity.

In Held discusses the notion of effective asymptotic safety.
This can be viewed as an additional step inWeinberg’s translation
of interacting RG fixed points from statistical physics, as the
asymptotically safe fixed point is approached at scales that are
infrared scales when viewed from a more fundamental model
(while they remain UV scales compared to, e.g., the electroweak
scale). In that scenario, an interacting fixed point is therefore
approximately realized over an intermediate regime of scales,
focusing trajectories starting from different microphysics onto
common predictions for the macrophysics. This qualitative
idea—that has the potential to provide a unification between
asymptotically safe gravity and other approaches—is made
quantitively precise with a calculable notion of predictive power
worked out in detail in gauge-Yukawa models.

Other approaches to quantum gravity in which RG ideas and
techniques play a role are then discussed in the following list
of papers.

In Steinhaus provides an updated review on the
implementation of coarse-graining techniques in spin foam
models. He focuses on modern techniques such as tensor
network renormalization. Such techniques could allow to search
for and probe the continuum limit of such models. In the
closely related group field theories, in Finocchiaro and Oriti
report on the status of simplicial group field theories and their
renormalization. In particular, they present a perturbative
computation of corrections to correlation functions and provide
a road map for the field.

In Thiemann takes the canonical quantum gravity approach
as a mathematically well-defined setup to tackle the problem of
quantizing gravity. He applies the constructive quantum field
theory program and, as such, advocates that renormalization is
an essential ingredient to fix some ambiguities in the framework.
This constitutes a review of a series of papers written by the
author and collaborators, where Hamiltonian Renormalization is
established in the canonical language by means of constructive
quantum field theory. One of the papers in that series is
also published in the present special issue, see by Liegener
and Thiemann.

A different solution to the coarse-graining problem in
gravity is implemented in the discrete, pre-geometric setting
of matrix models by Castro and Koslowski. In Castro and
Koslowski, they apply discrete functional RG techniques to
matrix models which encode a preferred foliation. They discover
fixed points which are compatible with known results from
causal dynamical triangulations in two dimensions and thereby
establish the applicability of these techniques in a causal setting.
This work constitutes a compelling example of how numerical
Monte-Carlo simulations can meet the computationally less
expensive techniques arising from the functional RG.
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In Steinwachs reviews developments that aim
at formulating quantum gravity as a perturbatively
renormalizable and ghost-free quantum field theory,
enabled by a breaking of full diffeomorphism invariance to
foliation-preserving diffeomorphisms.

In summary, these papers provide a partial snapshot
of the state-of-the-art of the RG framework to quantum
gravity that brings together previously disconnected
approaches and is suitable to tackle both formal as well as
phenomenological questions.
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A Critique of the Asymptotic Safety
Program
John F. Donoghue*

Department of Physics, University of Massachusetts, Amherst, MA, United States

The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations

in low energy quantum gravity. This raises the question of whether the present practice

meets the Weinberg condition for Asymptotic Safety. I argue, with examples, that the

running of 3 and G found in Asymptotic Safety are not realized in the real world, with

reasons which are relatively simple to understand. A comparison/contrast with quadratic

gravity is also given, which suggests a few obstacles that must be overcome before the

Lorentzian version of the theory is well behaved. I make a suggestion on how a Lorentzian

version of Asymptotic Safety could potentially solve these problems.

Keywords: asymptotic safety, quantum gravity, effective field thoery, quadratic gravity, Lorentzian

1. PREFACE

Asymptotic freedom describes the situation where the coupling constants of a quantum field theory
run to zero at asymptotically high energy. For renormalizeable theories, this running is logarithmic
in the momentum.

Asymptotic Safety (AS) describes the situation where the coupling constants run to an ultraviolet
fixed point where the couplings are finite but where the beta functions vanish. While this can
happen in a renormalizeable field theory [1] where the running is logarithmic, its most common
application is in the study of gravity [2–5]. In this case, the running is generically power-law,
because of the dimensional coupling constants. In this paper I am discussing only the gravitational
case with power-law running.

There is a conflict between the much of the present practice in AS and known explicit
calculations of quantum processes in quantum gravity. This was originally pointed out in work
with Anber [6]. At low energy calculations of quantum gravity processes can be carried out in
the rigorous Effective Field Theory (EFT) treatment [7, 8] and we can compare these observables
with the practice of Asymptotic Safety. The EFT is valid at low energies, which in this case means
below the Planck scale. The major action in Asymptotic Safety happens around the Planck scale.
Nevertheless, the AS techniques also apply below this scale, and predictions only emerge by running
the cutoff to zero energy. Therefore in the overlap region we can make this comparison. More
recently, explorations of quadratic gravity [9–21], which involves curvature-squared terms in the
action, also shed light on the connection to AS. Quadratic gravity is a renormalizeable theory for
quantum gravity in the ultraviolet. It is somewhat more tentative and needs further exploration
itself. However, it provides a calculational framework which is reasonably close to AS, such that it
provides an interesting lessons for AS.

The present paper is an attempt to explain many of the issues involved. It has been invited to
be part of a volume describing an overview of running couplings in gravity. It is meant both as a
summary of concerns aimed at the AS community, and as an explication of the core issues for an
outsider audience. As such it will contain comments which are unnecessary for an AS practitioner,
as well as occasional technical details aimed only at the experts. I hope that this document can serve
this dual purpose.

7
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The reader will also notice that I often use the phrase “present
AS practice.” This is because I want to differentiate between
what is often done in the present AS literature from what could
be the ultimate understanding of Asymptotic Safety. The AS
paradigm is potentially an attractive resolution to the puzzle
of quantum gravity. However, the present status is not yet a
successful resolution. This article is then an attempt to point out
shortcomings in the present practice as well as to point to future
directions which may be fruitful.

1.1. Key Contrasts: Euclidean vs.
Lorentzian, Powers vs. Logarithms, Cutoffs
vs. Dimensional Regularization
As a preview to the more technical discussion which follows, let
me mention some of the important issues which are central to
that discussion.

The foundational technique of AS practice is the Euclidean
functional integral. One studies this with an infrared cutoff and
integrates out quantum effect in an energy scale around the
cutoff. This is a variation of our usual way of using cutoffs in
that the cutoff is introduced to keep the quantum effects above
the cutoff and removes those with scales below the cutoff. The
variation of the coupling parameters with that scale gives the
renormalization group flow of the couplings. It is understood
that running the cutoff down from the UV fixed point down
to a zero value for the cutoff will then include all of the
quantum corrections.

However, it is also common practice in the community to
assign a meaning to the parameters at given values of the
cutoff. For example, the running Newton constant in AS is often
parameterized as

G(k) =
G

1+ Gk2/g∗
(1)

where k is the cutoff, and g∗ is related to the fixed point in a way
that will be described below. The use of the symbol k makes it
tempting to think of k as a momentum (in practice it is closer
to a mass cutoff) and to think of the resulting G(k) as one that
depends on the momentum scales in a reaction. This is incorrect,
as we will see from direct examples in section 3.1. Moreover, even
if it were a Euclidean momentum, its Lorentzian counterpart
would be ill-defined. A large Euclidean momentum can translate
to a massless on-shell Lorentzian particle if k20 − k2 = 0 or to
positive or negative values of the various kinematic invariants
in reactions (i.e., s > 0 or t < 0) The basic question then
is whether G(k) at finite values of the cutoff has any physical
meaning. Explicit calculations suggest that it does not.

A second point to watch is that the important features
of AS do not occur when dimensional regularization is used.
For example, if one truncates to the Einstein action, then the
Newton constant does not run in dimensional regularization,
contradicting Equation (1). At one level, this can be blamed on
a known weakness of dimensional regularization. Near d = 4 it
cannot identify quadratic divergences as it includes integrations
over all scales. So it is perfectly allowable to use cutoffs to
identify effects at a particular scale around the cutoff. But in the

end, real physics should not depend on the regularization scheme.
I take it as given that dimensional regularization provides an
acceptable regularization scheme to describe physical processes
in field theory. I know of no counter-example. Moreover, I use
dimensional regularization in the perturbative regime where it
use in scattering amplitudes is unquestioned. So in the end,
any scheme which uses cutoffs to define the theory should give
the same physical predictions in such reactions. We need to
understand how AS can do that. This is not a trivial constraint.
In fact, we can understand how this occurs, but the resolution
tells us that the running G(k) is not valid for physical processes.

The other feature to be aware of, before we start describing the
details, is the difference between logarithmic running constants
and power-law running. Our experience in renormalizeable field
theories is with logarithmic running. The need to use running
couplings comes from the existence of large logarithms. If we
measure the coupling at a renormalization scale µr and apply
it at an energy scale s, there will be large corrections of order
α(µr) log(s/µ

2
r ). Use of the renormalization group lets us take

that original measurement up to the scale µ2
r ∼ s, t, in

which case there are no longer any large logarithms. Note that
the signature of the kinematic invariants does not matter as
log s/µ2

r ∼ log t/µ2
r up to small factors as long as s and t are both

of order µ2
r , even though s and t have opposite signs. Moreover,

µr is an unphysical parameter. In the end, µr disappears from
physical processes.

However, AS applied to gravity requires something different,
which is power-law running. Because most of the couplings in the
most general Lagrangian are dimensionful, one multiplies them
by powers of the scale in order to define dimensionless variables.
For example the Newton constant is modified by

g(k) = Gk2 (2)

The running of this dimensionless coupling is that which defines
the fixed point. In this case

g →
k→∞

= g∗ , (3)

hence the notation of Equation (1). However, now we must make
contact with physical processes. If we imagine measuring G at
some scale µ2

r , one is faced with the question of making the
measurement of at some values of s or t of order µ2

r . But s and
t generally carry opposite signs, and g(s) and g(t) are wildly
different quantities in a way that does not occur in logarithmic
running. Moreover, as we will see, there is no reason to expect
that something like G(s) captures the actual effect of quantum
corrections toG. Higher order momentum dependence generally
refers to new operators, where the factors of s or t come from
extra derivatives on the fields. These new operators need not enter
reactions in the same way as the lowest order operator.

2. FOUNDATIONAL ISSUES

In this section, we discuss several issues associated with running
coupling constants. Therefore, let me be clear what I mean by a
running coupling constant. It is a coupling defined to depend on
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a scale which captures essential quantum corrections in physical
processes for physics around that scale. The fact that it is useful
in physical processes is important. We will see that this aspect
is also part of the original formulation of Asymptotic Safety by
Weinberg [2]. A useful running coupling should also apply to
more than one process—it should be universally valid. If there
is a scale dependence in some function which however does not
have a direct physical meaning, we do not refer to this as a
running coupling.

2.1. There Is No Gravitational Running of
Regular Coupling Constants
There are obviously gravitational corrections to ordinary
reactions which occur in the Standard Model. Robinson and
Wilczek suggested that it could be useful to define the
gravitational correction to the running coupling constants of the
theory [22]. For example, for the gauge couplings, this could take
the form

β(g,E) ≡
dg

d ln E
= −

b0

(4π)2
g3 + a0

E2

M2
P

g (4)

After a large number of papers in the literature [23–33], on
various sides of this issue, it has become clear that this does
not occur. The reasons are instructive for our discussion of
Asymptotic Safety.

The first significant reason is kinematic. In Lorentzian
reactions, the variable E2, can have either a positive or negative
sign. For example, if the reaction e+e− → µ+µ− has the
gravitational correction

M ∼
e2(1− aGs)

s
(5)

where s = (p1+p2)
2 > 0 and a is some constant. For the reaction

e+µ− → e+µ−, related to it by crossing symmetry, will have
the form

M ∼
e2(1− aGt)

t
(6)

with t = (p1 − p3)
2 < 0 having the opposite sign from

s. The gravitational corrections will go in different directions
in the two reactions. If the first reaction has a decreasing
coupling, the second one will have an increasing coupling. In
more complicated QED reactions, there will be many kinematic
invariants which span the range of sizes and signs. These
effects cannot be captured by a running coupling constant.
If one attempts to measure the effective electric charge at
a renormalization scale s = µ2

r using e+e− → µ+µ−,
such as e2(µR) = e2(1 − aGµ2

r ) that coupling will not be
useful in describing the crossed reaction or in other more
complicated reactions.

The other significant reason is universality. The gravitational
corrections carrying powers of the energy are not actually a
renormalization of the electric charge, but are described by new

operators with extra derivatives. For example, if we take the bare
QED Lagrangian to be

L =
1

4e20
FµνF

µν (7)

then after loop corrections the energy dependent terms would be
reflected in operators such as

L =
1

4e2
FµνF

µν + aGFµν2F
µν + bGψ̄σµν i /Dψ∂µAν

+cGψ̄ i /DD2ψ + . . . (8)

These operators can enter different reactions in different ways,
depending on the particle content and kinematics of those
processes. Their contribution is not generally in the samemanner
as the original renormalized charge, and then is not generally able
to be described by a running charge.

It should be noted that because the graviton is massless, not
all the gravitational corrections are described by local operators.
There can be non-local effects reflecting the long distance
propagation of the graviton. However, this feature does not
change the discussion above.

This brief discussion follows most closely Anber et al. [29]
where further examples are given, but is also reflected in different
ways in Pietrykowski [23], Toms [24], Ebert et al. [25], Tang and
Wu [26], Rodigast and Schuster [27], Daum et al. [28].

2.1.1. Using a Cutoff Does Not Imply the Running of a

Coupling Constant
In response to criticisms such as the above, some authors
suggested that using a cutoff regularization scheme would
produce a running coupling [30–32]. This is not correct, and
again it is useful for our purposes to understand why.

We first note that using dimensional regularization there is
no gravitational renormalization of the electric charge when
neglecting the masses of the fermions. This follows from power-
counting with a dimensional coupling G. Temporarily neglecting
the fermion masses, the only dimensional factor in dimensional
regularization comes from the factor µ4−d inserted in Feynman
integrals in order to keep the dimensions correct. This yields
factors of logµ2 in intermediate steps in calculations but could
never produce a factor Gµ2 in gravitational calculations. With
fermion masses, the gravitational corrections are of the form

L =
1+ aGm2

4e20
FµνF

µν + . . . (9)

where a is some constant and the ellipses refer to the momentum
dependent corrections discussed above. When measuring the
electric charge one finds

1+ aGm2

4e20
=

1

4e2r
(10)

and one expresses predictions in terms of the renormalized
charge er . One is left only with the momentum dependent
operators described above.
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Real physics does not depend on the nature of the
regularization scheme. However, the authors [30–32] suggested
that the use of a cutoff regularization could be used to
define a running coupling which would capture the quantum
gravitational effects at a given scale. That is, by using a cutoff 3
one would define the beta function

β(g,3) ≡
dg

d ln3
= −

b0

(4π)2
g3 + a0

32

M2
P

g (11)

This would get around the kinematic and universality problems
of the Robinson-Wilczek suggestion. The reasoning is vaguely
Wilsonian—by using a cutoff one includes effects which occur
below that scale. One rebuttal is that one must also include
effects which occur above that scale, and the overall physics
is independent of the separation scale. However, even if one
neglects this, the cutoff effect disappears in renormalization
procedure. The introduction of a cutoff does lead to a
renormalization of the bare electric charge, of the form

L =
1+ a0G3

2

4e20
FµνF

µν + . . . (12)

with the suggestion that

1+ a0G3
2

4e20
=

1

4e(3)2
(13)

However when one calculates a physical process, this effect enters
the amplitude just like the renormalized charge, and the correct
identification is

1+ aG32

4e20
=

1

4e2r
(14)

and this manifestation of 3 disappears from the physical
amplitude [33]. In the end, cutoff regularization and dimensional
regularization do agree in physical amplitudes.

Here we have seen the definition of a coupling constant
which depends on a scale—the cutoff 3. In that sense it is a
truism that it “runs.” However, it does not qualify as a “running
coupling constant” because that running is not relevant for
physical processes at energies around that scale. Indeed the
cutoff dependence is completely unphysical—it disappears from
all amplitudes. If we wish to describe its scale dependence we
should come up with a different name for it. Perhaps “incomplete
coupling constant” is appropriate, as it is defined to include only
quantum corrections below the cutoff scale. When used as a
UV regulator, we do not care about the incompleteness, as the
true physics beyond is unknown and in any case irrelevant for
low energy processes. But if we are trying to use the cutoff as
a running parameter at the scale of the energies being studied,
we do care about the incompleteness. The full coupling constant
does not have such a division.

2.1.2. Log Running vs. Power-Law Running
The above sections illustrate a truism—There are no power-
law running coupling constants in 4D Minkowski quantum
field theory.

Logarithmic running works because the logarithm is directly
tied to renormalizaton. In the QED case, photon exchange with
the vacuum polarization leads to a factor of

M ∼
e20

q2[1+6(q)]+ iǫ
(15)

where 6(q) is scalar part of the vacuum polarization. No matter
how one chooses to regularize it, the vacuum polarization
contains a divergent term and a logarithm of q2. The divergence
and the logarithm share the same coefficient. If we measure the
charge using e+e− → µ+µ− at a renormalization scale s = µ2

R
with s = (p1 + p2)

2 >> m2
e , this result becomes

e2(µR)

s[1− α
3π log −s

µ2
R

]+ iǫ
(16)

Because the logarithm comes along with charge renormalization,
it occurs in every reaction in the same fashion. And because
of the properties of the logarithm, the same running coupling
would apply to the crossed reaction e+µ− → e+µ− with the
change s → t.

Power-law effects do not share these features. There is
no universal connection of power-law corrections to the
renormalization of the charge. And because of Minkowski
kinematics, the effects in different channels can go in
opposite directions.

That being said, it is possible in any one calculation to define a
running coupling for that particular process. This may be a useful
procedure. However, in field theory, a coupling constant has
multiple duties. It not only describes that one particular process,
but also must describe a multitude of others. These can differ in
the arguments, i.e., λ(φ) vs. λ(q2), and also on the nature of the
process. The same coupling needs to describe not only space-
like vs. time-like reactions such as we have used as examples
above, but alsomulti-particle reactions which involve manymore
particles than the simplest reaction. It is this multiplicity of uses
where attempts to define power-law running couplings fail. The
same definition which works in one setting will in general fail in
the these other settings. The logic and mathematics which tell us
that logarithmic running coupling constants are useful does not
apply to power-law running.

The reader may object that Wilson has taught us the value
of coarse-graining as a way to define couplings at different
scales, and that this procedure has been verified in condensed
matter systems even including power-law re-scalings. However,
the couplings in these condensed matter examples do not have
as many applications as the couplings in scattering processes.
And the 3D setting for condensed matter systems does not
display the kinematic variety of Minkowski reactions. It is easy
to understand how the Wilsonian rescaling in condensed matter
may be useful, while correspondingMinkowski QFT applications
are more complicated.

2.2. Weinberg Formulation of Asymptotic
Safety
The vision for Asymptotic Safety for gravity was formulated by
Weinberg [2]. He invokes a situation where all the coupling
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constants run to fixed values at high energy. This includes the
dimensionful couplings, when rescaled by a universal dimension.
He defines dimensionless variables gi by multiplying by a scale
µ. For example, one would have gG = Gµ2 and g3 = 3vac/µ

4,
where3vac is the vacuum energy density1.

Specifically, in his 1979 paper [2] Weinberg formulates the
hypothesis using scattering processes and other reactions. Using
these dimensionless coupling he suggests that these rates could
have the form

R = µD
R f

[

E

µR
,X, gi(µR)

]

(17)

where X stands for all the other dimensionless physical variables.
Here µR is meant to be a renormalization point, as used above.
Because physics cannot depend on the arbitrary choice of the
renormalization point, one can choose µR = E and have the
result that the rate behaves as

R = EDf
[

1,X, gi(E)
]

(18)

Aside from the pre-factor (which would involve D = −2 for a
total cross-section) the rates would then depend on the couplings
gi(E) as E → ∞. Asymptotic safety is defined by the condition
that the running couplings go to constant values gi(E) → gi∗ at
high energy, or equivalently that their beta functions vanish

β(gi) = E
∂

∂E
gi = 0 (19)

This is the UV fixed point. The implication here is that instead
of blowing up with the energy, as GE2 would, these factors go
to constant values. I will refer to Equations (17)–(19) as the
Weinberg conditions for Asymptotic Safety.

We can see from the discussion of coupling constants in the
previous subsection that this needs to be generalized somewhat,
as there is no unique energy E in Minkowski reactions. We
do not want to include the kinematic variables in the running
parameters, such as gi(s), gi(t), . . . because of the kinematic
ambiguity and differing signs. The best that we can hope for is to
choose all of the kinematic variables of order the renormalization
point, |s| ∼ |t| ∼ . . . ∼ µ2

R and write the rate as

R = µD
R f

[

s

µ2
R

,
t

µ2
R

, . . .X, gi(µR)

]

. (20)

In this formulation it is not clear how the renormalization scale
µR drops out of physical observables. However, that can work out
in a given process by explicitly performing the renormalization
and demanding that the result is independent of µR. That
demand then identifies the renormalization group flow of the
couplings. The larger question is whether, having done this
renormalization in one process, the result generalizes to other
processes and is useful in describing the quantum effects of
the full theory. This raises the possibility that the Weinberg

1I will try to keep separate the vacuum energy density 3vac (which much of

the particle physics community refers to as the cosmological constant) from

other definitions of the cosmological constant. Much of the Asymptotic Safety

community uses the symbol3 for a different version3 = −3vac/8πG = −3red .

For this combination, I will use3red (with red standing for “reduced”).

conditions themselves are unworkable when applied to a full set
of reactions with many kinematic variables of differing signs. Our
comparison with explicit reactions below will be discouraging in
this respect when applied to G and 3. However, if Asymptotic
Safety is to be successful there must be a modified version of these
conditions which applies for the high energy limit of physical
processes. I will continue to use the Weinberg formulation as the
vision for the AS program.

In our discussion of the present practice of Asymptotic Safety,
it is important to point out that the Weinberg proposal is for
true running couplings in the sense that we are using that phrase
in this paper. That is, these are couplings that apply in physical
reactions (in particular as functions of energy) and which in a
useful way capture relevant quantum corrections appropriate for
those energies.

2.3. The Practice of Asymptotic Safety
This section is clearly meant primarily for readers outside the
AS community. It tries to very briefly explain the formalism
and physics of the calculations. However, there are important
comments toward the end of section 2.3.1 that are intended for
all readers.

The present practice of Asymptotic Safety does not study
reaction rates, but rather evaluates the flow of the Euclidean
functional integral in a background field formulation—the
Euclidean functional renormalization group (FRG). That is, the
functional integral is a function of the metric, curvatures and
covariant derivatives. The logic here is that once all quantum
corrections are included in the Euclidean functional integral, the
result can be continued to Lorentzian spaces, and the metric and
curvatures expanded in the external fields in order to obtain the
amplitudes that the Weinberg criterion envisions. I will call this
the “ideal FRG program.”

However, for the most part in present applications this logic
is not followed in practice2. Rather rather than evaluating the
full functional integral, one evaluate the evolution from the UV
fixed point down to some cutoff k including quantum corrections
above k. Without evaluating the quantum corrections below
the cutoff, it is then assumed that the resulting gi(k) are the
appropriate couplings to use in something like the Weinberg
criterion in real world applications at the scale k. That is, gi(k) ∼
gi(E ∼ µR ∼ k). There is also necessarily a truncation of the
basis (to be discussed soon) in such applications. There is an extra
logical step required if these assumptions are to be true. This can
be called the practical AS program.

One complication of the AS program is that the basis set
of operators is infinite, with a corresponding infinite number
of coupling constants. The renormalization flow for a theory
such as gravity mixes operators of all dimensions, with the only
restriction being that of general covariance. In the action, there
will be local terms of the form

L =
√

−g

[

−3vac −
1

16πG
R+ c1R

2 + c2CµναηC
µναη

2Codello et al. [34] have pursued the ideal FRG program to reproduce some of

the results of chiral perturbation theory. The chiral logs emerge in the IR limit as

k → 0.
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+d1R
3 + d2R2R+ . . .

]

(21)

This series can be ordered by powers of derivatives, such that only
the operators with few derivatives are relevant for the low energy
limit. This is what is done in the effective field theory treatment.
However, Asymptotic Safety concerns the high energy limit and
all operators become active as the energy goes to infinity. The
ideal FRG program then would involve all possible operators
with their coefficients3. However in the ideal FRG program these
coefficients are not all independent. The infinite set of couplings
would be described by a few relevant couplings and only special
values of the parameters would be consistent with the Asymptotic
Safety hypothesis.

Practicality requires that this be truncated at some order.
The AS community has explored a remarkable range of such
truncations, and the overall picture that emerges has so far been
independent of the truncation. For the purposes of this paper,
I will assume that the truncation problem is not a fundamental
obstacle. Nevertheless, we can examine truncations to see what
might be issues for the full program, as in sections 4.1 and 4.2.

The fundamental equation of AS practice, the Wetterich
equation [35], describes the change of the Euclidean functional
integral Ŵk, again defined to include quantum fluctuations above
the scale k, under a change in scale4.

k
∂

∂k
Ŵk =

1

2
Tr









1

δ2Ŵk
δgδg + Rk



 k
∂

∂k
Rk



 (22)

Here Rk is the cutoff function which suppresses momentum
modes below k. Conceptually, it is like a mass below the scale k
and zero above k, chosen in some smooth way so that there is not
a discontinuity. An example is

Rk = (k2 − D2)θ(k2 − D2) (23)

In understanding the variation δ2Ŵk/δgδg, one notes that g
schematically represents the metric and any other fields in the
theory. If the functional contained DµgD

µg then the variation
would be −D2. So conceptually, this equation is similar to
k∂kTr log(D

2 + m2
k
). Of course the real case is very much more

complicated by the interactions and all the indices. A positive
feature of the flow equation is that the flow only depends on the
physics near the cutoff scale k. Higher scales have already been
included and no longer enter because of the vanishing of ∂kRk at
high k, while lower scales are suppressed by the cutoff. Qualitative
results have so far been independent of the choice of the function,
although numerical results do depend modestly on the choice.

Weinberg in his Erice lectures on critical phenomena [36] also
expressed a similar structure for the running coupling.

Much work has gone into exploring the existence and
properties of the UV fixed points. To do this one first identifies

3There are also non-local contributions to the functional integral. It is assumed

that these are fully parameterized by the coefficients of the local operators.
4The Wetterich equation is more general than its application to AS, and

Asymptotic Safety could in principle be addressed without the Wetterich equation

(i.e., see section 4.3 for a possibility). However, present practice in AS involves

this equation.

a truncation in the basis. One starts at finite k and uses the
Wetterich equation to flow to higher scales. In the infinite
dimensional space of coupling constants, the fixed points live
on finite dimensional “critical surface.” Common expectation is
that this is two or three dimensional. This leaves a two or three
dimensional family of solutions. When one flows from the fixed
point to the IR at k = 0, one will have two or three undetermined
constants. In particular 3vac and G at k = 0 are not predicted.
But in principle there are predictions for an infinite number of
other constants in the local effective Lagrangian.

2.3.1. AS at One-Loop
In order to see the FRG machinery at work, we can look at the
illuminating calculation of Codello and Percacci [37], which is
described as a one-loop evaluation including terms up to the
order curvature-squared. This example also allows a comparison
with a conventional treatment of quadratic gravity, which will be
given in section 4.

The Euclidean action is parameterized by five couplings, in
the form

S =
∫

d4x
√
g

[

1

8πG
3red −

1

16πG
R+

1

2λ
C2 −

ω

3λ
R2 +

θ

λ
E

]

.

(24)
Here C2 is the Weyl tensor squared, and E is the Gauss-Bonnet
term. The vacuum energy is defined by 3vac = − 1

8πG3red. In
four dimensions, E is a total derivative and does not influence any
local physics. This will be evidenced in the flow as the parameter
θ does not influence any of the other physical parameters. The
dimensionful parameters are 3red and G, while λ, ω, θ are
dimensionless. To create dimensionless parameters one defines
G̃ = Gk2 and 3̃ = 3red k

−2.
The evolution of the curvature-squared coefficients is

exactly the same as was previously calculated in dimensional
regularization [10, 11].

βλ = −
1

(4π)2
133

10
λ2

βω = −
1

(4π)2
25+ 1098ω + 200ω2

60
λ

βθ =
1

(4π)2
7(56− 171θ)

90
λ

(25)

These run only logarithmically in the usual way. In particular, the
coefficient of the Weyl-squared term is asymptotically free and
runs logarithmically to zero. The coefficient ω runs to a fixed
point ω∗ = −0.023. Note however that in this evaluation the
coefficient of the R2 term ω/3λ is also indicative of asymptotic
freedom because λ is asymptotically free.

The remaining two couplings have an evolution

β3̃ = −23̃+
1

(4π)2

[

1+ 20ω2

256πG̃ω2
λ2 +

1+ 86ω + 40ω2

12ω
λ3̃

]

−
1+ 10ω2

64π2ω
λ+

2G̃

π
− q(ω)G̃3̃

βG̃ = 2G̃−
1

(4π)2
3+ 26ω − 40ω2

12ω
λG̃− q(ω)G̃2 (26)
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with q(ω) = (83+70ω+8ω2)/18π . The initial factor in each beta
function (±2) is due to the explicit factor of k used to make the
couplings dimensionless. The remaining are due to perturbative
interactions and these need to be large in order to cancel the ±2
if the beta function is to vanish. These perturbative terms are not
found in dimensional regularization because they require powers
of the cutoff.

If we follow Codello and Percacci [37] and set ω and λ to their
fixed point values, the flow can be solved exactly. Expressing the
result in terms of the Newton constant G and vacuum energy
density3vac0 defined at k = 0, one finds,

G(k) =
G

1+ Gk2

g∗

(27)

with g∗ ≈ 1.4 and

3vac(k) = 3vac0 −
1

16π2
k4 (28)

The quartic k dependence of 3vac is particularly striking.
Evaluated at LHC energies, it would imply

3vac(10TeV) ∼ −1014ρN ∼ −10613vac0 (29)

where ρN is the density of the nucleus and 3vac0 ∼ (10−3eV)4

is the present experimental vacuum energy. It is also notable
that the vacuum energy itself does not run to a UV fixed point.
It increases without bound, and only the rescaled value 3̃ ∼
3vac(k)/k

4 stays finite.
However, this dependence is k4 is actually illusory when it

comes to applications of this parameter. Recall that 3vac(k =
0) = 3vac0 is meant to describe the vacuum energy density
with all quantum corrections included, and 3vac(k) is meant to
describe that parameter with only quantum effects above the scale
k included. This implies that when we use3vac(k) we need also to
add in the quantum corrections below k. For the vacuum energy
this is seen to be related to

∫ k d3p

(2π)3
1

2
ωp =

4π

(2π)3

∫ k

0
p2dp

1

2
p =

1

16π2
k4 (30)

If we add this back into Equation (28) we get the full vacuum
energy5. The running value is seen to be the full value with the
effects of the momentum scales up to k removed.

Similar considerations apply for the running G(k). When
using G(k) one is instructed to also add in the quantum
corrections from scales 0 up to k. When this is done, one obtains
the full G, which is the measured value.

The functions G(k) and 3(k) by default “run” because they
depend on the scale k. However, we will see in the next section
that they do not behave as gravitational running couplings in

5The apparently missing factor of 2 in Equation (30)—for the 2 graviton helicity

states—appears to come from the fact Equation (30) involves a non-covariant

cutoff, while the Wetterich equation is a (Euclidean) covariant treatment. See also

Ossola and Sirlin [38] and Akhmedov [39]. Nevertheless, the principle remains the

same. I thank Roberto Percacci for this observation.

the sense of Weinberg, because they do not apply to physical
processes. We will also explain the reason for this. Instead, 3(k)
andG(k) are incomplete coupling constants. From their definition
they include physics above the cutoff scale but not below. Indeed,
insights from effective field theory indicate that the lower energy
physics is the region that is dynamically important. Because
of the uncertainty principle, physics from high energy scales
beyond the active scale k appears as local effects, parameterized
by coefficients in a local action. Low energy physics can influence
those local coefficients also (such that the cutoff scale disappears
from physical observables) but also include dynamical effects
from low energy propagation. The momentum dependence that
we will see in the reactions to be described in section 3.1 all
comes from low energy, as the high energy effects are only seen in
the occasional unknown coefficient, such as d1 in Equation (37).
Because they are incomplete, parameters such as 3(k) and G(k)
do not know about this low energy physics, and it is therefore not
surprising that they do not capture the quantum physics seen in
physical observables.

The AS running is an iterated one-loop calculation. The
renormalization group is used to iterate the the matching at the
scale k, which is itself performed at one loop order. For example,
the full program has been performed in the quadratic truncation
approximation of this section in Benedetti et al. [40]. This is an
appropriate way to improve on the one-loop result of Codello and
Percacci, but it does not change the fundamental interpretation of
the cutoff dependence.

3. THE CASE AGAINST A RUNNING GN

AND 3

Quantum corrections and matter effects will clearly modify the
physical value of G and of the other parameters. However it is
not a requirement that these organize themselves in a functional
form that is usefully described by a running coupling. We can
look at observables to see if this is the case.

The function G(k) is defined to include all of the quantum
effects above the cutoff scale k. In principle, it is designed to
be supplemented by including all of the quantum effects below
the scale k also when using it to calculate some observable. The
matching scale k is unphysical and should drop out from physical
observables once all quantum effects are included. Nevertheless,
it is common AS practice to use Gk as if it were the effective
Newton constant at an energy of order k. However, one can see
by direct calculations that this is not the case [6]. The attempt
to compare the form of G(k) to low energy results is a valid test
because the FRG predicts not only a UV fixed point but also the
approach to the fixed point at lower energies with effective field
theory calculations are performed. The same techniques which
predict the fixed point also predict running at lower energies
which overlaps with the validity of the EFT calculations.

3.1. Explicit Calculations
Let us start by listing a series of physical amplitudes which
have been calculated to one loop order. All of these have been
calculated with the assumption that the value of the cosmological
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constant at low energy can be neglected. The results are then
functions of G and in some, but not all, cases contain coupling
constants which are equivalent to a four-derivative truncation
of the effective action. These reactions are observables. The
question is whether we can define a useful running G from
these observables.

The most elemental quantum gravity process is the scattering
of two gravitons. The lowest order scattering amplitude involves
a large number of individual tree diagrams but is given by the
simple form

Atree(++;++) = i
κ2

4

s3

tu
, (31)

where the signs +,− refer to helicity indices and s, t, u are
the usual Mandelstam variables. In power counting, this is a
dimensionless amplitude of orderGE2. This was calculated at one
loop order with the result. The one loop amplitudes have been
calculated by Dunbar and Norridge [41]. These are of orderG2E4

and take the form

A
1−loop(++;−−) = −i

κ4

30720π2

(

s2 + t2 + u2
)

,

A
1−loop(++;+−) = −

1

3
A

1−loop(++;−−)

A
1−loop(++;++) =

κ2

4(4π)2−ǫ
Ŵ2(1− ǫ)Ŵ(1+ ǫ)

Ŵ(1− 2ǫ)
A

tree(++;++) × (s t u) (32)

×





2

ǫ

(

ln(−u)

st
+

ln(−t)

su
+

ln(−s)

tu

)

+
1

s2
f

(

−t

s
,
−u

s

)

+2

(

ln(−u) ln(−s)

su
+

ln(−t) ln(−s)

tu
+

ln(−t) ln(−s)

ts

)



 ,

where

f

(

−t

s
,
−u

s

)

=
(t + 2u)(2t + u)

(

2t4 + 2t3u− t2u2 + 2tu3 + 2u4
)

s6

(

ln2
t

u
+ π2

)

+
(t − u)

(

341t4 + 1609t3u+ 2566t2u2 + 1609tu3 + 341u4
)

30s5
ln

t

u

+
1922t4 + 9143t3u+ 14622t2u2 + 9143tu3 + 1922u4

180s4
. (33)

Other amplitudes can be obtained from these by crossing. I have
discarded some purely infrared effects, including the expected
IR radiative divergence. As noted by ‘t Hooft and Veltman, this
reaction and all pure graviton processes will be independent
of any coupling constants other than G at this order, because
the possible terms in the action vanish by the equations of
motion Rµν = 0.

Another core process is the gravitational potential for heavy
masses. Including the leading quantum correction the potential
has the form [42, 43]

V(r) = −G
Mm

r

[

1+
41

10π

G

r2

]

, (34)

This particular definition is derived from the low
energy limit of the scattering amplitude. I have
dropped the leading classical correction. The quantum
correction is universal, independent of the spin of the
heavy particles.

The bending of light around a massive object can also be
reliably calculated [44–46].

θ ≃
4GNM

b
+

15

4

G2
NM

2π

b2

+
(

8buS − 47− 64 log
b

2b0

)

h̄G2
NM

πb3
+ . . . . (35)

Here 1/b0 in the logarithm is the infrared cutoff which
removes the IR singularities of the amplitude. Here there is
not a universal behavior. The coefficient buS is a parameter
which depends on the intrinsic spin of the particle. It has
values 371/120, 113/120,−29/8 for scalars, the photon and the
graviton, respectively.

Dunbar and Norridge have also calculated the gravitational
scattering of a massless scalar particle, φ + φ → φ + φ [47].
At tree level, this has the form.

Mtree = i
κ2

4

[

st

u
+

su

t
+

tu

s

]

. (36)

with as usual κ2 = 32πG. In this process there is a higher order
operator which is needed to absorb the divergences which arise at
one loop. This is

L2 = d1(DµφD
µφ)2 (37)
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Including the renormalization of this higher
order operator, the one loop hard amplitude is

Mh = i
κ4

(4π)2

{

(s4 + t4)

8st
ln(−s) ln(−t)+

(s4 + u4)

8su
ln(−s) ln(−u)+

(u4 + t4)

8tu
ln(−t) ln(−u)

+
(s2 + 2t2 + 2u2)

16
ln2(−s)+

(t2 + 2s2 + 2u2)

16
ln2(−t)+

(u2 + 2t2 + 2s2)

16
ln2(−u)

+
1

16

(

st

u
+

tu

s
+

us

t

)

(

s ln2(−s)+ t ln2(−t)+ u ln2(−u)
)

+
[

−
(163u2 + 163t2 + 43tu)

960
ln

(

−s

µ

)

−
(163u2 + 163s2 + 43us)

960
ln

(

−t

µ

)

−
(163s2 + 163t2 + 43ts)

960
ln

(

−u

µ

)

+ dren1 (µ)(s2 + t2 + u2)

]}

, (38)

where µ is an infrared scale. Again a purely infrared effect has
been removed.

Anber and I have used the Dunbar-Norridge method to find
the amplitudes for two different species of particles [6]. In the
reaction A+ B → A+ B we find that the hard amplitude is

Mh = i
κ4

(4π)2

[

1

8

(

s4 ln(−s) ln(−t)+ u4 ln(−u) ln(−t)
)

−
1

16t

(

s3 + u3 + tsu
)

ln(−t)

+
1

16

(

s2 ln2(−s)+ u2 ln2(−u)
)

+
us

16t

(

s ln2(−s)+ t ln2(−t)+ u ln2(−u)
)

+
1

240

(

71us− 11t2
)

ln(−t)

−
1

16

(

s2 ln(−s)+ u2 ln(−u)
)

]

, (39)

For the crossed process, A + Ā → B + B̄, one exchanges s ↔ t,
which yields a significantly different functional form.

It is easy to see by inspection that there are no common
factors for the power-law corrections to these processes. This is an
immediate indication that there will not be a useful definition of a
runningGwhich is useful in all processes. This is not a surprise as
these kinematic effects do not amount to a direct renormalization
of G. However, we can still proceed with an attempt to define a
renormalization of G at a higher renormalization scale µR and
look at the outcome.

First consider graviton-graviton scattering. If we wish to
renormalize this at high energy, we would like a kinematic
configuration where all the kinematic variables are of the same
large energy. In this case, we chose the central physical point
s = 2E2, t = u = −E2. If we use the amplitude A(++;++)
and use this point to determine G(E), we find

G2(E) = G2



1+
κ2E2

(

ln2 2+ 1
8

(

2297
180 + 63π2

64

))

8π2



 . (40)

We see that this definition leads to a growing running coupling
G(E), as opposed to the expectation from asymptotic safety of a

decrease in strength at high energy. Of course, since we are here
using perturbation theory, we only should be obtaining the first

order term in the expansion. Nevertheless the disagreement on
the sign is clear.

We could alternatively consider the crossed reaction
A(+,−;+,−) which is obtained from A(+,+;+,+) by the
exchange s ↔ t. This makes the quantum corrections somewhat
different, with the corresponding kinematic factor being

1+
κ2t

16π2

[

ln
−s

t
ln

−u

t
+

su

2t2
f

(

−s

t
,
−u

t

)]

= 1+
κ2E2

(

29
10 ln 2−

67
45

)

16π2
(41)

instead of the factor in Equation (40).
If we used identical scalar particle scattering at the same

kinematic point to identify a running coupling the result
would be

G(E) = G

[

1−
κ2E2

360 (4π)2
(42)

(

609 ln
E2

µ2
+

(

340π2 +
(

123− 340 ln 2
)

ln 2
)

)]

.

The single log term which appears in Equation (43) could
reasonably be associated with the higher order operator d1, and
perhaps should be removed from this expression. Using the
scattering of non-identical particles, one would find for A+B →
A+ B,

Mtotal =
iκ2E2

2

[

1−
κ2E2

10(4π)2

(

(

19+ 10 ln 2
)

ln

(

E2

µ2

)

+5
(

π2 − (ln 2− 1) ln 2
))]

. (43)

which would lead to yet a different running G(E). On the other
hand, using A+ Ā → B+ B̄ we would have

Mtotal =
iκ2E2

8

[

1+
κ2E2

10(4π)2

(

9 ln

(

E2

µ2

)

−5π2 +
(

19+ 5 ln 2
)

ln 2
)]

. (44)

The crossing problem is obvious here.
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FIGURE 1 | The tadpole diagram on the left has an insertion of an operator

involving the background field. When applied, this operator is expanded in

powers of the external field, as on the right-hand side. The momenta of the

external fields do not flow through the loop.

There is not much point to continue. It is clear that any
application to other processes will yield yet other discordant
results. Even if we have an operational definition of a running G
at a higher renormalization point in one process, this definition
does not apply to other reactions. This is not surprising, as the
quantum corrections here are not related to a renormalization
of G.

We note also that having set the cosmological constant to
zero at low energy, it stays zero in the scattering amplitudes.
All the corrections come in at higher powers in the energy, in
accord with the power counting theorems of the effective field
theory. The cosmological constant also does not run in these
scattering amplitudes.

The examples here are evidence that the Weinberg criterion
for AS is false, as applied to the parameters 3 and G. Even if we
do not attempt to use the FRG form of the running G, there is
no other form that does the job either. Nature does not organize
itself like that at low energy. Perhaps a revision of the Weinberg
criterion is possible in which other parameters more important
to the high energy limit have the flow envisioned by Weinberg.

It is possible that in one given process-say, FLRW cosmology
for example-it could be useful to define power-law running
parameters for use in that setting and those running parameters
might asymptote to an non-trivial UV fixed point. However, even
if this is the case it would not imply that this defines a consistent
quantum field theory of gravity. Such a field theory would have to
be broadly applicable to all observables, and we have seen above a
broad class of observables which do not share a useful running G.

3.2. The Driving Force of the Tadpole Graph
We can look beyond the formalism and identify what is going
wrong in the functional RG approach to the running G. The
diagram driving the flow for this operator is the tadpole diagram
of Figure 1. This diagram vanishes in dimensional regularization
for massless particles. It is non-vanishing when evaluated with
a cutoff. The issue is not really whether it vanishes or not, but
that is a symptom. Since physical processes can be regularized
dimensionally, we should not be surprised that there is not a
signal of this diagram in the physical amplitudes. The more
important feature is that this diagram does not feel the values
of the external momenta, and here cutoff and dimensional
regularization agree. Even with a cutoff, there is no external
momentum flowing in loop. This tells us that the diagram does
not know about the momentum scales of the physical reactions,
and so cannot correspond to the use of running coupling

depending on those scales. Once we identify how to treat this
diagram, we will be able to bring the cutoff regularized result into
agreement with dimensional regularization. To demonstrate this
we need to look at the physics of the background field method.

With background fieldmethods, one can capture the quantum
effects using the heat kernel [48–53], defined as

H(x, τ ) =< x|e−τD|x > (45)

for some differential operator D. For example the functional
determinant can be evaluated using

1S =
∫

d4xTr < x| logD|x > (46)

with

< x| logD|x >= −
∫ ∞

0

dτ

τ
< x|e−τD|x > + C (47)

The local heat kernel is expanded in powers of τ with the
Seeley-DeWitt coefficients ai, with the result

H(x, τ ) =
i

(4π)d/2
e−τm

2

τ d/2

[

a0(x)+ a1(x)τ + a2(x)τ
2 + . . .

]

(48)
in an arbitrary dimension d. The contribution to the action
is then

< x| logD|x > =
−i

(4π)d/2

[

mdŴ(−d/2)a0(x)

+md−2Ŵ(1− d/2)a1(x)

+md−4Ŵ(2− d/2)a2(x)+ . . .
]

(49)

As an example which is simpler than the graviton itself consider
a scalar coupled to gravity with the Lagrangian

√

−gL =
√

−g
1

2

[

gµν∂µφ∂νφ −m2φ2
]

(50)

in which the coefficients have the form

a0(x) = 1

a1(x) =
1

6
R

a2(x) =
1

180
RµναβR

µναβ −
1

180
RµνR

µν +
1

72
R2 (51)

From this we see that a0 is associated with the cosmological
constant, a1 is associated with the renormalization of G and
a2 is asssociated with curvature-squared terms. In the AS beta
functions this dependence is convoluted with the influence of the
cutoff function, but this association remains true. I have included
both a mass and a dimension d in order to make the following
points. In dimensional regularization for the massless graviton,
we would set m = 0 and the coefficients of a0 and a1 would
vanish. The divergence in the coefficient a2 is non-vanishing in
the massless limit and is the usual divergence that one finds at
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one loop order. But also, in this evaluation the massm serves as a
proxy for the IR cutoff of AS, withm2 ∼ k2. So we see that the k4

and k2 dependence of the running couplings comes form the a0
and a1 coefficients, respectively.

In 4D flat space, the Passarino-Veltman theorem [54] says
that all one loop diagrams can be reduced to scalar tadpole,
bubble, triangle and box diagrams. The “scalar” part of this
statement says that any momentum factors in the numerator
can be removed and replaced by external momenta, leaving
behind only the tadpole, etc diagrams with no momenta in the
numerator. The heat kernel performs this operation describing
the result using derivatives in the local operators, in our case
R, R2, RµνR

µν , etc. The scalar tadpole, bubble, etc diagrams
then contribute to the coefficients of the local operators. Each
is readily identifiable by its dimension and divergence structure.
In particular, in 4D the scalar tadpole has dimension E2 and
the scalar bubble is dimensionless, which is why they carry the
k2 and log k cutoff dependence. In curved spacetime, the use of
the equivalence principle means that the short distance behavior
of loops is equivalent to that of flat space. The use of Reimann
normal coordinates can be used to describe the heat kernel and
the AS RG flow using the same classification of tadpole, bubble,
etc. diagrams [53] including the non-local components of the
heat kernel. The k2 cutoff dependence of the a1 coefficient is
characteristic of the scalar tadpole diagram.

We can learn a bit more by looking at the ingredients to these
heat kernel coefficients. Working in flat space for simplicity, we
consider the differential operator as

logD = log[dµd
µ +m2 + σ (x)] = log[2+m2 + V(x)]

= log

[

(2+m2)(1+
1

2+m2
V)

]

= log[2+m2]+
1

2+m2
V

+
1

2

1

2+m2
V

1

2+m2
V + . . . (52)

where dµ = ∂µ + Ŵµ(x) and σ (x) describe some interactions.
Inserting a set of momentum eigenstates, we see that the first two
terms in the heat kernel expansion are tadpole loops

∼
∫

d4p

(2π)4
× log[2+m2] ∼

∫

dm2

∫

d4p

(2π)4
1

p2 +m2
(53)

and

∼
∫

d4p

(2π)4
1

p2 +m2
× V(x) (54)

These two are represented in Figure 1. The key point here is
that the tadpole has no external momenta flowing in these
loops. This implies that when matrix elements are taken of
the resulting effective Lagrangian, there will be no external
momentum dependence coming from the a0 and a1 coefficients.
This is already evident in the discussion of the one-loop running
contributions to 3 and G in section 2.3.1. In contrast, the
a2 term is given by a bubble diagram, with two vertices and

two propagators. It does involve the external momenta because
it involves the interaction V at different spacetime points. In
addition to the local divergence which is contained in a2 there
is a non-local log q2 dependence. This can also be identified by a
non-local version of the heat kernel method [52, 53].

Combined with the discussion of section 2.3.1, we arrive at
an understanding of how the cut-off regularization can agree
with dimensional regularization. The dimensional regularization
case integrates over all momenta with no separation of scales.
The result is that the physical values of 3vac and G are not
modified. In the cutoff regularization case, the so-called running
couplings of 3(k) and G(k) represent these parameters with
quantum effects only above the scale k included. They are actually
incomplete couplings, where the the physics below the scale
k is missing. Technically, they are described by the tadpole
diagram in which no momentum flows. When supplemented by
the rest of the loop below k we again get the physical values
of the parameters as the dependence on the separation scale
must vanish. There is no external momentum flowing through
these loops so that there is no net effect on the kinematic
features of scattering amplitudes. This confirms that the k
dependence in G(k) does not correspond to running in any
kinematic sense. In contrast, the bubble diagram, associated
with a2 will contain logarithmic momentum dependence. Both
dimensional regularization and cutoff regularization will agree on
this and logarithmically running couplings associated with the a2
coefficient will be physical.

4. COMPARISON WITH QUADRATIC
GRAVITY

In this section, I discuss the AS result for the truncation including
terms of order curvature squared, summarized above in section
2.3.1, with work on quadratic gravity, which uses the same
operator basis but which does not use the AS machinery.

There are three points to be made in this comparison. (1)
At least at one loop, this AS truncation is unsatisfactory in that
when continued to Lorentzian spaces it contains a tachyon. It
also contains a ghost state and violates causality on short time
scales, although these may be less disastrous. (2) Further analysis
of the ghost state indicates that there is an obstruction to the
continuation from Euclidean space to Minkowski space, as there
is a pole in the upper right quadrant of the complex q0 plane.
These are both problems that could could be due to the specific
truncation, but which could in principle surface at any order of
truncation in AS. (3) The third point is more positive: A focus on
higher order terms in the graviton propagator may be useful for
a Lorentzian variant of Asymptotic Safety.

4.1. Tachyons and Ghosts
Because there are higher order terms in the most general action,
the gravitational propagator will contain higher powers of q2.
With a truncation at order of the curvature-squared, this implies
terms up to q4 in the propagator. Normally these are forbidden
by the Källen-Lehmann representation of the propagator,
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D(q) =
1

π

∫ ∞

4m2
f

ds
ρ(s)

q2 − s+ iǫ
(55)

with the spectral function ρ(s) being positive definite, which says
that the propagator can fall by at most q−2 at high momentum6.
It then becomes clear that some of the usual assumptions of QFT
(which forms the basis of the KL representation) must be given
up in Asymptotic Safety (also in quadratic gravity). Some of the
dangers are evidenced in the partial fraction decomposition of
the propagator

iD(q) =
i

q2 − aq4/M2
=

i

q2
−

i

q2 −M2/a
. (56)

Here,M is the intrinsic scale of the higher order terms, and I have
included a parameter a = ±1 because the higher order behavior
can come with either sign. For both signs of a, the second term
in the partial fraction decomposition automatically comes with
the “wrong” overall sign—it is a ghost. For a = −1 the ghost
is also tachyonic in that it occurs for spacelike values of the
four-momenta7. As far as I know, there is no way to rescue this
situation. It leads to an unstable state with runaway production of
tachyons. The a = +1 ghost is non-traditional in QFT, but seems
to be more manageable. When treated properly, it can lead to a
unitary theory [16], but one which violate microcausality [17, 55].
However, these options are ones which any truncation of AS will
be forced to confront.

The parameters of the one-loop AS solution given in section
2.3.1 imply a tachyon in the spin-zero propagator and a a = +1
ghost in the spin-two propagator. Let us defer the discussion
of the spin-two ghost to the next subsection. The spin-zero
tachyon is a serious problem if it were to survive at higher
order truncations. There is a bit of history/physics to understand
concerning the tachyon. The first ingredient is that in this case,
the high mass state is not ghost-like. It is the massless pole in the
spin-zero channel which is ghost-like. That is, instead of Equation
(56), one has an overall minus sign,

iD0(q) =
−i

q2 − aq4/M2
=

−i

q2
+

i

q2 −M2/a
. (57)

That the massless pole is ghost-like is acceptable because the
massless spin-zero component can be shown to be a gauge artifact
[56]. The historical aspect is that several early works on the
renormalization of quadratic gravity use what is now recognized
to be the “wrong” sign without recognizing that this lead to
tachyons. Adopting a modern parameterization for the quadratic
terms, we have

S =
∫

d4x
√

−g

[

1

6f 20
R2 −

1

2f 22
CµναβC

µναβ

]

(58)

in Lorentzian space. These signs lead to a normal massive spin-
zero state, and the a = +1 spin two ghosts. Early work used

6There is the caveat that the KL representation does not necessarily apply to

gauge-variant fields because the spectral function then does not correspond to the

insertion of physical states.
7Reminder: my metric convention is (+,−,−,−).

the opposite sign on the 1/6f 20 term, and concluded that both f0
and f2 are asymptotically free [10, 11]. With the non-tachyonic
sign, f0 is no longer asymptotically free [14]. The Euclidean action
of section 2.3.1 shares yields asymptotic freedom for the overall
R2 coupling, and then would share the tachyonic property when
continued to Lorentzian space.

It is possible that the tachyonic state could be removed using
a higher order truncation or no truncation at all. There are a
few special functions whose Taylor expansion would show these
poles when truncated at a fixed order, but which is well-behaved
without the truncation. However, this is already an indication
that simply obtaining a UV fixed point in the Euclidean FRG is
not sufficient to claim that one has a well-behaved Lorentzian
theory. Each truncation must be checked separately. It is even
more difficult to understand the ideal case, with no truncation.

4.2. Obstacles to Analytic Continuation
The spin-two ghost in the quadratic truncation presents a more
generic problem. There can be unexpected obstacles to the
analytic continuation from Euclidean to Lorentzian spaces. There
has been some work on analytic continuation of the FRG in scalar
theories [57], which however does not address the issue raised in
this section.

The location of the poles in the propagator has been explored
in the quadratic gravity literature. I am particularly biased
toward my own recent work with Menezes [16, 17], which
is representative of the present status. The heavy ghost state
will necessarily be unstable due to the coupling with the light
gravitons and other light degrees of freedom. Including that
coupling leads to a self-energy term in the propagator

iD2(q) =
i

q2 +6(q)− q4/M2
(59)

where 6(q) is the self energy. In gravity, there is a cut starting
at q2 = 0 where the self energy develops an imaginary part
Im 6(q) = γ (q). Unitarity requires γ (q) ≥ 0. The ghost
resonance then has the form near q2 = M2

iD2(q) =
i

q2 − q4

M2 + iγ (q)

=
i

q2

M2 [M
2 − q2 + iγ (q)(M2/q2)]

∼
−i

q2 −M2 − iγM
. (60)

This puts the resonance pole above the real axis

q2 = M2 + iγM (61)

rather than usual resonances which occur below the real axis. In
Donoghue and Menezes [17] we have labeled ghost resonances
with this pole location as Merlin modes as they propagate
backwards in time. We note that this construction would also
work for higher order ghosts in the spin two channel. The fact
that unitarity requires that γ (q) ≥ 0, implies that all further ghost
states would also live above the real axis.
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For the purposes of quadriatic gravity, this is an arguably
acceptable result. The resulting theory is unitary and stable near
Minkowski space [16], but violates microcausality on timescales
of order the width [17, 55], which is proportional to the inverse
Planck scale. A look at the underlying calculations shows that
this would appear to continue to happen if the propagator was
defined with yet higher order dependence even if there were
other unstable ghosts induced, as long as there were no tachyonic
states allowed. An AS theory defined in Lorentzian space would
presumably share these acceptable features.

The danger for the present program of Asymptotic Safety
is somewhat different. The original AS theory is defined
in Euclidean space. To reach the real world, this needs
to be continued to Lorentzian space. In amplitudes, this is
accomplished by a rotation of the momentum space contour
from the real axis to the imaginary axis, and is legitimate because
there are no poles crossed by the rotation. The usual QFT rotation
from Minkowski to Euclidean space is a tool which proves to be
useful because of the usual analyticity properties of amplitudes.
In the presence of higher derivatives, these analyticity properties
are upset. This implies that there is no longer any guarantee that
the Eucldean theory and the Minkowski theory share the same
properties. The spin-two ghost found above is such a problem as
would be any further ghosts.

There has been recent work which attempts to keep
the momentum dependence separate from the k dependence
and which addresses specific gravity amplitudes such as the
propagator [58–62]. It appears that the spin-two ghost state is not
just an artifact of the quadratic truncation. In a recent study by
Bosma et al. [61], the spin-two sector was parameterized much
more generally,

CµναβW(2)Cµναβ (62)

whereW(2) is an arbitrary function, referred to as a form-factor.
This directly impacts the spin-two propagator which becomes

iD2(q) =
i

q2 − q4W(q2)
(63)

Within the approximations of the calculation [61], the result is
approximated by

W(q2) = w∞ +
ρ

α − q2
(64)

where ρ ≃ 0.015 α ≃ 1.8 in Planck units and w∞ is a constant
which is not determined by the calculation. In writing this
result, I have made the continuation to Minkowski space in the
most naive fashion—just changing the sign on the momentum.
The result in Bosma et al. [61] is an approximate fit to the
Euclidean numerical results and its full analytic structure is not
precisely defined. Moreover, the comments above about analytic
continuation would also be applicable to this form-factor, and it
is not clear how open channels would influence this continuation.
In any case, this will have ghost poles when

q2W(q2) = 1 (65)

Assuming that there are no tachyonic states, this is still a
ghost pole. The form-factor description [61, 62] is a welcome
new direction, because the functions of 2 have direct physical
relevance, in contrast with the unphysical parameter k.

4.3. The Graviton Propagator and
Lorentzian Asymptotic Safety
The higher order momentum dependence in the graviton
propagator actually presents an opportunity for version of AS
which is defined from the start in Lorentzian space. Potentially
this could circumvent some of the problems which we have
been discussing. However, it would require a reinterpretation of
the program.

We have learned that low energy quantum effects involving
3 and G do not organize themselves in the way implied by
present AS practice, or indeed of that suggested by the general
Weinberg criterion.

However, we can also see that this may be irrelevant to the
high energy behavior of the theory. In quadratic gravity, the
propagator is modified by q4 terms, such that the effects of3 and
G (of order q0 and q2) are sub-dominant at high energy, and the
result is a renormalizeable theory. So the fact that there is not a
good definition of a running 3 and G is not important for the
overall structure of the theory. The parameters of the quadratic
curvature terms are the essential ones for the renormalizablilty
and running of the theory. In an AS framework, one could
truncate at yet higher orders. This produces higher powers of
momenta in the graviton propagator which are determine its high
energy behavior.

Let us look at the potential for divergences in diagrams with
these higher powers of the momenta. Consider the graviton
propagator with the high energy behavior 1/qn. For consistency,
we need to keep vertices with powers of momentum running up
to qn, as the same operator which gives momentum dependence
to the propagator will also give new vertices. The most divergent
diagrams are the ones with the highest powers of momentum
in the vertices, so we will consider that all vertices carry this
maximal momentum factor. Let NV be the number of vertices,
NI be the number of internal propagators, and NL be the number
of loops. Then the overall high- momentum dependence of the
diagram will be

(d4q)NL (qn)NV
1

(qn)NI
(66)

from loop momenta, vertices and propagators8. However, the
number of internal propagators can be eliminated in favor of the
number of vertices and loops. The relation is

NI = NL + NV − 1 . (67)

8The factors of q will in general involve external momenta, q − pi and after

integration the amplitude will be expressed in terms of these pi. Using dimensional

regularization is useful here as it does not introduce extra dimensionful

parameters, and the dimension in any divergence will be realized in terms of the

external momenta.
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This converts the high energy behavior into

qDn = (q)4NL (qn)NV
1

(qn)NL+NV−1
= q(n+NL(4−n)) (68)

which summarizes the divergence structure.
For two derivative actions, n = 2 and we recover the well

known power counting behavior of general relativity and chiral
perturbation theory [63]

qD2 = q(2+2NL) (69)

with tree level being q2, one loop having divergences at q4, two
loop at q6, etc. For n = 4, such as for quadratic gravity, we recover
power-counting renormalizability, with

qD4 = q4 (70)

independent of the number of loops. For larger values of n we
get super-renormalizable behavior, with the diagrams becoming
less divergent with higher loops. For example, for n = 6, the
power-counting gives

qD6 = q6−2NL (71)

As the loop order increases, the amplitudes are increasingly
focused on the infrared and are no longer divergent. Phrased
differently, tree-level amplitudes are always of order qn by
assumption. For any n there will be potential divergences at one
loop order involving effects at order q4. But then for larger n > 4
the diagrams become more convergent at higher loop order.

This allows a possible reinterpretation of the AS program.
Perhaps only some of the couplings need to be have the running
behavior implied by the Weinberg criterion. Sub-dominant
couplings such as 3 and G are not important for the program.
The important operators are those which dominate in the high
energy limit. While there are in general there are an infinite
number of these, the power counting above indicates that

the damping provided by the higher powers of the graviton
propagator may make a truncation at higher order feasible. This
inverts the present practice. Instead of a focus on low dimensional
operators, one is more interested in higher dimensional operators
that influence the graviton propagator. I note a similarity with the
“form-factors program” [62] in which the operators in the form
factor, such as Equation (64), are higher powers of momentum
in the graviton propagator. It would be interesting to see if this
program could be formulated in Lorentzian spacetime.

Of course, this suggestion is still somewhat vague and needs
to be better developed. One still needs to avoid tachyons and deal
with ghosts. But it does point to a form of Asymptotic Safety that
can be described from the start in Lorentzian spaces, and which
can be in agreement with explicit calculations at low energy.
Moreover, it is clear that the high momentum behavior of the
graviton propagator is of special significance as it determines the
UV properties of loop diagrams.

5. OVERALL ASSESSMENT

We have examined in particular the running Newton constant
G(k) within AS and argued that it is not valid for use in the real
world. The reasons for that include:

1. It does not capture the energy dependence in explicit
observables. There are kinematic and universality obstacles
to any such use. Note that these examples are also counter-
examples to the Weinberg conditions for Asymptotic Safety if
applied to G, 3. If the Weinberg vision for Asymptotic Safety
is to continue, the conditions need to be modified to exclude
the low energy parameters G, 3.

2. The definition of the G(k) and 3(k) are such that they
include quantum effects beyond the scale k. They should be
supplemented with the quantum effects below k. When this is
done, the intermediate scale k should disappear.

3. We can also see that the values of G(k) and 3(k) arise
from the tadpole diagram, which (a) vanishes in dimensional
regularization and (b) does not contain any external
momentumflow through the loop. This loopwill not influence
the kinematic behavior of reactions.

Points 2 and 3 indicate that these couplings are what I
have referred to as incomplete couplings rather than running
couplings in the sense of the Weinberg criterion. They become
complete only in the k → 0 limit. In this sense there is
a disconnect between essentially all of present AS practice
and the Weinberg conditions of Equations (17)–(19). It needs
to be recognized that the cutoff dependence of G(k), 3(k)
and likely many of the higher power couplings is not the
same as the running couplings in physical reactions. These
features are most problematic in attempts to apply Asymptotic
Safety in phenomenological settings. Some of the previous
phenomenological applications have been discussed in the
surveys of the subject [3, 5]. The use of these couplings is not
appropriate for phenomenological applications and does not
satisfy the goals of Asymptotic Safety.

In the process of making these comparison, it can be
recognized that at least a portion of Weinberg’s conditions
for Asymptotic Safety fails at the energies which we have
considered—that which applies to the proposed running of G
and 3. Not only does the FRG version of running fail to match
explicit calculations, but even operationally there is no form that
will work at scales belowMP. Nature does not organize itself this
way. This need not be a fatal flaw, as these couplings describe
operators which are sub-dominant in the high energy limit.
Higher powers of curvatures and derivatives will dominate at
high energy, and so it is possible that even if G and3 do not run,
the important couplings at high energy do. This is what happens
in quadratic gravity, where the curvature squared terms make the
theory renormalizeable and their coefficients do have logarithmic
running. However, there still needs to be a reformulation of
the Weinberg criterion which takes into account the multiple
kinematic variables of different magnitudes and signs which
complicate to running of non-logaritmic power-law couplings.

This leaves the “ideal FRG program” as a possibility. Here
one integrates in Euclidean space down from the UV fixed point
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all the way to k = 0. The couplings have “run” in the theory
space of coupling constants not in the real space of energies
and momenta, and have completed their evolution by taking the
k → 0 limit. At intermediate values of k these couplings are
not considered to be physical, but their k = 0 limit defines an
action with an infinite number of terms, which is then to be
applied in Lorentzian space. The action is described by an infinite
number of parameters such as G and 3, which are themselves
just constants defined by their k → 0 limit. These couplings
are correlated—fixed by a smaller number defined at the fixed
point. This appears to be the situation advocated in section 6.18
of the Wetterich review [64]. However, it is a very different
situation than the Asymptotic Safety envisioned by theWeinberg
conditions in Equations (17)–(19), where the running couplings
were functions of energy applied in physical reactions. Here I
have raised two cautions:

1. Any truncation of this ideal action will have ghosts, and
possibly tachyons. These have to be understood and managed.

2. Any truncation without tachyons will likely have one or
more obstacles to the analytic continuation from Euclidean to
Lorentzian space. These are poles in the graviton propagator
that occur in the quadrants needed for the Euclidean rotation.

There can be a significant difference between a Euclidean theory
and a Lorentzian one in the presence of operators with higher
derivatives/curvatures.

It is possible that both of these points can be overcome.
However, even if this occurs, we do not have any indication on
why the resulting theory would satisfy the Weinberg criterion
or lead to finite results in physical observables. The Weinberg
criterion gave an intuitive rationale for the finiteness of the
theory. But if this ideal FRG program does not generate running
parameters in physical reactions, we need a new rationale. If the

cutoff dependence in G(k) etc is not the same as the running
of couplings in physical reactions, what reason do we have to
expect that we get finite high energy limits for such reactions?
The existence of a Euclidean UV fixed point is not sufficient by
itself for this result. Indeed, existing truncations do not satisfy
this despite all having such fixed points. One needs to obtain
finite results for an infinite number of processes at an infinite
number of kinematic points. One does have an infinite number
of couplings, but the mechanism for success is unknown.

On the more positive side, I have argued that maybe a
Lorentzian version of AS could occur through a focus on the
higher order terms contributing to the graviton propagator.
The basic point here is that 3 and G become unimportant at
high energy in the graviton propagator when higher powers
of of qn appear in the propagator. This is seen in quadratic
gravity where the inclusion of q4 terms in the propagator lead
to a renormalizeble theory, and is encountered in Euclidean AS
through the inclusion of form-factors [62]. I have used power
counting to argue that one could perhaps get a Lorentzian theory
with these higher order terms.
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to Cosmology
Alessia Platania*

Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany

According to the asymptotic-safety conjecture, the gravitational renormalization group

flow features an ultraviolet-attractive fixed point that makes the theory renormalizable

and ultraviolet complete. The existence of this fixed point entails an antiscreening of the

gravitational interaction at short distances. In this paper we review the state-of-the-art

of phenomenology of Asymptotically Safe Gravity, focusing on the implications of the

gravitational antiscreening in cosmology.

Keywords: cosmology–theory, quantum gravitation, renormalization group, singularity, inflation

1. GRAVITATIONAL ANTISCREENING: A HISTORICAL
PERSPECTIVE

Similarly to the case of Quantum Chromodynamics (QCD), the gravitational interaction might
exhibit an antiscreening behavior at high energies [1]. A form of gravitational antiscreening was
introduced in the 80s by Markov [2, 3] as a mechanism to cure the longstanding problem of
gravitational singularities in General Relativity. In Markov and Mukhanov [4] and Markov [5],
an ad hoc modification of the Einstein-Hilbert Lagrangian has been proposed, such that the
corresponding field equations

Gµν = G(ρ)Tµν + 3(ρ) gµν , (1)

admit a Newton coupling G(ρ) and cosmological constant 3(ρ) whose strengths depend on the
proper energy density ρ of matter fields, with G(ρ) → 0 as ρ → ∞. This latter assumption, which
in Markov and Mukhanov [4] and Markov [5] is referred to as “asymptotic freedom of gravity,”
has been introduced to render the gravitational interaction weaker at high energy densities. In a
cosmological context, this could lead to a singularity-free cosmological evolution characterized by a
deSitter initial state and aminimum radius of the order of the Planck length, amin ∼ LPl. In this case
the resolution of the cosmological singularity is due to the violation of the energy conditions, thus
invalidating one of the key assumptions leading to the Hawking-Penrose singularity theorems [6].
Similar arguments could also apply to the case of black holes, where the gravitational antiscreening
could lead to singularity-free black-hole spacetimes [7].

The “asymptotic freedom of gravity” discussed in Markov and Mukhanov [4] and Markov [5]
was originally introduced as a modification of General Relativity at the classical level. It turns
out that the gravitational antiscreening advocated in Markov and Mukhanov [4] and Markov [5]
could be a natural consequence of the quantum properties of gravity. The “asymptotic safety”
scenario for Quantum Gravity [8–10] aims at constructing a consistent quantum theory for the
gravitational interaction within the well-established framework of Quantum Field Theory (QFT).
As originally proposed by Weinberg [11, 12], in the light of the Wilsonian renormalization
group [13, 14] and the related, generalized notion of renormalizability [15], a consistent QFT
of gravity could be constructed if the gravitational renormalization group (RG) flow attains an

23
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interacting—non-Gaussian—fixed point (NGFP) in the
ultraviolet limit. In this case, in the ultraviolet regime, gravity
approaches a scale invariant regime where the dimensionless
counterparts of all gravitational couplings attain finite, generally
non-zero, values. The theory is thus interacting in the ultraviolet
regime and the presence of the NGFP ensures the “non-
perturbative” renormability [15] of gravity. While asymptotic
safety of gravity remains a formally unproved conjecture, there
are strong indications that a suitable gravitational fixed point
indeed exists [16–34]. Moreover, despite its interacting nature,
the fixed point could lie in the vicinity of the free-theory fixed
point (Gaussian fixed point, GFP), making the theory near-
perturbative [35]. Similarly to the case of non-abelian gauge
theories like QCD, the existence of an ultraviolet fixed point
is guaranteed whenever the “paramagnetic interactions” of the
action dominate over the diamagnetic ones [1]. This mechanism
is at the basis of the (quantum) gravitational antiscreening.
The realization of the latter can be understood more intuitively
from the RG running of the Newton coupling. The structure
of the beta function of the dimensionless Newton coupling
g(k) = G(k) k2 in d = 4 spacetime dimensions, k being the RG
scale, is

βg = (2+ ηN)g , (2)

where ηN = k∂k logG(k) is the anomalous dimension of the
Newton coupling. The function ηN depends on g as well as on all
other (dimensionless) gravitational couplings. Further note that
ηN depends on the RG scale k only implicitly, i.e., only through
the RG running of the dimensionless gravitational couplings. A
necessary condition for the existence of a non-trivial fixed point
is that ηN = −2 for some values of the gravitational couplings.
Assuming that a non-trivial fixed point indeed exists in the full
(not truncated) theory space, the simple fact that ηN < 0 at
the non-trivial fixed point implies that the dimensionfull Newton
coupling decreases with the RG scale k and vanishes as G(k) ∼
g∗k−2 when g(k) → g∗, where g∗ denotes the fixed-point value of
the dimensionless Newton coupling.

Although in the context of asymptotically safe gravity (ASG)
the gravitational antiscreening has a quantum origin and despite
the different semantics [Markov’s asymptotic freedom of G(k) vs
asymptotic safety of g(k)], this is the same principle advocated
by Markov and Mukhanov [4] and Markov [5] as one possible
way to soften or even remove the singularities affecting the
solutions of the Einstein equations. In the case of stellar
black holes the mechanism of singularity-avoidance is very
intuitive: when a collapsing star disappears behind its event
horizon and its density reaches planckian values, the gravitational
interaction driving the collapse becomes weaker. Therefore,
under certain conditions, the gravitational antiscreening can
potentially halt the collapse and prevent the formation of a
spacetime singularity. Hints that the mechanism of singularity-
avoidance could be realized within the Asymptotic Safety
scenario for Quantum Gravity have been found in Bonanno
and Reuter [36–38], Torres [39, 40], Torres and Fayos [41],
Bonanno and Koch [42, 43], Bonanno et al. [44], Adeifeoba et al.
[45], Platania [46], and Bonanno et al. [47] via the so-called

RG-improvement procedure [see, e.g., [37, 48] and references
therein], in Bosma et al. [49] by means of non-perturbative
computations of quantum corrections to theNewtonian potential
based on the functional renormalization group (FRG) method,
and in Marunovic and Prokopec [50, 51] through a one-particle
irreducible resummation of one-loop vacuum fluctuations of
non-minimally coupled, massless, scalar matter. In analogy
with the case of black-hole singularities, the gravitational
antiscreening could provide a solution to the problem of the
initial singularity [52–54] in cosmology. Moreover, the existence
of a regime where gravity is approximately scale-invariant could
be relevant in cosmology to provide a natural explanation for the
nearly-scale-invariant distribution of temperature anisotropies
in the Cosmic Microwave Background (CMB) radiation [55–61]
[see also [62] for a recent review].

In this paper we review some of the main cosmological
implications of ASG based on the running of the gravitational
couplings. The rest of the present review is organized as
follows. Section 2 summarizes the mechanism behind the
renormalization group improvement and the scale-setting
procedure. In sections 3 and 4 we review the main implications
of the gravitational antiscreening in cosmology and inflation
respectively. Finally, in section 5 we summarize the state-of-
the-start of phenomenology of ASG, its main problems, and
future perspectives.

2. RUNNING COUPLINGS AND
RENORMALIZATION GROUP
IMPROVEMENT

2.1. Decoupling Mechanism
One of the strengths of ASG is the possibility of constructing
a quantum theory of gravity using the “language” of Quantum
Field Theory—the standard framework to describe matter and
all known fundamental interactions within the Standard Model
of particle physics. On the one hand, this makes the connection
between gravity and matter more straightforward than in other
approaches to quantum gravity and allows to constrain the
ultraviolet details of quantum gravity by verifying systematically
its consistency with low-energy experiments and observations
on the matter sector [see [63, 64] for recent reviews]. On the
other hand, the computation of the quantum corrections to the
classical solutions of General Relativity requires the knowledge
of the gravitational quantum effective action Ŵ

grav
0 [gµν]. The

classical Einstein equations are replaced by the fully quantum
field equations

δŴ
grav
0 [gµν]

δgµν

= 0 . (3)

These are effectively classical field equations. Nonetheless,
its solutions 〈gµν〉 actually incorporate all quantum
gravitational effects.

The computation of the effective action comes along with
several technical and conceptual issues. First, computing the
effective action exactly would require either to solve the
gravitational path integral over globally hyperbolic spacetimes
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or, equivalently, to solve the Functional Renormalization Group
(FRG) equation for the effective average action Ŵk [65–67]

k∂kŴk =
1

2
STr

{

(

Ŵ
(2)
k

+Rk

)−1
k∂kRk

}

(4)

and take the limit k → 0. The mathematical tools currently
available do not allow for an exact computation of the effective
action, even if important progress in this direction has beenmade
in Knorr and Saueressig [68] and Knorr et al. [69]. Secondly,
the effective action is a gauge- and parametrization-dependent
object: only physical observables will be independent of any
gauge choice, parametrization and regularization schemes. A
third key issue, related to the previous one, is that defining
physical observables in quantum gravity is still an outstanding
open problem [70, 71].

The decoupling mechanism [72] might provide a solution
to some of the issues raised above. In what follows we will
summarize how this mechanism works, mostly following the
arguments and nomenclature in Reuter and Weyer [72]. As is
clear from Equation (4), the RG running of the effective action

is determined by the modified inverse propagator
(

Ŵ
(2)
k

+Rk

)

.

The regulator Rk ∝ k2 is an effective mass-square term
that implements the Wilsonian shell-by-shell integration of fast
fluctuating modes: only fluctuations with momenta p2 & k2 are
integrated out, resulting in the partially-quantized effective action
Ŵk. In the limit k → 0 all quantum fluctuations are integrated
out, so that Ŵ0 coincides with the ordinary effective action. At the
basis of the decoupling mechanism is the possibility that some

infrared physical scales appearing in Ŵ
(2)
k
, such as a physical mass

term, could compete and eventually overcome the effect of the
unphysical mass term inRk in the infrared. In this case there will
be a threshold value of k—a decoupling scale kdec—below which
the running of Ŵk is essentially frozen. The “threshold effective
action” Ŵkdec and the ordinary effective action are thus expected
to be approximately the same. The identification of the infrared
scale kdec, if any, could provide some of the (typically non-
local) terms in Ŵ0. An emblematic example of this mechanism is

massless scalar electrodynamics, where Ŵ
(2)
k

= p2 + λ(k)φ2 +
. . . . The running of the quartic coupling λ(k) is logarithmic,
λ(k) ∼ log k and therefore the decoupling should occur at k2

dec
∼

log(kdec)φ
2. The effective action Ŵ0 is thus expected to involve

an effective non-local interaction of the form φ4 log(kdec(φ)). To
leading order, this leads to the φ4 log(φ)-interaction appearing
in the famous Coleman–Weinberg effective potential [73]. For
other examples in QED andQCD see, e.g., [74–76] and references
therein. When the effective action contains several competing
infrared scales (particle momenta, field strengths, spacetime
curvature, etc), identifying the threshold scale kdec becomes a
more involved task: kdec might be a complicated non-linear
function of all these scales or, in the best case, it might be
given by the one physical infrared scale which dominates over
the others. Conversely, a decoupling scale might not exist at
all: this is the case if there are no dominant infrared scales
acting as an actual physical cutoff. Therefore, the existence of

kdec and its specific form strongly depend on the physical system
under consideration.

The procedure of identifying and replacing the RG scale k
with a physical infrared scale, supposedly acting as a decoupling
scale kdec, is known as RG improvement. It aims at using the RG
running in order to incorporate leading-order quantum effects
in the dynamics of a classical system. In the example mentioned
above, the RG improvement is used at the level of the action to
obtain the leading-order terms in the quantum effective action
Ŵ0. Other forms of RG improvement are the RG improvement
at the level of the field equations and at the level of the classical
solutions; the latter allows, e.g., to derive the Uehling potential
from the RG-running of the electric charge [76]. Even if the idea
behind the decoupling mechanism seems to suggest that the RG
improvement should be performed at the level of the action,
this is typically considered as a source of ambiguity. In the next
subsection we will discuss the RG improvement in the case of
gravity and how to constrain the scale setting k = k(x) based on
the symmetries of the theory.

We remark that the RG running of the gravitational couplings
extrapolated from FRG computations relies on the use of
Euclidean metrics. The implications of ASG obviously involve
Lorentzian spacetimes. It is thereby assumed that the scaling
of the couplings and the existence of an ultraviolet-attractive
fixed point are not affected, at least qualitatively, by the metric
signature. Hints that this might indeed be the case have been
found in Manrique et al. [77].

2.2. Renormalization Group Improvement
and Scale-Setting Procedure
ASG relies on the existence of an ultraviolet-attractive fixed point
of the gravitational RG flow. In the Einstein-Hilbert truncation,
the scaling of the dimensionless Newton coupling g(k) = G(k) k2

and cosmological constant λ(k) = 3(k) k−2 about the NGFP
(g∗, λ∗) reads











gk = g∗ + c1e
1
1

(

k
MPl

)−θ1
+ c2e

1
2

(

k
MPl

)−θ2

λk = λ∗ + c1e
2
1

(

k
MPl

)−θ1
+ c2e

2
2

(

k
MPl

)−θ2
, (5)

where MPl ∼ (8πG0)
−1/2 is the reduced Planck mass, the ci

are integration constants labeling all possible RG trajectories, ei
are the eigenvectors of the stability matrix ∂giβj|g∗ constructed
using the beta functions βj of all dimensionless couplings gj, and
(−θi) are its eigenvalues. The real part of the critical exponents
θi determine the stability properties of the NGFP. In the case
of pure gravity, the critical exponents θ1 and θ2 are typically a
pair of complex conjugate numbers with positive real part: this
implies that the NGFP is ultraviolet-attractive in the Einstein-
Hilbert truncation. In extended truncations, involving higher-
derivative operators, it has been shown that the NGFP comes
with three relevant directions associated with the volume, R,
and 4th-order derivative operators [20–22, 26, 30, 34, 78–81].
The number of relevant directions coincides with the number
of free parameters (the integration constants ci) to be fixed
by comparison with observations, e.g., by requiring that in the

Frontiers in Physics | www.frontiersin.org 3 May 2020 | Volume 8 | Article 18825

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Platania From Renormalization Group Flows to Cosmology

infrared 8πG0 ∼ M−2
Pl

and 30 ∼ 3 · 10−122M2
Pl
. Fixing the free

parameters in this way allows to select the “RG trajectory realized
by Nature” [82]. As it will be important in the applications of ASG
in cosmology, it worth mentioning that the values of the critical
exponents are influenced by the presence of matter: for instance,
in the Einstein-Hilbert truncation, the presence of minimally-
coupled free matter fields makes the critical exponents θ1,2 real
[32, 81, 83–85].

Neglecting the running of the matter couplings, the scale-
dependent Einstein-Hilbert action reads

Sk =
1

16πGk

∫

d4x
√

−g (R− 23k)+ Smatter . (6)

At some intermediate scale k = k(x), the RG running modifies
the classical field equations by an effective energy-momentum
tensor 1tµν ≡ Gk(∇µ∇ν − gµν�)G−1

k
which could encode,

at an effective level, the vacuum polarization effects of the
quantum gravitational field [86],

Gµν = 8πGkTµν − 3kgµν + 1tµν . (7)

If there is no energy-momentum flow between the gravitational
and matter components of the theory, i.e., if the energy-
momentum tensor Tµν is separately conserved, the cutoff
function k = k(x) is constrained by the modified (contracted)
Bianchi identities [82, 86–89]

∇µGµν =
(

8πG′
kTµν − 3′

k gµν

)

∇µk(x)+ 8πGk∇µTµν

+∇µ1tµν = 0 . (8)

The above equation provides a “consistency condition” [82,
86–89] which can be used, under certain assumptions and/or
approximations, to determine the scale-dependence k = k(x).
Specifically, we can identify the following cases

• CASE I: RG improvement at the level of the field equations
Performing the RG improvement at the level of the

field equations or solutions is equivalent to neglecting

1tµν . Assuming that the matter energy-momentum tensor is
covariantly conserved, ∇µT

µν = 0, the shape of the function
k(x) is dictated by the condition

(

8πG′
kTµν − 3′

k gµν

)

∇µk(x) = 0 . (9)

The solution to this equation depends on the form of
the energy-momentum tensor. As it will be important in
cosmology, let us focus on the case of a perfect fluid
with energy density ρ and pressure p. In this case Tν

µ =
diag(−ρ, p, p, p), with p = w ρ, and the above equation yields
the condition

G′(k)

G(k)

(

ρ + ρ3(k)
)

+ ρ′
3(k) = 0 , (10)

with ρ3 = 3(k)
8πG(k)

. In the fixed point regime, the scaling

of the dimensionfull Newton coupling and cosmological
constant reads

G(k) = g∗k
−2 , 3(k) = λ∗k

2 , (11)

so that k can be related to the matter energy density ρ [87, 90],

k4 =
(

8πg∗
λ∗

)

ρ . (12)

In this setup the running gravitational couplings depend
on the energy density ρ of the matter degrees of freedom:
this is exactly the ad hoc assumption employed in Markov
and Mukhanov [4] and Markov [5] to obtain a classical
modification of General Relativity free of the problem of
spacetime singularities.

The relation between k and the energy density ρ can also
be understood in terms of the decoupling mechanism. If the
spacetime is filled with a perfect fluid with energy density ρ,
the gravitational action is complemented by a matter action
Smatter = −

∫

d4x
√−gρ. Due to the (minimal) coupling

between the gravitational and matter degrees of freedom,
the energy density ρ enters the modified inverse propagator

(Ŵ
grav,(2)

k
+ Rk) and could thus provide a decoupling scale

kdec for the flow of the scale-dependent effective action Ŵ
grav

k
.

We note that the Ricci scalar R enters the modified inverse
propagator as well and therefore it could also provide a
decoupling scale. However, as we will see below, a scale setting
k2 ∼ R satisfies the contracted Bianchi identities only if the RG
improvement is performed at the level of the action.

In cosmology one can further limit the form of the effective
metric to a Friedmann-Robertson-Walker (FRW) spacetime.
Since Tµν is assumed to be separately conserved, the energy
density ρ obeys the standard (i.e., classical) conservation
equations and thus ρ(a) = ρ0(a(t)/a0)

−3(1+w) (note that the
explicit time dependence of ρ is determined by the form of
the scale factor, and therefore it could differ from the classical
case). In this case

k ∝ a(t)−
3
4 (1+w) . (13)

On the other hand, if Tµν is not separately conserved, the
Bianchi identities

(

8πG′
kTµν − 3′

k gµν

)

∇µk(x)+ 8πGk∇µTµν = 0 (14)

do not add any additional constraint on the form of the
cutoff function k(x): the latter equation provides a generalized
conservation equation allowing for an energy flow between the
gravitational and matter degrees of freedom.

• CASE II: RG improvement at the level of the action
If the RG improvement is performed at the level of the

action, the field equations contain an additional contribution
encoded in the gravitational energy-momentum tensor 1tµν .
Its variation reads [89]

∇µ1tµν = G′
k(G

−1
k

1tµν)∇µk(x)

+ Gk ∇µ[(∇µ∇ν − gµν�)G−1
k

]
︸ ︷︷ ︸

Rµν (G
−1
k

)′

∇µk(x)

= G′
kG

−1
k

{

(Rµν − 1
2Rgµν − 8πGkTµν + 3kgµν)

−Rµν

}

∇µk(x) . (15)
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The contracted Bianchi identities (8), together with the
assumption that the energy-momentum tensor is separately
conserved, thus yield the condition

∇µGµν =
(

8πG′
kTµν − 3′

k gµν

)

∇µk(x)+ 8πGk ∇µTµν
︸ ︷︷ ︸

0

+ G′
kG

−1
k

{

(Rµν − 1
2Rgµν − 8πGkTµν + 3kgµν)

−Rµν

}

∇µk(x) = 0 . (16)

Note that in this case, due to the presence of 1tµν , the
contribution from the energy-momentum tensor Tµν cancels
out. A scaling relation of the form k4 ∼ ρ [87, 90],
Equation (12), is only valid under the assumption that 1tµν

is negligible. We are thus left with the condition

∇µGµν =
{

G′
kG

−1
k

(− 1
2R+ 3k)− 3′

k

}

gµν ∇µk(x) ≡ 0 .
(17)

Diffeomorphism invariance thus requires [86, 88, 89]

G′
k R = 2(G′

k3k − 3′
kGk) . (18)

In the proximity to the NGFP, the couplings scale as in (11)
and the constraint (18) gives

k2 =
R

4λ∗
. (19)

This condition should also hold in the more general
case of fk(R) theories, if the running of the gravitational
couplings is approximated with the corresponding fixed-point
scaling [88, 91].
It is worth noting that the replacement k2 ∼ R in the scale-
dependent action (6) generates an effective f (R) action, whose
analytical expression is determined by the running of the
gravitational couplings [48, 88, 92]. This fact is typically used
to study effective inflationary models in ASG, as it will be
discussed in section 4.

The RG improvement at the level of the field equations
and at the level of the action lead to effective field equations
which differ by a gravitational energy-momentum tensor 1tµν .
Based on the idea behind the decoupling mechanism, performing
the RG improvement at the level of the action would seem to
be more natural. However, the possibility of choosing between
different forms of RG improvement is considered as a source
of ambiguity. The identification of the decoupling scale kdec is a
second possible source of ambiguity: in the case of gravity, there
are multiple scales that could potentially act as a decoupling scale
for the flow of the scale-dependent gravitational effective action.
However, if the matter energy-momentum tensor is covariantly
conserved, the form of the cutoff function k(x) is constrained by
the contracted Bianchi identities.

Phenomenological implications of ASG have been explored
in the literature by means of RG-improved cosmological and
astrophysical models. Although these models are not expected to
provide precise and quantitative predictions, they are expected

to capture qualitative features of the modifications of Einstein
gravity induced by ASG.

Keeping strengths and limitations of the RG-improvement
procedure inmind, in the next sections we will review some of the
main phenomenological implications of ASG based on models of
RG-improved cosmology.

3. RG-IMPROVED COSMOLOGIES

It is an old idea that the gravitational couplings could depend
on the cosmic time and that this time-dependence could have
implications in cosmology [93]. In the context of RG-improved
cosmologies this time-dependence arises from the RG running of
the gravitational couplings. In this section we will review some
of the main cosmological implications of ASG [54–57, 94]. Each
subsection focuses on the cosmological implications obtained in
different regimes and/or under assumptions.

3.1. Early-Universe Cosmology: The NGFP
Regime
We first focus on the RG-improved cosmological dynamics
in the NGFP regime, following the analysis in Bonanno and
Reuter [55]. The starting point is the assumption that the effective
metric, solution to the fully quantum equation of motion, is a
homogeneous and isotropic FRW universe,

ds2 = −dt2 + a2(t)

[

dr2

1− K r2
+ r2d�2

]

. (20)

The matter degrees of freedom are encoded in a perfect fluid
with energy-momentum tensor Tν

µ = diag(−ρ, p, p, p) and
equation of state p = wρ. In this setup quantum-gravitational
fluctuations can only modify the effective dynamics of the scale
factor a(t). Performing an RG improvement at the level of the
fields equations (in the Einstein-Hilbert truncation) yields the
modified Friedmann equation

(

ȧ

a

)2

+
K

a2
=

3[k(x)]

3
+

8πG[k(x)]

3
ρ . (21)

In this subsection we focus on the case where the energy-
momentum tensor is separately conserved, as originally assumed
in Bonanno and Reuter [55]. In this case no flow of energy
between the gravitational and matter sector is possible [the case
in which Tµν is not covariantly conserved has been studied
in [57] and will be discussed in section 3.2]. The conditions
∇µG

µν = 0 and ∇µT
µν = 0 thus result in the “standard”

conservation equation, ρ̇ = −3Hρ(1+w), and in the consistency
condition (9). The latter can be split in the following equations

∂t3 + 8πρ ∂tG = 0 , (22)

hµν(3;ν − 8πpG;ν) = 0 , (23)

where hµν = gµν + uµuν is the projection tensor onto the
tangent 3-space orthogonal to the 4-velocity uµ of an observer
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comoving with the cosmological fluid. Provided that G and 3

do not vary along the hypersurfaces orthogonal to uµ, i.e., k =
k(t), the latter relation is identically satisfied. The cosmological
evolution of the universe is then (over-) determined by the system
of equations [55]

ȧ2

a2
+

K

a2
=

3(t)

3
+

8πG(t)

3
ρ ,

ρ̇ = −3Hρ(1+ w) ,

3̇(t)+ 8πρ Ġ(t) = 0 .

(24)

The consistency condition (22) can thus be used to constrain
the form of the cutoff function k(t). Assuming that in the early
universe the growth of the scale factor follows a power law,
Equation (22) is consistent with a scale dependence of the form
k = ξt t

−1, where ξt is a positive constant [55]. In particular, the
consistency condition (22) fixes the value of the free parameter ξt
in terms of fixed-point quantities. As it will become clear soon,
the scale-setting k ∼ t−1 employed in Bonanno and Reuter [55]
is also compatible with the one in Equation (12), that was derived
and discussed in subsequent studies [87, 90].

In what follows we will only consider the case of a spatially flat
universe, K = 0. Approximating G(k) and 3(k) with their fixed-
point scaling, Equation (11), with k(t) = ξtt

−1, the cosmological
system (24) can be solved analytically. The modified Friedmann
and conservation equations admit a family of solutions where
the scale factor a(t) and the density ρ(t) scale as power laws.
Their dependence on the constant ξt can then be eliminated
by imposing the consistency condition (22), which leads to
the relation

ξt =

√

8

3(1+ w)2λ∗
. (25)

Using this expression for ξt , the family of cosmological solutions
associated with the RG-improved system (24) reads [55]

a(t) =
(

9

64
(1+ w)4g∗λ∗M

)
1

3(1+w)

t
4

3(1+w) ,

ρ(t) =
8

9π(1+ w)4g∗λ∗
t−4 ,

G(t) =
(

3

8
(1+ w)2g∗λ∗

)

t2 ,

3(t) =
(

3

8
(1+ w)2

)−1

t−2 ,

(26)

where M is an integration constant. These solutions depend
on fixed-point quantities through the combination (λ∗g∗),
which is known to be scheme independent [95, 96]. Moreover,
the solutions do not depend on the infrared values of the
gravitational couplings, reflecting the universal behavior of the
RG flow at the NGFP. Note that, provided that the scale
factor follows a power law scaling (i.e., w 6= −1), the cutoff
identification k = ξtt

−1 is equivalent to the scale settings
k = ξhH(t) (even at a classical level), k = ξρρ1/4 (due to the
modified power law of the scale factor, and in accordance with

the discussion in section 2) and, in a RG-improved radiation-
dominated era, to k ∼ ξaa

−1, with

ξ 2t =
8

3(1+ w)2λ∗
, ξ 2h =

3

2λ∗
,

ξ 2ρ =
8πg∗
λ∗

, ξ 2a =
g∗M

λ∗
. (27)

This magic can only occur in the proximity of a critical fixed
point, where physical quantities should vary as power laws of
a unique scale. Away from the NGFP, the complete solution to
the cosmological system (24) can only be obtained numerically.
This has been done in Reuter and Saueressig [56]. In this case the
cutoff function k(t) is obtained by solving the full beta functions
for the gravitational couplings and the consistency condition (22)
numerically. In particular, in Reuter and Saueressig [56] it is
shown that the dynamical cutoff k(t) is well approximated by the
Hubble constant, k ∼ H(t), for any value of the cosmic time t.

The fixed-point scaling of gravitational couplings modifies the
power-law scaling of the scale factor, Equation (26), so that also
the causal structure of the spacetime is modified at early times.
At it can be easily seen, provided that w ≤ 1/3, there is no
particle horizon [55]: quantum effects enlarge the extension of
the light-cones such that events occurring at the decoupling era
are causally influenced by all points belonging to the hypersurface
t = 0 [55]. Nonetheless, if w = 1/3 the deceleration parameter
is zero, i.e., no inflation occurs in a RG-improved radiation-
dominated epoch. This problem can be overcome by relaxing
the assumptions and/or improving the approximations made
in Bonanno and Reuter [55]: a period of inflation can occur in
RG-improved cosmologies if the gravitational andmatter degrees
of freedom can exchange energy [57] (this will be discussed
in section 3.2) and/or when the gravitational effective energy-
momentum tensor 1tµν discussed in section 2 is taken into
account, i.e., when the RG improvement is performed at the level
of the action [60, 61, 92, 97] (this point will be discussed in detail
in section 4).

The gravitational effective energy-momentum tensor 1tµν is
also crucial to make the cosmological evolution non-singular:
in the setting introduced above, the RG-improved cosmological
evolution (26) is still singular, as scale factor vanishes at t =
0. The 1tµν-term in the effective field Equations (7) might
mimic the effect of higher-order operators in the gravitational
effective action [60, 61, 92, 97] and, as discussed in Lehners and
Stelle [98], higher-order operators could be crucial to explain
the early-universe evolution and its initial conditions. As it will
be discussed in section 3.3, starting from the Einstein-Hilbert
truncation and performing the RG improvement at the level
of the action gives rise to additional terms in the modified
Friedmann equations [corresponding to the additional 1tµν-
term in the effective field Equations (7)] which allow for a
non-singular cosmological evolution for any value of the spatial
curvature K [54].

3.2. Entropy Production
The results reviewed in the previous subsection are based
on the assumption that the matter energy-momentum tensor
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Tν
µ = diag(−ρ, p, p, p, ) is covariantly conserved. In a series of

works [57, 59, 99], the possibility of an energy flow between the
gravitational and matter sectors have been considered and its
implications have been explored in detail. The main result is that,
under certain assumptions, this energy flow could provide an
explanation for the production of entropy during the primordial
evolution of the universe.

If the matter energy-momentum tensor Tν
µ =

diag(−ρ, p, p, p, ) is not separately conserved, the continuity
equation arising from the contracted Bianchi identity reads

ρ̇ + 3H(ρ + p) = −
3̇ + 8πρĠ

8πG
(28)

and can be written in the form

d

dt
(ρa3)+ p

d

dt
(a3) = P(t) ≡ −

3̇ + 8πρĠ

8πG
a3 . (29)

Identifying U = ρa3 as the energy encapsulated in the proper
volume V = a3, the latter equation assumes the form of the first
law of thermodynamics

dU + p dV = P(t)dt ≡ TdS . (30)

In classical cosmology P(t) = 0 and the evolution of the universe
is regarded as an adiabatic process. The introduction of time-
varying gravitational couplings entails instead a variation of the
entropy generated by the continuous energy flow between the
gravitational and matter sectors,

dS

dt
= T−1

P(t) . (31)

Specifically, the production of entropy during the expansion
of the universe requires (3̇ + 8πρĠ) ≤ 0. As k(t) decreases
with the cosmic time t, it follows that 3̇ ≤ 0 and Ġ ≥ 0.
Entropy production thus requires the speed of variation of the
running cosmological constant to overcome that of the Newton
coupling, such that −3̇/Ġ ≥ 8πρ. Assuming that the universe
is initially dominated by radiation and that the primordial
evolution is an approximately adiabatic process, P(t) ≈ 0,
the standard equilibrium conditions relating the thermodynamic
variables (ρ,V ,T) can still be used. In this case ρ(T) ∝ T4

and therefore S(t) ∝ a3ρ3/4 + const. The precise behavior of
S(t) can be obtained by solving the RG-improved Friedmann
and continuity equations. This requires to set the scaling relation
k = k(t). Since the cosmological evolution is assumed to be
approximately adiabatic, the consistency condition (22) should
be approximately verified and, based on the results of Reuter and
Saueressig [56], a cutoff function of the form k(t) = ξhH(t) could
still be employed.

Focusing on the “NGFP era,” whereG = g∗k−2 and3 = λ∗k2,
the scale setting k(t) ∼ ξhH(t) leads to an effective cosmological
evolution where the scale factor varies as a power law a(t) ∝
tα , with

α =
2

(3+ 3w)(1− �∗
3)

(32)

and �∗
3 = ξ 2

h
λ∗/3. The corresponding deceleration parameter

is q = α−1 − 1. Imposing the consistency condition (22) fixes
�∗

3 = 1/2 and gives back the solution obtained in Bonanno
and Reuter [55] and discussed in section 3.1: allowing for an
energy flow between the gravitational and matter degrees of
freedom, removes this additional constraint and leads to a family
of cosmological solutions, each characterized by a fixed value
of �∗

3. However, since P(t) ≈ 0 is assumed, the value of �∗
3

should not differ to much from that obtained by imposing the
consistency condition, i.e., �∗

3 ∼ 1/2. As the value of λ∗ derived
from FRG computations is of order O(1), this also implies that
ξh = O(1). The transition to the classical FRW cosmology thus
occurs when k(ttr) = ξhH(ttr) ∼ MPl which, using the fact that
ξh ∼ 1, implies that the parameter α sets the ratio between the
transition time ttr and the Planck time, ttr = α tPl. We thus learn
that if α > 1 the transition to the classical regime occurs before
the Planck time ttr > tPl.

In a RG-improved radiation-dominated epoch, the
production of entropy is given by the power law
P(t) ∝ (α − 1)t3α−4, so that

S(t) ∝ (t3(α−1) + const.) . (33)

In particular, the condition dS ≥ 0 is met if α ≥ 1. The case
α = 1 (�∗

3 = 1/2) describes a universe where the gravitational
and matter degrees of freedom are decoupled or, equivalently,
P(t) = 0. If instead α > 1, the variation of 3 dominates
over the variation of G, resulting in a net entropy production
during the Planck era (NGFP regime). Specifically, assuming
S(0) = 0, within this model the entropy production can be
entirely explained by the variation of 3.

We highlight that the condition α > 1, necessary to generate
entropy in the early-universe expansion, is the same condition
needed in order to produce a period of power-law inflation. In
a radiation-dominated epoch this is condition is satisfied for
�∗

3 > 1/2. If α = 1 [�∗
3 = 1/2, case analyzed in [55]] no

inflation occurs but, as in the case α > 1, no particle horizon
exists. Therefore, within this simplified model, if �∗

3 & 1/2
(or, equivalently, α & 1) the RG running of the gravitational
couplings during the Planck epoch can explain the production
of entropy and, at the same time, provide a period of power-
law inflation.

3.3. Cosmological Singularities and
Bouncing Cosmologies in ASG
The existence of an ultraviolet-attractive NGFP entails a
weakening of the gravitational interaction at high energies. It is
then natural to ask whether this weakening can lead to non-
singular cosmologies. While a definite answer in the context of
ASG is still out of reach, the mechanism underlying a possible
singularity resolution might be captured by a simple model
embedding the running of the gravitational couplings in the
spacetime dynamics [54].

Following the discussion in section 2, the running of the
gravitational couplings in the Einstein-Hilbert action generates
an additional term 1tµν in the modified field equations. As we
have seen, neglecting this term and introducing the running
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couplings at the level of the field equations leads to a family
of RG-improved cosmologies admitting a period of power-law
inflation and explaining the entropy production in terms of the
energy flow between the gravitational and matter sectors [57].
These cosmologies are however singular. As shown explicitly
in Bonanno et al. [54], taking into account the correction 1tµν

to the effective field Equations (7) might modify this conclusion.
It is assumed that the universe is homogeneous and isotropic

and that the energy-momentum tensor is covariantly conserved.
Introducing the running of the gravitational couplings at the level
of the (Einstein-Hilbert) action yields the modified Friedmann
equation [54]

ȧ2

a2
+

K

a2
=

(

3

3
+

8πG

3
ρ

)

− ηN
ȧ2

a2
, (34)

where ηN = − ∂ logG(a)
∂ log a

. The key difference between this

model [54] and the one analyzed in the previous subsections [55,
56] lies in the presence of an additional term, 1 = −ηNH

2, in
the modified Friedmann equation. Since ηN → 0 as the RG flow
approaches the perturbative regime (a(t) ≫ LPl), 1 vanishes in
this limit. Going back in time, ηG varies from its classical value
ηN = 0 to the fixed-point value ηN = −2 (reached when k →
∞). In Bonanno et al. [54] a scaling k2 ∝ R ∼ a−2 was assumed.
This approximation is valid if the scale factor undergoes a period
of exponential growth at early times—an assumption that can be
verified a posteriori. Replacing the approximate relations [100]

G(a) ≃ G0

(

1+ G0g
−1
∗ a−2

)−1
,

3(a) ≃ 30 + λ∗a
−2,

(35)

in Equation (34), where (G0,30) are the low-energy values of the
gravitational couplings, and assuming that the universe is initially
dominated by radiation, it can be easily seen [54] that the field
Equations (34) admit non-singular cosmological solutions with
minimum radius

a2b = −
G030 + g∗ (λ∗ − 3K)

2g∗30

±

√

(

G030 − g∗ (λ∗ − 3K)

2g∗30

)2

−
8πMG0

30
, (36)

where M is an integration constant. Depending on the values of
the fixed-point parameters and on the spatial curvature K, both
a bouncing cosmology or an emergent universe scenario could in
principle be realized [54]. This happens if

M ≤
30

8πG0

(

G030 − g∗ (λ∗ − 3K)

2g∗30

)2

(37)

and a2
b

> 0. In this case the universe undergoes a period
of inflation at early times, where the scale factor grows
exponentially [101]. Otherwise, if ab is not real, the universe is
singular and a period of exponential growth of the scale factor
is not possible (unless other degrees of freedom are introduced).
However this would invalidate the initial assumption that k2 ∝

R ∼ a−2 and a separate analysis would be required. This model
thus shows how the gravitational antiscreening, encoded in the
RG running of the gravitational couplings and in the presence of
additional terms in the effective Friedmann equation, could lead
to non-singular cosmologies and a period of exponential growth
of the universe at early times.

4. INFLATION IN ASYMPTOTICALLY SAFE
GRAVITY

4.1. The Idea Behind “Asymptotically Safe
Inflation”
Primordial quantum fluctuations occurring in the pre-
inflationary epoch have left indelible imprints, which we
measure today in the form of tiny temperature anisotropies,
δT/T ∼ 10−5, in the CMB radiation: according to the standard
cosmological model, the inhomogeneities in the CMB can be
traced back to the primordial quantum fluctuations in the pre-
inflationary era. These fluctuations were subsequently amplified
and smoothed out by the exponential growth of the universe,
thus resulting in small density fluctuations at the last scattering
surface. The distribution of temperature anisotropies in the sky
could thus give us indirect information on the physics of the very
early universe.

In momentum space, the power spectra of scalar and tensorial
perturbations are written as follows

Ps(k) ≃ As

(

k

k∗

)ns−1

, Pt(k) ≃ At

(

k

k∗

)nt

, (38)

where k = |k| is the norm of the 3-momentum k and
k∗ ∼ 0.05Mpc−1 is a reference scale. The spectral index ns
and the tensor-to-scalar ratio r ≡ At/As can be obtained from
observational data. In particular, the most recent observations to
date [102] constrain the spectral index to be ns = 0.9649±0.0042
at 68% confidence level, and limit the tensor-to-scalar ratio to
values r < 0.064. Note that although the scalar power spectrum
is almost scale invariant, perfect scale invariance (corresponding
to ns = 1) is excluded.

The existence of a NGFP in the RG flow of gravity could
provide a natural and intuitive explanation for the nearly-scale
invariance of the power spectrum of temperature fluctuations in
the CMB. Close to the NGFP, the effective background graviton
propagator behaves as G(p) ∼ 1/pd−2−ηN [103]. In d = 4, the
asymptotic-safety condition requires the anomalous dimension
of the Newton coupling to approach the value ηN = −2 in the
ultraviolet limit. In this case the background graviton propagator
in coordinate space scales as G(x, y) ∼ log |x − y|2 at the
NGFP [103]. Assuming that the temperature fluctuations are
entirely due to the amplification of the quantumfluctuation of the
spacetime geometry during inflation and that these fluctuations
are generated during the Planck era, the corresponding density
fluctuations δρ are characterized by a two-point correlation
function [57, 103, 104]

ξ (x) = 〈δρ̂(x+ y)δρ̂(y)〉 ∝ 〈δR(x+ y, t)δR(y, t)〉 ∼ |x|−4, (39)
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where δρ̂ = δρ/ρ̄ is the fractional density fluctuation field and
δR(y, t) stands for the fluctuation of the scalar curvature [or any
component of the Riemann or Einstein tensor [55]], induced by
a metric fluctuation. The power spectrum in momentum space is
given by the 3-dimensional Fourier transform

|δk|2 = V

∫

d3x ξ (x)e−ik·x. (40)

The spectral index ns defines the power-law scaling of the power
spectrum, |δk|2 ∝ |k|ns . Thus the scaling ξ (x) ∼ |x|−4 gives
rise to a perfectly scale invariant power spectrum, with ns =
1 [57, 94, 103, 104]. The exact scale invariance of the power
spectrum reflects the exact scale invariance of the theory at the
NGFP. It is thereby possible that the nearly-scale-invariance
of the scalar power spectrum Ps(k) is due to the nearly-scale
invariant flow of RG trajectories in the proximity of the NGFP.
This observation [57, 94, 103, 104] was the starting point for a
number of studies looking for the existence of (unstable) deSitter
solutions in ASG [58, 97, 105], giving rise to a sufficiently long
period of “NGFP-driven inflation” [57]. The inflationary scenario
arising from this mechanism is sometimes called “Asymptotically
Safe Inflation.”

4.2. Starobinsky Model and RG-Running in
Quadratic Gravity
Among all proposed inflationary models [106], the Starobinsky
model is certainly one of the most appealing: it is a
zero-parameters model and is compatible with the current
observational data [102]. The Starobinsky model relies on the
inclusion of an R2-term in the gravitational action. This is the
minimal modification of Einstein gravity needed to produce
inflation. From the point of view of ASG, focusing on an f (R)-
truncation, the quadratic gravity Lagrangian

L =
1

16πG
(R− 23 − BR2) (41)

should comprise all relevant couplings of the theory (with respect
to the NGFP): according to the studies of the renormalization
group flow of f (R) theories (in pure gravity), the NGFP
comes with three relevant directions—those associated with
the couplings (G,3,B) [26, 34, 80, 81]. The latter are the
only free parameters of the theory: every RG trajectory is
uniquely identified by the infrared values of the scale-dependent
couplings (G(k),3(k),B(k)). A key question is whether there
exists an RG trajectory matching the infrared values of these
couplings. Moreover, it is interesting to understand whether
Starobinsky inflation can be realized naturally in the context
of ASG. For this to happen the sign of the coupling B is
crucial, as the Starobinsky model requires B to be negative. In
addition, it is a key requirement that classical Einstein gravity is
recovered at low energies. Studying the RG flow of the couplings
(G(k),3(k),B(k)) in the quadratic truncation (41), it has been
shown [107] that there exists an RG trajectory such that the

observational constraints

B(kinfl ∼ Hinfl = 1022eV) = −1.7 · 10−46eV−2 ,

G(klab ∼ 10−5eV) = 6.7 · 10−57eV−2 , (42)

3(kHubble ∼ H0 = 10−33eV) = 4 · 10−66eV2 ,

are all fulfilled. We refer the reader to the original paper [107]
for the details of the computation. The coupling B(k) is initially
(k → ∞) positive, but it turns negative along the RG flow: the
transition scale is k ∼ 1023GeV (well above the Planck scale),
so that at inflationary scales the action (41) matches that of the
Starobinsky model [107]. Below the Planck scale, the couplings
B(k) and G(k) vary by many orders of magnitude in a very short
RG-time, t = log k. Their observed constant values are thus
reached at inflationary scales. The cosmological constant instead
keeps running even after the end of inflation: at inflationary scales
its magnitude is ∼ 4 · 1030eV2, while its observed constant value
is only reached at k ∼ 10−2eV [95, 107].

4.3. Constraints From Planck Data in
Gravity-Matter Systems
In this subsection we review the results in Bonanno et al. [61]
and Platania [91]. As the initial conditions for inflation are
placed at trans-Planckian scales and since the effective action at
inflationary scales depends on how the RG-trajectory realized
by Nature emerges from the NGFP, the Planck data on CMB
anisotropies can in principle put constraints on the universality
properties of the gravitational RG flow. The latter are encoded in
the critical exponents θi governing the scaling of the gravitational
couplings in the vicinity of the NGFP. In turn, the specific values
of the critical exponents depend on the number of scalar, Dirac
and vectors fields in the theory [32, 81, 83]. The observational
constraints on the spectral index ns and tensor-to-scalar ratio
r could then be used to put constraints on the primordial
matter content of the universe. Introducing the running of
the gravitational couplings at the level of the (Einstein-Hilbert)
action [48, 92] provides a simple toy model to understand
whether and how this mechanism is realized [61, 91].

We restrict ourselves to the Einstein-Hilbert truncation, where
the scaling of the gravitational couplings about the NGFP is that
given in Equation (5). Following the discussion in section 2, close
to the NGFP the consistency condition (16) imposes the scaling
relation k2 = ξ R, with ξ = 1

4λ∗
. The RG running (5) thus yields

an effective gravitational action of the form [91]

Seffgrav =
∫

d4x
√

−g

{

R2

128πg∗λ∗
+ fRG(R)

}

, (43)

where fRG(R) is the part of the action generated as the RG
trajectories flow away from the NGFP

fRG(R) = b1R
4−θ1−θ2

2 + b2R
4−θ1
2 + b3R

4−θ2
2 + b4R

2−θ1 + b5R
2−θ2 ,
(44)
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with the coefficients bi being defined by

b1 =
c1c2(e11e

2
2+e21e

1
2)

(

4λ∗M2
Pl

)

θ1+θ2
2

128π(g∗λ∗)
2 ,

b2 =
c1(e21λ∗−e11g∗−2e21λ∗)

(

4λ∗M2
Pl

)

θ1
2

128π(g∗λ∗)
2 ,

b3 =
c2(e22λ∗−e12g∗−2e22λ∗)

(

4λ∗M2
Pl

)

θ2
2

128π(g∗λ∗)
2 ,

b4 =
c21(e

1
1e

2
1)

(

4λ∗M2
Pl

)θ1

128π(g∗λ∗)
2 ,

b5 =
c22(e

1
2e

2
2)

(

4λ∗M2
Pl

)θ2

128π(g∗λ∗)
2 .

(45)

Here MPl is the reduced Planck mass, while the integration
constants ci, the critical exponents θi and the eigenvectors ei are
those introduced in section 2.2 (cf. Equation 5). The action

S∗grav =
∫

d4x
√

−g
R2

128πg∗λ∗
(46)

is the fixed-point action [88, 91]. This is compatible with the
results in Benedetti and Caravelli [108], Dietz and Morris [109],
and Demmel et al. [27] where, using the FRG Equation (4) to
study the RG flow of fk(R)-gravity, it has been shown that the
fixed-point Lagrangian is L∗ = f∗(R) ∝ R2. Additional Rn-
operators are generated along the RG flow. The effective action
in (43) is thus expected to capture key features of the gravitational
RG flow: at the fixed point the action is S∗grav. Lowering the
RG scale k down toward the infrared, additional operators are
generated andLgrav = L∗+δLRG. The set of operators appearing
in δLRG depends on how the RG trajectories emerge from the
NGFP. In the simplified model (43), this information lies in
the critical exponents θi. In what follows we will explore the
consequences of this fact in inflationary cosmology [61, 91].

Provided that f
(2)
RG (R) 6= − 1

64πg∗λ∗
, the gravitational

action (43) is conformally equivalent to Einstein gravity,
minimally coupled with a scalar field φ

Sgrav =
∫

d4x
√

−gE

(

RE

16πG0
+

1

2
g
µν
E ∂µφ∂νφ − V(φ)

)

,

(47)
where the subscript “E” indicates that these quantities are

computed using the metric gEµν = e
√
2/3φ/MPl gµν in the Einstein

frame, and V(φ) = U(ϕ(φ))ϕ(φ)−2, with

ϕ = 16πG0

(

R

64πg∗λ∗
+ f ′RG(R)

)

= e
√
2/3φ/MPl , (48)

U(ϕ) =
R[ϕ]2

128πg∗λ∗
− fRG(R[ϕ])+ R[ϕ] f ′RG(R[ϕ]) . (49)

A period of exponential grow of the scale factor occurs if the
dynamics of the scalar field φ is dominated by its potential energy
V(φ). This happens under the slow-roll conditions

ǫ(φ) ≡
1

2κ

(

V ′(φ)

V(φ)

)2

≪ 1 , η(φ) ≡
1

κ

(

V ′′(φ)

V(φ)

)

≪ 1 . (50)

The violation of the slow-roll conditions, encoded in the equation
ǫ(φf ) = 1, defines the value of the field at the end of inflation,
φf ≡ φ(tf ). The initial condition φi ≡ φ(ti) is then obtained by
fixing the number of e-folds

N(φi) =
∫ φi

φf

V(φ)

V ′(φ)
dφ (51)

before the end of inflation. In the slow-roll approximation, the
spectral index and tensor-to-scalar ratio characterizing the scalar
power spectrum Ps(k) in Equation (38) can be easily computed
by means of the following relations [110]

ns = 1− 6 ǫ(φi)+ 2 η(φi) , r = 16 ǫ(φi) . (52)

Moreover, every inflationary model has to be “normalized” [106],
i.e., the inflation mass has to be fixed by requiring that the
amplitude As of the scalar power spectrum (38) is

As =
V(φi)

24π2M4
Pl

ǫ(φi)
≃ 2.2 · 10−19 . (53)

At the NGFP (k → ∞) fRG(R) = 0 and the effective action (43)
reduces to the fixed-point action S∗grav. In the Einstein frame, the
corresponding fixed-point scalar potential is constant

V∗(φ) = 8πg∗λ∗M
4
Pl , (54)

and therefore it would generate an exactly scale-invariant power
spectrum, with ns = 1. This is compatible with the discussion
made in section 4.1 and based on the scaling of the background
graviton propagator at the NGFP [57, 94, 103, 104]. The mass
scale associated with the scalar degree of freedom φ can be read
off from the potential V∗(φ) and reads

m2 = 8π

(

4

3
λ∗g∗

)

M2
Pl . (55)

This mass depends on fixed-point quantities only via the
universal product (λ∗g∗) [96], as expected from the universality
properties of the theory at the NGFP.

In themodel (43) the departure from the exact scale invariance
is due to the departure of the RG flow from the NGFP. Lowering
the RG scale down toward the infrared, the gravitational
Lagrangian is modified by the operators in δL = fRG(R) and, in
the Einstein frame, this corresponds to a variation of the scalar
potential V(φ),

V∗ → V(φ) = V∗ + δV(φ) . (56)

Its form is determined by the critical exponents θi, which are
real numbers in the case of the most commonly studied gravity-
matter systems [32, 81, 83]. The asymptotic-safety condition
requires the real part of the critical exponents to be positive,
Re(θi) > 0. As we are interested in the case of gravity-
matter systems, we will only focus on the case where the critical
exponents are real. It is assumed, in a first approximation, that
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FIGURE 1 | Spectral index and tensor-to-scalar ratio induced by the family of

theories in Equation (57) as a function of the power index p for N = 60 e-folds

and b = 1. Dashed and solid lines correspond to the 1σ and 2σ confidence

levels on the values of (ns, r) extracted from the Planck data [102]. The

Starobinsky model, denoted with a star symbol, is also shown for comparison.

Only theories with p ≤ 1 are reasonably within the 2σ confidence-level line.

the energy-density of the inflation field φ dominates. Under this
assumption, the other matter fields do not contribute to the
inflationary dynamics [61].

It is crucial to note that if all critical exponents are θi > 4, the
effective Lagrangian Leff reads

Leff = L∗ + b R−p, p > 0 , (57)

where R−p is the dominant correction in fRG(R) and b is the
corresponding coefficient. Contributions of the form R−p are
suppressed when R is large, so that the deviation from the exact
scale invariance would be negligible (see Figure 1). Moreover
in this case the R-operator is not generated by the flow. In
the case θi = 4, the model (43) gives rise to an inflationary
scenario compatible with the Planck data only under specific
conditions [91].

The agreement with the Planck data thus requires that at
least one of the critical exponents is θi < 4. This condition is
realized, e.g., when gravity is minimally-coupled to the fields of
the Standard Model, at least in the approximation where these
fields are free [32, 81, 83]. Within the simple model reviewed
here, matter models making all gravitational critical exponents
θi > 4 would not be compatible with observational data. In this
sense, the Planck data on the CMB anisotropies could be used to
constrain the primordial matter content of the universe [61].

The scalar potential V(φ) is shown in Figure 2 for various
values of θ1 = θ2. All functions V(φ) approach the same
constant value V∗ for φ ≫ MPl. In fact, as soon as θi 6= 0, the
coupling of the R2-term in Equation (43) is not modified by the
presence of the additional operators in δL = fRG(R). Therefore,
the height of the plateau and the inflation mass are those in
Equations (54) and (55). This is an artifact of the simplified

model in Bonanno et al. [61]: the coupling to the R2 operator
is a running quantity and therefore also the value of the scalar
potential at φ ≫MPl should vary along the flow. In other words,
in a more elaborate model accounting for the running of the
coupling B in Equation (41), the family of effective potentials
V(φ) should be characterized by a plateau withVplateau 6= V∗: this
decoupling would allow to set the initial conditions for inflation
at Planckian scales and, at the same time, to reproduce the correct
amplitude of scalar perturbations at the horizon exit [91].

As the RG flowmoves way from the NGFP, the scalar potential
V(φ) is dynamically modified such that V ′(φ) is generally non-
zero. The scalar field φ thus acquires a RG-running-induced
kinetic energy φ̇i ∼ −V ′(φi)/3H(ti). This provides the initial
conditions for the subsequent evolution of the scale factor a(t),
according to the modified Friedmann equations. Depending on
the RG-induced variation of the scalar potential δV(φ), the
dynamics of the scalar field φ can trigger a period of slow-
roll inflation. For instance, the case θ1 = θ2 = 2 gives the
scalar potential

V(φ) = e
−2

√

2
3

φ
MPl

{

3

4

(

1− e

√

2
3

φ
MPl

)2

m2 + 3eff

}

M2
Pl , (58)

i.e., a Starobinsky-like potential in the presence of an effective
cosmological constant 3eff = −(b1+ b4+ b5)M

2
Pl
(see Figure 2).

As it is well-known, this model leads to cosmic parameters

ns ≃ 1−
2

N
+O(N−3) , r ≃

12

N2
+O(N−3) , (59)

in good agreement with the current observational data. In the
case θ1 ≈ 2 and θ2 ≈ 4, realized when gravity is minimally
coupled with the (free) matter fields of the Standard Model [32,
81], the action (43) differs from the one of the Starobinsky model
by subleading terms of the form R−p, with p > 0, which are
suppressed for large R. The inflationary dynamics, as shown in
Bonanno et al. [61], is thus very similar to that of the Starobinsky
model (case θ1 = θ2 = 2). In the next subsection we will see how
this scenario is modified when the RG-improved effective action
is obtained by starting from the quadratic gravity action (41).

4.4. Comparison With the Planck Data in
RG-Improved Quadratic Gravity
In Bonanno and Platania [60, 111], a class of inflationary models
arising from the RG improvement of quadratic gravity (without
matter) has been investigated [see also [48, 92]]. According to
the studies of the non-perturbative RG flow of truncated f (R)-
theories without matter [104, 112], the NGFP is attractive with
respect to three relevant directions, those associated with the
dimensionless couplings (gk, λk,βk), with βk = B(k)/G(k) [26,
34, 80, 81]. The question motivating the studies in Bonanno and
Platania [60, 111] is whether the scale dependence of all relevant
gravitational couplings can modify the classical Starobinsky
model and if the RG-improved model is compatible with the
Planck data. The ansatz for the gravitational action is

Lk =
1

16πgk

(

R− 2λkk
2
)

− βkR
2 . (60)
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FIGURE 2 | Inflationary potentials V (φ) produced by the conformal transformation of the action (43) for various values of the critical exponents θ1 = θ2 [91]. The

fixed-point potential V* = 8πg*λ*M
4
Pl associated with the fixed-point action S*

grav, Equation (46), is also shown for comparison. It corresponds to an exactly scale

invariant scalar power spectrum, ns = 1. When the RG flow departs from the NGFP, additional operators are generated by the flow. These operators break the perfect

scale invariance realized at the NGFP and destabilize the fixed-point potential, V* → V (φ) = V* + δV (φ), such that V ′ (φ) 6= 0 at φ ∼ MPl . The scalar field φ thus acquires

a RG-induced kinetic energy, φ̇i ∼ −V ′ (φi )/3H(ti ). The subsequent dynamics depends crucially on the critical exponents θi . In particular, the case θ1 = θ2 = 2

reproduces the well-known Starobinsky model.

In order to derive an analytical form for the inflationary potential
in the Einstein frame, the running of the gravitational couplings
is approximated by [60, 111]

gk =
(c1µ

−2)k2

1+ g−1
∗ (k2 − µ2)(c1µ−2)

βk = β∗ + b0

(

k2

µ2

)−1/2

,

λk = c2k
−2 , (61)

where µ is a reference scale and the three parameters (b0, c1, c2),
corresponding to the three relevant directions of the theory,
identify the RG trajectories terminating at the NGFP in the
ultraviolet limit. These are free parameters of the theory and
must be fixed by comparing the results with observations. Using
the cutoff k2 = ξR [60, 111], the RG-improved effective
action reads

Seffgrav =
1

2κ

∫

d4x
√

−g

{

R− 23̃ +
R2

6m2
+ α̃R3/2

}

, (62)

with

κ = 48π2c1
6πµ2−23(µ2+2ξc2)c1

, m2 = 8π2

κ(23ξ−96π2β∗)
,

3̃ = µ2(6π−23c1)c2
6πµ2−23(µ2+2ξc2)c1

, α̃ = −2b0κ
(

ξµ−2
)− 1

2 .
(63)

The inflationary scenario generated in this model can be studied
in the Einstein frame, where the f (R) action (62) can be written

as in Equation (47). In this case the scalar potential V(φ)
reads [60, 111]

V±(φ) = m2e
−2
√

2κ
3 φ

256κ

{

192

(

e

√

2κ
3 φ − 1

)2

− 3α4 + 1283

−
√
32α

[

(

α2 + 8e

√

2κ
3 φ − 8

)

± α

√

α2 + 16e

√

2κ
3 φ − 16

]
3
2

−3α2

(

α2 + 16e

√

2κ
3 φ − 16

)

∓ 6α3

√

α2 + 16e

√

2κ
3 φ − 16

}

,

(64)

with the dimensionless couplings 3 and α given by 3 = m−23̃

and α = 3
√
3mα̃. The existence of two solutions is due to the

presence of the additional R3/2-term in the effective action, and
the standard Starobinsky model is recovered by setting α =
3 = 0. Both functions V±(φ) define a two-parameters family
of potentials, parameterized by the couple (α,3). The common
feature of these potentials is the existence of a plateau for large

positive values of the field φ, with Vplateau = 3m2

4κ . Note that
the inclusion of the running of the coupling βk now allows for
an effective potential with Vplateau 6= V∗, as mentioned in the
previous section.

In order to fulfill the slow-roll conditions, the dynamical
evolution of the inflation field must start from a quasi-deSitter
state at V(φi) ∼ Vplateau, and then proceed toward φ ≪ MPl.
The inflationary dynamics depends on the values of (α,3). For
any (α,3), the potential V±(φ) can either develop a minimum
(Figure 3, right panel) or be unbounded from below (Figure 3,
left panel). A standard reheating phase is only possible in the first
case. In addition, in these models a “graceful exist” from inflation
by violation of the slow-roll conditions is only possible when
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FIGURE 3 | Scalar potential V− (φ) (blue thick line) and slow-roll function ǫ(φ) (red thin line) for α = −10 and 3 = −2 (potential unbounded from below, left panel) and

3 = 2 (potential with a minimum and Vmin > 0, right panel) [60, 111]. The slow-roll conditions are violated and inflation ends if ∃ tf such that ǫ(φ(tf )) = 1 (thin dashed

line) and ǫ(φ) > 1 for any t > tf . The dynamics induced by the potential V− (φ) in the right panel keeps the dynamical field φ(t) in the region where ǫ(φ) < 1 [60, 111],

thus making it impossible to exit inflation by violation of the slow-roll conditions. The potential plotted on the left panel allows instead for a finite period of slow-roll

inflation, but in this case the reheating of the universe after inflation cannot be described via the standard parametric oscillations of the inflation field.

FIGURE 4 | This figure depicts the potential V+(φ) for 3 = 1.4 and various

values of α in the physically-interesting range, α ∈ [1, 3] [60, 111]. This is the

class of potentials allowing for a (finite) period of slow-roll inflation, followed by

a standard reheating phase.

Vmin ≤ 0. The case Vmin > 0 leads instead to eternal inflation, as
shown in the right panel of Figure 3.

We now focus on the class of inflationary potentials providing
a well defined exit from inflation by violation of the slow-roll
conditions, followed by a phase of parametric oscillations of the
inflation field [60, 111]. These conditions are realized by the class
of potentials V+(φ), with α ∈ [1, 3] and 3 ∈ [0, 1.5] [60, 111].
The corresponding potential is shown in Figure 4 for 3 = 1.4
and various values of α.

As already mentioned, the constants (α,3) parameterize the
deviations from the Starobinsky model due to the RG running of
the gravitational couplings. It is thereby interesting to understand
whether these modifications can affect the form of the power
spectrum of temperature fluctuations in the CMB, and if the
values of the spectral index ns and tensor-to-scalar ratio r are

TABLE 1 | Values of the spectral index ns and tensor-to-scalar ratio r obtained

from the RG-improved model (62) for different values of (α,3) and number of

e-folds N [111].

Cases N = 50 N = 55 N = 60

3 α ns r ns r ns r

1.0 0.965 0.0069 0.968 0.0058 0.971 0.0050

0 1.8 0.966 0.0074 0.969 0.0063 0.972 0.0055

2.6 0.967 0.0076 0.969 0.0065 0.972 0.0056

1.0 0.965 0.0070 0.968 0.0059 0.971 0.0051

1 1.8 0.966 0.0074 0.969 0.0063 0.972 0.0055

2.6 0.967 0.0076 0.969 0.0065 0.972 0.0056

The range of values obtained for the spectral index, ns ∈ [0.965, 0.972], is in agreement

with the one obtained by the Planck Collaboration, ns = 0.968 ± 0.006, and the

tensor-to-scalar ratio is always compatible with their upper limit, r < 0.11.

modified by this running. The results are summarized in Table 1

[111]. The range of values for the spectral index is ns ∈
[0.965, 0.972], in agreement with the value extracted from the
Planck data, ns = 0.968 ± 0.006. The tensor-to-scalar ratio is
always compatible with their upper limit, but it is slightly higher
than the one predicted within the Starobinsky model.

5. DISCUSSION

The phenomenological consequences of Asymptotically Safe
Gravity (ASG) are typically investigated within models that take
the running of the gravitational couplings into account. Based on
the decoupling mechanism [72], it is expected that these models
can provide a qualitative, yet simple and intuitive, understanding
of the effective modifications of General Relativity induced by
quantum gravity in the asymptotic-safety approach. Nonetheless,
the derivation of these “renormalization group (RG) improved”
models is not free of ambiguities. Bearing in mind strengths
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and limitations of this approach, the scope of this review was
to provide an overview of the main cosmological implications of
ASG derived from models of RG-improved cosmology.

ASG is based on the existence of an interacting fixed point
which is attained by the gravitational RG flow in the ultraviolet
limit. The scale invariance of gravity at high energies and the
consequent gravitational antiscreening can be regarded as the
hallmarks of ASG. In particular the antiscreening character of
gravity, rendering the gravitational interaction weaker at high
energies, could lead to non-singular cosmological solutions:
the classical singularity could be replaced by a bounce or
an emergent universe [54]. The entropy production during
inflation might be attributed to an energy flow from the
gravitational to the matter degrees of freedom, which causes
the primordial evolution of the universe to be approximately
(but not exactly) adiabatic [57]. Moreover, the existence of a
regime where gravity is approximately scale invariant (fixed-
point regime and departure of the RG flow from it) provides a
simple and natural interpretation for the nearly-scale-invariance
of the power spectrum of temperature fluctuations in the Cosmic
Microwave Background (CMB) radiation [57]. In the case of pure
gravity, the spectral index and tensor-to-scalar ratio evaluated
from models of “RG-improved” inflation are in agreement with
the Planck data on CMB anisotropies [60]. When matter is
minimally coupled to gravity, the universality properties of the
gravitational RG flow aremodified and this modification depends
on the number and type (scalar, Dirac, vector, etc.) of matter
fields: the observational data could thus be used to constrain the
matter content of the theory in the early universe [61]. Finally,
the running of the R2-coupling could also provide a mechanism
to set the initial condition for inflation at trans-planckian scales,
while being able to reproduce the amplitude of the scalar power
spectrum at the horizon exit [91]. If this mechanism is realized,
it could provide a solution to the “unlikeness problem” [113] of
inflationary cosmology. A definite answer requires however more
elaborate and extended studies, going beyond the simple models
reviewed here.

Most of the results listed above have been obtained by
including the running of the gravitational couplings within the
Einstein-Hilbert truncation. As argued in Lehners et al. [98],
fourth-derivatives operators are crucial for the understanding of
the early-universe evolution. The inclusion of these operators
in the models of RG-improved cosmologies could then be
important to determine the phenomenological implications of
the gravitational antiscreening.

One of the main problems of models of “RG-improved
cosmologies” is the identification of the physical cutoff acting as
a decoupling scale [72] for the RG flow of the effective average
action [65]. The symmetries of theory play an important role,

as they could provide a guideline for this scale-setting [87, 88,
90, 114, 115]. As shown in Reuter and Weyer [86], Reuter and
Weyer [82], Babic et al. [87], Domazet and Stefancic [88], and
Koch et al. [89], the contracted Bianchi identities typically lead
to a “consistency condition” which can be used to determine the
form of the cutoff scale. Close to a fixed point, the RG flow should
be universal (no scheme or regulator dependence, at least for the
flow of the full—not truncated—effective action) and all physical
scales collapse into one: in this case the scale-setting is essentially
unique. Away from the fixed point, the physical cutoff is dictated
by the consistency condition. However, this condition requires
the running of the gravitational couplings as an external input:
since the RG flow obtained from the Wetterich equation [65]
depends explicitly on the choice of the regulator, this dependence
is inherited by the physical cutoff scale and it disappears only in
the proximity of the fixed point (provided that no truncation of
the effective action is employed).

While it is expected that the RG-improved models capture
the qualitative features of the quantum modifications of General
Relativity according to ASG, quantitative results require the
knowledge of the fully-quantum gravitational effective action.
This is expected to be non-local, due to the resummation of
quantum fluctuations on all scales. Progress in this direction
has been made in Codello and Jain [116], where the leading-
order, quadratic part of the effective action has been derived
within the framework of effective field theory, in Codello
et al. [117], by studying the flow of the non-local part of
the one-loop effective action, and, more recently, in Knorr
et al. [69], where the beta functions for a specific non-local
action have been computed using the functional renormalization
group. Future developments of these programs could provide
indications on the form of the gravitational effective action.
On the phenomenological side, this could allow to derive more
quantitative results on the implications of ASG in astrophysics
and cosmology.
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The asymptotic safety program builds on a high-energy completion of gravity based

on the Reuter fixed point, a non-trivial fixed point of the gravitational renormalization

group flow. At this fixed point the canonical mass-dimension of coupling constants is

balanced by anomalous dimensions induced by quantum fluctuations such that the

theory enjoys quantum scale invariance in the ultraviolet. The crucial role played by

the quantum fluctuations suggests that the geometry associated with the fixed point

exhibits non-manifold like properties. In this work, we continue the characterization of this

geometry employing the composite operator formalism based on the effective average

action. Explicitly, we give a relation between the anomalous dimensions of geometric

operators on a background d-sphere and the stability matrix encoding the linearized

renormalization group flow in the vicinity of the fixed point. The eigenvalue spectrum of

the stability matrix is analyzed in detail and we identify a “perturbative regime” where the

spectral properties are governed by canonical power counting. Our results recover the

feature that quantum gravity fluctuations turn the (classically marginal) R2-operator into

a relevant one. Moreover, we find strong indications that higher-order curvature terms

present in the two-point function play a crucial role in guaranteeing the predictive power

of the Reuter fixed point.

Keywords: quantum gravity, asymptotic safety, renormalization group, quantum geometry, scaling dimension

1. INTRODUCTION

General relativity taught us to think of gravity in terms of geometric properties of spacetime. The
motion of freely falling particles is determined by the spacetime metric gµν which, in turn, is
determined dynamically from Einstein’s equations. It is then an intriguing question what replaces
the concept of a spacetime manifold once gravity is promoted to a quantum theory. Typically, the
resulting geometric structure is referred to as “quantum geometry” where the precise meaning of
the term varies among different quantum gravity programs.

An approach toward a unified picture of the quantum gravity landscape could then build on
identifying distinguished properties which characterize the underlying quantum geometry and lend
themselves to a comparison between different programs. While this line of research is still in its
infancy, a first step in this direction, building on the concept of generalized dimensions, has been
very fruitful. In particular, the spectral dimension ds, measuring the return probability of a diffusing
particle in the quantum geometry, has been computed in a wide range of programs including Causal
Dynamical Triangulations [1], Asymptotic Safety [2–5], Loop Quantum Gravity [6], string theory
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[7], causal set theory [8–10], the Wheeler-DeWitt equation [11],
non-commutative geometry [12–14], andHořava-Lifshitz gravity
[15] [see [16, 17] for reviews]. A striking insight originating
from this comparison is that, at microscopic distances, ds = 2
rather universally. The interpretation of ds as the dimension
of a theories momentum space, forwarded in Amelino-Camelia
et al. [18], then suggests that the dimensional reduction of the
momentum space may be a universal feature of any viable theory
of quantum gravity.

Following the suggestion [19]1, a refined picture of quantum
geometry could use the (anomalous) scaling dimension
associated with geometric operators, comprising, e.g., spacetime
volumes, integrated spacetime curvatures, and geodesic
distances. Within the asymptotic safety program [22, 23], also
reviewed in Percacci [24], Litim [25], Reuter and Saueressig [26],
Ashtekar et al. [27], and Eichhorn [28], these quantities have been
studied based on the composite operator formalism [19, 29–32].
This formalism allows to determine the anomalous scaling
dimension of geometric operators based on an approximation
of the quantum-corrected graviton propagator2. For the Reuter
fixed point in four dimensions the quantum corrections to the
scaling of four-volumes Vd=4 ∼ L4−γ0 were determined in
Pagani and Reuter [19]. The result γ0 = 3.986 lent itself to
the interpretation that “spacetime could be much more empty
than expected.” Recently, Houthoff et al. [32] generalized this
computation by determining the anomalous scaling dimensions
associated with an infinite class of geometric operators

On ≡
∫

ddx
√
g Rn, n = 0, 1, 2, · · · ∈ N (1)

where R denotes the Ricci scalar constructed from gµν . While
it was possible to extract analytic expressions for all γn, it
also became apparent that the single-operator approximation
underlying the computation comes with systematic uncertainties.
In parallel, the anomalous scaling properties of subvolumes and
geodesic distances resulting from the renormalization group
fixed points underlying Stelle gravity and Weyl gravity have
recently been computed in Becker et al. [31]. In combination,
the results show that the scaling of geometric quantities
carries information about the renormalization group fixed point
providing the high-energy completion of the theory.

The purpose of present work is two-fold: Firstly, we extend
the analysis [32] beyond the single-operator approximation
and compute the complete matrix of anomalous dimensions
associated with the class (1). This information allows to access
the spectrum of the scaling matrix. We expect that the data
linked to the scaling dimensions of the geometrical operators
gives a refined characterization of the quantum spacetime
underlying the Reuter fixed point. Our results are closely related
but complementary to the ones obtained from solving the
Wetterich equation [34–37] for effective average actions of f (R)-
type [38–60]. The comparison between the two complementary

1For related ideas advocated in the context of two-dimensional gravity (see

[20, 21]).
2Recently, the formalism has been generalized to the computation of operator

product expansions [33].

computations indicates that one indeed needs to go beyond the
single-operator approximation in order to reconcile the results.
Secondly, our work gives information on the gauge-dependence
of the anomalous dimensions associated with the operators (1).
In this light, the value γ0 = 3.986 found in Pagani and Reuter [19]
may be rather extreme and quantum corrections to the scaling of
volumes could be less drastic.

The rest of this work is organized as follows. Section
2 introduces the composite operator formalism and the
propagators entering in our computation. The generating
functional determining the matrix of anomalous dimensions
is computed in section 3. The link to the stability matrix
governing the gravitational renormalization group flow in the
vicinity of the Reuter fixed point is made in section 4.1 and
the spectral properties of the matrix are analyzed in section 4.2.
Section 5 contains our concluding remarks and comments on
the possibility of developing a geometric picture of Asymptotic
Safety from random geometry. The technical details underlying
our computation have been relegated to three appendices:
Appendix A reviews the technical background for evaluating
operator traces using the early-time expansion of the heat-
kernel, Appendix B derives the beta functions governing the
renormalization group flow of gravity in the Einstein-Hilbert
truncation employing geometric gauge [61, 62], andAppendix C
lists the two-point functions entering into the computation.

2. COMPUTATIONAL FRAMEWORK AND
SETUP

Functional renormalization group methods provide a powerful
tool for investigating the appearance of quantum scale invariance
and its phenomenological consequences [63]. In particular, the
Wetterich equation [34–37],

k∂kŴk =
1

2
Tr

[

(

Ŵ
(2)
k

+Rk

)−1
k∂kRk

]

, (2)

plays a key role in studying the renormalization group (RG)
flow of gravity and gravity-matter systems based on explicit
computations. It realizes the idea of Wilson’s modern viewpoint
on renormalization in the sense that it captures the RG flow of a
theory generated by integrating out quantum fluctuations shell-
by-shell in momentum space. Concretely, Equation (2) encodes
the change of the effective average action Ŵk when integrating
out quantum fluctuations with momentum p close to the coarse
graining scale k. The flow of Ŵk is then sourced by the right-

hand side where Ŵ
(2)
k

denotes the second variation of Ŵk with
respect to the fluctuation fields, the regulator Rk provides a k-
dependent mass term for quantum fluctuations with momentum
p2 . k2, and Tr includes a sum over all fluctuation fields and an
integral over loop-momenta. Lowering k “unsuppresses” further
fluctuations which are then integrated out and change the value
of the effective couplings contained in Ŵk. For later convenience,
we then also introduce the “RG-time” t ≡ ln(k/k0) with k0 an
arbitrary reference scale.

In practice, the Wetterich equation allows to extract non-
perturbative information about a theories RG flow by restricting
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Ŵk to a subset of all possible interaction monomials and
subsequently solving Equation (2) on this subspace. For gravity
and gravity-matter systems such computations get technically
involved rather quickly. Thus, it is interesting to have an
alternative equation for studying the scaling properties of sets
of operators On, n = 1, · · · ,N, which are not included in Ŵk.
Within the effective average action framework such an equation
is provided by the composite operator equation [19, 64–66]. As a
starting point, the operatorsOn are promoted to scale-dependent
quantities by multiplying with a k-dependent matrix Znm(k)

On(k) ≡
N

∑

m

Znm(k)Om. (3)

The analogy of Znm to a wave-function renormalization then
suggests to introduce the matrix of anomalous dimensions γ

whose components are given by

γnm ≡
(

Z−1∂tZ
)

nm
. (4)

Following the derivation [19], the γnm can be computed from the
composite operator equation

N
∑

m=1

γnm Om =

−
1

2
Tr

[

(

Ŵ
(2)
k

+Rk

)−1
O

(2)
n

(

Ŵ
(2)
k

+Rk

)−1
∂tRk

]

, (5)

where O
(2)
n denotes the second functional derivative of On with

respect to the fluctuation fields. For the geometric operators (1)
the evaluation of γ has so far focused on the diagonal matrix
elements γnn [c.f. [19, 32]]. The goal of the present work is to
extend this analysis and, for the first time, study the eigenvalues
of γij associated with the operators (1).

3. COMPUTING THE MATRIX OF
ANOMALOUS DIMENSIONS

The computation of γnm requires two inputs. First, one needs
to specify the set of operators On. In the present work, these
will be given by the geometric operators (1). Secondly, one

needs to specify the gravitational propagators Ŵ
(2)
k
. These will be

derived from Ŵk approximated by the Euclidean Einstein-Hilbert
(EH) action

ŴEH
k [g] =

1

16πGk

∫

ddx
√
g (23k − R) (6)

supplemented by a suitable choice for the gauge-fixing action

(54). In practice, we obtain Ŵ
(2)
k

from the background field
method, performing a linear split of the spacetimemetric gµν into
a background metric ḡµν and fluctuations hµν :

gµν = ḡµν + hµν . (7)

In order to simplify the subsequent computation, we then chose
the background metric as the metric on the d-sphere, so that the
background curvature satisfies

R̄µνρσ =
R̄

d(d − 1)

[

ḡµρ ḡνσ − ḡµσ ḡνρ
]

, R̄µν =
R̄

d
ḡµν ,

D̄µR̄ = 0. (8)

Moreover, we carry out a transverse-traceless (TT)
decomposition of the metric fluctuations [67]

hµν = hTµν + D̄µξν + D̄νξµ +
(

D̄µD̄ν −
1

d
ḡµνD̄

2

)

σ +
1

d
ḡµνh,

(9)
where the component fields are subject to the
differential constraints

ḡµνhTµν = 0, D̄µhTµν = 0, D̄µξµ = 0, ḡµνhµν = h.
(10)

The Jacobians associated with the decomposition (9) are taken
into account by a subsequent field redefinition

√
2

[

1 −
1

d
R̄

]1/2

ξµ 7→ ξµ,

[

d − 1

d
12 −

1

d
R̄1

]1/2

σ 7→ σ ,

(11)
and it is understood that in the sequel all propagators and

the matrix elements O
(2)
i are the ones associated with the

rescaled fields. In combination with the background (8), this
decomposition ensures that the differential operators appearing
within the trace combine into Laplacians 1 ≡ −ḡµνD̄µD̄ν

constructed from the background metric [61].
We then specify the gauge-fixing introduced in Equation

(54) to geometric gauge, setting ρ = 0 and subsequently
evoking the Landau limit α → 0. Substituting the general
form of the matrix elements listed in Table 2 into the right-
hand side of (5) and tracing the α-dependence one finds that
the contributions of the transverse vector fluctuations ξµ and
the scalar σ drop out from the composite operator equation. As
a consequence, the anomalous dimensions are only sourced by
the transverse-traceless and conformal fluctuations. The relevant
matrix elements are then readily taken from Table 2. They read

O
(2)
n

∣

∣

∣

hThT
= −

1

2
R̄n−1

[

n1 −
(

2n(d − 2)

d(d − 1)
− 1

)

R̄

]

,

O
(2)
n

∣

∣

∣

hh
=

n(n− 1)(d − 1)2

d2
R̄n−212

+
n(d2 − (4n− 1)(d − 1)− 1)

2d2
R̄n−11

+
(

d − 2

4d
−

n(d − n− 1)

d2

)

R̄n,

(12)

together with

Ŵ
(2)
k
|hThT =

1

32πGk

[

1 − 23k + CT R̄
]

,

Ŵ
(2)
k
|hh = −

(d − 1)(d − 2)

32πGk d2

[

1 −
d

d − 1
3k + CSR̄

]

,

(13)
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where

CT ≡
d2 − 3d + 4

d(d − 1)
, CS ≡

d − 4

2(d − 1)
. (14)

Finally, the matrix entries for the regulator Rk are obtained
from the substitution rule (59), which corresponds to a Type I
regularization scheme in the nomenclature introduced in [40]

Rk

∣

∣

hThT
=

1

32πGk
Rk, Rk

∣

∣

hh
= −

(d − 1)(d − 2)

32πGk d2
Rk. (15)

Here Rk(1) = k2 r(1/k2) is a scalar regulator function which
later on will be specified to the Litim regulator (51).

Substituting the expressions (12)–(15) into the composite
operator Equation (5) then yields

N
∑

m=0

γnm Om = −
1

2

(

TrT
[

WT(n;1)
]

+ TrS
[

WS(n;1)
]

)

,

(16)
where the subscripts T and S indicate that the trace is over
transverse-traceless (T) and scalar (S) fluctuations, respectively.
The explicit form of the operator-valued functionsWT andWS is

WT(n;1) ≡ 16πGk

[

Pk − 23k + CT R̄
]−2

R̄n−1

[

−n1 +
(

2n(d−2)
d(d−1)

− 1
)

R̄
]

(∂tRk − ηNRk) ,

WS(n;1) ≡−
16πGk

(d − 2)

[

Pk −
d

d − 1
3k + CSR̄

]−2

R̄n−2

[

2n(n− 1)(d − 1)12 + n(d + 2− 4n) R̄1

+ d2−2d(2n+1)+4n(n+1)
2(d−1)

R̄2
]

(∂tRk − ηNRk) .

(17)

Equation (16) should then be read as a series expansion in R̄ at
the origin where the matrix entries γnm are obtained by matching
powers of R̄ on the left- and right-hand side. We then define the
infinite family of generating functionals, Ŵn(R̄) with n ≥ 0 ∈ N,
via

∫

ddx
√

ḡ Ŵn(R̄) ≡ −
1

2

(

TrT
[

WT(n;1)
]

+ TrS
[

WS(n;1)
]

)

.

(18)
The structure of the traces appearing in the definition (18)
ensures that Ŵn(R̄) is regular at R̄ = 0 and can be expressed as a
Taylor series expansion. Equating the left-hand sides of Equations
(16) and (18) one then has

γnm =
1

2π i

∮

C
R̄−(m+1) Ŵn(R̄), n,m ≥ 0, (19)

where C is an infinitesimal curve encircling the origin with
counterclockwise orientation.

Before delving into the explicit evaluation of the traces, the
following structural remark is in order. Inspecting (17), one
observes that the right-hand side associated with the nth row

starts at order R̄n−2 sinceO
(2)
n will always contribute at least n−2

powers of the background curvature. This entails that the matrix
of anomalous dimensions has the following triangular form

γ =

















γ00 γ01 γ02 γ03 γ04 γ05 γ06 · · ·
γ10 γ11 γ12 γ13 γ14 γ15 γ16 · · ·
γ20 γ21 γ22 γ23 γ24 γ25 γ26 · · ·
0 γ31 γ32 γ33 γ34 γ35 γ36 · · ·
0 0 γ42 γ43 γ44 γ45 γ46 · · ·
0 0 0 γ53 γ54 γ55 γ56 · · ·

















. (20)

This structure originates solely from the properties of the
operators On and is independent of the gauge choice or
regularization procedure.

The explicit values of the matrix entries (16) are readily
computed employing the heat-kernel techniques reviewed in
Appendix A. In practice, we will truncated the heat-kernel
expansion at order R2, setting the coefficients an, n ≥ 3 to
zero. This is in the spirit of the “paramagnetic approximation”
suggested in [68], that the curvature terms relevant for
asymptotic safety originate from the curvature terms contained
in the propagators. For the matrix entries γnm this entails that
all entries on the diagonal and below (marked in black) are
computed exactly while contributions to the terms above the
diagonal (marked in blue) will receive additional contributions
from higher-orders in the heat-kernel. In particular all entries
γnm with m ≥ n + 3 are generated solely from expanding the
curvature terms proportional to CT and CS in the transverse-
traceless and scalar propagators.

Evaluating (16) based on these approximations then results in
an infinite family of generating functionals Ŵn(R̄), n ≥ 0 ∈ N:

Ŵn(R̄) =
16πg

(4π)d/2

[

cT1 q
2
d/2+1(w

R̄
T)

(

R̄
k2

)−1
+ cT2 q

2
d/2(w

R̄
T)

+ cT3 q
2
d/2−1(w

R̄
T)

(

R̄
k2

)

+ cT4 q
2
d/2−2(w

R̄
T)

(

R̄
k2

)2

+ cS1 q
2
d/2+2(w

R̄
S )

(

R̄
k2

)−2
+ cS2 q

2
d/2+1(w

R̄
S )

(

R̄
k2

)−1

+ cS3 q
2
d/2(w

R̄
S ) + cS4 q

2
d/2−1(w

R̄
S )

(

R̄
k2

)

+ cS5 q
2
d/2−2(w

R̄
S )

(

R̄
k2

)2 ]

.

(21)

Here we introduced the dimensionless couplings

gk = kd−2 Gk, λk = 3k k
−2, (22)

and the anomalous dimension of Newton’s coupling ηN ≡
(Gk)

−1∂tGk. The threshold functions q
p
n(w) are defined in

Equation (46) and their arguments in the transverse-traceless and
scalar sector are

wT = −2λ, wS ≡ − d
d−1

λ,

wR̄
T = wT + CT R̄/k2, wR̄

S ≡ wS + CSR̄/k2. (23)
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TABLE 1 | Heat-kernel coefficients ain for scalars (S), transverse vectors (TV ), and

transverse-traceless symmetric tensors (T ) on a background d-sphere [69].

S TV T

ai0 1 d − 1 (d−2)(d+1)
2

ai1
1
6

(d+2)(d−3)
6d

(d+1)(d+2)(d−5+3δd,2 )
12(d−1)

ai2
5d2−7d+6
360d(d−1) − (d+1)(5d4−22d3−83d2−392d−228+1440δd,2+3240δd,4 )

720d(d−1)2

The terms proportional to δd,2 and δd,4 are linked to zero modes of the decomposition (9)

on the 2- and 4-sphere. The dash −− indicates that the corresponding coefficient is not

entering into the present computation.

The coefficients ci
k
depend on d and n. In the tensor sector they

are given by

cT1 = 1
2n d a

T
0 ,

cT2 = 1
2n(d − 2)aT1 −

(

2n(d−2)
d(d−1)

− 1
)

aT0 ,

cT3 = 1
2n(d − 4)aT2 −

(

2n(d−2)
d(d−1)

− 1
)

aT1 ,

cT4 = −
(

2n(d−2)
d(d−1)

− 1
)

aT2 .

(24)

Their counterparts in the scalar sector read

cS1 =
n(n− 1)(d − 1)d(d + 2)

2(d − 2)
aS0,

cS2 =
1

2
n(n− 1) d(d − 1) aS1 +

nd(d + 2− 4n)

2(d − 2)
aS0,

cS3 =
1

2
n(n− 1) (d − 1)(d − 4) aS2 +

1

2
n(d + 2− 4n) aS1

+
d2 − 2d(2n+ 1)+ 4n(n+ 1)

2(d − 1)(d − 2)
aS0,

cS4 =
n(d − 4)(d + 2− 4n)

2(d − 2)
aS2 +

d2 − 2d(2n+ 1)+ 4n(n+ 1)

2(d − 1)(d − 2)
aS1,

cS5 =
d2 − 2d(2n+ 1)+ 4n(n+ 1)

2(d − 1)(d − 2)
aS2.

(25)

Finally, the ain are the heat-kernel coefficients listed in Table 1.
Evaluating (19) for the explicit generating functional (21) then

yields the entries of the matrix γ . For instance, the two lines of
entries below the diagonal, γn,n−2, n ≥ 2, and γn,n−1, n ≥ 1,
obtained in this way are

γn,n−2 =
16πg

(4π)d/2
n(n− 1)(d − 1)d(d + 2)

2(d − 2)
k4 q2d/2+2(wS),

γn,n−1 =
16πg

(4π)d/2
n d k2

[1

4
(d − 2)(d + 1) q2d/2+1(wT)

+
1

12
(n− 1)(d − 1)q2d/2+1(wS)

+
d + 2− 4n

2(d − 2)
q2d/2+1(wS)

−
(n− 1)(d − 4)(d + 2)

2(d − 2)
q3d/2+2(wS)

]

.

(26)

Equation (21) together with the relation (19) constitutes the main
result of this work. They give completely analytic expressions for
all entries of the anomalous dimension matrix γ .

At this stage, a few remarks are in order.

(1) The entries of the anomalous dimension matrix carry
a specific k-dependence: γnm ∝ (k2)n−m. This can be
understood by noticing that the matrix γ acts on operators
Om with different canonical mass dimensions. The k-
dependence then guarantees that the eigenvalues of γ are
independent of k.

(2) The entries γn,n−2 are solely generated from the scalar
contributions, i.e., the transverse-traceless fluctuations do
not enter into these matrix elements. Technically, this

feature is associated with the Hessians O
(2)
n (cf. Table 2): the

matrix elements in the scalar sector start at R̄n−2 while the
transverse-traceless sector starts at R̄n−1.

(3) Notably, d = 4 is special. In this case the entries above
the diagonal, γnm with m ≥ n + 3 are generated from the
transverse-traceless sector only. All contributions from the
scalar sector are proportional to at least one power of CS and
thus vanish if d = 4.

(4) The matrix γ is a function of the (dimensionless) couplings
entering the Einstein-Hilbert action. Thus γ assigns a set
of anomalous dimensions to every point in the g-λ–plane.
Since γ is proportional to g, the magnitude of the anomalous
dimensions becomes small if g≪ 1. In particular, γ vanishes
at the Gaussian fixed point g∗ = λ∗ = 0 where one recovers
the classical scaling of the geometric operators.

4. SCALING ANALYSIS FOR THE REUTER
FIXED POINT

Starting from the general result (19), we now proceed and
discuss its implications for the quantum geometry associated
with Asymptotic Safety.

4.1. Relating the Scaling of Geometric
Operators and the RG Flow
By construction, the matrix γ assigns anomalous scaling
dimensions to any point in the g-λ plane. In order to characterize
the quantum geometry related to Asymptotic Safety, we study
the properties of this matrix at the Reuter fixed point found in
Appendix B [cf. Equation (64)]

d = 3 : g∗ = 0.198, λ∗ = 0.042, λ∗g
2
∗ = 1.65× 10−3,

d = 4 : g∗ = 0.911, λ∗ = 0.160, λ∗g∗ = 0.146.

(27)

From the definition of the beta function ∂tun = βun (ui) and the
fact that at a fixed point βun (u

∗
i ) = 0, it follows that the properties

of the RG flow in the vicinity of the fixed point are encoded in the
stability matrix B = [Bnm],

∂tun(k) =
∑

m

Bnm(um(k)− u∗m), Bnm ≡
∂βum

∂un

∣

∣

∣

∣

u=u∗
. (28)

Let us denote the eigenvalues of B by λn so that spec(B) = {λn}.
Equation (28) then entails that eigendirections corresponding
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to eigenvalues with a negative (positive) real part attract (repel)
the RG flow when k is increased, i.e., they correspond to UV-
relevant (UV-irrelevant) directions. The number of UV-relevant
directions then gives the number of free parameters which are not
fixed by the asymptotic safety condition: along these directions
the RG flow automatically approaches the Reuter fixed point as
k → ∞.

