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Editorial on the Research Topic

Heterologous Immunity: Implications and Applications in Vaccines and Immunotherapies

Heterologous immunity is defined as immunity that can be induced by a pathogen or antigen
against another unrelated pathogen, antigen or even an autologous antigen. The applications
of “heterologous immunity” can be traced back to the first vaccine by Edward Jenner in
the late seventeenth century where he used a cowpox virus to immunize against smallpox
infection. Following this, the concept of heterologous immunity and its implications for vaccine
development and immunopathogenesis were largely neglected until the late 20th century.
However, epidemiological studies involving various vaccinated populations continued to suggest
the existence of heterologous immunity. With the availability of modern bioinformatics and
immunological tools, heterologous immunity among several pathogens has now been recognized
and the immunomodulatory role in protective immunity and immunopathogenesis is being studied
extensively. The topic “Heterologous Immunity: Implications and Applications in Vaccines and
Immunotherapies” covers current progress in the field of heterologous immunity and is a collection
of 13 articles that includes reviews, minireviews and original research.

The review article by Agrawal summarized the mechanism of heterologous immunity and its
implications in pathogenesis and infectious disease outcomes. The mechanism of cross-reactive
antibody or T cell immunity among related or un-related pathogens lies in the promiscuous nature
of the interaction of B cell receptor and T cell receptor for epitope recognition. As a result, exposure
to microbiota and various pathogens, and routine vaccination programs induce a considerable pool
of cross-reactive T cells as well as antibodies able to respond to a completely different pathogen. The
author further describes heterologous immunity among a broad range of pathogens and discusses
its plausible role in natural resistance and modulation of the course of infection.

Balz et al. outline the consequences of heterologous immunity in antiviral immunity. In
this review, the authors highlight important applications of heterologous immunity in vaccine
development. Accordingly, for influenza viruses, they suggest that future vaccine development
efforts should be toward a universal vaccine focused on broader T cell responses. The authors
further discuss the public health implications of heterologous immunity and suggest that more
knowledge on heterologous immunity among various pathogens can provide insight into the
repurposing of existing vaccines. They also point out factors that influence the clinical outcomes of
heterologous immunity and specifically mention the benefits of measles and vaccinia vaccination
in this regard.
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Flaviviruses are among the most common viral infections
in tropical and subtropical countries. Heterologous immune
responses among Flaviviruses are well-documented. Rathore and
St. John review cross-reactive antibody and T cell immunity
directed toward Flaviviruses and their role in protection and
the development of immunopathologies. The authors also
detail rational vaccine design from the viewpoint of cross-
reactive immunity.

Malaria, a mosquito-borne disease, is caused by the
Plasmodium parasite and is among the leading causes of
death in endemic areas. In a comprehensive review, Mitran and
Yanow describe cross-reactive antibody and T cell immunity
among distinct species of Plasmodium that have been reported
both in human populations and in experimental animal models.
The authors define potential antigen targets for cross-species
vaccine design in the context of heterologous immunity that
would encompass evolutionarily conserved epitopes.

Heterologous immunity is particularly important from an
immunopathology standpoint where it can negatively modulate
the immune responses against another pathogen. This can
occur through the induction of biased non-protective cross-
reactive antibodies and T cells. The research article by Tang
et al. highlights this phenomenon in a study of infections in
mice with mixed-species of malaria parasites. The authors show
that co-infection of mice with Plasmodium yoelii with either
Plasmodium vinckei or Plasmodium chabaudi increased virulence
(100% mortality) compared to mono-infections where mortality
was significantly lower (40% with P. chabaudi and no mortality
with P. yoelii or P. vinckei). The authors discuss the role of
immune competition/modulation on parasite virulence and the
fitness costs of co-infection on transmission to mosquitoes.

Apart from vaccines, heterologous immunity is an
attractive approach for the development of immunotherapeutic
monoclonal antibodies. Youssef et al. identified a monoclonal
IgM antibody against fungus Candida albicans’ Hyr1 antigen
that cross-reacts with the Gram-negative bacteria Acinetobacter
baumannii and Klebsiella pneumoniae. Moreover, this antibody
protects mice from lethal bacteremia. This study shows that
a single monoclonal antibody can provide cross-kingdom
protection against multiple microorganisms.

The T cell receptor has remarkable promiscuity toward its
antigen epitopes and this feature is responsible for the generation
of cross-reactive T cells. Cross-reactive T cells have several
clinical implications for immunopathogenesis, autoimmunity,
and alloreactivity and graft rejection. For example, Rowntree
et al. published an elegant study where CD8+ T cells specific
for different viral epitopes (EBV, CMV, and HIV-1) cross-
reacted with HLA-B27 allotypes in a hierarchical manner. This
study clearly shows that heterologous immunity has clinical
implications wherein antiviral T cells induced against viral
pathogens could contribute to adverse outcomes in allogeneic
transplantation. It also implies that exposure of a host to multiple
viral infections could lead to a more complex allo-reactivity.

The advent of newer T cell-based therapies (such as CAR-
T cells) and their widespread clinical uses can be vulnerable
to the cross-reactive nature of the T cell receptors. A study
by Soon et al. shows that a therapeutic T cell specific to

a hepatitis E virus epitope cross-recognized an epitope from
an apoptosis-related autoantigen in the host, which could
potentially lead to autoimmunity. Most importantly, the authors
characterized a molecular signature of a multiple-glycine motif
in the CDR3 region of the TCR β chain which may allow greater
structural flexibility with a minimum energy threshold required
for promiscuity. Therefore, such T cell-based therapies should be
evaluated for any off-target cross-reactivity.

Heterologous immunity is also relevant for vaccine
development against highly diverse pathogens where cross-strain
reactivity or cross-species protection is critically desirable. As an
example, current vaccine development efforts against influenza
viruses are focused on developing a broadly cross-reactive
universal vaccine. These efforts employ modern in silico and
immunological tools to design cross-reactive, conserved antigen
epitopes as well as the use of a suitable adjuvant formulation
that favors the induction of antibodies and T cells with broader
specificities. Nguyen et al. show that the Pandemic H1N1 vaccine
formulated with poly-γ-glutamic acid (PGA)/Alum complex
provided cross-protection against heterologous influenza viral
strains: A/Puerto Rico/8/34 (H1N1) and A/Hong Kong/1/1968
(H3N2)]. In a similar study, Luo et al. showed that the H7N9
vaccine formulated with STING agonist cGAMP could provide
effective cross-protection against H1N1, H3N2, and H9N2
influenza viruses in mice. Finally, Lee et al. showed that mincle
and STING-stimulating adjuvant formulated with a foot and
mouth disease virus vaccine induced a robust and long-lasting
cellular and humoral memory response across diverse species in
mice, cattle and pigs. These studies suggest that the use of new,
advanced adjuvant formulations will not only induce antibodies
and T cells with broader specificities for greatly improved
immunity but also overcome disparities in immunogenicity of a
vaccine across species.

Heterologous immunity is not only limited to adaptive
immunity. Innate immunity triggered by one pathogen or
vaccine can protect against an unrelated pathogen. This is often
called “trained immunity” and is represented by innate immune
cells. Trained immunity arises due to epigenetic reprogramming
of innate immune cells such as macrophages upon exposure to
infection/vaccine. Covián et al. reviewed BCG vaccine-induced
trained innate immunity and its role in cross-protection and
heterologous effects.

Furthermore, macrophages play a distinct role in heterologous
immunity because they have different functional stages at various
points in the course of an infection. This process results in
an intrinsic functional imprinting/training of macrophages by
the invading pathogen. Connolly and Hussell review several
aspects of this training of macrophages and the influence of
Type 1 interferons on the alveolar macrophage. The authors
also discuss how influenza virus-mediated production of Type 1
interferon alters the functional response of macrophages toward
bacterial superinfection.

Collectively, these reviews and original research articles
provide a comprehensive overview of the various dimensions
of heterologous immunity. They support the outlook that
heterologous immunity should be an important aspect
in the design, testing and development of vaccines and
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immunotherapeutics. In addition, the influence of heterologous
immunity should be carefully examined on clinical outcomes of
infections and autoimmunity.
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Immunity of Pandemic H1N1 Vaccine
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Daejeon, South Korea, 4Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and
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The use of a good vaccine adjuvant may induce a higher immunogenicity profile of

vaccine antigens. Here, we developed a new adjuvant by combining poly-γ-glutamic

acid (γ-PGA) with alum (PGA/Alum) and investigated its ability to enhance the

immunogenicity and the cross-reactive efficacy of pandemic H1N1 (pH1N1) influenza

vaccine antigen. PGA/Alum enhanced antigen delivery to draining lymph nodes

and antigen-specific immunogenicity in mice using OVA as a model antigen. It

also greatly increased OVA-specific antibody production, cytotoxic T lymphocyte

(CTL) activity, and antibody-dependent cellular cytotoxicity (ADCC). These abilities of

PGA/Alum improved the protective efficacy of pH1N1 vaccine antigen by increasing

hemagglutination-inhibition titers, enhancing ADCC and CTL activity, and speeding

viral clearance following homologous viral challenge. Importantly, the cross-protective

efficacy of pH1N1 vaccine against heterologous viruses [A/Puerto Rico/8/34 (H1N1)

and A/Hong Kong/1/1968 (H3N2)] was significantly enhanced by PGA/Alum, and

cross-reactive ADCC and CTL activities were observed. Together, our results strongly

suggest that PGA/Alum may be a promising vaccine adjuvant for preventing influenza

and other infectious diseases.

Keywords: vaccine adjuvant, influenza virus, efficacy, cross-protection, antibody-dependent cellular cytotoxicity,

cytotoxic T lymphocyte activity

INTRODUCTION

Traditional vaccines are composed of killed or attenuated viruses or bacteria and have several
drawbacks, including safety concerns, the need for complicated culture of the infectious agents,
and the low yields of their manufacturing processes (1, 2). To solve these problems, researchers
have developed new types of vaccine such as subunit recombinant vaccines and DNA vaccines
(3). Unfortunately, most of these vaccines are unable to generate sufficient antigen-specific
immunogenicity to effectively prevent infectious diseases. In particular, influenza continues to
occur as a seasonal epidemic and in sporadic pandemics with considerable morbidity and mortality
worldwide, largely because we lack an effective vaccine capable of inducing broad cross-protection
against newly emerging influenza viruses that underwent antigenic drift and shift (4). The future
development of effective influenza vaccines has been proposed to hinge on the use of adjuvants that
improve the immunogenicity and cross-reactive immunity of vaccine antigens (5, 6).
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Despite extensive research, relatively few adjuvants have
been licensed for use with human vaccines. These adjuvants
included aluminum salts (alum) and emulsions (e.g., MF59)
(6, 7). Since the 1920s, alum has been used as a vaccine
adjuvant for a wide range of vaccines in the US and Europe.
It can trigger robust humoral immune responses (i.e., antibody
production), but does little to enhance the antibody-dependent
cellular cytotoxicity (ADCC) and cytotoxic T lymphocyte (CTL)
activities that are critical for the protection against various
pathogens, including viruses and intracellular pathogens, and
cross-reactivity against heterologous influenza viruses (8–11).
Regarding MF59, its adjuvanted influenza vaccine did not show
any significant difference in the cross-reactivity compared to the
unadjuvanted vaccine (12), and MF59 itself has been associated
with adverse effects, including injection site pain and the
induction of inflammatory arthritis (13).

The current approach for developing vaccine adjuvants is
based on our knowledge of the innate immune responses
that initiate adaptive immune responses. Some adjuvants
include agonists that can enhance innate immune responses
through pattern recognition receptors, such as toll-like receptors
(TLRs) (14, 15). Poly-γ-glutamic acid (γ-PGA) is a natural,
biodegradable, and edible biopolymer composed of repeating
units of both D- and L-glutamic acids combined via γ-amide
linkages that is secreted naturally by the Bacillus subtilis sups.
Chungkookjang commonly found in Korean traditional soybean
paste, chungkookjang (16). We previously reported that γ-
PGA induces TLR4-mediated innate immune responses and
robustly provokes Th1 immune responses to enhance CTL
activity (17). Taking advantage of the safety and potential
immunostimulatory properties of γ-PGA, we developed a
vaccine adjuvant by combining γ-PGA with alum (PGA/Alum)
to resolve the limitations of currently licensed vaccine adjuvants.
We investigated the physiochemical properties, efficacy, and
action mechanisms of PGA/Alum using the model antigen,
ovalbumin (OVA), in vivo and in vitro. We then evaluated
the adjuvant efficacy of PGA/Alum in improving pandemic
H1N1 (pH1N1) influenza vaccine antigen-specific cellular
immune responses, antibody (Ab) production, and cross-
reactivity against heterologous influenza A viruses. Our results
demonstrate that PGA/Alum increased dendritic cell (DC)
activation and antigen trafficking, thereby enhancing adaptive
immune responses, particularly antigen-specific CTL activity and
ADCC. Furthermore, the protective and cross-reactive efficacies
of pH1N1 influenza vaccine were substantially improved by
PGA/Alum, which conferred cross-protection accompanied
with cross-reactive ADCC and CTL activities. Together, our
results strongly suggest that PGA/Alum may be a promising
vaccine adjuvant for prevention of influenza-related and other
infectious diseases.

MATERIALS AND METHODS

Mice
Six- to eight-week-old female C57BL/6 mice (Orient Bio)
were housed in a specific pathogen-free (SPF) facility in
the Korea Research Institute of Bioscience and Biotechnology

(KRIBB). Handling of mice and experimental procedures were
reviewed and approved by the Institutional Animal Care and
Use Committee (IACUC) of the KRIBB (KRIBB-AEC-17013
and KRIBB-AEC-17162) and were performed according to the
Guidelines for Animal Experiments of the KRIBB.

Cells
Bone marrow-derived DCs (BMDCs) were generated and
maintained in RPMI 1640 (Gibco) that contained 10% heat-
inactivated FBS (Gibco), 100 U/ml penicillin, and 100 mg/ml
streptomycin (Gibco), as previously described (18). B16F10 and
MDCK cells were purchased from ATCC and maintained in
DMEM (Gibco) that contained 10% heat-inactivated FBS, 100
U/ml penicillin, and 100 mg/ml streptomycin. B16mOVA cells
(B16F10 cells expressing membrane-bound OVA) were kindly
provided by Dr. David J. Mooney (Harvard University, USA)
and were maintained in DMEM supplemented with 10% heat-
inactivated FBS, 100 U/ml penicillin, 100 mg/ml streptomycin,
and 1µg/ml puromycin dihydrochloride (Millipore).

Preparation of PGA/Alum
PGA/Alumwas prepared by combining γ-PGA (BioLeaders) and
Imject alum (Thermo Fisher) in a 0.9% saline solution. Briefly,
1 mg/ml alum solution, pH 6.5 (adjusted by HCl) was added
drop-wise into 1 mg/ml γ-PGA solution, pH 6.8 (adjusted by
ammonia solution) (v:v = 1:1) with constant stirring at 70 ×

g. The resultant PGA/Alum was collected by centrifugation at
15,000 × g for 30min at 4◦C, re-suspended in a 0.9% saline
solution, and stored at 4◦C prior to use.

Preparation of Viruses
The influenza viruses A/California/04/09 (pH1N1), A/Puerto
Rico/8/34 (H1N1), and A/Hong Kong/1/68 [H3N2 (a
reassortant H3N2 virus carrying the HA and NA genes
from A/Hong Kong/1/68 and internal genes from A/Puerto
Rico/8/34)], were grown in 9 to 10-day-old SPF embryonated
chicken eggs (Orient Bio) for 48 h at 37◦C. The viruses were
harvested from the allantoic fluids by centrifugation at 3,500 ×

g for 10min at 4◦C and filtration through 0.45µm pore-size
membrane filter (Millipore) and then stored at −80◦C until use.
All viral experiments were performed under biosafety level 2+
(BSL2+) conditions.

Dynamic Light Scattering (DLS)
The hydrodynamic diameter and polydispersity index of alum
and PGA/Alum were measured using a particle-size analyzer
(ELS-Z; Otsuka Inc.). Zeta-potential values were measured with
a Zeta-sizer (Nano ZS; Malvern Instruments Ltd.).

Scanning Electron Microscopy (SEM)
The morphologies of alum and PGA/Alum were observed using
a field-emission scanning electron microscope (FE-SEM, Quanta
250 FEG). Briefly, alum and PGA/Alum (100µg/ml, 1ml) were
dispersed in autoclaved saline buffer, dropped and dried on a
silicon wafer, coated with gold for 60 s using a Polaron SC7640
sputter coater (Quorum Technologies Ltd.) and then subjected
to SEM.
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Transmission Electron Microscopy (TEM)
TEM images of alum and PGA/Alum were obtained using
a field-emission transmission electron microscope (FE-TEM;
JEOL Ltd.). For visualization, alum and PGA/Alum (100µg/ml)
solutions were dropped and dried on a formvar- and carbon-
coated copper grid (Ted Pella, Inc).

Fourier Transform Infrared (FT-IR)
Spectroscopy
To analyze the chemical structure of PGA/Alum, we performed
FT-IR analysis using FT-IR spectroscopy (Alpha-T; Bruker
Optics). Alum and PGA/Alum solutions (1 mg/ml in saline
buffer) were centrifuged at 10,000× g for 5min and re-dispersed
in distilled water. After all solutions were dried under a vacuum
for 2 days, the powder was mixed with potassium bromide (KBr).
FT-IR signals were obtained by scanning from 500 to 4,000 cm−1

with a scan resolution of 4 cm−1.

Determination of OVA Antigen Loading
PGA/Alum and alum (10 mg/ml each) were mixed overnight
with OVA antigen (3 mg/ml; Sigma-Aldrich) at 4◦C with
constant rotation at 15 × g. The resulting PGA/Alum-OVA
complexes were centrifuged at 14,000 × g for 15min, and the
supernatants were collected for the analysis of unloaded OVA.
The amount of loaded OVA was calculated based on the amount
of unloaded OVA in the supernatants, as assessed via BCA
protein assay (Pierce).

Cell Viability Assay
Immature BMDCs were generated from bone marrow cells of
C57BL/6 mice and stimulated with alum, γ-PGA, or PGA/Alum
at 25, 50, 100, or 200µg/ml for 24 h. The cell viability was
measured using the Cell Counting Kit-8 (Dojindo Laboratories)
according to the manufacturer’s instructions.

In vitro Activation and Antigen
Uptake/Processing of BMDCs
To investigate BMDC activation, we stimulated the cells with
100µg/ml alum, 100µg/ml γ-PGA, or 200µg/ml PGA/Alum
for 24 h at 37◦C. To examine the antigen uptake and processing
of BMDCs, we incubated the cells with either 5µg/ml FITC-
OVA (Thermo Fisher) or 5µg/ml DQ-OVA (a self-quenching
conjugate of OVA that exhibits bright green fluorescence upon
proteolytic degradation; Thermo Fisher) mixed with or without
alum, γ-PGA, or PGA/Alum for 1 or 5 h at 37◦C, respectively.

ELISA
The cytokine levels in the culture supernatants were measured
using ELISA kits (BDBioscience) according to themanufacturer’s
instructions. To determine the levels of antigen-specific IgG
Ab in the sera of immunized mice, ELISA plates (Nunc)
were coated overnight with 1µg/ml OVA protein or 0.5µg/ml
influenza vaccine antigen (A/California/7/2009 NYMC X-179A
H1N1; provided by Mogam Biotechnology Research Institute)
in carbonate solution, pH 9.5, at 4◦C. ELISA was performed as
previously described (18, 19).

Flow Cytometry
All cells were blocked with anti-CD16/CD32 monoclonal
Ab (mAb) and stained with the subsequently described
fluorochrome-conjugatedmAbs. ThemAbs were purchased from
BD Biosciences, BioLegend, or eBioscience. To measure DC
activation, cells were stained with PE-conjugated mAbs against
mouse CD40, CD80, CD86, MHC class II molecules or isotype-
matched control mAbs. To examine the proportions of DCs
located at the injection sites and draining lymph nodes (dLNs),
C57BL/6 mice were intramuscularly (i.m.) immunized with 5 µg
Alexa Fluor 647-conjugated OVA mixed with or without 800 µg
PGA/Alum, and cells were obtained after 3, 6, 12, and 48 h post-
immunization. In other experiments, C57BL/6 mice were i.m.
immunized with 5 µg Alexa Fluor 647-conjugated OVA alone or
mixed with 400 µg alum, 400 µg γ-PGA, or 800 µg PGA/Alum,
and cells were obtained after 24 h post-immunization. The
cells were stained with APC eFluor 780-conjugated anti-CD11c
and Alexa Fluor 488-conjugated anti-MHC class II mAbs. To
measure frequency of OVA257−264 tetramer-positive CD8+ T
cells, splenocytes were obtained from the immunized mice and
blocked with clear back (Fc receptor blocking reagent; MBL),
stained with PE-conjugated H-2Kb OVA tetramer and FITC-
conjugated CD8 mAbs (MBL). All stained cells were acquired on
FACSCalibur or FACSVerse flow cytometers (BD), and the data
were analyzed using FlowJo software (Tree Star). Fluorescence
compensation was optimized using cells individually labeled with
each fluorochrome-conjugated mAb. Data were obtained from
the live population based on cell size- and morphology-based
gating, which was used to eliminate cell debris and dead cells.

In vivo Fluorescence Imaging
To visualize the migration of antigen to the dLNs, a fluorescent
dye-labeled antigen was prepared by conjugating 1mg OVA
protein with 0.1mg IRDye800CW fluorescent dye using an
IRDye800CW protein labeling kit (LI-COR Bioscience). The
concentration of the resulting IRDye800CW-labeled OVA (OVA-
IR800) was determined using a BCA protein assay. Hair on the
left forepaw and the dorsal skin of C57BL/6 mice were removed
by applying depilatory creams (VEET Hair Removal Cream;
Reckitt Benckiser Japan) for efficient signal transmission. The
mice were anesthetized with 3% isoflurane and intradermally
administered 25 µg OVA-IR800 alone or mixed with 400 µg
alum, 400µg γ-PGA, or 800µg PGA/Alum into the forepaw pad.
At 1, 3, 6, 24, and 48 h post-injection, in vivo near-infrared (NIR)
fluorescent signals from the anesthetized mice were acquired
using the in vivo Imaging System (IVIS Lumina II; Xenogen
Corp.) with excitation at 780 nm and emission at 831 nm at a
0.02 s exposure time. The fluorescent signals of OVA-IR800 in
the axillary lymph node were quantitatively analyzed using image
analysis ImageJ software (NIH).

Immunizations and Viral Challenge
Animals were randomly distributed to groups of 3–6 mice.
C57BL/6 mice were i.m. immunized with 10 µg OVA in the
presence or absence of 400µg/ml γ-PGA, 400µg/ml alum,
or 800µg/ml PGA/Alum on days 0, 14, and 28. Spleens,
bone marrow cells, and sera were collected on days 14 and
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180 after the last immunization. In a separate experiment,
mice were i.m. immunized with the pH1N1 split vaccine
antigen (A/California/7/2009 NYMC X-179A H1N1), which
contained 0.05 µg (for homosubtypic protection) or 0.5 µg
(for heterosubtypic protection) hemagglutinin (HA) plus 400
µg γ-PGA, 400 µg alum, or 800 µg PGA/Alum on days
0 and 14. Spleens and sera were collected on day 14 after
the last vaccination. Two weeks after the last vaccination, the
mice were intranasally challenged with a lethal dose (LD)
of influenza viruses, including 50 LD50 (equivalent to 30,000
TCID50 or 15,000 PFU) A/California/04/09 (pH1N1), 10 LD50

(equivalent to 20 TCID50 or 200 PFU) A/Puerto Rico/8/34
(H1N1), or 10 LD50 (equivalent to 600 TCID50 or 300 PFU)
H3N2 viruses.

The body weight and survival weremonitored for 14 days after
the viral challenge. Mice that lost >20% (for homosubtypic viral
challenge) or 25% (for heterosubtypic viral challenge) of their
body weight were considered to have reached the experimental
end point and were sacrificed.

Antibody-Dependent NK Cell Activation
To examine the ability of the sera Abs of immunized mice to
activate NK cells, we coated ELISA plates (Nunc) overnight
at 4◦C with 10µg/ml OVA protein or 6µg/ml influenza HA

antigen that contained the stalk domain. The plates were washed
with PBS, incubated with heat-inactivated sera (1 h at 56◦C)
for 2 h at 37◦C, and washed with PBS to remove unbound
serum Abs. NK cells were isolated from the splenocytes of
unimmunized C57BL/6 mice using a NK cell isolation kit
(Miltenyi Biotec). The isolated NK cells were dispensed to
the ELISA plates (1 × 105 cells/well) and incubated in the
presence of PE-conjugated anti-CD107a mAb, 5µg/ml brefeldin
A, and 5µg/ml monensin for 5 h at 37◦C. Finally, the NK cells
were harvested, fixed, permeabilized, and intracellularly stained
with APC-conjugated anti-IFN-γ using a Cytofix/Cytoperm kit
(BD Bioscience).

ADCC Assay
For experiments using the sera of mice immunized with OVA
antigen, B16mOVA cells (target cells) were plated to 96-well
U-bottom plates at 8 × 103 cells/well. B16F10 cells were used
as a negative control. For experiments using the sera of mice
immunized with influenza vaccine antigen, MDCK cells were
infected with A/California/04/09 (pH1N1), A/Puerto Rico/8/34
(H1N1), or H3N2 (multiplicity of infection = 1) in serum-
free DMEM that contained 100 U/ml penicillin and 100 mg/ml
streptomycin for 12 h at 37◦C. The virus-infected MDCK cells
(target cells) were harvested and plated to 96-well U-bottom

FIGURE 1 | The physiochemical characterization of PGA/Alum. (A) SEM and (B) TEM images of alum and PGA/Alum (inset images are highly magnified). (C) FT-IR

spectra of γ-PGA, alum, and PGA/Alum. (D) Cytotoxicity of PGA/Alum was evaluated by measuring cell viability of BMDCs exposed to various concentrations of alum,

γ-PGA, and PGA/Alum for 24 h. The data are representative of three independent experiments. Statistically significant differences were analyzed via

ANOVA/Bonferroni. ***P < 0.001.
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TABLE 1 | Physiochemical characterization and OVA-loaded efficiencies of PGA/Alum.

Sample Particle size (diameter nm ± SD) Polydispersity index (PDI) Zeta potential (mV) OVA-loaded (mg/ml)

Alum 1,066.2 ± 32.01 0.31 ± 0.03 −7.08 ± 0.91 1.603 ± 0.04

PGA/Alum 1,294.67 ± 13.32 0.37 ± 0.03 −28.10 ± 1.49 2.144 ± 0.08

plates at 8 × 103 cells/well. The target cells were mixed with
both heat-inactivated serum samples (56◦C, 1 h) and naïve NK
cells and then incubated for 4 h at 37◦C. Cytotoxicity was
assessed by detection of lactate dehydrogenase (LDH) in culture
supernatants using a CytoTox 96 Non-radioactive cytotoxicity
assay (Promega).

Enzyme-Linked Immunospot (ELISPOT)
Assay
The frequencies of antigen-specific IFN-γ-producing cells were
evaluated using a mouse ELISPOT kit (BD Bioscience), as
previously described (18, 19). Briefly, splenocytes were obtained
from immunized mice and plated at 5 × 105 cells/well onto
purified anti-IFN-γ-coated ELISPOT plates. The cells were
stimulated with OVA257−264 peptide (0.5 µg/well; Anaspec)
or UV-inactivated viruses, including 500 TCID50/well of
A/California/04/09 (pH1N1), 2,000 TCID50/well of A/Puerto
Rico/8/34 (H1N1), or 2,000 TCID50/well of H3N2 viruses for
3 days. The spot-forming units (SFUs) of IFN-γ-producing
cells were counted using an ELISPOT plate reader (Cellular
Technology Ltd).

Hemagglutination-Inhibition (HI) Assay
The serum HI titers against the A/California/04/09 (pH1N1)
were determined as previously described (18). HI titers were
recorded as the reciprocals of the highest serum dilution at which
hemagglutination was prevented.

Virus Titration in Lungs
On days 3 and 7 post-challenge, mouse lung samples were
homogenized in MEM that contained 0.2% BSA at 1 g of
lung/ml. The homogenates were centrifuged at 15,000 × g for
10min at 4◦C to remove cell debris, and the supernatants were
used for the assay. The viral titers were calculated according
to the method of Reed and Muench (20) and expressed as
log10 TCID50/ml.

Statistical Analysis
Data are presented as the means ± standard deviations (SDs)
and represent at least three independent experiments. Significant
differences between two groups were assessed using the two-
tailed Student’s t-test, and differences among multiple groups
were assessed using one-way ANOVA followed by Bonferroni’s
correction (ANOVA/Bonferroni). The log-rank test was used
to analyze survival between two groups. P values <0.05 were
considered to be statistically significant. All analyses were
performed using GraphPad PRISM software (GraphPad).

RESULTS

PGA/Alum Complex Shows a High
Antigen-Loading Capacity With No
Cytotoxicity
To develop a potential adjuvant for future clinical applications,
we fabricated PGA/Alum by combining γ-PGA and alum, which
is composed of aluminum hydroxide (AH) and magnesium
hydroxide (MH). The size and morphology of the fabricated
PGA/Alum were measured using dynamic light scattering, TEM,
and SEM. Similar to alum, PGA/Alum exhibited an irregular
morphology with an average diameter of 1–2µm (Figures 1A,B),
which is consistent with the morphology of alum in a previous
report (21). As shown in Table 1, the hydrodynamic diameter of
PGA/Alum (1,294.67 ± 13.32 nm) was larger than that of alum
(1,066.2 ± 32.01 nm). The polydispersity index was 0.37 ± 0.03
for PGA/Alum and 0.31 ± 0.03 for alum, and was shown in the
mid-range of the index value from 0.08 to 0.7 (22). The zeta-
potential value of alum was −7.08 ± 0.91mV, while the value of
the PGA/Alum complex was −28.10 ± 1.49mV, which suggests
that γ-PGA was successfully conjugated to alum. To confirm the
chemical structures of γ-PGA, alum, and PGA/Alum, we used
FT-IR analysis (Figure 1C). In the γ-PGA spectrum, a broad peak
at∼3,446 cm−1 was attributed to N-H and O-H stretching, while
that at 1,631 cm−1 was attributed to the C=O stretching of the
carbonyl, as previously reported for γ-PGA (23). According to
the manufacturer’s description, the utilized alum is composed of
AH and MH with inactive stabilizers. In the alum spectrum, the
peaks at 3,697 and 3,446 cm−1 were attributed to the hydroxyl
groups of MH and AH, respectively, and those at 1,638 and
1,512 cm−1 were attributed to vibrations of the Mg-OH and
OH bonds, respectively, in the crystal structure (24–26). The
spectrum of PGA/Alum showed distinct peaks that corresponded
to alum and γ-PGA at 3,446 and 1,639 cm−1, respectively. Based
on the results of the FT-IR analysis, we confirmed that γ-PGA
and alum successfully formed a complex. We further examined
the cytotoxicity of PGA/Alum using BMDCs exposed to alum,
γ-PGA, or PGA/Alum for 24 h. As shown in Figure 1D, the
treatment of γ-PGA or PGA/Alum did not affect the cell viability,
whereas alum dose-dependently decreased the cell viability
as previously reported (21). Additionally, immunofluorescent
microscopic analysis showed that PGA/Alum was efficiently
taken up by BMDCs in vitro (Figure S1A). Production of IL-6
and IL-1β rapidly and transiently increased by PGA/Alum in the
injection sites by 6 h post-injection but declined almost to basal
levels by 24 h post-injection (Figure S1B). We further confirmed
the safety of PGA/Alum by measuring body temperature and
levels of inflammatory cytokines (IL-6 and TNF-α) in the
sera of the vaccinated mice at 6, 24, 48, 72, 96, and 120 h
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post-vaccination. The PGA/Alum-vaccine group showed no
significant change of body temperature compared with PBS or
vaccine groups (Figure S2A). The level of serum IL-6 was higher
in the PGA/Alum-vaccine and vaccine groups than PBS group at
6 h post-vaccination, but it maintained a basal level at 24 h post-
injection. Serum TNF-α level was not changed in PGA/Alum-
vaccine, vaccine, and PBS groups (Figure S2B). These results
support the safety of PGA/Alum after vaccination. To investigate
the antigen encapsulation efficiency, we mixed PGA/Alum with
OVA as a model protein antigen and used the BCA assay to
measure the amount of loaded OVA. Our results indicated that
PGA/Alum loaded significantly more OVA (2.144± 0.08 mg/ml)
than alum (1.603 ± 0.04 mg/ml) (Table 1). Taken together, our
results indicate that the PGA/Alum complex successfully form
under the utilized conditions and it shows a high antigen-loading
capacity without cytotoxicity.

PGA/Alum Significantly Enhances the
Activation and Antigen Presentation of
DCs in vitro
Because DCs are professional antigen-presenting cells (APCs)
that are responsible for the initiation of adaptive immunity (27),
we examined the effect of PGA/Alum on DC activation. After
immature BMDCs were prepared and stimulated with alum, γ-
PGA, or PGA/Alum for 24 h, the levels of pro-inflammatory
cytokines and various costimulatory molecules were analyzed via
ELISA and flow cytometry, respectively. As shown in Figure 2A,
the mean fluorescence intensities (MFIs) of costimulatory
molecules (CD40, CD80, and CD86) andMHC class II molecules
were substantially increased on the PGA/Alum-exposed BMDCs
compared to those treated with alum or γ-PGA. Similarly,
PGA/Alum-treated BMDCs produced higher levels of cytokines
(TNF-α, IL-6, IL-1β, and IL-12) than those stimulated with
alum or γ-PGA alone (P < 0.01) (Figure 2B). To investigate
the antigen uptake and degradation abilities of these cells,
we incubated BMDCs with FITC-OVA or DQ-OVA, which is
a self-quenching dye that emits green fluorescence upon the
degradation of OVA. Flow cytometry showed that the MFIs
of FITC-OVA or DQ-OVA were significantly higher in the
PGA/Alum-treated BMDCs than in those treated with PBS, alum,
or γ-PGA (Figure 2C), indicating that PGA/Alum substantially
increases the antigen-uptake ability of DCs.

Because γ-PGA has been reported to activate DCs via
TLR4 signaling (17), we prepared BMDCs from TLR4-
defective C3H/HeJ mice and used them to examine whether
PGA/Alum-induced DC activation is mediated by TLR4.
We observed a significantly lower level of TNF-α in BMDCs
from TLR4-defective C3H/HeJ mice than from wild-type
C3H/HeN mice following PGA/Alum treatment (Figure S3A).
Furthermore, PGA/Alum induced little IκBα phosphorylation
in TLR4-defective BMDCs, whereas the phosphorylation
in wild-type BMDCs was dose-dependently increased by
PGA/Alum (Figure S3B). Taken together, these results indicate
that PGA/Alum activates DCs through NF-κB signaling
via TLR4.

PGA/Alum Substantially Increases Antigen
Trafficking and Migration of
Antigen-Loaded DCs From Injection Sites
to Draining Lymph Nodes
The recruitment of DCs to the antigen injection site and
the migration of antigen-loaded DCs to dLNs are vital steps
in the induction of adaptive immunity and are important to
the efficacy of a vaccine. Accordingly, we used Alexa Fluor
647-conjugated OVA (Fluor-OVA) to examine the effect of
PGA/Alum on the recruitment of DCs and the migration of
antigen-loaded DCs. Mice were i.m. injected with Fluor-OVA
mixed with or without PGA/Alum, and flow cytometry was used
to enumerate the DCs in injected muscle tissues and dLNs.
Compared with the Fluor-OVA group, the number of DCs
(CD11c+MHC-II+) was significantly increased in the muscle
tissues of the PGA/Alum-Fluor-OVA group at 6 and 24 h post-
injection (Figure 3A). Notably, we observed ∼2-fold more DCs
in the muscle tissues of the PGA/Alum-Fluor-OVA group (13.3
± 2.2 × 103 cells/muscle) than in the Fluor-OVA group (5.5
± 0.7 × 103 cells/muscle) at 24 h post-injection. Importantly,
the number of antigen-loaded DCs (Fluor-OVA+CD11c+MHC-
II+) was increased in the dLNs of the PGA/Alum-Fluor-OVA
group compared to the Fluor-OVA group, particularly at 6 h
post-injection (12.5 ± 0.1 × 103 cells/LN for the PGA/Alum-
Fluor-OVA group and 7.1 ± 2.5 × 103 cells/LN for the Fluor-
OVA group) (P < 0.05) (Figure 3B). The fluorescent intensity
of Fluor-OVA and the accumulation of CD11c+MHC-II+ cells
increased in both the injected muscle tissues and dLNs of the
PGA/Alum-Fluor-OVA group at 6 h post-injection (Figure S4A).
We also observed increased numbers of neutrophils and
monocytes in the injected muscles of the PGA/Alum-Fluor-
OVA group compared with the Fluor-OVA group at 3, 6, and
24 h post-injection (Figure S4B). Compared to other groups,
the PGA/Alum-Fluor-OVA group had significantly higher DC
numbers in injected muscle tissues and dLNs (Figure 3C)
and higher antigen-loaded DCs numbers in dLNs (Figure 3D)
at 24 h post-injection.

To assess the antigen delivery activity of PGA/Alum, we
performed in vivo imaging of the antigen trafficking by
PGA/Alum from the injection site to the dLNs using OVA
with an NIR fluorescence imaging system. IRDye800-labeled
OVA (OVA-IR800) alone or combined with alum, γ-PGA, or
PGA/Alum were subcutaneously (s.c.) injected into the right
forepaw pad of C57BL/6 mice, and in vivo fluorescent signals
were observed at 1, 3, 6, 24, and 48 h post-injection. As
shown in Figure 3E, the fluorescent intensities were significantly
higher in the dLNs of the mice treated with PGA/Alum-
mixed OVA-IR800 than in those of the mice exposed to OVA-
IR800 alone or mixed with alum or γ-PGA at 6, 24, and
48 h post-injection. Notably, the sustained fluorescent signal
was observed in the dLNs of the PGA/Alum-mixed OVA-
IR800-treated mice until 48 h post-administration, but not in
other groups, which implies that PGA/Alum acts as an efficient
antigen carrier.