Formally, one can then derive a relation between γ and the
stability matrix B [32, 70],

Bnm = −dnδnm + γnm, (29)

where dn = d − 2n is the canonical scaling dimension of the
operator On. This relation is remarkable in the following sense:
The construction of the (approximate) fixed point solution (27) is
based on the two operators O0 and O1, comprising the Einstein-
Hilbert truncation. The relation (29) then shows that the matrix
of anomalous dimensions carries information about the stability
properties of the Reuter fixed point beyond the set of operators
which are considered when solving theWetterich equation to locate
the fixed point. We illustrate this idea by studying the spectrum
of Bnm obtained at the fixed points (27). Before embarking on
this discussion, the following cautious remark is in order though.
While the composite operator formalism may allow to obtain
information on the stability properties of a fixed point beyond
the approximation used for the propagators, it is also conceivable
that the formalism becomes unreliable for eigenvalues λn with
n ≥ Nmax

3. Heuristically, this is suggested by the following
argument: when studying fixed point solutions in the f (R)-
approximation the propagators include powers of R̄ beyond the
linear terms captured by the Einstein-Hilbert action. These terms
give rise to additional contributions in the generating functional
(19) which may become increasingly important in assessing the
spectrum of B for eigenvalues with increasing numbers of n. This
picture is also suggested by our results in section 4.24.

This said, we now investigate the properties of the stability
matrix (29). Here we will resort to the following frameworks:

I The spectrum of B generated by the full generating functional
(21) including the contribution of zero-modes in the heat-
kernel for d = 4.

II In the conformally reduced approximation [71]. In this case,
the contribution of the tensor fluctuations is set to zero by

3Most conservatively, one may expect that the composite operator formalism

allows a qualitatively reliable determination of the stability properties of operators

containing two additional spacetime-derivatives on top of the terms included in

the propagators. This picture is readily confirmed by comparing the spectrum of B

obtained from the composite operator equation with the solution of the Wetterich

equation for actions of f (R)-type.
4A second effect which could lead to a stabilization of the spectrum of B at

the Reuter fixed points could come from improving the truncation of the early-

time expansion of the heat-kernel. There are two reasons to expect that these

contributions will not play a relevant role though. Firstly, f (R)-type solutions of

theWetterich equation [38–40, 58], where the spectrum of B has been shown to be

stable under the inclusion of further operators, essentially use the same truncation

of the heat-kernel. Secondly, the structure of the heat-kernel expansion shows that

the higher-order terms are highly suppressed compared to the ones included in our

computation [40].

hand, so that γ contains the contribution from the scalar trace
in (16) only.

The latter choice is motivated by the observation that this
framework gives rise to the spec(B) which is the most robust
under increasing the size of the matrix B. Clearly, one could
easily envision other approximations which could be applied
to the general result (21). Examples include the exclusion of
the zero-mode terms appearing in d = 4 or the “sparse
approximation” where only two lines above and below the
diagonal are non-trivial, i.e., the entries in the upper-triangular
sector which are solely created by expanding the curvature
terms contained in the gravitational propagators are eliminated.
In order to understand the working (and limitations) of the
conformal operator formalism, the frameworks I and II are
sufficient though. We checked by explicit computations that the
exclusion of zero-modes or evaluating the spectrum of B in the
sparse approximation leads to the same qualitative picture.

4.2. Spectral Properties of the Stability
Matrix
We first give the diagonal entries γnn within framework I.
This corresponds to the “single-operator approximation” of the
composite operator formalism employed in Pagani and Reuter
[19], and Houthoff et al. [32]. At the fixed points (27) one finds

d = 3 : γ ∗
nn = 0.653− 0.872n− 0.029n2,

d = 4 : γ ∗
nn = 2.299− 3.765n.

(30)

These relations exhibit two remarkable features. Firstly, the

structure of O
(2)
n (cf. Table 2) entails that the entries of γ are

second order polynomials in n. It is then remarkable that the
diagonal entries essentially follow a linear scaling law up to n ≈
30 (d = 3) or even exactly (d = 4). Secondly, Equation (30)
entails that the diagonal entries of the stability matrix B are
always negative. Thus the single-operator approximation predicts
that all eigendirections of the Reuter fixed point in the f (R)-
space are UV-attractive. It was noted in Houthoff et al. [32]
that this is actually in tension with results obtained from solving
the Wetterich equation on the same space. On this basis, it is
expected that the off-diagonal entries in γ play a crucial role in
determining the spectrum of B.

We now discuss the properties of the stability matrix evaluated
at the Reuter fixed points (27) generated from the functional
(21). In practice, we truncate B to square-matrices of size N
choosing N = 100 if not stated otherwise. The eigenvalues λn ∈
spec(B) satisfying

BVn = λn Vn, n = 1, · · · ,N, (31)

with Vn denoting the right-eigenvectors of B, are readily found
numerically. Since B is not symmetric there is no a priori reason
that the λn are real or that the left- and right-eigenvectors of
B agree.

The structure of B then entails that there is always one
eigenvalue which is independent of the matrix size. For
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TABLE 2 | Components of the Hessians entering the right-hand side of the

composite operator equation (5) and the Wetterich equation evaluated for the

Einstein-Hilbert truncation.

Operator Value of the matrix element

O
(2)
n

∣

∣

hThT
− 1

2 R̄
n−1

[

n1 −
(

2n(d−2)
d(d−1) − 1

)

R̄
]

O
(2)
n

∣

∣

ξξ

2n−d
2d R̄n

O
(2)
n

∣

∣

hh

n(n−1)(d−1)2

d2
R̄n−212 + n(d2−(4n−1)(d−1)−1)

2d2
R̄n−11 +

(

d−2
4d − n(d−n−1)

d2

)

R̄n

O
(2)
n

∣

∣

σσ

n(n−1)(d−1)
d

R̄n−2 12 + n(d−2n)
2d R̄n−1 1 − d−2n

2d R̄n

O
(2)
n

∣

∣

σh

[

n(n−1)(d−1)
d

R̄n−21 + n(d−2n)
2d R̄n−1

][

d−1
d

12 − 1
d
R̄1

]1/2

Ŵ
(2)
k

∣

∣

hThT
1

32πGk

[

1 − 23k + CT R̄
]

Ŵ
(2)
k

∣

∣

ξξ

1
32πGk α

[

1 − 1
d
R̄+ α (CV R̄− 23k )

]

Ŵ
(2)
k

∣

∣

hh
1

32πGk α d2

[

2ρ21 − α(d − 1)(d − 2) (1 − d
d−13k + CSR̄)

]

Ŵ
(2)
k

∣

∣

σσ

1
32πGk α d

[

2(d − 1)1 − 2R̄− α
(

(d − 2)1 + 2d3k + Cσ R̄
)]

Ŵ
(2)
k

∣

∣

σh

2ρ+(d−2)α
32πGk α d

[

1
(

d−1
d

1 − 1
d
R̄
)]1/2

Ŵ
(2)
k

∣

∣

C̄TCT

[

1 − 1
d
R̄
]

Ŵ
(2)
k

∣

∣

η̄η

2
d

[

(d − 1− ρ)1 − R̄
]

Rk

∣

∣

hThT
1

32πGk
Rk

Rk

∣

∣

ξξ

1
32πGk α

Rk

Rk

∣

∣

hh
1

32πGk α d2

[

2ρ2 − α(d − 1)(d − 2)
]

Rk

Rk

∣

∣

σσ

1
32πGk α d

[2(d − 1)− α (d − 2)] Rk

Rk

∣

∣

σh

2ρ+(d−2)α
32πGk α d

{

[

Pk
(

d−1
d
Pk − 1

d
R̄
)]1/2 −

[

1
(

d−1
d

1 − 1
d
R̄
)]1/2

}

Rk

∣

∣

C̄TCT Rk

Rk

∣

∣

η̄η

2
d
[d − 1− ρ] Rk

The fluctuations are expressed by the component fields (9) and (56) followed by the field

redefinitions (11) and (57). The matrix elements are labeled by the fluctuation fields, i.e.,

O
(2)
n |hT hT results from taking two functional derivatives of On with respect to hT . The

off-diagonal terms are symmetric, e.g., O
(2)
n |hσ = O

(2)
n |σh.

framework I its value is given by

d = 3 : λI1 = −2.347,

d = 4 : λI1 = −1.701.
(32)

The eigenvector V1 associated with these eigenvalues is aligned
with the volume operator O0 entailing that V =

∫

ddx
√
g is

actually an eigenoperator of Equation (16). In the conformally
reduced approximation (framework II) in d = 3, the
independence of λn on the matrix size N extends to a
second eigenvalue

d = 3 : λII1 = −2.828, λII2 = −0.967. (33)

The normalized eigenvector associated with λII1 is again given
by the volume operator O0 while the one associated with λII2 is
almost aligned withO1, i.e., V2 = (0.07, 0.995, · · · )T for N = 5.

The properties of spec(B) beyond these universal eigenvalues
obtained from the framework I in d = 4 and d = 3 as
well as in the conformally reduced approximation in d = 3
(framework II) are shown in Figures 1–3, respectively. The left
diagrams show the real part, Re(λn) of the stability matrices of
size N = 25 (left line, green dots), N = 50 (middle line,
orange dots), and N = 100 (right line, blue dots). The lines

clearly illustrate that increasing N adds additional eigenvalues
coming with both increasingly positive and increasingly negative
real parts. This feature is shared by all frameworks discussed
above. The middle diagrams illustrate the location of spec(B)
for N = 100 in the complex plane. While the patterns are
quite distinct, they share the existence of nodes where complex
eigenvalues are created which then move out into the complex
plane along distinguished lines. The right diagrams trace the first
two negative eigenvalues as a function of the matrix size N. In
all cases, the structure of B implies that the first eigenvalue is
independent of N while the other parts of the spectrum exhibit
an N-dependence. As illustrated in Figures 1, 2, the eigenvalues
λn, n ≥ 2 follow intriguing periodicity patterns. The average over
the second and third eigenvalues found in the matrices of size up
to N = 100 (for λ̄2) and N = 20 (for λ̄3, excluding values where
a complex eigenvalue has appeared in the interval spanned by λ1
and λ3) are

5

d = 3 : λI2 = −2.35± 0.08 λI3 = −0.61± 0.40

d = 4 : λI2 = −2.86± 0.61 λI3 = −6.36± 2.04
(34)

Carefully analyzing the N-dependence of spec(B) reveals that
there is a close relation between the distribution of eigenvalues
in the complex plane (middle diagrams) and the oscillations of

λ2 visible in the left diagrams: the oscillations are linked to the
appearance of new complex pairs of eigenvalues. Focusing on the
four-dimensional case where this feature is most prominent, one
finds that singling out the values of λ2 just before the occurrence
of the new pair of complex eigenvalues in spec(B) essentially
selects the λ2(N) constituting the maxima in the oscillations. The
resulting subset of eigenvalues is displayed in the inset shown in
Figure 1 and is significantly more stable than the full set. The
statistical analysis shows that in this case

d = 4 : λ̄
I,subset
2 = −2.61± 0.39, (35)

so that the fluctuations are reduced by a factor two as compared
to the full set 34.

At this stage, it is interesting to compare the averages 34 to
the eigenvalue spectrum obtained from the smallest non-trivial
stability matrix B with size N = 3:

d = 3 : λI2 = −2.35, λI2 = −1.26, λI3 = −0.20,

d = 4 : λI2 = −1.70, λI2 = −2.74, λI3 = −5.95.

(36)

Thus we conclude that small values of N already give a good
estimate of the (averaged) spectrum of B.

We close this section with a general remark on the structure
of spec(B). The stability matrix is not tied to the Reuter fixed
point but well-defined on the entire g-λ–plane: the generating
functional (21) assigns an infinite tower of eigenvalues to each

5Our errors are purely statistical, giving the standard deviation based on the data

set of eigenvalues. An estimate of the systematic errors is highly non-trivial and

will not be attempted in this work.
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FIGURE 1 | Spec(B) in d = 4 dimensions obtained within framework I. The top-left diagram displays the real parts Re(λn) of the eigenvalues found for the stability

matrices of sizes N = 25 (left line, green dots), N = 50 (middle line, orange dots), and N = 100 (right line, blue dots). The top-right diagram shows the location of the

eigenvalues λn (N = 100) in the complex plane. The bottom diagram traces the value of the first two relevant eigenvalues as a function of the matrix size N.

FIGURE 2 | Spec(B) in d = 3 dimensions obtained within framework I. The top-left diagram displays the real parts Re(λn) of the eigenvalues found for the stability

matrices of sizes N = 25 (left line, green dots), N = 50 (middle line, orange dots), and N = 100 (right line, blue dots). The top-right diagram shows the location of the

eigenvalues λn (N = 100) in the complex plane. The bottom diagram traces the value of the first two relevant eigenvalues as a function of the matrix size N.
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FIGURE 3 | Spec(B) in d = 3 dimensions obtained within framework II. The top-left diagram displays the real parts Re(λn) of the eigenvalues found for the stability

matrices of sizes N = 25 (left line, green dots), N = 50 (middle line, orange dots), and N = 100 (right line, blue dots). The top-right diagram shows the location of the

eigenvalues λn (N = 100) in the complex plane. The bottom diagram establishes that the first two relevant eigenvalues are independent of the matrix size N.

point in this plane. At the Gaussian fixed point, (λ∗, g∗) = (0, 0),
γ = 0 and spec(B) follows from classical power counting. The
strength of the quantum corrections to spec(B) is then controlled
by the values of g and λ. In particular, there is a region in
the vicinity of the Gaussian fixed point where these corrections
are small. This motivates defining “perturbative domains” P by
the condition that spec(B) is dominated by its classical part.
Concretely, we define

d = 3 :

{

P2 = {(λ, g)| spec(B) has 2 UV-relevant eigenvalues}
P3 = {(λ, g)| spec(B) has 3 UV-relevant eigenvalues}

d = 4 : P3 = {(λ, g)|spec(B) has 3 UV-relevant eigenvalues}.
(37)

Loosely speaking, the definitions of these domains corresponds
to imposing that the quantum corrections are not strong enough
to turn more than one classically UV-marginal (d = 4) or
UV-irrelevant (d = 3) eigendirection into a relevant one.

Figure 4 illustrates the shape of the domains P obtained from
the spectrum of the stability matrices with N = 10 (framework
I) in d = 3 (left panel) and d = 4 (right panel). In d = 3 the
regions P2 and P3 are shaded in blue and orange, respectively
while in d = 4P3 is shaded blue. At the boundary of these regions
a new complex pair of eigenvalues with negative real part appears
in the spectrum which then violates the definitions (37). Within
the present computation the Reuter fixed points (27) are located

outside of P3 which is consistent with the eigenvalue spectra
shown in Figures 1, 2.

The boundary of the domains P3 is very well-described by the
parametric curves

b =
g

(1− 2λ)p
(38)

with the best-fit parameters

d = 3 : b = 0.24, p = 2.94,

d = 4 : b = 0.69, p = 2.77.
(39)

Following the ideas [72, 73], advocated in the context of
gravity-matter systems, it is suggestive to interpret the right-
hand side of (38) as the “effective strength of the gravitational
fluctuations”. The values b then correspond to the critical
value of the effective gravitational coupling geff which separates
perturbative from non-perturbative behavior. Comparing the
eigenvalue distributions for the Reuter fixed points shown in
Figures 1–3 to a typical spectrum obtained in the perturbative
region (cf. Figure 5), it is clear that this phase transition is easily
visible in the scaling properties of the operatorsOn.

5. CONCLUSIONS AND OUTLOOK

In this work, we applied to composite operator formalism to
construct a completely analytic expression for the matrix γ
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FIGURE 4 | Spectral analysis for the matrices B of size N = 10 as a function of g and λ in d = 3 (left) and d = 4 (right). In the shaded region spec(B) is dominated by

its classical part. In d = 3 the blue and orange regions support two and three negative eigenvalues, respectively, while in d = 4 the blue region supports three negative

eigenvalues. The boundary to the white region is set by the appearance of a new, complex pair of eigenvalues coming with a negative real part. The Reuter fixed

points (27) are marked by the black dots and are located outside the shaded regions.

FIGURE 5 | Spectral analysis for the matrix B of size N = 100 evaluated at a generic point in the perturbative region, (λ,g) = (0, 0.1), in d = 4. As its characteristic

features, the eigenvalue spectrum is bounded from below and is controlled by the classical scaling dimensions dn.

encoding the anomalous scaling dimensions of the geometrical
operators On ≡

∫

ddx
√
gRn, n ∈ N, on a background

sphere. Our work constitutes the first instance where the
composite operator formalism for gravity is extended beyond
the single-operator approximation. Within the geometric gauge
adopted in our work, the anomalous dimensions originate from
the transverse-traceless and trace mode of the gravitational
fluctuations. The gauge-modes, corresponding to the vector
sector of the transverse-traceless decomposition, decouple. Our
derivation made two assumptions: firstly, we assumed that
the propagators of the fluctuation fields can be approximated
by the (gauge-fixed) Einstein-Hilbert action. Secondly, we
assumed that terms appearing in the early-time expansion
of the heat-kernel beyond the R2-level can be neglected. On

this basis, we derived the generating functional (21) from
which the matrix of anomalous dimensions (20) can be
generated efficiently.

As illustrated in section 4 the stability matrix B resulting
from the composite operator formalism allows to study the
stability properties of the Reuter fixed point. This novel
type of analysis provided the following structural insights on
Asymptotic Safety:

(1) The composite operator approach suggests that in d =
4 quantum fluctuations turn the classically marginal R2-
operator into a UV-relevant one. Similarly, the analysis in
d = 3 dimensions predicts that the classically irrelevant
R2-coupling becomes UV-relevant.
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(2) The eigenvectors of B do not coincide with the
geometric operators On. In general they are given
by linear combinations containing an infinite number
of terms.

(3) The non-diagonal terms γnm, n 6= m play a crucial role in
determining the spectrum of B. Within the assumptions made
in our derivation one furthermore finds that increasing the
size of B creates complex pairs of eigenvalues which wander
through the complex plain and lead to new (most likely
spurious) UV-relevant directions.

The analysis of the spectrum of the stability matrix as a function
of the dimensionless Newton coupling g and cosmological
constant λ reveals the existence of a domain where the
eigenvalues are dominated by classical power counting. The
resulting spectrum is then similar to the one encountered
when solving the Wetterich equation in the polynomial
f (R)-approximation which determined the eigenvalues of the
stability matrix for N = 6 [38, 39], N = 8 [40], N = 35 [44, 47],
and lately alsoN = 71 [58]. In particular, Falls et al. [58] reported
that for large values of n the real parts of the eigenvalues λn follow
an almost Gaussian behavior

λ
f (R)
n ≈ a n− b, a = 2.042± 0.002, b = 2.91± 0.05. (40)

where a and b are the best-fit values. As indicated in Figure 4,
the present computation places the Reuter fixed point outside of
this scaling domain, i.e., for sufficiently largematrices one obtains
new eigenvalues coming with both positive and negative real
parts. This makes it conceivable that the higher-order curvature
terms appearing in the propagators of the f (R)-approximation
play a crucial role in extending the domain such that it includes
the fixed point, thereby guaranteeing its predictive power.

Putting our results into a broader context, we note that, by
now, several classes of consistency tests related to the viability of
an RG fixed point for the asymptotic safety program have been
put forward. These include, e.g., the stability of the eigenvalue
spectrum of B when increasing the set of operators included
in Ŵk [38–40, 58], the concept of “apparent convergence”
[74], “effective universality” in gravity-matter systems [75],
or the “almost perturbative” nature of the fixed point [76].
Our results then provide key insights on how convergence of
fixed point properties could organize itself outside the almost
perturbative domain.

Arguably, the most intriguing result of our work is the spectral
analysis of the stability matrix showing the distributions of its
eigenvalues in the complex plane, c.f. the top-right diagrams
of Figures 1–3, 5. The resulting patterns are reminiscent of the
Lee-Yang theory for phase transitions [77]. This suggests two
immediate applications. First, the status of Asymptotic Safety
makes it conceivable that there are actually an infinite number
of Reuter-type fixed points arising from gravity and gravity-
matter systems. Understanding the characteristic features of
their eigenvalue distributions in terms of nodal points creating
complex eigenvalues may then constitute a powerful tool for
classifying these fixed points and giving a precise definition
to the notion of “gravity-dominated” renormalization group

fixed points in gravity-matter systems. Secondly, tracing the
eigenvalues λn along their Lee-Yang type orbits in the complex
plane could provide a novel tool for testing the convergence of the
eigenvalue distribution of B beyond the realm of a weak effective
gravitational coupling (38) where the spectrum is governed by
classical power counting. Clearly, it would be interesting to follow
up on these points in the future.

As a by-product our analysis also computed the diagonal
entries of the anomalous dimension matrix in geometric gauge
[cf. Equation (30)]. It is instructive to compare this result to the
value of the diagonal entries obtained in harmonic gauge [19, 32]

d = 3 : γ ∗
nn = 1.591− 1.505n− 0.118n2,

d = 4 : γ ∗
nn = 3.987− 4.733n− 0.095n2.

(41)

This identifies two features which are robust under a change
of gauge-fixing: in both cases, the values of γnn up to n ≃
O(10) follows a linear scaling law: in all cases the coefficients
multiplying the quadratic terms are small or even vanishing
when adopting geometric gauge in four dimensions. Secondly,
the entries in the stability matrix Bnn are negative definite for
all values n. At the same time, this comparison gives a first idea
of the accuracy to which the composite operator formalism in
the single-operator approximation is capable to determine the
anomalous scaling dimension of the geometric operators: most
likely, the results have the status of order-of-magnitude estimates:
they should not be interpreted as “precision results” which one
should try and reproduce to the given accuracy. Conceptually, it
would be interesting to understand (and eliminate) the gauge-
dependence of the result. Most likely, this will require imposing
on-shell conditions to the master Equation (5) following, e.g., the
ideas outlined in Benedetti [78] and Falls [79]. Along a different
line, it would be interesting to extend the results for the single-
operator approximation obtained in the present work to the
case where the gravitational propagators include all terms up to
order R4 in the curvature expansion. This computation would be
“complete” in the sense that it includes all terms which contribute
to the γ ∗

nn and therefore constitutes the “best” result attainable
in the composite operator framework. We leave these points to
future work though.

As one of its most intricate features, the composite operator
formalism employed in this work could act as a connector
between Asymptotic Safety [22, 23] and more geometric
approaches to quantum gravity based on causal dynamical
triangulations [80, 81] or random geometry. In d = 2
dimensions, a natural benchmark would involve a quantitative
comparison of scaling properties associated with the geodesic
length recently considered in Pagani and Reuter [19], Becker
and Pagani[29, 30], Becker et al. [31], and Houthoff et al.
[32] and exact computations for random discrete surfaces
in the absence of matter fields [21, 82] as well as rigorous
and numerical bounds arising from Liouville Gravity in the
presence of matter [83, 84]. On the renormalization group side
this will involve taking limits akin to Nink and Reuter [85].
Conversely, it is interesting to generalize the two-dimensional
constructions to higher dimensions. The connection between the
stability matrix B and the anomalous scaling dimension γ of
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geometric operators may then be an interesting link allowing to
probe Asymptotic Safety based on geometric constructions of a
quantum spacetime.
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APPENDICES

A. HEAT-KERNEL, MELLIN TRANSFORMS,
AND THRESHOLD FUNCTIONS

The calculation of γ requires the evaluation of the operator
traces appearing on the right-hand side of the composite
operator equation (5). This computation can be done effectively
by applying the early-time heat-kernel expansion for minimal
second-order differential operators 1 ≡ −ḡµνD̄µD̄ν . Following
the ideas advocated in Lauscher and Reuter [69] and Benedetti
et al. [61], we carry out a transverse-traceless decomposition
of the fluctuation fields. Paired with a maximally symmetric
background geometry, this decomposition ensures that all
differential operators in the trace arguments organize themselves
into Laplacians 1.

These traces can then be evaluated using the Seeley-deWitt
expansion of the heat-kernel on the d-sphere Sd:

Tri
[

e−s1
]∣

∣

Sd
(42)

≃
1

(4πs)d/2

∫

ddx
√

ḡ
[

ai0 + ai1 s R̄+ ai2 s
2 R̄2 + . . .

]

.

Here i = {S,TV ,T} labels the type of field on which the Laplacian
acts and the dots represent higher-order curvature terms. The
relevant coefficients ain have been computed in Lauscher and
Reuter [69] and are listed in Table 1. Their derivation manifestly
uses the identities (8) in order to simplify the heat-kernel
expansion on a general manifold [87].

The expansion (42) is readily generalized to functions of the
Laplacian. Introducing the Q-functionals

Qn[W] ≡
1

Ŵ(n)

∫ ∞

0
dzzn−1W(z) , n > 0, Q0[W] = W(0),

(43)
one has [40]

Tri
[

W(1)
]

=
1

(4π)d/2

∫

ddx
√

ḡ
[

ai0 Qd/2[W]

+ ai1 Qd/2−1[W] R̄+ ai2 Qd/2−2[W] R̄2 + . . .
]

.

(44)

In order to write γ and the beta functions of the Einstein-
Hilbert truncation in a compact form, it is convenient to
express theQ-functionals in terms of the dimensionless threshold
functions [37]

8
p
n(w) ≡

1

Ŵ(n)

∫ ∞

0
dz zn−1 r(z)− zr′(z)

[z + r(z)+ w]p
,

˜8
p
n(w) ≡

1

Ŵ(n)

∫ ∞

0
dz zn−1 r(z)

[z + r(z)+ w]p
.

(45)

Here r(z) is the dimensionless profile function associated with the
scalar regulator Rk(z) = k2 r(z) introduced in Equation (50) and

the prime denotes a derivative with respect to the argument. For
later convenience we also define the combination

q
p
n(w) ≡ 8

p
n(w)−

1

2
ηN ˜8

p
n(w) . (46)

The arguments of the traces appearing in γ , Equation (16),
and the Einstein-Hilbert truncation studied in Appendix B have
a canoncial form. Defining Pk ≡ z + Rk(z), the identity

Qn

[

zq (Pk + wk2)−p Gk∂t
(

G−1
k

Rk
)]

= 2
Ŵ(n+ q)

Ŵ(n)
(k2)n+q+1−p q

p
n+q(w) (47)

allows to convert the corresponding Q-functionals into the
dimensionless threshold functions. For q = 0 this reduces to

Qn

[

(Pk + wk2)−p ∂tRk
]

= 2 (k2)n+1−p 8
p
n(w) ,

Qn

[

(Pk + wk2)−p Gk∂t
(

G−1
k

Rk
)]

= 2 (k2)n+1−p q
p
n(w) .

(48)

Notably, the second set of identities suffices to derive the beta
functions of the Einstein-Hilbert truncation while the evaluation
of γ requires the generalization (47).

For maximally symmetric backgrounds the background
curvature R̄ is covariantly constant. As a consequence, it has the
status of a parameter and can be included in the argument of
the threshold functions. Expansions in powers of R̄ can then be
constructed from the recursion relations

d

dw
8

p
n(w) = −p8

p+1
n (w) ,

d

dw
q
p
n(w) = −p q

p+1
n (w) .

(49)
Throughout the work, we specify the (scalar) regulator

Rk(1) = k2 r(1/k2) , (50)

to the Litim regulator [89, 90]. In this case the dimensionless
profile function r(z) is given by

r(z) = (1− z)2(1− z) , (51)

with2(x) the unit-step function. For this choice the integrals (45)
can be carried out analytically, yielding

8
p,Litim
n (w) =

1

Ŵ(n+ 1)

1

(1+ w)p
,

˜8
p,Litim
n (w) =

1

Ŵ(n+ 2)

1

(1+ w)p
. (52)

B. THE EINSTEIN-HILBERT TRUNCATION
IN GENERAL GAUGE

Structurally, the composite operator equation provides a map

from the couplings contained in the Hessian Ŵ
(2)
k

to the matrix
of anomalous dimensions γ . This map is independent of the RG
flow entailed by the Wetterich equation. In order to characterize
the geometry associated with the Reuter fixed point, the map
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has to be evaluated at the location of the fixed point. This
appendix then studies the flow of Ŵk in the Einstein-Hilbert
truncation supplemented by a general gauge-fixing term. The key
result is the position of the Reuter fixed point, Equation (27),
which underlies the spectral analysis of section 4. Our analysis
essentially follows [61, 62, 86], to which we refer for further
details.

The Einstein-Hilbert truncation approximates the effective
average action Ŵk[h; ḡ] by the Einstein-Hilbert action
ŴEH
k

[g] = 1
16πGk

∫

ddx
√
g (23k − R) supplemented by a

gauge-fixing functional Ŵ
gf

k
[h; ḡ] and the corresponding ghost

action Sghost[h, C̄,C; ḡ]

Ŵk[h; ḡ] ≃ ŴEH
k [g]+ Ŵ

gf

k
[h; ḡ]+ Sghost[h, C̄,C; ḡ] . (53)

This ansatz contains two scale-dependent couplings, Newton’s
coupling Gk and the cosmological constant 3k. In the present
analysis, we work with a generic gauge-fixing term

Ŵ
gf

k
[h; ḡ] =

1

32πGk α

∫

ddx
√

ḡḡµνFµFν ,

Fµ ≡ D̄νhµν −
1+ ρ

d
D̄µh , (54)

where α and ρ are free, dimensionless parameters. The harmonic
gauge used in Pagani [70] and Houthoff et al. [32] corresponds to
α = 1, ρ = d/2 − 1 while the present computation significantly
simplifies when adopting geometric gauge, setting ρ = 0 before
evoking the Landau limit α → 0. The ghost action associated
with (54) is

Sghost[h, C̄,C; ḡ] =

−
∫

ddx
√

ḡ C̄µ

[

D̄ρδµ
ν Dρ + D̄ρgρνD

µ

−
2(1+ ρ)

d
D̄µḡ

σρgρνDσ

]

Cν (55)

Following the strategy employed in the gravitational sector, c.f.
Equation (9), the fields C̄µ, C

µ are decomposed into their
transverse and longitudinal parts

Cµ = CTµ + D̄µ η , D̄µC
Tµ = 0 , (56)

followed by a rescaling

11/2 η 7→ η . (57)

The part of the ghost action quadratic in the fluctuation fields
then becomes

Sghost,quad =
∫

ddx
√

ḡ

{

C̄T
µ

[

1 −
1

d
R̄

]

CTµ

+ 2η̄

[

d − 1− β

d
1 −

1

d
R̄

]

η

}

. (58)

We now proceed by constructing the non-zero entries of

the Hessian Ŵ
(2)
k
. These are obtained by expanding Ŵk to

second order in the fluctuation fields, substituting the transverse
traceless decomposition (9) and (56), and implementing the field
redefinitions (11) and (57). Subsequently taking two functional
variations with respect to the fluctuation fields then leads to the
matrix elements listed in the middle block of Table 2.

The final ingredient entering the right-hand side of the
Wetterich equation is the regulator Rk. We generate this matrix
from the substitution rule

1 7→ Pk ≡ 1 + Rk(1) , (59)

dressing each Laplacian by a scalar regulator Rk(1). The latter
then provides a mass for fluctuation modes with momentum
p2 . k2. In the nomenclature introduced in Codello et al. [40]
this corresponds to choosing a type I regulator. The non-zero
entries ofRk generated in this way are listed in the bottom block
of Table 2.

We now have all the ingredients to compute the beta
functions resulting from the Wetterich equation projected onto
the Einstein-Hilbert action. Adopting the geometric gauge ρ =
0,α → 0 used in the main section, all traces appearing in the
equation simplify to the Q-functionals evaluated in Equation
(48). Defining

∂tgk = βg(g,λk; d) ≡ (d − 2+ ηN)gk , ∂tλk ≡ βλ(g,λk; d)
(60)

where the anomalous dimension of Newton’s coupling is
parameterized by Reuter [37]

ηN(g, λ) =
gB1(λ)

1− gB2(λ)
, (61)

the explicit computation yields

βλ = (ηN − 2)λ +
g

(4π)d/2−1

[

(d − 2)(d + 1)q1d/2(wT)

+2q1d/2(wS)+ 2dq1d/2(0)− 4d81
d/2(0)

]

,

(62)

and

B1 =
1

(4π)d/2−1

[ (d + 1)(d + 2)(d − 5)

3(d − 1)
81

d/2−1(wT)

−
2(d − 2)(d + 1)(d2 − 3d + 4)

d(d − 1)
82

d/2(wT)

+
2

3
81

d/2−1(wS)−
2(d − 4)

d − 1
82

d/2(wS)

−
4(d2 − d + 1)

d(d − 1)
82

d/2(0)−
2(d2 − 6)

3d
81

d/2−1(0)
]

,

B2 = −
1

2(4π)d/2−1

[ (d + 1)(d + 2)(d − 5)

3(d − 1)
˜81

d/2−1(wT)

−
2(d − 2)(d + 1)(d2 − 3d + 4)

d(d − 1)
˜82

d/2(wT)

+
2

3
˜81

d/2−1(wS)−
2(d − 4)

d − 1
˜82

d/2(wS)

+
4(d2 − d + 1)

d(d − 1)
˜82

d/2(0)+
2(d2 − 6)

3d
˜81

d/2−1(0)
]

.

(63)
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Here the threshold functions 8
p
n, ˜8

p
n and q

p
n(w) are defined in

Equations (45) and (46) and their arguments wT and wS have
been introduced in (23).

It is now straightforward to localize the Reuter
fixed point by determining the roots of the beta
functions (60) numerically. For the Litim regulator (51)
this yields

Reuter fixed point: d = 3 : g∗ = 0.198 , λ∗ = 0.042 ,

Reuter fixed point: d = 4 : g∗ = 0.911 , λ∗ = 0.160 .

(64)

Analyzing the stability properties of the RG flow in its vicinity, it
is found that the fixed point constitutes a UV attractor, with the
eigenvalues of the stability matrix given by

Reuter fixed point: d = 3 : λEH1,2 = −1.658± 0.546i ,

Reuter fixed point: d = 4 : λEH1,2 = −2.132± 2.697i .

(65)

These results agree with the ones found in Benedetti et
al. [61] at the 10% level. The difference can be traced back
to the two distinct regularization procedures employed in the
computations, so that the findings are in qualitative agreement.
This completes our analysis of the Einstein-Hilbert truncation
underlying the scaling analysis in the main part of this work.

C. MATRIX-ELEMENTS OF GEOMETRIC
OPERATORS

The expansions of On and Ŵk in the fluctuation fields are
readily computed using the xPert extension [88] of xAct. For
completeness, the relevant expressions are listed in Table 2. The
d-dependent coefficients Ci multiplying the curvature terms in

Ŵ
(2)
k

are

CT =
d2 − 3d + 4

d(d − 1)
, CV =

d − 2

d
, CS =

d − 4

2(d − 1)
,

Cσ = −(d − 2) . (66)
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A hallmark of non-perturbative theories of quantum gravity is the absence of a fixed

background geometry, and therefore the absence in a Planckian regime of any notion

of length or scale that is defined a priori. This has potentially far-reaching consequences

for the application of renormalization group methods à la Wilson, which rely on these

notions in a crucial way. We review the status quo of attempts in the Causal Dynamical

Triangulations (CDT) approach to quantum gravity to find an ultraviolet fixed point

associated with the second-order phase transitions observed in the lattice theory.

Measurements of the only invariant correlator currently accessible, that of the total

spatial three-volume, has not produced any evidence of such a fixed point. A possible

explanation for this result is our incomplete and perhaps naïve understanding of what

constitutes an appropriate notion of (quantum) length near the Planck scale.

Keywords: quantum gravity, phase transitions, causal dynamical triangulations, lattice field theory, asymptotic

safety

1. INTRODUCTION

TheWilsonian concept of renormalization has been of immense importance for our understanding
of quantum field theory and its relation to critical phenomena in statistical mechanics and
condensed matter physics. In the context of lattice field theory it has been the guiding principle
for approaching a continuum quantum field theory, starting out with a lattice regularization of the
theory. Usually we view the ultraviolet (UV) regularization of the quantum field theory as a step on
the way to defining the theory. For a given theory there will in general be many ways to introduce
such a regularization, some more convenient than others, depending on the calculations one wants
to perform. The lattice regularization is usually not the most convenient regularization if one wants
to perform analytic calculations, but for some theories it allows one to perform non-perturbative
calculations, for instance in the form of Monte Carlo (MC) simulations of the field theories in
question. It also allows one to address in a non-perturbative way the question of whether or not a
given quantum field theory exists, the simplest example being a φ4-theory in four dimensions. This
is a perturbatively renormalizable quantum field theory, so one can fix the physical mass and the
physical coupling constant of the theory, and to any finite order in the coupling constant calculate
the correlation functions. However, this does not imply that the theory really exists in the limit
where the UV cut-off is taken to zero, since the perturbative expansion is only an asymptotic
expansion. The lattice field formulation of the φ4-theory provides us with a tool to go beyond
perturbation theory, and (as will be discussed below) the result is that the φ4-quantum field theory
does not exist in four spacetime dimensions. In a similar vain, lattice field theory seems to confirm
the existence of the quantum version of non-Abelian gauge theories.
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The lattice field theories address the question of existence
of certain quantum field theories using the Wilsonian picture:
if the continuum quantum field theory exists as a limit of the
lattice field theory when the cut-off is removed (the lattice
spacing goes to zero), there exists a UV fixed point of the
renormalization group. One can approach such a fixed point
in the following way: choose observables which define the
physical coupling constants of the theory and measure them
for a certain choice of the bare coupling constants used to
define the lattice theory. Then change the lattice spacing by
a factor 1/2 and find the new bare coupling constants which
leave the observables unchanged1. Continue halving the lattice
spacing and in this way create a flow of the bare coupling
constants. The bare coupling constants will then flow to a UV
fixed point (if it exists).

The next question is which observables to choose. In the case
of a φ4-theory this is simple (and we will make a choice below).
In the case of non-Abelian gauge theories it is already somewhat
more difficult, since observables should be gauge-invariant, while
the theory is usually not formulated in terms of gauge-invariant
variables. In MC simulations of the quantum field theory it is
important to choose such gauge-invariant observables, since in
quantum field theories the quantum fluctuations are dominated
by UV fluctuations. If one uses the path integral (as one does
in MC simulations), it implies that a typical field configuration
is almost nothing but UV fluctuations. This is true also for
scalar theories like a φ4-theory, but since the field variables in
gauge theories are not gauge-invariant, most of these fluctuations
are even more unphysical “noise.” However, this noise will
cancel when calculating expectation values of gauge-invariant
observables. If we next move to quantum theories of geometry,
in particular attempts to quantize General Relativity (GR), the
choice of “gauge-invariant” observables becomes even more
tricky. Gauge invariance in this context is usually replaced by
diffeomorphism invariance, and there are few invariant local
observables. However, it is even more important that the concept
of “distance” now becomes field-dependent. For a given geometry
the distance between two points depends on the geometry.
Therefore, if we integrate over geometries in the path integral,
it becomes unclear how to think about a quantum correlation
between fields as function of a distance. In particular, since
distance, or scale, is paramount in the Wilsonian theory of
critical phenomena, a new challenge arises in this program
when we quantize geometries. This is what we want to discuss
in this article.

In section 2, we review the standard Wilsonian picture for a
φ4-theory in four flat spacetime dimensions, emphasizing how to
find a UV fixed point in the bare coupling constant space of the
theory. In section 3, we discuss how to use the Wilsonian picture
for the theory of quantum geometry denoted Causal Dynamical

1Using a description like this we assume we are so close to a continuum limit

that we can use a continuum language for the observables, rather than referring

explicitly to the lattice. In addition, note that a procedure like this will not

leave all observables unchanged, but only the physical coupling constants. One

could follow another renormalization procedure, where the action contained “all

possible coupling constants.” In this space one could follow a path which leaves all

observables invariant.

Triangulations (CDT), which has been suggested as a theory
of quantum gravity. Section 4 discusses some examples where
“quantum distances” appear in correlation functions, whether
these distances are observables and to what extent the “fractal
structure” of quantum geometry can be observed. Finally, section
5 contains a discussion.

2. APPROACHING A UV FIXED POINT

Let us consider a φ4-field theory on a four-dimensional
hypercubic lattice with periodic boundary conditions. We
assume that the lattice has L1, L2, L3, and L4 lattice links in the
four directions, and that Li≫1. The total number of lattice points
is N = L1 · · · L4. If the lattice spacing is a0, the corresponding
physical volume is V = Na40. Let n = (n1, . . . , n4) denote
the integer lattice coordinates of the vertices. The corresponding
spacetime coordinates will be xn = a0n. A scalar field φ0 lives on
the lattice vertices and we write φ0(n) or φ0(xn). The lattice field
theory action is

S[φ0,m0, λ0; a0] =
∑

n

a40

(1

2

4
∑

i=1

(φ0(n+ î)−φ0(n))
2

a20
+

1

2
m2

0φ
2
0(n)+

1

4!
λ0φ

4
0(n)

)

,

(1)

where î denotes a unit vector in direction i. The action is
characterized by two so-called “bare,” dimensionless coupling
constantsm0a0 and λ0. A correlation function is defined as

〈φ0(n1) · · ·φ0(nk)〉 =
∫
∏

n dφ0(n) φ0(n1) · · ·φ0(nk)e
−S[φ0 ,m0 ,λ0;a0]

∫
∏

n dφ0(n)e−S[φ0 ,m0 ,λ0;a0]
.

(2)

We obtain the same action if we simultaneously change a0 → a,
set a0φ0 = aφ, m0a0 = ma and leave λ0 unchanged, and we
have trivially

ak0〈φ0(n1) · · ·φ0(nk)〉a0 ,m0 ,λ0 = ak〈φ(n1) · · ·φ(nk)〉a,m,λ0 . (3)

In the theory we also have renormalized coupling constants mR

and λR, which are determined by some explicit prescription,
allowing us to “measure” them. For instance, mR can be defined
from the exponential fall-off of the two-point function, while
λR can be defined as the connected four-point function at
zero momentum. We thus have mRa0 = 1/ξ , where ξ is the
dimensionless correlation length of the two-point φ-correlator,
measured in units of the lattice spacing. Similarly, there is an
explicit definition of λR. Let us state how to measure these
quantities on the lattice since we will use the same techniques in
the case of gravity. We choose one of the lattice axes as the “time”
direction and define the spatial average

80(n
t) :=

∑

En
φ0(En, nt), En = (nx, ny, nz), (4)
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and we have

〈80(n
t
1)80(n

t
2)〉c = const. e−|nt1−nt2|/ξ + · · · , (5)

where the subscript c in 〈·〉c is the connected part, and the dots
indicate terms falling off faster at large time differences. The
exponential decay for large |nt1−nt2| determines the physical mass
mR = 1/(a0ξ ). Similarly, we can define the susceptibilities

χk :=
∑

nt1 ,...,n
t
k−1

〈80(n
t
1) · · ·80(n

t
k−1)80(0)〉c (6)

and the second moment

µ2 :=
∑

nt

(nt)2〈80(n
t)80(0)〉c. (7)

One then obtains2 (in the case 〈φ0(n)〉 = 0 where there is no
symmetry breaking)

λR = −
16χ4

µ2
2

. (8)

a0 is a fictitious parameter in the above formulation in the
sense that if we make the above-mentioned change from
(a0,φ0,m0, λ0) to (a,φ,m, λ0) we obtain the same ξ and the same
λR, whilemR changes in a trivial way since ξ is unchanged.

Let us choose a value for λR. For given values (m0a0, λ0) of the
bare coupling constants we obtain a value λR(m0a0, λ0). Among
these there will be sets (m0(s)a0, λ0(s)), parameterized by some
parameter s, such that λR(m0(s)a0, λ0(s)) = λR. They form a
curve in the (m0a0, λ0)-coupling constant space. Note that this
curve is unchanged if we change a0 → a andm0 → m = m0a0/a
and consider the (ma, λ0)-coupling constant plane.Moving along
this curve, the correlation length ξ (s) will change, so we can
exchange our arbitrarily chosen parameter s with ξ . If we reach
a point along the curve where ξ = ∞, we have reached a second-
order phase transition point in the (m0a0, λ0)-coupling constant
plane. This point can now serve as a UV fixed point for the φ4-
theory, since we are free to insist that mR is constant along the
curve provided that we redefine a such that mRa(ξ ) = 1/ξ . This
will define a(ξ ) as a function of ξ , and – since we are free to
define the lattice theory with a(ξ ) instead of a0 – if we at the
same time make a trivial rescaling of m0 to m(ξ ) = m0a0/a(ξ ),
we will in this redefined theory obtain the same ξ and λR. Thus,
it can be viewed as a rescaling of the lattice to smaller a while
keeping the continuum physics (i.e., mR and λR) constant. In
particular, the correlation length in real spacetime is kept fixed
since |x|corr ≡ ξa(ξ ) = 1/mR. In the limit ξ → ∞ the lattice
spacing goes to zero and we have our continuum quantum field
theory with the cut-off removed.

The approach to this assumed UV fixed point is governed by
the so-called β-function3, which relates the change in λ0 to the

2For a detailed discussion see the book [1].
3A priori the β-function is a function of λ0 andm0a0, but one can show that close

to the fixed point one can ignore them0a0-dependence.

change in a(ξ ) = 1/(mRξ ) as we move along the trajectory of
constantmR, λR,

− a
dλ0

da

∣

∣

∣

mR ,λR
= ξ

dλ0

dξ

∣

∣

∣

mR ,λR
= β(λ0). (9)

Denote the fixed point by λ∗0 , and assume4 that λ∗0 6= 0. Since
λ0(ξ ) stops changing when ξ → ∞, we have β(λ∗0) = 0 and
expanding the β-function to first order one finds

λ0(ξ ) = λ∗0 + const. ξβ ′(λ∗0), β ′(λ0) =
dβ

dλ0
. (10)

It is seen from (10) that the existence of a UV fixed point implies
that β ′(λ∗0) < 0.

In a theory like φ4 in four dimensions it is not clear that there
exists a UV fixed point. The non-existence of such a fixed point
will show up in the following way: no matter which value of λR
we choose, following the curve of constant λR in the (m0a0, λ0)-
coupling constant plane, the correlation length ξ will never
diverge along the curve. This implies that there is no continuum
limit of the theory with a finite value of the renormalized coupling
constant. This seems to be the case for the φ4-theory in four
dimensions [2]. It does not mean that there are no points in
the (m0a0, λ0)-coupling constant plane with infinite correlation
length. In fact, there is an entire curve of such points where the
lattice model undergoes a second-order phase transition between
the broken and unbroken symmetry5 φ → −φ. However, these
points are not related to a UV fixed point, but are related to an
infrared fixed point of the theory. They cannot be reached on a
path of constant λR physics and they cannot be used to define an
interacting quantum φ4-field theory in the limit where the lattice
spacing goes to zero.

It will be convenient for us to reformulate the above coupling
constant flow in terms of so-called finite-size scaling. For a
regular hypercubic lattice in d dimensions with lattice spacing a,
the physical volume is Vd =Nda

d, where Nd is the total number
of hypercubes. To make sure that Vd can be viewed as constant
along a trajectory of the kind described above, with mR and λR

kept fixed, we keep the ratio between the linear size L = N
1/d
d

of the lattice and the correlation length ξ fixed. In terms of the
renormalized mass mR and the lattice spacing a(ξ ), the ratio can
also be written as

ξd

Nd
=

1

(a(ξ )mR)dNd

=
1

md
RVd

. (11)

Thus, if we are moving along a trajectory of constant mR and
λR in the bare (m0a0, λ0)-coupling constant plane and change
Nd according to (11), the finite continuum volume stays fixed.
Assuming that there is a UV fixed point, such that a(ξ ) →
0, we see that Nd goes to infinity even if Vd stays finite,
and furthermore, again from (11), that the dependence on the

4If λ∗0 = 0, we have a so-called Gaussian fixed point and the formula (10) has to be

modified slightly.
5In the parametrization chosen here, symmetry breaking can occur when we also

allow negative values of the bare coupling constantm2
0 in (1).
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correlation length ξ in (10) can be substituted by a dependence

on the linear size N
1/d
d

in lattice units of the spacetime, leading to

λ0(Nd) = λ∗0 + const. N
β ′(λ∗0)/d
d

. (12)

As we saw above, the absence of a UV fixed point could be
deduced by the absence of a divergent correlation length along
a trajectory of constant physics in the (m0a0, λ0)-plane (i.e.,
a trajectory with constant mR, λR). In the finite-size scaling
scenario this is restated asNd not going to infinity along any such
curve of constant physics.

We have outlined in this section in some detail how to
define and follow lines of constant physics in the φ4-lattice
scalar field theory, because we want to apply the same technique
to understand the UV behavior of lattice theories of quantum
gravity. The most important lesson is that one is automatically
led to UV fixed points (if they exist), if one follows trajectories of
constant continuum physics.

3. CDT

3.1. The Lattice Gravity Program
Causal Dynamical Triangulations (CDT) represent an attempt
to formulate a lattice theory of quantum gravity (for reviews
see [3, 4]). The spirit is precisely that of lattice field theory: one
has a continuum field theory with a classical action, and defines
formally a quantum theory via the path integral. However, the
formal path integral needs to be regularized and one way to do
this is to use a lattice regularization, where the length of the
lattice links provides the UV cut-off. The idea is then to search
for a UV fixed point where the lattice spacing a can be taken to
zero while continuum physics is kept fixed, following the same
philosophy as outlined above for the φ4-theory. Immediately
a number of issues arise. (1) Given the continuum, classical
theory, what is a good lattice regularization of this theory?
(2) The classical Einstein-Hilbert action is perturbatively non-
renormalizable. The situation is thus somewhat different from the
φ4-theory in four dimensions. The latter exists as a perturbative
theory in mR, λR, the mass and the coupling constant, and it
makes sense to ask whether there exists a non-perturbatively
defined quantum field theory, independent of a cut-off for given
physical values mR, λR. For a classical action which is non-
renormalizable it is not clear that the correct way to search for
a UV-complete theory is to keep a lattice version of the classical
action in the lattice path integral and then search for UV fixed
points. (3) What are the physical observables in quantum gravity,
and how does one stay on a path of constant physics when
changing the lattice spacing in the search for a UV fixed point?
Let us discuss these points in turn.

(1) The so-called Regge prescription [5] provides a way to
assign local curvature to piecewise linear geometries defined
by a (d-dimensional) triangulation and the resulting Regge
action is a version of the Einstein-Hilbert action to be
used for piecewise linear geometries. A convenient feature
of the Regge formalism is its coordinate independence.

The geometry of the piecewise linear manifold defined by
a triangulation is entirely determined by the lengths of
the links and how the d-dimensional simplices are glued
together. Regge originally wanted to use this prescription
to approximate a given classical geometry with arbitrary
precision without using coordinates. In the path integral
we will use it in a different way. We restrict ourselves to
triangulations where all links have the same length a, and
then sum in the path integral over all such triangulations of
a given topology, using as our lattice action the Regge action
for the triangulations. In this way, a becomes a UV cut-off
and the hope is that this class of piecewise linear geometries
can be used to approximate any geometry which would be
used in the continuum path integral over geometries6.

A good analog is the representation of the propagator
G(x, y) of a free particle in Euclidean space as the path
integral over all paths in Rd from x to y, with the action being
the length of the path. This integral can be approximated
by the sum over all paths on a hypercubic lattice with
lattice links of length a. This set of paths is dense in the
set of all continuous paths when the distances between
paths are measured with the same metric used to define
the Wiener measure for the set of continuum paths from
x to y (see [6] for a detailed discussion with the geometric
perspective relevant here). We call the way of performing the
path integral over geometries7 described above Dynamical
Triangulations (DT) [7–9]. The “proof of principle” that
this method works is two-dimensional quantum gravity.
Seen from a classical gravitational perspective it is a trivial
theory since the Einstein action in two dimensions is just a
topological invariant. For a fixed topology the Einstein term
does not contribute to the path integral, which implies that
the action reduces to the cosmological constant times the
spacetime volume. Thus, if we also fix the spacetime volume
in the path integral, the action is just a constant and the path
integral becomes a sum over all geometries of fixed topology
and fixed spacetime volume with constant weight. This
integral is still highly non-trivial and “maximally quantum”
in the sense that whatever the action is, in the limit h̄ → ∞
the weight of a configuration in the path integral will be 1.
The integral can be performed in the continuum, giving rise
to Liouville quantum gravity [10–13]. At the same time one
can also sum over the triangulations analytically [14]. One
can then verify that in the triangulated case one recovers the
continuum result when the lattice spacing vanishes, a → 0.
It is also important to note that the continuum limit of this

6The continuum path integral over four-dimensional geometries has not yet

been constructed in any mathematically rigorous way, but one expects that the

geometries will includemany “wild” geometries which are continuous but nowhere

differentiable. In this sense the set of piecewise geometries proposed is a set of

“nice” geometries.
7It should be emphasized that it is a sum over geometries, not a sum over

metrics gij defining a geometry. In a gauge theory this would correspond to a

sum over equivalence classes of gauge fields, something one has only been able

to dream about.
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lattice theory is fully diffeomorphism-invariant in the sense
that it is identical with a diffeomorphism-invariant theory8.

While DT works beautifully in two-dimensional
spacetime, the generalizations to higher dimensions [15–17]
have not been successful yet. The major obstacle has been
the nature of the phase diagram of the lattice theory. The
goal was to find a UV fixed point where one can define a
continuum theory when removing the cut-off. In our usual
understanding this requires a second- or higher-order phase
transition. One has found phase transitions in the bare
coupling constants, but so far they have been first-order
transitions only [18, 19] (see [19–21] for recent attempts to
avoid the first-order transitions). This led to the suggestion
that one should use a somewhat different ensemble of
triangulations, denoted Causal Dynamical Triangulations
(CDT) [22–26]. The difference with the DT ensemble is that
one restricts the triangulations to have a global time foliation,
which can be viewed as a lattice version of the requirement
of global hyperbolicity in classical General Relativity. While
the DT formalism is inherently Euclidean, one can view
the CDT triangulations as originating from triangulations
of geometries with Lorentzian signature. The construction
is such that one can analytically continue each individual
piecewise linear triangulation to Euclidean signature. In
addition, the associated Regge action also transforms as
one would naïvely expect, namely, as iS[LG] = −S[EG],
where “LG” is the Lorentzian geometry and “EG” the rotated
Euclidean geometry. The path integral is then performed
over these Euclidean piecewise linear geometries. It turns
out that the phase diagram of CDT is highly non-trivial
and possesses phase transition lines of both first and second
order [27–33]. We will provide some details below. It
should be emphasized, again with the φ4-example in mind,
that the mere existence of a second-order line of phase
transitions does not ensure that there is a UV fixed point in
the theory.

(2) There are at least three ways to try to resolve the problem
of the non-renormalizability of the Einstein-Hilbert action.
One way is to view the theory as an approximation to a
larger theory which is renormalizable. The Standard Model
of Particle Physics is the prime example of how this works.
Phenomenologically, the weak interactions were described
by a four-fermion interaction, which is non-renormalizable.
However, this is a low-energy effective action, which in the
Standard Model is resolved into a gauge theory with massive
vector particles (the W and Z particles). Thus, new degrees
of freedom were introduced, which made the electroweak
theory renormalizable. Similarly, the effective low-energy
theory of strong interactions, involvingmesons and hadrons,
was not renormalizable, and again the introduction of
new degrees of freedom (the quarks and gluons) made
the theory renormalizable. In the case of gravity, string
theory represents such an extension of degrees of freedom,

8No coordinates were introduced at any point in the lattice theory, so agreement

with a diffeomorphism-invariant theory means that all coordinate-invariant

quantities which can be calculated agree.

but one which is much more drastic than the extensions
represented by the Standard Model. And importantly, while
the extension by the Standard Model was dictated by
experiments, no string-theoretic extension of gravity has yet
been forced upon us by experiments.

Another way to address the non-renormalizability of
the Einstein-Hilbert action is to modify the way we view
the quantum theory in the case of gravity. Loop quantum
gravity represents such a route. There are still a number
of issues that need to be addressed in this approach, in
particular, how to obtain ordinary GR in the limit where
h̄ → 0. We will not discuss this approach any further. The
lattice regularization of gravity fits naturally into the third
framework, called asymptotic safety [34]. Here one relies on
the existence of a non-perturbative UV fixed point in some
quantum field theory, whose bare Lagrangian can contain
many other terms in addition to the Einstein-Hilbert term.
The UV properties of the theory are defined by this fixed
point, which one should be able to approach in such a way
that the lattice spacing scales to zero, while keeping a finite
number of observables fixed and only adjusting a similar
number of bare coupling constants. This is highly non-
trivial since using naïve perturbation theory will create an
infinite set of new counterterms which cannot be ignored.
In the CDT theory we will look for such UV fixed points
by enlarging the Einstein-Hilbert action slightly. It would
perhaps be preferable to work with amore general action, but
there are significant numerical limitations which prevent us
from exploring this in a systematic way. On the other hand,
invoking Occam’s razor, CDT quantum gravity in its present
form is a perfectly viable candidate theory of quantum
gravity, without any compelling reasons to generalize it. The
use of the renormalization group in the continuum provides
strong evidence for the existence of such a UV fixed point
[35–39]. However, some truncations are used to obtain these
results, whose validity is difficult to assess quantitatively. This
provides a strong motivation to search for such a fixed point
in lattice quantum gravity, which is an independent way to
define quantum gravity non-perturbatively.

(3) One of the steps in the search for a UV fixed point is
to choose a suitable set of physical observables to be kept
fixed along the path to the putative UV fixed point. In the
case of pure gravity this becomes non-trivial. For the φ4-
theory, one could choose to keep the coupling constants
mR and λR fixed, because the correlators of the scalar
field can be deduced from observations, and the coupling
constants can be expressed in terms of these correlators,
as mentioned earlier. In a theory of quantum gravity, the
concept of a correlator as a function of the distance between
two spacetime points is problematic, since the distance is
itself a function of the geometry we are integrating over in
the path integral. Thus, the concept of a correlation length
becomes non-trivial, and the whole Wilsonian approach to
renormalization—based on having a divergent correlation
length on the lattice when one approaches the UV fixed
point—needs to be clarified. Even the relation between the
UV cut-off (the length a of a lattice link) and any actual
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physically measurable length is not clear a priori. We will
return to this in more detail in section 4.

3.2. Phase Diagram for CDT
In DT and CDT the Regge action for a given piecewise linear
geometry appearing in the path integral becomes very simple.
In dimensionless units, where the lattice spacing a is set to 1,
the DT Regge action for a four-dimensional triangulation T
consisting of N4 four-simplices, glued together to form a four-
dimensional closed manifold in such a way that it contains N0

vertices, is given by9

S[T] = −κ0N0(T)+ κ4N4(T). (13)

In this formula κ0 ∝ a2/G0, where G0 is the bare
gravitational coupling constant, while κ4 is related to the
cosmological coupling constant. Remarkably, no details of
the triangulation except for the global quantities N4 and
N0 appear in Equation (13). In the case of CDT we have
a foliation in one direction, which we denote the time
direction. The triangulation thus consists of a sequence of three-
dimensional time-slices, where each slice has the same fixed
three-dimensional topology (typically that of S3 or T3). Each of
the time-slices is triangulated, constructed by gluing together
equilateral tetrahedra. Neighboring time-slices are joined by
four-dimensional simplices, which come in two types: (4, 1)-
simplices with four vertices in one time-slice and one vertex
in one of the neighboring time-slices, and (3, 2)-simplices, with
three vertices in one time-slice and two vertices in one of
the neighboring time-slices. The Regge action is slightly more
complicated for such a triangulation (see [3] for a detailed
discussion) and has the form

S[T] = − (κ0 + 61)N0(T)+κ4
(

N4,1(T)+ N3,2(T)
)

+1N4,1(T),
(14)

where N4,1(T) and N3,2(T) denote the number of (4, 1)- and
(3, 2)-simplices in the triangulation T. For 1 = 0 one recovers
the simpler functional form (13). Here we will view 1 as an
additional coupling constant10, with no immediate continuum
interpretation. We thus have the lattice partition function

Z(κ0,1, κ4) =
∑

T

e−S[T], (15)

and the first task is to find the phase diagram in the coupling
constant space. We have three coupling constants, κ0,1, and
k4. k4 is multiplying the total number of four-simplices and
acts like a cosmological constant. In the numerical simulations
it is convenient to keep the volume N4 of spacetime fixed.
One can subsequently perform simulations with different total
volumes and study finite-size scaling as a function of the total
volume, as already mentioned in the discussion of the φ4-
model. Keeping N4 fixed implies that we have to fix k4. This

9We assume here that N0 and N4 are large, since the Euler characteristic of the

closed manifold in principle also appears in (13), but is ignored.
10Originally in CDT, 1 was associated with an asymmetry between the lengths of

lattice links in the time direction and in the other directions.

FIGURE 1 | The CDT phase diagram. Phase transition between phase CdS

and Cb is (most likely) second order, as is the transition between Cb and B,

while the transition between CdS and A is first order. The transition between

CdS and B is still under investigation, but preliminary results suggest a

first-order transition.

leaves us with two coupling constants, κ0 and 1. In Figure 1

we show the phase diagram of CDT, determined from Monte
Carlo simulations. The diagram is surprisingly complicated and
part of it is still under investigation. We refer to the original
articles for a careful discussion [27–32, 40]. What is important
for the present discussion is that in phase CdS in Figure 1, which
we denote the de Sitter-phase, geometries with continuum-like
properties are found. Thus, we would like to start with some bare
coupling constants (κ0,1) in that phase, calculate the values of
some physical observables, and then follow the path of constant
physics by changing the bare coupling constants until we reach a
second-order phase transition point on the phase transition line
separating the CdS and Cb phases. If it exists (which is not at all
granted), this point will then be a UV fixed point.

3.3. Observables and the UV Limit
What kind of observables can we use in CDT in search of
a UV fixed point? We have no fields we can associate with
lattice vertices or the centers of (sub)-simplices11. However,
we have geometric quantities, like the Regge curvature which
is assigned to two-dimensional sub-simplices in the four-
dimensional triangulation, and we also have the trivial field
“1(n),” which assigns the real number 1 to each four-simplex
and which turns out to be quite useful12. At the same time,
for any given geometry we can talk about geodesic distances
between vertices or (sub)-simplices. This can be transferred to
the quantum gravity theory in the path integral formalism, where

11One can in principle associate by hand a coordinate system to each simplex,

compute transition functions between the different coordinate systems and assign

metric tensor fields gij to each simplex, but this becomes very cumbersome and

has so far not been useful in a DT or CDT context. It would also re-introduce a

coordinate dependence which is clearly unwanted.
12As observed in [41], if one assumes the existence of a time foliation and expands

the general continuum effective action for quantum gravity to quadratic order,

one obtains naturally a projection on the constant mode when integrating certain

correlators over space, as we will do in (18) and as was done in (4) in flat spacetime.

In this sense one is naturally led to 1(n) for such integrated correlators.
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FIGURE 2 | The average spatial volume 〈N3(n
t )〉N4

as a result of MC measurements for N4 = 362.000. The best fit (19) yields indistinguishable curves at given plot

resolution. The bars indicate the average size of quantum fluctuations δN3(n
t ).

one can talk about correlations between some of these quantities
when they are separated by a certain geodesic distance. The
subtlety lies in the fact that this distance has to be fixed outside the
path integral, since we are integrating over geometries that define
what we mean by distance. We will return to this point in section
4. Here wewill use it in a specific CDT context where the situation
is simpler. CDT is special because we have a time foliation, which
on the lattice becomes an explicit time coordinate, namely, the
nt labeling of the various time-slices. In this sense the set-up
in CDT is precisely the lattice set-up one would use in proper-
time gauge in Hořava-Lifshitz gravity (HLG) [42, 43], although
the presence of a preferred time in CDT is not associated with a

breaking of four-dimensional diffeomorphism invariance (see [4]
for a related discussion).

Let us introduce the notation 〈O〉N4 for a quantity O. It
signifies the average of the quantity O, calculated using the
partition function (15), but for fixed discrete four-volume N4.
(In practice the “calculation” means that we are performing MC
simulations.) Now we can define the CDT version of (4) for the
trivial field φ(n) = 1:

N3(n
t) =

1

2

∑

En(nt)
(1+ 1). (16)

The notation is as follows: each time-slice is assigned a lattice
time nt . On this time-slice each three-simplex (tetrahedron)
is assigned a label En(nt) by analogy with the notation for the
hypercubic lattice in Equation (4). This notation is only symbolic,
since the three-dimensional triangulations are not regular and
different time-slices need not contain the same number of

three-simplices N3(n
t). Each of these three-simplices belongs

to precisely two (4,1)-simplices, whose trivial fields “1” are
represented in the sum in (16), and we divide by 2 to obtain
N3(n

t). On a regular lattice, this number is of course trivial
and fixed, but here it can vary, as mentioned, and becomes a
dynamical variable. We now calculate averages and correlation
functions like in (5), i.e., we calculate

〈N3(n
t)〉N4 (17)

and

〈N3(n
t
1)N3(n

t
2)〉c = 〈N3(n

t
1)N3(n

t
2)〉N4 − 〈N3(n

t
1)〉N4〈N3(n

t
2)〉N4 .
(18)

Figure 2 shows the average of N3(n
t) over many

configurations in the case where the topology of the spatial
slices is that of S3. It also shows the size of the fluctuations, i.e.,

it is a plot of 〈N3(n
t)〉 and δN3(n

t) =
√

〈N2
3 (n

t)〉c from (17) and

(18). In the region where 〈N3(n
t)〉 > 100, the curve in Figure 2

fits perfectly to the functional form

Ncl
3 (n

t) := 〈N3(n
t)〉 = N4

3

4ωN
1/4
4

cos3

(

nt

ωN
1/4
4

)

, (19)

where ω depends on κ0 and 1. Despite the fact that no
background geometry enters into the path integral, a background
volume profile appears to emerge. It is identical to a (Euclidean)
de Sitter universe volume profile and the configurations created
by theMC simulations can be viewed as quantum geometries that
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fluctuate around this background.While this is very interesting13,
our main question here is whether we can use (17) and (18)
to follow a path in the bare coupling constant space (κ0,1)
toward a UV fixed point in the same way as for the φ4-theory.
More precisely, we want to identify physical observables. Since
we can perform the MC simulations for various finite volumes
N4, we want to use finite-size scaling to identify a possible
UV fixed point.

A few starting remarks are in order. We have replaced a
real field φ(n) with 1(n) in (16) and (18). Thus we cannot
necessarily expect an exponential fall-off and a corresponding
correlation length ξ like in (5). However, in the solvable two-
dimensional models of both CDT and DT one does find an
exponential fall-off related to the field 1(n) [45, 46]. This fall-off
is related to the cosmological constants of the models, and the
“mass” goes to zero with a vanishing cosmological constant. In
four-dimensional gravity we expect massless gravitons (and thus
maybe no exponential fall-off), but as shown in [41], there are
terms in an effective continuum action of quantum gravity, which
can lead to such an exponential fall-off, e.g., the non-local term

ŴNL = −
b2

96πG

∫

d4x
√
g R

1

12
g

R, (20)

where 1g is the scalar Laplacian defined in the geometry related
to the metric gij(x). Expanding the fluctuations to quadratic
order around flat spacetime, b will appear as a mass term. We
might observe such terms in case of toroidal topology, where the
fluctuations we observe seem to be around flat spacetime. If the
spatial topology is S3, the contributions from a term like (20)
would mix with contributions from the cosmological term via the
curvature of the background geometry used for S3. Thus, there
might be a number of sources for an exponential fall-off of the
(spatial) volume-volume correlator.

Equation (19) shows that for fixed κ0 and 1 we have a
well-defined scaling with N4. The same is true for the volume-
volume correlator, where the MC data (for spatial topology S3) is
consistent with the formula

〈N3(n
t
1)N3(n

t
2)〉c = γ 2N4F

( nt1

ωN
1/4
4

,
nt2

ωN
1/4
4

)

, (21)

√

〈N2
3 (n

t)〉c = γ
√

N4 G
( nt

ωN
1/4
4

)

. (22)

Here γ depends on κ0 and 1. F is some scaling function which
only depends slightly on κ0 and 1, and G =

√
F. Unfortunately,

we cannot really use Equation (21) to extract a correlation length
ξ independent of N4. If any ξ could be associated with the
correlator, it would already be “maximal,” i.e., of order ωN1/4,
the whole average time-length of the universe, without any fine-
tuning of the bare coupling constants. A condition like (11) then

13The dominant “semiclassical background geometries” seem to depend on the

topology of space (as do classical solutions of Einstein’s equations). If we change

the topology of space from S3 to T3, the dominant volume profile will be constant.

However, the phase diagram is unchanged [40, 44].

becomes empty14 and we thus have to find other measures to
keep continuum physics constant, when taking the lattice spacing
to zero.

Figure 2 is for a specific value of N4 and, as remarked above,
we already have a scaling for fixed values of the bare coupling
constants κ0 and 1. Equations (19), (21), and (22) are these
scaling formulas. We see that the height of 〈N3(n

t)〉 will grow as

N
3/4
4 , while the fluctuations only grow as N

1/2
4 . For fixed (κ0,1)

in phase CdS, the fluctuations will thus decrease relative to the
volume for N4 → ∞. The interpretation of this is that for fixed
κ0 and 1 the limit N4 → ∞ is one where V4 = N4a

4 goes to
infinity while a stays constant.

An attempt to replace the φ4-observables (mR, λR) with
geometrical observables is the following. The physical volume of
spacetime is V4 = N4a

4. Similarly, the volume of a time-slice is
V3(t) = 〈N3(n

t)〉a3, t = nta. Let us attempt to take a continuum
limit where V4 and V3(t) are finite, while N4 → ∞. Such a limit
would force a → 0, which is what we want. How do we ensure
that N4 → ∞ forces a → 0? For the scalar field we had the
correlation length ξ and mR which monitored a(ξ ). Here we will
insist that the relative size of V3(t) and the quantum fluctuations
δV3(t) stay unchanged if we scale N4 → ∞. This would be
expected if V3(t) can be interpreted as a physical continuum
three-volume in the limit N4 → ∞. Thus we require that (for
sufficiently large N4)

√

(〈N2
3 (n

t)〉c)N4

〈N3(nt)〉N4

=
δV3(t)

V3(t)
, independent of N4. (23)

From (19) and (22) this requirement implies that

ω(κ0,1) γ (κ0,1) = const. N
1/4
4 . (24)

ω and γ are constants independent of N4 for fixed κ0 and 1.
Starting out with some (κ0,1) and a four-volume N4(0) in phase
CdS, and then increasing N4 will force us to change (κ0,1) if
(24) is to be fulfilled. Continuing to increase N4 will trace out a
path in the (κ0,1)-coupling constant plane, and the endpoint for
N4 → ∞ will be a candidate for a UV fixed point.

The coupling constant flow related to (24) was investigated
in [47] and the conclusion was like in the φ4-case. There seems
to be no starting point in phase CdS which leads to a curve
where N4 → ∞. In fact, while both ω and γ change somewhat
when changing the coupling constants, their product does not
change much. We conclude that this particular renormalization
group analysis has not led us to a UV fixed point candidate. But
even stronger, Equation (23) expresses the simple requirement
that if we have a continuum universe of a certain size, it will
have quantum fluctuations of a certain size. However, our model
does not meet this requirement when we relate discretized and
continuum variables in themost natural and simple-minded way.

There are a number of possible interpretations of this result.
Firstly, on the technical side, since the analysis in [47] was made,

14The situation might be different in the case of toroidal spatial topology, where

the time extent of the universe is not dynamically adjusted to the total four-volume

N4. This is presently under investigation.
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we have obtained a better understanding of the phase diagram.
At the time of the analysis in [47] phase CdS was assumed to
extend all the way down to phaseB. Currently themost promising
phase transition line for a higher-order transition is the CdS-
Cb transition line, and the endpoint of that transition line in
particular. We now have a chance to approach this fixed point
in an easier way using toroidal spatial topology. This is presently
being explored. Secondly, we may be thinking of the quantum
universe in the wrong way. In our reasoning we are applying
some standard logic related to fluctuations to a macroscopic
quantity like the three-volume of the universe. Maybe that is
wrong. On the other hand, we have tried to estimate the size of
the quantum universes by constructing the effective action for the
three-volume, and comparing with mini-superspace expressions.
The universes are estimated to have linear sizes not larger than
20 Planck lengths [3] for the N4-values we are using. Therefore,
a picture like that of Figure 2 should be correct: for a continuum
universe of this size we expect significant quantum fluctuations.
Thirdly, although we tried to emulate the flat-space quantum
field theoretic way of looking for UV fixed points, we have not
(yet) been able to identify a divergent correlation length, which
is a crucial ingredient of the Wilsonian approach to quantum
field theory and the renormalization group. It is the source of
universality and dictates the way one moves from the regularized
quantum field theory on the lattice to the continuum quantum
field theory. There seems no reason that there should not be
massless long-range excitations in a theory of gravity related to
a universe like ours. However, it is much less clear what kind
of excitations one would observe in a quantum universe of the
size of 20 Planck lengths, and to what extent one can talk about
scaling the lattice spacing a to zero compared to the Planck
length. The estimates referred to above led to a lattice spacing
of twice the Planck length. If these estimates can be trusted, our a
is far from sub-Planckian. However, it is possible that the global
conformal mode of the metric, whose effective behavior we are
studying, is not well-suited for extracting a correlation length. In
other words, it may not be possible to push the lattice spacing
to a sub-Planckian region while maintaining an interpretation
that is based on notions which are closely related to classical
geometry, like “volume profiles.” The question of whether there
is a correlation length in non-perturbative quantum gravity and
whether its divergence relates to a UV phase transition therefore
leads us to an even more basic question: what is “length” in
quantum gravity, when in the path integral one integrates over
the geometries that classically define the length? We turn to a
discussion of this question in the next section.

4. QUANTUM LENGTH

In ordinary quantum field theory, lengths and distances are
defined with respect to a (flat) spacetime metric, which is part
of the fixed background structure. One simply has

〈φ(x)φ(y)〉 = f (|x− y|), (25)

where |x − y| is the invariant spacetime distance between the
spacetime points x and y. When trying to define correlation
functions like (25) rigorously, e.g., on the lattice as in (2), onemay

have to rescale fields, coupling constants and the lattice spacing
in order to obtain a finite continuum result, but the geodesic
distance |x − y| in (Euclidean) spacetime is not touched. The
situation is similar when we generalize to quantum field theory
on a fixed, curved background. The analog of the two-point
function (25) will still depend on the geodesic distance between
x and y, but also on other coordinate-independent quantities
involving the fixed spacetime geometry.

Moving on to quantum gravity, the path integral will contain
an integration over geometries, in addition to the integration
over field configurations. For these geometries, the geodesic
distance between x and ywill vary, as will the curvature invariants
associated with a given geometry. In the absence of any a priori
given background geometry, the only way in which a dependence
on a distance (or other geometric invariants) could reappear in
some propagator would be with respect to some “effective” or
“emergent” geometry, generated by the quantum dynamics, and
accompanied by quantum fluctuations15. The propagator should
also reflect this to some approximation, depending on the size
the geometric fluctuations. Such an “emergence” of a class of
dominant geometries is what one observes in theMC simulations
of CDT16 in phase CdS.

For reference, let us examine the situation in two-dimensional
quantum gravity, which we have argued is in some sense
maximally “quantum.” Suppose we have a universe with the
topology of a cylinder, where we fix the lengths of the two
boundaries to L and the area (the spacetime volume) to A. For
suitable values of L and A there will be a “minimal-area surface”
with constant negative curvature between the two boundaries.
Could this nice, classical geometry be the one that dominates the
path integral, such that the integration over geometries could be
approximated by considering only small fluctuations around it?
It turns out that the answer is no. However, if two-dimensional
gravity is coupled to a conformal field theories with a large
negative central charge the answer is yes.

Whichever the case may be in four dimensions, some
invariant notation of length or distance is clearly needed in
the quantum theory to construct any meaningful propagators
or n-point functions. Again, two-dimensional quantum gravity
may provide some guidance for how to proceed. When
discussing a quantum-gravitational generalization of (25), we
used coordinates x and y to label spacetime points, while
emphasizing the arbitrariness of this choice. In the context of
non-perturbative quantum gravity it is more convenient to base
the construction of invariant correlators on the notion of distance
instead. Thus, we integrate only over geometries where x and y
are separated precisely by a geodesic distance D. Equivalently,
for a given geometry and a given x, we average in the matter
functional integral over all points y which are separated a given
distance D from x, and then integrate over all geometries.
In this way we obtain a correlation function Gφ(x,D), which

15One can of course choose a fictitious “background” geometry and expand

everything around it. But nothing can depend on this geometry, which implies

that distances defined with respect to it will be as fictitious as the geometry itself.
16To be precise, the emergence of classical behavior refers only to those

aspects of geometry that are captured by the behavior in proper time t of the

three volume V(t).
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explicitly depends on what one could call the quantum distance
D. Generalizing (2), its definition is

Gφ(x,D) :=
∫

D[gµν] e
−S[g]

∫

Dgφ e−S[g,φ]
∫

dy
√

g(y)φ(x)φ(y) δ(Dg(x, y)−D)
∫

D[gµν] e−S[g]
∫

Dgφ e−S[g,φ]
,

(26)

where Dg(x, y) denotes the geodesic distance between x and
y in the geometry with metric gµν(x). Even in two-dimensional
quantum gravity, the expression (26) is too complicated to
compute analytically for a scalar field φ(x). However, for φ(x) =
1 – the “trivial” field we considered for CDT in section 3—one can
in the DT formalism write down a lattice version of (26), solve
analytically for the lattice propagator, and take the continuum
limit where the lattice spacing goes to zero [45, 48]. After the
continuum limit has been taken one finds

G1(x,D) ∝ D3F(D/V1/4), F(x) = 1+ O(x4), (27)

if one fixes the spacetime volume to be V . Equation (27) shows
that the quantum length D is very “quantum,” since it has an
anomalous dimension, which moreover is related to the fractal
dimension 4 of the quantum spacetime. If we set φ(y) = 1
in (26), the integral over y is the total volume (in this case the
total length) of all points at geodesic distance D from x, forming
a “spherical shell” Sx(D). For a smooth classical d-dimensional
geometry we expect Sx(D) ∝ Dd−1 for D sufficiently small. Here
we find instead

G1(x,D) = 〈Sx(D)〉 ∝ D3 for D≪ V1/4, (28)

which shows that the fractal dimension of two-dimensional
Euclidean quantum spacetime is 4. The important point here
is that the distance or length has become a quantum operator,
which is natural in a theory of quantum geometry. Since the
geodesic distance is a very complicated non-local quantity, it is
remarkable that the quantum average of this quantity, defined
in Equation (26) for φ(x) = 1, has a non-trivial well-defined
scaling dimension. However, its noncanonical value implies a
nonstandard scaling behavior of the quantum geodesic distance
D in the regularized DT-lattice theory for a spacetime volume
V = N2a

2, where N2 counts the number of triangles in the
triangulation. Namely, in a continuum limit where V stays finite
and N2 → ∞ (and thus a → 0), D on average involves only
a number of links ∝ 1/

√
a. This is very different from the

generic situation in the φ4-theory, where linear distance in the
continuum limit would scale ∝ 1/a. In the φ4-lattice scenario
a behavior ∝ 1/

√
a would correspond to zero length in the

continuum limit. However, it is possible and nontrivial on the DT
lattices because of the fractal structure of a generic triangulation.

Another related example where distances become quantum
comes from bosonic string theory, although in a string-
theoretical context it is usually not presented this way. Bosonic
string theory in d dimensions can be viewed as a theory of
two-dimensional quantum gravity with coordinates (ω1,ω2) on

the world sheet, coupled to d scalar fields Xi(ω1,ω2), taking
values in the target space Rd. Let us consider closed strings, and
the so-called tree-amplitude for the two-point function. This is
calculated by considering two infinitesimal loops separated by a
distance D in target space, summing in the path integral over all
surfaces Xi(ω1,ω2) with cylinder topology in target space, with
these loops as boundaries, weighted by the string action. One way
to carry out this calculation is to find the classical string solution
Xi
cl
(ω1,ω2) with the given boundaries, perform a split

Xi = Xi
cl + Xi

q (29)

and integrate over the quantum fields Xi
q. Just like in standard

quantum field theory, this integration will in general require
a regularization. In addition, to obtain a finite effective action,
Xi
cl

will need a wave function renormalization. However, the

distance D appears as a parameter in Xi
cl
and the wave function

renormalization of Xi
cl
in reality becomes a renormalization of

the distance D in target space, as shown in detail in [49, 50]. Like
in the case of pure two-dimensional quantum gravity mentioned
above, the need for a renormalization of the distance D can be
related to a fractal structure, in this case, the fractal structure of
the random surfaces embedded in Rd [49, 50].

The lesson to take away from this discussion is that unless
some yardstick emerges alongside a “dominant” geometry in a
non-perturbative path integral over geometries, or is provided
by hand through suitable boundary conditions, a notion of
(quantum) distance must be introduced in the Planckian regime.
As the above examples illustrate, such notions can be found, but
will typically behave nonclassically or even scale anomalously
relative to the volume. Clearly, this needs to be taken into
account when constructing and interpreting propagators and
other geometric observables, for example, in a renormalization
group analysis near a UV fixed point. Whether such a quantum
length possesses a large-scale classical limit or can be promoted
to a “physical” length needs to be investigated, and is certainly
not a given.

5. DISCUSSION

In the asymptotic safety scenario, quantum gravity is defined as
an ordinary quantum field theory at a UV fixed point. We have
shown here how one can in principle use computer simulations to
search for such a fixed point, in close analogy with the search for a
UV fixed point in a four-dimensional φ4-theory. The framework
of CDT quantum gravity is well suited to try and verify
the findings of the functional renormalization group analysis
in the continuum independently. One particular correlation
function, that of the spatial volume profile (equivalently, the
global conformal mode of the spatial metric), has already been
studied extensively, but so far no indication of a UV fixed
point has been seen. There could be many reasons for this.
Despite the compelling evidence from a body of work in the
continuum theory [35–39, 51]17, such a fixed point may not

17The calculation reported in [51] seems in particular to be close in spirit to the

CDT approach.
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exist, and the asymptotic safety scenario not realized as a way
to define quantum gravity beyond perturbation theory. Defining
trajectories of constant physics near the Planck scale through
an observable that describes the global shape of the universe
may be a wrong choice. As emphasized in [47], at the very least
one would like to repeat the analysis in terms of other, more
local observables. A new candidate may be the quantum Ricci
curvature [52, 53], currently under investigation. Our assessment
that the lattice version of δV3(t) is too small and does not
increase sufficiently when we move toward the CdS-Cb phase
transition line may be based on our incomplete understanding
of how quantum length and volume behave near the Planck
scale. Also, maybe we are not using an action which is general
enough to localize the UV fixed point? We are using the
Regge discretized version of the Einstein-Hilbert action with one
additional deformation parameter 1. From a continuum point
of view one could think of adding all kind of higher curvature
terms to the action. We have not done that for two reasons.
The firstly, in the formalism of CDT there are no simple natural
candidates for the higher curvature terms. The geometric Regge
prescription only exists for the R-term, and attempts to put in
by hand arbitrary ad hoc generalizations have not worked (see
[54] for old attempts). Secondly, the functional renormalization
group analysis sees clear evidence for a fixed point even if
one truncates the effective action to contain only the Einstein-
Hilbert term. From the lattice perspective the interpretation
of this is that one should be able to get quite close to the
fixed point by finetuning the two bare coupling constants κ0
and 1, even if we might not be able to reach all the way
to the fixed point. However, it is disappointing that we have
not really seen much sign of an approach to a fixed point, as
we would have expected from the continuum renormalization
group calculations. Another possibility that may be worthwhile
exploring is that the quantum-geometric phase transitions
in CDT are different from the more conventional Landau-
type phase transitions where the Wilsonian renormalization
group philosophy works so well. In particular, the CdS-Cb

transition may share traits with the topological phase transitions
occurring in condensed matter physics [55, 56]. The transition
is associated with the appearance of a localized structure in
an otherwise seemingly homogeneous and isotropic universe. It
was overlooked for a long time, since the order parameters that
exhibit the transition are also of a non-standard nature with
a strong topological flavor [33]. In addition, one has observed
long auto-correlation times in the MC simulations at the CdS-
Cb transition, presumably caused by major rearrangements of the
internal connectivity of the triangulations in connection with the
symmetry breaking. This is again reminiscent of some features
seen in topological phase transitions, some of which also have no
clear divergent correlation lengths associated with them. How to
relate such transitions to a UV fixed point in quantum gravity is
an interesting challenge.
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For any fundamental quantum field theory, unitarity, renormalizability, and relativistic

invariance are considered to be essential properties. Unitarity is inevitably connected to

the probabilistic interpretation of the quantum theory, while renormalizability guarantees

its completeness. Relativistic invariance, in turn, is a symmetry that derives from the

structure of spacetime. So far, the perturbative attempt to formulate a fundamental local

quantum field theory of gravity based on the metric field seems to be in conflict with at

least one of these properties. In quantum Hořava gravity, a quantum Lifshitz field theory

of gravity characterized by an anisotropic scaling between space and time, unitarity and

renormalizability can be retained while Lorentz invariance is sacrificed at high energies

and must emerge only as approximate symmetry at low energies. This article reviews

various approaches to perturbative quantum gravity, with a particular focus on recent

progress in the quantization of Hořava gravity, supporting its theoretical status as a

unitary, renormalizable, and ultraviolet-complete quantum theory of gravity.

Keywords: quantum gravity, perturbation theory, renormalization, Lorentz violation, anisotropic scaling

Hořava-Lifshitz gravity

1. INTRODUCTION

The search for a consistent quantum theory of gravity can be dated back almost 90 years to the
work of Rosenfeld [1]. Since then, many different approaches have been suggested, each with its
own assumptions, predictions (if any), and limitations; see [2] for an overview. Prominent roads
to quantum gravity include canonical approaches, such as quantum geometrodynamics [3, 4] and
loop quantum gravity [5–8], discrete approaches, such as causal dynamical triangulations [9–11],
and unified approaches, such as string theory [12–16].

In this review, I restrict the discussion to local field theories, in which gravity is fundamentally
described by the metric field. For non-local (infinite-derivative) theories of gravity, (see e.g. [17–
26]), and for non-metric theories of gravity, (see e.g. [27–32]). In view of the tremendous success
of perturbative quantum field theory in different areas of physics, including the standard model
of particle physics, it seems natural to quantize gravity within this highly developed and strongly
tested unified framework along with the fundamental interactions between the matter fields. For
most of this review, I will focus on the covariant perturbative approach to quantum gravity. Much
of the progress in this direction can be attributed to Bryce S. DeWitt, who pioneered the field and
set the standards for most of its developments in the subsequent decades [33–35].

While the direct approach to quantizing general relativity perturbatively is considered a failure
because of its non-renormalizability in the strict sense [36, 37], the perturbative quantization and
renormalization can be consistently carried out when general relativity is treated as an effective field

68
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theory [38–40]. However, by construction the effective
description breaks down at a finite energy scale and therefore
does not extend to the arbitrarily high energies required for
a fundamental theory of quantum gravity. In this respect,
the non-perturbative asymptotic safety program towards
quantum gravity might offer a solution in providing a consistent
ultraviolet completion [41–44]. A different strategy, which
retains the perturbative treatment, is based on the quantization
of modifications of general relativity. Quadratic gravity, the
extension of the Einstein-Hilbert action by all quadratic
curvature invariants, is a perturbatively renormalizable quantum
theory of gravity [45]. While the higher derivatives in quadratic
gravity improve the ultraviolet behavior, relativistic invariance
necessarily implies the inclusion of higher time derivatives,
which in turn results in an enlarged particle spectrum,
including a massive spin-2 ghost. At the classical level, the
presence of the ghost leads to runaway solutions, known as
Ostrogradsky instability [46]. At the quantum level, within the
usual quantization prescription, the ghost was found to lead to
a violation of unitarity [45]. Recent proposals, which involve
different quantization prescriptions for the ghost, preserve
unitarity but instead lead to a violation of micro-causality
[47, 48].

In view of these problems, it has been suggested to explore
the consequences of the assumption that Lorentz invariance is
not a fundamental symmetry but only emerges as an approximate
symmetry at low energies. In this way, higher spatial derivatives
can be introduced to tame the ultraviolet divergences, while
retaining only second-order time derivatives to avoid the
problems associated with the occurrence of higher-derivative
ghosts. The breaking of relativistic invariance at a fundamental
level is naturally realized in Lifshitz theories by an anisotropic
scaling between space and time [49, 50].

After a brief overview of various relativistic covariant
approaches to quantum gravity, I will review several aspects of
the Lifshitz theory of gravity, Hořava gravity [50], in D = 2+ 1
and D = 3+ 1 dimensions, including the consequences
of the reduced invariance group of foliation-preserving
diffeomorphisms, the geometrical formulation in terms of
Arnowitt-Deser-Misner variables, the phenomenological
implications of the additional propagating gravitational scalar
degree of freedom, and the current status of the experimental
constraints. I discuss the quantization of projectable Hořava
gravity, a particular version of Hořava gravity in which the lapse
function is not a propagating degree of freedom. I will also sketch
the proof that projectable Hořava gravity is a perturbatively
renormalizable quantum theory of gravity [51, 52] and report
recent results on its renormalization group flow [53, 54].

The article is structured as follows. In section 2, I introduce
the general formalism for the perturbative quantization of
local field theories. In section 3, I summarize the essential
properties of general relativity and the major drawback of its
perturbative quantization: non-renormalizability. In section 4,
I briefly comment on the status of general relativity as an
effective field theory. In section 5, I discuss several aspects of
the asymptotic safety conjecture in the context of gravity and its
status as a possible ultraviolet-complete scenario for a quantum

theory of gravity. In section 6, I review the perturbatively
renormalizable theory of quadratic gravity and discuss the ghost
problem. In section 7, I present various aspects of the classical
theory of Hořava gravity inD = 2+1 andD = 3+1 dimensions.
In section 8, I discuss the perturbative quantization of projectable
Hořava gravity, its perturbative renormalizability, and its status
as an ultraviolet-complete theory. Finally, I conclude in section 10
with a short summary and a brief outlook on important further
steps towards a unitary, renormalizable, and ultraviolet-complete
quantum theory of gravity in D = 3+ 1 dimensions.

2. PERTURBATIVE QUANTUM FIELD
THEORY: GENERAL FORMALISM

Consider a local field theory, which is defined by the action
functional S,

S[φ] =
∑

n

∫

dDXcnOn(φ, ∂). (1)

Locality means that the operators On(φ, ∂) are functions of a
finite number of derivatives (including no derivative) of the
generalized field(s) φi = φA(x) evaluated at the same point x.
The operators On are restricted by the symmetries of S. The
cn are coupling constants characterizing the strength of the
interaction associated with the operator On

1. The main object in
the quantum field theory (QFT) is the quantum effective action Ŵ.

2.1. Perturbation Theory
The starting point for the formal derivation of the Euclidean
effective action is the partition function Z, which is defined by
the functional integral over the field configurations φi and is a
functional of the external source Ji,

Z[J] : = e−W[J] =
∫

Dφ e−(S[φ]+Jiφ
i). (2)

The mean field ϕi is defined as the quantum average in the
presence of the source Ji,

ϕi
: = 〈φi〉J =

δW[J]

δJi
. (3)

The quantum effective action Ŵ is defined as the functional
Legendre transformation of the Schwinger functionalW,

Ŵ[ϕ] : = W[J]− ϕiJi. (4)

Combining (2) and (3) yields the functional integro-differential
equation2

e−Ŵ[ϕ] =
∫

Dφ e−{S[φ]−(ϕi−φi)Ŵ,i[ϕ]}. (5)

1I use the ultra-condensed DeWitt notation, in which the generalized index

i = {A,X} of a generalized field φi = φA(X) encompasses the discrete bundle index

A and the continuous spacetime point X. Summation over i implies summation

over A as well as integration over X, i.e., φiφ
i =

∫

dDXφA(X)φ
A(X).

2Post-fix notation with indices separated by a comma is used to denote functional

derivatives with respect to the argument, e.g., Ŵ,i = δŴ[ϕ]/δϕi.
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Equation (5) provides the starting point for the perturbative
expansion of Ŵ (reinserting powers of h̄),

Ŵ[ϕ] = S[ϕ]+ h̄Ŵ1[ϕ]+ h̄2Ŵ2[ϕ]+O(h̄3). (6)

The diagrammatic representation of the expansion (6) is given
in terms of vacuum diagrams in which the number of loops
corresponds to the power of h̄ in (6), as shown in Figure 1.

In the background field method (BFM), φi is decomposed into
a background field φ̄i and a linear perturbation δφi,

φi = φ̄i + δφi. (7)

The first two orders of the expansion (6) correspond to the
vacuum diagrams shown in Figure 1:

Ŵ1 =
1

2
Tr ln Fij,

Ŵ2 =
1

8
GijS,ijkℓG

kℓ +
1

12
S,ijkG

iℓGjmGknS,ℓmn. (8)

Here, Tr is the functional trace, Fij is the fluctuation operator, and
the Green’s function Gij (propagator) is its inverse, such that

FijG
ik = −δ k

i . (9)

The operator Fij, which propagates the linear perturbations δφi

on the background φ̄i, is defined as the Hessian of S,

Fij(∇̄) : = S,ij
∣

∣

φ=φ̄
. (10)

The covariant derivative ∇µ defines the commutator (“bundle”)
curvature

R
i

µν jφ
j
: = [∇µ,∇ν]φ

i. (11)

The effective action is the generating functional of off-shell one-
particle-irreducible (1PI) n-point correlation functions

〈φi1 , . . . ,φin〉 = Ŵ,i1 ,...,in . (12)

In particular, for Ji = 0, the mean field ϕi = 〈φ〉 is the solution of
the quantum effective equations of motion

Ŵ,i = 0. (13)

Physical observables that derive from the S-matrix of scattering
amplitudes are calculated from the off-shell correlation functions
(12) via the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula [55].

2.2. Gauge Theories
In gauge theories, different field configurations that correspond
to the same physical state are related by an infinitesimal gauge
transformation

φi
ε : = δεφ

i = Riαεα . (14)

The Riα(φ) are the generators of the gauge transformations, and
εα is the infinitesimal gauge parameter3. For linearly realized
symmetries (considered here), R α

i ,jk
= 0. For gauge algebras that

close off-shell, the generators satisfy

Riα,jR
j
β − Riβ ,jR

j
α = RiγC

γ

αβ . (15)

The C
γ

αβ are the structure functions (here assumed to be field

independent, C
γ

αβ ,i = 0) and satisfy the Jacobi identity

Cǫ
αβC

δ
ǫγ + Cǫ

γ αC
δ
ǫβ + Cǫ

βγC
δ
ǫα = 0. (16)

Gauge invariance δεS = 0 of the action (1) implies the
Noether identity

S,iR
i
α = 0. (17)

Differentiation of (17) shows that the fluctuation operator (10)
for gauge theories is degenerate (on shell S,i = 0),

FijR
i
α = 0. (18)

The gauge degeneracy Det(Fij) = 0 prevents the construction
of the inverse (F−1)ij, and the associated Green’s function Gij

does not exist. In order to break the gauge degeneracy, a gauge-
breaking action must be added:

Sgb = χαOαβ (∇̄)χβ . (19)

The background covariant gauge condition χα(φ̄; δφ) depends
linearly on the difference δφi − φ̄i between the “quantum
field” δφi, i.e., the variable that is integrated over in the path
integral, and the background field φ̄i. But, like the operator
Oαβ (φ̄; ∇̄), it may have an arbitrary (non-linear) parametric
dependence on the background field φ̄i. In this way, invariance
of the effective action under background gauge transformations is
realized. For the linear split (7), an infinitesimal, linearly realized
gauge transformation (14) can be distributed in different ways, in
particular by

δQε ϕ̄i = 0, δQε δφi = Riα(φ̄ + δφ)εα ,

or

δBε ϕ̄i = Riα(φ̄)ε
α , δBε δφi = Riα(δφ)ε

α . (20)

While the linearity of the generators ensures that in both

cases δεφ
i = δ

Q
ε (φ̄

i + δφi) = δBε (φ̄
i + δφi) = Riα(φ)ε

α ,

the “quantum gauge transformation” δ
Q
ε does not affect the

background field φ̄i but only the “quantum” field δϕi, whereas
for the background gauge transformations δBε , the transformation
(14) is split between the background field and the quantum

3The generalized DeWitt gauge index α = (a,X) is taken from the beginning of

the Greek alphabet and not to be confused with indices µ, ν, . . . from the tangent

bundle.
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FIGURE 1 | The diagrammatic expansion of the quantum effective action in powers of loops.

field according to (7). The gauge-breaking action (19) must be
compensated for by the ghost action

Sgh = c∗αQ
α
βc

β . (21)

The anticommuting independent ghost field cα and anti-ghost

field c∗α have fermionic statistics. The ghost operator Qα
β

is defined as the variation of the gauge-transformed gauge
condition,

Qα
β (∇̄) : =

δχα[φi
ε]

δεβ
. (22)

Summarizing, for gauge theories the partition function (2)
generalizes to

Z[J] = Det(Oαβ )
1/2

∫

D[φ, c, c∗] e−{Stot[φ,c,c∗]+Jiφ
i}, (23)

with the total action Stot defined as the sum of (1), (19) and (21),

Stot[φ, c, c
∗] = S[φ]+ Sgb[φ̄;φ]+ Sgh[φ̄, c, c

∗]. (24)

In particular, the gauge-fixed fluctuation operator is no longer
degenerate and can be inverted:

F
gb
ij (∇̄) := (S+ Sgb)ij

∣

∣

∣

φ=φ̄
. (25)

The structure of the effective action and the proof of perturbative
renormalizability of a local gauge theory are described in more
general terms by exploiting the residual non-linearly realized
Becchi-Rouet-Stora-Tyutin (BRST) symmetry of the gauge-fixed
action [56, 57]. For the application of these methods in the
context of general relativity and Yang-Mills theories, (see [58]);
for a generalization to non-relativistic theories, (see [52]).

2.3. Functional Traces and the Heat-Kernel
Technique
In addition to the abstract formalism presented in section 2,
explicit calculations in the perturbative expansion (6) require
the evaluation of functional traces, for which the combination
of the BFM with heat-kernel techniques provides a manifest
covariant and efficient tool4. For the connection between the

4The heat kernel is in particular very efficient for the extraction of the one-

loop divergences. For calculations involving higher loop orders, it is not so

well-developed, but see [59].

heat-kernel technique and position space Feynman diagrams in
curved spacetime (see e.g., [60, 61]). For an introduction to the
background field method, (see [62–64]). For an overview of flat-
space Feynman-diagrammatic calculations in momentum space,
see e.g., [65], as well as [66] for an introduction to modern on-
shell methods. An explicit illustration of the connection between
the different techniques is given section 9 in the context of the
one-loop divergences for projectable Hořava gravity.

The heat-kernel technique, originally developed in
mathematics in the context of asymptotic expansions, partial
differential equations, and geometric analysis of the Laplace
operator [67–72], has turned out to be a very useful tool
in physics also, especially in the context of renormalization
in Quantum Field Theory (QFT) on a curved background
[33, 60, 73, 74]. Recalling the ultra-condensed DeWitt notation,
the (gauge-fixed) fluctuation operator (25) takes the general form
Fij(∇̄) = FAB(∇̄XA )δ(XA,XB). The operator with proper index
positions FA B , acting on the fluctuation field δφA(X), is obtained
from FAB by raising the bundle index A with the (ultra-local)
configuration space metric CAB

5,

F(∇) : = FAB(∇) = CACFCB(∇). (26)

Inverse powers and the logarithm of the operator (26), which
appear in the perturbative expansion (6), are conveniently
expressed in terms of the Schwinger integral representation6 over
“proper time” s,

1

Fn
=
∫ ∞

0

ds

(n− 1)!
sn−1 e−sF, ln F = −

∫ ∞

0

ds

s
e−sF.

(27)

5If the configuration space of fields C is viewed as a differentiable manifold, the

configuration space metric defines the invariant line element dS2 = Cij dφ
i dφj.

Ultra-locality means that Cij = CABδ(XA,XB) with CAB involving no derivatives.

For 2kth-order derivative theories, defined by an action functional (1), the

configuration space metric CAB could be defined by the coefficient of the

(minimal part of the) highest derivative term in the fluctuation operator

FAB = CAB1
k + . . .. The inverse is defined via CACCCB = δAB = 1. The boldface

notation is exclusively reserved for matrix-valued operators with proper index

positions. Since the content of this section holds for general operators F, no

background tensors appear in what follows.
6The inverse F−1 of the operator F is denoted by 1/F. It is assumed that F is positive

definite. In the integral relation for the logarithm (27), an (infinite) constant

has been neglected. The precise relation can be defined by a regularizing mass

damping factor, i.e., by defining G(m2) : =
∫∞
0 ds e−sm2

e−sF, with the logarithm

of F obtained as a limit, ln F = limm2→∞
[

lnm21−
∫ m2

0 dµ2 G(µ2)
]

.
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The heat kernel KF(s|X,Y) associated with the operator F

formally satisfies the heat equation

KF(s|X,Y) : = e−s F(∇X)δ(X,Y),
[

∂

∂s
+ F(∇)

]

KF(s|X,Y) = 0. (28)

In terms of the heat kernel (28), the one-loop contribution to the
effective action (8) takes the form

Ŵ1 = −
1

2

∫ ∞

0

ds

s
TrKF(s|X,Y)

= −
1

2

∫ ∞

0

ds

s

∫

ddx tr [KF]
A
B(s|,X,X). (29)

Equation (29) can be viewed as the definition of the functional
trace Tr and requires evaluation of the spacetime integral over
the internal trace tr of the coincidence limit y → x of
the matrix-valued two-point kernel [KF]

A
B(s|,X,Y). Ultraviolet

(UV) divergences arise from the lower integration bound in (29),
i.e., the s → 0 limit.

For a minimal second-order operator with (positive-definite)
Laplacian 1 = −gµν∇µ∇ν1 and potential P,

F(∇) = 1 + P, (30)

there is an ansatz for the associated heat kernel at non-coincident
points, introduced in [33]:

K(s|X,Y) =
g1/2(y)

(4π s)d/2
D

1/2(X,Y) e−
σ (X,Y)
2 s �(s|X,Y). (31)

Synge’s world function σ (X,Y) is a bi-scalar [75], whichmeasures
one-half of the geodesic distance squared between the points X
and Y , and D(X,Y) is the de-densitized Van Vleck determinant,
a bi-scalar defined as

D(X,Y) : = g−1/2(X) det

(

∂2σ (X,Y)

∂Xµ∂Yν

)

g−1/2(Y). (32)

The bi-tensor � can be obtained in the form of an asymptotic
expansion in proper time,

�(s|X,Y) : =
∞
∑

n=0

an(X,Y) s
n,

an(X,X) ∝ ∇X . . .∇X
︸ ︷︷ ︸

2p

R . . .R
︸ ︷︷ ︸

m

, n = p+m. (33)

The Schwinger-DeWitt (SDW) coefficients at coincidence points
an(X,X) are local functions of the background fields, and the
generalized curvature R encompasses three different types of
background curvature,R = {Rµνρσ 1,RRRµν ,P}.

For the minimal second-order operators (30), a closed-
form algorithm for calculating the one-loop divergences
Ŵdiv
1 is available. In general, dimensional regularization

annihilates all power-law divergences and is sensitive only to
logarithmic divergences, which are isolated as poles in dimension

TABLE 1 | Coincidence limits required for the calculation of a2(X,X ).

R R
0

R
1/2

R R
3/2

R
2

σ ∇2σ ∇3σ ∇4σ ∇5σ ∇6σ

D D ∇D ∇2
D ∇3

D ∇4
D

a0 a0 ∇a0 ∇2a0 ∇3a0 ∇4a0

a1 a1 ∇a1 ∇2a1

a2 a2

ǫ−1 = 2/(4− D). In D = 4, the logarithmically UV-divergent
part of the one-loop contributions to the effective action (29) for
the minimal second-order operator (30) is determined by the
coincidence limit of a2(x, x) [33],

Ŵdiv
1 = −

1

ǫ

1

32π2

∫

d4X g1/2 tr a2(X,X). (34)

The coincidence limits of the SDW coefficients an(x, x) can be
calculated iteratively by inserting the ansatz (31) into the heat
Equation (28), leading to the recurrence relation (for n ≥ 0),

[

(n+ 1)+ σµ∇µ

]

an+1 = D
−1/2F(∇)

(

D
1/2an

)

= 0. (35)

In order to obtain a2(X,X) in this way, the coincidence limits
of σ , D, a0, a1, and their derivatives must be calculated. The
successive pattern of this calculation is illustrated in Table 1.

The coincidence limits of σ ,D, a0, and their derivatives can be
obtained by successive differentiation of the “defining equations”
for σ ,D, and a0,

σµσµ = 2σ , D
−1∇µ(D σµ) = d, σµ ∇µa0 = 0, (36)

with the “initial conditions” σ
∣

∣

y=x
= 0, D

∣

∣

y=x
= 1, and

a0
∣

∣

y=x
= 1. In this way, the coincidence limit of a2(X,Y) is found

as [33, 60],

a2(X,X) =
1

180

(

RµνρσR
µνρσ − RµνR

µν − 61R
)

1

+
1

2

(

P2 −
1

6
R1

)2

+
1

12
RRRµνRRR

µν +
1

6
1P. (37)

For higher-order and non-minimal operators there is no closed-
form expression for the one-loop divergences (34) in terms of a
single SDW coefficient as for the minimal second-order operator
(30). Nevertheless, in [60] a closed algorithm was developed,
which reduces the calculation of the one-loop divergences for
higher-order and non-minimal operators to the heat kernel of
the second-order minimal operator (31) and a few universal
functional traces,

UUU
(p,n)
µ1...µp

: = ∇µ1 . . .∇µp

1

1n

∣

∣

∣

∣

div

Y=X

. (38)

The perturbative algorithm underlying the generalized SDW
technique relies on the non-degeneracy of the principal
symbol D of the operator F. There are, however, important
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physical theories for which the principal symbol of the
fluctuation operator is degenerate so that the (generalized)
SDW algorithm is not directly applicable. In such cases, more
general methods are required; see [76–78] for heat-kernel
calculations involving operators with degenerate principal part
and [79, 80] for operators with Laplacians constructed from an
effective (background field-dependent) metric. In the context of
Lifshitz theories, the development of heat-kernel techniques for
anisotropic operators has recently been initiated [81–83].

3. PERTURBATIVE QUANTUM GENERAL
RELATIVITY

3.1. Classical General Relativity
In the theory of general relativity (GR), the gravitational
interaction manifests itself geometrically as curvature of
spacetime and couples universally to all fields, which, combined
with the attractive nature of gravity, implies that it cannot
be shielded. In Einstein’s theory, the dynamical character
of the spacetime geometry is encoded in the dynamics of
the metric field gµν(X). The action functional of GR is the
Einstein-Hilbert action

SEH =
M2

P

2

∫

dDX
√

−g (R− 23) . (39)

The action (39) involves the invariant volume element with
determinant g = det(gµν), the Ricci scalar R = gµνRµν , and the
cosmological constant 37. The dynamics of gµν is determined
by Einstein’s field equations, obtained from extremizing the total
action S[g,9] = SEH[g]+ SM[g,9] with respect to gµν ,

Rµν −
1

2
gµνR+ 3gµν = M−2

P Tµν . (40)

The energy momentum tensor Tµν derives from the “matter”
action SM[9], with all non-geometrical “matter” fields
collectively denoted by 9 :

Tµν = −
2

√−g

δSM[g,9]

δgµν
. (41)

Infinitesimal spacetime distances dsmeasured by the metric field
gµν are defined by the line element

ds2 = gµν(X) dX
µ dXν . (42)

7I work on a D-dimensional (pseudo)-Riemannian manifold M with

local coordinates Xµ, µ = 0, 1, 2, 3, a metric structure gµν with inverse

gµν defined by gµρgρν = δ
µ
ν , and the torsion-free metric-compatible

Christoffel connection Ŵ
ρ
µν = gρσ (∂µgσν + ∂νgµσ − ∂σ gµν )/2, which

defines the covariant derivative ∇µ. I use the following conventions for the

Lorentzian signature sig(g) = diag(−1, 1, 1, . . . , 1), the Riemann curvature

tensor R
ρ
µσν = ∂σ Ŵ

ρ
µν − ∂νŴ

ρ
µσ + Ŵλ

µνŴ
ρ
λσ − Ŵλ

µσ Ŵ
ρ
λν , and the Ricci tensor

Rµν = R
ρ
µρν . I use natural units in which the speed of light c and Planck’s constant

h̄ are set to one, c = h̄ = 1, and Newton’s constant GN can be expressed in terms

of the reduced Planck mass,MP : = 1/
√
8πGN.

Denoting themass dimension by [ · ]M and assigning coordinates
Xµ the dimension of a length, [X]M = −1, implies that

[∂µ]M = 1, [gµν]M = 0, [Rµνρσ ]M = 2,

[GN]M = − (D− 2), [3]M = 2. (43)

The Ricci scalar R is the only curvature invariant involving
exactly two spacetime derivatives. Except for the cosmological
constant, all other curvature invariants necessarily contain higher
derivatives. In D = 4, these are the only two classically relevant
local curvature operators8.

The metric field transforms as a rank-(0, 2) tensor under
D-dimensional coordinate transformations Xµ → X̃µ(X),

gµν(X) 7→ g̃µν(X̃) = gαβ (X)
∂Xα

∂X̃µ

∂Xβ

∂X̃ν
. (44)

The invariance group of GR consists of the D-dimensional
diffeomorphisms Diff(M). The change of the metric field under
an infinitesimal diffeomorphism δξ generated by the vector field
ξµ is given by the Lie derivative of gµν along ξµ:

δξ gµν =
(

Lξ g
)

µν
= ξρ∂ρgµν + 2gρ(ν∂µ)ξ

ρ = 2∇(µξν). (45)

Round brackets in (45) denote symmetrization among the
enclosed indices with unit weight and ξµ = gµρξρ . Since the
gravitational field equations (40) relate geometry with matter,
consistency requires that SM[g,9] must also be invariant under
Diff(M), which implies the “on-shell” covariant conservation of
the energy-momentum tensor, ∇µTµν = 0.

3.2. Quantum GR
In order to establish a connection with the general formalism
of perturbative QFT reviewed in section 2, the generalized field
φi in GR is identified with the metric field, φi 7→ gµν(X).
Comparison of (1) with the Einstein-Hilbert action (39) implies
that the operators Oi(g, ∂) and the coupling constants ci should
be identified as follows:

O1(g) 7→
√

−g, c1 7→ −M2
P3,

O2(g, ∂) 7→
√

−gR, c2 7→
M2

P

2
. (46)

The particle spectrum of GR is derived by expanding the action
(39) to quadratic order in the linear perturbations

hµν = gµν − ḡµν (47)

around a flat background ḡµν = ηµν
9. Absorbing a factor of

MP/2 in the definition of hµν , i.e., hµν 7→ 2hµν/MP, and defining

8I call an operator O classically relevant if [O]M < D, classically marginal if

[O]M = D, and classically irrelevant if [O]M > D.
9The particle spectrum of a QFT is usually derived by expanding the action up

to quadratic order in the linear perturbation around the vacuum. In relativistic

QFTs, the natural vacuum is Minkowski space, which, even in the presence of

gravity, could be justified locally by the equivalence principle. Minkowski space

is a maximal symmetric space whose isometries are generated by the D(D+ 1)/2

linearly independent Killing vectors, which correspond to the generators of
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h = ηµνhµν and ∂2 : = ηµν∂µ∂ν , upon integration by parts the
result reads

S
(2)
EH|ḡ=η =

∫

dDX
[

hµν∂2hµν − h∂2h− 2hµν∂ν∂ρhµ
ρ

+ 2hµν∂ν∂µh
]

. (48)

After Fourier transformation ∂µ 7→ iPµ with four momentum
Pµ and square P2 = ηµνP

µPν , the fluctuation operator (10) in
momentum space can be expressed in terms of spin-projection
operators as

Fµν,ρσ (−P2) =
[

5(2)µνρσ − (D− 2)5(0,ss)µνρσ
]

(

−P2
)

. (49)

The spin-projection operators acting on the symmetric rank-two
tensor hµν read

5(2) ρσ
µν =

1

2

(

5(T) ρ
µ 5(T) σ

ν + 5(T) σ
µ 5(T) ρ

ν

)

−
1

D− 1
5(T)

µν5
(T)ρσ , (50)

5(1) ρσ
µν =

1

2

(

5(T) ρ
µ 5(L) σ

ν + 5(T) σ
µ 5(L) ρ

ν +

5(T) ρ
ν 5(L) σ

µ + 5(T) σ
ν 5(L) ρ

µ

)

, (51)

5(0,ss) ρσ
µν =

1

D− 1
5(T)

µν 5(T)ρσ , (52)

5(0,ww) ρσ
µν = 5(L)

µν 5(L)ρσ , (53)

5(0,sw) ρσ
µν =

1
√
D− 1

5(T)
µν 5(L)ρσ , (54)

5(0,ws) ρσ
µν =

1
√
D− 1

5(L)ρσ 5(T)
µν . (55)

Here, 5(T) and 5(L) are the transversal and longitudinal vector
field projectors

5(T) ν
µ = δν

µ −
PµP

ν

P2
, 5(L) ν

µ =
PµP

ν

P2
. (56)

Note that the scalar sector (52–55) is non-diagonal, such that
apart from the diagonal projection operators P(0,ss) and P(0,ww)

there are the two intertwining operators5(0,sw) and5(0,ws) which
connect the two spin-0 representations s and w. The operators
satisfy the algebra (orthogonality and idempotency relations)

5
(I,ij) αβ

µν 5
(J,kl) ρσ

αβ = δIJδik5
(J,jl) ρσ

µν , (57)

infinitesimal transformations of the Poincaré group. In this way, the Minkowski

vacuum is connected to the representation theory of the Poincaré group, ultimately

giving rise toWigner’s classification [84], in which particles are classified according

to their mass and their spin, i.e., the eigenvalues of the Casimir operators of the

Poincaré group. A positive cosmological constant 3 > 0 suggests, however, that

the global vacuum is De Sitter space rather than Minkowski space. De Sitter space

is also amaximally symmetric space, whose Killing vectors are the generators of the

De Sitter group. More generally, this also suggests that for an arbitrary spacetime

without any symmetry, the very concept of a particle is not really well-defined.

with J = 2, 1, 0 labeling the spin of the representation and
i, j, k, l = s,w labeling the different spin-0 operators. In addition,
the diagonal operators (50–53) satisfy the completeness relation

5(2) ρσ
µν + 5(1) ρσ

µν + 5(0,ss) ρσ
µν + 5(0,ww) ρσ

µν = δρσ
µν , (58)

with δ
ρσ
µν = (δ

ρ
µδσ

ν +δ
ρ
ν δσ

µ)/2 denoting the identity in the space of
symmetric rank-two tensors. Finally, the traces of the operators
(50–53) yield the dimensions of the invariant subspaces, which,
according to (58), add up to the D(D + 1)/2 components of a
symmetric rank-two tensor hµν ,

tr5(2) =
1

2
(D+ 1) (D− 2) , tr5(1) = D− 1,

tr5(0,ss) = 1, tr5(0,ww) = 1. (59)

Despite the appearance of the spin-0 projector in (49), the
spectrum of propagating particles in GR in D dimensions
encompasses only the massless spin-2 graviton; the scalar mode
can be eliminated by a residual gauge transformation and is not
a physical degree of freedom. As explained in (18), the operator
(49) is degenerate and a gauge-fixing is required for its inversion.
Choosing Oµν = −ηµνδ(x − y) for the operator in (19) and the
DeDonder gauge condition on a flat background,

χµ[η, g] =
(

ηµρηνσ −
1

2
ηρσ ηµν

)

∂νhρσ , (60)

the flat gauge-fixed fluctuation operator (25) of GR in
momentum space reads

F
µν,ρσ

gf
(−P2) =

1

2

[

ηµρηνσ + ηµσ ηνρ − ηµνηρσ
] (

−P2
)

. (61)

Inversion of (61) leads to the spin-2 propagator on a flat
background10,

Pµν,ρσ (−P2) =
1

2

(

ηµρηνσ + ηµρηνσ −
2

D− 2
ηµνηρσ

)

1

(−P2)
.

(62)

The propagator Pµν,ρσ defines the free theory and hence the
particle spectrum in perturbation theory. The massless graviton
in D dimensions has D(D− 3)/2 polarization states, obtained by
subtracting the 2D components of the independent ghost fields
in (21) from the D(D + 1)/2 independent components of the
symmetric rank-two tensor hµν .

The interactions in momentum space are defined by the

higher n-point functions V
(n)
µ1ν1...µnνn (P1, . . . , Pn), which derive

from the Fourier transforms of the nth functional derivative of
the action

V
(n)
µ1ν1···νnµn

(X1, . . . ,Xn) : =
δnSEH[g]

δgµ1ν1 (X1) . . . δgµnνn (Xn)
, n > 2.

(63)

10I reserve the symbol G for the general Green’s function in position space defined

in (9), and use P instead for the flat-space Green’s function in momentum space.
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The essential non-linearity of GR [i.e., the non-polynomial
dependence of (39) on gµν] is the origin of the infinite tower
of interaction vertices (63) with an increasing number of legs
n. The diagrammatic representation of the propagator and the
interaction vertices in GR are shown in Figure 211.

The fact that the Einstein-Hilbert action is linear in the scalar
curvature implies that GR is a second-order derivative theory,
such that (suppressing the index structure) the propagators have
a momentum scaling of P ∝ P−2, while all n-point vertices in
momentum space scale as V(n) ∝ P2. Feynman diagrams with
loops, such as in Figure 1, correspond to a momentum space
integral I that could diverge in UV. A generic Feynman integral
I in GR with L-loops, I internal propagators, and V vertices has
the momentum scaling

I ∝
∫

(

dD P
)L 1
(

P2
)I

(

P2
)V

. (64)

The superficial degree of divergence Ddiv(I) provides a simple
way of estimating the leading divergence of I by power counting.
Scaling each loop momentum by a constant factor b, taking the
limit b → ∞, and counting powers of b defines Ddiv(I). If
Ddiv(I) < 0, the associated diagram is superficially finite (i.e.,
finite modulo subdivergences); and if Ddiv(I) ≥ 0, it is divergent.
Using the topological relation I−V = L− 1, valid on an abstract
graph level (i.e., independent of the underlying physical theory),
the superficial degree of divergence of quantum GR reads

Ddiv
GR = DL− 2(L− 1). (65)

This equality shows that inD = 4, the degree of divergence grows
with the number of loops L as Ddiv

GR = 2 (L + 1) and signals
the perturbatively non-renormalizable character of GR, which in
D = 4 is directly connected to the negative mass dimension (43)
of the gravitational coupling constant GN = M−2

P .
In addition to this simple power-counting argument, the UV

divergences of GR and its coupling to matter fields have been
calculated in various approximations. For GR with and without
a scalar field, the one-loop divergences were first derived in [36].
In subsequent works, the one-loop divergences were extended,
including to GR coupled to abelian and non-abelian gauge fields
[91, 92], GR coupled to fermions [93], GR with a cosmological
constant [94, 95], GR with non-minimal gauges [60], and GR
coupled non-minimally to a scalar field [96–98]. At the two-loop
order, the calculations of the UV divergences for pure gravity
were first performed in [37, 99] and later confirmed in [100]; see
also [59].

11This can also be seen as follows: Starting from a spin-2 particle freely propagating

in flat spacetime with a linear field equation, locality and diffeomorphism

invariance require non-linear self-interactions to be added iteratively in a

consistent way such that, when summed, the full non-linear theory of GR is

recovered (see [85]). The explicit expressions for the vertices in momentum space

are rather lengthy and not very illuminating. The expressions for the three-point

and four-point vertices can be found in [35], for example. For these calculations

computer-algebra programs, such as FORM or the Mathematica-based xAct
bundle (in particular, the core package xTensor and the extension packages

xPert and xTras) are indispensable [86–90].

In order to make connections with the general formalism
outlined in section 2, I briefly illustrate the calculation of the one-
loop divergences for the Euclidean version of the Einstein-Hilbert
action (39) in D = 4,

SEH[g] = −
M2

P

2

∫

d4X
√
g (R− 23) . (66)

The gauge-breaking action (19) for the second-order theory (66)
is given by

Sgb[ḡµν; hµν] = −
1

2

∫

d4X χµgµνχ
ν , (67)

where the ultra-local operator Oαβ and De Donder gauge
condition χα are

Oαβ = −
√

ḡ

2
ḡµνδ

(4)(X,Y),

χµ[ḡµν; hµν] =
(

ḡµρ ḡνσ −
1

2
ḡρσ ḡµν

)

∇̄νhρσ . (68)

Adding (67) to (66) results in a gauge-fixed fluctuation operator
(25), which is of the minimal second-order type (30),

Fµν,ρσ = Ḡ
µν,τλ

F
ρσ

τλ = Ḡ
µν,τλ (

1̄δ
ρσ
τλ + P̄

ρσ
τλ

)

, (69)

where 1̄ = −ḡµν∇̄µ∇̄ν is the positive-definite background
Laplacian and the background values of the DeWitt metric Gµν,ρσ

and the potential P
ρσ

τλ are defined as

G
µν,ρσ

: =
g1/2

4

(

gµρgνσ + gµσ gνρ − gµνgρσ
)

, (70)

P ρσ
µν : = − 2R

ρ σ

(µ ν)
− 2δ

(ρ
(µ
R

σ )
ν)

+ gµνR
ρσ + gρσRµν

−
1

2
gµν g

ρσR+ (R− 23)δρσ
µν . (71)

According to (22), the ghost operator derives from (68) and reads

Q ν
µ = δν

µ1̄ − R̄ν
µ. (72)

The divergent part of the one-loop approximation (8) reduces to
the evaluation of the two functional traces

Ŵdiv
1 =

1

2
Tr ln

(

Fµν
ρσ

)

∣

∣

∣

div
− Tr ln

(

Q ν
µ

)

∣

∣

∣

div
. (73)

Terms proportional to δ(4)(0) that arise from Tr ln(Gµνρσ ) are
zero in dimensional regularization. The divergent parts of the
functional traces (73) are most efficiently evaluated by the heat-
kernel techniques presented in section 2.3. The operators (69)
and (72) in (73) are both of the form (30), for which the divergent
part is given by (34). The final result for the one-loop divergences
(73) reads

Ŵdiv
1 =

1

16π2ε

∫

d4X
√

ḡ

[

−
53

90
Ḡ−

7

20
R̄µν R̄

µν

−
1

120
R̄2 +

13

6
3R̄−

5

2
32

]

. (74)
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FIGURE 2 | Diagrammatic representation of the propagator and the interaction vertices in GR.

The Euler characteristic χ(M) is a topological invariant, defined
in terms of the quadratic Gauss-Bonnet invariantG as

χ(M) : =
1

32π2

∫

M
d4X

√

−g G,

G : = RµνρσR
µνρσ − 4RµνR

µν + R2. (75)

This allows us to eliminate squares of the Riemann tensor in
(74) in favor of squares of the Ricci tensor and squares of the
Ricci scalar. For gravity with a cosmological constant in vacuum,
the field equations (40) imply Rµν = 3gµν . Therefore, on-
shell, quantum Einstein gravity with a cosmological constant
at the one-loop order can be expressed in terms of the Euler
characteristic (75) and the volume V(M) : =

∫

dDX
√

ḡ as

Ŵdiv
1,on-shell =

1

ε

[

−
53

45
χ(M)+

87

20

32

12π2
V(M)

]

. (76)

As discussed in [95], the result (76) shows that, within the one-
loop approximation, pure Einstein gravity in D = 4 is on-shell
renormalizable, as the divergences in (76) can be absorbed by
adding the topological term χ(M) (which does not affect the
field equations) with some coefficient to the action (66) and
renormalizing this coefficient as well as the cosmological constant
3. For the case of a vanishing cosmological constant, the fact
that Einstein gravity is on-shell one-loop finite was first found in
[36]. However, as soon as matter fields are coupled, the one-loop
divergences remain even on-shell [36]. For example, the one-loop
divergences of GR with a minimally coupled scalar field ϕ with
quartic self-interaction induce a non-minimal coupling to gravity
proportional to Rϕ2, an operator not present in the original
action [36, 96–98]. At the two-loop order, even for a vanishing
cosmological constant 3 = 0, a divergent contribution of a
single operator among the cubic curvature invariants survives the
on-shell reduction [37, 99, 100],

Ŵdiv
2,on-shell =

1

ε

1

(16π2)2
209

1470

1

M2
P

∫

d4X
√

−g C̄ ρσ
µν C̄ αβ

ρσ C̄
µν

αβ ,

(77)

thereby showing explicitly that GR is perturbatively non-
renormalizable12. In (77), the cubic Riemann curvature invariant

12In a recent calculation of the two-loop divergences with modern on-shell

methods, it was found that by using dimensional regularization, evanescence

operators (such as the Gauss-Bonnet term) in divergent subdiagrams can alter the

coefficient of the pole term [101].

is expressed in terms of the Weyl tensor Cµνρσ , which on-shell
coincides with the Riemann tensor Rµνρσ in view of the vacuum
on-shell identity Rµν = 0,

Cµνρσ = Rµνρσ

−
2

D− 2

(

Rµρgνσ + Rνρgµσ + Rµσ gνρ + Rνσ gνρ
)

−
R

(D− 1)(D− 2)

(

gµρgνσ − gνρgµσ

)

. (78)

In a perturbatively renormalizable QFT, finitely many free
parameters (fields, masses, and coupling constants) are sufficient
to absorb all UV divergences to all orders in the perturbative
expansion. As demonstrated in (65) based on power-counting
arguments and in (77) based on explicit calculations, GR is not
of that form. New higher-dimensional operators with divergent
coefficients are induced at every loop order and have to be
renormalized by introducing the corresponding counterterms,
each of which introduces a new coupling constant with a finite
part that needs to be determined by a measurement. In this way,
more and more free parameters are introduced at each order in
the perturbative expansion, and the theory ultimately loses its
predictive power.

4. EFFECTIVE FIELD THEORY OF GRAVITY

For many physical systems, an effective coarse-grained
description is sufficient to accurately describe phenomena
at low energies by the relevant degrees of freedom [38]. Such an
effective description might arise in two complementary ways,
often referred to as the top-down and bottom-up approaches.
In the case where a (more) fundamental theory is known at
high energy scales, a top-down approach leads to an effective
low-energy theory by “integrating out” the heavy degrees of
freedom13. Denoting the heavy degrees of freedom collectively
by 8, with characteristic mass scale M8, and denoting the
light degrees of freedom by φ, with characteristic mass scale
Mφ , in a “top-down” scenario there is a natural mass hierarchy
M8 ≫ Mφ . Integrating out the 8-fields from the combined

13Only when the more fundamental theory is valid up to arbitrarily high energy

scales does it qualify as UV-complete theory. Instead of integrating out certain

heavy particles, in the Wilsonian approach the effective action is defined at a given

energy scale E by integrating out all particles with momenta P2 > E.
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FIGURE 3 | In the diagrammatic representation, to first order in the expansion

(80), the 8-propagator is shrunk to a point, leading to an effective four-point

contact interaction between the φ-fields.

action S[8,φ] in the path integral defines the effective action
Seff[φ] for the φ-fields,

∫

D[φ]e−Seff[φ]
: =

∫

D[8,φ] e−S[φ,8].

In general, the process of integrating out 8-fields results in a
non-local effective action Seff[φ]. Within an energy expansion
E/M8≪1, it can be expanded in terms of local operatorsOn(φ, ∂)
for the φ-fields as

Seff[φ] = S[φ]+
∑

n

∫

dDXwn
On(φ, ∂)

Mn−D
8

,

[

On(φ, ∂)
]

M
= n, [wn]M = 0. (79)

The higher-dimensional local operators On(φ, ∂) parameterize
the impact of the heavy degrees of freedom 8 on the effective
low-energy theory for the light degrees of freedom φ, and
their interacting strength is characterized by the dimensionless
Wilson coefficients wn. In terms of momentum space Feynman
integrals, this expansion is associated with an expansion of the
8-propagators in inverse powers of the heavy mass scaleM8,

1

(−P2)−M2
8

= −
1

M2
8

−
1

(−M8)
(−P2)

1

(−M2
8)

+ · · · . (80)

For example, in this way, a φφ-φφ interaction from a trivalent
vertex ∝ g8φ2 in S[8,φ] leads to an effective quartic contact
interaction between the φ-fields ∝ (g2/M2

8)φ
4 in Seff[φ], as

illustrated in Figure 3.
Since in the top-down approach calculations can be performed

both ways, i.e., in the more fundamental theory as well as in the
effective theory, scattering amplitudes can be compared at some
scale below (but usually close to) M8 in order to fix the Wilson
coefficients in terms of the parameters of the more fundamental
theory, a procedure called matching. Assuming wn = O(1), the
accuracy of the effective description is limited only by the ratio
E/M8, which controls the energy expansion, and completely
breaks down for energies E ≈ M8, where the propagation of the
8 particles is no longer suppressed.

Importantly, the effective field theory (EFT) description is still
applicable, even if no (more) fundamental theory in the UV is
known. This is the situation for GR, i.e., the EFT approach to
gravity is necessarily a bottom-up one [39, 40]. In this case, the
cutoff scale M that limits the range of validity of the effective

FIGURE 4 | Different energy scales. Is there new physics beyond the EW

scale and the Planck scale or a “big desert”?

description is not known a priori. Assuming no new physics at
scales in between the electroweak (EW) scale of the standard
model (SM) of particle physics and the scale at which gravity
becomes comparable to the other interactions (see Figure 4), the
Planck scale might be the natural cutoff scale,M = MP

14.
It could be considered a particular strength of the bottom-

up approach that it is agnostic about the gravitational degrees
of freedom in the UV: the low-energy limit of the EFT defines
the field variables, symmetries, and particle spectrum. In the
case of GR, these are the metric field, the diffeomorphisms,
and the massless spin-2 graviton. The ignorance of a more
fundamental theory in the UV is parameterized by the systematic
inclusion of higher-dimensional operators, which are compatible
with the symmetries of the defining low-energy theory and
suppressed by inverse powers of the cutoff scale. In the case
of gravity, diffeomorphism invariance requires that the higher-
dimensional purely gravitational operatorsO(g, ∂) have the form
of curvature invariants proportional to g1/2∇2nRm/M2(n+m)−D.
For energy scales well below the cutoff ∇/M ≪ 1, R/M2 ≪ 1,
these higher-dimensional operators are strongly suppressed and
the expansion can be truncated at a finite order determined by
the required accuracy of the EFT. In contrast to a fundamental
theory, the higher-dimensional operators in an EFT are viewed
merely as correction terms, i.e., they lead to additional interaction
vertices but do not modify the propagators of the theory and
hence do not affect the particle spectrum, which is defined
by the relevant operators at low energy15. While the higher-
dimensional operators in an EFT are included in a controlled
way, the precise way in which such an expansion scheme
is realized can differ. Depending on the requirements of
the underlying physical model, such an expansion could be
realized as a derivative expansion, as a vertex expansion, as the
aforementioned combined “energy expansion,” or according to a
different scheme.

In principle, the presence of the infinite tower of operators
∇2nRm/M2(n+m)−D is required in an EFT to absorb all UV
divergences by renormalizing the wi. However, according to the
GR power counting (65), the Lth loop correction in D = 4
induces divergent operators of the form ∇2nRm/M2(n+m)−D with
n+m = L+1. Thus, within a finite truncation, the EFT of gravity
can be perturbatively renormalized in the standard way, and only

14This naive estimate might be modified in the presence of matter; see e.g., the

discussion in the context of scalar-tensor theories with a strong non-minimal

coupling, such as in the model of Higgs inflation [102–107].
15Note, however, that a summation of operators with a fixed number of external

fields but an arbitrary number of derivatives results in non-local form factors that

lead to IRmodifications of the propagator. For a discussion of these non-local form

factors in the context of gravity and the heat kernel (see e.g., [108, 109]).
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finitely many renormalized parameters wi have to be measured,
ultimately rendering the EFT predictive16.

However, ultimately absorbing the UV divergences within
a finite truncation provides a consistency condition rather
than a prediction. In contrast to the local but unphysical
UV divergences, true predictions of the quantum theory are
connected with infrared (IR) effects that arise from long-
range interactions dominated by massless particles. These
contributions are connected to the non-analytic parts in
scattering amplitudes. The most prominent example of how
such IR effects can be extracted from QFT scattering amplitudes
within the EFT of GR concerns the corrections to the Newtonian
potential for two point masses M1 and M2, which after Fourier
transformation read [111]

V(r) = −
GNM1M2

r

[

1+ 3
GN(M1 +M2)

rc2
+

41

10π

GNh̄

r2c3
+ · · ·

]

.

(81)

The second term is a purely classical relativistic correction

related to the
√
P2 part, while the third term is of genuine

quantum origin and related to the P2 log(P2) part of the one-loop
contribution [111]. Both contributions correspond to those parts
of the scattering amplitude that have a non-analytic momentum
dependence. They are independent of the higher curvature terms
in the EFT expansion and therefore do not depend on a UV
completion. While the general structure of the correction terms
in (81) follows from dimensional analysis, the coefficients (in
particular the signs) have to be calculated and provide a true
prediction of quantum gravity.

While the quantum gravitational corrections are accompanied
by powers of GNh̄ and are therefore very hard to measure,
classical post-Minkowskian (PM) corrections are in powers
of GN. High-order PM corrections have been calculated with
classical techniques [112–115]. Since the advent of gravitational
wave astronomy, there have been increasing efforts to extract the
classical PM corrections within an EFT framework from QFT
scattering amplitudes, which, in turn, can be efficiently calculated
using modern on-shell techniques (see e.g., [116–122]).

The EFT of GR is a powerful and universal approach that
yields universal quantum gravitational predictions from long-
range effects of massless particles, but its scope of applicability
is limited by construction. Therefore, certain questions cannot
be addressed within this framework but require a fundamental
quantum theory of gravity.

5. ASYMPTOTIC SAFETY

Although the question about a fundamental theory of gravity
cannot be addressed in the framework of the perturbative EFT

16An important technical requirement for the consistent renormalization is that

the counterterms have the same structure as the operators in the EFT expansion.

Since the latter are restricted by symmetry, the process of renormalization is

required to preserve this symmetry; see e.g., the discussion in [110]. This property

is non-trivial to show and has been proven for GR and Yang-Mills theory in

[58]. Recently, the proof was extended to effective and non-relativistic theories by

combining the BRST cohomology with the background field method [52].

approach, the asymptotic safety (AS) program, initiated in [123,
124], might offer a UV-complete theory of quantum gravity.
The basic underlying idea is that the renormalization group
(RG) flow drives the (dimensionless) essential couplings gn of
a theory toward a UV fixed point g∗n

17. In this way, the AS
scenario prevents the couplings from running into divergences
at finite energy scales (Landau poles) and allows the RG flow to
be extrapolated to arbitrary energy scales k → ∞. However, in
contrast to the asymptotic freedom scenario corresponding to a
free (i.e., non-interacting or “Gaussian”) UV fixed point g∗n = 0,
the AS scenario only requires the weaker condition g∗n = const.,
which includes the possibility of an interacting fixed point for
g∗n 6= 0 [123]. In particular, the couplings gn are not required to
remain within the perturbative regime gn ≪ 1 and consequently
allow for a strongly interacting UV fixed point at which (at least
some of) the couplings g∗n≫1. Clearly such a strongly interacting
UV fixed point cannot be found within a perturbative approach.
Thus, the AS scenario is an inherently non-perturbative approach,
which can be addressed with the Wilsonian approach to the
RG [125].

The main object is the averaged effective action Ŵk, which
defines the full quantum theory at a given RG scale k. The sliding
scale k interpolates between the bare action Ŵ∞ = S in the UV,
corresponding to k = ∞, and the full effective action Ŵ0 = Ŵ in
the IR, corresponding to k = 0. Once the propagating degrees
of freedom φi and their symmetries are identified, Ŵk can be
expressed in terms of symmetry-compatible operators On(φ, ∂)
with coupling strengths gn(k) as

Ŵk =
∞
∑

i=1

∫

dDX gi(k)On(φ, ∂). (82)

The space of all coupling constants gi is called theory space. A
suitable tool for a non-perturbative analysis is the Wetterich
equation [126–128], which describes the exact functional RG flow
of the averaged effective action Ŵk,

k∂kŴk =
1

2
Tr

(

k∂kRk

Ŵ
(2)
k

+Rk

)

. (83)

Here, Tr is the functional trace,Rk is a scale-dependent regulator

and Ŵ
(2)
k

is the Hessian of the averaged effective action Ŵk. The
Wetterich equation (83) has a similar structure to the one-loop
approximation (8) but involves the scale-dependent regulator
function Rk defined such that it acts as an effective mass term of
the full propagator for quantum fluctuations with momenta P2 ≤

17In this section, I denote the coupling constants by gn to contrast with the cn
in (1) and the ωn in (79), although when put in the right context they are all

the same objects. The RG flow gn(k) is defined as the solution to the RG system

k∂kgn = βgn , with the abstract RG scale k and beta functions βgn . A fixed point g∗n
is defined by the condition βgn (g

∗
m) = 0 for all n. The couplings g̃n, which carry

a canonical physical dimension [g̃n]M = αn, are made dimensionless by rescaling

with the appropriate power of the RG scale [k]M = 1, i.e., gn = g̃nk
−αn , such that

[gn]M = 0. Moreover, since only essential couplings enter physical observables,

only they are required to take finite values in the UV. In contrast, inessential

couplings, which can be changed by a field redefinition, do not enter physical

observables and so may diverge in the UV.
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k2 and vanishes for momenta P2 ≫ k2. Together with the factor
∂kR in (83), which cuts off fluctuations with momenta P2 ≥ k2,
the presence of the regulator ensures that only fluctuations with
momenta peaked around P2 ≈ k2 contribute to the trace in (83),
thereby realizing the Wilsonian “shell-by-shell” integration18.
Owing to the presence of the regulator, no divergences occur. In
general, the Wetterich equation cannot be solved exactly. Instead
of a semiclassical expansion in powers of loops, such as in (6),
a finite truncation of the (in general infinite) set of operators
included in Ŵk is performed:

Ŵk =
N
∑

n=1

∫

dDX gn(k)On(φ, ∂). (84)

According to which criteria such a truncation is chosen
practically may depend on the underlying physical problem.
In most applications the operators are organized in terms
of an energy expansion, i.e., ordered by increasing canonical
mass dimension. There are, however, cases where a derivative
expansion or a vertex expansion is more appropriate. In the case
of gravity, diffeomorphism invariance requires that the O(g, ∂)
be curvature invariants, schematically O(g, ∂) = √

g(∇)2pRm.
By substituting the ansatz (84) into (83), choosing a regulator
Rk, and evaluating the functional trace on the right-hand side
of (83), the RG flow of the couplings gn(k) can be extracted
by “projecting” to the operator basis On(φ, ∂). Contributions
of operators that are induced by the flow and lead out of the
truncation (84) are neglected19.

For a successful realization of the AS scenario, the existence
of a UV fixed point g∗i is only a necessary condition, not a
sufficient one. In addition, an appropriate fixed point must
have a finite-dimensional UV critical surface20. The finiteness
of the UV critical surface lies at the very heart of the AS

scenario, as it implies that only a finite subset of the (in
general infinitely many) coupling constants have to be measured,
rendering the theory predictive. It is this feature that might
qualify the AS scenario in providing a UV-complete quantum
theory of gravity21. Therefore, in principle, if all UV-relevant
couplings were measured (and thus a particular RG trajectory

18In particular, once a cutoff is introduced, it does not matter whether the

underlying theory is perturbatively renormalizable in the strict sense or not. All

operators compatible with the symmetries of the theory have to be considered. This

is similar to the EFT case, but in contrast to the EFT treatment, the particle content

and the symmetries are not necessarily defined by the relevant operators of the

low-energy approximation, but rather are defined along with the averaged effective

action (82). In general the theory space is infinite, but if the symmetry restriction

is so strong that it only allows for a finite number of operators, the theory space

could be finite.
19This is a consistency requirement of the truncation. If no operators that lead out

of the truncation are induced, the flow closes and (83) is really an exact equation.
20The UV critical surface can be thought of as a subspace of the tangent space at

g∗i , consisting of those RG trajectories which are attracted toward the fixed point.

In general there can be more than just one fixed point, and the RG flow may also

allow for more exotic phenomena, such as limit cycles. It could also happen that

some of the fixed points can be discarded on physical grounds.
21Compare this with the perturbative quantization of GR, discussed in section 3.

The perturbatively non-renormalizable character requires the measurements of

an infinite number of couplings, thereby leading to a loss of predictive power.

emanating from the UV fixed point selected), all other UV-
irrelevant couplings would be fixed. They therefore constitute
predictions that could be falsified by additional measurements of
these couplings. In practice, however, calculations are limited to
finite truncations, and one must ensure that the properties of the
fixed point (and hence any prediction derived from them) remain
stable under an enlargement of the truncation. In principle, if
a reliable measure of the quality of a given truncation were to
exist, one could try to ultimately prove convergence; but as so
far no such measure exists, this is hard to realize in practice
and one has to rely on systematic step-by-step enlargements of
finite truncations. Nevertheless, as for the perturbative approach
(fundamental or EFT), a particular strength of the AS approach
to quantum gravity is its universality, i.e., gravity and matter
fields are treated within one and the same formalism. This
not only allows for a unification but also enables one to test
the techniques used in the context of quantum gravity in
more controlled environments, for which experimental data are
also available.

The functional RG flow in the context of gravity [41–43,
129, 130] has been studied in various truncations, starting
with the Einstein-Hilbert truncation [131], encompassing higher
curvature invariants [132–137] and matter fields [138–143] as
well as closed flow equations for f (R) gravity [144, 145], and
general scalar-tensor theories [146, 147]. A pattern that emerges
from most of these truncations is that an interacting UV fixed
point can be found and the dimension of the associated UV
critical surface does not grow upon enlarging the truncation
beyond the classically marginal operators. Since this program
has been pushed to high orders in various truncations, it might
provide some confidence that the observed pattern is a generic
feature and not an artifact of the truncation.

Despite these interesting results, there are a number of open
questions associated with this program (see e.g., [148]). In
general, the off-shell flow defined by Ŵk suffers from a number
of ambiguities related to the choice of regulator as well as to
the gauge dependence and field parametrization dependence of
the beta functions. Since different regulator choices, different
gauges, and different field parameterizations can even affect
qualitative features, such as the existence of a fixed point, a
satisfying resolution of these ambiguities seems to be crucial for
establishing the reliability of the predictions following from the
AS conjecture.

In connection with the gauge and parameter dependence, a
unique off-shell extension of the averaged effective action along
the lines of the construction proposed in [149] might offer
an interesting option. But even without such a construction,
the gauge and parametrization dependence should be absent
in an on-shell scheme (see e.g., [150]). However, making use
of the equations of motion in general leads to degeneracies
among different operators in a given truncation and therefore

Compare this also with the EFT approach to GR, discussed in section 4. While

only a finite number of couplings have to be measured within a finite truncation,

the EFT cannot be extrapolated beyond a certain energy scale and therefore does

not qualify as a UV-complete theory.
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the individual RG flow of the couplings for these on-shell
degenerate operators cannot be disentangled and resolved22.
Nevertheless, extracting, for example, physical observables from
the S-matrix will anyway involve an on-shell reduction. By
definition only essential couplings span the theory space.
In this sense, the “on-shellness” is already built into the
formalism of the AS conjecture from the very beginning.
However, especially in the context of gravity, the situation
is more complicated. For example, the question of whether
Newton’s constant is an essential or inessential coupling is
not so clear and leads to conceptional intricacies (see e.g., the
discussion in [151]).

In any case, the starting point for the derivation of observables
should be the effective action at k = 0, which is independent
of the regulator and is formally obtained by integrating out
all quantum fluctuations, i.e., integrating the functional flow
all the way down to the IR. One might be tempted to extract
information from the averaged effective action Ŵk at non-zero
k by performing an “RG-improvement” based on a heuristic
identification of the abstract coarse-graining RG scale k with
some characteristic physical scale. However, aside from the fact
that such an identification is typically only possible in highly
symmetric backgrounds where a single scale is present, such
as the radius in the context of spherically symmetric black
hole backgrounds, the Hubble parameter in the context of an
isotropic and homogeneous cosmological Friedmann-Lemaître-
Robertson-Walker background, the value of the scalar field
in the Coleman-Weinberg-like radiatively induced symmetry
breaking in a classically scale-invariant theory, or the momentum
transfer in the context of scattering amplitudes—it does not
seem that such a naive identification can be based on a
more general solid theoretical ground. However, even when
working with the effective action at k = 0, another problem
arises: the effective action is non-local (and non-analytic) and
therefore not appropriately described by the finite number
of local operators in a given truncation that do not capture
essential IR contributions. In this context, the introduction of
form factors in the AS program provides a more promising
route. Including form factors in the truncation goes beyond a
finite derivative expansion, as it captures the full momentum
dependence of propagators and vertices, which can be studied
either using a flat-space vertex expansion [152–154] or in a
general background by an expansion of the effective action
in powers of external fields (curvatures in the context of
gravity) [155, 156]. The manifest covariant calculations of
these non-local form factors are technically challenging and
require heat-kernel-based methods developed in [108, 109, 157–
159].

The analysis of form factors in the AS program may also shed
light on the status of the particle content, a problem shared by
higher-derivative theories of gravity, discussed in section 6. Any
truncation based on a finite derivative expansion will in general
lead to additional propagating degrees of freedom in the particle
spectrum (defined by the quadratic action expanded around a

22A similar problem occurs when working on special (in general highly symmetric)

backgrounds, even if they do not correspond to on-shell configurations.

flat background) and will almost always include higher-derivative
ghosts among them. Having access to the pole structure of the
propagators, including the full momentum dependence carried
by the form factors, may ultimately reveal the status of the ghost
degrees of freedom as an artifact of the finite truncation (realized,
for example, when the full propagators have only a single pole
with positive residue). Technically, this program is closely related
to the (ghost-free) non-local approach to quantum gravity (see
e.g., [18, 20–22, 25, 26]).

6. HIGHER-DERIVATIVE GRAVITY

Before giving up on finding a fundamental theory of quantum
gravity or abandoning the framework of perturbative QFT,
another obvious approach to try is to modify the underlying
classical theory of gravity and investigate the impact of these
modifications on the resulting quantum theory. Adding higher-
dimensional curvature invariants to the action might be the most
natural generalization of GR. In contrast to the EFT treatment,
when treating the modified theory as fundamental, the higher-
dimensional operators are no longer considered as perturbations,
and so they not only modify the interaction vertices but also the
propagators. Ultimately, this leads to new additional propagating
degrees of freedom. There are many ways to modify GR. A
simple and phenomenologically important extension of GR is
f (R) gravity, allowing for an arbitrary function f of the Ricci
scalar R,

Sf [g] =
∫

d4X
√
g f (R). (85)

In particular, (85) encompasses the Starobinsky model [160],
which is highly relevant for inflationary cosmology,

fStar =
M2

P

2

[

R+
1

6M2
0

R2
]

. (86)

In fact, (86) was the first model of inflation and is strongly
favored by the latest Planck data [161]. The one-loop divergences
for f (R) gravity (85) have recently been calculated on an
arbitrary background [76], thereby essentially generalizing
previous calculations obtained for spaces of constant curvature
[144, 145, 162],

Ŵdiv
1 =

1

32π2ε

∫

d4X
√
g

[

−
71

60
G−

259

180
RµνR

µν −
9

2

(

f

f1

)2

−
1

18

(

f1

f2

)2

+
9

2

f

f1
R+

1

3

f

f2
−

59

360
R2 +

21

2

f

f1

(

ϒ ;µ
µ

)

−
33

4
R
(

ϒ ;µ
µ

)

−
371

72
R
(

ϒµϒµ
)

+
27

4

f

f1

(

ϒµϒµ
)

+
20

9
Rµνϒ

µϒν −
137

24

(

ϒ ;µ
µ

)2
−

9

8

(

ϒµϒµ
)

(

ϒ ;ν
ν

)

−
769

96

(

ϒµϒµ
)2

]

. (87)
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The derivatives of the function f are defined by fn : = ∂nf /∂Rn,
and the vector ϒµ is defined as ϒµ : = R;µf2/f1. Even for
a general function f , the result (87) shows that f (R) gravity
is perturbatively non-renormalizable on a general background.
Although divergences accompanied by arbitrary functions of R
can be absorbed by renormalizing f (R), due to the absence of the
derivative structures ϒµ and the quadratic curvature structure

RµµR
µν in (85), the associated divergences cannot be absorbed23.

The higher derivatives in (85) lead to a fourth-order fluctuation
operator and imply the presence of an additional propagating
scalar degree of freedom, the scalaron. In the context of the
cosmological model (86), the scalaron drives the accelerated
expansion of the early universe, and its mass M0 ≈ 10−5MP

is fixed by the observed anisotropy spectrum in the cosmic
microwave background radiation [161].

What is the required extension of GR that qualifies as a
candidate for a perturbatively renormalizable quantum theory
of gravity? The power counting performed in (65) for GR can
easily be generalized to higher-derivative theories of gravity.
Diffeomorphism invariance requires that all higher curvature
invariants have a schematic structure

√−g ∇2nRm (suppressing
indices) with a total number of derivatives p = 2(n + m). The
natural candidate higher-derivative gravity (HDG) theory is the
one which includes all classically relevant andmarginal operators,
i.e., in the D = 4 case all operators with p ≤ 4. Aside from the
relevant operators (46) that are already present in the Einstein-
Hilbert action (39), the marginal operators with p = 4 have either
m = 2 and n = 0 or m = 1 and n = 1. For the latter case, there
is only one scalar invariant O3(g, ∂) =

√−g ∇µ∇µR, which is a
total derivative. For the former case there are three possible scalar
invariants that are quadratic in the curvature,

O4(g, ∂) =
√

−g RµνρσR
µνρσ ,

O5(g, ∂) =
√

−g RµνR
µν ,

O6(g, ∂) =
√

−g R2. (88)

The three curvature invariants in (88) can be more conveniently
parameterized in a different basis of quadratic curvature
invariants involving the Gauss-Bonnet term, theWeyl tensor, and
the Ricci scalar, as the latter two are more directly related to the
particle content:

SQDG[g] = SEH[g]+
∫

d4X
√

−g

×
[

c1G+ c2CµνρσC
µνρσ + c3R

2
]

. (89)

The power counting in the UV is dominated by the marginal
quadratic curvature operators, and the momentum scaling of the
propagator is P ∝ P−4, while that of the vertices is V(n) ∝ P4.

23Even on-shell, there remain divergences associated with operators involving

derivatives of the Ricci scalar, which are not total derivatives and cannot be

absorbed into the function f (R) [76]. On a constant-curvature background g0µν ,

for which R0µνρσ = R0(g
0
µρg

0
νσ − g0µσ g

0
νρ ), ϒµ = 0,

∫

d4X
√

g0 = 384π2/R20,

and the equations of motion reduce to the algebraic equation 2f − R0f1 = 0,

the one-loop divergences Ŵdiv
1

∣

∣

on-shell

0
= (1/ε)

[

97
20 + 4f /R20f2 − 8f 2/3(R0f2)

2
]

can

be absorbed by a renormalization of f (R0).

Consequently, the superficial degree of divergence in quadratic
gravity (QDG) in D = 4 is

Ddiv
QDG = 4L− 4(L− 1) = 4. (90)

Hence, in D = 4, QDG is power-counting renormalizable,
suggesting that QDG is indeed the required extension of GR.
Going beyond this simple power-counting argument requires
more advanced methods; a strict proof that the QDG (89) is
a perturbatively renormalizable quantum theory of gravity was
given in [45].

However, even if the perturbative renormalizability of QDG
has been established, it remains to show that QDG is UV-
complete, i.e., that the theory can be extended to an arbitrary
energy scale. To answer this question requires studying the RG
flow determined by the divergence structure of the theory. In
particular, for a UV-complete theory the absence of Landau poles,
where couplings diverge at finite energies, must be assured. The
one-loop divergences of QDG were first calculated in [163] and
later corrected in [164]. The authors of [164] considered the
Euclidean version of (89) with a different parametrization and
basis for the quadratic curvature invariants,

SQDG[g] =
∫

d4X
√
g

[

2

k4
λ −

1

k2
R+

1

ν2
G

+
1

f 2

(

RµνR
µν −

1

3
R2
)

−
ω

3f 2
R2
]

, (91)

with 1/k2 = M2
P/2 and the dimensionless cosmological constant

λ = 23/M2
P. The beta functions can directly be read off

from the one-loop divergences and determine the running of
the coupling constants with the logarithmic parameter t : =
1/(4π2) ln(µ/µ0). Here µ is the sliding scale and µ0 an arbitrary
renormalization point. Within the standard framework with the
“ordinary” definition of the effective action as in (5), it was found
in [164] that the essential couplings 1/ν2(t), 1/f 2(t), and ω/f 2(t)
are asymptotically free, provided that 1/ν2 > 0, 1/f 2 > 0,
and ω/f 2 < 0, while λ grows in the UV limit t → ∞.
Note, however, that in [165] it was found that ω/f 2 > 0 is
required in the Lorentzian regime to avoid a tachyonic instability
of the scalaron. Fixing the correct sign, the running is no longer
asymptotically free.

Newton’s constant, or k2 in terms of the parametrization
in (91), is an inessential coupling and does not run. In order
to access the running of all couplings separately, including the
running of k2, an off-shell extension is required, which renders
the effective action gauge-independent and parametrization-
invariant24. Such an off-shell extension was proposed in [149]
by a geometrically defined (field-covariant) “unique” effective
action. At the one-loop level, the difference between the
“ordinary” definition of the effective action and the “unique”
effective action is a correction term proportional to the equations
ofmotion. The “unique” off-shell one-loop beta functions for (91)
were calculated in [164] and the running of 1/k2(t) was extracted,

24See also [166–170] for a discussion of the quantum parametrization dependence

of the effective action in cosmology.
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with the result that limt→∞ 1/k2(t) = 0 and limt→∞ 3(t) = 0.
Thus, the UV limit t → ∞ found in this way corresponds to the
induced gravity scenarioM2

P → 0 (i.e.,GN → ∞) with vanishing
(dimensional) cosmological constant 3 → 025.

While the above quoted results support the status of QDG
in D = 4 as a perturbative renormalizable theory of quantum
gravity, the reason QDG is not usually regarded as a consistent
theory of quantum gravity relates to its problem with the
additional propagating spin-2 ghost degrees of freedom. In
analogy to (49), the momentum space fluctuation operator of
QDG defined in the parametrization (89) for arbitrary D on a flat
background can be expressed in terms of the projectors (50) and
(53) and reads [171]

Fµν,ρσ (−P2) =
(−P2)

2

[

1+ 8c2
D− 3

D− 2

(−P2)

M2
P

]

P(2)µνρσ

− (D− 2)
(−P2)

2

[

1− 8c3
D− 1

D− 2

(−P2)

M2
P

]

P(0,ss)µνρσ .

(92)

Clearly, this reduces to (49) for c2 = c3 = 0.Moreover, because of
the topological nature of the GB term G, c1 does not enter (92).
Just as in GR, the diffeomorphism invariance of QDG renders
the fluctuation operator (92) degenerate, and a gauge-fixing is
required to obtain the propagators. Nevertheless, the tree-level
particle spectrum of QDG can already be analyzed on the basis
of the pole structure in (92). Defining the two effective masses
for D > 3,

M2
2 : = −

1

8c2

D− 2

D− 3
M2

P, M2
0 : =

1

8c3

D− 2

D− 1
M2

P, (93)

the pole structure of the propagators in the spin-2 and spin-0
sectors becomes more transparent [45]:

P(2) ∝
−M2

2

(−P2)
[

(−P2)−M2
2

] =
1

(−P2)
−

1

(−P2)−M2
2

, (94)

P(0) ∝
M2

0

(−P2)
[

(−P2)−M2
0

] = −
1

(−P2)
+

1

(−P2)−M2
0

. (95)

The partial fraction in the second equality reveals that, compared
to GR, in QDG there are two additional propagating particles
with masses M2 and M0. The first term in (94) corresponds to
a massless spin-2 particle and, just as in GR, combines with the
first term in (95) to become the massless graviton. The second
term of (94) indicates the presence of a propagating massive
spin-2 particle originating from the CµνρσC

µνρσ term in (89),

25Since Newton’s constant GN(t) ∼ 1/k2(t) exceeds the perturbative regime, a

perturbative treatment does not seem reliable in the asymptotic limit t → ∞.

However, because Newton’s coupling is an inessential coupling in the ordinary

perturbative approach (even if it runs in the covariant Vilkovisky off-shell

extension), it should never enter an on-shell observable in an isolated way, but

only via a dimensionless combination with other couplings [including3(t)] whose

beta function is gauge-independent. Thus, independently of whether GN itself

grows beyond perturbative control in the limit t → ∞, the question should then

rather be whether the RG running of this dimensionless combination stays under

perturbative control.

while the second term in (95) indicates the presence of a massive
spin-0 particle originating from the R2 term in (89). Excluding
tachyons requires M2

2 > 0 (c2 < 0) and M2
0 > 0 (c3 > 0). The

massive spin-0 particle, which can be identified with the scalaron
in model (86), is “healthy” (neither a ghost nor a tachyon), while
the overall minus sign in the second term of (94) shows that the
massive spin-2 particle is a higher-derivative ghost. The presence
of ghosts corresponds to states of negative norm, leading to a
violation of unitarity [45] (see also [172–175]).