As chemokines modulate the migration of immune cells to
dLNs (28–30), levels of various chemokines (MIP-1α, MIP-1β,
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FIGURE 2 | PGA/Alum significantly induces activation and antigen presentation of DCs. Immature BMDCs were stimulated with alum, γ-PGA, and PGA/Alum for 24 h.

(A) Expression levels of CD40, CD80, CD86, and MHC-II were analyzed by flow cytometry, and (B) the levels of cytokines in the culture supernatants were determined

by ELISA. (C) Immature BMDCs were incubated with either FITC-OVA or DQ-OVA plus PBS or alum, γ-PGA, and PGA/Alum for 1 or 5 h, respectively. Fluorescent

intensity was measured via flow cytometry. The numbers in the histograms indicate MFI values. The data are representative of three independent experiments.

Statistically significant differences were analyzed via ANOVA/Bonferroni; *P < 0.05, **P < 0.01, and ***P < 0.001.

and MCP-1) were substantially enhanced in the homogenates
from the muscle tissues of the PGA/Alum-OVA group, but not
in those of the OVA group (P < 0.001) (Figure S5A). Increased
chemokine levels were also observed in the dLN homogenates of

the PGA/Alum-OVA group, but not in those of the OVA group.
We additionally examined the expression of CCR7 responsible
for migration of DCs from the antigen exposure site to dLNs (31).
As expected, the expression of CCR7 was nearly 3-fold higher on
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FIGURE 3 | PGA/Alum efficiently increases antigen trafficking from the injection site to dLNs. (A,B) C57BL/6 mice (n = 3 per group) were i.m. immunized with 5 µg

Fluor-OVA mixed with 800 µg PGA/Alum. At 3, 6, 24, and 48 h post-immunization, the number of DCs (gated as CD11c+MHC-II+ cells) per injected muscle and dLN

(A) and Fluor-OVA-loaded DCs (gated as Fluor-OVA+CD11c+MHC-II+ cells) per dLN (B) were analyzed via flow cytometry. (C,D) C57BL/6 mice (n = 3 per group)

were i.m. immunized with 5 µg Alexa Fluor 647-conjugated OVA alone or combined with 400 µg alum, 400 µg γ-PGA, or 800 µg PGA/Alum. At 24 h

post-immunization, the number of DCs per injected muscle and dLN (C) and Fluor-OVA-loaded DCs per dLN (D) were analyzed via flow cytometry. (E) Mice (n = 3

per group) were s.c. injected into the right forepaw pad with 25 µg OVA-IR800 alone or combined with 400 µg alum, 400 µg γ-PGA, or 800 µg PGA/Alum. At the

indicated time points, in vivo NIR fluorescence signals were acquired using IVIS. Fluorescent intensities of each region of interest were quantitatively measured using

ImageJ software (circle: axillary lymph node). The data are representative of three independent experiments. Statistically significant differences were identified via

t-test; *P < 0.05, **P < 0.01, ***P < 0.001. N.D, not-detected.

the PGA/Alum-exposed DCs than on those exposed to alum or
γ-PGA (Figure S5B). Also, the mice administered PGA/Alum-
mixed Fluor-OVA had significantly higher expression of CCR7
on the DCs in the dLNs than other groups (Figure S5C).

Collectively, these results indicate that PGA/Alum enhances
the recruitment of DCs to injection sites and the migration of
antigen-loaded DCs to dLNs through increases of chemokine
production and CCR7 expression.
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PGA/Alum Enhances OVA-Specific
Humoral and Cellular Immune Responses
To evaluate the effect of PGA/Alum on antigen-specific humoral
and cellular immunity, we i.m. injected mice with OVA mixed
with alum (alum-OVA), γ-PGA (γ-PGA-OVA), or PGA/Alum
(PGA/Alum-OVA) on days 0, 14, and 28. Two weeks after
the last immunization, ELISA was employed to measure the
levels of OVA-specific Abs in the sera of the immunized
mice. Our results showed that the levels of IgG, IgG1, and
IgG2b significantly increased in the sera of the PGA/Alum-
OVA group compared with those of the OVA, alum-OVA,
and γ-PGA-OVA groups (P < 0.001) (Figure 4A; Figure S6).
This finding indicates that PGA/Alum increases antigen-specific
humoral immunity.

We subsequently examined the ADCC of natural killer (NK)
cells, which is crucial for eliminating Ab-bound target cells
(e.g., virus-infected cells) (32, 33). To investigate the effect of
PGA/Alum on the ADCC activity of NK cells, we examined
the CD107a expression and the IFN-γ production of NK cells,
as well as target cell cytolysis using B16mOVA cells (OVA-
expressed B16F10 cells). The activation of NK cells was robustly
enhanced by co-culture with a mixture of B16mOVA cells
and the sera of the PGA/Alum-OVA group (5.5 ± 1.2% for
IFN-γ+CD107a+ and 39.6 ± 4.6% for CD107a+) compared
with the OVA (1.2 ± 0.1% for IFN-γ+CD107a+ and 25.9
± 1.6% for CD107a+), γ-PGA-OVA (1.2 ± 0.3% for IFN-
γ+CD107a+ and 25.8 ± 2.4% for CD107a+), and alum-
OVA (2.1 ± 0.1% for IFN-γ+CD107a+ and 27.3 ± 1.9% for
CD107a+) groups (Figure 4B; Figure S7A). The percentage of
cytotoxicity was also higher in the PGA/Alum-OVA group (60
± 5%) than in the γ-PGA-OVA (50 ± 4%), alum-OVA (50
± 8%), or OVA (41 ± 3%) groups (Figure S7B). In addition,
we investigated whether PGA/Alum enhances cellular immune
responses specific to OVA257−264 peptides which are MHC class
I-restricted peptide epitope of OVA. ELISPOT assay revealed that
the number of OVA257−264-specific IFN-γ-secreting cells was
significantly higher in the PGA/Alum-OVA group than in the
OVA or alum-OVA groups (P < 0.01) (Figure 4C). Moreover,
flow cytometry showed that the frequency of OVA257−264

tetramer-positive CD8+ T cells was significantly increased
in PGA/Alum-OVA compared to other groups (P < 0.01)
(Figure 4D). These findings indicate that PGA/Alum enhances
antigen-specific cellular immune responses, such as ADCC and
CTL activities.

As immunological memory is a critical goal for effective
vaccination, we examined the long-term immunity of mice
treated with OVA, alum-OVA, γ-PGA-OVA, or PGA/Alum-
OVA. As shown in Figure 4E, on day 180 after the final
immunization, the PGA/Alum-OVA group showed a
significantly higher IgG level than the other groups (P < 0.01).
Notably, the increased IgG level of the PGA/Alum-OVA group
was similar on days 14 and 180 after the final immunization,
whereas those of the alum-OVA and γ-PGA-OVA groups
had decreased to the baseline level by day 180 after the final
immunization. The frequency of OVA257−264-specific IFN-γ-
secreting cells was also higher in the PGA/Alum-OVA group
than in the groups treated with OVA or alum-OVA (P < 0.01)

(Figure 4F). The PGA/Alum-OVA group also exhibited higher
IgG1 and IgG2b levels (Figure S8A), greater percentages of both
plasma cells and memory B cells (Figure S8B), more ADCC
activity (Figure S8C), and a higher frequency of OVA323−339

peptide-specific IL-4-secreting cells (Figure S8D) on day 180
after the final immunization. Taken together, these results
demonstrate that PGA/Alum could be a potential adjuvant
capable of enhancing humoral and cellular immunity and
inducing persistent long-term immunity.

PGA/Alum Substantially Enhances the
Protective Efficacy of Influenza Vaccine
Antigen
To evaluate whether PGA/Alum improves the protective efficacy
of a vaccine antigen, we investigated the effect of PGA/Alum
on the immunogenicity and efficacy of pH1N1 split vaccine
antigen. Mice were i.m. immunized with the pH1N1 split vaccine
antigen (A/California/7/2009 NYMC X-179A H1N1) mixed
with PGA/Alum (PGA/Alum-vaccine), alum (alum-vaccine),
or γ-PGA (γ-PGA-vaccine) on days 0 and 14. The mice
immunized with vaccine antigen alone or PBS were used as
negative controls. Fourteen days after the final immunization,
the immunized mice were intranasally (i.n.) challenged with
a lethal dose (50 LD50) of pH1N1 virus (A/California/04/09).
As shown in Figures 5A,B, the mice of the PGA/Alum-vaccine
group showed 100% survival without considerable body weight
loss for 14 days after this viral challenge. In contrast, the
mice immunized with alum-vaccine and γ-PGA-vaccine showed
severe body weight loss and were only partially protected,
exhibiting survival rates of 16.7 and 33.3%, respectively. The
mice immunized with PBS or vaccine alone had 0% survival.
As viral clearance from the infected lung is a crucial indicator
of the protective efficacy of a vaccine, we determined viral
titers in lung homogenates on days 3 and 7 post-infection. As
expected, the PGA/Alum-vaccine group exhibited viral clearance
on day 7 post-challenge, whereas the other groups continued to
exhibit high viral titers at this point (Figure 5C). Our findings
indicate that PGA/Alum substantially enhances the protection
efficacy of the pH1N1 split vaccine antigen against pH1N1
virus challenge.

To confirm the adjuvant effect of PGA/Alum for the influenza
vaccine, we examined IgG titers, hemagglutination-inhibition
(HI) titers, ADCC, and CTL activities. As shown in Figure 5D,
the titers of influenza antigen-specific IgG, IgG1, and IgG2b were
higher in the sera obtained from the mice of the PGA/Alum-
vaccine group than those obtained from the other groups. The
HI titers were also substantially increased in the sera of the
mice from the PGA/Alum-vaccine group (359 ± 180 geometric
mean titer [GMT]) compared to those of the other groups (90
± 45 GMT for alum-vaccine, 9 ± 6 GMT for γ-PGA-vaccine,
20 ± 14 GMT for vaccine, and 1 ± GMT for PBS) (Figure 5E),
which indicates that PGA/Alum confers neutralizing humoral
immunity. Next, whenADCC activity was analyzed bymeasuring
lysis of pH1N1-infected MDCK cells through co-culture of
NK cells and the sera Abs of immunized mice, the sera Abs
of PGA/Alum-vaccine group had significantly higher ADCC
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FIGURE 4 | PGA/Alum enhances OVA-specific humoral and cellular immune responses. C57BL/6 mice (n = 5 per group) were i.m. immunized with 10 µg OVA

protein combined with 400 µg alum, 400 µg γ-PGA, or 800 µg PGA/Alum on days 0, 14, and 28. Fourteen (A–D) and 180 (E,F) days after the last immunization, sera

and splenocytes were obtained from the immunized mice. (A) Serum levels of OVA-specific IgG were measured via ELISA. (B) OVA-coated plates were incubated with

heat-inactivated serum samples (1 h at 56◦C), washed, and then further incubated for 5 h with naïve NK cells in the presence of PE-conjugated anti-CD107a Ab,

monensin, and brefeldin A. The cells were fixed, permeabilized, and stained with APC-conjugated anti-IFN-γ Ab. Activation of NK cells was assessed by flow

cytometry. (C) Splenocytes were stimulated with OVA257−264 peptide for 3 days, and the number of OVA257−264-specific IFN-γ spot forming units (SFUs) was

determined by an ELISPOT assay. (D) Frequency of OVA257−264 tetramer+ CD8+ T cells was determined in the splenocytes using flow cytometry. (E) The level of

OVA-specific IgG at days 14 and 180 post-immunization and (F) the number of OVA257−264-specific IFN-γ SFUs on day 180 were determined by ELISA and an

ELISPOT assay, respectively. Data are representative of three independent experiments with similar results. Statistically significant differences were identified via

ANOVA/Bonferroni; *P < 0.05, **P < 0.01, and ***P < 0.001.

activities (58.2 ± 0.5%) compared with those of the other
groups (18.5 ± 0.2% for alum-vaccine, 32.8 ± 3.6% for γ-
PGA-vaccine, 14.7 ± 3.5% for vaccine, and 8.2 ± 3.1% for
PBS) (Figure 5F). Moreover, ELISPOT assay showed that the
mice of the PGA/Alum-vaccine group yielded significantly more
pH1N1 virus-specific IFN-γ-secreting cells than the other groups

(P < 0.05) (Figure 5G). The percentages of IFN-γ-secreting
CD4+ and CD8+ T cells were also higher in the PGA/Alum
group than in the other groups (Figure S9). Taken together, our
results suggest that PGA/Alum enhances the protective efficacy
of the influenza vaccine antigen bymodulating influenza antigen-
specific humoral and cellular immunity.
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FIGURE 5 | PGA/Alum improves the protective efficacy of influenza vaccine antigen. C57BL/6 mice (n = 6 per group) were i.m. immunized with the 0.05 µg pH1N1

split vaccine antigen combined with 400 µg alum, 400 µg γ-PGA, or 800 µg PGA/Alum on days 0 and 14. Two weeks after the final administration, the mice were i.n.

challenged with 50 LD50 pH1N1 virus. (A) Body weight changes and (B) survival rates were monitored for up to 14 days post-infection (dpi). Each data point

represents an average percentage. Statistically significant differences were identified via the log-rank test. (C) Lung homogenates of each group were obtained at 3

and 7 dpi. Viral titers were determined using the pooled lung homogenates in duplicate and are expressed as log10TCID50/ml (
†
, virus clearance). (D) Sera (n = 5 per

group) were collected before the viral challenge, and endpoint titers of vaccine-specific Abs are expressed as the mean ± SD. (E) Serum HI titers against a pH1N1

virus were measured. The lines indicate geometric means, and negative titers were assigned a value of 5 for calculation. (F) The pH1N1-infected MDCK cells were

incubated with naïve NK cells in the presence of the sera from immunized mice, and cytotoxicity was assessed by LDH assay. (G) The number of influenza virus

antigen-specific IFN-γ-secreting splenocytes was determined via ELISPOT assays. Data are representative of at least three independent experiments. Statistically

significant differences were identified by ANOVA/Bonferroni; *P < 0.05, **P < 0.01, and ***P < 0.001.

PGA/Alum Substantially Improves the
Cross-Reactive Immunity of Influenza
Vaccine Antigen
Given our observations that PGA/Alum increased the ADCC
and CTL activities responsible for cross-reactivity against
heterologous influenza virus, we speculated that PGA/Alum
might enhance the cross-protective efficacy of pH1N1 vaccine
antigen. To evaluate the impact of PGA/Alum on this cross-
reactivity, mice were immunized the pH1N1 split vaccine antigen
mixed with alum, γ-PGA, or PGA/Alum and then challenged
with A/Puerto Rico/8/34 (H1N1). Body weight decreased
similarly across all groups until 6 days after the viral challenge,
but was recovered faster by the PGA/Alum-vaccine group
compared to the other groups (Figure 6A). Importantly, all mice
of the PGA/Alum-vaccine group showed 100% survival, whereas
only partial survival (40%) was observed in the alum-vaccine

and γ-PGA-vaccine groups (Figure 6B). To ascertain the effect

of PGA/Alum on cross-protective immunity, we challenged the

vaccinated mice with heterosubtypic influenza A virus, H3N2.

Mice of the PGA/Alum-vaccine group efficiently recovered the

body weight lost following viral challenge and showed 80%

survival. In contrast, only 20% of mice in the alum-vaccine or
γ-PGA-vaccine groups survived, and no survival was seen in the
PBS or vaccine-alone groups (Figures 6C,D).

To better understand the mechanisms underlying
PGA/Alum-enhanced cross-reactive protection, we examined
cross-reactive ADCC and CTL activities. Our ADCC assay
revealed that the cytolysis of heterologous influenza virus (H1N1
or H3N2)-infected MDCK cells was significantly increased
by co-culture with naïve NK cells and serum Abs obtained
from the PGA/Alum-vaccine group (25.6 ± 1.9% for H1N1-
infected MDCK cells and 31.1 ± 1.3% for H3N2-infected
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FIGURE 6 | PGA/Alum enhances cross-protective efficacy of pH1N1 vaccine antigen. C57BL/6 mice (n = 5 per group) were vaccinated i.m. with 0.5 µg the pH1N1

split vaccine antigen together with 400 µg alum, 400 µg γ-PGA, or 800 µg PGA/Alum on days 0 and 14. Two week after the last immunization, the mice were i.n.

challenged with 10 LD50 H1N1 virus (A/Puerto Rico/8/1934) (A,B) or 10 LD50 H3N2 viruses (C,D). Body weight and survival rates were monitored for 14 days.

(E,F) Before viral challenge, sera and splenocytes were harvested from the immunized mice. (E) ADCC activity was determined by measuring lysis of H1N1- or

H3N2-infected MDCK cells by co-culture of sera from the vaccinated mice and naïve NK cells. (F) Splenocytes were stimulated with UV-inactivated H1N1 or

UV-inactivated H3N2 for 3 days, and the number of IFN-γ+ SFUs was determined by an ELISPOT assay. Statistically significant differences were identified by one-way

ANOVA/Bonferroni or log-rank test (for survival); *P < 0.05 and **P < 0.01.

MDCK cells), but not serum Abs obtained from mice exposed
to alum-vaccine (6.9 ± 1.3% and 15.1 ± 1%, respectively),
γ-PGA-vaccine (5.2 ± 1.2 and 11.1 ± 3.5%, respectively),
vaccine alone (6.0 ± 0.8 and 10.7 ± 2.9%, respectively), or
PBS (7.5 ± 0.9 and 11.8 ± 2.9%, respectively) (Figure 6E).
To clearly elucidate Ab-mediated contribution of PGA/Alum-
enhanced heterosubtypic cross-protection, we further performed
in vivo protection assay as previously described (34, 35).
Heat-inactivated sera from the immunized mice were mixed

with H3N2 virus, and then the mixture was i.n. challenged to
Balb/c mice. As shown in Figure S10, at day 14 post-infection,
mice exposed to the mixture of H3N2 virus and PGA/Alum-
vaccine-immunized sera had 20% survival rate, whereas all
mice of other groups died (0% survival rate), indicating that
PGA/Alum-enhanced Ab production may partially contribute
to heterosubtypic cross-protection. As the ADCC-mediating
Abs are thought to recognize the highly conserved stalk domain
of hemagglutinin (HA) on the influenza virus, thereby leading
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to cross-protection (36), we tested ADCC-mediated NK cell
activation by incubating the serum Abs with the HA stalk
protein. Our results revealed that HA stalk protein-preincubated
serum Abs from the PGA/Alum-vaccine group significantly
increased the percentages of IFN-γ+ NK and CD107+IFN-γ+

NK cells (Figure S11), indicating that the PGA/Alum-induced
Abs effectively bind to the HA stalk domain and subsequently
activate NK cells. Additionally, we performed ELISAs to measure
antibodies against the HA stalk using a recombinant HA stalk
protein from A/Puerto Rico/8/1934 (H1N1) which share 94%
identity to A/California/04/09 (pH1N1) and 50% identity to
A/Hong Kong/1/68 (H3N2) virus. HA stalk-specific IgG level
was significantly higher in the sera from the PGA/Alum-vaccine
group than those in other groups, although the pH1N1 vaccine
alone group very little elicited H1 HA stalk-specific IgG level
(Figure S12A). We further tested H3 ELISA using a recombinant
HA1 protein of H3N2 virus to investigate whether cross-reactive
neutralizing Abs contribute to cross-protection against H3N2
virus. None of the pH1N1 vaccine antigen-immunized groups
elicited H3 HA1-specific IgG titers (Figure S12B). Moreover,
the sera Abs from all groups had no cross HI reactivity against
heterosubtypic H3 virus (Figure S12C). These results suggest
that PGA/Alum elicits HA stalk Abs but not cross-reactive
neutralizing Abs. Furthermore, an ELISPOT assay revealed that
PGA/Alum increased cross-reactive CTL activity. As shown
in Figure 6F, the number of H1N1-specific IFN-γ-secreting
splenocytes was at least 2-fold higher in the PGA/Alum-vaccine
group (50 ± 17 SFUs) compared to the other groups (23 ± 8
SFUs for γ-PGA-vaccine, 9 ± 6 SFUs for alum-vaccine, 6 ± 7
SFUs for vaccine alone, and 3 ± 2 SFUs for PBS). Moreover,
the number of H3N2-specific IFN-γ-secreting cells was at least
3-fold higher in the PGA/Alum-vaccine group (33 ± 10 SFUs)
than in the other groups (11 ± 3 SFUs for γ-PGA-vaccine, 4
± 2 SFUs for alum-vaccine, 6 ± 4 SFUs for vaccine alone, and
2 ± 1 SFUs for PBS) (P < 0.01). Collectively, these findings
demonstrate that PGA/Alum could enhance cross-protection by
improving cross-reactive ADCC and CTL activities.

DISCUSSION

Currently, researchers are seeking to develop new adjuvants that
increase vaccine-induced protection against infectious diseases.
The use of TLR agonists as vaccine adjuvants is considered a
promising means to improve vaccine efficacy, because TLR4
activates innate immune responses and subsequently augments
adaptive immune responses by enhancing Th1-biased responses
(14, 15). The combination of a TLR4 agonist with a Th2 adjuvant
(e.g., alum) could be a beneficial strategy for tailoring immune
responses through synergistic effects. The value of this strategy
was emphasized by the recent approval for human use of AS04,
which comprises MPL (a TLR4 agonist) absorbed on alum
(37, 38). However, the purification of MPL requires extensive
chemical modification of biologically derived LPS. There is a
large batch-to-batch variability, the cost is prohibitive, and there
are safety concerns. To address these limitations, we set out
to replace MPL with the safe and cost-effective biomaterial,

γ-PGA, to generate the new combination of PGA/Alum and
demonstrated its efficacy as an adjuvant, as summarized in
Figure 7. We propose that the synergistic effect of PGA/Alum
is mediated mainly by γ-PGA-induced innate immune activity
plus alum-induced depot effect. γ-PGA activates innate immune
responses including increases of costimulatory molecule
expression and cytokine production of APCs. Concomitantly,
alum induces vaccine antigen depots capable of enhancing
antigen presentation by activating APCs. Also, antigen loading
capacity of PGA/Alum may be enhanced by biopolymeric
property of γ-PGA and antigen absorption capacity of alum. The
combined effect of γ-PGA and alum could robustly provoke Th1
immune responses to enhance CTL activity and highly increase
humoral immune responses, thereby leading to improved
vaccine efficacy.

An ideal vaccine adjuvant should have a broad-spectrum of
safety. We observed that PGA/Alum had very little cytotoxic
effect on cells in vitro, although alum itself induced cytotoxicity.
We speculate that the combination of γ-PGA with alum may be
able to block the cytotoxicity of alum. It has been reported that
immunization of MF59-adjuvanted influenza vaccine induced
adverse reaction (e.g., redness and swelling at the injection
site) compared to unadjuvanted vaccine in children (39, 40).
By visual observation, administration of PGA/Alum induced
no redness and swelling at the injection site (data not shown).
Especially, no significant changes of body temperature as well
as inflammatory cytokines were observed in the sera of the
vaccinated mice. These findings suggest that PGA/Alum may
be safe to use. In addition, γ-PGA can be produced on an
industrial scale without complex requirements, and thus does
not have the limitations associated with the complicated process
required to manufacture MPL. A side-by-side comparison of
adjuvants includingMF59 and AS04 is important to elucidate the
adjuvant effect of PGA/Alum. Unfortunately, we cannot compare
the adjuvant effect of AS04 and PGA/Alum, because AS04 is
unavailable for research use. In the case of MF59, we made
squalene-based oil-in-water nano-emulsion with a formulation
similar to MF59 (MF59-like adjuvant). In influenza vaccine
experiments, PC nanogel [γ-PGA/chitosan nanogel adjuvant
published in (18)] had similar protective efficacy with MF59-
like adjuvant but lower than that of PGA/Alum (unpublished
data). We also observed that MF59-like adjuvant did not induce
cell-mediated immunity against the influenza vaccine antigen
by IFN-γ ELISPOT assay but PGA/Alum robustly enhanced
cell-mediated immunity (unpublished data). Therefore, we
imply that PGA/Alum could act as a more potent adjuvant
than MF59.

Activated DCs critically contribute to antigen processing
and presentation. The activation of DCs and their delivery
of antigen to LNs are crucial for the ability of a vaccine to
effectively initiate innate and adaptive immune responses (41).
Our results showed that PGA/Alum induces DC activation
through TLR4 signaling, as assessed by increases in the levels
of costimulatory molecules and pro-inflammatory cytokines,
as well as enhancement of antigen processing. PGA/Alum
robustly enhanced both antigen trafficking and the migration of
antigen-loaded DCs from the injection sites to dLNs, which is
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FIGURE 7 | Schematic illustration of the fabrication of PGA/Alum and its action mechanism. PGA/Alum induces the innate immunity such as antigen uptake and

delivery by DCs to lymph nodes, thereby leading to the enhanced antigen-specific cellular and humoral immunities. Consequently, PGA/Alum improves the

cross-reactive immunity of influenza vaccine antigens against heterologous influenza virus, with increases of CTL and ADCC activities.

consistent with previous findings obtained with the MPL-based
adjuvants, AS04 and AS01 (37, 38). Our immunofluorescent
microscopic analysis further revealed that PGA/Alum increased
antigen accumulation in the subcapsular, cortical, and medullary
sinus regions of dLNs, indicating that antigen presentation in
LNs could be facilitated by PGA/Alum. Circulating immature
DCs reach inflamed tissues by following the chemoattractant
gradient to uptake antigens and then migrate to dLNs to initiate
adaptive immunity (29). Thus, it is relevant that PGA/Alum
was found to robustly enhance not only the recruitment of
DCs to injection sites and dLNs but also the migration of
antigen-loaded DCs to dLNs. Consistent with previous studies
in which mice were injected with other adjuvants, including
AS04, AS01, and AS03 (37, 38, 42), PGA/Alum increased the
levels of chemokines (MIP-1α, MIP-1β, and MCP-1) at injection
sites and dLNs. We also found that the expression of CCR7
on DCs, which is responsible for their migration to LNs, was
increased by PGA/Alum. Notably, this has not been reported for
AS04. Thus, the ability of PGA/Alum to enhance DC migration
by increasing chemokine levels and CCR7 expression might
provide insight into the action mechanisms of this vaccine
adjuvant. Together, our findings demonstrate that PGA/Alum
can act as a potent adjuvant capable of activating innate
immune responses, including DC activation, DC migration, and
antigen trafficking.

Our proof-of-concept experiments demonstrated that
PGA/Alum efficiently enhances the humoral and cellular
immune responses specific to both OVA (a model antigen)

and the influenza vaccine antigen (a vaccine antigen of a
representative infectious disease). Importantly, we found that
PGA/Alum significantly increased ADCC, which has recently
been shown to induce effective protection against various
viruses, including Ebola (9), human immunodeficiency virus
(43, 44), Epstein-Barr virus (45), and influenza viruses (8, 32).
Our results from an ADCC assay performed using mouse serum
revealed that PGA/Alum enhanced ADCC activity. As ADCC
is known to be initiated by the IgG2 subclass in mice (32), it
is notable that we observed a significant induction of IgG2b
in the sera of mice immunized with the antigen mixed with
PGA/Alum. Because γ-PGA induces Th1 responses (17, 46–48),
which are associated with the induction of IgG2b (49), our
results suggest that γ-PGA acts synergistically with alum in
PGA/Alum to elevate the production of IgG2b and thereby
enhance ADCC.

Influenza A viruses exist as several subtypes, and new
viruses can emerge due to point mutations (e.g., antigenic
drift) or genetic reassortments between different viral subtypes
(e.g., antigen shift), potentially leading to influenza epidemics
and pandemics (50). The cross-reactivity of an influenza
vaccine is essential for its ability to broadly protect against
antigenically drifted influenza viruses. Our present results
reveal that PGA/Alum enhanced the protective efficacy of the
influenza pH1N1 vaccine against homologous virus. Importantly,
PGA/Alum-adjuvanted pH1N1 vaccine exhibited improved
cross-protection against both heterologous influenza virus (e.g.,
H1N1) and heterosubtypic virus (e.g., H3N2). In contrast,
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cross-protection was not observed in mice immunized with
alum- or γ-PGA-adjuvanted pH1N1 vaccine. As cross-reactive
immunity is primarily mediated by CTLs, which recognize
broadly conserved epitopes shared by influenza A virus subtypes
(50), our results indicate that PGA/Alum-adjuvanted pH1N1
vaccine drastically enhanced cross-reactive CTL activities against
H1N1 and H3N2 viruses. In this experiment, we used a
reassortant H3N2 virus carrying HA and NA genes from the
A/Hong Kong/1/68 and internal genes from A/Puerto Rico/8/34.
Cell mediated immunity against conservation of internal
proteins may contribute to PGA/Alum-enhanced heterosubtypic
protection. In addition, PGA/Alum enhanced ADCC, which is
considered to be the crucial function of non-neutralizing Abs
in cross-reactive immunity, and pH1N1 vaccine-PGA/Alum-
induced sera Abs had cross-reactive ADCC activity against
H1N1 and H3N2 viruses. Consistent with previous reports
showing that ADCC-mediating Abs bind to the conserved
HA stalk domain of the influenza virus (10, 51), PGA/Alum
increased the level of the HA stalk Abs but not cross-
reactive neutralizing Abs of heterologous virus (Figure S12).
In vivo cross-protection assay conferred that PGA/Alum-
enhanced heterosubtypic cross-protection may be mainly cell-
mediated and partially by humoral immunity, similar with
a previous report (Figure S10) (52). Thus, PGA/Alum might
help improve the protective efficacy and cross-protection of the
influenza vaccine, and its use as an adjuvant could help resolve
the limitations of the current influenza vaccines. Given that
ADCC and CTL activities have been suggested to contribute to
protecting elderly individuals against influenza virus infection
(53, 54), our results suggest that PGA/Alum could be used
as a vaccine adjuvant for older people with dysregulated
immune responses. Taken together, our findings indicate that
PGA/Alum may be a promising candidate as a vaccine adjuvant
for preventing diseases caused by influenza viruses and other
infectious agents.
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T cell immunotherapy is a concept developed for the treatment of cancer and infectious

diseases, based on cytotoxic T lymphocytes to target tumor- or pathogen-specific

antigens. Antigen-specificity of the T cell receptors (TCRs) is an important selection

criterion in the developmental design of immunotherapy. However, off-target specificity

is a possible autoimmunity concern if the engineered antigen-specific T cells are

cross-reacting to self-peptides in-vivo. In our recent work, we identified several hepatitis

E virus (HEV)-specific TCRs as potential candidates to be developed into T cell therapy

to treat chronic hepatitis E. One of the identified TCRs, targeting a HLA-A2-restricted

epitope at the RNA-dependent RNA polymerase (HEV-1527: LLWNTVWNM), possessed

a unique multiple glycine motif in the TCR-β CDR3, which might be a factor inducing

cross-reactivity. The aim of our study was to explore if this TCR could cross-recognize

self-peptides to underlay autoimmunity. Indeed, we found that this HEV-1527-specific

TCR could also cross-recognize an apoptosis-related epitope, Nonmuscle Myosin

Heavy Chain 9 (MYH9-478: QLFNHTMFI). While this TCR had dual specificities to

both viral epitope and a self-antigen by double Dextramer binding, it was selectively

functional against HEV-1527 but not activated against MYH9-478. The consecutive

glycine motif in β chain may be the reason promoting TCR binding promiscuity to

recognize a secondary target, thereby facilitating cross-recognition. In conclusion,

candidate TCRs for immunotherapy development should be screened for autoimmune

potential, especially when the TCRs exhibit unique sequence pattern.

Keywords: CD8+ T cells, cross-reactivity, T cell therapy, immunotherapy, T cell receptor (TCR), TCR redirection,

hepatitis E virus (HEV)
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INTRODUCTION

T cell immunotherapy was initially developed as a cancer
treatment in late stage melanoma, to target tumor-associated
antigens with the aim to control or eliminate tumor growth
(1). This approach is formulated based on immune-mediated T
cell responses, more specifically, the involvement of cytotoxic
T lymphocytes harboring T cell receptors (TCR) that have
specificities to target tumor antigens. Lately, the principle of T
cell immunotherapy has been applied to treat infectious diseases,
keeping the same fundamental concept to target pathogenic
antigens by adoptive transfer of effector CD8+ T cells expressing
antigen-specific TCRs. The immune responses triggered by
adoptive transfer of antigen-specific T cells are proven effective
in clinical applications, as reconstituted cellular immunity
prevented human cytomegalovirus (CMV) (2), Epstein–Barr
virus (EBV) (3), and adenovirus (4) infections in patients
who underwent allogenic hematopoietic stem cell transplant.
Recently, hepatitis B virus (5, 6) and human papilloma virus (7, 8)
were also investigated for virus-associated malignancies to which
cure is not available.

We intended to explore the aptitude of T cell therapy in
treating chronic hepatitis E, using hepatitis E virus (HEV)-
specific CD8+ T cells, since robust and diverse CD8+ T cell
responses are crucial in viral control (9). We aimed to address
an unmet need in chronic hepatitis E, as there is currently no
approved therapy (10), and off-label treatments are associated
with severe side effects. We proposed that immunotherapy based
on engineered T cells targeting HEV could be a novel approach to
treat persistent HEV infection in solid organ transplant patients
who are immunosuppressed.

Our previous work had identified promising HEV-specific
TCR candidates in healthy donors (whomay have recovered from
previous HEV infections) and patients with acute hepatitis E for
T cell-based therapy (11). Interestingly, one of the HEV-specific
T cell population isolated from a healthy donor had a TCR
repertoire comprised of two α chains and one β chain containing
multiple glycines.

This unique TCR repertoires prompted us to scrutinize its
potential cross-reactive responses because oligoclonal TCR with

dual alpha was first described by Padovan et al. in the early
1990 (12), whereby each of the α chain could pair up with
the single β to form two independent TCRs (e.g., α1β and
α2β) on the same T cell, each with their respective target
peptides. Hence, dual alpha (accordingly, dual specificities) could
contribute to autoimmune phenotype (13, 14). In addition, it
has been suggested that multiple glycines motif in the TCR
may induce its binding promiscuity to another epitope, thus
facilitating cross-reactivity (15).

In the clinical setting of immunotherapy using T cells
expressing target-specific TCR, cross-reactivity of TCR could be
an autoimmune concern due to probable off-target specificity
in-vivo. One example is the cross-reactive MAGE A3 tumor
antigen-specific TCR, recognizing a second target (a cardiac
peptide), triggering cardiac arrest in two clinical trial patients,
both of whom died within 1 week of receiving the infusion of
TCR-transduced T cells (16). Further investigation led to direct

evidence of such cross-reactivity, which was not possible to be
anticipated using pre-clinical models (e.g., cell lines and mice
model), due to the unique expression profile of this cardiac
peptide in mature human heart (17).

On the contrary, our proposal of HEV-specific TCR is
targeting a non-self/viral peptide. Nevertheless, we implored
to investigate its autoreactive potential before advancing it for
further development, as a precaution.

Screening the entire ligandome of self-peptides that this TCR
might recognize is a daunting task. Therefore, we focused on
specific groups of self-antigens that are related to viral infection.
Rawson et al. discussed how effector T cells destined to undergo
programmed cell death (apoptosis) are cleaved by proteolytic
enzymes called caspases (18) could induce autoimmunity when
some caspase-cleaved apoptotic products are cross-presented,
thereby priming auto-reactive T cells (19). Such model was used
to explain the disease pathogenesis of rheumatoid arthritis (20)
and multiple sclerosis (21). A second probable source of self-
antigens is derived from our hypothesis that HEV-specific T cells
would reside in the liver to target infected hepatocytes. If these T
cells were autoreactive, the condition would manifest in the form
of autoimmune hepatitis (AIH). In fact, we have documented a
higher HEV seroprevalence in AIH patients (22). Thus, epitopes
of liver enzyme cytochrome P4502D6 (CYP2D6) that are found
to be correlated to AIH disease progression were also included in
our screening panel (23).

In this project, we aimed to study the possible cross-reactivity
of a HEV-specific TCR repertoire that was proposed as a
candidate in T cell therapy in order to address the clinical concern
of off-target specificity affecting self-peptides.

RESULTS

HEV-Specific T Cell Receptor (TCR)
Repertoire With Unique α and β

Configuration
We recently identified in a healthy donor the HEV-specific
CD8+ T cells targeting RNA-dependent RNA polymerase in
Open Reading Frame 1 (RdRp in ORF1) of HEV genome,

HEV1527−1535 (denoted as HEV-1527 henceforth) with
prominent T cell responses upon peptide stimulation (11).
Figure 1A summarizes the discovery workflow of HEV-1527-
specific CD8+ T cells, which we proposed as a candidate
for T cell therapy. Briefly, CD8+ T cells isolated from a
cohort of nine healthy donors (D1 to D9) were expanded
in the presence of HEV overlapping peptide pools to screen
for HEV-specific CD8+ T cell epitopes. Donor D2 showed
strong immune responses against RdRp and the epitope was
consequently narrowed down to HEV-1527. Dextramer
bearing this epitope was synthesized to sort the HEV-
1527-specific CD8+ T cells from D2, for T cell receptor
(TCR) sequencing.

Next Generation Sequencing on TCR repertoires
proved the presence of oligoclonal α chains (almost
equal split between TCRAV12-02 and TCRAV04-01)
and one dominant β chain (TCRBV04-02) containing
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FIGURE 1 | HEV-specific T cell receptor (TCR) repertoires. (A) Simplified workflow illustrated how HEV-1527 epitope was identified from a healthy donor, D2, by HEV

overlapping peptide pool screening and cytokine readout. (B) Next Generation Sequencing results of the TCR targeting HEV-1527, an epitope located at

RNA-dependent RNA polymerase.

a block of consecutive glycine in the CDR3 region
(Figure 1B).

Additionally, we repeated the sequencing using two different
methods (Sanger and Deep sequencing) and proved that the
HEV-1527-specific TCR was indeed oligoclonal in the TCR α

chains. Bothmethods concluded the prevalence of the TCRBV04-
02 clonotype, with consecutive 4–6 glycines in the CDR3 region
(Supplementary Figure 2). Due to this unique combinatory of
two TCR α chains and the presence of multiple glycines in CDR3,
we decided to screen this T cell clone for possible cross-reactivity
to self-antigens.

Screening of Apoptosis- and
Cytochrome-Associated Self-Antigens
There are countless possibilities of self-antigen that this TCR

might recognize, therefore we concentrated on screening

epitopes with pathogenesis relevance in two main aspects:

apoptosis-related epitopes that could be cross-presented to
T cells inadvertently (18) and cytochrome (liver enzyme)-

specific epitopes that are correlated with disease progression

of autoimmune hepatitis (23). Five epitopes of each group
were used for HLA-A∗02:01 MHC Class I Dextramer synthesis
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(Supplementary Table 1), either as nonamers or decamers,
in line with the optimal peptide length for HLA-A∗02:01
allele (24).

CD8+ T cells from donor D2 were expanded in the
presence of HEV-1527 peptide again, in order to detect
proliferation of cross-reactive T cells with specificity to either
apoptosis or cytochrome epitopes by Dextramer staining.
In addition to D2, from whom we discovered this unique
αβTCR, we also included eight other healthy donors as
control in the screening, to compare their responses to D2.
As shown in Figure 2A, there was strong apoptotic-specific
Dextramer staining in HEV-1527-expanded T cells from D2,
but not from other donors. On the other hand, Dextramer
staining of cytochrome-specific epitopes across all the donors
were negligible.

The positive apoptotic epitope was subsequently singled
out from the group of five by staining the Dextramers
individually (Figure 2B). This epitope was derived from
Nonmuscle Myosin Heavy Chain 9, MYH9478−486, with the
sequence of QLFNHTMFI (referred to as MYH9-478 hereafter).
The sequence homology between HEV-1527 and MYH9-478 was
shown in Figure 2C, with the matching two out of nine amino
acids highlighted in red.

To further validate that these T cells could recognize two
rather dissimilar peptides, we stained the HEV-1527-expanded
T cells with two Dextramers simultaneously, one bearing
HEV-1527 epitope and the other MYH9-478, and the double
Dextramer staining promptly demonstrated that the T cells
indeed had dual specificities, as evident by the double positive
population (Figure 2D).

Cross-Reactivity Is Non-reciprocal
With the dual specificities proven in the previous experiment, we
wanted to explore if the T cell cross-reactivity is reciprocal. To
do this, HEV-1527 and MYH9-478 T cell lines were expanded
separately and stained with HEV-1527 as well as MYH9-
478 Dextramers as proliferation readout. As expected, HEV-
1527 T cell line could bind both HEV-1527 and MYH9-478
Dextramers, yet MYH9-478 T cell line harbored specificity to
neither epitope (Figure 3A).

Apart from T cell proliferation, we also characterized T
cell function on the T cell lines generated from Figure 3A, by
stimulating them with respective peptides during intracellular
cytokine staining. As seen in Figure 3B, HEV-1527-expanded
T cell line was functionally activated when stimulated by HEV
cognate stimulated by HEV cognate peptide, but not by the
apoptotic epitope. MYH9-478 T cell line did not respond to
stimulation from either peptide (Figure 3B).

Furthermore, a range of peptide concentrations were
tested in HEV-1527 T cell line to determine its sensitivity
to peptide stimulation. Both cytokine production and a
gradual reduction of Dextramer-binding T cell population
were observed in HEV-1527 T cell line when stimulated by
HEV-1527 (Figure 3C), whereas the T cells remained non-
responsive to MYH9-478 peptide in this assay, regardless of the
peptide concentration.

Higher Avidity of Cross-Reactive T Cells
Toward the HEV Peptide
Thus far, our evidences showed that this T cell line had dual
specificity to recognize two target peptides yet only functionally
respond to one epitope. Hence, a sensitivity test was performed
using various dilutions of Dextramer, to examine the T cell
avidity. Starting from the recommended Dextramer quantity
(denoted as 1x), various dilutions were prepared by adding
diluent to the Dextramer to yield the indicated dilution factors.
In 2x concentration, double the amount of Dextramer was used
in staining the same number of cells. As depicted in Figure 4A,
when sufficient Dextramer molecules were present, such as 1x
and 2x, the binding of TCR to Dextramers plateaued at these
saturating concentrations.

In contrast, at lower Dextramer dilutions (between 1/5 and
1/20), the TCR had higher avidity toward HEV-1527 as the
Dextramer staining of HEV-1527 was higher than that of MYH9-
478. Furthermore, the percentage of MYH9-478 and HEV-1527
Dextramer-binding T cells was presented in a ratio (MYH9-
478/HEV-1527), which declined as the Dextramer concentration
was decreasing which indicates a higher avidity of the TCR
toward HEV-1527.

Such preference toward HEV-1527 rather than MYH9-478,
may explain the lack of T cell response when stimulated by
MYH9-478 peptide, as observed in Figures 3B,C. In fact, when
T cells were expanded in the presence of both HEV-1527 and
MYH9-478 peptides, the T cells selectively activated against
HEV-1527 only (Figure 4B).

Functional Characterization of TCR
Clonotypes Using TCR Redirection
Next, we investigated which of the TCR α (or both) was
responsible for this cross-recognition and selective functionality
phenomenon. To serve this purpose, TCR redirection assay was
used. This is a mRNA-based method to generate engineered
T cells bearing TCR of interest for in-vitro assays (25). Based
on the TCR repertoire sequencing data, mRNA encoding
the TCRs was synthesized and transfected into recipient
effector T cells by electroporation. Gene optimization of TCR
constant regions is done to prevent mispairing between the
introduced and endogenous TCRs (26), and the TCR-redirected
cells were used for analysis on day 1 post-transfection, as
described (27).

Since the sequencing data indicated that there were mainly
4 or 5 glycines in the TCRBV04-02 clonotype, we wanted to
ascertain if the number of glycine in the β CDR3 would affect
TCR function. Hence, our TCR construct designs paired up
each of the two α clonotypes with the β clone, as outlined in
Supplementary Figure 3. Construct A consisted of TCRAV04-01
and construct B consisted of TCRAV12-02, each paired up with a
β clone of 4 glycines. Construct C consisted of TCRAV04-01 and
construct D consisted of TCRAV12-02, each paired up with a β

clone of 5 glycines.
Post-redirection, the TCR-engineered T cells were stained

with Dextramers, not only to evaluate the transfection efficiency,
but also to assess the specificity of the TCRs. Figure 5A
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FIGURE 2 | Screening of potential cross-reactive self-antigens in HEV T cell lines. (A) CD8+ T cells from healthy donors (D1 to D9) were expanded in HEV-1527

peptide, followed by apoptotic- and cytochrome-specific Dextramers staining. Five Dextramers in each group were combined in a single staining. (B) Identification of

target apoptotic antigen using Dextramers stained individually. (C) Amino acid sequence comparison between HEV-1527 and MYH9-478; matching amino acids were

highlighted in red. (D) Double Dextramer staining of the two epitopes in HEV-1527-T cell line. FACS plots are gated on CD8+ T cells.

shows that constructs B- or D-redirected T cells, both
equipped with TCRAV12-02, were able to bind both HEV-1527
and MYH9-478 Dextramers, demonstrating that TCRAV12-02
alone was responsible for the cross-recognition of these two
peptides. The Dextramer staining of HEV-1527 was higher
than that of MYH9-478, substantiating higher avidity of
TCRAV12-02 toward HEV-1527.

However, T cells redirected with constructs A and C, both
harboring TCRAV04-01, had specificity to neither epitopes.
Moreover, when T cells were redirected with a mix of effective

and non-effective constructs (i.e., in A+B or C+D), the
Dextramer-binding capacity was reinstated.

More importantly, T cell function followed the same pattern as
Dextramer staining. In Figure 5B, when engineered T cells were
stimulated by HEV-1527 peptide-loaded T2 cells, only the T cells
expressing TCRAV12-02 responded by cytokine production (in
constructs B and D), but not the T cells expressing TCRAV04-
01 (in constructs A and C). In addition, TCR-redirected T
cells remained non-responsive to MYH9-478 peptide-loaded
T2 cells, in line with the in-vitro observation in Figure 3.
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FIGURE 3 | Cross-reactivity is non-reciprocal. (A) Dextramer staining in T cell lines generated in the presence of MYH9-478 and HEV-1527 peptides. Double

Dextramer staining was shown at the last row. (B) Functional intracellular cytokine staining in T cell lines generated from (A), stimulated by respective peptides. (C)

Functional assay in HEV-1527 cell line stimulated by different peptide concentrations. FACS plots are gated on CD8+ T cells.

Lastly, Figure 5C compared the polyfunctionality of engineered
T cells upon stimulation by HEV-1527, using one effective
and one non-effective construct as example (constructs A and
B, respectively).

Through this assay, we discovered that the presence of either
4 or 5 glycines in TCRBV04-02 clonotype did not alter TCR
specificity or function. Rather, it was TCRAV12-02 that make-
or-break the fate of the TCR-mediated immunity.
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FIGURE 4 | Higher T cell avidity toward HEV peptide. (A) HEV-1527 and MYH9-478 Dextramer staining with dilutions to show T cell sensitivity. The recommended

volume of Dextramer used for staining was denoted as 1x, the lower dilutions were adjusted accordingly by using FACS buffer as diluent. Double amount of

Dextramer for the same number of cells was denoted as 2x. Dextramer staining was shown as either single- or double-gated, followed by a ratio of Dextramer-binding

cells (MYH9/HEV). (B) Dextramer staining and functional assay with T cells expanded in the presence of both MYH9-478 and HEV-1527 peptides, stimulated by the

peptides as indicated. FACS plots are gated on CD8+ T cells.
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FIGURE 5 | Functional characterization of α and β clonotypes. Effector T cells were redirected with gene constructs encoding different TCRs, constructs A to D, to

assess the effective α-β combination that constituted the (A) Dextramer-binding ability and (B) poly-functionality of T cells when stimulated by cognate peptide

presented on the target T2 cells. Mixed constructs (A+B and C+D) were done by mixing the mRNA of two constructs prior to transfection. (C) Polyfunctionality of

CD8+ T cells redirected with one effective and one non-effective construct (construct A and B, respectively). Results shown are mean ± SD; n = 4. Representative

FACS plots are gated on CD8+ T cells; taken from one of four independent experiments. At the top of the figures are illustrations to show the α and β pairing of each

gene constructs, as indicated in Supplementary Figure 3.

TCR β Chain With Multiple Glycines Could
Facilitate Cross-Recognition of
TCRAV12-02
We have established that TCRAV12-02 as the dominant α

clonotype that was accountable for dual specificities and decreed
TCR function, while TCRAV04-01 was silent (or specific against
a peptide that is undetermined for now). By modeling the TCR-
interacting surface, we could gain insight into the structural

similarity between HEV-1527 and MYH9-478 peptides when
presented by HLA-A∗02:01 allele. As shown in Figures 6A,B,

despite sharing only two out of nine amino acids, the two peptides

present similar topographies and charge distributions when

displayed by HLA-A∗0201. Such similarity in physiochemical

properties is observed in the amino-terminal portion of the

peptide, which is contacted by the α chain of the TCR (left hand

side of the structures, Figure 6D). This observationmight explain
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FIGURE 6 | Structural modeling of peptide-HLA complexes. Structure-based comparison between (A) HEV-1527, (B) MYH9-478, and (C) ACTB-266.

Corresponding peptide sequences are depicted below each complex, with matching amino acids highlighted in red. Greater structural similarity is observed between

HEV-1527 and MYH9-478, than with ACTB-266, especially in the amino-terminal portion of the peptide (green ellipsis). A potentially outstanding structural feature in

the carboxy-terminal of HEV-1527, determined by a tryptophan at position 7, is indicated by an arrow. (D) The approximated area of interaction for the variable regions

alpha (Vα) and beta (Vβ) of the TCR are depicted over the surface of the HEV-1527/HLA-A*02:01 complex.

why TCRAV12-02 could cross-recognize the two peptides. On
the other hand, structural differences at the same region could
prevent recognition by TCRAV12-02, as observed in the case of
ACTB-266 peptide, which is one of the apoptotic epitopes that we
screened (Figure 6C and Supplementary Table 1). In addition,

there was a noticeable structural difference between HEV-1527
and MYH9-478 at P7 (the 7th amino acid of the epitopes, as
indicated by an arrow), which is at the point of contact by TCR
β chain.

Based on the evidence we had, it could be inferred that
the binding promiscuity as a result of multiple glycine motif
in TCR β chain might allow the TCR to overcome the
structural impediment (at P7) to cross-recognize a secondary
peptide complex.

DISCUSSION

In this study, we investigated a HEV-specific T cell receptor
(TCR) which we proposed as a candidate in T cell-based therapy,
to treat chronic hepatitis E. We focused on a TCR comprised of
two α chains (TCRAV12-02 and TCRBV04-02) and one prevalent

β chain containing a multiple glycine motif in the CDR3 region,
to investigate its potential autoimmunity associated with TCR-
based immunotherapy.

We started by screening plausible self-antigen peptides that
this HEV-specific TCR might recognize, and discovering an

apoptosis-related epitope that could be cross-recognized by the
HEV-specific T cells. This pair of peptides, a HEV peptide and
a self-antigen epitope (HEV-1527 and MYH9-478, respectively)
shared only two matching amino acids, which suggests that
molecular mimicry may not be the main mechanism behind such
cross-reactivity. Other mechanisms of cross-reactivity could be
the reason, such as the possession of dual α chains or alternative
recognition (12, 28).

Our subsequent data showed that these cross-recognizing
T cells had higher avidity toward the HEV peptide, which
might help to explain why we did not observe a reciprocal
cross-reactivity. When HEV-1527 peptide was used to expand
the donor’s T cells, this resulted in the proliferation of T
cells with specificities for both HEV-1527 and MYH9-478. In
contrast, exposure to MYH9-478 peptide did not result in the
proliferation of MYH9-478-specific, nor HEV-1527-specific T
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cells. Such non-reciprocal cross-reactivity was characterized in
mice, where heterologous immunity was discovered (28). After
lymphocytic choriomeningitis virus (LCMV) infection, mice
were found to develop protective cross-reactive immunity against
the subsequent vaccinia virus (VACV) challenge, but the reverse
was not true. This could be explained by the private specificity of
TCRs and the sequence of event/infection (29–31), which steered
us to focus on the TCR repertoires.

To shed light on this, TCR redirection assays were
used to confirm the cross-reactivity, through which we
incidentally discovered that one α chain (TCRAV12-02) alone
was accountable for dual specificities. Structural analysis of
the complexes recognized by this TCR helped clarifying
the molecular basis for this cross-recognition. First, despite
aforementioned sequence dissimilarity between the two peptides,
surprising structural similarity can be observed when analyzing
the TCR-interacting surfaces of the peptide-HLA complexes.
This structural similarity could allow both peptides being
recognized by the same α chain (TCRAV12-02). The aromatic
ring at position 7 of the HEV-1527 peptide could represent
an outstanding feature that limits or prevents reciprocal cross-
reactivity with MYH9-478 (32). This difference was observed at
the carboxy-terminal portion of the peptide, within the region
of contact for TCR-β CDR3. We speculated that the presence
of multiple glycines in the β chain may render the TCR to
be more flexible when docking peptide-HLA-A2 complex (15),
because conformational changes occur more readily in CDR3
than in CDR1 or CDR2 (33). Since glycine is smallest in size
and neutral in charge, a structural change is easily achieved
with minimal energy threshold. This flexibility in β chain may
partially compensate for the structural difference, contributing
to cross-recognition.

Cross-reactive T cells are canonically associated with auto-
reactive phenotypes. However, the TCR that we reported here
only recognize but not react toward the self-antigen (MYH9-
478). Similar observation was chronicled in mice, where cross-
reactive T cells did not respond the same way to each of the two
target peptides (30), it is hence logical to deduce that TCR may
display preferential affinity to one favored target over the other.

There are limitations in our study which we would like
to highlight, such as the exclusive use of T2 cells sensitized
with peptide as target cells in functional assays. Using a co-
culture system with TCR-redirected T cells and a HEV-infected
hepatocyte cell line would allow the analysis of TCR responses to
naturally processed and presented HEV epitopes. We also cannot
fully rule out that a functional response to the self-peptide may be
possible under inflammatory conditions or that other cytokines
are stimulated, rather than IFN-γ, TNF-α, or MIP-1β. Although,
it has been suggested that MIP-1β is very sensitive to detect
cross-reactive T cell responses (34).

In addition, although we included only a limited scope of
self-antigens in the in-vitro screening to detect TCR auto-
reactivity, we prioritized the selection to emphasize on those
with high likelihood and relevance to clinical manifestation.
Nonetheless, it is still prudent to test it in in-vivo models, such
a humanized mouse model developed for HEV studies (35–37),
before advancing it further for immunotherapy.

Based on our results, we suggest that screening of self-
antigens should be an important undertaking to be incorporated
into the developmental phase of redirected TCR therapies.
Although our selection of self-antigens was non-exhaustive,
we included additional analysis, specifically by modeling the
peptide-HLA complex (32). This method has the potential to
predict cross-reactivity based on structural similarity, rather
than peptide sequence identity alone. Such innovative way of
interpreting cross-reactivity is particularly suitable for peptides
of low amino acid similarity, as further evidenced by our
results (Figure 2C).

In summary, TCRs in possession of the hallmarks of cross-
reactivity such as multiple glycines should be carefully assessed
in the design of immunotherapies in order to minimize off-
target toxicity. Nevertheless, the candidate TCR in our case did
not show functional cross-reactivity. Figure 7 gives a graphical
summary of our findings on this HEV-specific TCR.

MATERIALS AND METHODS

Study Cohorts
This study was reviewed and approved by the ethic committee
of Hannover Medical School, approval number 2315-2014. All
healthy donors (n = 9) were recruited in Hannover Medical
School for a previous study, in which their HEV seroprevalence
were tested negative (11). HLA phenotyping on all donors
was done by antibody staining (mouse anti-human HLA-A2,
clone BB7.2, Alexa-Fluor 647; Bio-Rad Laboratories, USA); all
individuals were HLA-A2 positive. Written informed consents
for participating in this research study and blood draws were
collected from all individuals.

Sequence-Specific Peptides and
Dextramers
All peptides used in the study were synthesized by ProImmune,
UK. Peptide sequences specific to HEV are of genotype 3, based
on data from GenBank accession number AF455784. Peptides
were dissolved in Dimethyl sulfoxide (DMSO) to yield stock
solutions of 60 mg/mL, which were further diluted with HBSS
to be used in cell culture.

Dextramers bearing the selected epitopes were synthesized
by Immudex, Denmark. All Dextramers were specific for
HLA-A∗02:01 allele, and conjugated with PE fluorochrome
(except HEV-1527 Dextramer, which was conjugated with
APC fluorochrome). In Dextramer dilution experiment, various
dilutions were prepared by using FACS buffer as diluent to yield
the dilution factors as indicated in Figure 4.

CD8+ T Cell Culture (3-Week T Cell
Expansion)
CD8+ T cells were isolated from peripheral blood mononuclear
cells (PBMC) of healthy donors using magnetic CD8+ T
cell isolation beads according to protocol (Miltenyi Biotec,
USA). Once isolated, cells were kept in AIM-V medium
supplemented with sodium pyruvate, non-essential amino acids,
5mM HEPES buffer, 0.5% β-mercaptoethanol (all from Gibco,
Life technologies), 10% human AB serum (PAN Biotech GmbH,
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FIGURE 7 | Summary chart detailing the findings of a cross-recognizing HEV-specific T cell.

Germany), and 5 IU/mL IL-2. Peptide-loaded T2 cells (ATCC
CRL-1992) were irradiated before co-cultured with CD8+ T
cells at a ratio of 1:5 (1 T2 cell: 5 T cells). Peptide loading
concentration was 1µg/mL. The cell culture had a change
of media every 3–4 days, and irradiated peptide-loaded T2
cells were replenished every week. The entire culture duration
lasted 3 weeks.

T Cell Proliferation and Functional Assays
Post-expansion, proliferation of self-antigen-specific T
cells was detected by Dextramer staining. Dextramers
bearing predicted epitopes of caspase-cleaved products
associated with apoptosis or epitopes related to autoimmune
hepatitis are summarized in Supplementary Table 1. All
five Dextramers per group were combined in a single

staining. Once positive staining was identified, the cells
were stained with individual Dextramer to single out the
target epitope.

T cell functional assay was assessed by intracellular cytokine
staining; 0.2 × 106 T cells were plated, to which peptides
for stimulation were added (concentrations as indicated in
text), in the presence of Brefeldin A at 2µg/mL for 6 h
incubation. Thereafter, cells were washed with FACS buffer and
stained with Dextramer for 20min at room temperature. Then,
staining of surface markers for 10min at room temperature
(BD Bioscience: FITC anti-CD14 clone M5E2 and anti-CD19
clone HIB19, fixable green live/dead cell staining dye (Life
technologies) for exclusion of monocytes, B cells and dead
cells, respectively; and APC-H7 anti-CD8 clone SK1). Next,
cells were fixed by fixation and permeabilization buffer for
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20min at 4◦C and washed twice with perm/wash buffer (both
from BD Bioscience). Staining with antibodies for intracellular
cytokines was performed for 30min at 4◦C in the dark
(PE-Cy7 anti-MIP-1β clone D21-1351 and BV-421 anti-TNF-
α clone Mab11 from BD Bioscience, and BV-711 anti-IFN-γ
clone 4S.B3 from BioLegend, USA). Cells were washed twice
and acquired using BD LSR Fortessa flow cytometer and
analyzed by FlowJo version 9. Gating strategy is outlined in
Supplementary Figure 1.

CD8+ T Cell Receptor Repertoire
Sequencing
Dextramer-specific CD8+ T cells were sorted using Dextramers,
and shipped to Adaptive Biotechnologies (Seattle, USA) for
sequencing of complimentary determining region 3 (CDR3)
of both α and β chains (ImmunoSEQ) by Next Generation
Sequencing, as described (11).

Sanger Sequencing was performed using the Dextramer-
sorted cells to confirm the results from Next Generation
Sequencing independently. Total RNA was isolated from the
sorted cells using Qiagen RNeasy Plus Micro Kit (Qiagen,
Germany). Then, cDNA was transcribed from the total
RNA using SMARTer PCR cDNA Synthesis kit (Clontech
Laboratories), as described (38). PCR was performed using
Advantage 2 PCR Kit (Clontech Laboratories) to amplify the
genes of T cell receptor, with primers targeting constant regions
of α and β chains:

α chain primer: 5′-GGAACTTTCTGGGCTGGG
GAAGAAGGTGTCTTCTGG-3′

β chain primer: 5′-TGCTTCTGATGGCTCAAACACA
GCGACCT-3′

The cycle conditions for PCR were: 1 cycle of 30 s at 95◦C,
5 cycles of 5 s at 95◦C and 2min at 72◦C, 5 cycles of 5 s at
95◦C and 10 s at 70◦C and 2min at 72◦C, 35 cycles of 5 s at
95◦C, and 30 s at 68◦C and 2min at 72◦C, lastly 1 cycle at
4◦C. PCR products of both TCR chains were gel-purified using
MinElute Gel Extraction Kit (Qiagen, Germany) and cloned into
pCR4-TOPO vector using TOPO TA Cloning Kit for Sequencing
(Invitrogen). Cloned plasmids were transformed into TOP10
chemically competent E.coli (Invitrogen), and plated on LB agar
plates supplemented with ampicillin overnight for colony growth
at 37◦C incubator. Colonies were picked the next day and sent for
Sanger Sequencing (GATC). Sequencing results of CDR3 regions
were aligned with IMGT database (ImMunoGeneTics, http://
www.imgt.org).

The presence of a dominant β and its number of multiple
glycines were also further verified by Deep Sequencing, as
detailed elsewhere (39). In short, RNA was transcribed into
cDNA using SMARTer PCR cDNA Synthesis kit (Clontech
Laboratories) followed by amplification of the CDR3 region of β

chain only, using Advantage 2 PCR Kit (Clontech Laboratories).
Purified amplicons were then subject to sequencing on the
Illumina MiSeq platform using a 600 cycle v3 MiSeq Reagent Kit.
The sequencing output was annotated by the IMGT database.
Productive reads were then subject to further bioinformatics
analyses using tcR R-package and VDJtools as published (40, 41).

T Cell Receptor (TCR) Constructs Design
Nucleotide sequences from Next Generation Sequencing were
used to design TCR constructs. Codon optimization and
murinized constant chains were adopted (27, 42), to avoid target
αβ-TCR mispairing with endogenous TCRs expressed by the
recipient T cells. Genes of TCR constructs were cloned into E.coli
for amplification. Plasmid DNA containing the TCR genes were
purified and linearized with XbaI restriction enzyme (Thermo
Fischer Scientific) (27). Thereafter, mRNA was synthesized from
linearized DNA using mMESSAGE mMACHINE T7 Ultra Kit
(Life technologies), for TCR redirection.

T Cell Receptor (TCR) Redirection Assay
PBMCs of healthy donor were expanded for 7 days in AIM-
V medium supplemented with 2% human AB serum, 600
IU/mL IL-2 and 50 ng/mL anti-CD3 (clone OKT3, BioLegend,
USA). One day before redirection, IL-2 concentration was
adjusted to 1,000 IU/mL (27). For each TCR gene construct,
10 × 106 cells were resuspended in Nucleofector solution, to
which 20 µg of mRNA was added, and transferred into a
cuvette for electroporation, using Amaxa Cell Line Nucleofector
Kit V and Lonza Nucleofector 2b device (program X-01).
After electroporation, redirected cells were kept in AIM-V
medium supplemented with 2% human AB serum and 100
IU/mL IL-2. For mixed construct transfection (A+B or C+D),
the mRNA of both constructs were mixed, then handled
as described above. In T cell stimulation assay, peptide-
loaded T2 cells were co-cultured with engineered-T cells
at an effector: target cell ratio (E:T ratio) of 1:1. Peptide
loading concentration in T2 cells was 1µg/mL. The functional
cytokines were assessed through intracellular cytokine staining as
outlined above.

Peptide-HLA Structural Modeling and
Analysis
The 3D structures of the peptide-HLA complexes of interest were
predicted using an in-house implementation of DockTope (43).
Briefly, a reference crystal structure of HLA-A∗0201 was used as
the receptor for a molecular docking with the modeled peptide-
ligand. The docking search was performed with Autodock Vina
1.1.2 (44), followed by full atom energy minimization with
Gromacs 4.6.5 (45), and a second docking search with Vina
(43, 46). Electrostatic potential over the TCR-interacting surface
of modeled complexes was calculated using Delphi (47), and
top-view images were generated through the molecular viewer
software GRASP2 (48).
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et al. Targeting of HPV-16+ epithelial cancer cells by TCR gene

engineered T cells directed against E6. Clin Cancer Res. (2015) 21:4431–9.

doi: 10.1158/1078-0432.CCR-14-3341

9. Suneetha PV, Pischke S, Schlaphoff V, Grabowski J, Fytili P, Gronert A,

et al. Hepatitis E virus (HEV)-specific T-cell responses are associated with

control of HEV infection. Hepatology. (2012) 55:695–708. doi: 10.1002/hep.

24738

10. Kamar N, Izopet J, Pavio N, Aggarwal R, Labrique A, Wedemeyer H,

et al. Hepatitis E virus infection. Nat Rev Dis Primers. (2017) 3:17086.

doi: 10.1038/nrdp.2017.87

11. Soon CF, Behrendt P, Todt D, Manns M, Wedemeyer H, Chen M,

et al. Defining virus-specific CD8+ TCR repertoires for therapeutic

regeneration of T cells against chronic hepatitis E. J Hepatol. (2019).

doi: 10.1016/j.jhep.2019.06.005. [Epub ahead of print].

12. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A.

Expression of two T cell receptor alpha chains: dual receptor T cells. Science.

(1993) 262:422–4. doi: 10.1126/science.8211163

13. Ji Q, Perchellet A, Goverman JM. Viral infection triggers central nervous

system autoimmunity via activation of CD8+ T cells expressing dual TCRs.

Nat Immunol. (2010) 11:628–34. doi: 10.1038/ni.1888

14. Kim SM, Bhonsle L, Besgen P, Nickel J, Backes A, Held K, et al. Analysis of

the paired TCR α- and β-chains of single human T cells. PLoS ONE. (2012)

7:e37338. doi: 10.1371/journal.pone.0037338

15. Naumov YN, Yassai MB, Kota K, Welsh RM, Selin LK. Multiple glycines

in TCR alpha-chains determine clonally diverse nature of human T

cell memory to influenza A virus. J Immunol. (2008) 181:7407–19.

doi: 10.4049/jimmunol.181.10.7407

16. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery

L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-

enhanced T cells in myeloma and melanoma. Blood. (2013) 122:863–71.

doi: 10.1182/blood-2013-03-490565

17. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al.

Identification of a Titin-derivedHLA-A1-presented peptide as a cross-reactive

target for engineered MAGE A3-directed T cells. Sci Transl Med. (2013)

5:197ra03. doi: 10.1126/scitranslmed.3006034

18. Rawson PM, Molette C, Videtta M, Altieri L, Franceschini D, Donato T,

et al. Cross-presentation of caspase-cleaved apoptotic self antigens in HIV

infection. Nat Med. (2007) 13:1431–39. doi: 10.1038/nm1679

19. Citro A, Barnaba V, Martini H. From T cell apoptosis to chronic immune

activation in inflammatory diseases. Int Arch Allergy Immunol. (2014)

164:140–6. doi: 10.1159/000363385

20. Citro A, Scrivo R, Martini H, Martire C, De Marzio P, Vestri AR, et al. CD8+

T cells specific to apoptosis-associated antigens predict the response to tumor

necrosis factor inhibitor therapy in rheumatoid arthritis. PLoS ONE. (2015)

10:e0128607. doi: 10.1371/journal.pone.0128607

21. Lolli F, Martini H, Citro A, Franceschini D, Portaccio E, Amato

MP, et al. Increased CD8+ T cell responses to apoptotic T cell-

associated antigens in multiple sclerosis. J Neuroinflammation. (2013) 10:862.

doi: 10.1186/1742-2094-10-94

22. Pischke S, Gisa A, Suneetha PV, Wiegand SB, Taubert R, Schlue J, et al.

Increased HEV seroprevalence in patients with autoimmune hepatitis. PLoS

ONE. (2014) 9:e85330. doi: 10.1371/journal.pone.0085330

23. Longhi MS, Hussain MJ, Bogdanos DP, Quaglia A, Mieli-Vergani G, Ma Y,

et al. Cytochrome P450IID6-specific CD8T cell immune responses mirror

disease activity in autoimmune hepatitis type 2.Hepatology. (2007) 46:472–84.

doi: 10.1002/hep.21658
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Influenza vaccines for H7N9 subtype have shown low immunogenicity in human clinical

trials. Using novel adjuvants might represent the optimal available option in vaccine

development. In this study, we demonstrated that the using of the STING agonist

cGAMP as a mucosal adjuvant is effective in enhancing humoral, cellular and mucosal

immune responses of whole virus, inactivated H7N9 vaccine in mice. A single dose

of immunization was able to completely protect mice against a high lethal doses of

homologous virus challenge with an significant dose-sparing effect. We also found

that intranasal co-administration of H7N9 vaccine with cGAMP could provide effective

cross protection against H1N1, H3N2, and H9N2 influenza virus. Furthermore, cGAMP

induced significantly higher nucleoprotein specific CD4+ and CD8+ T cells responses

in immunized mice, as well as upregulated the IFN-γ and Granzyme B expression in the

lung tissue of mice in the early stages post a heterosubtypic virus challenge. These results

indicated that STING agonist cGAMP was expected to be an effective mucosal immune

adjuvant for pre-pandemic vaccines such as H7N9 vaccines, and the cGAMP combined

nasal inactivated influenza vaccine will also be a promising strategy for development of

broad-spectrum influenza vaccines.

Keywords: H7N9, whole viron vaccine, STING, mucosal adjuvant, cross protection

INTRODUCTION

In March 2013, the first identified case of human infection with avian influenza A (H7N9) virus
occurred in China, and as of 5 September 2018, a total of 1,567 human infections with H7N9

viruses, including at least 623 deaths, were reported during the fifth epidemic wave (1, 2). More
importantly, some novel biological features of the H7N9 virus, such as the high frequency of drug-
resistance, emergence of highly pathogenic outbreaks in chickens and humans were discovered in
this recent fifth epidemic wave in 2017 (2–4). According to the result of the United States CDC’s
Influenza Risk Assessment, the avian influenza A(H7N9) virus is now ranked as the influenza virus
with the highest potential pandemic risk among all influenza viruses (5).The continuous evolution
of the H7N9 virus poses a long-term threat to public health, and thus it is imperative to strengthen
prevention and control strategies.
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Vaccination is the most effective way to prevent against
seasonal and pandemic influenza caused by influenza viruses.
Since the first outbreak of H7N9, different types of candidate
H7N9 vaccines have been developed and are currently
undergoing clinical trials. However, published clinical data
demonstrated that H7N9 vaccines show poor immunogenicity
in humans and using of novel adjuvants, such as MF59,
AS03, immuno-stimulating complex (ISCOM), and aluminum
hydroxide may have an important effect on improving vaccine
immunogenicity for the uniquely low immunogenicity of this
strain (6–9).

The respiratory tract mucosa is the site of infection for
influenza viruses and the local immune responses on mucosal
surfaces play an important role in defense against viral infection
(10). Several studies revealed that the intranasal administration
of inactivated vaccines, combined with an appropriate adjuvant
induced well protection and cross protection against infection by
both homologous and heterosubtypic viruses (11–13).

Cyclic GMP-AMP (cGAMP) is an endogenous cyclic
dinucleotide catalysts synthesized by the recently discovered
cyclic-GMP-AMP synthase (cGAS), which was activated by
pathogen-derived cytosolic double stranded DNA. The cGAMP
can be bound to the stimulator of interferon genes (STING),
leading to the activation of IRF3 and induction of interferon-
β, thus cGAMP functions as an endogenous second messenger
in innate immune signaling by cytosolic DNA (14, 15). Both
in vivo and in vitro studies suggest that cGAMP could be used
as an effective adjuvant for a model antigen, like OVA and
vaccines, such as porcine reproductive and respiratory syndrome
virus (PRRSV) virus-like particles, and anthrax toxins (16–18).
Recently, cGAMP have also been demonstrated to be an ideal
adjuvant for cutaneous vaccination of influenza vaccine (19).

Besides adjuvant effect, safety issues for the cGAMP
have to be considered. cGAMP is a natural metabolizable
molecule in humans and is hydrolyzed quickly by ecto-
nucleotide pyrophosphatase/phosphodiesterase (ENPP1) when
located outside the plasma membrane, ensuring that its
adjuvant activity is transient, effectively circumventing unwanted
systemic inflammation (16). In addition, studies have shown
that cGAMP does not cause any significant skin or acute
local inflammatory responses and is not toxic to the liver or
kidney (18, 19). Therefore, as a natural ligand for STING,
cGAMP might be a more promising candidate adjuvant for next
generation vaccines.

In terms of convenience of vaccination and the capability
of inducing cross protection by mucosal immunization, a
mammalian 2′, 3′-cGAMP was used as a mucosal adjuvant for
inactivated whole-virion H7N9 influenza vaccine in the present
study. We demonstrated that cGAMP enhances serum and
mucosal antibodies, T cells, innate immune responses, as well
as the protective ability of H7N9 vaccine in mice. Further, we
showed that intranasal delivery of inactivated H7N9 vaccine
formulated with cGAMP can induce a more robust T cell
response against virus conserved epitopes that mediate cross
protection against heterosubtypic influenza A viruses. Therefore,
the cGAMP may be a promising vaccine adjuvant for the broad-
spectrum influenza vaccines.

MATERIALS AND METHODS

Vaccine, Viruses, Mice, and Adjuvants
An egg-derived, formalin-inactivated whole-virion H7N9
influenza vaccine based on vaccine candidate virus
A/Shanghai/2/2013 H7N9 (NIBRG-267) was manufactured
by Shanghai Institute of Biological Products (Figure S1). The
vaccine has passed the quality control test in accordance with the
requirements of Chinese Pharmacopeia (2015, Edition 3), and
now is currently under phase II clinical trials. Influenza viruses
used in this study included mouse adapted A/Shanghai/2/2013
(Sh2/H7N9), A/PR/8/34 (H1N1) virus, A/Guizhou/54/1989
(Gz54/H3N2), and A/Chicken/Jiangsu/7/2002 (H9N2) viruses as
described in our previous studies (20, 21). Specific pathogen free
(SPF) female BALB/c mice (6–8 weeks old) were purchased from
Shanghai Laboratory Animal Center, China. All mice were bred
in the animal resource center at Shanghai Institute of Biological
Products and maintained under SPF conditions with constant
temperature and humidity. The protocol for the animal study
(Protocol Number: 17-1250) was approved by the laboratory
animal management committee, and the laboratory animal ethics
and welfare protection group of Shanghai Institute of Biological
Products. All animal procedures were carried out in accordance
with the animal ethics guidelines of the Chinese National
Health and Medical Research Council (NHMRC). Adjuvant
2′-3′-cGAMP (Invivogen) was diluted with endotoxin-free water
to a concentration of 1 mg/mL.

Immunization and Viral Challenge
For a homologous protection study, mice were intranasally
immunized once with different doses (0.015 ug, 0.15 ug, and
1.5 ug HA) of H7N9 vaccine alone or with 5 ug 2′-3′-
cGAMP in a total volume of 25 ul. The 5 ug 2′-3′-cGAMP
immunized and an unimmunized group was used as an
adjuvant control group and negative control group respectively.
Three weeks after immunization, mice were anesthetized and
challenged intranasally with 20 µl of the viral suspension
containing 40×LD50 of A/Shanghai/2/2013 (Sh2/H7N9) virus.
For a heterosubtypic protection study, mice were intranasally
immunized with either 1.5 ug HA of H7N9 vaccine alone or
with 5 ug 2′-3′-cGAMP twice on day 0 and 21. Three or six
weeks (for long term protection) after the last immunizationmice
were anesthetized and challenged intranasally with 20 µl of the
viral suspension containing 5×LD50 of A/PR/8/34 (H1N1) or
A/Guizhou/54/1989 (Gz54/H3N2) or A/Chicken/Jiangsu/7/2002
(H9N2) influenza virus. Survival and body weight loss were
monitored for 2 weeks post virus challenge.