Within an effective low-energy treatment P2/M2
2 ≪ 1, the

propagation of the massive spin-2 ghost is strongly suppressed.
Whether such an EFT, which still includes the scalaron as a
propagating degree of freedom (since the R2 would not be treated
as a perturbation compared to the R term), can be realized
depends strongly on the characteristic mass scales M2 and M0,
i.e., the values of c2 and c3, respectively. It requires that M2

2
be large enough that the effective description is valid up to
energy scales at which the additional propagating scalaron has
interesting phenomenology, such as in the inflationary model
(86), but at the same timeM2

0 ≪ 1 must be sufficiently small that
the scalaron can be considered a propagating degree of freedom;
see e.g., [176] for discussion of such a scenario in the context
of the scalaron-Higgs model. Solar system-based experimental
constraints on both c2 and c3 are extremely weak. However, while
c2 is practically unconstrained, a large c3 = M2

P/(12M
2
0) ≈ 109

is required in (86) if the scalaron is supposed to drive inflation.
But even if the problem with the spin-2 ghost can effectively
be neglected at sufficiently “low” energies, without a mechanism
that prevents the occurrence of the higher-derivative ghost at
arbitrarily high energy scales, QDG cannot be considered a
fundamental theory.

Recently, the negative conclusion about the ghost-related loss
of unitarity inQDG at the fundamental level has been questioned.
The questions are related to early proposals about different
quantization prescriptions, which modify the pole structure of
the propagators in higher-derivative theories [177, 178]. In [47,
179] a new quantization prescription was proposed which turns
higher-derivative ghosts into “fakeons” at the expense of a loss
of micro-causality. Another resolution of the unitarity problem
was suggested in [48, 180]. A key point in this proposal is
that the coupling of light matter particles to gravity renders
the heavy spin-2 ghost unstable, such that the ghost is not part
of the asymptotic particle spectrum. Extending the conclusion
that unstable particles must be excluded from the sum of the
unitarity relation [181] to the case of unstable ghost particles
(which are nevertheless identified as such by the free-particle
spectrum), it is concluded in [48] that there is no violation of
unitarity in QDG. Nevertheless, in [48, 180] it is also found that
the ghosts “propagate backwards in time,” leading to a violation
of micro-causality. While this effect can in principle be tested
experimentally, it becomes unobservably small for sufficiently
heavy ghost masses, such as in QDG ifM2 ≈ MP.

Summarizing, the proposals [47, 179] and [48, 180] about
the correct treatment of higher-derivative ghost particles both
led to the conclusion that the unitarity violation can be avoided
at the expense of violating micro-causality, but it seems that a
conclusive agreement on this controversially debated issue has
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not yet been reached. For related work on higher-derivative
ghosts (see also [182–194]). For a discussion of the ghost problem
in the context of the non-perturbative AS program for quantum
gravity, see e.g., [135, 195–199]. For the non-local approach to a
ghost-free quantum theory of gravity (see [17–26]).

7. HOŘAVA GRAVITY

The picture emerging from the previously described approaches
to providing a consistent fundamental local quantum theory of
gravity suggests that the basic principles of relativistic invariance,
renormalizability, and unitarity are incompatible in the context
of the perturbative quantization of the gravitational interaction:
quantum GR is a relativistic and unitary but perturbatively non-
renormalizable QFT, while quantum QDG is a relativistic and
perturbatively renormalizable but non-unitary QFT. Therefore,
in [49, 50], Petr Hořava suggested exploring the consequences
of abandoning relativistic invariance while trying to preserve
unitarity and perturbative renormalizability.

One of the key motivations for Hořava’s proposal comes
from the discussion of QDG. While the higher derivatives
help to improve the UV behavior of the theory, the higher
time derivatives are responsible for the occurrence of the
additional higher-derivative ghost degrees of freedom and the
associated problems with unitarity. The desire to keep the UV-
improving effect of the higher derivatives, but at the same
time avoid the ghost problem, leads to the idea of allowing
higher spatial derivatives but restricting to second-order time

derivatives. Obviously, such a proposal is not compatible with
relativistic invariance. It is clear that “sacrosanct” principles, such
as relativistic invariance should not be recklessly sacrificed—not
only because this changes the fundamental structure of spacetime
but also since there are very strong experimental constraints on
Lorentz-violating effects.

With this proviso, I first review how the above idea can
be formalized by the notion of an anisotropic Lifshitz scaling
between space and time and how it can be incorporated into a
consistent mathematical framework by formulating the resulting
anisotropic theory of gravity in terms of the geometric Arnowitt-
Deser-Misner (ADM) variables, giving rise to the Lifshitz theory
of gravity, Hořava gravity (HG). Within the ADM formulation,
the main difference between GR and HG is the weaker invariance
group underlying HG, the foliation-preserving diffeomorphisms
DiffF, which form a subgroup of the full diffeomorphisms.

Important consequences of the anisotropic scaling and the less
restrictive invariance group in HG are the modified dispersion
relations and the presence of an additional propagating
gravitational scalar degree of freedom. After a brief discussion of
their phenomenological consequences inD = 2+1 andD = 3+1
dimensions, I review the quantumproperties of HG. I first discuss
the gauge and propagator structure of the theory and then review
the essential steps in the proof of perturbative renormalizability
of the projectable version of HG.

Finally, I discuss the UV properties of quantum HG based on
the RG flow of the projectable theory in D = 2 + 1 dimensions,

which requires explicit calculation of the one-loop divergences
within a Lifshitz theory of gravity [53]. I close with a brief
summary and an outlook on future perspectives of quantum HG.
For earlier reviews of HG with a different focus, especially on the
phenomenological constraints and the cosmological applications
(see [200–203]).

7.1. Anisotropic Scaling and Modified
Propagators
As briefly outlined before, the basic idea of Hořava gravity is to
allow higher spatial derivatives but restrict to second-order time
derivatives. Obviously, such a proposal implies that relativistic
invariance will be lost at the fundamental level. How precisely
Lorentz invariance is broken in a manner compatible with this
proposal can be made concrete by introducing the anisotropic
Lifshitz scaling between time and space [49, 50, 204],

t → b−z t, xi → b−1 xi. (96)

Here, b is a constant scaling parameter and z a dynamical scaling
exponent. In analogy to the mass dimension [ · ]M introduced
in section 3.1, the anisotropic scaling dimension is denoted by
[ · ]S. According to the anisotropic scaling law (96), the scaling
dimensions of time and space are [t]S = −z and [x]S = −1. This
implies the scaling relations

[∂t]S = z, [∂i]S = 1, [ω]S = z, [ki]S = 1, (97)

whereω and ki are the frequency and spatial momentum, Fourier
conjugates to ∂t and ∂i. The dynamical scaling exponent z can be
thought of as measuring the degree of anisotropy between space
and time, with z = 1 restoring relativistic invariance. In view of
(97), the (Euclidean) anisotropic propagator takes the form

P ∝
1

ω2 + k2 + · · · + G (k2)z
≃







1
ω2+k2

= 1
p2

in the IR,

1
ω2+G (k2)z

in the UV,

(98)

with some coupling constant G such that [G]M = −2(z − 1)
and [G]S = 0. This propagator illustrates the basic idea that
Lorentz invariance is completely broken by the anisotropic
scaling exponent z for G(k2)z ≫ k2 in the UV limit and is
effectively restored in a natural way for k2 ≫ G(k2)z in the IR
limit [50]26.

7.2. Geometrical Formulation in Terms of
ADM Variables
The anisotropic Lifshitz theory of gravity can be consistently
formulated within a geometrical framework when described
in terms of ADM variables. Following the presentation in
[205], I briefly review the ADM formulation in the context

26In general, relevant deformations also lead to different coupling constants in

front of different powers of k2 in the propagator (98), which, as discussed in

the context of HG in section 7.4, might prevent a direct restoration of Lorentz

invariance in the IR.
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of GR, and highlight the differences in HG when the full
diffeomorphism invariance Diff(M) is reduced to the foliation-
preserving diffeomorphism DiffF(M).

7.2.1. ADM Variables and GR
A point X ∈ M in the D-dimensional ambient spacetimeM can
be described by local coordinates Xµ. For a globally hyperbolic
ambient space, M can be foliated by a one-parameter family of
d-dimensional spatial hypersurfaces 6t of constant time t, where
d = D − 1. The hypersurfaces 6t can be thought of as level
surfaces of a time field t. The gradient of t defines a natural unit
covector field

nµ : = −
∇µt

√

−gµν∇µt∇ν t
,

nµ = gµνnν , nµnµ = −1. (99)

By construction, at each point, the normal vector field nµ(x, t)
is orthogonal to 6t and therefore allows an orthogonal
decomposition of tensor fields with respect to nµ. In particular,
the ambient metric decomposes as

gµν = γµν − nµnν . (100)

Here, γµν is the tangential part of gµν , i.e., γµνn
µ = 0. The

hypersurfaces 6t can be viewed as embeddings of an intrinsically
d-dimensional manifold 6̃t into the ambient space M. A point
x ∈ 6̃t can be described by the local coordinates xi, i =
1, . . . , d. The D-dimensional coordinates Xµ = Xµ(t,x) can
be parameterized in terms of the time field t and the spatial
coordinates xi. The change of Xµ with respect to t and xi is given
by the coordinate one-form

dXµ = tµ dt + e
µ
i dx

i. (101)

The time vector field tµ and the soldering form e
µ
i appearing in

(101) are defined as

tµ : =
∂Xµ(t,x)

∂t
, e

µ
i : =

∂Xµ(t,x)

∂xi
. (102)

As illustrated in Figure 5, the lapse function N(t,x) and the shift
vector Nµ(t,x) are defined as the coefficients of the orthogonal
decomposition of tµ : = N nµ + Nµ in the directions normal and
tangential to 6t , respectively.

The soldering form e
µ
i transforms like a D-dimensional

tangential vector with respect to the µ index, i.e., e
µ
inµ = 0, and

a d-dimensional vector with respect to the i index. It defines the
pullback of tangential tensors inM to tensors in 6̃t :

e
µ
ie

i
ν = δµ

ν , eiµe
µ
j = δij . (103)

The pullbacks of γµν and Nµ define the spatial metric γij and the
spatial shift-vector Ni,

γij : = e
µ
ie

ν
jγµν , Ni

: = e i
µ Nµ. (104)

FIGURE 5 | Foliation of D-dimensional spacetime into hypersurfaces of

dimension d = D− 1 at constant time t.

In terms of dt and dxi, the ambient space coordinate one-form is
expressed as

dXµ = Nnµ dt + e
µ
i

(

Ni dt + dxi
)

. (105)

Inserting this into (42), the ambient space line element takes the
familiar ADM form [206]

ds2 = −N2 dt2 + γij
(

Ni dt + dxi
) (

Nj dt + dxj
)

. (106)

On 6̃t , the commutator of the (torsion-free and metric-
compatible ∇kγij = 0) spatial covariant derivative ∇i defines the
d-dimensional spatial curvature tensor by its action on a spatial
vector field vk,

[∇i, ∇j]v
k = Rklij(γ )v

l. (107)

The relation between the scalar curvature of the D-dimensional
ambient space R(g) and the scalar curvature R(γ ) of the d-
dimensional embedded space is given by the Gauss-Codazzi
relation (see e.g., [207])

R(g) = R(γ )−
(

K2 − KijK
ij
)

− 2 (∇i + ai) a
i + 2 (Dt + K)K. (108)

Here, K : = γ ijKij is the trace of the extrinsic curvature Kij,
defined via the covariant time derivative Dt as

Kij : =
1

2
Dtγij =

1

2N

(

∂tγij −∇iNj −∇iNj

)

,

Dt : =
1

N
(∂t − LN) , (109)

where LN is the Lie derivative along the spatial shift vector Ni.
The acceleration vector ai in (108) is defined as

ai : = ∂i lnN. (110)

Note that the D-dimensional diffeomorphisms Diff(M)
completely fix the structure and the numerical coefficients of
the individual terms in (108). In terms of the ADM variables
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(106), the volume element of M reads
√−g = N

√
γ , and,

modulo surface terms, the Einstein-Hilbert action (39) takes the
ADM form

SEH =
M2

P

2

∫

dt d3xN
√

γ
[

KijK
ij − K2 + R(γ )

]

. (111)

It is natural to think of the first two terms in (111), which involve
the square of the “velocities” ∂tγij, as the “kinetic term” for γij,
and to view R(γ ) as the “potential,” which involves only spatial
derivatives ∂kγij. In particular, the invariance of the action (39)
under Diff(M) implies that only the very specific combination
of ADM operators in (111) is Diff(M)-invariant. This illustrates
how strongly the underlying Diff(M) invariance in GR restricts
the possible operators allowed in the Einstein-Hilbert action
when expressed in terms of ADM variables.

7.2.2. Symmetry in GR and HG
In GR, the ADM variables derive from the decomposition of the
D-dimensional ambient space metric gµν . Consequently, in this
case, the symmetry group acting on the ADM variables consists
of the full D-dimensional spacetime diffeomorphisms Diff(M),
or general coordinate transformations,

xi 7→ x̃i(t, x), t 7→ t̃(t, x). (112)

In general, operators O(gµν , ∂ν), invariant under Diff(M), are
constructed by scalar contractions of covariant derivatives ∇µ

and curvature tensors Rµνρσ . While the action of Diff(M) on
the D-dimensional ambient metric gµν is realized linearly as
in (45), in view of (106), the action of Diff(M) on the ADM
variables N, Ni, and γij is non-linearly realized. Thus, only
very particular combinations of Diff(M)-invariant operators
O(N,Ni, γij, ∂i, ∂t) constructed by scalar contractions of the time
and space derivatives ∂t and ∂i of the ADM variables N, Ni, and
γij are allowed.

In contrast to the general coordinate transformations (112),
the coordinate transformations that preserve the foliation include
the d-dimensional time-dependent spatial diffeomorphisms and
the reparameterizations of time,

xi 7→ x̃i(t, x), t 7→ t̃(t). (113)

Under (113), the ADM fields N, Ni, and γij transform as

N 7→ Ñ = N
dt

dt̃
,

Ni 7→ Ñi =
(

Nj ∂ x̃
i

∂xj
−

∂ x̃i

∂t

)

dt

dt̃
,

γij 7→ γ̃ij = γkℓ
∂xk

∂ x̃i
∂xℓ

∂ x̃j
. (114)

Combining the action of an infinitesimal diffeomorphism (45)
on the ambient metric gµν , its decomposition in ADM variables
(100), and the decomposition of the generator of infinitesimal
diffeomorphisms εµ = (ε, εi) with εi(t, x) = εµeiµ and

ε(t, x) = tµεµ the action of an infinitesimal Diff(M) on the ADM
fields γij, N

i, and N is derived as

δεN = ∂t (εN) + LεεεN − NNi∂iε, (115)

δεN
i = ∂t

(

εNi
)

+ ∂tε
i + (LεεεN)i −

(

NiNj + N2γ ij
)

∂jε, (116)

δεγij = ε∂tγij + (Lεεεγ )ij + 2N(i∂j)ε. (117)

Here Lεεε denotes the Lie derivative along εi. The transformation
law for the shift vector with covariant index position Ni = γijN

j

can be obtained by combining the transformation laws (116) and
(117), giving

δεNi = ∂t (εNi) + (LεεεN)i + γij∂τ ε
j +

(

NjN
j − N2

)

∂iε. (118)

In contrast to the linear transformation (45) of the ambient
metric gµν , the transformations (115–117) of the ADM variables
under an infinitesimal Diff(M) is not linear. The transformations
of the ADM variables under DiffF(M), for which the time
component ε of the generator εµ = (ε, εi) is a function of time
only, ε(t, x) = ε(t), are derived from (115–117) by neglecting
terms involving ∂iε, and the action of an infinitesimal DiffF(M)
on the ADM variables is given by

δεN = ∂t (εN) + LεεεN, (119)

δεN
i = ∂t

(

εNi
)

+ ∂tε
i + (LεεεN)i , (120)

δεγij = ε∂tγij + (Lεεεγ )ij . (121)

Likewise, the transformation (118) reduces to

δεNi = ∂t (εNi) + (LεεεN)i + γij∂τ ε
j. (122)

Hence, the DiffF(M) form a subgroup of the Diff(M), and
the absence of terms proportional to ∂iε has the effect that the
transformations (119–122) act linearly on the ADM variables
[50, 208].

Mathematically, the DiffF(M) are diffeomorphisms that
respect the preferred codimension-one foliation F of (d + 1)-
dimensional spacetimeM into spatial d-dimensional leaves [50].
On such a foliation, two classes of functions can be defined:
functions that depend on all coordinates (t, xi) and functions that
are constant on each spatial leaf, i.e., which depend only on time t.
The latter are called “projectable.” From a canonical perspective
with a fundamental dynamical field γij, the shift vector Ni can
be viewed as the gauge field associated with the time-dependent
spatial diffeomorphisms with infinitesimal generator εi(t, x), and
the lapse function N can be viewed as the gauge field of the
reparameterizations of time with infinitesimal generator ε(t). It
therefore seems natural to restrict N(x, t) to be a function of time
only, although the versions N(t, x) and N(t) are both compatible
with the DiffF(M) symmetry, essentially leading to two variants
of HG.

i) Projectable HG:
The lapse function depends only on time, i.e., N(t), and is not
considered a dynamical field. By choosing a global time slicing
corresponding to the gauge in which N(t) = 1, the foliation-
preserving diffeomorphisms reduce to the time-dependent
spatial diffeomorphisms.
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ii) Non-projectable HG:
The lapse function depends on space and time, and N(t,x) is
a propagating degree of freedom, i.e., an integration variable
in the path integral. Compared to the projectable theory, the
main technical challenge is the enlarged set of DiffF(M)-
invariants that involve the acceleration vector (110).

Since the two possibilities lead to two different theories with
different particle content and different phenomenology, they
have to be investigated separately. In particular, the quantization
of the non-projectable theory is complicated due to the presence
of the fluctuating lapse function, which leads to non-regular
propagators [51]. In this paper I mainly focus on the projectable
theory but will highlight at several places important differences
from the non-projectable theory.

7.3. Projectable HG in D = 2 + 1 and
D = 3 + 1 Dimensions
The action functional of projectable HG inD = d+1 dimensions
can be formulated in terms of the ADM variables. The natural
assignment of the anisotropic scaling dimensions to the ADM
variables follows from (105) and (106):

[γij]S = 0, [Ni]S = z − 1, [N]S = 0. (123)

Compared with the stringent constraints on the ADM operators
in GR following from the invariance under Diff(M), the
less restrictive invariance under DiffF(M) allows for a richer
structure and hence more ADM invariants. Nevertheless, there
are a number of conditions which limit the possible DiffF(M)-
invariants in the projectable HG:

1. Formulated in a manifest DiffF-invariant way, the shift vector
can only arise in combination with a time derivative of the
metric γij in the form of the covariant time derivative (109).
Thus, the invariants in projectable HG can only be constructed
by scalar contractions of covariant time derivatives of the
metric field Dtγij (or, equivalently, extrinsic curvatures Kij),
covariant space derivatives ∇i, and spatial curvature tensors
Rijkl.

2. Invariance under time-reversal and parity allows
only invariants with an even number of time and
space derivatives. Writing SHG =

∫

dt ddxLHG and
LHG =

∑

n c(n)O(n)(Dt ,∇i, γij) implies that the operators
have the general schematic structure (suppressing the
summation index n)

O(Dt ,∇i, γij) =
√

γ
(

Dtγij
)2k

(∇i)
2n
(

Rijkl
)m

. (124)

3. For HG to be power-counting renormalizable, the action
can only include relevant and marginal operators with
respect to the anisotropic scaling [50]. Combining the
scaling [SHG]S = 0 with [

∫

dt ddx]S = −(d + z) implies that
[LHG]S = d+z. Relevant and marginal operators have scaling
[O(j)(Dt ,∇i, γij)]S ≤ d + z. Combining this with the structure
(124) yields the constraint

2(kz + n+m) ≤ d + z. (125)

4. The original motivation of HG as a means of solving the
problems with unitarity caused by higher-derivative ghosts
is to restrict the invariants in the action to include time
derivatives of the metric only up to second-order. In view of
the structure (124), this leaves the two possibilities of k = 1
and k = 0. For the kinetic term with k = 1 and n = m = 0 to
scalemarginally under (96), equality in (125) has to be satisfied
and implies the critical scaling condition

z = d. (126)

The operators with k = 0 correspond to the potential Vd and,
for the critical scaling (126), are restricted by the condition
2(n+m) ≤ 2d.

The action of projectable HG in D = d + 1 dimensions (in the
gauge N = 1), including all relevant and marginal terms with
respect to the critical anisotropic scaling, reads

SHG =
1

2G

∫

dt ddx
√

γ

(

KijK
ij − λK2 − V

(d)
)

. (127)

As a consequence of (126), the structure of the kinetic term is
universal, i.e., independent of d:

√
γ
(

KijK
ij − λK2

)

=
1

4

(

Dtγij
)

G
ij,kl (Dtγkl) . (128)

Here, Gij,kl is the one-parameter λ-family of “generalized DeWitt
metrics”

G
ij,kl

: =
√

γ

2

(

γ ikγ jl + γ ilγ jk − 2λγ ijγ kl
)

. (129)

There are two special values of λ. The first is the “relativistic”
value λ = 1, which leads to an enhanced symmetry [50].
The second is the “conformal” value λc = 1/d, where Gij,kl is
degenerate, which also leads to an enhanced symmetry, namely
local anisotropic Weyl invariance [49]. For non-singular values
λ 6= λc, the inverse is given by

Gij,kl =
1

√
γ

(

γikγjl + γilγjk −
2λ

dλ − 1
γijγkl

)

. (130)

For λ < λc (129) is positive definite, and for λ > λc it is
indefinite. In the context of GR, this property was found in
[209] to be directly related to the attractive or repulsive nature
of gravity.

Note the difference between (127) and the Einstein-Hilbert
action (111) in ADM variables, where the Diff(M) invariance
completely fixed the structure of the action, i.e., the relative
coefficient between the two terms KijK

ij and K2 in the kinetic
terms as well as the coefficient of the potential R. In HG, KijK

ij,

K2, and the terms in Vd are separately invariant under DiffF(M).
In particular, λ is a free parameter of the theory.

The potential V(d) of projectable HG is defined in terms of d-
dimensional curvature invariants and, according to (3), includes
all relevant and marginal operators with respect to the critical
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anisotropic scaling. In contrast to the kinetic term, the potential
is not universal and the number and complexity of invariants in
the potential grows with increasing d. Restricting to d = 2 and
d = 3, up to total derivatives the possible curvature invariants
read [210]

V
(d=2) = 23 + µR2, (131)

V
(d=3) = 23 − ηR+ µ1R

2 + µ2 RijR
ij + ν1R

3 + ν2RRijR
ij

+ ν3R
i
jR

j

k
Rki + ν4∇iR∇ iR+ ν5∇iRjk∇ iRjk. (132)

Note that in d = 2 and d = 3 all invariants involving the
Riemann tensors are absent. In addition, in d = 2, the linear
Einstein-Hilbert term

√
γR is a total derivative. In general, the

Riemann tensor in d dimensions has d2(d2 − 1)/12 independent
components. Hence, in d = 2, there is only one independent
component associated with the Ricci scalar,

R
(d=2)
ijkl

=
R

2

(

γikγjl − γilγjk
)

. (133)

Likewise, in d = 3, there are only six independent components
of the Riemann curvature tensors that are associated with the six
components of the Ricci tensor Rij. This can also be seen from the
fact that in d = 3, the Weyl tensor Cijkl ≡ 0 vanishes identically,
which allows all curvature tensors Rijkl to be expressed in terms
of Rij and R via

R
(d=3)
ijkl

= Rikγjl + Rilγjk + Rjkγil + Rjlγik −
R

2

(

γikγjl − γilγjk
)

.

(134)

The mass dimensions of the coupling constants follow from
[SHG]M = 0, [γij]M = 0, and [∂i]M = [∂t]M = [Ni]M = 1:

[G]M = 1− d, [3]M = 2, [λ]M = [η]M = 0,

[µ]M = [µ1]M = [µ2]M = −2,

[ν1]M = [ν2]M = [ν3]M = [ν4]M = [ν5]M = −4. (135)

A new set of dimensionless couplings
[G̃]M = [3̃]M =

[

µ̃i

]

M
=
[

ν̃i
]

M
= 0 is trivially defined by

expressing the couplings in units of a common, a priori
unspecified, mass scaleM∗:

G̃ : =
G

M1−d
∗

, 3̃ : =
3

M2
∗
,

µ̃i : = M2
∗µi, ν̃i = M4

∗νi. (136)

The parametrization (136) is useful when discussing
phenomenological bounds on HG.

7.4. Particle Spectrum, Dispersion
Relations, and Phenomenological
Constraints
The particle spectrum of projectable HG in d = 2 and d = 3 is
derived along the same lines as for GR by expanding the action

around flat space γ̄ij = δij, N̄
i = 0 to quadratic order in the

linear perturbations27

hij : = γij − γ̄ij, ni : = Ni − N̄i. (137)

Substituting the irreducible decomposition of the perturbations,

ni = niT + ∂ iB,

hij = hTTij + 2∂(iv
T
j) +

(

δij −
∂i∂j

∂2

)

9 +
∂i∂j

∂2
E (138)

with the three scalars 9 , E, and B, the differentially constrained
transversal vector fields ∂iv

i
T = 0 and ∂in

i
T = 0, and the

transversal traceless tensor field hTTij δij = ∂ ihTTij = 0 into the

quadratic action, “integrating out” the non-dynamical modes vTi
and E, fixing the gauges B = 0 and niT = 0, yields after Fourier
transformation to momentum space the dispersion relations for
the physical propagating degrees of freedom hTTij and 9 . As

discussed in the previous section, in D = 2 + 1 there are no
transversal traceless (TT)modes hTTij . However, in contrast to GR,

which has no local degrees of freedom inD = 2+1 dimensions, in
HG there is an additional propagating scalar degree of freedom,
which is a consequence of the reduced DiffF(M) invariance of
HG; cf. the discussion in section 3.2. The additional scalar mode
persists even for low energies such that there is no smooth limit
of HG to GR.

In d = 2, the additional gravitational scalar has the following
non-relativistic dispersion relation expressed in terms of the
dimensionless couplings (136):

ω2
S = 4µ̃

1− λ

1− 2λ

k4

M2
∗
. (139)

Clearly, the dispersion relation for the additional scalar does not
reduce to the linear relativistic form at low energies k2/M2

∗ ≪ 1,
which again is a consequence of the absence of the relevant linear
curvature invariant in the potential (131).

In d = 3, aside from the additional scalar mode, the spectrum
encompasses a propagating TT mode. Both modes have non-
relativistic dispersion relations,

ω2
TT = k2

[

η + µ̃2
k2

M2
∗
+ ν̃5

k4

M4
∗

]

,

ω2
S =

1− λ

1− 3λ
k2
[

−η + (8µ̃1 + 3µ̃2)
k2

M2
∗
+ (8ν̃4 + 3ν̃5)

k4

M4
∗

]

.

(140)

Before discussing experimental constraints on HG, I briefly
review several theoretical restrictions:

1. Despite the critical scaling (126), which guarantees that the
non-relativistic dispersion relations depend only quadratically
on the frequency ω, it is essential to make sure that no
unitarity-violating propagating ghost degrees of freedom enter

27This implies 3 = 0. For a discussion of the cosmological constant in HG, see

e.g. [211].
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in HG. Demanding the absence of ghosts leads to the
condition G > 0, which ensures the positivity of the TT
kinetic term, and the requirement that λmust lie in the gapped
interval λ < 1/d or λ > 1, bounded by the points of enhanced
symmetry, to ensure the positivity of the scalar kinetic term.

2. In contrast to the situation in D = 2 + 1, thanks to the
presence of the relevant operator∝R in (132), for low energies
k2/M2

∗≪1 both dispersion relations (140) inD = 3+1 reduce
to the linear relativistic relations

ω2
TT = ηk2 +O

(

k2/M2
∗
)

,

ω2
S = −η

1− λ

1− 3λ
k2 +O

(

k2/M2
∗
)

. (141)

However, because of the requirement that
(1− 3λ)/(1− λ) > 0, there is no value of η 6= 0 at which
both of the relations in (141) are simultaneously positive, and
for η = 0 the linear relativistic dispersion relation is lost, just
as in D = 2+ 1. For η > 0, this leads to a tachyonic instability
of the scalar mode at low energies k2/M2

∗ ≪ 1. An obvious
attempt to circumvent this problem is to keep η > 0 and tune
λ very close to 1, in order to suppress the IR instability of
the scalar mode. Unfortunately, this leads to strong coupling
for the scalar mode at low energies [212–215], invalidating
the perturbative treatment that underlies the power-counting
renormalizability [216]; see, however [200, 217–220]. In
summary, without a mechanism by which this IR problem
can be avoided, the projectable theory seems to be excluded
on phenomenological grounds.

3. The IR instability problem can be remedied in the non-
projectable version of HG in which the potential (132)
involves invariants including the acceleration vector (110),
thanks to the propagating lapse function. To illustrate the
difference from the projectable case, I present the potential
and the dispersion relation for the non-projectable theory in
d = 2. In the non-projectable case, the action (127) acquires
a modified volume element dt ddx

√
γ 7→ dt ddxN

√
γ , and

the potential (131) for the non-projectable theory in d = 2
dimensions is enlarged by additional invariants,

V
(2)
np = 23 − ηR− αaia

i + µR+ ρ11R+ ρ2Raia
i

+ ρ3(aia
i)2 + ρ4aia

i∇ja
j + ρ5(∇ia

i)2 + ρ6∇iaj∇ iaj.

(142)

Defining the perturbation of the lapse function φ : = N − 1
(with the choice N̄ = 1 for the background value of the lapse
function), expansion of the action around the flat background
(3 = 0) up to quadratic order in the linear perturbations leads
to the dispersion relation for the single scalar propagating
degree of freedom [51],

ω2
S =

(

1− λ

1− 2λ

)

(

η2k2 + (4αµ + 2ηρ1)k
4

+ [ρ2
1 − 4µ(ρ5 + ρ6)]k

6
)−α−(ρ5+ρ6)k

2

. (143)

In particular, among the additional invariants in (142), there
is a relevant operator proportional to αN

√
γ aiai that leads

to the required modifications of the low-energy limit. The

freedom in tuning the additional coupling constant α can be
used to avoid the IR instability. In [221] it was found that for
0 < α < 2 the instability can be avoided in non-projectable
HG. However, as already anticipated in [50] and supported
by different arguments in [51, 214, 222], the presence of the
propagating lapse function N in the non-projectable version
leads to essential complications with the quantization, which I
briefly comment on in section 8.

Aside from these theoretical restrictions, there are
phenomenological constraints stemming from experimental
bounds on Lorentz violation (LV) (see e.g., [223–228]). In the
context of HG, these can be divided into two regimes:

1. LV in the IR:
Despite the suppression of higher-order terms in the
dispersion relations (140) for low energies k2/M2

∗ ≪ 1, HG
does not smoothly connect to GR in the IR, but rather to
a modified theory of gravity with an additional propagating
gravitational scalar degree of freedom. Deviations from GR
can be quantified by a variety of experiments and mainly lead
to restrictions on the couplings of the relevant operators in
the IR. Experimental constraints come from deviations of the
observed helium abundance during Big Bang nucleosynthesis
[221, 229, 230] from post-Newtonian parameters [214, 231,
232], binary pulsars [233], and black holes [234–236]. The
most stringent constraint, however, comes from the recent
detection of gravitational waves from the binary neutron
star merger event GW170817 [237]. The inferred speed
of propagation of the TT mode strongly constrains the
parameter, |η − 1| . 10−15, but the propagation speed of the
scalar mode remains largely unconstrained (cf., [238]).

2. LV in the UV:
LV effects in the gravitational sector at high energies are not
as strongly restricted as in the matter sector provided by
the SM particles. In particular, the scale M∗ might naturally
be identified with the LV scale in the gravitational sector.
Observations sensitive to the higher-order corrections in the
dispersion relations (140) provide a lower bound on M∗.
However, LV effects in the SM are constrained much more
tightly, and a mechanism is needed that would prevent
LV effects percolating from the gravitational sector to the
matter sector [227].While several suchmechanisms have been
suggested (see e.g., [239–246]), it remains an open question as
to whether they can ultimately be realized in HG [247, 248].
In the case of there being a universal LV scale (i.e., when
the LV scale in the matter sector can be identified with the
LV scale M∗ in the gravitational sector), the observation of
synchrotron radiation from the crab nebula would provide
a lower bound on M∗ around the grand unification scale
M∗ > 1016 GeV [130].

Summarizing, the “healthy extension” of the non-projectable
model is still phenomenologically viable [221, 238], but stronger
constraints on the IR parameter, as well as on M∗, have
the potential to rule out the theory. Moreover, regarding the
quantum theory, these properties will rely on the IR limit
of the RG flow for the couplings of the relevant operators,
as briefly discussed in section 9 for projectable HG in
d = 2+ 1 dimensions.
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8. QUANTUM HOŘAVA GRAVITY

So far, all considerations in HG have been purely classical.
However, the main motivations for proposing a Lifshitz theory of
gravity are its unitarity and perturbative renormalizability, which
was originally conjectured based on power-counting arguments
[50]. While this conjecture has stimulated a vast amount of
research devoted to specific applications of HG in various
scenarios, the question of whether HG is indeed perturbatively
renormalizable beyond power counting remained open for a
long time. It was ultimately answered in the affirmative for
the projectable version of HG in [51]. Furthermore, for HG to
qualify as a UV-complete theory, its RG structure must also be
investigated, which in turn requires explicit loop calculations. In
this section, I discuss both these aspects. In order to establish
a connection with the general formalism in section 2, in the
remaining sections I use Euclidean signature by theWick rotation
t 7→ it and Ni 7→ −iNj, which effectively leads to a sign flip of
the potential in (127).

8.1. Non-local Gauge-Fixing and
Propagators
Since HG is a gauge theory with invariance group DiffF(M),
its fluctuation operator (10) is degenerate and its perturbative
quantization requires a gauge-fixing. In contrast to relativistic
theories, in Lifshitz theories the situation is more complicated
because of the anisotropic scaling between space and time: a
standard local gauge-fixing causes the propagators of the theory
to behave in an irregular way, ultimately leading to spurious
non-local divergences [51]. Even if, on general grounds, it might
be expected that these non-local divergences ultimately cancel
order by order in the perturbative expansion, their presence
would greatly complicate the general analysis of renormalizability
as well as the intermediate calculations. Therefore, a new type
of non-local gauge-fixing was proposed in [51], which leads to
regular propagators.

In the background field method, the geometric fields γij and
Ni are decomposed according to (137). As in the general case
for relativistic theories (19), the gauge-breaking action in HG is
quadratic in the gauge condition χ i,

Sgb =
σ

2G

∫

dt ddxi
√

γ χ iOijχ
j, (144)

where σ is a gauge parameter. Guidance for finding a suitable
gauge condition χ i can be obtained by looking at the spatial part
of the relativistic gauges of type (68), which expressed in terms of
ADM variables (106), with the background covariant derivatives
D̄t and ∇̄i and the gauge parameter c1, have the general structure

χ i[γ̄ , N̄; h, n] = D̄tn
i +

(

γ̄ ijγ̄ kℓ − c1γ̄
ikγ̄ jℓ

)

∇̄khjℓ. (145)

A characteristic feature of these “quasi-relativistic gauge
conditions” is that they artificially render the shift perturbation
ni propagating, owing to the time derivative D̄tn

i. However,
the gauge condition in the form (145) is not adequate, as it
does not scale homogeneously under (96), which can be seen by

comparing [D̄tn
i]S = 2d − 1 with [γ̄ ijγ̄ kl∇̄khjl]S = 1. A possible

solution is to omit the term D̄tn
i from (145), but this would

lead precisely to the aforementioned irregular propagators [51].
Therefore, keeping the D̄tn

i term, the only option is to increase
the scaling dimension of the remaining terms by decorating them
with additional spatial derivatives:

χ i[γ̄ , N̄; h, n] = D̄tn
i + Bijγ̄ kℓ

(

∇̄khjℓ − c1∇̄jhkℓ
)

. (146)

Here, Bij(γ̄ ; ∇̄) is a differential operator of order 2(d − 1),
which apart from ∇̄i involves only the background metric γ̄ij.
Without introducing any new dimensional parameter, Sgb should
have a marginal anisotropic scaling [Sgb]S = 0, which in view

of the critical scaling (126) and [dt ddxi]S = 2d implies
[χ iOijχ

j]S = −2d. Therefore, while (146) with [Bij]S = 2(d − 1)
ensures a homogeneous scaling [χ i]S = 2d − 1, it requires a
scaling of [Oij]S = −2(d − 1). Consequently, if the operator

Oij(γ̄ ; ∇̄) includes only powers of γij and ∇i, it must be of the
non-local form28

Oij = (−1)d−1
(

1̄(d−1)γ̄ ij + ξ ∇̄ i1̄(d−2)∇̄ j
)−1

, ξ 6= −1.
(147)

For the particularly useful choice of Bij = (O−1)ij/2σ and c1 =
λ, the metric and shift fluctuations in the quadratic action of
projectable HG decouple, leading to the two-parameter family of
(ξ , σ ) gauge conditions [51],

χ i[γ̄ , N̄; h, n] = D̄tn
i +

1

2σ

(

O−1
)ij

γ̄ kℓ
(

∇̄khjℓ − λ∇̄jhkℓ
)

.

(148)

The gauge-fixing given by (147) and (148) leads to the
aforementioned regular propagators, discussed in more detail in
the next subsection. Unfortunately, the same gauge-fixing does
not seem to work in the non-projectable theory; it leads to
irregular terms in the propagators involving the lapse function,
which is absent in the projectable theory [51].

8.2. Regular Propagators, Superficial
Degree of Divergence, and
Renormalizability
In the context of Lifshitz theories with anisotropic scaling (96),
an important concept is the notion of a regular propagator,
which also plays a central role in the proof of perturbative
renormalizability of HG. A propagator for two generalized fields

28The order of the covariant derivatives in (147) is a matter of choice, as

different orders differ only in curvature terms that do not affect the principal

part of the fluctuation operator. When lower-derivative parts are included in the

operator (147), there may be “preferred choices” that simplify the lower-derivative

parts of the fluctuation operator. In (147), a symmetric ordering has been

chosen. Another natural symmetric choice is Oij = −
(

∇̄i1 ∇̄i2 . . . ∇̄i(d−2)/2
(1̄γ kl +

ξ ∇̄k∇̄ l)∇̄ i(d−2)/2 . . . ∇̄ i2 ∇̄ i1
)−1

.
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φ1 and φ2 with anisotropic scaling [φ1]S = s1 and [φ2]S = s2 is
of the regular form

〈φ1,φ2〉 =
∑ P(ω, k)

D(ω, k)
,

D =
M
∏

m=1

[

Am ω2 + Bm k2d + · · ·
]

, (149)

if and only if P(ω, k) is a polynomial in ω and ki with leading
anisotropic scaling [P]S ≤ s1 + s2 + 2d(M − 1) and Am > 0 and
Bm > 0 are strictly positive constants. The ellipsis represents
terms with subleading scaling dimensions, which generically
originate from relevant operators in the action. The scaling
properties ensure that the propagator has the right fall-off
properties at small distances and time intervals, i.e., it scales as
[〈φ1,φ2〉]S ≤ s1 + s2 − 2d in the UV limit for high frequencies
and momenta in momentum space.

With the choice (148), the propagators of projectable HG
in D = 2 + 1 and D = 3 + 1 dimensions are derived on
a flat background γ̄ij = δij and N̄i = 0. Upon inserting
the decomposition (138) for the fluctuations hij and ni into
the gauge-fixed quadratic action, the gauge-fixed fluctuation
operator (25) has a block-diagonal form in the scalar, vector, and
tensor sectors and can be inverted algebraically in momentum
space. The propagators for the original hij and ni fields are
recovered by using (138) again. In D = 2 + 1 the propagators
read [51],

〈hij, hkl〉 = 2G

[

δikδjl + δilδjl +
2λ

1− 2λ
δijδkl

]

PS(ω, k), (150)

〈ni, nj〉 = 4µGk2
[

2(1− λ)

(1− 2λ)
δij −

kikj

k2

]

PS(ω, k). (151)

The tensor combination in (150) is just the inverse DeWitt metric
(130) in d = 2 flat space. In order to arrive at the final forms
(150) and (151), the gauge parameters (ξ , σ ) have to be chosen
such that there is a single pole

PS(ω, k) =
[

ω2 + 4µ
1− λ

1− 2λ
k4
]−1

,

σ =
1− 2λ

8µ(1− λ)
, ξ = −

1− 2λ

2(1− λ)
. (152)

Clearly, the propagators (150) and (151) are both of the regular
form (149)29.

29The ghost field propagator 〈c∗i , ci〉 = Gδ
j
iPS(ω, k), which is derived from the

gauge-fixing (148) according to the general rule (22), also has the regular form

[51].

In D = 3 + 1 dimensions the analogous procedure yields the
propagators for the hij and ni fields [51],

〈hij, hkl〉 =2G
(

δikδjl + δilδjk

)

PTT − 2Gδijδkl

[

PTT −
1− λ

1− 3λ
PS

]

+ 2G

(

δij
kkkl
k2

+ δkl
kikj

k2

)

[PTT − PS]

+ 2G
kikjkkkl

k4

[

7λ − 5

1− λ
PTT +

1− 3λ

1− λ
PS

]

, (153)

〈ni, nj〉 = G
ν5

1− λ
k4
[

2(1− λ)δij − (1− 2λ)
kikj

k2

]

PS. (154)

Again, in order to arrive at the final forms (153) and (154), the
gauge parameters (ξ , σ ) have been chosen in such a way that there
are only the two physical poles30

PTT =
[

ω2 + ν5k
6
]−1

,

PS =
[

ω2 +
(1− λ)(8ν4 + 3ν5)

1− 3λ
k6
]−1

,

σ =
1

2ν5
, ξ = −

1− 2λ

2(1− λ)
. (155)

The additional second pole in D = 3+ 1 is due to the TT mode,
which is absent in D = 2+ 1 dimensions. Again, the propagators
(153) and (154) are of the regular form (149).

The superficial degree of divergence in HG is obtained along
the same lines as in (65), but with the anisotropic scaling of loop
frequencies and momenta (97). Provided the propagators are of
the regular form, it reads [51]

Ddiv
HG = 2 d − d T − X − (d − 1) lN , (156)

where T and X are the numbers of time derivatives and spatial
derivatives, respectively, acting on external legs and ln is the
number of external n-legs. Due to the DiffF invariance of the
counterterms it is sufficient to focus on diagrams with ln =
031. From (156) it follows that Ddiv

HG < 0 with more than two
time derivatives or d space derivatives on external hij-legs. If

Ddiv
HG < 0 were indeed to imply the absence of divergences,

only local operators with at most two time derivatives or d
spatial derivatives acting on hij would have to be renormalized
and HG would be perturbatively renormalizable. However,
there are two complications that prevent us from immediately
drawing this conclusion. The first is the problem of (overlapping)

30The propagators (153) and (154) with the poles (155) are derived by taking

into account only those operators in the potential (132) that have a marginal

anisotropic scaling. If the relevant operators in (132) were taken into account, they

would lead to relevant deformations in the propagators, i.e., additional terms with

lower k-dependence. Positive definiteness of Oij requires ξ > −1, which is not

satisfied for λ > 1 in the gauge (155). This, however, does not seem to lead to

difficulties in the perturbative approach, at least as far as gauge-independent on-

shell quantities are concerned, such as the beta functions of the essential couplings

in (2+ 1)-dimensional HG discussed in section 9.
31This statement also relies on the DiffF-invariant structure of the counterterms

proven in [52], as factors of the shift vector in DiffF-invariant operators can only

occur in the form of the covariant time derivative (109).
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subdivergences, which is also present in non-relativistic theories,
i.e., a diagram might diverge despite Ddiv

HG < 0. However,
in [249] it was shown that the combinatorics of the recursive
order-by-order subtraction of the Bogoliubov-Parasiuk-Hepp-
Zimmermann (BPHZ) scheme [250–252] works essentially the
same as in relativistic theories.

The second problem is similar but inherently related to the
non-relativistic nature of the theory. It can be illustrated by
considering a generic L-loop Feynman integral that is free of
subdivergences and has Ddiv

HG(I) < 0:

I =
∫

dω(L) d
d k(L) f

(

ω(L), k(L)
)

, (157)

f
(

ω(L), k(L)
)

=
∫ L−1
∏

ℓ=1

dω(ℓ) d
dk(ℓ) f̃

(

{ω(ℓ)}, {k(ℓ)};ω(L), l(L)
)

.

(158)

The absence of subdivergences implies that the integrations over
the L − 1 loop integrals converge and result in a function
f (ω(L), k(L)) which, upon suppressing the dependence on the
external momenta, depends only on the Lth loop frequency ω(L)

and spatial momentum k(L). The anisotropic scalings [ω]S = d

and [k]S = 1 imply that [f ]S = Ddiv(I)− 2d. However, in
contrast to relativistic theories, in which f (ω(L), k(L)) can depend
only on the relativistic combination p2

(L)
= ω2

(L)
− k2

(L)
, in Lifshitz

theories the anisotropic scaling is less restrictive and f (ω(L), k(L))
can take different forms, such as

f (ω(L), k(L)) =







ω−1+n
(L)

k
Ddiv(I)−d(1+n)
(L)

,

ω−1−n
(L)

k
Ddiv(I)−d(1−n)
(L)

.

(159)

The problem is that, despite the fact that Ddiv(I) < 0, the
total integral I may diverge as the individual integrals over
the frequency [as in the first case of (159)] or the spatial
momentum [as in the second case of (159)] diverge. In [51] it
was shown that this problem is absent if the propagators are of
the regular form (156), in which case Ddiv

HG(I) < 0 really implies
convergence of I. As shown earlier, all propagators in projectable
HG can be brought into the regular form (149) by the non-
local gauge-fixing (147) and (148). Combined with the DiffF(M)
invariance of the counterterms shown in [52], this completes the
proof of perturbative renormalizability of projectable HG [51].
Unfortunately, the proof does not extend to the non-projectable
theory, as not all propagators can be brought into the regular
form (149) for the gauge-fixing (147) and (148), because of the
propagating lapse function. This, of course, does not imply that
the non-projectable theory is perturbatively non-renormalizable;
it simply means that other methods are needed to investigate the
renormalization structure of the non-projectable theory.

8.3. Auxiliary Field, Local Formulation, and
Path Integral
The Euclidean path integral (2) for projectable HG has the form

ZHG =
(

DetOij

)1/2
∫

D[Ni, γij, c
i, c∗i ] e

−Stot[N
i ,γij ,c

i ,c∗i ] (160)

with the total action

Stot = SHG + Sgb + Sgh, (161)

including the HG action (127), the gauge-breaking action (144),
and the ghost action Sgh, which derives from the gauge condition
(148) according to the general definition (21) with the ghost
operator (22).

Because of the gauge condition (148) with the non-local
operator Oij defined in (147), the gauge-breaking action Sgb
introduces a non-locality in Stot. However, this non-locality only
persists in the shift-shift sector of Sgb,

Sgb =
σ

2G

∫

dt ddx
√

γ̄
(

D̄tn
iOijD̄tn

j + local terms
)

. (162)

The non-local part can be rendered local by “integrating in” the
auxiliary field πi via the Gaussian functional integral:

(

DetOij

)1/2
exp

[

−
∫

dt ddx
σ
√

γ̄

2G
D̄tn

iOijD̄tn
j

]

=
∫

D[πi] exp

[

−
∫

dt ddx

√
γ̄

G

(

1

2σ
πi

(

O−1
)ij

πj − iπiD̄tn
i

)]

.

(163)

TheHubbard-Stratonovich-type transformation (163) reveals the
role of πi as momentum canonically conjugated to ni. The field
πi also shares similarities with the Nakanishi-Lautrup field used
in the BRST formalism to ensure the off-shell nilpotency of the
Slavnov operator (see e.g., [52]).

The field πi has mass dimensionality [πi]M = 1 and scaling
dimensionality [πi]S = 1 (for arbitrary d). In [51] it was verified
that the 〈πi,πj〉 and 〈πi, nj〉 propagators are also of the regular
form (149) and that the presence of the πi field does not affect
the regularity of the hij and ni propagators. Therefore, within
the perturbative quantization, the procedure (163) is well-defined
such that the apparent non-locality in the shift sector, induced by
the gauge-fixing, does not lead to any problems. Moreover, (163)
has the effect of absorbing the functional determinant (DetOij)

1/2

in (160), such that the partition function takes the simple form

ZHG =
∫

D[Ni,πi, γij, c
i, c∗i ] e

−Stot[N
i ,πi ,γij ,c

i ,c∗i ], (164)

with a local action functional Stot[N
i,πi, γij, c

i, c∗i ] that includes
the auxiliary πi field.

9. EXPLICIT CALCULATIONS AND
RENORMALIZATION GROUP FLOW

The proof that projectable HG is perturbatively renormalizable
beyond power counting [51, 52] is an important step toward
a unitary quantum theory of gravity. However, for this theory
to qualify as a fundamental theory, it must be extendable
to arbitrarily high energy scales. In other words, perturbative
renormalizability does not yet ensure the UV completeness, as
the RG flow could drive one or more coupling constants into a
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Landau pole, leading to divergent interaction strengths at finite
energy scales. Another aspect of the RG flow in HG is connected
to the IR and the question of whether relativistic invariance can
effectively be restored dynamically as an emergent symmetry at
low energies. The RG analysis and the logarithmic running of
the coupling constants requires calculation of the beta functions
determined by the UV divergences of the theory.

Various quantum aspects of Lifshitz theories, in particular
in the context of HG, have been considered in [49–51, 81, 83,
208, 253–273]. Here, I focus on the calculation of the beta
functions in HG in D = 2 + 1 dimensions. Previous work in
this context includes the contributions of Lifshitz scalars to the
gravitational beta functions [82, 274], the one-loop beta functions
for conformally reduced projectable HG inD = 2+1 dimensions
[275], and the renormalization of the cosmological constant in
D = 2 + 1 projectable HG [276]. In this section I report on the
full RG flow of all couplings in projectable HG in D = 2 + 1
dimensions, whichwas derived in [53]. The analogous calculation
in D = 3 + 1 dimensions is technically much more challenging
and has not yet been completed. However, recent partial results
provide an important first step in this direction [277].

The Euclidean action for projectable HG in D = 2 + 1
dimensions reads32

S
(d=2)
HG =

1

2G

∫

dt d2x
√

γ
(

KijK
ij − λK2 + µR2

)

. (165)

The background covariant gauge condition (148) and the non-
local operator (147) in D = 2+ 1 dimensions take the forms

χ i = D̄tn
i +

1

2σ

(

O−1
)ij

γ̄ kℓ
(

∇̄khjℓ − λ∇̄jhkℓ
)

,

Oij = −
(

1̄γ̄ ij + ξ ∇̄ i∇̄ j
)−1

, ξ 6= −1. (166)

In the background field method the “quantum fields” hij, n
i, πi,

c∗i , and ci are integrated out in the path integral, which, within
the one-loop approximation, means performing the functional
Gaussian integration (8). Therefore, only the part of the total
action Stot = SHG+Sgf+Sgh that is quadratic in the perturbations

S
(2)
tot is required. In view of (21) and (22), this means that only
the “affine” parts of the gauge transformations on hij and ni are
required to derive the quadratic part of Sgh. In the projectable
version of HG in the gauge N = 1, the DiffF reduce to the time-
dependent spatial diffeomorphisms [corresponding to ε = 0
in (120) and (121)], and the required gauge transformations in
terms of the background covariant time derivative D̄t and the
background covariant spatial derivative ∇̄i are given by

δεhij = 2∇̄(iεj), δεn
i = D̄tε

i. (167)

32Note the flipped sign of the µR2 term compared to (127).

The vector-ghost operator Qi
j is derived from (166) according to

the general formula (22), and its quadratic part reads

Qi
j = δijD̄

2
t +

1

4σ

{

−2δij1̄
2 + 2

[

1+ 2ξ − 2λ(1+ ξ )
]

∇̄ i1̄∇̄j

+δijR̄1̄ − (1− 2λ + 2ξ )R̄∇̄ i∇̄j − 2ξ R̄;j∇̄ i

−2ξ R̄;i∇̄j − 2δijR̄;k∇̄k − δijR̄
k

;k − 2ξ R̄;ij

}

. (168)

A virtue of the manifest background covariant treatment in the
background field method is that, owing to the background DiffF
invariance, the shift vector N̄i appears only in combination with
the time derivative ∂tγij in the form of the extrinsic curvature
or, equivalently, in the form of the covariant time derivative of
the metric Dtγij = 2Kij. When performing variations of the total
action Stot = SHG+ Sgf+ Sgh, factors of the shift perturbations n

i

arise only from the variation of the covariant time derivative, as
can be seen from the operator relation

[δ,Dt] = −LδN. (169)

Moreover, a canonical ordering among mixed covariant time
derivatives and covariant space derivatives could be chosen in
such a way that the covariant time derivatives act first. This
requires repeated use of the basic commutator33

[Dt ,∇m]T
j1...jr
i1...is

=
∑

jℓ

K
jℓ
mnT

j1...n...jr
i1...is

−
∑

iℓ

K
n
miℓ

T
j1...jr
i1...n...is

, (170)

with the “anisotropic commutator curvature” tensor defined in
terms of derivatives of the extrinsic curvature,

K
k
ij : = ∇iK

k
j +∇jK

k
i −∇kKij. (171)

Upon introducing the auxiliary field πi according to (163),
making use of (169), integrating by parts, sorting derivatives with
(170), reducing curvature tensors by the dimension-dependent
identity (133), and arranging the fluctuations of the fields hij,

ni, and πi in a multiplet φA = (hij, n
i,πi)

T , the gauge-fixed
fluctuation operator acquires a block matrix structure and can be
represented in the form

FAB(D̄t , ∇̄) = CABD̄
2
t + D

ijkl
AB∇̄i∇̄j∇̄k∇̄l + TABD̄t +W

ij
AB∇̄i∇̄j

+Ŵi
AB∇̄i + PAB. (172)

The principal part of (172) is split into a temporal part CAB and

a spatial part D
ijkl
AB for which the derivatives have been made

explicit. For brevity, I do not give explicit expressions for the

matrices CAB,D
ijkl
AB , TAB,W

ij
AB, Ŵ

i
AB, and PAB, which are functions

of the background fields. The one-loop renormalization requires

33The relations (169) and (170) hold for any d, but only in the projectable

version of HG. In the non-projectable theory the operator version of (169)

reads [δ,Dt] = −N−1 (δNDt + LδN). Likewise, (170) yields an additional term

amDtT
j1 ...jr
i1 ...is

on the right-hand side, and the covariant spatial derivatives in the

definition (171) must be shifted by the acceleration vector ∇i 7→ ∇i + ai.
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calculation of the divergent part of the functional traces for the
operators (172) and (168),

Ŵdiv
1 =

1

2
Tr ln FAB

∣

∣

div − Tr lnQ
j
i

∣

∣

div
. (173)

In contrast to the relativistic case, standard heat-kernel
techniques are not available for the anisotropic case; in particular,
there is no closed algorithm based on an SDW representation
(31) for the off-diagonal kernel of (172). In addition to the
anisotropic character of these operators, they suffer from further
complications. First, the matrices in the principal parts CAB and
DAB are degenerate, as ni and π i enter FAB only with lower

derivatives and the h-h block of D
ijkl
AB is a non-minimal fourth-

order operator34.
Nevertheless, initial attempts to deal with anisotropic

operators using the heat-kernel technique were suggested in
[81, 274]. A general algorithm for anisotropic operators, based
on the resolvent method, was proposed in [83]. In the most
general case, however, this algorithm requires the evaluation of a
large number of products of nested multi-commutators as well as
non-trivial parameter integrals, which is technically challenging.

Therefore, an alternative way of calculating the one-loop
divergences might be more suitable, especially since the number
of invariants in HG in D = 2 + 1 dimensions is reasonably
small and the one-loop calculation using Feynman-diagrammatic
techniques is still manageable, particularly when combined with
the background field method. After integrating out the “quantum
fields” hij and ni as well as πi, c

∗
i , and ci in the path integral,

the effective action becomes a functional of the mean fields,
which at the one-loop level can be identified with the background
fields. In particular, the divergent part of the effective action is
a sum of local operators of the background fields γ̄ij and N̄i

together with their time and space derivatives, which, owing to
the renormalizability of projectable HG, are of the same form
as the manifestly DiffF(M)-invariant operators already present
in the bare action (165). This allows us to extract the one-loop
renormalization of G, λ, and µ in a simpler way by expanding
the general background field γ̄ij around a flat background in
which N̄i = 0:

γ̄ij = δij +Hij. (174)

Evaluating the bare action (165) on the background (174) and
expanding up to quadratic order in Hij yields

SHG[γ̄ij, N̄
i] =

1

2G

∫

dt d2x

{

1

4

(

ḢijḢ
ij − λḢḢ

)

+ µ
[

∂2H∂2H

− ∂k∂lH
kl(2∂2H − ∂j∂iH

ij)
]

+O(H3)
}

, (175)

34The degeneracy is a consequence of the anisotropic scaling: in contrast to [hij]S =
0, the fields ni and π i carry non-zero scaling dimension [πi]S = [ni]S, such that

the overall homogeneous scaling [FAB]S = 4 only allows for lower derivatives of ni

and π i.

FIGURE 6 | One-loop two-point 1PI diagrams in projectable HG in D = 2+ 1

dimensions (from [53]).

with ∂2 : = δµν∂µ∂ν . The divergent part of the effective action
can be expanded in the same way:

Ŵdiv[γ̄ij, N̄
i] =

∫

dt d2x
{

cdiv1 ḢijḢ
ij + cdiv2 ḢḢ + cdiv3

[

∂2H∂2H

−µ∂k∂lH
kl(2∂2H − ∂j∂iH

ij)
]

+O(H3)
}

. (176)

In order to obtain the renormalizations of the couplingsG, λ, and
µ, it is sufficient to calculate the divergent coefficients cdiv1 , cdiv2 ,

and cdiv3 of the operators quadratic inHij. The renormalization of

G is extracted from cdiv1 , the renormalization of λ/G from cdiv2 ,
and the renormalization of µ/G by any of the three operators
in (176). Disentangling this system enables extraction of the
individual renormalizations of G, λ, and µ. Diagrammatically,
the background fields Hij appear only at external legs, while the
quantum fields hij and ni, as well as πi, c

∗
i , and ci, propagate in

the loops. Hence, according to (175) and (176), the one-loop
renormalization of G, λ, and µ requires one to calculate the
divergent part of the 1PI diagrams with two external Hij-legs,
shown in Figure 6.

For the regular gauge (166) with gauge parameters (ξ , σ ) and
pole PS as in (152), the propagators of the quantum fields hij and
ni are the same as in (150) and (151), while those including the
πi, c

∗
i , and ci fields read [51],

〈πi, n
j〉 = Gωδ

j
iPS(ω, k),

〈πi,πj〉 =
Gk2

2

[

δij + (1− 2λ)
kikj

k2

]

PS(ω, k),

〈c∗i , cj〉 = Gδ
j
iPS(ω, k). (177)
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The required three-point and four-point vertices in the gauge
N̄i = 0 are obtained by expanding the background fields in
L(2) = δφAFABδφ

B, with FAB given in (172), according to
(174) up to second order in Hij. The explicit results for the
vertices are rather lengthy and therefore not presented here.
Within dimensional regularization, the divergent part of the one-
loop diagrams in Figure 6 can be extracted by expanding the
propagators in the corresponding integrals around vanishing
external frequency and momenta, resulting in a sum of vacuum
diagrams from which the logarithmically divergent contributions
can easily be extracted by power counting35. The one-loop beta
functions βG, βλ, and βµ, which determine the RG running of the
couplings G, λ, and µ, are obtained directly from the logarithmic
one-loop divergences, i.e., from the corresponding coefficient of
the pole 1/ε in dimension.

Finally, in order to discuss the physical implications of
the RG flow, it is important to extract the gauge-independent
physical information from the RG system. In general, the off-
shell effective action is parametrization- and gauge-dependent.
On the one hand, a change of the gauge-fixing induces a change
Ŵdiv 7→ Ŵdiv + E δŴdiv, which is proportional to the equations of
motion δŴdiv = S,iX

i with an arbitrary constant E [34, 279, 280].
On the other hand, this change could be compensated for by the
change δŴdiv = (∂Ŵdiv/∂G)δG+ (∂Ŵdiv/∂λ)δλ+ (∂Ŵdiv/∂µ)δµ,
which is induced by a change in the couplings. The combinations
of couplings for which the corresponding beta function is gauge-
independent are called essential; all other couplings are called
inessential and do not enter physical observables. The problem
is therefore to tell apart and disentangle the essential from the
inessential couplings. In order to find Xi explicitly, one could
exploit power counting, as S,iX

i must be a local functional with
the same scaling as Ŵdiv; that is, in the context of D = 2 + 1
projectable HG, S,iX

i can only involve marginal operators with
respect to the anisotropic scaling. Since the scaling and the index
structure of the S,i are known, this corresponds to a strong
constraint on the possible structure of theXi. In [53], it was found
that the unique combination XiS,i that vanishes on-shell is

δŴdiv = E

∫

dt d2x
[

KijK
ij − λK2 − µR2

]

. (178)

The variation of Ŵdiv with respect to the couplings reads

δŴdiv =
1

2G

∫

dt d2x
√

γ

[

−
δG

G
KijK

ij − λ

(

δλ

λ
−

δG

G

)

K2

+ µ

(

δµ

µ
−

δG

G

)

R2
]

. (179)

Equating (178) and (179) yields the desired transformations of
the couplings [53],

δG = −2G2
E, δλ = 0, δµ = −4GµE. (180)

35See e.g., [278] for an application of this method with a particular focus on the

combinatorial aspects in the context of relativistic higher-derivative theories.

FIGURE 7 | RG flow of essential couplings in HG in D = 2+ 1 dimensions;

arrows point from the UV to the IR (from [53]).

Thus, only λ and the combination G = G/
√

µ are essential
couplings (δλ = δG = 0), with beta functions [53]

βλ =
15− 14λ

64π

√

1− 2λ

1− λ
G,

βG = −
(16− 33λ + 18λ2)

64π (1− λ)2

√

1− λ

1− 2λ
G
2. (181)

The RG flow driven by the beta functions (181) is shown in
Figure 7. There are two UV fixed points at

(

λ∗1 ,G
∗
1

)

= (1/2, 0) ,
(

λ∗2 ,G
∗
2

)

= (15/14, 0) . (182)

The first fixed point (λ∗1 ,G
∗
1) lies exactly on the lower boundary

of the non-unitary interval 1/2 < λ < 1 for which the
gravitational scalar degree of freedom behaves like a ghost; cf.
the discussion in section 7.4. For fixed G, the beta function
βG develops a divergence in the limit λ → 1/2. At the same
time, however, the limit λ → 1/2 is accompanied by G → 0,
implying that the relevant expansion parameter in this limit
is G̃ = G(1 − 2λ)−1/2. The beta function β

G̃
vanishes for

λ → 1/2, which means that there is a one-parameter family
of UV fixed points parameterized by the asymptotic value of G̃.
Summarizing, the status of this fixed point remains inconclusive
and higher loop corrections or contributions from matter loops
are required to resolve the situation and to decide whether the
fixed point is merely an artifact of the approximation or has
physical significance.

In contrast, the second fixed point
(

λ∗2 ,G
∗
2

)

is regular, lies
in the unitary region λ > 1, and is asymptotically free [53].
Although projectable HG in D = 2 + 1 dimensions only has
the status of a toy model without propagating spin-2 particles, it
provides the first unitary, perturbatively renormalizable, and UV-
complete quantum theory of gravitational propagating degrees
of freedom. In previous calculations of the one-loop divergences
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in D = 2 + 1 projectable HG, the dynamical content of the
metric field was restricted to the conformal mode [275]. In this
conformally reduced model, only the fixed point at (1/2, 0) has
been found. This shows that the formation of the regular fixed
point at (15/14, 0) requires the full theory [53].

Another interesting feature of the RG flow is that there are RG
trajectories which emanate from the regular UV fixed point and
asymptotically approach the “relativistic value” λ → 1 in the IR.
In addition to the problems with the IR λ → 1 limit discussed
in section 7.4, the “gravitational coupling” G becomes strongly
coupled along these trajectories, necessitating a non-perturbative
analysis in this regime. Nevertheless, the observed flow toward
λ = 1 suggests that the possibility of a dynamical mechanism for
an emergent restoration of relativistic symmetry at low energies
should be investigated in more detail. First, the phenomenon that
a theory which is asymptotically free in the UV develops a strong
coupling in the IR is well-known. Second, the strong coupling of
G in the IR could just be an artifact of the absence of relevant
curvature operators in D = 2 + 1. In D = 3 + 1 dimensions
relevant deformations might be expected to naturally cut off the
strong coupling of G.

All these interesting and encouraging results justify the hope
that the RG flow of the more realistic and physically relevant
theory in D = 3 + 1 dimensions exhibits similar features.
Although there are no conceptual problems associated with the
analogous calculation in D = 3 + 1 dimensions, in view of the
increased number and complexity of the independent curvature
invariants, it is technically much more challenging. A first step
toward the RG flow of projectable HG in D = 3 + 1 dimensions
has been taken in [54], where the one-loop beta functions of G
and λ were derived with Feynman-diagrammatic methods in a
similar way to (175) and (176), by exploiting the gauge invariance
of counterterms, which allows one to restrict to a flat metric
background and focus only on diagrams with background shift
fields at the external legs. However, the gauge-invariant beta
functions for the essential coupling constants and the fixed point
structure of the theory can only be derived by having access
to the renormalizations of all couplings, including those in the
potential sector. Thus, the complete calculation of the one-loop
divergences in D = 3+ 1 projectable HG is an important task.

10. CONCLUSIONS AND OUTLOOK

In this article I have reviewed various attempts to quantize gravity
within the framework of perturbative quantum field theory, with
a particular focus on Hořava gravity. I have highlighted the
merits and difficulties that come with each of the approaches. The
different approaches to quantum gravity discussed in this work
might best be characterized by the property that each does not
share with the other approaches, as shown in Table 2.

The status of HG with critical anisotropic scaling can be
roughly summarized by dividing the discussion into “projectable”
vs. “non-projectable” and “phenomenology of the classical
theory” vs. “properties of the quantum theory.”

From a phenomenological point of view, projectable HG does
not seem to qualify as a viable theory, mainly because it suffers

TABLE 2 | Approaches to quantum gravity characterized by properties that they

do not have.

Approach Property

General relativity Not renormalizable

Effective field theory Not fundamental

Asymptotic safety Not perturbative

Quadratic gravity Not unitary or not satisfying micro-causality

Hořava gravity Not relativistic

from an IR instability of the additional scalar gravitational mode
[212–215]. Although other proposals with a more optimistic
conclusion for this problem have been made [200, 217, 218],
they are based on non-perturbative effects which are outside the
scope of the weak coupling regime where perturbation theory
is applicable.

In contrast, the non-projectable model does not suffer from an
IR instability because additional relevant operators that include
powers of the acceleration vector (spatial derivatives of the
lapse function) can remedy the IR instability [221]. Even if
the low-energy sector of the non-projectable model is strongly
constrained by observational data and a mechanism to avoid
percolation of LV effects from the gravitational sector to the
matter sector seems necessary to avoid conflicts with bounds on
LV in the matter sector [227], the non-projectable model is still
phenomenologically viable [238].

From a theoretical point of view, regarding the status of
HG as a consistent quantum theory of gravity, the situation is
somewhat opposite to that of the phenomenological assessment.
The projectable theory has been proven to be perturbatively
renormalizable (for any dimension D = d+ 1) in the strict sense
[51, 52]. Moreover, the model in D = 2 + 1 dimensions has
been shown to be asymptotically free, and its RG flow features
interesting RG trajectories which emanate from the UV fixed
point and asymptotically approach the relativistic value λ = 1
in the IR [53]. Even if the model in D = 2 + 1 dimensions
must be considered a toy model without propagating TT modes,
it is a unitary, perturbatively renormalizable, and UV-complete
quantum theory of non-trivial propagating degrees of freedom
and captures essential features of HG, which are expected to carry
over to the physically relevant D = 3 + 1 case. The situation in
D = 3+ 1 dimensions has not yet been conclusively clarified and
requires calculation of the one-loop beta functions. A first step
in this direction has been taken in [54], but in order to extract
the gauge-independent physical information about the running
of the essential couplings, the renormalization of all couplings
is needed. While there are no new conceptual difficulties, the
analogous calculation is technically much more complex than
in the D = 2 + 1 case and requires more efficient methods,
such as newly developed heat-kernel techniques for anisotropic
operators [81, 83, 274]. In any case, the calculation of the one-
loop divergences of projectable HG in D = 3 + 1 dimensions is
certainly a very important endeavor that will provide new insights
into the structure of the theory.

The situation with the quantization of the non-projectable
model is less clear. Unfortunately, the proof of perturbative
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renormalizability for the projectable theory [51, 52] does not
extend to the non-projectable theory, mainly because it relies
on the regular form of all propagators and no gauge-fixing
could be found in the non-projectable model that would render
all propagators regular. In particular, there seems to be no
gauge-fixing that could remove all irregular contributions to
the propagator involving the lapse function—interpreted in
[51] as a reflection of the instantaneous interaction induced
by the lapse function [214]. Therefore new ideas seem to be
necessary for dealing with the perturbative quantization of the
non-projectable theory.

In summary, HG is an interesting proposal, but, closing with
the words of Bryce DeWitt, the theory does not yet seem to have
been “pushed to its logical conclusion” [281]. Further important
calculations in D = 3 + 1 dimensions are required and may
decide the fate of Hořava’s proposal for a unitary, perturbatively
renormalizable, and UV-complete quantum theory of gravity.
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in Hořava-Lifshitz gravity. Phys Rev Lett. (2014) 113:171101.

doi: 10.1103/PhysRevLett.113.171101

83. Barvinsky AO, Blas D, Herrero-Valea M, Nesterov DV, Pérez-Nadal G,

Steinwachs CF. Heat kernel methods for Lifshitz theories. JHEP. (2017)

6:063. doi: 10.1007/JHEP06(2017)063

84. Wigner EP. On unitary representations of the inhomogeneous Lorentz

group. Ann Math. (1939) 40:149–204. doi: 10.2307/1968551

85. Deser S. Selfinteraction and gauge invariance. Gen Rel Grav. (1970) 1:9–18.

doi: 10.1007/BF00759198

86. Vermaseren JAM. New features of FORM. arXiv preprint arXiv:math-

ph/0010025 (2000).

Frontiers in Physics | www.frontiersin.org 30 July 2020 | Volume 8 | Article 18597

https://doi.org/10.1103/PhysRevD.101.084040
https://doi.org/10.1103/PhysRev.162.1195
https://doi.org/10.1103/PhysRev.162.1239
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1016/j.aop.2008.08.008
https://doi.org/10.1088/1367-2630/14/5/055022
https://doi.org/10.1098/rsta.2011.0103
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/JHEP11(2018)021
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1088/1126-6708/2009/03/020
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.93.064022
https://doi.org/10.1007/JHEP07(2018)035
https://doi.org/10.1103/PhysRevLett.119.211301
https://doi.org/10.1103/PhysRevD.100.026012
https://doi.org/10.1007/BF02731765
https://doi.org/10.1016/0003-4916(76)90156-1
https://doi.org/10.1016/0550-3213(95)00471-4
https://doi.org/10.1016/0370-1573(85)90148-6
http://cds.cern.ch/record/234641/files/CM-P00057033.pdf
http://cds.cern.ch/record/234641/files/CM-P00057033.pdf
https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/10.1016/0550-3213(83)90337-1
https://doi.org/10.1016/j.physrep.2012.01.008
https://doi.org/10.4153/CJM-1949-021-5
https://doi.org/10.1007/BF01425417
https://doi.org/10.1017/S0305004100049410
https://doi.org/10.4310/jdg/1214433164
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1103/PhysRevD.97.044049
https://doi.org/10.1103/PhysRevD.98.025009
https://doi.org/10.1103/PhysRevD.98.085014
https://doi.org/10.1088/1475-7516/2020/01/014
https://doi.org/10.1088/1475-7516/2020/02/031
https://doi.org/10.1016/j.nuclphysb.2010.08.006
https://doi.org/10.1103/PhysRevLett.113.171101
https://doi.org/10.1007/JHEP06(2017)063
https://doi.org/10.2307/1968551
https://doi.org/10.1007/BF00759198
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Steinwachs Toward a Unitary, Renormalizable, and Ultraviolet-Complete Quantum

87. Martin-Garcia JM, García-Parrado A, Stecchina A, Wardell B, Pitrou C,

Brizuela D, et al. xAct: Efficient Tensor Computer Algebra for Mathematica.

(2002–2020). Available online at: http://www.xact.es/

88. Martin-Garcia JM. xTensor: Fast Abstract Tensor Computer Algebra. (2002–

2020). Available online at: http://www.xact.es/xTensor/

89. Brizuela D, Martin-Garcia JM, Mena Marugan GA. xPert: computer

algebra for metric perturbation theory. Gen Rel Grav. (2009) 41:2415–31.

doi: 10.1007/s10714-009-0773-2

90. Nutma T. xTras: a field-theory inspired xAct package for mathematica.

Comput Phys Commun. (2014) 185:1719–38. doi: 10.1016/j.cpc.2014.02.006

91. Deser S, van Nieuwenhuizen P. One loop divergences of quantized Einstein-

Maxwell fields. Phys Rev D. (1974) 10:401. doi: 10.1103/PhysRevD.10.401

92. Deser S, Tsao HS, van Nieuwenhuizen P. One loop divergences

of the Einstein Yang-Mills system. Phys Rev D. (1974) 10:3337.

doi: 10.1103/PhysRevD.10.3337

93. Deser S, van Nieuwenhuizen P. Nonrenormalizability of the

quantized Dirac-Einstein system. Phys Rev D. (1974) 10:411.

doi: 10.1103/PhysRevD.10.411

94. Gibbons GW, Perry MJ. Quantizing gravitational instantons. Nucl Phys B.

(1978) 146:90–108. doi: 10.1016/0550-3213(78)90434-0

95. Christensen SM, Duff MJ. Quantizing gravity with a cosmological

constant. Nucl Phys B. (1980) 170:480–506. doi: 10.1016/0550-3213(80)

90423-X

96. Barvinsky AO, Kamenshchik A Yu, Karmazin IP. The Renormalization

group for nonrenormalizable theories: Einstein gravity with a scalar

field. Phys Rev D. (1993) 48:3677–94. doi: 10.1103/PhysRevD.48.

3677

97. Shapiro IL, Takata H. One loop renormalization of the four-dimensional

theory for quantum dilaton gravity. Phys Rev D. (1995) 52:2162–75.

doi: 10.1103/PhysRevD.52.2162

98. Steinwachs CF, Kamenshchik A Yu. One-loop divergences for gravity

non-minimally coupled to a multiplet of scalar fields: calculation in

the Jordan frame. I. The main results. Phys Rev D. (2011) 84:024026.

doi: 10.1103/PhysRevD.84.024026

99. Goroff MH, Sagnotti A. The ultraviolet behavior of Einstein gravity. Nucl

Phys B. (1986) 266:709–36. doi: 10.1016/0550-3213(86)90193-8

100. van de Ven AEM. Two loop quantum gravity. Nucl Phys B. (1992)

378:309–66. doi: 10.1016/0550-3213(92)90011-Y

101. Bern Z, Cheung C, Chi HH, Davies S, Dixon L, Nohle J. Evanescent

effects can alter ultraviolet divergences in quantum gravity

without physical consequences. Phys Rev Lett. (2015) 115:211301.

doi: 10.1103/PhysRevLett.115.211301

102. Burgess CP, Lee HM, Trott M. Power-counting and the validity

of the classical approximation during inflation. JHEP. (2009) 9:103.

doi: 10.1088/1126-6708/2009/09/103

103. Barbon JLF, Espinosa JR. On the naturalness of Higgs inflation. Phys Rev D.

(2009) 79:081302. doi: 10.1103/PhysRevD.79.081302

104. Burgess CP, Lee HM, Trott M. Comment on Higgs inflation and naturalness.

JHEP. (2010) 7:007. doi: 10.1007/JHEP07(2010)007

105. Bezrukov F, Magnin A, Shaposhnikov M, Sibiryakov S. Higgs

inflation: consistency and generalisations. JHEP. (2011) 1:016.

doi: 10.1007/JHEP01(2011)016

106. Barvinsky AO, Kamenshchik A Yu, Kiefer C, Starobinsky AA, Steinwachs

CF. Higgs boson, renormalization group, and naturalness in cosmology. Eur

Phys J C. (2012) 72:2219. doi: 10.1140/epjc/s10052-012-2219-3

107. Steinwachs CF. Higgs field in cosmology. In: 678th WE Heraeus-Seminar:

Hundred Years of Gauge Theory. Bad Honnef (2019).

108. Barvinsky AO, Vilkovisky GA. Covariant perturbation theory. 2: second

order in the curvature. General algorithms.Nucl Phys B. (1990) 333:471–511.

doi: 10.1016/0550-3213(90)90047-H

109. Barvinsky AO, Gusev YuV, Vilkovisky GA, Zhytnikov VV. Asymptotic

behaviors of the heat kernel in covariant perturbation 19 theory. J Math Phys.

(1994) 35:3543–59. doi: 10.1063/1.530428

110. Gomis J, Weinberg S. Are nonrenormalizable gauge theories renormalizable?

Nucl Phys B. (1996) 469:473–87. doi: 10.1016/0550-3213(96)00132-0

111. Bjerrum-Bohr NEJ, Donoghue JF, Holstein BR. Quantum gravitational

corrections to the nonrelativistic scattering potential of two masses. Phys Rev

D. (2003) 67:084033. doi: 10.1103/PhysRevD.67.084033

112. Jaranowski P, Schaefer G. Third postNewtonian higher order ADMHamilton

dynamics for two-body point mass systems. Phys Rev D. (1998) 57:7274–91.

doi: 10.1103/PhysRevD.57.7274

113. Buonanno A, Damour T. Effective one-body approach to general

relativistic two-body dynamics. Phys Rev D. (1999) 59:084006.

doi: 10.1103/PhysRevD.59.084006

114. Damour T. Gravitational scattering, post-Minkowskian approximation

and effective one-body theory. Phys Rev D. (2016) 94:104015.

doi: 10.1103/PhysRevD.94.104015

115. Schäfer G, Jaranowski P. Hamiltonian formulation of general relativity and

post-Newtonian dynamics of compact binaries. Living Rev Rel. (2018) 21:7.

doi: 10.1007/s41114-018-0016-5

116. Goldberger WD, Rothstein IZ. An Effective field theory of

gravity for extended objects. Phys Rev D. (2006) 73:104029.

doi: 10.1103/PhysRevD.73.104029

117. Bjerrum-Bohr NEJ, Donoghue JF, Vanhove P. On-shell techniques

and universal results in quantum gravity. JHEP. (2014) 2:111.

doi: 10.1007/JHEP02(2014)111

118. Porto RA. The effective field theorist’s approach to gravitational dynamics.

Phys Rept. (2016) 633:1–104. doi: 10.1016/j.physrep.2016.04.003

119. Bern Z, Cheung C, Roiban R, Shen CH, Solon MP, Zeng M. Scattering

amplitudes and the conservative Hamiltonian for binary systems

at third post-Minkowskian order. Phys Rev Lett. (2019) 122:201603.

doi: 10.1103/PhysRevLett.122.201603

120. Bern Z, Ita H, Parra-Martinez J, Ruf MS. Universality in the Classical Limit

of Massless Gravitational Scattering. arXiv preprint arXiv:hep-th/2002.02459

(2020).

121. Blümlein J, Maier A, Marquard P, Schäfer G. Testing binary dynamics in

gravity at the sixth post-Newtonian level. Phys. Lett. B. (2020) 807:135496.

doi: 10.1016/j.physletb.2020.135496

122. Blümlein J, Maier A, Marquard P, Schäfer G. Fourth post-Newtonian

Hamiltonian dynamics of two-body systems from an effective field

theory approach. Nucl. Phys. B. 955:115041. doi: 10.1016/j.nuclphysb.2020.

115041

123. Weinberg S. Critical phenomena for field theorists. In: 14th International

School of Subnuclear Physics: Understanding the Fundamental Constitutents

of Matter. Erice (1976). p. 1. Available online at: https://www.

quantamagazine.org/why-an-old-theory-of-everything-is-gaining-new-

life-20180108

124. Weinberg S. Ultraviolet divergences in quantum theories of gravitation. In:

Hawking SW, Israel W, editors. General Relativity: An Einstein Centenary

Survey. Cambridge: Cambridge University Press (1980). p. 790–831.

125. Wilson KG, Kogut JB. The Renormalization group and the epsilon

expansion. Phys Rept. (1974) 12:75–199. doi: 10.1016/0370-1573(74)90023-4

126. Wetterich C. Exact evolution equation for the effective potential. Phys Lett B.

(1993) 301:90–4. doi: 10.1016/0370-2693(93)90726-X

127. Morris TR. The exact renormalization group and approximate solutions. Int

J Mod Phys A. (1994) 9:2411–50. doi: 10.1142/S0217751X94000972

128. Reuter M, Wetterich C. Effective average action for gauge theories

and exact evolution equations. Nucl Phys B. (1994) 417:181–214.

doi: 10.1016/0550-3213(94)90543-6

129. Niedermaier M, Reuter M. The asymptotic safety scenario in quantum

gravity. Living Rev Rel. (2006) 9:5–173. doi: 10.12942/lrr-2006-5

130. Liberati S, Maccione L, Sotiriou TP. Scale hierarchy in Horava-Lifshitz

gravity: a strong constraint from synchrotron radiation in the Crab

nebula. Phys Rev Lett. (2012) 109:151602. doi: 10.1103/PhysRevLett.109.

151602

131. Reuter M, Saueressig F. Renormalization group flow of quantum gravity

in the Einstein-Hilbert truncation. Phys Rev D. (2002) 65:065016.

doi: 10.1103/PhysRevD.65.065016

132. Lauscher O, Reuter M. Is quantum Einstein gravity nonperturbatively

renormalizable? Class Quant Grav. (2002) 19:483–92.

doi: 10.1088/0264-9381/19/3/304

133. Lauscher O, Reuter M. Flow equation of quantum Einstein gravity

in a higher derivative truncation. Phys Rev D. (2002) 66:025026.

doi: 10.1103/PhysRevD.66.025026

134. Codello A, Percacci R. Fixed points of higher derivative gravity. Phys Rev

Lett. (2006) 97:221301. doi: 10.1103/PhysRevLett.97.221301

Frontiers in Physics | www.frontiersin.org 31 July 2020 | Volume 8 | Article 18598

http://www.xact.es/
http://www.xact.es/xTensor/
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1016/j.cpc.2014.02.006
https://doi.org/10.1103/PhysRevD.10.401
https://doi.org/10.1103/PhysRevD.10.3337
https://doi.org/10.1103/PhysRevD.10.411
https://doi.org/10.1016/0550-3213(78)90434-0
https://doi.org/10.1016/0550-3213(80)90423-X
https://doi.org/10.1103/PhysRevD.48.3677
https://doi.org/10.1103/PhysRevD.52.2162
https://doi.org/10.1103/PhysRevD.84.024026
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(92)90011-Y
https://doi.org/10.1103/PhysRevLett.115.211301
https://doi.org/10.1088/1126-6708/2009/09/103
https://doi.org/10.1103/PhysRevD.79.081302
https://doi.org/10.1007/JHEP07(2010)007
https://doi.org/10.1007/JHEP01(2011)016
https://doi.org/10.1140/epjc/s10052-012-2219-3
https://doi.org/10.1016/0550-3213(90)90047-H
https://doi.org/10.1063/1.530428
https://doi.org/10.1016/0550-3213(96)00132-0
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1103/PhysRevD.57.7274
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1007/s41114-018-0016-5
https://doi.org/10.1103/PhysRevD.73.104029
https://doi.org/10.1007/JHEP02(2014)111
https://doi.org/10.1016/j.physrep.2016.04.003
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1016/j.physletb.2020.135496
https://doi.org/10.1016/j.nuclphysb.2020.115041
https://www.quantamagazine.org/why-an-old-theory-of-everything-is-gaining-new-life-20180108
https://www.quantamagazine.org/why-an-old-theory-of-everything-is-gaining-new-life-20180108
https://www.quantamagazine.org/why-an-old-theory-of-everything-is-gaining-new-life-20180108
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1016/0550-3213(94)90543-6
https://doi.org/10.12942/lrr-2006-5
https://doi.org/10.1103/PhysRevLett.109.151602
https://doi.org/10.1103/PhysRevD.65.065016
https://doi.org/10.1088/0264-9381/19/3/304
https://doi.org/10.1103/PhysRevD.66.025026
https://doi.org/10.1103/PhysRevLett.97.221301
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Steinwachs Toward a Unitary, Renormalizable, and Ultraviolet-Complete Quantum

135. Benedetti D, Machado PF, Saueressig F. Asymptotic safety in

higher-derivative gravity. Mod Phys Lett A. (2009) 24:2233–41.

doi: 10.1142/S0217732309031521

136. Falls K, Litim DF, Nikolakopoulos K, Rahmede C. Further evidence for

asymptotic safety of quantum gravity. Phys Rev D. (2016) 93:104022.

doi: 10.1103/PhysRevD.93.104022

137. Gies H, Knorr B, Lippoldt S, Saueressig F. Gravitational two-loop

counterterm is asymptotically safe. Phys Rev Lett. (2016) 116:211302.

doi: 10.1103/PhysRevLett.116.211302

138. Eichhorn A. Quantum-gravity-induced matter self-interactions

in the asymptotic-safety scenario. Phys Rev D. (2012) 86:105021.

doi: 10.1103/PhysRevD.86.105021

139. Don P, Eichhorn A, Percacci R. Matter matters in asymptotically

safe quantum gravity. Phys Rev D. (2014) 89:084035.

doi: 10.1103/PhysRevD.89.084035

140. Don P, Eichhorn A, Labus P, Percacci R. Asymptotic safety in an interacting

system of gravity and scalar matter. Phys Rev D. (2016) 93:044049.

doi: 10.1103/PhysRevD.93.044049

141. Eichhorn A, Held A. Viability of quantum-gravity induced

ultraviolet completions for matter. Phys Rev D. (2017) 96:086025.

doi: 10.1103/PhysRevD.96.086025

142. Eichhorn A. Status of the asymptotic safety paradigm for quantum gravity

andmatter. Found Phys. (2018) 48:1407–29. doi: 10.1007/s10701-018-0196-6

143. Christiansen N, Litim DF, Pawlowski JM, Reichert M. Asymptotic

safety of gravity with matter. Phys Rev D. (2018) 97:106012.

doi: 10.1103/PhysRevD.97.106012

144. Machado PF, Saueressig F. On the renormalization group flow of f(R)-

gravity. Phys Rev D. (2008) 77:124045. doi: 10.1103/PhysRevD.77.124045

145. Codello A, Percacci R, Rahmede C. Ultraviolet properties of f(R)-gravity. Int

J Mod Phys A. (2008) 23:143–50. doi: 10.1142/S0217751X08038135

146. Narain G, Percacci R. Renormalization group flow in scalar-tensor theories.

I. Class Quant Grav. (2010) 27:075001. doi: 10.1088/0264-9381/27/7/

075001

147. Narain G, Rahmede C. Renormalization group flow in scalar-tensor theories.

II. Class Quant Grav. (2010) 27:075002. doi: 10.1088/0264-9381/27/7/07

5002

148. Donoghue JF. A critique of the asymptotic safety program. Front Phys. (2020)

8:56. doi: 10.3389/fphy.2020.00056

149. Vilkovisky GA. The unique effective action in quantum field theory. Nucl

Phys B. (1984) 234:125–37. doi: 10.1016/0550-3213(84)90228-1

150. Benedetti D. Asymptotic safety goes on shell. New J Phys. (2012) 14:015005.

doi: 10.1088/1367-2630/14/1/015005

151. Percacci R, Perini D. Should we expect a fixed point for Newton’s constant?

Class Quant Grav. (2004) 21:5035–41. doi: 10.1088/0264-9381/21/22/002

152. Christiansen N, Knorr B, Pawlowski JM, Rodigast A. Global

flows in quantum gravity. Phys Rev D. (2016) 93:044036.

doi: 10.1103/PhysRevD.93.044036

153. Christiansen N, Knorr B, Meibohm J, Pawlowski JM, Reichert

M. Local quantum gravity. Phys Rev D. (2015) 92:121501.

doi: 10.1103/PhysRevD.92.121501

154. Eichhorn A, Labus P, Pawlowski JM, Reichert M. Effective

universality in quantum gravity. SciPost Phys. (2018) 5:031.

doi: 10.21468/SciPostPhys.5.4.031

155. Bosma L, Knorr B, Saueressig F. Resolving spacetime singularities

within asymptotic safety. Phys Rev Lett. (2019) 123:101301.

doi: 10.1103/PhysRevLett.123.101301

156. Knorr B, Ripken C, Saueressig F. Form factors in asymptotic safety:

conceptual ideas and computational toolbox. Class Quant Grav. (2019)

36:234001. doi: 10.1088/1361-6382/ab4a53

157. Barvinsky AO, Gusev YV, Vilkovisky GA, Zhytnikov VV. The basis of

nonlocal curvature invariants in quantum gravity theory. (Third order). J

Math Phys. (1994) 35:3525–42. doi: 10.1063/1.530427

158. Barvinsky AO, Vilkovisky GA. Covariant perturbation theory. 3: spectral

representations of the third order form-factors. Nucl Phys B. (1990)

333:512–24. doi: 10.1016/0550-3213(90)90048-I

159. Codello A, Zanusso O. On the non-local heat kernel expansion. J Math Phys.

(2013) 54:013513. doi: 10.1063/1.4776234

160. Starobinsky AA. A new type of isotropic cosmological

models without singularity. Phys Lett B. (1980) 91:99–102.

doi: 10.1016/0370-2693(80)90670-X

161. Akrami Y, Arroja F, AshdownM,Aumont J, Baccigalupi C, BallardiniM, et al.

Planck 2018 results. X. Constraints on inflation. arXiv. (2018) 1807.06211.

162. Cognola G, Elizalde E, Nojiri S, Odintsov SD, Zerbini S. One-

loop f(R) gravity in de Sitter universe. JCAP. (2005) 2:010.

doi: 10.1088/1475-7516/2005/02/010

163. Fradkin ES, Tseytlin AA. Renormalizable asymptotically free

quantum theory of gravity. Nucl Phys B. (1982) 201:469–91.

doi: 10.1016/0550-3213(82)90444-8

164. Avramidi IG, Barvinsky AO. Asymptotic freedom in higher

derivative quantum gravity. Phys Lett B. (1985) 159:269–74.

doi: 10.1016/0370-2693(85)90248-5

165. Salvio A, Strumia A. Agravity. JHEP. (2014) 6:080.

doi: 10.1007/JHEP06(2014)080

166. Yu. Kamenshchik A, Steinwachs CF. Question of quantum equivalence

between Jordan frame and Einstein frame. Phys Rev D. (2015) 91:084033.

doi: 10.1103/PhysRevD.91.084033

167. Ruf MS, Steinwachs CF. Quantum equivalence of f (R) gravity

and scalar-tensor theories. Phys Rev D. (2018) 97:044050.

doi: 10.1103/PhysRevD.97.044050

168. Ohta N. Quantum equivalence of f (R) gravity and scalar tensor

theories in the Jordan and Einstein frames. PTEP. (2018) 2018:033B02.

doi: 10.1093/ptep/pty008

169. Falls K, Herrero-Valea M. Frame (In)equivalence in quantum

field theory and cosmology. Eur Phys J C. (2019) 79:595.

doi: 10.1140/epjc/s10052-019-7070-3

170. Finn K, Karamitsos S, Pilaftsis A. Grand Covariance in Quantum Gravity.

arXiv preprint arXiv:hep-th/1910.06661 (2019).

171. Stelle KS. Classical gravity with higher derivatives. Gen Rel Grav. (1978)

9:353–71. doi: 10.1007/BF00760427

172. Pais A, Uhlenbeck GE. On Field theories with nonlocalized action. Phys Rev.

(1950) 79:145–65. doi: 10.1103/PhysRev.79.145

173. Barth NH, Christensen SM. Quantizing fourth order gravity

theories. 1. The functional integral. Phys Rev D. (1983) 28:1876.

doi: 10.1103/PhysRevD.28.1876

174. Hawking SW. Who’ s afraid of (higher derivative) ghosts? In: Batalin CJ,

Isham A, editors. Quantum Field Theory and Quantum Statistics, Vol. 2.

Bristol: Hilger (1987). p. 129–39.

175. Woodard RP. Avoiding dark energy with 1/r modifications of gravity. Lect

Notes Phys. (2007) 720:403–33. doi: 10.1007/978-3-540-71013-4_14

176. Gundhi A, Steinwachs CF. Scalaron-Higgs inflation. Nucl Phys B. (2020)

954:114989. doi: 10.1016/j.nuclphysb.2020.114989

177. Lee TD, Wick GC. Negative metric and the unitarity of the S

matrix. Nucl Phys B. (1969) 9:209–43. doi: 10.1016/0550-3213(69)90

098-4

178. Tomboulis E. 1/N expansion and renormalization in quantum gravity. Phys

Lett B. (1977) 70:361–64. doi: 10.1016/0370-2693(77)90678-5

179. Anselmi D, Piva M. The ultraviolet behavior of quantum gravity. JHEP.

(2018) 05:027. doi: 10.1007/JHEP05(2018)027

180. Donoghue JF, Menezes G. Arrow of causality and quantum gravity. Phys Rev

Lett. (2019) 123:171601. doi: 10.1103/PhysRevLett.123.171601

181. Veltman MJG. Unitarity and causality in a renormalizable

field theory with unstable particles. Physica. (1963) 29:186–207.

doi: 10.1016/S0031-8914(63)80277-3

182. Coleman S. Acausality. In: Zichichi A, editor. 7th International

School of Subnuclear Physics (Ettore Majorana): Subnuclear

Phenomena. New York, NY: Academic Press Inc. (1970). p. 282–327.

doi: 10.1016/B978-0-12-780580-1.50016-4

183. Cutkosky RE, Landshoff PV, Olive DI, Polkinghorne JC. A non-analytic S

matrix. Nucl Phys B. (1969) 12:281–300. doi: 10.1016/0550-3213(69)90169-2

184. Salam A, Strathdee JA. Remarks on high-energy stability and

renormalizability of gravity theory. Phys Rev D. (1978) 18:4480.

doi: 10.1103/PhysRevD.18.4480

185. Tomboulis E. Renormalizability and asymptotic freedom in quantum

gravity. Phys Lett B. (1980) 97:77–80. doi: 10.1016/0370-2693(80)90550-X

Frontiers in Physics | www.frontiersin.org 32 July 2020 | Volume 8 | Article 18599

https://doi.org/10.1142/S0217732309031521
https://doi.org/10.1103/PhysRevD.93.104022
https://doi.org/10.1103/PhysRevLett.116.211302
https://doi.org/10.1103/PhysRevD.86.105021
https://doi.org/10.1103/PhysRevD.89.084035
https://doi.org/10.1103/PhysRevD.93.044049
https://doi.org/10.1103/PhysRevD.96.086025
https://doi.org/10.1007/s10701-018-0196-6
https://doi.org/10.1103/PhysRevD.97.106012
https://doi.org/10.1103/PhysRevD.77.124045
https://doi.org/10.1142/S0217751X08038135
https://doi.org/10.1088/0264-9381/27/7/075001
https://doi.org/10.1088/0264-9381/27/7/075002
https://doi.org/10.3389/fphy.2020.00056
https://doi.org/10.1016/0550-3213(84)90228-1
https://doi.org/10.1088/1367-2630/14/1/015005
https://doi.org/10.1088/0264-9381/21/22/002
https://doi.org/10.1103/PhysRevD.93.044036
https://doi.org/10.1103/PhysRevD.92.121501
https://doi.org/10.21468/SciPostPhys.5.4.031
https://doi.org/10.1103/PhysRevLett.123.101301
https://doi.org/10.1088/1361-6382/ab4a53
https://doi.org/10.1063/1.530427
https://doi.org/10.1016/0550-3213(90)90048-I
https://doi.org/10.1063/1.4776234
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1088/1475-7516/2005/02/010
https://doi.org/10.1016/0550-3213(82)90444-8
https://doi.org/10.1016/0370-2693(85)90248-5
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1103/PhysRevD.91.084033
https://doi.org/10.1103/PhysRevD.97.044050
https://doi.org/10.1093/ptep/pty008
https://doi.org/10.1140/epjc/s10052-019-7070-3
https://doi.org/10.1007/BF00760427
https://doi.org/10.1103/PhysRev.79.145
https://doi.org/10.1103/PhysRevD.28.1876
https://doi.org/10.1007/978-3-540-71013-4_14
https://doi.org/10.1016/j.nuclphysb.2020.114989
https://doi.org/10.1016/0550-3213(69)90098-4
https://doi.org/10.1016/0370-2693(77)90678-5
https://doi.org/10.1007/JHEP05(2018)027
https://doi.org/10.1103/PhysRevLett.123.171601
https://doi.org/10.1016/S0031-8914(63)80277-3
https://doi.org/10.1016/B978-0-12-780580-1.50016-4
https://doi.org/10.1016/0550-3213(69)90169-2
https://doi.org/10.1103/PhysRevD.18.4480
https://doi.org/10.1016/0370-2693(80)90550-X
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Steinwachs Toward a Unitary, Renormalizable, and Ultraviolet-Complete Quantum

186. Boulware DG, Gross DJ. Lee-Wick indefinite metric quantization:

a functional integral approach. Nucl Phys B. (1984) 233:1–23.

doi: 10.1016/0550-3213(84)90167-6

187. Hawking SW, Hertog T. Living with ghosts. Phys Rev D. (2002) 65:103515.

doi: 10.1103/PhysRevD.65.103515

188. Mannheim PD. Solution to the ghost problem in fourth order derivative

theories. Found Phys. (2007) 37:532–71. doi: 10.1007/s10701-007-9119-7

189. Bender CM, Mannheim PD. No-ghost theorem for the fourth-order

derivative Pais-Uhlenbeck oscillator model. Phys Rev Lett. (2008)

100:110402. doi: 10.1103/PhysRevLett.100.110402

190. Grinstein B, O’Connell D, Wise MB. Causality as an emergent macroscopic

phenomenon: the Lee-Wick O(N) model. Phys Rev D. (2009) 79:105019.

doi: 10.1103/PhysRevD.79.105019

191. Denner A, Lang JN. The complex-mass scheme and unitarity in

perturbative quantum field theory. Eur Phys J C. (2015) 75:377.

doi: 10.1140/epjc/s10052-015-3579-2

192. Salvio A, Strumia A. Quantum mechanics of 4-derivative theories. Eur Phys

J C. (2016) 76:227. doi: 10.1140/epjc/s10052-016-4079-8

193. Accioly A, Giacchini BL, Shapiro IL. Low-energy effects in a higher-

derivative gravity model with real and complex massive poles. Phys Rev D.

(2017) 96:104004. doi: 10.1103/PhysRevD.96.104004

194. Mannheim PD. Unitarity of loop diagrams for the ghostlike 1/(k2 −
M2

1) − 1/(k2 − M2
2) propagator. Phys Rev D. (2018) 98:045014.

doi: 10.1103/PhysRevD.98.045014

195. Floreanini R, Percacci R. The Renormalization group flow of the Dilaton

potential. Phys Rev D. (1995) 52:896–911. doi: 10.1103/PhysRevD.52.896

196. Niedermaier MR. Gravitational fixed points from perturbation theory. Phys

Rev Lett. (2009) 103:101303. doi: 10.1103/PhysRevLett.103.101303

197. Becker D, Ripken C, Saueressig F. On avoiding Ostrogradski

instabilities within asymptotic safety. JHEP. (2017) 12:121.

doi: 10.1007/JHEP12(2017)121

198. Narain G. Exorcising ghosts in induced gravity. Eur Phys J C. (2017) 77:683.

doi: 10.1140/epjc/s10052-017-5249-z

199. Narain G. Signs and stability in higher-derivative gravity. Int J Mod Phys A.

(2018) 33:1850031. doi: 10.1142/S0217751X18500318

200. Mukohyama S. Horava-Lifshitz cosmology: a review. Class Quant Grav.

(2010) 27:223101. doi: 10.1088/0264-9381/27/22/223101

201. Sotiriou TP. Horava-Lifshitz gravity: a status report. J Phys Conf Ser. (2011)

283:012034. doi: 10.1088/1742-6596/283/1/012034
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Covariant Hořava-like and mimetic Horndeski gravity: cosmological

solutions and perturbations. Class. Quant. Grav. 33:225014.

doi: 10.1088/0264-9381/33/22/225014

220. Casalino A, Rinaldi M, Sebastiani L, Vagnozzi, S. Alive and well: mimetic

gravity and a higher-order extension in light of GW170817. Class. Quant.

Grav. (2019) 36:017001. doi: 10.1088/1361-6382/aaf1fd

221. Blas D, Pujolas O, Sibiryakov S. Consistent extension of Horava gravity. Phys

Rev Lett. (2010) 104:181302. doi: 10.1103/PhysRevLett.104.181302

222. Henneaux M, Kleinschmidt A, Lucena Gómez G. A dynamical

inconsistency of Horava gravity. Phys Rev D. (2010) 81:064002.

doi: 10.1103/PhysRevD.81.064002

223. Colladay D, Kostelecky VA. Lorentz violating extension of the standard

model. Phys Rev D. (1998) 58:116002. doi: 10.1103/PhysRevD.58.116002

224. Mattingly D. Modern tests of Lorentz invariance. Living Rev Rel. (2005) 8:5.

doi: 10.12942/lrr-2005-5

225. Jacobson T, Liberati S, Mattingly D. Lorentz violation at high energy:

concepts, phenomena and astrophysical constraints. Ann Phys. (2006)

321:150–96. doi: 10.1016/j.aop.2005.06.004

226. Kostelecky AV, Tasson JD. Matter-gravity couplings and Lorentz violation.

Phys Rev D. (2011) 83:016013. doi: 10.1103/PhysRevD.83.016013

227. Liberati S. Tests of Lorentz invariance: a 2013 update. Class Quant Grav.

(2013) 30:133001. doi: 10.1088/0264-9381/30/13/133001

228. Eichhorn A, Platania A, Schiffer M. Lorentz invariance violations in

the interplay of quantum gravity with matter. arXiv preprint arXiv:hep-

th/1911.10066 (2019).

229. Carroll SM, Lim EA. Lorentz-violating vector fields slow the universe down.

Phys Rev D. (2004) 70:123525. doi: 10.1103/PhysRevD.70.123525

230. Aver E, Olive KA, Skillman ED. The effects of He I λ 10830

on helium abundance determinations. JCAP. (2015) 1507:011.

doi: 10.1088/1475-7516/2015/07/011

231. Will CM. The Confrontation between general relativity and experiment.

Living Rev Rel. (2006) 9:3. doi: 10.12942/lrr-2006-3

232. Blas D, Sanctuary H. Gravitational radiation in Horava gravity. Phys Rev D.

(2011) 84:064004. doi: 10.1103/PhysRevD.84.064004

233. Yagi K, Blas D, Barausse E, Yunes N. Constraints on Einstein-ther theory
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Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum

field theories, in particular for quantum gravity. Significant progress on this program

has led to a first characterization of the Reuter fixed point. Further advancement in our

understanding of the nature of quantum spacetime requires addressing a number of open

questions and challenges. Here, we aim at providing a critical reflection on the state of

the art in the asymptotic safety program, specifying and elaborating on open questions of

both technical and conceptual nature. We also point out systematic pathways, in various

stages of practical implementation, toward answering them. Finally, we also take the

opportunity to clarify some common misunderstandings regarding the program.

Keywords: quantum gravitation, asymptotic safety, renormalization group, running couplings, observables,

effective field theory, unitarity

1. INTRODUCTION AND CONCLUSIONS

Asymptotic Safety [1–3] is a candidate for a quantum theory of the gravitational interactions.
It does not require physics beyond the framework of relativistic Quantum Field Theory (QFT)
nor does it require fields beyond the metric to describe the quantum geometry of spacetime.
Moreover, the inclusion of matter degrees of freedom, like the standard model or its extensions,
is conceptually straightforward. Thus, ultimately, Asymptotic Safety may develop into a quantum
theory comprising all fundamental fields and their interactions.

The core idea of Asymptotic Safety was formulated by Weinberg [4, 5] in the late seventies. It
builds on the insight ofWilson [6], linking the renormalizability and predictive power of a quantum
field theory to fixed points of its Renormalization Group (RG) flow: a theory whose ultraviolet
(UV) behavior is controlled by an RG fixed point does not suffer from unphysical UV divergences
in physical processes like scattering events. The prototypical example for such a behavior is
Quantum Chromodynamics (QCD) where the UV completion is provided by the free theory. In
technical terms QCD is asymptotically free with the UV completion provided by a Gaussian fixed
point1. It was then stressed in [5] that a valid UV completion could also be obtained from fixed
points corresponding to actions with non-vanishing interactions, so-called non-Gaussian fixed
points. In order to contrast this situation to asymptotic freedom, this non-trivial generalization

1The terminology Gaussian fixed point reflects that the action associated with the fixed point does not contain interactions

and is thus quadratic in the fields.
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has been termed “asymptotic safety.” Remarkably, the space
of diffeomorphism invariant actions constructed from a four-
dimensional (Euclidean) spacetime metric indeed seems to
contain a non-Gaussian fixed point suitable for Asymptotic
Safety, the so-called Reuter fixed point [7, 8].

As in other approaches to quantum gravity, substantial
progress has brought the program to a point where a fair-
minded assessment of its achievements and shortcomings
will be useful. Therefore, the purpose of this article is to
provide a critical review of the current status of the field,
of the key open questions and challenges, and to point out
directions for future research. By necessity, the discussion
also covers questions of a more technical nature which is
reflected in the character of some of the sections. This also
entails that the article does not serve as an introduction to
the asymptotic safety program, for which we refer the reader
to the textbooks [2, 3] and reviews [9–15]. A list of key
references related to the open questions is provided within each
section, pointing the reader toward the broader discussion in
the literature.

The rest of the paper is organized as follows. In section 2
we start with a concise introduction to asymptotic safety, also
giving examples of non-Gaussian fixed points providing
a UV completion in non-gravitational settings. The
subsequent sections critically review open questions along
the following lines:

1. Issues related to the use of the functional RG (FRG)
(“uncontrollable approximations,” use of the background field
method) are discussed in section 3.

2. Because of these theoretical uncertainties, it is important
to cross-check the results with different methods. This is
discussed in section 4.

3. The difficulty of computing observables, and comparing with
observations, is discussed in section 6.

4. Closely related to this is the, partly semantic, issue of the
physical meaning of running couplings (can 3 and G run?
If so, what are the physical implications of this running?)
and other aspects where the literature on asymptotic safety
deviates from standard particle physics procedures (power vs.
log running, use of dimensional regularization). These points
are discussed in section 5.

5. In section 7, we discuss whether and in what way asymptotic
safety could be matched to effective field theory (EFT) at low
energy. Here we also discuss the limitations of the procedure
of “RG improvement.”

6. In section 8 we address the relation between scale symmetry
and conformal symmetry and the FRG. (How can one have
scale invariance in the presence ofG?)We also critically review
the argument that the entropy of black holes is incompatible
with gravity being described by Asymptotic Safety (“Gravity
cannot be Wilsonian” or “Gravity cannot be a conformal
field theory”).

7. The unsolved issue of unitarity is discussed in section 9 (in
particular: do higher derivatives imply ghosts?).

8. Finally, we stress the need of calculations in Lorentzian
signature in section 10.

The goal of this paper is three-fold:

(i) Reinforcing progress in the research field by clearly spelling
out key open questions,

(ii) Strengthening a critical and constructive dialogue on
asymptotically safe gravity within a larger community,

(iii) Contributing to a broad and critical assessment of the
current status and future prospects of research avenues in
quantum gravity.

2. ASYMPTOTIC SAFETY

2.1. The Main Idea

...where we recall the notion of quantum scale invariance and the

predictive power of RG fixed points.

Asymptotic Safety [2, 3] builds on Wilson’s modern view of
renormalization, which links the renormalizability and predictive
power of a quantum field theory to fixed points of its RG flow2.
It is equivalent to the notions of “quantum scale invariance in the
UV” and also to “non-perturbative renormalizability,” resulting
in a theory that is fully specified by only a finite number of
free parameters.

In practice, asymptotic safety is studied in the following way.
One has a functional of the fields, that could be either aWilsonian
action S3 depending on a UV cutoff3 or a generating functional
Ŵk for the one-particle irreducible (1PI) correlation functions
depending on an IR cutoff k. We shall focus on the latter for
definiteness, but at this stage the discussion is more general.
For the present purposes, let us assume that this functional can
be expanded in a suitable basis of operators {Oi}, integrals of
monomials in the field and its derivatives

Ŵk =
∑

i

ūi(k)Oi. (1)

The beta functions of the, generally dimensionful, couplings
ūi(k) are given by the derivatives of ūi(k) with respect to t =
log k. Then, one converts the dimensionful couplings3 ūi(k)
into dimensionless ones by a suitable rescaling with the coarse-
graining scale k,

ui ≡ ūik
−di , (2)

where di is the canonical mass dimension of ūi(k). In this way one
obtains a coupled set of autonomous differential equations

k∂kui(k) = βui ({uj}) . (3)

2Generically, a fixed point will be neither UV nor IR, since it typically has both

IR attractive (irrelevant) and IR repulsive (relevant) directions. Depending on the

choice of RG trajectory, the fixed point can therefore induce a UV or an IR scaling

regime. Given two fixed points connected by an RG trajectory, the direction of the

flow between them is fixed and the designation of UV and IR fixed point becomes

unambiguous.
3The notation ui for dimensionful quantities and ũi for dimensionless quantities

can also sometimes be found in the literature.

Frontiers in Physics | www.frontiersin.org 2 August 2020 | Volume 8 | Article 269103

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

The solutions of this system are the RG trajectories and each
trajectory corresponds to a single physical theory. In general, it
may happen that physical observables diverge along a trajectory
as k → ∞ (e.g., at a Landau pole). One simple way to avoid
this is to require that the trajectory describing the physical world
emanates from a fixed point as k is lowered from the UV to the
IR. At a fixed point {uj∗} all beta functions vanish simultaneously,
βui ({uj∗}) = 0, ∀i and, as we shall discuss in more detail in
section 8, scale invariance is realized4. Such RG trajectories
are said to be either asymptotically free or asymptotically safe
theories. This should be contrasted to the case where physical
observables blow up at a finite value of k which indicates that one
deals with an effective field theory.

The predictive power of asymptotic safety originates from
the properties of the fixed point. Linearizing the beta functions
(Equation 3) about the fixed point, and diagonalizing the stability
matrix Bij ≡ ∂ujβui |u=u∗ , one can determine which directions
are attractive and which ones are repulsive. Eigenvalues with
positive (negative) real parts correspond to eigenvectors along
which the flow (from UV to IR) is dragged toward (repelled by)
the fixed point. One typically works with the scaling exponents5

θI = −eigB. Every irrelevant (IR attractive/UV repulsive/θI < 0)
direction fixes one parameter in the initial conditions6 for Ŵk,
whereas relevant (IR repulsive/UV attractive/θI > 0) directions
correspond to free parameters. Marginal directions (θI = 0)
typically only occur at Gaussian fixed points. Thus, the number
of independent free parameters of an asymptotically safe theory is
equal to the number of relevant directions of the fixed point that
it originates from in the UV. At a free (Gaussian) fixed point, the
relevant directions correspond to couplings with positive mass
dimension. In a local theory, there is only a finite number of
such parameters. In principle, an interacting fixed point could
have even fewer relevant directions, and hence greater predictive
power. If one could integrate the RG flow to the IR, one could test
if the low-energy relations implied by these properties of the UV
fixed point are verified or not, cf. section 6 for further discussion.

2.2. Non-gravitational Examples

... where we provide a list of non-gravitational, asymptotically safe

theories together with the corresponding mechanism for asymptotic

safety and we discuss how several techniques are used to study

these examples.

Whereas the existence of UV-complete quantum field theories
based on the mechanism of asymptotic safety has been
anticipated already in the early days of the RG [16, 17], concrete
examples have been identified only much later, as a parametric
control beyond perturbation theory is typically required. A
paradigmatic class of examples is given by fermionic models in

4In most cases this also implies conformal invariance.
5Note that the opposite sign convention, where the θ are defined without the

additional negative sign, is also sometimes used in the literature.
6More precisely, the “memory” of the initial condition for an irrelevant direction

is washed out by the RG flow and plays no role for the physics at k = 0.

d = 3 dimensional spacetime including, for instance, the Gross-
Neveu model: though interactions of the type ∼ (ψ̄mψ)2 (with
m carrying some internal spin and/or flavor structure) belong to
the class of perturbatively non-renormalizable models, there is
by now convincing evidence that a large class of such models
are in fact asymptotically safe in 2 < d < 4 dimensional
spacetime. Initially, the existence of the underlying non-Gaussian
fixed points has been demonstrated by means of 1/N expansions
[18, 19]; indeed, non-perturbative renormalizability has been
proved for specific models to all orders in the 1/N expansion [20]
with explicit results for higher orders being worked out, e.g., in
[21–24]. Further quantitative evidence subsequently came from
2 + ǫ or 4 − ǫ expansions [25–30]; the FRG for the first time
facilitated analytic computations directly in d = 3 [31–38]. For
the asymptotic safety program, these models are instructive for
several reasons:

(i) The fermionic non-Gaussian fixed point is typically connected
to a quantum phase transition. The latter is characterized by
universal critical exponents which can also be studied using
simulational methods [39–49] or the conformal bootstrap
[22, 50]. In this way, the variety of available approaches have
led to a confirmation of asymptotic safety of these models to a
substantial degree of quantitative precision, summarized, e.g.,
in [51].

(ii) While analytical as well as path integral Monte Carlo
computations are typically performed in Euclidean spacetime,
these models are relevant for layered condensed-matter
“Dirac materials” [52, 53], corresponding to a d = 2 +
1 dimensional spacetime with Lorentzian signature. The
quantitative agreement also with Quantum Monte Carlo
methods (based on a Hamiltonian formulation) [44–46],
demonstrates that asymptotic safety of these systems is visible
in Euclidean as well as Lorentzian formulations.

(iii) As a generic mechanism of asymptotic safety in these
models, an irrelevant (i.e., perturbatively non-renormalizable)
operator such as the fermionic interaction ∼ (ψ̄mψ)2

becomes relevant as a consequence of strong fluctuations.
Correspondingly, the anomalous dimension of this and
subsequent operators is shifted by an amount of O(1);
see, e.g., [33, 54] for a determination of an infinite set of
scaling dimensions for large N. As a consequence, strongly
power-counting irrelevant operators remain irrelevant and do
not introduce an unlimited set of new physical parameters.
The same pattern is also observed in many studies of
asymptotically safe gravity [55–60].

(iv) The comparative simplicity of these models has enabled a first
study of the momentum dependence of 4-point correlation
functions at the non-Gaussian fixed point [61]. For instance,
the Gross-Neveu model (m = 1) in d = 2 + 1 at the non-
Gaussian fixed point can be analyzed in terms of an s-channel-
dependent Gross-Neveu coupling g∗(s) which depends non-
trivially and non-analytically on the dimensionless s variable
at the UV fixed point. In fact, the s channel dependence can be
shown to dominate over possible t and u channel dependences
in a quantifiable manner at largeN, resulting in a simpler form
factor-like structure of the 1PI 4-vertex at the UV fixed point.
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This illustrates that scattering properties in the scaling regime
can develop non-trivial features beyond the scaling suggested
by naive power-counting.

Further examples for asymptotic safety include Yang-Mills theory
in d = 4+ ǫ [62–65], and non-linear sigma models in d = 2+ ǫ
[66–71]; for the latter, there is clear evidence for asymptotic safety
even in d = 3 from lattice simulations [72]. The limit of large
number of fermions Nf in gauge theories has recently seen a
resurgence of interest, e.g., [73–76], with early work in [77, 78],
see also [79].

Another recently discovered set of asymptotically safe models
is given by gauged Yukawa models in the Veneziano limit of a
suitably arranged large number of vector fermions Nf adjusted
to the number of colors Nc of the gauge group [80–86] in
d = 3 + 1 dimensional spacetime. Contrary to the lower-
dimensional fermionic models, these gauged Yukawa models
are power-counting renormalizable to all orders in perturbation
theory. Because of the large number of fermions, fermionic
screening dominates the running of the gauge coupling, such
that asymptotic freedom is lost. The RG flow at high energies
nevertheless remains bounded, as it is controlled by a UV
fixed point appearing in all RG marginal couplings. Whereas
perturbative renormalizability of these models supports the use
of perturbative RG beta functions in the first place, the existence
of non-Gaussian UV fixed points is parametrically controlled

by a suitably small Veneziano parameter, e.g., ǫ = Nf
Nc

−
11
2 as in [80]. Despite this technical vicinity to perturbative
computations, the behavior of the theory near the fixed point
is very different from the perturbative behavior near the
Gaussian fixed point. For instance, the perturbatively marginal
operators turn into (ir-)relevant operators with anomalous
dimensions reaching up to O(1) for ǫ . O(0.1). The
couplings therefore scale with a power of the RG scale rather
than logarithmically. Also, higher-order operators—though
remaining RG irrelevant—generically acquire non-trivial fixed-
point values and can thus exert an influence on scattering
properties at highest energies.

3. FUNCTIONAL RENORMALIZATION
GROUP

In section 2, we have discussed the asymptotic-safety mechanism
without referring to any specific calculation method. Now we
introduce the Functional Renormalization Group (FRG), which
has been the main tool enabling progress in Asymptotic Safety
in the last 20 years. It has been successfully applied to a
large number of other theories and physical phenomena, in
particular non-perturbative ones. Applications range from the
phase structure of condensed matter systems, to confinement
and chiral symmetry breaking in QCD, to the electroweak
phase transition in the early universe and beyond Standard
Model physics. In cases, where results from other non-
perturbative methods (lattice simulations, Dyson-Schwinger
equations, Resurgence etc.) exist, the FRG results compare
well to those obtained by other methods. It is also worth

emphasizing that, while the combination of conceptual and
technical challenges in quantum gravity is certainly unique,
many of the technical challenges and physical effects encountered
here have counterparts in other theories, most notably in non-
Abelian gauge theories, where they can also be tested against
other non-perturbative methods.

3.1. Brief Introduction to the FRG

...where we briefly introduce the FRG as a tool to calculate the

effective action.

Currently, the primary tool to investigate Asymptotic Safety is
the Functional Renormalization Group (FRG) equation for the
effective average action Ŵk introduced in [87–89] (Wetterich
equation), and in [7] for gravity. Ŵk depends on the content of
the theory at hand, in quantum gravity it contains the metric
degrees of freedom, Faddeev-Popov ghosts and possibly also
matter fields. In the FRG approach the scale k is an infrared cutoff
scale below which quantum fluctuations are suppressed. Thus,
Ŵk encodes the physics of quantum fluctuations above the cutoff
scale. For k → 0, all quantum fluctuations have been taken into
account and Ŵk=0 is the full quantum effective action,

Ŵ = lim
k→0

Ŵk (4)

whose minimum is the vacuum state of the QFT. The flow
equation for Ŵk encodes the response of the effective average
action Ŵk to the process of integrating out quantum fluctuations
within a momentum shell,

k∂kŴk[8; 8̄] =
1

2
Tr

[

1

Ŵ
(2)
k
[8; 8̄]+ Rk

k∂kRk

]

. (5)

The term (Ŵ
(2)
k

+ Rk)
−1 on the right hand side of Equation

(5) is the propagator in the regularized theory. Here, we have

introduced Ŵ
(2)
k

= Ŵ(88), the second derivative of Ŵk w.r.t.
the fields 8. In Equation (5), we have also introduced a generic
background 8̄ which typically is chosen as the solution to the
quantum equations of motion. Then, the fluctuation field 8
encodes the fluctuations about this background, and the 1PI
correlation functions of the fluctuation fields 〈8i1 · · ·8in〉1PI
(proper vertices) in a given background 8̄ are given by

Ŵ
(8i1 ···8in )

k
[8̄] ≡

δ

δ8i1

· · ·
δ

δ8in

Ŵk[8; 8̄]
∣

∣

∣

∣

8=0

. (6)

The term Rk is a cutoff scale k- and momentum-dependent
infrared regulator which suppresses fluctuations with momenta
p2 . k2, decays rapidly for momenta p2 & k2, and vanishes
at k2 = 0. The second property renders the flow Equation
(5) finite due to the decay of k∂kRk for large momenta. The
regulator Rk is independent of the fluctuation field, but may
carry a dependence on the background field. In a quantum
field theory in flat space typically p2 is the plain momentum
squared, while in gravity and gauge theories p2 may be associated
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with a background-covariant Laplacian. Finally, Tr comprises a
sum over all fluctuation fields and an integral over (covariant)
loop momenta. The corresponding loop integration is peaked
about momenta p2 ≈ k2, leading to the momentum-shell
integration. In summary, the flow Equation (5) transforms the
task of performing the path integral into the task of solving a
functional differential equation.

Conceptually, the Wetterich equation implements the idea of
the Wilsonian Renormalization Group: lowering k corresponds
to integrating out quantum fluctuations shell by shell in
momentum space. For k → ∞, the theory approaches the bare
or renormalized ultraviolet action, depending on the underlying
renormalization procedure, for a detailed analysis see, e.g., [90–
94]. The fact that Equation (5) does not require specifying a bare
action a priori makes it a powerful tool to scan for (interacting)
RG fixed points and study their properties. The bare action can
then be reconstructed from the RG fixed point along the lines of
[91, 93]. Essentially, the Wetterich equation can be viewed as a
tool to systematically test which choice of bare action gives rise to
a well-defined and predictive path integral for quantum gravity.

Notably, if one approximates Ŵ
(2)
k

by the k-independent

second functional derivative of a given bare action S(2),
one obtains

Ŵk ≈ S+
1

2
Tr log

(

S(2) + Rk

)

, (7)

which reduces to the standard one-loop effective action for k = 0.
Accordingly, approximations to the FRG always contain one-
loop results in a natural way.

3.2. FRG Approach to Quantum Gravity

...where we review the Functional Renormalization Group

approach to quantum gravity, with a particular focus on

background-field techniques.

In the gravitational context, the construction of Equation (5)
makes use of the background field method, decomposing the
physical metric gµν into a fixed, but arbitrary background metric
ḡµν and fluctuations hµν , see [9] for technical details

7. The typical
example is the linear split,

gµν = ḡµν + hµν . (8)

In the literature, the fluctuation field hµν is commonly multiplied
with the square root of the Newton constant which makes
it a standard dimension-one tensor field in four spacetime
dimensions. The linear split (Equation 8) is the common choice
not only in quantum gravity but also in applications of the
background field method to gauge theories or non-linear sigma
models. In gravity it comes at the price that the fluctuation field
hµν is not a metric field, indeed it has no geometrical meaning.

7Notably, the asymptotic-safety mechanism is not tied to the spacetime metric

carrying the gravitational degrees of freedom. While explored in far less detail,

the vielbein and the Palatini formalisms may also lead to a theory which is

asymptotically safe [95–101].

While this is not necessary, alternative parameterizations have
been used. These have the general form

gµν = f (h, ḡ)µ
κ ḡκν . (9)

Of these alternative cases, the exponential split with f (h, ḡ) =
exp[ḡ −1h] has been explored, e.g., in [59, 102–105]. Further,
the geometrical split in the Vilkovisky-deWitt approach with a
diffeomorphism invariant flow has been studied in [90, 106–109],
for applications to non-linear sigma models see [110, 111].

Different parameterizations (Equation 9) only constitute the
same quantization if they (i) cover the same configuration space
and (ii) the Jacobian that arises in the path integral is taken
into account (see [104] for a related discussion). Condition (i)
does not hold, e.g., for linear parameterization and exponential
parameterization, see, e.g., [102, 104], while the linear split and
the geometrical one with the Vilkovisky connection at least agree
locally. However, it is well-known from two-dimensional gauge
theories, that quantizations on the algebra and on the group can
differ, see, e.g., [112]. Moreover, studies of the parameterization
dependence of results in truncations, e.g., [113–116], so far do
not account for (ii).

The presence of the background allows to discriminate
“high-” and “low-momentum” modes by, e.g., comparing their
eigenvalues with respect to the background Laplacian to the
coarse-graining scale k. Moreover, it also necessarily enters
gauge-fixing terms for the fluctuation field. As a consequence, the
effective action Ŵk inherits two arguments, the set of fluctuation
fields8 and the corresponding background fields 8̄ for all cutoff
scales k. We emphasize that this also holds true for vanishing
cutoff scale, k = 0, due to the gauge fixing.

Conceptually, the Wetterich equation lives on the so-
called theory space, the space containing all action functionals
constructable from the field content of the theory and compatible
with its symmetry requirements. The FRG then defines a vector
field generating the RG flow on this space. We proceed by
discussing two systematic expansion schemes commonly used in
quantum gravity (as well as other systems): the vertex expansion
and the (covariant) derivative expansion.

The proper vertices of the effective average action (Equation
6) can be used as coordinates in theory space as the set of

(1PI) correlation functions {Ŵ(8i1 ···8in )

k
[8̄]} defines a given action

and hence a theory. The vertex expansion is the expansion in
the order of the fluctuation correlation functions and hence in
powers of the fluctuation field,

Ŵk[8; 8̄] =
∞
∑

n=1

1

n!

∫ n
∏

i=1

[

ddxi8ji (xi)
]

×

× Ŵ
(8j1 ···8jn )

k
[8̄](x1, · · · , xn) , (10)

whereŴ
(8j1 ···8jn )

k
[8̄], for n > 2, are the proper vertices (Equation

6), that carry the measure factors
∏

i

√

ḡ(xi).
The derivative expansion is best explained in the case of the

diffeomorphism invariant background effective action Ŵ̄k[8̄] =
Ŵk[8 = 0; 8̄]. This object can be expanded in diffeomorphism
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invariant operators such as powers of the curvature scalar and
other invariants. Then, in the derivative expansion the sum in
Equation (1) contains all diffeomorphism invariant terms with
less than a certain number of derivatives. The leading order of
this expansion is

Ŵ̄k[gµν] ≃
1

16πGk

∫

ddx
√
g [23k − R] . (11)

At the next order one has to add four-derivative terms including
R2, RµνR

µν , and RµνρσR
µνρσ , and so on. In this light, it should

be understood that the Einstein-Hilbert action just provides the
leading terms in the derivative expansion of Ŵ̄k[gµν] and does not
constitute the bare action underlying Asymptotic Safety. It has
to be supplemented by gauge-fixing and ghost terms, and, if the
approximation is extended, additional terms ̂Ŵk[h; ḡ] depending
on two arguments separately. “Bimetric” studies distinguishing
gµν and ḡµν for the Einstein-Hilbert truncation can be found in
[117–119].

3.3. Results for Asymptotically Safe Gravity

...where we give a brief overview of the results obtained with the

truncated FRG and provide a sketch of the full flow from the UV

fixed point down to the IR.

Most work has been done in the background-field
approximation, that is Ŵk[8; 8̄] = Ŵ̄k[8 + 8̄]+gauge fixing +
ghosts. If one evaluates the FRG in a one-loop approximation,
including terms quadratic in curvature, the known universal

beta functions of the four-derivative couplings are reproduced,
but additionally the cosmological and Newton constant have a
non-trivial fixed point [120–122]. Going beyond one loop, the
following classes of operators have been studied in pure gravity:
The Einstein-Hilbert truncation has been explored extensively
[7, 8, 113, 123–131]. Einstein-Hilbert action plus R2 [132, 133];
Einstein-Hilbert action plus R2 and RµνρσR

µνρσ [56, 134–137];
Einstein-Hilbert action plus R2, RµνR

µν , and RµνρσR
µνρσ [138];

Einstein-Hilbert action plus the Goroff-Sagnotti counterterm
RµνρσR

ρσ
αβR

αβ
µν [139]; polynomial functions of the scalar

curvature (polynomial “f (R) truncation”) up to orders N = 6
[140, 141], N = 8 [55], N = 35 [57, 58], and lately also N = 71
[142], or effective actions of the form f1(RµνR

µν)+ f2(RµνR
µν)R,

where f1 and f2 are polynomials [143], effective actions of the
form f1(RµνρσR

µνρσ ) + f2(RµνρσR
µνρσ )R where f1 and f2 are

polynomials or finally effective actions consisting of a single trace
of n Ricci tensors (RµνR

ν
ρ . . .R

α
µ) with n up to 35 [144]. The

case of an “infinite number” of couplings has been addressed
in the f (R) truncation by solving [109, 145–159] a non-linear
differential equation for f [58, 109, 116, 140–143, 145–161].
Global solutions for such “infinite” truncations can also be found
for gravity coupled to a scalar field, see, e.g., [162]. For a more
general overview of the situation in gravity-matter systems
we refer to the review [14]. Notably, a fixed point suitable for
Asymptotic Safety has been identified in all these works.

As is clear from this list, the terms included do not reflect
the systematics of a derivative expansion. It has also to be

said that in many of these calculations the beta functions that
one obtains are only unknown linear combinations of the beta
functions that would be obtained if all curvature invariants of the
same order were included. This is because the calculations are
done on spheres, e.g., [55, 57, 58, 116, 132, 133, 140–143, 146–
148, 150–153, 155, 157, 160, 163], a hyperbolic background [161]
or sometimes on Einstein backgrounds, e.g., [56, 134], and this
does not permit to differentiate between functions of Ricci tensor
and of the Ricci scalar, for example.

In terms of the vertex expansion, most work has been
built on an expansion around flat space while keeping part of
the full momentum dependence of propagators and vertices.
For the vertices typically the symmetric point configuration
is considered. For results in pure gravity and gravity-matter
systems see [164–174]. These works have revealed the existence
of a non-trivial fixed point in the two-, three-, and four-
point functions compatible with the findings in the background
approximations. Analogous calculations with compatible results
have also been done for the two-and three-point functions
on a spherical background [156, 159]. The results in [156,
159] for background curvature and background momentum-
dependent two- and three-point function of the fluctuation
field have then been used to compute the full f (R)-potential
in pure gravity and in the gravity-scalar system beyond the
background approximation.

Just like in the derivative expansion in asymptotically safe
gravity, it has also not been possible to fully and systematically
implement the vertex expansion beyond the lowest order:
In particular, the three- and four-point functions have only

been calculated for a special kinematical configuration and

the symmetric background does not allow to fully disentangle
different operators.

To connect the UV fixed point to physics at k = 0, complete
trajectories must be constructed. Currently, this part of the
program is less advanced than the characterization of the fixed

point itself; UV-IR flows have been computed, e.g., in [108, 164,
166, 169, 175]. It is expected that complete solutions are most

likely characterized by several regimes [125, 133, 176, 177], see
also, e.g., [178, 179] for matter-gravity systems:

- The first part of the flow from the Reuter fixed point in the
UV down to some scale M1 is in a linear regime close to
the fixed point. At these extreme UV scales, the system could

a priori either be in a strongly interacting non-perturbative
regime or be characterized by weak interactions. There are
some tentative hints for the latter (see section 3.4), but a
conclusive statement regarding the nature of the fixed point
cannot yet be made.

- Close to the Planck scale, the flow has potentially already
left the linear regime around the fixed point. In simple
approximations, M1 = MPl, i.e., the transition scale at
which fixed-point scaling stops, actually comes out equal to
the Planck scale. The regime around the Planck scale could
again be characterized by either non-perturbative or near-
perturbative physics—irrespective of the nature of the fixed
point. Once one leaves the fixed-point regime, non-localities
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of order 1/k, or dynamically generated scales are expected to
play a role 8.

- Below the Planck scale, the description of the purely
gravitational sector is expected to become much simpler.
Once near the Gaussian fixed point, the flow is dominated by
the canonical scaling terms. For instance, the dimensionful
Newton constant becomes scale independent. One expects
that corrections obtained within the effective-field theory
approach to quantum gravity are recovered in this regime. Of
course there remains the issue of the cosmological constant.
In particular, it is still being debated whether De Sitter space is
stable under radiative corrections, including the ones coming
from graviton fluctuations. A proposal that the instability in
the graviton propagator drive the cosmological constant to
zero has been put forward in [181], see also [104] for a different
point of view on the interpretation of this property of the
graviton propagator, and [123] for an earlier discussion of
the effect of IR-fluctuations on the cosmological constant. A
general effective field theory approach to study this problem
has yet to come.

Inmany cases these works on asymptotic safety based on the FRG
can be compared to, or substantiated by, other approximation
methods or techniques. We defer a discussion of such relations
to sections 4 and 7.

3.4. The Convergence Question

...where we discuss the convergence (or lack thereof) of systematic

expansion schemes in the FRG.

In practical applications, one has to work in truncations of the
theory space. These can also be infinite dimensional, if a closed
form for the flow of an appropriate functional can be found. In
the gravitational case, closed flow equations for f (R) truncations
constitute an example [58, 109, 116, 140–143, 145–161]. Further
examples are the scalar potential and a non-minimal functional
in scalar-tensor theories, see, e.g., [104, 105, 182–184].

A reasonable expansion scheme should capture the relevant
physics already at low orders of the expansion. For a fixed point,
this includes the relevant operators. At the free fixed point one
simply expands according to canonical power counting. At a
truly non-perturbative fixed point, the relevant operators are not
known. Therefore, simple truncations that correctly model non-
perturbative physics can be difficult to devise. It is in such setups

8It is important to realize that non-local operators, i.e., operators with inverse

powers of derivatives, proliferate under the flow and are canonically increasingly

relevant. They are therefore likely to destroy the predictive nature of the fixed

point, if included in theory space explicitly. On the other hand, the flow never

generates an operator with inverse powers of derivatives within a quasi-local theory

space, i.e., the requirement of quasilocality can be imposed consistently on the

theory space. Of course it is well-known that the full effective action contains

physically important non-localities. These arise in the limit k → 0 and are expected

to be captured through resummation of quasi-local operators, see, e.g., [180] for

an example. This intricacy potentially makes this regime of the flow difficult to

describe in a quantitatively robust way. It is generally expected that an expansion

of the effective action in terms of vertex functions or form factors is best suited to

this regime, as it can automatically capture non-localities of order 1/k, and also

encode the presence of dynamically generated scales.

that the concerted use of several techniques can be most useful;
the IR regime of QCD constitutes an excellent example. Finally,
at an interacting, but near-perturbative fixed point, canonical
power counting constitutes a viable guiding principle to set
up truncations. Here, near-perturbative refers to the fact that
the spectrum of critical exponents exhibits deviations of O(1)
from the canonical spectrum of scaling dimensions, but not
significantly larger, in other words, the anomalous contribution
to the scaling of operators is ηO . O(1).

The strategy that has (implicitly or explicitly) been followed
for the choice of truncations for the Reuter fixed point has been
based on the assumption of near-perturbativity. This motivates
a choice of truncation based on canonical power counting. The
self-consistency of this assumption has to be checked by the
results within explicit truncations. Indeed, [57, 58, 142, 143]
find a near-canonical scaling spectrum in the f (R) truncation.
Moreover, [172–174] find close agreement of various “avatars” of
the Newton coupling, something that is not expected in a truly
non-perturbative regime.

As a self-consistent truncation scheme appears to be available
for quantum gravity, the apparent convergence of fixed-point
results is a key goal. It is fair to say that the status of results is
rather encouraging with regard to this question, see [91, 118, 119,
124, 125, 132, 175, 185–200]. This has given rise to the general
expectation that the Reuter fixed point indeed exists in full theory
space, and provides a universality class for quantum gravity.
Nevertheless, it should be pointed out that due to the technically
very challenging nature of these calculations, the inclusion of a
complete set of curvature-cube operators remains an outstanding
task. In the vertex expansion, higher order derivative terms are
captured by momentum-dependent correlation functions, which
exhibit robust evidence for the Reuter fixed point [156, 164, 166–
170, 172–174, 199–201].

3.5. Do Backgrounds Matter?

...where we highlight the technical challenges one faces when

attempting to reconcile the use of a local coarse-graining procedure

with the background independence expected of a non-perturbative

quantum gravity approach.

When setting up the Wetterich equation for gravity [7]
the background field formalism plays an essential role. The
background metric ḡµν serves the double purpose of i)
introducing a gauge fixing which is invariant under background-
transformations, and ii) introducing a regulator, as required to
implement a local notion of coarse graining. At the same time, the
decomposition of the physical metric into a fixed, but arbitrary
background and fluctuations introduces a new symmetry, so-
called split-symmetry transformations: the linear split (Equation
8) is invariant under

ḡµν 7→ ḡµν + ǫµν , hµν 7→ hµν − ǫµν . (12)

While actions of the form Equation (11) are invariant under these
transformations, the gauge-fixing and the regulator terms

1Sk =
∫

d4x
√

ḡ hµν[Rk(−D̄2)]µνκλhκλ , (13)
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with D̄µ denoting the covariant derivative constructed from
ḡµν violate this symmetry. Thus Ŵk[hµν; ḡµν] ≡ Ŵk[gµν , ḡµν]
genuinely depends on two metric-type arguments.

Nevertheless, the gravitational effective average action [7]
provides a background-independent approach to quantum
gravity. The background metric ḡµν is not an “absolute element”
of the theory but rather a second, freely variable metric-type
argument which is determined from its own equations of motion.
At the most conservative level this feature follows from standard
properties of the background field method satisfied by the
effective action Ŵ and their extension to the effective average
action Ŵk [107, 108, 155, 156, 202–206]. Alternatively, it has
been proposed to achieve background independence not by
quantization in the absence of a background, but rather by
quantization on all background simultaneously [119]. We now
review these arguments.

The fact that Ŵk and the resulting effective action Ŵ depend
on two arguments allows to derive a background as well as a
quantum equation of motion from Ŵ

δŴ[h; ḡ]
δḡµν

∣

∣

∣

∣

ḡ=ḡeom ,h=0

= 0 ,
δŴ[h; ḡ]
δhµν

∣

∣

∣

∣

ḡ=ḡeom ,h=0

= 0 . (14)

The Ward identity following from the transformation (Equation
12) then relates these two equations implying that a solution
of one is also a solution of the other. This allows to fix ḡ
in a dynamical way. In particular, it shows that at k = 0
the background metric does not have the status of an absolute
element. At finite values of k, the Ward identity satisfied by Ŵk
receives additional contributions from the regulator (Equation
13) which introduce a genuine dependence on the background
field. From these arguments, it is then clear that “background
independence” is restored at k = 0 only.

We highlight that background independence is encoded in
modifiedWard identities which are completely general and work
(in principle) for any correlator. The most important issue is to
determine a physically motivated background, around which one
can study the quantum fluctuations and which is determined by
the equations of motion Equation (14).

The “all backgrounds is no background” proposal provides
an extension of “background independence” to finite values of
k. The underlying idea is to describe (one single) background-
independent quantum field theory of the metric through the
(infinite) family of “all possible” background-dependent field
theories that live on a non-dynamical classical spacetime. Each
family member has its own classical metric ḡµν rigidly attached
to the spacetime manifold. For each given background ḡµν ,
standard methods can be used to quantize the fluctuation fields
8. Repeating this procedure for all ḡµν yields expectation values
〈O〉ḡ which are manifestly ḡ dependent in general. Loosely
speaking, the family of backgrounds, which is at the heart of
background independence in the abstract sense of the word,
should be regarded as the set of all possible ground states, one
of which will be picked dynamically.

Ultimately, the physical background metric that is present in
the geometric phase of quantum gravity, is determined by the
dynamics of the system in a self-consistent fashion by solving the

quantum equations of motion at finite k

δŴk[h; ḡ]
δhµν

∣

∣

∣

∣

ḡ=ḡsc
k
,h=0

= 0 , (15)

where the self-consistent background metric (ḡsc
k
)µν is inserted.

Hence, the expectation value of the metric is a prediction rather
than an input. Notably, setting (h = 0, ḡ = ḡsc

k
) is a particular way

of going “on-shell” (but not the only one). We refer to [3, 156] for
further details.

Given these remarks, it is clear that future work must address
the following challenges:

(1) The different functional dependence of Ŵk on hµν and ḡµν
induces differences in the propagators for the fluctuation field
and the background field. Thus, the functional dependence
of Ŵk on hµν and ḡµν separately should be computed for
a class of background metrics as broad as possible, as
ultimately background independence can only be achieved
if the dependence on the two distinct arguments of Ŵk is
disentangled cleanly.

For computational feasibility the existing calculations
mainly employ either highly symmetric background
geometries or the Seeley-DeWitt (early time) expansion
of the heat-kernel which encapsulates only local (albeit
universal) information [207]. It is important to highlight that
computations evaluating the left-hand side of the Wetterich
equation at h = 0 (i.e., equating fluctuation propagator and
background propagator) can deform and/or remove fixed
points and introduce unphysical zeros of beta functions [163].

(2) The difference between the gµν dependence of Ŵk and
its ḡµν dependence, driven by the distinct dependence of
regulator and gauge fixing on the two metrics, is encoded in
the modified split Ward or Nielsen identity resulting from
Equation (12). In principle, by solving the flow equation
together with this Ward identity, one would obtain a flow
for a functional of a single metric. In practice, the solutions
of the Ward identity has only been possible for the simplest
approximations [108, 155, 203–206].

(3) When Ŵk and with it (ḡsc
k
)µν show a strong k dependence, the

effective spacetime is likely to possess multi-fractal properties
which were argued to lead to a dimensional reduction in the
ultraviolet [133, 208–210] and to a “fuzzy” spacetime structure
at even lower scales [198, 211, 212]. In the existing analyses the
fractal-like properties were characterized in terms of ordinary,
i.e., smooth classical metrics, the trick being that one and
the same spacetime manifold was equipped not with one but
rather the one-parameter family of classical metrics, {(ḡsc

k
)µν}.

As these fractal-like properties relate to the k dependence of
Ŵk, it is at present unclear whether an “echo” of this behavior
exists in the physical limit k → 0. Investigating the full
momentum dependence of Ŵk→0 can provide an answer to
this question. If there is, it should be a mostly negligible effect
at scales relevant for current experiments.

In conclusion, the issue of the background dependence is a main
obstacle to progress in the application of the FRG to quantum
gravity, both at the conceptual and technical level.
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4. ADDITIONAL METHODS FOR
ASYMPTOTIC SAFETY

... where we review other techniques used to search for asymptotic

safety in gravity, including the ǫ expansion, numerical simulations,

tensor models, and stress the benefits of using multiple methods.

Sections 3.4 and 3.5 have highlighted the technical challenges
one faces when employing the FRG to study asymptotically
safe gravity. Therefore, there is a strong case for the use of
complementary methods, especially those where background
independence can be implemented, such as Regge calculus or
random lattice techniques, as well as specific tensor models. Due
to the rather different nature of the systematic errors in these
approaches, this simultaneously addresses the challenge linked to
the convergence of truncations. Furthermore, other techniques
may be better suited to explore the complete phase diagram of
quantum gravity potentially including pre-geometric phases.

Historically, the starting point for studies of asymptotically
safe gravity has been the ǫ expansion around d = 2, [213–
217], which has been pushed to two-loop order in [218], showing
indications for an asymptotically safe fixed point. It has been
shown that the Reuter fixed point in d = 4 dimensions is
continuously connected to the perturbative fixed point seen in
2 + ǫ spacetime dimensions [7, 125]. The connection between
Asymptotic Safety and Liouville gravity in d = 2 dimensions has
been made in [197]. An (off-shell) gauge and parameterization
dependence, as exhibited by truncated FRG studies, is also
present in the ǫ expansion. Higher-loop terms are required in
order to resum the ǫ expansion for the critical exponent to learn
about the d = 4-dimensional case. This appears to be merely a
technical challenge, to which the advanced techniques developed
in the context of supergravity [219] might potentially be adapted.

In line with the near-perturbative nature of the fixed point
in d = 4, expected from FRG studies [57, 58, 142, 143, 173], a
Padé resummation might yield a fixed point that is continuously
connected to the fixed point in the vicinity of two dimensions.

Lattice approaches provide access to a statistical theory of
random spatial geometries, thereby being in a position to provide
evidence for or against asymptotic safety in the Euclidean regime.
There are two main ways in which discrete random geometries
are explored: One can hold a triangulation fixed and vary the edge
lengths, as in Regge calculus, or hold the edge lengths fixed but
vary the triangulation, as in dynamical triangulations. The latter
have developed in two research branches: Euclidean Dynamical
Triangulations [220], and Causal Dynamical Triangulations
[221, 222].

Regge calculus (see [223] for a review) based on the Einstein-
Hilbert action is subject to the well-known conformal factor
instability, which requires an extrapolation in order to extract
information about a critical point, see the discussion in [224].
With this caveat in mind, indications for asymptotic safety are
found in Monte Carlo simulations of Regge gravity [224] based
on the Einstein-Hilbert action. Testing the effect of additional,
e.g., curvature-squared operators, which could correspond to
additional relevant directions and have an important impact on

the phase structure, is an outstanding challenge in Regge gravity.
A first comparison of scaling exponents obtained with the FRG
to the leading-order exponent in Regge gravity can be found in
[130, 225, 226].

In the case of Causal Dynamical Triangulations (CDT), the
configuration space includes only configurations that admit a
Wick rotation, see [222] for a review. Therefore, an analytical
continuation to a Lorentzian path integral is in principle possible.
In two dimensions, one can solve CDT analytically. Owed to the
fact that in this case there are no local degrees of freedom, it
has been shown in [227] and [228, 229] that the Hamiltonian
appearing in the continuum limit agrees with the one for two-
dimensional continuum quantum gravity and Horava-Lifshitz
gravity [230], respectively. Moreover, Liouville gravity can be
recovered by allowing for topology change of the spatial slices
[227]. It has been stressed in [222] though that the equivalence
of CDT and Horava-Lifshitz gravity may not extend beyond the
two-dimensional case.

In higher dimensions, one searches for the continuum
limit numerically. In practice, evidence for several [231, 232]
second-order phase transition lines/points exists in numerical
simulations, both in spherical and toroidal spatial topology. The
large-scale spatial topology does not appear to impact the phase
structure [233], but can actually improve the numerical efficiency
of the studies, as observed in [234]. The higher-order transition
can be approached from a phase in which several geometric
indicators (spatial volume of the geometry as a function of
time [235]; Hausdorff dimension and spectral dimension [236])
signal the emergence of a spacetime with semi-classical geometric
properties. The properties of the continuum limit remain to be
established, as the process of following RG trajectories along lines
of constant physics toward the phase transition has not yet led to
conclusive results regarding asymptotic safety [237, 238].

In Euclidean Dynamical Triangulations (EDTs), the
configuration space differs from CDTs, as configurations
do not in general admit a Wick rotation. This gives rise to
spatial topology change and the proliferation of so-called “baby
universes.” Early work [239–242] has not shown a higher-order
phase transition [243–245]. The inclusion of a measure-term has
led to the hypothesis that the first-order transition line could
feature a second-order endpoint, and some evidence exists that
the volume profile of the “emergent universe” approaches that
of Euclidean de Sitter, i.e., a sphere, as one tunes toward the
tentative critical point [246, 247]. This measure term could be
reinterpreted as a sum of higher-order curvature invariants
[246, 247] contributing to the action. The investigation [247]
was unable to corroborate the appearance of a second-order
endpoint though. In summary, solid evidence for a second-order
phase transition exists in the CDT case, while investigations are
ongoing in the EDT case.

Finally, dynamical triangulations can be encoded in a purely
combinatorial, “pre-geometric” class of models, so-called tensor
models [248–255], that attempt to generalizematrixmodels [256]
for two-dimensional gravity to the higher-dimensional case. FRG
tools which interpret the tensor sizeN as an appropriate notion of
“pre-geometric” (i.e., background-independent) coarse-graining
scale [257], allow to recover the well-known continuum
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limit in two-dimensional quantum gravity within systematic
uncertainties related to truncations [258]. First tentative hints for
universal critical behavior in models with 3- and 4-dimensional
building blocks have been found [259, 260]. The importance of
symmetry-identities has been emphasized in [261]. This method
could in the future provide further evidence for asymptotic safety,
see [262] for a discussion, once the systematic uncertainties
are reduced by suitable extensions of the truncation, and an
understanding of the emergent geometries has been developed.

More broadly, the framework of the Renormalization Group
and the notion of a universal continuum limit linked to a fixed
point have recently been gaining traction in several approaches
to quantum gravity, including group field theories [263–265]
as well as spin foam models [266]. Accordingly, the concept of
asymptotic safety might play an important role in several distinct
approaches to quantum gravity. In particular, in spin foams, a
search for interacting fixed points in numerical simulations has
started recently in reduced configuration spaces, see, e.g., [267–
269]. In causal sets, investigating the phase diagram and the
order of potential phase transitions has only shifted into focus
more recently, with indications for first-order phase transitions
in restricted configuration spaces for lower-dimensional causal
set quantum gravity [270–273].

In summary, the further development and application of a
broad range of tools to explore asymptotic safety could be key to
gain quantitative control over a potential fixed point, establish its
existence and to develop robust links to phenomenology, which
rely on a good understanding and control over systematic errors
within various techniques. It is encouraging, that indications for a
second-order phase transition have already been found with such
techniques.

5. RUNNING COUPLINGS

5.1. A Clarification of Semantics

...where we clarify that the term “running coupling” is used with

different meanings in different contexts.

Much of the current work on asymptotic safety of gravity uses
techniques and jargon that are more common in statistical than
in particle physics. This concerns even basic notions such as
the RG. If one aims at detecting asymptotic safety by means of
standard perturbative particle physics observables, there is thus
much room for misunderstanding.

The RG was used in particle physics largely as a tool to resum
“large logarithms,” terms in the loop corrections to physical
observables of the form log(p/µ) = log(p/3) + log(3/µ),
where p is a momentum, µ a reference scale and 3 a UV cutoff.
From the way they emerge, the beta functions that resum the
large logs are just the coefficients of the logarithmic divergences
log(3/µ). One important feature of these logarithmic terms is
that their coefficients are “universal,” up to next-to-leading non-
trivial order (NLO) in the coupling expansion. This entails two
things: on the one hand, it means that, up to NLO, they are

independent of the way one computes them9. On the other hand,
one can use them to “RG improve” any tree level observable, and
one is guaranteed to obtain the correct result (not the full result,
of course, but the part that comes from calculating and then
resumming the logs). Here by “RG improvement” we mean the
substitution of the running coupling into a tree-level expression,
and the subsequent identification of the RG scale with an
appropriate physical scale of the system10. If one demands these
properties of a running coupling, then one would say that only
dimensionless couplings can run. Dimensionful couplings have
power divergences that are simply subtracted in perturbation
theory. In line with these arguments, it has been pointed out
in [274, 275], that the one-loop corrections to gravity-mediated
scattering amplitudes cannot be obtained from applying the RG
improvement to Newton’s coupling.

In Wilson’s non-perturbative approach to renormalization,
all possible terms consistent with symmetries are present in
the action. Quite often, the Wilsonian momentum cutoff has a
direct physics interpretation, e.g., as lattice spacing in condensed-
matter applications (with a relation to the Kadanoff block-
spinning [276] underlying Wilson’s renormalization idea), and
as the mass of states that are “integrated out” in effective field
theories. In lattice gauge theories the Wilsonian momentum
cutoff is finally removed (in the continuum limit), but keeps
its physics interpretation similar to the condensed-matter
applications at intermediate stages. Nevertheless, the momentum
cutoff is treated mathematically as an independent variable, and
all couplings in the Wilsonian action depend on it. Apart from a
few relevant parameters to be tuned to criticality, the remaining
set of “running couplings” is not constrained by the demands of
universality; still, this notion of running couplings remains also
valid at the non-perturbative level.

The relation between the two definitions of the RG is this: At
energy scales much higher than all the masses, the leading- and
next to leading-order terms of the perturbative beta functions,
that are independent of the renormalization scheme, can also be
obtained from the Wilsonian RG and are independent of details
of the coarse-graining scheme. In particular, the one-loop terms
can be easily found from Equation (7). The recovery of 2-loop
terms from the FRG has been addressed, e.g., in [277–283]. At
energies comparable to the masses, the beta functions extracted
from the Wilsonian RG include threshold effects which encode
the automatic decoupling of massive modes from the flow at
scales below the mass. This is an advantage over setups in which
this decoupling is not accounted for automatically and must
instead be done by hand.

If one accepts the more general Wilsonian definition of
running coupling, then the statement “dimensionful couplings
cannot run” translates into the statement that the Wilsonian
running of dimensionful couplings does not carry the same

9They are almost always derived in dimensional regularization, which for technical

reasons is the most convenient method, e.g., it respects gauge symmetries.
10 For example in a process e+e− → e+e− at center of mass energy

√
s >> me

at n-loop order the renormalized leading contribution with subtraction scale µ is

proportional to the tree level cross-section (at scaleµ) times
∑

l≤n[α(µ)c log
s
µ2 ]

l ,

which shows that the most convenient choice is µ =
√
s.
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direct physical meaning as the running of dimensionless ones.
Nevertheless, to encode physics correctly within a Wilsonian
setup, the running of dimensionful couplings is critical and
cannot be neglected, since in a massive scheme operators
mix non-trivially.

To be more specific, one can consider what happens at
second order phase transitions. The generic power-like running
of the Wilsonian couplings in the FRG approach is in general
non-perturbative and its calculation is limited only by the
approximations. At the fixed point, the couplings have non-
universal values (depending on the details of the microscopic
theory), but there are also universal quantities which can be
extracted from the flow close to criticality. These are the same for
very different physical systems belonging to the same universality
class. The power-like divergences are associated to non-universal
features such as the position of the fixed point and of the
critical surface (see, e.g., [284]). For example, the power quadratic
divergence in systems belonging to the Ising universality class
is related to the critical temperature Tc, which varies from
one material to another. If one is interested in this physical
information, the accurate scaling of the corresponding quadratic
composite operator or the behavior of the two-point function
should be determined.

Similar considerations may apply in quantum gravity, where
the running Planck mass (the coefficient of the “R” operator in
the effective Lagrangian) is a non-universal quantity which is
just one of the parameters defining the position of a possible
UV fixed point and of the critical surface containing it. Note
that in an asymptotically safe theory of quantum gravity, the
physics is related not just to the UV fixed point, but to the
particular renormalized trajectory flowing away from it toward
lower energy scales. Therefore it depends indirectly on all such
Wilsonian (dimensionful) couplings. Observables, as already
discussed, are computed at k = 0 on the on-shell configurations
and are mostly sensible to a number of non-universal parameters
related to the finite number of relevant directions, including the
(flowing) Planck mass. We shall discuss in section 5.3 how one
could define the effective couplings.

5.2. Remarks on Dimensional
Regularization

...where we explain in which cases some care is required for

the correct interpretation of results achieved within dimensional

regularization.

A seemingly technical point where the Wilsonian RG approach
differs from a perturbative particle-physics perspective is the
regularization of quantum modes. While the FRG works with
explicit momentum-space regulators (or spectral regulators
of curved-spacetime Laplacians), conventional perturbation
theory mostly uses dimensional regularization for reasons of
convenience. Physics must not depend on the choice of the
regularization scheme, hence it is an obvious question as to
whether dimensional regularization can also be brought to
work in a FRG context and for the asymptotic-safety scenario
of gravity.

In fact, one-loop results for power-counting marginal
operators quadratic in the curvature with dimensionless
couplings exhibit the expected universality [120, 285, 286].
However, this is no longer true for the RG running of power-
counting relevant and irrelevant operators, simply because they
do not feature the same degree of universality. Even worse,
dimensional regularization is blind to power divergencies and
hence acts as a projection onto logarithmic divergences appearing
as 1/ǫ poles. For such reasons, Weinberg calls dimensional
regularization “a bit misleading” in the context of asymptotically
safe theories [5].

Dimensional regularization relies on the virtues of analytic
continuation. Hence, its application requires to pay attention
to the analytic structure of a problem at hand. This is well-
known, for instance, from non-relativistic scattering problems
where a naive application of dimensional regularization fails
because of a different analytic structure of the propagators and
more care is needed to apply analytic continuation methods
to regularize and compute observables [287, 288]. The same
is true for computations in large background fields where a
naive straightforward application of dimensional regularization
is not possible, but requires a careful definition in terms of a
dimensionally continued propertime or ζ function regularization
[289, 290]. The latter techniques can be linked to heat-kernel
methods and allow to access information related to power
divergences [291].

As most computations for asymptotically safe gravity are
performed in “large backgrounds,” i.e., in a fiducial background
spacetime, a proper use of dimensional regularization would
similarly require a definition in terms of, e.g., a propertime
or ζ function definition based on the heat kernel. In fact,
approximations of the FRG have been mapped onto a propertime
representation (propertime RG). Applications to gravity do lend
further support to the existence of the Reuter fixed point and the
asymptotic-safety scenario [188].