Specimens Preparation
Five mice from each group were randomly chosen for sample
collection at a predetermined time after immunization or virus
challenge (see Results). The sera were collected from the blood
and used for serum IgG, Hemagglutination inhibition (HI)
antibodies assays. The spleens were taken out by sterile forceps to
prepare PBMC. Mouse lungs were collected and homogenized in
1.5mL of PBS containing Penicillin-Streptomycin (Gibco, USA)
by an electric homogenizer Tissuelyser-24 (Jingxin, Shanghai,
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China). Finally, a syringe needle with 1mL of PBS was inserted
three times into the nasopharynx to collect the nasal wash. The
lung homogenates and nasal wash were centrifuged to remove
cellular debris.

Antibody Assays
The titers of virus specific IgG and IgA of mice 3 weeks after
a single dose immunization were measured by enzyme-linked
immunosorbent assay (ELISA), which was performed using a
series of reagents consisting of: firstly, 5µg/mL of inactivated
whole-virion H7N9 vaccine for plate coating; secondly, serial
2-fold dilutions of sera or nasal wash or lung homogenates;
thirdly, goat anti-mouse IgG Ab (γ-chain specific) (KPL) or
goat anti-mouse IgA (α-chain specific) (KPL) conjugated with
horseradish peroxidase (HRP); and finally, the substrate 3, 3′,
5, 5′-Tetramethylbenzidine (TMB). The amount of chromogen
produced was measured based on absorbance at 450 nm. Ab-
positive cut-off values were set as means+2×SD of PBS control
group. An ELISA Ab titer was expressed as the highest serum
dilution giving a positive reaction.

The hemagglutination inhibition (HAI) antibody titers of sera
against different virus strains by a one or two doses immunization
was determined by HI assay. Briefly, sera were pretreated with a
receptor destroying enzyme (Diho, China) for 20 h at 37◦C and
then inactivated at 56◦C for 30min; 2-fold serial dilutions of 50
µl pretreated sera and positive control sera were incubated with
an equal volume of 4 HA units of selected virus antigen for 1 h at
room temperature and then 50 µl of a 1% suspension of chicken
red blood cells (RBC) were added. After 30min of incubation at
room temperature, the HI titers were determine by the highest
dilution of sera that completely inhibits the agglutination of
the chicken RBC. The limit of detection for this assay is a
1:10 dilution.

ELISpot Assays
Virus or nucleoprotein (NP) specific IFN-γ secreting splenocytes
of immunized mice was determined by ELISpot assay as
described in our previous study (20). For detecting virus specific
IFN-γ secreting splenocytes, 10µg/mL of H7N9 influenza
vaccine was used as a stimulant. As well, an H-2d-restricted NP
class I peptide and a pool of three H-2d restricted class II peptides
as described in our previous study were used as stimulatory
agents for detection of NP specific IFN-γ secreting CD8+ T cells
and CD4+ T cells, respectively. The number of virus or peptide-
reactive cells was represented as spot forming cells per 106

splenocytes and was calculated by subtracting spot numbers in
control peptide (HIV pol peptide ILKEPVHGV) wells from that
in NP specific peptide (or H7N9 influenza vaccine) containing
wells. The number of peptide-reactive cells was represented as
spot forming cells per 106 splenocytes.

Analyses of Lung Cytokines and Cytotoxic
Effector Molecules
Lung homogenates from five mice in each group were collected
at 24 h post a single dose immunization for detection of
cytokines (IL-6, TNF-α, IL-1β) bymouse cytokineMILLIPLEX R©

MAP kits (MCYTOMAG-70K, Millipore) according to the

manufacturer’s protocol. Measurements were performed using
the Bio-Plex MAGPIX Multiplex reader. Concentrations of IFN-
γ and Granzyme B in whole lung homogenates of mice post a
heterosubtypic influenza A viruses challenge were determined
by quantikine mouse IFN-γ ELISA Kit (88-8314-22, invitrogen)
and Mouse Granzyme B ELISA Kit (GWB-SKR178,GENWAY)
according to the manufacturer’s protocol.

Virus Titrations
Virus titration was performed as described previously (21).
Lung homogenates were serially diluted 10-fold and loaded on
confluent MDCK cells, which were subsequently incubated in
the growth medium and tested for hemagglutination 72 h later.
The virus titer of each specimen, expressed as the 50% tissue
culture infection dose (TCID50), was calculated by the Reed-
Muench method.

Statistics
GraphPad Prism 5 software was used to perform statistical
analyses. The survival rates of the mice in the test and control
groups were evaluated by Log-rank (Mantel-Cox) test; the results
of serum and mucosal antibody titers, lung virus titers and
cytokine response were evaluated by one-way ANOVA and
Tukey’s multiple comparison test; if the p-value was < 0.05, the
difference was considered significant.

RESULTS

cGAMP Adjuvanted Vaccine Offers
Improved Protection Against a High Lethal
Dose Challenge of Homologous H7N9 Virus
One twenty mice were randomized into 8 groups (A-H), with
15 mice in each group. Mice were all immunized intranasally
(i.n.) once with various doses of whole-virion H7N9 influenza
vaccine alone or in combination with cGAMP as an adjuvant,
respectively; The control group was not immunized. All mice
were then i.n. challenged with a high lethal dose (40×LD50) of
mouse adapted A/Shanghai/2/2013 (Sh2/H7N9) viral suspension
3 weeks post-immunization. The lung hemogenate of five mice
in each group was prepared and used for virus titration on day 3
after challenge. The survival rates and the body weight losses of
the remaining 10 mice in each group were monitored for 2 weeks
after the challenge.

The results presented in Table 1 showed that the mice in the
control group and the group immunized with cGAMP alone
suffered a rapid reduction in body weight post virus challenge,
and failed to provide any protection. The protection efficiency
offered by H7N9 influenza vaccine alone was dependent on
vaccine dosage, only the high dosage group could provide full
protection against a high lethal dose challenge of influenza H7N9
virus, while the low and medium dosage groups provided 30
and 70% protection, respectively. In contrast, all the adjuvanted
vaccine immunized groups could provide effective protection,
regardless of the dosage (Figure 1A). Moreover, these mice
showed relatively mild weight loss and faster recovery times
following the challenge, as compared to the groups without
cGAMP (Figure 1B).
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TABLE 1 | Protection against a high lethal dose challenge of homologous

influenza virus in mice by intranasal administration of whole-virion H7N9 influenza

vaccine with or without cGAMP.

Group Dose and adjuvant Lung virus titera

(log10TCID50/ml)

Survival rate

(No. of survivors/no. tested)

A 1.5µg + cGAMP Undetectedb,c 10/10b

B 1.5µg Undetectedb 10/10b

C 0.15µg + cGAMP 5.15 ± 0.42b,c 10/10b

D 0.15µg 7.60 ± 0.82b 7/10b

E 0.015µg + cGAMP 8.10 ± 0.93b,c 10/10b,c

F 0.015µg 11.60 ± 0.55 3/10

G cGAMP 12.70 ± 0.62 0/10

H control 12.45 ± 0.65 0/10

Mice were intranasally immunized once with various doses of whole-virion H7N9 influenza

vaccine with or without cGAMP. Three weeks after the last immunization, mice were

challenged with a high lethal dose (40×LD50 ) of mouse adapted A/Shanghai/2/2013

(Sh2/H7N9) virus. Lung hemogenate from 5 mice in each group were collected 3 days

post-infection for titration of lung virus. The survival rates of mice 2 weeks post-infection

were determined.
a Results are expressed as mean ± SD of five tested mice in each group.
b Displays significant difference compared with mice in control groups (P < 0.05).
c Displays significant difference compared withmice in the corresponding non- adjuvanted

groups (P < 0.05).

The results of lung virus titers were also shown in Table 1.
The lung virus titer of immunized mice had a dosage dependent
decreasing trend. Furthermore, the virus titer in cGAMP
adjuvanted group was significantly lower than that of the non-
adjuvanted group within the same dosage (P < 0.05). The
obtained results indicate that a single dose immunization with
inactivated whole-virion H7N9 vaccine plus cGAMP provided
increased protection over vaccine alone, and reduced the viral
load in the lungs after a high lethal dose challenge of a
homologous H7N9 influenza virus.

cGAMP Adjuvant Enhances the Mucosal
and Systemic Antibody and T Cell
Responses of Whole-Virion H7N9 Influenza
Vaccine
Forty mice were randomized into 8 groups, with 5 mice in
each group, mice were immunized as described above. The
titers of virus specific IgG and hemagglutination inhibition(HAI)
antibodies in serum, virus specific IgA in nasal wash and lung
hemogenate were detected at week 3 after immunization. The
ELISpot was conducted to detect the cellular immune based on
the amount of IFN-γ secreting splenocytes of immunized mice
after being stimulated with whole-virion H7N9 influenza vaccine
in vitro.

As shown in Table 2, all groups except the cGAMP group
and the control group had an obvious serum antibody response
in a dose-dependent manner, among which the serum antibody
responses induced by the vaccine plus cGAMP were significantly
higher than those in the vaccine alone group with the same
dosage (P < 0.05). We also evaluated the serum HAI antibody
titers, which have been correlated with the protective efficacy of
influenza vaccines. The HAI antibody titers against the H7N9

virus elicited by the cGAMP adjuvanted vaccine were remarkably
higher than those elicited by the vaccine alone. These results
indicated that cGAMP was able to enhance the virus-specific
antibody as well as the HAI antibody responses in mouse serum
induced by whole-virion H7N9 influenza vaccine.

Since the influenza virus enters the body through the
respiratory tract, determining the presence of antibodies in
secretory mucosal samples is important. As also shown in the
Table 2, although the IgA antibody in the nasal wash and lung
hemogenate was undetected in the low dose of 0.015 µg in
both adjuvant and non-adjuvanted groups, the medium and high
dosage of the vaccine supplemented with cGAMP could induce
high levels of mucosal IgA, which were significantly higher than
those in the same dosage of non-adjuvanted groups (P < 0.05),
indicating cGAMP can play a role as an effective adjuvant for
inducing enhanced mucosal virus specific antibody responses
against influenza virus.

The T cell response was analyzed by an IFN-γ ELISpot assay,
and the results are shown in Figure 2. A trend toward increased
IFN-γ secreting was noted in mice i.n. immunized with non-
adjuvanted H7N9 compared with the control, however, this trend
was not statistically significant (P>0.05), suggesting that i.n.
administration of a single dose of inactivated H7N9 vaccine did
not induce a significant cellular immune response, as least at
the dosage used in this study. By contrast, the mice immunized
with the H7N9 vaccine plus cGAMP developed a significant
number of IFN-γ secreting splenocytes, with an average of
seven times more than the vaccine alone groups. In conclusion,
intranasal administrated of whole-virion H7N9 influenza vaccine
with cGAMP as a mucosal adjuvant in mice could induce an
increased systemic and mucosal antibody and T cell responses
that confer better protection against a high lethal dose challenge
of homologous influenza virus.

Intranasal Administration of cGAMP
Increases Expression of Innate Immunity
Cytokines of Mice in Lungs
To assess the ability of cGAMP in influencing expression of
innate immunity cytokines, forty mice were randomized into
8 groups, with 5 mice in each group, mice were immunized
as described above. Lung homogenates of mice in each group
were collected at 24 h post-immunization for detection of the
expression of proinflammatory cytokines, including IL-1β, IL-6,
and TNF-α. As shown in the Figure 3, intranasal immunization
of inactivated H7N9 vaccine in a relatively high-dose alone could
induce a certain level expression of IL-1β, IL-6, or TNF-α in mice
lung homogenates (compared to the control group), while all
the cGAMP adjuvanted groups induced a higher expression of
innate immunity cytokines, as compared to the groups without
cGAMP after 24 h (P < 0.05). The greater expression of IL-1β,
IL-6 or TNF-α was directly associated to the presence of cGAMP.
However, the expression of IL-1β, IL-6, or TNF-α did not cause
obvious pathological and histological change in lung tissues of
mice (Figure S2). This result suggests that the enhancement of
mucosal and systemic immune responses to whole-virion H7N9
influenza vaccine by cGAMP was very likely due to the innate
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FIGURE 1 | cGAMP adjuvanted vaccine offers improved protection against a high lethal dose challenge of homologous virus. Mice were intranasally immunized once

with various doses of whole-virion H7N9 influenza vaccine with or without cGAMP. Three weeks after immunization, mice were challenged intranasally with a high

lethal dose (40 × LD50) of mouse adapted Sh2/H7N9 influenza virus. Survival rates (A) and body weight changes (B) of mice were measured daily for 2 weeks

after challenge.

immune recognition of cGAMP and the expression of innate
immune mediators.

cGAMP Adjuvanted Vaccine Induces
Improved Cross Protection Against a
Lethal Dose Challenge of the
Heterosubtypic Virus
Intranasal administration of a whole inactivated influenza virus
vaccine was proved to be a promising way to induce a broad
spectrum of heterosubtypic immunity against influenza A virus.
To explore whether the addition of cGAMP could enhance the
cross protection ability of the whole inactivated H7N9 influenza
vaccine against a heterosubtypic influenza virus infection, a two-
dose immunization regimen was used since a single dose of
1.5 µg vaccine plus cGAMP could not provide good protection
against a heterosubtypic virus challenge (data not shown). Mice
were intranasally immunized with either 1.5 ug HA of H7N9

vaccine alone or with 5 ug 2′-3′-cGAMP twice on day 0 and
21, and an unimmunized group was used as an negative control
group. Three weeks after the last immunization, all the mice
were i.n. challenged with 5×LD50 of mouse adapted A/Puerto
Rico/8/34 (H1N1), A/Guizhou/54/1989(Gz54/H3N2) and A/
Chichen/Jiangsu/11/ 2002 (H9N2) viral suspension (as shown
in Table 3). Compared to the control group, a full protection
against a lethal challenge of all the three virus strains was
obtained in the adjuvanted vaccine immunized group, while the
protection rates against H1N1, H3N2, and H9N2 were 60%,
50 and 60% respectively in the non-adjuvanted vaccine groups.
Moreover, the lung virus titers were considerably reduced in
mice immunized with the whole inactivated vaccine plus cGAMP,
in comparison to mice that were vaccinated with the vaccine
alone on day 3 post challenged with any of the heterosubtypic
viruses. These collective results show that i.n administration of
whole inactivated H7N9 vaccine in combination with cGAMP
can significantly reduce the lung virus load, and confer
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TABLE 2 | Serum and mucosal antibody responses in mice by intranasal administration of inactivated H7N9 vaccine with or without cGAMP adjuvant.

Group Dose and adjuvant Virus-specific antibody or HAI antibody titer

Virus-specific antibody titer (ELISA, 2n)a HAI antibody titera

Serum IgG Nasal wash IgA lung hemogenate IgA Serum HAI

A 1.5µg + cGAMP 8.60 ± 0.56b,c 5.40 ± 0.55b,c 3.60 ± 0.55b,c 448 ± 175.27b,c

B 1.5µg 7.00 ± 0.71b 2.60 ± 1.14b 2.20 ± 0.45b 64 ± 21.91b

C 0.15µg + cGAMP 6.60 ± 1.14b,c 4.00 ± 1.00b,c 2.20 ± 0.84b,c 48 ± 17.89b,c

D 0.15µg 4.80 ± 0.84b 1.80 ± 0.84b ND 20 ± 0.00b

E 0.015µg +cGAMP 4.20 ± 0.84b,c ND ND 16 ± 5.48b,c

F 0.015µg 2.80 ± 0.84b ND ND ND

G cGAMP NT NT NT NT

H control NT NT NT NT

Mice were intranasally immunized once with various doses of whole-virion H7N9 influenza vaccine with or without cGAMP. Three weeks after the immunization, serum, nasal wash, and

lung hemogenate specimens of 5 mice in each group were prepared. The titers of virus specific IgG and hemagglutination inhibition (HAI) antibodies in serum, virus specific IgA in nasal

wash and lung hemogenate were detected by ELISA or HI assay. An ELISA Ab titer was expressed as the highest dilution giving a positive reaction. ND, not detected; NT, not tested.
aResults are expressed as mean ± SD of five tested mice in each group.
bDisplays significant difference compared with mouse in control groups (P < 0.05).
cDisplays significant difference compared with mouse in the corresponding non-adjuvanted groups (P < 0.05).

FIGURE 2 | cGAMP adjuvant enhances the T cell responses of whole-virion

H7N9 influenza vaccine. Mice were intranasally immunized once with various

doses of whole-virion H7N9 influenza vaccine with or without cGAMP. The

amount of IFN-γ secreting splenocytes of immunized mice after stimulated with

whole-virion H7N9 influenza vaccine was measured by ELISpot three weeks

after immunization. Data shown as mean numbers of spot-forming cells (SFCs)

± SD. n = 5 per immunized group. Each sample was tested in triplicates. ***P

< 0.001 (one-way ANOVA and Tukey’s multiple comparison test).

broad spectrum protection against heterosubtypic influenza
A viruses.

cGAMP Enhanced Cross-Reactive T Cell
Response Against Virus Conserved Protein
May Be Correlated With the Cross
Protection
We examined whether it was possible to induce broad-spectrum
cross-reactive HAI antibodies by intranasal administration of

inactivated H7N9 in combination with cGAMP adjuvant. Mice
were intranasally immunized as described above. The serumHAI
antibody titers against the homo- and heterologous viruses were
detected HI assay in 3 weeks after the last immunization. The
results showed that a two-dose regimen of the H7N9 vaccine
immunization could induce a higher level of HAI antibodies
against homologous viruses, which was significantly higher than
that induced by a single immunization with the same dose.
In addition, the immuno-enhancing effect of cGAMP was also
observed in the cGAMP adjuvanted vaccine group. However,
neither the adjuvant nor the non-adjuvant group could induce
detectable cross-reactive HAI antibodies against the H1N1,
H3N2 and H9N2 virus (Figure 4). A further serum transfer
study showed that transferring immune serum from cGAMP
adjuvant vaccine immunized mice alone did not confer cross
protection against a heterosubtypic virus to recipient mice (data
not shown).

Since we did not detect cross-reactive HAI antibodies that
could mediate cross protection in the immunized mice, the T cell
responses against the conserved internal antigens nucleoprotein

(NP) of the virus which has been proven to be able to mediate

cross protection against heterosubtypic influenza virus was
detected by IFN-γ ELISpot assay. The splenocytes of mice

were isolated 3 weeks after the last immunization, and were,
respectively, stimulated with whole inactivated influenza virus

vaccine, a NP derived MHC-I epitope peptide and a pool of three

NP derived MHC-II epitope peptides, which were corresponded
to detection of virus specific T cell response, NP specific IFN-γ

secreting CD8+ T cell response and NP specific IFN-γ secreting

CD4+ T cell response. The results are shown in Figure 5. The
considerable amounts of virus specific IFN-γ secreting T cells, NP
specific IFN-γ secreting CD4+ and CD8+ T cells were induced by

two doses of i.n immunization with the whole inactivated H7N9

vaccine. As expected, the cGAMP could effectively increase the
number of NP specific IFN-γ secreting CD4+ and CD8+ T cells
induced by the whole inactivated H7N9 vaccine.
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FIGURE 3 | cGAMP adjuvant enhances the expression of mouse lung innate immune cytokines. Mice were intranasally immunized once with various doses of

whole-virion H7N9 influenza vaccine with or without cGAMP. The lung homogenates of immunized mice were collected for IL-1β, IL-6, and TNF-α measurement by

ELISA 24 h after immunization. Data shown as mean ± SD. n = 5 per immunized group. Each sample was tested in triplicates. ***P < 0.001, **P < 0.01 and

*P < 0.05 (one-way ANOVA and Tukey’s multiple comparison test).

TABLE 3 | Protection against a lethal dose challenge of the heterosubtypic viruses in mice by intranasal administration of whole-virion H7N9 influenza vaccine combined

with cGAMP.

Group Dose and adjuvant A/PuertoRico/8/1934 (H1N1) A/Guizhou/54/1989(Gz54/H3N2) A/Chicken/JiangSu/07/2002 (H9N2)

Lung virus titera

(log10TCID50/ml)

No. of

survivors/no. tested

Lung virus titera

(log10TCID50/ml)

No. of

survivors/no. tested

Lung virus titera

(log10TCID50/ml)

No. of

survivors/no. tested

A 1.5µg + cGAMP 5.44 ± 0.30b,c 10/10b,c 6.14 ± 0.62b,c 10/10b,c 6.25± 0.38b,c 10/10b,c

B 1.5µg 9.19 ± 0.31b 6/10b 9.00 ± 0.46b 5/10b 7.00± 0.29b 6/10b

C Control 10.13 ± 0.52 0/10 11.25 ± 0.35 1/10 8.05± 0.37 0/10

Mice were intranasally immunized with two doses of 1.5 ug HA of whole-virion H7N9 influenza vaccine with or without 5 ug 2′-3′-cGAMP on day 0 and 21. Three weeks after the last

immunization, mice were challenged with a lethal dose (5×LD50) of mouse adapted A/Puerto Rico/8/34 (H1N1), A/Guizhou/54/1989(Gz54/H3N2) and A/ Chichen/Jiangsu/11/ 2002

(H9N2) influenza virus. Lung hemogenate from 5 mice in each group were collected 3 days post-infection for titration of lung virus. The survival rates of mice 2 weeks post-infection

were determined.
aResults are expressed as mean ± SD of five tested mice in each group.
bDisplays significant difference compared with mice in control groups (P < 0.05).
cDisplays significant difference compared with mice in the corresponding non-adjuvanted groups (P < 0.05).

We further elevated the expression of IFN-γ and granzyme B,
which were used as the markers of activated cytotoxic T cells, in
the lung homogenates of mice at 3 day post a lethal dose challenge
with the heterosubtypic virus [A/PR/8/34 (H1N1)]. The results
in Figure 6 showed that the mice i.n. immunized with cGAMP
adjuvanted vaccine had significantly higher levels of IFN-γ and
granzyme B expression in response to the viral challenge than
those in the control and the non-adjuvant group. This indicated
that there were more activated cytotoxic T cells recruited to the
infection sites (lung tissue and nasal mucosa), mediating viral
clearance in early stage post infection. Based on the above results,
we speculate that the enhanced cross-reactive NP, or other virus
conserved protein specific CD4+ and CD8+ T cell response
induced by i.n administration of inactivated H7N9 vaccine with
GAMP adjuvant may be closely related to cross protection in the
absence of cross-neutralizing antibodies.

cGAMP Adjuvanted Influenza Vaccine
Provides Long-Term Cross Protection
Against Heterosubtypic Influenza a Viruses
Challenge
We investigated the long-term cross protection ability against
heterosubtypic influenza A virus challenge after i.n. immunized

of mice with inactivated H7N9 vaccine by using cGAMP as
an adjuvant. Thirty mice were randomized into 3 groups,

mice were immunized with two doses of 1.5 µg inactivated
whole-virion H7N9 influenza vaccine, either with or without 5

ug 2′-3′-cGAMP as an adjuvant, and an unimmunized group
was used as an negative control group. Six months after the

last immunization, the mice were challenged with 5×LD50

of A/Puerto Rico/8/34 (H1N1) influenza virus, and survival
rates were observed for 2 weeks. The results presented in

Figure 7 indicated that i.n. immunized mice with inactivated

H7N9 vaccine plus cGAMP provided up to 80% protection
against a heterosubtypic influenza vchallenge in mice, which

was significantly higher than the non-adjuvant group with a

protection rate of 30% (P < 0.05), while the control group
failed to provide any protection and the body weight of mice

continued to decline, resulting in all mice being dead within
8 days after the challenge. Moreover, the adjuvant group
showed relatively mild weight loss and faster recovery following
challenge compared to the groups without cGAMP. These results
strongly suggest that immunization with a cGAMP adjuvanted
influenza vaccine can provide more effective and longer-
term protection against lethal challenges of heterosubtypic
influenza virus.
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FIGURE 4 | cGAMP adjuvanted H7N9 influenza vaccine does not induce

detectable cross-reactive hemagglutination inhibition antibodies against

heterosubtypic virus. Mice were intranasally immunized with two doses of 1.5

ug HA of whole-virion H7N9 influenza vaccine with or without cGAMP on day

0 and 21. Three weeks after immunization, serum HI antibodies against

homologous and heterosubtypic of H3N2, H1N1, H9N2 viruse were

determined by HI assay. Data shown as mean titer ± SD. n = 5 per

immunized group. Each sample was tested in triplicates. *P < 0.05 (one-way

ANOVA and Tukey’s multiple comparison test).

FIGURE 5 | cGAMP adjuvant enhances the T cell response against virus

conserved protein. Mice were intranasally immunized with two doses of 1.5 ug

HA of whole-virion H7N9 influenza vaccine with or without cGAMP on day 0

and 21. The amount of IFN-γ secreting splenocytes of immunized mice after

stimulated with whole-virion H7N9 influenza vaccine, NP derived MHC-I

epitope peptide or a pool of three NP derived MHC-II epitope peptides was

measured by ELISpot three weeks after immunization. The splenocytes of

immunized mice were isolated for IFN-γ measurement by ELISpot. Data

shown as mean numbers of spot-forming cells (SFCs) ± SD. n = 5 per

immunized group. Each sample was tested in triplicates. *P < 0.05 (one-way

ANOVA and Tukey’s multiple comparison test).

DISCUSSION

Currently, the epidemiological and risk assessments indicate a
strong potential for the H7N9 virus to pose a public health risk
(5). The development of effective vaccines is of great importance
for the prevention and control of a possible H7N9 pandemic.
Current influenza vaccines are usually non-adjuvanted, but the

addition of an adjuvant may improve vaccine immunogenicity
and permit dose-sparing, which may be critical for managing
vaccine supplies during influenza pandemics (22). Previous
studies have confirmed that the immunogenicity of H7N9 virus
is relatively low in humans, and the usage of many different
types of novel adjuvants may be necessary to improve the
immunogenicity of H7N9 vaccines (9, 23, 24).

In this study, we used the novel STING agonist cGAMP as
an adjuvant for the whole virus inactivated H7N9 vaccine. The
results showed that cGAMP can effectively enhance the vaccine-
induced serum-specific antibody and HAI antibody response in
intranasally immunized mice. The antibody response induced by
utilizing a cGAMP adjuvant achieved a dose-sparing effect of
about 10 times higher than that of vaccine alone. That is, the
serum antibody levels induced by 0.015µg with cGAMP and 0.15
µg with cGAMP groups were comparable to the serum antibody
levels induced by the 0.15µg and 1.5µg none adjuvanted vaccine
groups, respectively. This finding may be of great value for the
application of pre-pandemic influenza vaccines such as H7N9
vaccines (22). More importantly, we demonstrated that the level
of mucosal antibodies induced by the vaccine supplemented
with cGAMP adjuvant was significantly higher than that of
the unadjuvanted group, which may play a decisive role in
the first-time antiviral protection. In addition, the cGAMP was
also shown to be effective in enhancing vaccine induced T cell
immune responses, represented by higher induction of a strongly
enhanced IFN-γ response in splenocytes from immunized mice.

The cGAMP acts as an agonist that activates the STING
signaling pathway and the downstream NF-κB and IRF3
pathways to induce cytokine production to further promote
adaptive immune responses via different molecular mechanisms
(15, 18, 25). By examining the levels of innate immune-related
cytokines in the lungs ofmice at an early time post immunization,
we found that intranasal administration of cGAMP can induce
and increase the production of innate immune-related cytokines
in lung tissues, which is consistent with previous reports by other
groups using intramuscular, sublingual and skin immunization
routes (16, 18). Given the fact that cGAMP acts as a natural
small molecule, with its structure of phosphoric acid containing
diester bonds that are easily degraded by phosphodiesterase in
vivo (19, 26), the role of cGAMP is functional for only a short time
without side effects. It is theorized that perhaps the moderate
expression of these innate immune-related cytokines is important
for vaccine-induced immune enhancement. Our results indicate
that it is the enhanced humoral, cellular and mucosal immune
responses induced by the cGAMP vaccine that protect mice
during high lethal viral challenges.

The use of traditional inactivated influenza vaccines to induce
broad-spectrum immune responses with novel immunization
adjuvants or immunization strategies is one of the directions
for development of broad-spectrum influenza vaccines. Several
studies have demonstrated that intranasal immunization of
inactivated influenza vaccine induces both humoral and cell-
mediated immunity, suggesting that either or both of themmight
contribute to cross protection (11, 13, 27, 28). However, previous
studies using mice intranasally vaccinated with inactivated
influenza vaccines suggested that heterosubtypic immunity can
occur in the absence of cross-neutralizing antibodies (29).
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FIGURE 6 | cGAMP adjuvant upregulates production of cytotoxic T cell related cytokines in lung of mice post virus challenge. Mice were intranasally immunized with

two doses of 1.5 ug HA of whole-virion H7N9 influenza vaccine with or without cGAMP on day 0 and 21. Three weeks after the last immunization, mice were

challenged intranasally with a lethal dose (5 × LD50) of heterosubtypic A/PR/8/34 (H1N1) influenza virus. The concentration of IFN-γ (A) and granzyme B (B) in the

whole lung homogenates of mice at three days post virus challenge were measured by ELISA. Data shown as mean ± SD. n = 5 per immunized group. Each sample

was tested in triplicates. ***P < 0.001, **P < 0.01 (one-way ANOVA and Tukey’s multiple comparison test).

FIGURE 7 | cGAMP adjuvanted influenza vaccine provides long-term cross protection against heterosubtypic influenza A viruses challenge. Mice were intranasally

immunized with two doses of 1.5 ug HA of whole-virion H7N9 influenza vaccine with or without cGAMP on day 0 and 21. Six months after the last immunization, mice

were challenged intranasally with a lethal dose (5×LD50) of heterosubtypic A/PR/8/34 (H1N1) influenza virus. Survival rates (A) and body weight changes (B) of mice

after being challenged with a lethal dose of heterosubtypic influenza virus.
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In the present study, we also found that mice immunized
intranasally with two doses of cGAMP adjuvanted H7N9
influenza vaccine did not induce cross-reactive hemagglutination
inhibition antibodies against H1N1, H3N2 and H9N2 influenza
viruses, but could effectively protect mice against lethal challenge
of these heterosubtypic influenza viruses.

Since our previous studies have shown that mice intranasally
immunized with a recombinant internal conserved NP protein
in combination with mucosal immune adjuvant (Cholera toxin
B or C48/80) could produce better cross protection against
a heterogeneous influenza virus challenge, and of which, the
cellular immune response targeting these internal conservative
antigens were regarded as the main factor mediating this cross
protection against influenza (30, 31). In order to investigate
the potential immune mechanism that mediate cross protection
against heterosubtypic influenza virus in mice immunized with
cGAMP adjuvanted H7N9 vaccine, we examined the specific
T cell immune response against the NP, which was a highly
conserved antigen with a high proportion in the whole virus
inactivated vaccine. We found that intranasal co-administration
of H7N9 vaccine with cGAMP could induce high levels of
NP-specific IFN-γ-producing T cells, especially large amounts
of IFN-γ-producing CD4+ T cells, suggesting a considerable
Th1 response. Previous studies by Ivana et al. using OVA
antigen supplemented with cGAMP also suggested that cGAMP
is an adjuvant that induces a Th1 biased response (16). In
addition, recent studies have shown that cGAMP acts as a
potent adjuvants in vitro and in vivo, enhancing the induction
of functional antigen-specific CD8+ T cell responses in mice
and human cells (32). By further detecting the expression
of IFN-γ and granzyme B in the lung tissue of immunized
mice in an early stage (after receiving a heterologous influenza
virus challenge), it was found that the cGAMP adjuvant
group had more cytotoxic effector molecules in mice lung
tissue in short-term after virus infection. These observations
demonstrate that the cross-reactive NP-specific CD8+ T and
CD4+ T cells can rapidly proliferate, differentiate, and be
recruited to infection sites after viral infection, kill viral
infected cells through direct killing, FasL, dependent, IFN-γ
dependent or TRAIL dependent pathway and mediate clearance
of virus (33–36).

In the present study, we showed that intranasal delivery of
an inactivated H7N9 vaccine by using cGAMP as a mucosal
adjuvant induces both systemic and mucosal immunity with an
antigen dose-sparing effect. In addition, the cGAMP adjuvanted
vaccine elicited high HAI antibody responses and effective
protection against homologous viral challenge. Furthermore,
the administration of cGAMP-vaccine induced a enhanced
cross-reactive T cell responses that conferred cross protection
against heterosubtypic influenza A virus challenges. Our results
collectively suggest that the cGAMPmay be a promising adjuvant

for vaccines targeted against pandemic influenza and a mucosal
vaccine for broad protection against divergent influenza A virus.
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Figure S1 | SDS-PAGE analysis of inactivated whole-virion h7n9 influenza

vaccine. The bulk of inactivated whole-virion H7N9 influenza vaccine with a total

protein contentation of 400 ug/ml was treated with PNGase F, the optimal ratio of

PNGase F to bulk was 1:50(v/v). After treatment, the vaccine sample was

fractionated by SDS-PAGE under reducing conditions and stained with

Coomassie Brilliant Blue.

Figure S2 | Histologic analysis of mouse lung tissues after intranasal

administration with cGAMP as adjuvant. Mice were intranasally administered once

with with 5 µg (A), 25µg (B), 50 µg (C), 100 µg (D) cGAMP or 1.5 µg inactivated

whole-virion H7N9 influenza vaccine with or without 5 µg cGAMP (E,F), the PBS

(G) and LPS (H) groups were used as negative control and lung injury control,

respectively. The lung tissues were removed for hematoxylin and eosin (HE)

staining 24 h after administration. Representative photos are shown with 3 mice in

each groups. Scale bar denotes 100 µm.
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Conventional foot-and-mouth disease (FMD) vaccines exhibit several limitations, such

as the slow induction of antibodies, short-term persistence of antibody titers, as

well as low vaccine efficacy and safety, in pigs. Despite the importance of cellular

immune response in host defense at the early stages of foot-and-mouth disease

virus (FMDV) infection, most FMD vaccines focus on humoral immune response.

Antibody response alone is insufficient to provide full protection against FMDV infection;

cellular immunity is also required. Therefore, it is necessary to design a strategy

for developing a novel FMD vaccine that induces a more potent, cellular immune

response and a long-lasting humoral immune response that is also safe. Previously, we

demonstrated the potential of various pattern recognition receptor (PRR) ligands and

cytokines as adjuvants for the FMD vaccine. Based on these results, we investigated

PRR ligands and cytokines adjuvant-mediated memory response in mice. Additionally,

we also investigated cellular immune response in peripheral blood mononuclear cells

(PBMCs) isolated from cattle and pigs. We further evaluated target-specific adjuvants,

including Mincle, STING, TLR-7/8, and Dectin-1/2 ligand, for their role in generating

ligand-mediated and long-lasting memory responses in cattle and pigs. The combination

of Mincle and STING-stimulating ligands, such as trehalose-6, 6′dibehenate (TDB), and

bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), induced high levels of

antigen-specific and virus-neutralizing antibody titers at the early stages of vaccination

and maintained a long-lasting immune memory response in pigs. These findings are

expected to provide important clues for the development of a robust FMD vaccine that

stimulates both cellular and humoral immune responses, which would elicit a long-lasting,

effective immune response, and address the limitations seen in the current FMD vaccine.
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INTRODUCTION

Foot-and-mouth disease (FMD) is a highly contagious viral
disease that mainly affects cloven-hoofed livestock. This disease
causes serious economic losses to the livestock industry, due
to a rapid spread and high livestock mortality, resulting in low
livestock productivity (1). Over 70 species of wildlife, including
livestock ruminants such as cows, pigs, buffalos, camels, sheep,
and goats, are susceptible to this disease. FMD is associated with
high fever and causes blisters on the mouth, tongue, snout, nose,
nipple, hoof, and other hairless areas of the skin (2).

Immunization with inactivated vaccines, which are used as
a means of controlling the disease in countries afflicted by
FMD, constitutes an important part of the contingency plans
drawn up to meet emergency situations in FMD-free countries
(3). Similar to other vaccines that were generated against viral
diseases, several trials designed to generate a live attenuated
vaccine for FMDV have failed due to unstable phenotypes,
variable pathogenic profiles, risk of virus transmission, and
failure to induce adequate protection (4). Inactivated vaccines
are used against FMD globally. In order to produce an effective
vaccine, an antigen purification process, which removes cellular
contaminants as well as non-structural viral proteins (NSPs),
is required to facilitate diagnostic testing that differentiates
infected animals from vaccinated animals (DIVA). Since vaccine
antigens consisting of dead viruses do not replicate or induce
antibodies against NSPs, anti-NSP antibodies have often been
used as markers of infection. The efficacy of inactivated
vaccines was improved by including oil adjuvants (double or
single oil emulsions). However, these vaccines exhibited certain
limitations, such as the slow induction of antibodies to levels
allowing for defense, low antibody titers, short-term persistence
of antibodies, and low immunogenicity in pigs.

FMD vaccines focus on inducing humoral immune responses
rather than cellular immune responses. But their protective
effect is not perfect. While the period taken for induction
of the humoral immune response, via the major neutralizing
antibody, IgG, by FMD vaccines is 4–7 days (5), T cell-mediated
cellular immune response is generated by innate immunity,
where injection of Ag or infection with a pathogen activates

innate immune cells within a few hours to 2–3 days (6).
These cells then trigger inflammatory responses by secreting
proinflammatory cytokines, chemokines, and costimulatory
molecules. This innate, cell-mediated, immune response is
amplified within 3 days and peaks after 3–7 days. It is an
effective defense system that can recognize and clear the virus
rapidly in the early stages of FMDV infection or reinfection.
Moreover, current FMD vaccines have a short duration of
antibody persistence following inoculation, requiring periodic
vaccinations at intervals of 4–6 months. When intramuscularly
administered to pigs in particular, these vaccines often cause

lesions, such as fibrosis and granuloma in the inoculated muscles,

indicating issues such as local side effects and low safety.
Although studies related to FMD-related vaccines have focused

on investigating the efficacy of vaccines in cattle, rather than

in pigs, the immunogenicity induced by vaccination is lower in
pigs than in cattle (7). Therefore, to overcome the limitations

of the current commercial vaccines, the ideal vaccine design
should have the following characteristics: simultaneous induction
of both cellular and humoral immune responses, maintenance of
high antibody titers through the induction of memory response,
achievement of safety to reduce local side effects, and a new
strategy for the development of adjuvants optimized for different
livestock species.