5.3. Correlation Functions and Form
Factors

...where we clarify the distinction between RG scale dependence

and physical scale dependence within the FRG context. We further

detail how the physics of asymptotically safe theories is encoded

in momentum-dependent correlation functions and form factors,

discuss the definition of non-perturbative running couplings and

the construction of observables from these objects.

The idea of the Wilsonian renormalization group is to solve the
theory by integrating out quantum fluctuations, one (covariant)
momentum shell at the time. It is crucial to distinguish the
k-dependence from the dependence on physical scales. In the
FRG approach governed by the Wetterich Equation (5) with an
infrared cutoff, general correlation functions

Ck(p1, ..., pn) = 〈8i1 (p1) · · ·8in (pn)〉k (16)

are trivial for all (covariant) momentum scales p2i /k
2 ≪ 1,

and carry the momentum dependence of the full theory for all
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momentum scales p2i /k
2 ≫ 1 and large scattering angles. Here,

trivial means that for p2i /k
2≪ 1 the correlation functions are that

of a theory with a mass gap m2
gap & k2: the quantum dynamics

dies off with powers of p2i /k
2. In asymptotically safe theories,

these correlation functions will exhibit indications of quantum
scale invariance at large p2i /k

2.
Evidently, the correlation function Ck(p1, ..., pn) is a highly

non-trivial function of all pi, other physics scales in the theory,
such as mass scales, and the cutoff scale k. The latter is
instrumental for the transition from the full quantum dynamics
of the theory to the trivial one in the gapped regime. This
non-trivial behavior is complicated by the fact that the n-point
correlation functions carry n momenta pi with i = 1, ..., n. This
results in a multiscale problem, unless we restrict ourselves to a
symmetric point with p2i = p2. We also remark that both UV
and IR regimes may exhibit asymptotic power-law momentum
scaling or anomalous scaling and the momentum and cutoff
dependence in the transition regime at p2i /k

2 ≈ 1 is in general
highly non-trivial. In particular, the momentum dependence is
typically more general than a logarithmic one.

In section 6, we introduce diffeomorphism invariant
observables as spacetime integrals over correlators akin to the
one in Equation (16), cf. Equation (18), or S matrix elements

via the proper background vertices Ŵ̄
(8̄i1 ···8̄in )

k
. To compute

such observables, in the FRG approach to asymptotically safe
gravity we first have to compute the proper vertices of the

fluctuation fields, Ŵ
(8i1 ···8in )

k
. Their scale- and (covariant)

momentum dependence indirectly encode the physics of
asymptotically safe gravity despite not being observables
themselves. An important step toward observables is made
by considering running couplings, that are renormalization
group invariant combinations of the form factors or dressings
of these vertices as defined in standard gauge theories and
scalar and fermionic QFTs. These are defined from the k-
and momentum-dependent vertices together with appropriate
factors of the wave-function renormalizations. For instance, in
the case of scalar and fermionic QFTs, these are directly related
to S matrix elements. In turn, in gauge theories such as QCD
they lack gauge invariance but nonetheless carry important
physics information: In QCD these running couplings derived
from the proper vertices of the fluctuating or background fields
give direct access to the momentum scaling in the perturbative
regime as measured by high-energy experiments, see, e.g., [292].
Further, non-perturbative physics, such as the emergence of
the confinement mass gap, is also captured by these running
couplings, see, e.g., [293–295].

This implies that themomentum dependence of these running
couplings at k = 0 provides rather non-trivial physics
information. In asymptotically safe gravity, it can in particular
be used to identify scaling regimes in the UV and the IR as well
as the transition scale: In [164, 166, 168, 169], non-perturbative

generalizations of the Newton coupling G
(n)
k
(p2) with n =

3, 4, defined from the n-point functions, have been computed
from combinations of the proper two-, three- and four-point
functions of the fluctuation fields in a flat background and all
cutoff scales. For the generalization to the case with matter,

see [170, 172–174]. In these calculations, the dependence on
the n − 1 momenta of an n-point vertex has been simplified
by going to the momentum-symmetric point, allowing the
definition of a running coupling that depends on a single
momentum. A flat background, as used in the above studies
is of course a first step toward a comprehensive understanding
of the physical scale dependence of quantum gravity. For
first steps toward an extension to generic background, see
[156, 159].

On a generic background, the dependence on physical scales
can also be captured in the language of form factors. In the
background effective action these form factors appear naturally,
see [296],

Ŵ̄[gµν] =
∫

d4x
√
g
[

f (R)+ f1(RµνRµν)

+ Cµνρσ W
T(1)Cµνρσ − RWR(1)R+ · · ·

]

, (17)

Equation (17) also summarizes concisely the approximation
considered so far for the background effective action. The
corresponding form factors WR and WT have been computed
in [175]. Note that Equation (17) can also be understood as the
dynamical effective action in the diffeomorphism invariant single
metric approach put forward in [284, 297–300]. There it has been
argued that the physical gauge there facilitates the direct physics
interpretation of form factor such asWT andWR.

Both within the language of momentum-dependent
correlation functions as well as with form factors, the
asymptotically safe regime, the transition regime and a
long infrared regime with classical scaling have been identified.
The results are rather promising and open a path toward the
computation of observables or their local integral kernels. Still,
the approximations used so far do in particular not sustain large
curvatures and have to be upgraded significantly.

6. OBSERVABLES

...where we emphasize the necessity to investigate observables in

order to make quantum gravity testable, and discuss three possible

classes of observables.

The physical behavior of a system is probed through observables.
While their definition and construction is not a problem in
many interesting cases of quantum and statistical field theories
in flat, and possibly some specific classical curved spacetimes,
it is in general very difficult to define meaningful observables
in quantum gravity. To begin with, already in classical gravity
diffeomorphism invariance makes the notion of a spacetime
point unphysical and hence implies that there cannot exist any
local observable: any gauge invariant observable must be the
integral of a scalar density over all spacetime. The situation
is somewhat better in the presence of matter, for example it
makes sense to define the value of the scalar curvature at the
position of a particle, or at a point where certain matter fields
have predetermined values [301]. These observables are however
difficult to work with in practice. These problems persist in
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quantum gravity, see, e.g., [302]. Nevertheless the construction
of observables remains a crucial task.

In the following, we will focus on observables in the sense of
quantities that are of direct phenomenological relevance. These
often rely on introducing a (dynamically generated) background
that provides a suitable notion of locality. The type of observables
that one will consider depends very strongly on the type of
observations that one has in mind. We will distinguish three
possible classes of observations that could be used to test
asymptotic safety.

6.1. Particle Physics at the Planck Scale
The first is appropriate when we imagine living in a macroscopic

classical spacetime and probing its short distance structure by
some “microscope” of the kind that is used in particle physics.
For example, we could try to directly measure scattering cross-
sections and decay rates at Planckian scale or beyond. In this
case the issue of diffeomorphism invariance is circumvented by
postulating the existence of an asymptotically flat background,
which is necessary in order to define the appropriate notions
of particles and asymptotic states. The validity of this postulate
remains to be investigated in a given quantum theory of
gravity. In principle, the integral kernels of these particle-physics
observables can be constructed from the proper vertices of the

background effective action Ŵ̄
(8̄i1 ···8̄in )

k
for an asymptotically

flat spacetime, see [303]. We provide some details on the
calculation of these quantities in section 5.3. Indeed, the original
formulation of Asymptotic Safety by Weinberg was formulated
in these terms: as stated in [4, 5], ideally, the couplings whose
running one wants to study should be defined directly in terms
of such observables. However, most of the actual work on

Asymptotic Safety is based on the running of parameters in
the Lagrangian, that are not directly observable or not even
directly related to observables. Assuming that this notion makes
sense, measurement of the S matrix at the Planck scale and
beyond would give the most direct and unambiguous test of
Asymptotic Safety. Unfortunately, neither the theoretical nor
the experimental sides of the comparison are available. In
settings with extra dimensions, scattering cross sections have
been calculated within the framework of RG improvement [304–
306], see section 7.4 for a discussion of the potential pitfalls of
this procedure. With current technology, these observables are
also unlikely to ever be measured. Furthermore, the postulate of
an asymptotically flat background leaves out many situations that
are of interest in the context of quantum gravity.

6.2. Low-Energy Imprints
A second possibility, still closely related to the world of particle
physics, but not requiring Planckian energy, is the observation of
properties of the low-energy world that could carry an imprint
of asymptotically safe quantum gravity. One can distinguish two
sub-cases, that we shall refer to as “higher-order observables” and
“marginal observables.” Both sets of observables are most directly
calculable if one assumes a “great desert” between the Planck
and the Fermi scale. Else, one requires a specific model for the
intervening physics.

(i) The high energy theory will leave traces in the low energy
effective field theory in the form of higher order operators
that are suppressed by inverse powers of the high scale.
In particular, higher-order matter self-interactions are very
likely both non-vanishing and irrelevant in the UV, if an
asymptotically safe matter-gravity fixed point exists [307–
312]. This results in predictions for these higher-order
couplings in the IR. The separation of scales between the
Planck scale and IR scales is so large that, typically, these
quantum-gravity effects are unmeasurably tiny. Still, one may
hope that there exists a signature that is forbidden in any non-
gravitational process and that becomes detectable under rather
unexpectedly favorable circumstances.

(ii) The other, significantly more promising, possibility is that
some gross features of the low energy world, probed
at present or future colliders and linked to canonically
marginal couplings, i.e., dimensionless operators, could be
directly “explained” by properties of a UV-complete quantum
theory of gravity and matter. This is due to the fact,
explained in section 3, that Asymptotic Safety may yield
more predictions than a perturbatively renormalizable model.
In the gravitational sector, this mechanism may not lead
to testable predictions: here only a handful of parameters
are experimentally accessible and there are essentially no
constraints on the value of the curvature-squared couplings.
In the matter sector, this picture changes completely. In
this case literally thousands of observables are available,
depending on at least two dozen free parameters. Some of
these canonically marginal couplings could become irrelevant
directions of an asymptotically safe gravity-matter model.
First tentative hints have been obtained in this direction,
for example a proposed scenario for a prediction of the
Higgs mass [313] and a calculation of the top mass [178],
the Abelian gauge coupling [194, 314] and the bottom mass
[315]. These are obtained in comparatively small truncations
and are subject to the assumption that Euclidean results
carry over to Lorentzian gravity-matter systems. These are
of course not “smoking guns” for Asymptotic Safety, but it
is not unreasonable to expect that a microscopic description
of quantum gravity constrains the features of a matter
sector that can consistently be coupled to it. Indeed, the
swampland program in string theory is based upon the
same assumption. Ultimately, one could hope to arrive at an
extended list of calculable properties of matter models from
various quantum gravity theories, allowing to rule out some
of the latter observationally without the need to probe Planck-
scale physics directly. It therefore seems worthwhile to more
systematically develop the predictions that an asymptotically
safe theory of gravity and matter can make for low-energy
observables. In particular, the dark-matter sector could allow
to make genuine predictions [316–318], in contrast to the
consistency tests that the already measured properties of the
Standard Model provide. We shall discuss in section 7.1 how
such effects could be calculated.

6.3. Asymptotically Safe Cosmology
The third class of observations is related to cosmology. As long
as a Friedmann-Robertson-Walker (or some other) background
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is a good approximation, there is a well-developed machinery
for the treatment of fluctuation correlators [319]. At the
formal level, observables in quantum gravity are given by
integrated correlators, for example spacetime integrals of n-point
correlations of the Ricci scalar

O
(n)
R = 〈

∏

i

∫

d4xi
√

g(xi)R(x1) · · ·R(xn)〉 . (18)

Naturally, while the spacetime dependent curvature fluctuations
in Equation (18) are not observables themselves, they
carry the physics information encoded in its spacetime or
momentum-scale dependence.

Inflation is believed to occur at sub-Planckian energies, but
it may be close enough to a fixed-point regime to be directly
influenced by it. Further, in settings like Starobinsky inflation,
higher-order operators in the gravitational theory actually drive
inflation. Along this line, it was explored in [177] whether
the freedom in the R2 coupling offered by Asymptotic Safety
can be used to realize Starobinsky inflation giving power
spectra compatible with present observations. Moreover, there
are some tentative hints that quantum-gravity effects typically
drive scalar potentials toward flatness, see, e.g., [182, 299, 316],
and generally impose strong constraints on the inflationary
potential that is usually introduced in a rather ad-hocmanner, see
also [320]. In a more unorthodox approach to early cosmology,
the idea is being explored that quantum gravity directly solves
the horizon, flatness and monopole problems and generates
the appropriate spectrum of fluctuations without the need for
additional degrees of freedom together with an ad-hoc potential.
In particular, in [321] it has been demonstrated that an action
including all gravitational four-derivative invariants leads to
the suppression of spacetime configurations with an initial
singularity as well as anisotropies and inhomogeneities. In the
early universe the usual flat space QFT machinery is not available
and one has to use different observables that are geared to high
temperature/high curvature situations. Then one may hope that
features of the fixed point such as scaling exponents and OPE
coefficients - that in statistical physics are generally considered
measurable physical quantities - could leave an imprint in these
cosmological observables.

Similar to quantum effects in QED encoded in the Euler-
Heisenberg Lagrangian and its higher-loop extensions, quantum
effects in gravity are encoded in the full effective action, including
its non-local parts. The potential dynamical importance of non-
localities for cosmology, e.g., in the context of dynamical dark
energy, has been emphasized in [201].

6.4. Remarks
As with other situations where non-perturbative physics is
involved, one could try to cross-check results obtained with
continuum QFT methods with lattice studies. It is worth
mentioning that also in lattice approaches to quantum gravity,
observables are very hard to define and especially to implement
in the simulations, see, e.g., [322] for encouraging recent results.
This is in stark contrast to the large number of observables

that can be defined in the presence of an asymptotically
flat background.

Finally, let us recall that in other approaches to quantum
gravity such as LQG, “geometrical” observables such as lengths,
areas, volumes, and curvatures have played an important role.
These have also been discussed to some extent in Asymptotic
Safety, [323], and can be computed with a flow equation for
composite operators [90, 324–329]. While presently it is not clear
what type of measurement is required to access such observables,
they can be used to explore whether different approaches to
quantum gravity give rise to universal physical results. Further,
such geometrical observables have been used in [330] to set up a
physical renormalization scheme.

7. RELATION OF ASYMPTOTIC SAFETY TO
THE EFFECTIVE-FIELD THEORY
APPROACH

7.1. Asymptotic Safety and Effective Field
Theory

...where we discuss the relation of the EFT framework to Asymptotic

Safety and also outline a strategy how to devise approximations in

which the link between the two descriptions can be established in

practice.

The framework of EFT is pervasive in modern particle physics.
EFT is based on an expansion in E/M, where E is the typical
energy scale of the experiment, andM is the scale above which the
EFT description may no longer be meaningful. In EFT, one finds
that higher loop corrections are suppressed by higher powers
of E/M, so that the tree level and one loop are usually enough
to explain most of the phenomenology, provided the system is
indeed perturbative in nature, as happens to be the case in many
particle-physics applications. Physical predictions are possible
even when the theory is not perturbatively renormalizable,
as long as one considers only low-energy observables and
assumes that the dimensionless counterparts of all couplings are
roughly ofO(1).

Einstein gravity is a paradigmatic example of this point of
view. It is perturbatively non-renormalizable, but one can still
reliably compute observables in perturbation theory, as long as
they are not affected by the higher-derivative terms in the action,
whose coefficients are not calculable. This is the case for some
non-analytic parts of scattering amplitudes. The calculation of
the quantum corrections to the Newtonian potential is the most
reliable calculation ever performed in quantum gravity [331]. It is
also the most accurate, since the separation of scales between the
characteristic scale of the theory (the Planck scale) and the scale
where one performs experiments (even at the LHC) is the largest
of any EFT, so that loop corrections are suppressed by enormous
factors. In this way, every test of Einstein’s GR is also a test of this
EFT of gravity.

In view of this, the motivation for asymptotic safety is two-
fold: first, to have predictions for what happens at and beyond the
Planck scale and second, the promise of increased predictivity,
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in particular also at lower energies. This is especially desirable
in the presence of standard-model or beyond-standard-model
matter which is or might be detected in present and future
colliders or, e.g., in dark-matter detection experiments. We stress
again that the enhanced predictivity comes from the fact that
asymptotic safety selects a class of RG trajectories which are
expected to be parametrized by only a few free parameters. In
principle, all the remaining coefficients in the effective action are
calculable, including the coefficients of local higher dimensional
operators that appear perturbatively divergent and are therefore
not calculable in the EFT.

When one follows a realistic RG trajectory from the UV fixed
point, crossing the Planck scale and moving toward the IR, one
must eventually arrive in the immediate neighborhood of the
free-theory fixed point of Einstein theory, which is the domain
where EFT is applicable. In this regime, all the predictions of
EFT must still hold true. Indeed, in the FRG formalism, the loop
expansion can be reconstructed systematically by expanding the
right-hand side of the equation in powers of h̄, cf. Equation (7).
This is usually not done, because there are already other methods
that are perhaps better suited for this task; but in principle, the
FRG can reproduce all the results of the EFT in this way.

In practice, constructing a flow that links the description of the
fixed point, whichmight ormight not be near-perturbative, to the
perturbative low-energy regime after potentially passing through
a more strongly-coupled transition regime, is a challenge. A
possible strategy to deal with this complex problem is to figure
out which parts of the flow can be captured by perturbation
theory, and then use different tools (perturbation theory, one’s
favorite FRG approach) in the respective regime so as to
obtain maximally reliable predictions of the observables. In
order to link the description in terms of the FRG for the
effective average action Ŵk to the perturbative EFT setup, one
needs to calculate Ŵk=M , where M is the scale at which a
perturbative description becomes possible. This procedure has
been performed and carefully checked in QCD, where we flow
from an asymptotically free theory of quarks and hadrons in the
ultraviolet to chiral perturbation theory and low energy effective
models in the infrared.

First steps toward using the FRG to derive the effective
action of quantum gravity and matter systems have been
taken in [332, 333]. Such calculations overlap significantly with
EFT calculations.

Investigations in low energy effective theories are typically
based on the Wilsonian action Seff,3 (regularized with a UV
cutoff) both in QCD and in standard perturbative low energy
EFT approach which is used in collider physics. The Wilsonian
action is the generalized Legendre transform of the effective
average action [88, 89] and obeys the Polchinski equation [334].
So far, the Wilsonian action has been less used in asymptotic-
safety investigations, but it could help to compare to results
obtained from collider measurements of scattering observables
for its closeness to low energy effective theories. These works can
be based on recent proposals in [335, 336] for the flow of the
Wilsonian action based on proper time regulator schemes [336].

The choice of truncation used for the effective average action
down to the scale M might be crucial to correctly encode the
various consequences of the UV fixed point, both in the matter

and gravity sector. Ŵk=M or Seff,3=M provide the initial condition
for a subsequent perturbative calculation at one or two loops; of
course, also RG schemes would need to be matched for precision
calculations. The perturbative part of the RG evolution gives
rise to the non-localities in Ŵk→0 and all IR effects which are
necessary to include to correctly describe observables. In this
way, the FRG and perturbation theory can be used concertedly
in order to link the UV fixed point to observable physics
in the IR (see also section 5.3), and the use of different RG
equations (Wetterich and Polchinski) would offer non-trivial
consistency checks.

7.2. Effective vs. Fundamental Asymptotic
Safety

...where we discuss why an asymptotically safe fixed point could

matter even if the deep UV of quantum gravity is described by a

completely different theory.

The RG fixed point underlying asymptotic safety features
infinitely many infrared attractive directions. Therefore, a fixed
point can serve various purposes in different scenarios: (1)
it can be the UV starting point of an RG trajectory, (2)
it can be the IR endpoint of an RG trajectory, (3) it can
generate an intermediate scaling regime at finite scales. The latter
option can play a role in settings where a more “fundamental”
description of quantum gravity holds at small distance scales,
i.e., beyond a finite momentum cutoff kUV. Indeed, for k <

kUV, an effective description (with the metric as the effective
gravitational field—not necessarily in the sense of perturbative
EFT) holds, i.e., we are in the theory space of asymptotically
safe gravity. The more fundamental description provides the
initial condition for the RG flow at kUV. If the initial condition
satisfies a finite number of conditions related to the relevant
directions of the fixed point, the flow will pass close by the
fixed point and exhibit an approximate scaling regime over
a finite range of scales. The flow toward the deep IR will
then closely resemble that of an actual fixed-point trajectory,
resulting in essentially the same predictivity [337], see [338] for
a general discussion and [339] for a discussion in the context of
string theory.

In this sense, an asymptotically safe fixed point can play a role
in an EFT setup for gravity, and serve as a way to extend the
regime of validity of the standard perturbative EFT framework.

7.3. The Structure of the Vacuum

...where we caution that the true ground state of gravitymight not be

a flat background, making the bridge to the EFT setting potentially

more intricate. This question has so far only been addressed within

a severe approximation of the dynamics and degrees of freedom.

The EFT approach to quantum gravity typically quantizes (small)
fluctuations about a flat background. To link asymptotic safety
to the EFT regime, one must therefore explore whether a flat
background is a self-consistent choice, i.e., whether the flat
background corresponds to the ground state of the theory. Here,
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we should highlight that the ground state should of course be
determined from the full gravity-matter system.

To date the only explicit investigation of the vacuum structure
of asymptotically safe gravity based on the effective action
Ŵk=0 has been performed within the conformally reduced R +
R2-approximation11 and a layered structure of the effective
spacetime has been found within this simple truncation
(borrowing terminology from a vacuum model of Yang Mills
theory, it has been termed “lasagna vacuum”) [340]. Thereby the
spatial modulation of the metric cures the notorious conformal
factor instability generating a phase similar to those present also
in higher-derivative low-dimensional condensed matter systems.

While this proposed vacuum structure has only been found in
a severe approximation of the dynamics and degrees of freedom,
this can be read as a firm warning regarding all backgrounds
that are not shown to be solutions of the effective field equations.
They are of no physical relevance and might convey an incorrect
general picture. In particular, one typically expects truncations
to converge faster when the field configurations are expanded
about the true ground state of the theory—an expectation that
can be tested within, e.g., the O(N) model. On the other hand,
it is crucial to remark that a spatially modulated ground state
appears to be difficult to reconcile with stringent tests of Lorentz
symmetry in the gravitational and the matter sector. Further,
while the conformal approximation could suffice to capture the
presence of a fixed point, it is to be expected that the inclusion of
spin-2 modes will have a strong impact on such studies.

Moreover, the importance of properly accounting for
the (k-dependent) ground state in studies of the flow is
emphasized in a recent background-independent re-analysis of
the cosmological constant problem allegedly caused by quantum
vacuum fluctuations. Paying careful attention to identifying the
correct ground state, the often discussed naturalness problem
disappears, see [198].

Understanding the ground state of the theory at k = 0 is
important. It is expected that since 3k = λ∗k2 → ∞ in the
quantum regime governed by the Reuter fixed point, the self-
consistent metrics (cf. section 3.5) ḡsc

k→∞ ∝ k−2 will display
increasing and ultimately diverging curvature. It is an open
question how this manifests itself at the level of Ŵk→0 and its
effective field equations. Whether this is an unphysical effect and
only present at large k or whether it translates into a physical scale
dependence is presumably important for questions of singularity
resolution in black-hole spacetimes and the early universe. More
generally, accounting for true vacuum of the theory, with the help
of the self-consistent background is important for a quantitatively
precise exploration of the phenomenological implications of the
quantum-gravity effects.

7.4. RG Improvement

...where we critically review and discuss the procedure of RG

improvement, discuss its interpretation as “quantum-gravity

11In this approximation, only fluctuations of the conformal factor are taken into

account. Quite surprisingly, this appears to suffice to generate an asymptotically

safe fixed point in simple truncations [189], contrary to the expectation that the

important degrees of freedom in gravity are the spin-2 ones.

inspired” phenomenology, and caution regarding the quantitative

reliability of this tool.

Since the task of calculating the effective action Ŵk→0, including
its non-local contributions, is an extremely challenging one,
one may hope to extract qualitative information on the effects
of quantum fluctuations by applying the procedure of “RG
improvement” in gravity. In section VI.A, we have already
defined what is meant by RG improvement in a perturbative
context. Proceeding in a similar way in a gravitational context,
it has been a common strategy to retain the dependence of
some of the couplings, Gk and 3k say, on the RG scale k and
identify the latter with a geometrical quantity or momentum.
Based on such RG improvement ideas there is a substantial body
of work investigating black-hole physics [341–355], gravitational
collapse [356–362], and cosmological scenarios [320, 360, 363–
376] inspired by Asymptotic Safety. One might expect that this
procedure could be justified in some cases where the external
scale in question acts as an IR cutoff for fluctuations.

The “improvement” could be applied at different stages, for
instance, at the level of the action or the field equations, or
of the solution of the field equation. This freedom already
implies that this procedure could lead to ambiguous results. As
an example, we may consider the RG-improvement procedure
based on the effective average action approximated by the
Einstein-Hilbert action,

Ŵk =
1

16πGk

∫

d4x
√
g[23k − R] . (19)

Dimensional analysis implies that at the fixed point Gk = g∗k−2,
3k = λ∗k2. Identifying k2 with the Ricci scalar and substituting
the result back into Equation (19) leads to a higher-derivative
R2 action. This is precisely what one would expect for the fixed-
point action for an f (R) theory in the large R limit. Indeed RG
improving any f (R) theory in the same way results in an R2

action, as expected from classical scale invariance. Thus the scale
identification generates interactions that have a natural place in
the effective action (Equation 17). However, this can lead at most
to qualitative insights, as is made clear, for example, by the fact
that even the simple identification k2 ∼ R can only be made up
to some arbitrary numerical factor.

To understand better whether an RG improvement is justified,
let us consider some classic QFT examples, and contrast them
with their gravitational counterparts. The Uehling potential in
QED is probably the paradigmatic example: the correct form
of the one-loop potential between two point charges can be
obtained by inserting the one-loop form of the running coupling
in place of the classical coupling and identifying the RG scale
with the Fourier momentum of the static potential between
the point charges. Conversely, one can read off the screening
nature of the QED coupling from the one-loop effective action.
Similarly, the Coleman-Weinberg effective potential is obtained,
in a classically scale-invariant theory, by replacing the classical
quartic scalar coupling by its one-loop counterpart, evaluated
at a renormalization scale k ∼ φ. This is justified, insofar as
the classical VEV of the scalar is the only scale in the problem.
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Similar considerations have also been applied to non-Abelian
gauge theories [377–379].

Coming closer to gravity, a recent example in curved space
where RG improvement works, is the case of interacting
conformally coupled fields in de Sitter spacetime. A correlator
evaluated at the fixed point can be related to a CFT correlator in
flat space by a Weyl transformation. Then, the late time power-
like behavior of correlators can be obtained as a resummation
of secular terms controlled by the anomalous dimensions in flat
space, with an RG improvement at the renormalization scaleµ =
H [380], where the Hubble scale H of the de Sitter background is
the only non-trivial scale in the problem.

Even more relevant for us, the running of G and the quantum
corrections to the Newtonian potential due to a scalar field loop
have been compared in [381]. They find that in general the
RG improvement gives the expected qualitative behavior, and
also reproduces the correct numerical coefficients for minimal
coupling (ξ = 0) or conformal coupling (ξ = 1/6).

The reason why all these examples work (at the quantitative
level) is the logarithmic running of the coupling. It is particularly
instructive to compare the Uehling potential with the analogous
calculation in gravity. In the calculation of [381], the running
of G is logarithmic and proportional to the mass of the scalar
field. This gives a result that is in agreement with the quantum
correction to the potential. On the other hand, if one extracts
the (quadratic) running of G from the FRG, and tries to derive
the analog of the Uehling potential from there, one gets a term
with the opposite sign of the quantum correction calculated in
EFT [331]. This is a clear failure of the RG improvement: the
EFT calculation gives a screening contribution, whereas the FRG
seems to give an antiscreening one, as required by asymptotic
safety. The situation has been clarified in part in [119]: due
to the use of the background field method, there are different
ways of defining Newton’s coupling that have different types of
behavior at low energy (where the EFT result holds) and at high
energy, where one is assumed to approach a fixed point. However,
this leads us back to the issue of the shift Ward identities,
cf. section 3.5 that, as discussed earlier, does not currently have
a satisfactory solution.

In conclusion, physical quantum effects in an asymptotically
safe theory have to be calculated, as in any other QFT, from the
effective action, where all fluctuations have been integrated out.
We stress that the results one obtains from the RG improvement,
e.g., for black holes or the early universe, cannot be viewed as
actual derivations from a fundamental theory of quantum gravity,
but should still be viewed as “quantum-gravity-inspired models,”
providing qualitatively sensible, though not necessarily precise,
answers in some cases where there is a clearly identifiable single
scale in the problem.

8. SCALE SYMMETRY AND CONFORMAL
SYMMETRY

8.1. The RG as Scale Anomaly

...where we clarify the meaning of scale symmetry in the context of

asymptotic safety.

A point that tends to generate confusion concerns the
interpretation of the RG flow as an anomalous breaking of
scale invariance. It may seem puzzling that the asymptotic safety
program claims (quantum) scale invariance even though Ŵk
contains dimensionful couplings. The goal of this section is to
clarify this point. We follow [382], see also [284], section 6.9 12.

Consider a perturbatively renormalizable QFT, with an
interaction term uO ≡ u

∫

d4xL, where L is a dimension-four
operator and u a dimensionless coupling. If there is no mass
term, the theory is scale invariant under the standard realization
of scale transformations which act on the fields but not on the
couplings. In the quantum theory, however, scale invariance is
broken by the beta function

δǫŴ = −A(ǫ) ∼ −ǫβu O . (20)

Here ǫ is the infinitesimal parameter generating the
transformation, δǫgµν = 2ǫgµν , etc. and A(ǫ) is the trace
anomaly which can be formally seen as due to non-invariance of
the functional integration measure. At a fixed point βu = 0 and
scale invariance is recovered.

Equation (20) can be generalized to the Wilsonian RG. In this
case there is an additional term coming from the presence of an
explicit momentum cutoff which is given by the “beta functional”
defined in Equation (5):

δǫŴk = −A(ǫ)+ ǫk∂kŴk . (21)

For the effective average action given in Equation (1) one finds
that the anomaly is given by [382]

A ∼ ǫ
∑

i

βui k
di Oi , (22)

where di is the canonical mass dimension ofOi. AgainA vanishes
at a fixed point. Nevertheless, the standard realization of scale
invariance, acting on fields only, is broken due to the extra term
in Equation (21)

δǫŴk ∼ ǫ
∑

i

di ūi Oi . (23)

There is however an alternative realization of scale invariance
acting on both the fields and the cutoff. Here the transformation
of the fields remaining unaltered δ̂ǫgµν = 2ǫgµν , etc. while

the cutoff transforms as δ̂ǫk = −ǫk. Under this alternative
realization,

δ̂ǫŴk ∼ −A(ǫ) , (24)

which vanishes at a fixed point.
In conclusion, we see that in a “Wilsonian” formulation of the

RG, quantum scale invariance is realized at a fixed point, albeit
with respect to a different implementation of rescalings than the
one generally used in particle physics.

12Here we discuss global scale invariance. It has been shown that local scale

invariance can be maintained in the RG flow provided a dilaton field is present

[383–385].
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8.2. Black Hole Entropy

...where we discuss an argument against a QFT for gravity based

on black-hole entropy and point out where assumptions are being

made which require further investigation.

Aharony and Banks [386] and Shomer [387] presented a chain of
arguments indicating that a quantum-field theoretic description
of gravity in four dimensions cannot be UV complete. In short,
this chain proceeds along the following lines. First, it is assumed
that, at high energies, the density of states in quantum gravity
is dominated by black holes, which also goes by the name of
“asymptotic darkness.” Black hole thermodynamics, building on
quantum field theory on a curved background, implies that the

leading term in the entropy S of the black hole is proportional
to the area A of its horizon. For a d-dimensional Schwarzschild
black hole

S ∝ A ∝ M
d−2
d−3 (25)

where M is the ADM mass of the black hole. Identifying M with
a typical energy scale E, the asymptotic darkness hypothesis then
suggests that the number of states available at high energy should
scale as

SBH ∝ E
d−2
d−3 (26)

In four dimensions this implies that SBH ∝ E2. On the other
hand, the degrees of freedom of a conformal field theory (CFT)
living on a d-dimensionalMinkowski space follow the scaling law

SCFT ∝ E
d−1
d (27)

which in four dimensions becomes SCFT ∝ E
3
4 . The mismatch

between the density of available states Equations (26) and (27)
is then taken as an indication that the high-energy completion
of four-dimensional gravity cannot be given by a conformal
field theory.

We now critically review the assumptions entering into this
chain of arguments:

(1) Scales involved in the problem:
Seeing quantum-gravity effects in scattering events requires
going to large energies and small impact parameters relative to
the Planck scale. This is not the same as considering just trans-
Planckian energies: the energy involved in the merger of two
astrophysical black holes clearly exceeds the Planck mass mPl ≈
10−5g by many orders of magnitude. Nevertheless, classical
general relativity provides a very accurate description of these
events, for which the impact parameter is large compared to the
Planck length.

(2) The asymptotic darkness hypothesis:
The idea of asymptotic darkness relies on the hoop
conjecture [388] which states that scattering at sufficiently
high energy results in black-hole formation. While numerical
simulations confirm this expectation in classical gravity
[389, 390], a corresponding study in the quantum case is lacking,
see also the discussion in [391]. When phrased in terms of the
effective action (Equation 17), it is expected that the form-factors

W(1) (or, more generally, the 1PI vertices) will play a central role
in correctly describing scattering processes at trans-Planckian
scales. Currently, little is known about these effects though, and
it is an open question whether or not Planckian scattering in
asymptotically safe gravity does or does not lead to black-hole
formation. In [392], it has been proposed that black-hole
formation in Planckian scattering is a key property of gravity that
allows the theory to self-unitarize (classicalisation). Whether this
has anything to do with asymptotic safety is an open question.
See [393, 394] for related discussions in the context of non-linear
sigma models.

(3) Corrections to the entropy formula:
The semi-classical area law (Equation 25) is a good
approximation for large black holes. It receives further
corrections from quantum gravity though. Logarithmic
corrections were determined in [395], indicating that

S =
A

4G
−

3

2
log

(

A

4G

)

+ · · · (28)

Clearly, these corrections become increasingly important for
small (i.e., near-Planckian) black holes, see, e.g., [395–398]. Thus,
it is a priori unclear if the simple scaling law (Equation 25) is
applicable in the quantum gravity regime.

(4) Dimensional reduction of the momentum space:
A critical point in extending scaling arguments to quantum
gravity is the identification of the correct notion of
dimensionality which actually controls the scaling laws. While
in flat Minkowski space there is just the dimension of spacetime
d, fluctuating spacetimes are typically characterized by a whole
set of “generalized dimensions” (spectral dimension, Hausdorff
dimension, etc.) which do not necessarily agree. In particular,
a rather universal result about quantum gravity [399, 400]
indicates that the dimension of the theory’s momentum space
(spectral dimension) undergoes a dimensional reduction to
ds = 2 at energies above the Planck scale. In [401], it was
argued that such a mechanism could constitute a potential way
to reconcile the semi-classical scaling in gravity with the scaling
of states in the conformal field theory. In order to make such
proposals robust, it is important to identify the proper notion
of dimensionality which controls the scaling of the quantity of
interest. In the context of black hole thermodynamics, it has
been suggested that this could be achieved with the “Unruh
dimension” [402] governing the scaling laws in the black-hole
evaporation process.

(5) Entropy of asymptotically safe black holes:
The entropy of black holes in asymptotic safety has been
investigated in [342, 345, 346, 351] based on RG improvement
techniques (the cautionary remarks regarding RG improvement
from section 7.4 apply in this case). One outcome of this
investigation was that the entropy of Planck-size black
holes follows the Cardy-Verlinde formula [351] indicating
compatibility with a conformal field theory description.
Concerning macroscopic black holes, the semi-classical
result for the black-hole entropy can presumably be
understood entirely in terms of the entanglement entropy
of matter fields living on the black-hole background
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geometry [403], see [404] for a comprehensive review, and
[405, 406] for discussions in the context of the FRG and
asymptotic safety.

In conclusion, combining semi-classical arguments based on
the asymptotic darkness hypothesis and conformal field theory
in flat space gives rise to results in tension with the asymptotic-
safety conjecture. It is clear that much more work is needed in
order to actually show that these arguments also apply in the
framework of quantum gravity.

9. UNITARITY

9.1. General Remarks

...where we point out that the concept of unitarity in quantum

gravity is way more subtle than for a quantum field theory on flat

Minkowski space.

Conservation of probabilities is a cornerstone of quantum
mechanics. For a QFT in a flat Lorentzian background, this
feature is reflected by the S matrix, connecting the initial
state and the final state of a physical system, being unitary.
Starting from a QFT defined on a Euclidean signature spacetime
the Osterwalder-Schrader axioms [407, 408], including the
requirement of reflection positivity, guarantee that the theory has
an analytic continuation to a unitary QFT.

Notably, it is highly non-trivial to generalize the concept
of a unitary S matrix to more general backgrounds [409] or
to the gravitational interactions [410, 411]. Examples for such
generalizations are the local S matrix in de Sitter space studied
in [412] or the one recently constructed in [413].

Along a different line, the existence of unphysical modes such
as tachyons, negative norm states, etc., in a given background
ḡµν does not automatically signal the inconsistency of the
theory. It may just indicate the instability of this particular
background13. As an example, [340] highlights how a non-
standard background removes the conformal-mode problem in
the Euclidean path-integral. From a phenomenological point of
view, a minimal requirement is to impose that cosmologically

relevant backgrounds of Friedman-Lemaitre-Robertson-Walker-
type are stable on cosmic time-scales.

An important indicator that asymptotically safe gravity
could indeed be unitary comes from the causal dynamical
triangulations (CDT) program. Here one finds that the (two-
step) transfer matrix connecting spacial slices at different time-
steps is self-adjoint and bounded [414, 415], indicating that
it satisfies the requirement of reflection positivity. Since the
analytic continuation to Lorentzian signature is well-defined in
CDT, the resulting Hamiltonian in the Lorentzian setting is self-
adjoint. Under the preconditions that this feature survives in
the continuum limit and that CDT indeed probes the Reuter
fixed point, this indeed points toward Asymptotic Safety being
a unitary theory.

13This is a well-known situation, for instance, in scalar theories, where an

expansion about a saddle point of the potential leads to tachyonic instabilities,

but does of course not signal an inconsistency of the theory. For instance, in

inflationary scenarios these instabilities are key to the resulting physics.

These limitations should be kept in mind when
discussing unitarity in a background-independent, quantum
gravitational setting.

9.2. Flat-Space Propagators

...where we review Ostrogradsky’s theorem and its loopholes.

With the above cautionary remarks in mind, let us discuss
the gravitational propagator on a flat background. In the
presence of a finite number of higher-derivative terms, a partial-
fraction decomposition of the propagator reveals the presence
of additional modes. For example, a propagator derived from a
four-derivative theory yields

1

p2(p2 +m2)
=

1

m2

(

1

p2
−

1

p2 +m2

)

. (29)

The terms in the partial-fraction decomposition come with
alternating signs with the modes associated to the negative
residues corresponding to ghosts. In the case of physical fields
related to asymptotic states, this violates reflection positivity
[416]. The latter signals the violation of unitarity in the
Lorentzian theory and is related to a spectral function with
negative parts. The violation of unitarity is already present at the
classical level where it corresponds to an instability of the theory
according to Ostrogradsky’s theorem. Any non-degenerate
Hamiltonian with higher time derivatives of finite order
unavoidably features such an instability, see, e.g, the pedagogical

discussion in [417]. This directly implies that truncations to
finite order in momenta generically feature truncation-induced
instabilities and are not suitable to investigate the unitarity of
the theory.

There are three prominent ways to avoid the
Ostrogradsky instability:

1) Propagators consisting of an entire function with a single zero
at vanishing momentummay avoid the occurrence of negative
residues. This is the path taken by non-local ghost-free gravity
[418–421]. At the classical level, the well-posedness of the
corresponding initial-value problem has been discussed in
[422].

2) One can give up Lorentz invariance, introducing higher-order
spatial derivative terms while keeping two time-derivatives.
This is the idea underlying Hořava-Lifshitz gravity [230]
which, by construction, is a power-counting renormalizable,
unitary theory of gravity.

3) Accept that Nature allows for the violation of causality at
microscopic levels [423–426]. In this case, the degrees of
freedom associated with negative residues are interpreted as
“particles propagating backward in time.” If these particles
are sufficiently heavy this may not leave an experimentally
detectable trace.

We stress that in any case unitarity should be assessed based
on the propagators derived from the effective action Ŵk=0.
Propagators derived from the effective average action Ŵk at
intermediate k may feature artificial poles. Under the flow in
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k, the mass of a ghost might diverge so that the corresponding
degrees of freedom decouple, see [427].

9.3. Spectral Function of the Graviton

...where we discuss the consequences of potential negative spectral

weights of the graviton.

The ghost mode discussed in the last section 9.2 is but one
example for a spectral function that has negative spectral weights:
Evidently, the second term in parenthesis in Equation (29) leads
to a δ-function with negative prefactor in the spectral function
of the graviton. In asymptotically safe gravity the graviton
propagator is a general function of momentum. Consequently
the spectral function more generally may simply have
negative parts.

To begin with, negative spectral weights are a well-known
feature of the gluon spectral function in Yang-Mills theory: upon
the assumption of a spectral representation of the gluon, it
can be shown that its total spectral sum is vanishing due to
the Oehme-Zimmermann superconvergence relation [428, 429].
This relation already implies that in the asymptotically free
regime of Yang-Mills theory, the spectral function of the gluon
is negative for large spectral values. Indeed, the analytic form for
large spectral values can be computed within perturbation theory.
More recently it could also be shown by similar arguments
that the spectral function is also negative for small spectral
values [430].

These investigations highlight the fact that even the existence
of spectral representations for gauge fields with non-linear gauge
symmetries is an open issue. This is tied to the fact that these
fields are not directly related to asymptotic states even in regimes
where they heuristically can be interpreted as particles. In QCD
this is manifest in gluon jets at colliders. In the context of gravity,
this feature is intrinsic to the proposal made in point 3) of
the previous subsection: owing to their large mass, the states
associated with the negative residue terms do not correspond to
asymptotic states, see [431] for a recent discussion.

In summary, even if the spectral representation of a gauge
fields exists, it very well can—and in the case of the gluon
must—contain negative parts. Evidently, this adds significantly
to the already discussed intricacies of discussing unitarity
and the interpretation of positivity violations in quantum
gravity: negative spectral weights may be present without
spoiling unitarity but clearly their presence casts doubts on
unitarity. This situation asks for the investigation of the spectral
representation of correlations of well-defined diffeomorphism-
invariant observables, see section 6.

9.4. Interpretation of Potential Ghost
Modes

...where we refer back to the concept of effective asymptotic safety

discussed in section 7.2 and discuss the interpretation of the masses

of unstable graviton modes in this context.

Future studies of unitarity may reveal that asymptotic safety
features physical ghost modes and hence is not a unitary
fundamental QFT. Even in this case, an asymptotically safe fixed
point can still play a role within the setting described in section 6,
and serve as an extension of the EFT regime for gravity. Then,
the asymptotically safe description in this setting could inherit
unitarity from the more “fundamental” description. In particular,
the asymptotically safe setting can in this case exhibit unstable
modes, with masses m > kUV—these signal the need for a
more “fundamental” description. Conversely, the masses of ghost
modes can be used as an estimate for the scale of new physics.

9.5. Remarks
In summary, it is currently unclear whether or not asymptotically
safe gravity is unitary, it shares with other approaches to quantum
gravity. The question combines both conceptual and technical
challenges in quantum gravity: there is the conceptual question
of the complex structure of correlation functions in the presence
of a dynamical metric field, as well as the necessity of non-
perturbative numerical computations in Lorentzian signature. As
already emphasized in section 6, cross-checks between quantum-
gravity approaches and the concerted use of more than one
method are called for.

10. LORENTZIAN NATURE OF QUANTUM
GRAVITY

...where we highlight the expected fundamental difference between

Lorentzian and Euclidean quantum gravity and explain why the

flow equation is typically set up in a Euclidean setting.

Hitherto, the bulk of the Asymptotic Safety literature employs
background spacetimes carrying Euclidean signature metrics.
This brings two technical advantages: Firstly, Euclidean signature
entails that the squared momentum of the fluctuation fields is
positive semi-definite. Thus it is straightforward to define the
“direction of the RG flow,” first integrating out fluctuations with
a large squared momentum before successively moving toward
lower values. Secondly, the regulated propagators do not exhibit
poles, as the particle cannot go on shell.

For a QFT defined on flat Euclidean space R
d, one can

carry out the computation and analytically continue the results
to Lorentzian signature by a Wick rotation. In the context of
quantum gravity, including Asymptotic Safety, this strategy is
very challenging for several reasons listed below, part of which
has been already discussed in detail in section 9.

1. A generic background metric may not admit a (global) Killing
vector which lends itself to an analytic continuation to a
well-defined Lorentzian time direction [432].

2. The complex structure of the full graviton propagators may
obstruct the simple analytic continuation of the Euclidean
propagator, for example there may very well be cuts touching
the Euclidean axis. Within the FRG this is complicated further
as a momentum regularization either breaks the underlying
(global) spacetime symmetry or leads to additional poles
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and/or cuts [433]. There has been much progress in the past
years on this in standard QFTs, see e.g., [433–438], but the
extension to asymptotically safe gravity has not been put
forward yet.

3. At the structural level, there are solid arguments to expect
that the effective actions obtained from integrating out
fluctuations in a Lorentzian and Euclidean signature setting
will be different. Firstly, the space of metrics of the two
settings comes with different topological properties: while all
Euclidean metrics can be connected by geodesics (defined
with respect to a suitable connection) this property does not
hold in the Lorentzian case [439]. Secondly, the heat kernels
for differential operators constructed from a Euclidean and
Lorentzian signature metric differ by non-local terms [440].
While the latter do not affect the singularity structure of
the heat kernel underlying perturbative renormalization, they
may lead to differences in Ŵ.

A way to address the first point comes from studying Asymptotic
Safety in the Arnowitt-Deser-Misner (ADM) formalism. In this
case, spacetime has a built-in foliation structure which defines a
natural time direction. A first investigation of Asymptotic Safety
in this framework has been performed in [441] and further
developed in a series of works [226, 442–448]. This provided first-
hand indications that the asymptotic-safety mechanism remains
operative for Lorentzian signature metrics as well, at least within
very small truncations. At this stage the computations in the
Lorentzian signature framework have not reached a level of
sophistication where the structural differences outlined in point
(3) can be resolved. In general, the systematic development of the
FRG applicable to Lorentzian signature spacetimes is a research
area to be developed in the future.

This point could in the future become another example for
the progress that can become possible if tools and concepts
from various quantum-gravity approaches are brought together.

Specifically, causal set theory [see [449] for a review], at least
when restricted to so-called “sprinklings,” can be viewed as a
discretization of the Lorentzian path integral over geometries. See
also [450]. This motivates the search for a universal continuum
limit, linked to a second-order phase transition in the phase
diagram for causal sets. Monte Carlo studies of the phase diagram
for restricted configuration spaces in low dimensionalities can be
found in [270–273].

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

AE was supported by the DFG (Deutsche
Forschungsgemeinschaft) under grant no. Ei/1037-1, by a
research grant (29405) fromVILLUMFONDEN and by a visiting
fellowship of the Perimeter Institute for Theoretical Physics.
HG was supported by the DFG under grant no. 398579334
(Gi328/9-1). The work of FS was supported by the Netherlands
Organisation for Scientific Research (NWO) within the
Foundation for Fundamental Research on Matter (FOM) grant
13VP12. JP was supported by the DFG Collaborative Research
Centre SFB 1225 (ISOQUANT) as well as by the DFG under
Germany’s Excellence Strategy EXC - 2181/1 - 390900948 (the
Heidelberg Excellence Cluster STRUCTURES).

ACKNOWLEDGMENTS

We are indebted to A. Codello, J. Donoghue, K. Falls, A. Held,
B. Knorr, T. R. Morris, D. F. Litim, R. Loll, A. Pereira, A. Platania,
N. Ohta, M. Reichert, C. Ripken, C. Wetterich, and O. Zanusso
for valuable discussions and comments on this manuscript.

REFERENCES

1. Nink A, Reuter M, Saueressig F. Asymptotic safety in quantum

gravity. Scholarpedia. (2013) 8:31015. doi: 10.4249/scholarpedia.

31015

2. Percacci R. An introduction to covariant quantum gravity and asymptotic

safety. In: Ashtekar A, editor. 100 Years of General Relativity, Vol. 3.

Singapore: World Scientific (2017).

3. Reuter M, Saueressig F. Quantum Gravity and the Functional

Renormalization Group. Cambridge: Cambridge University Press

(2019). doi: 10.1017/9781316227596

4. Weinberg S. Critical Phenomena for Field Theorists. (1976). Available online

at: https://www.quantamagazine.org/why-an-old-theory-of-everything-is-

gaining-new-life-20180108

5. Weinberg S. Ultraviolet divergences in quantum theories of gravitation. In:

Hawking, SW, Israel, W, editors. General Relativity: An Einstein Centenary

Survey. Cambridge: Cambridge University Press. (1979) p. 790–831.

6. Wilson KG, Kogut JB. The Renormalization group and the epsilon

expansion. Phys Rept. (1974) 12:75–200. doi: 10.1016/0370-1573(74)90023-4

7. Reuter M. Nonperturbative evolution equation for quantum gravity. Phys

Rev D. (1998) 57:971–85. doi: 10.1103/PhysRevD.57.971

8. Souma W. Nontrivial ultraviolet fixed point in quantum gravity. Prog Theor

Phys. (1999) 102:181–95. doi: 10.1143/PTP.102.181

9. Niedermaier M, Reuter M. The asymptotic safety scenario in quantum

gravity. Living Rev Relat. (2006) 9:5. doi: 10.12942/lrr-2006-5

10. Litim DF. Renormalisation group and the Planck scale. Philos Trans R Soc

Lond A. (2011) 369:2759–78. doi: 10.1098/rsta.2011.0103

11. Reuter M, Saueressig F. Quantum Einstein gravity. New J Phys. (2012)

14:055022. doi: 10.1088/1367-2630/14/5/055022

12. Ashtekar A, Reuter M, Rovelli C. From general relativity to quantum gravity.

arXiv. (2014). arXiv:1408.4336.

13. Eichhorn A. Status of the asymptotic safety paradigm for quantum gravity

andmatter. Found Phys. (2018) 48:1407–29. doi: 10.1007/s10701-018-0196-6

14. Eichhorn A. An asymptotically safe guide to quantum gravity and matter.

Front Astron Space Sci. (2019) 5:47. doi: 10.3389/fspas.2018.00047

15. Reichert M. Lecture notes: functional renormalisation group and

asymptotically safe quantum gravity. In: XV Modave Summer School in

Mathematical Physics. (2020). doi: 10.22323/1.384.0005

16. Gell-Mann M, Low FE. Quantum electrodynamics at small distances. Phys

Rev. (1954) 95:1300–12. doi: 10.1103/PhysRev.95.1300

17. Johnson K, Willey R, Baker M. Vacuum polarization in

quantum electrodynamics. Phys Rev. (1967) 163:1699–715.

doi: 10.1103/PhysRev.163.1699

18. Parisi G. The theory of nonrenormalizable interactions. 1. The large N

expansion. Nucl Phys B. (1975) 100:368–88. doi: 10.1016/0550-3213(75)

90624-0

Frontiers in Physics | www.frontiersin.org 21 August 2020 | Volume 8 | Article 269122

https://doi.org/10.4249/scholarpedia.31015
https://doi.org/10.1017/9781316227596
https://www.quantamagazine.org/why-an-old-theory-of-everything-is-gaining-new-life-20180108
https://www.quantamagazine.org/why-an-old-theory-of-everything-is-gaining-new-life-20180108
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1143/PTP.102.181
https://doi.org/10.12942/lrr-2006-5
https://doi.org/10.1098/rsta.2011.0103
https://doi.org/10.1088/1367-2630/14/5/055022
https://doi.org/10.1007/s10701-018-0196-6
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.22323/1.384.0005
https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRev.163.1699
https://doi.org/10.1016/0550-3213(75)90624-0
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

19. Gawedzki K, Kupiainen A. Renormalizing the nonrenormalizable. Phys Rev

Lett. (1985) 55:363–5. doi: 10.1103/PhysRevLett.55.363

20. de Calan C, Faria da Veiga PA, Magnen J, Seneor R. Constructing the three-

dimensional Gross-Neveu model with a large number of flavor components.

Phys Rev Lett. (1991) 66:3233–6. doi: 10.1103/PhysRevLett.66.3233

21. Gracey JA. Three loop calculations in the O(N) Gross-Neveu model. Nucl

Phys B. (1990) 341:403–18. doi: 10.1016/0550-3213(90)90186-H

22. Vasiliev AN, Derkachov SE, Kivel NA, Stepanenko AS. The 1/n expansion in

the Gross-Neveu model: conformal bootstrap calculation of the index eta in

order 1/n**3. Theor Math Phys. (1993) 94:127–36. doi: 10.1007/BF01019324

23. Hands S. 0 (1/N(f)) corrections to the Thirring model in 2 < d < 4. Phys Rev

D. (1995). 51:5816–26. doi: 10.1103/PhysRevD.51.5816

24. Gracey JA, Luthe T, Schroder Y. Four loop renormalization

of the Gross-Neveu model. Phys Rev D. (2016) 94:125028.

doi: 10.1103/PhysRevD.94.125028

25. Hikami S, Muta T. Fixed points and anomalous dimensions in O(n) thirring

model at two + Epsilon dimensions. Prog Theor Phys. (1977) 57:785–96.

doi: 10.1143/PTP.57.785

26. Rosenstein B, Warr BJ, Park SH. The four fermi theory is

renormalizable in (2+1)-dimensions. Phys Rev Lett. (1989) 62:1433–6.

doi: 10.1103/PhysRevLett.62.1433

27. Gat G, Kovner A, Rosenstein B. Chiral phase transitions in d = 3 and

renormalizability of four Fermi interactions. Nucl Phys B. (1992) 385:76–98.

doi: 10.1016/0550-3213(92)90095-S

28. Rosenstein B, Yu HL, Kovner A. Critical exponents of new universality

classes. Phys Lett B. (1993) 314:381–6. doi: 10.1016/0370-2693(93)91253-J

29. Mihaila LN, Zerf N, Ihrig B, Herbut IF, Scherer MM. Gross-Neveu-Yukawa

model at three loops and Ising critical behavior of Dirac systems. Phys Rev B.

(2017) 96:165133. doi: 10.1103/PhysRevB.96.165133

30. Zerf N, Mihaila LN, Marquard P, Herbut IF, Scherer MM. Four-loop

critical exponents for the Gross-Neveu-Yukawa models. Phys Rev D. (2017)

96:096010. doi: 10.1103/PhysRevD.96.096010

31. Rosa L, Vitale P, Wetterich C. Critical exponents of the Gross-Neveu

model from the effective average action. Phys Rev Lett. (2001) 86:958–61.

doi: 10.1103/PhysRevLett.86.958

32. Hofling F, Nowak C, Wetterich C. Phase transition and critical behavior

of the D = 3 Gross-Neveu model. Phys Rev B. (2002) 66:205111.

doi: 10.1103/PhysRevB.66.205111

33. Braun J, Gies H, Scherer DD. Asymptotic safety: a simple example. Phys Rev

D. (2011) 83:085012. doi: 10.1103/PhysRevD.83.085012

34. Gies H, Janssen L. UV fixed-point structure of the three-

dimensional Thirring model. Phys Rev D. (2010) 82:085018.

doi: 10.1103/PhysRevD.82.085018

35. Gehring F, Gies H, Janssen L. Fixed-point structure of low-dimensional

relativistic fermion field theories: universality classes and emergent

symmetry. Phys Rev D. (2015) 92:085046. doi: 10.1103/PhysRevD.92.085046

36. Classen L, Herbut IF, Janssen L, Scherer MM. Competition of

density waves and quantum multicritical behavior in Dirac materials

from functional renormalization. Phys Rev B. (2016) 93:125119.

doi: 10.1103/PhysRevB.93.125119

37. Vacca GP, Zambelli L. Multimeson Yukawa interactions at criticality. Phys

Rev D. (2015) 91:125003. doi: 10.1103/PhysRevD.91.125003

38. Knorr B. Ising and Gross-Neveu model in next-to-leading order. Phys Rev B.

(2016) 94:245102. doi: 10.1103/PhysRevB.94.245102

39. Hands S, Kocic A, Kogut JB. Four Fermi theories in fewer than four-

dimensions. Ann Phys. (1993) 224:29–89. doi: 10.1006/aphy.1993.1039

40. Karkkainen L, Lacaze R, Lacock P, Petersson B. Critical behavior of the three-

dimensional Gross-Neveu and Higgs-Yukawa models. Nucl Phys B. (1994)

415:781–96. doi: 10.1016/0550-3213(94)90309-3

41. Christofi S, Strouthos C. Three dimensional four-fermion models:

a Monte Carlo study. J High Energy Phys. (2007) 05:088.

doi: 10.1088/1126-6708/2007/05/088

42. Chandrasekharan S, Li A. Fermion bags, duality and the three dimensional

massless lattice Thirring model. Phys Rev Lett. (2012) 108:140404.

doi: 10.1103/PhysRevLett.108.140404

43. Chandrasekharan S, Li A. Quantum critical behavior in three

dimensional lattice Gross-Neveu models. Phys Rev D. (2013) 88:021701.

doi: 10.1103/PhysRevD.88.021701

44. Wang L, Corboz P, Troyer M. Fermionic quantum critical point of

spinless fermions on a honeycomb lattice. N J Phys. (2014) 16:103008.

doi: 10.1088/1367-2630/16/10/103008

45. Hesselmann S, Wessel S. Thermal Ising transitions in the vicinity of

two-dimensional quantum critical points. Phys Rev B. (2016) 93:155157.

doi: 10.1103/PhysRevB.93.155157

46. Li ZX, Jiang YF, Yao H. Fermion-sign-free Majarana-quantum-Monte-Carlo

studies of quantum critical phenomena of Dirac fermions in two dimensions.

New J Phys. (2015) 17:085003. doi: 10.1088/1367-2630/17/8/085003

47. Hands S. Towards critical physics in 2+1d with U(2N)-invariant fermions. J

High Energy Phys. (2016) 11:015. doi: 10.1007/JHEP11(2016)015

48. Schmidt D, Wellegehausen B, Wipf A. Four-Fermion theories with exact

chiral symmetry in three dimensions. In: 34th Annual International

Symposium on Lattice Field Theory. (2016). doi: 10.22323/1.256.0247

49. Lenz JJ, Wellegehausen BH, Wipf A. Absence of chiral symmetry breaking

in Thirring models in 1+2 dimensions. Phys Rev D. (2019) 100:054501.

doi: 10.1103/PhysRevD.100.054501

50. Iliesiu L, Kos F, Poland D, Pufu SS, Simmons-Duffin D. Bootstrapping

3D fermions with global symmetries. J High Energy Phys. (2018) 01:036.

doi: 10.1007/JHEP01(2018)036

51. Ihrig B, Mihaila LN, Scherer MM. Critical behavior of Dirac fermions

from perturbative renormalization. Phys Rev B. (2018) 98:125109.

doi: 10.1103/PhysRevB.98.125109

52. Wehling TO, Black-Schaffer AM, Balatsky AV. Dirac materials. Adv Phys.

(2014) 63:1–76. doi: 10.1080/00018732.2014.927109

53. Vafek O, Vishwanath A. Dirac fermions in solids: from high-

tc cuprates and graphene to topological insulators and weyl

semimetals. Ann Rev Condensed Matter Phys. (2014) 5:83–112.

doi: 10.1146/annurev-conmatphys-031113-133841

54. Jakovac A, Patkos A, Posfay P. Non-Gaussian fixed points in fermionic

field theories without auxiliary Bose-fields. Eur Phys J. (2015) C75:2.

doi: 10.1140/epjc/s10052-014-3228-1

55. Codello A, Percacci R, Rahmede C. Investigating the ultraviolet properties of

gravity with a wilsonian renormalization group equation. Ann Phys. (2009)

324:414–69. doi: 10.1016/j.aop.2008.08.008

56. Benedetti D, Machado PF, Saueressig F. Asymptotic safety in

higher-derivative gravity. Mod Phys Lett A. (2009) 24:2233–41.

doi: 10.1142/S0217732309031521

57. Falls K, Litim DF, Nikolakopoulos K, Rahmede C. A bootstrap towards

asymptotic safety. arXiv. (2013). arXiv:1301.4191.

58. Falls K, Litim DF, Nikolakopoulos K, Rahmede C. Further evidence for

asymptotic safety of quantum gravity. Phys Rev D. (2016) 93:104022.

doi: 10.1103/PhysRevD.93.104022

59. Eichhorn A. The Renormalization Group flow of unimodular f(R) gravity. J

High Energy Phys. (2015) 04:096. doi: 10.1007/JHEP04(2015)096

60. Alkofer N, Saueressig F. Asymptotically safe f (R)-gravity coupled

to matter I: the polynomial case. Ann Phys. (2018) 396:173–201.

doi: 10.1016/j.aop.2018.07.017

61. Dabelow L, Gies H, Knorr B. Momentum dependence of

quantum critical Dirac systems. Phys Rev D. (2019) 99:125019.

doi: 10.1103/PhysRevD.99.125019

62. Peskin ME. Critical point behavior of the Wilson loop. Phys Lett. (1980)

94B:161–5. doi: 10.1016/0370-2693(80)90848-5

63. Kazakov DI. Ultraviolet fixed points in gauge and SUSY field

theories in extra dimensions. J High Energy Phys. (2003) 03:020.

doi: 10.1088/1126-6708/2003/03/020

64. Gies H. Renormalizability of gauge theories in extra dimensions. Phys Rev D.

(2003) 68:085015. doi: 10.1103/PhysRevD.68.085015

65. Morris TR. Renormalizable extra-dimensional models. J High Energy Phys.

(2005) 01:002. doi: 10.1088/1126-6708/2005/01/002

66. Polyakov AM. Interaction of goldstone particles in two-dimensions.

Applications to Ferromagnets and Massive Yang-Mills Fields. Phys Lett.

(1975) 59B:79–81. doi: 10.1016/0370-2693(75)90161-6

67. Bardeen WA, Lee BW, Shrock RE. Phase transition in the nonlinear σ

model in 2 + ǫ dimensional continuum. Phys Rev D. (1976) 14:985.

doi: 10.1103/PhysRevD.14.985

68. Friedan D. Nonlinear models in two epsilon dimensions. Phys Rev Lett.

(1980) 45:1057. doi: 10.1103/PhysRevLett.45.1057

Frontiers in Physics | www.frontiersin.org 22 August 2020 | Volume 8 | Article 269123

https://doi.org/10.1103/PhysRevLett.55.363
https://doi.org/10.1103/PhysRevLett.66.3233
https://doi.org/10.1016/0550-3213(90)90186-H
https://doi.org/10.1007/BF01019324
https://doi.org/10.1103/PhysRevD.51.5816
https://doi.org/10.1103/PhysRevD.94.125028
https://doi.org/10.1143/PTP.57.785
https://doi.org/10.1103/PhysRevLett.62.1433
https://doi.org/10.1016/0550-3213(92)90095-S
https://doi.org/10.1016/0370-2693(93)91253-J
https://doi.org/10.1103/PhysRevB.96.165133
https://doi.org/10.1103/PhysRevD.96.096010
https://doi.org/10.1103/PhysRevLett.86.958
https://doi.org/10.1103/PhysRevB.66.205111
https://doi.org/10.1103/PhysRevD.83.085012
https://doi.org/10.1103/PhysRevD.82.085018
https://doi.org/10.1103/PhysRevD.92.085046
https://doi.org/10.1103/PhysRevB.93.125119
https://doi.org/10.1103/PhysRevD.91.125003
https://doi.org/10.1103/PhysRevB.94.245102
https://doi.org/10.1006/aphy.1993.1039
https://doi.org/10.1016/0550-3213(94)90309-3
https://doi.org/10.1088/1126-6708/2007/05/088
https://doi.org/10.1103/PhysRevLett.108.140404
https://doi.org/10.1103/PhysRevD.88.021701
https://doi.org/10.1088/1367-2630/16/10/103008
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1088/1367-2630/17/8/085003
https://doi.org/10.1007/JHEP11(2016)015
https://doi.org/10.22323/1.256.0247
https://doi.org/10.1103/PhysRevD.100.054501
https://doi.org/10.1007/JHEP01(2018)036
https://doi.org/10.1103/PhysRevB.98.125109
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1140/epjc/s10052-014-3228-1
https://doi.org/10.1016/j.aop.2008.08.008
https://doi.org/10.1142/S0217732309031521
https://doi.org/10.1103/PhysRevD.93.104022
https://doi.org/10.1007/JHEP04(2015)096
https://doi.org/10.1016/j.aop.2018.07.017
https://doi.org/10.1103/PhysRevD.99.125019
https://doi.org/10.1016/0370-2693(80)90848-5
https://doi.org/10.1088/1126-6708/2003/03/020
https://doi.org/10.1103/PhysRevD.68.085015
https://doi.org/10.1088/1126-6708/2005/01/002
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1103/PhysRevD.14.985
https://doi.org/10.1103/PhysRevLett.45.1057
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

69. Higashijima K, Itou E. Three-dimensional nonlinear sigma models in the

Wilsonian renormalization method. Prog Theor Phys. (2003) 110:563–78.

doi: 10.1143/PTP.110.563

70. Codello A, Percacci R. Fixed points of nonlinear sigma models in d>2. Phys

Lett B. (2009) 672:280–3. doi: 10.1016/j.physletb.2009.01.032

71. Fabbrichesi M, Percacci R, Tonero A, Zanusso O. Asymptotic safety

and the gauged SU(N) nonlinear σ -model. Phys Rev. (2011) D83:025016.

doi: 10.1103/PhysRevD.83.025016

72. Wellegehausen BH, Körner D, Wipf A. Asymptotic safety on the

lattice: the nonlinear O(N) sigma Model. Ann Phys. (2014) 349:374.

doi: 10.1016/j.aop.2014.06.024

73. Antipin O, Sannino F. Conformal window 2.0: the large Nf safe story. Phys

Rev D. (2018) 97:116007. doi: 10.1103/PhysRevD.97.116007

74. Antipin O, Dondi NA, Sannino F, Thomsen AE, Wang ZW. Gauge-

Yukawa theories: beta functions at large Nf . Phys Rev D. (2018) 98:016003.

doi: 10.1103/PhysRevD.98.016003

75. Dondi NA, Dunne GV, Reichert M, Sannino F. Towards the QED

beta function and renormalons at 1/N2
f

and 1/N3
f
. arXiv. (2020)

arXiv:2003.08397.

76. Dondi NA, Dunne GV, Reichert M, Sannino F. Analytic coupling structure

of large Nf (super) QED and QCD. Phys Rev D. (2019) 100:015013.

doi: 10.1103/PhysRevD.100.015013

77. Palanques-Mestre A, Pascual P. The 1/Nf expansion of the γ

and beta functions in QED. Commun Math Phys. (1984) 95:277.

doi: 10.1007/BF01212398

78. Gracey JA. The QCD beta function at O(1/N(f)). Phys Lett B. (1996)

373:178–84. doi: 10.1016/0370-2693(96)00105-0

79. Holdom B. Large N flavor beta-functions: a recap. Phys Lett B. (2011)

694:74–9. doi: 10.1016/j.physletb.2010.09.037

80. Litim DF, Sannino F. Asymptotic safety guaranteed. J High Energy Phys.

(2014) 12:178. doi: 10.1007/JHEP12(2014)178

81. Bond AD, Litim DF. Theorems for asymptotic safety of gauge theories. Eur

Phys J C. (2017) 77:429. doi: 10.1140/epjc/s10052-017-4976-5

82. Bond AD, Litim DF. More asymptotic safety guaranteed. arXiv. (2017)

arXiv:1707.04217.

83. Bajc B, Sannino F. Asymptotically safe grand unification. J High Energy Phys.

(2016) 12:141. doi: 10.1007/JHEP12(2016)141

84. Mann R, Meffe J, Sannino F, Steele T, Wang ZW, Zhang C. Asymptotically

safe standard model via vectorlike fermions. Phys Rev Lett. (2017)

119:261802. doi: 10.1103/PhysRevLett.119.261802

85. Bond AD, Hiller G, Kowalska K, Litim DF. Directions for model

building from asymptotic safety. J High Energy Phys. (2017) 08:004.

doi: 10.1007/JHEP08(2017)004

86. Pelaggi GM, Plascencia AD, Salvio A, Sannino F, Smirnov J, Strumia A.

Asymptotically Safe Standard Model Extensions? Phys Rev D. (2018) 97:

095013. doi: 10.1103/PhysRevD.97.095013

87. Wetterich C. Exact evolution equation for the effective potential. Phys Lett B.

(1993) 301:90–4. doi: 10.1016/0370-2693(93)90726-X

88. Ellwanger U. FLow equations for N point functions and bound states. Z Phys

C. (1994) 62:503–10. [,206 (1993) ]. doi: 10.1007/BF01555911

89. Morris TR. The Exact renormalization group and approximate solutions. Int

J Mod Phys A. (1994) 9:2411–50. doi: 10.1142/S0217751X94000972

90. Pawlowski JM. Aspects of the functional renormalisation group. Ann Phys.

(2007) 322:2831–915. doi: 10.1016/j.aop.2007.01.007

91. Manrique E, Reuter M. Bare action and regularized functional integral

of asymptotically safe quantum gravity. Phys Rev D. (2009) 79:025008.

doi: 10.1103/PhysRevD.79.025008

92. Manrique E, Reuter M. Bare versus effective fixed point action in

asymptotic safety: the reconstruction problem. In: Workshop on

Continuum and Lattice Approaches to Quantum Gravity (CLAQG08).

(2011). doi: 10.22323/1.079.0001

93. Morris TR, Slade ZH. Solutions to the reconstruction problem in asymptotic

safety. J High Energy Phys. (2015) 11:094. doi: 10.1007/JHEP11(2015)094

94. Rosten OJ. Equivalent fixed-points in the effective average action formalism.

J Phys A. (2011) 44:195401. doi: 10.1088/1751-8113/44/19/195401

95. Daum JE, Reuter M. Renormalization group flow of the holst action. Phys

Lett B. (2012) 710:215–8. doi: 10.1016/j.physletb.2012.01.046

96. Harst U, Reuter M. The ‘Tetrad only’ theory space: nonperturbative

renormalization flow and asymptotic Safety. J High Energy Phys. (2012)

05:005. doi: 10.1007/JHEP05(2012)005

97. Doná P, Percacci R. Functional renormalization with fermions and tetrads.

Phys Rev D. (2013) 87:045002. doi: 10.1103/PhysRevD.87.045002

98. Daum JE, Reuter M. Einstein-Cartan gravity, asymptotic Safety, and

the running Immirzi parameter. Ann Phys. (2013) 334:351–419.

doi: 10.1016/j.aop.2013.04.002

99. Harst U, Reuter M. A new functional flow equation for

Einstein-Cartan quantum gravity. Ann Phys. (2015) 354:637–704.

doi: 10.1016/j.aop.2015.01.006

100. Reuter M, Schollmeyer GM. The metric on field space, functional

renormalization, and metric-torsion quantum gravity. Ann Phys. (2016)

367:125–91. doi: 10.1016/j.aop.2015.12.004

101. Harst U, Reuter M. On selfdual spin-connections and asymptotic safety. Phys

Lett B. (2016) 753:395–400. doi: 10.1016/j.physletb.2015.12.016

102. Nink A. Field parametrization dependence in asymptotically safe quantum

gravity. Phys Rev D. (2015) 91:044030. doi: 10.1103/PhysRevD.91.044030

103. Doná P, Eichhorn A, Labus P, Percacci R. Asymptotic safety in an interacting

system of gravity and scalar matter. Phys Rev D. (2016) 93:044049.

doi: 10.1103/PhysRevD.93.044049

104. Percacci R, Vacca GP. Search of scaling solutions in scalar-tensor gravity. Eur

Phys J C. (2015) 75:188. doi: 10.1140/epjc/s10052-015-3410-0

105. Labus P, Percacci R, Vacca GP. Asymptotic safety in O(N) scalar

models coupled to gravity. Phys Lett B. (2016) 753:274–81.

doi: 10.1016/j.physletb.2015.12.022

106. Branchina V, Meissner KA, Veneziano G. The Price of an exact,

gauge invariant RG flow equation. Phys Lett B. (2003) 574:319–24.

doi: 10.1016/j.physletb.2003.09.020

107. Pawlowski JM. Geometrical effective action and Wilsonian flows. arXiv.

(2003) arXiv:hep-th/0310018.

108. Donkin I, Pawlowski JM. The phase diagram of quantum gravity from

diffeomorphism-invariant RG-flows. arXiv. (2012) arXiv:1203.4207.

109. Demmel M, Saueressig F, Zanusso O. RG flows of Quantum Einstein Gravity

in the linear-geometric approximation. Ann Phys. (2015) 359:141–65.

doi: 10.1016/j.aop.2015.04.018

110. Safari M, Vacca GP. Covariant and single-field effective action with

the background-field formalism. Phys Rev D. (2017) 96:085001.

doi: 10.1103/PhysRevD.96.085001

111. Safari M, Vacca GP. Covariant and background independent functional RG

flow for the effective average action. J High Energy Phys. (2016) 11:139.

doi: 10.1007/JHEP11(2016)139

112. Birmingham D, Blau M, Rakowski M, Thompson G. Topological

field theory. Phys Rept. (1991) 209:129–340. doi: 10.1016/0370-1573(91)

90117-5

113. Gies H, Knorr B, Lippoldt S. Generalized parametrization

dependence in quantum gravity. Phys Rev D. (2015) 92:084020.

doi: 10.1103/PhysRevD.92.084020

114. Ohta N, Percacci R, Pereira AD. Gauges and functional measures in

quantum gravity I: Einstein theory. J High Energy Phys. (2016) 06:115.

doi: 10.1007/JHEP06(2016)115

115. Ohta N, Percacci R, Pereira AD. Gauges and functional measures in

quantum gravity II: higher derivative gravity. Eur Phys J C. (2017) 77:611.

doi: 10.1140/epjc/s10052-017-5176-z

116. De Brito GP, Ohta N, Pereira AD, Tomaz AA, Yamada M.

Asymptotic safety and field parametrization dependence in the f (R)

truncation. Phys Rev D. (2018) 98:026027. doi: 10.1103/PhysRevD.98.

026027

117. Manrique E, Reuter M. Bimetric truncations for quantum einstein

gravity and asymptotic safety. Ann Phys. (2010) 325:785–815.

doi: 10.1016/j.aop.2009.11.009

118. Manrique E, Reuter M, Saueressig F. Bimetric renormalization group

flows in quantum Einstein gravity. Ann Phys. (2011) 326:463–85.

doi: 10.1016/j.aop.2010.11.006

119. Becker D, Reuter M. En route to background independence: broken split-

symmetry, and how to restore it with bi-metric average actions. Ann Phys.

(2014) 350:225–301. doi: 10.1016/j.aop.2014.07.023

Frontiers in Physics | www.frontiersin.org 23 August 2020 | Volume 8 | Article 269124

https://doi.org/10.1143/PTP.110.563
https://doi.org/10.1016/j.physletb.2009.01.032
https://doi.org/10.1103/PhysRevD.83.025016
https://doi.org/10.1016/j.aop.2014.06.024
https://doi.org/10.1103/PhysRevD.97.116007
https://doi.org/10.1103/PhysRevD.98.016003
https://doi.org/10.1103/PhysRevD.100.015013
https://doi.org/10.1007/BF01212398
https://doi.org/10.1016/0370-2693(96)00105-0
https://doi.org/10.1016/j.physletb.2010.09.037
https://doi.org/10.1007/JHEP12(2014)178
https://doi.org/10.1140/epjc/s10052-017-4976-5
https://doi.org/10.1007/JHEP12(2016)141
https://doi.org/10.1103/PhysRevLett.119.261802
https://doi.org/10.1007/JHEP08(2017)004
https://doi.org/10.1103/PhysRevD.97.095013
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1007/BF01555911
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1103/PhysRevD.79.025008
https://doi.org/10.22323/1.079.0001
https://doi.org/10.1007/JHEP11(2015)094
https://doi.org/10.1088/1751-8113/44/19/195401
https://doi.org/10.1016/j.physletb.2012.01.046
https://doi.org/10.1007/JHEP05(2012)005
https://doi.org/10.1103/PhysRevD.87.045002
https://doi.org/10.1016/j.aop.2013.04.002
https://doi.org/10.1016/j.aop.2015.01.006
https://doi.org/10.1016/j.aop.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.016
https://doi.org/10.1103/PhysRevD.91.044030
https://doi.org/10.1103/PhysRevD.93.044049
https://doi.org/10.1140/epjc/s10052-015-3410-0
https://doi.org/10.1016/j.physletb.2015.12.022
https://doi.org/10.1016/j.physletb.2003.09.020
https://doi.org/10.1016/j.aop.2015.04.018
https://doi.org/10.1103/PhysRevD.96.085001
https://doi.org/10.1007/JHEP11(2016)139
https://doi.org/10.1016/0370-1573(91)90117-5
https://doi.org/10.1103/PhysRevD.92.084020
https://doi.org/10.1007/JHEP06(2016)115
https://doi.org/10.1140/epjc/s10052-017-5176-z
https://doi.org/10.1103/PhysRevD.98.026027
https://doi.org/10.1016/j.aop.2009.11.009
https://doi.org/10.1016/j.aop.2010.11.006
https://doi.org/10.1016/j.aop.2014.07.023
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

120. Codello A, Percacci R. Fixed points of higher derivative gravity. Phys Rev

Lett. (2006) 97:221301. doi: 10.1103/PhysRevLett.97.221301

121. Niedermaier MR. Gravitational fixed points from perturbation theory.

Phys Rev Lett. (2009) 103:101303. doi: 10.1103/PhysRevLett.103.

101303

122. Niedermaier M. Gravitational fixed points and asymptotic safety

from perturbation theory. Nucl Phys B. (2010) 833:226–70.

doi: 10.1016/j.nuclphysb.2010.01.016

123. Dou D, Percacci R. The running gravitational couplings. Class Quant Grav.

(1998) 15:3449–3468. doi: 10.1088/0264-9381/15/11/011

124. Lauscher O, Reuter M. Ultraviolet fixed point and generalized

flow equation of quantum gravity. Phys Rev D. (2002) 65:025013.

doi: 10.1103/PhysRevD.65.025013

125. Reuter M, Saueressig F. Renormalization group flow of quantum gravity

in the Einstein-Hilbert truncation. Phys Rev D. (2002) 65:065016.

doi: 10.1103/PhysRevD.65.065016

126. Litim DF. Fixed points of quantum gravity. Phys Rev Lett. (2004) 92:201301.

doi: 10.1103/PhysRevLett.92.201301

127. Groh K, Saueressig F. Ghost wave-function renormalization in

asymptotically safe quantum gravity. J Phys A. (2010) 43:365403.

doi: 10.1088/1751-8113/43/36/365403

128. Eichhorn A, Gies H. Ghost anomalous dimension in asymptotically

safe quantum gravity. Phys Rev D. (2010) 81:104010.

doi: 10.1103/PhysRevD.81.104010

129. Nagy S, Fazekas B, Juhasz L, Sailer K. Critical exponents in quantum Einstein

gravity. Phys Rev D. (2013) 88:116010. doi: 10.1103/PhysRevD.88.116010

130. Falls K. Asymptotic safety and the cosmological constant. J High Energy Phys.

(2016) 01:069. doi: 10.1007/JHEP01(2016)069

131. Falls K. Renormalization of Newton’s constant. Phys Rev D. (2015)

92:124057. doi: 10.1103/PhysRevD.92.124057

132. Lauscher O, Reuter M. Flow equation of quantum Einstein gravity

in a higher- derivative truncation. Phys Rev D. (2002) 66:025026.

doi: 10.1103/PhysRevD.66.025026

133. Rechenberger S, Saueressig F. The R2 phase-diagram of QEG and its spectral

dimension. Phys Rev D. (2012) 86:024018. doi: 10.1103/PhysRevD.86.024018

134. Benedetti D, Machado PF, Saueressig F. Taming perturbative divergences

in asymptotically safe gravity. Nucl Phys B. (2010) 824:168–91.

doi: 10.1016/j.nuclphysb.2009.08.023

135. Ohta N, Percacci R. Higher derivative gravity and asymptotic

safety in diverse dimensions. Class Quant Grav. (2014) 31:015024.

doi: 10.1088/0264-9381/31/1/015024

136. Ohta N, Percacci R. Ultraviolet fixed points in conformal gravity

and general quadratic theories. Class Quant Grav. (2016) 33:035001.

doi: 10.1088/0264-9381/33/3/035001

137. Hamada Y, Yamada M. Asymptotic safety of higher derivative quantum

gravity non-minimally coupled with a matter system. J High Energy Phys.

(2017) 08:070. doi: 10.1007/JHEP08(2017)070

138. Falls K, Ohta N, Percacci R. Towards the determination of the dimension

of the critical surface in asymptotically safe gravity. arXiv. (2020)

arXiv:2004.04126.

139. Gies H, Knorr B, Lippoldt S, Saueressig F. Gravitational two-loop

counterterm is asymptotically safe. Phys Rev Lett. (2016) 116:211302.

doi: 10.1103/PhysRevLett.116.211302

140. Codello A, Percacci R, Rahmede C. Ultraviolet properties of f(R)-gravity. Int

J Mod Phys A. (2008) 23:143–50. doi: 10.1142/S0217751X08038135

141. Machado PF, Saueressig F. On the renormalization group flow of

f(R)-gravity. Phys Rev D. (2008) 77:124045. doi: 10.1103/PhysRevD.77.

124045

142. Falls KG, Litim DF, Schröder J. Aspects of asymptotic safety for quantum

gravity. Phys Rev D. (2019) 99:126015. doi: 10.1103/PhysRevD.99.126015

143. Falls K, King CR, Litim DF, Nikolakopoulos K, Rahmede C. Asymptotic

safety of quantum gravity beyond Ricci scalars. Phys Rev D. (2018) 97:086006.

doi: 10.1103/PhysRevD.97.086006

144. Kluth Y, Litim D. Talk at OIST Workshop Quantum and Gravity in

Okinawa 2019: Asymptotically Safe Gravity with Riemann and Ricci Tensors.

(2019). Available online at: https://groups.oist.jp/sites/default/files/imce/

u139/Yannick%20Kluth-AS_Ricci_Riemann.pdf

145. Demmel M, Saueressig F, Zanusso O. Fixed-functionals of three-

dimensional quantum Einstein gravity. J High Energy Phys. (2012) 11:131.

doi: 10.1007/JHEP11(2012)131

146. Dietz JA, Morris TR. Asymptotic safety in the f(R) approximation. J High

Energy Phys. (2013) 1:108. doi: 10.1007/JHEP01(2013)108

147. Dietz JA, Morris TR. Redundant operators in the exact renormalisation

group and in the f(R) approximation to asymptotic safety. J High Energy Phys.

(2013) 07:064. doi: 10.1007/JHEP07(2013)064

148. Demmel M, Saueressig F, Zanusso O. Fixed functionals in asymptotically

safe gravity. In: Proceedings, 13th Marcel Grossmann Meeting on Recent

Developments in Theoretical and Experimental General Relativity,

Astrophysics, and Relativistic Field Theories (MG13). Stockholm (2015).

p. 2227–9.

149. Demmel M, Saueressig F, Zanusso O. RG flows of quantum Einstein

gravity on maximally symmetric spaces. J High Energy Phys. (2014) 06:026.

doi: 10.1007/JHEP06(2014)026

150. Demmel M, Saueressig F, Zanusso O. A proper fixed functional for four-

dimensional quantum Einstein gravity. J High Energy Phys. (2015) 08:113.

doi: 10.1007/JHEP08(2015)113

151. Dietz JA, Morris TR. Background independent exact renormalization

group for conformally reduced gravity. J High Energy Phys. (2015) 04:118.

doi: 10.1007/JHEP04(2015)118

152. Ohta N, Percacci R, Vacca GP. Flow equation for f (R) gravity

and some of its exact solutions. Phys Rev D. (2015) 92:061501.

doi: 10.1103/PhysRevD.92.061501

153. Ohta N, Percacci R, Vacca GP. Renormalization group equation and scaling

solutions for f(R) gravity in exponential parametrization. Eur Phys J C. (2016)

76:46. doi: 10.1140/epjc/s10052-016-3895-1

154. Dietz JA, Morris TR, Slade ZH. Fixed point structure of the conformal

factor field in quantum gravity. Phys Rev D. (2016) 94:124014.

doi: 10.1103/PhysRevD.94.124014

155. Morris TR. Large curvature and background scale independence in single-

metric approximations to asymptotic safety. J High Energy Phys. (2016)

11:160. doi: 10.1007/JHEP11(2016)160

156. Christiansen N, Falls K, Pawlowski JM, Reichert M. Curvature

dependence of quantum gravity. Phys Rev D. (2018) 97:046007.

doi: 10.1103/PhysRevD.97.046007

157. Gonzalez-Martin S, Morris TR, Slade ZH. Asymptotic

solutions in asymptotic safety. Phys Rev D. (2017) 95:106010.

doi: 10.1103/PhysRevD.95.106010

158. Alkofer N. Asymptotically safe f (R)-gravity coupled to matter II: Global

solutions. Phys Lett B. (2019) 789:480–7. doi: 10.1016/j.physletb.2018.

12.061

159. Bürger B, Pawlowski JM, Reichert M, Schaefer BJ. Curvature dependence of

quantum gravity with scalars. arXiv. (2019) arXiv:1912.01624.

160. Benedetti D, Caravelli F. The Local potential approximation in quantum

gravity. J High Energy Phys. (2012) 06:017. doi: 10.1007/JHEP10(2012)157

161. Falls K, Ohta N. Renormalization Group Equation for f (R)

gravity on hyperbolic spaces. Phys Rev D. (2016) 94:084005.

doi: 10.1103/PhysRevD.94.084005

162. Borchardt J, Knorr B. Global solutions of functional fixed point

equations via pseudospectral methods. Phys Rev D. (2015) 91:105011.

doi: 10.1103/PhysRevD.91.105011

163. Bridle IH, Dietz JA, Morris TR. The local potential approximation in

the background field formalism. J High Energy Phys. (2014) 03:093.

doi: 10.1007/JHEP03(2014)093

164. Christiansen N, Litim DF, Pawlowski JM, Rodigast A. Fixed points and

infrared completion of quantum gravity. Phys Lett B. (2014) 728:114–7.

doi: 10.1016/j.physletb.2013.11.025

165. Codello A, D’Odorico G, Pagani C. Consistent closure of renormalization

group flow equations in quantum gravity. Phys Rev D. (2014) 89:081701.

doi: 10.1103/PhysRevD.89.081701

166. Christiansen N, Knorr B, Pawlowski JM, Rodigast A. Global

flows in quantum gravity. Phys Rev D. (2016) 93:044036.

doi: 10.1103/PhysRevD.93.044036

167. Meibohm J, Pawlowski JM, Reichert M. Asymptotic safety of gravity-matter

systems. Phys Rev D. (2016) 93:084035. doi: 10.1103/PhysRevD.93.084035

Frontiers in Physics | www.frontiersin.org 24 August 2020 | Volume 8 | Article 269125

https://doi.org/10.1103/PhysRevLett.97.221301
https://doi.org/10.1103/PhysRevLett.103.101303
https://doi.org/10.1016/j.nuclphysb.2010.01.016
https://doi.org/10.1088/0264-9381/15/11/011
https://doi.org/10.1103/PhysRevD.65.025013
https://doi.org/10.1103/PhysRevD.65.065016
https://doi.org/10.1103/PhysRevLett.92.201301
https://doi.org/10.1088/1751-8113/43/36/365403
https://doi.org/10.1103/PhysRevD.81.104010
https://doi.org/10.1103/PhysRevD.88.116010
https://doi.org/10.1007/JHEP01(2016)069
https://doi.org/10.1103/PhysRevD.92.124057
https://doi.org/10.1103/PhysRevD.66.025026
https://doi.org/10.1103/PhysRevD.86.024018
https://doi.org/10.1016/j.nuclphysb.2009.08.023
https://doi.org/10.1088/0264-9381/31/1/015024
https://doi.org/10.1088/0264-9381/33/3/035001
https://doi.org/10.1007/JHEP08(2017)070
https://doi.org/10.1103/PhysRevLett.116.211302
https://doi.org/10.1142/S0217751X08038135
https://doi.org/10.1103/PhysRevD.77.124045
https://doi.org/10.1103/PhysRevD.99.126015
https://doi.org/10.1103/PhysRevD.97.086006
https://groups.oist.jp/sites/default/files/imce/u139/Yannick%20Kluth-AS_Ricci_Riemann.pdf
https://groups.oist.jp/sites/default/files/imce/u139/Yannick%20Kluth-AS_Ricci_Riemann.pdf
https://doi.org/10.1007/JHEP11(2012)131
https://doi.org/10.1007/JHEP01(2013)108
https://doi.org/10.1007/JHEP07(2013)064
https://doi.org/10.1007/JHEP06(2014)026
https://doi.org/10.1007/JHEP08(2015)113
https://doi.org/10.1007/JHEP04(2015)118
https://doi.org/10.1103/PhysRevD.92.061501
https://doi.org/10.1140/epjc/s10052-016-3895-1
https://doi.org/10.1103/PhysRevD.94.124014
https://doi.org/10.1007/JHEP11(2016)160
https://doi.org/10.1103/PhysRevD.97.046007
https://doi.org/10.1103/PhysRevD.95.106010
https://doi.org/10.1016/j.physletb.2018.12.061
https://doi.org/10.1007/JHEP10(2012)157
https://doi.org/10.1103/PhysRevD.94.084005
https://doi.org/10.1103/PhysRevD.91.105011
https://doi.org/10.1007/JHEP03(2014)093
https://doi.org/10.1016/j.physletb.2013.11.025
https://doi.org/10.1103/PhysRevD.89.081701
https://doi.org/10.1103/PhysRevD.93.044036
https://doi.org/10.1103/PhysRevD.93.084035
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

168. Christiansen N, Knorr B, Meibohm J, Pawlowski JM, Reichert

M. Local quantum gravity. Phys Rev D. (2015) 92:121501.

doi: 10.1103/PhysRevD.92.121501

169. Denz T, Pawlowski JM, Reichert M. Towards apparent convergence

in asymptotically safe quantum gravity. Eur Phys J C. (2018) 78:336.

doi: 10.1140/epjc/s10052-018-5806-0

170. Christiansen N, Litim DF, Pawlowski JM, Reichert M. Asymptotic

safety of gravity with matter. Phys Rev D. (2018) 97:106012.

doi: 10.1103/PhysRevD.97.106012

171. Knorr B, Lippoldt S. Correlation functions on a curved background. Phys Rev

D. (2017) 96:065020. doi: 10.1103/PhysRevD.96.065020

172. Eichhorn A, Labus P, Pawlowski JM, Reichert M. Effective

universality in quantum gravity. Sci Post Phys. (2018) 5:31.

doi: 10.21468/SciPostPhys.5.4.031

173. Eichhorn A, Lippoldt S, Pawlowski JM, Reichert M, Schiffer M.

How perturbative is quantum gravity? Phys Lett B. (2019) 792:310–4.

doi: 10.1016/j.physletb.2019.01.071

174. Eichhorn A, Lippoldt S, Schiffer M. Zooming in on fermions and quantum

gravity. Phys Rev D. (2019) 99:086002. doi: 10.1103/PhysRevD.99.086002

175. Knorr B, Ripken C, Saueressig F. Form factors in asymptotic safety:

conceptual ideas and computational toolbox. Class Quant Grav. (2019)

36:234001. doi: 10.1088/1361-6382/ab4a53

176. Reuter M, Weyer H. Quantum gravity at astrophysical distances? J Cosmol

Astroparticle Phys. (2004) 0412:001. doi: 10.1088/1475-7516/2004/12/001

177. Gubitosi G, Ooijer R, Ripken C, Saueressig F. Consistent early and late time

cosmology from the RG flow of gravity. J Cosmol Astroparticle Phys. (2018)

1812:004. doi: 10.1088/1475-7516/2018/12/004

178. Eichhorn A, Held A. Top mass from asymptotic safety. Phys Lett B. (2018)

777:217–21. doi: 10.1016/j.physletb.2017.12.040

179. Eichhorn A, Held A. Towards implications of asymptotically safe gravity for

particle physics. In: An Alpine LHC Physics Summit (ALPS 2019). Obergurgl

(2019).

180. Codello A. Polyakov effective action from functional renormalization group

equation. Ann Phys. (2010) 325:1727–38. doi: 10.1016/j.aop.2010.04.013

181. Wetterich C. Graviton fluctuations erase the cosmological constant. Phys Lett

B. (2017) 773:6–19. doi: 10.1016/j.physletb.2017.08.002

182. Narain G, Percacci R. Renormalization group flow in scalar-tensor theories.

I. Class Quant Grav. (2010) 27:075001. doi: 10.1088/0264-9381/27/7/075001

183. Henz T, Pawlowski JM, Rodigast A, Wetterich C. Dilaton Quantum gravity.

Phys Lett B. (2013) 727:298–302. doi: 10.1016/j.physletb.2013.10.015

184. Henz T, Pawlowski JM, Wetterich C. Scaling solutions for Dilaton quantum

gravity. Phys Lett B. (2017) 769:105–10. doi: 10.1016/j.physletb.2017.01.057

185. Lauscher O, Reuter M. Is quantum Einstein gravity nonperturbatively

renormalizable? Class Quant Grav. (2002) 19:483–92.

doi: 10.1088/0264-9381/19/3/304

186. Reuter M, Saueressig F. A Class of nonlocal truncations in quantum

Einstein gravity and its renormalization group behavior. Phys Rev D. (2002)

66:125001. doi: 10.1103/PhysRevD.66.125001

187. Reuter M, Weyer H. Renormalization group improved gravitational

actions: a Brans-Dicke approach. Phys Rev D. (2004) 69:104022.

doi: 10.1103/PhysRevD.69.104022

188. Bonanno A, Reuter M. Proper time flow equation for gravity. J High Energy

Phys. (2005) 02:035. doi: 10.1088/1126-6708/2005/02/035

189. Reuter M, Weyer H. Background independence and asymptotic

safety in conformally reduced gravity. Phys Rev D. (2009) 79:105005.

doi: 10.1103/PhysRevD.79.105005

190. Reuter M, Weyer H. Conformal sector of Quantum Einstein Gravity

in the local potential approximation: non-Gaussian fixed point and a

phase of diffeomorphism invariance. Phys Rev D. (2009) 80:025001.

doi: 10.1103/PhysRevD.80.025001

191. Daum JE, Reuter M. Effective potential of the conformal factor: gravitational

average action and dynamical triangulations. Adv Sci Lett. (2009) 2:255–60.

doi: 10.1166/asl.2009.1033

192. Daum JE, Harst U, Reuter M. Running gauge coupling in asymptotically

safe quantum gravity. J High Energy Phys. (2010) 1001:084.

doi: 10.1007/JHEP01(2010)084

193. Manrique E, Reuter M, Saueressig F. Matter induced bimetric actions for

gravity. Ann Phys. (2011) 326:440–462. doi: 10.1016/j.aop.2010.11.003

194. Harst U, Reuter M. QED coupled to QEG. J High Energy Phys. (2011) 05:119.

doi: 10.1007/JHEP05(2011)119

195. Nink A, Reuter M. On the physical mechanism underlying Asymptotic

Safety. J High Energy Phys. (2013) 01:062. doi: 10.1007/JHEP01(2013)062

196. Becker D, Reuter M. Towards a C-function in 4D quantum gravity. J High

Energy Phys. (2015) 03:065. doi: 10.1007/JHEP03(2015)065

197. Nink A, Reuter M. The unitary conformal field theory behind 2D asymptotic

safety. J High Energy Phys. (2016) 02:167. doi: 10.1007/JHEP02(2016)167

198. Pagani C, Reuter M. Background independent quantum field theory

and gravitating vacuum fluctuations. Ann Phys. (2019) 411:167972.

doi: 10.1016/j.aop.2019.167972

199. Franchino-Viñas SA, de Paula Netto T, Shapiro IL, Zanusso O. Form factors

and decoupling of matter fields in four-dimensional gravity. Phys Lett B.

(2019) 790:229–36. doi: 10.1016/j.physletb.2019.01.021

200. Bosma L, Knorr B, Saueressig F. Resolving spacetime singularities

within asymptotic safety. Phys Rev Lett. (2019) 123:101301.

doi: 10.1103/PhysRevLett.123.101301

201. Knorr B, Saueressig F. Towards reconstructing the quantum

effective action of gravity. Phys Rev Lett. (2018) 121:161304.

doi: 10.1103/PhysRevLett.121.161304

202. Folkerts S, Litim DF, Pawlowski JM. Asymptotic freedom of

Yang-Mills theory with gravity. Phys Lett B. (2012) 709:234–41.

doi: 10.1016/j.physletb.2012.02.002

203. Percacci R, Vacca GP. The background scale Ward identity in quantum

gravity. Eur Phys J C. (2017) 77:52. doi: 10.1140/epjc/s10052-017-4619-x

204. Labus P, Morris TR, Slade ZH. Background independence in a background

dependent renormalization group. Phys Rev D. (2016) 94:024007.

doi: 10.1103/PhysRevD.94.024007

205. Ohta N. Background scale independence in quantum gravity. Prog Theor Exp

Phys. (2017) 2017:033E02. doi: 10.1093/ptep/ptx020

206. Nieto CM, Percacci R, Skrinjar V. Split Weyl transformations in

quantum gravity. Phys Rev D. (2017) 96:106019. doi: 10.1103/PhysRevD.96.

106019

207. Benedetti D, Groh K, Machado PF, Saueressig F. The universal RG machine.

J High Energy Phys. (2011) 1106:079. doi: 10.1007/JHEP06(2011)079

208. Lauscher O, Reuter M. Fractal spacetime structure in

asymptotically safe gravity. J High Energy Phys. (2005) 10:050.

doi: 10.1088/1126-6708/2005/10/050

209. Reuter M, Saueressig F. Fractal space-times under the microscope: a

Renormalization Group view on Monte Carlo data. J High Energy Phys.

(2011) 12:012. doi: 10.1007/JHEP12(2011)012

210. Calcagni G, Eichhorn A, Saueressig F. Probing the quantum

nature of spacetime by diffusion. Phys Rev D. (2013) 87:124028.

doi: 10.1103/PhysRevD.87.124028

211. Reuter M, Schwindt JM. A minimal length from the cutoff modes in

asymptotically safe quantum gravity. J High Energy Phys. (2006) 01:070.

doi: 10.1088/1126-6708/2006/01/070

212. Reuter M, Schwindt JM. Scale-dependent metric and causal structures

in quantum Einstein gravity. J High Energy Phys. (2007) 01:049.

doi: 10.1088/1126-6708/2007/01/049

213. Gastmans R, Kallosh R, Truffin C. Quantum gravity near two-dimensions.

Nucl Phys B. (1978) 133:417. doi: 10.1016/0550-3213(78)90234-1

214. Christensen SM, DuffMJ. Quantum gravity in two + epsilon dimension. Phys

Lett B. (1978) 79:213. doi: 10.1016/0370-2693(78)90225-3

215. Kawai H, Ninomiya M. Renormalization group and quantum gravity. Nucl

Phys B. (1990) 336:115–45. doi: 10.1016/0550-3213(90)90345-E

216. Kawai H, Kitazawa Y, Ninomiya M. Scaling exponents in quantum

gravity near two-dimensions. Nucl Phys B. (1993) 393:280–300.

doi: 10.1016/0550-3213(93)90246-L

217. Kawai H, Kitazawa Y, Ninomiya M. Ultraviolet stable fixed point and scaling

relations in (2+epsilon)-dimensional quantum gravity. Nucl Phys B. (1993)

404:684–716. doi: 10.1016/0550-3213(93)90594-F

218. Aida T, Kitazawa Y. Two loop prediction for scaling exponents in

(2+epsilon)-dimensional quantum gravity. Nucl Phys B. (1997) 491:427–60.

doi: 10.1016/S0550-3213(97)00091-6

219. Bern Z, Carrasco JJM, Johansson H. New relations for

gauge-theory amplitudes. Phys Rev D. (2008) 78:085011.

doi: 10.1103/PhysRevD.78.085011

Frontiers in Physics | www.frontiersin.org 25 August 2020 | Volume 8 | Article 269126

https://doi.org/10.1103/PhysRevD.92.121501
https://doi.org/10.1140/epjc/s10052-018-5806-0
https://doi.org/10.1103/PhysRevD.97.106012
https://doi.org/10.1103/PhysRevD.96.065020
https://doi.org/10.21468/SciPostPhys.5.4.031
https://doi.org/10.1016/j.physletb.2019.01.071
https://doi.org/10.1103/PhysRevD.99.086002
https://doi.org/10.1088/1361-6382/ab4a53
https://doi.org/10.1088/1475-7516/2004/12/001
https://doi.org/10.1088/1475-7516/2018/12/004
https://doi.org/10.1016/j.physletb.2017.12.040
https://doi.org/10.1016/j.aop.2010.04.013
https://doi.org/10.1016/j.physletb.2017.08.002
https://doi.org/10.1088/0264-9381/27/7/075001
https://doi.org/10.1016/j.physletb.2013.10.015
https://doi.org/10.1016/j.physletb.2017.01.057
https://doi.org/10.1088/0264-9381/19/3/304
https://doi.org/10.1103/PhysRevD.66.125001
https://doi.org/10.1103/PhysRevD.69.104022
https://doi.org/10.1088/1126-6708/2005/02/035
https://doi.org/10.1103/PhysRevD.79.105005
https://doi.org/10.1103/PhysRevD.80.025001
https://doi.org/10.1166/asl.2009.1033
https://doi.org/10.1007/JHEP01(2010)084
https://doi.org/10.1016/j.aop.2010.11.003
https://doi.org/10.1007/JHEP05(2011)119
https://doi.org/10.1007/JHEP01(2013)062
https://doi.org/10.1007/JHEP03(2015)065
https://doi.org/10.1007/JHEP02(2016)167
https://doi.org/10.1016/j.aop.2019.167972
https://doi.org/10.1016/j.physletb.2019.01.021
https://doi.org/10.1103/PhysRevLett.123.101301
https://doi.org/10.1103/PhysRevLett.121.161304
https://doi.org/10.1016/j.physletb.2012.02.002
https://doi.org/10.1140/epjc/s10052-017-4619-x
https://doi.org/10.1103/PhysRevD.94.024007
https://doi.org/10.1093/ptep/ptx020
https://doi.org/10.1103/PhysRevD.96.106019
https://doi.org/10.1007/JHEP06(2011)079
https://doi.org/10.1088/1126-6708/2005/10/050
https://doi.org/10.1007/JHEP12(2011)012
https://doi.org/10.1103/PhysRevD.87.124028
https://doi.org/10.1088/1126-6708/2006/01/070
https://doi.org/10.1088/1126-6708/2007/01/049
https://doi.org/10.1016/0550-3213(78)90234-1
https://doi.org/10.1016/0370-2693(78)90225-3
https://doi.org/10.1016/0550-3213(90)90345-E
https://doi.org/10.1016/0550-3213(93)90246-L
https://doi.org/10.1016/0550-3213(93)90594-F
https://doi.org/10.1016/S0550-3213(97)00091-6
https://doi.org/10.1103/PhysRevD.78.085011
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

220. Ambjorn J, Carfora M, Marzuoli A. The Geometry of Dynamical

Triangulations. Vol. 50. (1997).

221. Ambjorn J, Goerlich A, Jurkiewicz J, Loll R. Nonperturbative quantum

gravity. Phys Rept. (2012) 519:127–210. doi: 10.1016/j.physrep.2012.

03.007

222. Loll R. Quantum gravity from causal dynamical triangulations: a

review. Class Quant Grav. (2020) 37:013002. doi: 10.1088/1361-6382/

ab57c7

223. Hamber HW. Quantum gravity on the lattice. Gen Rel Grav. (2009)

41:817–76. doi: 10.1007/s10714-009-0769-y

224. Hamber HW. Scaling exponents for lattice quantum

gravity in four dimensions. Phys Rev D. (2015) 92:064017.

doi: 10.1103/PhysRevD.92.064017

225. Falls K. Critical scaling in quantum gravity from the renormalisation group.

(2015).

226. Biemans J, Platania A, Saueressig F. Quantum gravity on foliated

spacetimes: asymptotically safe and sound. Phys Rev D. (2017) 95:086013.

doi: 10.1103/PhysRevD.95.086013

227. Ambjorn J, Loll R. Nonperturbative Lorentzian quantum gravity,

causality and topology change. Nucl Phys B. (1998) 536:407–34.

doi: 10.1016/S0550-3213(98)00692-0

228. Ambjørn J, Glaser L, Sato Y, Watabiki Y. 2d CDT is 2d
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In quantum gravity, we envision renormalization as the key tool for bridging the gap

between microscopic models and observable scales. For spin foam quantum gravity,

which is defined on a discretization akin to lattice gauge theories, the goal is to

derive an effective theory on a coarser discretization from the dynamics on the finer

one, coarse graining the system in the process and thus relating physics at different

scales. In this review I will discuss the motivation for studying renormalization in spin

foam quantum gravity, e.g., to restore diffeomorphism symmetry, and explain how to

define renormalization in a background independent setting by formulating it in terms of

boundary data. I will motivate the importance of the boundary data by studying coarse

graining of a concrete example and extending this to the spin foam setting. This will

naturally lead me to the methods currently used for renormalizing spin foam quantum

gravity, such as tensor network renormalization, and a discussion of recent results. I will

conclude with an overview of future prospects and research directions.

Keywords: quantum gravity, spin foam models, renormalization, coarse graining, numerical methods

1. A BRIEF INTRODUCTION TO SPIN FOAM QUANTUM GRAVITY

Spin foam quantum gravity [1, 2] is a promising approach to quantum gravity closely related to loop
quantum gravity [3]. The aim is to define the path integral for gravity in a non-perturbative and
background independent fashion, that is without any reference to a fixed background space-time
or structure.

The starting point of spin foam models is the Plebanski-Holst formulation of general relativity
[4], in which gravity is formulated as constrained topological BF theory [5]. To formulate this
theory as a path integral, one introduces a lattice as a regulator, more precisely a 2-complex, in
order to truncate the number of degrees of freedom. On this 2-complex, which is a collection of
vertices, edges and faces, the topological theory is first discretized and quantized. This is in close
analogy to 3D (topological) gravity, where this formulation gives rise to the Ponzano-Regge model
[6–8], a well-defined model of 3D quantum gravity defined on a triangulation.

However, gravity in 4D is not topological, which requires the implementation of so-called
simplicity constraints. In the continuum they serve the role to break the too many symmetries
of the theory and reduce the B-field in BF theory to a simple 2-form, reducing the action to
the familiar Holst action [9]. In spin foam quantum gravity, one derives such constraints for

the discretization of the classical B-field, so-called bivectors. In 4D, bivectors are assigned to 2D
faces, e.g., triangles, and encode their geometry. The constraints ensure that these bivectors are
simple, i.e., they can always be written as a wedge product of two vectors. Geometrically these
vectors span two edges of a triangle. Different versions of these discrete constraints agree for single,
classical building blocks, e.g., a 4-simplex, such that they correspond to different discretizations.
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Steinhaus Coarse Graining in Spin Foams

FIGURE 1 | (Left) A 4-valent intertwiner, dual to a tetrahedron, expanded in an orthonormal basis. The shape of a tetrahedron is not determined by the areas of its

four triangles. (Right) The intermediate representation gives the area of a parallelogram in the center of the tetrahedron. Its corners are located on the center points of

the edges of the tetrahedron according to the split of the intertwiner.

However, their implementation in the quantum theory,
which leads to restrictions on the variables of the theory,
generically results in different models with starkly different
dynamics. Two examples are the Barrett-Crane (BC) model
[10, 11] and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov
(EPRL/FK) model [12–14]. The former strongly implements
a condition on bivectors, which significantly reduces the
degrees of freedom of the model. This was criticized [15, 16]
and motivated the development of the EPRL/FK model, in
which constraints are implemented weakly, i.e., at the level
of expectation values. Despite these insights, in remains an
open question whether these constraints are sufficient to
recover general relativity in a continuum limit. The hope is
that coarse graining/renormalization can shed a light on this
intriguing question.

Despite these differences, all spin foam models are written
in a similar form. The 2-complex, which is frequently dual
to a triangulation, is colored with group theoretic data:
each face f carries an irreducible representation ρf of the
underlying symmetry group [Spin(4) for Riemannian, SL(2,C)
for Lorentzian signature], while each edge e carries an intertwiner
ιe, an invariant tensor in the tensor product of representation
spaces associated to faces meeting at an edge. These data
encode the geometry of the spin foam: in 4D, each edge is
dual to a 3D polyhedron, which has as many faces as (dual)
faces that share this edge. Then, the areas of these faces are
given by the associated representations ρf . However, this does
not determine the shape of the polyhedron uniquely, see e.g.,
a tetrahedron. A flat tetrahedron is uniquely determined by
specifying its six edge lengths, whereas it only has four faces.
Thus, the areas of these faces alone do not fix the shape of the
tetrahedron. Part of the information on the shape is stored in
the intertwiner, which can be expanded into an orthonormal
basis using group representation theory. For a tetrahedron, its
dual 4-valent intertwiner can be split into two 3-valent ones,
where the new link carries again a group representation labeling
the basis element. Geometrically this representation gives the
area of a parallelogram spanned by the midpoints of the edges
of the tetrahedron [5, 17], see also Figure 1. However, due to

the uncertainty principle the shape cannot be fully specified
since area operators associated with intersecting faces do not
commute and thus cannot be diagonalized simultaneously. Note
that coherent intertwiners can be defined that are sharply peaked
on the geometry of a classical polyhedron1.

From these 3D polyhedra a 4D geometry is built at the vertices
of a 2-complex. At such a vertex, several edges and faces meet,
indicating how 3D polyhedra are glued together to form a 4D
geometry. If two edges meet at the same vertex and are part of the
same face, their dual 3D polyhedra are glued along the shared
face. Crucially, since the representation associated to the face
determines its area, it is ensured that the face has the same area
in both polyhedra. From the group theoretic data, this “gluing”
is performed by contracting the intertwiners according to the
combinatorics of the 2-complex, which essentially amounts to
a spin network evaluation2. The resulting number is known as
the vertex amplitude Av, i.e., the amplitude of the spin foam
model assigned to the discrete 4D geometry dual to the vertex v
with configuration {ρf , ιe}. Similarly, we assign local amplitudes
to the Ae and Af to the edges e and faces f , respectively. The
former ensures that intertwiners are normalized, while the latter
corresponds to the dimension of the representation ρf . See Perez
[1] for more details of the derivation. Eventually, the path integral
is defined as a sum over all these configurations:

Z =
∑

{ρf ,ιe}

∏

f

Af

∏

e

Ae

∏

v

Av . (1)

Crucially, these geometric building blocks and amplitudes are
derived from general relativity formulated as a constrained

1These coherent intertwiners, called Livine-Speziale intertwiners [18] (see also

section 5.2), are given by a tensor product of coherent SU(2) states, which are

sharply peaked on the outward pointing normals of the faces of the polyhedron.

If these normals times their respective areas sum up to zero, these data uniquely

define a convex polyhedron by Minkowski’s theorem [19, 20].
2This spin network can be obtained by drawing a 3-sphere around a vertex in the 2-

complex. Edges, corresponding to intertwiners, intersect the sphere at nodes. Faces,

intersect the sphere at links, connecting the nodes, determining how to contract

the intertwiners.
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Steinhaus Coarse Graining in Spin Foams

FIGURE 2 | A spin foam in 3D with boundary. The boundary of this spin foam

is made up of an initial and a final graph, which carry states ψi and ψf ,

respectively. The links of a graph carry representations ρf , whereas the nodes

carry intertwiners ιe. For ψi , these are ρi , i = 1, 2, 3, and ι1. The data for ψf is

omitted for clarity of the figure. The 2-complex interpolates between these two

graphs and evolves the states. Thus, in the 2-complex, representations are

associated with faces and intertwiners with edges. Several edges meet at a

vertex v, here shown in blue. The vertex shown here is dual to a 3D

tetrahedron: four edges, each dual to a triangle, are glued together to

form a tetrahedron.

topological field theory. In case the spin foam has a boundary (see
Figure 2), it serves as an amplitude functional mapping states
from its boundary Hilbert space into the complex numbers. This
concept will be crucial in this review.

At the level of a few simplices, these models are well-explored.
A well-understood result across models, which furthermore
underlines the relation to general relativity, is the asymptotic
expansion of the vertex amplitude dual to a 4-simplex [21–
25]. In these works the vertex amplitude is investigated for
coherent intertwiners, which are sharply peaked on the geometry
of classical polyhedra. Then the vertex amplitude can be
written as an integral over several copies of the symmetry
group. This integral is then evaluated via a stationary phase
approximation by uniformly scaling up all representations.
Hence it is commonly referred to as large-j limit, in which the
amplitude is generically proportional to the cosine of the Regge
action [26, 27], a discretization of classical gravity. Physically,
this amplitude should be valid for 4-simplices of mesoscopic and
even macroscopic size. In recent years, numerical calculations of
the vertex amplitude beyond the asymptotic expansion have seen
promising progress [28, 29].

Beyond a single building block, the dynamics is less explored,
in particular how the choice of the 2-complex impacts the
results of the theory. Indeed, a priori the theory itself does not

specify how the 2-complex should be chosen. In this review
we take a viewpoint that is akin to lattice gauge theory, and
regard the 2-complex as a regulator, a particular choice to
truncate the number of degrees of freedom of the theory. As
such, physics must not depend on this choice and it is must
be removed eventually, e.g., in a continuum limit, in order to
derive consistent results. One route toward such a limit lies in
coarse graining: By coarse graining, i.e., defining an effective
coarse amplitude from a collection of fine ones, we readily relate
two theories defined on two different regulators. Moreover, by
coarse graining we gain insight into the dynamics of a collection
of building blocks and learn which configurations are more
relevant on a coarser scale. In short, the aim is to derive a
family of amplitudes to assign to different regulators, which
reproduce the same physics (at least approximately). This defines
a renormalization group flow of amplitudes [30, 31]. It is the
purpose of this article to review the progress of this approach and
outline how it helps turning spin foam quantum gravity into a
computational formalism.

This review is structured as follows: in section 2 we start
by outlining the most pressing challenges faced by spin foam
quantum gravity and how these are addressed by coarse graining.
Section 3 discusses the issue of restoring diffeomorphism
invariance in the discrete as well as the typical appearance
of non-local interactions under coarse graining, which is one
motivation for the consistent boundary formulation outlined
in section 4. Section 5 reviews two numerical methods
to perform such coarse graining algorithms, namely tensor
network renormalization and restricted path integral models.
In section 6 we conclude with several interesting future
research directions.

2. KEY CHALLENGES IN SPIN FOAM
QUANTUM GRAVITY

Before explaining renormalization in spin foam models and its
progress over the last decade, it is crucial to first discuss the
key challenges spin foam quantum gravity is facing and how
renormalization plays a vital role in overcoming them.

2.1. Fate of Diffeomorphism Symmetry
Diffeomorphism symmetry, as the fundamental symmetry of
general relativity, is deeply intertwined with the dynamics
of gravity. It implies that physics must not depend on the
choice of coordinates and only diffeomorphism invariant (Dirac)
observables are physically meaningful [32, 33]. Moreover, this
symmetry forbids a choice of a preferred or fixed background
space-time. Conversely, the complexity of this symmetry is a root
of the difficulty for defining a theory of quantum gravity; spin
foam models are no exception.

While spin foam quantum gravity embraces the concept
of background independence, the introduced regulator,
frequently a 2-complex dual to a triangulation, generically
breaks (a discrete remnant of) diffeomorphism symmetry
[34–36], often called a vertex translation symmetry [37].
There exist instances, where this symmetry is preserved
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in the discrete, where the discretization perfectly reflects
the continuum dynamics, or the symmetry can be restored
iteratively via coarse graining. We explain this in detail in
section 3. For spin foams to be a viable theory of quantum
gravity, diffeomorphism symmetry must be restored, at least
approximately, in order to derive reliable physical predictions.
There exists strong evidence that the amplitudes of the system
can be systematically improved via coarse graining [38–40],
such that the symmetry is broken less. Naturally the question
arises whether this procedure converges to a fixed point, which
would automatically imply an independence of the chosen
regulator. Due to the non-local nature of diffeomorphism
symmetry and in order to find a theory with propagating
degrees of freedom, we conjecture such a fixed point to lie
on a phase transition of second order. There it would be
possible to take the continuum (or rather refinement limit) of
the theory.

2.2. Discretization (In)dependence
Closely related to diffeomorphism symmetry is the question of
discretization (in)dependence. Generically the results computed
in spin foam models will depend sensitively on the chosen
regulator, e.g., the number of simplices and subsequently the
number of degrees of freedom. Moreover, there is no input
from the theory itself which regulator to choose. However, in
order to have a viable theory, it is imperative to find the same
results no matter which discretization is chosen, at least to
an approximation.

In the research community, there exist two complementary
paths addressing this question [41]. On the one hand, there is the
approach to solve discretization dependence by summing over
all possible regulators, e.g., triangulations. This summation over
triangulations (and topologies) is most holistically formulated
in terms of group field theories [42, 43], which are quantum
field theories formulated on several copies of a Lie group.
The fields represent atoms of space-time, e.g., tetrahedra,
whose interaction terms describe how 4D objects are formed,
e.g., five tetrahedra glued together to form a 4-simplex.
From this formalism, spin foam amplitudes arise as Feynman
diagrams in a perturbative expansion. As for all quantum field
theories, it must be shown that this theory is renormalizable,
e.g., via perturbative or non-perturbative methods, see [44]
for a review.

On the other hand, we discuss the refinement approach
[30, 31] in this review, where we interpret the triangulation
as a regulator to truncate the number of degrees of freedom,
similar to the lattice in lattice field theories. The idea to
overcome discretization dependence is by assigning different
amplitudes to different discretizations in such a way that the
results agree. One example is to derive coarse amplitudes
from fine ones via coarse graining. In this way, we are
relating theories across different discretizations. The goal is
to derive such relations for all possible discretizations, which
is equivalent to a complete renormalization group trajectory.
Again, this is similar to lattice field theory, where one also
assigns different theories to different lattices, parameterized by
coupling constants.

2.3. Computability
The choice of a discretization (and thus appropriate) amplitude
also enters, at least partially, in another key challenge for spin
foams, namely their computability. To be more precise, by
computability we refer to two interconnected issues. On the
one hand, there is the challenge to compute the fundamental
spin foam amplitudes for a single building block, e.g., a 4-
simplex. While this is well-studied and explored in the semi-
classical regime [21–25], in particular using coherent states and
stationary phase approximation, computing a vertex amplitude
in the quantum regime, e.g., for small spins, can only be done
numerically. However, in recent years there has been significant
progress in computing these amplitudes, e.g., for the EPRL/FK
in Euclidean and the more challenging Lorentzian signature
[28, 29, 45].

Renormalization and coarse graining become important at
the stages when we calculate amplitudes or observables for
multiple vertices/larger triangulations. Even if we have an
efficient way of calculating spin foam amplitudes (or can access
the relevant amplitudes from a database), summing over the
various degrees of freedom remains a difficult task for such a
high dimensional configuration space3. However, if we assume
that the full RG trajectory of the system is known, we can
use the discretization to our advantage and perform the same
calculation on a much coarser spin foam with appropriately
adapted amplitudes. Alternatively and more realistically, one can
envision coarse graining the system first, essentially evaluating it
in parts, deriving an effective theory on a coarser regulator from
a finer one. On this coarse theory, expectation values of coarse
observables can efficiently computed. This method is already
realized nowadays in tensor network renormalization techniques
[46–48], see e.g., [49]. Note that the existence of a continuum
limit is not assumed, rather we assume that coarse graining can
be performed without severe truncations.

2.4. Uniqueness, Phase Diagram, and
Continuum Limit
Discretizing a continuum theory is generically not a unique
process, take the 1D non-relativistic particle in a non-trivial
potential as an example. There exist many choices how to
discretize the potential, which all result in different dynamics.
However, the expectation is that, no matter the choice, we
reobtain the original continuum physics in a suitable continuum
limit (or approximate it well in a fine discretization). This is even
more severe in the case where the continuum theory possesses a
symmetry, like reparametrization or diffeomorphism invariance,
which is broken in general in the discrete [37, 38].

These topics, uniqueness of the theory, universality and the
continuum limit remain open questions in spin foam quantum
gravity. Modern spin foam models are frequently derived by
starting from topological BF theory and then imposing simplicity
constraints in the discrete [1]. The latter procedure is not unique,
where, e.g., the well-developed EPRL/FK model imposes the
linear simplicity constraints weakly [13, 14]. Some effects on

3Monte Carlo methods are only of limited use, since spin foam models are proper

quantum amplitudes, i.e., complex-valued and highly oscillatory.
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different choices of (implementations of) simplicity constraints
can be found in the literature [15], however a phase diagram
differentiating different universal dynamics is missing, and with
it potential hints for a continuum limit and UV-completion of
the theory.

These key challenges are deeply intertwined with one another
and can be addressed by a coarse graining/renormalization
scheme. In the following we review how our understanding of
these connections developed over time and what the role of
coarse graining is.

3. RESTORING DIFFEOMORPHISM
SYMMETRY IN THE DISCRETE

Regge calculus [26] is a discretization of general relativity. In
it the differentiable manifold is replaced by a D-dimensional
triangulation, whose edge lengths are the dynamical degrees of
freedom. Crucially, Regge calculus does not refer to coordinates
of vertices of the triangulation and is solely formulated in terms
of their distances. Hence it is manifestly coordinate free. Each of
the D-simplices is internally flat, i.e., its D + 1 vertices can be
embedded into R

D. Curvature is distributional and located on
(D− 2)-sublimplices, so-called hinges. To each of these hinges in
the bulk one associates a deficit angle ǫh, which is the difference
between the sum all dihedral angles of simplices meeting at this
hinge and 2π . This is nicely visualized in d = 2: Several triangles
meet at a single vertex. If their angles located at this vertex sum
up to 2π , it is flat and can be drawn on a piece of paper. However,
if the deficit angle differs from 0, e.g., if ǫh > 0, we can no
longer embed this collection of triangles into R

2 and observe
positive curvature around that vertex. Note that the edge lengths
are the only dynamical variables, as the dihedral angles are given
as functions of the edge lengths.

In addition to making no reference to coordinates, in some
instances Regge calculus possesses additional symmetries in the
discrete linked to diffeomorphism invariance [50]. One such
example is 3D Regge calculus for 3 = 0: its equations of
motion state that all deficit angles ǫe = 0 in the bulk, for
all boundary data, describing a theory that glues piecewise flat
tetrahedra in a flat way. Thus, it perfectly matches the continuum
solution. Moreover, the Regge action is invariant under vertex
translations, i.e., moving a vertex and accordingly changing the
edge lengths it is connected to. One such example is the 4-1
Pachner move: If we place an additional vertex in the center of a
tetrahedron, we can freely choose three edge lengths connecting it
to the vertices of the coarse tetrahedron. The fourth is then fixed
uniquely by the equations of motion. This symmetry is reflected
by nulleigenvalues of the matrix of second derivates of the action.

Moreover, the 3D Regge action itself is invariant under such
Pachner moves, i.e., local changes of the triangulation. See
Figure 3 for one such Pachner move in 3D. This renders it
triangulation independent, since any triangulation of a manifold
can be related to any other triangulation of the same manifold
by a consecutive application of Pachner moves [51, 52]. This
is not surprising, since 3D gravity is topological, i.e., has no
local degrees of freedom. Nevertheless, we are convinced that

triangulation independence and diffeomorphism symmetry in
the discrete, in the form of a vertex translation symmetry, are
closely related also beyond topological theories. Diffeomorphism
symmetry is deeply entangled with the dynamics of general
relativity. When perfectly realized in a discrete system, by fully
capturing the continuum dynamics, it is irrelevant whether we
consider a coarse or a fine discretization. Thus, the theory is
discretization independent. Invoking the invariance under vertex
displacements, we can imagine this by moving vertices on top
of each other, effectively removing them. Conversely, achieving
discretization independence by finding a fixed point of a coarse
graining flow, e.g., on a second order phase transition, does
not necessarily imply that diffeomorphism symmetry is restored,
yet this conjecture is supported by several examples that we
outline below.

A nice example how coarse graining can improve an action (or
amplitudes in the quantum case) is again 3D Regge calculus with
a non-vanishing cosmological constant. Due to the cosmological
constant, the equations of motion state that deficit angles do not
vanish. Moreover, the theory is not triangulation independent
and the vertex translation symmetry is broken. In [38], Bahr and
Dittrich device a coarse graining scheme for the triangulation: On
a refined triangulation, subdividing large edges into small ones,
they solve the equations of motion for the small edges and define
an effective action for the remaining large ones. This procedure
converges to a fixed point action, which describes Regge
calculus for constantly curved tetrahedra. On this fixed point,
deficit angles vanish, the theory is triangulation independent
(by definition) and the vertex displacement symmetry is
restored. Indeed, this improved discretization/action encodes
the continuum solution in the discrete, thus implementing a
discrete remnant of diffeomorphism symmetry. Moreover, since
it correctly captures the continuum dynamics, no information or
accuracy is lost when using coarse triangulations. An analogous
quantum version is the Turaev-Viro spin foam model [53],
defined as a quantum deformed Ponzano-Regge model [6].

There exist several instances where the continuum solution
is pulled back to the discrete setting, where the discrete
theory possesses a vertex translation symmetry. One example
is 4D Regge calculus [50], when the boundary data allow for
flat solutions in the bulk, or the 1D quantum parameterized
(an)harmonic oscillator [37]. In general we cannot guess these
solutions, but with coarse graining methods we can construct or
at least approximate them well. However, the examples that we
discuss here are either topological or one-dimensional, and hence
it is possible to retain a local description. For higher dimensional,
interacting theories, non-local interactions appear, which can be
a stumblestone for coarse graining methods.

3.1. Non-localities
Before explaining non-localities or non-local interactions, we first
need to state what a local theory is in this context. Inmost discrete
theories, we associate variables to parts of the discretization,
e.g., in spin foam models we assign irreducible representations
ρf to faces f of the dual complex and intertwiners ιe to edges
e. In Regge calculus, we assign edge lengths le to the edges
e of a triangulation. We define this theory to be local if the
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FIGURE 3 | The 4-1 Pachner move in 3D: the 3D Regge action is invariant under this move. Moreover, the configuration on the left hand side possesses a vertex

translation symmetry. Three of the edge lengths connecting the inner vertex to the remaining ones can be chosen freely; the fourth one is then uniquely determined.

partition functions is given by a product of amplitudes assigned
to (sub)simplices or if the action is given as a sum over actions
assigned to (sub)simplices. Moreover, the action and amplitude
for each (sub)simplex only depend on those variables attached to
(sub)simplices contained in the (sub)simplex. Spin foam models
are an example for such local theories, since the partition function
is given via a local assignment of vertex, edge and face amplitudes,
see Equation (1). Similarly, the Regge action can be written
as a sum over contributions associated to the D-simplices of
the triangulation.

When we apply coarse graining methods to such interacting,
i.e., non-topological, theories, it is highly unlikely that this local
form of the theory can be preserved. There exist several examples
in the literature where this has been shown in the past. In
[54], 4D Regge calculus was linearized around a flat background
solution and the perturbations of the edge length integrated over.
The question is whether it is possible to find a path integral
measure that is invariant under Pachner moves. However, when
integrating out these degrees of freedom, one picks up a non-local
factor that cannot be written as a local product. In [55] it is shown
that said factor is related to a condition whether the six vertices
involved in the Pachner move lie on a 3-sphere. Moreover, these
articles reveal that the 4D Regge action itself is not invariant
under Pachner moves. In a similar vain, [56] studies Pachner
moves in 4D holomorphic spin foammodels [57]. The advantage
of thesemodels is that Pachnermoves can be explicitly computed.
Again, the resulting amplitude is non-local, in the sense that
the resulting expression cannot be written as a assignment of
local amplitudes.

To illustrate this point further let us consider the concrete
example of the 2D Ising model.

3.1.1. Ising Model as an Example
There exist plenty of ways to coarse grain discrete systems. A
straightforward example is the 2D Ising model subject to a simple
decimation procedure, where one simply sums over “every other”
spin to derive an effective model on a larger scale.

We consider the Ising model defined on a regular 2D lattice
with vanishing external magnetic field. There are only nearest
neighbor interactions, i.e., an Ising spin σi ∈ {−1, 1} only
interacts with its direct neighbors. Then we can write the

partition function as product of weights associated to the edges
of the lattice:

ZIsing =
∑

{σi}

∏

e

exp(β σs(e) σt(e)) , (2)

where β is the inverse temperature, and s(e)/t(e) denote the
source and target of the edge e4. Note that the system has a global
Z2 symmetry, it remains invariant if all spins are flipped.

We implement a decimation procedure by summing over
every other spin, essentially evaluating the partition function in
parts. In order to derive the new effective amplitude of the system,
it is sufficient to consider four Ising spins σ1, . . . , σ4 that all
connect to another Ising spin σ̃ , see Figure 4. The four coarse
spins sit on the corner of a coarser square rotated by 45◦ with
spin σ̃ in the center of the square. We obtain:

∑

σ̃

exp(β σ̃ (σ1+σ2+σ3+σ4)) = 2 cosh(β (σ1+σ2+σ3+σ4).

(3)
Clearly this expression is not of the same form as the original
action, in particular is not written in terms of Z2 group
multiplications. Nevertheless, the remaining spins still satisfy
the global Z2 symmetry. Thanks to this global symmetry, this
expression can only take three different values depending on the
configurations of the four spins {σi}; either all spins are aligned,
one is not aligned with the others or we have two pairs of aligned
spins. To express this again in terms of spin interactions, wemake
the most general ansatz of four spin interactions compatible with
the global Z2 symmetry:

A(σ1, σ2, σ3, σ4) : = exp(a (σ1σ2 + σ2σ3 + σ3σ4 + σ1σ4)
+b (σ1σ3 + σ2σ4)+ c σ1σ2σ3σ4 + d) . (4)

a is the parameter for nearest neighbor interactions, b for next-
to-nearest neighbor interactions, c for a four spin interaction and
d is a constant. We can compare these equations directly for each

4The choice of orientation is fiducial, but allows for a short-hand notation.
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FIGURE 4 | (Left) Decimating an Ising spin in the 2D model results in non-local interactions among all four spins the decimated spin is connected to. (Right) In the

next step, decimating one spin, here in yellow, would result in an amplitude non-locally depending on eight spins.

configuration:

exp(4a+ 2b+ c+ d) = 2 cosh(4β) all σi = ±1

exp(−c+ d) = 2 cosh(2β) σi = σj = σk = −σl
exp(−2b+ c+ d) = 2 σi = σj = −σk = −σl

exp(−4a+ 2b+ c+ d) = 2 σi = −σj = σk = −σl ,
(5)

where we denote a cyclic order i, j, k, l around the square. Here
we have four equations for four unknown parameters, which we
can straightforwardly solve. We leave deriving the solution to the
interested reader.

The coarse grained amplitude is notably different than the
initial one. While we find again nearest neighbor interactions,
new non-local interactions appear as well. From this new form
it is not obvious how to return to the original expression.
Moreover, it is not clear how to iterate the procedure without
approximations: decimating one spin alone results in non-local
interactions among eight spins, some of which ought to be
decimated as well, see again Figure 4. Nevertheless, already this
simple example hints toward a resolution: the non-localities
arise since we attempt to express the coarse grained dynamics
in terms of the old degrees of freedom and building blocks.
Yet we can still write the partition function as a local product
of amplitudes associated to rotated squares, where the non-
local interactions are completely contained within these locally
assigned amplitudes. In the next section we introduce this
change of perspective more concretely and discuss the concept
of generalized boundary data5.

4. CHANGE OF CONCEPT: GENERALIZED
BOUNDARIES AND AMPLITUDE MAPS

The vital insight to arrive at a practical coarse graining scheme
for spin foams is the following: instead of pertaining the original
degrees of freedom and building blocks, e.g., simplices, and

5Note that the discussion of the Ising model is primarily to give an intuitive

example on how non-local interactions arise under coarse graining. Since the

2D Ising model is solved analytically [58], it is ideal to test the capabilities and

feasibility of new coarse graining approaches. See e.g., [59] for an overview of

real-space renormalization techniques in statistical physics.

allowing more and more complicated, non-local interactions
among them, we work with locally interacting amplitudes, which
allow for more general and complex boundary data. The non-
locality is still present, yet contained within the amplitudes
and expressed as interactions of these boundary data. Thus,
the complexity of the boundary data controls the non-locality
preserved under coarse graining and the complexity of the
amplitude. Truncating the boundary data allows us to introduce
controllable approximations, while the partition function is still
written as a local assignment of amplitudes. This we can iterate
a coarse graining procedure that only needs to consider few
building blocks at a time.

As a path integral approach, spin foam quantum gravity is
already phrased in this language, as amplitude functionals for
certain boundary states. Take a spin foam on a 2-complex Ŵb with
boundary b. Since the 2-complex is discrete, namely a collection
of faces, edges and vertices, its boundary b is also discrete, namely
a graph, with nodes and links. The complexity of this boundary
depends on the number of nodes and links. To each of these
boundaries b one associates a boundary Hilbert spaceHb, whose
complexity again depends on the complexity of the boundary. A
spin foam model for said two complex then acts as an amplitude
functionalAb mapping states ψb ∈ Hb → C.

The vital difference is that we allow for more general building
blocks, in particular with more complex boundary data and
thus boundary Hilbert spaces. When using Pachner moves,
one integrates out bulk degrees of freedom while keeping the
boundary unchanged. In 4D, when performing a 4− 2 move, one
integrates out bulk variables and derives one effective amplitude
for two glued 4-simplices, prescribed by the same boundary
data. However, splitting this effective amplitude into two, one
assigned to each building block, is not straightforward due to
the previously mentioned non-local interactions. Instead, we
allow for more general building blocks with more complicated
boundary data. That way, we still have local assignments of
amplitudes to building blocks, which in turn interact locally with
neighboring ones. In turn, non-localities still arise, yet they are
contained in each building block and captured by more complex
boundary data.

While this picture recasts the problem of arising non-
localities, three immediate challenges arise. Firstly, iterating this
procedure leads to more and more complicated building blocks,
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whose amplitudes are still given by the fine boundary degrees of
freedom. From this perspective we have not achieved a derivation
of coarse scale physics, since the dynamics are still expressed
in terms of fine scale degrees of freedom. Secondly, in order
to define a renormalization group flow it is crucial to compare
amplitudes after each coarse graining step. And thirdly, deriving
amplitudes with more and more complex boundary data quickly
becomes unfeasible, independent whether one is using analytical
or numerical techniques, as one can already see for the 2D
Ising model.

Hence, the next vital ingredient for a coarse graining scheme
is the introduction of variable transformations, that map a
collection of fine boundary degrees of freedom to a collection
of coarse effective degrees of freedom. More precisely, we want
to map states on a fine boundary Hilbert space Hb′ on b′ to
a coarse boundary Hilbert space Hb on b. In the next section,
we will explain the idea behind this concept and its physical
interpretation. To do so, we work in the opposite direction and
explain how to add degrees of freedom using embedding maps.

4.1. Embedding Maps and the Notion of
Vacuum
As outlined above, a key idea of any renormalization procedure is
to compare and relate theories defined on different scales. Given
two spin foam amplitudes Ab and Ab′ , which are functionals for
the Hilbert spacesHb andHb′ , respectively, these amplitudes can
only be compared for the same physical processes. That is, given
a state ψb in the coarse Hilbert space Hb one must represent
ψb in the Hilbert space Hb′ . Then, each states can be evaluated
with their respective amplitude and the results compared. For this
purpose one defines so-called embedding maps:

ιb′b :Hb −֒→Hb′ . (6)

For this to work, the boundary b must be embeddable into the
boundary b′, denoted as b ≺ b′. Thus, the boundaries b form
a partially ordered set. In case that two boundaries b and b′

cannot be directly related, i.e., b cannot be embedded into b′, one
embeds both into a common refinement b′′, written as b ≺ b′′

and b′ ≺ b′′.
Hence, the goal is the following: given a state ψb in a coarse

Hilbert spaceHb, we want to define an equivalence class of states
in all finer, more complex Hilbert spaces Hb′ in order to readily
compare the associated amplitude functionals. This equivalence
class of states is defined as follows: given two states ψb ∈ Hb and
φb′ ∈ Hb′ ,

ψb ∼ φb′ ⇐⇒ ιb′′b(ψb) = ιb′′b′ (φb′ ) ∀ b′′s.t. b ≺ b′′and b′ ≺ b′′ .
(7)

For this condition to be well-defined, the embedding maps
need to satisfy a consistency condition, referred to as
cylindrical consistency:

ιb′′b′ ◦ ιb′b = ιb′′b with b ≺ b′ ≺ b′′ . (8)

Essentially, it should not matter whether a state is directly
embedded into a fine boundary b′′ or via an (or any other)

intermediate boundary b′. Given these conditions and relations,
one can (at least formally) define a continuum Hilbert space via
an inductive limit:H : = ∪bHb/ ∼.

Beyond this formal definition, the action of embedding maps
is best understood in the following way. As illustrated before,
they serve the purpose of representing a coarse state in a finer
Hilbert space, which can encode more complex configurations.
Hence, embedding maps specify how and in which state degrees
of freedom are added. Moreover, they thus define an inner
product allowing us to compare states across Hilbert spaces.
Since the information of the coarse state ought to be unchanged,
these new degrees of freedom are added in a vacuum state
prescribed by the embedding map. These concepts are familiar
in the kinematical Hilbert space of loop quantum gravity [3]
expressed in terms of spin network functions, where new degrees
of freedom are added in the Ashtekar-Lewandowski vacuum
[60, 61], which describes no space. In contrast, a dual BF
representation [62–64] constructed in the last few years adds
degrees of freedom that are peaked on flat connections. However,
this notion of vacuum does not imply that this is a physical
vacuum. Both examples given above are kinematical vacua
in 4D gravity, i.e., they do not satisfy diffeomorphism and
Hamiltonian constraints.

4.2. Renormalization Group Flow of
Amplitudes
Once given such a choice of embedding maps, these can be
readily used to compare spin foam amplitudes. Again, given two
amplitudes Ab and Ab′ , a state ψb ∈ Hb and an embedding map
ιb′b, we compare both amplitudes:

Ab(ψb)
?= Ab′ (ιb′b(ψb)) = :A

′
b(ψb) . (9)

Due to the embedding map, we define an effective amplitude
A

′
b
for the coarse Hilbert space Hb from the fine one Ab′

for Hb′ . If performed for all possible states in Hb′ , we obtain
the coarse grained amplitude. Thus, embedding maps, which
specify how to add degrees of freedom under refinement of
states, serve as coarse graining maps for amplitudes. There,
they specify how to define effective degrees of freedom.
Consequently, since b′ can capture more information that
b, embedding maps also encode how to truncate degrees
of freedom.

To summarize, a class of embedding maps defines a coarse
graining/renormalization group flow of amplitudes, formulated
with respect to their boundary. This flow is given by the
following equation:

A
′
b = Ab′ ◦ ιb′b . (10)

To showcase the implications for the system as a whole, it is
instructive to consider the partition function of the system. For
simplicity, we assume that we can write it as a collection of
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FIGURE 5 | The basic steps of coarse graining: blocking of amplitudes, summing over fine degrees of freedom and introduction of embedding maps to define an

effective amplitude for the original Hilbert space Hb.

amplitudesAb
6:

Z =
∑

jb

∏

b

Ab(jb) =
∑

jb′

∏

b′





∑

jb∈bulk of b′

∏

b⊃b′

Ab(jb′ , jb)





= :

∑

jb′

∏

b′

Ab′ (jb′ ) (11)

The original partition function is given as a product of amplitudes
Ab assigned to building blocks with boundary Hilbert space Hb.
This Hilbert space is spanned by an orthonormal basis with labels
jb. In the second equality, we perform a blocking of amplitudes,
e.g., of 16 vertex amplitudes for hypercubic combinatorics. The
degrees of freedom jb are split into two groups: one group
makes up the boundary degrees of freedom jb′ of the blocked
amplitudes, while the other are block “bulk” degrees of freedom
jb and are summed over. The latter part is then summarized as
the fine amplitudeAb′ . See Figure 5.

As the final step, we implement the embedding maps (or
rather coarse graining maps) to derive the effective amplitudeA′

b
for the original Hilbert space.

Z =
∑

jb′

∏

b′

Ab′ (jb′ ) ≈
∑

jb

∏

b





∑

jb′

ιb′b(jb′ , jb)Ab′ (jb′ )





= :

∑

jb

∏

b

A
′
b(jb) (12)

In this context, the embedding maps serve as variable
transformations and truncations, see again Figures 5, 6 for more
details. Indeed, this inclusion of embedding maps necessarily
alters the partition function of the system, and we must ensure
that we can still draw reliable conclusions about the original
system. Thus, the combined embedding maps from neighboring

6 E.g., this is the case for spin foam models defined on 2-complexes with regular,

i.e., hypercubic, combinatorics. Due to the regularity, the system can be written

purely as a collection of vertex amplitudes.

amplitudes should be close to the identity on the respective
Hilbert space, in the sense that we only truncate irrelevant
degrees of freedom. For example this is realized in tensor network
renormalization, where these embedding maps are unitary as we
explain in section 5.1.

Essentially, with this coarse graining procedure, we achieve
two goals. On the one hand, we evaluate the partition function in
parts, purely from local considerations of a subset of amplitudes.
This is computationally efficient and makes calculations more
accessible. On the other hand, we derive an effective theory on a
coarser lattice, with less degrees of freedom, from a theory defined
on a finer lattice. That way, we relate two theories on two different
regulators by assigning different amplitudes to different lattices.
Thus, the renormalization group flow of spin foam quantum
gravity is defined as a family of amplitudes assigned to a family
of 2-complexes/discretizations:

A → A
′ → A

′′ → . . . . (13)

Before we discuss the consequences of this renormalization
group flow in detail, it is important to discuss the role of the
embedding/coarse graining and how they ought to be chosen.

4.3. Dynamical Embedding Maps and the
Physical Vacuum
The embedding maps play a pivotal role in the renormalization
group flow. Generically, different embedding maps result in
different flows, since they determine how the effective coarse
degrees of freedom depend on the fine ones. Thus, if one fixes the
embedding maps a priori, this choice must be carefully checked.
Instead, it is vital that these maps are directly determined from
the dynamics encoded in the amplitudes themselves [30, 31, 40].

This reasoning is intuitive to follow, e.g., consider the Ising
model. The effective degrees of freedom most suitably describing
the coarse dynamics are sensitive to the temperature and
significantly differ between low and high temperature. Hence,
one size does not fit all: fixing embedding maps a priori can
seriously distort the RG flow and give wrong results. Thus, we
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FIGURE 6 | Definition of the effective amplitude A
′
b defined as the concatenation Ab

′ ◦ ιb′ b.

are convinced that dynamical embedding maps are vital for a
successful coarse graining scheme.We explain how to implement
this in practice in section 5.1 on tensor network renormalization.
For now, we discuss its implications and physical interpretation.

As discussed above, embedding maps are prescriptions how
and in which state degrees of freedom are added under
refinement. In particular they allow to relate and identify
states across Hilbert spaces, defining an inner product and
notion of vacuum. When these embedding maps are chosen
dynamically, i.e., with respect to the dynamics encoded in the
amplitude, the new degrees of freedom are added in a dynamical
vacuum state.

General relativity is a totally constrained theory, i.e., in
a canonical formulation its evolution is not governed by a
Hamiltonian but rather by a sum of constraints, namely the
diffeomorphism and Hamiltonian constraints. These constraints
are generators of gauge transformations, which implies that
evolution in gravity amounts to gauge transformations. This is
known as the infamous problem of time [65]. For a quantum
theory, the goal is to find the physical Hilbert space, i.e., the space
of all states that are annihilated by all the constraints. Therefore,
given an initial physical state, evolution by the constraint
operators leave the physical state unchanged. Following this
insight, dynamical embedding maps in a quantum gravity
theory should be physical embedding maps that add degrees
of freedom in the physical vacuum under refinement. Thus,
such embedding maps do not add new information to the
state and represent the same physical state on a finer boundary
Hilbert space.

In the context of path integral formalisms of gravity,
this insight is particularly intriguing: since evolution in the
canonical formulation is governed by constraint operators,
the path integral merely imposes the constraints, projecting
out kinematical degrees of freedom and leaving physical
states unchanged [30]. In short, the path integral serves as a
projector onto the physical Hilbert space. Indeed, this insight

is one of the original motivation behind constructing spin
foam models in the attempt to define a riggin map/physical
inner product for kinematical states of loop quantum
gravity [3].

Following this line of thought, spin foams themselves are
dynamical embedding maps. Consider a spin foam evolving an

initial state to a final state, where these states are defined on
different boundaries7. When interpreting the spin foam as a map
from one Hilbert space to another, instead of as an amplitude
functional, it is by definition an embedding map. Moreover, if
the spin foam acts as a projector onto the physical Hilbert space,
concatenated spin foams still act as a projector, implying path
independence of evolution. Conversely, this is interpreted as first
evolving to an intermediate state, thus cylindrical consistency
conditions of embedding maps are satisfied. Additionally, the
projector property implies that this evolution is independent of
the choice 2-complex/discretization, and it would mark a fixed
point of the renormalization group flow:

Ab = Ab′ ◦ ιb′b . (14)

This implies that assigning the same amplitude to all
discretizations gives the same results.

All of the conditions mentioned above are highly non-trivial
and rely on a perfect implementation of diffeomorphism
symmetry in the discrete. Indeed, this assumption is hidden
in the projector property of the path integral/spin foam,
which implies an implementation of diffeomorphism and
Hamiltonian constraints. Path/discretization independence
follow immediately and underline the strong connection of
diffeomorphism symmetry and discretization independence. In
fact, this construction would be a realization of the perfect action
program [38] for quantum gravity and would imply that the
dynamics of quantum gravity are solved non-perturbatively and
pulled back onto the discrete.

Unsurprisingly, these conditions are not met by spin foam
models: spin foam amplitudes do not act like projectors [42,
69] and explicitly break diffeomorphism symmetry [34, 36].
Furthermore, it is unlikely that these conditions can be perfectly
realized without approximations in full generality. Thus, the goal
of the coarse graining scheme is to iteratively improve spin foam
amplitudes in order to well approximate the ideal solution. We
discuss this in the next section.

7 For an in-depth derivation of a canonical formalism for phase spaces and

Hilbert spaces of varying dimension/complexity and the appearance of pre-/post-

constraints, see [66–68].
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4.4. Lessons From the RG Flow
The idea behind the coarse graining method outlined above is
that it allows us to iteratively improve the amplitudes, such that
the conditionsmentioned above are approximately implemented.
Furthermore, we can tackle discretization dependence of the
theory. The expectation is that on a second order phase transition
the regulator can be removed and diffeomorphism symmetry is
restored. Let us explain this step by step.

Firstly, it is straightforward to recognize that the
renormalization group flow addresses the question of
discretization dependence and choice of 2-complex. By deriving
an effective amplitude Ab from coarse graining Ab′ , we directly
relate theories on 2-complexes defined from building blocks with
boundaries b and b′, respectively. This information is vital for
any discrete theory: it states that we perform (approximately) the
same calculation on b when usingAb as on b′ when usingAb′ . In
particular, following this prescription, it does not matter whether
we calculate a coarse observable on the coarse or the fine lattice.
Thus, we account for the discretization dependence of the theory
and ensure at the same time that the results are reliable. Indeed,
understanding this behavior is indispensable when trying to
make contact with experiments.

Understanding the lattice dependence of the theory is an
important step toward determining when and how the regulator
can be removed entirely. To this end, one has to study the
whole coarse graining flow, that is choose an initial amplitude
(e.g., given by a choice of parameters) and follow the flow
until it reaches a fixed point. Within a certain approximation,
e.g., restricting to finite dimensional boundary Hilbert spaces,
this generically happens. These attractive fixed points frequently
describe topological theories8, where a continuum limit can be
trivially taken. However, these theories do not describe gravity in
four dimensions, since they lack propagating degrees of freedom.
Furthermore, these attractive fixed points denote the phases of
the theory.

All initial amplitudes, e.g., all amplitudes from a certain
region in parameter space, that flow under coarse graining to
the same attractive fixed point lie in the same phase. These
theories have the same dynamics on sufficiently coarse grained
discretizations and thus lie in an universality class and share
qualitative features, e.g., in expectation values of observables. An
example would be the strong coupling phase in lattice gauge
theory, in which one expects the Wilson loop operator to satisfy
an area law. Frequently models possess multiple phases with
phase transitions separating them. We are particularly interested
in phase transitions of second order.

In standard lore, second order phase transitions are
characterized by a diverging correlation length. This implies that
degrees of freedom infinitely far away are correlated and, thus,
infinitely many degrees of freedom are relevant for the dynamics.
Moreover, right on the phase transition, the system is scale-
invariant, i.e., physics do not change with scale. Therefore, on
a second order phase transition one can take the continuum

8This is expected for discretization independent theories with finitely many

degrees of freedom. Examples are the Ponzano-Regge model in 3D [6], or more

generically BF theory in any dimension [5].

limit to arrive at a continuum theory with propagating degrees
of freedom.

We expect the same to hold for second order phase transitions
in spin foam models, with a slightly different interpretation:
Background independent theories lack an absolute length scale.
Still, the regulator allows us to define a combinatorial distance.
Essentially, the idea is to define a distance between vertices of
the 2-complex, by counting the number of vertices one has
to pass in order to reach the other one. If they are directly
connected by an edge, this distance would be one9. Then, on
a second order phase transition, degrees of freedom that are
infinitely “far” away with regard to the lattice are correlated and
the combinatorial correlation “length” diverges. Furthermore,
the notion of scale invariance is consequently replaced by a
discretization independence/invariance, fixed point equations for
the amplitudes are satisfied and a continuum/refinement limit
can be taken. The implications of constructing the theory on
this fixed point must be stressed: Due to the discretization
independence, calculations can be performed in the continuum
or on any discretization, giving the same results. This exactly
corresponds to the idea of perfect action, and thus solving
the coarse graining flow corresponds to solving the theory on
all lattices.

Nevertheless, two caveats must be observed: firstly, finding
such a second order phase transition (if it exists) does not
guarantee that the corresponding theory is a correct theory of
quantum gravity. Secondly, if infinitely many degrees of freedom
become relevant, truncated coarse graining schemes can only
approximate the desired theory to a certain order, as it is the case
in other renormalization schemes.

In the next section we discuss the notion of scale in
more detail.

4.5. Background Independence and the
Interpretation of Scale
Before we continue with reviewing how to coarse grain in
practice, it is crucial to discuss the notion of “scale”—or the
lack thereof. As a background independent approach, one cannot
assign a scale to a spin foam since one sums/superimposes all

possible geometries (allowed by a certain 2-complex). Thus,
we use the 2-complex itself, here formulated via the boundary
of the amplitudes, to order degrees of freedom according to
a relative scale. Consequently, we replace the familiar notions
of ultraviolet (UV) and infrared (IR) by “fine” and “coarse,”
respectively. Following this perspective, we are not integrating
out short scale degrees of freedom under coarse graining. Instead,
we sum over finer discrete degrees of freedom and define effective
coarse degrees of freedom, which encode (superpositions of)
geometries of different scales.

Alternatively, one can introduce a specific scale in this coarse
graining procedure via boundary states. That is, we do not

9This idea is inspired by a similar concept in Causal Dynamical Triangulations

[70], where the distance between two vertices of the triangulation is given by the

minimal number of links between them, albeit with the notable difference that each

length has a specified length assigned to it. This concept is used, e.g., to measure

the geodesic distance between two vertices [71].
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FIGURE 7 | The basic idea of tensor network renormalization: write the partition function as a contraction of a tensor network of tensors T and then locally manipulate

the tensors, such that the same partition is approximated by a coarser network of effective tensors T ′. This defines a flow in “tensor space”.

consider the entire Hilbert space, but only a specific state because
we are interested in studying a transition of geometries. Then,
this fixed boundary states introduces a physical scale via the
encoded 3D geometry, e.g., implemented in the restricted path
integral formalism, see section 5.2.

A further comment on the coarse graining scheme is in
order: here we purely formulate it in terms of the boundary
discretization and its associated boundary Hilbert space, not in
terms of the bulk. From a practical perspective these questions
are less important, e.g., if one assumes regular combinatorics
such that the coarse graining procedure can be straightforwardly
iterated; then both the boundary and bulk form totally ordered
sets. Nevertheless, there is a proposal by Bahr [72] for
formulating the coarse graining scheme in the bulk, essentially
by defining embedding maps for 2-complexes.

5. COARSE GRAINING METHODS

For the rest of this article, let us focus on numerical methods that
allow us to realize this coarse graining method in practice and
review the results.

5.1. Tensor Network Renormalization
Methods
Tensor network methods originate in the fields of quantum
information and condensedmatter and aim at efficiently studying
quantum many body systems. In this review we focus on
tensor network renormalization methods10 [46–48], a numerical
algorithm for coarse graining discrete systems. To this end the
partition function of the system is represented as a contraction
of a tensor network. In the context of this article, a tensor Tabc...

is best understood as the amplitude assigned to a region. The
boundary data of these amplitudes are represented as indices

10 There also exist tensor network methods that aim at constructing specific states

of many body quantum systems, e.g., matrix product states (MPS), projected

entangled pair states (PEPS) [73] or multi-scale entanglement renormalization

ansatz (MERA) [74]. Their goal is to efficiently represent a small subspace of an

exponentially large Hilbert space, containing the ground state.

of the tensor, which is graphically represented as a vertex with
as many legs as it has indices. The partition function is then
rewritten as a contraction of tensors:

Z =
∑

a1b1c1...

Ta1b1c1d1Tc1b2c2d2 · · · = Tr(T T . . .T) . (15)

Graphically, each identified and contracted index is represented
by connecting the respective tensor indices. Thus, the partition
function is represented by a collection of tensors connected to
one another in a local fashion, a tensor network, see Figure 7.

So far, this is merely a rewriting of the original system. The
goal is to locally manipulate the tensors in order to rewrite the
partition function as a coarser tensor network, see again Figure 7.
This may require truncations/approximations for which the error
can be estimated. There exist several tensor network schemes, yet
they all have a series of steps in common that we illustrate for a
concrete example.

For simplicity, take a 2D quadratic tensor network. One step
present in all tensor networks is an explicit summing of degrees
of freedom, referred to contraction of indices. In our network we
group together four tensors T and sum over their shared indices
and obtain a new tensor T̃, which has twice as many indices, yet
the network remains local, see Figure 8.

T̃a1a2b1b2...d1d2 : =
∑

ijkl

Tb1ila1Tlkd1a2Tb2c1jiTjc2d2k . (16)

We observe an immediate issue: if the original tensor had
an index range of χ , called the bond dimension, the new
tensor has a range of χ2. Thus, while we evaluate the partition
function in steps, we cannot continue indefinitely without
truncations/approximations. To implement those, dynamical
variable transformations are derived from the T̃ via a singular
value decomposition. That way, we define effective coarse degrees
of freedom as functions of the fine ones. Crucially the effective
degrees of freedom are derived from the dynamics encoded in
the tensors. This works as follows:
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FIGURE 8 | The embedding maps are computed from the contracted tensor with multiple indices. It is split apart into two tensors, connected by a new effective edge

labeled by the singular values indicating the relevance of the degree of freedom. The green, three-valent tensor then serves as an embedding/coarse graining map for

the fine degrees of freedom.

Given the new tensor T̃, we intend to map two indices into an
effective one. To do so, we split T̃ in two, separating the strands
a1, a2 from all other variables. This is generically not possible
unless the tensor factorizes. To split the tensor, we first rewrite
it in terms of a matrix MAB, where index A = {a1, a2} and
B contains all remaining indices. On this matrix we perform a
singular value decomposition:

T̃(a1,a2),(b1,b2 ,...,d1 ,d2) = :MAB =
χ2
∑

i=1

UA,i λi (V)
†
i,B . (17)

The matrices U and V are unitary and contain the left and right
singular vectors of M. λ is a diagonal matrix of singular values,
where λ1 ≥ λ2 ≥ · · · ≥ λχ2 ≥ 0. See right side of Figure 8.

If we translate thematrix indicesA and B back into the original
tensor indices, we see that the singular value decomposition
allows to write the tensor T̃ as the contraction of a three-
valent and a seven-valent tensor, where the summed index i
labels the singular values. The three-valent tensor U encodes
the desired variable transformation, translating the degrees of
freedom a1, a2 into an effective coarse degree of freedom/index
i. This transformation is exact, since i (generically) has a range
of χ2. Since U is a unitary matrix, we can introduce resolutions
of identity UU† in the partition function (see left of Figure 9)
without changing it and sum over the indices a1, a2 as well as the
indices c1, c2 on the opposite site. Then we repeat this procedure
for the remaining indices to obtain a new effective tensor T′, see
right side of Figure 9.

Hence, we define a new effective tensor, yet its index range
is still χ2, and we cannot continue to iterate this procedure
without truncations. The singular value decomposition allows us
to implement this truncation in an optimal way. Since all singular
values are positive semi-definite and ordered in size, λi

λ1
indicates

how significant i is with respect to the most significant one, i = 1.
Indeed, we can approximate the rank χ2 matrix M by a rank d
matrix by ignoring all λi with i > d. Crucially, in terms of the
least squared error, this matrix is the best rank d approximation
of the matrixMAB. Whether this is a good approximation can be
readily inferred from the size of the singular values. Truncating
the degrees of freedom i directly translates into truncations on the

variable transformations U and the new tensor T′, respectively.
The accuracy of the simulations are then determined by the
bond dimension, i.e., the number of degrees of freedom kept in
each iteration.

The algorithm briefly sketched above is deliberately chosen
to showcase that tensor network renormalization provides a
concrete realization of the spin foam coarse graining scheme.
Firstly, it blocks together tensors and exactly sums over their
internal degrees of freedom. Secondly, the singular value
decomposition provides dynamical variable transformations that
fulfill the role of dynamical embedding maps, and, moreover,
allow for efficient and controllable truncations. One way
to check whether these approximations are justified is to
gradually increase the bond dimension, i.e., the number of
kept singular values, to see whether the properties of the
system depend on this choice, e.g., the position of a phase
transition in parameter space. In case the results converge, the
approximation is sufficiently good and one can extrapolate to
infinite bond dimension. However, there exist situations in which
no truncation should be implemented, in particular on second
order phase transitions [48]. There, one observes that more and
more singular values are relevant the closer one tunes toward the
phase transition, such that one would require an infinite bond
dimension or equivalently infinitely fine boundary data. This is
expected, since one models a highly non-local system by locally
gluing amplitudes.

We would like to highlight some general advantages
and disadvantages of tensor network methods, as well as
modifications to the method that so far are not applied to models
of quantum gravity. Compared to other numerical methods, like
Monte Carlo methods, tensor network algorithms do not suffer
from the sign problem; the algorithms are perfectly applicable
to quantum (oscillating) amplitudes, like in spin foams. The
reason is that tensor networks do not rely on (random) sampling
methods for a large system, but usually focus on all possible
configurations of an amplitude for one building block (tensor).
However, this leads to one of their disadvantages: in order to save
all configurations of a tensor, it must have a finite dimensional
boundary Hilbert space. Moreover, the numerical costs, both
in terms of computational time and memory usage, scale with
the dimension of the boundary Hilbert space. In particular for
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FIGURE 9 | (Left) In case the singular values for i > N are negligible, the truncated maps U†U approximate the resolution of identity well, such that inserting them

in-between the pair of indices barely changes the partition function. (Right) Starting from the tensors in the middle of Figure 8, we insert the truncated resolution of

identity for each pair of edge. Then we obtain the new effective tensor by contracting the previous tensor with its respective embedding maps.

lattice gauge theories and spin foams in higher dimensions,
this requires extensive optimization to make the numerical
simulations feasible.

Before reviewing results in quantum gravity (related) models,
we would like to highlight a fewmethods from the tensor network
community. One key modification is called entanglement
filtering [47, 48, 75]. It removes entanglement between short-
scale degrees of freedom, which would otherwise get promoted
to larger scales and lead to unphysical fixed points in
the renormalization group flow. Other modifications aim at
including Monte Carlo methods into tensor network algorithms,
e.g., for contracting tensor indices [76] or to sample over the
probability distribution of coarse degrees given by the singular
values [77].

In the following, we first review works on tensor network
renormalization applied to 2D analog models. There we
focus on the introduction of symmetry preserving methods
that use the symmetry of the system to label the effective
degrees of freedom with the original variables. In the second
part, we discuss how to apply these methods to 3D lattice
gauge theories and spin foam models, which require an
efficient description of the model given by so-called decorated
tensor networks.

5.1.1. Analog Spin Foam Models in 2D
By 2D analog spin foam models, sometimes also called spin
net models, we mean spin systems with a global symmetry.
The typical example is the Ising model (with vanishing external
magnetic field) that has a global Z2 symmetry. Typically these
models are written in terms of group variables colorred gv ∈ G
assigned to the vertices of the lattice, which only interact with
their nearest neighbors expressed in “edge weights” ωe(gs(e)g

−1
t(e)

).

In order to work with finite dimensional Hilbert spaces we
restrict G to be a finite group (or quantum group later on) [78].

The partition function of the system is given by:

Z =
∑

gv

∏

e

ωe(gs(e)g
−1
t(e)

) . (18)

To be invariant under the global symmetry, i.e., an element h ∈ G
acting on all vertices at once, these edge weights must satisfy

ωe(h g h
−1) = ωe(g) ∀ h ∈ G . (19)

Thus ωe are class functions and Since the function ωe are
invariant under conjugation, each one can be expanded via Peter
Weyl’s theorem [79] into a sum over irreducible representations
ρ of the character χρ of G:

ωe(g) =
∑

ρ

ω̃ρ χρ(g) . (20)

ω̃ρ stands for the group Fourier transform of the edge weight ωe.
Performing this for all edges and expanding the characters as a
trace of representation matrices, the expression factorizes over all
group elements gv, such that the group integrations/summations
can be performed analytically:

Pv({ρe}e⊃v) : =
∑

gv

⊗

e

ρe(gv)
me
ne

. (21)

Pv denotes the Haar projector of the group G, i.e., the
projector onto the invariant subspace. We suppress its many
indices for clarity of the notation. After performing all group
integrations/summations, the partition functions reads:

Z =
∑

ρe

∏

e

ω̃ρe

∏

v

Pv({ρe}e⊃v) (22)
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FIGURE 10 | By explicitly preserving the symmetry of the tensor, we assign an irreducible representation to the new effective edge, thus preserving also the original

theory space. Here shown for the Z2/Ising model case.

Note that the indices of the Haar projectors Pv are contracted
with projectors on neighboring vertices. For more details on
these models and their relation to spin foam models (with finite
groups), see [78].

The expansion sketched here is completely analogous to the
derivation of the spin foam representation familiar from spin
foam literature. Thus, while the dimensionality is lower and
the dynamics simpler, the dynamical ingredients—irreducible
representations ρ and projectors onto the invariant subspace
P/intertwiners ι—are the same as for spin foam models.
Moreover, it is expected that these 2D spin systems share
statistical properties with the 4D gauge theories of the same group
[80]. As a final point, these models can be related to peculiar spin
foams that only possess two vertices and many edges [81].

Hence these models represent ideal test cases for applying
tensor network renormalization to spin foam models and derive
first hints for the RG flow of the full theory. Fortunately, the
translation of the partition function into tensor network language
is straightforward: the projectors P are essentially tensors, whose
variables are the irreducible representations ρe on the edges.
Just the weights ω̃ρe need be split per edge via a squareroot.
While tensor network algorithms can be readily applied, it is
vital to consider the symmetries encoded in P: the irreducible
representations ρe meeting at the vertex v must satisfy the
coupling rules, i.e., they must couple to the trivial representation
to satisfy gauge invariance. These restrictions can be used to
optimize tensor network renormalization methods in two ways:
firstly, by only storing and summing over configurations allowed
by the coupling rules, the memory cost and numerical cost for
the singular value decomposition and index contractions can be
drastically reduced. For Abelian models this is straightforward,
since all representations are one-dimensional and the projector
P = δ(G)(

∑

e⊃v ke) (modulo orientation of the edges).

Thus, under splitting of a tensor, e.g., to define the variable
transformations/embedding map, one defines an intermediate
representation for the new effective edge satisfying the coupling

rules for both tensors. This new representation will be the
label of the effective degrees of freedom and thus allows us
to explicitly preserve the symmetry, see Figure 10. Moreover,
ordering the entries of the matrix according to the intermediate
representation turns the matrix into a block diagonal form. Thus,
the algorithm can be further optimized by performing a singular
value decomposition individually for each block11.

For non-Abelian models, a further comment is necessary. As
sketched in equation (21), the tensor possesses “magnetic” indices
m, n per edge in addition to the irreducible representation ρ.
More precisely, for fixed ρ, each edge carries the vector space
Vρ ⊗ Vρ∗ , where ρ

∗ denotes the dual representation to ρ.
Since Vρ∗ can be identified with the dual vector space (Vρ)

∗,
we label each edge with a single representation. For tensor
networks these magnetic indices pose a significant challenge:
if we were to include them, the size of the tensor would
render the simulations unfeasible. Fortunately, the dependence
on these indices is entirely encoded in representation theory
of the group G and does not change under coarse graining.
Essentially these indices get “pre-contracted” [81, 82], which is
accounted for by G recoupling symbols in the coarse graining
equations. From these equations one can read off another feature
of non-Abelian models: the renormalization group equations
for the representations ρ and ρ∗ are decoupled. Thus, it is
possible that under coarse graining the effective edges will carry
representations (ρ, ρ′) with ρ′ 6= ρ∗.

Mentioning the channels (ρ, ρ′) is a good keyword to explain
the flow as well as the approximation scheme. Due to the explicit
symmetry preservation, the renormalized tensors are expressed
in terms of the same variables as the original theory (with a
slightly more general theory space). Thus, instead of directly
comparing all entries of the tensors, we study the coarse graining
flow by considering the singular values per channel (ρ, ρ′). This

11A SVD of a p × q matrix with q > p scales with p2q in terms of computational

time. Thus, it is beneficial to performmultiple decompositions of smaller matrices.
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is completely sufficient to characterize the flow and read off
different fixed points. Then, in order to determine which degrees
of freedom are more relevant, one needs to compare the singular
values from all channels and truncate accordingly. This can
then result in a higher multiplicity of the same representation
labels and thus more general boundary data, which improves
the accuracy of the simulation. However, in most cases [81–
83] a simple scheme is used, where only the largest singular
value per block is kept. While this is a strong simplification, it
is sufficient to identify interesting phases, labeled by attractive
fixed points of the flow, while keeping the simulations feasible,
in particular for studies on quantum groups SU(2)k [81] and
SU(2)k × SU(2)k [83].

The articles [84, 85] investigate spin netmodels for the Abelian
finite groups Zq, for so-called cut-off models. The starting
point are the edge weights in the zero-temperature limit with
ω̃k = 1 ∀k ∈ {0, . . . , q}. These weights are then truncated
at different levels k, which breaks the topological symmetry
and it is investigated whether this symmetry is restored under
coarse graining. While for low-k and high-k cut-off the high and
low temperature fixed points are found, respectively, there exist
intermediate phases showing oscillating behavior. In [82] tensor
network methods are generalized to non-Abelian groups applied
to spin nets for S3, the permutation group of three elements. To
keep these models feasible, the coupling rules are heavily used
to optimize the algorithm. The models investigated build upon
a holonomy representation of spin foam models [86] and their
implementation of simplicity constraints. In general they find a
non-trivial phase diagram of three phases, a low temperature S3
ordered phase, a high temperature S3 disordered phase as well as
a Z2 ordered phase.

As a next step [81], finite non-Abelian groups are replaced
by the quantum group SU(2)k with the deformation parameter
q = exp( 2π i

k+2
) a root of unity12 [87, 88]. The advantage is that the

integer level k defines a gauge-invariant cut-off jmax = k
2 . That

way it is possible to study systems with more degrees of freedom
by increasing the level k, while the representation theory remains
similar. Moreover, one eventually approaches full SU(2) as k →
∞. Moreover, quantum groups are physically motivated from
3D spin foam models, where they describe gravity with a non-
vanishing cosmological constant [53]. The models studied in [81]
are constructed from so-called intertwiner model fixed points
[89], which represent topological field theories. In a nutshell,
intertwiner models are “half ” of a spin net model, with an edge

Hilbert space of Vρ instead of Vρ ⊗ Vρ∗ . These models are
interesting since one can directly investigate whether the two
copies remain coupled or decouple under coarse graining. Indeed
one finds a rich phase structure with potential second order phase
transitions.

Eventually, the work [83] investigates spin net models for
SU(2)k × SU(2)k that mimic the construction of 4D Riemannian
spin foam models, namely the Barrett-Crane [10] and EPRL/FK
model [13, 14]. For the BC model several attractive fixed points

12 Quantum groups do not allow for a holonomy representation. However, its

representation theory is close to the one of SU(2), such that one defines these

models directly from the high temperature expansion of spin net models.

are found, none of which correspond to topological BF theory.
While this indicates that simplicity constraints are strongly
implemented, no indications for a 2nd order phase transition are
observed. This hints toward the fact that the constraints might be
a too strongly implemented [15]. In contrast, the EPRL/FKmodel
shows a highly intricate flow and partially oscillating behavior,
most likely due to exciting only a few representations initially.
This is a particularity of the implementation of the simplicity
constraints in the Riemannian EPRL/FK model, which relate
Spin(4) representations (j+, j−) to an SU(2) representation k via
j± = 1

2 k |1 ± γ |. Note that j± as well as k must be half integer,
such that γ must be rational.

These results impressively show the potential of tensor
network techniques for studying the renormalization group
of spin foam quantum gravity. Moreover, they lead to the
development of key optimizations and insights that are crucial for
going to higher dimensional gauge systems. This is the subject of
the next section.

5.1.2. Decorated Tensor Networks for Lattice Gauge

Theories and Spin Foams
Dimensions larger than d = 2 and lattice gauge theories
pose challenges for tensor network renormalization methods.
Since higher dimensional tensors carry more boundary data, the
algorithm generically is more costly than its lower dimensional
counterpart. For lattice gauge theories, where due to the local
gauge symmetry many degrees of freedom are redundant, it
is thus imperative to develop an optimal representation if one
intends to cast them into a tensor network form. Moreover,
these networks are generically more complex than spin systems,
since several data are shared among more than two building
blocks. One example are spin foams in four dimensions, where a
face and the representation it carries are shared among multiple
4-simplices. A possible tensor network representation is to
assign a tensor dual to each 4-simplex, yet one must introduce
auxiliary tensors [90] to ensure the correct identification of
shared variables. See Dittrich et al. [91] for a more extensive
discussion of possible representations.

To improve on these representations, decorated tensor
network algorithms are developed and introduced in Dittrich
et al. [91]. The idea is to shift the perspective away from
a pure tensor network representation of the system toward
amplitudes with more intricate boundary data. Yet the key ideas
are retained to explicitly contract bulk degrees of freedom and to
dynamically define effective degrees of freedom using a singular
value decomposition. Instead of tensors, represented by vertices
and legs, one works with a spin foam inspired representation
where amplitudes are assigned to regions, which carry boundary
data, e.g., spin network data. While the assignment of amplitudes
remains local, the non-local nature of gauge theories requires
more complex boundary data and intricate gluing rules that
cannot be cast in a simple tensor network form without
introducing additional structures. The rest of the algorithm
remains essentially the same: amplitudes are glued together by
suitably identifying variables among them. Depending on the
considered situation, some of the identified variables are not
summed over and remain part of the boundary Hilbert space. On
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FIGURE 11 | Illustration of decorated tensor networks. Splitting an amplitude, here for four Ising spins, via a singular value decomposition generically gives rise to

additional indices. These indices are understood as more general boundary data and are encoded in a tensor network dual to the lattice. This network is thus

“decorated” by the remaining data.

this fine amplitude one performs a singular value decomposition
to derive an embedding map leading to coarse effective degrees
of freedom.

The original algorithm in Dittrich et al. [91] works slightly
differently by “splitting” the amplitudes explicitly. Let us briefly
demonstrate the idea for the usual 2D Ising model, for which
a decorated tensor network algorithm exists as well. Consider
an amplitude assigned to a square given by four Ising spins
σi, i ∈ {1, . . . , 4}, A(σ1, . . . , σ4), see Figure 11. The idea of
the algorithm is alternatingly split the squares into regular
triangles, such that four of these form a coarse, rotated square
with a single Ising spin to sum over in their center. To do
so we split the amplitude in two, separating the dependency
on the spins opposite to the cut. For the singular value
decomposition, we need to distinguish two sets of variables:
the variables that we want to separate are encoded in the two
indices of the matrix to decompose, while the shared variables
will remain fixed similar to the symmetry preserving algorithm
before. Hence, we perform a singular value decomposition for
each configuration of shared variables, which is more efficient
than a decomposing a big matrix. In a sense, this leads to
a doubling of the shared variables, which is necessary for
gluing them again in consecutive iterations. In our example,
we get:

M(σ2,σ4)
σ1 ,σ3

: =
2

∑

i=1

U
(σ2 ,σ4)
σ1 ,i

λi (V
†)

(σ2,σ4)
i,σ3

. (23)

By assigning a square root of the singular values λi to
U and V , we derive the desired amplitudes assigned to
the triangles. Note that each amplitude is not just given
by the configuration of three Ising spins, but also by
an additional index i, assigned to the coarse edge. When
combing four triangular amplitudes, the resulting amplitude
for the square is given by more general boundary data,
four Ising spins and four new indices A(σ1, . . . , σ4, i1, . . . , i4),
again see Figure 11. Since these indices are shared with
neighboring amplitudes, we represent them by a tensor
network on the lattice dual to the squares. Thus, we have a

tensor network encoding higher order corrections/more general
boundary data “decorated” by the original boundary data of
the system.

An algorithm is developed for 3D lattice gauge theories and
first applied to Abelian Z2 lattice gauge theory in Dittrich et al.
[91]. Instead of working with the original lattice, one works
with the dual lattice in the strong coupling expansion. Thus, the
variables are irreducible representations ke of Z2 one edge of
the dual lattice and Gauss constraints (Z2 δ-functions) on each
face. The Gauss constraints can be explicitly solved to reduce
the amount of data saved, and there is a freedom to choose
which variables ke to gauge fix. This choice is adapted to the
intended splitting.

Let us briefly sketch the coarse graining algorithm: the idea
is to cut cubes in half by cutting along the diagonal of one of
its faces. Four of these amplitudes are glued together to form

a new (distorted) cube. This coarse graining is continued in

the other directions by “rotating” the amplitude and iterating
the procedure. Compared to the 2D algorithms, the splitting is

slightly more complicated. In order to cut the cube along the
face, it is necessary to introduce another representation along the
intended “cut.” This variable serves as the variable assigned to the
coarse edge, and is introduced by splitting the Gauss constraint
on the square face into two assigned to the two triangles. Then,
the variables are gauge fixed such that equally distributed the
remaining degrees of freedom are equally distributed among the
split amplitudes, and some shared by both. As explained above,
the shared variables will be kept fixed during the singular value
decomposition and label the new amplitudes. Also, again more
general boundary data arise in the form of a decorated tensor
network due to this splitting, which will be assigned to edges and
faces, see [91] for more details.

In its lowest order approximation, i.e., when truncating all
tensor indices, the algorithm reproduces the phase diagram of
Z2 lattice gauge theory with a strong and weak coupling phase,
whereas the critical coupling is found within an error of a
few percent compared to Monte Carlo simulations [92]. These
results are improved by keeping more degrees of freedom after
the singular value decomposition, yet the computational costs
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FIGURE 12 | Gauss constraint violations under coarse graining [for SU(2)]: we can define an effective vertex by summing over the SU(2) representations associated to

the inner edges. The configuration on the left is allowed by the coupling rules, thus the effective vertex on the right is allowed. However, this configuration is forbidden

by SU(2) coupling rules.

grow quickly13. As one of the first tensor network algorithms
applied to 3D lattice gauge theories it already shows promising
qualitative results.

In Delcamp and Dittrich [94] this algorithm is generalized to
non-Abelian symmetry groups and applied to S3 lattice gauge
theory. While the basic idea and principle of the algorithm
remains similar, it is significantly more complicated due to
the non-Abelian group. The basic steps, splitting, gluing and
choice of variables, are still in place, however in order to define
them transformations between the holonomy and spin network
representation are necessary. For the details, we refer the reader
to the extensive and thorough explanation of the technical details
in Delcamp and Dittrich [94]. Let us focus instead on the results.

As for the similar work on S3 spin nets [82], analogous
simplicity constraints for S3 are implemented in the holonomy
representation [86]. The coarse graining flow is studied and three
different phases found, as in Dittrich et al. [82], that correspond
to a strong coupling S3 phase, a weak coupling S3 phase as well as
a weak coupling S3/Z3 ≃ Z2 phase. The successful generalization
to non-Abelian groups as well as the derivation of the phase
diagram of the theory demonstrate the potential of decorated
tensor network techniques. However, this work also revealed a
short-coming of using the spin network basis for labeling the
boundary Hilbert space.

As we discuss in great detail in this review, at some step
of the coarse graining process one sums over fine degrees of
freedom. In the spin network basis, where one assigns irreducible
representations to the links and intertwiners to the nodes, this
implies defining an effective vertex/intertwiner by summing over
representations, see Figure 12. However, usually the coupling
rules at the effective vertex are violated such that the vector
associated to the vertex is not an intertwiner any more and gauge
invariance is broken. This is a well-known shortcoming of the
spin network basis under coarse graining [95, 96] and it is also
expected for lattice gauge theories14. This can be overcome by

13Dittrich et al. [91] also proposed an algorithm based on smaller building blocks

that generically are more efficient, see also the “triangular” algorithm in 2D

[83, 93].
14In order to define coarse grained fluxes in the discrete, the fine fluxes must

be parallel transported to the same point. If the connection has curvature, the

fluxes do not necessarily close any more, which is often referred to as curvature

induced torsion.

a different representation of the boundary Hilbert space that
can accommodate Gauss constraint violations (electric charges)
as well as curvature excitations (magnetic fluxes). In 3D this is
accomplished by the so-called fusion basis.

Here we will only briefly sketch the main features of the fusion
basis, which arises in anyon systems [97, 98], (2+1)D lattice gauge
theories [99] and 3D quantum gravity [100, 101]. The algebraic
structures are called Drinfeld Doubles, see [99, 100, 102–105]
for more details. Its main feature is that it diagonalizes a set of
commuting operators, so-called Ribbon operators. These Ribbon
operators, which contain both aWilson loop operator as well as a
t’Hooft operator, measure both the magnetic (curvature) as well
as electric (torsion) excitations. Such excitations are localized on
punctures carrying the magnetic and electric excitation. In lattice
gauge theory, one can imagine one puncture per plaquette of the
lattice. Ribbon operators surrounding a single or a collection of
plaquettes then measure excitations associated with the puncture
or collection of punctures.

These Ribbon operators commute among each other as long
as they do not intersect. Hence, two Ribbon operators that
surround a single puncture each commute with each other
trivially, and they also commute with the operator surrounding
both punctures. A choice of such a set of commuting Ribbon
operators is encoded into the fusion basis by the choice of a
fusion tree. The plaquettes are the leaves of the tree, and the
connectivity of the tree determines which operators/observables
are diagonalized by this choice of basis, see Figure 13. Moreover,
the basis states can be transformed into one another, such that
one can translate states to diagonalize the observables one intends
to measure. This is a crucial concept that has a notion of coarse
graining built into it. Imagine two cubes glued together: in order
to derive an effective building block with effective degrees of
freedom, one would like fuse the punctures of subdivided faces
into one. To do so, the fusion basis must be chosen such that it
diagonalizes the Ribbon operator around punctures. This ensures
that the expectation values agree in both original and coarse
grained case. Therefore, the fusion tree can be used to encode
a choice of coarse grained observables, which is crucial for the
decorated tensor network algorithm based on the fusion basis.

Such an algorithm is defined for quantum deformed 3D
lattice gauge theories on a cubic lattice for the quantum group
SU(2)k in Cunningham et al. [49]. More details about the fusion
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FIGURE 13 | An example of a fusion tree for a 3D cube with six punctures.

The tree is drawn on the boundary of the 3D cube, here “unfolded.” The order

of the fusion of punctures determines which set Ribbon operators

is diagonalized.

basis for SU(2)k can be found in Dittrich and Geiller [100].
As in previous decorated tensor network algorithms, the basic
ingredient is the amplitude associated to a cube. Its boundary
Hilbert space is spanned by six-puncture states, for which a fusion
tree needs to be specified. Then two cubes are glued together,
which results in a cuboid with four course faces, each carrying
two punctures. The goal is to compute an embedding map that
fuses the two punctures on a subdivided face into one effective
puncture. Generically, after gluing the fusion basis of the cuboid
is not suited to do so, since it does not diagonalize the Ribbon
operator surrounding both punctures. Thus, the basis must be
transformed by a series of tree transformations involving SU(2)k
recoupling theory, see [49] for details and consider Figure 14 for
an illustration.

Once one has arrived at a fusion basis that directly fuses
the punctures as desired, one performs a singular value
decomposition that splits the data of two punctures from all
other variables (similar to section 5.1). In order to label the
new puncture with the usual data, one keeps fixed the data of
fusion tree directly after fusing the punctures. These data label the
effective puncture, while the singular value decomposition gives
the weight of these data in the effective amplitude. Also from
the perspective of (coarse) observables this choice is viable, since
the eigenvalue of a Ribbon operator surrounding two punctures
is solely determined by these data. This allows us to use tensor
network renormalization to approximately compute expectation
values of Ribbon operators that we explain below.

After computing the embedding maps, they are used to coarse
grain the punctures in such a way that the partition function is
altered as little as possible (see again section 5.1). Again, only one
non-vanishing singular value is kept per puncture label, such that
the same boundary Hilbert space is pertained. Once all pairs of
punctures are coarse grained, one obtains again an amplitude of
six punctures that is associated with a cuboid. To complete one
coarse graining iteration, the same procedure is performed in the
other spatial directions. The cube is “rotated” by reordering the

punctures and the same procedure repeated in all directions to
arrive at a coarse cube with six punctures.

In Cunningham et al. [49] this algorithm is applied to 3D
lattice gauge theories defined for the quantum group SU(2)k.
As for quantum group analog spin foam models [81, 83], the
quantum group introduces a gauge-invariant cut-off on the

irreducible representations jmax = k
2 . Thus, the boundary

Hilbert spaces are finite dimensional and it is possible to study
larger “groups” by increasing the level k [and approach SU(2)
in the limit k → ∞]. The lattice gauge theory is modeled
via a Heat kernel action for SU(2)k parameterized by a gauge
coupling parameter g. Lastly, in the initial state each puncture
only carries magnetic excitations as it usually is the case in lattice
gauge theory.

Let us summarize a few of themain results: at each level k there
are two phases separated by a phase transition given by a critical
coupling gc. For g < gc, the system flows to the weak coupling
fixed point g = 0 and is thus characterized as the deconfined
phase. Conversely for g > gc it flows to strong coupling g → ∞,
which describes the confined phase. The position of the critical
coupling gc depends on the level k and decreases apparently
linearly for small k. This tentatively suggests that for SU(2),
i.e., the limit k → ∞, gc → 0 such that only the confining
phase exists. Additionally, the fusion basis permits to track the
appearance of electric excitations that get excited under coarse
graining, even though the initial state had no electric charges.
While they do not appear to be vital for the dynamics, e.g.,
the position of the phase transition is barely affected if electric
charges are completely truncated, including electric charges is
important for the behavior of the coarse graining flow as they
serve as (non-dynamical) disentangling maps. See Cunningham
et al. [49] for more details.

The final result we would like to mention is the expectation
value of observables, here of Ribbon/Wilson loop operators.
Since the fusion basis diagonalizes Ribbon operators, it is
straightforward to approximately compute the expectation value
of coarse Ribbon operators, i.e., Ribbon operators surrounding
a larger number of plaquettes. In lattice simulations one usually
has to simulate the entire system in order to measure coarse
observables. Here, we first coarse grain the amplitude to arrive at
an effective amplitude for the coarse cube, for which we measure
the coarse Ribbon operator around the coarse plaquette. Thus,
we first coarse grain/integrate out the fine degrees of freedom
and account for them (with some truncations) in the effective
amplitude, for which we then calculate the expectation values
of the operators. Using this method, we derive different scaling
behaviors of the expectation value with the enclosed area of the
plaquette, in particular we recover the area law of theWilson loop
in the confined phase.

5.2. Restricted, Semi-Classical Path
Integrals
Despite the tremendous progress in developing tensor
network methods for spin foam models and lattice gauge
theories, applying them directly to spin foam models of
4D quantum gravity (either Riemannian or Lorentzian) is
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FIGURE 14 | Example for why tree transformations are necessary: after gluing the tree is not suited for coarse graining pairs of punctures i, i′. It must be transformed

such i, i′ are directly fused together. See the glued cubes on the right as reference.

still out of reach, in particular for a continuous symmetry
group. An attempt to make the 4D Riemannian spin foam
models accessible is to study simpler models that represent
a subset of the full gravitational path integral. These
simplifications include restricting the degrees of freedom
to specific intertwiners and representations as well as using
asymptotic expansions of spin foam amplitudes valid only
for large representations. Let us explain these assumptions in
more detail.

Intertwiners, which determine the shape of dual 3D
building blocks, can be expressed in terms of Perelomov
coherent states/Livine-Speziale intertwiners [18, 106]: to each
face of the intertwiner one assigns an SU(2) coherent state
|j, En〉, where j labels the irreducible representation and En is
a vector on S2. This vector is a maximum weight state
diagonalizing the angular momentum operator JEn = En · EJ
in En direction. Given these states, the coherent interwiner is
given by:

|ι〉 : =
∫

SU(2)
dg g ⊲

N
⊗

i=1

|ji, Eni〉 . (24)

Each coherent state ∼ |ji, Eni〉 represents a face with area
√

ji(ji + 1) peaked on a normal vector pointing in direction
Eni. The tensor product of these coherent states represents
a 3D quantum building block sharply peaked on a classical
geometry (if it exists) with areas and outward pointing
normal encoded in the labels ji and Eni. The group integration
(with Haar measure dg) defines an intertwiner. Note
that the spin foam partition function itself can also be
expressed in terms of coherent states and an integral over
the labels of coherent states, e.g., see the review [1] for
more details.

These coherent states play an important role in deriving
semi-classical expressions for spin foam (vertex) amplitudes.
When computing the vertex amplitude as a contraction of
coherent intertwiners, these can be rewritten as several group
integrations of contracted SU(2) coherent states. The latter part

is then exponentiated and the group integration performed via a
stationary phase approximation:

Av =
∫

SU(2)E

∏

e

dge
∏

f⊃e

〈jab,−Enba|g−1
b

ga|jab, Enab〉

= :

∫

SU(2)E

∏

e

dgee
∑

f⊃e 2jab ln〈−Enba|g−1
b

ga|Enab〉 . (25)

Since the stationary phase approximation is only valid when
the argument in the exponential is highly oscillating, all
representation jf must be large. Hence this expansion is often

called the large-j limit. For single vertex amplitudes it is shown
that the “action” in the exponential evaluated on stationary and
critical points is given by the Regge action of the building block
dual to the vertex [22, 23].

Given these familiar results from spin foam literature, the idea
is to restrict the spin foam partition function of the EPRL/FK
model to specific coherent intertwiners (and representations)
and use only the amplitudes derived in the large-j limit. That
way the system depends on significantly fewer variables and the
spin foam amplitudes, in particular the vertex amplitude, can
be expressed in terms of closed formulas of the representations.
Additionally, in the large-j limit the sum over representations
can be approximated by an integral. The motivation is to employ
numerical integration techniques, e.g., the Cuba package [107].
From now on, we only consider and discuss models defined on a
2-complex with hypercubic combinatorics which makes iterating
the coarse graining steps straightforward.

So far, two models of restricted spin foams are defined that
are also studied under coarse graining. The first one are so-
called quantum cuboids [36], where the intertwiners are sharply
peaked on a classical cuboid geometry. Opposite faces of the
intertwiner carry the same representation and their normals
are anti-parallel. Moreover, the outward pointing normal of a
face is orthogonal to all normals of the adjacent faces, see the
left part of Figure 15. Indeed these are severe restrictions, in
particular the requirement that opposite faces in each intertwiner
carry the same representation translate through the entire lattice.
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FIGURE 15 | (Left) cuboid intertwiners are peaked on the classical discrete geometry of a 3D cuboid. (Right) the construction of the frusta vertex amplitude from the

contraction of intertwiners.

The asymptotic expansion of the vertex amplitudes depends
again on the Regge action, which generically vanishes for cuboid
configurations. For larger complexes this implies that the flat
cuboid building blocks are glued in a flat way. Thus, this model
describes a superposition of flat discrete space-times of different
distribution of sizes across its building blocks. While this is by
no means a realistic model of quantum gravity, it captures an
Abelian subgroup of diffeomorphisms corresponding to shifts
of entire hypersurfaces in the lattice15. Notably, this spin foam
model is not invariant under these transformations [36]. Due
to its simplicity it does not have any free parameters, thus an
additional parameter α is introduced in the face amplitude of the
model, (2jf )

α , which can be understood as a modification of the
path integral measure. This exponent simply emphasizes small or
large representations/face areas in the partition function, and is
motivated by a discussion in the community on the right choice
of face amplitude [108].

A physically more interesting model is based on so-called
frusta [109]. A frustum is a higher-dimensional analog of a
trapezoid. In 4D, it consists of two cubes at its top and bottom,
potentially of different size, which are connected by six 3D
frusta, see the right of Figure 15. That way, a hyperfrustum can
describe the evolution from one spatial cube to a larger/smaller
spatial cube. Thus, the idea is to restrict the intertwiners to be
cube/frusta shaped in order to study the expanding/contracting
cubulated 3D spatial slices. The frustum intertwiner is then given
by three representations, ji and jf correspond to the initial and
final area of the initial and final cubes, respectively and k gives
the side-face area, which also determines the “opening angle”
φ of the frustum16. Crucially, in contrast to the cuboid model,
the Regge action associated to a hyperfrustum in the asymptotic
expansion no longer vanishes and one obtains the familiar cosine

15 Given a flat space-time decomposed into flat hypercuboid lattices, it should not

matter how the 4-volume is split among the building blocks.
16The representation ji, jf and k must satisfy a relation that is spelled out in Bahr

et al. [109].

formula [109]:

Av ∼ cos(
SR

G
+ ϕ)+ cos(

γ SR

G
+
3

G
V) , (26)

where SR denotes the Regge action of the hyperfrustum, V its
volume, G Newtons’ constant, 3 the cosmological constant and
γ the Barbero-Immirzi parameter.

Thus, this model captures several important generalizations
compared to the cuboid model. As signified by the non-vanishing
Regge action, frusta configurations allow for curvature to appear.
Moreover, more parameters play a role in the dynamics: Newton’s
constant G enters here as providing an explicit scale to the
representations/areas on the boundary that serve as initial and
final states. The cosmological constant 3 is added in Bahr and
Rabuffo [110] (analogous to Han [111]) by deforming the vertex
amplitude. The parameter α remains as in the cuboid model17.

After this basic introduction of these models, let us discuss the
simplified coarse graining scheme and results.

5.2.1. Coarse Graining Setup and Results
While in spirit the coarse graining setup is similar to the general
method outlined in section 4, there are several noteworthy
difference and assumptions being made. Firstly, the embedding
maps are chosen on geometric grounds instead of determining
from the dynamics/the amplitudes. The intuitive idea is, e.g., in
case of the hypercuboids, that a coarse hypercuboid arises as a
superposition of fine hypercuboids consistent with the coarse
hypercuboid geometry. Secondly, the coarse graining flow is
computed for one fixed coarse boundary state, not the whole
coarse boundary Hilbert space. Thus, in the path integral context,
this coarse graining flow is performed for a fixed transition. The
third and final assumption includes a projection back onto the

17The Immirzi parameter γ is explicitly kept fixed. Due to the particularities

of the Riemannian EPRL/FK model, γ is necessarily a rational number, which

significantly impacts the amount of allowed representations. Hence, the models

for slightly different γ are substantially different.
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original form of the amplitude, such that the flow is formulated
as a flow in parameter space of the theory. This projection is
defined by comparing expectation values of observables in the
coarse and fine calculation. In a sense, the logic of the consistent
boundary formulation is inverted: the RG flow assigns a family
of amplitudes to different lattices such that expectation values
of observables agree on all lattices. Instead, we derive the RG
flow by identifying theories/parameters across lattices for which
the expectation values of some (sensitive) observables agree. In
case of the cuboids, which are just given by the parameter α, this
would read:

〈O〉α′b′ ≈ 〈O〉αb , (27)

which defines the flow α′ → α from fine b′ to coarse b. Note that
all these three assumptions are strong simplifications that need to
be lifted to verify their validity.

Let us first discuss the setup for coarse graining in the
quantum cuboid model reported in Bah and Steinhaus [112].
Consider two hypercuboids glued together along a common 3D
cuboid. The total geometry of both hypercuboids is fixed in the
coarse boundary state, i.e., the total area of each coarse face is
fixed, yet the distribution of 4-volume among the two cuboids
fluctuates. Obviously, the expectation value of the volume of a
single hypercuboid is always exactly half of the total volume,
yet its variance depends sensitively on the parameter α. Thus,
for fixed coarse boundary state, one studies the variance of a
single coarse in the coarse and in the fine case, where each of the
hypercuboids is subdivided into 16. The geometric embedding
map is prescribed such that the fine areas sum up to the coarse
area. This setup and observable is particularly interesting since it
is closely connected to the Abelian subgroup of diffeomorphisms
that can be represented in the quantum cuboid model.

With this setup, the variance of the 4-volume is computed
in both the coarse and fine case for various α/α′, respectively.
In both cases the observable is monotonously decreasing and
both curves intersect once in the value α∗. This particular value
of α defines a fixed point of the renormalization group flow
α′ → α, which is repulsive, i.e., α > α′ for α′ > α∗ and
α < α′ for α′ < α′. Thus, the fixed point also separates
two phases, which are dominated by different configurations.
For α < α∗, small representations j are preferred, such that
subdivided faces contain one large area and several small ones.
In contrast for α > α∗, the configuration dominates in which
a face is equally subdivided since then all spins are as large
as possible. Remarkably, the value α∗ is close to the one at
which diffeomorphism symmetry is almost restored [36]. This
result together with the repulsive behavior at the phase transition
indicate that this transition might be of second order, and that on
it the subgroup of diffeomorphisms might be restored.

The same calculation is repeated for different coarse boundary
states in Bahr and Steinhaus [113] and results in the same
qualitative behavior, yet the position of the fixed point changes.
Thus, we do not include the exact value. This result sheds a
light on the possible interpretation of these results. Since the
coarse boundary state is kept fixed, this coarse graining derives
a family of amplitudes on a family of lattices for this specific

transition. Therefore, it contains the information whether and for
which parameters the regulator/the lattice can be removed and
the results are consistent (within the given approximations and
truncations). Note however that this is a weaker condition than
the coarse graining flow defined in section 4, which refers to all
transitions/boundary states. In a sense, the fixed state becomes
part of the observable for which the coarse graining flow is
defined. That way it provides first insights of coarse graining flow
in a truncated theory space.

A similar analysis of the coarse graining flow is performed for
frusta spin foams in Bahr et al. [114] with a slightly different
setup. Here the boundary is made up of two parts, an initial
and a final 3D spatial cubulations each prescribed by a single
representation ji and jf , which are chosen to be equal. Again,
the goal is to compute expectation values of observables in a fine
and a coarse setting and define a renormalization group flow in
parameter space (α,G,3) such that these observables agree. In
Bahr et al. [114] a few different setups are examined, here we
just discuss the main result of the RG flow in three dimensional
parameter space.

Due to the high symmetry of frusta configurations, the
lattice is prescribed by spatial and temporal subdivisions. The
former fixes the fineness of the spatial cubulation while the
latter determines the number of time steps. The coarse lattice
then has two spatial subdivisions, i.e., 43 spatial cubes, and one
intermediate time step. The fine lattice has one more spatial and
temporal subdivision, i.e., 83 cubes and two intermediate time
steps. The boundary states in both settings are straightforwardly
related by requiring that the total 3D spatial volume encoded
in initial/final state agrees in both settings. Moreover, the total
“height”/“time” is fixed in both settings as well as each time step
is chosen to be equal. That way, only the intermediate spatial
volume is integrated over, while the side panels are fixed, which
greatly reduces the numerical cost.

In order to derive a renormalization group flow in a parameter
space with three parameters, one must consider at least three
observables. In Bahr et al. [114], the 3D spatial volume of the
intermediate slice, its variance as well as the total 4D volume
are considered. The expectation values for all these observables
are computed in a range of all parameters G, 3, and α and
compared for both settings. Then a coarse graining flow is
derived by matching theories with the smallest relative error of
observables18. Under this premise, indications for a fixed point
around α∗ ≈ 0.677, G∗ ≈ 0.037, and 3∗ ≈ 0.08 are found.
While the exact numerical values are less relevant and most likely
subject to change for different boundary states, qualitatively the
numerics indicate that this fixed point has one repulsive and
two attractive directions. As for the cuboid case, the repulsive
direction appears to be (mostly) related to the parameter α, while
G and 3 seem to be the attractive directions. In standard lore,
this would imply that both G and 3 are irrelevant couplings and
fixed by the RG trajectory.

18Moreover, one is only comparing theories that are “close” in parameter space.

This is justified since one is mainly interested in fixed points of the coarse graining

flow, given the truncations introduced in the model.
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At first sight, this result appears to be at odds with results
in asymptotic safety [115], where both G and 3 correspond
to free parameters/relevant directions. However, note that this
setting here is significantly different: due to considering only a
specific transition, a scale is introduced into the system, which
is not changed by the coarse graining flow. Thus, in contrast
to asymptotic safety where one derives theories at different
scales, this coarse graining flow teaches us whether and for
which parameters the regulator/lattice might be removed. In this
sense, the fixed point gives the correct discretization independent
amplitude (given the introduced approximations) for this specific
transition. So G∗ and 3∗ mark the correct parameters for one
specific transition and are thus irrelevant in this flow, yet they
might correspond to relevant directions when different scales
are related.

5.2.2. Numerical Methods
A short comment on the numerical methods is in order. In the
semi-classical, restricted spin foam models, Monte-Carlo and
numerical integration techniques are used [107]. This works
particularly well for the quantum cuboid model, where the action
vanishes and the amplitudes do not show an oscillating behavior.
Nevertheless, also for the frusta models, which feature oscillating
amplitudes, can be explored with these methods with slower
convergence. In general, convergence slows down for higher
dimensional integrals and larger discretizations, such that this
method appears to be feasible for systems with a few building
blocks and symmetries that reduce the amount of degrees
of freedom.

5.3. Semi-Classical Continuum Limit
Before concluding this review, we would like to briefly discuss the
semi-classical continuum limit approach [116, 117], since it aims
at defining a flow across a family of triangulations and might at
first sight be similar to the restricted path integral method.

This approach discussed in the papers [116, 117] aims at
defining a semi-classical continuum limit for spin foammodels in
the following sense. As mentioned before, it is a well-established
result that one obtains (area) Regge calculus in the asymptotic
expansion of spin foam vertex amplitudes [21–25]. Often this is
called a semi-classical limit, by scaling all representations j →
λj by a parameter λ. In Han et al. [117] a Gaussian weight is
introduced into this semi-classical limit that suppresses non-
length-Regge like geometries, i.e., geometries prescribed by areas
that do not correspond to triangulation given by edge lengths.
The parameter for this Gaussian weight is δ, where δ → 0
removes this weight. These systems are studied in the regime
λ ≫ δ−1 ≫ 1, such that the semi-classical formula is valid and
higher curvature corrections (in the deficit angle) are suppressed.

Essentially the idea is to define a continuum limit as in
Regge calculus: for a sequence of triangulations KN of the same
manifold continuum general relativity is restored if all lengths
and deficit angles converge to zero asN → ∞. In Han et al. [117]
it is argued that this is achieved for particular scaling relations for
λ, δ, and µ, where µ rescales the Planck length. Thus, one defines
a flow across triangulations in this parameter space, where in the
limit N → ∞, both areas and deficit angles converge to zero.

Invoking the continuum limit of Regge calculus, it is argued that
general relativity is obtained in this limit.

The existence of such a regime, where one obtains general
relativity as the continuum limit of Regge calculus, would be
intriguing and it is suggestive to think it should exist, given the
close relation of spin foam models and Regge calculus. However,
there are several points that must be considered before this can
be confirmed: firstly, the assumptions and modifications made
that must be carefully cross-checked. Most strikingly, a term
that suppresses non-Regge like geometries is not present in spin
foam models and one might argue that such a role ought to
be already implemented in the simplicity constraints. Secondly,
the conditions under which the formulas are valid are highly
specific and it must be validated whether these are satisfied in
generic situations. Finally, the defined flow of parameters is not
dynamical, in the sense that it is not derived by relating dynamics
across different triangulations. Thus, it is not clear whether this
continuum limit gives well-defined continuum dynamics.

6. OUTLOOK: TOWARD
RENORMALIZATION IN 4D

In this article we provide a detailed review of coarse graining in
spin foams at the conceptual and practical level. Attentive readers
notice that these methods have not been applied yet to the full
4D theory, e.g., the EPRL/FK in the Riemannian or Lorentzian
setting, and it is currently out of reach. In this outlook, we
would like to discuss the open issues and questions that need to
be addressed.

A first point, which is relevant for all calculations performed
in spin foam quantum gravity, is the computability of spin
foam amplitudes, more precisely the vertex amplitude. As
the amplitude associated to a 4D building block, it is the
centerpiece of the theory and the most intricate to compute.
Analytical formulas are known for the asymptotic expansion of
the amplitude [21–25], where the boundary data is given by
coherent states peaked on classical discrete geometries. However,
these results are not valid for small representations, the quantum
regime of the theory. To compute the amplitude in this regime
requires numerical techniques, e.g., by explicitly contracting
intertwiners to obtain the vertex amplitude. Significant progress
was made in recent years for the Lorentzian EPRL model in
Donà et al. [28, 29, 45] using the results form [118]. Nevertheless,
these calculations require significant numerical resources, which
makes it difficult to explore systems with multiple vertex
amplitudes. Two ideas might be helpful in exploring larger 2-
complexes: Firstly, storing computed vertex amplitudes, e.g.,

for an orthonormal basis of intertwiners, in an open-data
database, such as the “Encyclopedia of Quantum Geometries”19

would make them accessible to interested researchers and avoid
computing the same amplitudes multiple times. The second idea
relies on the fact that the asymptotic formula well approximates
the vertex amplitude for fairly small representations, j ∼ 10 for a
4-simplex in the Riemannian EPRL model [119]. Exploiting this

19https://zenodo.org/communities/enqugeo/?page=1&size=20.
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fact could lead to an efficient hybrid algorithm, similar to the idea
used in loop quantum cosmology [120], that only uses the costly
to compute quantum amplitude in case the asymptotic formula is
not accurate.

An alternative route toward studying spin foams withmultiple
simplices lies in defining simplified models. In section 5.2 we
review one example for such models, namely restricted spin foam
models. Instead of exploring the full spin foam path integral,
only a subset of configurations is explored using the asymptotic
formula. Thus, the number of degrees of freedom is drastically
reduced and the issue of exactly computing the vertex amplitude
is circumvented, which makes it possible to renormalize these
models. Clearly, as next steps these restrictions need to be lifted in
order to explore more of the dynamics of the theory. This could
either be by allowing more configurations in the path integral,
see e.g., [121], or by going beyond the asymptotic formula and
including the full vertex amplitude. Recently, another simplified
model has been constructed in a similar direction [122]. Again,
the asymptotic formula of the vertex amplitude is invoked to
define a simplified vertex amplitude. Special emphasis is given
to an implementation of simplicity constraints akin to spin
foam models as weak conditions on 3D dihedral angles, which
might give new insights into spin foam dynamics for large 2-
complexes. Note that this model does not restrict the allowed
configurations in contrast to the restricted models discussed in
this review.

The most holistic approach to coarse graining spin foam
models, tensor network renormalization discussed in detail in
section 5.1, faces two main challenges when going to 4D. One
is the increased complexity of the amplitude which results both
in larger memory cost as well as computational time. Related
to this is the second issue, how to define a tensor network
algorithm for systems with infinitely many configurations or
continuous variables like the 4D spin foammodels defined for Lie
groups. A solution to the former challenge might lie in defining a
representation of the model suited for renormalization, similar
to the fusion basis in 3D [49, 100]. Alternative formulations
of 4D models are investigated, e.g., in [123, 124]. Using
observables might again serve as a guiding principle to find
such representations. The second issue might be tackled in a
similar direction, where a rewriting of the model might lead to an
efficient tensor network description. One such example is [125],
where the renormalization group flow of φ4 scalar field theory

is accessible for tensor network methods by performing a simple
transformation.

Another important research direction, on which
renormalization and coarse graining can shed a new light,
is matter coupling in spin foam quantum gravity. Since spin
foams are a purely gravitational theory, matter degrees of
freedom must be added in order to adequately describe the
universe. Different ways to couple matter to spin foams exist
in the literature [126–131], yet the intriguing dynamics of the
coupled matter gravity system are hardly explored. Applying
a coarse graining scheme to the combined system allows us
to renormalize matter and gravitational degrees of freedom at
the same time, uncovering the phase diagram of the system.
This idea is realized for a simplified toy model in Steinhaus
[93]. Without a question, a system consisting of both spin foam
and matter degrees of freedom is more difficult to study than
the former alone. Nevertheless, adding matter to simplified
models might be accessible and lead toward intriguing new
features and insights, e.g., it would be interesting to see how the
matter sector influences the quantum gravitational theory as in
Donà et al. [132].

Beyond the methods discussed in the review, ideas from other
fields and approaches to quantum gravity might help us advance
coarse graining in spin foammodels to 4D. These might be novel
numerical techniques, like deep learning, or well-established ones
like Monte Carlo methods, which might be efficiently applicable
in certain settings.
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Background Independence is a sine qua non for every satisfactory theory of Quantum

Gravity. If one tries to establish a corresponding notion of Wilsonian renormalization,

or coarse graining, it presents a major conceptual and technical difficulty usually. In

this paper, we adopt the approach of the gravitational Effective Average Action and

demonstrate that, generically, coarse graining in Quantum Gravity and in standard field

theories on a non-dynamical spacetime are profoundly different. By means of a concrete

example, which, in connection with the cosmological constant problem, is also interesting

in its own right, we show that the surprising and sometimes counterintuitive implications

of Background Independent coarse graining are neither restricted to high energies nor

to strongly non-perturbative regimes. In fact, while our approach has been employed in

most studies of Asymptotic Safety, this particular ultraviolet behavior plays no essential

role in the present context.

Keywords: asymptotic safety, background independent quantum gravity, renormalization group, cosmological

constant, functional renormalization group

1. INTRODUCTION

The perhaps most remarkable feature of classical General Relativity is its ability to select and to
describe the stage upon which all physics, both gravitational and non-gravitational, takes place.
This stage, the set of all events, is what we call spacetime and try to model by means of (topological,
differentiable, causal, pseudo-Riemannian,· · · ) manifolds.

(1) The theory of General Relativity complies with the principle of Background Independence,
which proclaims that no particular such “stage” should enjoy a privileged status a priori but rather
should be a computable result of the dynamics. While this seems to be a natural and almost
self-evident requirement for any classical or quantum theory of the physical world, all of our present
non-gravitational physical theories violate Background Independence quite explicitly. In particular,
the standard model of elementary particle physics is formulated on an externally prescribed and,
thus, unexplained Minkowski spacetime.

In the realm of classical physics, it is well-known how to overcome this deficiency and to set up
a matter-coupled gravity theory that determines the spacetime metric dynamically along with the
matter fields. Historically, corresponding progress at the quantum level has been hampered by the
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non-renormalizability of perturbatively quantized General
Relativity and the problems in finding a satisfactory microscopic
theory of Quantum Gravity of any other sort.

As a result, two issues have gotten mixed up that, however,
are quite independent logically, at least as long as no additional
information is available. These are

(a) the difficulty of setting up a non-perturbative fundamental
quantum theory of the gravitational (“spin-2”) interaction and

(b) the problem of repairing, in one way or another, the
background dependence of the standard model and similar
local quantum field theories on Minkowski space.

The respective classical variants of both problems are solved by
General Relativity. A theory of “QuantumGravity” in themodern
sense of the word [1] likewise must address, and ultimately solve,
the dynamics-related problem (a) as well as the Background
Independence issue (b).

In the past, many discussions failed to appreciate (b) as an
additional and independent point on the agenda, which has often
led to severe misconceptions. One of them is the widespread
prejudice that quantum gravity effects are numerically small
and can be neglected for all practical purposes. It was nurtured
by the observation that graviton corrections to standard model
physics on a rigid Minkowski space tend to be numerically small,
classically as well as quantum mechanically (to the extent they
are under control). If one believes, however, that the ultimate
Quantum Gravity theory is a Background Independent one, this
kind of reasoning is flagrantly wrong.

Its deficiency is not so much that it leaves unexplained
the Minkowskian spacetime, which we observe on the scale
of our laboratories; the real flaw is that it closes its eyes
toward the possibility that a state, which looks Minkowskian
on laboratory scales, may well possess a completely different
(metric, causal,· · · ) structure on the shorter length scales from
which we have no experimental information about gravity
and the structure of spacetime. Instead, in a Background
Independent theory, this structure is a computable prediction
rather than a phenomenological input based upon incomplete
experimental data.

(2) In this paper, we advocate the point of view that Quantum
Gravity, regarded as a non-perturbative and Background
Independent theory, can have substantial implications well
beyond the areas envisaged in the past, questions of ultraviolet
renormalizability, or tiny loop corrections due to gravitons.

To support this view, we analyzed the gravitational impact
of vacuum fluctuations as an exemplary problem. It has the
advantage that it allows for an almost perfect separation of the
points (a) and (b) on our to do list. In fact, the dynamics-
related part (a) is essentially trivial, while a number of unexpected
results contradicting traditional beliefs follow from (b), that is,
the imposition of Background Independence on an otherwise
unspectacular dynamic.

(3) We employ a continuum approach to Quantum Gravity
which quantizes pure or matter-coupled metric gravity in terms
of the gravitational Average Action, a concept that is both
covariant under diffeomorphisms and Background Independent

[2]. This scale-dependent action functional satisfies a functional
renormalization group equation. From very early on, it provided
strong evidence for the theory’s Asymptotic Safety, i.e., the non-
perturbative renormalizability at a non-Gaussian ultraviolet fixed
point [2–8], see [9, 10] for a general exposition and [10–25] for
later extensions.

As a matter of principle, the Quantum Einstein Gravity
constructed in this manner shares Background Independence
and the choice of the metric as the field variables with
General Relativity, though the microscopic action may well turn
out different from the Einstein-Hilbert action. (See [9] for a
detailed description of the various steps involved in the overall
“Asymptotic Safety Program”).

While the gravitational Average Action does depend on
a background metric besides the dynamical one, the setting
complies with the requirements of Background Independence
since the background metric is determined self-consistently
by the so called “tadpole equation,” a generalization of
Einstein’s equation.

Self-consistent background metrics depend on the RG scale
at which the Effective Average Action is evaluated. It follows
that “going on-shell” at a given point of the renormalization
group (RG) flow requires understanding two types of scale
dependencies. First is the (familiar) direct dependence of the
EAA on the RG scale, and second is an equally important
indirect one associated to the re-adjustment of the self-
consistent background metric as a solution to the scale
dependent-tadpole condition.

The scale dependence of the Effective Average Action is due
to a coarse graining or averaging process on the spacetime
manifold. The occurrence of the indirect scale dependence
is a concrete manifestation of the abstract principle of
Background Independence.

(4) In this paper, we give a detailed account of the
corresponding notion of Background Independent coarse
graining, and we illustrate the discussion by studying explicitly
the case where the self-consistent background metric is
determined essentially by the cosmological constant and
its RG flow.

To this end, we begin, in section 2, by reviewing the relevant
aspects of the gravitational Effective Average Action (EAA).
Then, in section 3, we turn to an object of central mathematical
importance, namely the spectral flow induced by the Laplacian
of the self-consistent background metric. As we shall see, such
spectral flow acquires an explicit scale dependence.

Most importantly, this spectral flow tells us which field
modes constitute the degree of freedom of the respective
effective field theory at a given RG scale. We discover a
surprising, seemingly paradoxical, behavior for a broad class of
RG trajectories. A Background Independent theory of (matter
coupled) quantum gravity looses rather than gains degrees of
freedom at increasing energies in contrast with the expectation
based on the off-shell formalism.

In section 4, we study to what extent the Background
Independent theory can be reformulated as a theory of matter
and gravity fluctuations on a rigid flat space. We will show that,
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in vacuo, such reformulation is possible only for a very short RG
time since a “scale horizon” prevents one to go further.

Finally, in section 5 we use the insights gained to critically
revisit, and refute, the argument leading to the naturalness
problem of the energy density obtained by summing up the
zero-point energies in quantum field theory.

Our presentation partly follows [26] to which the reader is
referred for further information.

2. THE BACKGROUND INDEPENDENT
EFFECTIVE AVERAGE
ACTION

In this section we review some relevant properties of the
gravitational EAA [2]. We focus mostly on properties that go
beyond the standard EAA for matter fields on flat space, see
[27–31].

(1) The EAA for Einstein gravity is defined by a functional
integral over the metric ĝµν . The integral is then expressed

in terms of a fluctuation field ĥµν and a background field
ḡµν . In the case of a linear split, the following relation holds:

ĥµν = ĝµν − ḡµν . The functional integral is characterized by
a diffeomorphism invariant bare action S

[

ĝ, · · ·
]

and a suitable
gauge-fixing term together with the associated Faddeev-Popov
ghosts Cµ and C̄µ [2]:

Wk

[

J; ḡ
]

= log

∫

Dϕ̂ exp
{

−Stot
[

ϕ̂, ḡ
]

+
∫

d4x
√

ḡJiϕ̂
i −1Sk

[

ϕ̂, ḡ
]

}

, (1.1)

where ϕ̂ ≡
(

ϕ̂i
)

≡
(

ĥµν ,C
µ, C̄µ, · · ·

)

is a multiplet of fields,

with the dots denoting possible matter fields, and J ≡ (Ji) is a
set of sources conjugate to them. On top of the bare action, the
gauge-fixing, and the ghost terms, the total action includes a term
1Sk, the so-called cutoff action, which gives a mass of order k
to the modes of ϕ̂ which have a (covariant momentum)2 smaller
than k2.

(2) The background metric plays a crucial role in the
present approach. By means of ḡµν one constructs the associated
Laplacian 2ḡ ≡ ḡµνD̄µD̄ν , with D̄µ being the associated Levi-
Civita connection. The spectrum of the Laplacian is determined
by the following eigenvalue problem:

− 2ḡ χn (x) = En χn (x) . (1.2)

By expanding the fields on the associated eigen-modes {χn}, i.e.,
ϕ̂ (x) =

∑

n anχn (x), we can view the functional integral as an
integral over the coefficients an,

∫

Dϕ̂ ≡
∏

n

∫

dan. The cutoff
action can then be expressed as a sum over the eigen-modes:

1Sk ∝ k2
∑

n

∫

d4x
√

ḡR(0)
(

En

k2

)

χn (x)
2 , (1.3)

where R(0) (z) satisfies R(0) (0) = 1, and R(0) (∞) = 0, and
is a monotonically decreasing function which smoothly “crosses

over” near z = 1. As a consequence, a field eigen-mode χn (x)
associated with an eigenvalue En smaller than k2 is equipped with
an effective mass term ∝ k2χn (x)

2. The other modes remain
essentially unaffected. This mechanism provides the IR cutoff
that will cause the scale dependence of the EAA. In practice, it
is convenient to rewrite (1.3) as1Sk = 1

2

∫

d4x
√

ḡϕ̂ (x)Rkϕ̂ (x),
without resorting to an explicit mode decomposition, with the
pseudo-differential operator

Rk

[

ḡ
]

= Zkk
2R(0)

(−2ḡ

k2

)

, (1.4)

where Zk is a matrix acting in field space taking into account the
different normalization of the fields.

(3) It is important to emphasize that the eigenvalue problem
(1.2), the spectrum

{

En

[

ḡ
]}

, and the set of eigenmodes,
{

χn
[

ḡ
]

(x)
}

, depend on the background metric. This fact will
play a crucial role later on.

(4) The gravitational EAA Ŵk
[

ϕ; ḡ
]

is defined as the
Legendre-Fenchel transform of Wk

[

J; ḡ
]

with respect to the
sources Ji, holding ḡµν fixed and subtracting 1Sk

[

ϕ; ḡ
]

from it.
The EAA is a functional of the variables “dual” to J, viz. ϕ ≡
〈ϕ̂〉 ≡

(

hµν , ξ
µ, ξ̄µ, · · ·

)

. The expectation value of the metric

fluctuation is given by hµν ≡ 〈ĥµν〉 = 〈ĝµν〉 − ḡµν = gµν − ḡµν ,
with gµν ≡ 〈ĝµν〉.

(5) The path integral representation of Wk allows one to
derive a number of properties satisfied by Ŵk, such as BRST- and
split-symmetry Ward identities. In particular, one can derive the
following exact functional RG equation (FRGE),

∂tŴk
[

ϕ; ḡ
]

=
1

2
STr

[

(

Ŵ
(2)
k

[

ϕ; ḡ
]

+Rk

[

ḡ
]

)−1
∂tRk

[

ḡ
]

]

. (1.5)

At least superficially, it has the same appearance as for matter
theories [29–33]. Moreover, the following source-field relation
(“effective Einstein equation”) holds

1
√

ḡ (x)

δŴk
[

ϕ; ḡ
]

δϕi (x)
+Rk

[

ḡ
]i

j
ϕj (x) = Ji (x) . (1.6)

Instead of the pair
(

hµν , ḡµν
)

one may employ gµν and ḡµν as two
independent variables and define

Ŵk
[

gµν , ḡµν , ξ
µ, ξ̄µ

]

≡ Ŵk
[

hµν , ξ
µ, ξ̄µ; ḡµν

]

. (1.7)

When setting the ghost fields to zero, ξ = ξ̄ = 0, we
write Ŵk

[

gµν , ḡµν
]

≡ Ŵk
[

hµν; ḡµν
]

, which is the proper vertex
generating functional for the 1PI correlators of ĝµν

1. In this work,
we limited ourselves to consider the EAA defined in this section.
It could be interesting to extend our study to related functionals,
see in particular [46], and pinpoint possible advantages and

disadvantages of each choice.
For further details on the EAA, we refer to [2] and the

comprehensive account in [9].

1More general composite operators O
(

ĝµν
)

can be included in the gravitational

EAA [34–38] by coupling them to independent sources [39–45].
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3. SCALE-DEPENDENT SPECTRA AS A
DIAGNOSTIC TOOL

(1) In our argument, a central role will be played by the eigenbasis
of 2ḡ , henceforth denoted by ϒ ≡ {χn}. The eigenmodes satisfy
the ḡ-dependent eigenvalue equation

− 2ḡχn
[

ḡ
]

(x) = En

[

ḡ
]

χn
[

ḡ
]

(x) . (2.1)

We refer to modes with En

[

ḡ
]

< k2 as IR modes, while all others
are UV modes. The lowest lying UV mode is the so called cutoff
mode, χCOM. Its eigenvalue is either precisely equal to k2, or
slightly larger if the spectrum is discrete. In the former case:

UV modes : En

[

ḡ
]

≥ k2

cutoff mode : En

[

ḡ
]

= k2 (2.2)

IR modes : En

[

ḡ
]

< k2.

According to this division of the functions χn (x), the eigenbasis
ϒ ≡ ϒ

[

ḡ
]

decomposes as

ϒ
[

ḡ
]

= ϒUV

[

ḡ
] (

k
)

∪ ϒIR

[

ḡ
] (

k
)

(2.3)

withϒIR andϒUV containing the IR andUVmodes, respectively.
It needs to be emphasized that the decomposition (2.3)

depends not only on the scale, k, but also on the background
metric. Hence, dealing with a fixed functional

(

ϕ, ḡ
)

7→ Ŵk
[

ϕ; ḡ
]

, (2.4)

the attribute of being “UV” or “IR” depends on the ḡµν-argument
the functional is evaluated at. In particular the set of quantum
numbers nCOM that characterizes the cutoff mode χCOM ≡
χn

∣

∣

∣

n=nCOM
depends on the background metric:

nCOM ≡ nCOM
[

ḡ
] (

k
)

. (2.5)

The spectrum of −2ḡ is schematically represented in Figure 1

together with the cutoff mode at k = k1.
(1) ϒIR

[

ḡ
] (

k
)

and effective field theory. In the EAA-
based quantization on a k-independent background metric the
classification of the eigen-modes according to (2.3) can be
interpreted physically:

(i) At a scale k = k1 the effect of the modes belonging to
ϒUV

[

ḡ
] (

k1
)

is encoded in the running (i.e., scale dependent)
couplings that parametrize Ŵk1

[

ϕ; ḡ
]

. Essentially, the modes
in ϒUV

[

ḡ
] (

k1
)

have been “integrated out.”
(ii) At the scale k1, the running couplings do not take into account

the fluctuations of the modes in ϒIR

[

ḡ
] (

k1
)

, i.e., these modes
have not been integrated out yet. It follows that Ŵk1 can be
interpreted as an effective field theory that governs these modes
at scales close to k1.

The term “effective field theory” has the following meaning for
us. When employing the action functional Ŵk1 to compute some
observable, only the modes belonging to ϒIR

[

ḡ
] (

k1
)

remain to

FIGURE 1 | Representation of the spectral flow of −2ḡ constructed via a

scale independent background metric. This schematic representation shows a

trivial spectral flow with the horizontal lines representing k-independent

eigenvalues and the diagonal representing the identity k2 7→ k2. The black

dots denote the intersection points at which a mode is “integrated out.” At the

scale k1, the IR degrees of freedom ϒIR [ḡ] (k1) are associated to the

eigenvalue lines passing through the shaded triangle.

be quantized. Therefore, the scale k1 plays the role of an UV cutoff
from an effective field theory point of view. All modes the effective
field theory governs have eigenvalues En

[

ḡ
]

< k2.
Let us note that one may “integrate out” the IR-modes in

ϒIR

[

ḡ
] (

k1
)

by employing the FRGE and running the RG flow
down to a lower scale (eventually k1 → 0). However, one may
also “integrate out” these modes by any other suitable technique
in principle.

(2) Self-consistent background geometries. Assume we solved
the flow equation and obtained a certain RG trajectory k 7→ Ŵk,
a curve on theory space. By differentiating the corresponding
running action Ŵk

[

ϕ, ḡ
]

with respect to ϕ, we may compute
arbitrary proper vertices from which one may eventually
calculate any arbitrary correlation function,

〈

ϕ̂ (x1) · · · ϕ̂ (xn)
〉

. (2.6)

These correlators describe the dynamics of ϕ ≡
(

hµν , · · ·
)

-
fluctuations on a classical spacetime whose metric, ḡµν , is
enforced by unspecified external means. By appropriately
changing the second argument of Ŵk

[

ϕ, ḡ
]

and of its ϕ-
derivatives, the RG trajectory informs us about the fluctuation
dynamics on any given background geometry and at all scales.

A quantity of special interest is the one-point function 〈ĥµν〉ḡ
since it determines the expectation value of the metric operator

ĝµν = ḡµν + ĥµν , i.e.,

〈ĝµν〉ḡ = ḡµν + 〈ĥµν〉ḡ . (2.7)
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In general, the expectation value (2.7) will be quite different
from the background metric when the fields ϕ ≡

(

hµν , · · ·
)

are
quantized on a randomly chosen geometry.

Now, we go one step further and ask which metric expectation
value the quantum system will realize when it is free from
all external interferences. More concretely, if we quantize the
set of fluctuation fields on a geometry with a given ḡµν , we
can ask which background(s) they would “like” most, in the
sense that they dynamically produce a ĝµν-expectation value that
agrees precisely with the background metric prescribed. Such
geometries are the called self-consistent geometries, and their
metric is denoted

(

ḡsc
k

)

µν
. Hence,

〈ĝµν〉ḡ = ḡµν ⇔ 〈ĥµν〉ḡ = 0 if ḡ = ḡsck . (2.8)

Self-consistent background metrics can be found from the
condition of a vanishing fluctuation one-point function, for
historic reasons termed the tadpole condition. It comprises
the equation

δ

δhµν
Ŵk

[

h, · · · ; ḡ
]

∣

∣

∣

h=0,ḡ=ḡsc
k

= 0 (2.9)

coupled to similar conditions where the differentiation is with
respect to the other fluctuation fields.

In the following, it is of central importance that, generally,
self-consistent backgrounds depend on the RG scale. By (2.9),
it is clear that solutions

(

ḡsc
k

)

µν
inherit a certain k-dependence

from Ŵk.
(3) Generalized RG trajectory. Henceforth, we assume that

we solved the RG flow equation and have a certain trajectory
k 7→ Ŵk in our hands. Furthermore, we assume that, using
this running action as an input, we solved the tadpole equation
and found a family of metrics

(

ḡsc
k

)

µν
labeled by k, or, stated

differently, a curve in the space of metrics. It is natural therefore
to refer to the map

k 7→
(

Ŵk,
(

ḡsck
)

µν

)

(2.10)

as a generalized RG trajectory and to visualize it as a parametrized
curve in the product of theory space with the space of metrics.

(4) Spectral flow. At every point of the generalized RG
trajectory, we use the metric

(

ḡsc
k

)

µν
in order to construct the

associated Laplacian 2ḡsc
k
. This results in a family of Laplacians

whose members are distinguished by their respective value of k.
Each family member gives rise to its own eigenvalue equation. It
reads, for every value of k,

− 2ḡsc
k
χn

(

x, k
)

= Fn

(

k
)

χn
(

x, k
)

. (2.11)

Solving the family of eigenvalue problems (2.11), we obtain a
“curve of spectra,” i.e., a spectral flow,

k 7→
{

Fn

(

k
)}

, (2.12)

and the corresponding eigenbasis,
{

χn
(

·; k
)}

.

If ḡ = ḡsc
k
, the effective field equations implied by Ŵk admit the

simple solution h = 0. The correlation functions (2.6) are thus
taken “on-shell” when we evaluate them, separately for every k,
at the self-consistent metric and simultaneously set h = 02. In
this sense, the graviton n-point functions, for instance,

〈ĥ (x1) · · · ĥ (xn)〉on−shell (2.13)

enjoy the property of being on-shell for each scale separately.
(5) Direct vs. indirect k-dependence. While on-shell at all

points along the generalized RG trajectory, the n-point functions
(2.13) possess a rather complicated scale dependence in general,
which has two independent sources: the (naively expected) direct
scale dependence, stemming from the k-dependence of the Ŵk,
and the indirect scale dependence, caused by the continually
changing, dynamically selected background metric.

The indirect scale dependence makes the physical
interpretation of the coarse graining procedure rather non-
trivial in general and striking surprises can occur, as we
shall see.

(6) At the heart of Background Independent coarse

graining. Recall that, when still “off-shell,” the Effective
Average Action maps k-independent arguments onto a
k-dependent number,

Ŵk :

(

h, ḡ
)

7→ Ŵk
[

h; ḡ
]

, (2.14)

such that k2 is a cutoff in the spectrum of an operator,
namely, −2ḡ , which is determined by the functional’s second
argument, ḡ.

By taking Ŵk and its h-derivatives on-shell, this operator
gets concretely specified as −2ḡsc

k
, which possesses an explicit

parametric dependence on k. k2 thus appears to be a cutoff in the
spectrum of an operator that is k-dependent in itself.

With this somewhat confusing and paradoxical-looking
situation, we have reached the very core of the Background
Independent coarse graining: since physics (i.e., on-shell data)
may not depend on any distinguished metric that was chosen ad
hoc, spectral information of physical relevance is bound to come
from operators which are determined dynamically [9].

The following steps are aiming at a first physical
understanding of what it means to “coarse grain” under
such conditions in a fully Background Independent fashion.

(7) Local IR-UV separation along the trajectory. We may
assume that the eigenvalue problems (2.11) have been solved
all the way along the generalized RG trajectory so that the
spectral flow

k 7→
{

Fn

(

k
)

,χn
(

· ; k
)}

(2.15)

can be analyzed explicitly. At first, we determine the cutoffmodes
of all the spectra occurring on the trajectory. At a given scale, say
k = k1, we require that

FnCOM

(

k
)

∣

∣

∣

k=k1

!= k21 , (2.16)

2Alongside with h = 0 we also fix other fluctuation fields in the multiplet ϕ =
(

h, · · ·
)

, e.g., the ghosts and matter fields, according to their solution from the

coupled field or tadpole equations.
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FIGURE 2 | Schematic sketch of a non-trivial spectral flow.

and solve this condition for nCOM ≡ nCOM
(

k1
)

. Equation
(2.16) determines the label associated to the cutoff mode in the

spectrum of the (on-shell!) background Laplacian at a given point
of the theory space, which is visited by the RG flow when k = k1.
When the spectrum is discrete, the cutoff mode corresponds to
the smallest eigenvalue FnCOM

(

k1
)

equal to or above k21.
Furthermore, we distribute the modes of the eigenbasis

{

χn
(

· ; k1
)}

over two sets, putting those with eigenvalues
Fn

(

k1
)

≥ FnCOM(k1)

(

k1
)

and Fn

(

k1
)

< FnCOM(k1)

(

k1
)

into the

sets ϒUV

(

k1
)

and ϒIR

(

k1
)

, respectively.
By performing the outlined algorithm for all k1, one can

construct the map k 7→ nCOM
(

k
)

or, more explicitly, k 7→
χnCOM

(

· ; k
)

. In the same manner, we can construct the “curves”
k 7→ ϒUV/IR

(

k
)

, and the decomposition of the eigenbasis,

{

χn
(

· ; k
)}

= ϒUV

(

k
)

∪ ϒIR

(

k
)

(2.17)

which replaces (2.3) when going on-shell.
(8) Spectral flow and mode reshuffling. In Figure 2, we

sketch a typical spectral flow of the kind that will arise later in our
example. The trajectory’s curve parameter k is on the horizontal
axis, while two specific values, k = k1 and k = k2, are represented
by two vertical lines. Figure 2 is analogous to Figure 1, the
difference being that the eigenvalues En are replaced by Fn

(

k
)

.
We refer to the k-dependence of the spectrum

{

Fn

(

k
)}

as the
spectral flow induced by the (scale dependent) self-consistent
background metric.
(8.1) The cutoff mode at the scale k = k1 can be determined as
follows. First one identifies all the intersection points between the
graphs Fn

(

k
)

and the vertical line k = k1. The modes are then
separated into two sets, i.e., ϒUV

(

k1
)

and ϒIR

(

k1
)

, according
to whether the intersection point lies above or exactly on the
diagonal or below the diagonal, respectively.

The cutoff mode is defined as the mode associated to the
smallest eigenvalue in ϒUV

(

k1
)

. At the scale k = k1, the cutoff
mode is labeled by nCOM

(

k1
)

as illustrated in Figure 2.
The mode carrying the label n = nCOM

(

k1
)

, k1 fixed, is
associated to a scale dependent eigenvalue FnCOM(k1)

(

k
)

. For

values k 6= k1, this mode plays no special role in general.

(8.2) As we explained, the effective action Ŵk

∣

∣

∣

k=k1
governs the

degrees of freedom associated to the modes in ϒIR

(

k1
)

. These
latter modes correspond to the eigenvalues passing within the
shaded area to the left of the vertical k = k1-line in Figure 2.
At scales lower than k1 these eigenvalues intersect the diagonal
only once. The intersection is marked by a black dot similarly to
the case of constant En displayed in Figure 1.

This behavior can be interpreted as follows. By lowering k1,
the vertical k = k1-line sweeps over one of the black dots on the
diagonal. This implies that the associated mode is moved from
ϒIR

(

k1
)

to ϒUV

(

k1
)

. At first sight, one may suspect that this is
what has to be expected in general since by lowering the cutoff
one “integrates out” more and more modes.
(8.3)However, this picture changes dramatically at higher scales.
Let us consider the scale k = k2, in Figure 2. As we shall see
explicitly later on, the crucial point is that, if the cosmological
constant increases with k rapidly enough, then the graph of an
eigenvalue Fn

(

k
)

may intersects the diagonal more than once
below k2. In Figure 2, we observe eigenvalues both entering and
exiting from the shaded area to the left of the vertical k2-line,
and the intersection points are marked by black dots or open
circles accordingly. By lowering k2, it is possible for the k2-line
to sweep over an open circle. This implies that a certain mode has
changed its UV/IR status. However, this time, the mode moved
from ϒUV

(

k2
)

to ϒIR

(

k2
)

!
At first glance, such behavior appears paradoxical and

may seem “unphysical.” Indeed, we normally expect that, by
integrating out further field modes, we are actually relocating
them from the set ϒIR to the set ϒUV. In the present case,
however, the opposite happens and a UV-mode in ϒUV becomes
an IR-mode in ϒIR by lowering the RG scale.
(8.4) This conundrum is solved by recalling that the standard
expectation, i.e.,

(

k lowered
)

⇔
(

mode transfer ϒIR → ϒUV

)

,
is valid for k-independent (off-shell) field arguments of the
functional Ŵk

[

ϕ; ḡ
]

. It must be emphasized that, during the
computation of the EAA, this expectation holds true also
in the present case. Such unexpected spectral behavior is

due to the fact that, when the fields are taken on-shell

and one employs the self-consistent background, they acquire

a further scale dependence, which causes this non-trivial
spectral flow.

It follows that there is nothing “unphysical” if, by lowering the
value of k2, one observes a transitionϒUV → ϒIR. Actually, such
transition encodes the physically important fact that the effective
field theory described by Ŵk has gained a degree of freedom,
whose fluctuations have not been taken into account in the values
of the renormalized couplings in Ŵk.

As displayed in Figure 2, by lowering k further, the new
IR-mode crosses the diagonal again and eventually becomes a
UV-mode.
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(9) Illustrative example: Einstein-Hilbert truncation. Let us
pause for a moment and introduce an approximation that will be
invoked for illustrative purposes in the following.

We truncate the gravity action to the Einstein-Hilbert form,
and we either consider pure gravity, or matter coupled gravity
in situations where the matter stress tensor in the effective field
equation plays no significant role (at least at the level of the
qualitative discussion we present here).

As a result, the tadpole condition (2.9) happens to assume
the form of the classical Einstein equation in vacuo with a scale
dependent cosmological constant:

Rµν −
1

2
gµνR+3kgµν = 0. (2.18)

Herein, k 7→ 3k is one of the functions that constitute the RG
trajectory on theory space.

(i) As for the solution
(

ḡsc
k

)

µν
to Equation (2.18), we focus on

the instructive, yet technically simple, class of solutions of the
scaling type:

(

ḡsck
)

µν
=
30

3k

(

ḡsc0
)

µν
. (2.19)

Here
(

ḡsc0
)

µν
is an arbitrary solution to (2.18) for the

cosmological constant30. (Instead of the reference point k =
0, any other would do as well).

(ii) It is easy to determine the spectral flow caused by the k-
dependence of the self-consistent background metric (2.19):

Fn

(

k
)

=
3k

30
Fn (0) , (2.20)

χn
(

x; k
)

= χn (x; 0) . (2.21)

Moving along the generalized RG trajectory, the
eigenvalues Fn

(

k
)

get rescaled, while the eigenfunctions
remain unaltered.

(iii) For every fixed spectrum occurring along the trajectory we
must determine the cutoff mode, i.e., the label nCOM ≡
nCOM

(

k
)

. It is easy to show that this can be done by the
following two-step algorithm:

• Determine the cutoff mode in the reference spectrum
obtained with30. In this case, denote the cutoff by q

2 rather
than, as usual, k2. Set up the equation

FnCOM (0)
!= q2 (2.22)

and solve it for nCOM. Denote the result by

nCOM ≡ n0COM
(

q
)

, (2.23)

thus defining the function n0COM (·).
• We would like to solve

FnCOM

(

k
) != k2 ⇒ nCOM = nCOM

(

k
)

. (2.24)

Upon defining the function q
(

k
)

by

q
(

k
)2 = k2

30

3k
, (2.25)

the solution to the problem (2.24) can be found in terms of the
above n0COM (·) as follows:

nCOM
(

k
)

= n0COM
(

q
(

k
))

(2.26)

In the discussion of Figure 2, we have determined this k-
dependence of nCOM by graphical means.

(10) Illustrative example: S4 spacetimes.Assuming a positive
cosmological constant, the maximally symmetric solution to the
(Euclidean) Einstein equation (2.18) is a sphere S4. Its radius r̄k
follows from R = 12/r̄2

k
= 43k, i.e., r̄k =

√
3/3k, implying

r̄k = r0

(

30

3k

)1/2

. (2.27)

The radius r̄k can be thought of as the Euclidean analog of the
Hubble length.

(i) On S4, the eigenmodes of the tensor Laplacian are labeled
by a positive integer, n, and a set of further quantum
numbers the associated eigenvalue is independent of. The
latter generalize the familiar magnetic quantum number m
that appears as a label of the spherical harmonics Yl,m, i.e., the
scalar eigenfunctions on S2, while the former is analogous to
l which determines the eigenvalue, l

(

l+ 1
)

. For not too small
values of n, the eigenvalues of the S4 harmonics, for tensors of
any rank, are given by n2/r2, whence for the radius r = r̄k,

Fn

(

k
)

≈
(

n

r̄k

)2

for n≫ 1. (2.28)

The approximation behind Equation (2.28) is analogous to
replacing l

(

l+ 1
)

with l2 in the S2 case. Its advantage is that it
is valid for tensors of any rank, contrary to the exact formula
[47–50]. For the purposes of the present discussion we do not
loose any relevant information by specializing for n ≫ 1. In
fact, treating n as a large, quasi-continuous number also helps
avoiding a number of inessential technicalities.

(ii) Using (2.27) and (2.28), the above algorithm yields the
following answer for the quantum number of the cutoff mode:

nCOM
(

k
)

= r̄0 q
(

k
)

. (2.29)

Herein, q
(

k
)

is given by Equation (2.25), which we rewrite in
the suggestive form

q
(

k
)2 = 30

k2

3k
=

k2

λk
(2.30)

where λk ≡ 3k/k
2 is the dimensionless cosmological constant

in cutoff units.
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FIGURE 3 | (A) Phase portrait of the RG flow in the Einstein-Hilbert truncation on the dimensionless (g, λ)-plane. The RG trajectories start out from the UV

non-Gaussian fixed point and flow toward the IR. (B) An example of a trajectory of Type IIIa. Its turning point (λT,gT) is passed when k = kT = 1/ℓ.

(11) The generic semiclassical RG trajectory. To go on and
study the contents of (2.29), (2.30) we must pick an RG trajectory
which then supplies a concrete function k 7→ 3k. In this paper,
we focus on the semiclassical regime below the Planck scale (k .

mPl), where qualitatively the k-dependence of 3k is essentially
the same for a large class of trajectories in pure gravity and also
in matter-coupled gravity with many different matter systems. It
reads, with constants30 and ℓ,

3k = 30

[

1+ ℓ4k4
]

for 0 ≤ k . mPl. (2.31)

The concomitant running of Newton’s constant is trivial,
Gk = G0 = const. This behavior applies in particular to
the semiclassical regime of the Type IIIa trajectories in pure
Quantum Einstein Gravity, see Figure 3.

There, thanks to Asymptotic Safety, the k → ∞ behavior is
determined by the non-Gaussian UV fixed point, being λk → λ∗,
and so 3k → λ∗k2 ≡ 30L

2k2. In what follows, use will not be
made of this specific UV completion, and many others would do
as well for what concerns our main argument. It will only rely
on the semiclassical formula (2.31). Despite this, the choice of
trajectory, having a positive cosmological constant in the IR, 30,
is essential.

The simple formula (2.31) should be seen as a “caricature” of
a generic semiclassical behavior that is precise enough to display
the crucial feature of a turning pointwhen the trajectory is plotted
on the dimensionless g − λ-plane. There,

λk = 30

[

1

k2
+ ℓ4k2

]

, gk = G0k
2, (2.32)

and so λk is seen to switch from decreasing to increasing when
k passes the turning point scale kT = 1/ℓ from below, see
Figure 3B.

We assume that, on the one hand, kT is much smaller than the
Planck scale, but, on the other, it is much larger than the Hubble
parameter at k = 0:

3
1/2
0 ≪ kT ≪mPl. (2.33)

For illustration’s sake, we may fit the formula (2.31) to the values
of 30 and G0 measured in Nature. Up to factors of order unity,
this yields

kT ≈ 10−30mPl ≈ 1030H0 (2.34)

with the present Hubble parameter H0 ≈ 3
1/2
0 . Both inequalities

in (2.33) are well-satisfied then.
(12) The S4 family in the semiclassical regime.With3k given

by (2.31), the members of the S4 family of maximally symmetric
self-consistent backgrounds have radii

r̄k =
r̄0√

1+ ℓ4k4
=

r̄0
√

1+
(

k
kT

)4
(2.35)

where r̄0 ≡
√
3/30. In the strictly classical regime (k ≪ kT) the

radius is essentially constant, r̄k ≈ r̄0, while it decreases rapidly
(r̄k ∝ 1/k2) when k≫ kT. As a consequence, the eigenvalues on
the S4 with radius r̄k are

Fn

(

k
)

=
(

n

r̄k

)2

=
(

n

r̄0

)2
[

1+ ℓ4k4
]

. (2.36)

This spectral flow has the qualitative features anticipated
in Figure 2.

The k-dependent cutoff quantum number nCOM
(

k
)

=
r̄0 q

(

k
)

is explicitly known at this point, with (2.30) yielding

q
(

k
)

=
(

k2

1+ ℓ4k4

)1/2

. (2.37)

The functions q
(

k
)

and nCOM
(

k
)

are plotted in Figure 4. They
possess a maximum at the turning point scale k = kT ≡ 1/ℓ,
where q

(

k
)

assumes the value

qmax = q
(

kT
)

=
1
√
2
kT. (2.38)

Under the condition (2.33), this maximum is situated well within
the semiclassical regime. The value of the quantum number
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FIGURE 4 | Representations of the functions q (k) and nCOM (k) = r̄0q (k)

along a trajectory of the Type IIIa. The semiclassical regime extends from k = 0

to k̂ = O (mPL). Beyond this point, the Asymptotic Safety result is shown for

concreteness, being q (k) = L−1 = const, with L ≡
√
λ∗/30.

nCOM never can become really large. At the very least in the
semiclassical domain, it is bounded above:

nCOM
(

k
)

6 nCOM
(

kT
)

= r̄0qmax = r̄0kT/
√
2 for all k.

(2.39)

(13) Fuzzy appearance of spacetime. Recall that the integer n,
much like the quantum number l of Ylm, measures the degree
of complexity (number of nodes etc.) of the corresponding
eigenfunctions. Hence nCOM

(

k
)

characterizes the maximum
“resolving power” or “fineness” that can be achieved on the
self-adjusting 4-sphere with an eigenfunction expansion that is
truncated at n = nCOM

(

k
)

.
Since nCOM

(

k
)

is bounded above by its value at the turning
point, nCOM

(

kT
)

, it follows that on the family of self-consistent
spacetimes, whatever is the value of k, the “resolving power” of the
eigenmodes is never perfect.

The best angular resolution that can be achieved on S4

is of order 2π/nCOM
(

kT
)

, and this renders spacetime a kind
of “fuzzy sphere.” (See also [51–53] for a discussion of a
related dynamically generated minimum length, and [54] for the
concomitant effect on the entanglement entropy).

(14) Anomalous mode reshuffling explained. Our usual
intuition being trained on k-independent metrics, the behavior
of nCOM

(

k
)

shown in Figure 4 comes as a surprise: while we
expect that by increasing the characteristic momentum of the
coarse graining, i.e., k, higher eigenmodes of the Laplacian with
shorter wavelength get involved, the opposite happens according
to Figure 4 at scales above the turning point (k > kT). Increasing
k leads to a lower cutoff mode then, i.e., a function with less
structure (having fewer nodes, etc.).

Another side of the same medal is that, above the turning
point, lowering k converts UV-modes to IR-modes (rather than
vice versa). Hence, at low scales, the effective field theory hasmore
degrees of freedom to deal with than at high scales. This is again
in conflict with the naive fixed k intuition, which would suggest

that lowering k means “integrating out,” hence a relocation of
modes in the opposite direction, ϒUV → ϒIR.

Thus, we observe that the spectral flow at hand,
Equation (2.36), does indeed realize the possibility of eigenvalues
which, in Figure 2, cross the diagonal twice.

Given the explicit form of the eigenvalues in (2.36), we can
explain the above “paradoxes” in elementary physical terms:

when k is increased, the radius r̄k of the self-consistent sphere
shrinks, and this causes Fn

(

k
)

, n fixed, to grow. There are two
ways of making Fn

(

k
)

large: the familiar one of increasing n at
fixed radius and the new one of keeping n fixed, or making it
smaller, while decreasing the radius. Above the turning point, this
second mechanisms turns out to be the dominant one.

The analysis carried out in this section assumes a positive
curvature, the extension of our investigation to the cases
of negative curvature or Lorentzian signature is interesting
and requires further study (Ferrero R and Reuter M, work
in progress).

4. RUNNING VS. RIGID PICTURE OF THE
RG EVOLUTION

(1) The familiar “running picture.” Assume we are given a
certain solution to the functional RG equation, Ŵk

[

h,ψ; ḡ
]

,
describing gravity coupled to a set of matter fields,ψ . Then, as for
the associated effective field theory, the couplings it encapsulates
apply to the “particle physics” of hµν and the other quanta when
they propagate on the running

(

ḡsc
k

)

µν
geometries.

The high-kmatter physics predictions supplied by Ŵk are valid
only in conjunction with a high-k gravitational background.

This is the standard way of interpreting the RG trajectories. It
refers all “particle physics” to the k-dependent on-shell geometry
and is therefore called the “running picture” of the generalized
RG trajectory.

(2) The novel “rigid picture” · · · . To describe the alternative
“rigid picture” let us put ourselves in the place of collider
physicists who are able to measure the matter couplings governed
by Ŵk

[

h,ψ; ḡsc
k

]

, but are unable to explore the microscopic
spacetime structure. They would find it natural to construct a
new action functional,Ŵq, whichmakes no reference to a running
metric and eliminates ḡsc

k
everywhere in favor of the (essentially

flat) macroscopic metric ḡsc0 = ḡsc
k=0

. In the sought for description
only the particle physics runs, while the metric stays fixed, being
always ḡsc0 .

Among other changes of an essentially kinematic character,
the construction of Ŵq from Ŵk involves re-interpreting the cutoff
scale as an eigenvalue of

(

−2ḡ

)

built from ḡ = ḡsc0 rather than
the usual ḡsc

k
. It is easy to see that the two operators have the same

eigenfunctions and that, if the eigenvalue in the latter case is k2,
then it equals q2 in the former. (Note that 2ḡsc

k
= (3k/30)2ḡ0

for metrics of the rescaling type).
In this rigid picture, therefore, the quantity q plays the

same role the usual cutoff k plays in the running picture and,
consequently, the notation Ŵq for the new running action. From
the perspective of Ŵq, all momenta are proper with respect to the
fixed metric ḡsc0 , as desired by the collider physicists.
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In order to actually construct the new action functional, we
would have to reparametrize the RG time axis,

Ŵq = Ŵk(q), (3.1)

which requires inverting the function k 7→ q
(

k
)

to obtain k =
k
(

q
)

. This is impossible though.
In the semiclassical regime a given value q < qmax is associated

to two k-values via Equation (2.37), see Figure 4. It follows
that, globally speaking, the map k 7→ q

(

k
)

is not a valid
reparametrization of the whole RG trajectory since it does not
provide a diffeomorphism on the RG-time axis.

Locally, however, it is possible to invert Equation (2.37) for
either k < kT or k > kT. The inversion yields the following two
maps k = k

(

q
)

for q ∈
[

0, qmax

]

:

k±
(

q
)

=
1

√
2ℓ2q

[

1±
√

1−
(

2ℓ2q2
)2

]1/2

=
√
2
q2max

q



1±

√

1−
(

q

qmax

)4




1/2

. (3.2)

The functions k+
(

q
)

and k−
(

q
)

joins at k±
(

qmax

)

=
√
2qmax =

kT while, for a generic q, the upper branch is given by k+
(

q
)

> kT
and the lower branch by k−

(

q
)

< kT.
(3) · · · and its breakdown. The non-invertibility of q

(

k
)

implies that the rigid picture is applicable from k = 0 up to
k = kT only. It breaks down at the turning point, which acts as a
sort of horizon in the one-dimensional space of scales [26].

Figure 5 illustrates the role played by this “scale horizon”
in connection with the cosmological constant. The action Ŵq
includes a term ∝ 3k(q)

∫

d4x
√

ḡsc0 , with 3k(q) ≡ 3rigid

(

q
)

the natural scale dependent cosmological constant in the running
picture. From3k(q) = 30k

2
(

q
)

/q2, and with (3.2) we obtain the

double-valued relation

3rigid

(

q
)

= 230

(

qmax

q

)4


1±

√

1−
(

q

qmax

)4


 . (3.3)

The behavior of 3rigid is displayed in Figure 5, with the minus
(plus) sign corresponding to the lower (upper) branch of
the function.

A hypothetical collider physicist that insists on using the scale
q has no problems in interpreting the lower branch of 3rigid

(

q
)

but is not able to go beyond the horizon located at q = qmax.
By viewing q as a curve parameter for the RG trajectory,

we note that it provides a “good” coordinate on the RG time
axis only below the turning point. A different coordinate is
needed to go beyond the horizon, an example is offered by k,
which is valid globally. The situation is somewhat similar to
the usual coordinate horizons in spacetime. In terms of q the
rigid picture based on the (perturbative) k−-branch is valid for
momenta q ≤ qmax.

FIGURE 5 | The cosmological constant appearing in the rigid picture’s Ŵq in

dependence on its natural RG scale q. While we are able to consistently

interpret the diagram’s lower branch (30 ≤ 3rigid ≤ 230), the “scale horizon” at

qmax prevents us from passing to the upper branch straightforwardly.

5. IMPLICATIONS FOR GRAVITATING
VACUUM FLUCTUATIONS AND THE
COSMOLOGICAL CONSTANT

The cosmological constant has been puzzling physicists for
a long time [55–58]. The problem involves classical and
quantum aspects of both matter and gravitation. There is a
general consensus that such a small cosmological constant
poses an extraordinary naturalness problem. According to usual
arguments the cosmological constant is unnaturally small in
comparison to the vacuum energy density due to the quantum
fluctuations of the quantum field theories describing particle
physics. In another variant of the argument, the cosmological
constant is small in relation to the Planck scale.

In this section we will focus on the former version of the
“cosmological constant problem” and we shall revisit it from the
perspective of Background Independent quantum field theory.

5.1. The Standard Argument
The best-known argument showing the claimed tension between
quantum field theory and general relativity goes as follows. In
Minkowski space, one assumes that each mode pertaining to a
certain quantum field behaves like a harmonic oscillator, which
contributes to the field’s ground state energy by an amount 1

2 h̄ω.
In flat space, the modes of a quantum fields are labeled by the
3-momentum p. By summing over all momenta, one obtains the
total vacuum energy as

∑

p
1
2 h̄ω

(

p
)

. For instance, in the case of
a massless free field the energy density is given by the integral

ρvac =
1

2

∫

d3p

(2π)3

∣

∣p
∣

∣ , (4.1)
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which is ultraviolet divergent and requires regularization. For
instance, one may regularize the integral (4.1) via a sharp
cutoff

∣

∣p
∣

∣ ≤ P . Clearly, different regularization can also be
employed. In any case the vacuum energy density is quartically
divergent, i.e.,

ρvac = cP4, (4.2)

where the particular value of c depends on the chosen
regularization scheme and is of order unity. Next, the UV cutoff
P is fixed to some high value (typically related to a new physics
scale). The energy density ρvac is then taken into account in the
Einstein’s equation as a contribution to the cosmological constant
in the amount of13 = 8πGρvac = 8πGcP4.

Similar semiclassical arguments goes back to Pauli [57]. He
had already realized that a cosmological constant of order 13
would produce a curvature, which is unacceptable even if the UV
cutoff P is taken to be the scale of atomic physics.

In the modern version of the argument, the UV cutoff often
corresponds to the Planck scale (P = mPl). In this latter case,
the contribution to the cosmological constant 13 is roughly
10120 times bigger than the observed cosmological constant,
3obs. Then, by expressing the observed cosmological constant
as the sum of a bare cosmological constant 3bare and 13,
i.e., 3obs = 3bare + 13, one observes that 3bare must be fine
tuned at the level of 120 digits. This is thus considered a major
naturalness problem.

Similar issues arise with essentially any plausible choice for the
UV cutoff P . This has triggered the suspicion that there may be
something incorrect in the previous argument. In the following
we argue that this is indeed the case. Let us note that, along
different lines with respect to the ones invoked in the present
work, quartic divergences on a fixedMinkowski background have
been shown incompatible with Lorentz symmetry [59–61].

5.2. Lessons From the Rigid Picture
Comparing the above standard argumentation to our approach
we observe that

(1) The standard calculation amounts to the quantization of a
free matter field’s modes inϒIR (P). They constitute a low energy
effective field theory with UV cutoff at P . The field quantization
it amounts to is equivalent to staying within the EAA framework
and lowering the cutoff from P down to zero.

(2) Since the calculation includes no gravitational back
reaction on the Minkowski metric, it possesses a translation to
the Background Independent EAA language at best if the “rigid
picture” of the RG flow is invoked.

(3) The domain of applicability of the rigid picture restricts
the cutoff P to the interval 0 6 P 6 qmax below the turning
point. Within this interval, the vacuum fluctuations change the
cosmological constant by not more than a factor 2; according to
(3.3),3rigid

(

q
)

increases from3rigid (0) = 30 to3rigid

(

qmax

)

=
230 along the k−-branch.

It therefore follows that the traditional argument on
the gravitational impact of summed up zero-point energies
overstretches its domain of validity quite considerably.

We just learned that the enormous cosmological constants
that are often claimed to be induced by quantum vacuum
fluctuations, like 1012030, can never result from such a
calculation if one restricts it to the momentum scales it is valid
for, i.e., those where the rigid picture is available (q ≤ qmax). A
calculation neglecting the backreaction on the metric becomes
invalid already when the zero-point energies have changed the
cosmological constant from30 to 230.

Because no large numbers are involved in the renormalization
30 → 230, we can also say that it is incorrect to claim on the basis
of the traditional argument that a small value of the cosmological
constant is necessarily afflicted by a naturalness problem [26].

5.3. Lessons From the Running Picture
Let us now move to scales above the turning point and ask about
the physical contents of the generalized RG trajectory there.

(1) Since the rigid picture is unavailable at scales k > kT,
we fall back upon the running picture which applies everywhere
along the trajectory. Now, the complication is that the running of
the consistent background metric cannot be “transformed away”
any longer and must be taken into account in explicit form.

(2) The metric ḡsc
k
is determined by the k-dependent Einstein

equation (2.18). To see the essential point, its contraction
is sufficient:

R
(

ḡsck
)

= 43k. (4.3)

We are interested in the question why the rapidly increasing
cosmological constant 3k ∝ k4 for k ≫ kT seems in no way
mirrored by our cosmological observations. On the basis of the
effective field theory description with Equation (4.3), the answer
is as follows:

when 3k grows with increasing k beyond the experimental
bounds of the observed cosmological constant 30 ≡ 3k=0, the
effective field theory with the Einstein equation (4.3) ascribes the
associated growing curvature to much smaller, non-cosmological
distance scales; the smaller they are, the larger is k. On those sub-
cosmological length scales, however, we have no observational
tools (yet) that could measure R

(

ḡsc
k

)

.
This explains why to date we have seen nomanifestation of the

huge values that 3k ∝ k4 can reach and that play a central role
in the traditional discussions of the cosmological constant. [see
[26] for further details, and [62] for a purely classical discussion
of “hiding” the cosmological constant at small distances].

(3) Paraphrasing a well-known concise summary of classical
General Relativity, it can be said that Matter at scale k tells space
at scale k how to curve, and space at scale k tells matter at scale k
how to move.

Modeling the gravitational effect of vacuum fluctuations by
simply declaring their summed zero-point energies to be a part
of the cosmological constant in an otherwise classical Einstein
equation violates this principle spectacularly.

Being the coefficient of the zero-derivative term in the classical
gravity action, the cosmological constant should play a role for
the universe on its largest scales only. However, the traditional
approach, limited by the simple two-parameter form of the
Einstein-Hilbert action, cannot but package the energy and

Frontiers in Physics | www.frontiersin.org 11 August 2020 | Volume 8 | Article 214169

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pagani and Reuter Background Independent RG and CC

momentum of even a Planck scale fluctuation, say, into this
IR-related parameter.

Clearly, this hints at the necessity of much more general
actions to better describe the generation of spacetime curvature
scale by scale [26].

(4) Assume we were able to measure the spacetime curvature
on sub-cosmological scales, say in a terrestrial lab, and that
kT is indeed in the milli-electron Volt range, as suggested by
(2.34). Can we observe the scale dependence of the vacuum
curvature then?

The answer is that, even then, this would be extremely difficult
since ḡsc

k
has a significant k-dependence only when the 3kgµν

term in the Einstein’s equation dominates over the matter field’s
stress tensor Tµν .

As long as Tµν is k-independent, the effect we are after
requires ordinary matter and its fields to be very “diluted.” The
late Universe, the present epoch of cosmology, is one instance
where this condition is met. It remains to be seen if there are
also others.

6. CONCLUSION

In this paper, we advocated the general expectation that the
lessons from Quantum Gravity may reach far beyond its
traditional realm of small Planck mass suppressed effects and
questions of UV renormalizability. We emphasized that what

definesmodern QuantumGravity andmakes it radically different
from all present theories of particle physics is the key desideratum
of Background Independence. As such unrelated to any specific

scale, there is no reason a priori why it should have implications
for the microscopic world only.

Indeed, we argued that it is relevant to one of the
purported problems surrounding the cosmological constant,
namely, the gravitational effect of quantum vacuum fluctuations.
Exploiting Background Independence in an essential way we
demonstrated that most of the vacuum fluctuations could not
manifest themselves in the cosmological constant3measured at
cosmological scales since such fluctuations affect the curvature of
spacetime only at sub-cosmological scales.

In principle, a mechanism of this sort could resolve the
conundrum regarding the invisibility of spacetime curvature
due to quantum vacuum fluctuations and the associated energy
density, which is possibly the most mysterious facet of the
cosmological constant problem.

From the perspective adopted in this work, our analysis
shows no tension or “clash” between theoretical expectations and
actual observations.
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Effective field theory provides a new perspective on the predictive power of

Renormalization Group fixed points. Critical trajectories between different fixed points

confine the regions of UV-complete, IR-complete, as well as conformal theories. The

associated boundary surfaces cannot be crossed by the Renormalization Group flow

of any effective field theory. We delineate cases in which the boundary surface acts

as an infrared attractor for generic effective field theories. Gauge-Yukawa theories

serve as an example that is both perturbative and of direct phenomenological interest.

We identify additional matter fields such that all the observed coupling values of the

Standard Model, apart from the Abelian hypercharge, lie within the conformal region.

We define a quantitative measure of the predictivity of effective asymptotic safety and

demonstrate phenomenological constraints for the associated beyond Standard-Model

Yukawa couplings.

Keywords: renormalization group, interacting fixed points, effective field theory, (beyond) standardmodel physics,

asymptotic safety

1. MOTIVATION

Effective field theory (EFT) describes all of high-energy physics remarkably well—see [1] for a
review of Standard Model (SM) EFT, and [2] for a well-defined EFT of gravity below the Planck
scale. EFTs are solely governed by their field content and symmetries (both global and local). The
theory space of all possible realizations of an EFT is spanned by the couplings associated with the
(infinite) set of all independent symmetry invariants. A specific realization is characterized by its
coupling values at some Renormalization Group (RG) scale. Despite the infinitely many couplings,
perturbative and local EFTs are predictive toward the infrared (IR) since the infinite tower of
higher-order interactions permitted by symmetries and field content is suppressed by powers of
the ratio between experimentally accessible scales and the cutoff scale, i.e., by the RG structure
around the free fixed point. A sufficiently high cutoff scale thus gives retrospective insight into the
success of perturbatively renormalizable gauge-Yukawa theories such as the SM.

On the other hand, it has been of paramount interest to identify fundamental, i.e., ultraviolet
(UV) complete, quantum field theories in which the cutoff can be removed—first asymptotically
free [3–21], and more recently, asymptotically safe [22–43] gauge-Yukawa theories. See also [44–
58] (with potential caveats discussed in [59–61]) for asymptotically safe gauge-Yukawa theories
from resummation at a large number of matter fields and [62] for a recent review including
lattice results.
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Held Effective Asymptotic Safey

The RG flow of asymptotically free theories emanates from a
fixed point at which all interactions vanish and the theory exhibits
classical scale invariance. Asymptotic safety [63] generalizes
asymptotic freedom to include UV-complete theories that
emanate from (partially) interacting fixed points at which some
of the couplings remain finite and the fixed-point theory exhibits
quantum not classical scale invariance, cf. [64].

Quantum scale invariance of asymptotically safe theories
(including the special case of classical scale invariance of
asymptotically free theories) can entail enhanced predictivity.
Close to a fixed point, this predictivity can be quantified by
the eigenvalues of the linearized RG flow, i.e., by the number
of IR-attractive opposed to IR-repulsive directions in theory
space, cf. e.g., [65] for an introduction. Toward the IR, the
RG flow can emanate from the fixed point only along IR-
repulsive directions. Hence, the subset of EFTs emanating from
the fixed point, referred to as its UV-critical hypersurface, is
spanned only by the subset of IR-repulsive directions. On the
contrary, IR-attractive directions become predictions of such
fundamental theories because their coupling values have to
remain fixed to the UV-critical hypersurface. A fundamental
theory is predictive whenever the UV-critical surface is finite-
dimensional. All perturbative fixed points—both free and
interacting—are automatically predictive because perturbative
quantum fluctuations are (by definition) too weak to cause
classically irrelevant couplings to become IR-repulsive.

The present work is limited to non-gravitational theories.
Concerning gravity, a considerable body of evidence, pioneered
by [66], suggests the existence of an interacting fixed point for
Euclidean quantum gravity, cf. [67–69] for introductory texts. If
present, such a fixed point could extend EFTs beyond the Planck
scale 3Planck. Here, we will only be concerned with perturbative
EFTs at energies below 3Planck. Nevertheless, the Planck scale
plays a crucial role. Most conservatively, it is to be regarded as
the unavoidable cutoff scale for any non-gravitational theory.
Hence, phenomenological implications of (non-gravitational)
asymptotic safety should be discussed in the framework of an EFT
that is valid only between 3Planck and the scale 3NP at which
the new physics decouples. Assuming that new physics below
the electroweak scale 3ew is excluded by collider experiments1,
the EFTs of interest are therefore valid over at most 17 orders of
magnitude in energy scales, i.e.,

102 GeV ≈ 3ew . 3NP . 3Planck ≈ 1019 GeV . (1)

This motivates us to explore effective asymptotic safety, i.e., the
predictivity of RG fixed points over a finite range of scales,
cf. also [65, 70–72]. Moreover, we are interested in the global RG
structure encompassing all fixed points available in perturbation
theory. Effective—in comparison to fundamental—asymptotic
safety can alter conclusions about phenomenology as well as
about the exclusion of specific models. To put the results of
this paper in a wider context, we make the following simple

1This assumption can be circumvented by very weakly coupled particles, in which

case the new-physics scale may lie below the electroweak scale. We will not discuss

these cases here.

observation about the RG flow in the theory space of perturbative
gauge-Yukawa theories:

The respective boundaries of the set of all UV-complete, IR-

complete, and both UV- and IR-complete theories constitute

hypersurfaces in theory space that cannot be crossed by the RG

flow of any EFT. With respect to other directions orthogonal to

such a boundary hypersurface, the latter inherits the IR-attractive

properties of the fixed points by which it is delimited. In these

cases, the entire boundary surface, not just the fixed point, can

constitute an IR-attractor and generic EFTs tend to cluster close

to it2.

Possible proof of this claim in more general settings is beyond
the scope of this work and might be provided elsewhere in
the future. Besides its potential importance for a structural
understanding of the behavior of RG flows, it can have
phenomenological implications which, in our opinion, deserve
more attention. In the following, we will demonstrate this
observation for the case of gauge-Yukawa theories. These make
for a particularly suitable example because (i) their fixed-
point structure is both rich enough and perturbatively well-
controlled [34, 36, 38, 39, 42, 73] and (ii) they are of direct
phenomenological significance as possible extensions of the SM
[37, 40, 41, 43].

1.1. Synopsis of Results
• In section 2, we review the different phases, i.e., the possible

perturbative fixed-point structures, of simple gauge-Yukawa
theories identified in [22, 73]. This discussion allows us to
delineate how the above observation is realized. Readers who
are familiar with the fixed-point structure of gauge-Yukawa
theories and are not interested in a respective discussion of
effective asymptotic safety may want to skip this section.

• In section 3, we look at each simple SM subgroup by
itself which leads to a transparent understanding of why
within perturbation theory: (i) additional matter fields can
induce fully IR-attractive interacting fixed points for the non-
Abelian SM subgroups, while (ii) interacting fixed points with
UV-attractive directions are not available, and (iii) Abelian
subgroups will always remain trivial.

• Turning to phenomenological implications, we introduce a
novel quantitative measure for the global predictivity of EFTs
in section 4. This effective notion of predictivity applies to
(finite-dimensional truncations of) perturbative as well as
non-perturbative EFTs, more widely.

• In section 5, the SM serves as a first example to demonstrate
the predictivity measure. Here, we also conclude that
whenever the non-Abelian sectors remain perturbative, the
Abelian Landau pole of the SM remains safely beyond the
Planck scale.

• In section 6, we discuss phenomenological conclusions of
effective asymptotic safety for extensions of the SM by

2We caution that these observations require a truncation of the perturbative series

or any other expansion which is sufficiently converged to have revealed all physical

fixed points. Otherwise, the statement still applies to the truncated RG flow but

might lose its phenomenological significance.
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additional matter fields along the lines of [22]. We identify
specific BSM matter for which all the SM coupling values
(apart from the Abelian hypercharge coupling) lie within the
conformal region.

We conclude in section 7. Throughout this analysis, we work with
well-established perturbative MS beta functions. The respective
collection of NLO and NNLO beta-functions required for this
work, cf. [3–5, 74–103] for original references, is relegated
into Appendices.

2. RG STRUCTURE OF GAUGE-YUKAWA
THEORIES: AN EFT POINT OF VIEW

Before explicitly discussing the SM and its possible extensions,
we briefly review the available fixed-point structures of simple
gauge-Yukawa theories previously discussed in [22, 73]. This
serves as a specific example to characterize the global RG
structure, effective asymptotic safety and their significance for
generic EFTs. For the purpose of this section, we focus on a simple
gauge group for which we denote the squared gauge coupling by
αg = g2/(4π)2, cf. [34] for a generalization to semi-simple gauge
groups.

Weyl-consistency conditions suggest that the RG equations
of gauge-Yukawa theories should be obtained in hierarchical
schemes [38, 104–108]. In particular, Yukawa couplings
contribute to gauge couplings only at 2nd loop order. Quartic
couplings contribute to Yukawa and gauge couplings only at
2nd and 3rd loop order, respectively. Therefore, included loop
orders of gauge, Yukawa, and quartic couplings should relate as
(n + 2, n + 1, n), respectively. Throughout this paper, we will
neglect quartic couplings for simplicity and work in the (2, 1, 0)-
scheme (subsequently referred to as NLO). We check that fixed
points remain perturbatively well-controlled by extending to
the (3, 2, 0)-scheme (subsequently referred to as NNLO)3. In
the notation of [38], what we call NLO (NNLO) is referred
to as NLO′′ (2NLO′′). The explicit RG equations of the latter
are discussed in Appendices since they merely serve to ensure
perturbative control. Following [73], the beta-function of general
Yukawa couplings LYukawa = −Y tr

[

ψ̄L χ ψR + ψ̄R χ
†ψL

]

,
suppressing indices, takes the form

βY = E(Y)− αg F(Y) , (2)

where E and F are matrices qubic and linear in the Yukawa-
coupling matrices Y, respectively. Therefore, besides a trivial
fixed point at Y∗ = 0, additional non-trivial (partial) Yukawa
fixed-points exist. The latter depend parametrically on αg [73],
i.e.,

Y(∗)(α) =
√
αg C , (3)

3Given this setup, we are only able to make statements about those non-vanishing

fixed points that potentially arise from a balance between leading order (LO) and

NLO contributions. In principle, there could be further fixed points for which

NNLO (or even higher) loop orders are required. However, one should then always

be careful to test their nature by confirming that (at least) they persist upon

inclusion of the subsequent higher-loop order. Since 3NLO contributions are not

available at present, such an analysis cannot reliably be made.

TABLE 1 | Different perturbative Renormalization Group phases for simple

gauge-Yukawa theories.

Conditions dIR dUV dUV-IR

Complete asymptotic freedom (CAF) B < 0, C < 0, C′ < 0 0 2 0

Banks-Zaks (BZ) conformal window B < 0, C > 0, C′ < 0 1 2 1

Gauge-Yukawa (GY) conformal window B < 0, C > 0, C′ > 0 2 2 2

Litim-Sannino (LS) conformal window B > 0, C > 0, C′ < 0 2 1 1

Complete triviality (CT) B > 0, C > 0, C′ > 0 2 0 0

Conditions on B, C, and C′ can be translated into conditions on parameters like the size

of the gauge group and number of fermionic/scalar representations. We also indicate the

dimensionalities dIR, dUV, and dUV-IR = Min(dUV,dIR ) of the IR-complete, UV-complete

and conformal, i.e., UV- and IR-complete, region in theory space, respectively.

where the C is independent of the gauge coupling, cf. [73]. These
partial fixed points (also referred to as Yukawa-nullcline) always
exist and occur at positive (but not necessarily perturbative)
values of the Yukawa couplings. Under the RG flow, they focus
the values of Yukawa couplings toward a small IR interval, as
for instance in the SM. We will see in section 6 that they are of
phenomenological importance, cf. also [109–111]. Evaluating the
(2-loop) running of the gauge coupling αg by use of the above
partial fixed-point solution results in

βαg = α2g
[

−B− C αg + 2Dαg
]

. (4)

The scalar coefficients B, C, and D are purely group-theoretic
and can be found in [73]. B and C arise from gauge-coupling
contributions, while D arises from Yukawa couplings at their
partial fixed point. Since αg = g2/(4π)2, the fixed points for g∗
are physical, i.e., real, only if αg ∗ > 0. While D > 0 (D = 0 for
the vanishing Yukawa fixed point), the signs of B and C depend
on the matter content of the theory4. Defining C′ = C−2D (note
that C′ < C, always), one can fully classify the general theory
by two types of interacting fixed points, cf. [22, 73]: one with
vanishing and one with non-vanishing Yukawa couplings, i.e.,

αg ∗, BZ = −
B

C
, Y∗, BZ = 0 , (5)

αg ∗, GY = −
B

C′ , Y∗, GY =
√
α C , (6)

respectively. Depending on which of these are physical, i.e.,
occur at αg ∗ > 0, [73] have classified the five possible
phases, i.e., perturbative fixed-point structures, of simple gauge-
Yukawa theories. These are summarized in Table 1 and depicted
schematically in Figure 1.

Preceding the EFT discussion of these phases, it is important
to distinguish the following terminology. A set of gauge-
Yukawa theories is determined by its gauge group and matter
content, parameterized, for instance, by the number of fermionic
representations NF . To agree with previous literature [112], we

4We have chosen the signs to reflect the antiscreening non-Abelian case without

matter content. Note that this choice agrees with [112] but differs from [22].
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FIGURE 1 | Possible RG structures, cf. [73] (see main text for further discussion), of simple gauge Yukawa-theories, depending on the signs of one- and two-loop

coefficients B, C, and C′ of the gauge coupling β-function, cf. Equation (4) and in turn on the gauge group and matter content of the theory. The x-axis (y-axis) shows

the gauge coupling αg (Yukawa coupling αy ). Thick white lines indicate the boundary surface of the UV-complete, IR-complete, or conformal regions in theory space.

White flow lines (arrows) point toward the IR. The heat maps in the background indicate how a set of random EFTs, uniformly distributed over the full depicted range of

couplings, is focused toward the boundary surface. Lighter areas indicate a high density of theories one order of magnitude below the cutoff scale. The explicit

β-function coefficients, cf. Equation (4), required to obtain the plots have been chosen as: CAF: B = C = C′ = E = F/2 = 1/10; BZ: 2B = −C = 2C′ = 2E = F = 1;

GY: 2B = −C = −2C′ = 2E = 2F = 1; LS: −2B = −C = 2C′ = 2E = 2F = 1; CT: −2B = −C = −2C′ = 2E = 2F = 1.

refer to the possible values of NF which realize certain gauge-
Yukawa phases as “windows.” This is distinct from a particular
realization within a set of gauge-Yukawa theories. The latter is
further parameterized by coupling values, i.e., by a choice of RG
trajectory. When referring to possible values of the couplings, we
talk about “regions.” In particular, we say that the set of all UV-
complete trajectories makes up the UV-complete region, the set
of all IR-complete trajectories makes up the IR-complete region,
and the set of all UV- and IR-complete trajectories makes up
the “conformal” region. Crucially, the terminology “conformal
window” and “conformal region” are to be distinguished.

2.1. Complete Asymptotic Freedom (CAF)
For antiscreening B > 0 as well as C > 0, the only physical fixed
point is the Gaußian one, cf. left-hand upper panel in Figure 1.
The former is completely asymptotically free when approached
from below the Yukawa nullcline, i.e., whenever Y < Y∗(αg).
This case also encompasses asymptotic freedom of Yang-Mills
theory without Yukawa couplings, cf. the RG flow along the x-
axis in the left-hand upper panel of Figure 1. The UV-complete
region is 2-dimensional and extends to infinite coupling values
(or more accurately beyond perturbative control) although it
is partially bound by the Yukawa-nullcline (white line). This

boundary surface inherits the IR-attractive property of the free
fixed point along the Yukawa direction (y-axis) and is hence IR-
attractive from above, i.e., for Y > Y∗. This entails that generic
UV-incomplete EFTs will be attracted to the boundary. The IR-
complete (and thus also the conformal) region is reduced to the
trivial theory. All other theories eventually escape perturbative
control toward the IR.

2.2. Banks-Zaks (BZ) Conformal Window
Scalar, as well as fermionic matter, adds screening fluctuations
and modifies the running of non-Abelian gauge couplings.
This can flip the signs of C, C′, and B. Independent of the
specific matter representation, the sign of C is always flipped
first and the theory (with vanishing Yukawa couplings) enters
the so-called conformal window [112], cf. upper panel in the
middle of Figure 1. As C flips sign (but before C′ or B do
so), the Banks-Zaks fixed point becomes physical. For vanishing
Yukawa coupling and 0 < αg < αg ∗, BZ, the theory is now
both UV- and IR-complete. In fact, since the IR-complete and
thus the conformal region is still only one-dimensional, the
RG-scale can be mapped directly to a unique gauge-coupling
value. Put differently, there only exists a single conformal
theory. The gauge-Yukawa fixed point is still not physical and
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thus every theory with non-vanishing Yukawa coupling will
eventually diverge in the IR. This is a consequence of the Banks-
Zaks fixed point being IR-attractive in the direction of the
gauge coupling but IR-repulsive in the direction of the Yukawa
coupling. To distinguish this situation, we refer to this as the “BZ
conformal window.” However, the UV-complete region is still
two-dimensional. Its boundary inherits the partial IR-attractive
nature of the two fixed points. (The free fixed point is IR-
attractive in the Yukawa-coupling direction and the Banks-Zaks
fixed point is IR-attractive along the gauge-coupling direction).
The corresponding sections of the boundary surface act as an
IR-attractor, in particular for EFTs outside of the UV-complete
region. We emphasize that it is the boundary and not a single
fixed point which is IR-attractive.

Adding further matter representations can flip the sign of C′

or B first. Therefore, there are now two distinct phases that can
occur when further matter is added. Which of these is realized
depends on the ratio of scalar and fermionic matter and on the
set of possible Yukawa interactions.

2.3. Gauge-Yukawa (GY) Conformal
Window
Whenever C′ turns negative before B does, the theory develops
a fully IR-attractive gauge-Yukawa fixed point, cf. right-hand
upper panel in Figure 1. As C′ is varied, the fixed point formally
enters from infinity (or from outside the perturbative regime)
along the direction in which the two nullclines of the BZ phase
join. The gauge-Yukawa fixed point serves as an endpoint of the
two nullclines and delimits the two-dimensional UV-complete
region, which is now also IR-complete. As a consequence, there
is now a two-dimensional region of distinct conformal theories.
In correspondence to the “BZ conformal window,” we refer to
this as the “gauge-Yukawa (GY) conformal window.” This case
is particularly predictive. If realized only over a finite range
of scales, e.g., due to the decoupling of massive modes, this
realizes effective asymptotic safety. All EFTs are attracted first to
the boundary of the “gauge-Yukawa conformal window” and
eventually into the gauge-Yukawa fixed point.

2.4. Litim-Sannino (LS) Conformal Window
If, on the other hand, B turns negative before C′ does, a Litim-
Sannino fixed point [22] becomes available, while the Banks-Zaks
fixed point [112] disappears (formally it escapes the perturbative
regime in direction of increasing gauge coupling) and the free
fixed point becomes fully IR-attractive, cf. lower panel in the
middle of Figure 1. It is now the IR-complete region which is
two-dimensional. However, the UV-complete region and hence
the set of conformal theories, is just one-dimensional. The latter
is delimited by the free and the Litim-Sannino fixed point, while
the former also extends beyond the Litim-Sannino fixed point
and corresponds to its UV-critical hypersurface. Concerning
generic EFTs, the conformal theory which splits the IR-complete
region, i.e., the separatrix between the Litim-Sannino and the free
fixed point, acts as an IR-attractor because it inherits this property
from the shared IR-attractive direction of both its delimiting
fixed points. The boundary of the IR-complete region, however,
is not IR attractive since it inherits the IR-repulsive direction

of the Litim-Sannino fixed point. Again, generic EFTs tend to
cluster close to the UV-complete theories, i.e., exhibit effective
asymptotic safety.

2.5. Complete Triviality (CT)
The final possibility occurs if all three signs are flipped, i.e.,
B < 0 and C < C′ < 0. Since all contributions have
now turned screening, the theory remains only with the free
fixed point. The latter is now fully IR-attractive. This phase
occurs for the perturbative range of any Abelian gauge group,
cf. section 3.2. Formally, the UV-complete and conformal regions
reduce to the trivial theory to which all EFTs are attracted. The IR-
complete region now covers all of the theory space. The triviality
problem can therefore be seen as a consequence of “effective
asymptotic freedom.”

This concludes the review of all possible fixed-point structures
[73] which can occur due to different cancelations at NLO
in simple gauge-Yukawa theories. One can schematically
think of semi-simple cases, such as the SM, as the higher-
dimensional combinations of these phases, cf. [34] for an
explicit discussion. In the following, we will always check
whether potential fixed points persist at NNLO. We present
our formal definition of perturbativity in section 4. Before
doing so, we provide insight into the single gauge groups
of the SM which is sufficient to qualitatively understand the
available fixed points that we identify in the coupled system in
section 6. In all phases, some form of IR-attractor dominates the
RG flow.

3. AVAILABLE PHASES FOR THE SIMPLE
STANDARD-MODEL SUBGROUPS

Following [22], we remain focused on a simple gauge group
with NF copies of a single type of fermionic representation
RF and uncharged scalars to allow for Yukawa couplings,
cf. Appendix A or [22] for the explicit Lagrangian. In this case,
the Yukawa-coupling matrices E(Y) and F(Y) in Equation (2)
reduce to scalar coefficients E and F of a single Yukawa
coupling y for which we introduce αy = y2/(4π)2. The
NLO coefficients that determine the interacting fixed-points,
cf. Equations (5) and (6) and the resulting RG-structure are
given by, cf. [73],

B =
2

3 dadj

(

11 dadj C
adj
2 − 2NF d

RFCRF
2

)

,

C =
68

(

C
adj
2

)2

3
−

4dRFCRF
2 NF(5C

adj
2 + 3CRF

2 )

3dadj
, (7)

C′ =
4

3






−
5dRFC

adj
2 CRF

2 NF

dadj
+

3dRF
(

CRF
2

)2
NF

(

10NF − dRF
)

dadj
(

2NF + dRF
)

+17
(

C
adj
2

)2
]

. (8)
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Here,C
adj
2 and dadj refer to the second Casimir and the dimension

of the adjoint representation, respectively. Similarly, CRF
2 and dRF

denote the same for the fermionic representation5.
Naively, there are two ways to achieve perturbativity of the

possible fixed points α∗, BZ = − B
C and α∗, GY = − B

C′ , i.e.,
either by (i) making B small, or by (ii) making C or C′ large.
It is typically not possible to achieve the latter (as a function
of NC and NF for instance) without invalidating perturbation
theory at higher orders. The subsequent discussion of the U(1)
in section 3.2 will serve as an explicit example. On the contrary,
non-Abelian gauge groups can allow for perturbatively small B
without invalidating perturbation theory [22]. A dedicated 3-
loop analysis of a simple SU(N) gauge group with fermions in the
fundamental representation [38] provides strong indications that
perturbative yet interacting gauge-Yukawa fixed points are only
possible for NC > 5. However, this does not necessarily imply
that the same conclusions hold for arbitrary representations. For
extensions of the SM, this has been tested by an explicit grid
search for a single type of BSM representation in [40]. Before
extending such a grid search to multiple different types of BSM
representation, we discuss each of the simple SM subgroups on
its own. This provides a good intuition of why certain phases,
cf. Figure 1, are possible and others are not.

3.1. The Non-Abelian Subgroups of the SM
Which of the gauge-Yukawa phases is accessible in perturbation
theory depends on the sign of C′ in the region close to a sign-
change of B, cf. Figure 1. Note that the sign of C is always fixed
close to a sign change of B, cf. [73]. The sign of C′, in turn,
depends on the specific gauge group and matter representations.
In particular, additional fermionic representations without (or
with negligibly small) Yukawa couplings result in additional
screening contributions to B and C, while they do not
contribute to (C′ − C) since they do not participate in Yukawa
interactions. Hence, charged fermions without Yukawa couplings
will influence which phases are available.

The latter also occurs in the SM where there are 32 light Weyl
degrees of freedom with negligibly small Yukawa couplings6. We
explicitly visualize their significance for the existence of gauge-
Yukawa fixed points in the case of SU(2) and SU(3) in Figure 2.
Without the SM fermions, there exist BSM representations [such
as the d2 = 3 dimensional for SU(2) and the d3 = 8 dimensional
for SU(3)] for which, with growing number NF of BSM fermions,
B changes sign before C′ does. As a function of NF one moves
from complete asymptotic freedom to the Banks-Zaks phase and
into the Litim-Sannino phase, i.e., through the chain CAF →
BZ → LS, cf. first and third panel in Figure 2. In particular,
one enters the LS phase via a sign change in B, i.e., in the

5Either of the latter group-theoretic invariants can be traded for the Dynkin index

SRF ≡
dRF

dadj
CRF
2 (9)

but note that the latter is defined only up to a constant and varying conventions

are used in the literature. Here, we use the dimension and the second Casimir.
6This counting excludes the top quark since its Yukawa coupling is not negligibly

small. It also excludes potential right-handed neutrinos which are SM singlets

anyway.

region in which the interacting fixed points can be perturbatively
controlled. Inclusion of the SM fermions prohibits the realization
of this chain, i.e., there is no possible BSM representation for
which B changes sign before C′ does. When adding additional
BSM representations one therefore always follows a different
chain with growing NF : starting from complete asymptotic
freedom and moving through the Banks-Zaks phase, one instead
enters the gauge-Yukawa and ends up in the completely trivial
phase, i.e., this realizes the chain CAF → BZ → GY → CT.
For most BSM representations which can be added to the SM
case, the BZ and GY phase only occur at non-integer values of
NF such that this formal chain is effectively reduced to CAF →
GY → CT or CAF → CT, cf. Figure 2. Formally, this chain can
be prolonged and the LS phase can still be entered from the CT
phase, cf. upper-right area of the second panel in Figure 2. The
minimal (but quite large) number of BSM fermions identified in
[37] realizes this formal window of the LS phase. While this can
occur at small values of the couplings if C′ ≫ B ≫ 1, the latter
invalidates perturbation theory and such fixed points are lost at
NNLO, cf. also [40].

Regarding extensions of the SM, we can conclude that
the SM fermions with negligibly small Yukawa couplings
prohibit from entering the LS phase, i.e., no perturbatively
controlled, interacting fixed points with UV-attractive directions
are possible. On the contrary, fully IR-attractive interacting
gauge-Yukawa fixed points in the GY phase remain possible for
special dimension and number of BSM representations, cf. red
upward triangles in Figure 2. As we shall see in section 6,
both conclusions persist for the full SM gauge group. The GY
phase realizes effective asymptotic safety if the theory space is
extended to include mass terms or scalar vacuum expectation
values. In this case, the theory departs from (close to) the
otherwise fully IR-attractive fixed point at RG scales below this
mass threshold.

3.2. Persistence of Abelian Triviality
Despite the complete asymptotic freedom of both non-Abelian
subgroups, the SM is not UV-complete, i.e., it eventually breaks
down at a transplanckian but finite energy scale. Due to the
lack of antiscreening self-interactions in the U(1) gauge group,
matter fluctuations dominate and screen the associated Abelian
gauge coupling. At ∼ 1041 GeV, the latter grows beyond
perturbative control and eventually results in a perturbative
divergence—the Landau pole [113]. Beyond perturbation theory,
the U(1) triviality problem has been confirmed by different non-
perturbative methods [114–116], but so far only in the absence of
Yukawa couplings.

Indeed, the presence of a Yukawa coupling formally places an
Abelian gauge group in the Litim-Sannino phase, cf. section 2.
Unfortunately, the corresponding interacting pseudo-fixed-point
cannot occur within the perturbatively controlled regime. Since
we found no explicit discussion of the latter statement in the
literature, we will provide it in the following.

In principle, every U(1) gauge group with NF fermions of
charge Y and associated scalars to facilitate Yukawa couplings
is in the LS phase which would indicate the presence of an
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FIGURE 2 | Different phases, i.e., LS (H), GY (N), BZ ( ), CAF (⊕), and CT (⊖), of SU(2) and SU(3) gauge groups depending on the number NF and dimension dRF

(cf. Equations 30–31) of the included BSM representations and on whether the SM matter fields are included or not. The thick red curve highlights where the 1-loop

contribution vanishes, i.e., B = 0. Interacting fixed points can only be controlled perturbatively if they lie in the vicinity of this line. The LS phase recedes from the

perturbatively accessible region whenever the SM fields, i.e., charged matter without or with neglibily small, Yukawa couplings are included.

interacting UV fixed point for the gauge coupling at

αU(1) ∗ =
1

15Y2
, αy ∗ =

2

5NF
. (10)

The explicit NLO and NNLO β-functions are presented in
Appendix C. It would seem as if this fixed point becomes
more perturbative for large Y2 and large NF but this ignores
the accompanying growth of higher-loop contributions and
the resulting breakdown of perturbation theory. To properly
analyze the above fixed point, one has to introduce a t’Hooft-like
rescaling of the couplings.More specifically, one has to rescale the
couplings αg and αy such that all higher-loop contributions either
vanish or at least converge to finite values at large NF and large
Y2. In the present case, the minimal rescaling that suppresses all
higher-loop contributions with growing NF and Y2 is given by

αU(1) =
α̃U(1)

NF Y2
, αy =

α̃y

NF
. (11)

The correspondingly rescaled β-functions reveal that (in contrast
to the non-Abelian case in [22]) only the trivial fixed point
persists in the perturbative large-charge–large-NF limit. We have
explicitly confirmed that for any combination of integer NF > 0
and arbitrary Y2, the absolute value of the NNLO contributions
is larger than that of the NLO contributions when evaluated
at the fiducial fixed point in Equation (10)—a clear sign that
perturbation theory is not valid anymore.

The physical mechanism through which the Litim-Sannino
fixed point arises, i.e., the balance of screening contributions
from fermionic fluctuations against antiscreening contributions
fromYukawa couplings, is present nevertheless. Thus, it might be
worthwhile to conduct a non-perturbative analysis of this fixed-
point mechanism in Abelian theories with Yukawa couplings in
the future. However, for the present perturbative analysis, we
conclude that the Abelian gauge group of the SM will always
remain trivial.

4. A QUANTITATIVE MEASURE OF
PREDICTIVITY

For a given gauge-Yukawa theory with fixed gauge group and
matter content, we define the perturbative range of coupling
values αi by the condition that all NNLO contributions remain
smaller than the respective NLO contributions, i.e.,

perturbativity ⇔ |β(NNLO)| <
1

2
|β(NLO)| . (12)

The factor 1
2 is included such as to avoid the regime of novel

fiducial fixed points arising at NNLO. Another reason for
the inclusion of this factor is the U(1) Landau pole, as will
become clear below. This perturbativity condition is rather non-
conservative, meaning that perturbation theory may break down
earlier. The resulting set of perturbative EFTs encloses a finite
volume V in the (truncated) theory space of all couplings7. More
explicitly, we use the volume of the convex hull obtained from a
Delauney-triangulation of a large enough random set of points in
theory space which fulfill the perturbativity criterion8. We ensure
convergence of this discrete volume measure by averaging over
several individual random sets of perturbative EFTs and making
sure that the statistical error is subleading.

The theory-space volume V depends on the definition of
couplings: for instance, a simple rescaling of couplings will also
rescale V. It is thus certainly a scheme-dependent statement.

7Since we work in the perturbative regime, all higher-order couplings will

necessarily remain irrelevant. Hence, the UV-complete region does not extend in

any of these directions and its volume, if finite in truncated theory space, remains

finite in full theory space. Technically, this is not necessarily true for the overall

EFT volume in the theory-space volume which permits an extension in any higher-

order direction of the full theory space. We restrict to truncated theory space in the

following.
8One can easily see that the convex hull is not always a good approximation

to the theory-space volume enclosed by the separatrices between fixed points,

cf. upper right-hand panel in Figure 1. However, it is (to our knowledge) the only

mathematically well-defined discrete notion of such a volume. It certainly suffices

to quantify the statements of this study.
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However, ratios of such volumes at different scales measure
something like an overall critical exponent and should, therefore,
capture scheme-independent effects9. Taking such ratios allows
us to define a quantitative measure of predictivity. The theory-
space volume V can be evolved by following the RG flow to the
IR. Given the initial volume V3 at the cutoff scale 3, and its
evolution following the RG flow, i.e., Vk, at RG scale k, we define
predictivity P(k) by

P(k) =
Vk

V3
. (13)

We call EFTs predictive (non-predictive), whenever their theory-
space volume decreases (increases) along the flow. Non-
predictive EFTs tend to formally result in P(k) → ∞ at
finite k < 3 which signals that they have diverged beyond
perturbative control. In the predictive case, however, P(k)
provides a quantitative measure of how predictive the EFT is.
We caution that, at present, we are not able to provide proof
that the predictivity measure constitutes a scheme-independent
statement. We hope to sharpen the scheme-independence of this
definition in future work.

It will also prove useful to exclude specific couplings, e.g.,
the measured SM couplings, from the predictivity measure and
instead match them to their experimentally known values at
a specified low-energy scale, e.g., at 3ew < 3. The resulting
P̃(k) can measure partial predictivity, even if the overall EFT is
classified as non-predictive.

Both, the predictivity and the partial predictivity measure
do not necessarily rely on perturbation theory and can be
applied to (sufficiently converged) non-perturbative truncations
of theory space as well. However, they do require to define an
initial volume in theory space in which the present truncation
is sufficiently converged, i.e., a non-perturbative analog of
Equation (12). Whenever such an initial volume in theory
space can be defined, its evolution under the RG flow allows
us to quantify the predictivity of effective asymptotic safety via
the measure in Equation (13). In particular, this applies to
truncations of the Reuter universality class [66], see [67–69] for
introductory texts and [65, 70–72] for previous discussions in the
effective asymptotic safety context. We leave such an analysis for
future work.

To exemplify the above definitions, we will discuss the heavy
gauge-Yukawa sector of the SM in section 5 before adding new
matter degrees of freedom in section 6.

5. THE HEAVY-TOP LIMIT OF THE
STANDARD MODEL

We focus on the heavy gauge-Yukawa sector of the SM, i.e., on
the three gauge couplings α1, 2, 3 and the top-Yukawa coupling
αt . It is a very good approximation to assume all other fermions
as being massless, i.e., to set their Yukawa couplings to zero.
Similarly, we neglect contributions from the quartic coupling λ4

9In case of a single fixed point and a purely linear flow, the ratio of theory-space

volumes V is indeed directly related to the critical exponents.

which is also negligible with regards to the gauge-Yukawa sector,
as long as all couplings remain within the perturbative regime
because it only arises at 2-loop and 3-loop order for Yukawa and
gauge couplings, respectively. Supplementary conditions implied
by stability conditions of the Higgs potential [24, 38] are deferred
to future studies.

5.1. Partial Predictivity Within the Standard
Model
The heavy SM is non-predictive, i.e., P(k) quickly diverges below
the cutoff scale. This is a result of the antiscreening nature
of the non-Abelian gauge couplings realizing the CAF phase,
cf. section 2 in the SM. Coupling values at the cutoff scale that lie
close to the edge of the perturbative regime will quickly be driven
to values beyond perturbative control toward the IR.

On the other hand, if one excludes the non-Abelian gauge
couplings from the predictivity measure and instead fixes them
to their known experimental values at the electroweak scale, the
SM is partially predictive in the remaining theory space. This is a
consequence of the screening nature of both the top-Yukawa and
the U(1) gauge coupling. When excluding also the U(1) gauge
coupling from the predictivity measure, the resulting partial
predictivity P̃(k) reflects the pre-Tevatron situation in which all
the gauge couplings had already been experimentally measured,
while the top-Yukawa coupling αt remained unknown. Figure 3
shows the evolution of P̃(k) along the RG flow. In this simple one-
dimensional slice of theory space, the predictivity measure simply
amounts to the normalized evolution of the full perturbative
range of top-Yukawa values below 3Planck. Hence, enforcing a
perturbative origin at 3Planck bounds the top quark to be lighter
than Mt . 210GeV. The underlying reason is the associated
partial IR fixed point for Yukawa couplings in gauge-Yukawa
theories previously uncovered in [109–111], cf. also Equation (3).

5.2. The Landau Pole Remains
Transplanckian
As discussed in section 3.2, the triviality of the U(1) hypercharge
cannot be cured within perturbation theory. On the other hand,
the associated Landau pole remains above the Planck scale as long
as the other SM couplings remain within the perturbative regime
(and no BSM representations with hypercharges are added).

Even in the absence of any new states with hypercharge, NLO
and NNLO contributions from the non-Abelian gauge and top-
Yukawa couplings in a modified BSM RG flow can potentially
further screen the U(1) gauge coupling and therefore result in a
lowered Landau pole, cf. also [37]. However, for any perturbative
extension of the SM that still matches the measured electroweak-
scale value for α1, the Landau pole remains at transplanckian
energies. One can numerically determine that α3 . 0.15, α2 .

0.09, and αt . 0.53 is required to conform to the perturbativity
criterion in Equation (12), i.e., to |β(NNLO)| < 1

2 |β
(NLO)|. These

maximal values have been determined by a grid search at random
α1. We then fix the non-Abelian gauge couplings and the top
Yukawa coupling to these maximal values. By definition, any
RG flow within the perturbative regime cannot outgrow these
values. Numerical integration of the resulting RG flow of the U(1)
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FIGURE 3 | (Left) RG flow of the SM gauge-Yukawa theory. The shaded region indicates values for αt which can originate from a perturbative EFT at the cutoff scale

3Planck. The focusing of this region toward the lower scales exemplifies the partial predictive power of the SM as an EFT. The dashed trajectories indicate the RG flow

of α3, α2, α1, and αt, matching observed values at the electroweak scale. (Right) Evolution of the partial predictivity measure with the RG flow.

coupling shows that the U(1)-Landau pole remains safely beyond
the Planck scale.

The left panel in Figure 4 shows the RG-flow of the Abelian
gauge coupling matching to the observed electroweak-scale value
for a random set of fixed values of the other heavy-SM couplings
satisfying the perturbativity criterion. Subplanckian Landau
poles are not present. Loosening the perturbativity criterion in
Equation (12) to |β(NNLO)| < |β(NLO)| allows for rare cases at the
edge of the redefined perturbative regime for which the Landau
pole is shifted slightly below the Planck scale, cf. right panel
in Figure 4. In any case, all the perturbative BSM fixed points
discussed in section 6 are much more perturbative than any of
the above bounds.

We conclude that the persistence of a U(1)-Landau pole—
at least in any of the subsequently important BSM scenarios in
which the BSM representations do not carry hypercharge—is no
meaningful criterion in the search for physically interesting fixed
points in the framework of perturbative EFTs below the Planck
scale. Instead, one should merely verify that the Landau pole
remains transplanckian. In this aspect, we advocate a different
point of view, than, e.g., [40].

6. NEW MATTER DEGREES OF FREEDOM

In the following, we allow for additional fermionic matter in
arbitrary representations (as well as for the associated uncharged
scalars to facilitate Yukawa couplings). We have seen that,
within perturbation theory, any U(1) factor will remain trivial.
Therefore, we do not attempt to modify the RG flow of the
U(1) gauge coupling and thus only add BSM fermions which
are uncharged under the U(1). We allow for an arbitrary

number of different representations of BSM fermions, i.e., N
Ra
F

fermions in the (d
Ra
2 , d

Ra
3 )-dimensional representation of SU(2)

and SU(3), respectively. The Lagrangian (see Equation 25) and
the β-functions for the three gauge couplings, the top-Yukawa

coupling, as well as additional BSM Yukawa couplings, i.e., for

α1 =
g21

(4π)2
, α2 =

g22
(4π)2

, α3 =
g23

(4π)2
,

αyt =
y2t

(4π)2
, αRay =

y2Ra
(4π)2

, (14)

are generalized from [40] and collected in Appendix B. We

emphasize that while the BSM scalars are uncharged, fluctuations
of the charged SM Higgs scalar are always included.

With the intuition from the results in section 2 for simple non-
Abelian gauge groups, we anticipate that, also in the semi-simple
case, the non-Abelian subgroups cannot admit perturbatively
controllable Litim-Sannino fixed points with an IR-repulsive
(UV-attractive) direction. We confirm this expectation in the
following explicit analysis. Fully IR-attractive gauge-Yukawa
fixed points, on the other hand, can exist. From the viewpoint
of effective asymptotic safety, these are the most predictive and
in that sense most interesting fixed points, anyhow.

The larger the dimension of the BSM representations, the
greater their screening effect on the 1-loop coefficient of the
associated non-Abelian gauge coupling. Thus, there exists an

upper dimension d
Ra
2, crit = 4 and d

Ra
3, crit = 10 beyond which

even a single additional BSM representation will always push
the associated non-Abelian SM gauge group into the completely
trivial phase. Hence, the set of possible BSM representations for
which perturbative non-vanishing gauge-Yukawa fixed points
might exist is limited and easily tractable. With the help of
computer algebra [117], we simply scan through all possibilities
and identify those for which the NLO beta-functions exhibit a
fixed point with

α2 ∗ > 0 , α3 ∗ > 0 , αt ∗ > 0 , and αRay ∗ > 0 ∀ a .

(15)

We subsequently test the perturbativity of each of the resulting
fixed points by initializing a numerical root search in the
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FIGURE 4 | RG-flow of the U(1) gauge coupling matched to the observed electroweak value for arbitrary non-Abelian gauge and top-Yukawa couplings within the

perturbative regime. (Left) perturbativity defined by |β (NNLO)| < 1
2 |β

(NLO)|, cf. Equation (12). (Right) Perturbativity defined by |β (NNLO)| < 1
2 |β

(NLO)|.

NNLO beta-functions at the NLO fixed-point values. If the
latter converges, we compare whether the signs of the critical
exponents of the NLO and NNLO fixed points match. (If the
root search does not converge, we discard the NLO fixed point).
Thereby we can identify perturbative fixed points for which
NNLO corrections are subleading10.

Irrespective of the specific representation (dR12 , dR13 ) and the

number of copies NR1
F , we find that a single type of BSM

representation R1 is insufficient to generate a fixed point at which
both α2 ∗ 6= 0 and α3 ∗ 6= 0. IR-attractive gauge-Yukawa fixed
points at which only one of the non-Abelian gauge couplings is
non-vanishing are available in perturbation theory and have been
identified in [40].

Proceeding to two different types of representations, i.e., R1
and R2, we are able to identify a single combination of BSM
representations for which a fixed point as in Equation (15) is
possible, i.e.,

NR1 = 1 copy of the (dR12 , dR13 ) = (3, 1) and

NR2 = 2 copies of the (dR22 , dR23 ) = (1, 6) . (16)

Having specified the above representations, the respective BSM

Lagrangian follows from Equation (25 in Appendix B). For
this specific combination of BSM representations, both non-
Abelian gauge groups are in the GY phase. Hence, all possible
combinations of gauge-Yukawa fixed points exist. In particular,
this includes a fully IR-attractive fixed point at

α1 ∗ = 0 , α2 ∗ ≈ 0.0131 , α3 ∗ ≈ 0.0033 , αt ∗ ≈ 0.0124 ,

αR1y ∗ ≈ 0.0082 , αR2y ∗ ≈ 0.0394 . (17)

The fixed point persists at NNLO order.
To summarize, we find that by adding suitable matter content

to the SM, the non-Abelian gauge-Yukawa sector of the SM can

10One might be able to construct more elaborate search algorithms and thereby

potentially identify additional gauge-Yukawa BSM theories with perturbatively

controlled interacting fixed points and we do not claim completeness.

transition from the CAF-phase to the GY-phase, and of course
to the CT-phase. The explicit study supports that neither the
BZ-phase nor the LS-phase is possible, cf. section 3. Within
perturbation theory, the U(1) always remains in the CT-phase.

6.1. Predictivity Below the Planck Scale
For simple gauge-Yukawa theories in the CAF phase (BZ phase),
the IR-complete region is reduced to the free theory (one-
dimensional conformal window for vanishing Yukawa coupling),
cf. Figure 1. Hence, these phases develop IR divergences for
initial conditions that lie close to the edge of perturbativity at the
cutoff scale. Put differently, they are non-predictive (as defined
in section 4). On the contrary, the IR-complete region of theories
in the GY or CT phase (and the LS) phase is two dimensional
and covers all (or most) of the perturbative regime. Hence, these
phases are predictive.

In Equation (16), we have identified a combination of BSM
representations to push the non-Abelian SM subgroups into the
predictive GY but not yet trivial phase. The two right-hand panels
in Figure 5 depict the associated decreasing volume in theory
space as a function of the RG-flow toward the IR in two slices
of the overall 6-dimensional theory space. The left-hand panel
shows the corresponding evolution of the predictivity measure
P(k). Specifying to 3NP = 105 GeV, the theory-space volume is
reduced by a factor of P(k = 3NP) ∼ 10−9 between 3Planck and
3NP.

Despite fixed-point values that depart significantly, i.e., by
several 100%, from the measured SM values, predictivity is
insufficient to exclude the BSM extension from matching to the
SM electroweak scale. Put differently, the observed SM-coupling
values lie within the “conformal” region of UV- and IR-complete
theories (apart from the non-vanishing value of the Abelian
gauge coupling, cf. section 3.2).

6.2. Partial Predictivity Below the Planck
Scale
A phenomenologically more relevant question is that of partial
predictivity under the condition of matching all the observed
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FIGURE 5 | In the left panel we show the predictivity of the BSM model identified in Equation (16), averaged over 10 sets of perturbative but otherwise random initial

EFTs. The gray-dashed region indicates the statistical error. The other two panels show projections of the evolving theory-space volume [onto the α3-αt-plane (middle)

and onto the α
R1
y -α

R2
y -plane (right)]. We plot its convex hull at each order of magnitude below 3Planck with increasingly darker-red shading toward the IR.

FIGURE 6 | Partial predictivity for the BSM theory identified in Equation (16). The plots show RG trajectories that match the observed values of SM couplings in the

heavy-top limit, i.e., α1, α2, α3 (dashed), and αt (continuous). At energies below (above) 3NP, the BSM degrees of freedom decouple (are active). The BSM RG flow

focuses arbitrary perturbative initial conditions for the BSM Yukawa couplings αy1 (left) and αy2 (right) at the Planck scale to the gray-shaded regions at lower scales.

We also indicate (thin lines) several trajectories to exemplify the behavior of different RG trajectories within the conformal region.

SM couplings, i.e., α1, α2, α3, and αt , to their measured
electroweak-scale values. The resulting partial predictivity for
the BSM Yukawa couplings—especially in αy1—is quite strong.
Figure 6 shows how the RG flow strongly focuses the BSM
Yukawa couplings toward the IR, all the while enforcing that the
SM couplings match to their electro-weak scale values. The full
range of perturbative EFT values at 3Planck is mapped to values
below the partial fixed point, i.e., αy1 (k = 3ew) . 0.0165 and
αy2 (k = 3ew) . 0.0083. These values do not precisely match
with the fixed-point values in Equation (17) because the SM
couplings are matched to their electro-weak scale values, instead.

In general, any RG trajectory for the BSM Yukawa couplings
in the gray region of Figure 6 is possible. However, typical initial
conditions, i.e., those which are not fine-tuned to values very
close to zero, are all mapped to values very close to the partial
fixed-point value, cf. thin lines in Figure 6. This is a result
of the power-law scaling toward the interacting fixed point in
Equation (17) (more specifically, toward its partial counterpart).

Quantitatively, the RG flow maps initial conditions within the
perturbative but “natural” range of coupling values at the Planck
scale αy1 (k = 3Planck) ∈ [10−4, 0.5] to a very narrow window
at the electroweak scale, i.e., to αy1 (k = 3ew) ∈ [1.646 ×
10−2, 1.649 × 10−2]. Assuming that the BSM Yukawa couplings
should take such “natural,” i.e., O(1), values at the Planck scale,
therefore predicts αy1 (k = 3ew) ≈ 1.65×10−2. We caution that a
correct matching to the SM values of αt requires the latter to have
an “unnatural” Planck scale value ∼ 10−5, thereby questioning
the use of the above naturalness assumption. Similar arguments
also apply to αy2 , although partial predictivity is less pronounced,
cf. Figure 6.

The above partial predictivity does not rely on the existence of
a gauge-Yukawa fixed point like the one found in Equation (17).
It is merely a consequence of the partial IR fixed-point for
the BSM Yukawa couplings, cf. Equation (3). We list some
explicit examples of BSM matter content to realize the CAF,
GY, and CT phase (for both non-Abelian gauge groups) along
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TABLE 2 | Preditictivity P(3NP ) and partial predictivity ˜P(3NP ) at a new-physics scale 3NP = 105 GeV for some selected BSM models in the three available phases

characterized by their BSM matter content in the first two columns, see main text for further discussion.

(N
R1
F
, d

R1
2 , d

R1
3 ) (N

R2
F
, d

R2
2 , d

R2
3 ) Predictivity Partial predictivity Non-Abelian phase

(1, 2, 1) (1, 1, 3) P(3NP ) = ∞ ˜P(3NP ) ≈ 2× 10−4 CAF

(1, 3, 1) (2, 1, 6) P(3NP ) ≈ 10−9
˜P(3NP ) ≈ 3× 10−4 GY

(1, 4, 1) (11, 1, 3) P(3NP ) ≈ 10−11
˜P(3NP ) ≈ 9× 10−4 CT

(1, 4, 1) (1, 1, 10) P(3NP ) ≈ 10−12 Not viable CT

The predictivity for the BSM model content in the last line is already high enough to exclude its validity when matched to SM values of couplings, i.e., by a sub-Planckian Landau pole

in α3. (We refrain from listing further examples in mixed phases).

with predictivity and partial predictivity in Table 2. It can be
concluded that while only theories in the GY and the CT
phase are predictive, partial predictivity persists in all models.
In particular, the partial predictivity in the absence of a gauge-
Yukawa fixed point can outgrow the partial predictivity in the
presence of one.

7. DISCUSSION

We have analyzed the fixed points of gauge-Yukawa theories and,
in particular, the SM gauge group in the context of EFTs below
the Planck scale. For the SM gauge groups, we have clarified why
gauge-Yukawa fixed points with UV-attractive directions cannot
occur within the perturbatively controlled regime. However,
additional matter fields can result in a perturbative and fully
IR-attractive gauge-Yukawa fixed point which realizes effective
asymptotic safety. We have introduced a novel quantitative
measure for the predictivity of general EFTs and have applied
it to gauge-Yukawa BSM extensions. Concerning concrete
BSM phenomenology, this allows us to make the following
conclusions:

• The results highlight that the presence of an (Abelian)
Landau pole, as long as it occurs at trans-Planckian scales,
does not pose a strict no-go criterion in the search of
perturbative interacting fixed points in non-gravitational and
hence necessarily effective theories with a Planckian cutoff.

• We have identified a fully IR-attractive and (apart from the
Abelian gauge coupling) fully interacting fixed point if suitable
vector-like fermions without hypercharge, i.e., one SU(3)
singlet in the three-dimensional representation of SU(2) and
two SU(2) singlets in the six-dimensional representation of
SU(3), are added to the SM, cf. Equations (16) and (25 in
Appendix B) for the corresponding BSM Lagrangian. This
particular theory is predictive along the RG flow toward the
IR. We have quantified its predictive power and compared it
to other BSM models without interacting fixed points. For all
thesemodels, partial predictivity restricts the range of coupling
values of the BSM Yukawa couplings in dependence on the
ratio between the BSM scale and the cutoff scale.

• In general, the predictive power of subplanckian effective
asymptotic safety of gauge-Yukawa theories can be estimated
by a simple argument: Let ǫ≪1 be the perturbative parameter.
For simple gauge-Yukawa theories, ǫ . 0.1 has been
found in [22] as the indicated regime of perturbative control.
Perturbative fixed points that come about by the balance

of loop orders will necessarily result in critical exponents θ
proportional to some power of ǫ, i.e., θ . ǫ. Extrapolating
the linearized regime around the fixed point, one therefore
expects (α(3IR) − α∗)/(α(3UV) − α∗) = ǫ log(3IR/3UV)
for the associated coupling α. For the phenomenologically
important case of 3NP/3Planck < 3ew/3Planck ∼ 1017,
predictivity is thus expected to be limited to shrinking the
allowed region of all perturbative coupling values by one
or two orders of magnitude. This simple argument also
motivates that predictivity can be further increased (i) for non-
perturbative fixed points—as e.g., tentatively suggested in a
toy model in [118]—because θ need not be small and (ii) for
potential fixed points including gravitational fluctuations, see
e.g., [119–122] since 3UV can be extended beyond the Planck
scale.

More generally, the example of gauge-Yukawa theories suggests
that the boundaries of all UV-complete and/or IR-complete
theories constitute special hypersurfaces in the theory space. In
particular, we have made the following observations.

• The boundary hypersurfaces separate theories on both sides.
Whenever one is confident that such a boundary exists and
one knows that experimentally observed values lie either inside
or outside, one can exclude that the observed IR physics
originates from UV physics on the other side of the boundary.

• Moreover, the boundary surfaces can inherit the IR-attractive
properties of their delimiting fixed point. In such cases, generic
EFTs at the cutoff scale—both UV complete and not UV
complete—will converge to realize coupling values closer to
the boundary surface toward the IR. This is a first step
to generalize the local notion of fixed points to global IR-
attractors in theory space.

These two points highlight that knowledge about such boundary
surfaces can be of great value whenever one tries to relate theories
at different scales. Of course, having all the information to
exactly reconstruct the boundary surface amounts to knowing
about all RG flows in its vicinity. One might, therefore, object
that with this information one could directly evolve a theory
between different scales and obtain its counterpart at other
scales. However, this is true only if one knows about all the
coupling values at a given scale which is typically not the case
in the search for new physics. The constraints on BSM Yukawa
couplings, that partial predictivity and perturbativity up to the
Planck scale entail, provide for an example to emphasize this
more general point.
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Canonical Quantum Gravity,
Constructive QFT, and
Renormalisation
Thomas Thiemann1*

1Institute for Quantum Gravity, FAU Erlangen–Nürnberg, Erlangen, Germany

The canonical approach to quantum gravity has been put on a firm mathematical foundation in
the recent decades. Even the quantum dynamics can be rigorously defined, however, due to
the tremendously non-polynomial character of the gravitational interaction, the corresponding
Wheeler–DeWitt operator-valued distribution suffers from quantisation ambiguities that need to
be fixed. In a very recent series of works, we have employed methods from the constructive
quantum field theory in order to address those ambiguities. Constructive QFT trades quantum
fields for random variables and measures, thereby phrasing the theory in the language of
quantum statistical physics. The connection to the canonical formulation is made via
Osterwalder–Schrader reconstruction. It is well known in quantum statistics that the
corresponding ambiguities in measures can be fixed using renormalisation. The associated
renormalisation flow can thus be used to define a canonical renormalisation programme. The
purpose of this article was to review and further develop these ideas and to put them into
context with closely related earlier and parallel programmes.

Keywords: Canonical quantum gravity, lattice gauge field theory, constructive quantum field theory,
renormalisation, Euclidian formulation

1. INTRODUCTION

The canonical approach to quantum gravity has been initialised long time ago [1–14]. However, the
mathematical foundations of the theory remained veiled due to the tremendous non-linearity of the
gravitational interaction. This has much changed with the reformulation of general relativity as a
Yang–Mills type gauge theory in terms of connection, rather than metric variables [15,16], and has
culminated in a research programme now known as loop quantum gravity (LQG) (see e.g., Refs. 17–21
for monographs and recent reviews on the subject). The qualifier ‘loop’ stems from the fact that for
gauge theories of Yang–Mills type, it has proved useful to formulate the theory in terms of holonomies
of the connection along closed paths (loops) in order to maintain manifest gauge invariance. Such so-
called (Wilson) loop variables are widely used, for instance, in (lattice) QCD [22].