Various adjuvant-related studies have investigated methods
for improving protection against FMD, including an evaluation
of the efficacy of FMD vaccines in pigs and goats using pattern
recognition receptors (PRR) ligands such as Resiquimod (R848),
poly(I:C) (8), muramyl dipeptide (MDP), monophosphoryl lipid
(MPL), and β-glucan (9). Use of immune-boosting agents such
as rapeseed oil and ginseng root saponin (10) as well as
commercially available adjuvants such as ISA 201, ISA 206,
Emulsigen-D, and Carbigen have also been evaluated. However,
thus far, adjuvant-induced perfect immunity has not been found.
In an effort to increase immunogenicity, focus was placed on
the induction of cellular and humoral immune responses, as
well as human vaccines rather than FMD vaccines, and the
following were studied and utilized as adjuvants (11, 12): (1)
vaccine delivery systems such as oil emulsions, surfactants,
liposomes, virosomes, and immune-stimulating complexes; (2)
immune-boosting agents such as saponin, aluminum hydroxide
(Al(OH)3), and potassium phosphate; (3) receptor-specific
immune stimulators such as Toll-like receptors (TLRs), RIG-
I-like receptors (RLRs), nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs), and ligands for C-type
lectin receptors (CLRs); and (4) a variety of cytokines such
as IL-1, IL-2, IL-6, IL-18, TNFα, IFNγ, and GM-CSF. Some
of these are currently in use or undergoing clinical trials for
use as vaccine adjuvants for the prevention and treatment of
various human diseases such as cancer, tuberculosis, hepatitis
B, malaria, influenza, human immunodeficiency virus, and the
herpes simplex virus (13, 14), but none have been utilized as a
component of FMD vaccines. Moreover, since different adjuvants
have different modes of action, it is important to understand the
immunological mechanism underlying the role of these adjuvants
in order to facilitate the development of FMD vaccines using
a new strategy that may induce strong cellular and humoral
immune responses simultaneously.

Our group conducted intensive studies to investigate different
serotypes of FMDV Ag-mediated cellular immune response
in vivo and in vitro (murine, bovine, and porcine immune
cells) as well as the effectiveness of various PRR ligands and
cytokines as adjuvants in mice. We also examined their ability
to induce cellular and humoral immune responses in mice and
analyzed related mechanisms to elucidate the differences in
immune responses among livestock species, such as cattle and
pigs. Therefore, in order to develop specific adjuvants optimized
for each livestock species and produce novel FMD vaccines
that included these adjuvants, this study pursued the following
objectives: evaluate memory response induction by adjuvants,
including PRR ligands and cytokines; screen adjuvants that
stimulate immune responses in peripheral blood mononuclear
cells (PBMCs) isolated from the whole blood of cattle and pig;
evaluate the composition of the experimental vaccines, including
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adjuvants selected for their ability to induce a humoral immune
response in vivo (cattle and pigs); propose a new strategy for the
development of FMD vaccines.

MATERIALS AND METHODS

Antigen (Ag) Purification and Inactivation
Ags were prepared by cultivating the FMD virus (FMDV)
O/TWN/97-R (GenBank AY593823 for P1) in BHK-21 cells
according to the method described by Lee et al., with
modifications (15). To initiate viral infection, the culture
medium was replaced with serum-free Dulbecco’s modified
Eagle’s medium (DMEM; Cellgro, Manassas, VA, USA), and
the cells were inoculated with the virus and incubated for 1 h
at 37◦C in a 5% CO2 atmosphere. All extracellular viruses
were then removed. At 24 h post-infection, the viruses were
inactivated with two treatments of 0.003N binary ethylenimine
for 24 h in a shaking incubator (16) and concentrated using
polyethylene glycol (PEG) 6000 (Sigma-Aldrich, St. Louis, MO,
USA). The virus concentrate was layered onto 15–45% sucrose
density gradients and centrifuged (17). After ultracentrifugation,
the bottoms of the centrifuge tubes were punctured and 1ml
fractions were collected. The presence of FMDV particles in a
sample of each fraction was confirmed by optical density using
a lateral flow device (BioSign FMDV Ag; Princeton BioMeditech,
Princeton, NJ, USA). Prior to its use in the experiment, the pre-
PEG treatment supernatant was passed through ZZ-R and BHK-
21 cells at least twice to ensure that no cytopathic effect (CPE)
occurred, thereby confirming the absence of any live viruses in
the supernatant.

PRR Ligands and Cytokines
PRR ligands were purchased from InvivoGen (InvivoGen, San
Diego, CA, USA), and cytokines were purchased from Mitenyi
Biotec (Miltenyi Biotec, Bergisch Gladbach, Germany) and R&
D Systems (R&D Systems, Minneapolis, MN, USA). ISA 206, an
oil emulsion, was purchased from Seppic Inc. (Paris, France),
and aluminum hydroxide gel (Alhydrogel R© and Quil-A were
purchased from InvivoGen.

Mice
Age- and sex-matched wild-type C57BL/6 mice (7-week-old
females) were purchased from KOSA BIO Inc. (Gyeonggi,
Korea). All mice were housed in microisolator cages in a
specific pathogen-free animal facility at biosafety level 3 (ABSL3)
at the Animal and Plant Quarantine Agency. The studies
were performed according to institutional guidelines and with
approval from the Ethics Committee of the Animal and Plant
Quarantine Agency.

Memory Immune Response Mediated by
PRR Ligands and Cytokines in Mice
To evaluate the potential of PRR ligands and commercially
available recombinant cytokines as vaccine adjuvants, and to
investigate their protective effect against FMDV infection and
their ability to induce a memory response, experiments were
performed using the strategy shown (Figure 1A) (n = 11 per

group). O/TWN/97-R Ag was used as inactivated FMDVAg. The
vaccine composition for the positive control (PC) group was as
follows: O/TWN/97-R Ag (15 µg/dose/ml, 1/160 dose), ISA 206
(50%, w/w), 10% Al(OH)3, and 15µg/mouse of Quil-A for a total
volume of 100 µl. All experimental group mice received vaccines
with the same composition as the PC group, with the addition
of either PRR ligands or recombinant cytokines as an adjuvant.
Mice in the negative control group received an equal volume
of phosphate-buffered saline (PBS, pH 7.0) administered via the
same route. Briefly, the mice were vaccinated intramuscularly in
the thigh muscle. Later, 56 days post vaccination (dpv), the mice
were challenged with FMDV (100 LD50 of O VET 2013, ME-SA
topotype) by intraperitoneal (I.P.) injection. Their survival rates
and body weights were monitored up to 7 dpc. In addition, serum
and peritoneal exudate cells (PEC) sampled from mice at 0, 28,
and 56 dpv were analyzed via structural protein enzyme-linked
immunosorbent assay (SP ELISA), virus neutralization (VN)
titers, and PEC subpopulations to determine the ability to induce
cellular and humoral immune responses. In order to identify
whether FMDV O Ag-specific T cell responses and memory T
cell responses were amplified by Ag re-stimulation, we isolated
pre (0 dpi) and post Ag injection (28 dpi) mice PEC (PC group).
T cells were purified from isolated PEC (Pan T Cell Isolation
Kit II, Miltenyi Biotec) and sorted via flow cytometry (purity >

98%). T cells were cultured at 37◦C and 5% CO2 in complete
RPMI media (Gibco, Carlsbad, CA, USA) supplemented with
10% FBS (HyClone, Logan, Utah, USA), 10mM HEPES (Gibco),
10 U/ml penicillin/streptomycin (Sigma-Aldrich), and 50mM
2-mercaptoethanol (Sigma-Aldrich). Cells were subsequently
treated in vitro with or without Ag (1µg/ml) for 6 h. The
percentage of IFNγposCD4+ T cells and IFNγposCD8+ T cells
was compared via flow cytometry as described in 2.5. ELISA
for IFNγ (R&D Systems, Minneapolis, MN, USA) was also
performed on T cell culture supernatants according to the
manufacturer’s instructions.

Flow Cytometric Analysis
In order to analyze PEC subpopulations, single-cell PEC
suspensions (0.5–1 × 106 cells in PBS supplemented with FBS)
were incubated with purified anti-CD16/32 antibodies (Abs)
(FcγRII/III block, Clone. 2.4G2; eBioscience, San Diego, CA,
USA) to block non-specific staining. PEC was immunostained
with fluorochrome-conjugated Abs to CD3 (Miltenyi Biotec,
Clone. REA641), CD4 (Miltenyi Biotec, Clone. REA604), CD8a
(Miltenyi Biotec, Clone. 53-6.7), CD44 (Miltenyi Biotec, Clone.
REA664), CD62L (Miltenyi Biotec, Clone REA828), CD27
(Miltenyi Biotec, Clone. REA499), anti- γδ TCR (Miltenyi
Biotec, Clone REA633), CD335 (NKp46) (Miltenyi Biotec, Clone.
REA815), CD11c (Miltenyi Biotec, Clone REA754), anti-MHC
Class II (Miltenyi Biotec, Clone. REA813), CD11b (Miltenyi
Biotec, Clone REA592), and anti-F4/80 (Miltenyi Biotec, Clone.
REA126). For intracellular staining of cytokines, cells were
stimulated by PMA and ionomycin in the presence of Golgi-
stop (BD Bioscience, Franklin Lakes, NJ, USA) in complete RPMI
medium for 4 h. After stimulation, cells were washed, and surface
molecules were stained. Cells were then fixed with Intracellular
(IC) Fixation Buffer (eBioscience), washed with Perm Buffer,
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FIGURE 1 | Adjuvanticity of PRR ligands and pro-inflammatory cytokines; significant enhancement of the memory response in mice against FMDV infection C57BL/6

mice were administered either a combination of PRR ligands or cytokines with the vaccine based on the vaccine composition of the positive control group. The PRR

ligands and cytokines used in the experiment were as follows: TDB (Mincle agonist), c-di-GMP (STING agonist), Furfurman (Dectin-2 agonist), R848 (TLR-7/8 agonist),

mIFNα, mIL-23, mIFNγ, mIL-2, mTNFα, mIL-15, and mIL-18. A negative control group of mice was injected with the same volume of PBS as the vaccine, and a

positive control group received 11.7 ng (1/160 of the dose for cattle or pig use) of O/TWN/97-R Ag, ISA 206 (50%, w/w), 10% Al(OH)3, and 15 µg Quil-A without PRR

ligands and cytokines. The test vaccines were injected intramuscularly into mice that were later challenged with FMDV (100 LD50 O VET 2013) at 56 dpv. Blood

sampling was performed on 28 dpv and 56 dpv for the serological assays. The survival rates and body weights were monitored for 7 dpc. (A–E) represent (A) the

strategy for this study; (B) antibody titer by SP O ELISA; (C) changes in body weight post vaccination; (D) survival rate against FMDV (O VET 2013); (E) changes in

body weight post challenge with O VET 2013. The data are the mean ± SEM of triplicate measurements; statistical analyses were performed using two-way ANOVA

with Bonferroni correction; #, *p < 0.05, ##, **p < 0.01, and ***p < 0.001.

and stained with anti-IFNγ (Miltenyi Biotec, Clone. REA638).
Data were acquired via flow cytometry (MACSQuant R© Analyzer
10, Miltenyi Biotec) and analyzed by FlowJo software vX 0.7
(TreeStar, Ashland, OR, USA). Cell counts were performed in
duplicate following the addition of Trypan blue dye using a Vi-
CELL Series Cell Viability Analyzer (Beckman Coulter, Brea,
CA, USA).

PBMC Isolation
Bovine and porcine whole blood was donated by the Gyeonggi
Veterinary Service Laboratory. FMD antibody-seronegative
animals were used as donors (n = 4/group for bovine PBMC;
n = 6/group for porcine PBMC). Whole blood (15 ml/each
donor) was independently collected in a BD Vacutainer heparin
tube (BD, Becton, Dickinson and Company, Franklin Lakes, NJ,

USA), and PBMCs were isolated using Ficoll-PaqueTM PLUS (GE
Healthcare Bio-Sciences Corp., Piscataway, NJ, USA) gradient
centrifugation. Residual red blood cells were lysed by treating
them with ACK (ammonium-chloride-potassium) lysing buffer
(Gibco, Carlsbad, CA, USA). The PBMCs were suspended in
Dulbecco’s PBS without Ca2+ and Mg2+ (Gibco, Carlsbad,
CA, USA), supplemented with 2% fetal bovine serum (FBS)
(Gibco, Carlsbad, CA, USA), and counted using a volumetric
flow cytometer (Miltenyi Biotec). All cells were freshly isolated
directly before use, and no cryopreserved cells were used in any
experiment. Purified PBMCs were then resuspended in RPMI-
1640 (Gibco, Carlsbad, CA, USA) medium supplemented with
10% FBS (HyClone, Logan, Utah, USA), 3mM L-glutamine
(Sigma-Aldrich, St. Louis, MO, USA), and 100 U/ml penicillin-
streptomycin (Sigma-Aldrich, St. Louis, MO, USA), plated at 1
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× 104 cells per well in 96-well plates, and incubated at 37◦C
with 5% CO2. Following a 3 h incubation, the culture medium
was replaced with a serum-free medium prior to stimulation with
various PRR ligands and cytokines.

PRR Ligand and Cytokine Treatment
Bovine (n = 4) and porcine (n = 6) PBMCs were treated with
PRR ligands and cytokines, as shown (Supplementary Table 1).
After 96 h, the cell culture medium (supernatant) was harvested,
and cytotoxicity [via lactate dehydrogenase (LDH) release]
and cell proliferation [via 5-bromo-2′-deoxyuridine (BrdU)
incorporation] were assessed.

PRR Ligand- and Cytokine-Mediated LDH
Release Assay in Bovine and Porcine
PBMCs
Cytotoxicity levels were detected in the supernatant of bovine
and porcine PBMCs treated with PRR ligands and cytokines,
as described above. An LDH release assay was performed using
the CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega,
Madison, WI, USA), following the manufacturer’s protocol. The
percentage of LDH release was calculated as follows: percentage
of LDH release =100 × (absorbance reading of treated well—
absorbance reading of untreated control)/(absorbance reading of
maximal LDH release control—absorbance reading of untreated
control). The lysis buffer provided by the kit was used to
achieve complete cell lysis, and the supernatant from the lysis
buffer-treated cells was used to determine maximum LDH
release control.

BrdU Incorporation Assay in Bovine and
Porcine PBMCs
The effects of PRR ligands and cytokines on the proliferation
of bovine and porcine PBMCs were assessed using a BrdU
Cell Proliferation Assay Kit (Cell Signaling Technology, Beverly,
MA, USA) based on the incorporation of BrdU during DNA
synthesis. Briefly, 10µM BrdU was added to the cell culture
and incubated for 4 h at 37◦C. The cells were then fixed
and incubated with an anti-BrdU mouse monoclonal antibody,
followed by horseradish peroxidase-conjugated goat anti-mouse
antibodies. The chromogenic substrate tetramethylbenzidine was
used for color development. Absorbance was measured at a dual
wavelength of 450/550 nm.

Cattle and Pigs
In order to evaluate the potential of PRR ligands and
recombinant cytokines as vaccine adjuvants and to investigate
their ability to induce cellular and humoral immune responses
and long-term immunity, field experiments using cattle and
pigs were conducted. For the field experiment, FMD antibody-
seronegative animals from 2 farmhouses were used (the cattle
were 5months old and the pigs were 10 weeks old). The cattle and
pigs were divided into 3 and 4 groups, respectively (n= 5/group).
The animals were kept in closed containments during the study.
The studies were performed according to institutional guidelines,
with approval from the Ethics Committee of the Animal and
Plant Quarantine Agency.

Immunization and Sampling
O/TWN/97-R Ag was used as the FMD Ag, and the vaccine
composition for the positive control group was as follows: 1ml
vaccine prepared as a single dose, which included 15 µg of
O/TNW/97-R Ag, ISA 206 (50%, w/w), 10% Al(OH)3, and 150
µg Quil-A.

Vaccination was performed twice at a 28 days interval,
and 1ml of vaccine (1 dose) was administered via the deep
intramuscular route on the necks of the animals. Blood samples
were collected at 0, 14, 28, 56, 84, 112, 140, and 168 dpv from
cattle and at 0, 14, 28, 42, 56, 70, and 84 dpv from pigs. The
animals were monitored daily for body temperature, symptoms
at vaccination site, and appetite. Serum samples were stored at
−80◦C until tests were performed.

Serological Assays
ELISA for the Detection of Structural Protein (SP)

Antibodies

To detect SP antibodies in the sera, PrioCHECK FMDV type O
(Prionics AG, Switzerland) was used. Absorbance in the ELISA
plate was converted to a percent inhibition (PI) value. When
the PI value was 50% or above, the animals were considered
antibody positive.

Virus Neutralization Test

A virus neutralization test was performed according to theWorld
Organization for Animal Health (OIE) manual (18). The sera
were heat inactivated at 56◦C for 30min in a water bath. Cell
density was adjusted to form a 70% monolayer, and 2-fold serial
dilutions of sera samples (1:4–1:512) were prepared. The diluted
sera samples were then incubated with a 100-tissue culture
infectious dose (TCID)50/0.5ml homolog virus for 1 h at 37◦C.
After 1 h, a LF-BK (bovine kidney) cell suspension was added to
all wells. After 2–3 days, CPE was checked to determine the titers,
which were calculated as Log10 of the reciprocal antibody dilution
required to neutralize 100 TCID50 of the virus (19, 20).

Statistics
All quantitative data are expressed as mean ± SEM, unless
otherwise stated. Between groups, statistical significances were
assessed using two-way ANOVA followed by the Bonferroni post-
hoc test and one-way ANOVA followed by Tukey’s post-hoc test.
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Survival curves were built
using the Kaplan-Meier method and differences were analyzed
using the log-rank sum test. GraphPad Prism 5 (GraphPad, San
Diego, CA, USA) software was used for all statistical analyses.

RESULTS

Inclusion of PRR Ligands and Cytokines as
FMD Vaccine Adjuvants Induce Potent
Memory Responses and Elicit a Protective
Effect Against FMDV Infection in Mice
Mouse experiments were performed to evaluate the potential
of PRR ligands and recombinant cytokines as FMD vaccine
adjuvants and the induction of adjuvant-mediated memory
immune response (Figure 1A). As indicated by SP O ELISA,
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the group administered with PRR ligand and FMDV O Ag
showed high antibody titers at 28 dpv (Figure 1B), and antibody
titers were also significantly elevated in the experimental groups
treated with rmIFNα (p < 0.001), rmIFNγ+rmIL-2+rmTNFα
(p < 0.05), rmIL-15+rmIL-18 (p < 0.05), TDB+c-di-GMP
(p < 0.05), and R848+c-di-GMP (p < 0.01) compared to the
positive control group. Furthermore, at 58 dpv, significantly
higher antibody titers were observed in all experimental groups
vaccinated with cytokines and PRR ligands as adjuvants (p <

0.01 and p < 0.001, respectively). To determine the effect of
the vaccination itself on body weight, mouse body weight was
monitored once a week for 8 weeks (56 d) following vaccination,
but no significant differences were found between the
groups (Figure 1C).

Later, 56 days following vaccination, the mice were challenged
with O VET 2013 and monitored for survival rates (Figure 1D)
and changes in body weight (Figure 1E). Mice receiving PRR
ligands and cytokines as vaccine adjuvants had a 100% survival
rate without weight loss. By contrast, 100% of the mice in the
negative control group died by 4 dpc, and the mice in the positive
control group had a survival rate of 40%.

PRR Ligands and Cytokines Promote the
Expansion of Memory Immune Cells
To investigate cellular and humoral immune responses mediated
by PRR ligands and cytokines, the expansion of immune
cells was analyzed using flow cytometry. CD4+ T cells
were expanded in the group supplemented with R848+TDB
and TDB+c-di-GMP on 28 dpv and mIFN, mIL-15+mIL-
18, R848+TDB, and TDB+c-di-GMP on 56 dpv (Figure 2A,
Supplementary Figure 3A). CD8+ T cells in the mIFNα-treated
group had a lower absolute cell number than CD4+ T cells but
showed significantly higher cell expansion on 28 dpv (Figure 2B,
Supplementary Figure 3B). The expansion of CD44high CD62low

T cells, a memory T cell marker, increased rapidly at 56 dpv
compared to 28 dpv. Although the cell number of these effector
memory T cells increased in all the adjuvant treated groups
at 56 dpv (Figure 2C, Supplementary Figure 3C), PRR ligands
induced the expansion of these cells more significantly than
cytokines at 28 dpv.

CD44high CD27low γδ T cells, known as memory γδ T
cells, were expanded 8–12% by the addition of PRR ligands
and cytokines, and no difference was observed between
28 and 56 dpv (Figure 2D, Supplementary Figure 3D). The
expansion of CD44+CD27+ B cells, known as memory B
cells, was significantly increased at 28 dpv in the mIL-23,
R848+TDB, and TDB+c-di-GMP adjuvant groups. Overall,
the absolute cell number was higher at 56 dpv compared
to 28 dpv, and memory B cells were significantly expanded
in all PRR ligand- and cytokine-supplemented groups. In
particular, the mIL-23, mIFNγ+mIL-2+mTNFα, mIL-15+mIL-
18, R848+TDB, and R848+c-di-GMP supplemented groups
showed a significant increase in cell expansion (p < 0.001;
Figure 2E, Supplementary Figure 3E). In the mIFNα-treated
group, CD335 (NKp46)+CD27+ cells, known as memory-
like NK cells, expanded as well as increased in number

(Figure 2F, Supplementary Figure 3F). The populations of DCs
(CD11c+MHC II+) and MΦs (CD11b+F4/80+) in this study
were not significant (data not shown).

To validate FMDV O Ag-specific T cell response and
amplification of memory T cell response due to Ag re-
stimulation, IFNγposCD4+ T cells and IFNγposCD8+ T cells
percentages were compared via flow cytometric analysis of
purified T cells from pre- or post- Ag injected mouse PEC
with or without Ag treatment. The percentage of IFNγposCD4+

T cells was significantly increased by Ag treatment, and
these Ag-specific T cell responses were remarkably amplified
by Ag re-stimulation in the post- Ag injected group (p
< 0.001; Supplementary Figure 1A). A similar trend was
detected in the percentage of IFNγposCD8+ T cells (p <

0.001, Supplementary Figure 1B). ELISA results demonstrated
that IFNγ expression in T cell culture supernatants was also
significantly increased by Ag treatment (p < 0.001), and the
production of IFNγ was significantly enhanced by Ag re-
stimulation (p < 0.001, Supplementary Figure 1C).

Administration of Individual PRR Ligands,
Alone or in Combination, Does Not Elicit
LDH Release-Related Cytotoxicity in
Bovine- and Porcine-Derived PBMCs
LDH release was examined to observe cytotoxicity due
to the PRR ligands, gels, and saponins in bovine-derived
PBMCs. Low cytotoxicity was observed in all treated cells
(Supplementary Figure 2A). LDH release following treatment
of bovine-derived PBMCs with individual PRR ligands and
a vaccine-adjuvant mixture of oil+gel+saponin, is shown
(Supplementary Figure 2B). At this time, no cytotoxicity due
to the adjuvant mixture was observed, compared with control
cells. Moreover, cells treated with either the PRR ligand alone

(Supplementary Figure 2C) or PRR ligands in combination with
oil+gel+saponin mixture also exhibited low LDH release levels
(Supplementary Figure 2D).

When porcine-derived PBMCs treated with individual PRR
ligands, or with individual PRR ligands combined with the
oil+gel+saponin mixture, were assessed for LDH release, no
toxicity was observed at the adjuvant concentrations used
in this study, which was similar to the results obtained
for bovine-derived PBMCs (Supplementary Figures 2E,F). A
similar pattern was observed when porcine-derived PBMCs
treated with either the PRR ligand alone or PRR ligands in
combination with oil+gel+saponin mixture also exhibited low
LDH release levels (Supplementary Figures 2G,H).

Treatment With Individual PRR Ligands,
Alone or in Combination, Promotes Cell
Proliferation and Initiates an Immune
Response in Bovine- and Porcine-Derived
PBMCs
When bovine-derived PBMCs were treated with individual
PRR ligands alone (Figure 3A) or in combination with
oil+gel+saponin mix (Figure 3B), cell proliferation was
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observed at 96 h via BrdU incorporation, indicating that cell
proliferation was increased in all PRR ligand-treated groups
compared to the control group. Among these, Curdlan, TDB,
c-di-GMP, R848, and Furfurman, in particular, showed the
greatest effect. In addition, treatment of PBMCs with PRR
ligand combinations or individual PRR ligands combined with
the oil+gel+saponin mixture increased cell proliferation in all
experimental groups, compared with that of the control group.
However, the increase in cell proliferation was relatively lower
when oil+gel+saponin was not added (W/O). The results of cell
proliferation following treatment with PRR ligand combination
with or without oil+gel+saponin are shown (Figures 3C,D).
While cell proliferation was increased in all treatment groups
compared to the control group, the experimental groups treated

with R848+TDB, Furfurman+TDB, Curdlan+c-di-GMP, and
TDB+c-di-GMP, in particular, showed the highest values.

The results of cell proliferation in porcine-derived PBMCs
at 96 h following treatment with individual PRR ligands and
cytokines are shown (Figure 3E). Increased cell proliferation
was observed in all groups treated with the PRR ligands and
cytokines, among which TDB and c-di-GMP, in particular,
showed the greatest effect. Treatment with individual PRR
ligands and cytokines combined with oil+gel+saponin increased
cell proliferation in all experimental groups, compared with
the control group, as was observed in bovine-derived PBMCs.
However, the extent of the increase in cell proliferation
was relatively lower when oil+gel+saponin was not added
(Figure 3F). Cell proliferation following treatment with PRR

FIGURE 2 | PRR ligands and cytokines promote the expansion of memory immune cells C57BL/6 mice were administered either a combination of PRR ligands or

cytokines with the vaccine based on the vaccine composition of the positive control group. The PRR ligands and cytokines used in the experiment and the vaccination

method are summarized in Figure 1. Peritoneal exudate cells (PEC) sampling was performed at 28 and 56 dpv for the flow cytometric assay. PEC was

immunostained with fluorochrome-conjugated Abs to CD3, CD4, CD8a, CD44, CD62L, CD27, γδ TCR, CD335 (NKp46), CD11c, Anti-MHC Class II, CD11b, and

anti-F4/80. Data were acquired by flow cytometry and analyzed by FlowJo software vX 0.7. (A–E) represent the expansion of immune cells; (A) CD4+ T cells; (B)

CD8+ T cells; (C) CD44high CD62low T cells; (D) CD44high CD27low γδ T cells; (E) CD44+CD27+ B cells; (F) CD335 (NKp46)+CD27+ cells. The data are the mean ±

SEM of triplicate measurements; statistical analyses were performed using two-way ANOVA with Bonferroni correction; *p < 0.05, **p < 0.01, ***p < 0.001.
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ligand combinations, with or without oil+gel+saponin, is shown
(Figures 3F,G). Compared with the control group, increased
cell proliferation was observed in all treatment groups, and, in
particular, the experimental groups treated with R848+TDB,
Furfurman+TDB, and TDB+c-di-GMP showed the highest
values. On the other hand, cross-species comparison of cell
proliferation revealed that cattle showed higher cell proliferation
than pigs.

Mincle, STING, Dectin-1/2, and TLR-7/8
Signaling Amplify Robust, Long-Lasting
Memory Responses by Inducing Cellular
Immune Responses in the Early Stages
After Vaccination in Cattle and Pigs
To evaluate the effect of the adjuvants and the memory response
mediated by the PRR ligands in farm-raised cattle, R848+TDB
and Curdlan+c-di-GMP (both of which showed a significant
effect in the PRR ligand-screening experiment using bovine
PBMCs) were applied to an animal experiment using the strategy
shown in Figure 4A. At 28 dpv after the first vaccination, Ab
titers were determined by SP O ELISA, and significantly higher
antibody titers were observed in the experimental groups treated
with R848+TDB (p < 0.05) and Curdlan+c-di-GMP (p < 0.01)
than in the positive control group; the antibody titers were
maintained at high levels, up to 168 dpv after boosting (p < 0.05
and p < 0.001, respectively) (Figure 4B). In addition, when the
VN titer was examined, the titer was significantly higher in the
PRR ligand-treated groups than in the control group from 14 dpv
(p < 0.01), and the titer was maintained at very high levels even
until 140 dpv (p < 0.001) (Figure 4C).

To investigate the effect of the adjuvants as well as the
memory response mediated by the PRR ligands in farm-
raised pigs, R848+TDB, Furfurman+TDB, and TDB+c-di-GMP
(both of which showed a significant effect in the PRR ligand-
screening experiment using porcine PBMCs) were applied to
the animal experiment (Figure 5A). To determine the antibody
titers induced by vaccination, SP O ELISA was performed using
porcine serum. Antibody titers were significantly increased (p <

0.001) in the TDB+c-di-GMP-treated group at 14 dpv compared
to the positive control group (p < 0.001), and the antibody titers
were drastically increased (p < 0.001) in all groups treated with
the PRR ligands at 28 dpv (Figure 5B). In particular, antibody
titers were maintained at significantly higher levels (up to 84 dpv,
p < 0.01) in the TDB+c-di-GMP-treated group compared to the
control group. Furthermore, when the VN titer was determined,
significantly higher neutralizing antibody titers were observed
in the TDB+c-di-GMP (p < 0.001) and R848+TDB groups
(p < 0.01) at 14 dpv compared to the positive control group.
Antibody titers were also drastically increased (p < 0.001) in
all groups treated with PRR ligands at 28 dpv (p < 0.001). In
particular, antibody titers were maintained at high levels in the
TDB+c-di-GMP-treated group (up to 84 dpv, p < 0.001), while
the R848+TDB-treated group showed an excellent immune-
boosting effect from the early (14 dpv) to middle (42 dpv)
stages (p < 0.01 and p < 0.001, respectively) post vaccination,
which tended to slightly decrease thereafter. In contrast, in

the Furfurman+TDB group, the neutralizing antibody titers
increased somewhat slowly in the early stage (up to 14 dpv) but
drastically increased thereafter from 28 to 84 dpv compared to the
control group (p< 0.01 and p< 0.001, respectively) (Figure 5C).
However, neutralizing antibody titers increased more rapidly
in cattle than in pigs, and even after boosting, neutralizing
antibody titers tended to remain at higher levels in cattle than
in pigs.

The above results indicate that R848 (TLR-7/8)+TDB
(Mincle) and Curdlan (Dectin-1)+c-di-GMP (STING)
specifically increased the cellular immune response and
induced long-lasting memory responses in cattle. Similar
reactions were also observed in TDB (Mincle)+c-di-GMP
(STING), R848 (TLR-7/8)+TDB (Mincle), and Furfurman
(Dectin-2)+TDB (Mincle).

DISCUSSION

FMD is classified as an acute infectious disease in cattle
and pigs. It is asymptomatic in small ruminants, which can
cause persistent infections, making it difficult to eradicate (17).
Currently, vaccination policies are being implemented in Korea
and other countries facing FMD epidemics, and, in the event
of an outbreak, large-scale vaccine production is necessary to
prepare for nationwide vaccination.

The innate immune response acts as the host’s first line
of defense against invading pathogens. Innate immune cells,
particularly dendritic cells (DCs) and macrophages (MΦs), sense
external microorganisms, which are recognized by PRRs via
pathogen-associatedmolecular patterns (PAMPs) associated with
the microrganisms. PRRs not only mediate the activation of
innate immune cells in the presence of a danger signal, such
as infection, but they also directly regulate adaptive immune
responses (21). Although adjuvants have traditionally been
used to boost the immunogenicity of vaccines, little is known
about the host reactivity and precise mechanisms related to
adjuvants contained in animal vaccines targeted toward different
livestock species.

Recently, Chen et al. (9) reported that an adjuvant mixed
with MDP (NOD-2 ligand), MPL (TLR-4 agonist), and β-
glucan (TLR-2, TLR-4, and TLR-6 ligands) improved immune
response and protection in pigs when used in combination
with FMD vaccines. However, the immunological mechanism
underlying the improved immunity has not yet been clearly
understood. Martinez-Lopez et al. (22) reported that Mincle
plays a key signaling role in microbiota sensing by stimulating
the secretion of IL-23p19 and IL-6 via the Mincle-Syk axis,
thereby regulating secretion of IL-17 and IL-22 from Th17 cells.
In addition, Dectin-1/2 has also been reported to regulate the
immune response against Mycobacterium tuberculosis infection
by stimulating secretion of IL-23 through Syk-CARD9 signaling
and the secretion of IL-17 from Th17 in DCs and MΦs (23, 24).
STING is known to be involved in the antiviral activity mediated
by cytosolic DNA sensing (25) and type I IFN expression
through the cGAS-cGAMP-STING pathway (26, 27). TLR-7/8,
the most well-known component of the TLR pathway, has also
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FIGURE 3 | PRR ligand-induced bovine and porcine PBMC proliferation, as assessed by a BrdU cell proliferation kit. Bovine and porcine PBMCs were co-incubated

with either PRR ligands alone or a combination of PRR ligands or a mixture of oil, gel, and saponin. The PRR ligands used in the experiment were as follows: R848

(Continued)
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FIGURE 3 | (TLR-7/8 agonist), Curdlan (Dectin-1 agonist), Zymosan (Dectin-2/TLR-2 agonist), Furfurman (Dectin-2 agonist), TDB (Mincle agonist), c-di-GMP (STING

agonist), MDP (NOD-2 agonist), MPLA-SM (TLR-4 agonist), chitosan (NLRP3 inflammasome inducer and MR agonist), poly(I:C) (TLR-3/MDA-5 agonist), poly(dA:dT),

RIG-1/CDS agonist, and AIM2 inflammasome inducer. Gel alone, saponin alone, and a mixture of oil, gel, and saponin were also tested for comparison. At specific

time points (96 h) after coincubation, cell proliferation was tested using a BrdU ELISA kit. (A–D) represent in vitro cell proliferation induced by the PRRs in bovine

PBMCs; (A) PRR ligands alone; (B) PRR ligands with a mixture of oil, gel, and saponin; (C) combination of PRR ligands; (D) combination of PRR ligands with a

mixture of oil, gel, and saponin. (E–H) represent in vitro cell proliferation induced by the PRRs in porcine PBMCs; (E) PRR ligands alone; (F) PRR ligands with a

mixture of oil, gel, and saponin; (G) combination of PRR ligands; (H) combination of PRR ligands with a mixture of oil, gel, and saponin. The data are the mean ± SEM

of triplicate measurements (n = 6); statistical analyses were performed using one-way ANOVA with Tukey’s post-test; *p < 0.05, **p < 0.01, and ***p < 0.001.

been reported to inhibit viral replication during viral infection
through IFNα secretion as well as enhance mucosal immunity
and systemic immune response (28, 29). However, little research
had previously been conducted on the applicability of PRR
ligands as an adjuvant for FMD vaccines.

A previous study by our group confirmed that the FMDV
Ag-mediated activation of DCs and MΦs is induced by the
stimulation of specific PRRs such as Mincle, STING, Dectin-1/2,
and TLR-7/8 in mice. In addition, cytokines, such as IL-23 and
IFNα (which are directly induced by FMDV Ag and expressed
in DCs and MΦs), as well as the ligands that can stimulate
associated PRRs were confirmed to significantly improve the
protective effect of the FMD experimental vaccines against
FMDV when used as a FMD vaccine adjuvant in a host.

Based on these results, this study aimed to monitor the
memory response mediated by the PRR ligands and cytokines
when used as an FMD vaccine adjuvant. This would likely
enable development of FMD vaccine adjuvants, and vaccine
compositions containing these adjuvants, which are optimized
for bovine and porcine livestock species.

In mice, injections of various PRR ligands and cytokines
alone or in combination as an adjuvant induced higher
antibody titers in all experimental groups compared to the
positive control group after a single vaccination. Although
the short in vivo persistence of IFNα has been mentioned
as a disadvantage in several papers (30, 31), the present
study demonstrated that injection of IFNα as an adjuvant
generated high antibody titers and that the resulting immunity
persisted up to 56 dpv. The IL-23-treated group (in which
the cellular immune response and host protective effect were
previously demonstrated to be significantly improved), the group
treated with IFNγ+IL-2+TNFα (which are both involved in
T cell activation and T cell-mediated cellular/humoral immune
responses) and the group treated with IL-15+IL-18 (which are
involved in mucosal immunity) all continuously maintained high
antibody titers. The PRR ligand-treated groups also showed
similar patterns, confirming that these adjuvants can effectively
induce memory responses.

When the effect of vaccination itself on weight change was
examined, a slight weight loss was observed in the IFNγ+IL-
2+TNFα combination group at 7 dpv, but no significant
difference was found. This may be due to the slightly higher
dose of the recombinant cytokines (15 µg in total) in this
group compared to that of the other groups (5–10 µg in total).
Notably, Ag-specific T cell response was significantly amplified
by Ag re-stimulation. Inclusion of PRR ligands and cytokines
as adjuvants promoted memory T cells, memory γδ T cells,

memory B cells, and memory-like NK cell expansion, thereby
effectively enhancing cellular immunity and humoral immunity.
The expansion of these memory cells will play an important role
in host defense by enabling a more rapid and strong response to
the pathogen during FMDV infection.

Taken together, the induction of robust memory responses
and expansion of memory cells by PRR ligands and cytokines
resulted in a complete protective effect against FMDV infection
in all experimental groups (Figures 1, 2).

Zhou et al. (8) reported that R848 and poly(I:C) injected
in combination with Al(OH)3 as an FMD vaccine adjuvant
enhanced the immune response in mice. Additionally, Du et al.
(32) recently showed that CVC 1302 (MDP, MPL, and β-
glucan) could be added to commercially available inactivated
FMDV (serotype O) vaccines as an adjuvant-induced, long-
term humoral immunity in mice through the stimulation of T
follicular helper cells and the germinal center response. However,
these studies were performed using specific PRR ligands, and
a study to investigate the protective effects of these substances
against actual FMDV infection in mice had not been previously
conducted. Therefore, the results of the present study, which
investigated the effects of a wide range of PRR ligands and
cytokines on the induction of memory response and ability to
defend against FMDV (serotype O) infection, can be interpreted
as a highly efficient adjuvant screening system. This screening
system may be of us in a pre-animal experimental step targeting
specific animal species, such as cattle and pigs, and thus can also
be used to provide basic data for developing FMD vaccines via a
new strategy.

Pigs are known to have lower persistence and efficacy
in their immune responses compared to cattle (7). To
propose FMD vaccine compositions with superior efficacy
optimized for each livestock species and to overcome the
immunogenicity gap between the two species, screening
was performed to identify adjuvants that could stimulate
the immune response specifically in cattle and pigs. In
order to facilitate screening, PBMCs isolated from the whole
blood of cattle and pigs were treated with various PRR
ligands and cytokines alone or in combination, and the
LDH release-related cell cytotoxicity and cell proliferation
were examined. PBMCs consist of lymphocytes (T cells, B
cells, and NK cells), monocytes, and dendritic cells. PBMCs
are broadly used in the fields of immunology, infectious
disease, vaccine development, and transplant immunology,
among others. Therefore, bovine and porcine PBMCs are
useful model systems for the study of FMD vaccine and
adjuvants. No cytotoxicity was observed in any of the adjuvant

Frontiers in Immunology | www.frontiersin.org 10 October 2019 | Volume 10 | Article 250959

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Novel Adjuvants for Foot-and-Mouth Disease Vaccine

FIGURE 4 | PRR ligand-mediated long-lasting memory response in cattle. Cattle were administered either a combination of R848 (TLR-7/8 agonist) and TDB (Mincle

agonist) or Curdlan (Dectin-1 agonist) and c-di-GMP (STING agonist) with the vaccine, based on the vaccine composition of the positive control group. A positive

control group of cattle received 15 µg (1 dose for cattle use) of O/TWN/97-R Ag, ISA 206 (50%, w/w), 10% Al(OH)3, and 150 µg Quil-A without PRR ligands. The

vaccination was performed twice at a 28 days interval, and 1ml vaccine (1 dose) was injected via the deep intramuscular route on the necks of the animals. Blood

samples were collected at 0, 14, 28, 56, 84, 112, 140, and 168 dpv from the cattle for the serological assays. (A–C) represent (A) the strategy for this study;

(B) antibody titers by SP O ELISA; (C) virus-neutralizing antibody titers. The data are the mean ± SEM of triplicate measurements; statistical analyses were performed

using two-way ANOVA with Bonferroni correction; *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5 | PRR ligand-mediated long-lasting memory response in pigs. Pigs were administered a combination of R848 (TLR-7/8 agonist) and TDB (Mincle agonist)

or Furfurman (Dectin-2 agonist) and TDB (Mincle agonist) or TDB (Mincle agonist) and c-di-GMP (STING agonist) with the vaccine based on the vaccine composition

of the positive control group. The positive control group of pigs received 15 µg (1 dose for pig use) of O/TWN/97-R Ag, ISA 206 (50%, w/w), 10% Al(OH)3, and 150

µg Quil-A without PRR ligands. The vaccination was performed twice at a 28 days interval, and 1ml vaccine (1 dose) was injected via the deep intramuscular route on

the necks of the animals. Blood samples were collected at 0, 14, 28, 42, 56, 70, and 84 dpv from the pigs for the serological assays. (A–C) represent (A) the strategy

for this study; (B) antibody titers by SP O ELISA; (C) virus-neutralizing antibody titers. The data are the mean ± SEM of triplicate measurements; statistical analyses

were performed using two-way ANOVA with Bonferroni correction; *p < 0.05, **p < 0.01, ***p < 0.001.

concentrations used in this study, indicating that these adjuvants
are safe to administer to a host. These adjuvants significantly
increased cell proliferation compared to the control group,
and R848+TDB and Curdlan+c-di-GMP were effective in

cattle, while R848+TDB, Furfurman+TDB, and TDB+c-di-
GMP were effective in pigs. These PRR ligands mediated
cell proliferation in bovine and porcine PBMCs, which is
expected to simultaneously stimulate various immune cells
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to induce cellular immune responses more efficiently. In the
cross-species comparison in particular, the immune response
in bovine-derived PBMCs was significantly higher than that
of porcine-derived PBMCs for most adjuvants, suggesting that
bovine immune cells are more sensitive to external stimuli
than porcine immune cells. Our group previously identified
the fundamental difference in the FMDV Ag-mediated immune
response between bovine and porcine immune cells. In the
previous study, even though the Ag was a porcinophilic virus,
FMDV (serotype O) Ag stimulated remarkably higher cell
proliferation in bovine immune cells (PBMCs, lymphocytes,
monocytes, and T cells) than in porcine immune cells. The
discovery of this difference may explain the phenomenon of
the lower immunogenicity observed in pigs, as compared to
cattle, and suggest a key clue to overcoming this problem. In
addition, based on the results of treating PBMCs with a mixture
of ISA 206, Al(OH)3, and saponin, it is expected that when
these adjuvants are injected as an actual vaccine component,
the oil emulsion will allow the Ag and adjuvant to be released
slowly in vivo, thus enabling continuous stimulation of immune
responses (Supplementary Figure 1, Figure 3).

Based on the findings from the screening of PRR ligands and
cytokines in PBMCs isolated from each species, experimental
vaccines were created, and their immunogenicity was tested
in farm raised cattle and pigs. The results showed that the
neutralizing antibody titers significantly increased in both the
bovine and porcine groups treated with species-specific PRR
ligands at 14 dpv after the first vaccination compared to the
positive control group. Long-lasting immune responses were
also observed after the second vaccination (boosting). The high
level of titers of neutralizing antibodies confirmed in both the
cattle and pigs can be interpreted to mean that the combination
of ligands, such as Mincle, STING, TLR-7/8, and Dectin-
1, stimulates extrinsic and intrinsic pathways simultaneously
to effectively initiate innate and cellular immune responses
and activate various kinase pathways, effector molecules, and
transcription factors to induce cytokine secretion. The cellular
immune response is there by enhanced, and the humoral immune
response is strongly induced as well. In addition, the second
booster vaccination at 28 dpv showed to effectively induce “recall
stimulation” among the immune cells stimulated by the first
vaccination, and it also plays a role in maintaining long-lasting
immune responses. The combination of the Mincle+STING
ligands in pigs specifically resulted in an excellent increase of the
antibody titers from 14 dpv, which is expected to help overcome
the disadvantages of commercial vaccines for pigs (Figures 4,
5). In addition, further studies on the efficacy of cytokine

adjuvants (which showed a strong memory response-inducing
effect and a protective effect in mice) should be conducted on
the target animals (cattle and pigs), and the economic feasibility
of the vaccine with adjuvant addition should be considered in
the future.

In summary, the novel FMD vaccine platform utilizing the
Mincle, STING, Dectin-1/2, and TLR-7/8 ligands as adjuvants
is expected to open the door to a new era in the field of FMD
prevention and treatment.
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The central paradigm of vaccination is to generate resistance to infection by a specific

pathogen when the vacinee is re-exposed to that pathogen. This paradigm is based on

two fundamental characteristics of the adaptive immune system, specificity and memory.

These characteristics come from the clonal specificity of T and B cells and the long-term

survival of previously-encountered memory cells which can rapidly and specifically

expand upon re-exposure to the same specific antigen. However, there is an increasing

awareness of the concept, as well as experimental documentation of, heterologous

immunity and cross-reactivity of adaptive immune lymphocytes in protection from

infection. This awareness is supported by a number of human epidemiological studies

in vaccine recipients and/or individuals naturally-resistant to certain infections, as well as

studies in mouse models of infections, and indeed theoretical considerations regarding

the disproportional repertoire of available T and B cell clonotypes compared to antigenic

epitopes found on pathogens. Heterologous immunity can broaden the protective

outcomes of vaccinations, and natural resistance to infections. Besides exogenous

microbes/pathogens and/or vaccines, endogenous microbiota can also impact the

outcomes of an infection and/or vaccination through heterologous immunity. Moreover,

utilization of viral and/or bacterial vaccine vectors, capable of inducing heterologous

immunity may also influence the natural course of many infections/diseases. This review

article will briefly discuss these implications and redress the central dogma of specificity

in the immune system.

Keywords: heterologous (non-specific) effects of vaccines, heterologous immunity, T cells, antibody, innate and

adaptive immune response

INTRODUCTION

Studies in humans and mouse models have clearly demonstrated that exposure or infection with
one pathogen can induce and/or modify the immune response against another unrelated pathogen.
This is what’s defined as heterologous immunity (1, 2). The ability of an individual to respond
to a pathogen is influenced by its exposure history to a significant extent, both by pathogenic
microbes and commensals (microbiota) (2). Heterologous immunity could boost or weaken
protective immunity against a pathogen, and/or induce severe immunopathology or tolerance
against self-antigens. Therefore, there must be a delicate balance between protective immunity and
immunopathology, and heterologous immunity can play an important role in tilting this balance.
Heterologous adaptive immunity was initially thought to be due to high levels of amino acid
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sequence similarities in T cell and B cell epitopes among
antigens of different pathogens, but has now broadened in
scope with the realization of the highly cross-reactive nature
of adaptive immune lymphocytes (3). With the expanding
understanding of heterologous immunity, there is a need to
re-think and re-examine its impact on vaccines, resistance
to infections, protective vs. detrimental immunity, as well as
autoimmunity. In this article, I will briefly review heterologous
immunity, and its impact on natural immunity to infections,
vaccine vectors and vaccine-mediated protection by describing,
(1) the realm of cross-reactive adaptive lymphocytes, (2)
evidence of cross-reactivity from vaccine studies, (3) animal
and human model experiments to demonstrate cross-reactivity
between a broad range of pathogens, (4) possible influence
of cross-reactivity on natural resistance to infections, (5) role
of microbiota in heterologous immunity, (6) vaccine vectors
and heterologous immunity, and (7) discussion and future
prospects. In addition to cross-reactive lymphocytes, a network
of cytokines, regulatory cells and trained innate immune
cells contribute to manifesting heterologous immunity (4, 5).
However, this article is more focused on cross-reactive adaptive
immune lymphocytes.

THE REALM OF CROSS-REACTIVE
ADAPTIVE CELLULAR IMMUNITY

Heterologous immunity is the induction of an immune
response to an unrelated pathogen/antigen upon exposure
to a different pathogen/antigen. Conceptually, cross-
reactivity (or poly-specificity) of lymphocytes in antigen
(or epitope) recognition is foundational to heterologous adaptive
immunity (Figure 1).

The essence of clonal selection theory of T cells is
based on: one epitope specificity-one T cell clonotype, which
defines and contributes to the high specificity of adaptive
cellular immune responses and differentiates them from innate
lymphocytes that rely on broad pattern recognition (6, 7).
Accordingly, it is assumed that T cells bearing a T cell
receptor (TCR) for a specific peptide epitope [∼9 amino
acids (aa) for CD8 and ∼11 aa for CD4] emerge in an
individual long before they are exposed to the corresponding
foreign antigen through random variable (V), diversity (D)
and joining (J) (VDJ) regions’ recombination of TCR α and
β chains and permutations of α and β chain heterodimers,
as well as rounds of positive and negative selection in
the thymus.

The high specificity and the apparent stringency of the specific
interaction of peptide bound with major histocompatibility
complex and T cell receptor (p-MHC:TCR) complexes
were demonstrated by X-Ray crystallography studies (8).
These structural studies were followed by a wide range of
flow cytometry studies encompassing p-MHC tetramer-
based detection of T cells with stringent peptide specificity,
supporting and perpetuating the one specificity-one clonotype
theory (9). Observations contradicting this theory were
few and often not well-documented in literature. Technical

limitations in clearly defining and characterizing cross-
reactivity (or heterologous immunity) at the molecular
level and reliance on empirical cellular methodologies
could partially explain an apparent scarcity of reporting
of cross-reactivity in experimental systems. Regardless,
they have substantial clinical implications in vaccine and
immunotherapy applications.

It has been predicted that high affinity would reflect a better
quality immune response, and indeed, in viral immunology the
demonstration of specific p-MHC binding T cells was suggested
to correlate to protection from infection or viral clearance (10,
11). Nevertheless, the relationship between the affinity of the
TCR and p-MHC, and the subsequent immune response is
not direct and may lead to unexpected immune responses and
undesired consequences. Cancer immunotherapy has anticipated
that an enhanced therapeutic effect might occur when TCR
affinity is increased in TCR-based therapeutics such as chimeric
antigen receptors bearing T cells (CAR-T) cells and T cell
adoptive transfer. However, clinical trials using high affinity T
cell adoptive transfer against the melanoma associated antigen-
3 (MAGE-3), resulted in off-target cross-reactivity against a
cardiac-associated Titin antigen and fatality (12). There was
only 55% homology between the MAGE-3 peptide and Titin-
derived peptide, but X-ray studies demonstrated similarity in
p-MHC complexes, which formed the basis for the observed
cross-reactivity (13, 14). Thus, TCR-pMHC affinity alone
may not predict the efficiency of the immune response or
clinical success in both vaccine and T-cell adoptive transfer
based therapeutics.

Physiologically, it is rather puzzling that the T cells are
believed to be individually highly specific, and yet expected to
collectively respond to a huge number of foreign antigens in
a host to provide protective immunity against a vast number
of pathogens of various classes during lifelong exposures. Also,
a logistic problem that exists in the available functional T cell
repertoire in an individual is the limited number of T cell
clonotypes, i.e., ∼106 in mice and ∼108 in humans, which
would severely limit the extent of immune responses generated,
especially since at least an estimated >1015 peptides must be
effectively responded against, in a host’s lifetime (3, 15, 16).
Based on mathematical calculation of this disparity, it has been
hypothesized that each T cell clonotype needs to recognize
∼106 different p-MHC combinations in order for adaptive
cellular immune system to be effective (3, 17). Therefore,
revisiting of the concept of clonal selection and one-specificity-
one T cell is warranted. Classical CD8+ and CD4+ T cells
recognize peptide epitopes of 9–16 aa in the context of MHC
class I and class II molecules, respectively. However, in their
recognition, the TCR only contacts 3–5 aa of the peptide
bound to the MHC molecules, and at minimum, 4 aa long
peptides have been shown to stimulate T cell activation (15, 18).
TCR recognizing a p-MHC complex glides over a relatively
flat surface, culminating with favorable interaction between the
complementarity determining region (CDR) of the TCR and
3–4 amino acids of the MHC bound peptide. Thereafter, the
TCR binds with the p-MHC complex generally with short
range weak intermolecular bonds, i.e., van der Waal’s forces
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FIGURE 1 | Specificity vs. cross-reactivity of T cells. (A) According to the one-clone-one-specificity model, individual clones of T cells recognize one specific peptide

epitope in the context of self MHC molecules, and do not recognize or get stimulated with any other peptide. (B) Model of T cell cross-reactivity implies an individual T

cell clone can recognize multiple peptide epitopes in the context of the self MHC molecule.

(2). TCR:p-MHC binding is characterized with low numbers
of hydrogen bonds and almost no covalent bonds, resulting in
low affinities of interaction (19). Multimerization of p-MHC
provides the strength of a T cell recognizing p-MHC on antigen
presenting cells (APCs), that results in activation thresholds (20).
In addition to the low-affinity binding, the complementarity
determining region (CDR) of the TCR demonstrates structural
rearrangements and plasticity in conformation in binding to the
p-MHC complex, as well as variations in angles of docking onto
p-MHC, and conformational shifts in both peptide and MHC of
the p-MHC complex. All these changes result in thermodynamic
and physicochemical mechanisms for cross-reactivity of the TCR
(15). Furthermore, structural degeneracy of amino acids in the
peptide bound to MHC supports the cross-reactive recognition
by the TCR (15). These include the physicochemical properties
of the amino acids that provide the hydrophobic characteristics
for Van der Waal’s interaction between TCR and p-MHC instead
of the strict identity of the amino acid. These mechanisms,
along with the minimal contact requirement of the TCR on

p-MHC, i.e., 3–5 aa, would provide conditions conducive for

cross-reactivity. In addition, T cells are positively selected in
the thymus based on a limited selection of self-peptide epitopes

bound to MHC molecules, and yet result in T cells recognizing a
wide variety of previously unseen foreign peptides. This selection

process, in addition to the structural considerations mentioned
earlier, add to an absolute inherent requirement for T cells to be
cross-reactive (21). Based on these features, it is understandably
a very difficult task to recognize cross-reactivity using current

molecular techniques. Most characterization of cross-reactivity
of T cells has been achieved through empirical observations in

humans and animal models, using epidemiological studies and
cellular techniques.

VACCINES AND EVIDENCE (OR
MANIFESTATION) OF HETEROLOGOUS
IMMUNITY

Some of the most common and longest-used vaccines in
humans are Vaccinia (smallpox vaccine, for smallpox virus), BCG
(Bacille Calmette Guerin, for tuberculosis), Measles (for measles
virus), OPV (oral polio vaccine), and DTP (for diphtheria,
tetanus, and pertussis) (22, 23) (https://www.cdc.gov/vaccines/
vpd/index.html). The human use of these vaccines has been
very effective in preventing infection with the corresponding
pathogen and associated mortality, and has even led to the
eradication of smallpox virus infections from the world and polio
to the verge of eradication. In addition to the specific effect
of these vaccines in preventing the targeted infection, the non-

specific or heterologous effect of these vaccines in preventing
infections with unrelated pathogens has been recognized through
epidemiological studies in human populations (22, 24–27) as
described below.

Worldwide mandatory smallpox vaccination during the
1960s and 70s, contributed to the disease being eliminated
in 1980 (https://www.cdc.gov/smallpox/history/history.html).

Anecdotally, scientists in the nineteenth and early twentieth
century reported positive effects of small pox vaccine in multiple
diseases other than small pox such as papillomas, chronic skin

disorders, eyes, ear, nose and throat disorders, measles, scarlet
fever, whooping cough, and syphilis (28). From a cohort of
3,559 individuals in Denmark, it has been found that smallpox
vaccination is associated with a reduced risk of infectious disease
hospitalization in a high-income setting (29). There has also
been some preliminary suggestion that prior immunization
with small pox vaccine may provide an individual with some
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degree of protection to subsequent Human Immunodeficiency
Virus (HIV) infection and that the worldwide termination of
smallpox vaccination in 1980 may have partially allowed the HIV
epidemic to explode (30). It has been shown in epidemiological
studies from Guinea-Bissau and Denmark that smallpox and/or
BCG vaccination is associated with a reduced risk of HIV-1
infection in women (27). Using CCR5+ T cells from unvaccinated
or smallpox-vaccinated individuals, it was shown that HIV-1
replicated to lower levels in cells from vaccinated individuals
compared to unvaccinated people (30). In another study using 97
women with or without a smallpox-vaccine scar, however, CCR5
expression in T cells could not be correlated to protection from
HIV-1 infection with vaccination status (31), suggesting that
modulation of CCR5 expression apparently does not contribute
to the observed protection. It remains to be seen whether
heterologous immunity contributed to an apparent protection
from HIV-1 infection upon smallpox and/or BCG vaccination,
even to a small extent. Overall, these reports suggest a non-
specific protective effect of smallpox vaccine on a number of
infectious diseases in human population, the mechanisms of
which are not clear yet.

BCG vaccination in infants has been shown to reduce
infant mortality due to childhood infections such as respiratory
infections and sepsis unrelated to tuberculosis in high mortality
settings as well as in USA and Europe (24, 32–34). Immunization
with BCG has also been shown to reduce the incidence of allergic
diseases, and autoimmune/inflammatory diseases such as type
I diabetes (T1D) and multiple sclerosis (MS) (35). Removal of
the infant BCG vaccination program due to decline in TB cases
has been shown to be correlated with increased incidence of
respiratory infections, melanoma, lymphoma, atopic dermatitis,
asthma etc. (36). Intra-vesicular treatment with BCG has become
the mainstream treatment of bladder cancer (37). Along the
same lines, studies in animal models have shown that BCG
immunization of mice leads to prevention in development of type
1 diabetes (T1D) as well as resistance to vaccinia virus infection
(38, 39). Detailedmechanisms of these effects of BCG vaccination
are still unclear. However, animal model studies have shown a
role of CD4+ T cells, as well as trained innate immunity (39). Role
of trained innate immunity in providing heterologous immunity
upon BCG vaccination has also been demonstrated in humans
(26, 40, 41).

Measles vaccine given to infants has been shown to reduce
childhood mortality by infections other than measles by 30–
86% in 10 different cohort studies from different countries (42).
Similarly, in a study encompassing the years 2002–2014, oral
polio vaccine, used widely to eradicate polio has been shown to
reduce mortality by 19% (range 5–32%) in children <5 years of
age independent of its effect on polio (43). Furthermore, in a
randomized clinical trial, vaccination with OPV and BCG at birth
demonstrated 32% (0–57%) lower infant mortality than BCG
alone (44).

The diphtheria-tetanus-pertussis (DTP) vaccine shows
excellent protection against the three targeted diseases, however,
it has been shown that mortality in females (but not males)
increases from other infectious diseases (45, 46). However,
the increased female mortality was only found in children

who had received DTP after measles vaccine producing high
titers, whereas in subjects receiving measles and/or BCG
vaccine after DTP, mortality rate declined substantially (45).
It was suggested that immunization with DTP may deregulate
the female immune system so that subsequent unrelated
infections are fought inefficiently, whereas immunization with
BCG or measles vaccine subsequent to DTP may circumvent
the harmful effect of DTP (45). Therefore, the non-specific
effects of vaccines must be thoroughly studied with respect to
sex differences.

Potential mechanisms for heterologous effects of vaccines may
include cross-reactivity between shared epitopes of unrelated
pathogens, trained immunity in innate cells such as natural killer
(NK), natural killer T cells (NKT) and monocytes, modulation
of type 1, type 17, regulatory and memory T cells, cytokine
responses, and modulation of mean concentration of antibodies
as well as cross-reactive antibodies (47). Nevertheless, the
exact contribution of each of these potential mechanisms in
producing the observed heterologous effects of vaccines remains
to be delineated.

HETEROLOGOUS IMMUNITY ACROSS A
BROAD RANGE OF PATHOGENS

Heterologous immunity has been shown commonly among
closely related pathogens, e.g., different subtypes of influenza
A viruses and Dengue viruses, different members of the same
family such as within flaviviruses and picornaviruses, and among
unrelated pathogens including parasites, protozoa, bacteria, and
viruses. It has been suggested that the history of exposure
to various microbial infections and the resulting changes in
the memory T cell repertoires determine the existence of a
cross-reactivity network in each individual, and therefore cross-
reactivity against multiple epitopes may be observed in an
individual (48).

Heterologous immunity has been experimentally shown in
mice by Welsh and Selin, who have reported that some
levels of protection against vaccinia virus (VV) infection is
obtained in mice that have been earlier exposed to infections
with lymphocytic choriomeningitis virus (LCMV), murine
cytomegalovirus (MCMV), Pichinde virus (PV), or influenza
A virus (IAV) (1, 17, 49, 50). Furthermore, LCMV, PV, and
MCMV all provide reciprocal cross-reactive immunity in mice
(50). Interestingly, influenza virus infection provides cross-
protective immunity against VV, but exacerbates infection
with LCMV and MCMV. However, VV infection does not
cross-protect against any of the tested heterologous pathogens
and does not show reciprocal heterologous immunity (51).
Our studies have demonstrated unexpected cross-reactivity
between adenoviruses and Hepatitis C virus (52). Most of these
examples of heterologous immunity have demonstrated a role
for cross-reactive T cells, but other mechanisms may also be
contributing toward the overall effect. With the induction of
cross-reactive T cells, besides enhanced or inhibited clearance
of a virus, T cell immunodominance patterns may be altered
resulting in unusual skewing of T cell repertoires (53). It has
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been shown that heterologous virus challenge may lead to
expansion of cross-reactive narrowly focused T cell repertoire
and viral escape, whereas homologous viral challenge may allow
expansion of more oligoclonal T cell responses (17, 54). It
has also been suggested that memory T cells generated after
an infection have a lower activation threshold and may be
activated by the bystander effect local cytokines independent
of TCR signaling, contributing significantly to heterologous
immunity (55). Further, it must be highlighted that in most
instances, heterologous immunity is not nearly as effective as
specific immunity but may be sufficient to alter the otherwise
severe course of a heterologous infection and mortality. The
widespread overlap in heterologous immunity between these
different viruses suggests that cross-reactivity among pathogens
is prevalent.

A recent article demonstrated that sequential challenges of
mice with Dengue virus (DENV), Yellow Fever virus (YFV), and
Japanese Encephalitis virus (JEV), all members of flaviviruses,
results in the induction of heterologous cellular and humoral
immunity (56). Prior exposure to YFV and JEV produced
high titer antibodies against DENV1, whereas prior exposure
to DENV1 produced cross-reactive antibodies against JEV
but not YFV (56). Interestingly, JEV and JFV primed mice
demonstrated T cell cross-reactivity with each other, whereas
DENV1 priming induced cross-reactive T cells against JEV
but not YFV, paralleling the cross-reactivity demonstrated by
antibodies. It was further demonstrated that humans also have
cross-reactive T cells and antibodies similar to data obtained
in mice. Overall, the results demonstrated that cross-reactive
flavivirus immunity can provide enhanced protection to a
heterologous infection.

There are also multiple examples of heterologous immunity
between bacteria and viruses. Herpes virus infection in mice
with MCMV and Murine c-Herpesvirus, has been demonstrated
to induce protective immunity against bacterial pathogens
such as Listeria monocytogenes and Yersinia pestis (57). It
has been suggested that increased levels of IFN-γ induces
activation in macrophages resulting in enhanced clearance of
intracellular bacteria. Besides epidemiological studies suggesting
induction of heterologous immunity upon BCG immunization
as described in earlier section, BCG has also been shown
to provide protective immunity to VV in mice, and this
protection appears to be dependent on cross-reactive CD4+

T-cells (38). In contrast, BCG does not provide cross-
reactive immunity against LCMV or MCMV in mice (38).
A number of other heterologous effects of BCG appear to
be related to its effect on innate immunity (58) and are not
described here.

It has been demonstrated that a fungal species Candida
albicans hyphal wall protein (Hyr1p) shares significant structural
homology to a bacteria species Acinetobacter baumannii cell
surface protein, and active (with rHyr1p) or passive (with
anti-Hyr1p antibodies) immunization of mice protects them
from systemic infection with A. baumannii and pneumonia
(59). The observed cross-reactive/heterologous immunity among
fungal and bacterial antigens was likely due to highly conserved

B cell epitopes and 3-D structural homology between them.
Most experimental studies of heterologous immunity have used
animals (mice) immunized or challenged with a pathogen
followed by determining the immune response or protection
against an unrelated organism.

Heterologous immunity is rather difficult to demonstrate
in humans due to continuous exposure with a number of
pathogens, in comparison to inbred mice raised in a controlled
laboratory environment. Furthermore, due to constant exposure
to various pathogens, the memory T cell pool of an individual
is also constantly changing. In an adult human, cross-reactive
T cells represent a pool of cells ready to respond to a
new pathogen. The quality and quantity of these cells are
ultimately dependent upon an individual’s immune history
resulting from previous infections. T cell responses to a defined
Hepatitis C virus (HCV) encoded HLA-A2-restricted non-
structural protein 3 derived epitope NS31073–1081 was found to
stimulate a cross-reactive T cell response to an Influenza virus
encoded Neuraminidase antigen derived NA231–239 epitope
in HCV-naive individuals (60–62). Similarly, our studies have
demonstrated T cell responses against a number of HCV
antigens in individuals who are otherwise HCV-naïve but are
seropositive for Adenovirus (52). An earlier study also reported
an abundance of pre-existing memory T cells against HCV NS3-
1073 epitope from healthy HLA.A2 positive HCV-seronegative
donors. Low dose exposure or acute clearance of HCV of the
cohort was excluded in this study, and their origin from previous
heterologous infections was suggested (63). Cross-reactivity of
CD8+ T cells generated against influenza antigen with HCV
NS3-1073 epitope was also demonstrated to result in severe
liver pathology in 2 out of 8 acute HCV-infected patients
(64). Broad cross-reactivities in T cell responses have been
demonstrated between Epstein-Barr Virus (EBV) and Influenza
virus epitopes (65). Further, despite broad cross-reactivities,
it has been shown that selective CD8+ cross-reactive T cell
repertoires against M1 antigen of influenza A virus and the
early antigen BM of EBV play a significant role in disease
severity of acute infectious mononucleosis during the acute EBV
infection (66).

Infection with Dengue virus (DENV) in humans can
sometimes lead to dengue hemorrhagic fever and shock
syndrome. This severe immunopathology following DENV
infection has been associated with re-exposure of individuals
immune to one strain (serotype) of DENV with another
strain. It has been demonstrated that cross-reactive non-
neutralizing antibody can bind to viruses without inactivating
them and enhance the infection of macrophages that bear
Fc receptors for those antibodies (67). Furthermore, extensive
T cell cross-reactivity occurs between different serotypes of
DENV and a T cell response to the second dengue virus
infection may induce CD8T cells that have a higher affinity
to the previously encountered Dengue virus, dampening the
T cell response to the second virus. Therefore, both antibody-
dependent immune enhancement and cross-reactive, low affinity
T cell responses may combine to exacerbate the disease
pathology (68).
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NATURAL RESISTANCE TO INFECTIONS
IN THE FRAMEWORK OF
HETEROLOGOUS IMMUNITY

Infection of humans with various pathogens such as Influenza
virus, Respiratory Syncytial Virus (RSV), HIV, Hepatitis B Virus
(HBV), HCV, DENV, Zika Virus (ZikaV), West Nile Virus

(WNV), Poliovirus, and EBV leads to variable outcomes with
respect to self-clearance, severe pathology, mortality and/or
persistence of infection (69). Humans are not naïve to foreign
antigens and pathogens. Previous exposure to pathogens leads
to induction of innate and adaptive immune responses, which

result in establishing a substantial pool of memory B and T
cells long after the pathogen insult has been eliminated. These

memory cells provide a fast and efficient protective response
upon re-exposure to the same pathogen/antigen, fulfilling

the specificity, and memory mandates of adaptive immunity
(Figure 2). However, these also form a pool of ready-to-
respond cross-reactive cells with low stimulation requirements.
Demonstration of T cells reactive against various antigens of

viruses such as HCV, HIV, Human Cytomegalovirus (HCMV),
and herpesviruses, from individuals never-exposed or naïve

to these pathogens, point to the existence of cross-reactive T
cells (70–72). However, their precise contribution to success

FIGURE 2 | Impact of specific vs. heterologous adaptive immunity on natural and vaccine-induced resistance to infection. (I) Depicts the results of specific immunity.

Upon administration with vaccine against pathogen A, a limited repertoire of naïve T cells specific to antigens of vaccine A will be induced and an individual would be

protected against subsequent exposure with pathogen A, but not against pathogens B and C. Similarly, exposure or infection with pathogen D will stimulate and

expand T cells specific against D and protect against re-infection with pathogen D but not against subsequent infections with pathogens E and F. (II) Demonstrates

the consequences of heterologous immunity. Upon administration with vaccine against A, a broad repertoire of cross-reactive T cells will be activated and expanded,

and an individual would be protected against subsequent exposure with pathogen A, but also protected against pathogens B and C to some extent. Similarly,

exposure or infection with pathogen D will induce cross-reactive T cells and protect against re-infection with pathogen D, but may also protect against subsequent

infection with pathogens E and F. Therefore, the exposure history of an individual may modulate the outcome of future infections with multiple pathogens.
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or failure of infection with these pathogens is still not

clear (Figure 2).
As an example, infection with HCV presents an interesting

scenario. There are currently ∼70 million chronically infected
patients worldwide (64) (https://www.who.int/news-room/fact-
sheets/detail/hepatitis-c). In 70–85% of the exposed individuals,
chronic persistent infection follows, whereas the remaining
15–30% successfully clear asymptomatic or symptomatic acute
infection. Induction of immune responses has been shown to
be delayed in infected individuals, but it is not clear if some
pre-existing cross-reactive immunity plays a role in spontaneous
clearance of an acute infection (73). An interesting clinical
observation has been that super-infection with Hepatitis A Virus
(HAV), Hepatitis B virus (HBV), and Hepatitis D virus (HDV)
in HCV-positive patients is associated with decreased HCV-
RNA replication or HCV clearance (74). Further, three lines
of observations suggest the role of cross-reactive immunity in
natural immunity/resistance to HCV: (1). T cells against various
HCV antigens are found in the blood of individuals who are
not HCV-positive, not at risk for being HCV-positive and are
seronegative for HCV (62, 63, 70, 75), and our earlier studies
showed induction of TH1 or TH2 types of T cell responses
from HCV-naïve individuals in an ∼1:2 ratio, which may reflect
their propensity to develop acute vs. chronic infection upon
exposure (76). (2). In seronegative individuals, HCV clearance
has been reported after acute infection (60). (3). In some patients
with persistent infection, spontaneous resolution of infection
and seroconversion to antibody negative status has been found
(77). In a group of blood donors with negative or indeterminate
presence of anti-HCV antibodies and negative HCV RNA
levels, a significant proportion had T cells that showed HCV
antigen-specific T cell responses (78). Possible factors to explain
this include (a) prior undetectable HCV exposure followed by
clearance resulting in the induction of T cells reactive against
HCV antigens, (b) abortive infection, or (c) occult infection with
HCV. However, the possibility of cross-reactive T cells showing
such responses cannot be excluded, especially since our studies
have demonstrated robust cross-reactivity between commonly
found adenoviruses (Ad5) and HCV (52, 79). The intriguing
example of HCV demonstrates the complexity in determining
the role of heterologous immunity in pathogenesis or protection
from an infection, but undoubtedly indicates its significant role
in natural immunity against a pathogen.

ROLE OF MICROBIOTA IN
HETEROLOGOUS IMMUNITY

In addition to infectious pathogens, a host harbors a
rich ecosystem of microbes in the order of 100 trillion
microbes/person, consisting of Archaea, viruses, bacteria, fungi,
protozoa and helminths. These microbiota are enriched at
mucosal barriers such as gut and respiratory mucosa. Microbiota
play an integral role in immune and metabolic homeostasis
in an individual and can also contribute to control or prevent
infection with a pathogen (80). Microbiota can either directly
inhibit infection with pathogens by competing for an available

niche, or indirectly inhibit infection through immune-mediated
mechanisms (81). The microbiota can train/activate the innate
immune system including antigen presenting cells, NK cells
and innate lymphoid cells (ILCs), as well as induce a cross-
reactive B and T cell repertoire able to recognize pathogens.
Microbiota can also either allow the persistence of peripheral
memory T cells or induction of regulatory T cells to induce
tolerance to some pathogenic antigens. It has been suggested
that the variety of antigens derived from the members of
the microbiota can prime and lead to a diverse repertoire
of memory T and B cells. These, in turn, can demonstrate
enhanced immunity to a newly exposed pathogen through
cross-reactivity (81).

Humans do not express the carbohydrate Galα1-3Galβ1-
4GlcNAc-R (α-gal) and antibodies (both IgG and IgM) directed
against α-gal are prevalent in human blood. Induction of
α-gal-specific Abs is thought to be driven by exposure to
bacterial components of the microbiota that express α-gal
(82), such as Klebsiella spp., Serratia spp., and strains of
Escherichia coli. Antibodies against α-gal have been shown
to protect humans against the transmission of malaria (a
protozoan Plasmodium infection), demonstrating the role
of gut microbiota-induced specific acquired immunity that
provides heterologous protection (83). Antibodies against α-
gal have also been shown to be produced in humans
infected with Gram-negative bacteria Salmonella spp. and
protozoan parasites Trypanosoma spp. (84). It remains to be
examined whether commensal- induced anti-α-gal antibodies
also mediate heterologous protection against Salmonella spp. and
Trypanosoma spp.

Microbiota-mediated induction of pre-existing antibodies
against HIV gp-41 has been shown to be detrimental to the
induction of neutralizing antibodies against HIV Env gp-120.
This was seen in recipients of a DNA primed–rAd5 boosted
HIV-1 vaccine in clinical trials (85) where a microbiota-
mediated heterologous immune responses had a negative effect
on vaccine efficacy.

VACCINE VECTORS IN THE CONTEXT OF
HETEROLOGOUS IMMUNITY

The most successful human vaccines so far have been live
attenuated viral or bacterial pathogens such as Measles, BCG,
Poliovirus (oral polio vaccine), and Smallpox virus. These
vaccines tend to induce life-long immunity. The successes of
these vaccines led to their application as delivery vectors for
an unrelated antigen in their makeup. Subsequently, various
attenuated bacteria such as Escherichia coli, Vibrio cholerae, lactic
acid bacteria (LAB), BCG, Listeria spp., Shigella spp., Salmonella
spp., and viruses such as Pox viruses, measles, modified vaccinia
Ankara (MVA) and replication-deficient adenoviruses (Ad) have
been tested for the targeted delivery of various antigens of
bacterial, viral and parasitic origin into a variety of animal
hosts (86).

Ad are commonly used as vectors to deliver transgenes in
gene therapy and vaccines (87–89). Natural exposure to Ad
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is prevalent in the human population (up to 90% in some
parts of the world based on antibody detection) and may lead
to induction of neutralizing antibodies, which may reduce the
generation of immunity against the transgene antigen (89). In
addition to respiratory exposure, Ad have been shown to remain
in the human gut for extended periods, making them akin to
members of gut microbiota (90). Neutralizing antibodies against
the vaccine vector has been the most studied response with
respect to the immune response to Ad vectors, however it has
also been suggested that by modifying the subtype/serotype,
route and dose of Ad vector vaccines, one can circumvent
the detrimental effect of pre-existing neutralizing antibodies.
Consequently, rare human Ad and Ad of different animal species
such as from cattle and chimpanzees have also been tested
as vaccine vectors (91, 92). Although it has been shown that
neutralizing antibodies don’t cross-recognize Ad of different
serotype or species, T cell cross-reactivity between different Ad
has been demonstrated in humans (93). It has been shown
that in contrast to B cell epitopes, common T cell epitopes are
present in conserved regions (∼80%) of the Ad hexon protein.
Due to the presence of conserved T cell epitopes in hexons,
cross-reactivity among divergent serotypes from chimpanzees
and humans has been observed. It has been shown that Ad-
specific T cells are universal in humans even in low prevalence
areas of the world, although the magnitude of CD4+ and CD8+

T cell response may vary among individuals. Further, it has
been suggested that Ad-specific CD8+ T cells remain in an
effector-memory-like state and can readily and rapidly perform
effector functions upon re-stimulation. By virtue of T cells
being cross-reactive, these pools of Ad-specific T cells that are
present universally in humans may provide an efficient source
of effector T cells to target heterologous pathogens that regularly
infect people.