LQG has succeeded in providing a rigorous mathematical framework: The representation theory
of the canonical commutation relations and the * relations has been studied and a unique
representation has been singled out [23–27] that allows for a unitary representation of the
spatial diffeomorphism group. Moreover, the generators of temporal diffeomorphisms,
sometimes referred to as Wheeler–DeWitt operators, could be rigorously quantised on the
corresponding Hilbert space [28–32], and in contrast to the perturbative approach to quantum
gravity [33, 34], no ultraviolet divergences were found. It should be emphasised that this was
achieved 1) in the continuum, rather than on a lattice, that is, there is no artificial cut-off left over;
2) for the physical Lorentzian signature, rather than unphysical Euclidian one; and 3) non-perturbatively
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and background independently, that is, one does not perturb
around a classical background metric and then quantises the
fluctuations which thus manifestly preserves the diffeomorphism
covariance of all constructions.

However, the theory is not yet completed: Due to the
tremendously non-polynomial nature of the gravitational
interaction, the usual factor ordering ambiguity in the
quantisation of operator-valued distributions which are non-
linear in the fields is much more severe. Thus, the operators
defined in Refs. 28–32 suffer from those ambiguities. Moreover,
the following problem arises: In the classical theory, the canonical
generators of space-time diffeomorphisms (i.e., their
Hamiltonian vector fields) form a Lie algebroid (i.e., a Lie
algebra except that the structure constants are replaced by
structure functions on the phase space) known as the
hypersurface algebroid [35]. The structure functions are
themselves promoted to operator-valued distributions upon
quantization; thus, it becomes even harder to find quantization
of those generators such that the algebroid is represented without
anomalies than it would be for an honest Lie algebra. Specifically,
the commutator between two temporal diffeomorphism
generators is supposed to 1) be proportional to a linear
combination of spatial diffeomorphism generators with
operator-valued distributions as coefficients and 2) in an
ordering, such that the following holds: The image of any such
commutator of a dense domain of vectors in the Hilbert space
must be in the kernel of the space of spatially diffeomorphism-
invariant distributions on that domain. In Ref. 37, it is shown that
both conditions 1) and 2) hold; however, the coefficients in that
linear combination do not qualify as quantisations of their
classical counterpart. Thus, while the quantisation of the
hypersurface algebroid closes, it does so with the wrong
operator-valued distributions as coefficients.

Thus, the status of LQG can be summarised as follows:
As compared to Refs. 1–14, it is now possible to ask and

answer precise questions about the mathematical consistency of
the whole framework. As compared to the perturbative approach,
the framework does not suffer from ultraviolet divergences and
one does not have to worry about the convergence of a
perturbation series due to the manifestly non-perturbative
definition of LQG. However, just as in the perturbative
approach, one needs further input in order to draw
predictions from the theory, although of a different kind: In
the perturbative approach, there are an infinite number of
counter terms necessary due to non-perturbative non-
renormalisability all of which come with coefficients that have
to be measured, but one can argue that only a finite number of
them is of interest for processes involving energies not exceeding
a certain threshold (effective field theory point of view). In LQG,
there are in principle infinitely many quantisation ordering
prescriptions possible, each of which comes with definite
coefficients in order to yield the correct naive continuum
limit, but it is not clear which ordering to choose so that
presently one resorts to the principle of least technical
complexity.

Various proposals have been made in order to improve the
situation. In Ref. 38, one exploits the fact that classically one can

always trade a set of first-class constraints by a single weighted
sum of their squares (called the master constraint). Since a single
constraint always closes with itself and the weights can be chosen
such that the master constraint commutes with spatial
diffeomorphisms, one can now focus on the quantisation
ambiguities involved in the master constraint without having
to worry about anomalies. In Ref. 39, the case of general relativity
coupled to perfect fluid matter was considered, which allows
solving the constraints before quantisation so that the remaining
quantisation ambiguity now only rests in the corresponding
physical Hamiltonian that drives the time evolution of the
physical (i.e., space-time diffeomorphism-invariant) observables.
In Refs. 40–42, the constraints are quantised on a suitable space of
distributions with respect to a dense domain of the Hilbert space,
rather than the Hilbert space itself in order to find a representation
of the hypersurface algebroid directly on that space of distributions
which would at least partially fix the aforementioned ordering
ambiguity.

It transpires that additional input is necessary in order to fix
the quantisation ambiguity in the dynamics of LQG and thus to
complete the definition of the theory. This would also put
additional faith in applications of LQG, for instance to
quantum cosmology [43–46] (where the amount of ambiguity
is drastically reduced) which are believed to be approximations of
LQG by enabling to make the connection between LQG and those
approximations precise including an error control (see Refs.
47–53 for recent progress in that respect). In the recent
proposal [54–57] which we intend to review in this article, the
authors were inspired by Wilson’s observation [54–57] that
renormalisation methods help identify among the principally
infinitely many interaction terms in Hamiltonians relevant for
condensed matter physics the finitely many relevant ones that
need to be measured. This insight implies that a theory may be
perturbatively non-renomalisable but non-perturbatively
renormalisable, also known as asymptotically safe [58]. The
asymptotic safety approach to quantum gravity for Euclidian
[59–68] and Lorentzian signature [69, 70] precisely rests on that
idea and has received much attention recently. In fact, there is
much in common between our proposal and asymptotically safe
quantum gravity (especially for Lorentzian signature), and we will
have the opportunity to spell out more precisely points of contact
in the longer version of this article [196].

Also, there is a large body of work on renormalisation [71–75]
in the so-called spin foam approach [85–92] and the related
group field theory [76–81] and tensor model1 [82–84] approach
to quantum gravity. The spin foam approach is loosely connected
to LQG in the following sense: The states of the Hilbert space
underlying LQG are labelled by collections of loops, that is, 3D

1In principle, any field theory with a polynomial Lagrangian can be written as a
(coloured) tensor model as follows: Pick any orthonormal basis with respect to the
measure appearing in the action, expand the field in that basis, call the expansion
coefficients a coloured (by the space-time or internal indices) tensor in an infinite-
dimensional ℓ2 space, and call the integral over polynomials in those basis
functions that appear in the action upon expanding the fields interaction terms
of those tensors. If the basis carries labels inNnd , we obtain a coloured tensor model
with tensors of rank n.
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graphs. A spin foam is an operator that maps such states excited
on a graph to states excited on another graph. The operator
depends on a specific class of 4D cell complex (foam) such that its
boundary 3D complex is dual to the union of the two graphs
corresponding to the incoming and outgoing Hilbert spaces. The
operator is supposed to form the rigging map [93] of LQG, that is,
a generalised projector onto the joint kernel of the
Wheeler–Dewitt constraints. We say that the connection is
loose because the rigging nature of current spin foams in 4D
is not confirmed yet. In any case, a spin foam operator can be
formulated as a state sum model, and thus, renormalisation ideas
apply. (For applications of renormalisation group ideas in the
cosmological sector of LQG, see Refs. 94–96.)

Most of the work on renormalisation is either within classical
statistical physics (e.g., Ref. 97) or the Euclidian (also called
constructive) approach to the quantum field theory [98–100].
In the Euclidian approach, the quantum field, which is an
operator-valued distribution on Minkowski space, is replaced
by a distribution-valued random variable on Euclidian space.
While the dynamics in the Minkowski theory is given by
Heisenberg equations, in the Euclidian theory, it is encoded in
a measure on the space of random variables. We are then back in
the realm of statistical physics because loosely speaking, the
measure can be considered as a Gibbs factor for a
Hamiltonian (sometimes called Euclidian action) in four
spatial dimensions. How then should one use renormalisation
ideas for quantum gravity? Quantum gravity is not a quantum
field theory on Minkowski space (unless one works in the
perturbative regime, but then it is non-renormalisable). Also,
while the Minkowski and Euclidian signature of metrics are
related by simple analytic rotation in time from the real to the
imaginary axis, this does not even work for classical metrics with
curvature, not to mention the quantum nature of the metric (in
ordinary QFT, the metric is just a non-dynamic background
structure). One can, of course, start with Euclidian signature GR
and try to build a measure theoretic framework, but then the
relation to the Lorentzian signature theory is unclear. Moreover,
while as an ansatz for the Euclidian signature measure, we can take
the exponential of the Euclidian Einstein–Hilbert action, that action
is not bounded from below, and thus, the measure cannot be a
probability measure which is one of the assumptions of constructive
QFT. Finally, in contrast to constructive QFT, in quantum gravity
expectation, values (operator language) or means (measure
language) of basic operators (or random variables) such as the
metric tensor have no direct physical meaning because coordinate
transformations are considered as gauge transformations; hence,
none of the basic fields correspond to observables.

In our approach [54–57], we will use the framework [39], that
is, we do not consider vacuum GR but GR coupled to matter
which acts as a dynamical reference field. This enables us 1) to
solve the spatial diffeomorphism and Hamiltonian constraints
classically, 2) to work directly on the physical Hilbert space
(i.e., the generalised kernel of all constraints equipped with the
inner product induced by the rigged Hilbert space structure, 3) to
have at our disposal immediately the gauge-invariant degrees of
freedom such that the physical Hilbert space is the representation
space of a * representation of those observables, and 4) to be

equipped with a physical Hamiltonian that drives the physical
time evolution of those observables. Concretely and out of
mathematical convenience, we use the perfect fluid matter
suggested in Refs. 101 and 102, but for what follows, these
details are not important. Important is only that it is possible
to rephrase GR coupled to matter as a conservative Hamiltonian
system and that all the machinery that was developed for LQG
can be imported. Now, the quantisation ambiguity rests, of
course, in the physical Hamiltonian and it is that object and
its renormalisation on which we focus our attention.

As we just explained, we can bring GR coupled to matter
somewhat closer to the usual setting of ordinary QFT or statistical
physics, but still we cannot apply the usual path integral
renormalisation scheme because we work in the canonical (or
Hamiltonian) framework. The idea is then to make use of
Feynman–Kac–Trotter–Wiener–like ideas in order to generate
a Wiener measure theoretic framework from the Hamiltonian
setting and vice versa to use Osterwalder–Schrader reconstruction to
map the measure theoretic (or path integral) framework to the
Hamiltonian one. This way we can map between the two
frameworks and thus import path integral renormalisation
techniques into the Hamiltonian framework which are strictly
equivalent to those employed in path integral renormalisation. In
order that this works one needs to check, of course, that the Wiener
measure constructed obeys at least a minimal subset [103] of
Osterwalder–Schrader axioms [104] in order for the
reconstruction to be applicable,most importantly reflection positivity.

This was one of the goals of [54–57], namely, to define a
renormalisation group flow directly within the Hamiltonian
setting with strict equivalence to the path integral flow.
Specifically, the flow is a flow of Osterwalder–Schrader triples
(H, H, Ω) consisting of a Hilbert space H, a self-adjoint
Hamiltonian H thereon bounded from below, and a vacuum
vector Ω ∈ H annihilated by H. While physically well-motivated,
of course, one does not need to do this. Indeed, renormalisation
techniques for Hamiltonians and vacua directly within the
Hamiltonian setting were invented before, and we devote the
next section for putting our framework into context with schemes
closely related to ours. The fact that we have a precise relation
between Hamiltonian and path integral renormalisation makes it
possible to bring Hamiltonian formulations of quantum gravity
such as LQG and path integral formulations, such as
asymptotically safe quantum gravity, into closer contact.

The architecture of this article is as follows:
In the second section, we give an incomplete overview over and

sketch Hamiltonian renormalisation frameworks closely related to
ours and point out differences and similarities.

In the third section, we review how classical general relativity
coupled to suitable matter can be brought into the form of a
conservative Hamiltonian system and the LQG quantisation thereof.
The necessity to remove quantisation ambiguities will be highlighted.

In the fourth section, we recall some background material on
constructive QFT, the Feynman–Kac–Trotter–Wiener construction,
and Osterwalder–Schrader reconstruction.

In the fifth section, we derive the natural relation between
families of cylindrically defined measures, coarse graining,
renormalisation group flows, and their fixed points. We then

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5482323

Thiemann CQG, CQFT, and Renormalisation

189

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


use Osterwalder–Schrader reconstruction to map the flow into the
Hamiltonian framework. This section contains new material as
compared to [54–57] in the sense that we 1) develop some
systematics in the choice of coarse graining maps that are
motivated by naturally available structures in the classical theory,
2) clarify the importance of the choice of random variable or
stochastic process when performing OS reconstruction, and 3)
improve the derivation of the Hamiltonian renormalisation flow
by adding the uniqueness of the vacuum as an additional assumption
(also made in the OS framework of Euclidian QFT [98–100]) as well
as some machinery concerning degenerate contraction semi-groups
and associated Kato–Trotter formulae.

In the sixth section, we summarise, spell out implications of
the renormalisation programme for the anomaly-free
implementation of the hypersurface algebroid, and outline the
next steps when trying to apply the framework to interacting QFT
and finally canonical quantum gravity such as LQG.

The paper is supplemented by the following appendices:
In Supplementary Appendix A, we prove some properties for

a coarse graining scheme appropriate for non-Abelian gauge
theories; in Supplementary Appendix B, we prove a lemma
on the existence of certain Abelian C*−algebras needed for the
construction of stochastic processes during OS reconstruction; in
Supplementary Appendix C, we collect some renormalisation
terminology for readers more familiar with actions, rather than
measures; in Supplementary Appendix D, we give a proof for the
Kato–Trotter product formula for semi-groups and projections in
the simple case that the semi-group has a bounded generator; and
in Supplementary Appendix E, we prove a strong limit identity
between projections needed in Section 5.3.

In Supplementary Appendix F, we mention concrete points of
contact between the scheme developed here and others in the context
of density matrix, entanglement, and projective renormalisation.

In Supplementary Appendix G, we sketch a relation between
Hamiltonian renormalisation via Osterwalder–Schrader
reconstruction and the functional renormalisation group which
is the underlying technique of the asymptotic safety programme.
This article is the journal version of Ref. 196 which is organised
slightly differently in the sense that Appendices F, G of this article
are part of the main text of Ref. 196.

2. OVERVIEW OVER RELATED
HAMILTONIAN RENORMALISATION
SCHEMES
The purpose of this section is not to give a complete scan of the
vast literature on the subject of Hamiltonian renormalisation but
just to give an overview over those programmes that we believe
are closest to ours. Also, we leave out many finer details as we just
want to sketch their relation to our framework in broad terms. In
sections 6 and 7 of Ref. 196, we will give a few more details on the
connection between our approach and the density matrix and
functional renormalisation group.

The starting point is, of course, the seminal works by Kadanoff
[105] and Wilson [106, 107]. Kadanoff introduced the concept of
a block spin transformation in statistical physics, that is, a coarse

graining transformation in real space (namely, on the location of
the spin degrees of freedom on the lattice), rather than in some
more abstract space (e.g., momentum space blocking/suppressing
as used, e.g., in the asymptotically safe quantum gravity
approach). This kind of real-space coarse graining map is
widely used not only in statistical physics but also in the path
integral approach to QFT as, for instance, in lattice QCD [108].
On the other hand, Wilson introduced the concept of
Hamiltonian diagonalisation to solve the Kondo problem (the
low-temperature behaviour of the electrical resistance in metals
with impurities). This defines a renormalisation group flow
directly on the space of Hamiltonians and its lowest lying energy
eigenstates. More precisely, one considers a family of Hamiltonians
labelled by an integer-valued cut-off on the momentum mode
label of the electron annihilation and creation operators. The
renormalisation group flow is defined by diagonalising the
Hamiltonian given by a certain cut-off label, and to use the
eigenstates so computed to construct the matrix elements of the
Hamiltonian at the next cut-off label. To make this practical,
Wilson considered a truncation, at each renormalisation step, of
the full energy spectrum to the 103 lowest lying energy levelswhich
was sufficient for the low-temperature Kondo problem. This is in
fact nothing but the concrete application of the Rayleigh–Ritz
method. The concept of truncation plays an important role also in
most other renormalisation schemes, as otherwise the
calculations become unmanageable.

The next step was done byWegner [109, 110] as well as Glazek
and Wilson [111] which can be considered as a generalisation of
the Hamiltonian methods of Refs. 106 and 107. It could be called
perturbative Hamiltonian block diagonalisation and was applied
in QFT already (e.g., Refs. 112 and 113 and references therein).
Roughly speaking, one introduces a momentum cut-off on the
modes of the annihilation and creation operators involved in the
free part of the Hamiltonian, then perturbatively (with respect to
the coupling constant) constructs unitarities which at least block
diagonalise that Hamiltonian with respect to a basis defined by
modes that lie below half the cut-off and those that lie between
half and the full cut-off, and then projects the Hamiltonian onto
the Hilbert space defined by the modes below half of the cut-off to
define a new Hamiltonian at half the cut-off. This can be done for
each value of the cut-off and thus defines a flow of Hamiltonians
(and vacua defined as their ground states). Another branch of
work closely related to this is the projective programme due to
Kijowski [114, 115]. Here, a flow of Hamiltonians on Hilbert
spaces for different resolutions is given by the partial traces of the
corresponding density matrices given by minus their exponential
(Gibbs factors, assuming that these are trace class). (See also Refs.
116–123 for more recent work on renormalisation building on
this programme.)

In these developments, the spectrum of the Hamiltonian was
directly used to define the flow. Another proposal was made by
White [124] who defined the density matrix renormalisation
group. This is a real-space renormalisation group flow which
considers the reduced density matrix corresponding to the tensor
product split of a vector (e.g., the ground state of a Hamiltonian)
of the total Hilbert space into two factors corresponding to a
block and the rest (or at least a much larger ‘superblock’). This
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density matrix is diagonalised, and then, the Hilbert space is
truncated by keeping only a certain fixed number of highest lying
eigenvalues of the reduced density matrix. Finally, the
Hamiltonian corresponding to the block is projected, and
then, the resulting structure is considered as the new structure
on the coarser lattice resulting from collapsing the blocks to new
vertices (we are skipping here some finer details). This method
thus makes use of entanglement ideas since the reduced density
matrix defines the degree of entanglement via its von Neumann
entropy.

A variant of this is the tensor renormalisation group approach
due to Levin and Nave [125]. It is based on the fact that each
vector in a finite tensor product of finite-dimensional Hilbert
spaces can be written as a matrix product state, that is, the
coefficients of the vector with respect to the tensor product
base can be written as a trace of a product of matrices of
which there are, in general, as many as the dimensionality of
the Hilbert space. One now performs a real-space renormalisation
scheme directly in terms of those matrices which are considered
to be located on a lattice with as many vertices as tensor product
factors. Importantly, this work connects renormalisation to the
powerful numerical machinery of tensor networks [126].

Finally, as observed by Vidal [127] and Evenbly and Vidal [128,
129], one can improve [124, 125] by building in an additional
unitary disentanglement step into the tensor network
renormalisation scheme. This is quite natural because a tensor
network can also be considered as a quantum circuit with the
truncation steps involved considered as isometries, but a quantum
circuit in quantum computing [130] consists of a network of unitary
gates, some of which have a disentangling nature depending on the
state that they act upon. The resulting scheme is called multi-scale
entanglement renormalisation ansatz (MERA).

As this brief and incomplete discussion reveals, there are
numerous proposals in the literature for how to renormalise
quantum systems. They crucially differ from each other in the
choice of the coarse graining map. There are various aspects that
discriminate between these maps, such as the following:

(1) Real space vs. other labels

The degrees of freedom to be coarse grained are labelled by
points in space-time or else (momentum, energy, etc.).

(2) Kinematic vs. dynamical

Real-space block spin transformations are an example of a
kinematic coarse graining, that is, the form of the action, a
Hamiltonian, its vacuum vector, its associated reduced density
matrix, and the corresponding degree of entanglement do not
play any role. By contrast, Hamiltonian block diagonalisation,
density matrix, and entanglement renormalisation take such
dynamical information into account.

(3) Truncated vs. exact

In principle, any renormalisation scheme can be performed
exactly, for example, in real-space path integral renormalisation,

one can just integrate the excess degrees of freedom that live on
the finer lattice but not on the coarser, thus obtaining the measure
(or effective action) on the coarser lattice from that of the finer
one. The same is true, for example, for the procedure followed in
asymptotically safe quantum gravity. However, in practice, this
may quickly become unmanageable, and thus, one resorts to
approximation methods, for example, by truncation in the space
of coupling constants, energy eigenstates, or reduced density
matrix eigenstates.

For the newcomer to the subject, this plethora of suggestions
may appear confusing. Which choice of coarse graining is
preferred? Do different choices lead to equivalent physics?
What can be said about the convergence of various schemes
and what is the meaning of the fixed point(s) if it (they) exist(s)?
The physical intuition is that different schemes should give
equivalent results if 1) the corresponding fixed point
conditions capture necessary and sufficient properties that the
theory should have in order to qualify as a continuum theory and
2) when performed exactly. The first condition is obvious: we start
from what we believe to be an initial guess for how the theory
looks at different resolutions and then formulate a coarse graining
flow whose fixed points are such that they qualify to define a
continuum theory. The second condition entails that the coarse
graining maps just differ in the separation of the total set of
degrees of freedom into subsets corresponding to coarse and fine
resolution, hence corresponds to choices of coordinate systems
which, of course, can be translated into each other. However,
when truncations come into play, this equivalence is lost because
different schemes truncate different sets of degrees of freedom
which are generically no longer in bijection. It is conceivable
therefore that dynamically driven truncation schemes perform
better at identifying the correct fixed point structure of the theory
in the sense that they may converge faster and are less vulnerable
to truncation errors or automatically pick the truncation of
irrelevant couplings. This seems to be confirmed in spin
system examples, but we are not aware of a general proof.
Recently, the importance of the kinematic vs. dynamic issue
has also been emphasised for the LQG and spin foam
approach [131–133].

In our work, we currently are not concerned with issues of
computationability, that is, we consider an exact scheme. Next, as
far as the coarse graining map is concerned, we currently favour a
kinematic scheme. The reason for doing this is that kinematic
schemes are naturally suggested by measure theoretic questions,
namely, measures on spaces of infinitely many degrees of freedom
are never of the type of the exponential of some action times a
normalisation constant times Lebesgue measure. Neither of these
three ingredients is well defined.What is well defined are integrals
of certain probe functions of the field with respect to that
measure. These probe functions, in turn, are naturally chosen
to depend on test functions that one integrates the field against.
Thus, these test functions provide a natural notion of resolution,
discretisation, and coarse graining. By integrating the measure
against probe functions, one obtains a family of measures labelled
by the test functions involved. The relation between test functions
at different resolution induces a corresponding relation between
members of the family of measures which must hold exactly for a
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true measure of the continuum QFT. In turn, such consistency
relations called cylindrical consistency can be used to define a
measure on a space of infinitely many degrees of freedom [134],
called a projective limit. The idea is then to formulate measure
renormalisation in such a way that its fixed points solve the
consistency relations. This approach has been advocated in Refs.
135 and 136 for Euclidian Yang–Mills theory and in Refs. 137 and
138 for spin foams. Note that spin foams, strictly speaking, do not
construct measures but rather are supposed to construct a rigging
map so that Hamiltonian methods come also into play. Indeed, in
Refs. 131–133, it was shown that the cylindrically consistent
coarse graining of the rigging map and its underlying space-
time lattice, thought of as an anti-linear functional on the
kinematical Hilbert space, induce a coarse graining of the
spatial lattice on its boundary and thus the Hilbert space
thereon, equipping it with a system of consistent embeddings,
a structure similar to inductive limits of Hilbert spaces (an
inductive structure requires in addition the injections to be
isometric). That latter structure underlies the kinematical
Hilbert space of LQG, and a renormalisation procedure based
on inductive limits was already proposed in Refs. 139–141 due to
the similarity of LQG to the lattice gauge theory.

Another reason for why picking real-space coarse graining
schemes as compared to, say, momentum space–based ones is
their background independence, which is especially important for
quantum gravity. In our work, as we consider the version of LQG
in which the constraints already have been solved, we will work
with probability measures. As we will see, the connection between
inductive limits of Hilbert spaces and projective limits of path
integral measures can be made crystal clear in this case. The price
we pay by using an exact, kinematical scheme is that the fixed
point (or renormalised) Hamiltonian becomes spatially non-local
at finite resolution. However, in the free QFT examples studied
[54–57], which are spatially local in the continuum, by blocking
the known fixed point theory from the continuum, one can see
that this is natural andmust happen for such schemes; hence, it is
not a reason for concern but, in fact, physical reality. The degree
of spatial non-locality, in fact, decreases as we increase the
resolution scale.

When applying the framework to interacting QFT, one will
have to resort to some kind of approximation scheme, and
possibly, tools from entanglement renormalisation combined
with tensor network techniques may prove useful. However,
note that QFT of bosonic fields (gravity is an example) deals
with infinite-dimensional Hilbert spaces even when the theory
depends only on a finite number of degrees of freedom, say, by
discretising it on a lattice and confining it to finite volume. Thus,
to apply tensor network techniques which, to the best of our
knowledge, require the factors in the tensor product to be finite-
dimensional Hilbert spaces, one would have to cut off the
dimensions of those Hilbert spaces right from the beginning,
that is, one would have to work with three cut-offs, rather than
two (see, e.g., Refs. 142 and 143 where quantum group
representations are used in gauge theories, rather than classical
group representations, and perform real-space renormalisation or
[144] where one combines both the UV and the dimension cut-
off into one by turning the dimension of tensor spaces in tensor

models into a finite coarse graining parameter and otherwise
performs the asymptotic safety programme which is often
formulated in the presence of a cut-off anyway).

Some sort of truncation or approximation has to be made in
practice when treating complex systems numerically. The
physical insight behind the tensor network and density matrix/
entanglement renormalisation developments, namely, the
dynamically interesting vectors in a Hilbert space appear to lie
in a ‘tiny’ subspace thereof is presumably a profound one, and the
truncation of the Hilbert space to the corresponding subspaces
appears to be well-motivated by the model (spin) systems studied
so far. Still, what one would like to have is some sort of error
control or convergence criteria on those truncations. We
appreciate that this is a hard task for the future. For the time
being, we phrase our framework without incorporating a cut-off
on the dimension of Hilbert spaces as we are not yet concerned
with numerical investigations; however, we may have to use some
of these ideas in the future.

3. CANONICAL QUANTUM GRAVITY
COUPLED TO REFERENCE MATTER

The physical idea is quite simple and goes back to Ref. 145:
General relativity is a gauge theory, the gauge group being the
space-time diffeomorphism group. Thus, the basic tensor and
spinor fields in terms of which one writes the Einstein–Hilbert
action and the action of the standard model coupled to the metric
(or its tetrad) are not observable. However, the value of, say, a
scalar field Φ at that space-time point Xy , at which four reference
scalar fields ϕ0, . . . , ϕ3 take values y0, .., y3, that is, Φ(Xy); ϕμ(Xy) �
yμ is space-time diffeomorphism-invariant. For this to work, the
relation ϕμ(X) � yμ must, of course, be invertible, in particular the
reference scalar fields must not vanish anywhere or anytime. This
seems to be a property of dark matter [146].

These kinds of relational observables have been further
developed by various authors, in particular [147–153]. When
one couples general relativity and such reference matter
preserving general covariance, it becomes possible to formulate
the theory in a manifestly gauge-invariant way. The form of that
gauge-invariant formulation, of course, strongly depends on the
type of reference matter used and its Lagrangian. In what follows,
we use the concrete model [39] out of mathematical convenience,
but we emphasise that the same technique works in a fairly
general context. In the next subsection, that model will be
introduced and the classical gauge-invariant formulation will
be derived. After that, we quantise it using LQG methods
which will be introduced in tandem.

3.1. Gaussian Dust Model
The Lagrangian of the theory takes the form

L � LEH + LSM + LD, (3.1)

where LEH is the Einstein–Hilbert Lagrangian, LSM is the standard
model Lagrangian coupled to GR via the metric, its tetrad or its
spin connection, and LD is the Gaussian dust Lagrangian [101,
102]
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LD � − 1
2

�������∣∣∣∣det(g)∣∣∣∣√ {gμ] [ρ (∇μT) (∇]T)
+ 2(∇μT)(Wj∇]S

j)] + ρ}, (3.2)

where g is the Lorentzian signature metric tensor, ∇μ its Levi-
Civita covariant differential, ϕ0: � T , ϕj: � Sj; j � 1, 2, 3 are the
reference scalar fields introduced above, and ρ, Wj are additional
four scalar fields. The latter four fields appear without derivatives
and thus give rise to primary constraints in addition to those
present even in vacuum GR. One can easily show that the
contribution of LD to the energy momentum tensor is of
perfect fluid type. Further physical properties and motivations
are discussed in Refs. 101 and 102. For what follows, it suffices to
know that the equations of motion for T , Sj, say that ∇μT is a
time-like geodesic cotangent and that Sj is constant along the
geodesic spray. Thus, those geodesics can be interpreted as world
lines of dynamically coupled test observers.

The full constraint analysis of Eq. 3.1 is carried out in Ref. 39.
There are secondary constraints, and the full set of constraints
contains those of the first and second classes (see Ref. 153 for a
modern treatment of Dirac’s algorithm [154]). One has to
introduce a Dirac bracket and solve the second-class
constraints in the course of which the variables ρ, Wj are
eliminated. The remaining constraints are then of first class
and read as

Ctot � C + P − qabT,aCb����������
1 + qabT,aT,b

√ , Ctot
a � Ca + PT,a + PjS

j
,a (3.3)

Here, C is the Wheeler–DeWitt constraint function (including
standard matter) and Ca, a � 1, 2, 3 are the spatial
diffeomorphism functions (including standard matter). The
Dirac bracket reduces to the Poisson bracket on all the
variables involved in Eq. 3.3, and P, Pj are the momenta
conjugate to T , Sj, for example, {P(x), T(y)} � δ(x, y). Here, a �
1, 2, 3 are tensorial indices on the spatial hypersurface σ of the
Arnowitt–Deser–Misner foliation underlying the Hamiltonian
formulation of GR [155] with intrinsic metric tensor qab. For
the moment, it is just necessary to know that C and Ca do not
involve the variables T , P, Sj, and Pj.

The constraints (Eq. 3.3) encode the space-time
diffeomorphism gauge symmetry in Hamiltonian form, in
particular they represent the hypersurface deformation algebra
[111]. It is possible to solve these remaining constraints to
determine the complete set of gauge-invariant (the so-called
Dirac) observables and to determine the physical Hamiltonian
H that drives their physical time evolution [39]. Equivalently,
we may gauge fix Eq. 3.3. The above interpretation of
T and Sj suggest to use the gauge conditions
G � T − t andGa � δaj S

j − xa. The stabilisation of these gauge
conditions fixes the Lagrange multipliers λ and λa in the gauge
generator

K: � Ctot(λ, λ→): � ∫
σ

d3x [λCtot + λaCtot
a ], (3.4)

namely,

_G(t, x) � {K ,G(x)} + ztG(t, x) � λ(x)����������
1 + qabT,aT,b

√ + λaT,a − 1 � 0,

_G
a(t, x) � {K ,Ga(x)} + ztG

a(t, x) � λbSj,bδ
a
j � 0 (3.5)

which when evaluated at G � Ga � 0 yields the unique solution
λ � 1, λa � 0. Likewise, in this gauge, the constraints can be
uniquely solved for P � −C and Pj � −δaj Ca while T and Sj are
pure gauge. This shows that the physical degrees of freedom are
those not involving T , P, Sj, and Pj.

For any function F independent of these variables, the reduced
or physical Hamiltonian is that function on the phase space
coordinatised by the physical degrees of freedom which generates
the same time evolution as K when the constraints, gauge
conditions, and stabilising Lagrange multipliers are installed

{H, F}: � {K, F}
Ctot�C

→tot

�G� G
→�λ−1� λ

→�0
�
⎧⎪⎨⎪⎩∫

σ

d3xC, F
⎫⎪⎬⎪⎭, (3.6)

which shows that

H � ∫
σ

d3xC (3.7)

Thus, the final picture is remarkably simple: The physical phase
space is simply coordinatised by all metric and standard matter
degrees of freedom (and their conjugate momenta), while the
physical Hamiltonian is just the integral of the usual
Wheeler–DeWitt constraint. The influence of the reference
matter now only reveals itself in the fact that H is not
constrained to vanish as it only involves the geometry and
standard matter contribution C of Ctot and that the number of
physical degrees of freedom has increased by four as compared to
the system without reference matter. This phenomenon is, of
course, well-known from the electroweak interaction: One can
solve the three isospin SU(2) Gauss constraints for three of the
four degrees of freedom sitting in the complex-valued Higgs
isodublett, leaving a single scalar Higgs field and three massive,
rather than massless, vector bosons. (See Refs. 156 and 157 for
further discussion.)

We close this subsection with three remarks:
First, a complete discussion requires to show that the gauge cut
G � Ga � 0 on the constraint surface of the phase space be
reachable from anywhere on the constraint surface. As Eq. 3.5
shows, this requires that S, aj be invertible. We thus impose this as
an anholonomic constraint on the total phase space. One easily
verifies from Eq. 3.5 that this condition is gauge-invariant, that is,
compatible with the dynamics.

Second, the simplicity of the final picture is due to the
particular choice of reference matter. Other reference matter
most likely will increase the complexity (see, e.g., Ref. 158),
which produces a square root Hamiltonian! One may argue
that the dust is a form of cold dark matter [146], but it is
unclear whether this is physically viable. Nevertheless, the
present model serves as a proof of principle, namely, that GR
coupled to standard matter and reference can be cast into the
form of a conservative Hamiltonian system.
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Third, it should be appreciated that the reference matter helps
us accomplish a huge step in the quantum gravity programme:
It frees us from quantising and solving the constraints and
constructing the physical inner product, the gauge-invariant
observables, and their physical time evolution. All of these
steps are of tremendous technical difficulty [17–21]. All we are
left to do is to quantise the physical degrees of freedom and the
physical Hamiltonian.

3.2. Loop Quantum Gravity Quantisation of
the Reduced Physical System
In order to keep the technical complexity to a minimum, we
consider just the contribution toH coming from the gravitational
degrees of freedom (see [17–21, 28–32] for more detail on
standard matter coupling). The Hamiltonian directly written
in terms of SU(2) gauge theory variables reads (we drop some
numerical coefficients that are not important for our discussion)

H � HE +HL

HE � ∫
σ

Tr(F ∧ {V ,A})

V � ∫
σ

�������|det(E)|√
HL � ∫

σ

Tr({{HE,V},A}∧ {{HE,V},A}∧ {V ,A})

(3.8)

Here, A is an SU(2) connection and E an SU(2) non-Abelian
electric field that one would encounter also in an SU(2)
Yang–Mills theory. However, the geometric interpretation of
A and E is different, namely, eaj : � Ea

j /
�������|det(E)|√

is a triad, that
is, qab � δjkeaj e

b
k is the inverse spatial metric. Here, as before, a, b,

c, .. � 1, 2, 3 denote spatial tensor indices, while now j, k, l, .. �
1, 2, 3 denote su(2) Lie algebra indices. Further, let Γja be the spin
connection of eaj . Then, Kab: � (Aj

a − Γja)ekbδjk has the meaning of
the extrinsic curvature of the ADM slices [155] on the kernel of
the SU(2) Gauss constraint

Cj: � zaE
a
j + ϵjklAk

aE
a
mδ

m
l (3.9)

The important quantity V is recognised as the total volume of the
hypersurface σ, and HE andHL are known as the Euclidian and
Lorentzian contributions to H. (See Refs. 28–32 for further
details.) The Poisson brackets displayed are with respect to the
standard symplectic structure

{Aj
a(x),Ak

b(y)} � {Ea
j (x), Eb

k(y)}
� {Ea

j (x),Ak
b(y)} − κδabδ

k
j δ(x, y) � 0, (3.10)

where Zκ � ℓ
2
P is the Planck area. The definition of the phase space

is completed by the statement that the elementary fields A and E
are real-valued

[Aj
a(x)]* − Aj

a(x) � [Ea
j (x)]* − Ea

j (x) � 0 (3.11)

The traces involved in 3.2 are carried out by introducing the Lie
algebra-valued 1-forms A � Aj

a τj dxa, where 2iτj are the Pauli
matrices and F � 2(dA + A∧A) is the curvature of A. The non-
polynomiality of GR is hidden in the Poisson brackets that appear

in Eq. 3.8. The reason why we use these particular Poisson
bracket structure will become clear only later.

To quantise the theory, we start from functions on the phase
space that are usually employed in the lattice gauge theory (see,
e.g., Ref. 159), namely, non-Abelian magnetic holonomy and
electric flux variables

A(c): � Pexp⎛⎜⎜⎝∫
c

A⎞⎟⎟⎠, Ef (S) � ∫
S

Tr(f pE), (3.12)

where P denotes path ordering, c is a piecewise analytic real
curve, S is a piecewise real analytic surface, f is an su(2)-valued
function, and *E � ϵabcEadxb∧dxc/2 is the pseudo 2-form
corresponding to the su(2)-valued vector density E. Note that
A(c) is SU(2)-valued, while Ef (S) is su(2)-valued

A(c)* � (A(c)− 1)T � A(c−1)T , Ef (S)* � −Ef (S)T , (3.13)

where c−1 is the same curve as c but with the opposite orientation.
The simplest non-trivial Poisson brackets are

{Ef (S),A(c)} � κA(c1) f (c∩ S)A(c2), (3.14)

in case that S∩ c is a single point in the interior of both c and S,
see Refs. 23–27 for a complete discussion. The relations (3.13)
and (3.14) are the defining relations of a non-commutative
abstract −*algebra A generated by fluxes and complex-valued
smooth functions F of a finite number of holonomy variables
[23–27]. It is the free algebra generated by them and divided
by the two-sided ideal generated by the canonical
commutation relations Ef (S)A(c) − A(c)Ef (S) � iZ{Ef (S), F}
and the adjointness relations (Eq. 3.13). (See Refs. 23–27
for more details.)

Interestingly, the physical Hamiltonian H has a large
symmetry group, namely, it is invariant under the group
G � SU(2)loc(Diff (σ), where SU(2)loc denotes the group of
local SU(2)-valued gauge transformations and Diff (σ) denotes
the group of (piecewise real analytic) diffeomorphisms of σ. An
element ofG is given by a pair g � (g, φ), which acts on the basic
variables as

α(g,φ)(A) � −dgg−1 + g[φ*A]g−1, α(g,φ)(*E) � g[φ*(*E)]g−1,
(3.15)

where φ* denotes the pull-back action of diffeomorphisms on
differential forms. This action lifts to the algebra A, specifically

α(g,φ)(A(c)) � g(b(c))A(φ(c)) g(f (c))− 1, α(g,φ)(Ef (S))
� E[g−1 fg]+φ−1(φ(S)),

(3.16)

where b(c) and f (c) denote the beginning and final points of c, and
this simple covariant transformation behaviour was part of the
reason why the particular ‘smearing’ ofA along curves involved in
holonomies is used. Note also the different character of the two
groups: While we still have to find the gauge-invariant
observables with respect to the Gauss constraint, the
diffeomorphism constraint is already solved. The
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diffeomorphisms in G are thus to be considered as active
diffeomorphisms, rather than passive ones.

Themathematical problem in quantising the theory consists in
constructing a * representation of A, that is, a representation (π,
H) of elements a ∈ A as operators π(a) densely defined on a
common, invariant domainD of a Hilbert spaceH such that the *
relations are implemented as adjointness relations and such that
the canonical commutation relations are implemented as
commutators between them. Thus, we want, in particular, that

π(a*) � [π(a)]†, π(a + b) � π(a) + π(b), π(ab)
� π(a)π(b), π(za) � zπ(a), [π(a), π(b)] � π(c);

(3.17)

for all a, b, c ∈ A, z ∈ Z if ab − ba � c. In QFT, this problem is
known to typically have an uncountably infinite number of
unitarily inequivalent solutions; there is no Stone–von
Neumann uniqueness theorem when the number of degrees of
freedom in infinite. Hence, to make progress, we must use
additional physical input. That input can only come from the
Hamiltonian. Thus, we require in addition that the representation
supports H as a self-adjoint operator (H is real-valued) also
densely defined on D and such that H carries a unitary
representation U of G (such that its generators are self-adjoint
by Stone’s theorem). Using the powerful machinery of the
Gel’fand–Naimark–Segal construction [160], the representation
property and the unitarity property can be granted if we find a
positive linear and G invariant functional ω: A→C on A, that
is,

ω+αg � ω, ω(a*a)≥ 0 (3.18)

In Refs. 23–27, it was found that there is a unique ω satisfying
(3.18). While the derivation is somewhat involved, the final result
can be described in a compact form. The dense domainD consists
of functions of the form

ψ(A) � ψc({A(c)}c∈E(c)); ψc ∈ C∞(SU(2)|E(c)|,C), (3.19)

that is, ψc is complex-valued, smooth functions of a finite number
of holonomy variables. The union of the curves of these
holonomies forms a finite graph γ, where E(c) denotes the set
of its edges. Note that the elements of A that just depend on the
connection are themselves of the form (Eq. 3.19), and thus, their
action by multiplication

[π(f )ψ](A) :� f (A)ψ(A) (3.20)

is densely defined. The fluxes are densely defined when acting by
derivation

[π(Ef (S))ψ](A) :� iZ{Ef (S),ψ(A)} (3.21)

which also solves the canonical commutation relations.
To see that the adjointness conditions hold, we need the inner

product. To define it, we note that graphs defined by finitely many
piecewise analytic curves are partially ordered by set theoretic
inclusion, and they are directed in the sense that for any two
graphs c1, c2, there exists c3 with c1, c2 ⊂ c3, for instance

c3 � c1∪c2. Then, we can decompose all edges of c1, c2 with
respect to the edges of c3 and use the algebraic relations of the
holonomy A(c−1) � A(c)− 1 and A(c+c′) � A(c)A(c′), where c+c′
is the composition of curves f (c) � b(c′) in order to write
ψ1 and ψ2 excited over c1 and c2, respectively, as functions
excited over c3. Thus, it is sufficient to know the inner
product of functions excited over the same graph γ which is
given by

〈ψ, ψ′〉
H
:� ∫

SU(2)|E(c)|
∏|E(c)|
k�1

dμH(hk)ψ({hk})ψ′({hk}), (3.22)

where μH is the Haar measure on SU(2). One can check that the
adjointness relations are indeed satisfied, in fact π(Ef (S)) is an
unbounded but essentially self-adjoint operator (i.e., a symmetric
operator with unique self-adjoint extension).

In fact, Eq. 3.22 defines a cylindrical family of measures μc, one
for every graph γ. One has to check that Eq. 3.22 is well-defined
because a function excited on γ can be written also as a function
excited over any finer graph c′ by extending it trivially to the
additional edges. This is, in fact, the case [23–27]. Then, the
Kolmogorov-type extension theorems grant that the family
extends to an honest continuum measure μ on the quantum
configuration space A of distributional connections. We will not
go into the details here which can be found in Refs. 23–27 but just
mentioning for the interested reader that this space coincides
with the so-called Gel’fand spectrum of the Abelian C* algebra
that one obtains by completing the space of functions (Eq. 3.19)
in the sup norm. It follows that the Hilbert space is given by
H � L2(A, dμ).

By construction, the Hilbert space H carries a unitary
representation U of G given by

(U(g)ψ)(A) � ψc({αg(A(c))}c∈E(c)) (3.23)

To check this, one uses the properties of the Haar measure
(translation invariance) and the diffeomorphism invariance of
Eq. 3.22 which does not care about the location and shape of the
curves involved.

The Hilbert space comes equipped with an explicitly known
orthonormal basis called spin network functions (SNWFs). This
makes use of harmonic analysis on compact groups G [161], in
particular the Peter andWeyl theoremwhich states that thematrix
element functions of the irreducible representations of G, which
are all finite-dimensional and unitary without loss of generality,
are mutually orthogonal, unless equivalent, with respect to the
inner product defined by the Haar measure on G; moreover, they
span the whole Hilbert space. As the irreducible representations of
SU(2) are labelled by spin quantum numbers, the name SNWF
comes at no surprise. More in detail, an SNWF Tc, j, ι is labelled by
a graph γ, a tuple j � {jc}c∈E(c) of spin quantum numbers
decorating the edges, and a tuple ι � {ιv}v∈V(c) of intertwiners
decorating the vertices v in the vertex set V(c) of γ. Here, an
intertwiner ιv projects the tensor product of irreducible
representations corresponding to the edges incident at v onto
one of the irreducible representations appearing in its
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decomposition into irreducibles (Clebsch–Gordan theory).
Besides providing an ONB convenient for concrete calculations,
SNWFs make it easy to solve the Gauss constraint: A detailed
analysis [17–21] shows that Eq. 3.9 can be quantised in the given
representation and just imposes that the space of intertwiners be
restricted to those projecting on the trivial (spin zero)
representation. We call such intertwiners gauge-invariant.
Hence, the joint kernel of the Gauss constraints is a closed
subspace of H which is explicitly known. We will abuse the
notation and will not distinguish between that subspace and H
and henceforth consider the Gauss constraint as solved. All
operators considered in what follows are manifestly gauge
invariant and preserve that subspace.

As a historical remark, solutions of the Gauss constraint are
excited on closed graphs since there is no non-trivial intertwiner
between the trivial representation and a single irreducible one;
hence, open ends are forbidden. For closed graphs, one can
alternatively label SNWFs by homotopically independent
closed paths (loops) with a common starting point (vertex) on
that graph. Originally, one used loops as labels, hence the name
loop quantum gravity (LQG).

One of the many unfamiliar features of H is that it is not
separable which easily follows from the uncountable cardinality of
the set of graphs. This is a direct consequence of the diffeomorphism
invariance of the inner product: Two graphs that are arbitrarily close
but disjoint are simultaneously also arbitrarily far apart under the
inner product. Thus, if the measure clusters for far apart support of
the smearing functions (here the graphs), then the orthogonality of
the corresponding spin network functions comes at no surprise.
A direct consequence of this is that the diffeomorphism operators
U(φ) do not act (strongly) continuously; hence, a generator of
infinitesimal diffeomorphisms generated by the integral curves of
vector fields cannot exist. Yet another direct consequence is that the
connection operator A itself does not exist; only its holonomies do.

The remaining task is to quantise the Hamiltonian, and it is at
this point where the aforementioned quantisation ambiguities
arise. The strategy followed in Refs. 28–32 is as follows: It turns
out that the volume operator appearing in Eq. 3.2 can be
quantised on H as an essentially self-adjoint operator whose
spectrum is pure point (discrete) [162–164]. It is densely defined
on the span of the SNWF, and it acts vertex-wise, with no
contribution from gauge-(in)variant vertices that are not at
least three (four) valent or from vertices whose incident edges
have tangents in a common two-dimensional or one-dimensional
space. Next, the holonomy along an open curve c can be expanded
as A(c) � 12 + ∫cA + . . . and along a closed curve α as A(α) � 12 +∫
S,
zS � αF so that the functions A and F that appear in Eq. 3.8

can be approximated by suitable holonomies where the
approximation is in terms of the ‘length’ of the curves
involved which are matched with the coordinate volume
assigned by the Lebesgue measure d3x appearing in Eq. 3.8,
approximating the integral by a Riemann sum (this is a
regularisation step). Suppose then that somehow a well-
defined operator HE can be defined by replacing the classical
functions by operators and the Poisson brackets by commutator
times Z. Then, the same argument can be applied to the
Lorentzian piece. As a final piece of information, one uses the

observation that a spatially diffeomorphism-invariant operator,
densely defined on the span of SNWF, cannot have non-trivial
matrix elements between SNWF excited over different graphs
[36]. This has the following consequence: Let Hc be the closed
linear span of SNWF excited precisely over γ. Then, if H is
supposed to preserve its classical diffeomorphism invariance
upon quantisation, we necessarily have

H � ⊕cHc, H � ⊕cHc, (3.24)

where eachHc is self-adjoint onHc, in particular it preserves this
space. Let now Pc: H→Hc be the orthogonal projection. Then,
the following concrete expression for H can be given [39] (again
we drop some numerical coefficients and set Z � 1)

HE,c � Pc H′
E,c

Pc

H′
E,c

� i ∑
v∈V(c)

∑
c1 ,c2 ,c3 ∈E(c); c1∩c2∩c3�v

ϵIJKTr([A(αc,v,cI ,cJ) − A(αc,v,cI ,cJ)− 1]A(cK)[V ,A(cK)− 1]) + h.c.

HL,c � Pc H′
L,c

Pc

H′L,c � i ∑
v∈V(c)

∑
c1 ,c2 ,c3 ∈E(c); c1∩c2∩c3�v

ϵIJKTr(A(cI)[[H′
E,c
,V],A(cI)−1]A(cJ)[[H′

E,c
,V],

A(cJ)−1]A(cK)[V ,A(cK)−1]) + h.c.

(3.25)

The sum is over vertices of γ and triples of edges incident at them
(taken with outgoing orientation). For each vertex v and pairs of
edges c, c′ outgoing from v, one defines αc, v, c, c′ as that loop
within γ starting at v along c and ending at v along (c′)− 1 with the
minimal number of elements of E(c) used (if that loop is not
unique, we average over them). It has been shown that the
concrete expression (Eq. 3.25) has the correct semi-classical
limit in terms of expectation values with respect to semi-
classical coherent states [165–168] on sufficiently fine graphs
of cubic topology [166–172].

Remarkably, Eq. 3.25 defines an essentially self-adjoint,
diffeomorphism-invariant, continuum Hamiltonian operator for
Lorentzian quantum gravity in four space-time dimensions,
densely defined on the physical continuum Hilbert space H
which is manifestly free of ultraviolet divergences, that is, while
for each given graph γ, the theory looks like a lattice gauge theory
on γ; the theory is defined on all lattices simultaneously, which
makes it a continuum theory.Moreover, note that the vector Ω � 1
has norm unity and that HΩ � 0.
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Yet, one cannot be satisfied with Eq. 3.25 for the following
reasons:

1. While it is true that one can give a better motivated
derivation than we could sketch here for reasons of space,
there are some ad hoc steps involved.

2. There are several ordering ambiguities involved in Eq. 3.25:
Not only could we have written the factors in different orders
but instead of using the fundamental representation to
approximate connections in terms of holonomies, we
could have used higher spin representations [173] or an
average over several of them, and in each case, we would have
different coefficients appearing in front of these terms.

3. Of particular concern is definition of the minimal loop. While
this gives good semi-classical results on sufficiently fine lattices,
the theory lives on all lattices, also those which are very coarse,
and on those, expression Eq. 3.25 is doubtful because the
Riemann approximation mentioned above would suggest to
use a much finer loop. In fact, one is supposed to take the
regulator (i.e., the coordinate volume ϵ of the Riemann
approximants) away, and in that limit, the loop would
shrink to zero. One can justify that this does not happen by
using a sufficiently weak operator topology [28–32], namely,
there exist diffeomorphism-invariant distributions (linear
functionals) l on the dense span of SNWF ψ [36], and we
define an operator Oϵ to converge to an operator O in that
topology if l([Oϵ − O]ψ)→ 0 for all l, ψ. Now, due to
diffeomorphism invariance, we can deform for any ϵ the
small loop to any diffeomorphic one as long as we do not
cross other edges of the graph, in particular we can deform it as
close as we want to the minimal one. Then, the result
mentioned above about the matrix elements of
diffeomorphism-invariant operators, in fact, forces us to
choose that loop precisely, not only approximately. Of
course, while the diffeomorphism symmetry of H makes the
space of diffeomorphism-invariant distributions a natural
space to consider, it is still not perfectly justified to use it in
order to define a topology.

4. The naive dequantisation of Eq. 3.25 will perform poorly on
very coarse graphs and will be far from the continuum
expression Eq. 3.8, but one could argue that that vectors
supported on coarse graphs simply do not qualify as good
semi-classical states.

5. Using the same argument as in (3), there is nothing sacred
about the minimal loop, and one could take again other loops
and/or average of over them with certain weights. However,
then the locality of Eq. 3.25 is lost.

6. The block diagonal or superselection structure (Eq. 3.24)
which is forced on us by the non-separability of the Hilbert
space and its spatial diffeomorphism covariance appears
unphysical, and one would expect that the Hamiltonian
creates also new excitations.

It transpires that we must improve Eq. 3.25, and the
discussion has indicated a possible solution: Blocking free QFT
from the continuum (i.e., restricting the Hilbert space to vectors
of finite spatial resolution) with respect to a kinematic real-space

coarse graining scheme exactly produces such a high degree of
non-locality at finite resolution even if the continuummeasure or
the continuum Hamiltonian is local [54–57, 71–75, 108]. This
bears the chance that what we see in Eq. 3.25 is nothing but a
naive guess of a continuum Hamiltonian which is blocked from
the continuum but whose off-block diagonal form we cannot
determine with the technology used so far. Accordingly, this calls
for shifting our strategy which was already started in Refs.
169–172, 174 (in the sense that the block diagonal structure
was dropped, but only one infinite graph was kept):

We take the above speculation serious and consider the
operators Hc as projections onto the subspaces Hc of H of a
continuumHamiltonianH, but we will drop the unphysical block
diagonal structure 3.24 which arises from the non-separability of
H. Rather the relation between Hc is to be imposed by a
renormalisation scheme induced by the path integral
renormalisation scheme adopted in quantum statistical
physics. To do this, we must first derive a path integral
measure μc from the OS data, Hc, Hc, and Ωc where Ωc is the
vacuum of Hc by the usual Feynman–Kac–Trotter–Wiener
formalism. Then, we can compute the flow of μcin the usual
way and then translate into a flow of OS data by OS
reconstructing them from the measures. The fixed points of
the flow will then define the possible continuum theories, and
these may be ‘phases’ quite different from Eq. 3.25. The details of
this programme will be the subject of the following sections.

4. CONSTRUCTIVE QFT, FEYNMAN–KAC–
TROTTER–WIENER CONSTRUCTION AND
OSTERWALDER–SCHRADER
RECONSTRUCTION

The purpose of this section is to provide some background
information on constructive QFT and related topics such as
the Feynman–Kac–Trotter–Wiener construction of measures
(path integrals) from a Hamiltonian formulation (operator
formulation) and vice versa the Osterwalder–Schrader
reconstruction of a Hamiltonian framework from a measure.
Our description will be minimal. The prime textbook references
are [98–100, 175].

4.1. Measure Theoretic Glossary
Let S be a set. A collection B of the so-called measurable subsets of
S is called a σ−algebra if i. it is closed under taking complements
with respect to S, ii. closed under taking countable unions, and iii.
B contains the empty set∅. The pair (S, B) is called a measurable
space. A measure space is a triple (S, B, μ), where (S, B) is a
measure space and μ is a positive set function
μ: B→R+

0∪
 {+∞} s1μ(s) which is σ−additive, that is, for any

pairwise disjoint sI∩ sJ � ∅, I ≠ J; I, J � ∈ N, we have

μ(∪I sI) �∑
I

μ(sI) (4.1)

The measure μ is called a probability measure if μ(S) � 1. One uses
the notation
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μ(s) � ∫
s

dμ(p) � ∫
S

dμ(p) χs(p), (4.2)

where χs(p) � 1 if p ∈ s and χs(p) � 0, else is called the
characteristic function of s ∈ B.

Consider now a second measurable space (S̃, B̃). A function
X: S→ S̃ is called measurable or a random variable if the pre-
images X−1(̃s) � {p ∈ S; f (p) ∈ s̃} of measurable sets s̃ ⊂ S̃ are
measurable in S. Let F be the set of random variables
X: S→ s̃; then for X ∈ F , the set function

μ̃(s̃) :� μ(X−1(s̃)), s̃ ∈ B̃ (4.3)

defines also a probability measure called the distribution of X. We
consider real-valued functions f : S̃→R of the simple form

f (p̃) �∑
n

zn χ̃sn(p̃); zn ∈ R, s̃n ∈ B̃, (4.4)

where the sum is over at most finitely many terms and define their
integral as

μ̃(f ) � ∑
n
znμ(s′n) � ∫̃

S

dμ̃(p̃)⎡⎣∑
n

znχ̃sn(p̃)⎤⎦ � ∫̃
S

dμ̃(p̃) f (p̃)
� ∑

n
znμ(X−1(s̃n)) � ∫

S

dμ(p) ⎡⎣∑
n

znχX−1 (̃sn)(p)⎤⎦
� ∫

S

dμ(p) [∑
n
znχ̃sn(X(p))⎤⎦ � ∫

S

dμ(p) (f+X)(p) � μ(f+X)
(4.5)

One can show that this identity extends from simple functions to
Borel functions that is, measurable functions f : S̃→R, where R
is equipped with the Borel σ−algebra (the smallest σ algebra
containing all open intervals). We can then also extend it to
those complex functions whose real and imaginary parts are Borel
by linearity.

A stochastic process indexed by an index set I is a family
{Xi}i ∈ Iof random variables Xi: S→ S̃. For any finite subset I �
{i1, .., iN } ⊂ I , we have the joint distribution

μ̃I(s̃1 × .. × s̃N) :� μ(∩N
k�1X

−1
ik
(s̃k)) (4.6)

The probability measures μ′I are called cylinder measures. For any
complex-valued Borel function f : S̃

N →C, we have similarly as in
Eq. 4.4

∫
S

dμ(p) f ({Xik(p)}Nk�1) � ∫
S̃
N dμ̃I(p̃1, .., p̃n) f (p̃1, .., p̃n) (4.7)

Functions on S of the form fI(p) � f ({Xik(p)}Nk�1) are called
cylinder functions.

In what follows, we assume that for each N ∈ N0, there exists a
distinguished system WN of complex-valued, bounded
elementary functions W on N copies of S̃ such that the
corresponding cylinder functions enjoy the following properties:

(1) They generate an Abelian * algebra, that is, for all I, I′ ∈ I ,
the product WI W′

I′ is a finite, complex linear combination

of suitable W ′′
I′′
, I′′ ∈ I , W′′ ∈ W|I ′′| and also WI is of

that form.
(2) WN contains the constant function.
(3) For each I ∈ I , the moments μ(WI), W ∈ W |I| determine μ̃I

uniquely.
(4) These properties show thatWI are L2(dμ̃I , S̃

|I|
) functions. We

require their span to be dense.
(5) We saw that a probability measure μ together with a

stochastic process gives rise to a family of cylindrical
probability measures (μ̃I)I∈I on S̃

|I|
. The converse question

is under which circumstances a cylindrical family of cylinder
probability measures determines a measure μ. A necessary
criterion is as follows: The set I is partially ordered and
directed by inclusion, that is, for each I, J ∈ I , we find K ∈ I
such that I, J ⊂ K (for instance, K � I∪J). Suppose that
I ⊂ J . Then,

μ(X−1
I (s̃I)) � μ̃I(s̃I) � μ(X−1

J (s̃I × (S̃)|J|−|I|)) � μ̃J(s̃I × (S̃)|J|−|I|),
(4.8)

where XI � {Xi}i ∈ I, s̃I ⊂ B̃
|I|
. Furthermore, for any permutation

π on N � |I| elements set, π · I � {i
π(1), .., iπ(N)} and π · s̃I �

{(p̃
π(1), .., p̃π(N)); (p̃1, .., p̃N ) ∈ s̃I}. Then,

μ(X−1
π·I(π · s̃I) � μ̃π·I(π · s̃I) � μ(X−1

I (s̃I) � μ̃I(s̃I) (4.9)

Even more generally, a partial order on the set I of finite
subsets I of I is a transitive, reflexive, and antisymmetric
relation, that is, I < J ∧ J <K0 I <K and I < I and
I < J ∧ J < I0 I � J for all I, J , K ∈ I. The set I is called
directed with respect to < , provided that for all I, J ∈ I, we
find K ∈ I such that I, J <K . For I < J , we may have surjective
maps PJI : S̃

|J| → S̃
|I|

such that XI(p) � PJI(XJ (p)) and such that
for I < J <K , we have PJI+PKJ � PKI . Then, similar as in Eq. 4.8,
we necessarily must have for I < J

μ̃I(s̃I) � μ̃J(P−1
JI (s̃I)) (4.10)

It turns out that these two conditions, Eqs 4.8, 4.9, or 4.10 is also
sufficient in fortunate cases (for instance, if S̃ � R, which is the
classical Kolmogorov theorem, see Ref. 134), that is, we can then
reconstruct the measure space (S, B, μ) and a stochastic process
{Xi}i∈I such that μ̃I are the cylinder measures of μ. It follows that
the WI ∈ W |I|, I ∈ I lie dense in L2(S, dμ).

Physical meaning: We consider the elements p ∈ S to be space-
time fields Φ or spatial fields ϕ, respectively. The index set I will
have the meaning of a set of test functions or more generally
distributions whose elements i label the random variable Xi.
These map the fields smeared with test functions to a finite-
dimensional manifold (usually copies of R or more generally of a
Lie group). For instance, for a scalar field Φ, we may consider the
random variable XF(Φ) � exp(i ∫

R×σ
d4xF(x)Φ(x)) which takes

values in S̃ � U(1). It is also customary to consider the field p �
Φ itself as a random variable indexed by the same index set or to
simply write Xi(p) � p(i) as an abbreviation.
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4.2. Constructive QFT
The application of interest of the previous subsection is a
stochastic process indexed by either R × L or just by L, where
the label set L is a certain set of distributions on the spatial
manifold. We distinguish between random variables Φ indexed by
a pair (t, f ) ∈ R × L and random variables ϕ indexed by f ∈ L.
Some examples are as follows:

(1) Real quantum scalar fields with smooth smearing:

Consider L � S(R3), the space of smooth test functions of
rapid decrease and S̃ � R equipped with the Borel σ−algebra.
Then, ϕ(f ) � 〈f , ϕ〉 � ∫

σ

d3x f (x) ϕ(x) and Φ(t, f ) � 〈f , Φ(t, .)〉.
Given F: � (f1, .., fN ) ∈ LN , consider ϕ(F) � (ϕ(f1), ..,
ϕ(fN) ∈ RN . The space WN of elementary functions on N
copies of R can be chosen to be generated by the exponentials

wr1 ,..,rN(ϕ(F)) � exp⎛⎝i∑N
k�1

rk 〈fk, ϕ〉⎞⎠ (4.11)

with r1, .., rN ∈ R labelling the (necessarily one-dimensional)
unitary irreducible representations of U(1).

In fact, since in this case, the space L is a vector space, it is
sufficient to consider the functions w(ϕ(f )) � exp(iϕ(f )), f ∈ L.
Analogously, the space of elementary functions for the time-
dependent fields can be chosen as (wk ∈ WNk)

W(Φ(t1, F1), ..,Φ(tT , FT)) � wT(Φ(tT , FT))..w1(Φ(t1, F1)),
(4.12)

which, of course, reduces to

exp(iΦ(tT , f ′T)).exp(iΦ(t1, f ′1)), f ′k ∈ L (4.13)

for certain f ′
k
∈ L. Obviously, the Abelian −*algebra and

boundedness conditions are satisfied. That these elementary
functions suffice to determine the cylindrical measures
requires a more involved argument (Bochner’s theorem, [134]).

(2) Real quantum scalar fields with distributional smearing:

Consider a subset L � ⊂ S′(R3) of the tempered distributions
and S̃ � U(1) equipped with the Borel σ−algebra. In applications
to scalar fields coupled to general relativity elements, f ∈ L are
typically δ−distributions supported at a single point.

Then, ϕ(f ): � exp(i 〈f , ϕ〉) and Φ(t, f ) � exp(i 〈f , Φ(t, .)〉),
where 〈f , 〉> is the evaluation of f ∈ L on ϕ. Given F: � (f1, ..,
fN ) ∈ LN , consider ϕ(F) � (ϕ(f1), .., ϕ(fN ) ∈ U(1)N . The spaceWN

of elementary functions on N copies of U(1) can be chosen to be
generated by the exponentials

wr1 ,..,rN(ϕ(F)) � exp⎛⎝i∑N
k�1

rk 〈fk, ϕ〉⎞⎠ (4.14)

with r1, .., rN ∈ R labelling the (necessarily one-dimensional)
unitary irreducible representations of U(1). Analogously, the
space of elementary functions for the time-dependent fields
can be chosen as (wk ∈ WNk)

W(Φ(t1, F1), ..,Φ(tT , FT)) � wT(Φ(tT , FT)).w1(Φ(t1, F1))
(4.15)

In this case, we could still equip L with the structure of a real
vector space if we extend L to the finite real linear combinations L̃
of its generating set L. Since this is no longer possible for the non-
Abelian gauge theory example below, we will refrain from doing
this, in order to highlight the structural similarity between the
examples.

(3) Non-Abelian gauge fields for compact gauge groups G:

A form factor is a distribution

f ac (x) � ∫
c
dyaδ(3)(x, y), (4.16)

where c is a one-dimensional path in σ. We take S̃ � G equipped
with the natural Borel σ − algebra and

ϕ(c) :� ϕ(fc) :� Pexp(∫
c
ϕ) � Pexp(ϕ(fc)); ϕ(fc)

� ∫
σ
d3x f ac (x)ϕa(x), (4.17)

where we have identified ϕ as a G connection and P denotes path
ordering. Thus, Eq. 4.17 is the direct analogue of the scalar field
construction (note that the Lie generators are anti–self-adjoint
since G is compact so that Eq. 4.17 is unitary) and ϕ(fc) is simply
the holonomy of ϕ along c. Likewise,

Φ(t, c) :� P(exp⎛⎜⎜⎝∫
c

Φ(t, .)⎞⎟⎟⎠ (4.18)

Note that the form factors do not form a vector space; in general,
they cannot be added (unless two curves share a boundary point),
and they can never bemultiplied by a non-integer real scalar (there
is a certain groupoid structure behind this [17–21]). Accordingly,
our space of generating set of elementary functions WN on N
copies ofG need to bemore sophisticated.We consider the space L
of form factors, and for each F � (fc1, .., fcN) ∈ LN , the ‘pairing’
ϕ(F) � (ϕ(c1), .., ϕ(cN )) ∈ GN . Then, a possible choice of
generating set WN of elementary functions is

wδ(ϕ(F)) �∏N
k�1

��
djk

√ [πjk(ϕ(ck))]mk ,nk
(4.19)

with δ: � {(j1, m1, n1), .., (jN , mN , nN )}. In fact, it is sufficient to
consider mutually disjoint (up to end points), piecewise real
analytic curves ck. Here, j labels an irreducible representation πj

of G of dimension dj and [πj(g)]m, n; m, n � 1, .., dj its matrix
element functions. By the Peter andWeyl theorem, these functions
suffice to determine the cylindrical measures uniquely at least if
they are absolutely continuous with respect to the product Haar
measure. Likewise, we consider the elementary functions

Wδ1 ,..,δT(Φ(t1, F1), ..,Φ(tT , FT)) � wδN(Φ(tT , FT)).wδ1(Φ(t1, F1))
(4.20)
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The fact that these functions satisfy all requirements is the
statement of Clebsch–Gordan decomposition theory together
with the properties of the holonomy to factorise along
segments of a curve (note the piecewise analyticity condition).

This ends our list of examples. We will denote the measure
related to the stochastic process {Φ(t, f )} by μ and the measure
related to the stochastic process {ϕ(f )} by ν. As the notation
suggests, Φ is a field defined on space-timeM � R × σ, while ϕ is a
field defined on space σ. Note that M � R × σ with σ any 3D
manifold is a consequence of the requirement of global
hyperbolicity [176, 177].

The measures μ underlying a relativistic QFT are not only
probability measures. In addition, they need to satisfy a set of
axioms [98–100, 104] called Osterwalder–Schrader axioms
which, however, are tailored to M � R4, stochastic processes
with L being a vector space and with an Euclidean
background metric at one’s disposal. In quantum gravity and
more generally in non-Abelian gauge theories, one typically must
or may want to drop some of these structures. As a consequence,
we will only keep those axioms that can also be applied in this
more general context.

Some of them generalise to stochastic processes not indexed by
a vector space, and some do not. Some generalise from the
manifold R4 to the general space-time manifold R × σ allowed
by global hyperbolicity, and some do not. Fortunately, those that
do generalise are sufficient for the reconstruction process [103].
We call them the minimal OS axioms, and we call a probability
measure that satisfies them an OS measure.

An important remark is that the measures for gauge theories
(such as general relativity) are to be formulated in terms of
observable (gauge-invariant) fields which are typically
composites of the elementary fields. That is why we work in a
manifestly gauge (diffeomorphism)-invariant (equivalently,
gauge-fixed) context as outlined in Section 3. In fact, in Ref.
39, we find an explicit formula that relates the observable
composite fields to the elementary ones. The crucial condition
is that the algebra of those observable fields is under sufficient
mathematical control in order that Hilbert space representations
can be found. This is the case for the construction sketched in
Section 3.

The minimal set of OS axioms can be phrased as follows:
Let θ(t, x) :� (−t, x) and Ts(t, x): � (t + s, x) denote

time reflection and time translation, respectively. Let
wk ∈ WNk, k � 1, .., T , Fk ∈ LNk , tk ∈ R and

W(t1 ,F1),..,(tT ,FT ) :� wT(Φ(tT , FT)) . . .w1(Φ(t1, F1))
R ·W(t1 ,F1),..,(tT ,FT ) � W(−t1 ,f1),..,(−tT ,fT),
U(s) ·W(t1 ,F1),..,(tT ,FT ) � W(t1+s,F1),..,(tT+s,FT )

(4.21)

Then, we have the following conditions on the generating
functional

μ(W(t1, F1), .., (tT , FT)) (4.22)

I. Time reflection invariance:

μ(W(−t1 ,F1),..,(−tN ,FT )) � μ(W(t1 ,F1),..,(tT ,FT )) (4.23)

II. Time translation invariance

μ(W(t1+s,F1),..,(tN+s,FT )) � μ(W(t1 ,F1),..,(tN ,FT )). (4.24)

III. Time translation continuity

lim
s→0

μ([W(t1 ,F1),..,(tT ,FT )]* W(t′
1
+s,F′

1
),..,(t′

T′+s,F′T′))

� μ([W(t1 ,F1),..,(tT ,FT )]* W(t′
1
,F′

1
),..,(t′

T′ ,F
′
T′)) (4.25)

IV. Reflection positivity

Consider the vector space V of the complex span of functions
of the formW(t1, F1), .., (tT , FT ) with t1, .., tT > 0. Then, for any Ψ,
Ψ′ ∈ V ,

〈Ψ, Ψ′〉 :� μ(ΨR · Ψ′), 〈Ψ, Ψ〉 ≥ 0 (4.26)

Note that the stochastic process indexed by R × L considers
random variables Φ(t, f ) at sharp points of time. It is often
argued that this index set provides an insufficient ‘smearing’ in
the time direction and fails to cover interacting QFT at least in 3 +
1 space-time dimensions (in 1 + 1 and 2 + 1 dimensions, there are
examples for which this works [178–180]). However, this
argument rests on perturbative results as on 3 + 1-dimensional
Minkowski space; so far, no interacting QFT (obeying the
Wightman axioms) has been rigorously constructed. It is still
conceivable [181] that in a non-perturbative construction of the
theory, for which constructive QFT is designed, one can deal with
fields at sharp time. One could, of course, be more general and
consider stochastic processes indexed by some L which now also
includes smearing in the time direction, and the formulation of
reflection positivity will then constrain to elements of Lwith positive
time support; however, then the Wiener measure construction
sketched below will not work. Our viewpoint is that this more
general situation can be obtained from the sharp time construction
because integrals of smearing functions with respect to time can be
approximated by Riemann sums, which in turn are nothing but
integrals with respect to sharp time smearing functions.

At the moment, it is rather unclear how and why μ and Φ
define a relativistic QFT. This will become clear in the next
subsection.

4.3. Osterwalder–Schrader (OS)
Reconstruction
The following abstract argument is standard [98–100]. (See Refs.
54–57 for a proof adapted to the notation in this article.) Due to
reflection positivity, Eq. 4.26 defines a positive semi-definite
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sesquilinear form on V. We compute its null space N and
complete the quotient of equivalence classes V/N in the inner
product Eq. 4.24 to a Hilbert space. Given Ψ ∈ V , we denote its
equivalence class Ψ + N by [Ψ]μ, where we keep track of the
measure dependence of the quotient construction. By
construction the D � [V]μ is dense in H. Since the constant
function Ψ � 1 ∈ V , we define a ‘vacuum’ vector by Ω: � [1]μ.
Finally, we define for s≥ 0

K(s)[Ψ]μ :� [U(s)Ψ]μ (4.27)

The constraint s≥ 0 is due to the time support condition in the
definition of V. One must show that this is well-defined
(independent of the representative) [98–100]. By virtue of
their definition (Eq. 4.2), the U(s) forms a one-parameter
Abelian group of operators U(s)U(s′) � U(s + s′) on L2(S, dμ).
This implies that the K(s) forms a one-parameter Abelian semi-
group due to the constraint s≥ 0 (again one must show that the
definition is well-defined). Time translation continuity (Eq. 3.23)
translates into weak continuity of the semi-group. Furthermore, by
time translation invariance 4.24, U(s) defines unitary, in particular
bounded operators, on L2(S, dμ) which translates into the
statement that K(s) forms a contraction semi-group. Thus
[98–100], there exists a positive self-adjoint operator H, called
‘Hamiltonian’ on H such that K(s) � e−sH . Obviously, K(s)Ω � Ω;
thus, Ω is a ground state for H which justifies the name ‘vacuum’.

This elegant argument is deceivingly simple. To actually
compute the Osterwalder–Schrader triple (H, Ω, H) from μ and
to relate it to the fields and Hamiltonian in terms of which one
would construct the quantum theory using canonical
quantisation is not clear yet. However, one can again use the
following abstract argument [54–57]. Suppose that there is an
Abelian C*−algebraB of bounded operators onH such thatBΩ
is dense (the C*− norm is inherited from the uniform operator
topology). It is not difficult to show that this is always the case
whenH is separable which is the only case that we will consider in
our application to renormalisation, but it also holds in many non-
separable situations )see appendix B of Ref. 196 for a proof). Let Δ(B)
be its Gel’fand spectrum [182] (which is a compact space), that is, the
space of all * homomorphisms ϕ: B→C. Then, by Gel’fand’s
theorem,B can be thought of as the space C(Δ(B)), that is, the
continuous functions on the spectrum which is an Abelian
C*−algebra with respect to the sup norm. The correspondence
(Gel’fand isomorphism) is given by b̂(ϕ) � ϕ(b) for all
ϕ ∈ Δ(B), and in fact, this is an isometric isomorphism of
C*−algebras. Consider now the linear functional

](b̂) :� 〈Ω, bΩ〉 (4.28)

which by construction is positive ](
∣∣∣∣∣b̂∣∣∣∣2) � ∣∣∣∣∣|bΩ|∣∣∣∣2. By the

Riesz–Markov theorem [175], there exists a (regular Borel)
probability measure on S′: � Δ(B) which by abuse of
notation we also denote by ν such that

](b̂) � ∫
Δ(B)

d](ϕ) b̂(ϕ), (4.29)

that is, to say, the Hilbert spaceH obtained fromOS reconstruction
can be thought of as L2(Δ(B), d]) under the isomorphism bΩ1b̂,

in particular Ω corresponds to the constant function equal to 1.
We thus have managed to cast H into the language of measure
theory on the set S′ � Δ(B). The fields ϕ that come out of this
construction are random variables indexed by some index set L′,
that is, we have shown that we can always construct such a
measure and a corresponding stochastic process. We think of
the field ϕ as the spatial configuration fields underlying a
canonical quantisation approach. A priori, however, it is not
clear what L′ is, although it must be related in some way to
R+ × L. In the case of free fields, one can show that, in fact, one
can choose B in such a way that L′ � L due to the quotient
construction involved in H but even then it is a priori not clear
how Φ(t, f ) and ϕ(f ), f ∈ L are related. Again, in the case of free
fields, one shows that ϕ(f ) can be thought of as Φ(0, f ), the space-
time field at sharp time zero. However, in general, the relation
between the stochastic processes underlying Φ and ϕ may be
more complex. In any case, the operator H translates in this
language into the operator

Ĥb̂ :� ĤbΩ (4.30)

4.4. Feynman–Kac–Trotter–Wiener (FKTW)
Construction
Given an OS triple (H, Ω, H), we saw at the end of the previous
subsection that without loss of generality, we can assume that
H � L2(S′, d]), where ν is a probability measure on S equipped
with a Borel σ−algebra and that we are given a stochastic process
ϕ(f ), f ∈ L indexed by some index set L, at least when H is
separable (which will be the case in our applications). Moreover,
Ω � 1 in this presentation of H is cyclic for some C*−algebra of
functions on S′. We pick some set WN , N ∈ N0 of elementary
functions w ∈ WN subject to the conditions 1.-4. spelled out just
after (4.7) and for F � (f1, .., fN ) ∈ LN have ϕ(F) � (ϕ(f1), ..,
ϕ(fN)) ∈ (S′)

N as well as

wF(ϕ) � w(ϕ(F)) (4.31)

Let now T ∈ N0, t1 < t2 < ..< tT and Fk ∈ LNk , wk ∈ WNk. We
consider the expectation value functional

〈Ω, wT ,FT e
−(tT−tT−1)H wT−1,FT−1 e

−(tT−1−tT−2)H . . . e−(t2−t1)H w1,F1 Ω〉
(4.32)

Consider now a stochastic process Φ(s, f ) indexed by (s, f ) ∈ R ×
L and the elementary functions

W(tk ,Fk)Tk�1(Φ) � wT ,FT(Φ(tN , .)) ..w1,F1(Φ(t1, .)) (4.33)

Then, the Wiener measure μ, if it exists, evaluated on Eq. 4.33

μ(W(tk ,Fk)Tk�1) (4.34)

is supposed to equal Eq. 4.31. The non-trivial question is why this
should be the case, under which circumstances, and how to
construct μ. For this, we consider the integral kernel Kβ of the
operator e−βH , β> 0, that is,
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[e−βHψ](ϕ) � : ∫
S
d](ϕ′)Kβ(ϕ, ϕ′)ψ(ϕ′) (4.35)

Note the semi-group property

∫
S′
d](ϕ)Kβ1(ϕ1, ϕ)Kβ2(ϕ, ϕ2) � Kβ1+β2(ϕ1, ϕ2) (4.36)

Define S: � ∏
t ∈ R

S′. For each T ∈ N0, consider t1 < ..< tT and

measurable sets s′tk ⊂ S′ and define the set function

μ⎛⎝⎡⎣×T
k�1 s′tk] × [×t ∉ {t1 ,..,tT }S′⎤⎦⎞⎠ :� ∫[S′]T d](ϕ1) . . . d](ϕT)

∏T
k�1

χs′k(ϕk) ∏T−1
k�1

Ktk+1−tk(ϕk+1, ϕk) (4.37)

It is not clear that this is a positive set function, but when it is, it is
called the Wiener measure generated by the OS triple. For
sufficient criteria for this property called Nelson-Symanzik
positivity in the case of scalar fields (see Refs. 183 and 184).
Basically, one needs to show that matrix elements of e−βH between
positive functions are positive. Note that for sK ′ � S′ for all k, we
get

μ(S) � 〈Ω, e− (sT− s1)HΩ〉 � 1 (4.38)

This shows that μ is a probability measure on S. For quantum
mechanical Schrödinger Hamiltonians, one can use the Trotter
product formula and the Wiener measure of the heat kernel to
prove positivity [185] (Feynman–Kac formula).

One can now show the following [54–57]:
Theorem.

i. Suppose that OS data (H, H, Ω) are given and that the
corresponding Wiener measure μ exists. Then, μ is an OS
measure and its OS reconstruction reproduces the given OS
data up to unitary equivalence.

ii. Suppose that an OS measure μ is given thus producing OS
data (H, Ω, H). Then, the corresponding Wiener measure
exists and reproduces μ up to equivalence of measure spaces.

Here, measure spaces (Sj, Bj, μj); j � 1, 2 are called equivalent if
there exists a bijection F: S1 → S2 such that both F and F−1 are
measurable and such that μ1 � μ2+F. The reason why we
generically only reproduce an equivalent and not an identical
starting point lies in the large freedom in the choice of the
stochastic process ϕwhen performing the OS reconstruction step.

5. RENORMALISATION

5.1. Motivation
Our motivation for renormalisation comes from the current state
of affairs with respect to the definition of the quantum dynamics
in LQG as outlined in Section 3. In that case, the Hilbert space
H � L2(S′, d]) is precisely of the form we envisage here.
Moreover, we have a vacuum Ω for a candidate Hamiltonian

H that, however, we are not sure whether all steps of the
quantisation process that led to H are justified, namely, we
have defined H as Hc on certain mutually orthogonal
subspaces Hc preserving it using a choice of discretisation of
the classical continuum expression which has naively the correct
dequantisation if the graph γ fills the spatial manifold σ
sufficiently densely. The definition of elementary functions in
Eq. 4.19 precisely reproduces the SNWF, and thus, the spatial
connection defines a stochastic process indexed by graphs.

As already mentioned at the end of Section 3, we would like to
take a fresh look at the problem. As usual in constructive QFT, if σ
is not already compact, we replace it with a compact manifold σR,
where R is an infrared (IR) cut-off which we remove in the end
R→∞ (thermodynamic limit). In order not to clutter the
notation, the dependence on R of all considerations that
follow will be suppressed. Next, we do not consider all finite
graphs γ (taking all finite graphs leads to a non-separable Hilbert
space) but only a controllable countable familyM, therein which,
however, is such that the discretised classical variables
(configuration and momentum fields) in terms of which we
perform the quantisation separate the points of the classical
phase space when all the graphs in M are at our disposal.
The set M is supposed to be partially ordered and directed.
The motivation for doing so stems from the spatial diffeomorphism
invariance of the classical LQG Hamiltonian: The algebraic form of
the Hamiltonian discretised on diffeomorphic graphs is identical.
This is precisely the starting point of the algebraic quantum gravity
proposal [169–172], where it was emphasised that one can quantise
gravity in terms of abstract graphswhich gain their physicalmeaning
only after choosing an embedding supplied, for instance, by a semi-
classical state.

To have some intuitive picture in mind, consider σ � R3 with
toroidal compactification σR � T3 (where each direction has
length R with respect to the Euclidian background metric on
R3 and with periodic boundary conditions installed) and Γ the set
of all finite graphs σR of cubic topology. This is still an
uncountable set which we now restrict to a countable one as
follows. Each element of Γ is uniquely labelled by M ∈ N, where
M3 is the number of vertices of the graph (one could generalise
this and have different numbers of vertices in each direction). We
pick once and for all a coordinate system and locate the vertices of
cM at the points

mϵM , m ∈ Z3
M , ZM � {0, 1, ..,M − 1}, ϵM � R

M
, (5.1)

where the edges of the graph are straight lines in the coordinate
directions between the vertices. We equip M: � N with the
following partial order: M <M′ iff M′

M ∈ N. Note that this implies
cM ⊂ cM′ since

mϵM � m
M′
M

ϵM′ � : m′ϵM′ (5.2)

with m′ ∈ Z3
M′ and because the edges of the graphs are straight

lines in the coordinate directions. This is certainly not a linear
order because not all natural numbers are in relation but still
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equips Γ with a direction: Given M andM′ take, for instance,
M′′ � MM′, then M, M’<M’’ (more efficiently take M’’ as the
least common multiple). It is clear that for M sufficiently large
discretised phase space variables obtained by integrating
continuum variables over 0- or 1-dimensional subsets of cM
(vertices or edges) or by integrating momentum variables over
3- or 2-dimensional subsets of the cell complex corresponding to
cM (faces and cubes) will separate the points of the continuum
phase space. Instead of cM , one could also use the cubic cell
complex c*M dual to cM defined by saying that the barycentres of
the cubes of c*M coincide with the vertices of cM . However, in the
spirit of economy, we will not use the additional structure c*M in
what follows.

5.2. Discretisation of Phase Space
In canonical quantisation, we start with a continuum phase space
coordinatised by configuration fields ϕJ and canonically conjugate
momentum fields πJ in terms of which the classical continuum
Hamiltonian H is formulated. Here, the index J corresponds to an
internal symmetry and is typically Lie algebra valued. Now, we
consider a discretisation of both the phase space and the
Hamiltonian, one for each lattice M, while keeping track of how
these fields ϕJM and πMJ are related to the continuum fields ϕJ and πJ .
The idea for how to do this stems from the observation that by
construction of generally covariant field theories, the fieldsϕJ and πJ

are dual in the sense that there is a natural bilinear form 〈π,
ϕ〉’I’×K ’: � ∑J〈πJ , ϕJ〉I×K on the phase space (usually a cotangent
bundle T*K ’) I’ × K ’ of momentum and configuration fields,
respectively, where 〈., .〉 is spatially diffeomorphism-invariant.
Note that 〈., .〉’, 〈., .〉 just differ by tracing over the internal
directions in field space, that is, I’ � Id , K ’ � Kd , where d is the
number of internal directions in field space.

For instance, the momentum of a scalar field is geometrically
a scalar density of weight one, so that 〈π, ϕ〉’ � 〈π,
ϕ〉: � ∫

σ
d3x π(x) ϕ(x). The momentum of a G connection is

geometrically a Lie algebra-valued vector field density so that 〈π,
ϕ〉’ � ∑J∫σ

d3x πaJ (x)ϕ
J
a(x) This also holds for higher p−forms as

they occur in some supergravity theories as well as for (standard
model or Rarita–Schwinger) fermions. Note that the bilinear form
is in general not invariant under the internal symmetry group, but
this will not be important for what follows. The fact that π and ϕ
are conjugate is the statement, that their canonical brackets are

{〈π, k’〉’, 〈i’, ϕ〉’} � 〈i’, k’〉’ (5.3)

for all (i’, k’) ∈ I’ × K ’.
The fact that the bilinear form 〈., .〉 is at our disposal

motivates a natural choice for the index set L and L* of the
stochastic process ϕ, π. Namely, we choose L to be a certain
distributional extension of I and likewise L* as a certain
distributional extension of K. These extensions should be such
that 〈i, k〉 remains well-defined for i ∈ L, k ∈ L*. For instance,
for a scalar field we may choose L as the set of δ distributions
fp(x) � δp(x) with support at single points p ∈ σ and L* as the
set of characteristic functions gR(x) � χR(x) of connected
D−dimensional submanifolds R of σ. For a compact
G−connection, we can choose L as the set of form factors f ac (x): �∫
C
dyaδ(x, y) with support on (piecewise analytic) curves c. For L*,

we would consider the set of dual form factors of the form
gSa(x): � 1/(D − 1)!∫

S
ϵab1 ..bD−1dy

b1∧..dybD−1 δ(x, y) with support on
(piecewise analytic) D − 1 submanifolds S. We may also have
opportunity to consider their Lie algebra-valued versions f aJc (x) �
τJ f ac (x) ∈ L’, gSaJ (x) � τJ gSa(x) ∈ (L’)*, where τJ and τJ are dual
bases in the defining representation of the Lie algebra of G
such that Tr(τJ τK ) � δ

J
K . Note that we deliberatively do not

make use of the fact that these distributions are elements of
vector spaces. This is because we aim at a uniform description of
both linear and non-linear theories. In the case of linear theories,
the description can be significantly simplified as we have done in
Refs. 54–57.

The connection to Section 4.2 is then as follows: For each
f ∈ L, ϕ ∈ K , we consider a map (f , ϕ)1ϕ(f ) ∈ S̃. For linear
theories, one usually takes S̃ � U(1), and for a G gauge theory, one
takes S̃ � G. The object ϕ(f ) exploits the existence of the natural
bilinear form 〈., .〉. For instance, for a scalar field, one considers
ϕ(fp) � exp(i 〈fp, ϕ〉), while for a G connection, we consider the
holonomy ϕ(fc) � Pexp(〈fc, ϕJ〉τJ ). For each N ∈ N, we consider
F � (f1, .., fN) ∈ LN and define ϕ(F) � (ϕ(f1), .., ϕ(fN)) ∈ S̃

N
. The

space of elementary functionsWN consists of maps S̃→C subject
to the conditions listed in the beginning of Section 4.2. We may
generate WN from monomials labelled by matrix element
functions of finite-dimensional unitary representations of S̃
(see Eq. 4.19).

For each M ∈ N, let LM be the space of discrete functions on
the lattice consisting of MD points with values in Rt , where t is
tensorial number of configuration (or momentum) degrees of
freedom per spatial point (t � 1 for scalar fields, t � D for a G
Yang–Mills theory in D + 1 space-time dimensions, etc.). That is,
an element lM ∈ LM assigns to each point m ∈ ZD

M a vector in Rt .
The space LM carries an auxiliary real Hilbert space structure (LM
is, of course, a finite-dimensional vector space), for example, for a
G Yang–Mills theory,

〈lM , l̃M〉LM � ∑
m∈ZD

M

∑t
a�1

lM(m, a) l̃M(m, a) (5.4)

for any lM , l̃M ∈ LM , and we wrote [lM]
a(m) � : lM(m, a).

Definition.
A discretisation of the continuum phase space I × K

subordinate to M ∈ N is a pair of linear maps

IM: LM → L; KM: LM → L* (5.5)

with the following properties:

i. For any lM , lM′ ∈ LM

〈IMlM , KMlM′〉I×K � 〈lM , lM′〉LM (5.6)

That is, to say IM′KM � KM′IM � idLM where IM′: I→ LM ,
KM′: K→ LM are the dual maps defined by

〈IMlM , ϕ〉I×K � 〈lM , IM′ϕ〉LM , 〈π, KMlM〉I×K � 〈KM′π, lM〉LM ,
(5.7)
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ii. For any M <M’ define the injection maps

IMM’ :� KM′′IM; KMM′ :� IM′′KM: LM → LM’ (5.8)

Then, we require

IM’IMM’ � IM , KM’KMM’ � KM (5.9)

To see how this gives rise to discretised configuration and
momentum variables let δ

m,
M a, δm, aM ∈ LM with m ∈ ZD

M , a �
1, ..t be the Kronecker functions [δm,

M a]b(m̃): � δab δm, m̃ and [δm,

aM]b(m̃): � δbaδm, m̃. Then, the following functions on the
continuum phase space

(πM)aJ (m) :� 〈πJ , KMδ
m,a
M 〉I×K, (ϕM)Ja(m): � 〈IMδm,a

M , ϕJ〉I×K
(5.10)

enjoy canonical brackets

{(πM)aJ (m), (ϕM)Kb (m̃)} � δab δ
K
J δm,m̃ (5.11)

where the first condition (Eq. 5.6) was used. Thus, Eq. 5.6makes
sure that the discretisations Eq. 5.10 enjoy canonical brackets, so
we call Eq. 5.6 the symplectomorphism property. The motivation
for the second condition Eq. 5.9 will become clear only later;
however, we note that it implies that for all M <M’<M’’

IM’M’’ IMM’ � KM″′[IM’IMM’] � IMM’’ (5.12)

which we thus call cylindrical consistency property. Likewise,
KM’M’’KMM’ � KMM’’ . It says that injecting a function into the
continuum is independent from which resolution scaleM this is done.

Finally, we will impose a further restriction on the maps IM , KM ,
which amounts to a convenient choice of normalisation and thus is
called normalisation property. Namely, we require that for allM <M’,
the map IMM’: LM → LM’ restricts to BM →BM’, where BM is the set
of functions onZD

M with values in the bit space {0, 1}t . This condition is
only necessary in the non-Abelian case, and there avoids overcounting.

We note that Eq. 5.9 defines elements πM � KM′π, ϕM �
IM′ϕ of LdtM that we can now use to try to define a discretisation
HM � HM[{(πM)aj (m), (ϕM)

j
a(m)}a,j,m] of the Hamiltonian H �

H[π, ϕ]. For instance, if the Hamiltonian depends only
quadratically on the fields, then one may try (including
discretisations of spatial derivatives and some spatial
averages)

HM :� H[π � IMπM , ϕ � KMϕM] (5.13)

For interacting Hamiltonians, more sophisticated approximations
must be used. Certainly, the expression for HM is in general
plagued by a large amount of discretisation ambiguity beyond the
choice of discretised variables. On the other hand, the fact that
πM � K ’Mπ and ϕM � IM ’ϕ are conjugate will be convenient when
constructingHM , and it is efficient to construct themmotivated by
the naturally available bilinear form 〈., .〉’ on the phase space.

To see that there are non-trivial examples for such maps,
consider a scalar field in D spatial dimensions compactified on a
torus with Euclidian coordinate length R in all directions. Then
(recall ϵM � R/M),

(IMlM)(x): � ∑
m∈ZD

M

lM(m)δmϵM(x), (KMlM)(x):

� ∑
m∈ZD

M

lM(m)χmϵM(x), (5.14)

where

χmϵM(x) �∏D
a�1

χ[maϵM ,(ma+1)ϵM )(x), (5.15)

where the latter denotes the characteristic functions of left
closed—right open—intervals. This clopen interval structure is
very important in order that Eqs 5.6 and 5.9 are satisfied [54–57].
Similar constructions work for gauge fields (see appendix A or
[196]). Note that we changed here the notation as compared to
[54–57]: The maps IM , EM used there are called here KM , I’M ,
respectively. The motivation for this change of notation is to
make it manifest how much of the structure is in fact already
canonically provided by the structure of the classical theory.

Given the lattice inD spatial dimensions labelled byM ∈ N, we
consider in general N � MDt degrees of freedom ϕ(IMlM) � :
ϕM(lM): � {ϕ(IMlm,a

M )}m∈ZD
M , a � 1, .., t ∈ S̃

N
, where lm,a

M � lM δ
m,a
M

and lM is restricted to the subset BM ⊂ LM of functions ZD
M → Ft

2,
where F2 � {0, 1} is the field in two elements (bit space). Thus,
lM(m, a) ∈ {0, 1} is restricted to the information whether the
degree of freedom ϕ(IMl

m,a
M ) is excited or not. This is justified

because 1. the missing information about the strength of the
excitation is encoded in the representation label (see below) and
2. because the maps IMM’ restrict to maps BM →BM’ by
assumption.

The space of elementary functions WM on the lattice labelled
by M is then generated by

wM
j,n,̃n
(ϕM(lM)) � wM

j,n,̃n
(ϕ(IMlM)) �∏

m,a

[πjm,a(ϕ(IMlm,a
M ))]nm,a ,̃nm,a

(5.16)

Here, jm,a labels an irreducible representation πjm,a of G (one from
each equivalence class), djm,a is its dimension, and [πjm,a(.)]nm,a , ñm,a

denote its matrix elements with nm,a, ñm,a ∈ {1, .., djm,a}.
To see how Eq. 5.16 interacts with the map IMM’ in the case of

non-Abelian gauge theory, we note that the cylindrical
consistency property of IMM’ implies

wM
j,n,̃n
(ϕM(lM)) � wM

j,n,̃n
(ϕ(IMlM)) �∑

α

wM’
j’,n’α ,̃n’α

(ϕM’IMM’lM)),
(5.17)

where the notation is as follows (see appendix A or [196]): jm′a′ �
[IMM’lM ](m’, a) j[m’/M’M], a, where [.] denotes the Gauss bracket,
n’m’, a � nm, a if m’ � M’/Mm, ñ’m,a � ñm,a if m’a +
1 � M’/M(ma + 1), m’b � M’/Mmb; b≠ a, and otherwise the
sum over α denotes the sum over all ñm′a′ � nm’+δa , a′ ∈ {1, ..,
dj’m’, a} with [δa]

b: � δba that arise by writing the holonomy along
the edge labelled by m ∈ ZD

M , a � 1, .., D as products of
holonomies along edges labelled by m’ ∈ ZD

M’, a.
In general, therefore we see that for any generating function

wM ∈ WM , we have for all M <M’
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wM(ϕM(lM)) �∑
α

zα w
M’
α (ϕM’(IMM’lM’)), (5.18)

where the sum over α involves a finite, unique set of generating
functions wM’ ∈ WM’, and zα are certain, definite complex
numbers. Similar statements then, of course, hold for the
stochastic process labelled by R × L and for the functions

WM(ΦM(t(1), l(1)M ), ..,ΦM(t(T), l(T)M ))
� wM

T (ΦM(t(T), l(T)M )) . . .wM
1 (ΦM(t(1), l(1)M )) (5.19)

5.3. Hamiltonian Renormalisation
Abstracting from the concrete lattice implementation and field
content above, we are in the following situation: There is a
partially ordered and directed label set M, and for each
M ∈ M, we have a map IM : BM → LN(M), where L is the index
set of the stochastic process ϕ, N(M) ∈ N is the number of
elements of L in the image of IM , and BM � {0, 1}N(M). Then,
ϕM(lM): � ϕ(IMlM) ∈ S̃

N(M) � : S̃M , and we have a generating set

of elementary functions wM : S̃
N(M)→C.

Suppose that for each M ∈ M, we have discretised the system

somehow as sketched above and picked some OS triple (H(0)
M , Ω(0)M ,

H(0)
M ) with H(0)

M � L2(d]
(0)
M , S̃M). That is to say, we have a

stochastic process {ϕM(lM)}M∈M indexed by BM and probability

measures ]
(0)
M on S̃M . The Hamiltonian H(0)

M preserves H(0)
M and

annihilates the unit vector Ω(0)M ∈ H(0)
M , which is cyclic. We consider

a space of elementary functions WM such that in particular

wM(ϕM(lM))Ω
(0)
M ; wM ∈ WM , lM ∈ BM lie dense in H(0)

M .
Using the Feynman–Kac–Trotter–Wiener (FKTW) construction,

we obtain a family of OSmeasures μ(0)M on SM � ∏t∈RS̃M , which can
be probed using a stochastic process ΦM(t, lM) labelled by R × BM .

This measure family {μ(0)M }M∈M will generically not be cylindrically
consistent and therefore does not define a continuum measure μ
because of the discretisation ambiguities involved in the construction

ofH(0)
M which determines μ(0)M . If it was, thenwewould have forw1, ..,

wT ∈ WM

μ(wT(Φ(tT , IMlTM)) . . .w1(Φ(t1, IMl1M))
� μM(wT(ΦM(tT , lTM).w1(ΦM(t1, l1M)) (5.20)

Using IM � IM’IMM’ for M <M’, we would find the identity

μM(wT(ΦM(tT , lTM).w1(Φ(t1, l1M))
� μM’(wT(ΦM’(tT , IMM’l

T
M).w1(ΦM’(t1, IMM’l

1
M)) (5.21)

called the condition of cylindrical consistency.
As reviewed in Section 3, condition Eq. 5.21 grants the

existence of μ under rather generic conditions. The strategy (see
also Refs. 137 and 138) is therefore to construct an iterative

sequence of measure families N0 ∋ n1{μ(n)M }M∈M called
renormalisation (group) flow with initial family as above such
that the fixed point family satisfies Eq. 5.21. We refer to section

C of [196] for the reader interested in more notions of the
renormalisation group in the language of measure theory.

The scheme that we will employ in fact does not make use of
Eq. 5.21 for all M <M’ but only M’ � pnM, where p is a prime.
The simplest choice is p � 2, but we have tested the formalism
also for p � 3, 5 [54–57] and mixtures thereof in the case of free
scalar QFT. This, in fact, does cover all possible M because any
natural number can be written as kpl; k, p relative prime, but the
fixed point family could depend on k. Of course, one assumes that
the fixed point family is independent of the choices of p, k as an
expression of universality as confirmed again for simple systems
[54–57]. Thus, we define as renormalisation flow

μ(n+1)M (wT(ΦM(tT , lNM).w1(Φ(t1, l1M))
� μ(n)M’ (wT(ΦM’(tT , IMM’l

N
M)..w1(ΦM’(t1, IMM’l

1
M)) (5.22)

for M’: � 2M.Having then obtained μ* from cylindrically
consistent projections μ*M , we want to construct the OS triple
(H*, Ω*,H*) using OS reconstruction. However, while we are sure

that μ(0)M is an OSmeasure for eachM by theorem 4.4, we are a priori

not granted that μ(n)M is anOSmeasure, that is, that the flow preserves
the OS measure class. This is , in fact, shown in Refs. 54–57.

Theorem.
The renormalisation flow (Eq. 5.22) preserves the OS measure

class, and its fixed points define OS measures μ*.
Responsible for this result is the fact that the time operations

that define an OS measure commute with the spatial coarse
graining operation. Thus, in principle, we can perform
renormalisation in the measure (or path integral) language
and then carry out OS reconstruction in order to find the
continuum Hamiltonian theory that we are interested in. On
the other hand, the fact that FKTW construction and OS
reconstruction are inverses of each other (theorem 4.4) allows
for the possibility to map the renormalisation flow of measures
directly into a renormalisation flow of OS triples. In detail,

Step 1: Identifying the stochastic processes

We need to work out the null space of the reflection positive

sesquilinear form determined by the measure μ
(n)
M from the vector

space VM of finite linear combinations of vectors of the form

wM
T (ΦM(tT , lTM)) ..wM

T (ΦM(tT , lTM)) (5.23)

with tT > tT−1 > ..> t1 > 0 for wM
K ∈ WM (for coinciding points of

time we can reduce the number of time steps by decomposing the
products of elementary functions into linear combinations of those).

The Hilbert space Hn)
M is then the completion of the span of

equivalence classes [ψM]
μ
(n)
M

, ψM ∈ VM , in particular the vacuum

is Ω(n)M � [1]
μ
(n)
M

. However, the abstract description in terms of

equivalence classes is not very useful in practice, rather we wish to
describe them concretely in terms of stochastic processes and
measures ](n)M as outlined in Section 4.3. As the Hilbert spaces we
deal with are separable, this is always possible (see appendix B of
[196]); however, that construction does not directly refer to the
space-time stochastic process Φ we started from. The reason why
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this happens is because of the appearing equivalence classes: To
perform concrete calculations, one will work with representatives,
which makes the construction non-canonical because the choice
of such representatives is largely a matter of taste. In our setting, if
μ
(n)
M is obtained by the FKTW construction from OS data, then, of
course, ΦM(0, .) � : ϕM(.) is a possible choice. However, in the
renormalisation step, we are to deduce the OS data at resolution
M from the measure μ

(n+1)
M which was renormalised from μ

(n)
M’ ,

M <M’ via Eq. 5.22, and thus, it is not a priori clear how the
stochastic process ϕM can be chosen, in particular it is not clear
whether it can be chosen as ϕM(.) � ΦM’(0, IMM’.) which appears
to be a natural choice.

However, we are in a better situation than in the generic case
because it is clear that H(n+1)

M can be formulated in terms of the
fields ϕM(t, lM) � ΦM’(t, IMM’lM) for a minimal number of
distinguished times t ∈ τ, where the set τ is determined by the
quotient process (see, e.g., Refs. 54–57). Alternatively, one can
view the fields ϕM(t, lM), t ∈ τ as fields at time zero ϕ̃M (̃lM), but in
a larger space of fields, that is, a stochastic process ϕ̃M with a
larger index set B̃M � τ × BM that still lives on the lattice labelled
byM [54–57]. It follows that without further input, which will be
provided below, ϕM(.) � ΦM’(0, IMM’.) is in general a compound
field, that is, a collective degree of freedom composed out of ϕ̃M
which together with its momentum πM is insufficient to define the
Hamiltonian H(n+1)

M which will generically depend on the larger
set of variables ϕ̃M and its conjugate momentum π̃M . Note that
this compound field is composite out of other gauge-invariant
fields as an effect of renormalisation and not because of reasons of
gauge invariance.

Step 2: Working out the flow of OS triples

Using the correspondence between the Wiener measures μ(n)

and the corresponding operator expressions, we have for
tT > ..> t1

μ(n+1)M (wM
T (ΦM(tT , lTM).wM

1 (ΦM(t1, lM1 ))
� 〈Ω(n+1)

M , wM
T (ϕM(lTM)) e−(tT−tT−1)H(n+1)

M wM
T−1(ϕM(lT−1M )) e−(tT−1−tT−2)H(n+1)

M . . .

e−(t2−t1)H
(n+1)
M wM

1 (ϕM(l1M))Ω(n+1)
M 〉H(n+1)

M

� μ(n)M’ (wM
T (ΦM’(tT , IMM’l

T
M)..wM

1 (ΦM’(t1, IMM’l
M
1 ))

� 〈Ω(n)
M’ ,w

M
T (ϕM’(IMM’l

T
M)) e−(tT−tT−1)H(n)

M’wM
T−1(ϕM’(IMM’l

T−1
M )) e−(tT−1−tT−2)H(n)

M’ . . .

e−(t2−t1)H
(n)
M’ wM

1 (ϕM’(IMM’l
1
M))Ω(n)

M’ 〉H(n)
M’

(5.24)

for all choices of M ∈ M; T ∈ N0; tT > ..> t1; l1M , .., lTM (in
practice, e.g., M’ � 2M is fixed).

We consider Eq. 5.24 as the master equation from which
everything must be deduced. To avoid the compound field
phenomenon mentioned above, we use that Eq. 5.24 i) is

supposed to hold for an arbitrary number of time steps and ii)
we add as further input one more OS axiom, namely, uniqueness
of the vacuum which is, in fact, a standard axiom to impose in
QFT on Minkowski space [98–100]. In terms of measures, it can
be stated as ergodicity of time translations

lim
T→∞

1
2T
∫T

−T
ds U(s)Ψ�μ a.e. μ(Ψ) · 1, Ψ ∈ L2(S, dμ) (5.25)

We separate this axiom from the minimal ones because it enters
in a crucial way only at this last stage of the renormalisation
process. The subsequent discussion considerably extends the
arguments of Refs. 54–57.

First of all, going back to Eq. 5.24 and picking T � 1, we find

〈Ω(n+1)
M ,wM

T (ϕM(lM))Ω(n+1)
M 〉H(n+1)

M

� 〈Ω(n+1)
M ,wM(ϕM’(IMM’lM))Ω(n)

M’ 〉H(n)
M’

(5.26)

Using the fact thatwM ∈ M form a −*algebra, we can formulate 5.26
as follows: Assuming by induction that up to renormalisation step n,

the vectors wM(ϕM(lM))Ω
(n)
M andwM ∈ WM span a dense subspace

of H(n)
M , consider the closed linear span Ĥ(n)

M’ of vectors of the form

wM(ϕM’(IMM’lM))Ω(n)
M’ , (5.27)

which is a subspace of H(n)
M’ . Then, Eq. 5.26 is the statement that

the map

J(n)MM’: H(n+1)
M → Ĥ(n)

M’ ; w
M(ϕM(lM))Ω(n+1)

M 1wM

(ϕM’(IMM’lM))Ω(n)
M’ (5.28)

is an isometry, that is,

[J(n)MM’]† J(n)MM’ � 1H(n+1)
M

(5.29)

which implies that

P(n)
MM’ :� J(n)MM’ [J(n)MM’]†: H(n)

M’ → Ĥ(n)
M’ (5.30)

is a projection.
Next for T � 2, t2 − t1 � β, we find from Eq. 5.24

〈Ω(n+1)
M ,w(ϕM(lM)) e−βH(n+1)

M w’(ϕM(l’M))Ω(n+1)
M 〉H(n+1)

M

� 〈Ω(n)
M’ ,w(ϕM’(IMM’lM)) e−βH(n)

M’ w’(ϕM(IMM’l’M))Ω(n)
M’ 〉H(n)

M’

(5.31)

and using again the −* property of the algebra WM and taking
formally the first derivative of Eq. 5.31 at β � 0, we conclude

H(n+1)
M � [J(n)MM’]† H(n)

M’ J
(n)
MM’ (5.32)

Note that (choose w � 1 in Eq. 5.28)

H(n+1)
M Ω(n+1)

M � [J(n)MM’]†H(n)
M’ Ω(n)

M’ � 0; (5.33)

hence, the new vacuum is automatically annihilated by the new
Hamiltonian.

We notice that for finite β, Eq. 5.31 is not implied by Eq. 5.32,
unless [H(n)

M’ , P
(n)
MM’] � 0, and it is here where we use the condition
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that the correspondence pt5.24 is to hold for an arbitrary number
and choices of time as well as the uniqueness of the vacuum.

Using the projection P(n)MM’ onto the closed linear span of the

w(ϕM’(IMM’lM))Ω
(n)
M’ , we see that the operators w(ϕM’(IMM’lM)) on

H(n)
M’ are block diagonal with respect to the decomposition

H(n)
M’ � P(n)

MM’H(n)
M’ ⊕[P(n)

MM’]⊥H(n)
M’ (5.34)

since they together with their adjoints leave P(n)MM’H(n)
M’ invariant

(the w ∈ WM generate a*−algebra). Thus, P(n)MM’w(ϕM’(IMM’lM))

[P(n)MM’ ]⊥ � [P(n)MM’ ]⊥w(ϕM’(IMM’lM))P
(n)
MM’ � 0, but in general,

[P(n)MM’ ]⊥w(ϕM’(IMM’lM))[P
(n)
MM’ ]⊥ ≠ 0. Thus, it is not sufficient

to insert w operators an arbitrary number of times and at
arbitrary places into the correspondence Eq. 5.24 in order to
deduce (Eq. 5.32) from Eq. 5.24.

Let b(n)M’I be an orthonormal basis of P(n)MM’H(n)
M’ . Then, since

Ω(n)M’ is cyclic for the algebra W(n)
MM’ generated by the

w(ϕM’(IMM’lM)) with respect to P(n)MM’ H(n)
M’ , we find w’I ∈ W(n)

MM’

such that b(n)M’I � w’IΩ
(n)
MM’ (or can be made at least arbitrarily

close). Next, assume that Ω(n)M’ is the unique ground state forH
(n)
M’ ,

then

e−βH
(n)
M’ →Ω(n)

M’ 〈Ω(n)
M’ , .〉H(n)

M’
(5.35)

becomes the projection on the ground state for β→∞. It follows
in the limit β→∞

P(n)
MM’ �∑

I

b(n)M’I 〈b(n)M’I , .〉H(n)
M’

�∑
I

wI′Ω(n)
M’ 〈wI ′Ω(n)

M’ , .〉H(n)
M’
→ ∑

I

wI ′ e−βH
(n)
M’ (wI′)†

(5.36)

Let wI be the element in the algebra generated by the w(ϕM(lM))
such that J(n)MM’wIΩ

(n+1)
M � wI ′Ω(n)M’ (which exists because

P(n)MM’H(n)
M’ is the closure of the image of J(n)MM’). Then, due to

isometry [J(n)MM’]
†J(n)MM’ � 1

H(n+1)M

(5.29), we have

∑
I
wIΩ(n+1)

M 〈wIΩ(n+1)
M , .〉H(n+1)

M
� [J(n)MM’]† ∑

I

wI ′Ω(n)
M’ 〈wI ′Ω(n)

M’ , .〉H(n)
M’
J(n)MM’

� [J(n)MM’]† P(n)
MM’ J

(n)
MM’ � 1H(n+1)

M

(5.37)

On the other hand, if Ω(n+1)M is the unique ground state forH(n+1)
M ,

we have by the same argument as in Eqs 5.35 and 5.36 in the limit
β→∞

1H(n+1)
M

→ ∑
I

wIe
−βH(n+1)

M w†
I (5.38)

Since the identity operator 1
H(n+1)M

can be inserted an arbitrary

number of times and at arbitrary places on the left hand side of
Eq. 5.24 and since it can be written as (Eq. 5.38) which under the
correspondence Eq. 5.24 translates into Eq. 5.36, the
correspondence Eq. 5.24 is to hold also when we insert P(n)MM’

an arbitrary number of times and at arbitrary places on the right
hand side of Eq. 5.24. In particular, this means that we must

replace on the right hand side of Eq. 5.24 the operator e−βH
(n)
M’ by

lim
N→∞

P(n)
MM’(e−β

NH
(n)
M’ P(n)

MM’)N (5.39)

To see this, we write in Eq. 5.24 for each k � 2, .., T and for any

N ∈ N on the lhs e−(tk−tk−1)H
(n+1)
M � (e−(tk−tk−1)H

(n)
M //n+1))N and

replace 1
H(n)M

by the approximants (5.38) or more precisely the

P(n, k, β) of appendix E of [196] for P � 1
H(n+1)M

. Using multi-

linearity of Eq. 5.24, we can rewrite the resulting expression in
terms of Eq. 5.24 again, just that now we have not T insertions of w
operators, but T ’ � 2N T insertions at times t’1 < ..< t’T ’ such that

t2kN+2l′ − t’kN+2l−1 � tk − tk−1
N

, t’2kN+2l−1 − t’kN+2l−2 � β, (5.40)

for k � 1, .., T − 1; l � 1, .., N . By the correspondence 5.24, this
translates into the corresponding expressions on the right hand side
with approximants (5.36) ormore precisely the P(n, k, β) of appendix
E of [196] for P � P(n)MM’. Then, one takes strong limits in the
appropriate order (see appendix E of [196]), in particular β→∞,
keeping tk − tk−1 fixed. As this is to hold for all N, we take N→∞.

Equation 5.39 is known in the mathematics literature
[189–192] as a degenerate case of a Kato–Trotter product
[188], of which there are many versions. One of them states
that for contraction semi-groups generated by self-adjoint
operators A, B such that A + B is essentially self-adjoint on the
dense domain D(A)∩D(B), we have strong convergence

lim
N→∞

[e−A/N e−B/N]N � e−(A+B) (5.41)

In our case, the second contraction semi-group, s1e−sB is
replaced by the degenerate one K(s) � K(0) � P(n)MM’. In
[189–192], sufficient criteria for the existence of a degenerate
semi-group K(β), K(0) an invariant projection, rather than the
identity, are studied, such that in, say, the strong operator
topology K(β) � limN→∞(e−β/NAP)N . Assuming that existence
K(β) of the limit (5.39) is secured, we deduce

H(n+1)
M :� −[J(n)MM’]†[ d

dβ
K(β)]

β�0
J(n)MM’, K(β):

� lim
N→∞

P(n)
MM’[e−β

NH
(n)
M’ P(n)

MM’]N (5.42)

In particular, if the solution of Eq. 5.42 is given by

K(β) � P(n)
MM’e

−βP(n)
MM’

H(n)
M’

P(n)
MM’ , (5.43)

we recover Eq. 5.32, since P(n)MM’ J
(n)
MM’ � J(N)MM’. In appendix D of

Ref. 196, we prove Eq. 5.43 for the case that H(n)
MM’ is bounded,

that is, Eq. 5.43 is strictly true when replacing H(n)
M’ by its

bounded spectral projections E(n)M’ (B), B Borel.
In what follows, we will assume this to hold also when e−βH

(n)
M’ is a

general contraction semi-group. In Refs. 189–192, we find proofs
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for existence of a resulting degenerate semi-group under special
circumstances, but no concrete formulae in terms of the original
projection and semi-group are given. Thus, for the time being, we
will use Eq. 5.32 as a plausible solution of the exact relation Eq. 5.42
but keep in mind that Eq. 5.42 may contain more information.

To conclude this step, under the assumption that uniqueness
of the vacuum is preserved under the renormalisation flow and
that the degenerate Kato–Trotter product formula applies to
general contraction semi-groups, we can strictly derive Eq.
5.29 and Eq. 5.32 as equivalent to Eq. 5.24. Unfortunately, it
is not possible to show that the uniqueness property is

automatically preserved under the flow: Suppose that H(n)
M’ has

unique vacuum Ω(n)M’ and that H(n+1)
M vM � [J(n)MM’]

† H(n)
M’ J

(n)
MM’vM �

0, then we can just conclude that H(n)
M’ J

(n)
MM’vM ∈ [P(n)MM’]

⊥H(n)
M’ .

Hence, without further input, the uniqueness property must be
checked self-consistently.

Step 3: Constructing the continuum theory from the fixed
point data

Once we found a fixed point family JMM’; (HM , ΩM , HM) with
M <M’, M,M’ ∈ M, we have an inductive limit structure (JMM’,
HM) of Hilbert spaces since JM’M’’ JMM’ � JMM’’ is inherited from
IM’M’’ IMM’ � IMM’’ for M <M’<M’’ and therefore can define the
continuum Hilbert space H as its inductive limit which always
exists [160]. Thus, there exist isometries JM: HM →H such that
JM’JMM ’ � JM , M <M’. Moreover, there exists a consistently
defined quadratic form H (not necessarily an operator) such
that HM � J†MHJM . Note that we can compute matrix elements of
H between the subspaces JMHM , JM’HM’ of H for any M, M’
without actually knowing H, just its known finite resolution
projections are needed, by using any M, M’<M’’

〈JMψM ,HJM’ψM’〉H � 〈JM’’ JMM’’ψM ,HJM’’ JM’M’’ψM’〉H
� 〈JMM’’ψM ,HM’’ JM’M’’ψM’〉HM’’

(5.44)

We stress thatH is not the inductive limit of HM since that would
require HM’JMM’ � JMM’HM . This inductive limit condition is
much stronger than the quadratic form condition HM �
J†MM’HM’JMM’ which can be seen by multiplying the inductive
limit condition from the left with J†MM’ and using isometry. It is
not possible to derive the inductive limit condition from the
quadratic form condition because J†MM’ has no left inverse.

We emphasise that this Hamiltonian renormalisation scheme
can be seen as an independent, real-space, kinematical
renormalisation flow different from the OS measure (or path
integral) scheme even if the assumptions that were made during
its derivation from the measure theoretic one are violated. Note
that both schemes are exact, that is, make no truncation error.
This is possible because we do not need to compute the spectra of
the Hamiltonians (which is practically impossible to do
analytically without error even at finite resolution), but only
matrix elements which is computationally much easier and
can often performed analytically, even if the Hilbert spaces
involved are infinite-dimensional as is the case in bosonic QFT
even at finite resolution.

As a final remark, recall that the reduction of Eqs 5.24–5.29
and Eq. 5.29 rests crucially on the assumption that the vacuum

vectors Ω(n)M remain the unique ground states of the Hamiltonians

H(n)
M in the course of the renormalisation, a condition which is

difficult to keep track-off in practice and which, in fact, contains
dynamical information. Is it possible that the OS measure flow
and the Hamiltonian flow (Eqs 5.29 and 5.32) nevertheless
deliver the same continuum theory, even if we drop the
vacuum uniqueness assumption? In that respect, note that one
arrives at Eqs 5.29 and (5.32 from Eq. 5.24 by deleting by hand

the off-block diagonal terms in H(n)
M’ with respect to the

decomposition (Eq. 5.34). When deleting those terms by
hand, then Eq. 5.24 indeed becomes equivalent to Eqs 5.29
and 5.32. This is reminiscent of the Raleigh–Ritz procedure of
diagonalising a self-adjoint operator [188]: There the statement is
that for any self-adjoint operator H bounded from below (which
is precisely our situation) and any finite-dimensional projection
P, dim(P) eigenvalues of PHP ordered by size are upper bounds of
dim(P) eigenvalues, ordered by size, in the discrete part of the
spectrum (i.e., isolated eigenvalues of finite multiplicity) of H.
Here, we deal with an infinite projection, instead of a finite one,
but the general setting is the same. The idea is that as we increase
M, we approach the continuum Hamiltonian for which
eventually there are no off-diagonal elements.

6. CONCLUSION

In this contribution, we have reviewed, extended, and clarified the
proposal [54–57]. The extension consisted in i. an improved
derivation of the renormalisation scheme (5.29) and (5.32) from
OS reconstruction using an extendedminimal set of OS axioms that
also includes the uniqueness of the vacuum (which is, in fact, always
assumed in QFT on Minkowski space) and ii. a much more
systematic approach to the choice of coarse graining maps for a
general QFT which are motivated by structures naturally provided
already by the classical theory. The clarification consisted in
separating off the null space quotient process imposed by OS
reconstruction as an independent part of the renormalisation
flow whose formulation naturally uses the language of stochastic
processes.

We also had the opportunity to make several points of contact
with other renormalisation programmes that are currently being
further developed. For instance, the reduced density matrix
approach on which entanglement renormalisation schemes rest
occurs naturally in our scheme as well when looking at the flow of
the vacuum and Hilbert space. Next, since we consider a real-
space renormalisation scheme, when translated in terms of the
flow of Wiener measures that we obtain from the flow of OS data,
we are rather close to the asymptotic safety programme because
our spatial lattices can, of course, be translated into momentum
lattices by Fourier transformation that are used in the
asymptotically safe quantum gravity programme. Finally, our
proposal is obviously very close in language andmethods to all other
Hamiltonian renormalisation schemes, and while we currently focus
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on a kinematical coarse graining scheme, our approach also contains
dynamical components such as the flow of the vacuum.

In [54–57, 193], we have successfully applied our scheme to
free QFT (scalar fields and Abelian gauge theories) exploiting
their linear structure. Obviously, one should construct further
solvable examples of interacting theories, for example, interacting
2D scalar QFT [178–180] or free Abelian gauge theories but
artificially discretised in terms of non-linear holonomies in order
to simulate the situation in loop quantum gravity (see [193] for
further remarks).

Of course, the ultimate goal is to use Hamiltonian
renormalisation to find a continuum theory for canonical
quantum gravity. Here, we can use the LQG candidate as a
starting point because it is rather far developed, but, of course,
the flow scheme developed can be applied to any other canonical
programme. However, using LQG and the concrete scheme that
employs a fixed subset of graphs cM labelled byM ∈ M of cubical
topology is, at each resolutionM, precisely the algebraic quantum
gravity (AQG) version of LQG [169–172]. Hence, we can already
speculate on what can be expected from the renormalisation flow:

The Hamiltonian H(0)
M defined on the corresponding H(0)

M �
L2(SU(2)3M

3
, d3M

3
μH) (μH being the SU(2) Haar measure) could

be, but not needs to be, ordered in such a way as to annihilate the

vacuum Ω(0)M � 1 of a discretised volume operator V(0)M as it is

standard in current regularisations of the Hamiltonian constraint.

In fact, it may be desirable to choose the vacuum of H(0)
M not to

coincide with that of V(0)M in order to imprint its algebraic

structure. The operator H(0)
M preserves H(0)

M but not each

subspace defined by sub-lattices of cM and is thus not super-
local in contrast to the definition [28–32]; for instance, it will
use volume operators local to a vertex and holonomies along
plaquettes incident at that vertex (next neighbour interaction).
When running the renormalisation scheme, next-to-next
neighbour interactions will be switched on (this is exactly
what happens in the examples [54–57, 193]), and upon
reaching the fixed point, the Hamiltonian HM will involve all
possible interactions with precise coefficients and thus be spatially
non-local but hopefully quasi-local (i.e., the interactions die off
exponentially with the distance between vertices defined by the
3D taxi driver metric on the graph (each edge counting one unit)).
Note that this quasi-locality at finite resolution can be
straightforwardly computed in the examples [54–57, 193] by
using the spatially local continuum Hamiltonian and
projecting it with JM , J

†
M (blocking from the continuum) and

is thus physically correct. In other words, spatial locality in the
continuum is not in conflict with spatial non-locality at finite
resolution. In fact, we even expect a high degree of spatial non-
locality for very small M for which the naive dequantisation of

H(0)
M at any phase space point pwill be far off the classical valueH(p)

which matches with the remarks made at the end of Section 3.
Several questions arise from this picture should the flow display

any fixed points: First, for compact σ and if indeedwe use a countable
set of lattices cM as above, the resulting inductive limit Hilbert space
could be separable (since there is a countable basis defined by vectors
at finite resolution), thus would not be the standard LQG

representation space HLQG � L2(A, dμAL) of square integrable
functions with respect to the Ashtekar–Lewandowski measure μAL
on a space A of distributional connections2. In view of the
uniqueness theorem [23–27], one of its assumptions will then be
violated. The most likely possibility is that the corresponding
vacuum expectation value functional is not spatially
diffeomorphism-invariant since the diffeomorphism symmetry
was explicitly broken in the renormalisation process. If the
continuum Hamiltonian is still spatially diffeomorphism-
invariant, we would be in the situation of spontaneous symmetry
breakdown and could view this as a phase transition from the
symmetricHLQG phase to this broken phase. Note that in our gauge-
fixed situation, the diffeomorphism group is considered as a
continuous symmetry group and not as a gauge group.

Next, precisely due to this separability, the resulting theorymay
not suffer from the discontinuity of holonomy operators which
otherwise gives rise to what has been called the ‘staircase problem’
in the literature [194]: The cubical graphs cM contain paths only
along the coordinate axes. Since all M ∈ M are allowed, these
paths separate the points of the classical configuration space but
not of the distributional spaceA. In particular, any path that is not
a ‘staircase’ path cannot be accommodated at any finite resolution.
Yet, the continuum Hamiltonian in the example [193] does not
care about the fact that it was defined as a fixed point of a flow of its
finite resolution projections of cubical lattices only; it also knows
how to act on states which are excited on non-‘staircase’ paths.
The reason for why this happens is as follows: Consider any path c
and some staircase approximant c̃ with the same end points as c
which has zero winding number with respect to c so that c+c̃− 1 �
zS bounds a surface. Then, for an Abelian connection A, we have∫
v
A−∫̃

c
A � ∫

S
dA, and in the classical theory, the surface integral

converges to zero. In the quantum theory, a similar calculation can
be made because the Hilbert space measure is supported on a
different kind of distributional connections than A.

Finally, although the scheme, strictly speaking, was derived for
theories with gauge-fixed space-time diffeomorphism constraints
and a true physical Hamiltonian bounded from below, we may, of
course, ‘abuse’ it and also consider constraint operators C(f ) as
Hamiltonians, define their finite resolution expressions C(f )(0)M ,
and let them flow (here, f is a test function on the spatial manifold
σ)3. This will involve as a new ingredient also a discretisation of
the smearing function f which could be done using the maps IM ,
KM for scalar fields (see Ref. 193). Suppose then that for all f fixed
point families, {C(f )M}M∈N0

can be obtained. Should we expect
that the C(f )M represent a finite resolution version of the classical
continuum constraint (hypersurface deformation) algebra {C(f ),
C(g)} � C(h(f , g)), where h(f , g) is another (in general, phase
space–dependent) smearing function? The answer is in the
negative! Namely, what we want is that the continuum

2In the non-compact case, one may need to take the infinite tensor product
extension [69] which is also non-separable but in a different sense, and there one
regains separability by passing to irreducible representations of the observable
algebra.
3In fact, the physical Hamiltonian of Section 3 is not manifestly bounded from
below, hence we to abuse the formalism in the sense that we assumed the semi-
boundedness.
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operators obey [C(f ), C(g)] � iC(h(f , g)) (with appropriate
orderings of C, h(f , g) in place). But if C(f )M � J†MC(f )JM , then

[C(f )M ,C(g)M] � J†M[C(f )PMC(g) − C(g)PMC(f )] JM
� C(h(f , g))M + J†M[C(f )[PM ,C(g)] JM (6.1)

Thus, even if the continuum algebra closes, one does not see this at
any finite resolution, unless [C(f ), PM] � 0 for all f , M. This will
generically not hold because not even C(f )M’ preserves JMM’HM ,
M <M’, unless JMM’C(f )M � C(f )M’JMM’, that is, C(f ) forms an
inductive family which is not expected. Of course, the correction term
in Eq. 6.1 is expected to become ‘small’ in the limitM→∞ in which
PM → 1H, and thus, an appropriate criterion for closure of the
continuum algebra using only finite resolution projections can be
formulated (see Refs. 54–57 for the simpler case of rotational
invariance). Note that the quantisation performed for spatially
diffeomorphism-invariant Hamiltonian operators on the Hilbert space
HLQG displayed in Section 3was forced to have the unphysical property
[H, PM] � 0 (see the statement just before 3.24). But the underlying
theorem exploits in a crucial way the non-separability ofHLQG, and thus
fortunately does not hold on separable Hilbert spaces.

Before closing, note that even if this approach of taking theUV limit
can be completed and unless the manifold σ is compact, we still must
take the thermodynamic or infrared limit and remove the IR cut-off R
(compactification scale). As is well-known from statistical quantum
field theory [160], interesting phenomena related to phase transitions
can happenhere.Moreover, constructible examples of lowdimensional

interacting QFT show that the thermodynamic limit requires
techniques that go beyond what was displayed here [178–180].
However, we consider this momentarily as a ‘higher order’ problem
and reserve it for future research.
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Hamiltonian Renormalization V:
Free Vector Bosons
K. Liegener1* and T. Thiemann2

1Institute for Theoretical Physics, University of Hamburg, Hamburg, Germany, 2Institute for Quantum Gravity, FAU
Erlangen–Nürnberg, Erlangen, Germany

In a recent proposal we applied methods from constructive QFT to derive a Hamiltonian
Renormalization Group in order to employ it ultimately for canonical quantum gravity. The
proposal was successfully tested for free scalar fields and thus a natural next step is to test
it for free gauge theories. This can be done in the framework of reduced phase space
quantization which allows using techniques developed earlier for scalar field theories. In
addition, in canonical quantum gravity one works in representations that support
holonomy operators which are ill defined in the Fock representation of say Maxwell or
Proca theory. Thus, we consider toy models that have both features, i.e. which employ
Fock representations in which holonomy operators are well-defined. We adapt the coarse
graining maps considered for scalar fields to those theories for free vector bosons. It turns
out that the corresponding fixed pointed theories can be found analytically.

Keywords: renormalization group, canonical quantum gravity, Hamiltonian renormalization, constructive QFT,
lattice gauge field theory

1. INTRODUCTION

The construction of interacting four-dimensional Quantum Field Theories (QFTs) is an interesting
and fundamentally important problem in modern physics. Despite several attempts it has not been
satisfactorily completed as of today (Wightman and Gårding, 1964; Osterwalder and Schrader, 1973;
Osterwalder and Schrader, 1975; Glimm and Jaffe, 1987; Froehlich, 1978; Rivasseau, 2000; Jaffe and
Witten, 2000). Due to several challenges along the way, preliminary computations are often done in
the presence of finite infrared and ultraviolet cut-offs, most prominently in the framework of Lattice
Gauge Theories (LGT) (Creutz, 1983; Hashimoto et al., 2017). Especially considering approaches
toward Quantum Gravity, it motivated proposals where the discretization of space(-time) was
assumed to be fundamental (Loll, 1998; Giesel and Thiemann, 2007; Bahr and Dittrich, 2009; Bahr
and Dittrich, 2009; Dupuis et al., 2012; Loll, 2019). This allowed to make a wide range of predictions
by performing computations using established tools from LGT, see for example (Kogut and Susskind,
1975; Bahr et al., 2017; Dapor and Liegener, 2018; Glaser and Steinhaus, 2019; Han and Liu, 2020).

However, as it is not yet experimentally supported whether these discrete structures are
fundamental, one can independently ask if they can be understood as coarse graining of some
underlying continuumQFT and–of course–the construction of such a QFT is in itself an aspirational
goal. A possible avenue for this comes in the form of inductive limits (Kadison and Ringrose, 1986;
Janas, 1988; Saunders, 1998; Thiemann, 2007). This presents a construction by which a QFT
described by a Hilbert space H supporting a Hamiltonian operator Ĥ can in principle be obtained
from a consistent family of discretized theories described by a Hilbert space HM supporting a
Hamiltonian ĤM where M labels the different discretization scales. The necessary condition for the
existence of such an inductive limit is that there exists a family of isometric injection maps JM→M′

:
HM →HM′

forM <M′ in the sense ofM′ describing finer resolution thanM. JM→M′
must be subject
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to a certain compatibility condition in order to enable the
reconstruction of the inductive limit Hilbert space H and to
allow an interpretation of the HM as restrictions of H to coarse
resolution M. Similarly, there exists a condition for a family of
quadratic forms ĤM which guarantees the existence of a
corresponding limit quadratic form Ĥ on H.

In a recent series of paper (Lang et al., 2018a; Lang et al.,
2018b; Lang et al., 2018c; Lang et al., 2018d) we introduced a
Hamiltonian formulation of the renormalization group which is
rather close in methodology to density matrix renormalization
(Brothier and Stottmeister, 2019; Brothier, 2019; Stottmeister
et al., 2020) and projective renormalization (Okołow, 2013;
Kijowski and Okołow, 2017; Lanéry and Thiemann, 2017a;
Lanéry and Thiemann, 2017b; Lanéry and Thiemann, 2018;
Lanéry, 2018; Lanéry, 2016; Yamasaki, 1985) which in turn are
based on the seminal ideas of Wilson, Kadanov and Fisher
(Fisher, 1974; Wilson, 1975; Kadanoff, 1977). The proposal is
motivated by formulations of the renormalization group in the
covariant setting (Fisher, 1974; Wilson, 1975; Kadanoff, 1977;
Wilson and Kogut, 1974; Peter, 1998) which can be reformulated
in Hamiltonian terms using Osterwalder-Schrader
reconstruction and in fact gives rise to a natural flow of
inductive structures and Hamiltonian quadratic forms (Lang
et al., 2018a; Lang et al., 2018b). That the direct Hamiltonian
Renormalization Group delivers the correct results has been
demonstrated for the case of the massive, free scalar field in
arbitrary dimensions (Lang et al., 2018b; Lang et al., 2018c; Lang
et al., 2018d). The next challenge for this program is its extension
to gauge theories, as the most interesting models of modern
physics are phrased in this language, e.g. QCD. In this paper, we
perform the firsts steps in this direction by considering a toy
model which is a certain deformation of the reduced Hamiltonian
of Maxwell theory. The deformation consists in adding a Proca
like mass term to higher powers of the Laplacian in order that the
Fock space defined by that Hamiltonian supports holonomy
operators, which are exponentials of the connection smeared
along one-dimensional curves. The motivation for considering
such theories comes from an approach to canonical quantum
gravity (Thiemann, 2007; Rovelli, 2004) for which holonomies
play a fundamental role and are promoted to well defined
operators upon quantisation.

A possible way to proceed is as follows: prior to quantization
one can transcend to the reduced phase space, where the Gauss
constraints have been implemented. Since the gauge-invariant
(transversal) modes can be treated as scalars, the tools from (Lang
et al., 2018a; Lang et al., 2018b; Lang et al., 2018c; Lang et al.,
2018d) become applicable. With them, it is possible to analytically
determine the fixed points which lead to the correct continuum
theory.

Another approach is to implement the Gauss constraint after
quantization. This involves adapting the coarse graining maps for
scalar fields to vector bosons. In particular, this involves smearing
the field against form factors rather than scalar smearing
functions. In this paper we will incorporate the latter feature
by considering a modification of Proca theory that allows for
holonomy operators. The actual solution of the Gauss constraint
after quantization combined with coarse graining will be subject

of a subsequent paper (Liegener and Thiemann, 2020). We will
introduce the necessary coarse-graining maps for this procedure
and present explicitly how fixed points can be computed in the
new setting.

The architecture of the article is as follows:
In Section 2 we follow the route of reduced phase space

quantization. The first Subsection 2.1 reviews the framework of
our version of the Hamiltonian Renormalization Group for scalar
fields to familiarize with the notation of this paper and to enable
comparison with (Lang et al., 2018a). We start by first looking at
“classical” discretisations and define injection and evaluation
maps between theories of different resolution. These
discretisations are built, e.g., with respect to cuboidal
tessellations of our spatial manifold. The second Subsection
2.2 introduces a U(1) toy model with Gauss constraint G(x),
which is highly inspired by free Maxwell electrodynamics. As an
alternative to implementing the Gauss constraint classically, one
may introduce a Master Constraint of the form M �
(1/2)∫ d3xK(x, x′)G(x)G(x) and promote it to an operator on
the Fock space with some positive kernel K(x, x′) analogously to
(Dittrich and Thiemann, 2006). Determining the physical Hilbert
space will reduce to the space of transversal modes. This is
equivalent to first fixing the gauge on the classical level and
then performing a reduced phase space quantization of the
transversal modes. As both methods lead to the same result,
we will employ here the latter strategy. In the third Subsection 2.3
we briefly recall how the tools from (Lang et al., 2018a; Lang et al.,
2018b; Lang et al., 2018c; Lang et al., 2018d) find application and
lead to the correct fixed points.

In Section 3 we go further into the direction of LGT: we are
interested in the connection integrated along edges of the
discretizing lattices. To bring this formulation close to (Lang
et al., 2018a), in Subsection 3.1 we define the discretized fields as
the continuum fields smeared against (distributional) form
factors. For refinement, we pick the factor 2 (i.e. M→ 2M)
simply for illustrative purposes. Extensions to any other factor
appear to be possible, and we will assume that their fixed points
are independent of the refinement choice (see the discussion in
(Lang et al., 2018c)). Similar to (Lang et al., 2018a; Lang et al.,
2018b), from studying the discretized theories we deduce of how
to define the discretized Hilbert spaces for the quantum theory
and the coarse graining maps JM→M′ between Hilbert spaces of
different resolution in the second Subsection 3.2. As the two
introduced coarse graining maps–called deleting kernel and
filling kernel–are fundamentally different, it is a priori not
clear how the renormalization group behaves with respect to
both of them and whether both produce physically viable fixed
points. To investigate this, we test both of them in Section 3.3,
where we study a gauge-variant version of the toy model from the
previous section–hence not relying on a reduced phase space
quantization. This model features a Proca like mass term and
higher powers of the Laplacian in order that holonomy operators
be well-defined in the Fock space defined by that Hamiltonian.
Hence, it gives first insights into theories allowing for holonomies
and their renormalization. The fixed points can be found
analytically after one adapts the coarse graining maps and
chooses a suitable discretization: While in the Fock
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representation induced by the continuum Hamiltonian
holonomy operators do exist, as a first step we do not express
the lattice approximants of the Hamiltonian in terms of lattice
holonomies in order to simplify the analysis. In future work
(Liegener and Thiemann, 2020), in order to test the
representation that is used in Loop Quantum Gravity, we aim
at expressing the lattice Hamiltonians in terms of holonomies as
well which makes the problem substantially more complicated as
then the theory will be self-interacting.

In Section 4 we summarize our findings and conclude with
outlook for further research.

2. REDUCED PHASE SPACE
QUANTIZATION FOR ABELIAN GAUGE
THEORIES
We present a possible strategy to extend the framework of direct
Hamiltonian renormalization developed in (Lang et al., 2018a;
Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d) to Abelian
gauge theories via reduced phase space quantization. For this
purpose, Subsection 2.1 gives a short review of the framework as
it was used for scalar fields. The second subsectionmotivates a toy
model in order to test the Hamiltonian renormalization. To keep
this preliminary study simple, we choose the Abelian gauge group
U(1) and define the classical, continuum Hamiltonian in
Subsection 2.2 such that it resembles free Maxwell
electrodynamics.1 The actual computation of the
renormalization group flow is completely analogous to (Lang
et al., 2018b; Lang et al., 2018c; Lang et al., 2018d) and we will
outline the general strategy in Subsection 2.3.

2.1. Review: Classical Discretisations of
Scalar Fields
We consider an infinite dimensional, conservative Hamiltonian
system defined on a globally hyperbolic spacetime of the form
R × σ. If the spatial manifold σ is not compact we introduce an
infrared (IR) cut-off R by restricting to smearing (i.e. test)
functions which are defined on a compact submanifold, e.g. a
torus σR :� [0,R]D if σ � RD. We will assume this cut-off R to be
implicit in all formulae below, but do not display it to keep them
simple.

The dynamical variables of the system are the scalar field
ϕ ∈ C∞(σ) and its canonical conjugated momentum πϕ, i.e.

{πϕ(y), ϕ(x)} � δD(x, y). We define their smearing against test
functions f ∈ L(σ), i.e. functions from σ toRwhose properties we
leave unspecified for the moment:

ϕ[f ] :� ∫
σ
dDxϕ(x) f (x),

πϕ[f ] :� ∫
σ
dDxπϕ(x) f (x).

(2.1)

Moreover, an ultraviolet cut-offM is introduced in the form of
some cell complex CM � {c(m)}m. The elements of the cell
complex are regions c(m) ⊂ σ such that c(m)∩ c(m′) � ∅ and
∪mc(m) � σ and there are only finitely many elements, i.e.
|CM|<∞. Knowledge of the c(m) can be translated into
knowledge of the indicator (or characteristic) functions χM(m) :
σ→ {0, 1} which are defined as

χM(m)(x) :� { 1, if x ∈ c(m) ∈ CM ,
0, else.

(2.2)

Once a cell complex CM is chosen, one can introduce
discretisations of the scalar field by restricting the observables
(with respect to which the field is probed) to finite spatial
resolution given by CM via the following choice of evaluation
map:

EM : L(σ)→ LM , (2.3)

f1fM(m) :� (EMf )(m) � ε−DM ∫
σ
dDxf (x)χM(m)(x),

with LM being the set of finite sequences with |CM |many elements
and εDM � ∫ dDxχM(m)(x) which we assume to be independent of
m in the following. On the other hand, given a fM : Z|CM | :�
{0, 1, . . . , |CM | − 1}→R we can embed it into the continuum via
an injection map:

IM : LM → L(σ), (2.4)

fM1(IMfM)(x) :�∑
m

fM(m)χM(m)(x) �: fM(⌊x⌋χM). (2.5)

We have introduced the map ⌊x⌋χM :� m such that
χM(m)(x) � 1, which is always well-defined due to the
properties of CM . Defined in this way, EM serves as the left
inverse of IM :

EM+IM � idLM . (2.6)

Turning toward comparing discretisations of different
resolutions with each other, we are mostly interested in
families of cell complexes {CM}M such that they define a
partially ordered and directed set. This can happen, e.g.,
with defining M <M′ iff ∀ c′(m′) ∈ CM′ there is c(m) ∈ CM

such that c′(m′) ⊂ c(m).2 It corresponds to viewing a
function defined on coarse resolution as a function of finer
resolution. Moreover, we restrict to finite partitions, meaning
in particular that the number of cells c′(m′) contained in any
c(m) is finite: NM′ ,M(m)<∞. (In (Lang et al., 2018b; Lang

1In the previous work (Bahr et al., 2011) in addition to free scalar fields also free
gauge theories such as Maxwell theory and linearized gravity were renormalized.
While there are some similarities, the difference to the scalar field treatment of
(Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d) and the present work is as
follows: First, while (Bahr et al., 2011) is concerned with the renormalization of
actions, we are concerned with renormalization of vacua, Fock representations and
Hamiltonians. Next, (Bahr et al., 2011) provides explicit formulae for 1 + 1
dimensions while we treat 1 + D dimensions for any D. Finally, (Bahr et al.,
2011) adapts the coarse graining map to the gauge symmetry while we perform a
manifestly gauge invariant reduced phase space quantization. With respect to the
latter issue, see also (Liegener and Thiemann, 2020).

2By demanding that it is a proper subset, we guarantee that there are multiple
elements in CM’ forming a partition of c(m).
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et al., 2018c; Lang et al., 2018d) it was NM′,M
(m) � 2D for all m

but this simplification is merely to ease computations.). For
the purpose of comparing different discretisations with each
other, one introduces a map between the discretisations with
respect to two cell complexes CM and CM′ called coarse
graining IM→M′ : LM → LM′ if M <M′. The coarse graining
map is a free choice of the renormalization group (RG)
process whose flow it drives, and its viability can be tested
only a posteriori. In (Lang et al., 2018b; Lang et al., 2018c;
Lang et al., 2018d) the main focus rested on choosing the
concatenation of evaluation and injection for different
discretisations as coarse graining:

IM→M′ � EM′+IM . (2.7)

However, let us mention that already in (Lang et al., 2018c)
also a second choice, called deleting kernel, was investigated: Let
M <M′ and choose for any m ∈ M a representative m′

o(m) ∈ M′

where c′(m′
o(m)) ⊂ c(m). Also, let r be a mapping such that

rm,m′
� δ

m′,m
′
o(m), i.e. selecting for m′ ∈ M′ the representative

m′
o(m) of the coarse cell c(m). Then

(IDelM→M′ fM)(m′) � ∑
m ∈ M

NM′ ,M(m)fM(m)rm,m′ . (2.8)

In the quantum theory of free scalar fields both maps could be
used to build injections that led to physically viable fixed point
theories. However, it was only choice (2.7)which turned out to be
cylindrically consistent, i.e.

IM′+IM→M′ � IM . (2.9)

Basically, this means that injection into the continuum can be
done independently of the discretization on which we consider
the function to be defined, which is a physical plausible
assumption.

We finish this section by presenting two examples for possible
choices of cell complexes CM in case of the torus σR � [0,R]D:

(i)Discretization using regular cubes. The first example is the
choice employed in (Lang et al., 2018a; Lang et al., 2018b; Lang
et al., 2018c; Lang et al., 2018d) which introduced a cubic lattice
ofM ∈ N points in each direction and with spacing εM � R/M.
Then, the characteristic functions of CM take the following
form:

0χM(m)(x) �∏D
k�1

χM[mk](xk)with

χM[mk](xk) � { 1, if xk ∈ [εMmk, εM(mk + 1)),
0, else.

(2.10)

However, this is by far not the only possibility. In order to
demonstrate that nothing is special about the choice of
tessellation of σ, we will use in Section 3 the following cell
complexes:

(ii)Discretization using parallelepipeds. We consider
D-dimensional tessellations of the following form: at least
one axis of the parallelepiped is aligned with one of the
coordinate axes and a second axis of the parallelepiped
connects diametral corners of an elementary hypercube.
Then the remaining axes are either aligned with the
coordinate axes or explore all possibilities to connect
diametral corners of lower dimensional hypercubes. This
yields two possibilities in D � 2 and nine possibilities in
D � 3. We can formalize this as follows: Let i, j � 1, . . . ,D and

i,jχM(m)(x) :� ∫ dDyδ(yi − εMmi,∑
k≠ i
(yk − εMmk))(∏

k≠ i

χM[mk](yk))
×χM[mj](xj −∑

k≠ j
(xk − εMmk))(∏

k≠ j

δ(yk, xk)). (2.11)

In D � 2 the explicit form of the two possible parallelograms
reads:

1,1χM(m)(x) � 2,1χM(m)(x)
� χM[m2](x2)χM[m1 −m2](x1 − x2), (2.12)

1,2χM(m)(x) � 2,2χM(m)(x)
� χM[m1](x1)χM[m2 −m1](x2 − x1). (2.13)

InD � 3 the fundamental cells take the form of parallelepipeds.
While nine different cases exist, we display only the explicit
expressions for i � 1:

1,1χM(m)(x) � χM[m1 −m2 −m3](x1 − x2

− x3)χM[m2](x2)χM[m3](x3), (2.14)
1,2χM(m)(x) � χM[m2 −m1 −m3](x2 − x1 − x3)χM[m1 −m3]

× (x1 − x3)χM[m3](x3),
(2.15)

1,3χM(m)(x) � χM[m3 −m1 −m2](x3 − x1 − x2)χM[m1 −m2]
× (x1 − x2)χM[m2](x2),

(2.16)

and for i � 2, 3 similar functions with permutations of the indices
are found.

2.2. Phase Space Reduction of a Continuum
Toy Model
This subsection motivates and introduces a classical Hamiltonian
system subject to the Gauss constraint for Abelian gauge group
U(1) in D � 3 on a compact torus σ � [0, 1]3. The field content
will be a U(1)-connection Aa and the corresponding electric
vector field Pa. Due to U(1) being 1-dimensional, there is only
one constraint per point, which reads:

G(x) � (zaPa)(x). (2.17)

The most prominent example of a U(1) gauge theory is free
Maxwell electrodynamics:
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H :� εo
2
∫ d3x(Pa(x)Pa(x) + c2A⊥

a (x)δab(ω2A⊥)b(x)), (2.18)

with A split into transversal and longitudinal part respectively:

A⊥
a (x) � Aa(x) − A||

a(x),
A||

a(x) � (za1ΔzbAb)(x). (2.19)

Further, ϵo is the electric constant of units [J/(mV2)], but in
the following we set c � εo � 1. In Maxwell electrodynamics it is
ω2 � −Δ with Δ being the Laplacian. We modify (2.18) by
replacing Δ with

ω2 � 1
p2(n−1)

(−Δ + p2)n, (2.20)

with some Proca like mass term p> 0 and n> 0. This is merely a
generalization as standard Maxwell theory can be reobtained in
the limit p→ 0 and n � 1.

Our goal is to go to the reduced phase space and therefore we also
split the electric field Pa into Pa

⊥ and Pa
|| defined similar to (2.19):

Pa
⊥(x) � Pa(x) − Pa

||(x),

Pa
||(x) � (za1ΔzbPb)(x). (2.21)

Due to the fact that the transverse modes are gauge-invariant,
i.e. {G[Λ],A⊥

a (x)} � {G[Λ], Pa(x)} � 0 for all Λ ∈ L(σ), it follows
that the Hamiltonian (2.18) is gauge-invariant, too.

The unreduced phase space is equipped with Poisson brackets
{Pa(x),Ab(y)} � δabδ

(3)(x, y). As is standard, we perform a
canonical transformation to:

{Pa
||(x),A||

b(y)} � 1
Δz

azbδ
(3)(x, y),

{Pa
⊥(x),A⊥

b (y)} � (δab − zazb
Δ )δ(3)(x, y),

{Pa
⊥(x),A||

b(y)} � {Pa
||(x),A⊥

b (y)} � 0.

(2.22)

Next, we reduce to the subspace A|| � P|| � 0 and go into
Fourier space

P̂
a

⊥(k) :� ∫ d3xeik·xPa
⊥(x), Â

⊥
a (k) :� ∫ d3xeik·xA⊥

a (x), (2.23)

which can be decomposed as

P̂
a

⊥(k) � εa1(k)P̂1(k) + εa2(k)P̂2(k),

Â
a

⊥(k) � εa1(k)Â1(k) + εa2(k)Â2(k), (2.24)

with a choice of vector fields ε1(k), ε2(k) which are orthonormal
to each other and orthogonal to ka. Such a choice can always be
made and implies that the symplectic structure between P̂, Â is of
canonical form, i.e. for I, J ∈ {1, 2}

{P̂I(k), ÂJ(k′)} � δIJδ
(3)(k, k′). (2.25)

On this subspace the Gauss constraint is trivially solved, and
all gauge-degrees of freedom have been removed. Expressed in

these variables the continuum Hamiltonian of our model takes
the form:

H � ∫ d3k∑
I�1,2
(∣∣∣∣P̂I(k)

∣∣∣∣2+ω(k)2∣∣∣∣ÂI(k)
∣∣∣∣2). (2.26)

2.3. Scalar Field Renormalization With
Multiple Field Species
In this subsection we discretize the model (2.26) with ω from
(2.20) with the scalar field techniques introduced in (Lang et al.,
2018a). Due to the form of the Hamiltonian we are close to the
analysis in (Lang et al., 2018b; Lang et al., 2018c; Lang et al.,
2018d) to which we refer the reader for all details. Indeed, we
can understand the Hamiltonian as two decoupled field
species (PI ,AI) labeled by I � 1, 2, where we use the
Fourier inversion:

PI(x) :� 1
2π
∫ d3ke−ik·xP̂I (k),

AI(x) :� 1
2π
∫ d3ke−ik·xÂI(k). (2.27)

We introduce a family of discretisations of the spatial manifold
σ in terms of cubic cell complexes as described in the previous
subsection such that NM,2M(m) � 2D for all
m ∈ Z3

M � {0, 1, . . . ,M − 1}3. With the evaluation maps EM
from (2.3) we discretize both field species:

PM,I(m) :� PI(mεM),
AM,I(m) :� ε3M(EMAI)(m). (2.28)

We must also introduce a discretization of ω which is
supposed to map from LM → LM . Since we have two field
species I � 1, 2 it could turn out that each supports its own
covariance. To take this possibility into account, we will keep the
discretisations ωM,I dependent on the field species I in the
following. However, as initial discretization we take them to be
equal, that is:

ωM,1 � ωM,2 � ω(0)
M ≡

1
p2(n−1)

(−ΔM + p2)n, (2.29)

with ΔM some initial discretization such that limM→∞ω(0)
M � ω.

Since the Hamiltonian is essentially of free harmonic oscillator
form for each I, it motivates to introduce the discrete annihilation
and creation fields:

aM,I(m) :� 1���
2Z

√ ( �������
ωM,I/ε3M√

AM,I(m) − i
�������
ε3M/ωM,I

√
PM,I(m)),

(2.30)

such that

HM � Z∑
I�1,2

∑
m ∈ Z3

M

aM,I(m)(ωM,IaM,I)(m). (2.31)
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For any resolution M we define the corresponding Hilbert
spacesHM,I for specie I with Fock vacuum Ω(0)

M ∈ HM :� ⊗IHM,I

annihilated by the operators corresponding to (2.30), i.e.

âM[fM] :�∑
I

∑
m ∈ Z3

M

âM,I(m)fM,I(m), (2.32)

(with fM,I(m) ∈ L2M :� ℓ2(Z3
M)2). Thus, ΩM is simultaneously

annihilated by the quantization of (2.31). Denoting by 〈., .〉HM

the scalar product on HM it follows

〈ΩM , e
iÂM[fM]ΩM〉HM

� e−
Z
4 〈fM,1 ,ω− 1

M,1 fM,1〉 e−
Z
4 〈fM,2 ,ω− 1

M,2 fM,2〉 (2.33)

Each HM can be represented as Hilbert space L2(R2M3
, d]M)

where ]M � ]M,1]M,2 is a Gaussian measure with covariance cM �
diag(cM,1, cM,2) and cM,I � (Z/2)ω−1

M,I . Hence, we have at our
disposal an initial family of Osterwalder-Schrader data
(HM , ĤM , ]M) which under a renormalization step, does not
change its general structure (Lang et al., 2018b) but leads to a new
family of (Gaussian) covariances, i.e. {c(n)M,I}M → {c(n+1)M,I }M . Our
goal is to find a family of measures that remains invariant under
the coarse graining induced by the maps IM→ 2M defined in
Subsection 2.1.

Indeed, the fact that our model is essentially two copies of a
free scalar field allows making use of many tools developed in
(Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d). We
recall from Section 3.1 of (Lang et al., 2018d) that determination
of the fixed points for any power n in (2.20) can be reduced to
studying the renormalization group flow for n � 2 at the cost of
an additional contour integral by a standard application of the
residue theorem: Starting from the initial covariance:

c(0)M � p(n−1)(Z/2)(−ΔM + p2)n/2 � p(n−1)(Z/2)
2πi

∮
c
dko

1
kn/2o

1
−ΔM + p2 − ko

,

(2.34)

with γ being a contour consisting of a part along iR (excluding the
origin) and an arc closing at infinity on the positive half plane. For
brevity, we relabel p2 :� p2 − ko. Now, since the RG flow is linear
and only changes ΔM , determination of the fixed points boils
down to the case n � 2 up to said contour integral along γ.

As we had already seen in (Lang et al., 2018b) that the RG flow
is easiest studied in the Fourier transformed representation, we
recall the discrete Fourier transform and its inverse on LM for any
D (with kM � 2π/M)

fM(m) � ∑
l ∈ ZD

M

f̂ M (l)eikMl·m, f̂ M(l) � M−D ∑
m ∈ ZD

M

fM(m)e−ikMl·m.

(2.35)

Going to the discrete Fourier picture and assuming
translational invariance of the covariance, we know that the
kernel of the covariance at the fixed point can be written as:

c*M,I(m) � p(n−1)(Z/2)
2πi

∮
c
dko

1
kn/2o

∑
l ∈ Z3

M

eikMl·mĉ*M,I(l). (2.36)

Further, it was observed in (Lang et al., 2018d) that the
renormalization group flow decouples for each direction and

thus the covariance can be transformed via another application of
the residue theorem into:

ĉ*M,I(l) �
1

(2πi)3
⎛⎝∏3

b�1
∮

c
dzb⎞⎠ 1

p2 −∑bzb
∏3
b�1

ĉ*M,I,b(lb; zb).

(2.37)

For IM→ 2M from (2.7) with a discretization using regular
cubes as (2.10) the fixed point obtained from the flow starting
with the fraction in (2.34) has been already computed in (Lang
et al., 2018b) and reads:

ĉ*M,I,b(l, z) � ĉM(l, q) :
� ε2M
q3

q cosh(q) − sinh(q) + (sinh(q) − q)cos(kMl)
cosh(q) − cos(kMl) ,

(2.38)

where q � εM
�
z

√
. Note that indeed IM→ 2M is the same in each

direction b and the same for both field species I, hence we obtain
the same fixed point for both I.

For the deleting kernel IDelM→ 2M from (2.8) the fixed point can
be computed to be3

ĉ*M,I,b(l, z) � ĉDelM (l, q) :� ε2M
q

sinh(q)
cosh(q) − cos(kMl). (2.39)

Thus, we finished the analysis of the direct Hamiltonian
Renormalization applied to our toy model for a gauge theory
which has been reduced to the gauge-invariant subspace before
quantization. Keep in mind that in Section 3.2.2 of (Lang et al.,
2018b) it was already explained that renormalization of the
Hamiltonian leads to replacing in the discretization (2.31) the
initial covariance with the fixed pointed one, that is ωM,I1ω*

M.
Also, since both field species behaved exactly the same, i.e.

ωM,I � ωM , the same universality and continuum properties
discussed in (Lang et al., 2018c; Lang et al., 2018d) apply to
this case as well.

3. RENORMALIZATION WITH FORM
FACTORS FOR FREE VECTOR BOSONS

In this section we turn toward those discretisations for which the
fields are discretized with respect to the edges of some finite graph.
This brings us closer to lattice gauge theories which are typically
formulated in terms of holonomies, that is exponentials of the
connection. For this purpose, Subsection 3.1 introduces
discretisations where the fields are integrated along one-
dimensional curves and their canonical conjugated pairs againstD −
1 faces, whereD is the number of spatial dimensions.We can express
the discretization in a language maximally close to (Lang et al.,
2018c) and the previous section, if we smear both objects with form
factors of curves and D − 1 faces respectively.