Our studies have demonstrated unexpected and surprising
homologies between peptides of HCV antigens and Ad antigens,
and robust cross-reactive cellular and humoral immunity
between Ad and HCV (52). It remains to be investigated
whether Ad-specific effector-memory T cells provide the
immediate defense when exposed to infecting HCV, and
whether they form at least a partial basis for the 15–30%
spontaneous clearance of HCV observed in humans. In a follow
up report, we demonstrated that cross-reactive cellular and
humoral immune responses against HCV antigens core, NS3,
and NS5 are also induced upon immunization with various
recombinant Ads containing antigens fromHCV,Mycobacterium
tuberculosis, HIV, and EBOV (94). Intriguingly, the nature
of the transgene antigen had a significant impact on the
levels of cross-reactive immunity induced against HCV antigens
(94). It is possible that Ad also has cross-reactivity with
other pathogens, but this has not been explored yet. These
observations shed light on another rather unstudied aspect
of vaccine vectors and support the notion that heterologous
immunity induced by vaccine vectors may lead to significant
heterologous immunity against another pathogen possibly
influencing the natural course of infection with that pathogen.
Consequently, non-specific effects of vaccine vectors must also
be examined thoroughly.

DISCUSSION AND FUTURE PROSPECTS

Specificity and memory are the two traits of the adaptive
immune system exploited for the development and application
of vaccines. It is expected that administration of a vaccine
would induce vaccine-antigen-specific T and B cell memory
responses, which upon exposure to the corresponding pathogen,
would rapidly and specifically lead to prevention or clearance
of the infection. Many prophylactic and therapeutic vaccines,
experimental or clinical, include antigens in various forms
from pathogens, tumors, allergens, and/or autoantigens, and
are designed to employ specific adaptive immunity, supported
by adjuvants which mobilize the collaboration of non-specific,
innate immunity. Experimental and clinical evidence as
well as theoretical constructs have clearly demonstrated that
heterologous immunity or cross-reactivity of adaptive immune
cells is not an isolated or accidental phenomenon, but rather
a fundamental attribute of adaptive immunity, forming an
integral part of the host defense system against pathogens under
natural conditions. Application of heterologous immunity in
vaccines can be contemplated in chronic infections and cancer,
where antigen-specific lymphocytes have become anergic and/or
exhausted and don’t respond to a specific vaccine. Mobilizing
cross-reactive adaptive immunity by a heterologous therapeutic
vaccine may be an ultimate strategy to induce effective protective
immunity in such chronic disease conditions. Furthermore,
as stated earlier, cross-reactive lymphocytes may not be the
only mechanism behind heterologous immunity, and trained
innate immunity could explain some of the observations of
heterologous immunity. Therefore, it should also be pursued in
future vaccine design and efficacy studies.

In an individual, T and B cell repertoires originate by random
VDJ gene rearrangement, however, their cross-reactivity and
ability to respond to various antigens in a host is shaped
to a large extent by exposure history and microbiota, and
therefore, cross-reactivity remains largely unpredictable at the
individual level. Acknowledgment of the heterologous side of
adaptive immunity does have important consequences on self-
tolerance, autoimmunity, and vaccination strategies. Potential
positive heterologous effects of vaccines have been discussed

in this article, but heterologous immunity can also have dire
consequences upon cross-reacting to self-antigens. It is essential
that future investigation of vaccine design must exploit the
beneficial aspects of heterologous immunity and at the same
time devise strategies to avoid the potentially harmful effects. As
stated earlier, cross-reactivity may vary among individuals and
different sexes, and may largely remain unpredictable making
application to vaccines which are usually population-based, not
an easy task. In addition, recent understanding of the role of
microbiota in immune homeostasis and induction of immune
tolerance in a host has opened new avenues of investigation
in vaccines. Specifically, it has been shown that pathological
precipitation of many of the autoimmune diseases e.g., multiple
sclerosis, type 1 diabetes, rheumatoid arthritis and systemic lupus
erythematosus, are controlled to a large extent by environment
and microbiota (95, 96). Moreover, even in individuals with
genetic susceptibility and the peripheral presence of potentially
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autoreactive T cells, modifications of gut microbiota may
allow modulating the disease pathology (97). Therefore, it can
be inferred that self-reactive (autoimmune) consequences of
vaccines may be prevented/circumvented through modulation
of gut microbiota. Additionally, development of tools and
techniques to predict cross-reactivity against both unrelated
pathogens and self-antigens would aid in vaccine design and
coverage of protection obtained by a vaccine.
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The Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis vaccine that has

the ability to induce non-specific cross-protection against pathogens that might be

unrelated to the target disease. Vaccination with BCG reduces mortality in newborns

and induces an improved innate immune response against microorganisms other than

Mycobacterium tuberculosis, such as Candida albicans and Staphylococcus aureus.

Innate immune cells, including monocytes and natural killer (NK) cells, contribute to this

non-specific immune protection in a way that is independent of memory T or B cells.

This phenomenon associated with a memory-like response in innate immune cells is

known as “trained immunity.” Epigenetic reprogramming through histone modification in

the regulatory elements of particular genes has been reported as one of the mechanisms

associated with the induction of trained immunity in both, humans and mice. Indeed, it

has been shown that BCG vaccination induces changes in the methylation pattern of

histones associated with specific genes in circulating monocytes leading to a “trained”

state. Importantly, these modifications can lead to the expression and/or repression

of genes that are related to increased protection against secondary infections after

vaccination, with improved pathogen recognition and faster inflammatory responses.

In this review, we discuss BCG-induced cross-protection and acquisition of trained

immunity and potential heterologous effects of recombinant BCG vaccines.

Keywords: BCG, innate immunity, trained immunity, heterologous protection, vaccine

INTRODUCTION

One of the leading causes of human death worldwide is tuberculosis (TB), a bacterial infection
caused by Mycobacterium (M.) tuberculosis. In 2017, 10 million people developed TB disease,
causing 1.3 million deaths (1). To prevent TB, a vaccine was developed in 1921 by Albert Calmette
and Camille Guérin, which is currently included in the immunization programs of most countries.
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This vaccine consists of an attenuated M. bovis bacillus that
was repeatedly passaged in culture by Calmette and Guérin
and which is known as the bacillus Calmette-Guérin (BCG)
(2). This vaccine was developed from a virulent M. bovis
strain that accumulated more than 14 genome deletions in
different regions (3). In most countries, BCG is administered
to newborns a few hours or days after birth and its protective
effects against tuberculous meningitis and miliary tuberculosis
(TB) have shown efficacy over 70%, while its protective effect
against pulmonary TB displays an average of 52% of protection
(4–7). Mathematical estimations suggest that BCG vaccination
of 100.5 million children, out of the 132.8 million children born
in the world, prevented nearly 30,000 cases of TB meningitis
and 11,500 cases of miliary TB in the year 2002 (6). In adults,
BCG vaccination fails to completely protect against pulmonary
TB, showing a range of effectiveness between 0 and 80% (8–10),
which explains why TB is one of the major causes of mortality
worldwide (1). Despite this, in 2018 BCG was considered within
the national vaccination program of 154 countries, including
countries in America, Asia, Africa, and Europe, with coverage

of over 90% (1). It was also administered to high-risk groups

in additional countries, being one of the most widely used

vaccines worldwide (1, 11). Besides protecting against TB,
BCG vaccination also reduces mortality in children because of
non-specific cross-protection induced by this vaccine against
other unrelated pathogens (12, 13). Initial evidence for this
phenomenon was described in Sweden in 1927 by the physician
Carl Näslund, who found that during the first year of life, BCG-
vaccinated newborns had a mortality rate that was three times
lower than unvaccinated babies (14). This observation was also
made by Albert Calmette, in 1931 (15). In Guinea-Bissau, a
country with a high childhood mortality rate, the presence of a
BCG-vaccination scar was associated with diminished mortality
rates associated with malaria or unclassified fever (16). Besides,
BCG-vaccinated children showed a reduced risk of developing
acute lower respiratory tract infections (ALRI) as compared
with non-vaccinated ones (17). Furthermore, several studies
carried out in West Africa showed over a 40% reduction in
mortality after BCG vaccination, preventing malaria, sepsis,
respiratory infections, and leprosy (14, 16, 18–21). In Spain,
BCG vaccination reduced hospitalizations due to respiratory
infections unrelated to TB in children under 14 years of age
(13). Also, reduced child mortality due to BCG vaccination
has been observed in other places of the world, including
Sweden, United Kingdom, South or Southeast Asia, India, and
Haiti (22–24).

Another remarkable characteristic of BCG is that it
can be used as an expression vector for recombinant
antigens to develop novel vaccines for pathogenic bacteria
and viruses (25–34), as well as for cancer diseases (35–
43). BCG has been considered as a good vector given
its safety shown in vaccinated neonates, children and
adults for almost a 100 years and that BCG antigens may
act as adjuvants, inducing innate and adaptive immune
responses (11, 22–24, 44, 45).

IMMUNE RESPONSE INDUCED BY BCG

VACCINATION

The immune response elicited after BCG vaccination begins
at the inoculation site after intradermal injection, where
resident neutrophils, macrophages, and dendritic cells (DCs)
interact with the bacillus (44, 46). The recognition of BCG
by immune cells takes place through the interaction of
different pattern recognition receptors (PRRs) with pathogen-
associated molecular patterns (PAMPs), such as peptidoglycan,
arabinogalactan, and mycolic acids located at the bacterium cell
wall (44). Among the receptors involved in the recognition of
BCG are toll-like receptors (TLRs) TLR2 and TLR4 present
on the cell surface membrane (44). It has been shown that
different proteins expressed by mycobacteria can work as TLR
agonists, stimulating macrophage, and DC maturation and
the secretion of pro-inflammatory cytokines (47). Likewise,
complement receptors CR3 and CR4 are involved in the
recognition of opsonized mycobacteria by DCs. Another group
of cell receptors that recognize BCG PAMPs are nucleotide-
binding oligomerization domain (NOD)-like receptors found
in the cytosol of innate immune cells, such as NOD2, which
interact with a specific component of the bacterial peptidoglycan
(48). Besides, C-type lectins, such as DC-specific intercellular
adhesion molecule-3-grabbing nonintegrin (DC-SIGN) interact
with components of the bacterial wall and are involved
in the recognition and internalization of BCG (48). After
internalization by DCs, the mycobacterium can live up to 2
weeks inside these cells (49). This interaction induces DC
maturation and migration that is characterized by an increase
in the expression of co-stimulatory molecules, such as CD40,
CD80, CD83, and CD86 (50). One of the antigens present in the
cell wall of BCG corresponds to antigen (Ag) 85 (also present
in M. tuberculosis), which stimulates the production of tumor
necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β) and IL-
6 (51, 52), which are able to generate an pro-inflammatory state
that promotes the activation of immune cells (50).

The development of an adaptive immune response starts when
antigen-presenting cells (APCs, e.g., DCs, macrophages and B
cells) present antigenic peptides on MHC molecules and prime
T cells located at the nearest secondary lymphoid tissues or the
spleen (53). In vitro and in vivo studies have shown that BCG-
infected skin DCs migrate to the draining lymph nodes where
they secrete TNF-α, IL-6, and IL-12 and activate both, CD4+

and CD8+ T cells (54–57) (Figure 1). Interestingly, it has been
reported that BCG-infected human neutrophils cooperate with
infected DCs to stimulate antigen-specific T cell responses (58).

As summarized in Figure 1, the adaptive immune response
induced after BCG vaccination involves the activation of both,
CD4+ and CD8+ T cells (53, 59) with elevated production
of IFN-γ, which increases the anti-mycobacterial activity of
macrophages (52, 53). This cytokine also contributes to the
activation of B cells and the subsequent generation of antigen-
specific antibodies by plasma cells. In early stages after
vaccination, a pool of mycobacteria-specific CD8+ T cells
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FIGURE 1 | The immune response elicited after BCG vaccination in the newborn. (A) Recognition of the BCG at the inoculation site by neutrophils, macrophages, and

DCs. (B) Activated skin DCs migrate to the draining lymph nodes to activate adaptive immune cells (C) Activation of Mycobacteria-specific CD4+ and CD8+ T cells

with a TH1 profile, secreting elevated amounts of IFN-γ and granzymes (D) Activation of B cells leads to the generation of memory and plasma cells and the

production of antigen-specific antibodies in response to the presence of antigens of BCG. After their activation, memory T and B cells reside in lymph nodes.

proliferates and is present in peripheral blood up to 10 weeks after
BCG vaccination (60). These CD8+ T cells were able to secrete
IFN-γ and express granzymes, as well as perforins supporting
the cytotoxic potential for these cells (60, 61). Activated TH1

CD4+ T cells have also been detected (62, 63), which produce
large amounts of IFN-γ, TNF-α, and IL-2 (55, 64). In newborns,
BCG-specific CD4+ T cells could be detected in the peripheral
blood 3 weeks after vaccination, with a peak at 10 weeks (60).
Studies with T cells transferred from BCG-vaccinated mice
into animals that are deficient for both B and T cells have
shown that CD4+/CD8+ T cells are necessary for reducing and
controlling bacterial dissemination (65). During the contraction
phase, BCG-specific CD4+ and CD8+ T cells switch to a memory
phenotype, with functional features of effector memory T cells

secreting IFN-γ (64, 66). These memory T cells generate a strong
lymphoproliferative response to TB antigens several months after
vaccination in mice (66).

Between 4 and 8 weeks after BCG vaccination, there is an
induction of a B cell response that increases the production of
IgG (67) and induces long-lived memory B cells (68). These
IgG molecules can opsonize BCG andM. tuberculosis, enhancing
phagocytosis and the inhibition of intracellular bacterium growth
(67). It was shown that mucosal BCG vaccination induces
an airway-resident memory T cell population in the lungs,
but immunoglobulin production was not measured in this
study (69). Pulmonary immune response in mice infected with
M. tuberculosis was improved when BCG was administered
intranasally as compared to subcutaneous vaccination (70).
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This improved protective efficacy was concordant with an
increased presence of IgA and CD4+IL-17A+ T cells in
bronchoalveolar lavages of intranasally vaccinated mice (70).
Although subcutaneous BCG vaccination enhances blood IgG
levels, in the case of respiratory airway pathogens, IgA confers
better protection against infections (70). This is due to the
fact that IgA is constitutively found in serum and mucosa
and corresponds to one of the first barriers of defense (71).
These antibodies can neutralize, excrete pathogens and activate
the immune response by the modulation of the secretion of
cytokines, such as TNF-α and IL-1β (71).

BCG VACCINE AS A STRATEGY FOR

MODULATING IMMUNITY

Besides protection against TB, BCG has other clinical
applications, especially in two main immunotherapy fields:
treatments for cancer and autoimmune diseases, such as
melanoma and type-1 diabetes (T1D), respectively (we
summarize the contribution of BCG to immunotherapy in
Figure 2). T1D is an autoimmune disease characterized by the
destruction of pancreatic beta cells (72). This destruction leads
to a lack of insulin production, which leads to the development
of hyperglycemia, polyuria, and hypoinsulinemia (73). The
effect of BCG vaccination in T1D is still controversial, as it was
originally observed that BCG vaccination promoted a remission
of the disease when patients were treated during the first
month after diagnosis (74). On the other hand, a randomized
clinical trial performed in 1999 where patients between 5 and
18 years old were vaccinated early after disease appearance
showed no difference in glycated hemoglobin levels (HbA1c,
an indicator of blood glucose levels) or endogenous insulin
secretion compared to non-vaccinated ones (75). In a phase I
trial performed in adults with long-term T1D, BCG vaccination
in multiple doses was able to reduce HbA1c levels and increased
the death of insulin-autoreactive T cells (76). Interestingly, BCG
modulation of blood sugar was associated with a systemic shift
toward a glycolytic pathway of glucose utilization (76). Another
clinical trial performed with long-term T1D patients showed
that vaccination with BCG stabilized HbA1c levels without
producing hypoglycemia, an effect that could last up to 8 years
after vaccination (77). In non-obese diabetic (NOD) mice,
injection of BCG was shown to reduce insulitis and diabetes
development (78). It has been demonstrated that the stimulation
of TNF-α induced by BCG is involved in the destruction of
insulin-autoreactive T cells (79). Despite this, the mechanism
involved in the immunomodulatory effect induced by BCG in
T1D patients has not yet been elucidated.

Another important autoimmune disease is multiple sclerosis
(MS), which is characterized by the development of neurological
symptoms due to gradual demyelination of the central nervous
system (CNS) as a consequence of an inflammatory-autoimmune
response (80). At present, a specific treatment for this disease
that is effective is not available. Nonetheless, clinical trials showed
that BCG vaccination could reduce the frequency of active lesions
in the CNS of 12MS patients (81). Further, a phase II clinical

trial showed that after the first demyelinating episode, BCG
vaccination reduced the risk of developing clinically definite MS
for 5 years (82). Moreover, in a widely used mouse model of
MS named experimental autoimmune encephalomyelitis (EAE),
the injection of subcutaneous extended freeze-dried (EFD) BCG
attenuated the severity of EAE (83). Mice treated with EFD BCG
showed significantly lower clinical scores and reduced infiltration
of CD45+ cells in the spinal cords (83). Furthermore, this
treatment was shown to reduce the frequency of TH17 cells and to
increase the frequency of TREG cells in secondary lymph nodes.
This consequence will help to limit the inflammation induced by
EFD BCG in EAE (83).

Since several studies have demonstrated that BCG induces
TH1/TH17 responses against TB and other unrelated pathogens
(62, 84, 85), its capacity to exert a regulatory effect over
autoimmune diseases, such as T1D and MS is very surprising.
However, there are immune-metabolic pathways involved in the
activation of the immune system after BCG vaccination that
may account for explanations of these observations. Indeed, the
activation of innate immune cells and T cells induced by this
vaccine is partly mediated by the activation of cell glycolytic
pathways (86). Besides, human Treg cells are highly glycolytic
(87). Based on these findings, Ristori et al. proposed in 2018
that BCG induces a tolerogenic response via enhancement of
glycolysis, contributing to the reduction of inflammation in
autoimmune diseases (88). Another possible mechanism through
which BCG canmediate protection in the context of autoimmune
diseases relays on the immune response to the infection with the
mycobacterium. After infection, it has been shown that activated,
but not naïve, CD4+ T cells undergo apoptosis in an IFN-γ-
dependent manner (89). Thus, apoptosis of activated T cells may
have as a consequence the diminution of activated autoreactive
cells, improving the health condition of the individual receiving
vaccination. Also, TLR-signaling stimulated by mycobacterial
components induces IL-10 secretion by B cells and consequent
suppression of Th1 and Th17 activities, contributing to the
suppression of autoimmune reactions (90).

On the other hand, there is increasing evidence for the use
of BCG vaccination for the prevention and treatment of cancer
(35–43). Vaccination of newborns with BCG reduces the risk of
developing melanoma (35) and childhood leukemia (36). In the
case of melanoma, direct vaccination with BCG into nodules of
intradermal or subcutaneous metastases induced their regression
in 90% of the injected lesions (37). As previously described,
BCG exposure of tumoral macrophages induces transcriptional
reprogramming of these cells, leading to an improved pro-
inflammatory phenotype (91). BCG-treated macrophages can
induce the activation of T cells infiltrating the tumor, thus
improving antitumor immunity (91). Moreover, in patients with
non-muscle invasive bladder cancer, it has been shown that
BCG instillation after transurethral resection reduces tumor
progression (38, 92). BCG impairs the tolerogenic milieu
developed by carcinogenic cells, inducing local infiltration of
macrophages, CD4+ T helper cells, CD8+ T cells, and NK
cells, resulting in the development of local inflammation (40,
41, 93). Bladder tumor cells express antigen-presenting and co-
stimulatory molecules after being infected with BCG, suggesting
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FIGURE 2 | BCG applications in immunotherapy. Clinical applications of BCG in autoimmunity (left boxes) and cancer (right boxes). HbA1c, glycosylated hemoglobin;

CNS, central nervous system; NK, natural killer cells; Mφ, macrophages; NMI, non-muscle invasive.

that these cells can function as antigen-presenting cells making
them a good target to be destroyed by cytotoxic cells (42). The
antitumor effects of BCG immunization could also be associated
with the development of local inflammation that might overcome
the tolerogenic environment induced by tumor cells (43).

The different effects observed after the administration of the
BCG vaccine suggest that the activation of the immune system
induced by it could vary depending on the environment in
which it is found. BCG administration could exert a beneficial
modulation of the immune system in the context of autoimmune
diseases due to a redirection of the inflammatory response.
In the case of cancer, the activation of the immune system
in the presence of the bacteria within the tumor alters the
tolerogenic environment induced by cancer cells, leading to a
specific cytotoxic activity against the tumor cells.

TRAINED IMMUNITY AS A

CONSEQUENCE OF BCG VACCINATION

Netea et al. (94) were the first to propose the concept
of “trained immunity,” which is defined as an increased
non-specific response to a secondary infection mediated by
the innate immune system, either to the same or different
microorganisms (94). This type of immunity is characterized as
being independent of T and B cell responses and is mediated by
monocytes/macrophages and NK cells (95).

In humans, BCG vaccination of adults induces a trained
phenotype in circulating monocytes, characterized by an
increased capacity to produce proinflammatory cytokines, an
effect that has translated to non-specific protection against
unrelated pathogens, such as S. aureus and C. albicans (96, 97).
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Also, BCG vaccination of healthy human volunteers increased
the capacity of NK cells to secrete proinflammatory cytokines,
such as IL-1β and IL-6 after stimulation with M. tuberculosis
or unrelated pathogens (S. aureus, C. albicans) (98). These
observations were performed 3 months after vaccination,
consistent with the fact that BCG reduces mortality in newborns
during the first year of life, as mentioned above. Thus, BCG
induces non-specific protection against unrelated pathogens (96).

Interestingly, innate immune cells mediate this nonspecific
protection, independent of T and B cells. A comparison
of systemic lethal candidiasis infection in severe combined
immunodeficiency (SCID) mice, which lack T and B cells, and
NOD/SCID/IL2Rγ (NSG) mice that lack T, B and, NK cells,
showed that partial protection was mediated by NK cells in
BCG-vaccinated mice (98). Specifically, mice were challenged
with a lethal intravenous dose of C. albicans 2 weeks after
BCG vaccination; while SCID vaccinated mice survived, NSG
vaccinated mice were partially protected, suggesting a role for
NK cells in the non-specific protective effect induced by BCG
vaccination (98).

Besides, there is in vitro and in vivo evidence of BCG-related
trained immunity effects in bovine monocytes (99). In vitro
exposure of calf monocytes to BCG leads to enhanced TNF-α
and IL-6 production after subsequent TLR agonist stimulation.
Aerosol BCG vaccination of calves exerted a similar effect of
PBMCs, boosting pro-inflammatory cytokine production, in
association with a shift to anaerobic glycolysis (99). The trained
immunity phenotype was also observed testing PBMCs obtained
3 months after vaccination (99), which further supports previous
studies carried out in human cells.

It has been shown that one of the molecular mechanisms
that induces the development of trained immunity is epigenetic
reprogramming, specifically through histone modifications (95).
Epigenetic modifications regulate gene expression in response to
environmental signals (100). In the immune system, epigenetic
modifications are involved in cell differentiation, inflammation
and autoimmune diseases (96, 100–103). Different types of
epigenetic modifications have been described, including DNA
modifications, non-coding RNAs, histone modifications and
chromatin remodeling (100). Histone modifications are highly
dynamic and can change within minutes; there are different
classes of modifications such as acetylation, methylation,
phosphorylation, ubiquitylation, sumoylation, ADP ribosylation,
deimination, and proline isomerization (104). Histones can be
methylated at arginine or lysine residues. Lysine can accept up to
three methyl groups, being mono-, di- or trimethylated. Arginine
can be mono- or dimethylated (105). These modifications are
involved in the activation or repression of the transcription of
genes that they are associated with. While methylation of lysine
4 in histone 3 (H3K4), H3K36, and H3K79 are usually associated
with transcription activation; methylation in H3K9, H3K27, and
H4K20 are associated with gene silencing (105).

After BCG vaccination, peripheral blood monocytes show
an increase in H3K4me3 histone modification associated with
the promoters of the genes tnfα, il6, and tlr4 that lead
to the transcriptional activation of these proinflammatory
cytokines (96, 106). These responses are dependent on the

nucleotide-binding oligomerization domain 2 (NOD2) receptor
present in monocytes and receptor-interacting protein kinase
2 (Rip2) (96). These epigenetic modifications upregulated the
expression of pattern recognition receptors (PPRs), namely
TLRs, C-type lectins receptors, NOD-like receptors, and
RIG-I-helicases that specifically recognize pathogen-associated
molecular patterns (PAMPs) and modulated the accessibility of
transcription factors to proinflammatory cytokine genes (96).
Consequently, when these trained monocytes are exposed to a
second infection, the pathogen is recognized by PPRs, leading to
increased cytokine production (95).

In addition to epigenetic reprogramming, different cellular
metabolic pathways are involved in the regulation and
development of trained immunity in monocytes, macrophages
and NK cells (86, 107–109). Indeed, glycolysis metabolism
is increased in human monocytes after BCG vaccination,
leading to a shift in the metabolic programming of the cell
from oxidative phosphorylation to aerobic glycolysis (Warburg
effect) (108). Additionally, it has been demonstrated that
inhibition of the glycolytic pathway impairs the development
of a trained immunity phenotype by preventing epigenetic
rearrangements (86). Specifically, it was shown that glycolysis
inhibits epigenetic modifications at the promoters of genes
encoding for IL-6 and TNF-α in peripheral monocytes (86).
Glutaminolysis and cholesterol synthesis have also been
involved in the development of trained immunity in monocytes,
being fumarate a key metabolite that can induce chromatin
rearrangements. This metabolite induces an increase in
H3K4me3 in the promoters of tnfa and il6 leading to elevated
secretion of these cytokines upon re-stimulation with LPS
(107). Additionally, accumulation of mevalonate, a metabolite
of the cholesterol synthesis pathway, has also been shown to
be able to induce trained immunity through the enrichment
of H3K4me3 in the promoters of tnfa and il6 (109). All
these reports support the notion that epigenetic regulation is
intimately related and coordinated with the metabolic state of
the cell.

Furthermore, all-trans retinoic acid (ATRA) is a vitamin A
metabolite involved in the development of tolerogenic immunity
(110). This metabolite regulates tolerogenic cytokine production
and cell differentiation in monocytes, macrophages, DCs and
T cells (111). In vitro stimulation of BCG trained monocytes
with ATRA inhibits H3K4me3 and induces a strong repressive
hallmark (H3K9me) in the promoters of proinflammatory
genes such as tnfα, il6, il8, il10, and il1ra. Consequently, the
transcription of these genes is silenced, inhibiting the “trained”
phenotype (111).

BCG-induced epigenetic reprogramming of monocytes was
shown to be able to protect humans against an experimental
yellow fever virus (YFV) challenge (112). BCG-vaccinated
subjects showed lower viremia after infection with an attenuated
YFV vaccine strain. Interestingly, trained immunity induced by
BCG was modulated by IL-1β treatment in vitro, and cytokine
production was increased after vaccination (112). These changes
in cytokine secretion were mediated by an increase in H3K4me3
and reduction of H3K9me3 in the promoter regions of the genes
tnfα, il6, and il1β (112).
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The genetic reprogramming described above could be
implicated in the generation of memory-like innate immune
cells (94). In this context, after BCG vaccination, innate
immune cells, such as monocytes would undergo a series
of chromatin modifications (84, 86, 96). These chromatin
rearrangements would lead to a “trained phenotype” that
would generate an enhanced innate response when exposed
to any non-specific pathogen (Figure 3). Interestingly,
chromatin rearrangements induced by BCG vaccination
can reprogram bone marrow progenitors, stimulating
myelopoiesis, and generating trained immune cells with a
higher capacity to protect against a wide variety of pathogens
(113, 114). These characteristics of trained immunity suggest
that innate immune cells could be a different target for
vaccination. As reviewed by Khader et al., vaccination
against M. tuberculosis with BCG could be directed to the
generation of trained hematopoietic progenitors and, in
combination with classic vaccination for adaptive immunity
generation, generate a greater and more effective immune
response (115).

RECOMBINANT BCG VACCINES

BCG has been considered a good expression vector for
recombinant antigens due to several advantages. First, BCG
administration is safe for neonates, infants, and adults. Second,
BCG doses are relatively easy and non-expensive to produce,
allowing for mass-production, and furthermore, it is temperature
stable (45). Finally, BCG acts as auto-adjuvant and induces innate
and adaptive immune responses (44). Several recombinant BCG
(rBCG) strains that express heterologous antigens of different
pathogens have been developed and tested since 1991 (25–34).
These rBCGs formulations are excellent vaccine candidates, due
to the auto-adjuvant characteristics conferred by BCG antigens.

In a mouse model of measles virus (MV) infection, rBCG
expressing a nucleocapsid (N) protein of MV significantly
reduced viral titers in brain homogenates and mortality due to
measles-induced encephalitis (26). Splenocytes from vaccinated
mice showed stronger proliferation of antigen-specific T cells
in response to MV in vitro and an increase of serum MV-
specific antibodies as compared to BCG-WT-vaccinated animals
(26). This recombinant vaccine was later tested in infant rhesus
macaques challenged with an intranasal inoculation of MV (116).
Specifically, a total of eight newborn rhesus macaques received
the rBCG-MV-N vaccine with no adverse effects, thereby
demonstrating its safety. Moreover, rBCG-MV-N vaccination
did not induce an increase in antigen-specific antibody titers or
expansion of B cell follicles in lymph nodes. The determination of
nasopharyngeal viral loads did not show significative differences
in the vaccinated groups. Despite this, rBCG-MV-N vaccinated
monkeys showed reduced lung pathology after viral challenge in
comparison to those vaccinated with WT-BCG and paracortical
hyperplasia in lymph nodes, suggesting that protection was
mediated by specific T cells (116). Although vaccination with this
rBCGwas not able to prevent systemic infection, the reduction of
lung pathology may prevent MV-associated deaths.

Toxoplasma gondii (T. gondii) is an intracellular protozoa
parasite that infects a variety of warm-blooded animals and is
one of the most prevalent human infections worldwide (117).
Most immunocompetent humans do not develop clinical signs
after acquired infection, but immunocompromised individuals
are at risk of developing serious complications, including fatal
ones (117). A rBCG expressing rhoptry protein 2 (ROP2), which
is a protein of the T. gondii involved in host cell invasion induces
antigen-specific immune responses in mice (27). Vaccination of
mice with a rBCG expressing ROP2 induced the production of
specific antibodies, which were detected in serum and induced
cellular immune responses (27). Besides, delayed mortality was
seen after infection with T. gondii in immunized mice (27).

Bordetella pertussis is a gram-negative coccobacillus that
causes whooping cough (118). This disease causes serious
complications including secondary bacterial pneumonia, apnea,
bradycardia, pulmonary hypertension, and even death in infants
younger than 6 months old (118). An rBCG expressing the
S1 subunit of the B. pertussis toxin (dPT) was developed and
tested as a vaccine in animals (119). Vaccination of mice showed
that this vaccine was able to induce the secretion of antigen-
specific antibodies and protect mice against a challenge with a
lethal dose of B. pertussis (119–121). Stimulation of splenocytes
of immunized mice with dPT antigen showed an increased
capacity to secrete IFN-γ compared to the non-immunized
group. Vaccination of 5-day old mice with the rBCG-S1PT
vaccine protected them after a lethal dose challenge with B.
pertussis, showing 100% survival, while non-vaccinated mice had
0% survival 8 days after challenge (121).

Human immunodeficiency virus (HIV) causes acquired
immune deficiency syndrome (AIDS) in humans. According to
the WHO, this syndrome caused 1.2 million deaths globally in
2016 (122). There is no effective vaccine preventing infection
with this virus. Yet, there are many groups all over the world
working on the development of an effective vaccine against this
virus (28, 29, 31, 45, 123–127). The development of rBCGs
expressing HIV antigens has been considered an interesting
immunization strategy for a vaccine against HIV. An rBCG
expressing the Env protein of the viral capsid of HIV has been
shown to develop TH1 responses in mice (28). However, it was
unable to induce the production of HIV-specific antibodies (28).
An rBCG expressing viral antigens used in combination with a
booster of viral vectors was also able to induce HIV-specific T cell
responses in mice, which was characterized by the secretion of
IFN-γ and a TH1 polarization (29). rBCG-HIVA, a recombinant
BCG that expresses the H and P epitopes of the Env protein
and viral polymerase respectively, has been shown to induce the
activation of HIV-specific T cells in mice (30). This vaccine in
combination with a recombinant viral vector induced robust T
cell responses against HIV and M. tuberculosis (31). Although
these are promising preclinical results, clinical trials must be done
to evaluate their efficacy and protection in humans.

The human metapneumovirus (hMPV) is the second major
cause of acute lower respiratory tract infections in children
and the elderly. This viral infection induces inflammation and
disruption of the lung architecture, causing bronchiolitis and
pneumonia (128). There is no effective vaccine available to
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FIGURE 3 | BCG vaccination induces an innate immune training. BCG vaccination activates the innate immune system and induces changes in the pattern of histone

modifications of specific genes in innate immune cells. This chromatin rearrangement induces a “trained” state in the cell, enhancing the effectiveness of the innate

immune response when exposed to a non-specific pathogen, inducing the secretion of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. The pink line

represents a trained immune response, the purple line represents a naïve innate immune response.

prevent infection with hMPV. However, a novel vaccine has
been developed with a rBCG expressing the phosphoprotein (P)
protein of hMPV (rBCG-P-hMPV) (32). This rBCG-P-hMPV
formulation induces a humoral response against hMPV and can
induce viral neutralization and confer protection against hMPV-
infection, lowering the amounts of viral particles in the lungs
in vaccinated mice (32, 129). Vaccination with rBCG-P-hMPV
also reduced T cell infiltration and tissue damage in a mouse
model of infection with hMPV, activating a TH1-type response
and preventing the development of the disease (34).

Another relevant respiratory pathogen is the human
orthopneumovirus (previously named human respiratory
syncytial virus, hRSV), which is one of the leading causes of acute
lower respiratory tract infections in the world (130). In 2015,
hRSV caused over 33 million episodes of acute lower respiratory
tract infections worldwide, being one of the major causes of
hospitalization in children under 5 years of age (131). A rBCG
vaccine has been developed expressing the nucleoprotein (N) of
the hRSV (rBCG-N-hRSV) (32). In a mice preclinical model, the
immunization with rBCG-N-hRSV confers protection against
hRSV challenge, reducing both clinical pathology and neutrophil
infiltration in the lungs (129). Noteworthy, this vaccine induces
the secretion of viral-specific antibodies with neutralizing activity
(32), which correlates with lower amounts of viral titers in the

lungs in vaccinated mice (129). The rBCG-N-hRSV vaccine has
been formulated under good manufacture practices (cGMP) and
shown to maintain its promising results in pre-clinical trials.
Immunization of mice with rBCG-N-hRSV induces a TH1/TH17

memory response that was capable of mediating virus clearance
and avoiding lung damage (129).

Even though these rBCG strains have shown promising
results and protection against their target pathogens, no reports
of cross-protection against unrelated pathogens have been
published yet. Also, it remains unclear if they maintain the
benefits of cross-protection granted by the wild-type strain.
Nevertheless, it appears that the trained immunity induced by
BCG vaccination could represent additional protection against
the pathogen, whose antigen must be expressed by the rBCG.
Interestingly, several reports have shown that there is some
degree of protection induced by WT-BCG vaccination against
other pathogens (95, 96, 106, 112, 132). In the case of T. gondii,
the determination of IFN-γ secretion by splenocytes stimulated
with recombinant ROP2 showed an increased capacity of
cells from mice vaccinated with WT-BCG compared to non-
vaccinated animals (27), suggesting non-specific protection by
WT-BCG against toxoplasmosis. For B. pertussis, it is worth
noting that splenocytes obtained from mice vaccinated with
WT-BCG showed increased IFN-γ secretion after stimulation
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with dPT as compared to the non-immunized group (121).
Surprisingly,WT-BCG vaccinatedmice exhibited 80% of survival
after a lethal dose challenge, suggesting that the non-specific
protection induced by this vaccine can exhibit a protective effect
on B. pertussis infections and consequently against whooping
cough (121). Also, WT-BCG decreases some disease parameters
in the mouse models for hRSV and hMPV infection (32).
However, the non-specific protection induced by the wild-type
vaccine was lower compared to the protection induced by the
rBCG expressing hRSV and hMPV antigens, respectively. Mice
immunized with the WT-BCG showed intermediate values of
viral gene copies and infiltrating neutrophils in the lungs between
those that were not immunized and those immunized with the
specific rBCG vaccines (rBCG-N-hRSV, and rBCG-P-hMPV)
(32). These results support the existence of trained immunity
as a consequence of BCG vaccination. The development of a
trained innate immune response after rBCG vaccination might
be an advantageous scenario for preventing infections, due to the
enhanced immune response elicited after immunization against
homologous and heterologous pathogens.

DISCUSSION AND FUTURE CHALLENGES

The BCG vaccine has been used in humans for almost a 100
years, proving its immunogenicity and safety. However, it is
still unclear whether recombinant BCGs can induce trained
immunity after vaccination. Furthermore, the use of the BCG
vaccine as a vector for the development of novel recombinant
vaccines displays a series of advantages. It is stable, has a low
cost of production and acts as an auto-adjuvant, promoting
the generation of TH1 phenotypes in CD4+ T cells that secrete
high levels of IFN-γ and that are active against intracellular
pathogens. Also, it generates CD8+ T cell activation thatmediates
a cytotoxic response. In addition to protection against M.
tuberculosis, a characteristic that draws much attention to this
vaccine is its effect on decreasing infant mortality in a non-
specific manner. This characteristic gives this vaccine a great
advantage over other vaccines that confer protection only against
the pathogen for which they were developed. Related to this, it
was recently described that BCG induces a memory phenotype in
innate immune cells, a phenomenon that is known as “trained
immunity.” Trained immunity confers non-specific protection
against different pathogens, inducing upregulation of PPRs and
the secretion of pro-inflammatory cytokines through epigenetic
and metabolic reprogramming. This non-specific protection
represents a great advantage when used in newborns since
they still do not have a complete development of the adaptive
immune system and have not been exposed to a wide range of
harmful pathogens. Due to this, the training of innate immune
cells conferred by BCG could be playing fundamental roles in
helping the vaccinated individuals to respond to a wide variety
of pathogens.