3Note that the earlier work (Lang et al., 2018c) contains a typo: While in eqn (3.61)
(in (Lang et al., 2018c)) we quote obviously the initial covariance, we missed to
explicitly write the fixed point given by (2.39) above.
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Due to our earlier considerations we have an understanding
how sensible injection maps on the quantum level can be chosen,
which we do in Subsection 3.2 calling them “deleting” and
“filling” kernel respectively. These relate the quantities of some
resolution M to those on a finer resolution pM, where p ∈ N can
be any arbitrary factor. However, to keep the notation simple, we
will use throughout this paper the choice p � 2.

Afterward, we want to investigate a toy model in order to test
how the different coarse graining maps and their corresponding
fixed pointed theories behave with respect to each other. As we
want to study models which allow for the existence of holonomy
operators in the Fock representation that supports the continuum
Hamiltonian, we have to introduce a deformation of free Maxwell
theory. This deformation is discussed in Subsection 3.3.

In Subsections 3.4 and 3.5 we will again employ tools
developed in (Lang et al., 2018b; Lang et al., 2018c; Lang
et al., 2018d) to determine the fixed pointed Hilbert spaces for
the coarse graining maps defined by the deleting as well as the
filling kernel. The task amounts to finding a suitable fixed pointed
covariance defining a Gaussian measure on the Hilbert spaces of
finite resolution, which we will derive in closed form for both
maps. This demonstrates robustness of the continuum theory
even under drastic changes of the coarse graining procedure.

3.1. Injection and Evaluation Maps
As in the previous section, we consider a (D + 1)-dimensional
manifold of the form R × σ on which an infinite dimensional,
conservative Hamiltonian system is defined. Via an IR cut-off we
restrict to the compact submanifold σR, omitting the cut-off R in
all subsequent formulas.

Let the phase space be coordinatized by vector fields Pa and
covector fields Aa with a � 1, . . . ,D which read in terms of
smearing against test functions f , g ∈ L(σ)D

P[g] :� 〈P, g〉 :� ∫
σ
dDxPa(x)ga(x), (3.1)

A[f ] :� 〈A, f 〉 :� ∫
σ
dDxAa(x)f a(x), (3.2)

and which have elementary Poisson brackets:

{P[g], P[g ′]} � {A[f ],A[f ′]} � 0,

{P[g],A[f ]} � κo〈g, f 〉 :� κo∫
σ
dDxga(x)f a(x), (3.3)

with κo being the coupling constant of the theory, which we set to
one in the following: κo � 1.

We discretize the theory by introducing smearings of Aa along the
1-dimensional edges of some dual cell complex. For the case of
σR � [0,R]D, it suggests itself to consider regular lattices, where at
each vertex there are 2Dmany edges incident. In the following, we will
restrict to this choice, to keep the notation simple. Note that the edges of
the lattice are understood to be paths, i.e. semianalytic curves. The set of
all paths forms the groupoidP, which is closed under concatenation of
elements and features an inverse element for each path–however there
is no natural identity element on P. We understand an element e ∈ P
as the embedding e : [0, 1]→ σR. Since we want to focus for the
purpose of this article on regular lattices (e.g. cubic lattices for D � 3),

we are mostly interested in a subset of P: Given a lattice cM , whereM
denotes the number of vertices in each direction, we denote the set of
oriented edges in cM by PM ⊂ P.

A smearing of the field Aa against an edge can be obtained by
allowing in (3.2) not only test functions in L(σ) but distributions
such as form factors Fe for any edge e ∈ PM , i.e.:

(Fe)a(x) � ∫
e
dyaδ(D)(x, y). (3.4)

Similarly, since we are interested in those lattices cM which
stemmed from some dual cell complex, we can associate with
each edge e a choice of some (D − 1)-dimensional face S(e), such
that S(e)∩e′ � ∅ iff e≠ e′ and at the unique point S(e)∩e its
normal points in the same direction as _e. Then, we can also
introduce the dual form factors of the face S, e.g.:

(f S)a(x) � ∫
S
dyb∧dyc

εabc
2
δ(3)(x, y) if D � 3, (3.5)

(f S)a(x) � ∫
S
dybεabδ

(2)(x, y) if D � 2. (3.6)

Note that there is a natural non-distributional Poisson bracket
between the form factors for curves and the dual form factors for faces:

〈Fe, f
S(e′)〉 � δee′ . (3.7)

We can now restrict the set of our observables with respect to
which the physical configuration (Ea,Aa) is probed. We want to
keep only those observables that can be understood as restricting Aa

to the edges of a lattice and Ea to its dual faces. This can be achieved
by introducing injection and evaluationmaps between test functions
in L(σD) and functions on the lattice LM ≡ L(PM ,R):

IDelM : LM → L(σ)D
fM1(IDelM fM)a(x) :� ∑

e ∈ PM

(Fe)a(x)fM(e), (3.8)

E′
M : L(σ)D → LM

f a1(E′
M f )(e) :� 〈f , f S(e)〉. (3.9)

Using property (3.7) one easily verifies that E′
M+I

Del
M � idM .

Further, we can understand

A[IDelM fM] � ∫ d3xAa(x)(IDelM fM)a(x) � ∑
e ∈ PM

A[Fe]fM(e), (3.10)

as Aa restricted to the lattice cM . We introduced a superscript on
IDelM and call it in the following “deleting kernel” due to its
similarity with (2.8).4, Yet, this construction is far from unique
and in order to demonstrate this we introduce a second choice
called “filling kernel.” In its spirit, this map is constructed to be
similar to the standard choice employed for scalar fields, i.e. (2.3).

4Deleting kernels are favored in the literature on cylindrical consistency of gauge
theories, see for example the projective spaces of the Ashtekar-Lewandowski
Hilbert space in the context of Loop Quantum Gravity (Ashtekar et al., 1995;
Thiemann, 2007; Rovelli, 2004). Note however, that the Ashtekar-Lewandowski
Hilbert space for each edge is a Hilbert space over SU(2) in contrast to the Fock
space we consider in this manuscript.
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Due to the multiple choices of cell complexes used to define (2.3),
we have an ambiguity regarding the injection map for the “filling
kernel.” We restrict us to the choices of parallelepipeds (2.11)
since discretisations with regular cubes have been extensively
studied in the papers (Lang et al., 2018b; Lang et al., 2018c; Lang
et al., 2018d) and this new choice will demonstrate the robustness
of the renormalization procedure under considerably drastic
changes. For i ∈ {1, . . . ,D}, we define

IFil,iM : LM → L(σ)D, (3.11)

fM1(IFil,iM fM)a(x) � 1
2D−1

∑
e ∈ PM

∑
e′ ∈ P2M

(Fe′)a(x)fM(e)rFil,iee′
, (3.12)

with

rFil,iee
′
� { δ _e(0), _e

′
(0)δ _e(0),̂b, if Im(e′) ⊂ i,bχ(e(0)),

0, else,
(3.13)

where Im(e′) denotes the image of e′ : [0, 1]→ σ, i,bχ is defined
in (2.11), b̂ is the normal vector of unit length pointing in
direction b and δ

_e(0),̂b denoting the Kronecker delta in the
tangent space, i.e. it is non-vanishing only if _e(0) � b̂. Note that
the cases in (3.13) are meant to be checked for all possible
b � 1, . . . ,D separately.

It is easy to check that for a suitable choice of faces S(e) we get
E′
M+I

Fil,i
M � idM for all i. We recall that the parameter i of the filling

kernel determines the choice of parallelepipeds from (2.11) and
thus all derived quantities in the coarse graining procedure will
depend on it. In what follows we fix i ∈ {1, 2, 3} and check the
coarse graining maps for all of them separately, thus not
displaying the label i explicitly.

3.2. Coarse Graining for Deleting and Filling
Kernel
In this subsection we concatenate injection and evaluation maps
to coarse graining maps IM→ 2M both for deleting and filling kernel
on the classical level and use IM→ 2M to build isometries between
Fock quantized Hilbert spaces of different resolutions.

3.2.1. Classical Coarse Graining Maps
First, we introduce the coarse graining maps for the deleting
kernel from LM → L2nM via: (n ∈ N)

IDelM→ 2nM :� (ε2nM
εM
)α

E2nM+I
Del
M , (3.14)

with α ∈ R. They relate a set of test functions on coarse resolution
Mwith a set of test functions at finer resolution 2nM. Their action
on test functions can be written explicitly as:

f2nM(e′) :� (IDelM→ 2nMfM)(e′) � 1
2nα

∑
e ∈ PM

rDelee
′
fM(e), (3.15)

where e′ ∈ P2nM and

rDelee′ � { 1, if e′ ⊂ e,
0, else.

(3.16)

The free parameter α ∈ R can be chosen in such a way that the
condition of cylindrical consistency is satisfied, that is for all A and
fM ∈ LM :

A[I2nM+IM→ 2nMfM] � A[IMfM]. (3.17)

Using that Fe � Fe1 + Fe2 + . . . + Fe2n if e � e1+e2+ . . .+e2n we
find

A[IDel2nMI
Del
M→ 2nMfM] � ∫ dDx ∑

e′ ∈ P2nM

Aa(x)(Fe′ )a(x)(2−αn ∑
e ∈ PM

fM(e)rDelee′ )
� ∫ dDx ∑

e ∈ PM

Aa(x)fM(e)(2−αn ∑
e′ ∈ P2nM

(Fe′ )a(x)rDelee′ )
� ∫ dDx ∑

e ∈ PM

Aa(x)2−αn(Fe)a(x)fM(e) � A[IDelM fM]2−αn.
(3.18)

Hence, it must be α � 0.
If we were to introduce a coarse graining map of the filling

kernel as the analogue of (3.14), a calculation similar to (Subsection
3.2.1) demonstrates, that the latter is not cylindrical consistent unless
Aa is constant over each i,bχ. However, requiring cylindrical
consistency for the classical coarse graining map is not necessary
per se, thus this finding does not rule out the filling kernel. The
important property for the inductive limit construction is the
compatibility condition between the quantum isometries, which
follows from the weaker condition

I
2nM→ 2n′M

IM→ 2nM � I
M→ 2n′M

, (3.19)

with n< n′ ∈ N. Indeed, (3.19) can be achieved also for the filling
kernel when defining IM→ 2nM as the analogue of (3.15):

f2nM(e′) :� (IFil,iM→ 2nMfM)(e′) � 1
2n
∑

e ∈ PM

rFil,i
ee′

fM(e), (3.20)

with e′ ∈ P2nM and rFil,i
ee′

from (3.13).
Lastly, it turns out–for both filling and deleting kernel–that

demanding the map IM→ 2nM to be an isometry, i.e.

〈IM→ 2nMfM , IM→ 2nM
~f M〉2M � 〈fM ,~f M〉M,∀fM ,~f M , (3.21)

can be used to fix an auxiliary scalar product on LM :

〈fM ,~f M〉M :� εDM ∑
e ∈ PM

fM(e)~f M(e). (3.22)

3.2.2. Isometric Injections on the Quantum Level
In this section we construct coarse graining maps between Hilbert
spaces corresponding to different resolutions. These maps drive
the renormalization group (RG) flow between the inner products
on the Hilbert spaces HM . Once a fixed point family of Hilbert
space measures is found, it can be used to obtain a continuum
Hilbert space via the method of inductive limits (Kadison and
Ringrose, 1986; Janas, 1988). To use the latter toolbox, certain
requirements must be met for the coarse graining maps JM→ 2M : It
must be guaranteed that JM→ 2M are isometric injections, i.e.

J†M→ 2MJM→ 2M � idHM , (3.23)

and that they are subject to the compatibility condition, i.e. for
each n< n′ ∈ N:
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J
2nM→ 2n′M

+JM→ 2nM � J
M→ 2n′M

. (3.24)

These two properties were also imposed for scalar field models
and indeed the same procedure of constructing the injections
from (Lang et al., 2018a) can be used again. We utilize a Fock
quantization of the discretized field AM � A+IM . Upon choosing
the vacuum vector ΩM ∈ HM of the discretized Hamiltonian, we
consider the dense linear span of vectors of the form

exp(iÂM[fM])ΩM , (3.25)

where

ÂM[fM] :� εM ∑
e ∈ PM

ÂM(e)fM(e) � εM ∑
m ∈ ZD

M

∑D
a�1

ÂM,a(m)fm,a(m),

(3.26)

and we denote the edge e � em,a with initial vertex m and
direction a.

In the same manner as in (Lang et al., 2018a), we define the
injections between Fock spaces as:

JM→ 2M(eiÂM[fM]ΩM) :� eiÂ2M[IM→ 2MfM]Ω2M , (3.27)

where IM→ 2M is the respective version of its action on test
functions for deleting or filling kernel.

By construction, this map is maximally parallel to the case of scalar
fields and therefore many properties can be transferred to this setting.
We refer to (Lang et al., 2018a; Lang et al., 2018b) for further details.

3.3. Toy Model: Definition and
Discretization for a Proca Like Theory
In this subsection, we define a toy model which allows for
holonomy like operators in the continuum, i.e. exp(iÂ[Fα])
has finite expectation values for α being some closed curve in
σ. Then, we discretize this theory with respect to smearings along
the curves of a lattice cM as discussed before.

3.3.1. Definition of the Continuum Model
In close analogy to the model of Section 2.3 we study a field
theory with D � 3 spatial dimensions and Hamiltonian

H :� εo
2
∫ d3x(Pa(x)Pa(x) + c2Aa(x)(ω2A)a(x)), (3.28)

where in the following we set c � εo � 1. In order to allow for the
continuum QFT to support the exponentials of Wilson loops as
operators, i.e. exp(iÂ[Fα]) with some closed curve, α we chose

ω2 � 1
p2(n−1)

(−Δ + p2)n, (3.29)

with some mass term p> 0 and n≥ 4 to ensure existence of the
covariance following from (3.28) when evaluated on form factors
Fα as in (3.4):

Lemma: Let α : [0, 1]→ σ be a (closed) curve. The continuum
vacuum expectation value of the holonomy along α is finite if
n≥ 4 and p> 0, i.e.:

〈Ω, eiÂ[Fα]Ω〉H� e−Z〈Fα ,ω
−1Fα〉/4<∞. (3.30)

Proof: We consider only the case n � 4 as higher powers are
automatically included due to positive definiteness of −Δ and
p> 0. The vacuum expectation value will be finite if 〈Fα,ω−1Fα〉
remains finite with ω from (3.29). It suffices to check whether

∫ d3k(p2 + k2)2(F̂α)a(k)(F̂α)a (k)<∞, (3.31)

where

(F̂α)a (k) � ∫ d3xeik·x(F̂α)a(x) � ∫
α
dya ∫ d3xeik·xδ(3)(x, y)

� ∫
α
dyaeik·y � ∫1

0
dt _αa(t)eik·α(t).

(3.32)
First, we give a bound from above for the absolute value of F̂α%%%%F̂α(k)

%%%%≤ β :� sup
a�1,2,3;t ∈ [0,1]

| _αa(t)|. (3.33)

Using this approximation and going to spherical coordinates
d3k→ r2sin(θ) dr dθ dφ we get:

∫
R3

d3k(p2 + k2)2(F̂α)a (k)(F̂α)a (k)≤ β2∫
R3

d3k(k2 + p2)2
� 4πβ2 ∫∞

0

r2dr(r2 + p2)2 � 2πβ2∫
R

r2dr(r2 + p2)2 � 2πβ2

p
∫

R

x2dx

(x2 + 1)2

� π2β2

p
<∞,

(3.34)

where we used the residue theorem in the last step. Hence, the
vacuum expectation value is well-defined.

Conversely, a similar calculation shows that for lower powers
of n in ω the vacuum expectation value diverges (and due to
(3.34) also if p � 0). One should therefore either change the test
functions and not use form factors or study different theories. In
principle, we could consider free Maxwell electrodynamics, the
Proca action or even the free graviton theory and study their
behavior under a renormalization group flow with the methods of
(Lang et al., 2018a). But here we have altered the Hamiltonian H
in order to ensure that the expectation values of holonomies with
respect to the vacuum (which is annihilated by H) are well-
defined. This happens by introducing a higher order polynomial
in the Laplacian (3.29)which of course breaks Lorentz invariance.
However, our model just serves to test theories with well-defined
holonomy operators (but not well-defined electric flux operators)
in the usual Fock space setting. Ultimately, we will be interested in
coupling general relativity to gauge theories. In this case, theories
such as Loop Quantum Gravity (Thiemann, 2007; Rovelli, 2004;
Ashtekar and Lewandowski, 1995) indicate that insertion of such
Lorentz invariance breaking higher polynomials is not
necessary(Thiemann, 1998; Liegener and Thiemann, 2016).
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3.3.2. Initial Discretization on Cubic Lattice
In order to test the coarse graining maps on the quantum level, we
need to first introduce a discretization of the phase space of
(Pa(x),Aa(y)) with a � 1, 2, 3 with symplectic structure (3.3)
and a discretization of the Hamiltonian (3.28).

We work on a cubic lattice, with M vertices in each direction
labeled by m ∈ ZD

M � {0, 1, . . . ,M − 1}D with D � 3. At each
vertex m we have three in- and three outgoing edges. We use
smearings against form factors to discretize the Hamiltonian.
Denoting the edges on the lattice by em,a (labeled by initial point
m and a direction a � 1, 2, 3 and _e(t) � â for all t ∈ [0, 1]) we
have

AM,a(m) :� A[Fem,a] � ∫[0,1]
dtAa(em,a(t)), (3.35)

Pa
M(m) :� P[f S(em,a)] � ∫

[0,1]2
dudvPa(Sem,a(u, v)), (3.36)

Similar to Section 2.3 we interpret this structure as three
different field species a � 1, 2, 3 (This is due to D � 3. To make
the distinction between directions and field species clear, we
will write in this section an arbitrary D for directions but keep
a � 1, 2, 3 for the field species). Moreover, at each m the field
specie a is supported only on edges along direction â. In order
to distinguish the a priori different species, we associate to each
of them their own discretised ωM,a, while of course our initial
discretization is such that

ωM,1 � ωM,2 � ωM,3 � ω(0)
M , (3.37)

with ω(0)
M some discretization of (3.29), such that

limM→∞ω(0)
M � ω.5

Since the Hamiltonian is of free harmonic oscillator form for
each a, we can repeat the discussion from Section 2.3: We
introduce the discrete annihilation and creation fields

aM,a(m) :� 1��
2�h

√ ( ������ωM,aεM
√

AM,a(m) − i
������
ωM ,aεM

√ −1Pa
M(m)),

(3.38)

such that

HM � �h ∑
a�1,2,3

∑
m ∈ ZD

M

aM,a(m)(ωM,aaM,a)(m), (3.39)

For each specie a, we define the corresponding Hilbert spaces
HM,a with Fock vacuum Ω(0)

M ∈ HM :� ⊗aHM,a annihilated by
each (3.38) and thus simultaneously by (3.39). Denoting by
〈., .〉HM

the scalar product on HM it follows (with
fM,a(m) ∈ LM :� L(PM ,R) ≡ ℓ2(ZD

M)3)

〈ΩM , e
iÂM[fM]ΩM〉HM

� ∏
a�1,2,3

e−(Z/4)〈fM,a ,ω−1
M,afM,a〉�e−〈fM ,cMfM〉/2,

(3.40)

with covariance cM � diag(cM,1, cM,2, cM,3) and cM,a � (Z/2)ω−1
M,a.

As Gaussian measures do not change their structure under coarse
graining (Lang et al., 2018b) the task boils down to find a fixed pointed
family {c*M}M for the coarse grainingmaps JM→ 2M of both the deleting
as well as the filling kernel. Then, we can also use that the fixed pointed
Hamiltonian is given by (3.39) when replacing ωM,a1ω*

M,a.
Also, we discussed already in Section 2.3 that the fixed point

for choice n≥ 4 in (3.29) can be achieved by finding the fixed
point of n � 2 due to the fact that both are related via the contour
integral (2.34) and replacing p21p2 � p2 − ko.

We end this section by choosing an explicit initial
discretization of the covariance, i.e. c(0)M � diag(c(0)M,1, c

(0)
M,2, c

(0)
M,3),

which acts on test functions fM,a(m) ∈ L3M . We assume that every
field specie has a translational invariant covariance, i.e. its kernel
is for m, n ∈ ZD

M :

cM,a(m, n) � cM,a(m − n), (3.41)

which holds true for the following initial discretization of the
derivatives inside

ω2
M � ⎛⎝ −∑D

b�1
zMb z

b
M + p2⎞⎠, (3.42)

with:

(zMb fM)a(m) :� 1
εM
[fM,a(m) − fM,a(m − b̂)], (3.43)

(zbMfM)a(m) :� 1
εM
[fM,a(m) − fM,a(m + b̂)], (3.44)

and b̂ is the normal vector pointing in direction b. We see that cM
does not mix the different species a, therefore we can apply the
discrete Fourier transform from (2.35) on each subspace of fixed
a to get as initial starting point for the covariance (see (Lang et al.,
2018b) for details):

ĉ(0)M,a(l) �
Z/2

p2 − ε−2M∑D
d�1(2cos(kMld) − 2), (3.45)

with l � {l1, . . . lD} and kM � 2π/M. Note that the right-hand
side of (3.45) is independent of a due to the initial choice
(3.37). This will change once we study the RG flow of the filling
kernel.

Lastly, let us recall from (Lang et al., 2018d) that an initial
covariance of the form (3.45) can be transformed via the residue
theorem into several integrals over a product of “one-
dimensional” covariances, i.e. decouples in each direction:

ĉ(0)M,a(l) �
Z/2

(4πi)3 (∏
D

b�1
∮

Γ
dzb) 1

p2 −∑bzb
c′M(la, a; za)∏

b≠ a

c′M(lb, a; zb), (3.46)

where Γ is a contour surrounding the real axes (closing at ± ∞
and thus including both poles) and (l′ ∈ ZM)

cM′ (l′, a; z) :� 1
z − ε−2M (2 cos(kMl′) − 2). (3.47)

Note that the way in which we split the integrals is purely
conventional and does not affect the continuum limit M→∞.

5Indeed, we will see in the next sections that the coarse graining induces different
flows of ωM,a for different a in case of the filling kernel, leading ultimately to
different fixed pointed families {ω*

M,a}M . However, this “direction dependence” is
artificial in the sense that it is only present for finiteM, while in the continuum limit
M→∞ the covariances of all species a agree.
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Also, the initial covariance does not have a direction dependency,
hence the label a does not appear on the right hand side of (3.47).

A factorization property like (3.46) becomes useful if it can be
established that the covariance does not change this structure
under a renormalization step. In such a case, each of the c′M will
drive into its respective fixed point (Lang et al., 2018d). Indeed,
this will be case for both the deleting and the filling kernel as we
discuss in the next two sections. There, we will study the different
Hamiltonian RG flows in order to find the fixed pointed
covariances c*M,a � (Z/2)(ω*

M,a)− 1 for each field specie a. They
completely describe the Hilbert spaces and the Hamiltonians at
finite resolution.

3.4. Toy Model: Fixed Points of the Deleting
Kernel
From now on we setD � 3 explicitly in all formulae. We study the
RG flow of the coarse graining for the deleting kernel from (3.27),
i.e.

JM→ 2M(eiÂM[fM]Ω(n+1)
M ) :� eiÂ2M[IDelM→ 2MfM]Ω(n)

2M , (3.48)

which is equivalent to the flow of the family of Hilbert space
measures

〈Ω(n+1)
M , eiÂM[fM]Ω(n+1)

M 〉H(n+1)
M

� 〈Ω(n)
2M , e

iÂ2M[IDelM→ 2MfM]Ω(n)
2M〉H(n)

2M
,

(3.49)

that is (see (Lang et al., 2018b)):

〈fM , c(n+1)M gM〉M :� 〈IDelM→ 2MfM , c
(n)
2MI

Del
M→ 2MgM〉2M, (3.50)

with fM , gM ∈ LM � ℓ2(Z3
M)3 and deleting kernel (m′ ∈ Z3

2M)

(IDelM→ 2MfM)a(m′) � ∑
m ∈ Z3

M

fM,a(m)(δm′ ,2m + δm′ ,2m+̂a). (3.51)

We see that (3.51) does not mix the field species for different a
with each other and does not distinguish between different a.
Together with the fact that the initial covariance was written as
diagonal matrix cM � diag(cM,1, cM,2, cM,3), this implies that the
same holds at each iteration of the RG flow and thus also the fixed
point measure will be a product of three times the same Gaussian
measures for each a.

However, for each field specie a the different directions with
respect to the lattices vertices m � (m1,m2,m3) behave
differently as â enters the right-hand side of (3.51). Thus, in
direction â the IDelM→ 2M behaves as the one-dimensional blocking
kernel studied in (Lang et al., 2018b), that is

(IDelM→ 2MfM)a(2ma, . . .) � (IDelM→ 2MfM)a(2ma + 1, . . .), (3.52)

for ma ∈ ZM being the ath component of m ∈ Z3
M . However, for

b≠ a, the kernel behaves as the one-dimensional deleting kernel from
(Lang et al., 2018c), that is for mb being the bth component of m:

(IDelM→ 2MfM)a(. . . , 2mb + 1) � 0. (3.53)

Thus, the flow of the coarse graining map from (3.51)
introduces a “direction dependence” of the covariance at the
quantum level for finite resolution M. This dependence only
vanishes in the continuum limit M→∞.

Since the RG flow in (3.50) does not mix the different
directions, for a decoupled covariance of the form (3.46) each
“one-dimensional covariance” c′M will flow into its respective
fixed point. And since the RG flows for direction a and b≠ a
behave like the ones of the injections studied in (Lang et al.,
2018b) and (Lang et al., 2018c) respectively, the fixed points are
already known and read:

(ĉ′M)*(l′, b; z) � ĉDelM (l′, z) for direction b≠ a, (3.54)

(ĉ′M)*(l′, a; z) � ĉM(l′, z) for direction a, (3.55)

with l′ ∈ ZM , z ∈ C and the definitions from (2.38) and (2.39).
It remains to plug the fixed points for each direction into

(3.46) and to restore the correct n-dependence via (2.34). Thus,
we know the complete fixed pointed covariance c* �
diag(c*M,1, c

*
M,2, c

*
M,3) with the following kernels for the Fourier

transform of the covariances:

ĉ*M,a(l) �
p(n−1)Z
(4πi)4 ∮c

dko
1
kn/2o

⎛⎝∏3
b�1
∮

Γ
dzb⎞⎠ 1

p2 − ∑3
b�1zb

ĉM(la, za)∏
b≠ a

ĉDelM (lb, zb), (3.56)

where we remember that p2 � p2 − ko. For further details, see
(Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d).

3.5. Toy Model: Fixed Points of the Filling
Kernel
We turn toward the second choice of coarse graining map that
was motivated in this paper. While of course further coarse
graining maps can be constructed, the analysis of this section
presents already an indication of universality–as it will transpire
that the continuum limitM→∞ of the fixed pointed theories for
both kernels agree.

Again it is D � 3. The three different choices of filling kernels
are labeled by i ∈ {1, 2, 3} and their explicit action is obtained by
using the form of the characteristic functions in (2.11):

(IFil,iM→ 2MfM)a(m′)

� ∑
m ∈ Z3

M

fM,a(m)
⎧⎪⎨⎪⎩

δ(m′
a−∑b ≠ a

δodd(m′
b))/2,ma

∏
b≠ a

δ
m′

b/2,mb
, for i � a,

δ(m′
a−δodd(m′

1)+δodd(m′
s))/2,ma

δ(m′
1+δodd(m′

s))/2,mi
δ
m′

s/2,ms
, else,

(3.57)

where s � 1, 2, 3 is distinct from both a, i, that is a≠ s≠ i and
δodd(n) � 0 iff n ∈ 2ZM and � 1 else. Like in the previous
subsection, we see that different field species a will not talk to
each other, therefore keeping the structure cM �
diag(cM,1, cM,2, cM,3) intact during the whole RG flow.

However, a notable difference to the map IDelM→ 2M is that the
choice of i leads to different fixed pointed families for the field
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specie labeled by a–since (3.57) singles out the case with a � i. On
top of that, the directions of the lattice vertices m ∈ Z3

M do not
decouple in an obvious way. Thus, we need to carefully study how
the matrix elements of a covariance transform under a
renormalization step, which reads for fixed a and fM , gM ∈ LM

〈fM,a, c
(n+1)
M,a gM,a〉M :� 〈IFil,iM→ 2MfM,a, c

(n)
2M,aI

Fil,i
M→ 2MgM,a〉2M. (3.58)

Here, we only show the case a � i � 1 explicitly, all other
choices work analogously. By writing explicitly 〈., .〉M with (3.22)
abbreviating fM(m) :� fM,a�1(m) and plugging in (3.57), we
perform the following manipulations:

ε−2D2M 〈fM , c(n+1)M,1 gM〉M

� ∑
m,~m ∈ Z3

2M

(IFil,1M→ 2MfM)(m)(IFil,1M→ 2MgM)(~m)c(n)2M,1(m, ~m), (3.59)

� ∑
m′

1 ,m
′
2 ,m

′
3 ∈ Z2M

∑
~m′
1 ,~m

′
2 ,~m

′
3 ∈ Z2M

c(n)2M,1(m′
1,m

′
2,m

′
3, ~m

′
1, ~m

′
2, ~m

′
3), (3.60)

× fM(⌊m′
1 − δodd(m′

2) − δodd(m′
3)

2
⌋,⌊m′

2

2
⌋,⌊m′

3

2
⌋)gM

(⌊~m′
1 − δodd(~m′

2) − δodd(~m′
3)

2
⌋,⌊~m′

2

2
⌋,⌊~m′

3

2
⌋)

� ∑
m,~m ∈ Z3

M

∑
δ,~δ ∈ {0,1}3

c(n)2M,1(2m1 + δ1, 2m2 + δ2, 2m3 + δ3, 2~m1

+ δ1, 2~m2 + δ2, 2~m3 + δ3) × fM(m1 + (δ1 − δ2 − δ3)/2,m2,m3)gM(~m1 + (~δ1 − ~δ2 − ~δ3)/2, ~m2, ~m3),
(3.61)

where in the last step we expressedm′
i � 2mi + δi withm, ~m ∈ Z3

M
and δ, ~δ ∈ {0, 1}3. We can now shift the summation parameter
m11m1 − (δ1 − δ2 − δ3)/2 using that fM(0) � fM(M) and
c(n)2M,1(0, . . .) � c(n)2M,1(2M, . . . .):

ε−2D2M 〈fM , c(n+1)M,1 gM〉M � ∑
m,~m ∈ Z3

M

fM(m)gM(m)

× ∑
δ,~δ ∈ ZD

M

c(n)2M,1(2m1 + δ1 − 2
δ1 − δ2 − δ3

2
, . . . , 2~m1 + ~δ1

− 2
~δ1 − ~δ2 − ~δ3

2
, 2~m2 + ~δ2, . . .).

(3.62)

× ∑
δ,~δ ∈ ZD

M

c(n)2M,1(2m1 + δ1 − 2
δ1 − δ2 − δ3

2
, . . . , 2~m1 + ~δ1

− 2
~δ1 − ~δ2 − ~δ3

2
, 2~m2 + ~δ2, . . .)

As this equation is for arbitrary fM , gM , it must hold
component wise and gives us the following recursion relation
for the RG flow:

c(n+1)M,1 (m, ~m) � 2−2D ∑
δ,~δ ∈ Z3

M

c(n)2M,1
⎛⎝2m1 +∑

i

δi, 2m2 + δ2, 2m3

+ δ3, 2~m1 +∑
i

~δi, 2~m2 + ~δ2, 2~m3 + ~δ3⎞⎠,
where we realized that ∑iδi can be obtained by interchanging
the summation parameter δi1δi + 1 in the cases where δ2 +
δ3 � 1.

In order to proceed, we employ the assumption of the
covariance to be translational invariant, i.e.
c2M,1(m, ~m) � c2M,1(m − ~m), and go into Fourier space, where
the recursion relation reads:

ĉ (n+1)
M,1 (l) � 2−2D ∑

δ,~δ,η ∈ {0,1}3
ĉ(n)2M,1(l + ηM)

exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ik2M(l + ηM) · ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i

δi

δ2
δ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
i

~δi

~δ2
~δ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 2−2D ∑

η ∈ {0,1}3
ĉ(n)2M,1(l + ηM)[1 + eik2M(l1+η1M)][1

+ eik2M(l1+l2+(η1+η2)M)][1 + eik2M(l1+l3+(η1+η3)M)] × [1
+ e−ik2M(l1+η1M)][1 + e− ik2M(l1+l2+(η1+η2)M)][1
+ e−ik2M(l1+l3+(η1+η3)M)]

� 2−2D ∑
η ∈ {0,1}3

ĉ(n)2M,1(l + ηM)2D[1 + cos(k2M(l1 + η1M))] × [1
+ cos(k2M(l1 + l2 + (η1 + η2)M))][1 + cos(k2M(l1 + l3

+ (η1 + η3)M))]
� 2−D ∑

δ ∈ {0,1}3
ĉ(n)2M,1(l1 + δ1M, (l1 + l2) + δ2M, (l1 + l3) + δ3M)

× [1 + ( − )δ1 cos(l1)][1 + ( − )δ2 cos(k2M(l1 + l2))][1
+ ( − )δ3 cos(k2M(l1 + l3)]

(3.63)

where in the last step we introduced ĉ2M,1(l1, l1 + l2, l1 +
l3) ≡ ĉ2M,1(l1, (l1 + l2) − l1, (l1 + l3) − l1) and used the
periodicity ĉ2M,a(l + 2M) � ĉ2M,a(l) to relabel η→ δ and
cos(l + k2MM) � −cos(l) (due to k2MM � π).

We observe that if the initial covariance could be written as a
product of the form c′(l1)c′(l1 + l2)c′(l1 + l3) then every element
of the RG flow would have this property (similar to (Lang et al.,
2018d)). Thus, we aim at splitting ĉ(0)M via another application of
(3.46). For this purpose, note the following identity for ĉ(0)M from
(3.45):

ĉ(0)M,a(l) �
Z

2
Ξ−1
a [z1, z2, z3]|za�ϵ−2M (2cos(kMla)−2), zb≠ a�ϵ−2M (2cos(kM(la+lb))−2),

(3.64)
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with

Ξa[{z}] : � p2 − za − 2ε−2M

∑
b≠ a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(ε2M2 za + 1)(ε2M
2
zb + 1)

+

��������������
1 − (ε2M

2
za + 1)2

√√ ��������������
1 − (ε2M

2
zb + 1)2

√√
− 1
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Hence, with (3.46) and c′M from (3.47) we find the desired
splitting:

ĉ(0)M,a(l) �
Z/2

(4πi)3
⎛⎝∏3

b�1
∮

Γ
dzb⎞⎠Ξ−1[{z}]

c′M(la, a; za)∏
b≠ a

c′M(la + lb, a; zb). (3.65)

Moreover, the recursion with [1 ± cos(. . .)] is the same as in
(Lang et al., 2018b) and thus is known to lead to the fixed point
ĉ M from (2.38). In other words, we know to which fixed point
family the flow induced by recursion (3.63) drives to. Lastly, we
again restore the contour integral to take n≥ 4 into account and
obtain the final result:

ĉ*M,a�i(l) �
p(n−1)Z
(4πi)3 ∮c

dko
kn/2o

⎛⎝∏3
b�1
∮

Γ
dzb⎞⎠Ξa[{z}]ĉM(za, la)∏

b≠ â

cM(zb, la + lb). (3.66)

Analogously, iterating the same steps for a≠ i we get: (with
a≠ s≠ i)

ĉ*M,a≠ i(l) �
p(n−1)Z
(4πi)3 ∮c

dko
kn/2o

⎛⎝∏3
b�1
∮

Γ
dzb⎞⎠Ξ′

a[{z}]ĉM(za, la)ĉM(zi, la

+ li)ĉM(zs, li + ls − la),

where Ξ′
a can be obtained from a similar splitting as in

(3.64).

If one performs the continuum limit M→∞, one sees that
the artificial direction dependence as well as the difference
between the field species a will be lost and the continuum
theory agrees thus with the continuum limit from (3.56), i.e.
the fixed point of the deleting kernel. In other words, the
projections of same continuum theory with different coarse
graining projections carrying the same label M differ. Yet, the
difference is merely due to the fact that the coarse graining maps
are different. The continuum theory is in both cases the same and

thus displays universality with respect to this change of the coarse
graining map.6

4. CONCLUSIONS

In this paper we performed preliminary steps to extend the
Hamiltonian Renormalization Group to Abelian gauge
theories. This serves as a further step toward the construction
of interacting QFTs for those systems which are subject to
constraints.

When constraints are present, a possible strategy is to
perform a symplectic reduction and go to the reduced phase
space on which the constraints have been implemented. In
general, the geometry (i.e. the symplectic structure) of the
reduced phase space may be very complicated, but at least for
the Gauss constraint of Abelian gauge theories the procedure
is well understood: one can split the phase space in
transversal and longitudinal modes and then gauge-fix the
unphysical longitudinal modes. This allows to proceed with
canonical quantization and renormalization along the
methods for scalar fields from (Lang et al., 2018a; Lang
et al., 2018b; Lang et al., 2018c; Lang et al., 2018d). In a
class of models that includes free Maxwell theory we
performed a reduced phase space quantization obtaining a
family of Fock Hilbert spaces HM , one for each resolution M.
For this class, we could test different injections
JM→ 2M : HM →H2M . It transpired that the resulting models
can be understood as two decoupled field species, both of
them running into their fixed point, which we knew
analytically due to previous studies in (Lang et al., 2018b;
Lang et al., 2018c).

The reduced phase space approach results in a
renormalization flow which is very close to that of scalar
fields. In order to test renormalization flows that take the
vector field structure into account we considered a second
class of models without Gauss constraint which includes free
Proca theory. The motivation for considering generalisations of
free Maxwell and Proca theory is that some of these models allow
for well defined holonomy operators in the corresponding Fock
representations at the price of losing Poincaré invariance. We
consider these models as mere toy models for quantum gravity
theories (Thiemann, 1998; Liegener and Thiemann, 2016) that
are based on Hilbert space representations with both well defined
holonomy operators and Hamiltonians without breaking
symmetries. In particular we are thinking about discretisations
of the Hamiltonian operators studied in this paper using
holonomies themselves which would simulate the proposal of
(Thiemann, 1998; Liegener and Thiemann, 2016). In a future
publication (Liegener and Thiemann, 2020) we will also aim at

6Of course, this does not guarantee universality under any changes of coarse
graining map—a property which cannot be true in general. However, it is possible
to show that for the Hamiltonian RG formulation all coarse graining maps are
unitary equivalent, albeit the initial discretisations may change under said unitary
map, see (Bahr and Liegener, 2020) for all details.
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imposing the Gauss constraint after quantization. The idea of
introducing a “smoothening” operator into the Hamiltonian in
order to allow for holonomy operators in the corresponding Fock
representation is in some sense dual to the idea of using smoothened
form factors studied in (Varadarajan, 2000). Note also that we could
have made our deformation of Proca or Maxwell theory
phenomenologically more interesting by changing ω21 − Δ +
p2((−Δ + p2)/μ2)n with p arbitrarily small but finite and μ
arbitrarily large but finite so that the Lorentz violation will only
manifest itself at energies above μ. Even in this case holonomies are
still well-defined operators and the presented strategy to determine
the fixed point remains the same.

We chose two different coarse graining maps in order to
understand how stable the fixed points of the theory are under
changes of the injection maps. Both maps–deleting and filling
kernel–are mathematical well-defined, but the level of experience
that we have for them differs: the deleting kernel has already been
actively studied in the literature and found application in the non-
Abelian case of Loop Quantum Gravity where it enabled the
construction of an inductive limit Hilbert space. Spin networks (a
possible basis of said Hilbert space) carry distributional
excitations such that a smooth quantum geometry can only be
obtained by distributions on the Hilbert space. Conceptually,
reobtaining smooth geometry could be easier when working with
the filling kernel, as it excites all edges as the resolution increases.
However, extensive studies on the latter kernel have not been
performed as of today.

Both maps employ discretisations of the spatial manifold
where the fields are smeared along edges of a cuboidal lattice.
Choosing such cubic lattices might at first glance look like a
restriction of the theory since it gives rise to the so-called
“staircase problem” (Sahlmann et al., 2001): albeit square
lattices suffice to separate the points in phase space as M gets
large, one does not have access to “45” degree line observables at
any finite resolution. Yet, the continuum theory does allow
considering holonomy operators along such curves which are
not straight. This stresses the point that the lattice just serves to
construct the continuum theories, all other investigations have to
start from there.

We demonstrated for our model classes that the relevant fixed
points can be found for the filling as well as for the deleting
kernel. Due to the fact that the discretisations were expressed
in terms of smearings with form factors, the investigation
exploited many of the findings from previous applications
of the Hamiltonian Renormalization Group in (Lang et al.,
2018b; Lang et al., 2018c; Lang et al., 2018d). Finally, we found
analytically closed formulas for the respective fixed points and
saw that the Hamiltonian renormalization leads to reliable
results.
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Quantum Gravity: A Fluctuating
Point of View
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In this contribution, we discuss the asymptotic safety scenario for quantum gravity with a
functional renormalization group approach that disentangles dynamical metric fluctuations
from the background metric. We review the state of the art in pure gravity and general
gravity–matter systems. This includes the discussion of results on the existence and
properties of the asymptotically safe ultraviolet fixed point, full ultraviolet-infrared
trajectories with classical gravity in the infrared, and the curvature dependence of
couplings also in gravity–matter systems. The results in gravity–matter systems
concern the ultraviolet stability of the fixed point and the dominance of gravity
fluctuations in minimally coupled gravity–matter systems. Furthermore, we discuss
important physics properties such as locality of the theory, diffeomorphism invariance,
background independence, unitarity, and access to observables, as well as open
challenges.

Keywords: quantum gravity, asymptotic safety, background independence, diffeomorphism invariance, ward
identities

1 INTRODUCTION

One of the major challenges in theoretical physics is the unification of the standard model of particle
physics (SM) with quantum gravity. Based on the classical Einstein–Hilbert action, gravity is
perturbatively nonrenormalizable and hence cannot be expanded about a vanishing gravitational
coupling, the Newton coupling. A very promising way out has been proposed by Weinberg [1], the
asymptotic safety scenario. It draws from the theory of critical phenomena developed for investigating
the phase structure of condensed matter and statistical systems. In the language of critical
phenomena, the standard perturbation theory about a vanishing Newton coupling is an
expansion about the free, Gaußian fixed point of the theory and fails since this fixed point is
ultraviolet (UV)-repulsive in the relevant couplings. In turn, the asymptotic safety scenario builds
upon the conjecture that quantum gravity also exhibits a nontrivial UV fixed point, the Reuter fixed
point. This asymptotically safe fixed point should exhibit a finite-dimensional critical hypersurface,
which renders the theory finite and predictive even beyond the Planck scale.

The method of choice for respective investigations is the renormalization group. Most
investigations of asymptotically safe gravity have been performed with the functional
renormalization group (fRG) in its form for the effective action [2]. The fRG approach to
quantum gravity has been initiated by the seminal work [3], where the UV fixed point has been
studied in the Einstein–Hilbert truncation. In this approximation, one retains only two couplings, the
Newton coupling GN and the cosmological constant Λ. Already this basic truncation exhibits a UV
fixed point in four dimensions [3, 4]. This exciting finding has triggered a plethora of works for
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asymptotically safe gravity with and without matter. (We refer the
reader to the textbooks [5, 6] and reviews [7–15]. For very recent
accounts of the challenges for asymptotically safe gravity, see 16,
17. For generic reviews on the fRG, we refer to 18–27.)

The fRG approach to gravity centers around the quantum
effective action of the theory Γ[gμ], hμ]], the quantum analog of
the classical action. Here, gμ] is a generic metric background and
the graviton field hμ] accounts for quantum fluctuations about
this background. The computation of the effective action
Γ[gμ], hμ]] is tantamount to that of the path integral: the
n-point correlation functions of the dynamical fluctuation field
h are given by n derivatives of the effective action with respect to
the correlation field, evaluated on the equations of motion, h � 0
and g � gEoM, that is, on-shell. These correlation functions are
nothing but the moments of the path integral and carry the
dynamics of the quantum theory.

This seemingly introduces a background dependence of the
approach. However, the approach has inherent on-shell
background independence, also related to physical
diffeomorphism invariance. Indeed, the background effective
action Γ[gμ]] � Γ[gμ], 0] is diffeomorphism-invariant. The
latter properties are the backbones of any quantum gravity
approach, and their realization even within approximations is
chiefly important.

The present review outlines the properties and results of the
fRG approach to asymptotically safe quantum gravity in terms of
background and fluctuation correlation functions of gravitons,
shortly baptized the fluctuation approach to gravity. This
approach is based on the observation that the dynamics of
quantum gravity is encoded in the correlation functions of the
fluctuation field h. Reliable computations of observables can only
be done from these correlation functions. This situation calls for a
systematic improvement of the standard background-field
approximation. In this approximation, the correlation
functions of the background metric and the fluctuation field
are identified. We refrain from going into more details here, the
underlying assumptions and challenges are discussed in Sections
5 and 6.

The fluctuation approach resolves these differences, and by
now, it has matured enough to host a large number of results: this
includes investigations of the Reuter fixed point in pure gravity in
a rather elaborate truncation within a vertex expansion with
momentum-dependent two-, three-, and four-point functions;
the computation of the background-effective action for
backgrounds with constant curvature; investigations of the
stability of general gravity–matter systems; investigation of
convergence properties of the expansion (apparent
convergence); and a potential close perturbativeness of the
asymptotically safe UV regime (effective universality). (We
refer the reader to Section 8 for an explanation of the
terminology and respective results.)

In Section 2, we discuss the general quantum field theory
setting of quantum gravity, which we use for the fluctuation
approach. This includes a discussion of the necessary gauge fixing
and background independence of the approach. In Section 3, we
discuss general parametrizations of the full metric in terms of a
metric background and a fluctuation field. The preparation in

Sections 2 and 3 allows us to introduce the fRG approach to
quantum gravity in Section 4 as well as discussing the standard
approximation used in the field, the background field
approximation, in Section 5. The symmetry identities that
relate the dynamical correlation functions of the fluctuation
field and those of the background metric are discussed in
Section 6. These symmetry identities imply the necessity to go
beyond the background field approximation, and thus, we detail
the fluctuation approach in Section 7. With the preparation of the
sections before, we discuss the results of the fluctuation approach
in Section 8 and close with a short conclusion and outlook in
Section 9.

2 QUANTUM FIELD THEORY APPROACH
TO QUANTUM GRAVITY

The present contribution discusses the advances and open
problems of a quantum field theory approach to quantum
gravity that is based on the computation of metric correlation
functions or, more generally, correlation functions of operators in
quantum gravity. Formally, such an approach is based on the
existence of a path integral for quantum gravity, for example,
defined by the integration over the space of all metrics {gμ]}with a
specific classical action for gravity Sgrav, a standard choice being
the Einstein–Hilbert action,

SEH[gμ]] � 1
16πG

∫

d4x
�
g

√ (2Λ − R), (1)

with the abbreviation g � det gμ]. In 1, we have introduced the
Newton couplingG and the cosmological constantΛ. R stands for
the Ricci scalar. In most works in the fRG approach, the theory is
considered in its Euclidean version, which is indicated here by the
missing minus sign in the square root of the determinant. The
expectation value of a diffeomorphism invariant operator O[gμ]]
is formally given by

〈O[ĝμ]]〉 � ∫ Dĝμ] O[ĝμ]] e−Sgrav[̂gμ]]
∫  Dĝμ] e

− Sgrav[̂gμ]] . (2)

Here and in the following, ^ indicates the fields that are
integrated over. The formal definition 2 faces several
problems. Some of them are standard problems of the
quantization of gauge theories, and some of them are specific
to quantum gravity. The latter problems include, for example, the
lack of perturbative renormalizability of gravity for SEH [28–31],
the apparent unitarity problems for higher derivative gravity a la
Stelle [32–34], and the question whether the integration measure
Dĝ includes a sum over all topologies [35]. The latter question is
also an eminent one in lattice gravity (see, e.g., 36–42). Note in
this context that a general measureDμ(ĝ) can always be absorbed
with a change of the gravity action in 2,

Dμ(ĝ) � Dĝμ] e
−ΔSgrav[̂gμ]], (3)

with a potentially nonlocal action ΔSgrav. In the fRG approach, the
task of a finite definition of 2 and its computation is turned into
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the task of solving a flow equation for the quantum effective
action Γ[g, ϕ]. Here, gμ] is the background or reference metric,
and ϕ are fluctuation fields, the expectation values of the
fluctuation field operators ϕ̂. The latter includes the
fluctuation field ĥμ] of the metric, gμ] � gμ](g, h), and potential
matter fields ϕmat and auxiliary fields such as the ghosts cμ of the
gauge fixing in gravity,

ϕ � 〈ϕ̂〉, ϕ � (hμ], cμ, cμ, ϕmat). (4)

In the case of further gauge fields, one may also use
background fields for the gauge fields, which are suppressed
here for the sake of convenience. A reparameterization
gμ](g, h) seemingly introduces a background-metric
dependence of the formulation. This is common to many
approaches to quantum gravity due to the necessity of
defining metric fluctuations. Accordingly, the question of
background independence of the present approach is an
eminent one and is discussed later. Here, we only want to
mention the most common split between the background
metric and the fluctuation field, the linear split,

gμ] � gμ] + hμ]. (5)

This split also underlies most of the results discussed in
Section 8. Note that from now on the lowering and raising of
indices is done with the background metric g, if not specified
otherwise. Equation 5 emphasizes one specific problem with the
background field approach in quantum gravity: while gμ] and gμ]
are metrics, their difference hμ] � gμ] − gμ] is not. Indeed hμ] has
no geometrical meaning at all. This is discussed in more detail in
Section 3.

2.1 Gauge Fixing
In gauge theories such as gravity with the diffeomorphism
(gauge) group or the simpler case of non-abelian gauge
theories, the practical computation of observables 2 faces the
gauge group redundancy in the path integral measure. While this
redundancy is a finite-dimensional one within discrete lattice
formulations, it is an infinite-dimensional one in functional
approaches based on graviton correlation functions. In
particular, it prohibits the straightforward definition of the
propagator, which is key in most functional approaches.

Therefore, most of the latter approaches require a gauge fixing.
(For a brief discussion of gauge-invariant functional approaches,
see Section 6.3.) Put differently, we have to choose a
parametrization of the theory. Typically, this is done with a
linear gauge fixing for the fluctuation field hμ] that carries the
metric degrees of freedom,

Sgf [g, h] � 1
2α
∫

d4x
�
g
√

gμ]FμF]. (6)

A common gauge fixing condition Fμ is given by

Fμ[g, h] � ∇ ]
hμ] − 1 + β

4
∇ μh

]
], (7)

where ∇ is the covariant derivative with the background metric
gμ]. The gauge fixing 7 is introduced in the path integral with
the Faddeev–Popov trick and the Jacobi determinant of the
respective reparameterization. The Faddeev–Popov
determinant ΔFP can be rewritten in terms of a fermionic
path integral with the ghost fields cμ and cμ. The ghost
action related to 7 reads

Sgh[g, ϕ] � ∫

d4x
�
g
√

cμMμ]c
], (8)

with the Faddeev–Popov operator

Mμ] � ∇ ρ(gμ]∇ρ + gρ]∇μ) − 1 + β

2
gσρ∇ μg]σ∇ρ . (9)

Again, ΔFP is the covariant derivative with the background
metric gμ], while ∇ is that with the full metric gμ]. Note thatMμ] is
linear in the fluctuation field h. The backgroundmetric gμ] cannot
be avoided, and both gauge fixing and ghost action depend on it.
This implies that also the quantum effective action depends on
both metrics, the background metric gμ] and the full metric
gμ](g, h), as we shall see later. Note however that the
correlation functions of diffeomorphism-invariant operators
and the solutions to the quantum equations of motion do not
depend on the gauge fixing. Hence, they are background-
independent as explained below.

2.2 Background Independence
Background independence of the construction is more than a
formal property to aim for. We briefly recollect the standard
arguments for background independence in the background field
approach to quantum gauge field theories. We first restrict
ourselves to pure gravity. Seemingly, background dependence
of the path integral is introduced by gauge fixing such as 6 and the
respective Faddeev–Popov determinant ΔFP. The latter is the
Jacobian of the reparameterization of the path integral in
terms of gauge-fixed fields. We emphasize that the gauge
fixing should be rather understood as a specific choice of field
coordinates in the configuration space that facilitates the
integration. The Faddeev–Popov trick is nothing but a
convenient way to introduce these coordinates. In any case, it
leads us to the expectation values of diffeomorphism-invariant
operators defined in 2 for pure gravity with a path integral with
the gauge-fixed action,

〈O[ĝ]〉 � ∫

Dϕ̂ e

−Sgf[g ,̂h]−Sgh[g ,̂ϕ]O[̂g] e−Sgrav [̂g]∫ 
D̂ϕ e

− Sgf[g ,̂h]− Sgh[g ,̂ϕ]− Sgrav [̂g]
. (10)

Note that integration over the diffeomorphism group (from
the Faddeev–Popov trick) has been factored out in the numerator
and denominator. This relies on the diffeomorphism-invariance
of Sgrav,O[ĝ], andDĝ. The full integration measureDϕ̂ in 10 now
also includes the ghost fields, ϕ̂ � (ĥμ], ĉμ, ĉμ). Naturally, the
right-hand side in 10 is independent of the background field
as the left-hand side trivially is (see 2). This background-metric
independence is captured in the Nielsen or split Ward identity
derived from taking a gμ] derivative of 10. Typically, one also
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subtracts the Dyson–Schwinger equation for 〈O〉, which reads
schematically

∫

Dĥ
δ

δĥ
[e− Sgf− Sgh O e− Sgrav] � 0. (11)

This leads us to the Nielsen identity for general
diffeomorphism-invariant operators O[g] with

〈O[ĝ]( δ

δg
− δ

δĥ
)(Sgh + Sgf)[g, ĥ]〉 � 0. (12)

If solving the path integral within approximations, the check
of the Nielsen identity 12 is crucial as it carries the physical
background independence.

The identity 12 constitutes infinitely many relations for
diffeomorphism-invariant correlation functions and can be
rephrased in terms of derivatives of the effective action.
Correlation functions are conveniently derived from the
generating functional Z[g, J] obtained by adding source terms
for the fluctuation fields to the exponent in the path integral,

Z[g, J] � 1
N∫



Dϕ̂ e
−S−Sgf−Sgh+∫

d4x
�
g

√
Jaϕ̂a , (13)

where J � (Jhμ], Jcμ, Jcμ, Jmat) and the normalization N is the
denominator in 10. Lowering and rising the field indices are
done with the metric cab in field space. (For details, see
Supplementary Material.)

In 13, the action S � S[g, ϕ̂] is the “classical” action of the
gravity–matter system under consideration. The gauge fixing
action Sgf and the ghost action Sgh of the full gravity–matter
system may include further gauge fixings of gauge fields. Note
that for gravity–matter systems, the “classical” action may not be
based on the Einstein–Hilbert action of general relativity as
discussed before. More generally also, the matter part may not
simply be that of a standard renormalizable QFT in the presence
of a dynamical metric background.

The generating functional Z[g, J], or rather the Schwinger
functional log[g, J], generates connected n-point correlation
functions of the fluctuation field with

δnlogZ[g, J]
δJa1/δJan

� 〈ϕ̂a1
/ϕ̂an

〉
con
, (14)

where the indices ai stand for Lorentz and internal indices as well
as species of fields. The subscript con in 14 indicates the connected
part of the correlation function. We have included a factor of
1/
�
g
√

in the definition of the functional derivative (see
Supplementary Material). This cancels the

�
g
√

factor in the
space-time integral in the source term of 13. If instead, we
had used

�̂
g
√

in the source term, derivatives with respect to
the current J would generate infinite-order correlation functions.

Note that the generating functional 13 can be expressed with

the right-hand side of 10 with the operator O � e∫ 

d4x
�
g

√
Jaϕ̂a .

However, this operator is neither diffeomorphism-invariant nor
background-independent. For that reason, it cannot be mapped
into a manifestly background-independent form such as 10.
For J � 0, we have O � 1 and Z � 1, which is trivially

background-independent. Accordingly, for J ≠ 0, the gauge-
fixed generating functional Z[g, J] is background-dependent, as
is the effective action Γ[g, ϕ],

e−Γ[g,ϕ] � 1
N∫



Dϕ̂ e
−(S+Sgf+Sgh)+∫ 

d4x
�
g

√ (ϕ̂a−ϕa) δΓ
δϕa . (15)

For the relation 15, we have used that the effective action Γ is
the Legendre transformation of the Schwinger functional
W[g, J] � logZ[g, J]. This leads to

Ja[g, ϕ] � (−1)saδΓ[g, ϕ]
δϕa

, (16)

with the fermion number sa � 1 for fermions and sa � 0 for
bosons. Then, background-independence is achieved on the
fluctuation field equations of motion (EoM) for J[g, ϕ] � 0.
The on-shell vanishing of the currents entails that all
diffeomorphism-invariant quantities are background-
independent on-shell, and this independence is carried by 12.

An important consequence of background-independence is
the equivalence of the solutions gEoM[ϕ] to the fluctuation field
EoM and the background field EoM,

δΓ[g flucEoM, ϕ]
δhμ]

� 0 ↔
δΓ[gbackEoM, ϕ]

δgμ]
� 0, (17)

with

g flucEoM � gbackEoM � gEoM. (18)

If the fluctuation EoM holds, the current J is vanishing, and
hence, the background EoM is nothing but the Nielsen identity
12. In turn, if the background EoM holds, the current J necessarily
vanishes.

3 FIELD PARAMETRIZATIONS

So far, we have not specified the relation between the
background metric and the full metric g(g, h), which defines
the role of the fluctuation field h. While most of the
computations are done within the linear split 5, it is worth
discussing the general case. This not only allows us to achieve a
better understanding of the linear split but also allows us to
discuss the challenges for manifestly diffeomorphism-invariant
formulations.

The importance of the different splits for the path integral has
been already mentioned in the context of the path integral
measure (see the introduction of Section 2 around 2). In the
flow equation approach to quantum gravity detailed in the next
section (Section 4), the discussion of the path integral measure
translates into that of the ordering of fluctuations: the fRG
approach to quantum gravity is based on a Wilsonian
successive integrating out of quantum fluctuations. In its form
of a flow equation for the quantum effective action, Γ[g, ϕ] is has a
simple form in terms of the full field-dependent fluctuation field
propagator G[g, ϕ] of the theory (see 30). This is the connected
part of the two-point function of the fluctuation field,
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G[g, ϕ](x, y) � 〈ϕ̂(x)ϕ̂(y)〉 − ϕ(x)ϕ(y) . (19)

The definition 19 requires a gauge fixing (or
reparameterization), as discussed in the previous section.
Moreover, the Wilsonian cutoff regularizes the spectrum of
the propagator. Consequently, the fRG approach crucially
depends on the split of the full metric g into the background
metric g and the fluctuation field h for two reasons:

i. Ordering of fluctuations: The quantum fluctuations of the
fluctuation field h are successively integrated out and are
ordered in terms of the background covariant Laplacian.
Therefore, the meaning of this ordering depends on the
chosen split.

ii. Relevance of higher order correlations: The physics included
with higher order correlation functions crucially depends on
the chosen split. Thus, a different split orders quantum
fluctuations differently. This leads to potentially qualitative
differences for the convergence of a given approximation
scheme.

In this section, we briefly introduce and discuss the different
splits considered so far in the fRG approach to asymptotically safe
quantum gravity.

3.1 Linear Split
We begin with the standard and simplest split, the linear split (see
also 5). It is given by

g � g + h, with Dĝ � Dĥ. (20)

The Jacobian of this transformation is unity, and the path
integral measures agree. As mentioned before, with such a
definition, the fluctuation field h � g − g is not a metric and
has no geometrical meaning in the configuration space of metrics.
Still, it is the natural choice as it facilitates explicit computations
and the implementation of the quantization of the theory for a
given classical action Sgrav on the space of metrics. Still, its lack of
a geometrical interpretation makes it difficult to discuss the
reparameterization invariance of the theory and the
consequences of background independence. (For more details,
see Section 6.) These intricacies have led to more elaborated splits
based on the fiber bundle structure of the configuration space of
metrics.

3.2 Exponential Split
In recent years, the exponential split has attracted some attention
[43–59]. It is given by

g � gexp h, with Dĝ � JexpDĥ. (21)

The full metric is proportional to the exponential of the
fluctuation field h indicating a Lie algebra nature of the
fluctuation field h. Note that the parametrization 21 restricts
the metric g, and in particular it does not allow for signature
changes. Therefore, it is potentially not a reparameterization of
the path integral in terms of integration over all metrics but a
definition of another candidate for quantum gravity. Moreover,

the assumption may change the integration. In summary, it is
unclear whether a path integral with the exponential split and the
measure Dĥ describes the same quantum theory as that with the
measure Dĝ. This parametrization is also linked to unimodular
gravity (see, e.g., [60–66]).

3.3 Geometrical Split
We briefly describe the geometrical approach to quantum gravity
pioneered by Vilkovisky and DeWitt (see, e.g., [67–70]). In the
fRG approach to gravity, it has been discussed in 21, 71–75. It is a
general framework, and all parametrizations used in the literature
can be understood as different choices for the geometrical
structure of the configuration space of metrics gμ]. This also
allows for a better understanding of theWilsonian integrating out
of qua ntum fluctuations underlying the different splits.

In the linear split, as discussed in Section 3.1, the fluctuation
field h neither is a metric nor does it have a geometrical
interpretation in the configuration space Φ. In turn, in the
geometrical approach, the fluctuation field is constructed such
that it has a geometrical meaning. The backgroundmetric and the
full metric are linked by geodesics with respect to a given
connection in the configuration space. The Vilkovisky
connection ΓV is a specifically useful one: it is constructed
with the demand of maximal orthogonality between the
diffeomorphism fiber in the configuration space and the base
space. If such disentanglement is achieved, the path integral and
the effective action only depend on the propagating degrees of
freedom and the gauge redundancies are completely removed.
This leads to the following conditions,

ΓAVBC � ΓAg BC , ΓAVBc � 0, ΓAVβc � 0, (22)

where

ΓAg BC � 1
2
gAD(gDB,C + gDC,B + gBC,D), (23)

FIGURE 1 | Illustration of the configuration space of metrics with the
Vilkovisky connection. The background metric g and the full metric g are
connected by geodesics. The fluctuation field ha is a tangent vector of these
geodesics at the background metric. hA is the projection on the base
space, while hα is the projection on the diffeomorphism fiber. The effective
action depends only on hA and not on hα.
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is the Riemannian metric on the quotient space Φ/G, where G is
the group of diffeomorphisms. This quotient space is labeled with
capital Latin letters A,B,C, . . . ., while the diffeomorphism fiber is
labeled with Greek letters α, β, c, . . .. The full space is labeled with
small Latin letters a, b, c, . . .. (For further details on the notation
and the setup in the context of RG gravity, see e.g., 72.)

The background metric g and the full metric g are connected
by a geodesic. With the Vilkovisky connection, the fluctuation
field is a tangent vector on this geodesic at the background metric
(Gaußian or geodesic normal coordinates). This is illustrated in
Figure 1 and leads to

g � g + h − 1
2
ΓVh2 +O(h3), with DĝxDĥ. (24)

The relation between g and g is nonpolynomial. Still, the
Jacobian does not depend on the fluctuation field, and we have
dropped it in 24. In this setting, it can be shown that the effective
action Γ only depends on the projection hA of the tangent vector
ha onto the base space of the fiber bundle: Γ � Γ[g, hA]. In turn,
the projection of ha onto the diffeomorphism fiber, hα, drops out.
Hence, the effective action is diffeomorphism-invariant as hA is a
diffeomorphism scalar. Trivially, an infrared (IR) regularization
of the hA-path integral is diffeomorphism-invariant.

We close this section with some remarks on the implications of
such a geometrical setup for “physical” gauge fixings, linear and
exponential splits, and locality. The geometrical construction
comes as close as possible to the definition of the
configuration space of a gauge theory in terms of “physical”
gauge-invariant fields and correlation functions. Such a
parameterization is tantamount to a specific gauge fixing as
already mentioned in Section 2.2. We may call such a gauge
fixing “physical,” having in mind that it removes most of the
redundancies related to the gauge group, in gravity that related to
the diffeomorphism group. Note however that the terminology
“physical gauge fixing” is not well-defined and also used
differently in other contexts. In non-abelian gauge theories,
the projection is unique and singles out the Landau–DeWitt
gauge as the “physical” one. In gravity, one is left with a one-
parameter family of gauges with the gauge fixing parameter β
(see 7).

It is worth emphasizing that a gauge fixing condition for the
geometrical field (or Gaußian normal field) ha is different from
that for the fluctuation field h in the linear split. Only for specific
choices of the latter, the maximal disentanglement of the
geometrical construction is manifestly obtained. We also
remark that the linear split is obtained by using a vanishing
connection, hence entirely ignoring the geometrical structure of
the configuration space. The exponential split simply uses the
Riemannian part Γg of the configuration space, hence ignoring
the diffeomorphism group.

Finally, the geometrical construction with the Vilkovisky
connection is highly nonlocal in configuration space, one of
the ensuing problems being caustics and Gribov copies. This
also raises the question of locality in the configuration space and
that of momentum locality of the correlation functions of the
geometrical fluctuation field h. The latter is discussed in detail in

Section 7.4. Both locality issues highlight the challenges for
manifest gauge- or diffeomorphism-invariant functional
approaches to quantum gravity.

4 FLOW EQUATION FOR GRAVITY

With the quantum field theory approach to quantum gravity
outlined in the last sections, we are now in the position to discuss
the flow equation approach to gravity. (For reviews, see 7–17, and
for generic fRG reviews, see 18–27.) As already mentioned in the
introduction of Section 3, the fRG approach to gravity is based on
a successive integrating out of quantum fluctuations. Typically,
this is done with an ordering of quantum fluctuations in
momentum space: the regulator introduces a suppression of
low-momentum fluctuations below an IR cutoff scale p2(k2,
and one RG step with k→ k − Δk relates to the integration of
momentum modes p2 ≈ k2. In gravity, the implementation of
such a momentum cutoff necessitates the choice of a background
metric g, and the (covariant) momenta are those related to the
covariant Laplacian in the background metric, Δg , with the
spectral values p2g .

Remarkably, the flow equation is insensitive to field
reparameterizations of quantum gravity discussed in the last
section or even physically different formulations: For the
derivation, let us assume that a finite generating functional for
correlation functions of the fluctuation field is given. In terms of a
path integral, this is given by 13 with an assumed
diffeomorphism-invariant regularization and renormalization
procedure. More generally, such a finite generating functional
is given by its defining property 14 under the assumption that
these correlation functions are finite. Then, the flow equation can
be readily derived without the necessity of referring to a specific
representation of Z[g, J] such as the path integral. (For detailed
discussion, see 76.) The correlation functions of h depend on g, as
does the generating functional for J ≠ 0 via the gauge fixing (see
Section 2).

The flow equation for the effective action is derived from the
IR regularized generating functional,

Zk[g, J] � exp(− ∫

d4x
�
g
√ δ

δJa
Rab
k

δ

δJb
)Z[g, J], (25)

with a g-dependent IR regulator Rk. Typically, the background
dependence enters the regulator via a background Laplacian and
background covariant derivatives. In flat space, the eigenvalues of
the Laplacian are just momentum squared, p2. As already
discussed above, the regulator suppresses then IR momentum
modes with p2(k2. In turn, UV momentum modes with p2ak2

propagate freely, and the generating functional includes all
quantum contributions generated by these modes.

It is convenient to write the regulator Rk in terms of the
classical or quantum dispersion of the field at hand,

Rab
k (p) � Tab

k (p) rk(x), with x � p2

k2
, (26)
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where momentum-squared is counted in cutoff units. In these
units, the IR regime is given by x(1 and the UV regime by xa1.
The tensor part Tab

k of the regulator is proportional to the classical
or quantum dispersion of the field. Classically, it is the second
derivative of the action with respect to the fields ϕa and ϕb, that is,
(S(2))ab(p). It carries the kinetic information about the field
whose propagation is regularized. In turn, the dimensionless
shape function rk specifies how the propagation is regularized.
In most cases, the latter part is chosen such that the physical
cutoff scales agree for all fields. This is typically achieved with
identical (e.g., for several scalar or bosonic fields) or related shape
functions (e.g., for scalars and Dirac fermions). It can be shown
that such a choice also improves the convergence of generic
expansion schemes [21, 77]. Moreover, rk has to be chosen such
that the IR suppression of momentum modes and the UV decay
of the regularization are guaranteed. These properties lead to the
following asymptotics of the regulator shape function,

lim
x→ 0

rk(x)→∞, (27a)

lim
x→∞

rk(x) � 0. (27b)

The first limit, 27a, guarantees the IR suppression of
momentum modes. For example, for a scalar field in d
dimensions with a quadratic dispersion ∝ p2, a regulator
shape function rk(x→ 0) � 1/x introduces a low momentum
mass k2 for this field. Indeed this is the common choice for
the IR limit, but more singular choices work as well. Eq. 27a also
entails that for k→∞, all momentum modes are suppressed and
the theory approaches the UV-scaling regime. For asymptotically
free theories, this is the classical theory, and for asymptotically
safe theories, this is the nontrivial quantum UV theory.

The second limit, 27b, guarantees that the UV behavior of the
theory is unchanged by the IR regularization. We shall see below
that the limit in 27b has to be approached sufficiently fast. In our
example of a scalar field in d dimensions, the regulator shape
function has to decay with at least min((1/x)d/21/x) for rendering
the IR flows finite. This is also discussed later in more detail below
39. Note that the latter limit is that of a mass or Callan–Symanzik
cutoff. Then, changing k changes a relevant parameter of the
theory and hence changes the theory at all scales. Accordingly, the
CallanSymanzik cutoff is not a localmomentum cutoff. The limit
27b also has another implication: for k→ 0, the limit 27b holds
for all momenta and the cutoff is removed from the theory. We
remark that it is precisely this property, which is at stake for the
Callan–Symanzik cutoff and similar ones.

Subject to the existence of a finite full generating functional
Z[g, J], the regularized generating functional Zk[g, J] is also finite
(and smaller than Z[g, J]). The flow equation for the Schwinger
functional Wk[g, J] � log Zk[g, J] is derived by taking the
logarithmic k-derivative of 25. Schematically, this leads us to

ztWk[g, J] � − 1
2
Tr(δ2Wk

δJ2
+ δWk

δJ
δWk

δJ
)ztRk, (28)

where the RG-“time” t is defined with t � ln k/Λ, and Λ is some
reference scaleΛ. The trace sums over position space, Lorentz and
internal indices, and species of fields. For the sake of a concise

presentation, we have suppressed all space-time and internal
indices including species of fields. We emphasize that for the
explicit form of 28, the order of derivatives is important as J
contains fermionic currents.

The term in parenthesis in 28 is nothing but the full two-point
correlation functions of the theory: the first term is the connected
part, that is, the scale-dependent propagator Gk[g, ϕ] of the
theory (see 19). The second term is simply ϕ2, the
disconnected part. The scale-dependent effective action
Γk[g, ϕ] is defined as the modified Legendre transformation of
the Schwinger functional,

Γk[g, ϕ] � ∫

d4x
�
g
√

Jaϕa −Wk[g, J] − 1
2
∫

d4x
�
g
√

ϕaR
ab
k ϕb, (29)

where J � J[g, ϕ] is given by 16. The source term in (IV) depends
on

�
g
√

, just as the source term in 13. Otherwise, the Legendre
transform would not be linear in the mean field ϕ. Note also that
the classical action of gravity may be unbounded, for example, in
the case of the Einstein–Hilbert action. Then, the Legendre
transformation is defined on a saddle point.

The flow equation for the effective action [2, 78, 79] follows
straightforwardly from 28. The part proportional to ϕ2 is canceled by
the flow of the last term in (IV), and the flow of Γk[g, ϕ] is given by

ztΓk[g, ϕ] � 1
2
TrGk[g, ϕ] ztRk, (30)

where Gk[g, ϕ] is the full field-dependent propagator δ2Wk/δJ2,
and the trace has been defined below 28. It now contains a relative
minus sign for Graßmann-valued fields. With the definition of
the Legendre transformation in (IV), the full propagator is
given by

Gk[g, ϕ] � 1

Γ(0,2)k [g, ϕ] + Rk

. (31)

The flow equation for the effective action depends on the
second derivative of the effective action with respect to the
fluctuation fields, Γ(0,2)k [g, ϕ]. The flow of the latter is derived
from 30, with two derivatives with respect to the fluctuation field
ϕ. This flow depends on itself and the vertices Γ(0,3)k [g, ϕ] and
Γ(0,4)k [g, ϕ]. This leads to a tower of coupled differential equations
for the n-point vertices Γ(n,m)

k [g, ϕ], which is discussed in more
detail in Section 7.1. We use the following notation for
derivatives,

Γ(n,m)
k [g, ϕ] � δn+mΓk[g, ϕ]

δgnδϕm , (32)

for general functionals of g and ϕ. The functional derivative in 32
includes a factor of 1/

�
g
√

(see Supplementary Material).
The different parameterizations of the metric field, discussed

in Section 3, do not influence the flow equation for the effective
action 31, and they only differ by their corresponding expansion
schemes induced by the relations betweenmetric and fluctuations
(20, 21, 24). Still, from the viewpoint of diffeomorphism-
invariance, the different parameterizations differ qualitatively.
While the geometrical approach with the fluctuation field 24 by
construction leads to a diffeomorphism-invariant effective action
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at all cutoff scales, diffeomorphism-invariance is broken in the
linear split (20) and the exponential split 21 at a finite cutoff scale.

For all field parameterizations, a diffeomorphism-invariant
effective action with one metric g is obtained at vanishing
fluctuation graviton field h � 0,

Γk[g,φ] � Γk[g,φ] h�0, with φ � ϕ(h � 0),∣∣∣∣ (33)

the background effective action. Its flow equation is given by 30,
evaluated at vanishing fluctuation field h � 0,

ztΓk[g,φ] � 1
2
TrGk[g,φ] ztRk. (34)

Importantly 34 is not closed: the right-hand side depends on
Γ(0,2)k , the two-point function of the fluctuation fields including
the fluctuation graviton field h, while the left-hand side knows
nothing about h. Hence, the information about δ2Γk/δh2 has to be
obtained separately.

5 BACKGROUND FIELD APPROXIMATION

The background field approximation, introduced in [3, 80] for
YangMills theory and gravity, respectively, is the most commonly
used approximation in the fRG approach to quantum gravity (see
the reviews 7–16). It elevates the diffeomorphism-invariance of
the background effective action to that of the full effective action.
To that end, we write the full effective action in an expansion
about the background effective action in 33,

Γk[g, ϕ] � Γk[g,φ] + Sgf[g, h] + ΔΓk[g, ϕ]. (35a)

The gauge fixing term Sgf is defined in 6 and ΔΓk[g, ϕ � 0] � 0.
In the background field approximation, the last term in 35a is
assumed to be negligible,

ΔΓk[g, ϕ] ≈ 0. (35b)

The underlying assumption is that the dynamics of a gauge
theory is carried by gauge-invariant fluctuations, while ΔΓk
carries quantum deformations of the gauge fixing procedure
and should not drive the dynamics. Then, derivatives with
respect to g and h agree in the linear split and are related in a
simple way in the other parameterizations via 21 and 24.

In the approximation 35 and with the linear split 20, the
second derivatives of the effective action with respect to the
background metric and the fluctuation field agree at ϕ � 0 up
to the gauge fixing term:

Γ(0,2)k [g,φ] � Γ(2,0)k [g,φ] + S(0,2)gf [g, 0]. (36)

Inserting 35 into 30 leads us to a closed and diffeomorphism-
invariant flow for the background effective action Γk[g,φ].

5.1 Properties of the Background
Approximation
It is the simple relation 36 and the manifest diffeomorphism-
invariance of the approximation at all cutoff scales that make the

background field approximation so attractive. A large amount of
the results in asymptotically safe quantum gravity has been
obtained in this approximation, and it is still the commonly
used approximation in the field. This asks for independent checks
of these results and its embedding in systematic expansion
schemes that go beyond it. In the present work, we review
the fluctuation approach (see Section 7), which includes the
correlation functions of the fluctuation graviton field h. The
results in the background field approximation are qualitatively
in line with the results in the fluctuation approach discussed in
Section 8. This confirms—in most cases—the underlying
assumption 35b. Nonetheless, some words of caution are needed.

Despite its seeming manifest diffeomorphism-invariance, the
background field approximation is at odds with diffeomorphism-
invariance and background independence. To understand this
counterintuitive remark, we recall some features of the
background field formalism to standard quantum field
theories, for example, the SM and QCD. The introduction of
the background field to the gauge fixing allows defining a gauge-
invariant background effective action. It is evident from its
introduction that it is an auxiliary symmetry. The background
field can even generate gauge-invariant background effective
actions in theories that explicitly break gauge-invariance. This
is clear from the construction of diffeomorphism-invariant
background effective actions in gravity in the presence of a
background-covariant momentum regulator. In a gauge-
invariant theory without a cutoff, it can be shown that the
physical gauge-invariance of the theory is carried by the
fluctuation field in terms of nontrivial Ward– or
Slavnov–Taylor identities. The underlying transformations are
called quantum gauge/diffeomorphism transformations. This
physical symmetry carries over to the auxiliary background
gauge invariance via nontrivial Nielsen or split Ward
identities. The latter encodes background independence of the
theory and is introduced in Section 2.2. The Slavnov–Taylor and
Nielsen identities for gravity are discussed in detail in Section 6.

In summary, only if the fluctuation correlation functions
satisfy the nontrivial symmetry relations and the Nielsen
identities, the auxiliary background gauge-invariance is
physical. Then, it carries the underlying symmetry, and we
have background independence.

5.2 Regulator Dependence of the
Background Effective Action
In this section, we first argue that regulator choices within the
general class defined with 26 and 27 can be used within the
background field approximation to even change the (non-)
existence or the nature of an asymptotically safe UV fixed
point. This seems to casts some doubts on the reliability of
results obtained in the background field approximation.
However, we then show that the comparison with fluctuation
results and the proper use of Nielsen identities (see Section 6)
suffices to further restrict the general class of regulators such that
it is adapted to the background field approximation.

The regulator term is the origin of the reliability problems of a
naive use of the background field approximation within the fRG
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approach: it generates additional terms in ΔΓk[g, h] in 35a via
the background-metric dependence of the regulator. In the
background field approximation 35b, this background-metric
dependence is elevated to a dynamical one: in the
approximation 36, the fluctuation two-point function Γ(0,2)k is
computed from background-metric derivatives of the
(integrated) flow with the exception of the gauge fixing term.
These derivatives also hit the regulator. Accordingly, we have
added dynamics via the choice of the regulator, and it remains to
be proven in each application that this does not change the
results qualitatively.

This has been discussed early on at the example of scalar
theories and Yang–Mills theory in [81, 82]. In particular, it has
been shown that the one-loop β-function in Yang–Mills
theory can be changed from its universal result with
regulator choices in the background field approximation.
More precisely, it has been shown that for regulators,
Rk(Δs) with spin s � 1 and spin s � 0 covariant Laplacians Δs �
Δs(A) the coefficient ZF of the trF2-term in the effective action
runs at one loop as

ztZF

ZF 1−loop
� n βαs ,1−loop , forRk(x→ 0) ∝

1
xn−1

.
∣∣∣∣∣∣∣ (37)

(For details, refer to 82.) This spoils the universality of the one-
loop β-function in the Yang–Mills theory. If one does not resort
to the background field approximation, the correct one-loop
β-function is obtained.

We now discuss the origin of this peculiar behavior. We follow
the argument in [83] and for the general case including gravity
(refer to [21, 72, 73, 83]). Simply put, we would like to show that
the background effective action at a finite cutoff scale k and in
particular in the limit k→∞ carries no physics without further
restrictions of the regulator. We parameterize the regulator with

Rk � Γ(0,2)k rk(∇ ) (38)

(see also 26). Note that in 38, we have introduced a ∇ -dependent
shape function, which is more general than the
x � Δ/k2-dependent one (defined in 26). Still we use x in a
slight abuse of notation for identifying the UV and IR limits.
As already explained around 26, the shape function rk is a free
function of the covariant derivative with the limits 27. In
particular it has to decay in UV. With the parameterization
38, the flow equation 34 for the background effective action
with g � g reads

ztΓk � 1
2
Tr

1
1 + rk

ztrk + 1
2
Tr

1

Γ(0,2)k

ztΓ(0,2)k

1
1 + rk

rk. (39)

From the first term on the right-hand side of the flow 39, we
deduce that the UV limit of the shape function is constrained:
rk(x→∞)≤ 1/xd+ϵ with x � Δ/k2, as discussed below 27. In turn,
the IR limit x→ 0 of rk can be singular without spoiling the
finiteness of 39. In order to obtain a general background effective
action, we simply demand that rk solves the differential equation,

ztrk � −rk 1

Γ(0,2)k

ztΓ(0,2)k + 2ztYk. (40)

This is a simple differential equation that admits a solution at
least locally (in the flow time t). Note that the UV decay of rk also
constrains the UV limit of Yk with ztYk(x→∞)≤ 1/xd+ϵ.
Inserting a shape function rk of 40 into 39, we arrive at

ztΓk � Tr ztYk(∇). (41)

Equation 41 constrains the IR limit of the function Yk: its flow
ztYk has to be trace class for rendering the flow of the background
effective action finite. If we also assume the trace-class property
for Yk, the order of t-derivative and trace can be swapped.

Apart from these trivial constraints, the choice of Yk(∇) is at
our disposal. Integrating the flow 41 from some scale Λ< k, and
taking the UV limit with k→∞ we arrive at

lim
k→∞

Γk[g,φ] � [ΓΛ − TrYΛ] + TrYk(∇)→TrYk(∇). (42)

The term ΓΛ − TrYΛ is k- and Λ-independent, and the latter
property follows from RG-consistency: zΛΓk ≡ 0 for k≠Λ (see,
e.g., 84). In the last relation in 42, we have assumed that the
effective action is dominated by the UV term TrYk. This
assumption underlies most fixed-point analyses.

We emphasize that the result 42 is exact and no approximation
has been applied. Equation 42 implies that without suitable
restrictions on the regulator function rk, the flow of the
background effective action Γk[g,φ] (for large cutoff scales)
has no physics content at all. Even at one- and two-loop order
in perturbatively renormalizable theories, it does not reproduce
universal results without further restrictions on the regulator.

The IR limit with rk→ 0 � 0 puts a severe restriction onto rk,
which constrains the integrated flow together with the RG
consistency at the initial cutoff scale Λ, zΛΓk�0 � 0. However,
in the UV limit, the restriction

rk→∞ →∞, (43)

does effectively not restrict the UV scaling. The latter is
dominated by the UV-relevant operators that satisfy 43 by
definition. Note that so far, we have discussed the flow of the
background effective action Γk[g,φ] without resorting to
approximations.

The above issues are already present for the full flow and
emphasize the auxiliary nature of the background effective action
at k≠ 0. In particular, no conclusion can be drawn from its
regularity or singular behavior in the UV limit with k→∞.
This situation is further complicated by the background field
approximation. Then, the field dependence that originates from
the regulator term is fed back into the flow equation as dynamical
contributions. As we have discussed above, these contributions
are ambiguous in particular in the UV limit. In conclusion, the
background field approximation, while having the appeal of
simplicity and seeming diffeomorphism-invariance, has to be
applied with great care. To that end, we split the problems
discussed above in their physics origin:

(1) Physical diffeomorphism-invariance and background
independence are carried by nontrivial Slavnov–Taylor
and Nielsen identities of the fluctuation field.
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(2) The background field dependence of the regulator term is
potentially dangerous in the UV and has to be separated.

A first step in the resolution of the issues of the background
field dependence is to monitor the field-dependence that
originates in the regulator. The related equation and
discussion in the Yang–Mills theory and gravity can be found
in 21, 72, 73, 82, 83, 85, 86. (For applications to gravity, see also
57, 87–90.) The equation that monitors this dependence is
given by

Tr⎡⎣δ �
g
√

Rk

δgμ]

δ

δRk

⎤⎦Γk[g, ϕ] � 1
2
Tr

δ
�
g
√

Rk

δgμ]
Gk[g, ϕ]. (44)

Equation 44 allows to disentangle the background-metric
dependence stemming from the regulator from the rest. In the
Yang–Mills example from 37, it can be shown that the regulator-
field dependence is responsible for a contribution
(1 − n)βαs ,1−loop. Subtracting the contribution from the
regulator-field dependence, the universal result is obtained.
Indeed, even without an explicit computation, we can already
infer from 44 that the universal 1-loop β-function of the
dimensionless Yang–Mills coupling is achieved for IR regular
regulators: the projection of the right-hand side of 44 on the
dimensionless term proportional to trF2

μ] can only depend on the
cutoff scale k in the presence of an additional scale. For IR-regular
regulators, such a scale is absent and the k-derivative of 44
vanishes. In turn, IR-singular regulators implicitly introduce a
further IR scale, and the k-derivative of 44 does not vanish. This
explains the structure of the result in 37. We emphasize that the
modification of the dynamics in the background field
approximation via the regulator term is not restricted to IR-
singular regulators. The latter fact is a peculiarity of the universal
one-loop running of the dimensionless Yang–Mills coupling. In
particular, we emphasize that for nonuniversal couplings and
theories with dimensionful couplings such as gravity, the flow of
44 does not vanish for IR-regular regulators.

Based on this analysis it has been suggested in 81, 82, that
within the background field approximation, the corresponding
field-dependence should be subtracted before applying the
approximation Γ(0,2)k xΓ(2,0)k for the right-hand side of the
flow. This idea has been picked up by 91–93 for scalar
theories, f (R) gravity and gravity matter systems. (For more
details, see Section 6.) These works are based on the relation 44,
where one derivative with respect to the background is taken. To
fully resolve ΔΓk in 35a, a further field derivative of 44 is needed.
Furthermore 44 does not comprise the full difference between h
and g derivatives. While the background field correlation
functions are diffeomorphism-covariant due to background
diffeomorphism invariance, the fluctuation correlation
functions satisfy difficult Slavnov–Taylor identities. This is
well-known and well-studied (though not fully conclusively) in
non-abelian gauge theories where one also has access to
respective lattice results, for a recent review and related
references [27]. In turn, the related analysis, while in high
demand, is less advanced in quantum gravity (see also 16, 27).
This is detailed in the next section.

6 SYMMETRY IDENTITIES

Physical observables are diffeomorphism-invariant and
background-independent. The underlying symmetry is
dynamical and is solely carried by the dynamical fluctuation
fields. It is called quantum diffeomorphism invariance and reads

hμ] → hμ] + Lω(gμ] + hμ]), gμ] → gμ]. (45)

The background metric triggers an a priori auxiliary
symmetry, the background diffeomorphism invariance. It is
given by the transformation

hμ] → hμ] + Lωhμ], gμ] → gμ] + Lωgμ]. (46)

Here, Lω is the Lie derivative with respect to some vector field
ωμ, which reads for a rank-two tensor

LωTμ] � ωρ∇
ρ
Tμ] + Tμρ∇

ρ
ω] + T]ρ∇

ρ
ωμ. (47)

Both tranformations, 45 and 46, generated diffeomorphism
transformations on the full metric gμ], so they do not differ on the
functional of gμ]. Moreover, while 46 is an auxiliary symmetry, it
still comprises the information of the dynamical quantum
diffeomorphism symmetry 45 via the Nielsen identities. The
latter carry the background independence of the theory.

Any fRG computation needs to introduce a gauge fixing and a
regularization, which both apparently break diffeomorphism
invariance and (on-shell) background independence. Thus, it
is an important issue in the fRG approach to quantum gravity
to discuss how these properties can be preserved in a
nonperturbative computation. For each symmetry broken by
the cutoff term, we can formulate a nontrivial modified
symmetry identity, which captures the cutoff deformation of
the underlying symmetry and smoothly approaches the
unbroken symmetry identity at vanishing cutoff scale, k � 0.
We now first discuss how the Nielsen identities take care of
background independence and afterward discuss quantum
diffeomorphism invariance due to the Slavnov–Taylor
identities. Note that also in discrete gravity models, the Ward
identities play a crucial role (see 94) for a review of tensor models.

6.1 Background Independence
As discussed in Section 2.1, we always need to split the full metric
into a background metric g and a fluctuation field h. This split
introduces an additional symmetry given by all transformations
of the background metric and of the fluctuation field that leave
the full metric invariant.

g(g, h)→ g(g + δg, h + δh) � g(g, h). (48)

For example, in the linear split 20, we have δg � −δh. This
symmetry is guaranteeing background independence since we
can always find a transformation that changes the background
according to our choice. This symmetry is broken off-shell by the
gauge fixing and ghost action and further broken by the
regularization on- and off-shell. The breaking of the symmetry
is described by the Nielsen (or split Ward) identities [95, 96].
They encode the background independence of the physical
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observables and allow us to restore the symmetry at vanishing
cutoff.

Let us first discuss the Nielsen identities without the regulator.
The Ward identity for the effective action for any symmetry
transformation G is given by

W � GΓ − 〈G(Sgf + Sgh)〉 � 0, (49)

where Sgf and Sgh are defined as in 6 and 8. We apply this to the
transformation of the metric split 48 and obtain the Nielsen
identity NI � 0, with

NI � δΓ
δgμ]

− ∫  〈 δĥ
δgμ]

〉 · δΓδh − 〈⎡⎣ δ

δgμ]
− ∫  δĥ

δgμ]
· δ
δĥ
⎤⎦(Sgf + Sgh)〉, (50)

where hμ] � 〈ĥμ]〉, and the fluctuation field is understood as
function of the full metric and the background metric ĥ(g, g).
For the linear split 20, we have δĥρσ(x)/δgμ](y) � 1/

�
g
√

δ(x − y)
1/2(δμρδ]σ + δμσδ

]
ρ) (see Supplementary Material), and thus,

NIlin � δΓlin
δgμ]

− δΓlin
δhμ]

− 〈⎡⎣ δ

δgμ]
− δ

δĥμ]
⎤⎦(Sgf + Sgh)〉. (51)

The Nielsen identity for the exponential split 21 resembles 51:
there is a nontrivial difference between the background-metric
and fluctuation-field derivatives due to the gauge fixing and ghost
terms. In 17, we have pointed out that at k � 0, a solution of the
background EoM is also a solution of the quantum EoM and vice
versa. This implies together with 51 that the expectation value
〈[δg − δ

ĥ
](Sgf + Sgh)〉 needs to vanish on-shell. This is indeed

nontrivial and does not happen off-shell.
In comparison, for the fully diffeomorphism-invariant

Vilkovisky–DeWitt or geometrical effective action with the split
given by 22, the dependence on the gauge fixing action and the
ghost action is vanishing, and thus, the Nielsen identity reads

NIgeo � δΓgeo
δgμ]

− ∫〈 δĥ
δgμ]

〉 · δΓgeoδh
. (52)

In contradistinction to the linear and exponential split, the g
and h derivatives are directly related.

The Nielsen identities entail that for all metric splits, the
effective action is not a function of the full metric g but
depends separately on the background metric g and the
fluctuation field h. Consequently, the effective action has no
simple expansion in terms of diffeomorphism-invariant
quantities in gμ]. Still, the Nielsen identities relate g and h
derivatives such that on the solution of the Nielsen identities,
the effective action carries background independence and only
depends on one field.

So far, the analysis has been performed in the absence of the
cutoff term, that is, at k � 0. At finite k, the regulator term
introduces a further breaking of the split symmetry 48. The
Nielsen identities turn into modified Nielsen identities,
mNI � 0, that read for a general split

mNI � NI − 1
2
Tr

δ
�
g
√

Rk�
g
√

δgμ]
Gk − TrRkGk

⎡⎣ δ
δϕ 〈 δϕ̂

δgμ]
〉⎤⎦. (53)

Note that in the last term in 53, only the metric fluctuation
h contributes as the other fluctuation fields do not depend on
the background metric. Furthermore, in the linear split, the
last term is vanishing, and consequently, the mNI
simplifies to

mNIlin � NIlin − 1
2
Tr

δ
�
g
√

Rk�
g
√

δgμ]
Gk. (54)

While some of the properties and consequences of the mNI are
theory-dependent, most of them are generic, and much can be
learned about applications in gravity from investigations in
general theories: mNIs have been discussed in detail gravity,
gauge theories, in scalar theories [3, 15, 21, 57, 72, 73, 81, 82,
87–93, 98–106].

There is an important qualitative difference between the
breaking of the metric split symmetry 48 at finite k and at
k � 0. We have already discussed in Section 2.2 that the
Nielsen identity at vanishing cutoff scale, k � 0, encodes
background independence, manifested in the equivalence of
the solutions of the background and fluctuation EoMs, 17. At
finite cutoff scale, k≠ 0, we necessarily have background
dependence, as the quantum fluctuations have to be ordered
in a specific background. This is also manifest in the missing
equivalence of the background and fluctuation EoMs, the
respective solutions do not agree,

δΓk[g flucEoM, 0]
δhμ]

� 0 � δΓk[gbackEoM, 0]
δgμ]

, g flucEoM ≠ gbackEoM. (55)

(For a detailed discussion, see 97, 106, 107). The difference
between the solutions can be parameterized by a term
proportional to the regulator Rk, which is most easily seen in
the modified Nielsen identity in the geometric approach, 52
and 53.

The difference between g flucEoM and gbackEoM was explicitly
computed in 97, 107 for backgrounds with constant curvature.
The ansatz for the background effective action is

Γk[g] � ∫ 

d4x
�
g
√

k4f (r) � V~f (r), (56)

where V is the space-time volume and r � R/k2 is the
dimensionless background curvature. Thus, the background
EoM becomes

Γ(g)k [g, 0] ∼ rf ′(r) − 2f (r) � 0, (57)

which is displayed in the right panel of Figure 2 at the UV fixed
point for different numbers of scalar fields Ns. The ansatz for the
fluctuation one-point function reads

Γ(htr)k [g, 0] � ∫

d4x
�
g
√

k3f1(r) � V
k
f1(r), (58)

and thus, the quantum EoM is simply
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Γ(htr)k [g, 0] ∼ f1(r) � 0. (59)

This is shown in the left panel of Figure 2 at the UV fixed point
for different numbers of scalar fields Ns.

The background EoM does not display a solution in the
whole investigated region, while the quantum EoM has two
solutions, a minimum at negative curvature and a maximum at
positive curvature. For a larger number of scalar fields, these two
solutions merge. However, in this regime, the approximation
lacks reliability due to large values of the graviton anomalous
dimension. Importantly, Figure 2 manifests in explicit
computation the difference between the background and
quantum EoM, 55. The background EoM was also
extensively investigated in the background field
approximation with different choices of regulator and
parameterization. For example, in 108, the linear split was
used and a solution at large negative curvature was found.
However, in 109, 110, two further solutions at positive
curvature were found due to a different choice of the
regulator. A solution at positive curvature was also found in
111 and with the exponential parameterization in 51.

In 106, a modification of the fRG equation was proposed.
There, the effective action was defined as the Legendre transform
of a normalized Schwinger functional,
Ŵk[g, J] � log(Zk[g, J]/Zk[g, 0]). This modification implies
that the solutions to the quantum and background EoMs
agree even at a finite cutoff scale. This does not imply that the
modified effective action is background-independent at finite k
since there are differences in the higher order correlation
function. However, it allows for constructing improved
background field approximations, which might allow resolving
some tensions between background and fluctuation results.

6.2 From BRST to Diffeomorphism
Invariance
While the auxiliary background diffeomorphism invariance 46
remains unbroken, the physical quantum diffeomorphism

invariance 45 turns into a BRST symmetry due to the gauge
fixing, which is then further broken by the regulator. The related
symmetry identities are called (modified) Slavnov–Taylor
identities [(m)STI] [112, 113]. They encode physical
diffeomorphism invariance. We sketch the main ideas of the
derivation and apply them to gravity.

In case of the linear gauge fixing condition 7, the generator of
BRST transformation (or BRST operator) denoted by s, including
the Nakanishi–Lautrup field λμ, is given by

s(gμ], hμ], cμ, cμ, λμ, ϕmat) � (0,Lc(gμ] + hμ]), cρ∇ ρ
cμ, λμ, 0, sϕmat).

(60)

In (B), the vector field ωμ in the Lie derivative 47 is given by
the ghost field, ωμ � cμ. (For more details on the setup and the
condensed notation used below, see 21). The Nakanishi–Lautrup
field λμ transforms trivially under the BRST transformation,
sλμ � 0. The classical gauge-fixed action including the gauge
fixing and the ghost action is invariant under this transformation,
s(Sgrav + Sgf + Sgh) � 0. Furthermore, s is a nilpotent operator
with s2 � 0.

For the derivation of the STI, we include a source term Qasϕ̂a
for the BRST variations of the fields in the generating functional.
The Schwinger functional now reads

eW[g,ϕ,J ,Q] � ∫

Dϕ̂ e
−Stot+∫ 

d4x
�
g

√ (Ja ϕ̂a+Qasϕ̂a), (61)

where Stot � Sgrav + Sgf + Sgh. The STI follows from the BRST-
invariance of generating functional,

∫

s(Dϕ̂ e
−Stot+∫ 

d4x
�
g

√ (Jaϕ̂a+Qasϕ̂a)) � 0. (62)

The source term Jaϕ̂a is the only BRST-variant term. The
BRST operator s commutes with bosonic sources and anti-
commutes with fermionic sources. This leads us to
sJaϕ̂a � Jacbasϕ̂b, where the metric cba carries the minus sign
for the fermionic terms (see Supplementary Material).

FIGURE 2 | Displayed are the potential of the one-point function and the derivate of the background potential for different numbers of scalar fields at the fixed point,
as defined in 57 and 59. A zero in these functions indicates a solution to the quantum and background EoM, respectively. While the former always has two solutions, a
minimum at negative curvature and a maximum at positive curvature, the latter shows no solution at all. The figures are taken from 97.
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With these properties, we obtain the STI for the Schwinger
functional,

∫

Dϕ̂∫

d4x
�
g
√

Jacba(sϕ̂b) e−Stot+∫ 
d4x
�
g

√ (Ja ϕ̂a+Qasϕ̂a)

� ∫

d4x
�
g
√

Jacba
δ

δQb
eW[g,ϕ,J,Q] � 0. (63)

This identity can be re-expressed in terms of the effective
action. (See 21 for details.) Here, we just state the result for the STI
in the absence of the cutoff term,

STI � ∫

d4x
�
g
√ δΓ

δϕa

δΓ
δQa

� 0. (64)

This equation is known as the quantum-master equation. The
BRST variation of the effective action is given by
δΓ/δQa � 〈sϕ̂a〉. These variations can be interpreted as
generalized vertices of the theory.

Equation 64 encodes diffeomorphism invariance at k � 0
where the regulator vanishes. At finite cutoff scale, an
additional regulator contribution has to be taken into account,
and we are led to the mSTI,

mSTI � STI − TrRk
δ2Γk
δQδϕ

Gk � 0. (65)

Some of the properties of the mSTI are theory-dependent, but
most of them are generic: mSTIs in the presence and absence of
background fields in gravity and gauge theories have been
discussed in detail in [3, 15, 21, 22, 57, 72, 73, 81, 82, 87–93,
98–106, 114‒132].

In summary, we have three symmetries:

(1) The auxiliary background diffeomorphism invariance 46,
which remains unbroken.

(2) The quantum diffeomorphism invariance 45, which
describes physical diffeomorphism invariance. It is broken
and encoded in the mSTI 65.

(3) The split symmetry 48, which guarantees background
independence. It is broken as well and encoded in themNI 53.

The relations between background and fluctuation correlation
functions are summarized in Figure 3. The relation between two
fluctuation correlation functions can be expressed either with an
mSTI or with a combination of mNI and background
diffeomorphism invariance. However, it should be noted that
in a truncated nonperturbative computation these two
possibilities of relating fluctuation correlation function do not
agree with each other. Nonetheless, it can be used to check the
error of the truncation. (See Section 7.1 for more details.)

Last but not least, the flow of mNI and the mSTI is
proportional to itself, respectively. This is conveniently
expressed in terms of the flow equation for composite
operators, derived in [21, 128, 133]. Schematically, it reads

ztOk[g, ϕ] � −1
2
TrGk ztRk Gk O(0,2)

k [g, ϕ]. (66)

The operator O(0,2)
k is contracted with Gk ztRk Gk in the trace.

The set of composite operatorsOk[g, ϕ] with the flow 66 includes
general correlation functions Z(0,n)[g, J[g, ϕ]] with their
disconnected parts as well as more general functions of the
field-dependent source such as J[g, ϕ] � Γ(0,1)k [g, ϕ]. In the
most general case of a functional with an explicit cutoff
dependence, further terms enter 66 (see 21). An educative
example is Γ(0,1)k : inserting it into 66 leads to the fluctuation
field derivative of the flow equation 30. An instructive example
for the case of general correlation functions, and the necessity of
including the disconnected terms is the full two-point function
Gϕ1ϕ2 + ϕ1ϕ2. Equation 66 has been used in Yang–Mills theories
for the traced Polyakov loop observables [134] and in gravity for
the study of the renormalization and scaling of composite
operators [135–138].Importantly, the set of composite
operators {Ok} includes modified symmetry identities, that is,
Symk � mSTI,mNI, . . . (see 21 and also 82, 118, 119, 139).
Hence, the flow of the symmetry identities reads schematically

ztSymk[g, ϕ] � −1
2
TrGk ztRk Gk Sym

(0,2)
k [g, ϕ]. (67)

Equation 67 implies that once we have solved these identities
at a scale k, then the identities are satisfied at all scales. However,

FIGURE 3 | Displayed are the relations between background and fluctuation correlation functions in terms of symmetry identities. The background diffeomorphism
symmetry 46 remains unbroken and trivially connects background correlation functions. The split symmetry (48) is encoded in the modified Nielsen identity (mNI) (53) and
relates background correlation functions with fluctuation ones. The quantum diffeomorphism symmetry (45) is described by the modified Slavnov–Taylor identity (mSTI)
65 and relates fluctuation correlation functions. For the purpose of illustration, we have assumed that Γk � Γk[g, h,φ] depends on the background metric g, the
metric fluctuation h, and a scalar field φ. The notation Γ(n1 ,n2 ,n3 )k is then defined as in 32.
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this only holds for untruncated flows or truncations that are
compatible with 67. (More details can be found in Section 7.1.)

6.3 Challenges for
Diffeomorphism-Invariant Flows
Gauge-invariant approaches to quantum field theories have
received much attention over the decades both in perturbation
theory and beyond. Such formulations also have met considerable
challenges, except for lattice gauge theories that are based on link
variables formulated in the gauge group. In turn, perturbation
theory and nonperturbative functional approaches are based on
correlation functions and in particular on the propagator of the
algebra-valued gauge field. (For reviews on lattice approaches to
quantum gravity see, e.g., 140–144).

Gauge-invariant functional formulations are based either on
gauge-invariant or gauge-covariant variables such as the geometrical
formulation, the field strength formulation, or Wilson line
formulations similar to lattice gauge theories. Implementations in
the flow equation approach range from generalized Polchinski
equations with gauge-covariant kernels for the Wilson effective
action [145–156] and its recent manifestations [157–159], over
the geometrical or Vilkovisky–DeWitt flows for the effective
action [21, 71–74], to a recent suggestion for a gauge-invariant
flow for the effective action [160–164].

Most of these approaches rely explicitly or implicitly on the
definition of projection operators on the subspace of the dynamical
degrees of freedom. Typically, this is achieved by a gauge fixing, but
the notation of a projection is far more versatile. The appropriate
definition of this projection and the respective geometrical
structure of the configuration space is at the root of the
geometrical construction. This has been discussed in Sections
3.3, 6.2, and 6.3, and we refer to the discussions there. The
notable nonlocality of the projections both in field space as well
as momentum space is an inherent property of the construction of
gauge-invariant subspaces. Consequently, it should be considered
an inherent feature of such a construction. This inherent
nonlocality may be buried in functional self-consistency
relations, but it is present explicitly or implicitly without any doubt.

In any case, the situation calls for self-consistency checks of the
final formulations of gauge-invariant or diffeomorphism-invariant
flows. This necessity has been discussed already in 165: there the
terminology of complete and consistent flows was introduced. The
former flows generate all quantum fluctuations from a given classical
action, while the latter flows generate a well-defined subset of
quantum fluctuations from a given—partial—effective action. A
well-known example for the latter is thermal flows, which only
generate thermal fluctuations from the full quantum effective
action at vanishing temperature. In 165, 166, an important and
simple consistency check for flow equations has been suggested: any
complete flow equation must generate the complete perturbation
theory upon iteration from the given classical action. While one-loop
perturbation theory in the fluctuation field is trivially achieved within
one-loop exact flow equations, two-loop perturbation theory provides
a nontrivial necessary, while not sufficient, consistency check.

These checks for diffeomorphism-invariant fRG approaches
have been passed for the Wilsonian approach [145–156] or are

trivial for the geometrical effective action approach [21, 71–74].
It is a highly relevant and interesting question how the more
recent proposals [158–164] fare in such a self-consistency check.
Respective investigations either confirm the completeness of the
approaches or may show their consistency, that is, they may
integrate out a well-defined subset of quantum fluctuations.
Finally, for potentially consistent flows, such an investigation
may enable the construction of nontrivial two-loop consistent
extensions. We emphasize that such an extension does not
simply pass a two-loop test but more importantly allows for
two-loop resummed nonperturbative approximations. The
latter set of approximations certainly live up to the self-
consistency of other state-of-the-art computations in
asymptotically safe quantum gravity, while having the benefit
of inherent diffeomorphism invariance.

7 FLUCTUATION APPROACH

In the last sections, we have detailed the need for an fRG approach
to quantum gravity that goes beyond the background field
approximation and that allows satisfying the nontrivial
symmetry identities, the mSTI 65 and the mNI 53. For
general metrics gμ], this requires to solve the flow equation 30
for the two-field action Γk[g, h]. It is already a formidable task for
the one-field flow in the background field approximation
discussed in Section 5. Indeed, already in scalar theories, one
has to resort to approximations such as the derivative expansion
or the vertex expansion, and this is no different in gravity. As
already discussed, while the quantum dynamics of asymptotically
safe gravity is generated and carried by the fluctuation correlation
functions, it is the diffeomorphism-invariant background
effective action Γ[g] that allows for a more direct physics
interpretation. The latter is extracted from the flow 34 that
solely depends on the fluctuation two-point function
Γ(0,2)[g, 0]. The flow of the latter depends on higher order
fluctuation correlation functions (see Section 7.1).

This suggests the expansion of the effective action Γk[g, h] in a
vertex expansion of the fluctuation field h. Importantly, the vertex
expansion in the fluctuation approach is a systematic
approximation scheme, the strength and convergence of which
have been shown in many nonperturbative approaches, and most
notably in the fRG approach to QCD [167–171]. In the spirit of
“toy” theories that can teach us something about technical
properties and convergence, we consider non-abelian gauge
theories as one of those standard quantum field theories that
are as close as it gets to gravity. The vertex expansions fully
disentangles the contributions from the background metric g and
the fluctuation field h and reads for the effective action,

Γk[g, ϕ] �∑
n�0

∞ 1
n!
∫

Γ(0,ϕa1 ...ϕan)k [g, 0] · ϕa1
. . . ϕan

. (68)

Evidently, if the expansion coefficients Γ(0,ϕa1...ϕan)k are
evaluated for general g, we have a simple access to the full
effective action. For example, if we choose g � g flucEoM, the
solution of the fluctuation EoM in 55, we have chosen an on-
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shell expansion point. Accordingly, if we are interested in on-shell
physics, only small fluctuations h should be relevant. In turn, if we
choose another expansion point, for example, for technical
reasons, it is very important to assess whether on-shell physics
is in the radius of convergence of the expansion. This will be
discussed in more detail in Section 7.2.

7.1 Hierarchy of Flow Equations
The background field approach leads to an extended hierarchy of
flow equations. We first note that the background flow equation
ztΓk[g] (34) depends on the fluctuation two-point function

Γ(0,2)k [g, 0] in a general background. The knowledge of the
latter allows us to determine Γ[g] and is tantamount to the
determination of the full propagator of the theory in a general
background. However, the flow of the two-point function

ztΓ(0,2)k [g, 0] depends on Γ(0,m)
k [g, 0] with m � 2, 3, 4. This

continues for higher n-point functions and leads to an infinite
tower of coupled equations,

Γ(0,m)
k [g, 0] � fRG0,m[g, {Γ(0, 2≤ j≤m+2)

k [g, 0]}]. (69)

In other words, we need Γ(0,2)k [g, ϕ] for general fluctuation
fields for solving the flow equation of the background effective
action. For most interacting quantum field theories, the task of
resolving the full field dependence of the effective action is
beyond reach. Already in scalar theories, one typically resorts
to the computation of the full effective potential as well as
additional vertices or momentum dependencies. In gravity, the
full potential of the background curvature R has been
investigated: f (R) as well as potentials of tensor invariants [49,
51, 54, 59, 97, 107–111, 172–183]. Apart from this, as in other
theories, explicitly or implicitly, a vertex expansion has been used.
This entails a further expansion of 69 in powers of the
background field and leads us to the hierarchy

Γ(n,m)
k [g, 0] � fRGn,m[g, {Γ(i≤ n, 2≤ j≤m+2)

k [g, 0]}]. (70)

Equation 70 is the full hierarchy of integrated flow equations
to solve for quantum gravity. While its solution in terms of the
vertex expansion has been baptized the fluctuation approach, it
simply is the full problem at hand.

Apparently, 70 constitutes a system of equations for a two-
field effective action. However, as discussed in Section 6,
background independence at vanishing cutoff, k � 0, encoded
in the Nielsen identities and carried over to the mNIs at finite
cutoff scale k turns the effective action into a one-field effective
action. In terms of the vertex expansion, this information is given
by the mNI (53) for (n,m)-point functions,
Γ(n,m)
k [g, h] � Γ(n−1,m+1)

k [g, h] +mNIn,m[g, {Γ(i≤ n−1,j≤m+1)[g, h]}].
(71)

This leaves us with two towers of functional relations. While
the first one (70) describes the full set of correlation functions, the
second one (71) can be used to iteratively solve the tower of mixed
fluctuation background correlations on the basis of the

fluctuating correlation functions {Γ(0,m)}. In both cases, we can
solve the system for the higher order correlations of the
background on the basis of the lower order correlations. If we
use 71 with an iteration starting with the results from the flow
equation for {Γ(0,m)[gsp, h]} for a specific background gsp, this
closure of the system automatically satisfies the NI. Accordingly,
any set of fluctuation correlation functions {Γ(0,m)[gsp, h]} can be
iteratively extended to a full set of fluctuation background
correlation functions in an iterative procedure.

An important feature of the fRG equations is that in the
Landau limit of the gauge parameter α→ 0 in 6, the flow
equations for the transverse vertices Γ(0,n)k,⊥ are closed: the
external legs of the vertices in the flow are transverse due to
the transverse projection of the flow, the internal legs are
transverse as they are contracted with the transverse
propagator. Schematically, this reads for the integrated flows 70,

Γ(0,n)k,⊥ � fRG(0,n)
⊥ [{Γ(0,m)

k,⊥ }]. (72)

In other words, the flow equation system of transverse
fluctuation correlation functions is closed and determines the

FIGURE 4 | Diagrammatic representation of the flow equations of the
fluctuation n-point functions up to n � 4. Graviton propagators are depicted
with a blue double line and ghosts with a red dotted line. The crossed circle
represents a regulator insertion. The flows can be augmented
straightforwardly with contributions from matter fields. The figure is taken
from 184.
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dynamics of the system. In the fluctuation approach, the
transverse system of graviton correlation function has been
solved up to the four-graviton vertex [184]. A diagrammatic
depiction of the system of flow equations is given in Figure 4, and
a description of the respective results can be found in Section 8.

In turn, the flow equation system for longitudinal fluctuation
correlation functions is not closed, and the transverse correlation
functions Γ(0,n)k,⊥ feed into it,

Γ(0,n)k,L � fRG(0,n)
L [{Γ(0,m)

k,⊥ }, {Γ(0,m)
k,L }]. (73)

Note that {Γ(0,n)k,L } is the complement of the set of purely
transverse correlation functions, so it consists of correlation
functions with at least one longitudinal leg. On the other hand,
the mSTIs are also nontrivial relations for the longitudinal
correlation functions in terms of transverse vertices and
longitudinal ones. This leads us to the schematic relation,

Γ(0,n)k,L � mSTI(0,n)[{Γ(0,m)
k,⊥ }, {Γ(0,m)

k,L }]. (74)

(See 185 for non-abelian gauge theories.) In consequence, the
mSTIs provide no direct information about the transverse
correlation functions without further constraint. In the
perturbative regime at large momenta, this additional
constraint is given by the uniformity of the vertices. In turn,
in strongly correlated regimes such a general constraint is absent.
Indeed, one can show that the confinement property in a
Yang–Mills theory in a covariant gauge necessitates the
absence of uniformity of the vertices at low momenta. (For a
detailed discussion in non-abelian gauge theories, see 168.)

Instead, we can simply use 74 for a given set of transverse
correlation functions for constructing a BRST-invariant solution,
which signals diffeomorphism invariance. For a given finite set of
transverse correlation functions, generically such a solution can
be found by integrating the flow (67). However, it may be
nonlocal. The existence of BRST-invariant solutions for a
general transverse input emphasizes the fact that the
derivation of diffeomorphism-consistent solutions is not
necessarily the hallmark of a good truncation. However, the
comparison of 74 and 73 is a further nontrivial constraint on
longitudinal correlation functions. Its evaluation is complicated
by the fact that the solutions of two different functional relations
for the same set of correlation functions do not agree in general in
nontrivial truncations. Furthermore, it is very difficult to provide
a measure for the closeness of the solutions. (For a related
discussion in non-abelian gauge theories, see the recent review
[27] and references therein.)

In summary, the evaluation of diffeomorphism invariance and
self-consistency constitutes an intricate challenge. One has to
utilize all the properties and relations discussed above. This holds
for all fRG approaches to quantum gravity and not only to the
fluctuation approach: only local BRST-invariant solutions should
be considered physical, and the evaluation of locality and BRST
invariance or their absence is intricate.

7.2 Flat Expansion Is a Curvature Expansion
As briefly mentioned in the introduction of this section, the choice
of the background metric is important for the convergence of the

vertex expansion. However, an evaluation of the flow equations for
Γ(0,n)k [g, 0] for generic metrics is yet an unresolved technical
challenge. Even flows for spherically symmetric backgrounds
already pose a formidable technical challenge that has only
been solved recently within further approximations that hold
for small curvatures [97, 107]. Therefore in most applications,
one resorts to a curvature expansion in powers of the curvature.
Such an expansion is tantamount to an expansion about the flat
background with vanishing curvature,

g � 1, (75)

the Euclidean analog of the Minkowski metric. This has been
baptized the flat expansion. With the flat background (75),
Fourier transformations can be performed, and we are led to
correlation functions Γ(n,m)

k (p1, . . . , pn, pn+1 . . . , pn+m) in
momentum space. This gives access to the powerful
techniques of standard quantum field theory that allows
solving the flow equations for general vertex functions in
momentum space.

This expansion encompasses the standard curvature
expansion with the additional benefit that generic covariant
momentum dependences are systematically accessible. (For a
respective brief discussion, see 184.) To understand this
statement, we sketch the curvature expansion of the
background field approximation with standard heat kernel
techniques and the flat expansion in momentum space. We
shall see that both lead to the same flow equations for the
expansion coefficients of diffeomorphism-invariant operators.
We expand the full one-field effective action in local curvature
invariants and covariant derivatives

Γk[gμ]] � 1
16πGk

∫ 

d4x
�
g

√ (2Λk − R) + O(R2
μ]ρσ ,∇

2). (76)

In 76, the first term on the right-hand side is the
Einstein–Hilbert action with a scale-dependent cosmological
constant and Newton coupling. The second term includes all
other curvature invariants starting with R2, . . .. Covariant-
derivative terms, schematically given by ∫ �g√

R∇2R and terms
with higher-orders in covariant derivatives ∇, kick in at the next
order and beyond. Note that the scale-dependent
Einstein–Hilbert action without higher order terms is still a
common approximation for the pure gravity sector in
particular in many applications to gravity–matter systems.
(For gravity–matter systems beyond the Einstein–Hilbert
truncation see, e.g., 58, 65, 186–188.)

Similarly to 76, the flow of the background effective action can
also be expanded in terms of local curvature invariants and
covariant derivatives. This leads us to

1
2
TrGkztRk [gμ]] � 1

16π
∫ 

d4x
�
g

√ (2a1,k − aR,kR)
+O(R2

μ]ρσ ,∇
2), (77)

with expansion coefficients aO,k of a given operator O. In
particular, we have a1,k � aR0 ,k. By comparing 76 and 77, we
arrive at the flow equations
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zt
1
Gk

� aR,k, zt
Λk

Gk
� a1,k. (78)

Evidently, any complete projection procedure produces the
complete set of flow equations of all expansion coefficients aO,k.
We emphasize that if the operator basis is overlapping, the flow of
the effective action is unique, while the flow of the set of aO,k

is not.
The standard procedure for projecting onto the flow of the

cosmological constant and the Newton coupling, as well as that
of higher order invariants, is by heat kernel techniques or
explicit summation over the spectrum of the covariant
Laplacians, in conjunction with the Euler–Maclaurin formula
(see the reviews [7–16]). As no other local diffeomorphism-
invariant operators are present at this order, the flow of Gk and
Λk depends only on the given approximation of Γ(0,2)k on the
right-hand side of the flow. As already indicated, at higher
orders of the curvature expansion, more and more invariants are
present, and the projections on one single invariant only give
unambiguous results if a complete basis of invariants is chosen.
In fermionic systems, this is the well-known Fierz ambiguity.
(See the review [26] for an extended discussion.) Consequently,
at higher orders of the expansion, one typically has to deal with
two truncation artifacts: first, we always have to deal with the
truncation of Γ(0,2)k , and second, we have to deal with incomplete
bases. We note that only very recently the second order has been
mapped out (see 189). This emphasizes that we have to deal with
an intricate technical challenge.

Now, we derive the flows in 78 within the flat expansion
scheme. To that end, we note that the only local diffeomorphism-
invariant term with no derivatives is the volume term V � ∫

x

�
g

√
.

Moreover, the only local diffeomorphism-invariant term with
two derivatives is the curvature scalar term. This implies that we
have a unique projection at the flat expansion point 75,
schematically written as

− 8π
V ztΓk[g]|g→ 1

� zt
Λk

Gk
� a1,k,

16πzp2ztΓ(2)k,TT[g]|g→ 1
� zt

1
Gk

� aR,k,

(79)

where the subscript TT refers to the projection and normalization
on the traceless-transverse part. (More details can be found, e.g.,
in 184.) Equation 79 simply is 78, as the flat expansion scheme is
a consistent projection scheme.

This procedure can be extended beyond the set of local
diffeomorphism-invariant operators:

(1) Take general derivatives with respect to hμ](p).
(2) Contract with all possible Lorentz tensor structures.
(3) Take derivatives with respect to momenta.

In particular, apart from all local diffeomorphism-invariant
term, the expansion captures general covariant momentum
dependences including potential IR-singular terms and
topological terms. A diffeomorphism-invariant example for the
former is the Polyakov action in two dimensions,

− 1
96π
∫

d2x
�
g

√
R
1
ΔR (80)

(see, e.g., 190, 191). IR-singular terms are naturally covered by
taking into account full momentum dependences of full vertices
or momentum channels of specific tensor structures. This has
been used extensively in gauge theories such as QCD not only
within the fRG approach but also in other functional approaches
based on Dyson–Schwinger equations or n-particle irreducible
hierarchies.

A relevant example for a topological term in gravity is the
Gauß–Bonnet term with the density

E[g] � 1
32π2

(R2 − 4Rμ]Rμ] + Rμ]ρσRμ]ρσ). (81)

Metric variations of the local density E[g] are nonvanishing to
all order of metric derivatives. In turn, its space-time integral
χ[g] � ∫ d4x �

g
√

E[g] is the Euler characteristic of the manifoldM
with χ[g] ∈ Z. Consequently, smooth metric variations of χ[g]
(no change of the geometry) are vanishing. Note however that
functional derivatives are distributional and do not fall into the
class of smooth variations. Moreover, only the combination of the
different curvature-squared invariants in 81 add up to the Euler
characteristic χ[g]. The single terms have a generic metric
dependence, and with appropriate projections, we can capture
their running coefficients. This is the manifestation of a more
generic feature, which is already used in the extraction of
anomalies in perturbation theory and anomalous as well as
topological terms beyond perturbation theory (see, e.g.,
[192, 193]).

Below, we outline a cautious approach guided by the works
192, 193 in gauge theories. There, a simple example for a
topological invariant is the Pontryagin index in a U(1) theory
with the density 1/(32π2)Fμ]~Fμ]

, where ~F
μ]

is the dual field
strength. This density is quadratic in the field and is discussed
in Supplementary Material. Analogously to this example, we
introduce the Gauß–Bonnet term with a local auxiliary field θ(x),

χ[g, θ] � ∫ d4x �
g

√
θ(x)E[g], χ[g, 1] ∈ Z. (82)

The auxiliary field θ(x) � θtop + Δθ(x) can be seen as the local
coupling of the Gauß–Bonnet density. Its constant part θtop with
∇θtop � 0 is the topological coupling, while its space-
time–dependent part Δθ(x) is part of the couplings of the
local diffeomorphism-invariants quadratic in the curvature.
Applying two derivatives with respect to the metric field in
momentum space leads us to

δ2χ[g, θ]
δgμ](p)δgρσ(q) g�δ � 1

16π2
T μ]ρσ(p, q)θ(l)δ(l + p + q).∣∣∣∣∣∣∣ (83)

The tensor structure T is given by

T μ]ρσ � Π0(δμ]δρσ − δμ(σδρ)) + Πμ]ρσ
2 (84)

+ δμ]Πρσ
1 + δρσΠμ]

1 − δμ(ρΠσ)
1 − δ](ρΠσ)

1
μ,

where we have defined
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Π0 � p2q2 − (p · q)2,
Παβ

1 � 2(p · q)p(αqβ) − pαpβq2 − qαqβp2,

Παβcδ
2 � pαpβqcqδ + pcpδqαqβ − pαp(cqδ)qβ − pβp(cqδ)qα. (85)

The (local) total derivative property of the Gauß–Bonnet
density is reflected in the fact that all Πi are vanishing for l � 0
when momentum conservation implies p � −q. Accordingly,
with θ(x) � θtop and θ(l) � θtop(2π)4δ(l), the right-hand side
of 83 vanishes. However, by collecting the θ terms on the left-
hand and right-hand side of the flow, one can simply project
the flow on the running of the coefficient of the topological
term. We emphasize that the vanishing of the flow for
constant θ is analogous to the vanishing of the flow p2ztZϕ

for p2 � 0. In conclusion, the present expansion scheme is
well-capable and well-suited for describing IR divergent and
topological terms.

In summary, the flat expansion allows projecting the flow
equation on the flow of all coefficients aO,k for diffeomorphism-
invariant operators of the form

O � ∫
x

�
g

√
fμ1/μ4n(∇1, . . . ,∇n)∏

i�1

n

Rμi1/μi4
. (86)

Here, ∇i acts only on the ith Riemann tensor. In the case of the
fluctuation correlation functions Γ(0,n)k [g], no expansion in
curvature invariants is possible, but an expansion in covariant
tensor structures is possible, though being even more intricate. In
case of the flat expansion, this is done with considering all tensor
structures of Γ(0,n)k (p1, . . . , pn). How this can be done has been
worked out in QCD (see, e.g., 167–171), and respective
computational tools are provided e.g., by [169, 194, 195] or
are in preparation.

The findings of the present section can be summarized as
follows:

(1) The flat expansion encompassed the curvature expansion.
There is no conceptual difference, and both expansions are
expansions about the flat background g � 1.

(2) The expansion point of the curvature or flat expansion is not
the solution of the EoM, g flucEoM, and checks of the convergence
of the expansion are in high demand.

(3) The fluctuation approach within the flat vertex expansion
resolves the difference between fluctuation and background
field. As such it simply improves upon the background field
approximation within the curvature expansion without
introducing other approximations: fluctuation approach
results benchmark that in the background field
approximation and provide nontrivial reliability checks for
the latter.

There are an increasing number of computations that do
not rely on the curvature expansion, for example, 49, 51, 54,
109–111, 175–182 in the background field approximation and
97, 107 in the fluctuation approach. This concludes our
discussion of the formal properties of the fluctuation
approach.

7.3 Tensor Structure and Momentum
Dependence of Vertices
In the flat expansion, the vertices Γ(n) � Γ(0,n) are typically
rescaled with the wave function renormalizations Zϕa to obtain
the RG-invariant vertices Γ(n) � Γ(0,n)

Γ(ϕa1 ...ϕan)k (p) � ⎛⎝∏
i�1

n

Z
1
2
ϕai
(p2i )⎞⎠Γ(ϕa1 ...ϕan)k (p), (87)

where, p � (p1, . . . , pn). The wave function renormalizations can
be fully absorbed by a redefinition of the fields ϕa �

���
Zϕa

√
ϕa. The

wave function renormalization enter the flow equations only via
the anomalous dimensions ηϕa defined by

ηϕa(p2) � −zt lnZϕa(p2), (88)

which describes the running of the rescaled fields ztϕa ∝ ηϕaϕa.
The RG-invariant vertices Γ(n)k are then parameterized with a
complete set of tensor structures T j and respective RG-invariant
dressings Ak,j

Γ(ϕa1 ...ϕan)k (p) � A(ϕa1 ...ϕan)k,j (p)T (ϕa1 ...ϕan)j (p; couplings), (89)

where the sum over j is implied. The size of the complete set of
tensor structures increases rapidly for higher order vertices. The
cutoff-dependent dressings Ak,j capture the overall coupling
strength of the respective tensor structure and its momentum
dependence.

In most applications to gravity, only the Einstein–Hilbert
tensor structures deduced from the curvature scalar and the
volume term are taken into account. This leads us to

A(n)
k (p) � G

n
2−1
n (p2),

T (ϕa1 ...ϕan) � GN S
(ϕa1 ...ϕan)
EH (p;Λn), (90)

with the Einstein–Hilbert action 1 and the momentum-
dependent global dressing A(n)

k of the Einstein–Hilbert tensor
structure. The prefactor GN in the definition of the tensor
structure leaves the latter independent of GN. The couplings
Gn and Λn resemble the Newton coupling and the
cosmological constant, respectively, for each n-point function.
They are called avatars of the respective coupling. In C, we have
already simplified the momentum dependence of the couplings
Gn: they only depend on the average momentum
p2 � (p21 +/ + p2n)/n. The couplings Gn are extracted from the
flow of the n-point functions at a momentum symmetric point.
This definition mimics the definition of momentum-dependent
couplings in gauge theories. The dimensionless counterparts of
Gn and Λn are denoted by gn � Gn k2 and λn � Λn/k2.

For n � 0, 1, we have Γ(0,n) � 0 for a flat background. For
n � 2, we have Gn/2−1

n � G0
2 � 1, and hence, there is no Newton

coupling G2 for the two-point function. Instead, Γ(0,2)k depends on
the graviton mass parameter μ � −2λ2 and the dimensionless
wave function renormalization Zh(p) of the fluctuation graviton.
We emphasize that the graviton mass parameter µ should not be
understood as a physical mass. Moreover, the graviton is not
directly related to an asymptotic state. (For a recent discussion,
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see 196 and also the review 16.) All dimensionless couplings are
shown in Figure 7 as a function of the cutoff scale on one
exemplary UV-IR trajectory.

7.4 Momentum Locality
An important property of a physical coarse-graining procedure is
momentum locality: it ensures that a coarse-graining step at a
given cutoff scale k does not influence the physics at momentum
scales p≫ k. In 197, it was defined by

lim
p2
i
k2
→∞

∣∣∣∣ztΓ(n,m)
k (p)∣∣∣∣∣∣∣∣Γ(n,m)

k (p)∣∣∣∣ � 0, with p � (p1, . . . , pn+m), (91)

In this definition, all momenta pi of the correlation function
Γ(n,m)
k (p) need to be sent to infinity such that there are no trivial
cancellations for the momenta of internal propagators. This is, for
example, achieved with a symmetric momentum configuration.
The norm of the n-point function refers to a normalized tensor
projection.

The condition 91 is satisfied by all perturbatively
renormalizable local quantum field theories of scalars,
fermions, and vector fields (including gauge fields in linear
gauges with linear momentum dependences) by trivial
counting of the momenta. In turn, nonrenormalizable theories
with nontrivial momentum dependences of vertices are easily
nonlocal. For example, the scalar field theory with an interaction
term of the type ∫

x

ϕ2(zϕ)2 does not fulfill 91. Note that this theory
has the power counting of Einstein–Hilbert gravity.

Thus, a naïve momentum counting in gravity leads to the
conclusion that the coarse graining is not momentum local,
neither in Einstein–Hilbert gravity nor in a higher derivative
theory of gravity. One needs nontrivial cancellations between
diagrams. In 198, such a cancellation was observed for the first
time in the transverse traceless part of the graviton two-point
function with Einstein–Hilbert vertices. In 197, this was extended

to the transverse traceless part of the graviton three-point
function. Both cases are displayed in Figure 5. There are three
diagrams (plus one ghost diagram) contributing to the flow of the
graviton three-point function (Figure 4). The cancellation takes
places between all diagrams and holds for all gauge fixing
parameters and all momentum configurations of the three-
point function, as long as all external and internal momenta
are sent to infinity.

We close this section with the remark that the results in 197,
while highly nontrivial, should be considered to be the first step in
a fully conclusive analysis. Most notably, the observed locality
does not hold for all tensor structures of the n-point functions
considered there. In our opinion, this may hint at persistent
nonlocalities introduced by the gauge fixing. If this can be
solidified in further investigations, this should allow for
selecting gauge fixings that make the coarse graining
procedure for a given regularization procedure momentum
local. Note that while momentum locality of a coarse graining
procedure is not a necessary property, it certainly improves the
convergence of standard approximation schemes which are
typically momentum local. Moreover, if no momentum local
coarse graining procedure can be found for a given theory, this
casts serious doubts on the interpretation of such a theory as a
local quantum field theory.

8 STATE OF THE ART

We are now ready to review the state of the art of asymptotically
safe quantum gravity within the fluctuation approach. To
facilitate accessing the relevance of the different results for the
self-consistency of the approach, we start with a brief overview:

UV Fixed Point (Section 8.1): The existence of a UV fixed
point with a finite-dimensional critical hypersurface ensures the
UV finiteness and predictivity of the theory. With the fluctuation
approach, this has been investigated for pure gravity in 73, 93, 97,
107, 184, 197–206. The UV fixed point is comparable with results
in the background field approximation and thus consolidates
these results. Three UV-attractive directions are found associated
with

�
g

√
,
�
g

√
R, and

�
g

√
R2. First signs for apparent convergence

within the vertex expansion were found [184].
UV-IR Trajectory (Section 8.2): A UV-IR trajectory allows us

to connect to a classical GR regime and IR-SM physics if matter
couplings are included. Classical GR regimes are accessed for
μ→ 0 (Gaußian fixed point), μ→∞, and μ→ −1, where μ �
−2λ2 is introduced below (Section 8.3). The case μ→ −1 was
investigated in 73, 184, 198, 199. In the classical regime, the
modified STIs and modified NIs reduce to standard STIs and NIs,
which can be solved for small k.

Momentum Dependence and Unitarity (Section 8.3): The full
momentum dependence, in particular of the propagator, opens a
path toward a first investigation of unitarity via spectral
reconstructions. The truncations already include the
momentum dependence of the graviton two-, three-, and four-
point functions at the momentum symmetric point [184, 197,
198] as well as the momentum dependence of the graviton-matter
three-point vertices [93, 202–204]. The momentum dependence

FIGURE 5 | Displayed are the flows of the traceless transverse parts of
the graviton two- and three-point functions,

∣∣∣∣∣ztΓ(2)k

∣∣∣∣∣ and ∣∣∣∣∣ztΓ(3)k

∣∣∣∣∣, as a function
of dimensionless momentum. The flows approach constants for large
momenta, and they do not grow with p2 as expected from a naive
counting of momenta. The flows are normalized by the respective n-point
functions,

∣∣∣∣∣ztΓ(2)k

∣∣∣∣∣/∣∣∣∣∣Γ(2)k

∣∣∣∣∣ and ∣∣∣∣∣ztΓ(3)k

∣∣∣∣∣/∣∣∣∣∣Γ(3)k

∣∣∣∣∣. These ratios tend toward zero for
largemomenta which signals momentum locality. The figure is taken from 197.
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has been also used to show the absence of IR divergences in the IR
regime [198, 199] and to show the absence of R2

μ] contributions at
the UV fixed point [184].

Curvature Dependence (Section 8.4): The curvature
dependence of the correlation functions allows extending the
results from a flat background to a generic background. The full
curvature dependence of the fluctuation correlation functions
contains the information of the diffeomorphism-invariant
effective action (Section 7.1). The first steps in this direction
in pure gravity and scalar gravity systems have been done in 97,
107, 206. In 97, 107, the difference of the background and
quantum EoM due to the mNI was explicitly computed (see
Section 6.1 and Figure 2).

Gravity–Matter Systems (Section 8.5): The aim is to
incorporate the SM degrees of freedom in asymptotically safe
quantum gravity and eventually to retrodict SM parameters and
to constrain beyond the SM physics [207–218]. Minimally and
nonminimally coupled gravity–matter systems have been
investigated with (partial) fluctuation approach techniques in
53, 83, 93, 97, 187, 202, 204, 219–224. A particularly interesting
question is for which matter content the UV fixed point exists.
First bounds were computed in 219; however, a qualitative
difference between the results in the background field
approximation and the fluctuation approach was found [220].
It was shown in 202 that higher order curvature terms are needed
to fully address this question. (For gravity–matter systems with
higher derivative gravity in the background field approximation,
see 58, 183, 186.) The investigation in 97 is a first step toward the
computational confirmation of the existence of an asymptotically
safe fixed point for general gravity matter in the minimally
coupled approximation. This opens a path toward reliable
stability investigations of fully coupled gravity–matter systems.

Effective Universality (Section 8.6): Last, we discuss the
potential close perturbativeness of the UV fixed-point regime
of asymptotically safe gravity. This leads us to the concept of
effective universality: the so-called avatars of the Newton coupling
extracted from different correlation functions may agree up to
differences that can be inferred from the modified STIs that relate
these couplings [93, 203]. If present, effective universality may
have a dynamical origin. The analysis of this intriguing property
is also intricate due to truncation artifacts and RG scheme
dependences. We close this overview by commenting on the
related bimetric approach and hybrids of the background field
approximation and the fluctuation approach.

Hybrid approaches: In hybrid approaches, one substitutes part
of the fluctuation flow equations with background flow equations
[66, 219, 225–232]. In most cases, this concerns the notoriously
difficult pure gravity couplings: the derivation of fluctuation flows
of pure gravity vertices such as the three- and four-point
functions requires a significant computer algebraic effort. In
advanced truncations, this is accompanied with numerical
loop integrations in every flow step and interpolations of
dressing functions with potentially several momentum and
angular dependences. In turn, using the background field
approximation for these vertices reduces this task to
computing the flow of a single background coupling, whose
flow equation is known analytically. This considerable

reduction makes it chiefly important to construct reliable
background field approximation schemes as discussed in
Section 5.2

An alternative to the use of the background field
approximation for the pure gravity couplings is their
identification with matter–gravity couplings. Such an
identification implicitly relies on the concept of effective
universality discussed in more detail in Section 8.6. There it is
discussed that while the full system shows effective universality, it
is only maintained if using the pure gravity couplings for the
matter–gravity couplings. In turn, effective universality, as well as
the compatibility with the full system, is lost if using the
matter–gravity couplings as pure gravity ones. This hints at a
surprisingly complicated interaction structure in gravity–matter
systems whose origin is yet to be understood.

Bimetric approach: The bimetric approach, developed in
100–102, 233, is tantamount to the fluctuation approach
reviewed here, as it rests on the distinction between the
background metric and the fluctuation field. Technically,
fluctuation and background correlation functions are defined
in terms of an expansion of the full metric gμ] � (1 + ϵ)gμ]
with the fluctuation field hμ] � ϵgμ]. This allows one to order
the flow and the effective action in powers of ϵ. The power ϵn of
the effective action is simply the fluctuation n-point function.
This reads schematically

Γk[g, h] �∑
n

ϵn
n!
∫

Γ(0,hμ1]1/hμn]n)
k [g, 0] · gμ1]1/gμn]n, (92)

in analogy to 68. The Γ(0,n)k [g, 0] have been baptized level-n
vertices comprising the respective level-n couplings. The last
and most important step concerns the extraction of the
correlation function Γ(0,n)k [g, 0] from ∫ Γ(0,n)k [g, 0] · gn, as the
computation of the flow requires the knowledge of the
correlation function and not their contractions with metrics.
This computation is either done by i) considering an
expansion about a specific background such as the flat
background, ii) computing the flow of the effective action for
a generic metric g, or iii) assuming a global form of the effective
action and simply computing the flow in this closed form. Option
i) is the fluctuation approach reviewed here. It is not built on the
metric split with ϵ. Option ii) asks for advanced computational
heat kernel techniques even within restrictions. These techniques
have seen rapid development in the past decade, which may open
a path toward their use in ii). Option iii) has been considered so
far for level-one couplings. The level-two correlation functions
that are required for the right-hand side of the flow equation then
have been obtained within a further background field
approximation. In summary, the bimetric approach or rather
the computational options ii) and iii) offer an alternative
approach to compute fluctuation correlation functions that
may provide important cross-checks for the results
discussed here.

8.1 Ultraviolet Fixed Point
The UV fixed point in the fluctuation approach has been
discussed in 73, 93, 97, 107, 184, 197–206. This includes work
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in the vertex expansion about the flat background in pure gravity
[184, 197–200] and gravity–matter systems [93, 201–204] as well
as work including curvature dependence [97, 107, 206], a
fluctuation potential [205] and in the geometrical approach
[73]. In 184, the tower of fluctuation correlation functions was
implemented until the graviton four-point function. All n-point
functions were evaluated at the momentum-symmetric point,
with external transverse traceless projections. A UV fixed point
was found at

(μ*, λ*3, λ*4, g*3, g*4) � ( − 0.45, 0.12, 0.028, 0.83, 0.57), (93)

where gn and λn are the dimensionless Newton coupling and the
momentum independent part of the graviton n-point function,
respectively. (For more details, see 184.) The graviton mass
parameter μ � −2λ2 is the momentum-independent part of the
graviton two-point function. The critical exponents of the fixed
point are given by

θi � (4.7, 2.0 ± 3.1i,−2.9,−8.0), (94)

where a positive sign corresponds to a UV-attractive direction.
The three UV-attractive directions were associated with the
operators

�
g

√
,
�
g

√
R, and

�
g

√
R2. In contrast, the operator�

g
√

R2
μ] is not generated in the present approximation. The

latter property was inferred from the momentum dependence
of the graviton three- and four-point function (see Section 8.3).
Importantly, the first signs of apparent convergence were found
in 184.

In Section 7.2, we have shown that the fluctuation approach in
the flat expansion improves upon the background field
approximation in the curvature expansion (see in particular
the discussion at the summary at the end of Section 7.2).
Accordingly, the fluctuation results for the UV fixed point
detailed above extend and corroborate previous findings in the
background field approximation within the curvature expansion.

In particular, the results confirm that the latter captures the most
important features in pure gravity. For example, the fixed-point
value of the cosmological constant in the background field
approximation is typically positive, which is comparable with
the negative fixed-point value of µ in 93 (μ � −2λ2). Also, mostly
three relevant directions are found in the background field
approximation (see the reviews 7–16 and the very recent
paper 189.)

A further extension, within the exponential split, has been
investigated in 205. There, the dimensionless fluctuation
potential V was approximated with V � V1(h)+ Tr(h2TL)V2(h),
where h is the trace part and hTL is the traceless part of the
fluctuation graviton. The other graviton modes have been
dropped. The results for the potentials V1 and V2 are
displayed in Figure 6.

8.2 Ultraviolet–Infrared Trajectories
UV-IR trajectories in the fluctuation approach and hence the
phase structure of quantum gravity have been discussed in 73,
184, 198, 199. In Figure 7, we display a trajectory from the UV
fixed point (93) to the IR where all couplings run classically. In the
displayed example, the graviton mass parameter runs to infinity,
μ→∞. In classical gravity and μ> 0, the NIs entail that the
cosmological constant is indeed given by Λ � Λ � −2μk2 in the
limit k→ 0 and can take any negative value. This follows from

δΓk[g, h]
δg

� δΓk[g, h]
δh

, for lim
k→ 0

μ→∞. (95)

Moreover, the background Newton coupling and (all) the
fluctuation Newton coupling agree. This can be seen for the
dimensionless versions λ, λ2 and g, g3 in Figure 7. Solving the NIs
for the higher couplings corresponds to a fine-tuning problem in
terms of choosing an appropriate trajectory. However, a fully
diffeomorphism-invariant solution including the higher order

FIGURE 6 | Dimensionless fixed-point fluctuation potentials defined via
V � V1(h) + Tr(h2TL)V2(h), where h is the trace part and hTL is the traceless
part of the fluctuation graviton. Note that we rescaled and shifted V2, that is, V2

is small compared to V1 and always negative. The results are taken
from 205.

FIGURE 7 | Scale dependence of different fluctuation couplings along a
trajectory from the UV fixed point 93 to the IR. In the IR, the couplings flow
according to their canonical running. For small k, g and g3 as well as λ and µ
are related via the simplified NI (95). The inset shows the complete set of
couplings. The results are taken from 184.
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avatars of the couplings has not been fine-tuned yet (see the inlay
in Figure 7).

UV-IR trajectories with μ→ − 1 in the IR have also been
investigated in 73, 184, 198, 199. Those trajectories are technically
challenging since μ � −1 corresponds to a pole in the propagator.
We emphasize that the NIs and STIs are in this case nontrivial
even for classical gravity: the classical effective action is the
convex hull of the classical action, the latter not being convex
for μ< 0. This entails that λ2 � −2μ cannot be identified with the
cosmological constant λ � λ even though the sign of the latter
must be also positive. Note also that any positive cosmological
constant Λ can be obtained. The truncation triggered restriction
to Λ � 0 at k � 0 in the background field approximation is lifted.
From the physics point of view, these trajectories are appealing
since they correspond to a positive cosmological constant in
the IR.

8.3 Momentum Dependence and Unitarity
The momentum dependence of correlation functions have been
discussed in 93, 184, 197–199, 202–204. This momentum
dependence encodes the dynamics of the theory and is crucial
for the question of unitarity. One of the advantages of the
fluctuation approach in the flat vertex expansion is its easy
access to the full momentum dependence of fluctuation
correlation functions Γ(0,n)k for all cutoff scales k. These
momentum dependences carry the full dynamics of the
underlying theory: all other quantities, ranging from the
background correlation functions to diffeomorphism-invariant
observables O[g], are built from the correlation functions. The
latter observables are defined as expectation values O[g] �
O[g, h � 0] of diffeomorphism-invariant operators Ô[ĝ] with
O[g, ϕ] � 〈Ô〉. The O[g, ϕ] satisfy the flow equation for the
expectation values of composite operators derived in 21,

ztOk[g] � −1
2
Tr[Gk ztRk GkO(0,2)

k ][g], (96)

at vanishing fluctuation field h � 0. Evidently, the flow 96 solely
depends on the fluctuation field propagators and O[g, ϕ]. (For
applications and further investigations of 96, see 21, 128,
133–135, 137, 138.)

Equation 96 entails in particular that any observable inherits
its dynamics from that of the full field and momentum
dependence of the fluctuation two-point function, or rather
from the momentum dependence of the fluctuation correlation
functions Γ(0,n)k at a given field expansion point. It is in this sense
that the momentum-dependent and RG-invariant vertex
dressings A(ϕ1/ϕn)(p) encode the dynamics of the theory. In
particular, the symmetric point dressings Gn(p) carry the
meaning of momentum-dependent running couplings similar
to those in standard quantum gauge theories and most
notably in QCD. (For a detailed discussion in the latter case,
see in particular 168, 170.) We emphasize that while in both cases
these couplings are neither observables themselves nor even
gauge- or diffeomorphism-invariant, they directly encode the
dynamics of the theory, and in particular the dominance and/or
decoupling of degrees of freedom. If done carefully, they can be
also compared to scattering processes related to the respective

vertices. (For the SM, see the comparison of the QCD running
(vertex) coupling to scattering experiments at accelerators [234].)

Moreover, the resolution of the momentum dependences of
n-point functions gives at least indirect access to the question of
unitarity of asymptotically safe gravity: From the Euclidean data,
one can reconstruct Minkowski correlation functions and in
particular the graviton spectral functions, both that of the
fluctuation graviton and that of the background graviton (more
details will be given in 235). Here, we simply comment on the
physics content of the graviton spectral functions (see also 236). In
this context, we will also use the analogy to the gluon in a non-
abelian gauge theory as discussed in 237. (For a recent discussion of
the challenges for unitarity in asymptotically safe gravity, see 16.)

To begin with, both the fluctuation graviton and the
background graviton two-point functions are not
diffeomorphism-invariant. Accordingly, they are not directly
related to asymptotic states; even at low energies, gravity is
weakly coupled and the theory exhibits a classical momentum
and scale dependence (see Figure 7). The latter property suggests
that if a Källén–Lehmann spectral representation of the graviton
propagators exists, the graviton spectral functions may exhibit a
particle-like spectrum for low spectral values. In turn, for large
spectral values, we enter the UV fixed point regime, and the
physics content of the spectral functions is unclear.

Note however that the same line of arguments would suggest
that the gluon spectral function exhibits a particle-type spectral
dependence in its perturbative regime for large spectral values.
Instead, it can be shown that if a Källén–Lehmann spectral
representation exists, the gluon spectral function is negative
for large spectral values, and its spectral sum vanishes
(Oehme–Zimmermann superconvergence relation). Moreover,
it is also negative for small spectral values (see 237). These
properties hold for both the fluctuation and the background
gluon. Since these properties follow directly from the momentum
dependence of the Euclidean correlation functions, we expect
similar results for asymptotically safe gravity [235].

In summary, the spectral properties of diffeomorphism- or
gauge-variant correlation functions only indirectly mirror the
unitarity of the theory. This situation prohibits any direct
conclusion of a lack of unitarity from the occurrence of
negative parts of spectral functions including negative poles
(ghost states). We also emphasize that the latter statement
should not be taken as its converse. Of course, the occurrence
of negative parts of spectral function requires a thorough
investigation of the physics implications and may well be
related to the lack of unitarity of the underlying theory. The
example of the non-abelian theory simply indicates that this is not
necessarily the case. Such an investigation requires the analysis of
the spectral properties of diffeomorphism-invariant states. (For a
recent discussion of such a setup, see 196.)

The discussion in this section so far emphasizes the
importance of the computation of the momentum dependence
of correlation functions both for the dynamics of observables and
the intricate problem of unitarity. One of the advantages of the
fluctuation approach is the direct access to momentum-
dependent correlation functions with standard quantum field
theory methods:
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In 198, 199, the full momentum dependence of the graviton
and ghost propagator was included via the anomalous
dimensions. The computation of the momentum dependence
was extended to the graviton three- [197] and four-point function
[184] as well as to the scalar–graviton [93], the fermion–graviton
[204], the gluon–graviton vertex [202], and the ghost–graviton
vertex [203]. While only the momenta 0≤ p2(k2 contribute to
the flow, in all these works, the vertices have been computed at the
symmetric point for the full momentum range 0≤ p2 <∞. This
approximation ignores, in particular, the angular dependence of
the vertex dressings. While the angular dependence is important
for the discussion of the whole phase space of scattering
experiments, it is averaged in the flow diagrams due to the
angular loop integrations. The reliability of this approximation
has been studied at length in QCD. (See 167–171 for detail.)
There, it was shown that the above approximation is very accurate
in the absence of resonant interaction channels, and so far, no
indications have been found for such resonant channels. In
conclusion, this analysis provides a nontrivial reliability
argument for the approximation described above. Still, for a
full reliability check, one has to study extended truncations.

In 184, 200, the momentum dependence was used to
disentangle contributions from the couplings of the R2 and
R2
μ] tensor structures. This was done in 200 with derivatives at

vanishing momentum, while in 184, the momentum range
0≤ p2 ≤ k2 was considered. Importantly, the transverse traceless
graviton three-point function has overlap with R2

μ] tensor
structures and not with R2 tensor structures, while the
graviton four-point function has overlap with R2

μ] and R2

tensor structures. The momentum dependence of the
couplings is obtained by normalizing the vertex flows with
(−(n/2)ηh(p2) − n + 2). This is displayed in Figure 8. The
three-point coupling is well described with a p2 behavior.
Thus, the R2

μ] tensor structure is nontrivially suppressed. The
four-point coupling shows a significant p4 behavior. Due to the
absence of a p4 behavior in the three-point coupling, this suggests
that they are related to R2 tensor structures.

Recently, impressive progress has been made toward
momentum-dependent computations in the background field

approximation [238–242]. There, the momentum dependence
is captured via form factors Wi

k, for example, ∫
x
RWR

k (Δ)R and∫
x
Cμ]ρσWC

k (Δ)Cμ]ρσ . This opens a path toward the comparison of
the result of these two approaches. This will allow us to quantify
the difference between a background field approximation and a
fluctuation computation.

8.4 Curvature Dependence
The curvature dependence of correlation functions in the
fluctuation approach has been discussed in 97, 107, 206. Most
results in the fluctuation approach were computed on a flat
background g � 1. Results for generic backgrounds can be
obtained from an expansion about the flat background. In 206,
this was done with covariant heat kernel methods up to the first-
order curvature couplings. Fixed-point values of all first-order
curvature couplings were found and their gauge dependence
investigated.

A different approach within the fluctuation approach was
taken in 97, 107, where the fluctuation correlation functions were
computed directly on a generic background with constant
curvature. The computation reaches up to the graviton three-
point function and also includes Ns scalar fields in 97. It was
found that the curvature dependence of the fluctuation couplings
counterbalances the explicit curvature dependence of the
respective vertex, making the full vertex approximately
curvature independent. This result supports results obtained
on a flat background. Furthermore, it was explicitly shown
that the background EoM differs from the quantum EoM at
the UV fixed point (17). In particular, the background EoM does
not have a solution at the UV fixed point, while the quantum EoM
has two solutions, a minimum at negative curvature and a
maximum at positive curvature, for all Ns that are accessible.
This is displayed in Figure 2.

8.5 Gravity–Matter Systems
A theory of quantum gravity necessarily needs to include matter
degrees of freedom to describe our universe. A central question is
for which matter content, the UV fixed point exists and if certain
types of matter field have a stabilizing or destabilizing effect. Most

FIGURE 8 | Momentum dependence of the transverse traceless graviton three- and four-point couplings obtained by normalizing the vertex flow with(− n
2ηh(p2) − n + 2). The graviton three-point coupling (left panel) is well described with a linear p2 function in the momentum range 0≤p2 ≤ k2. This momentum

dependence stems from the R tensor structure. The absence of a p4 behavior implies that the R2
μ] tensor structure is suppressed. On the other hand, the graviton four-

point coupling (right panel) shows a clear p4 behavior, which is associated with R2 tensor structure. The figures are taken from 184.
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studies have focused on analyzing SM matter fields within the
minimally coupled approximation. In this approximation, the
matter fields are considered without self-interaction and only
couple to gravity via their kinetic term. There are works in the
background field approximation [58, 183, 186, 243–249], in the
hybrid approach [53, 219], and in a full fluctuation computation
[93, 97, 201–204]. (For works beyond the minimally coupled
approximation, see 47, 50, 83, 162, 186, 188, 210, 220–224, 228,
229, 232, 250–260, which also includes scalar–tensor theories and
gravitational corrections to the running of matter couplings.)

A major keystone in the stability analysis of gravity–matter
systems in the minimally coupled approximation was found in
201, 202. There, it was shown that minimally coupled
gravity–matter systems in the Einstein–Hilbert truncation
always show a Reuter fixed point as the system can be
mapped to a pure gravity system at the level of the path
integral. We emphasize that while the explicit computations in
201, 202 are done in the fluctuation approach, the conceptual
investigation is general. (For a detailed discussion we refer to
202.) Here, we simply sketch the important steps: In minimally
coupled gravity–matter systems, the matter part Smat[g, ϕ] of the
full action S � Sgrav + Smat is quadratic (or bilinear) in the matter
fields. To find the Reuter fixed point, it is sufficient to discuss the
UV limit of graviton correlation functions. Consequently, we
consider vanishing matter sources, Jmat ≡ 0. After performing the
Gaußian integration over the matter fluctuation fields ϕ̂mat, the
path integral of a minimally coupled matter–gravity system takes
the schematic form,

Z[J] � ∫

Dϕ̂grav e
−Sgrav,eff[g ,̂ϕgrav]+∫

d4x
�
g

√
Jagrav ϕ̂grav,a . (97)

with

Sgrav,eff[g, ϕ̂grav] � Sgrav[g, ϕ̂grav] + 1
2
TrlogS(2)mat[ĝ]. (98)

Here, the full fluctuation field is split into ϕ � (ϕgrav, ϕmat)
with ϕgrav � (hμ], cμ, cμ), and the hatted field indicate the
integration fields. In slight abuse of notation, we wrote S(2)mat[ĝ]
as the second derivative of the matter action with respect to the
matter fields. Its argument is ĝ � g + ĥ, the full metric that is
integrated over. Hence, S(2)mat is a covariant operator and the Trlog
contribution is diffeomorphism-invariant.

The form of the generating functional in 97 is also obtained for
UV-complete non minimally coupled matter theories such as
Yang–Mills theories. Then, Sgrav,eff [g, ĥ] is not of the form 98 but
carries the full nonperturbative metric-dependent part of the
effective action of Yang–Mills theories. The UV completeness
within this procedure is required as otherwise the matter path
integral cannot be performed. Trivially, minimally coupled
systems are UV-complete. A useful analog for the study of the
UV stability of minimally coupled gravity–matter systems is
many-flavor QCD. There, the role of the graviton is taken by
the gluon, and the quark action is bilinear.

The representation 97 emphasizes an intriguing and useful
property of the fRG approach to quantum gravity (and beyond):
The phase structure and in particular the fixed-point structure of
a generic gravity–matter system can be accessed within pure

gravity. In particular, all fixed points are accessible within this
setup, if a general fixed point effective action Γ*k[g, ϕgrav] is
considered.

This intriguing property also carries an important intricacy of
a generic fixed-point analysis: Seemingly, the parameterization 97
entails that generic gravity–matter systems are UV-stable if the
matter part is UV-complete (with the assumption that the Reuter
fixed point exists for pure gravity). This conclusion would apply
directly to all minimally coupled gravity–matter systems. That
this argument falls short can be seen at the example of many-
flavor QCD. There, an (f)RG analysis reveals that the QCD
β-function changes its sign for a large enough number of
flavors. In the vicinity of this regime, interesting phenomena
such as conformal scaling, instabilities, and the
Caswell–Banks–Zaks fixed point occur (For fRG literature, see,
e.g., 261–264 and references therein.) These findings are backed
up by lattice results. The RG analysis in many-flavor QCD solely
relies on the marginal operator tr F2

μ]. The quantum corrections
from the integrating out of the quark fluctuations are
proportional to

Nf tr F
2
μ] log

F2
μ]

k4
, (99)

where Nf is the number of flavors. The analogous operators in
gravity are the curvature-squared operators R2, R2

μ], and R2
μ]ρσ .

The respective operators including matter quantum
fluctuations are

Nmat
�
g

√
R2 log

R
k2
, (100)

and similar ones for R2
μ], and R

2
μ]ρσ and also covariant derivatives.

Here, Nmat is the weighted sum over all species and flavors of
matter fields.

The logarithmic RG running of the marginal operator tr F2
μ] in

QCD or R2 in gravity necessarily triggers a field dependence of its
coefficient as displayed in 99 and 100, respectively. In conclusion,
the distinctive property of marginal operators is the inherent field
dependence of the quantum corrections. In turn, the coefficients
of (local) relevant and irrelevant operators are only scale-
dependent. While the latter by definition are not important for
a fixed-point analysis, the coefficients of the former ones, if
present, can be readily absorbed in the respective pure gauge
theory (or gravity) couplings. In the present example of many-
flavor QCD, relevant operators are indeed absent. In gravity, this
applies to the terms in the Einstein–Hilbert action, that is, the
curvature term and the cosmological constant term.

In summary, from the perspective of the Yang–Mills system
with the generating functional similar to that in 98, the marginal
operator 99 introduces a new UV marginal (and hence physical)
parameter Nf that cannot be absorbed in the Yang–Mills coupling.
In gravity, this applies to the coefficients of the marginal operators
R2, R2

μ], and R2
μ]ρσ . Thus, also here, the flavor number Nmat of a

given matter field is a physical parameter. However, its relevance
for the fixed-point analysis originates solely from the
Nmat-dependent coefficients of the marginal operators R2, R2

μ],
and R2

μ]ρσ . In contrast, Nmat of the relevant operators in the
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Einstein–Hilbert action is not relevant for the fixed-point analysis.
In particular, it cannot trigger instabilities.

The above properties imply that a fixed-point analysis of a
given system within a truncation of the (f)RG flows that does not
include the flows of the marginal operators should exhibit the
respective fixed-point structure of the pure gravity system in the
same truncation. In particular, this casts some doubt on any
instability findings in the full truncation, if this instability survives
in the absence of the marginal operators.

As an example of this statement, we consider now a minimally
coupled gravity–matter system in the Einstein–Hilbert
truncation. Without truncation, these systems have the path
integral representation 97 with 98. The Einstein–Hilbert
truncation reduces Sgrav,eff in 98 to

Sgrav,eff[g, ϕ̂grav]→ SEH[g] + Sgf[g, ĥ] + Sgh[g, ϕ̂grav]
+ 1
2
TrlogS(2)mat[ĝ] R,Λ,

∣∣∣∣ (101)

where the subscript |R,Λ stands for the reduction of the full one-
loop determinant to its Einstein–Hilbert part with a curvature
term and a cosmological constant term. The respective
coefficients can be absorbed in a redefinition of the Newton
constant and cosmological constant in SEH[g]. (For more details,
see 202. Hence, 101 is equivalent to the Einstein–Hilbert
truncation of the pure gravity system. The latter shows the
Reuter fixed point and so should the minimally coupled
system in this truncation.

The above result for minimally coupled systems has the direct
consequence that the Einstein–Hilbert truncation to
matter–gravity systems should also exhibit the Reuter fixed
point for UV-complete matter systems, as the pure gravity
system does. We add that this does not exclude the emergence
of further fixed points in some Nmat regime.

This concludes our discussion of the fixed-point structure and
stability properties of gravity–matter systems, its truncation
dependence, and reliability requirements for truncations. The
discussion enables us to formulate relevant properties that have
to be considered for a conclusive stability analysis ofmatter–gravity
systems:

(1) The fixed-point analysis necessarily has to involve all
(possibly) relevant operators of the theory under
investigation, that is, 99 in many-flavor QCD and 100 in
gravity–matter systems.

(2) A fixed-point analysis within a given truncation is only
fully reliable if it also reproduces the fixed-points of the
pure gravity system in the same truncation excluding the
marginal operators.

We now discuss the results in gravity–matter systems given the
properties i) and ii): In [201], the first full fluctuation
computation for minimally-coupled systems was put forward.
On the pure gravity side, the flows of the fluctuation graviton two-
and three-point function were included. Importantly, a stabilizing
mechanism for the fermionic contribution was found for general
regulators: the graviton mass parameter is approaching its pole

μ→ −1 and thus enhances the graviton contribution, in short:
gravity rules. This is required from the discussion above.
Technically, this simply means that the fermion contribution
in this setup changes the parameters of the two- and three-point
function within the stability regime of the phase diagram of pure
gravity in the Einstein–Hilbert truncation. This stabilizing
mechanism was also found in an extension of the truncation
[204], making the fermion–gravity system a showcase of the
mechanism described above. In particular, with the existence of
the Reuter fixed point for the minimally coupled system in the
absence of marginal operators in the pure gravity subsystem, the
flow equations of the fermion–gravity system satisfy the
requirement ii). Consequently, a conclusive stability analysis of
general fermion–gravity systems can be performed but requires
the inclusion of the marginal curvature-squared operators.

In the same truncation applied to minimally coupled
scalar–gravity systems, it was found within the fluctuation
approach in 93, 201 that the graviton anomalous dimension
ηh grows with the number of scalars Ns and finally exceeds the
value two beyond a critical flavor number Ns,stab: for
Ns >Ns,stab ≈ 20. For ηh > 2, the overall cutoff scaling of the
graviton regulator goes with negative powers of the cutoff
scales and effectively the—physical—cutoff decreases. For these
large anomalous dimensions, we leave the reliability regime of the
approximation. In short, the reliability bound on the truncation
makes it impossible to see the stability of the system in this
minimally coupled approximation. From the viewpoint of the
pure gravity system, this simply means that the scalar
contribution in this setup eventually moves the parameters of
the two- and three-point function outside the stability regime of
the phase diagram of pure gravity in the Einstein–Hilbert
truncation. Consequently, the setup cannot be used for
stability investigations in scalar–gravity systems. In 97, it was
suggested that an expansion about an on-shell background can
lift this tension. In summary, at present, there is no conclusive
stability analysis for scalar–gravity systems.

Applying the same truncation to minimally coupled
gauge–gravity systems, it has been shown in 202 that
depending on the regulator, the minimally coupled systems
either behave similarly to the fermionic or the scalar system.
This suggests that the truncation has to be improved. In
summary, a stability analysis of gauge–gravity systems can be
performed, but the results have to be taken with a grain of salt. A
fully conclusive stability analysis for gauge–gravity systems
requires an improvement of the truncations used so far in the
literature.

In Figure 9, we display the state-of-the-art dependence of the
fixed-point values on the number of scalar field Ns [93], fermion
field Nf [204], and gauge fields Nv [202]. The truncations include
the flow of the momentum-dependent graviton two- and three-
point functions as well as the respective graviton–matter vertex.
In the scalar case, the Newton couplings are diverging at Ns ≈ 52.
This is an artifact of the truncation, as described in the previous
paragraphs and 202. The fermion direction is stable for allNf : the
graviton mass parameter approaches its pole μ→ − 1 and the
enhanced graviton contribution counterbalances the matter
contribution. In the gauge case, the fixed point is disappearing
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in the complex plane for Nv ≈ 13. In 202, it was demonstrated
that all numbers of gauge fields can be accessed with a different
regulator, as discussed in the last paragraph.

Finally, we speculate on the stability properties of general
gravity–matter systems based on the results obtained so far. To
that end, we assume that there is a setup such that general
minimally coupled gravity–matter systems in the
Einstein–Hilbert truncation show UV stability with a Reuter
fixed point similar to the one seen in the fermion–gravity
system. This property allows for a consistent truncation as it
satisfies ii). Now, we include tensor structures from curvature-
squared terms, R2,R2

μ], and R
2
μ]ρσ . It is convenient to parameterize

this complete set of tensor structures in terms of the Ricci
squared, the Weyl tensor squared, and the topological
Gauß–Bonnet term,

∫

d4x
�
g

√ ( 1
gR2

R2 + 1
gC2

C2
μ]ρσ +

1
gE

E), (102)

with the dimensionless couplings gR2 , gC2 , and gE . The
Gauß–Bonnet density E is defined in 81, and the Weyl tensor
squared is in four dimensions given by

C2
μ]ρσ � R2

μ]ρσ − 2R2
μ] +

1
3
R2. (103)

We concentrate on the Reuter fixed point with the assumption
that it is dominated by the Einstein–Hilbert couplings in
contradistinction to the perturbative R2

fixed point. In 184, it
has been observed that R2

μ] contributions and hence C2

contributions generated by the Einstein–Hilbert tensor
structures at the Reuter fixed point are small. They are
subleading in comparison to the R2 tensor structure. This has
been the topic of Section 8.3 (see Figure 8 and the respective
discussion). With the assumption of the dominance of the
Einstein–Hilbert couplings, it implies 1/gpC2 ≈ 0 and indicates
the irrelevance of this operator at the fixed point.

Moreover, from the quartic term c4 p4 with c4 ≈ − 0.24 in the
running of the momentum-dependent coupling of the four-point
function displayed in Figure 8, we deduce that its contribution

cEH g2R2 to the β-function βgR2 � ztgR2 of the R2 tensor structure is
positive. (For a detailed discussion, see 184.) In turn, it is well-
known that the R2 coupling itself leads to a negative contribution
−cR2(gR2 ), which is one-loop universal. We emphasize that both
coefficients depend on the full fluctuation propagator. In
combination, this leads us to a β-function

ztgR2 � βgR2xcEH g2R2 − cR2(gR2). (104)

Switching off the Einstein–Hilbert contribution leads us to the
standard Gaußian fixed point for R2 gravity. In turn, at the Reuter
fixed point, we assume a small fixed-point value for 1/gR2 that
may also trigger a small, but nonvanishing fixed-point value for
1/gC2 . Combining these estimates for gR2 and gC2 , we arrive at

1
g*R2

,
1
g*C2

≈ 0, and
g*C2

g*R2
≈ 0, (105)

in pure gravity. We add that the relevance analysis in 184 suggests
that the gR2 coupling, while being small, is UV-relevant at the
Reuter fixed point. This finding is corroborated by respective ones
in the background approximation. (For higher derivative gravity
work in the background field approximation, see, e.g., 49, 51, 54,
56, 58, 108–110, 172–174, 176, 183, 186, 189, 219, 265–269].)

We now proceed to the R2 and C2 contributions from matter
fluctuations. Being short of a full fluctuation computation of these
terms, we utilize the Nielsen identities in the presence of the
cutoff (see 54 and 44 in Sections 5.2 and 6). The identity 44
comprises the difference between background-metric and
fluctuation field derivatives, while the Nielsen identities 54
also take into account the difference introduced by the gauge
fixing sector. For the present speculative analysis, it suffices to
discuss 44. For example, we find for the R2 contribution,

[δΓk
δg

− δΓk
δh
]
R2
xTr

δ
�
g
√

Rk�
g
√

δgμ]
Gk R2 � ΔgR2( g→)∫

d4x
�
g
√

R2,
∣∣∣∣∣∣∣

(106)

The right-hand side has a form similar to the flow equation
itself and is UV- and IR-finite. Accordingly, ΔgR2( g→) is a

FIGURE 9 | Fixed-point values of the fluctuation couplings as a function of the number of scalar (left), fermion (middle), and gauge fields (right). All truncations include
the graviton two- and three-point function as well as the respective graviton–matter vertex. In the scalar case, the Newton couplings, g3 and gφ, are diverging atNs ≈ 52.
The fermionic case is stable for all Nf . In the gauge field case, the fixed point is disappearing in the complex plane atNv ≈ 13. It was explained in 202 that the vanishing of
the fixed point is an artifact of the truncation and how it can be lifted in the gauge-field case. In 97, it was suggested that an expansion about a background that is a
solution to the quantum EoM might remove the divergence in the scalar case. The result are taken from 93 (scalar), 204, (fermion), and 202 (gauge).
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dimensionless constant that depends on all couplings taken into
account in the computation, summarized as vector g→. This
includes the R2 and C2 couplings gR2 and gC2 themselves (or
rather avatars thereof), as well as avatars of the dimensionless
Newton coupling and the dimensionless cosmological constant
(see Section 8.1). The scale derivative of 106 vanishes on a fixed
point,

zt[δΓk
δg

− δΓk
δh
]
R2
x
zΔg

R2( g→*)
zgi

βi( g→*) � 0, (107)

where we have used that the dimensionless coefficient ΔgR2( g→*)
cannot have an explicit k-dependence. Hence, at a fixed point, this
result allows us to identify the matter contribution of the flow for
R2 tensor structures of fluctuation field vertices with that of the
background field R2 term. The same reasoning also applies to the
C2 term. In summary, the above arguments imply that the matter
contributions to the curvature-squared couplings should be
independent of the background-metric dependence of the
regulator, as well as of the shape of the regulator. Moreover,
since the ghost contribution to the curvature-squared couplings
also does not depend on other scales than the cutoff scale, it
should also be regulator-independent. The validity of these
general statements can be checked explicitly with the results of
58, 183. There, different types of regulators have been investigated
in f (r) gravity: all couplings, except the R2-coupling, depend on
the Laplacian used in the regulators. The results also confirm a
regulator dependence of the graviton contributions, triggered by
the Nielsen identities. As discussed above, this suggests that the
pure gravity contributions to the flow should rather be computed
within the fluctuation approach.

The above considerations allow us to discuss the generic
structure of gravity matter flows within the fluctuation approach,

βgR2 � βgR2 grav − cR2NR2 g
2
R2 ,

∣∣∣∣
βgC2 � βgC2 grav − cC2NC2 g2C2 ,

∣∣∣∣ (108)

where cR2/C2 are positive coefficients and NR2/C2 are weighted
sums (positive weights) of the numbers of scalars, vectors, and
fermions. All matter contributions have the same sign, which is
the same as that of the gravity–ghost, which is computationally
similar. (For explicit computations in the background field
approximation, see, e.g., 58, 183, 186, 219.)

The quantitative evaluation of 108 depends on the full
fluctuation flows in pure gravity including flow contributions
from curvature-squared invariants. Here, we concentrate on the
structure of the β-function of the R2 coupling, βgR2 . The matter
contributions are subtracted from the positive Einstein–Hilbert
gravity contribution (see cEH in 104). For a critical number of
matter fields, the complete contribution vanishes, and we are left
with a system that resembles the pure gravity curvature-squared
system. This mechanism is very similar, leading to the
Caswell–Banks–Zaks fixed point in QCD discussed before.
Note that in contradistinction to the minimally coupled
system, the matter contribution cannot be absorbed in the
pure gravity contributions, as they are related to

R2log(1 + R/k2) terms. This is visible in the limit of large
curvatures (see, e.g., 183). This qualitative analysis has to be
sustained with a quantitative computation based on pure gravity
flows including higher curvature terms. Such a computation
requires improved truncations with the properties i) and ii).

We close this chapter with a brief overview of investigations of
gravity–matter systems within the background field or hybrid
approximations. In 219, gravity–matter systems in the minimally
coupled approximation were investigated in a hybrid approach:
while most contributions to the flow have been computed in the
background field approximation, the matter parts of the
anomalous dimensions have been computed in a fluctuation
approach setup. Within this approximation, destabilizing
effects for scalars and fermions and stabilizing effects for
gauge fields were found. The destabilizing result for fermions
in 219 is an artifact of the background field approximation, as
discussed in destabilizing result for Section 8.5: the background-
metric dependence of the regulator influences the (de)stabilizing
property of minimally coupled fermions. However, this does not
imply that the background field approximation breaks down for
all gravity couplings. The results of 201, 202 showed that in
particular, the most UV-relevant operators have to be taken from
a fluctuation computation, that is, most importantly the graviton
mass parameter µ. In turn, the background and the fluctuation
Newton coupling behave rather similar under the influence of
minimally coupled matter fields. The sign of leading-order
contribution agrees: the scalar and fermionic contribution to
the beta function of the Newton coupling at O(g2) is positive,
while the gauge contribution is negative.

In summary, the investigations of gravity–matter systems
within the fluctuation approach open a systematic path toward
reliable stability investigations of fully coupled matter systems as
well as that of phenomenological consequences for high energy
physics. Still, fully reliable results require a systematic and
qualitative improvement of the current truncations. This is the
subject of current work in the community.

8.6 Effective Universality
In the vertex expansion 68, we have introduced the couplings gn
for each graviton n-point function as the running couplings of the
Ricci scalar tensor structure ( �

g
√

R)(n) (see Section 8.3). In a
diffeomorphism-invariant approach, these couplings would
agree. In turn, in the present gauge-fixed approach, these are
different avatars of the Newton coupling. While not being
identical, gi ≠ gj, they are related by nontrivial mSTIs (65).

This is similar in non-abelian gauge theories, where different
avatars of the running strong coupling αs � g2/(4π) can be
derived from different correlation functions, both from pure
glue vertices as well as glue–matter vertices. (For a detailed
discussion, see 167, 168, 170 and the recent review 27.) The
β-functions of all the avatars of the strong coupling are two-loop
universal in mass-independent renormalization schemes, or may
also define an RG scheme with the requirement that β-functions
agree to all orders. However, the standard fRG renormalization
scheme is mass-dependent, so even two-loop universality is not
guaranteed. More importantly, identical β-functions do not
necessarily lead to an identical momentum dependence.
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Indeed, in non-abelian gauge theories, the momentum
dependence of different avatars of the running strong coupling
differs already at the universal two-loop order, which can be also
shown from the STIs. Additionally, in the strongly correlated IR
regime of a non-abelian gauge theory, the fRG β-functions and
the momentum dependence of the running couplings differ
significantly. Some of them, that is, the three-gluon coupling,
even switch sign, while others, that is, the ghost–gluon and four-
gluon coupling, stay positive [168].

In gravity, the situation is even more intricate. To begin with,
the Newton coupling is dimensionful, and hence, the β-functions
of the avatars of the Newton coupling are not universal, leaving
aside an identical momentum dependence. Additionally, as
already mentioned in the context of non-abelian gauge
theories, the standard fRG renormalization schemes are
typically mass-dependent, which adds to the differences, as do
truncations.

Effective universality is the concept that in particular at the
fixed point, where gravity is in a scaling regime, and the quantum
theory is dominated by the diffeomorphism invariance of the
underlying theory. If this scenario applies, the β-functions and the
momentum dependence of different avatars of the Newton
coupling should agree or are rather be close to each other on
the asymptotically safe UV fixed point. This concept would apply
to all couplings, and in particular, the λn can be understood as
avatars of the cosmological constant. Additionally to the Newton
couplings from the Ricci scalar tensor structure, we have further
avatars of the Newton coupling stemming from the
gravity–matter correlation functions.

Given the presence of truncations in explicit computations, the
impact of nontrivial mSTIs and the nonperturbative nature of the
UV fixed point, it is left to define a measure for effective
universality. In 93, 203, it was quantified how these avatars
differ at the UV fixed point using the measure

εij(g, μ, λ3) �
∣∣∣∣∣∣∣∣∣∣
Δβgi − Δβgj
Δβgi + Δβgj

∣∣∣∣∣∣∣∣∣∣
gi�gj�g

, (109)

where Δβgi is the anomalous part of the β-function βgi obtained by
subtracting the canonical running

Δβgi � βgi − 2 gi. (110)

In 203, five avatars of the Newton coupling were included
stemming from the three-point functions, Γ(hhh)k , Γ(cch)k , Γ(φφh)k ,
Γ(ψψh)k , and Γ(AAh)k . Thus, the set of gi is given by
i ∈ {h, c,φ,ψ,A}, where gh � g3 in the previous notation. In 109,
the β-functions are identical for εij � 0, and we have full
universality. A small value of εij indicates almost identical
β-functions and thus “effective universality.” In 203, these small
values were estimated to be εij < 0.2. This estimate is based on a
systematic error estimate of the used truncations and the impact of
the mSTIs. In turn, a larger value of εij shows that universality is
strongly broken and that the mSTIs are highly nontrivial.

The universality measures εij are functions of all couplings,
and we display them in Figure 10 for gi � g*h as functions of µ and
λ3. Remarkably, the UV fixed point lies in the green area, which
signals ε< 0.2, and thus, effective universality holds. As discussed
above, this statement is nontrivial since the mSTIs can introduce
large differences between the avatars, in particular, if the fixed
point is highly nonperturbative. In turn, this result gives a strong
hint that the UV fixed point is in the semiperturbative region.
Interestingly, a semiperturbative behavior was also found in
large-order Ricci scalar expansions of the effective action in
the background field approximation [108–110, 172, 173].
There it was found that the critical exponents of the high-
order curvature invariants are close to their canonical values.

We emphasize that the observed effective universality is a
highly nontrivial result. If it can be sustained in further analyses, it
is presumably dynamical. This conjecture is supported by the
following observation: for a marginal universal coupling, one may
simply compute one avatar of the coupling and identify the other
avatars with the computed one. In turn, in a theory like gravity,
where the effective universality is potentially generated
dynamically, this may only work in specific RG schemes. One
may even define a natural RG scheme by ϵij ≡ 0. This entails that
in other RG schemes, only a subset of the couplings will have the
natural β-functions. Note that the latter property is additionally
triggered by the inherent truncations of explicit computations.

In any case, within a given RG scheme, some of the β-functions
may satisfy ϵij ≡ 0, while others may not. The identification of all
avatars of the given coupling with a specific one will only work if the

FIGURE 10 | Effective universality of the different avatars of the Newton coupling as a function of µ and λ3. The regions of effective universality are defined with
εij < 0.2 according to 109. The red cross indicates the UV fixed point, which lies in the region of effective universality. The figure is taken from 203.
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latter coupling is chosen from the natural subset. Such an
identification is an implicit way of enforcing the natural RG
scheme. In turn, if all couplings are identified with an avatar
which is not in the natural subset, the system may be corrupted.
This can even lead to a loss of the fixed point.

In gravity–matter systems, we indeed observe, in given truncations,
such a behavior: if all avatars of the Newton coupling are identified
with the three-graviton coupling gh, that is, gi � gh, the results are
close to the full ones with multiple avatars of the Newton coupling. In
turn, identifying all avatars of the Newton coupling with a
gravity–matter avatar fails. In summary, this hints at a surprisingly
complicated interaction structure in gravity–matter systems. Its origin
is yet to be understood and may give us further valuable insights into
the dynamics of these systems. In short, these investigations of effective
universality indicate a close perturbativeness of the UV fixed-point
regime of asymptotically safe gravity.

9 SUMMARY AND OUTLOOK

In this contribution, we have reviewed the state of the art of the
fluctuation approach to quantum gravity. This approach is based
upon the computation of the correlation functions of the
dynamical graviton fluctuation field hμ] within a systematic
vertex expansion. This can be done within general
parameterizations of the full metric, but most results have
been achieved in the linear split, gμ] � gμ] + hμ]. While the
correlation functions of the fluctuation field are not
observables by themselves and carry a gauge dependence, the
computation of observables in quantum gravity requires the
knowledge of the fluctuation correlation functions, and they
indeed encode the dynamics of quantum gravity.

By now, the fluctuation approach has matured (see the
overview of the results in Section 8). We see signs of apparent

convergence of the results in pure gravity. Moreover, by now, we
can reliably evaluate the stability of general gravity–matter
systems. In combination, the fluctuation approach now allows
for reliable physics predictions for the UV regime of
asymptotically safe gravity including its unitarity. The
approach also allows for reliable physics predictions for the
“IR” particle physics within the asymptotically safe
standard model.
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APPENDIX A NOTATION

Our convention for functional derivatives are given by

δJμ1/μn(x)
δJ]1/]n(y) � 1�

g
√ δ(x − y) δ(]1μ1

/δ]n)μn
, (A1)

where the parenthesis in the superscript of the Kronecker-δ’s
stands for the symmetrisation of the indices including a
normalisation factor 1/n!. For example we have

δhμ1μ2(x)
δh]1]2(y) � 1�

g
√ δ(x − y) 1

2
(δ]1μ1δ]2μ2 + δ]2μ1δ

]1
μ2
) . (A2)

This leads to the correlation functions of the fluctuation fields
as given in Ref. 14.

The metric cab in field space is diagonal for bosons φ, and is
symplectic for fermions ψ,ψ,

(cabφ ) � 1 , (cabψ ) � ( 0 1
−1 0

) , (A3)

with the Northwest-Southeast convention

ϕa � cabϕb , ϕa � ϕbcba . (A4)

These definitions entail

cab � δab , and(cφ)ab � δab , (cψ)ab � −δab , (A5)

more details can be found in Ref. 21.

APPENDIX B PONTRYAGIN INDEX IN U(1)
GAUGE THEORIES

The Pontryagin index P of a four-dimensional U(1)-gauge theory
in flat space is a simply example for a topological index in quantum
field theory. For general field configurations it is a non-vanishing
integer on manifolds such as T4, the four-dimensional torus, e.g.,
underlying standard lattice simulation. We write in general

P[A, θ] � 1
32π2

∫
x

θ(x)Fμ]~Fμ]
, P[A, 1] ∈ Z , (B6)

with the Pontryagin index P[A] � P[A, θ � 1]. The (dual) field
strength, Fμ] and ~Fμ], are given by

Fμ] � zμA] − z]Aμ , ~F
μ] � ϵμ]ρσ

2
Fρσ . (B7)

In momentum space P[A, θ] reads
P[A, θ] � ϵμ]ρσ

16π2
∫
p,q

θ(−(p + q)) pμA](p) qσAρ(q) , (B8)

The flow of θ has been studied in Ref. 193 for the topological
charge in Yang-Mills theories. Two derivatives with respect to the
gauge field in momentum space lead us from Eq. B8 to

δP[A, θ]
δAα(p)δAβ(q) � ϵαβρσ

8π2
pρqσ θ(−(p + q)) . (B9)

For a topological term with constant θ � θtop we have
θ(l) � θtop(2π)4δ(l). Inserting this choice into Eq. B9, the
term vanishes with ϵαβρσpρpσ � 0.
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Renormalization of Group Field
Theories for Quantum Gravity: New
Computations and Some Suggestions
Marco Finocchiaro1,2* and Daniele Oriti 3*

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam-Golm, Germany, 2Institute for Physics,
Humboldt-Universität zu Berlin, Berlin, Germany, 3Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-
Universität, München, Germany

We discuss motivation and goals of renormalization analyses of group field theory models
of simplicial 4d quantum gravity, and review briefly the status of this research area. We
present some new computations of perturbative Group field theories amplitudes,
concerning in particular their scaling behavior, and the numerical techniques employed
to obtain them. Finally, we suggest a number of research directions for further progress.

Keywords: quantum gravity, group field theory, spin foam models, renormalization, lattice gravity

1 INTRODUCTION

Group field theories (GFT) [1–3] are quantum field theories which aim at describing the
fundamental quantum structures that constitute spacetime. They are quantum field theories of
spacetime, rather than on spacetime. They are defined on group manifolds (hence the name), with an
associated phase space given by the cotangent bundle of the same group.

φ : G×d →C.

Equivalently, in conjugate variables, the basic field maps d copies of the Lie algebra of the same group to
the complex numbers, and should be understood in general as a non-commutative function (i.e., an
element of a non-commutative algebra of functions), since the Lie algebra is in general a non-commutative
manifold and this reflects on the algebra of functions defined on it. Depending on the specificmodel one is
considering, various restriction can be imposed on the field, its domain, its target, and of course the choice
of group manifold and ‘dimension’d are also model-dependent. What is general, in all current GFT
models, is that the basic quanta of the theory, corresponding to the basic field excitations, can be
represented as abstract cells or polyhedra with the d algebraic data forming the domain of the field
associated to their (boundary) faces.When d is chosen as the dimension of the spacetime to be reproduced
in some approximation, the corresponding GFT quanta can be understood as (d − 1)-simplices with
algebraic labels on their d (d − 2)-dimensional faces. This is the case we restrict to in the following. The
other feature which constitutes another defining aspect of the formalism is the peculiar combinatorial
structure of field interactions. The dynamics of the theory, which dictates how the fundamental GFT
quanta interact forming extended spacetime structure, is specified by an action, first,

S(φ, φ*) � 1
2
∫[dg]φ*(~gi)K(~gi, gi)φ(gi) + λ

n!
∫[dgia]φ(gi1) . . . φ(gin)V(gia) + c.c.

and then by its partition function (assumed here as being of statistical form):

Z � ∫DφDφ*e−Sλ(φ,φ*).
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Beside a quadratic local term (defined by an integral kernel
convoluted with the two fields), the GFT action is determined
by interactions (just one in the above example) that possess a
characteristic ‘combinatorial non-locality’in that the interaction
kernels pair non-locally the field arguments (d variables being
contributed by each field entering the given interaction term).
Interaction kernels of order n can be associated with possible
ways of gluing together n (d − 1)-simplices to form (the
boundary of) a d-dimensional cell. The specific combinatorial
patterns (i.e., the specific cells being associated to each
fundamental interaction) and precise form of the interaction
and kinetic kernels are part of the definition of each particular
GFT model. However, from this generic aspect of the formalism
follows one key fact: GFT Feynman diagrams Γ generated by the
perturbative expansion of the GFT partition function,

Z � ∫DφDφ*e−Sλ(φ, φ*) � ∑
Γ

λNΓ

sym(Γ)AΓ

obtained gluing interaction vertices (d-cells) along their
(d − 1)-faces, are dual to d-dimensional cellular complexes, of
arbitrary topology (since a priori there is no restriction on the
allowed gluing). The Feynman amplitudes assign a probability
amplitude for each such cellular complex, seen as an elementary
interaction process of the fundamental GFT quanta.

The above can be taken as a sketchy definition of the TGFT
formalism, but it is of course the specification of particular
models which gives tentative physical meaning to it and this
meaning will therefore change in different contexts. In particular,
when the physical interpretation of a given model is grounded in
its perturbative expansion, it will affect what we expect about the
properties of the Feynman amplitudes AΓ. In this contribution,
we focus on GFTmodels for quantum gravity and in particular on
the class of models closely related to simplicial gravity path
integrals, spin foam models and loop quantum gravity. For
this class of models we discuss the key features of the
Feynman amplitudes in the next subsection. In particular,
beyond their interpretation, we will discuss at length whether
we should expect them to be finite or divergent when dwelling
into the issue of renormalization of the corresponding quantum
gravity models.

Before doing so, let us spend some words to clarify the choice
of a statistical form for the GFT partition function. The
foundations of the GFT formalism have received some
attention only recently, and much remains to be understood.
Both statistical and complex weights for GFT fields summed over
in the definition of the partition function can be found in the
literature, but in fact most of the literature until recently has been
focusing only on the perturbative expansion of the models, where
the non-perturbative definition is less directly relevant, thus
avoiding the need to investigate it. In particular, for the class
of models to be analyzed in the next subsection, the interpretation
in terms of quantum sums over discrete geometries (and
topologies) is guaranteed by the form of the Feynman
amplitudes (which are either complex or real with oscillating
behavior, in line with their interpretation as defining a quantum
discrete path integral for gravity on a lattice, as we are going to

discuss). As for the non-perturbative definition of the GFT
dynamics, instead, we have less guidelines, especially for the
general definition of the formalism, before considering specific
models. In the context of tensor models and tensorial group field
theories treated as a generalization of usual local QFT framework,
all non-perturbative analyses have simply assumed from the start
a statistical definition, taken to be primary and in no special need
of further justification; in particular, no attempt to understand it
as the counterpart of an operatorial definition of the same model
has been made. In non-quantum gravity applications, this is
simply a choice of a ‘classical’statistical field theory context,
usually adopted for purely mathematical reasons (better
chance of making sense of the path integral).

For quantum gravity applications, one may be interested also
in a better conceptual foundation of the formalism. In this
context, a complex weight involving the GFT action as a pure
phase is of course a possibility, and maybe more in line with the
intuitive idea of a quantum gravity path integral (even though the
quantum gravity interpretation of the GFT field itself is not
straightforward, while as we remarked already, this
interpretation be consistently associated to the discrete
structures appearing in the GFT perturbative expansion).
However, we should remind ourselves that these quantum
gravity models should not be expected to encode any global
unitary evolution, as it is in fact true for any fundamental
quantum gravity dynamics, and this removes one strong
motivation to insist on this formulation of the path integral.
Nor we have a complete derivation of the GFT path integral from
a canonical quantum gravity dynamics or, alternatively, from
some formal field theoretic gravitational path integral, that could
dictate one choice over another. To date, the only tentative
derivation of a GFT partition function ‘from first principles’,
was given in ref. 4 where it was seen to arise from a quantum
statistical definition of equilibrium for a system of quantized
simplices (indeed, the basic quanta of such GFT models), under a
requirement of maximization of entropy and a choice of
macroscopic conditions to be imposed on average (this choice
concurs to the specification of the resulting GFT action). If among
these constraints one includes some appropriate counterpart of
the Hamiltonian constraint of canonical gravity (adapted to the
discrete setting), then the GFT partition function can be seen as a
sort of grandcanonical partition function relaxing the imposition
of such constraint (in the sense that configurations satisfying the
constraint are assigned greater weight, but fluctuations off the
constraint surface are allowed) as compared with a
‘microcanonical’ensemble in which only solutions of the
constraint are allowed. From a canonical quantum gravity
perspective the latter, more restricted case would correspond
to a definition of the physical inner product between quantum
gravity states (with appropriate insertions of observables inside
the GFT partition function), while in general the GFT formalism
deals then with a broader class of quantum amplitudes. This
scenario was also anticipated (more formally) in ref. 5, discussing
the relation between GFT and canonical loop quantum gravity.
This perspective also resonates (with many details still to be
clarified, though) with the presentation of GFT from a quantum
gravity perspective in ref. 6, where the ‘tree level’(thus dominant,
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from the perturbative point of view) GFT amplitudes were
suggested to define the physical inner product of canonical
quantum gravity, while the remaining GFT configurations
were associated with topology changing processes (off-shell,
from the canonical quantum gravity perspective).

1.1 Group Field Theories, Spin Foams and
Other Quantum Gravity Formalisms
We recognize in this brief outline the straightforward
generalization of how 2d surfaces are generated in the
perturbative expansion of random matrix models. Indeed,
GFTs can be seen as group-theoretic enrichment of random
tensor models [7–9], to which they reduce if the Lie group
domain is replaced by any finite set of N elements. The
Feynman amplitudes become purely combinatorial, but the
type of diagrams remains the same. Seen as tensors, GFT
fields admit a natural action of unitary (and orthogonal)
groups on their arguments. If one requires GFT interactions to
be invariant under such unitary transformations, they can be fully
classified, and we speak of tensorial GFT models. Most of the
literature on GFT renormalization [10, 11] concerns these
tensorial GFT models. More generally, focusing on tensorial
aspects of GFTs allows to gain a greater control over the
combinatorial structures of their states, diagrams and
amplitudes and many of the results obtained in the simpler
context of tensor models apply also to GFTs: the use of colors
to encode the topology of Feynman diagrams, the large-N
expansion, double scaling limits, universality results etc. The
first two, in particular, are crucial for GFT renormalization.

In this contribution, we focus on GFT models which are
‘quantum geometric’: their fundamental quanta are quantized
tetrahedra with a quantum geometry encoded in group-theoretic
data. More precisely, the classical phase space of a single
Lorentzian tetrahedron in 4d is chosen to be the cotangent
bundle of 4 copies SL(2,C), reduced by additional
‘geometrician’constraints, and in turn this can be mapped,
under the same constraints, to the cotangent bundle of 4
copies of SU(2). At this classical level, this map amounts
simply to a change of variables between two alternative
parametrizations of the same classical geometry of an
individual tetrahedron. We will give more details on the
simplicial geometry in the next subsection (see also ref. 12).
Appropriate gluing of five geometric tetrahedra on the boundary
of a combinatorial 4-simplex can then be shown to provide a
geometric characterization of the 4-simplex too, and of the whole
simplicial complex obtained gluing geometric 4-simplices
together. The same construction in the Riemannian case uses
Spin(4) instead of SL(2,C). From the choice of classical phase
space follows a choice of Hilbert space for individual quanta of the
GFTmodel, given in one representation by L2(G4) reduced by the
quantum counterpart of the geometrician constraints, where G is
one of the chosen groups mentioned above. More precisely, the
natural Hilbert space for a single tetrahedron in this class of
models would be L2((SL(2,C)4) restricted by the geometrician
conditions dictated by the underlying classical simplicial
geometric understanding of the GFT quanta (and amplitudes);

this Hilbert space can be mapped, however, to the Hilbert space
L(SU(2)4), with the geometrician constraints encoded, in a
model-dependent manner, in the definition of the map. In this
latter case, the covariance properties of states and amplitudes
under the action of the Lorentz group as well as some of their
geometric features become ‘hidden’in the form of the kernels
defining the GFT action or in the corresponding spin foam
amplitudes, while boundary data (and GFT fields) only
depend on SU(2) data. Spin foam and GFT models defined
using one or the other choice of fundamental Hilbert space are, in
general, not equivalent, but the precise relation depends on the
properties of the map being used (for example, its being isometric
or not), but they would be equally justified from a simplicial
geometric point of view. A definition of such map for the EPRL
model has been given in ref. 13, together with an analysis of its
properties, and a generalized definition of such map and analysis
of its properties, valid for the whole class of models we deal with
here, can be found in ref. 14. The complete GFT Hilbert space is
the corresponding Fock space built on this single-quantum
Hilbert space. We will give a few more details in the next
subsection.

For this class of geometric models, the GFT formalism benefits
from direct links to other modern quantum gravity approaches,
which can, viceversa, benefit from GFT tools and results.

First, of all, when SU(2) is used, the Hilbert space of a single
GFT quantum is the same as that of a loop quantum gravity
(LQG) [15] 4-valent spin network vertex. Generic GFT states,
organized in a Fock space, will be populated by many such
vertices and they will include, in particular, states
corresponding to spin networks associated to closed graphs
and gauge-invariant cylindrical functions for the same graphs.
In fact, the LQG Hilbert space associated to any graph can be
shown to be faithfully embedded in the GFT Fock space. The
theories however differ in the way these graph-based Hilbert
spaces are related, more precisely, in the scalar products between
states associated to different graphs. Still, the correspondence,
which can be extended to observables and quantum dynamics,
allows to see GFTs as a 2nd quantized counterpart of LQG [5].

Next. for this class of models, the GFT Feynman amplitudes
take the form of (non-commutative) simplicial gravity path
integrals [16, 17], when written in (non-commutative) Lie
algebra variables, which encode the discrete metric. The group
variables, on the other hand, are understood as encoding the
discrete gravity connection. They correspond indeed to
discretizations of a classical formulation of gravity as a
topological BF theory with added geometrician constraints, on
the simplicial complex dual to the GFT Feynman diagrams. The
specific way in which the BF action is discretized depend on the
quantization map applied to Lie algebra variables, and different
models correspond to different strategies for the imposition of the
constraints and path integral measures.

In fact, when the same Feynman amplitudes are recast as
functions of group representations, using Peter-Weyl or
Plancherel decomposition, they take the form of spin foam
models [18]. Spin foam models have been introduced as a
covariant language for computing spin network dynamics, so
they can be understood as a covariant counterpart of canonical
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loop quantum gravity. A second perspective is to see spin foam
amplitudes as a purely algebraic version of lattice gravity path
integrals, or state sum models. In GFT, they arise as Feynman
amplitudes. The correspondence is generic: for any given set of
spin foam amplitudes associated to simplicial complexes (and
admitting a local decomposition with respect to the complex),
one can find a GFT action such that the perturbative expansion of
the quantum partition function will produce the given amplitudes
as Feynman amplitudes (and viceversa, any GFT action
corresponds to a set of spin foam amplitudes). A complete
definition of a spin foam model requires a prescription for the
amplitudes to be associated to all possible cellular complexes (in
some specified class) and an organization principle for them, i.e.
one way of comparing, composing or selecting them, to obtain a
single number for any observable one wants to compute. The
GFT embedding provide one such clear organizing principle, by
summing them in a QFT perturbative expansion. In addition, it
provides a whole set of QFT tools that can be applied to study
their mathematical foundations as well as for extracting physics.
GFT renormalization can be seen, indeed, from this spin foam
perspective.

1.2 Simplicial Group Field TheoryModels for
4D Quantum Gravity
The starting point for the construction of simplicial GFT (and
spin foam) models of 4d quantum gravity is the quantum
geometry of a single tetrahedron in 4d [19].

The quantum geometry of this basic building block, and the
extended structured built from it, can be described in various
parametrizations [20, 21], and a number of generalizations can
also be defined [22, 23] and imported in the GFT framework.
Classically, one can use two equivalent characterization of a
tetrahedral geometry, leading immediately to an algebraic
translation. First, one can start with assigning four vectors
bIi ∈ R3,1 to the four faces of the tetrahedron, forced to lie all
in the same spacelike hypersurface with timelike normal V (thus
satisfying bi · V � 0), and thinking of them as normal to the same
faces, with their modulus identified with their area, bIi � AinIi
(with |n| � 1). The vectors are also forced to close to form the
closed boundary of the tetrahedron, i.e. ∑

i
bi � 0. The vectors bi,

due to the constraints they satisfy, are actually elements of the
vector spaceR3 which can be identified with the Lie algebra su(2),
after it has been endowed with the corresponding Lie bracket. The
resulting space su(2)×4 is then the space of geometries for a single
tetrahedron. It can also be seen as the cotangent space of the phase
space (T *SU(2))×4 which is then the phase space of a classical
tetrahedron, purely expressed in terms of group-theoretic,
algebraic data. The conjugate variables in SU(2)×4 have the
interpretation of parallel transports of a discrete connection
along elementary paths from (the (bari)center of) the
tetrahedron to the ((bari)center of its) boundary faces. The dual
graphmade of these paths becomes the graph associated to a single
spin network vertex (with four outgoing ‘open links’). In group
representation, the corresponding Hilbert space is thus
L2(SU(2)4) (with Haar measure).

An equivalent encoding of the classical geometry of a single
tetrahedron uses directly the variables of discretized topological
BF theory. All geometric quantities of a single tetrahedron can be
computed starting from four bivectors BIJ

i ∈ ∧2R3,1xsl(2,C)
which close ∑

i
BIJ
i � 0 and satisfy the simplicity constraints

VI(*Bi)IJ � 0 (* is the hedge dual), with respect to the same
timelike normal vector V. The phase space of a single tetrahedron
can be taken to be the cotangent bundle T *SL(2,C)4 and the
Hilbert space to be L2(SL(2,C)4). See also ref. 12 for more details.
This second construction can be indeed seen as the discrete (and
then, quantum) counterpart of the formulation of continuum
General Relativity as a constrained BF theory (a topological field
theory) in 4 spacetime dimensions. This amounts to adding suitable
constraints, called ‘simplicity constraints’, to the BF action, resulting
in the B field of the topological theory being equivalent to a tetrad
field, in such a way that the insertion of the general solution of these
constraints in the BF action gives the Palatini formulation of
classical continuum gravity in terms of tetrad and connection
fields, in turn equivalent, at the classical level, to the metric
formulation (modulo subtleties concerning degenerate
geometries). The ‘geometrician’constraints we discussed above
correspond to the combination of the (discrete counterpart of
the) simplicity constraints and the gauge invariance constraints.
For more details on the continuum formulation, see the cited
references. The two geometric descriptions can be mapped into
each other, as we have mentioned already. The simplicity
constraints can be seen also, in fact, as determining such map
[13, 14]. Since the Hilbert spaces indicated above admit a basis
labeled by group representations, this correspondence can be seen
also at that level, i.e. as specifying how the relevant representations
of SL(2,C) should be decomposed in SU(2) representations, if they
have to be understood as encoding the quantum geometry of a
tetrahedron. Such representation labels are the variables in which
spin foam amplitudes are expressed. Different spin foam (and GFT)
models for 4d quantum gravity are specified (among other things)
by the way the impose the simplicity constraints at the quantum
level, and thus by the specific map between SL(2,C and SU(2)
entering their amplitudes, if used. In the Riemannian case, which
will be our focus in this contribution, all the above applies, with
Spin(4) replacing SL(2,C).

A spin foam amplitude, that is a GFT Feynman amplitude
written in representation variables, will be assigned to any given
simplicial complex, dual to a GFT Feynman diagram. The basic
building block is an assignment of a quantum amplitude to each
4-simplex, i.e., a ‘vertex’of the spin foam complex given by the
GFT Feynman diagram, with this amplitude function of the
algebraic data associated to the five tetrahedra on its
boundary. These boundary data can be written as SU(2) or
SL(2,C) data, using the mentioned map, and the vertex
amplitude can be written as a function of both, featuring then
the coefficients of the map, if used, and the geometrician
constraints, in its expression. Thus the vertex amplitude will
be a function of SU(2) and SL(2,C) representations associated to
the triangles of the 4-simplex (faces of the dual complex), and
intertwiners of both groups associated to the tetrahedra, following
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the imposition of the closure conditions (equivalent to gauge
invariance with respect to both groups). The data not used as
boundary data are then summed over independently in each
vertex amplitude. The spin foam amplitude associated to the
whole simplicial complex can then be obtained by gluing
together the amplitudes associated to its 4-simplices, with the
gluing amounting to matching first and then tracing over the
data associated to the tetrahedron shared by each pair of 4-
simplices, possibly weighted by an additional gluing kernel. In the
GFT context, the vertex amplitude and the gluing kernel are nothing
else than the interaction kernel and the propagator (inverse of the
kinetic kernel) defining the GFT action. The correspondence
between GFT amplitudes and spin foam models, which could be
motivated and defined independently, is thus very general [24].

One last comment about the discrete geometry of these models.
The construction sketched above, at the classical level, leads to a full
characterization of the discrete geometry of the 4d simplicial
complex (to which the spin foam amplitudes are associated),
equivalent to the more standard characterization in terms of edge
lengths, as used in Regge calculus, even though it uses a different set
of classical variables (it corresponds, indeed, to a formulation of
classical simplicial geometry in terms of the discrete counterpart of
the variables of BF theory, suitably constrained, or to so-called ‘area-
angle’Regge calculus [25]). The translation of the same
characterization at the quantum level, and in particular the
correct imposition of the geometrician constraints on quantum
states and amplitudes, is the crucial point for ensuring the
correctness of the model from a discrete geometric point of view,
and it is still subject to debate in the literature. In particular, one
would expect to find back the Regge action for metric (edge length)
variables, or an equivalent classical reformulation, in the semi-
classical expansion of the spin foam amplitudes for a generic
simplicial complex (or of the corresponding simplicial path
integral). Many results are available (see the cited references) on
this issue for a single 4-simplex and for extremely simple complexes,
at least for the EPRL model, but the results are mixed, and the
situation is especially unclear for larger complexes.

The general formula for the spin foam amplitudes, for all the
models in this class, in the Riemannian setting, for given cellular
complex m dual to the Feynman diagram Γ is the following:

Aβ(m) �∑
Jf jef

∑
Iveie

∏
f ∈ Fm

dJf∏
e ∈ f

djef ∏
v ∈ Vm

{15Jf }v
× ∏

e ∈ Em
dIve

��
die

√
f ie ,l/2Ive (Jf , jef , ke, β) (1.1)

The coefficients f are matrix elements of the map between Spin(4)
and SU(2) intertwiner spaces:

f i,lI (Jp, jp, k, β) � ∑
Mpmp

(I )J1J2J3J4IM1M2M3M4

× ⎡⎢⎢⎣∏4
p�1

C
j−p j−p jp
m−

pm
−
pmp(k)wl(Jp, jp, β)⎤⎥⎥⎦(I)j1 j2 j3 j4 im1m2m3m4

(1.2)

where we have a Spin(4) representation Jf labeling each face, a
pair of Spin(4) four-valent intertwiners Ive, Iv′e for every edge

and an SO(3) spin jef for each edge in a given face, while C is the
3j-symbol, and the 15j-symbol is the one of the first type. We
have indicated with w the function of group representations that
characterizes the implementation of the simplicity constraints
defining each model, depending on the representations of
Spin(4) and SU(2) labeling each face of the complex. This
depends also on the Immirzi parameter γ, through the
combination β � c−1

c+1.
The amplitude’s formula can be rewritten in terms of

propagators as follows:

Aβ(G) � ∑
Jf

∑
Ive

∏
f ∈ FG

dJf ∏
e ∈ EG |fkIe

������
dIvedIv′e

√
KJf1Jf2Jf3Jf4(Ive, Iv′e, l, β) ∏

v ∈ VG

{15Jf }v (1.3)

where the propagator K is given by:

KJ1J2J3J4(I, I′, l, β) � ∑
j1 ,...,j4

∏
p�1

4

djp∑
i

����
dIdI′

√
di

f i,l/2I (J1, . . . , J4, j1, . . . , j4, β)f i,l/2I′ (J1, . . . , J4, j1, . . . , j4, β)
� ∑

j1 ,...,j4

∑
i

����
dIdI′

√
di∏

p�1

4

djpw
l(Jp, jp, β)⎧⎪⎪⎨⎪⎪⎩

j−1 i− j−2
j+1 i+ j+2
j1 i j2

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

j−3 i− j−4
j+3 i+ j+4
j3 i j4

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

j−1 i′− j−2
j+1 i′+ j+2
j1 i j2

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

j−3 i′− j−4
j+3 i′+ j+4
j3 i j4

⎫⎪⎪⎬⎪⎪⎭

(1.4)

In order to derive the master Integral expression for a GFT
Feynman G we have to write down the corresponding
(regularized) full amplitude A(G, β,Λ, J→ext) and then set to
zero all the spin associated to the external and contractible
internal faces. We are going to give one concrete example of
this procedure in the next section, when studying the scaling of
the corresponding amplitude.

The models we will deal with in the following are the EPRL
model [18] and the Duflo BOmodel [17], whose defining maps are:

wEPRL(j−, j+, j, β) � δj−|β|j+δj(1+|β|)j+β< 0
wEPRL(j− , j+, j, β) � δj−|β|j+δj(1−|β|)j+ β≥ 0

(1.5)

wDuflo(j−, j+, j, β) � (−1)j− +j++j
π

���������������(2j− + 1)(2j+ + 1)√
∑
a�0

λ (Sign(β))a{ a j− j−

j j+ j+
}T j− j+

a (∣∣∣∣β∣∣∣∣)
(1.6)

where the T function is given by:

T j− j+
a (|β|) � (−1)a(2a + 1)

|β| ∫2π

0
dψsin

ψ

2
sin

|β|ψ
2

χj
−
a (ψ)χj+a(|β|ψ)

λ � 2Min(j−, j+)
(1.7)

but it can also be given an expression purely in terms of
representation labels. See ref. 17 for more details.
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We note that the relative simplicity/complexity of these two
models is highly dependent on the basis in which they are
expressed, with the flux representation switching such relative
complexity with respect to the spin representation given above.

We also point out that other spin foam models, obtained from
alternative strategies of imposition of the same geometrician
constraints and thus also belonging to the same general class
we are considering, can be cast in principle in the same general
form, and studied by the same method we will illustrate in the
following. Beside difficulties, for some of them, in achieving an
explicit and manageable expression for their corresponding w
coefficients in representation variables, that makes the analysis
more cumbersome, it would indeed be very interesting to perform
the same scaling analysis of amplitudes and compare with our
results.

More details about the construction of spin foam amplitudes,
as well as all the ingredients we mentioned as entering in such
construction, in a language well adapted to their GFT embedding,
can be found in ref. 17.

2 RENORMALIZATION OF GROUP FIELD
THEORIES FOR 4D QUANTUM GRAVITY

Let us now discuss motivation and current status of
renormalization of simplicial GFT (and spin foam) models for
quantum gravity.

Beyond the connection to spin foam models and simplicial
gravity path integrals, the general strategy for renormalization of
GFTmodels [10, 11, 26] is to treat them as ordinary QFTs defined
on a Lie group manifold, thus using the group structures
(topology, Killing forms, etc) to define ‘scales’and mode
integration. A natural notion of scale, to be used to label the
RG flow, is provided by group representations, which index the
spectrum of differential operators on the group, e.g., the Laplace-
Beltrami operator, in turn often used to define the propagator of
GFTmodels. Cut-offs imposed as part of a renormalization group
scheme are then imposed on representation labels; for example, in
the case of SU(2) cutting off the spectrum of the Laplacian
operator means imposing the bound∑ d

i�1ji(ji + 1)≤Λ2, for some
real (large) number Λ. This fits well with the fact that divergences
in spin foam amplitudes mostly come from the large
representations regime. Still, a lot of non-trivial work (beside
computational challenges) is needed to adapt for GFTs, whose
Feynman diagrams are not graphs but cellular complexes,
standard QFT notions, noticing also that any procedure for
the contraction of divergent subgraphs of perturbative GFTs
has the meaning, from the point of view of the simplicial
gravity path integral or spin foam model corresponding to the
Feynman amplitudes of the same, of a coarse graining scheme of
the corresponding lattice theory.

For a proper renormalization group scheme, however, two
more ingredients are needed: control over the theory space
corresponding to a given GFT model, i.e. the space of allowed
interactions; a detailed characterization of the combinatorics of
(the cellular complexes dual to) GFT Feynman diagrams. On
neither of these two points much is known for simplicial 4d

gravity models. As a result, most work in the context of GFT
renormalization has been done focusing on tensorial GFT
models, where the above limitations are not present.

Before discussing the goals of GFT renormalization, we spend
a few words of caution concerning the physical interpretation of
the renormalization group scheme and derived flows. With scales
associated to group representation labels, the natural cutoffs
entering as UV cutoffs are for large representations. The
associated RG then flows from large to small representations
(from UV to IR). In LQG and simplicial quantum geometry
representation labels identify eigenvalues of geometric operators
(e.g., triangle areas or tetrahedral volumes). Large representation
labels correspond to large values of such geometric quantities.
Thus we have an apparent inversion of roles here, with large
distances/volumes playing the role of UV scales in GFT. Caution
however should be exercised. In both LQG and simplicial
geometry, we know an area of a surface, say, to result roughly
speaking from the sum of the individual areas of all elementary
surfaces forming the one under consideration, so that one has
A ≈ < j> <N > with < j> the average area contribution and
〈N〉 the (average) number of contributions. Moreover,
experience from classical Regge calculus and other simplicial
gravity formalisms, leads us to expect continuum geometry to be
reproduced when the number of elementary excitations
contributing to a given continuum geometric quantity is very
large, with each contribution smallish (but allowed to be orders of
magnitude above Planck size). On the same basis, we expect
continuum geometry, and with it any notion of large or small
areas, volumes, distances etc, to be the result of coarse graining
microscopic, fundamental degrees of freedom like the ones we
deal with in the fundamental GFT (or spin foam) formalism. We
would better refrain, then, from interpreting simplicial
observables directly as geometric, in the sense we attribute to
continuum spacetime geometry and physics. Finally, one more
alert comes from recalling that, in GFT, the simplicial geometric
observables and excitations are the ones associated to the Fock
representation of the theory, and probably this is does not
correspond to a fully geometric phase in which continuum
gravitational (thus, spatiotemporal) physics is to be found,
being best adapted to perturbation theory around the fully
degenerate (from the point of view of geometry) Fock vacuum.

Also, let us comment on the importance of a better
understanding of the symmetry properties of these 4d gravity
models, both for the characterization of the corresponding theory
space and for their relation to continuum gravity, which is of
course crucially characterized by diffeomoprhism symmetry. The
issue of symmetries in GFTmodels is very important but also very
much open. At the general level, we do not know much about
symmetries of 4d GFT models, beyond the Lorentz invariance of
the kinetic and interaction kernels and of the Feynman
amplitudes (implemented as in usual lattice gauge theories,
since the amplitudes are in fact lattice gauge theories for a
(constrained) Lorentz connection). Because of the simplicity
constraints and also of the simplicial combinatorics that
characterize them, moreover, even the tensorial symmetry
typical of tensor models is not present (or at least not
manifest). Moreover, even for the few symmetries we know of,
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in other models, the analysis of their consequences, for example
in terms of conservation laws, is complicated by the non-local
nature of the GFT interaction (see the analysis [27, 28]).
Concerning diffeomorphisms, strictly speaking (being smooth
transformations) they are not defined in a discrete context like
that of GFT Feynman amplitudes, i.e. spin foam models and
lattice gravity path integrals, and thus the question becomes
whether we can identify some analogue of diffeomorphic
symmetry that, in a continuum limit, could be then identified
with the one characterizing GR. There are several analyses of such
question for 3d (topological) models at the level of spin foam
amplitudes [29], lattice gravity (see for example [30–32]) and
corresponding GFT formulation [33], but nothing similar in the
4d gravity case (where the 4d counterpart of the symmetry
identified in the 3d case is actually broken, at the discrete level
[34]). When attempting a reconstruction of an effective dynamics
of geometry in a continuum approximation, as done in the
context of GFT cosmology, one has to proceed in terms of
observables of the fundamental theory that have a chance to
correspond to diffeomorphic invariant observables in GR, since
all the structures of continuum GR on which diffeomorphisms
act, e.g., manifold points, directions an coordinate functions, but
also fields defined on the samemanifold, are simply not present in
the theory.

2.1 Quantum Consistency and Perturbative
Renormalization
GFTmodels are first defined in perturbative expansion and it is in
this perturbative formulation that spin foam amplitudes, and
simplicial gravity path integrals, appear. The perturbative GFT
amplitudes generically diverge and regularizations have to be
imposed. It is this truncation that corresponds to working at a
given ‘scale’. Is this definition of the quantum dynamics of GFT
models consistent? is the spin foam description consistent? Here,
consistency means first of all valid for all ranges of dynamical
variables, under (controlled) removal of regulators. If not, the
GFT model as defined in perturbative expansion, and thus the
corresponding spin foam model (and simplicial path integral)
cannot be trusted. In the GFT language, this is recognized
immediately to be the issue of perturbative renormalizability
of a given model. We should only trust, from the spin foam
or lattice gravity point of view, only GFT models that turn out to
be (perturbatively) renormalizable.

We note in passing that there should be no requirement that
the model is finite (in the sense of presenting no divergence even
before any renormalization); first, we have no obvious reason to
expect it, if the model contains an infinite number of degrees of
freedom; second, renormalizable models are usually more
interesting, as QFTs, than finite ones, since they have a non-
trivial RG flow and new effective physics at each scale.

Let us clarify further what we mean, here, to avoid possible
misunderstandings. As a general point about field theories, we are
saying that finiteness of the Feynman amplitudes associated to a
given subset of diagrams, or even to all diagrams involved in a
given “scattering process” is not so important, per se, and in fact
not necessarily desirable. What is important is that the scattering

amplitudes can be -made finite- by suitable renormalization
procedure (at any order in perturbation theory), if originally
divergent in terms of bare couplings, and after resumming all the
diagrams involved in their computation. The final renormalized
scattering (or transition) amplitudes are what is physically
relevant. A theory that is instead simply finite in the sense of
not requiring any renormalization, even if clearly easier to deal
with, would be less interesting from a physical point of view
because this finiteness would probably indicate that the quantum
dynamics is not very rich and it does not change much across
scales (i.e. when more of its quantum degrees of freedom are
accounted for). The consequence would also be a less interesting
phase diagram. This should explain our comments about
finiteness of GFT Feynman amplitudes. As for the finiteness of
“quantum gravity scattering amplitudes”, what we should expect
or desire depends on how we interpret the terms. If we take a
given GFT model to be a tentative definition of full quantum
gravity, then for sure we should hope that its “transition or
scattering amplitudes” be finite, in the end, i.e., after
renormalization. If the relation between GFT and quantum
GR is as in the first case discussed above, i.e., the two are
“equivalent”, then this also implies that the transition or
scattering amplitudes of quantized GR will be finite, when
properly defined and after renormalization (even if the
renormalization procedure as well as the observables
expressing the amplitudes may look very different in the two
formulations). If the relation is as in the second case, and thus
“quantum GR” is just an effective theory, then we do not have to
expect that its transition or scattering amplitudes are finite tout
court, but only within the domain of validity of the
approximations or truncations leading to it within the
fundamental theory.

Thus, the requirement of perturbative renormalizability is an
important constraint, which helps removing from consideration
inconsistent constructions. Here, the GFT embedding proves
potentially very important also for spin foam models (and
loop quantum gravity). All known GFT and spin foam models
present several ambiguities, some intrinsic to any quantization
procedure, others specific to simplicial GFT (and spin foam)
models of quantum gravity. Requiring perturbative
renormalizability means constraining such ambiguities. To
name one, we have little constraints of the face amplitudes of
spin foam models, even though they can drastically affect the
scaling behavior of the GFT and spin foam amplitudes, to the
point of allowing to achieve perturbative finiteness easily by
simply fixing them to this end (which also shows why
finiteness per se cannot be a goal, without a proper physical
understanding), while perturbative renormalizability is a much
trickier requirement. For example, see how simple modifications
of the Barrett-Crane model (which is also the limit of both EPRL
model and Duflo model for infinite Immirzi parameter) affect the
resulting amplitudes [35, 36].

Let us list some of them. A first one is combinatorial: why
restricting to simplicial complexes? These are the ones for which
we have a better understanding of the discrete geometry
underlying our models, and in particular of the simplicity
constraints that characterize them. But what other cellular
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complexes should be included in the theory for consistency, e.g.,
because corresponding to the counterterms required for taming
the perturbative divergences? Others concern the underlying
quantization and imposition of simplicity constraints. Being
functions of the flux variables (which are non-commutative),
they depend on which quantization map is chosen to quantize
such variables. Different choices result in different discrete gravity
actions and different simplicial path integral measures, thus
different spin foam amplitudes. Also the very definition of the
simplicity conditions as operator equations acting on quantum
states depends on the chosen quantization map, fromwhich follow
thus different constraints on representation variables in the spin
foam amplitudes. Further, the strategy by which simplicity
constraints are imposed produces in general different models or
versions of the same type of models (this is apparent in the
Riemannian case, while in the Lorentzian one we only have
experience of different versions of the EPRL model). These and
other ambiguities are discussed, e.g., in ref. 17. Using SL(2,C) or
SU(2) data to label quantum states, which is another choice to
make, also leads to potentially different models and amplitudes.
Nor one should think that these ambiguities are an artifact of the
GFT or spin foam formulation. They can be convincingly argued to
be the counterpart of ambiguities in the definition of the canonical
Hamiltonian constraint operator and, in a way, failing to fix (at
least most of) them via renormalizability conditions would be the
counterpart, at the background independent level, of the problem
of non-renormalizability of perturbative quantum gravity on a
given spacetime geometry [37]. Perturbative GFT renormalizability
is thus a crucial issue, also when one looks at it from the perspective
of spin foam models, simplicial path integrals or canonical loop
quantum gravity.

So, where do we stand, on this important issue? For simplicial
GFT models of 4d quantum gravity the answer is, unfortunately,
that we are only at the very beginning. The main reasons have
been already mentioned. First, we do not know enough of their
symmetries to characterize the relevant theory space. Second, the
amplitudes for these models are very involved and technically
challenging to compute, mostly due to the fact that the
imposition of simplicity constraints makes them defined not
simply on Lie group manifolds but on particular sub-manifolds
of these (usually not even corresponding to homogeneous
spaces). Third, dominant configurations (i.e., those giving the
most divergent contribution to the amplitudes) are not just flat
connections or similarly simple, but correspond to richer
configurations from the point of view of simplicial geometry;
possibly, they correspond to (or possibly include) the whole set of
Regge geometries found as saddle-point configurations in the
asymptotic analysis of spin foam amplitudes and corresponding
simplicial path integrals. Therefore even power counting results
are hard to obtain, and the brute force analysis of divergences is
not advanced enough to indicate the needed counterterms,
forming the theory space. If the theory space is hard to
characterize also in the simpler 3d simplicial case
(corresponding to topological BF theory), at least the
amplitudes are manageable enough to obtain complete power
counting theorems [38], identify some counterterms [39] and
nice finiteness results [40].

So computational challenges are one big obstacle. It is on this
aspect that we focus in the next section, presenting some new results
in the Riemannian context. These new results should be added to
other ones we have on the calculation of radiative corrections and
basic divergences of both Riemannian and Lorentzian simplicial
spin foam models, and on explicit evaluations of their building
blocks (mainly the vertex amplitudes). For a partial list, see [41–49]
and references therein. Future progress will build on these hard-
won calculations. In turn these results build on the hard-won
understanding, based on both analytical and numerical studies,
regarding the asymptotic properties of SU(2) recoupling
coefficients and, more recently, of the SL(2,C) recoupling
invariants as well, following an extensive ongoing effort in the
spin foam community to investigate the behavior of the spin foam
transition amplitudes for various models in the constrained BF
theory class. A tentative (and incomplete) list of interesting
references is refs. 46–refs. 61.

For a comparison, one has to look at the amount of knowledge
we have accumulated on tensorial (thus colored) GFTmodels [10,
11, 26]. Here we know several (classes of) models which are
rigorously proven to be perturbative renormalizable, comprising
both abelian and non-abelian models, on homogeneous spaces,
with or without gauge invariance (closure condition), in different
dimensions. Divergences are associated to bubbles, i.e. cells of the
complex dual to the cellular complex associated to a GFT
Feynman diagram, and typically the most divergent diagrams
that form the relevant theory space of renormalizable theories are
melonic ones, also singled out in tensor models. However, we also
know example of TGFTmodels which are renormalizable outside
the melonic truncation [62], and these examples may be relevant
also for the case of simplicial GFT models, since the structure of
their divergences presents some aspects of the simplicial case.

2.2 Continuum Limit and Non-Perturbative
Renormalization
GFT models of quantum gravity are bona fide QFTs, thus they
possess infinite degrees of freedom, as we expect quantum gravity to
do (at least thinking of it naively as a quantum theory of the
gravitational field). Control over a very large number of degrees of
freedom can only be achieved step by step, within some truncation
scheme. With the inclusion of more and more degrees of freedom,
we can expect a richer and richer set of new phenomena to be
unraveled, simply because the physics of many (quantum,
interacting) degrees of freedom is very different from that of few
of them. In particular, we expect new phases to be revealed.
Controlling the full quantum dynamics is controlling the
continuum limit of GFT models, and this implies mapping out
as best as we can the phase diagram of the samemodels. In practical
terms, it means being able to evaluate the full GFT partition
function, for given values of coupling constants. This is the
problem of computing the full non-perturbative renormalization
group flow of any given GFT model.

Given the mentioned structural connections, understanding
the non-perturbative renormalization of a quantum gravity GFT
model implies controlling the continuum limit of the
corresponding lattice gravity path integral and spin foam
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model, and the full quantum dynamics of the corresponding
canonical loop quantum gravity formulation. The
characterization of the continuum quantum gravity phase
diagram and the identification of one phase where an effective
general relativistic dynamics of spacetime can be extracted is in
fact the key outstanding open issue in the field [63–66].

This should already make clear why the precise relation between
the (non-perturbative) renormalization of GFT models for 4d
quantum gravity and the (non-perturbative) renormalization of
continuum quantum GR treated as an ordinary field theory (as
in the asymptotic safety approach) can only be envisaged in a very
tentative manner. Let us give only some comment on our own
tentative perspective on this. take a given GFT model that can be
fully defined at the non-perturbative level, thus associated with a
continuum phase diagram where RG flow trajectories are well-
defined from the deep UV (in the GFT sense) to the full IR (still in
the GFT sense), and thus accounting for all the (infinite) degrees of
freedom of the model; to achieve this situation is the goal of non-
perturbative GFT renormalization, as explained. A matching with
GR requires that one can also compute, in the same model,
observables which characterize fully a 4d geometry and that can
be shown to satisfy the GR equations in a classical approximation.
Now, we can envisage two possibilities. If the rewriting is, in the
appropriate sense, exact, i.e., if one can in principle go from the GFT
formulation of the theory to the geometric “quantumGR” one, in the
same continuum limit, then the GFTmodel could be seen, in fact, as
a definition of “quantum GR”, without any change in dynamical
degrees of freedom. In this case, one could expect that there exist a
translation of the RG picture of the given GFT model into the one
obtained by a non-perturbative RG treatment of GR, for example as
provided (ideally) by the asymptotic safety scenario, and an
isomorphism between their corresponding phase diagrams and
RG trajectories. If the rewriting requires, instead, some truncation
of the dynamical degrees of freedom of the GFTmodel, is valid only
for a subset of the GFT observables, or some other drastic
approximation to be valid, i.e., if “quantum GR” turns out to be
only an effective, emergent description of some sector of the full
quantum GFT, then the situation is different. In this case, we should
not expect that the GFT phase diagrammatches the GR one, and we
can only expect that it will reproduce a portion of it, for scales and
regime of couplings where the needed approximations and
truncations hold. This regime will probably be the one
corresponding to “low energies” from the standard GR and
effective QFT perspective. Of course, all the above is very much
tentative and it is hard to envisage the precise relation at the current
stage of development of GFT as well as of “quantum GR”, even
though a number of features of GFT models (e.g., the fact that they
include a sum over topologies and not just geometries, at least at the
discrete level) would suggest that the second scenario is more
likely.Where do we stand, at the non-perturbative
renormalization level? Beside work on the non-perturbative RG
flow of tensor models [67, 68], a lot of activity has focused on the
analysis of GFT models proper [11, 26]. Two main strategies have
been followed. One is based on constructive methods, mostly
focusing on the resummation of the perturbative series, e.g.,
showing Borel summability. The other is based on functional
renormalization group analysis, either (mostly) based on the

Wetterich-Morris equation for the effective action, or the
Polchinski equation for n-point functions. For the same reasons
that limited work on perturbative GFT renormalization, little is
known about the general RG flow of simplicial GFT models of 4d
quantum gravity. Simplicial GFT models in 3d have been shown to
be Borel summable [69, 70] and phase transitions for the GFT
formulation of simplicial BF theory in any dimension has been
shown to exist [71]. But no similar analysis has been carried over to
the 4d gravity case, where, as mentioned, we even lack perturbative
indications.

The tensorial GFT case, on the other hand, has been widely
explored, mostly via functional renormalization techniques, with
many results on a variety of models, again both abelian and non-
abelian, with and without gauge symmetries, based on compact as
well as non-compact Lie groups, in different dimensions.
Concerning UV behavior, asymptotic freedom is found in many
examples and asymptotic safety is found in others [72], in various
truncations, and the perturbative results have been reproduced
from a non-perturbative standpoint. More results on the relevance
of truncation beyond the melonic sector have been found [73], and
the use of Ward identities for studying the RG flow have been
explored [26]. Concerning IR behavior (i.e., the actual continuum
limit), work is more limited (and more difficult) at the analytic
level, but hints have been found, in various truncations and for
various models, of a non-trivial phase diagram. In particular, hints
of the existence of Wilson-Fisher fixed points (often found
alongside asymptotic freedom in the UV) and of broken (or
condensate) phases have been obtained [62, 74], indirectly
supporting parallel work on the extraction of continuum
gravitational physics from such condensate phases [75–77].

Even if it is unclear, at this stage, which of these results holds also
in the simplicial 4dmodels, with their additional quantum geometric
intricacies, all this work on tensorial GFTmodels has certainly led to
a better understanding of GFT renormalization group schemes (and
flows). This will certainly turn out to be useful also for the analysis of
full-blown quantum gravity models.

3 BUBBLE DIVERGENCES AND RADIATIVE
CORRECTIONS IN GROUP FIELD
THEORIES: SOME NEW RESULTS
In this section we report on some recent results concerning the
leading order radiative corrections to N-point functions (N ≤ 6)
for the Duflo model and the EPRL model, whose amplitudes we
have recalled above. We refer to the cited literature for more
details on motivations, construction and features of these GFT
(and spin foam) models. Also, we limit our presentation to a
summary of results and procedures; a more detailed presentation
with be left for a forthcoming publication.

3.1 A Warm-Up Example: The 2-Point
Function of the Ooguri Group Field Theory
Model
As a warm-up, we recall the general procedure to compute the
degree of divergences of GFT amplitudes both in the holonomic
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and spin formulation of GFTmodels, using the simpler case of the
Ooguri GFT model for 4d topological BF theory with local SU(2)
invariance (that is, a simplicial GFT model on four copies of
SU(2) and with kinetic and interaction kernels made out of delta
functions only).

Analytical evaluation in group variables - For models defined
on the full group manifold or a corresponding homogeneous
space (as it is the case in most tensorial GFT renormalization
analyses), the evaluation is often conveniently done in the group
representation. It can be carried out analytically, and it proceeds
as follows. We compute first the bulk or amputated amplitude
Abulk by removing all the contributions from the external of the
GFT diagram G. This amounts to extracting only the dominant
leading divergence of the amplitude (subleading divergences
require a more refined procedure). Then we gauge fix the
holonomic on all the edges of a maximal rooted tree of the
graph G. This reduces the evaluation to involve only a set of
gauge-invariant variables. Next we drop the contribution from
contractible internal faces1 (if any). The expression so obtained is
the irreducibleMaster Integral I(G) associated to the amplitude,
which can then regularized introducing appropriate cut-offs on
the remaining integrals (e.g., by replacing the Dirac-delta
functions with heat kernels). It is important to notice that
different amplitudes contributing to different correlation
functions might reduce to the evaluation of the same master
integral. Last we evaluate the remaining integrals. This can be
done analytically, exactly or approximately for example via saddle
point methods (for example using the abelian asymptotic formula
for the heat kernels), to find the Master integral scaling exponent
ω(G), i.e. its superficial degree of divergence.

Numerical evaluation in the spin basis - When the analytic
evaluation in group variables is not possible, it is often more
convenient to pass to the equivalent expression in terms of group
representations (like the ones given above for 4d gravity models),
and then proceed numerically, along similar steps as in group
variables. First we compute the bulk or amputated amplitude by
setting to zero all the spins labeling the external faces and using
the appropriate identities for degenerate recoupling coefficients.
Next we compute the Master Integral I(G), expressed in group
representations, by setting to zero the spins labeling internal
contractible faces. Its expression can be easily regularized by
putting a uniform cutoff Λ on all unbounded summations. Last
we numerically evaluate the regularized master integral as a
function of the cutoff. This can be done either using the full
exact formula or using its approximate asymptotic formula (for
large spins) obtained by uniform rescaling of all the spins. The
amplitude degree of divergence ω can then be estimated by fitting
the data. More precisely it is given by the angular coefficient of the
linear best fit in a Log-Log data plot.

Let us illustrate the general procedure with an example. We
consider the leading order radiative (melonic) correction to the
two-point function of this GFT model. The associated Feynman

diagram is shown in Figure 1. The diagram has four external and
six internal faces, none of which is contractible.

In the holonomic formulation, the amplitude can be written as
follows:

AOo(Gmelon) � ∫ ⎡⎢⎣∏
v ∈ G

∏
e ∋ v

dhve⎤⎥⎦ ∏
f ∈ F cl

δ⎡⎢⎢⎣∏
e ∈ f

hveh
−1
v
′
e
⎤⎥⎥⎦ ∏
f ∈ F ext

δ⎡⎢⎢⎣∏
e ∈ f

gf hveh
−1
v
′
e~g

−1
f
⎤⎥⎥⎦ (3.1)

In this case, with or without gauge fixing, we can perform all the
integrations exactly. Neglecting the contributions from the
external faces, without a regularization we would find the
divergent result:

Abulk(Gmelon) � IOo(Gmelon) � δ(I)δ(I)δ(I) (3.2)

Themaster integral can be regularized either via a sharp cut-off or
by heat kernels:

δ(g)→ δΛ(g) � ∑
j�0

Λ(2j + 1)χj(g)
δ(g)→Kα(g) � ∑

j�0

∞

e−αj(j+1)(2j + 1)χj(g) (3.3)

In both cases the amplitude’s degree of divergence reads:

IOo(Gmelon,Λ)∝Λ9 ω(Gmelon) � 9 (3.4)

The same result can be recovered by evaluating the amplitude
in the spin basis. We have:

AOo(Gmelon) � ∑
jf

∣∣∣∣f ∈ F cl

∑
ive

∏
f ∈ F cl

djf ∏
e ∈ Eext

(I )jf ivemef
∏
v ∈ G

{15jf }v (3.5)

Since there are no contractible faces, by setting to zero all the
spins labeling the external faces we immediately obtain the
expression of the regularized master integral IOo. Upon using
the appropriate identify for the degenerate 15J-symbol we find:

Abulk(Gmelon,Λ) � IOo(Gmelon,Λ)

� ∑
j1 j3 j4 j7 j8 j9

Λ
dj1dj3dj4dj7dj8dj9{ j7 j3 j1

j9 j4 j8
}2

(3.6)

I asy(Gmelon,Λ) � Λ5∑
j

Λ
d6j { j j j

j j j
}2

≈ Λ5∑
j

Λ
j6j−3 ≈ Λ9

(3.7)

Equation 3.6 is the result of applying the identity A.9 to the
Ooguri model’s two point amplitude AOo(G221,Λ) (see the
combinatorics of the diagram in Figure 1) after setting to zero
the spins labeling the external faces of the graph G221.

Thus the degree of divergence can be obtained by evaluating
the master integral’s exact formula, or approximately from the
above asymptotic formula, by combining the volume factor
(replacing the redundant summations) and the face weights
with the large-j behavior of the Wigner 6J-symbol, obtaining:

ωfull(Gmelon) � 8.92 ωasy(Gmelon) � 9 (3.8)
1An internal face of G is contractible if it has at least one internal edge which is not
shared with any other internal face.
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in agreement with the analytical result obtained in the group
formulation.

3.2 Radiative Corrections in Simplicial
Group Field Theories Models for Quantum
Gravity
We now report on some recent results concerning the leading
order radiative corrections to N-point functions (N ≤ 6) for the
Duflo model and the EPRL model.

We identify the relevant 1PI Feynman diagrams, compute the
corresponding master integral formulae and use them to evaluate
the master integrals’ scaling (i.e., the diagrams’ superficial degree
of divergence) as a function of the cutoff. We also comment on
the diagrams’ combinatorial properties and on the structure of
the corresponding counterterms. Finally we show how these

results can be applied ‘beyond perturbation theory’to
characterize to all orders the scaling of the necklace graphs
(an important subclass of diagrams appearing in the radiative
correction, also identified as the relevant graphs for
renormalizability in the tensorial model of ref. 62). We will
derive first general formulae that applied to all models in the
chosen class (again, simplicial models constructed from
constraining those for topological BF theory) and then
specialize to the models of interest by choosing the relevant
form for the coefficients w, encoding the geometrician
conditions characterizing them.

3.2.1 Leading Order Corrections to the N-Point
Functions
The relevant 1PI GFT diagrams, appearing in the perturbative
expansion of the 2-point and 4-point functions at the leading

FIGURE 1 | The picture shows the LO (melonic) radiative correction to the simplicial Ooguri model two-point function W2.The dashed black lines represent
propagators. The solid lines encode the internal structure of each simplicial GFT vertex. A face is an alternate sequences of dashed and solid lines. Blue lines are
associated to internal faces while red lines belong to the external ones. The diagram has four external and six internal faces.

TABLE 1 | The 1PI diagrams contributing to the LO expansion of the 2-point and 4-point functions W2 and W4. Each GFT Feynman diagram is labeled according to the
number of external edges, the number of vertices and the position in the list. For example, the first graph on the left is called G221. The dashed lines represent the
propagators. The solid lines denote the internal structure of each simplicial GFT vertex. Blue lines are associated to the internal faces, while red lines belong to the external
ones. A face is a one-color alternating sequence of solid and dashed lines The labels for internal and external faces have not been shown.

Leading order corrections to the 2-point and 4-point functions.
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order in the GFT coupling constant λ, are shown in Table 1 with
the notation explained in the caption.

Let us make a few remarks before moving to the analysis of
specific diagrams.

Selected diagrams - The diagrams showed in Table 1 are the
only potentially divergent 1PI GFT diagrams at the leading
order. All the other leading order corrections to the 3−, 5− and
6−point functions, labeled G311, G511 and G621, are manifestly
convergent. The diagram G511 has no internal faces, thus no
potentially divergent summation over representations. The
diagrams G311 and G621 have only one internal contractible
face each. Therefore their corresponding Feynman amplitudes
are again finite.

2−point diagrams - The diagram G221 is melonic and therefore
also tracial. It has six internal faces and four external ones and it
could be expected to be the most divergent LO contribution to the
2-point function. Its dominant (or leading) divergence2, if any,
can be subtracted by mass renormalization (as done in ordinary
QFT). The associated irreducible master integral will be denoted
as I221. The diagram G222 has four external faces and four internal

faces; one of them, the tadpole face, is contractible. The diagram
G223 has four internal faces and four external ones. Although the
diagram G222 and G223 are not isomorphic, their Feynman
amplitudes can be reduced to the evaluation of the 4−point
function’s master integral I 421.

The 4−point diagram - The diagram G421 is the first melonic
correction to the 4-point function. It has three internal faces
(forming a bubble) and eight external ones. Its master integral
I 421, associated to the bubble subgraph, controls the UV
scaling of the LO non-melonic 2-point diagrams and of all
the necklace diagrams contributing to the N-point functions
with N � 4, 5, 6.

To summarize: in order to determine the scaling behavior and
divergent structure of the leading corrections to the 2− and
4−point functions we only need to study the independent
master integrals I221 and I 421, whose expression we will give
and evaluate in the following.

3.2.2 The 2-Point Function
To derive the expression of the master integral I221 for the
leading (melonic) correction to the 2−point function, as
explained, we first write down the full regularized
amplitude A(G221, β,Λ, J

→
ext) and then we set to zero all the

spins associated to the external faces. Exploiting the identities
(A.1, A.10, A.12) and a number of algebraic simplifications,
we obtain:

TABLE 2 | Top: numerical evaluation of the expression I221(Λmax) − I221(Λ) as a function of the cutoff Λ ∈ [2, 16] in a Log-Log scale for different values of β. Here I221 is
given by the master integral (3.15). Bottom: numerical evaluation of the EPRL model’s master integral (3.16) as a function of the cutoff Λ and β. The cutoff ranges are
Λ ∈ [4,30] for β � ± 1

2 and Λ ∈ [4,40] (only even values) for β � ± 3
4.

2The first melonic correction to the self energy might also have a subleading
divergence as in the case of the Ooguri model and (Lorentzian) EPRL model. Such
divergence is responsible for the wave function renormalization. This in turns
requires a modification of the covariance with a second-order derivative term in
order to account for the new counterterm.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 55235412

Finocchiaro and Oriti Renormalization of Group Field Theories

274

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


I(G221, l, β,Λ) � ∑
Jf |f ∈ F cl

Λ
dJ1dJ3dJ4dJ7dJ8dJ9

×KJ3J1J7(l, β)KJ4J7J8(l, β)KJ8J9J3(l, β)KJ9J1J4(l, β){ J7 J3 J1
J9 J4 J8

}2

(3.9)

where the integer l denotes the number of simplicity constraint
insertions and the propagator3 K is given by Equation A.13. As
anticipated, in the above formula, all the model-dependent
features are encoded by the single-link fusion coefficients w
appearing in the expression K, which we will refer to as the
‘propagator’ in the following. Thus the above result is valid for
any simplicial GFT model for constrained BF theory.

Before applying this formula to specific models, let us give a
fewmore details on how it derived, the procedure being in fact the
same for the other diagrams.

The melonic 2-point diagram G221 has four external faces
and six non-contractible internal faces. Furthermore each
internal edge of the graph G221 is shared by four faces
(three internal and one external). The associated amplitude
is given by:

A(G221, l, β,Λ)∝ ∑
Jf |f ∈ F cl

Λ∑
Ive

∏
All f

dJf ∏
All (ve)

���
dIve

√
KJ6J1J3J7(I12, I22, l, β)

KJ7J2J4J8(I13, I23, l, β)
×KJ8J3J5J9(I14, I24, l, β)KJ9J4J1J10(I15, I25, l, β)⎧⎪⎪⎨⎪⎪⎩
I11
J6
J1

J2
J7
I12

I13
J8
J3

J4
J9
I14

I15
J10
J5

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

I26
J6
J1

J2
J7
I22

I23
J8
J3

J4
J9
I24

I25
J10
J5

⎫⎪⎪⎬⎪⎪⎭
(3.10)

Hence after setting to zero the spins Ji � (j−i , j+i ) labeling the
external faces (in this case J2, J5, J6, J10 according to the labeling
conventions adopted in the paper), the four internal
propagators will depend only on three spins. Thus in order
to derive the Master Integral expression I 221 we first need to
compute the formula for the degenerate propagator with one
vanishing triad which in turns requires the identity for a type-A
NineJ symbols. Upon using the identity A.1 we obtain the
degenerate propagator’s formula A.12 which together with the
A.9 leads us to the Master integral expression 3.9. The same line
of reasoning applies to the derivation of the Master Integral
formula for any GFT graph with one and only one external leg
for each simplicial vertex (like the melonic 2-point function,
upon setting the external spins to zero the internal propagators
of these graphs will only depend on three spins).

For completeness, the full formula for the propagator is
given by:

KJ1J2J3J4(I, I′, l, β) � ∑
j1 ,...,j4

∏
p�1

4

djp∑
i

����
dIdI′

√
di

f i,l/2I (J1, . . . , J4, j1, . . . , j4, β)f i,l/2I′ (J1, . . . , J4, j1, . . . , j4, β)
� ∑

j1 ,...,j4

∑
i

����
dIdI′

√
di∏

p�1

4

djpw
l(Jp, jp, β)⎧⎪⎪⎨⎪⎪⎩

j−1 i− j−2
j+1 i+ j+2
j1 i j2

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

j−3 i− j−4
j+3 i+ j+4
j3 i j4

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

j−1 i′− j−2
j+1 i′+ j+2
j1 i j2

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

j−3 i′− j−4
j+3 i′+ j+4
j3 i j4

⎫⎪⎪⎬⎪⎪⎭

(3.11)

The formula for the degenerate propagator (with one vanishing
triad) can be written as follows:

KJ1J2J3 0(I, I′, l, β) ≡ KJ1J2J3(I, I′, l, β)
� δIJ3δI′J3

∑
j1 j2 j3

∏3
p�1

djpw
l(Jp, jp, β)⎧⎪⎨⎪⎩

j−1 j−2 j−3
j+1 j+2 j+3
j1 j2 j3

⎫⎪⎬⎪⎭
2

(3.12)

Upon setting j ±i � j ± the reduced degenerate propagator reads:

Kj−j+(i ± , i′ ± , l, β) � δi ± j ± δi
′
± j ± ∑

j1j2j3

∏3
p�1

djpw
l(j− , j+, jp, β)

⎧⎪⎪⎨⎪⎪⎩
j− j− j−

j+ j+ j+

j1 j2 j3

⎫⎪⎪⎬⎪⎪⎭
2

(3.13)

The above formulas are completely general. For the euclidean
EPRL model they can be further simplified yielding the equations

FIGURE 2 | The quartic tensorial bubble interaction B41.

3According to the diagram’s connectivity, each internal edge of the graph G221 is
shared by four faces (three internal and one external). Hence, after setting to zero
the external spins, the internal propagators depend only on three variables.
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A.14 − A.16 provided in Appendix, as we are going to use in the
following.

Let us now focus on the Duflo model. In this case the
expression (3.9) is still too complicated to be evaluated exactly,
even numerically, as it stands. In order to simplify it, we use the
asymptotic formula for the 9J−symbol (A.8). Upon introducing a
new coefficient Ωal

Ωal(j−, j+, β) ≡ ∑
j�|j− −j+|

j−+j+ (2j + 1)awl
Duflo(j−, j+, j, β) (3.14)

we can rewrite the master integral as follows:

IDuflo(G221, l, β,Λ) � ∑
All j−

Λ ∑
All j+

Λ dj+1
dj−1 dj−9 dj+3 dj+4 dj+8

{ j−7 j−3 j−1
j−9 j−4 j−8

}2

{ j+7 j+3 j+1
j+9 j+4 j+8

}2

Ω2
0l(j−1 , j+1 , β)Ω2

0l(j−7 , j+7 , β)Ω0l(j−3 , j+3 , β)
Ω1l(j−3 , j+3 , β)Ω0l(j−4 , j+4 , β)Ω1l(j−4 , j+4 , β)Ω0l(j−8 , j+8 , β)
Ω1l(j−8 , j+8 , β)Ω0l(j−9 , j+9 , β)Ω1l(j−9 , j+9 , β)

(3.15)

The coefficient Ωal can be easily tabulated using the analytic
formula for the coefficient wDuflo (see Equation 1.6). The master
integral (3.15) can now be numerically evaluated4 as a function of
the cutoff for different values of the parameters β and l.

In the case of the EPRL model, instead, the general formula
(3.9) simplifies rather drastically5, yielding the following result

IEPRL(G221, l, β,Λ) � ∑
All j+

Λ
dj+1 dj+3 dj+4 dj+7 dj+8 dj+9 d|β|j+1 d|β|j+3

d|β|j+4 d|β|j+7 d|β|j+8 d|β|j+9 ×Kj+3 j
+
1 j

+
7 (β)Kj+4 j

+
7 j

+
8 (β)Kj+8 j

+
9 j

+
3 (β)Kj+9 j

+
1 j

+
4 (β)

{ j+7 j+3 j+1
j+9 j+4 j+8

}2{ ∣∣∣∣β∣∣∣∣j+7 ∣∣∣∣β∣∣∣∣j+3 ∣∣∣∣β∣∣∣∣j+1∣∣∣∣β∣∣∣∣j+9 ∣∣∣∣β∣∣∣∣j+4 ∣∣∣∣β∣∣∣∣j+8 }
2

(3.16)

where the (degenerate) propagator KEPRL is given by
Equation A.15.

A sample of the results of the numerical evaluation of the
relevant master integrals6 is in Table 2.

The degree of divergence ω(G221) is given by the angular
coefficient of the linear best fit of the data plotted in logarithmic
scale. The mean value7 of the scaling exponent ω and its standard
deviation for the studied cases are summarized in Table 3.

In the case of the Duflo model, some further subtleties arise
in the evaluation, due to the more involved nature of the
simplicity or geometrician coefficients. These subtleties
require additional care in the numerical evaluation of
scaling exponents, which are worth emphasizing here, since
they are of more general validity in this class of spin foam
amplitudes. The master integral formula (3.15) relies on the
use of the asymptotic formula for the 9J-symbol (A.8). This
might not be very accurate for relatively small spins, like the
ones we can concretely explore in our numerical evaluations.
Furthermore, since the (A.8) has a stronger suppression rate
than other approximate formulas for the 9J-symbol used in
scaling analyses, e.g., the equilateral one {9j} ≈ j−8

3 (in which
also all the js are identified, which we cannot do in the Duflo
model), the full expression (3.15) is expected to provide only a
lower bound for ω. To test this expectation and also to cross-
check the known EPRL results, obtained using the equilateral
scaling, we repeat our analysis using in both cases a different
asymptotic formula.

In order to derive an asymptotic formula for the melonic
master integral I221, we localize its expression Equation 3.9
around a background configuration (j−, j+) by setting j−i � j−
and j+i � j+. For the EPRL model this also implies an
homogeneous identification of all the spins ji due to the
peculiar form of the EPRL’s simplicity coefficients. This
procedure has been applied and tested for a number of
different simplicial models, including a different version of the
EPRL model [41], and it seems to be reliable [44–47, 49].

TABLE 3 | Summary of the estimated scaling exponent ω for leading order melonic graph G221. The EPRL values we found are in excellent agreement with other analytical
results already available in the literature [42].

I221 Numerical estimates of the degree of divergence ω ± σ

β 1
2

3
4 − 1

2 − 3
4

Duflo model, l � 1 −11.50 ± 0.85 −11.40 ± 0.51 −8.83 ± 1.06 −10.40 ± 1.94
Duflo model, l � 2 −10.77 ± 0.93 −10.99 ± 0.82 −10.23 ± 0.97 −10.17 ± 0.96
Duflo model, l � 1. Asym −2.40 −1.88 −2.28 −2.20
Duflo model, l � 2. Asym −13.24 −13.4 −13.56 −13.72
EPRL model 6.10 ± 0.04 5.95 ± 0.06 6.26 ± 0.026 6.29 ± 0.035
EPRL model. Asym 6 6 6 6

4The main limitation on range of cutoff values we can test depends on the
computational resources available. Here we choose Λmax � 16, l � 1, 2 and
multiple values of β. When possible, we check for stability under extension of
the range.
5The 9J−symbol in the propagator (A.15) depends only on three spins, and one can
use an equilateral formula, rather than the non-equilateral asymptotic formula
(A.8) as for the Duflo model. Notice also that in the EPRL case there is no need to
specify l, since the simplicity constraints act as a projector.

6They will be discussed in detail, alongside the results for other values of the various
parameters, in a follow-up publication [78].
7To derive an estimate for ωwe took the statistical average of the values obtained by
fitting the data points in the cutoff ranges Λ ∈ [~Λ,Λmax] with ~Λ � 7. The lower
threshold for ~Λ corresponds to the point from where the value of ω appears to be
stable within a 10% error margin (i.e., the digits to the left of the decimal point are
steady).
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After appropriate simplifications, the general formula
Equation 3.9 becomes.

I asy(G221, l, β,Λ)xΛ5μ∑Λ
j− �0

∑Λ
j+�0

d6j−d
6
j+[Kj− j+(l, β)]4{ j− j− j−

j− j− j−
}2

{ j− j+ j+

j+ j+ j+
}2

(3.17)

where μ � 1, 2, for the EPRL and Duflo models. The reduced
propagator Kj− j+ is given by Equation (A.14). To determine the
amplitude’s degree of divergence we combine the scaling of the
various factors. The scaling of the equilateral 6J-symbol is given
by the Regge formula {6j} ≈ j−3

2. According to our analysis, in the
large-j regime the propagator (A.14) can be very well
approximated by the following expressions:

Kj− ,j+
Duflo(l, β)x δj− |β|j+(2j+ + 1)α Kj− j+

EPRL(β)x δj− |β|j+(2j+ + 1)32
α � α(l, β)

(3.18)

The EPRL formula can be analytically derived, as shown in
Supplementary Appendix A (see A.16, A.17). The corresponding

TABLE 4 | Top panel: numerical evaluation of the propagator KDuflo with l � 1 and j− � ∣∣∣∣β∣∣∣∣j+ in a logarithmic scale. Bottom panel: computed estimates of the propagator’s
scaling exponent α for various values of β and l.

Numerical values of α

l 1
2

3
4 − 1

2 −3
4

l � 1 4.85 4.72 4.82 4.80
l � 2 7.56 7.60 7.64 7.68

TABLE 5 | Numerical evaluation of the expression I421(Λmax) − I421(Λ) as a function of the cutoff Λ ∈ [5, 100] in a Log-Log scale for different values of l and β. Here I421 is
given by the Master integral formula Equation 3.20.

TABLE 6 | Numerical values of the divergence’s degree for the 4-point amplitude
IDuflo.

I421 Numerical estimates of the degree of
divergence ω ± σ

β ± 1
2 ± 3

4
Duflo model, l � 1 −2.36 ± 0.24 −2.35 ± 0.24
Duflo model, l � 2 −3.67 ± 0.20 −3.67 ± 0.20
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formula for the Duflo model follows from a direct numerical
evaluation of the propagator. It is worth noticing that also the
Duflo propagator, containing the much more involved Duflo
geometrician coefficients Equation 1.6, peak on the same
configurations of Spin(4) representations (j+, j−). This is due
to the asymptotic behavior of such coefficients, which contains
also (but not only) the configurations corresponding to the EPRL
configurations among the dominant ones [79].

The computed values of the scaling exponent α can be found in
Table 4.

The values of ω, obtained by substituting the identities
Equation 3.18 into the master integral formula Equation 3.1,
are listed in Table 3.

To summarize: the leading order (melonic) correction to
the self-energy Equation 3.9 appears to be convergent for the
Duflo model and divergent for the EPRL one. The degree of
divergence we computed for the EPRL model is in excellent

agreement with known analytical results in the literature [41,
42]. Concerning the Duflo model for the case l � 1 the data
clearly indicates that the use of the non-equilateral formula
(A.8) in Equation 3.15, as appropriate for this model, strongly
suppresses the amplitude scaling leading to a more convergent
result. This might also be true for the case l � 2 although we
cannot state it with full confidence at the moment based on the
small cutoff range we tested (recall that Λmax � 16 in the full

FIGURE 3 | Example of GFT diagrams of the type GNvNvn contributing to the 3− and 4−point functions at the NLO.

TABLE 7 | Degree of divergence for the diagrams in Figure 3 computed from the
power counting formula Equation 3.27.

Degree of divergence. NLO graphs

G G331 G441 G442 G443

Duflo model, l � 1, β � 1
2 −15.1 −15.8 −31.8 −19.8

EPRL model 0 3 −9 0
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formula and Λmax � 100 in the asymptotic formula). The
limited range of Λ values we explored might also explain
why the difference between the values of ω for l � 1, 2
computed from Equation 3.15 (first and second row of
Table 3) is smaller than the difference between the
corresponding values obtained from the asymptotic formula
(third and fourth row of Table 3).

3.2.3 The 4-Point Function
We now focus on the leading (melonic) correction to the 4-
point function. The corresponding GFT Feynman diagram
G421 is depicted in Table 1. In order to derive the master’s
integral expression we follow the same strategy used in the
previous section. After setting to zero the spins labeling the
external faces and performing the appropriate simplification
we find:

I(G421, l, β,Λ) � ∑
j−1 , j

+
1

Λ ∑
j31 j41 j51

dj31dj41dj51
dj−1 dj+1

wl(j−1 , j+1 , j31, β)
wl(j−1 , j+1 , j41, β)wl(j−1 , j+1 , j51, β)

(3.19)

Once more, the above formula is completely general and valid
for any simplicial GFT (spin foam) model for constrained BF
theory.For the EPRL and Duflo models it specializes to:

IDuflo(G421, l, β,Λ) � ∑
j−1 , j

+
1

Λ 1
dj−1 dj+1

[Ω1l(j−1 , j+1 , β)]3 (3.20)

IEPRL(G421, β,Λ) � ∑
j−1�0

Λ (2(1 − β)j+1 + 1)3(2j+1 + 1)(2∣∣∣∣β∣∣∣∣j+1 + 1) (3.21)

where in the first expressions we used the same notations of
Equation 3.15.

The degree of divergence of the Master Integral in the
Equation 3.20 can be computed by fitting the data shown in
Table 5. The resulting values of ω are reported in Table 6.

The scaling of the EPRL 4-point amplitude can be directly read
off from the corresponding formula Equation 3.21.

ω(G421) � 2 β≠ 0, ± 1 (3.22)

To summarize: the leading order radiative correction to the 4-
point function converges for the Duflo model while it diverges
quadratically in the EPRL model. Neglecting possible ambiguities
in the definition of both models (which, as we emphasized earlier,
could affect the face amplitudes and thus the precise scaling
behavior) it would then seem that the Duflo model does not
require renormalization, at least at this order, while the EPRL
model does. But of course higher orders are needed to establish
the renormalizability of both models, thus it is hard to draw too

TABLE 8 | Examples of necklace diagrams contributing to the 4−, 5− and 6−point functions.

GFT necklace graphs
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many conclusions from this result. More than the divergence
degree in itself, it is important to notice that, since the G421 is
melonic (and thus tracial), the corresponding counterterm that is
required to absorb the divergence, when present, is proportional
to a tensor invariant quartic interaction term (more precisely to
the bubble B41 vertex in Figure 2).

Such counterterm is incompatible with a pure simplicial
theory space (e.g., a strictly simplicial EPRL model would be
non-renormalizable), and this signals the need to extend the
theory space of geometric GFT models beyond the simplicial
ansatz to include tensorial bubble interactions.

3.2.4. Next-To-Leading Order Corrections to the
N-point Functions
We now show how to generalize the master integral formulas for
the melonic 2-point function G221 to an important class of higher
order GFT Feynman diagrams.

The master integral expressions Equations 3.9, 3.17 rely on the
property that each internal link of the diagram is shared exactly
by one external face and three internal ones. Hence, after setting
to zero the spins labeling the external faces we are left with: i) a
pair of 6J-symbols for each vertex (coming from a pair of
degenerate 15J-symbols); ii) propagator of the form (A.13) for
each internal edge. A pair of face weights dj−i dj+i for each
internal face.

The above combinatorial property is true for any tadpole-free
GFT diagram with one and only one external link for each
simplicial vertex (here denoted as GNvNvn). Some examples of
these diagrams are shown in Figure 3. Therefore the expression
Equation 3.17 can be generalized as follows:

I(GNvNvn, l, β,Λ) � ∑
Jf ∈ F cl

Λ ∏
f ∈ F cl

dJf ∏
e ∈ Eint

KJfi JfjJfk(l, β)∏
v ∈ V

{6Jvf }
(3.23)

I asy(GNvNvn, l, β,Λ) � Λ(Nf −1)μ ∑
j− , j+

Λ
d
Nf

j− d
Nf

j+ [Kj− j+(l, β)]Ne

{ j− j− j−

j− j− j−
}Nv{ j− j+ j+

j+ j+ j+
}Nv

(3.24)

with μ � 1, 2 respectively for the EPRL and the Duflo model.
Upon using the identities Equation 3.18, the asymptotic

master integral Equation 3.24 takes the following form:

I asy(GNvNvn, l, β,Λ)xΛ(Nf −1)μ∑
j+

Λ(j+)2Nf − αNe− 3Nv

� Λ(μ+2)Nf −3Nv−αNe−μ+1 (3.25)

ω(GNvNvn) � (μ + 2)Nf − 3Nv − αNe − μ + 1 (3.26)

For the Duflo model the value of α must be computed on case by
case basis (see Table 4), while for the EPRL model we have α � 3

2.
The degree of divergence ω can also be written in terms of the

number of vertices Nv

ω(GNvNvn) � (μ + 2)Nf − (2α + 3)Nv − μ + 1

Ne � 5Nv − Next

2
� 2Nv

(3.27)

For the diagrams in Figure 3 the above formula give us the
following results, reported in Table 7: the Duflo model
amplitudes for all four diagrams are finite; for the EPRL
model8, the first and last diagrams might be logarithmically
divergent and therefore require a deeper analysis [78]. The
diagram G442 converges, while the melonic diagram G441

diverges as a cubic power of the cutoff. The corresponding
counterterm is proportional to the quartic bubble vertex B41,
suggesting again the need for a suitable extension of the theory
space to incorporate the relevant tensorial interactions.

Once more, this is in fact the crucial lesson we draw from this
analysis of divergences, more important, we think, than the
precise scaling of the amplitudes, for the reasons already
explained.

3.2.5. Beyond Perturbation Theory: The Necklace
Diagrams
In the previous two subsections we discussed the all the leading
order and a subclass of next-to-leading order radiative
corrections to the N-point functions with N ≤ 6. Now we show
how to use some of the results we found to estimate the scaling of
the so-called necklace diagrams to all orders in perturbation
theory.

A (connected) GFT Feynman diagram belongs to the necklace
class if (and only if) it consists of an open chain of vertices where
each vertex (except the first and last ones) is connected only to its
two closest neighbors. Here we restrict to the set of k-necklace
diagrams with 4≤ k≤ 6 where k denotes the number of external
links, since all other higher order diagrams are either 1-particle
reducible or manifestly convergent. Three examples of necklace
diagrams are shown in Table 8.

The necklace diagrams share the following remarkable
property: the set of internal faces of a k-necklace diagram can
always be decomposed into the direct sum of two subsets

F(Gk−necklace) � F⊕~F F � ⊕Nb
i�1FB421

~F � {fj ∣∣∣∣∣ fj contractible ∀j} (3.28)

where the (three) faces in each setFB421 form the bubble subgraph
B421 of the melonic 4-point diagram G421 while the faces in ~F are
contractible. The integer Nb, namely the number of disjoint
bubbles B421 depends on the connectivity of the necklace
diagram itself (i.e. on its number of vertices and external
links). Thus after setting to zero the spins labeling the external
and the contractible internal faces, the amplitude of k-necklace
diagram factorizes into N identical copies of the master integral
I 421 given in Equation 3.19. More in detail, we have:

A(Gk−necklace, l, β,Λ) � [I(G421, l, β,Λ)]Nv−mod(k,2)
Floor(k/2) (3.29)

To summarize: the master integral I421 encodes the scaling of the
necklace diagrams to all orders in perturbation theory. For the
EPRL model a consistent (recursive) subtraction of all

8We point out again that we are studying both models under specific choices fixing
the various ambiguities that enter the construction of the spin foam amplitudes.
These ambiguities affect, in general, the scaling results.
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divergences associated to k-necklace graph requires an extension
of the theory space to include the appropriate tensor invariant
interactions of order four and six. A more detailed analysis of the
combinatorial structure of the require counterterms is left for
future work [78].

4 THEROADAHEAD: SOMESUGGESTIONS

We close with a set of suggestions for research directions to be
pursued, toward a complete understanding the renormalization
group flow of simplicial GFT models for 4d quantum gravity.

4.1 Scaling and More Scaling, and the
Discrete Geometry of Divergent
Configurations
The first suggestion is stating the obvious: compute, compute,
compute9. We need to (pardon us the word pun) scale up the
effort in investigating the scaling of simplicial GFT amplitudes, at
the same time trying to import insights from tensorial GFT
amplitudes. We need to know much more about the divergent
configurations and their dependence on the combinatorics of the
underlying cellular complex. Lacking better tools, hard brute-
force computations of spin foam amplitudes are the inevitable
duty, and these in turn can only build on a better control of the
relevant building block the vertex amplitude or, in GFT language,
the vertex kernel (which plays an important role also in non-
perturbative calculations). Brute force alone will not lead us far,
however. On the one hand, we need to develop a more refined
analytic understanding of these kernels and resulting amplitudes,
and to identify simplified expressions that capture the relevant
scaling properties, and their behavior under coarse-graining. On
the other hand, where analytical methods do not reach, we need
numerical ones to take over; numerical tools for the evaluation of
GFT amplitudes are thus badly needed. Packages like have been
developed for local QFT Feynmanology would be of course most
welcome. On the analytic side, another important objective
should be to characterize in detail the (simplicial) geometric
meaning of the dominant, most divergent configurations. This
is needed to understand the nature of the needed counterterms,
but it may also provide insights on the physical features of such
GFT models, even beyond their discrete formulation.

The goal here is not to so much to be able to compute GFT
Feynman diagrams to arbitrary order (e.g., in vertex or loop
expansions). Even in standard QFT, for the physical questions for
which the perturbative expansion is the correct approximation
scheme, we need to compute (very) many diagrams, but there is
often no need nor possibility to go beyond some (usually low)
order of approximation and beyond a certain (usually small)
number of physical degrees of freedom in the chosen boundary
states (of course, the two restrictions go together, since for highly
populated boundary states, even the simplest diagrams are of high
order). A clear physical picture behind this approximation
scheme is as important as computational power. Moreover,
coming to the specific quantum gravity case, we would argue
that the perturbative GFT expansion, and the description of the
dynamics in terms of elementary processes involving few of the
fundamental quanta, ie. the usual spin foam language, is not the
most convenient approximation to capture the effective
continuum physics of quantum gravity, e.g., concerning early
cosmology or quantum black holes.

Nor the goal of such analysis of perturbative GFT divergences
is establishing that one specific GFT model is finite. Not only
renormalizability is a more subtle and possibly interesting feature
that finiteness, but one can imagine playing with the ambiguities
entering the construction of any given model to modify its scaling
behavior and turning it into a finite one. This could be a way to fix
or constrain such ambiguities, of course, but it also shows that
finiteness per se probably should not be a goal, and that physical
conditions fixing the same ambiguities are needed. The main goal
of actual computations of GFT amplitudes should then be to
provide solid indications on the general power counting of
divergences, on the way to a renormalizability proof, and, even
more, to indicate the relevant counterterms to be added to the
model, and thus the relevant theory space of the starting GFT
model. More generally, the goal of such perturbative calculations
should be to provide information and tools to be employed to go
beyond the perturbative setting and dwell into non-perturbative
GFT renormalization. It is only the latter that can provide us with
the insights and the results we need to truly explore the formal
solidity and effective continuum physics of GFT models of
quantum gravity.

4.2 Group Field Theories Theory Space,
Colors and Relation Between Simplicial and
Tensorial Models
We have emphasized several times already the importance of
defining the relevant theory space of simplicial GFT models, in
order to set up a proper renormalization scheme (perturbative
and non-perturbative). Much more work should be devoted to
this issue, in particular understanding more about the
symmetries of such quantum gravity models. One question is
whether the yet to be identified theory space of simplicial GFT
models relates to the one of tensorial GFTs. We speculate that
they do and, in fact, some hints that the two may largely coincide
are known. First, taking seriously the tensorial nature of GFT
fields implies coloring (thus distinguishing and ordering) their
arguments and, as a consequence, their Feynman diagrams. As

9To be clear: 1-loop and 2-loop calculations would be probably enough to extract a
lot of interesting properties from the perturbative expansion of GFT models for 4d
quantum gravity. They may even be sufficient, since we actually expect that most
interesting physics should be looked for elsewhere, i.e., within different regimes and
approximations of the fundamental quantum dynamics, and not in the
perturbative (spin foam) expansion. Moreover, as we stressed, such
perturbative calculations should have as main goal to identify the theory space
within which the relevant GFTmodels should be placed, more than simply pushing
the perturbative analysis for its own sake. We emphasize, however, that, in fact, a
lot of computational effort is required to perform such 1-loop and 2-loop
calculations because one needs to consider many and complicated GFT
diagrams, and involved spin foam amplitudes, already at this order. These are
the calculations we intend to encourage.
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we noted, this coloring allows a precise control over the topology
of the cellular complexes dual to these Feynman diagrams [7]
and, in turn, this greater control allowed for many results that are
central in renormalization analyses of tensorial GFTs (e.g., large-
N expansions) [10, 11]. A precise control over the topology of
the Feynman diagrams, i.e., the cellular complexes on which
spin foam amplitudes are based, is needed also in simplicial
GFTs, if one aims at identifying the nature of divergences,
leading to precise power counting results. It is also needed for
identifying key symmetries, as we know already in the case of
topological BF models [80], where the complete power
counting also relied on the full topological information on
the underlying cellular complex [38]. Thus we have a strong
argument for relying on colors also in simplicial GFT models of
4d quantum gravity; the form of the corresponding spin foam
amplitudes would remain unchanged, but they would now be
defined on full 4d cellular complexes, rather than just their 2-
skeleton. Assuming we work on colored simplicial GFT models,
we then have two preliminary results that suggest a close
relation with tensorial models. One is that using colors one
can identify similar symmetries in the simplicial case than one
finds in the tensorial one [28]. The other is that integrating out
all fields except one in a colored simplicial GFT model (in any
dimension, with trivial kinetic term) produces an equivalent
tensorial GFT model for the remaining field (with the same
coupling constant for all interactions) [81]. A third general fact
pointing in the same direction is that divergences in simplicial
GFT models for topological BF theory, which is the starting
point of the construction of simplicial 4d gravity models, are
associated to bubbles in the cellular complex, which are in fact
the cells associated to allowed interactions in tensorial GFTs
with the same base group manifold. These results, in our
opinion, suggest that there could be a single theory space
containing both (colored) simplicial models and tensorial
ones, with interaction kernels in the tensorial directions yet
to be identified.

4.3 Group Field Theories Models With Local
Directions
The third suggestion for further research is to devote attention to
the renormalization of GFT models which combine the
combinatorially non-local pairing structure on geometric
variables, in GFT interactions, with the presence of local
directions. This includes both simplicial GFT models and
tensorial ones, with the distinction referring to the pairing of
geometric variables.

There are two main examples of such ‘mixed’models. One is
the tensorial models used to describe SYK-like many-body
systems [82], whose renormalization has been in fact studied
in several cases. Here the non-local, tensorial indices are usually
reduced to finite sets (we have thus simple tensor models, rather
than full GFTs) and the single local direction is a time variable.
The standard SYK models are indeed quantum mechanical
models in 0 + 1 dimensions, with generalizations to higher
dimensions (thus, with more local directions) having been
proposed. The other class of mixed models is the extension of

(simplicial) GFT quantum gravity models to include scalar fields
coupled to gravitational degrees of freedom [83]. These extended
models have been studied in particular in the context of GFT
condensate cosmology [75–77, 84, 85], with the additional scalar
fields playing (also) the role of clock and rods that allow to define
relational, diffeo-invariant observables in terms of which an
effective cosmological dynamics can be extracted from the
GFT hydrodynamics.

The potential physical interest of these models, and of their
renormalization analysis, is thus obvious. They present several
interesting issues. The presence of both local and non-local
directions may modify sensibly the renormalization flow and
the structure of divergences, thus leading to different dominant
diagrams and effective dynamics in both UV and IR sectors. One
can also envisage setting up an altogether different
renormalization group scheme, adopting a notion of scale tied
to the scalar (local) directions, rather than the group manifold (or
involving both), potentially producing very different results. Such
focus on the flow parametrized by variables with a (tentative)
physical interpretation as relational time/space variables may also
allow a more direct physical interpretation of the renormalization
flow itself, e.g., in a cosmological context (even though similar
cautionary remarks as for the usual renormalization scheme
would apply here).

4.4 Relation With Lattice Spin Foam
Renormalization
We have emphasized how renormalizing a GFT model is
tantamount to renormalizing (and studying the continuum
limit of) the corresponding discrete gravity path integral and
spin foam amplitudes, from a different standpoint. But the GFT
formalism is only one way to provide a complete definition of
spin foam models, the other being to view them as a peculiar
(because background independent) lattice theory and setting up
some appropriate refinement procedure. Therefore, it would be
very important to compare results obtained in the context of GFT
renormalization, especially for simplicial quantum gravity
models, with the results and techniques developed for
renormalizing spin foam amplitudes from a lattice gauge
theory perspective [65, 66, 86–88].

In this lattice-focused approach to spin foam renormalization,
a cut-off is also imposed on representation variables, but the
notion of ‘scale’is rather given by the combinatorial complexity of
the underlying lattice, and the renormalization group flow is
driven by refinement/coarse-graining steps ordered by such
complexity. Refinement/coarse-graining steps affect both bulk
lattices and boundary graphs, and the flow of quantum
amplitudes is constrained by the requirement of their
consistency under restriction to coarser boundary states.

Despite their differences, the two renormalization schemes
share several, since also GFT subtraction moves amount to lattice
coarse-graining steps, and corresponding maps between
associated amplitudes are also built-in in the (perturbative)
QFT renormalization steps used in the GFT context. Still, a
detailed work of translation between the two frameworks
would be very useful. This work may require, on the GFT
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side, a combination of functional renormalization group
techniques, since we are interested in the continuum limit of
spin foam models, and perturbative expansions, given that spin
foam models arise in such expansion. This comparison would be
beneficial for both approaches; in particular, it would emphasize
the role of combinatorial complexity of boundary states in the
GFT renormalization flow. This work should be carried out for all
models that have been studied in both settings (also in the lattice
renormalization approach work has been confined mostly to
highly simplified models), aiming of course at unraveling the
continuum phase diagram of 4d quantum gravity from two
perspectives at once.

4.5 Group Field Theories Renormalization
Via Tensor Networks
One powerful set of techniques coming from the theory of
quantum many-body systems, that have been already applied
in the context of lattice-based renormalization of spin foam
models, uses the language of tensor networks [89, 90]. This
language is useful both for numerical studies and for
emphasizing the role of entanglement in the renormalization
group flow [91, 92]; in particular, it allows to unravel topological
quantum phases of many-body systems.

In the case of GFT models, the interest in importing
techniques from tensor networks goes beyond these general
facts, and stems also from the fact that GFT states themselves
can be seen as generalized tensor networks [93], and by the
related fact that entanglement is responsible for the basic
connectivity between GFT quanta that gives rise to extended
discrete structures labeled by quantum geometric data. The many
facets of the GFT formalism, moreover, would allow for a
manifold application of tensor network techniques. On the
one hand the basic GFT field is a tensor and its quantum
states are tensor networks, as mentioned; on the other hand, it
remains a QFT, calling for continuum tensor network techniques

as employed, say, in standard scalar quantum field theory [94]. At
the same time, its Feynman amplitudes are lattice gauge theories,
to which a different set of tensor network techniques can be
applied [95] (as developed in the context of spin foam lattice
renormalization). And they remain quantum many-body
systems, peculiar for their background independent nature, but
still conventional enough to allow the deployment of tensor
network methods taken from their natural context.
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Renormalization Group Approach to
the Continuum Limit of Matrix Models
of Quantum Gravity With Preferred
Foliation
Alicia Castro1 and Tim Andreas Koslowski2*

1Radboud University Nijmegen, Nijmegen, Netherlands, 2Julius Maximilian University of Würzburg, Würzburg, Germany

This contribution is not intended as a review but, by suggestion of the editors, as a glimpse
ahead into the realm of dually weighted tensor models for quantum gravity. This class of
models allows one to consider a wider class of quantum gravity models, in particular one
can formulate state sum models of spacetime with an intrinsic notion of foliation. The
simplest one of these models is the one proposed by Benedetti and Henson [1], which is a
matrix model formulation of two-dimensional Causal Dynamical Triangulations (CDT). In
this paper we apply the Functional Renormalization Group Equation (FRGE) to the
Benedetti-Henson model with the purpose of investigating the possible continuum
limits of this class of models. Possible continuum limits appear in this FRGE approach
as fixed points of the renormalization group flow where the size of the matrix acts as the
renormalization scale. Considering very small truncations, we find fixed points that are
compatible with analytically known results for CDT in two dimensions. By studying the
scheme dependence of our results we find that precision results require larger truncations
than the ones considered in the present work. We conclude that our work suggests that
the FRGE is a useful exploratory tool for dually weighted matrix models. We thus expect
that the FRGEwill be a useful exploratory tool for the investigation of dually weighted tensor
models for CDT in higher dimensions.

Keywords: matrix model, functional renormalization, causal dynamical triangulation, tensor model, continuum limit

1 INTRODUCTION

The construction of a unified theory that contains the two most successful branches of modern
physics, i.e. General Relativity (GR) and Quantum Field Theory (QFT) in a curved spacetime, as
appropriate limits has been ongoing for more than 80 years and sparked many approaches to the so-
called problem of quantum gravity. A complete list of these approaches goes beyond the scope of this
introduction. The approaches range from the very conservative application of QFT [2, 3] methods to
theories of gravity and the asymptotic safety conjecture [4–6] over refined applications of
quantization rules, such as loop quantum gravity [7], spin foams [8], group field theories [9]
and tensor models [10–13] to significantly less conservative approaches like emergent gravity [14],
holographic duality [15] and to searches for so-called theories of everything such as string theory
[16]. Despite the significant diversity, no approach has produced a completely satisfactory answer to
the problem of quantum gravity as of now. However, when comparing different approaches, one is
lead to the general observation that most of them possess some built-in features that one expects from
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quantum gravity, but all known approaches come with intrinsic
short-comings that have to be overcome before qualifying the
particular approach as a candidate theory of quantum gravity.
This observation suggests to combine formulations with different
built-in strengths with the goal of obtaining a new approach that
mixes the best of both.

The present contribution intends precisely this by combining
the systematic renormalization group investigation of tensor
models for quantum gravity with the success of CDT in
producing phases in which the partition function is dominated
by extended geometries [17]. This combination is most
straightforwardly possible when CDT is formulated as a dually
weighted tensor model. Before going into detail, let us take a step
back and describe the big picture schematically:

Tensor models of quantum gravity are based on the principles
of Euclidean lattice quantum gravity. Euclidean lattice quantum
gravity is a partition function approach, where the partition
function is obtained as a sum over Boltzmann factors for
spacetimes that are constructed from discrete building blocks.
The continuum limit of these partition functions is taken as the
limit in which the size of the building blocks approaches zero,
while the total volume of the spacetime is held fixed. This implies
that the number of building blocks has to diverge when taking the
continuum limit, thus indicating that one needs to consider the
renormalization group flow of these partition functions, such that
the possible continuum limits are identified as the classes of IR-
relevant deformations of UV-attractors (in most cases fixed
points) of the renormalization group flow. A particularly
useful tool for the systematic investigation of non-perturbative
renormalization group flow is the FRGE, which takes the form of
a simple one-loop equation that describes an interpolation
between a bare action and the quantum effective action [18].
To apply this powerful tool to Euclidean lattice gravity it is very
useful to exploit the duality between the Feynman-graphs of (un)-
colored1 tensor models and discrete geometries. This duality
allows one to identify the Feynman amplitude of the (un)-
colored tensor model with the Boltzmann factor of the
associated discrete gravity partition function and hence allows
a translation from the tensor model action to the discrete gravity
action, which takes the form of a Regge action [19]. Thus, the
duality relates the large N-limit of the tensor model with the
continuum limit of the discrete gravity partition function. Hence,
the investigation of continuum limits of lattice quantum gravity is
readily translated into the investigation of the possible large
N-limits of tensor models, which can be investigated
systematically using the FRGE.

This rigorous connection between the continuum limit of
Euclidean lattice quantum gravity and the large
N-renormalization group flow of tensor model actions is an
invaluable intrinsic feature of the tensor model approach to
quantum gravity; and the systematic investigation of these
continuum limits with the FRGE is particularly convenient.
Unfortunately, the extended geometries that are approximated
in the continuum limits that have been investigated so far possess

dimension two or less [20]. In other words, so far no state sum
model of discrete geometry is known to coarse grain to a model of
extended spacetime geometry in more than two dimensions.

There are however numerical indications that d-dimensional CDT
and its counter part Euclidean Dynamical Triangulations (EDT) do
coarse grain to extended higher dimensional geometries (for 2 ≤ d ≤
4) [21]. This can be heuristically understood as the fact that the
foliation in CDT and the volume term in EDT implement additional
terms in the Boltzmann factor for discrete geometrywhich change the
universality class of the model. Moreover, there exist tensor models
that implement critical of features of CDT and EDT partition
functions in the literature. The novelty in these models is that
they possess a nontrivial propagator, which implements a dual
weighting of the Feynman graphs of these tensor models. Hence,
one can use the FRGE to investigate the continuum limits of CDT
and EDT by studying the renormalization group flow of tensor
models with dual weights. This is the motivation for the work
presented in the present contribution.

As a first step, we consider a dually weighted matrix model
proposed by Benedetti and Henson whose partition function is
dual to two-dimensional CDT [22]. By doing this we follow a
strategy that was used when first applying the FRGE to tensor
models [23], where matrix models for two-dimensional Euclidean
quantum gravity were considered to introduce the setup, develop the
technique and to compare with the analytic results known from
constructive approaches to two-dimensional Euclidean quantum
gravity, which serve as a benchmark. This allows us to test a
setup (the systematic FRGE investigation to dually weighted
tensor models) that is readily available in higher dimensions, in
particular in 3 + 1 dimensions [22], but at the same time is
understood analytically, providing benchmark results for the
FRGE calculation which we can use to gauge this setup.

This contribution is organized as follows: In the following
section (Preliminaries) we provide the necessary background on
dually weighted tensor models, the particular model proposed by
Benedetti and Henson and the foundations of the application of
the FRGE to tensor models. We provide the derivation of the beta
functions in β-functions. We perform a fixed point analysis and
study of scheme dependence in Fixed Point Analysis and Scheme
Dependence. We summarize our results in Conclusion and briefly
discuss their implications for future investigations on dually
weighted tensor models for quantum gravity and provide a
short recipe for the calculation in the appendix.

2 PRELIMINARIES

Random tensor models are by now an established approach to
Euclidean quantum gravity [24, 25]. However, to fully appreciate
the way in which dually weighted matrix models provide an
approach to quantum gravity with a preferred time slicing one
needs to take a step back and consider the foundations of random
tensor models.

2.1 Tensor Models and Dual Weights
The random tensor model approach to quantum gravity is based
on the basic observation that the Feynman graphs of so-called1The term (un)-colored is explained in the next section.
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uncolored random tensor models possess a geometric
interpretation in terms of tessellations of piece-wise linear
pseudo-manifolds, as do some so-called colored tensor models.
The uncolored models are defined for tensors Ti1i2 ,/ik and their
complex conjugates Ti1i2i3...ik through the symmetry of the action
S[T ,T] under the Uk(N) transformations

Ti1 i2/ik → (U1)j1i1(U2)j2i2/(Uk)jkikTj1j2/jk. (1)

This symmetry implies that the action can be expanded in
terms of generalized trace invariants in which the first index i1 of
each tensor Tmust be contracted with the first index of a complex
conjugated tensor T , and similarly the second index i2 and all
further indices i1. These generalized traces can be represented as
colored graphs where each tensor T is represented by a white
vertex and each complex conjugate tensor T is represented by a
black vertex and each contraction of vertices by an index i1 is
represented by an edge of color l connecting the vertices
associated with the two contracted tensors. Such colored
graphs are then dual to piecewise linear pseudo-manifolds:
Each vertex is associated with a (k−1)-simplex and the
adjacent edges are associated with a gluing of the colored
(k−2)-simplices in the boundary of the two (k−1) simplices.
Moreover, closed two-colored sub-graphs are associated with
the gluing of (k−3)-simplices in the boundary of the associated
(k−2)-simplices. Analogously, closed three- and more-colored
subgraphs are associated with the gluing of simplices of even
lower dimension. The generalized trace-invariants of a rank k
tensor model can thus be interpreted as tessellations of piecewise
linear (k−1)-dimensional manifolds.

We can perform the analogous identification for the Feynman
graphs generated by the rank k random tensor model through
realizing that the Feynman graphs of a rank k tensor model
possess a graphical representation in terms of (k+1)-colored
graphs, where a new color is associated with the propagator.
This provides the desired geometric interpretation of the
Feynman graphs of an uncolored rank k tensor model with
tessellations Δ of piecewise linear pseudo-manifolds of
dimension k. It follows that the partition function of these
random tensor models possesses a geometric interpretation

Z � ∑
Δ
A(Δ) � ∑

Δ
e−(−ln(A(Δ))), (2)

Where A(Δ) denotes the Feynman amplitude associated with
the Feynman graph dual to Δ. This resembles the random lattice
partition function for Euclidean quantum gravity

Zgrav. � lim
a→ 0

∑
Δ
exp( − SE[Δ, a]), (3)

When the gravity action SE[Δ,a] is identified with −ln(A(Δ)).
The Feynman amplitude depends on the details of the random
tensor model, but one can generally say that they depend on the
number of Nk of k simplices and the number Nk−2 of k−2
simplices in Δ as well as the tensor size N and the coupling
constants λi. An example amplitude for k � 3 with one coupling is

A(Δ) � NN1−3N3/2(λλ)N3/2, (4)

Where the couplings N,λ possess a simple relation with the
couplings in the Regge-expression of General Relativity in three
dimensions SR[Δ] � κ3N3−κ1N1. Hence, κ1 � 1n(N) and κ3 �
3/2ln(N) − 1/2ln(λλ) establishes a relation with the discrete
General Relativity coupling constants.

The total volume is 〈V〉 � 〈Nd〉 ad Vo, where Vo is the filling
factor of the geometric building blocks. Hence, one can take the
lattice continuum limit a→0 at fixed total volume 〈V〉 by tuning
to a point where the expectation value of the total volume
diverges. This requires that 〈Nd〉 diverges. It turns out that
this in turn requires that N→∞. However, to obtain
simultaneously a finite value of the total volume and of
Newton’s constant, one needs to tune λ and N simultaneously.
Since Z diverges for N→∞ one can only obtain a finite result
when λ approaches a critical point λ* as N→∞ is approached.
Hence, we can write down the required behavior of λ(N) �
λ*+cN

−θ, where c is an arbitrary constant and θ the critical
exponent. In other words, the conjecture is that the
continuum limit of lattice quantum gravity can be investigated
by studying the critical points in the large N behavior of random
tensor models.

So far we have only considered a canonical quadratic term
Ti1i2/ikTi1i2/ik, as is implied by Uk(N) invariance. This kinetic
term leads to an index-independent propagator ∝ δi1j1/δikjk , so
each closed loop of indices will contribute with a factor ofN to the
amplitude, but can not depend on the number of vertices that are
crossed when going around this loop. However, we will see
shortly that such a dependence of the amplitude can be
motivated geometrically. To construct tensor models whose
amplitude depends non-trivially on the number of vertices
crossed by a closed index loop. Before motivating these so-
called “dually weighted” tensor models, we will consider the
general setup of the FRGE for tensor models [26].

2.2 Application of the FRGE to Tensor
Models
One of the most convenient tools to investigate critical behavior is
the functional renormalization group equation (FRGE). In the
usual setting the FRGE

zΓk[ϕ] � 1
2
Tr( _Rk

Γ(2)k [ϕ] + Rk

) (5)

Describes how the effective average action

Γk[ϕ] :� sup
J
{Jϕ − ln(Zk[J])} − 1

2
ϕRkϕ (6)

Changes when the IR suppression scale k is changed. This IR-
suppression scale is introduced through amodification of the bare
action by the scale dependent mass term ΔkS[ϕ] � 1/2ϕRkϕ, which
is designed to give a mass ofO(k) to modes in the IR of the scale k
while not significantly affecting modes in the UV of this scale.
Heuristically, one can argue as follows:ΔkS[ϕ] dominates the path
integral in the limit k→∞ and hence the saddle point
approximation of the path integral becomes exact in this limit
and shows that the effective average action coincides with the bare
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action when k→∞. Hence, one finds critical points as UV fixed
points of the FRGE and can study the critical behavior by
studying the linearized flow near the fixed points.

The usual FRGE arguments outlined above relies heavily on
the mass dimension and scaling with a scale k that possesses units
of mass. Such a mass scale is missing in the random tensor setup,
instead one wants to study the scaling of the couplings with the
dimensionless tensor size N. This requires one to identify 1) the
scaling of the IR-suppression termwithN and 2) the scaling of the
coupling constants with N. It turns out that the requirement that
the RHS of the FRGE admits a 1/N-expansion imposes significant
restrictions on the scaling withN, but it does not fix it completely.
To obtain a completely determined scaling with N one needs to
impose that the bare action possesses a geometric interpretation.
Essentially, the requirements are that (1) the bare propagator and
the modified propagator (after including the IR-suppression term
ΔNS[T]) possess the same scaling for large index values and 2)
that the interaction term possesses the scaling necessary for the
geometric interpretation. These two initial conditions, together
with the restrictions that result from the 1/N-expandability of the
RHS of the FRGE fix the setting that is sufficient to investigate the
large-N-critical behavior.

2.3 2D Causal Matrix Model
A matrix model that enforces a preferred time slicing in its
Feynman-graphs was proposed by Benedetti and Henson in
[1]. This model is constructed using two dynamical N × N
matrices, A and B, representing the spacelike and timelike
edges of a triangle, and a constant matrix C which implements
the dual weighting. The partition function is

Z � ∫ dAdB e−NTr(1
2A

2+12(C−1B)2−gA2B), (7)

Where in the large N limit the matrix C must satisfy the
condition

Tr(Cm) � Nδ2,m, (8)

With m ∈ N. The partition function (7) with a weighting
matrix C that implements (8) generates Feynman diagrams
that possess the geometric interpretation of polytopes with an
arbitrary number of space-like edges and only two time-like edges

(see Figure 1). This is clear by analyzing the free propagators (g �
0) of the model

〈AijAkl〉0 �
1
N
δilδkj, (9)

〈BijBkl〉0 �
1
N
CilCkj, (10)

〈AijBkl〉0 � 0. (11)

As we can see in Figure 1, this restriction implements a
foliation of the discrete geometries that appear in the
expansion of the partition function, thus introducing the
necessary structure for the implementation of CDT in tensor
models.

We proceed by integrating out matrix B since it is a gaussian
integral, obtaining

FIGURE 1 | Part of a dual triangulation to a Feynman graph. The solid colors red and blue indicate the time- and space-like boundaries of dual triangles, the light
colors the dual propagators in the Feynman graph and the green circles the vertices in the Feynman graph. The important fact to note is that having precisely two pink
propagators in each closed loop implies that the blue lines foliate the entire Feynman graph. Notice that we drew the propagators as single lines to not clutter the picture
too much; the usual depiction of the matrix model propagator would be though a double line, i.e. line one for each contacted index.

FIGURE 2 | Resulting vertex after the integration over matrix B. The
double pink lines indicate the propagator and the green circles indicate the
insertion of the matrix C in the interaction.
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Z � ∫ dA e−NTr(1
2A

2−g22(A2C)2). (12)

This partition function together with condition (8) determines
our starting point in this work.

One can understand the integration over matrix B as the
gluing of triangles along their spacelike edges. This gives rise to a
model of squares only with timelike edges (Figure 2). This
produces an anisotropic quadrangulation with rigidity
associated with condition (8).

We identify the matrix model action that implements CDT as

S � 1
2
Tr(AAu) − g2

2
Tr(AAuCAAuC), (13)

Which takes the form of the Euclidean action [25], except for
the presence of matrix C. The appearance of the dual weighting
matrix C changes the symmetry of the matrix model. Let us
consider an N × N orthogonal matrix, O, and the transformation

A→AO
Au →OuAu.

(14)

Since the combination AAT is invariant A→OAant (14) is a
symmetry of the Euclidean and the CDT action, however the
conjugate symmetry under and AT→ATOT is only a symmetry of
the Euclidean action and not of the CDT action. This shows an
explicit difference with the real Euclidean matrix model. In the
language of the renormalization group: the CDT action (13) lives
in a different theory space, which is governed by a different
symmetry.

Weighting Matrix
The matrix C implements the weighting of closed loops of
propagators in the Feynman graph expansion, i.e. the dual
weighting of the Feynman graphs. In principle one could
define this matrix abstractly only through the property (8) and
only use Eq. 8whenever the matrix occurs in a Feynman diagram.
However, in order to do practical calculations with the FRGE, it is
very useful to have an explicit representation ofC at ones disposal.

For a N × N diagonal matrix, X, with eigenvalues {xi} we can
write its characteristic polynomial as

PX(t) � ∑N
k�0

(−1)kektN−k, (15)

Where ek is

e0(x1, . . . , xN ) � 1,

e1(x1, . . . , xN) � ∑N
i�1

xi,

e2(x1, . . . , xN) � ∑
1≤ i≤ j≤N

xixj,

«
eN(x1, . . . , xN ) � x1x2 . . . xN ,

Then Newton identities allow us to write this coefficients in
terms of the kth power of the trace of X, pk, in the form

kek � ∑k
i�1

(−1)i− 1piek−i, (16)

So, C can be found by solving

PC(t) � tN − 1
2
NtN−2 + 1

8
N2tN−4 +/ � 0. (17)

These solutions exist by the fundamental theorem of algebra
and one can use ones preferred approximation scheme to obtain
these. One scheme that suggests itself in particular when one
wants to gain insights into the effects of dual weightings is to build
a matrix C from smaller blocks of matrices C0, so C �
diag(C0,...,C0). The matrix obtained in this way does not
implement the entire tower of Eq. 8, but permits traces
periodically. This approach is particularly interesting to study,
since it allows us to study howmany of the equations one needs to
enforce to attain the phase transition between the Euclidean
matrix model and the CDT matrix model. The first three
matrices CO are

·k � 2 :
Co � diag(−1, 1), (18)

·k � 4 :
Co � diag(−1.09 − 0.45i,−1.09 + 0.45i,
1.09 − 0.45i, 1.09 + 0.45i),

(19)

·k � 6 :
Co � diag(1.02 + 0.70i, 1.02 − 0.70i, 1.37,
−1.02 + 0.70i,−1.02 − 0.70i,−1.37).

(20)

Putting these together as blocks to build an N ×Nmatrix gives
for example for k � 2

Cjj � (−1)j, (21)

And for k � 4

Cjj � { ( − 1)kc − iξ, j � 2k − 1,
( − 1)kc + iξ, j � 2k,

(22)

That are N × Nmatrices formed by 2 × 2 and 4 × 4 blocks, and
where γ � 1.09 and ξ � 0.45.

Functional Renormalization Group for
Matrix Models
Let us briefly review the application of the FRGE to matrix and
tensor models. One can follow the fundamental presentation of
[18] and apply it to matrix models as done in [23]. The starting
point is the definition of the effective average action ΓN[φ] in the
presence of an IR-suppression term ΔSN[ϕ]:

ΓN[φ] � infJ{WN[J] + Jφ − ΔSN[φ]}, (23)

Where

exp(−WN[J]) � 1
NN

∫
Λ
Dϕe−S[ϕ]+Jϕ−ΔSN[ϕ], (24)
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And φ represents the expectation value of a quantum field ϕ,
while the term

ΔSN[ϕ] � 1
2
ϕabR

abcd
N ϕcd (25)

Represents an IR-suppression term in so far as it is designed to
give a mass term of order N to “IR” degrees of freedom of the
matrix. Since matrix and tensor models do not implement a
fundamental scale, there is no canonical identification of which
degrees of freedom are “IR”. Rather one needs to implement by
hand a division of theory space according to an RG scale k. The
simplest assignment is to identify the upper-left corner of the
matrix with index values below the scale k as “IR”. Once the IR-
suppression term is chosen, one can proceed as in [18]; one
arrives at the FRGE

ztΓN � 1
2
Tr( ztRN

RN + Γ(2)N

), (26)

Where t � 1nN. The solutions to (26) are functionals of theN ×
Nmatrix ϕ and hence of infinitely many degrees of freedom in the
large N-limit. Practically one resorts to finite truncations of the
effective average action, i.e. one performs an expansion of the
effective average action into monomials

Γk[φ] � ∑
i

gi(k)Oi[φ]. (27)

Then one truncates this expansion at a manageable set of
operatorsOi. In this way the computation is reduced to the study
of the projected flow in the space of coupling constants gi. The
quality of the FRGE results depends critically on the operators
that are included in the truncation. In matrix models it turned out
that surprisingly good approximations to the FRGE flow where
obtained in [23] by considering the flow of single trace operators.
The analogous truncation in the presence of the matrix C is

ΓN � Z
2
Tr(AAu) +∑P

n�2

g2n
2n

Tr((AAuC)2(AAu)n− 2), (28)

Which only includes operators with AAT, which is invariant
under (14), and two C matrices. In the present contribution we
will truncate this to the ansatz that contains the bare action and
the single trace operator that can directly contribute to the beta
functions of the bare action at one loop. This truncation is:

ΓN � Z
2
Tr(AAu) + g4

4
Tr(AAuCAAuC)

+g6
6
Tr(AAuCAAuCAAu). (29)

We introduce the dimensionless couplings

g4 � Z2Nα4g4
g6 � Z3Nα6g6

(30)

Where α4 and α6 are as of yet undetermined, since the matrix
model does not include an intrinsic notion of scale. The scale is
later fixed by imposing that the beta functions admit a 1/N
expansion.

To make the calculation concrete, we choose the explicit form
of the IR-suppression term RN to take the form

Rabcd
N � Z( N

a + b
− 1)θ(1 − a + b

N
)δacδbd , (31)

Which has the advantage of being a diagonal and field
independent tensor, so we can readily invert the kinetic
term to obtain the propagator. It is practically useful to
split the second variation of the effective average action
into a field independent term G and a field dependent
term F:

RN + Γ(2)N � GN + g4F
(4)
N [A] + g6F

(6)
N [A], (32)

Which allows us to expand the RHS of the Wetterich equation
as a geometric series, using only the propagator P � G−1 and the
F-term:

1
2
Tr( _RN

RN + Γ(2)N

) � 1
2
∑
k�0

((− 1)kTr( _RP(FP)k))
� 1
2
Tr( _RP) − 1

2
Tr( _RPFP) + 1

2
Tr( _RPFPFP)

−1
2
Tr( _RPFPFPFP) +/

(33)

The upshot of this P−F expansion is that each F term
contributes more field operators. Hence a truncation that
contains polynomial operators with only a finite number of
fields terminates the geometric series at a finite number of
terms. With the proposed truncation (29), the first term in
(33) is of order zero in the Feynman diagrams expansion
since there is no field contribution, the second term gives rise
to 2-vertex and 4-vertex diagrams which contribute to η and β4,
the third one to 4-vertex and 6-vertex diagrams which contribute
to β4 and β6 and so on.

2.5 Benchmark Results
We use the FRGE to find fixed points of the RG flow and to
investigate the universality class associated with this fixed
point. This is done by calculating the critical exponents θ at
the fixed point, i.e. by considering the linearized FRGE-flow at
the fixed point, where the critical exponents appear as the
eigenvalues of the Hessian of the beta functions. We chose our
truncation in such a way that we can resolve the fixed point
that known as the double scaling limit in the matrix model
literature. This fixed point possesses a single positive critical
exponent, which is usually expressed in terms of the string
susceptibility cstr:

θ � 2
2 − cstr

. (34)

For Euclidean Matrix Models [27] cstr � −1/2, while for
CDT [28] cstr � +1/2, which leads to the following critical
exponents

θMM � 4
5
, θCDT � 4

3
. (35)

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 5317666

Castro and Koslowski FRGE of Causal Matrix Model

291

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


3 β-FUNCTIONS

In this section we summarize the steps that we took to obtain the
beta functions of the matrix model for CDT.

3.1 Operator Products
The structure of the beta functions is determined by the operator
products of the F-terms that we showed in (33). The terms FN

(4)

and FN
(6) are the second variations of the operators whose

contribution to the effective average action is measured by the
coupling constants g4 and g6. The second variations take the form

F(4)
N � Cac(AuCA)db + (CA)ad(CA)cb + (CAAuC)acδdb (36)

And

F(6)
N � δac(AuCAAuCA)db + Aad(CAAuCA)cb

+(AAuC)ac(AuCA)db + (AAuCA)ad(CA)cb
+(AAuCAAuC)acδdb + Cac(AuCAAuA)db
+CA)ad(CAAuA)cb + (CAAuC)ac(AuA)db
+(CAAuCA)adAcb + (CAAuCAAu)acδdb
+Cac(AuAAuCA)db + (CA)ad(AAuCA)cb
+(CAAu)ac(AuCA)db + (CAAuA)ad(CA)cb
+(CAAuAAuC)acδdb

(37)

By looking at (33), we notice that traces of products of (36) and
37 give rise to a big range of operators which are not present in the
truncation ansatz (29), such as (Tr(CA))2, Tr(CAATC2)
Tr(ATCA), etc. However, a reasonable projection rule onto the
truncation should not project these operators onto the beta
functions of the truncation. We therefore analyze which
operators can contribute to the beta functions in the
truncation, i.e. to β4 and β6. Considering for example the trace

Tr(F(4)
N ) � Tr(C)Tr(AuCA) + Tr(CAAuC)Tr(δ), (38)

We see that each term contains the matrix C, while we know
from the structure of the P-F-expansion that these are the only
terms generated by the restriction of the FRGE to the truncation
that contain twomatricesA. Hence, the restriction of the FRGE to
the truncation does not generate terms ∼Tr(AAT) and hence does
not generate any term that contributes to the anomalous
dimension η. To generate a contribution to the anomalous
dimension, one needed to include a term with a single C
matrix in the truncation. This term would then be generated
at one loop by the first term in (38) and in turn contribute to η at
one loop. The investigation of this kind of secondary effect
however goes beyond the scope of this first investigation.

This analysis relies on the fact that our projection rule is able to
discern the structure in which the matrices A are contracted with
the constant weighting matrix C, so at first sight one might worry
that such a projection does not exist. However, one can consider
the appearance of the matrix C in the operators as a special case of
operators with index-dependence, i.e. operators whose variations
w.r.t. A can not be expressed in terms of A and δij, which can be
discerned by a suitable projection rule. Hence it is not only

possible, but even prudent to use a projection rule that discerns
the different ways in which the matrix C is contracted.

To make this distinction, we mark in the following the terms
that contribute to the beta functions in our truncation by putting
a box around them. Subsequently, we will impose the use of a
projection rule that only retains these operators and thus consider
only the contributions of the boxed terms.

Tr(F(6)
N ) � Tr(δ)Tr(AAuCAAuC)
+3Tr(AAuCAAuC)Tr(δ)
+2Tr(C)Tr(AuCAAuA), (39)

Tr(F(4)
N F(4)

N ) � Tr(CC)Tr(AuCAAuCA)
+Tr(CAAuCCAAuC)Tr(δ), (40)

Tr(F(4)
N F(6)

N ) � 2Tr(CC)Tr(AuCAAuAAuCA)
+3Tr(CAAuCAAuCAAuC)Tr(δ)
+Tr(C)Tr(AuCAAuCAAuCA), (41)

Tr(F(4)
N F(4)

N F(4)
N ) � Tr(C3)Tr(AuCAAuCAAuCA)

+Tr(CAAuCCAAuCCAAuC)Tr(δ). (42)

When considering Tr((FN
(4))n) with n > 2 we see that all

resulting operators contain at least three Cmatrices which are not
present in the original proposed action (29), this means that in
this truncation the β-functions do not possess contributions
coming from these traces.

3.2 General Form of the β-functions
Now that we have identified the terms that can contribute to the
β-functions, we can write down the general structure of the beta
functions. To do so, we introduce the constants Di, Ei and Fi,
which depend on the details of the projection rule. Repeating the
same argument as in the previous subsection for the single trace
truncation 28 we obtain

η � 0, (43)

For i odd

β2i � (iη − α2i)g2i + Dig2(i+1) + Eig2ig4, (44)

For i even

β2i � (iη − α2i)g2i + Dig2(i+1) + Eig2ig4 + Fig
2
(i+2). (45)

We can see in particular that in this truncation tadpoles and 2-
vertex diagrams contribute.

4 FIXED POINT ANALYSIS AND SCHEME
DEPENDENCE

By using the obtained general form of the beta functions for the
single trace truncation at our disposal we can discuss fixed points.
We first consider the fixed point structure analytically, before
inserting particular truncation rules, which provide numerical
values for the critical exponents, which allows us to discuss the
scheme dependence of our calculation.
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4.1 Analytic Fixed Point Analysis
By setting our truncation to (29), we obtain the following beta
functions

β4 � (−α4)g4 + D2g6 + E2g
2
4 , (46)

β6 � (−α6)g6 + E3g4g6, (47)

Where η has been set to zero in accordance with our previous
analysis. The set of fixed points of this system of beta functions is

(g*4, g*6) � {(0, 0),(α4
E2
, 0),(α6

E3
, α6

α4E3 − α6E2

D2E2
3

)}, (48)

And the Hessian matrix (defined as Hij � −zβi/zgj) is

( α4 − 2E2g4 −D2

−E3g6 α6E3g4
). (49)

Hence, the critical exponents, i.e. the eigenvalues of the
Hessian, evaluated in each of the fixed points take the form.

The canonical dimensions α4 and α6 are not fixed by
themselves, but tadpole diagrams show that α6 has to be one
dimension of N greater than α4. We identify the Gaussian fixed
point (0,0), which will not have a relevant direction. There are two
non-Gaussian fixed points: the first fixed point (α4/E2,0) contains
one relevant and one irrelevant direction if E2/E3 > α4/α6, and the
third fixed point in Table 1 possesses a relevant and an irrelevant
direction if E2/E3 < α4/α6. These two points are our candidates for
a double scaling limit. Next we will examine them using particular
schemes.

4.2 Scheme Dependence
To find concrete critical exponents, we supplement the projection
rule with the evaluation of both sides of the FRGE at preferred test
matrices A. Moreover, we consider the two rigidity matrices
obtained by constructing a block diagonal matrix from (18)
(19), namely (21) and (19) respectively. The specific test
matrices that we use for the projection are

Aδ
ab � δabθ(N − a), (50)

Aδ−mod
ab � aδabθ(N − a), (51)

Aδ−IR
ab � δ1,aδ1,b. (52)

Using three different matrices A allows us to estimate a lower
bound for the scheme dependence. We expect this because the
three field configurations contain two field configurations with
distinct UV behavior and one manifest IR field configuration.

One often assumes that the scheme dependence is an actual
approximate measure for the quality of the fixed point analysis,
however when comparing with analytic results, we will see that
this underestimates the truncation error.

The corresponding obtained critical exponents are shown in
Table 2 and the fixed points are shown in Table 3. The euclidean
values are computed as done in [23] using (50), (51) and (52) as
test fields.

We see that the relevant critical exponents are all close to 1,
while the irrelevant critical exponents spread a bit wider between
−0.858 and −1.215. Moreover, we observe that all critical
exponents lay within the spread obtained by scheme
dependence. This means that we can not distinguish the
Euclidean models from the Causal models, built from the 2 ×
2 and 4 × 4matrices, based on the present derivation of the critical
exponents.

In order to attempt to obtain more accurate numerical values
for the critical exponents we use the fixed point approximation.
This consists in first finding the zeros of the beta functions, then
evaluating the anomalous dimension, η, in the fixed point g4* and
substituting this numerical value in the beta functions to find the
critical exponents. The critical exponents obtained by using the
fixed point approximation are shown in Table 4.

Since the numerical values reported in Table 2 were found to
have a strong scheme dependence, it is important to compare the
renormalization scheme dependence vs. the causal-euclidean
results in the latter ones in Table 4. We compute the average
of the difference between the critical exponents obtained in the
different renormalization schemes and the “Causal vs. Euclidean”
results with each of both methods.

In Table 5 we observe that, while the first method (full) shows
a stronger renormalization scheme dependence, with the fixed
point approximation method the “Causal vs. Euclidean” relation
is more significant than the renormalization scheme dependence.
Regarding the accuracy of the values for the critical exponent
obtained with both methods compared to the theoretical values
(35), we observe that the Causal ones differ more from the
theoretical value than the Euclidean critical exponents.
Therefore we can conclude that in this case the fixed point
approximation is more useful for differentiating the Causal
from the Euclidean results, while the full method reproduces
more accurate numerical results.

CONCLUSION

This contribution is motivated by the observation that the
application of the FRGE to tensor models with dual weights
could lead to an approach to quantum gravity that combines the
advantages of the systematic search of continuum limits with the
FRGE with the physically promising phase diagrams of CDT and
EDT. The systematic development of these tools and the
systematic investigation of these models is a very ambitious
task. In this contribution we took a first step into this
direction and considered the FRGE flow of a matrix model for
CDT in 1 + 1 dimensions proposed by Benedetti and Henson.
This model implements a foliation through a dual weighting of

TABLE 1 | Critical points with its corresponding pair of critical exponents.

Critical point Critical exponents

(0,0) α4
α6(α4

E2
,0) −α4

α6E2−α4E3
E2

(α6
E3
, α6

α4E3−α6E2
D2E2

3
) −2α6E2+α4E3−

���������������������
4α6(E2

2 −E2 )−4α4(E2E3−E2
3 )+α4E2

3

√
2E3

−2α6E2+α4E3+
���������������������
4α6(E2

2 −E2 )−4α4(E2E3−E2
3 )+α4E2

3

√
2E3
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Feynman graphs, which introduces an action with an index-
dependent propagator. This action, upon integration of an
auxiliary field, reduces to an action with an index dependent
interaction.

Recalling the critical exponents analysis in Analytic Fixed
Point Analysis and the values in Table 1, we see that the
model uses a rigidity matrix C which is chosen in such a way
that one of the conditions for the beta function polynomials E2/E3
> α4/α6 or E2/E3 < α4/α6 is satisfied. In this case we obtain a
relevant and an irrelevant direction simultaneously, implying that
the only Feynman diagrams that contribute to the partition
function are the ones where all C matrices are contracted as
Tr(C2), which is precisely the condition that implements a
foliation. In this contribution we considered a single trace
truncation in which we included operators that contain two
C-matrices with the pattern prescribed by the interaction in
the Benedetti-Henson model and calculated the beta functions
for this truncation. We found that wave function renormalization
does not occur in this truncation, since the one-loop structure of
the FRGE can only remove 1 Cmatrix. This technical observation
has far reaching consequences for the structure of the beta

functions, which change significantly compared to the
Euclidean model, which is obtained by setting C to the
identity matrix. In other words: the structure of the beta
functions is more complicated and in particular includes wave
function renormalization if C is replaced with the identity matrix.

We then investigated this system of beta functions in a
truncation in which we included only a four- and a six-point
interaction. Despite the significant difference in the structure of
the beta functions, we found that this truncation contains fixed
points that possess the properties of the double scaling limit. We
investigated these fixed points numerically using three distinct
field configurations for projection.

This numerical investigation revealed a practical challenge: To
obtain numerical values for the beta functions one can not resort
to an abstract definition of the rigidity matrix C, since the
calculation requires an explicit numerical expression of C. We
took this as an opportunity to investigate the weakening of the
condition Tr(Cm) � δm mod k,2 for k � 2,4,6. This has the
implication that not all Feynman diagrams without a foliation
structure are suppressed, but only a part of these. In particular the
case k � 2 does not introduce any new restriction at the level of
Feynman diagrams of the Euclidean model, however, since we
used the structure of the beta function for general C, we still
obtained equations that differ from the Euclidean matrix model.
The numerical investigations however revealed that we can not
discern the Euclidean and the CDT model on the basis of the
critical exponents at the fixed point associated with the double
scaling limit. These results are summarized in Table 2. The
obtained relevant critical exponent (θ) in the Benedetti-

TABLE 2 | Numerical values obtained for critical exponents. Causal2 corresponds to values computed using (21) and Causal4 corresponds to the ones computed using
(LABEL:c4).

δ δ-mod. δ-IR

Causal2 Causal4 Euclidean Causal2 Euclidean Causal2 Euclidean

θ 1.033 1.008 1.046 1.024 1.033 1.052 1.065
θ´ −0.928 −1.215 −1.080 −0.858 −0.959 −1.086 −1.050

TABLE 3 | Numerical values obtained for critical points. Causal2 corresponds to values computed using (21) and Causal4 corresponds to the ones computed using
(LABEL:c4).

δ δ-mod. δ-IR

Causal2 Causal4 Euclidean Causal2 Euclidean Causal2 Euclidean

g4* −0.435 −0.300 −0.288 −0.902 −0.588 −0.339 −0.202
g6* −0.118 −0.094 −0.06 −0.387 −0.208 −0.040 −0.026

TABLE 4 | Numerical values obtained for critical exponents using the fixed point approximation. Causal2 corresponds to values computed using (21) and Causal4

corresponds to the ones computed using (LABEL:c4).

δ δ-mod. δ-IR

Causal2 Causal4 Euclidean Causal2 Euclidean Causal2 Euclidean

θ 0.722 0.902 0.630 0.649 0.544 0.658 0.602
θ´ −0.953 −1.222 −1.116 −0.880 −0.995 −1.105 −1.090

TABLE 5 | Renormalization scheme dependence and Causal-Euclidean
difference with both methods.

Renorm. Scheme Causal vs. Euclidean

Full 0.019 0.012
Fixed p. a. 0.049 0.084
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Henson model differs from the exact values in Benchmark Results
by 0.31 from the CDT value and 0.27 from the Euclidean one. We
also observe a 4% spread of these values depending on the field
configuration used for projection, which is a significantly lower
spread than the difference with the analytic values. This is
however consistent with the results obtained in [23], where a
similar difference from the analytic values was found. This was
also to be expected, because the presented calculation is
technically very similar to the calculation done in [23]. We
therefore expect that the truncation error improves in a
similar way as in [23] when the truncation is gradually
increased. This means that we expect the truncation error to
improve over the range of a few percent as one enlarges the
truncation, but also that there will remain a significant deviation
from the analytic results until the broken unitary Ward-Identity,
stemming from the variation of the kinetic term, is solved in a
self-consistent way.

We interpret our results as an encouragement for the
investigation of dually weighted tensor models for quantum
gravity: Already with the rather simple and elementary
techniques used in this contribution we were able to
investigate qualitatively the double scaling limit of the dually
weighted matrix model; analogous dually weighted tensor models
such as the one proposed in [22] can thus be treated with the
FRGE in a similar fashion. Our results indicate some practical
advise for these future investigations:

1) The one-loop structure of the FRGE can only couple
effective operators that differ by an index-dependent
contraction between two adjacent tensors, not more.
Therefore, to study the influence of an operator with
index-dependence in more than one contraction one
needs to include sufficient “intermediary” operators in
the truncation.

2) For analytical investigations it is possible to work with
abstract rigidity structures, that are defined through its
properties, such as Tr(Cm) � δm,2, however for numerical
investigations one needs a projection onto the truncation
and an explicit evaluation of the operator traces appearing
on the RHS of the flow equation. This evaluation of the
RHS requires an exact (or at least approximate) numerical
representation of the abstract structure encoded in the
rigidity matrix C. One might thus prefer the investigations
of models for which one has one of these numerical
representations at ones disposal.

3) If our present observations about the double scaling limit
are transferable then one sees that the existence of a fixed
point with certain characteristics can be found in rather
small truncations. However, the critical exponents found
in these truncations can be expected to differ significantly
from the exact values (which of course should be
accessible through lager truncations and optimized
renormalization schemes).

These general observations can serve as a guide of what to
expect in higher dimensions, where a modification of the
propagator can be used to suppress the Feynman diagrams

that lead to most significant deviations from foliated
spacetimes. Unfortunately, our observations do not have an
immediate implication for the existence of a physically viable
continuum limit in higher dimensions.

A RECIPE FOR CALCULATIONS

A detailed description of the recipe to do FRGE-calculations in
matrix and tensor models has been presented in [24]. We
essentially followed the recipe outlined there, but had to make
some adjustments due to the appearance of the rigidity matrix C,
which we present in the following.

A.1 Theory Space and Truncations
The theory space upon which we set up the flow equation must
include the action proposed in [1] and thus include the rigidity
matrix C. This action is invariant under the one-sided
transformation A→AO, for all matrices OTO � 1. These
actions can be expanded in terms of traces of products of ATA
and C. It is useful to organize the trace operators systematically
with increasing number of fields ATA. For a fixed number of fields
we observe that Tr((AuA)n1C/(AuA)nkC) defines a sequence
of k integers (n1,...,nk). Using cyclicity of the trace, we rotate the
trace such that we obtain the highest number in the base (max
{n1,...,nk}+1) number system, when (n1,...,nk) are taken as the
digits of a number in this system. Since we derive the beta
functions in a vertex expansion, it is useful to choose
truncations that contain only up to a fixed number of fields.
Moreover, as discussed in the text, the structure of the beta
functions decouples the bare action from many operators in such
a truncation. It is therefore useful to consider truncations that
contain only the operators that do not decouple.

A.2 Canonical Dimension
The canonical dimension of the operators can be derived from the
requirement that the beta functions possess a -expansion, since
one could not use them to investigate the continuum limit if it
were otherwise. The initial condition for this is that the couplings
that appear in the bare action possess the same scaling as
prescribed by the bare action proposed by Benedetti and
Henson, where the regulator is chosen in such a way that it
possesses the large N-scaling of the kinetic term. The vertex
expansion of the beta functions then provides a set of inequalities
that determines the scaling of the operators. The difference with
the pure matrix model case is that the appearance of the rigidity
matrix C appears on both sides of the flow equation, so that its
influence on the scaling arguments has to be taken into account.

A.3 Projection and Extraction of Beta
Functions
The most important adjustment to the recipe provided in [28]
concerns the projection onto the truncation and the derivation of
beta functions. The vertex expansion, the same as described in
[28], provides a lot of structural insight into the beta functions,
because it shows how operator traces can be converted into traces
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over products of ATA and C with the insertion of at most one
regulator-dependent factor. These traces are not of the form of
the operators that occur in the truncation, so one needs to find a
projection onto the truncation. This is usually done by evaluating
both sides of the FRGE on a family of field configurations that is
large enough to distinguish all operators in the truncation, while
one chooses them in such a way that the calculation is
computationally feasible.

We have provided several families of field configurations that
one can use to project onto the truncation, but this is not enough

to evaluate both sides of the flow equation due to the appearance
of the rigidity matrix C in the traces. In order to evaluate the
traces, one needs an explicit expression of C in the presence of the
regulator terms.
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