Trained immunity induced by BCG vaccination can be
considered as a potential approach for improving vaccine
development and effectiveness, due to the capacity to promote
non-specific stimulation of PRRs in innate immune cells.

Activation of these cells may contribute to the protection against
different pathogens for which no specific vaccine yet exists. As
for the case of the influenza A virus, the high mutation rate
of this pathogen can impair the effectiveness of highly specific
vaccines, thus the broad spectrum of pathogens to which trained
immunity response could be a great advantage for the protection
to such infectious agents (133, 134). Furthermore, viral infections
such as hRSV have been shown to increase the host susceptibility
to bacterial infections (135). Thus, vaccines capable of inducing
trained immunity could potentially decrease the occurrence of
coinfections. Besides, innate immune training strategies could
also be applied to children, elderly or immunocompromised
individuals that are unable to developing T or B cell-based
specific immune responses (136–141). For these cases, the
priming of the innate immune response could lead to a better
immune response in cases of infections with a broad spectrum of
pathogens, as trained immunity has been shown to respond well
to viral, bacterial and fungal infections (96, 112, 114).

Even though BCG has been considered a good immunogenic
vector, some factors need to be considered when using this
bacterium to develop recombinant vaccines. One issue associated
with recombinant BCG vaccines is the level of expression of
the heterologous antigen (142). The selection of the vector is
crucial, given that expression of the heterologous antigen can
be mediated by integrative or replicative vectors. In the case of
replicative vectors, as there can be more than one copy in a single
mycobacterium, increasing the expression level of the antigen of
interest (143). Despite this, integrative vectors are more stable
and can promote a more stable expression of the antigen in time,
which can, in turn, lead to a longer-lasting immune response
(143). However, replicative vectors may have a risk of horizontal
transfer to other bacteria present in the host, reducing the safety
of the vaccine (144). As for the case of viral proteins, these
pathogens use the host transcription and translation machinery
to produce their proteins (145). Therefore, a potential drawback
for using rBCG vaccines for viruses is the possibility that the
expression of viral proteins by prokaryotic cells could proteins
with variant conformations or altered epitopes (145). To address
this problem, the most immunogenic peptides of the protein of
interest could be identified and then cloned into a BCG to express
only these peptides. In this way, the efficacy of the recombinant
vaccine may be improved.

If recombinant BCGs can induce trained immunity after
vaccination, we could think that trained immunity induced by
rBCG could, in combination with the specific response, induce
robust protection against the pathogen of interest. Determination
of the development of trained immunity as a consequence of
vaccination with recombinant BCG could represent another
good advantage for this type of vaccine. Indeed, improving innate
immunity represents an ideal complement for the cellular and/or
humoral responses developed by rBCG.
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The distributions of human malaria parasite species overlap in most malarious regions

of the world, and co-infections involving two or more malaria parasite species are

common. Little is known about the consequences of interactions between species

during co-infection for disease severity and parasite transmission success. Anti-malarial

interventions can have disproportionate effects on malaria parasite species and may

locally differentially reduce the number of species in circulation. Thus, it is important to

have a clearer understanding of how the interactions between species affect disease

and transmission dynamics. Controlled competition experiments using human malaria

parasites are impossible, and thus we assessed the consequences of mixed-species

infections on parasite fitness, disease severity, and transmission success using the rodent

malaria parasite species Plasmodium chabaudi, Plasmodium yoelii, and Plasmodium

vinckei. We compared the fitness of individual species within single species and co-

infections in mice. We also assessed the disease severity of single vs. mixed infections

in mice by measuring mortality rates, anemia, and weight loss. Finally, we compared the

transmission success of parasites in single or mixed species infections by quantifying

oocyst development in Anopheles stephensi mosquitoes. We found that co-infections

of P. yoelii with either P. vinckei or P. chabaudi led to a dramatic increase in infection

virulence, with 100% mortality observed in mixed species infections, compared to no

mortality for P. yoelii and P. vinckei single infections, and 40% mortality for P. chabaudi

single infections. The increased mortality in the mixed infections was associated with

an inability to clear parasitaemia, with the non-P. yoelii parasite species persisting at

higher parasite densities than in single infections. P. yoelii growth was suppressed in

all mixed infections compared to single infections. Transmissibility of P. vinckei and

P. chabaudi to mosquitoes was also reduced in the presence of P. yoelii in co-infections

compared to single infections. The increased virulence of co-infections containing P. yoelii
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(reticulocyte restricted) and P. chabaudi or P. vinckei (predominantly normocyte restricted)

may be due to parasite cell tropism and/or immune modulation of the host. We explain

the reduction in transmission success of species in co-infections in terms of inter-species

gamete incompatibility.

Keywords: malaria, mixed-species, virulence, co-infections, Plasmodium yoelii, Plasmodium vinckei, Plasmodium

chabaudi

INTRODUCTION

Eight malaria parasite species are infectious to humans;
namely, Plasmodium falciparum, Plasmodium vivax, Plasmodium
malariae, Plasmodium ovale wallikeri, Plasmodium ovale curtisii,
Plasmodium knowlesi, Plasmodium cynomolgi, and Plasmodium
simium. The latter three species are parasites of non-human
primates, but also cause zoonotic malaria in humans (1–3).
In large parts of the tropical world the ranges of at least
some of these species overlap, they are often vectored by
the same mosquitoes (4), and mixed-species infections are
common (5–7).

Mixed species infections of human malaria parasites are
well-documented in natural (8–12) and experimental [e.g.,
(13, 14)] settings. They are studied regarding diagnosis (15–
17), treatment (18), immune response (19), virulence (12, 20),
transmission (21–23), and in discussions of public health policy
(6). The virulence of malaria infection is also of interest in the
context of co-infection with other pathogens, such as HIV and
Schistosoma (24–26).

The consequences of mixed-species infections on malaria
disease and parasite fitness are incompletely understood.
There is conflicting evidence from laboratory and field
studies regarding the capacity of mixed-species infections
to exacerbate (27) or ameliorate (14) disease. Furthermore,
the mechanisms underlying the interactions between parasite
species in mixed infections are complicated and multi-factorial,
possibly involving both within-host competition (28), and
cross-immunity (29).

Mixed species and mixed strain Plasmodium infections
have been studied in primate (30) and rodent malaria parasite
models (27, 28, 31, 32), as these enable the study of all parasite
lifecycle stages including those that occur in mosquitoes.
The rodent model is enhanced by the availability of multiple
rodent malaria parasite species; namely, Plasmodium yoelii,
Plasmodium berghei, Plasmodium vinckei, and Plasmodium
chabaudi. For P. yoelii there are additionally several parasite
strains that differ in virulence following inoculation of
mice (33).

Previous studies on the consequences of mixed species
infections for disease pathology using the rodent malaria
parasites in mice have yielded conflicting and varied results.
Snounou et al. found that the virulence of mixed-species
infections, as measured by host mortality, was reduced
compared to that of single infections of the constituent
species (34) whilst Ramiro et al. found the opposite
effect (27).

Here we describe the results of a series of experiments utilizing
multiple strains of the rodent malaria parasite species P. yoelii,
P. chabaudi, and P. vinckei, in which mixed infections of various
combinations of species and strains were established and studied
in both mice and mosquitoes. These rodent malaria parasite
species display important phenotypic differences, specifically
in their red blood cell type tropism, that impact on disease
progression. The consequences of mixed species infections for
disease severity in both hosts, parasite fitness, and transmission
capacity were analyzed.

MATERIALS AND METHODS

Parasites, Mice and Mosquitoes
Four rodent malaria parasite strains, comprising three
species, were used in these experiments; specifically, P.
chabaudi chabaudi clone AJ, P. chabaudi chabaudi clone
ASED (intermediate virulence, normocyte preference) (35),
P. yoelii clone CU (non-virulent, reticulocyte restricted) (32),
and P. vinckei lentum clone DS (non-virulent, normocyte
preference) (36). These parasite lines were obtained from
deep-frozen stocks kept at the University of Edinburgh
(curated by Professors Richard Carter and David Walliker)
and were originally isolated from thicket rats in Central
Africa (35). Six-week-old female CBA mice, Mus musculus,
were purchased from SLC Inc. (Shizuoka, Japan) and were
used for all experiments. Mice were housed in a 12-h/12-h
light/dark cycle at 24◦C and fed with 0.05% para-aminobenzoic
acid (PABA)-supplemented water to assist the growth of
parasites. Anopheles stephensi mosquitoes were housed in a
temperature- and humidity-controlled insectary at 23◦C and
75% humidity. Mosquitoes used in the transmission experiments
were maintained on 10% glucose solution supplemented with
0.05% PABA.

DNA Extraction and Real Time Quantitative
PCR (qPCR)
To determine the proportion of each species in mixed infections,
quantitative real time PCR (qPCR) was used to measure copy
numbers of the merozoite surface protein 1 gene (msp1).
DNA was extracted from infected mouse tail blood and
infected mosquito midguts using an EZI DNA Investigator
Kit (GIAGQN) according to the manufacturer’s instructions.
Quantitative PCR was performed on an ABI 7500 real-time PCR
machine using a Power SYBR Green kit (Applied Biosystems,
UK). Primers were designed based on a species-specific region of
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msp1, as follows: PyCUmsp1F 5′CACCCTCAATAAACCCTGC-
3′, PyCUmsp1R 5′-CGTGTACCAATACTTGAGTCAGAAC-3′;
PvDSmsp1F 5′-CAAGAAGCCTCACAACAAGAATCTA-3′,
PvDSmsp1R, 5′TGCTGGTTGGGCAGGTGCTGGA-3′, and
PcAJmsp1F 5′-GTACAAGAAGGAGCATCAGC-3′, PcAJmsp1R
5′-GCGGGTTCTGTTGAGGCTCCT-3′. PCR assays were
conducted on an AB7500 real-time PCR machine (Applied
Biosystems, Japan) under the conditions: initial denaturation
step of 50◦C for 2min, 95◦C for 10min, followed by 40 cycles
of 95◦C for 15 s and finally 61◦C for 1min. Copy numbers
of msp1 were quantified with reference to a standard curve
generated from known numbers of plasmids containing the
target sequence. As different parasite species have differing
mean copy numbers of msp1 per infected erythrocyte (due
to different rates of DNA replication, differing numbers
of merozoites per schizont, and differing propensities for
multiple erythrocyte invasion), we normalized the proportion
of each species in mixed infections by the copy numbers
per infected erythrocyte calculated from single species
infections. This methodology was also used to quantify
the numbers of species-specific oocysts on the midguts of
co-infected mosquitoes.

Experiments Involving the Monitoring of
Virulence in Mice
Eight experimental groups of five mice each were set up to
measure the effects of co-infections of parasite species on mice
and to compare the growth of species in single and mixed
species infections. Three of these groups were inoculated via
intravenous (IV) injection with parasite infected red blood cells
(iRBCs) of a single P. c. chabaudi clone AJ (hereafter referred to
as PcAJ), P. c. chabaudi ASED (PcASED), P. y. yoelii clone CU
(PyCU) or P. v. lentum clone DS (PvDS). The remaining four
received mixtures of two species in equal numbers (PcAJ+PyCU,
PyCU+PcASED, PyCU+PvDS and PcAJ+PvDS). Inocula were
diluted in a solution of 50% fetal calf Serum (FCS) and 50%
Ringer’s solution (27mMKCl, 27mMCaCl2, 0.15MNaCl). Mice
infected with single parasite species received 106 iRBCs, and co-
infected mice received 106 of each component parasite species. It
has been shown that a 2-fold difference in parasite numbers has a
negligible effect on parasite dynamics and virulence (37).

Virulence was determined using the parameters of mortality,
weight loss, and reduction in erythrocyte density, and was
measured daily up to day 30 post-inoculation. Erythrocyte
densities were counted using a Coulter Counter (Backman
coulter, Florida) from 1:40,000 dilution of 2 µl whole blood
sampled from tails in Isoton solution (Beckman coulter, Florida).
Giemsa’s solution stained thin blood smears from tail vein blood
were monitored for parasitaemia for 30 days post-inoculation
to assess the parasite replication rate. Whole blood samples (10
µl) were collected daily from day 1 to 30 into citrate saline,
centrifuged briefly, and the erythrocyte pellet stored at −80◦C
prior to DNA extraction using an EZ1 DNA Investigator Kit
(QIAGEN, Japan) and an EZ1 BioRobot (QIAGEN, Japan).
Species specific qPCR based on the msp1 gene was used to
measure the proportions of each parasite in the mixed infections
(32, 38). All experiments were performed twice.

Mosquito Transmission Experiments:
Estimation of Mosquito Fitness and
Parasite Species Transmission Capacity
Groups of mice were infected with single and mixed species
infections of PyCU, PvDS, and PcAJ parasites (total six groups,
each of five mice). On days 3 and 5 post-inoculation, individual
groups of mosquitoes (n = 40 mosquitoes per group; 5–7
days post emergence from pupae) were fed on individual mice.
Immediately following the feed, 20 mosquitoes from each group
were pooled by mouse group into 12 cages, and egg bowls added
2 days later to allow the collection of eggs. These groups were
monitored for longevity by counting dead mosquitoes daily up to
day 60, and the numbers of larvae produced per mosquito were
counted at day 5 post-hatching. Seven days later, 20 mosquitoes
were removed from each group (57 groups total, as the number
of mice fed from group PvDS and PcAJ + PvDS was reduced to
three and four, respectively for the day 5 feed) and the midgut
oocyst burden recorded following dissection. Dissected midguts
were stored at −80◦C prior to DNA extraction for species
proportion analysis by qPCR.

Statistical Analyses
All graphs were generated using GraphPad Prism 6 (GraphPad
software Inc, USA). Comparison of survival curves was
carried out using Log-rank (Mantel-Cox) tests. Multiple t-tests,
corrected for multiple comparisons using the Holm-Sidak
method, were used for comparing parasitaemia, erythrocyte
density, weight loss, and parasite density of single and mixed
infection in mice at all days during infection. Mann Whitney
tests were carried out for cumulative parasite density, mosquito
infection, and analysis of oocysts per gravid mosquito. P-values
of below 0.05 were considered significant.

RESULTS

Mixed Species Parasite Infections
Involving a Reticulocyte Specialist and a
Normocyte Specialist Are More Virulent
and Cause Greater Host Mortality Than
Single Species Infections in Mice
Infection parameters for single and mixed infections involving
PyCU (reticulocyte restricted) and either PvDS, PcAJ, or PcASED
(normocyte preference) are summarized in Table 1. PyCU and
PvDS are not lethal in single species infections and only the
intermediately virulent species P. chabaudi (PcAJ and PcASED)
caused death of mice in single infections, with 40% mortality
occurring between days 9 and 13 post-infection (PI) for both
Pc strains. In contrast, mixed-species co-infections of PyCU
with either PvDS, PcAJ, or PcASED resulted in highly virulent
infections with 100% mortality (Figures 1A–C).

Mixed species infections resulted in higher parasitaemia
than either of their constituent species in single infections
(Figure 1D) and peak parasitaemia occurred on the same day
PI as the more virulent of the constituent species; except
for PyCU + PvDS in which peak parasitaemia occurred
between days 8 and 11, compared to the PvDS single
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TABLE 1 | Infection parameters for single and mixed species infections of Plasmodium yoelii CU with Plasmodium vinckei DS, Plasmodium chabaudi AJ, and

Plasmodium chabaudi ASED.

Strain PyCU PvDS PcAJ PcASED PyCU + PvDS PyCU + PcAJ PyCU +

PcASED

RBC invasion

preference

Reticulocytes Normocytes Normocytes

and

reticulocytes

Normocytes

and

reticulocytes

/ / /

Peak Parasitaemia

% (day pi)

52.57 ± 1.89

(18–19, 25)

36.44 ± 0.54

(6–7)

63.85 ± 4.94

(7)

59.91 ± 1.03

(6, 7)

75.78 ± 1.72

(8, 10–11)

59.96 ± 3.56

(7–8)

64.32 ± 3.43

(7, 9)

Cumulative

parasitaemia

544.74 ± 80.00 127.94 ± 6.32 245.55 ± 14.83 190.21 ± 7.49 281.52 ± 26.66 218.39 ± 16.87 188.53 ± 9.45

Mortality (day pi) 0% 0% 40% (10, 13) 40% (9, 10) 100% (9, 11, 12) 100% (9, 10) 100% (9–11)

Max. weight loss,

g (day pi)

1.26 ± 0.44

(19–21, 27)

2.49 ± 1.00

(8, 10)

4.06 ± 0.54

(9–13)

3.54 ± 0.38

(8, 9)

4.26 ± 0.66

(8, 9–12)

2.93 ± 0.30

(8–9)

2.92 ± 0.18

(8, 10)

Min. RBC count,

RBC/ml (day pi)

1.61 × 109 ± 0.13

× 109 (21, 26, 28)

3.61 × 109 ±

0.05 × 109 (8, 9)

1.51 × 109 ±

0.21 × 109 (9)

1.41 × 109 ±

0.13 × 109 (7, 8)

1.60 × 109 ±

0.04 × 109

(8–11)

1.65 × 109 ±

0.22 × 109 (8, 9)

1.24 × 10 9 ±

0.08 × 109 (7, 8)

infection, in which peak parasitaemia occurred at days 6–
7 (Figures 1D–F). Host mortality in mixed species infections
occurred at peak parasitaemia and was presumably caused
by anemia resulting from an inability to clear parasites from
the blood.

During the latter stages of the infection mixed
species infections involving PvDS and PyCU resulted
in lower erythrocyte densities (Figures 1G–I) and
greater weight loss (Figures 1J–L) compared to either
of the constituent species in single infections. This
increased pathology was linked to the inability of mice to
control parasitaemia.

Mixed Species Parasite Infections
Involving Two Normocyte Specialists
Result in Protracted Parasitaemia, but Not
Increased Virulence
Plasmodium vinckei DS and P. chabaudi AJ are both normocyte
invading parasites. PcAJ is of moderate virulence, causing rapid

and severe anemia and weight loss during the first 10 days
of infection when parasitaemia rises, and results in 40% host
mortality (Table 2 and Figure 2A). PvDS is a much less virulent
parasite, causing less severe weight loss and milder anemia, and
is never lethal (Table 2 and Figure 2A). The combination of
these two parasites in a mixed infection results in 50% host
mortality, and a pathology consistent with that of PcAJ, the more
virulent of the two species (Table 2 and Figure 2A). However,
the PcAJ+PvDS infection results in three distinct parasitaemia
peaks, compared to the two peaks produced by the single
species, and parasitaemias persisted up to the last day of the
experiment (day 30), compared to clearance by day 26 in the
single species infection (Figure 2B). The PcAJ+PvDS infection
also displayed a sharper decline in parasitaemia following the
first peak (Figure 2B), and this was associated with a quicker
recovery from anemia and weight loss between days 10 and
15 (Figures 2C,D).

Co-Infection of P. yoelii With Either
P. chabaudi or P. vinckei Results in
Reduced Parasite Density of P. yoelii, and
Protracted Peak Parasitaemia of
P. chabaudi and P. vinckei
To understand how mixed parasite species infection influences
the fitness of the species involved, we measured the parasite
density (numbers of parasites per ml of mouse blood) through
time of individual species in single and mixed infections. The
relative proportions of each species within mixed infections were
measured at 24-h intervals by species specific qPCR.

In mixed infections composed of PyCU and PvDS, PvDS
dominated the infection from days 4 to 10 PI (Figure 3A), at
which point PyCU became dominant. There was an increase in
the proportion of PyCU in the infection from day 8 (7%) until
host mortality at day 12 PI (50%). Analysis of species-specific
parasite density in this co-infection revealed that PyCU was
suppressed throughout the infection, while the growth of PvDS
was enhanced (Figures 3D,E).

This enhancement occurred during the latter stages of the
infection (days 8–12), the time point at which PvDS is cleared
during single infections. This suggests that the presence of PyCU,
whose growth in a co-infection does not differ significantly
from that observed in a single species infection, facilitates the
persistence of PvDS for an extended period after which it would
normally be cleared. This inability to clear PvDS, combined with
the standard increase in PyCU parasitaemia, leads to hyper-
parasitaemia with severe anemia in co-infected mice, and results
in host death.

Enhancement of the parasite density of the normocyte-
restricted parasite species was also observed in the latter stages
of mixed species infections composed of PyCU and PcAJ. In
this case, PcAJ dominates PyCU throughout the infection, with
complete exclusion of the latter species observed at the end of the
co-infection (Figure 3B). Mice died at days 9 and 10 pi, at which
point the parasite density of PyCU was significantly suppressed
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FIGURE 1 | Percent survival (A–C), parasitaemia (D–F), erythrocyte density (G–I), and weight loss (J–L) of mice infected with Plasmodium yoelii CU (black),

Plasmodium vinckei DS (blue), Plasmodium chabaudi AJ (green), and Plasmodium chabaudi ASED (purple) species in single and mixed infections (red). Mice were

inoculated via intravenous injection of 1 × 106 infected red blood cells of either single or mixed species of the above parasites and followed for 25–30 days to

determine mortality, live-body weight, erythrocyte density, and parasitaemia. Data points indicate the mean value for five mice in each experimental group and error

bars indicate the standard error of the mean (SEM). An asterisk represents statistically significant differences between mixed infections compared with both single

infections (Multiple t-tests, with the assumption that all rows are sampled from populations with the same scatter and corrected for multiple comparisons using the

Holm-Sidak method). Parasitaemias of PyCU and PvDS in mixed-infections were significantly different between days 8 and 12 post infection (PI) compared with the

same strains in single infections (D); PyCU and PcAJ mixed-infections were significantly different to single infections of the same strains on days 8 and 9 PI (E); and

PyCU and PcASED mixed-infections were significantly different from single infections between days 8 and 10 PI (F). Erythrocyte densities of PyCU and PvDS

mixed-infections were significantly different from single infections on day 10 to 12 PI (G); PyCU and PcAJ mixed-infections were significantly different on days 7 and 8

PI (H); while mixed infections of PyCU and PcASED were significantly different from single infections only on day 6 PI (I). Mice infected with PyCU+PvDS

mixed-infections lost significantly more weight compared to single infections from day 10 to 12 (J). Mice in the groups infected with mixed infections of PyCU+PcAJ

suffered from significantly reduced erythrocyte density compared to mice in single infection groups (Two-way RM ANOVA measured mixed effects model, P = 0.043,

F = 5.7, DFn = 1, DFd = 8). Detailed statistical values relating to significance are given in Supporting Table 1. Experiments were repeated twice, data is from one

representative experiment.

compared to single infections (Figure 3D). In contrast, there
was little difference in the parasite density of PcAJ in a mixed
infection with PyCU compared to a single infection during
the first 8 days of the co-infection. However, as seen in

the PvDS+PyCU infection (Figure 3E), the usual reduction in
parasitaemia observed at day 8 in PcAJ single infections was
not observed in co-infections with PyCU (Figure 3F), suggesting
again that presence of PyCU in a co-infection impairs the ability
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FIGURE 2 | Percentage survival (A), parasitaemia (B), erythrocyte density (C), and weight loss (D) of infected mice with Plasmodium vinckei DS (blue), Plasmodium

chabaudi AJ (green) single or mixed infections (red). Mice were inoculated via intravenous injection of 1 x 106 infected red blood cells of either single or mixed species

of the above parasites and followed for 30 days to determine mortality, live-body weight, erythrocyte density, and parasitaemia. Data points indicate the mean value for

mice of each experimental group and error bars indicate the SEM. An asterisk represents statistically significant difference of mixed infections compared with both

single infections (Multiple t-tests, with the assumption that all rows are sampled from populations with the same scatter and corrected for multiple comparisons using

the Holm-Sidak method). Mice infected with mixed-infections developed statistically significantly higher parasitaemia on days 5 and 9 PI compared with both single

infections (B). Mice infected with mixed-infections had significantly lower erythrocyte densities on days 10 to 13, 27, 29, and 30 PI compared with both single

infections (C). Considering the entire time course of the infections, the parasitaemia of mice infected with single infections of PvDS were significantly lower than those

of mice infected with PvDS + PcAJ mixed-infections (two-way RM ANOVA measured mixed effects model, F = 218.8, DFn = 1, DFd = 3, P = 0.0007). The

erythrocyte density of mice infected with PvDS + PcAJ mixed-infections was significantly lower than those infected with single infections of PvDS (two-way RM

ANOVA measured mixed effects model, F = 123, DFn = 1, DFd = 3, P = 0.0016). Detailed statistical values relating to significance are given in Supporting Table 1.

Experiments were repeated twice, data is from one representative experiment.

of the host to control the growth of the normocyte-invading
parasite species.

Cumulative parasite densities were calculated for each parasite
species in single and mixed infections as proxy measures of
parasite productivity throughout the infection. There was a
dramatic reduction in cumulative parasite density for PyCU in
the mixed infections with both PcAJ and PvDS (Figure 3G). In
the mixed infections involving PcAJ and PvDS, both of which
preferentially invade normocytes, there was a dramatic reduction
in cumulative parasite density for PvDS throughout the co-
infection compared to single infection (Figure 3H). There was
also a slight reduction in cumulative parasite density of PcAJ
(Figure 3I), a reflection of lower productivity during the latter
stages of the infection. PcAJ is themore virulent of the two species
and dominates the co-infection between days 5 and 15, when no
PvDS could be detected by qPCR. However, PvDS resurges at day
15, and competitively excludes PcAJ by day 25.

Pre-exposure of Mice to P. yoelii Does Not
Enhance the Virulence of P. vinckei
Infection
As the presence of P. yoelii in mixed infections with either
P. chabaudi or P. vinckei results in an inability to clear the

TABLE 2 | Infection parameters for single and mixed species infections of

Plasmodium vinckei DS and Plasmodium chabaudi AJ.

Strain PvDS PcAJ PcAJ + PvDS

RBC invasion

preference

Normocytes Normocytes and

reticulocytes

/

Peak parasitaemia

% (day pi)

36.44 ± 0.54 (6–7) 63.85 ± 4.94 (7) 65.67 ± 2.28

(6–7)

Cumulative

parasitaemia

127.94 ± 6.32 245.55 ± 14.83 240.15 ± 6.07

Mortality (day pi) 0% 40% (10, 13) 50% (10)

Max. weight loss,

g (day pi)

2.49 ± 1.00 (8, 10) 4.06 ± 0.54 (9–13) 3.98 ± 0.12

(9–10)

Min. RBC count,

RBC/ml (day pi)

3.61 × 109 ± 0.05

× 109 (8, 9)

1.51 × 109 ± 0.21

× 109 (9)

1.46 × 109 ±

0.05 × 109

(8, 9)

latter two species, resulting in host death, we wondered whether
an immune response specific to P. yoelii could adversely affect
the establishment of an effective immune response against P.
chabaudi or P. vinckei. To test this, we pre-immunized mice with
PyCU parasites by exposure to the parasite for 8 days followed by
clearance with the anti-schizontal drug mefloquine (MF). Two
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FIGURE 3 | The relative proportions of Plasmodium yoelii CU, Plasmodium vinckei DS, and Plasmodium chabaudi AJ in mixed infections (A–C), the parasite density

of each species in single and mixed infections (D–F), and cumulative parasite density of each species in either single or mixed infections (G–I). The relative proportion

of each species in combination with each other (A–C) was measured by qPCR quantification using primers specific to a region of the msp1 gene of each species.

Copy numbers of parasite msp1 were quantified with reference to a standard curve generated from known numbers of plasmids containing the same gene

sequences. The average copy numbers per iRBC were generated by copy numbers and parasite densities of each single species infections on day 6 PI. Data points

indicate the mean value for 3–5 mice in each experimental group and error bars indicate the SEM. The parasite densities (number of blood stage parasites per mL

blood) are shown in (D–F). (D) Shows the parasite densities of PyCU single infection or in mixed infection with PvDS or PcAJ. Parasite densities of PvDS and PcAJ are

given in (E,F), respectively. An asterisk represents significant differences (P < 0.01) in parasite density in single infections compared with mixed-infections. Cumulative

parasite densities are shown in (G–I). The cumulative parasite density of PyCU in single infections were significantly higher than PyCU in mixed-infections with PyAJ

and PvDS (G). Similarly, the cumulative parasite density of PcAJ in single infections was significantly higher than in mixed infections with PyCU or PvDS (I). Detailed

statistical values relating to significance are given in Supporting Table 1. Experiments were repeated twice, data is from one representative experiment.

weeks later, when all MF had cleared from the host, mice were
challenged with PvDS. In contrast to the patterns observed in
PyCu+PvDS co-infections, there was no evidence of increased
virulence of PvDS infections in mice pre-exposed to PyCU
(Figure 4A), with no significant enhancement of parasite density
(Figure 4B), anemia (Figure 4C), or weight loss (Figure 4D)
occurring at any stage during the infection.

The Increased Virulence of Mixed Species
Infections of P. yoelii and P. vinckei Is
Abrogated When P. vinckei Is Added to an
Established P. yoelii Infection
When both PyCu and PvDS are inoculated into mice
contemporaneously, the resulting co-infection is consistently

lethal, in contrast to the zero-mortality associated with the
constituent single species infections. This lethality results
from the inability of mice to clear the PvDS parasites from
the circulation following peak parasitaemia. To determine
if increased virulence is dependent on the timing of the
introduction of the co-infecting species, we first inoculated mice
with PyCU and introduced PvDS 7 days later. The co-infection
caused 25% mortality, compared to no mortality in single
species infections (Figure 5A). In this case, the co-infection
parasitaemia did not differ significantly from that of a single
infection of PyCU for most of the infection duration, except
for the last 2 days of sampling (days 22 and 23), when the
parasitaemia was higher in the co-infection (Figure 5B). This
increased parasitaemia toward the latter stages of the infection
did not result in lower erythrocyte density (Figure 5C); however,
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FIGURE 4 | Percentage survival (A), parasitaemia (B), erythrocyte density (C), and weight loss (D) of mice infected with Plasmodium vinckei DS (PvDS). Mice in the

PvDS (PyCU immune) group were inoculated intravenously (IV) with 1 × 106 infected red blood cells (iRBCs) of PyCU, treated 8 days later with mefloquine for 5 days,

and then 15 days later intravenously challenged with 1 × 106 PvDS iRBCs. Data points indicate the mean value for 5 mice in each experimental group and error bars

indicate the SEM. Detailed statistical values relating to significance are given in Supporting Table 1.

it did cause significantly greater weight loss in co-infected
animals during this period (Figure 5D).

Measuring the relative proportions and parasite densities of
the constitute species in the co-infection and comparing them
to single infections revealed that PyCU dominates the infection
over PvDS, excepting days 7 and 8 (Figure 5E). In contrast to the
situation observed with the simultaneous inoculation of the two
species, there was no significant reduction in the parasite density
of PyCU, but there was a reduction in the parasite density of PvDS
when PyCu was inoculated 1 week prior to PvDS (Figures 5F–I).

The Consequences of Mixed Species
Infections in the Mosquito Vector
We additionally sought to describe the impact of mixed species
infections on transmission to mosquitoes. Specifically, we fed
Anopheles stephensi mosquitoes on mice with single or mixed
species infections and measured: (i) the proportion subsequently
infected, and (ii) the severity of this infection (number of
oocysts); (iii) the longevity of infected mosquitoes; and (iv) the
number of larvae they produced following a blood meal. Finally,
we compared the transmission success, defined as the average
number of oocysts produced per blood fed mosquito, of each
parasite species in mixed or single infections.

Mixed Species Infections Do Not Result in
Significantly Different Infection Parameters
in Mosquitoes
To determine whether mixed species infections result in altered
mosquito infectivity rates and infection loads compared to
single species infections, mosquitoes were fed on anesthetized
mice infected with single, or mixed infections of PcCU, PvDS,
and PcAJ. As these species differ in the timing of their
gametocyte production, with PyCU at its most infectious to
mosquitoes on day 3 PI and PcAJ and PvDS more infectious
on day 5 pi, we conducted mosquito feeds on both these
days. PyCu was the most infective single species on day 3
and 5, followed by PvDS and finally PcAJ (Figures 6A–C).
Mixed species infections did not result in higher proportions of
mosquitoes being infected than the most infective constituent
species in a single infection (Figures 6A–C). Similarly, in co-
infections containing the highly infectious PyCU species, the
oocyst burdens of mixed species infections were not significantly
different from that of PyCU in mosquitoes fed on mixed
infections on either day 3 or 5 PI (Figures 6D,E). Mixed
species infections of PcAJ and PvDS resulted in significantly
lower oocyst burdens than the most infectious constituent single
species (PvDS), but only in mosquitoes fed on day 5 of the
infection (Figure 6F).
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FIGURE 5 | Percentage survival (A), parasitaemia (B), erythrocyte density (C), and weight loss (D) of mice infected with Plasmodium yoelii CU (PyCU) and

Plasmodium vinckei DS (PvDS) in single and mixed infections. Mice in the mixed-infection group were inoculated intravenously (IV) with 1 × 106 PyCU infected red

blood cells (iRBCs) 7 days prior to IV inoculation with 1 × 106 PvDS iRBCs. Data points indicate the mean value for 4–5 mice in each experimental group and error

bars indicate the SEM. Asterisks indicate statistically significant differences between mice with mixed-species infections compared with both single infections (Multiple

t-tests, with the assumption that all rows are sampled from populations with the same scatter and corrected for multiple comparisons using the Holm-Sidak method).

Mice infected with mixed-infections lost significantly more weight during the latter stages of the infection than mice infected with single species infections (days 21–23

PI, D). The relative proportion of each species in mixed infections (E) was measured by qPCR quantification of the msp1 gene. The average copy number per iRBC

was generated with reference to copy numbers and parasite densities of each single species infections on day 6 PI. The parasite densities of PyCU and PvDS in single

or mixed infections are shown in (F,G). A Mann Whitney test shows that the cumulative parasite density of PvDS in single infections is significantly higher than that of

PvDS in a mixed infection with PyCU (I), whereas that of PyCU is unaffected when in a mixed infection with PvDS (H). Detailed statistical values relating to significance

are given in Supporting Table 1.

Co-Infections of Malaria Parasite Species
Do Not Adversely Affect Mosquito
Longevity or Capacity to Produce Larvae
To ascertain whether mixed species infections of mosquitoes

were more virulent than single species infections, we measured

longevity and larvae production in mosquitoes fed on single
or mixed infections. In accordance with the observation that
mixed species infections did not result in higher burdens of
infection, mosquitoes infected with two parasite species in a
co-infection did not display reduced longevity (Figures 7A–C),

median survival time (Figure 7D), or reduced fitness (measured
as the number of larvae produced per blood-fed mosquito)
(Figure 7E).

Mixed Species Infections Can Affect the
Transmission Capacity of the Constituent
Species
To determine whether mixed infections can affect the
transmission capacity of constituent species, the relative
proportion of each species in mixed infections in mosquitoes was
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FIGURE 6 | Transmission capacity of Plasmodium yoelii CU (PyCU), Plasmodium vinckei DS (PvDS), and Plasmodium chabaudi AJ (PcAJ) in single or mixed infections.

The mean percentage of mosquitoes infected with oocysts were calculated following feeding on PyCU, PvDS, and PcAJ either in single or mixed infections in mice on

days 3 and 5 PI (A–C). The numbers of oocysts per gravid mosquito are given for all groups (D–F). Only gravid mosquitoes were considered blood-fed and included

in the analysis. Statistical analysis was performed using Mann Whitney tests. Detailed statistical values relating to significance are given in Supporting Table 1.

measured using qPCR on DNA extracted from mosquitoes with
known oocyst numbers and compared to the numbers produced
in single infections.

The numbers of oocysts produced by the highly infectious
PyCU did not differ significantly between mosquitoes fed
on single and mixed species infections (Figure 8A). PvDS
produced fewer oocysts in mixed infections with PcAJ and
PyCU than in single infections, although the effect was only
statistically significant on day 5 in a mixed infection with
PyCU (Figure 8B). PcAJ also suffered a reduced transmission
capacity in mixed infections, with significant reductions in
oocyst numbers measured in mosquitoes fed on mixed infections
with either PvDS or PyCU on day 5, compared to those fed
on single infections (Figure 8C). The transmission of PcAJ
to mosquitoes was completely blocked in mixed infections
containing PyCU (Figure 8C).

DISCUSSION

Our results indicate that the interactions between malaria
parasites co-infecting the same host can have dramatic
consequences for the severity of the disease they cause. We found
that when two parasite species, P. yoelii and P. vinckei, which on

their own cause mild and transient disease concurrently infect
the same host, the disease outcome is radically altered resulting
in 100% host mortality within 15 days. This same outcome of
100% host mortality was observed in co-infections consisting of
P. yoelii and the more virulent (but rarely lethal) P. chabaudi.

There are precedents for this result; Bafort (39) suggested that
mixed species might increase the virulence of infections (39).
Richie (9) reported that patent P. chabaudi infections increased
their parasitaemia and duration when mixed with P. yoelii (9),
and McGhee (40) also described a higher peak for one of the
species in mixed infections (40). In contrast, Snounou et al.
found a protective effect of mixing P. yoelii with P. vinckei or
P. chabaudi, with less mortality in the mixed species infection
groups compared to the single infection groups (34). Simlarly,
Voza et al. reported that the addition of co-infecting P. yoelii
to a P. berghei infection prevented the establishment of cerebral
malaria, whereas this protection was not observed when co-
infections with P. vinckei were induced (41).

More recently, Ramiro et al. (27) described increased
virulence in mixed infections of P. chabaudi and P. yoelii, which
they attributed to an increase in reticulocytaemia leading to
enhancement of P. yoelii (which is reticulocyte restricted) in the
mixed infections. Our results, however, are in agreement with
those of Richie (9), and suggest that it is the normocyte-restricted
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FIGURE 7 | Survival (A–D) and larvae per mosquito (E) of mosquitoes infected with single and mixed species infections. Mosquito survival curves, infected with either

single species or mixed infection of Plasmodium yoelii CU, Plasmodium vinckei DS, and Plasmodium chabaudi AJ are shown in (A–C). Longevity of infected

mosquitoes was observed until day 60 after the blood meal and the number of dead mosquitoes were recorded every 5 days. Boxplots indicate median survival and

first and third quartiles, and whiskers are the same quartiles ± (1.5 × interquartile range) (D). The numbers of larvae from infected mosquitoes with single or mixed

infections were recorded and no significant difference was observed. Detailed statistical values relating to significance are given in Supporting Table 1.

FIGURE 8 | Adjusted mean number of oocysts of Plasmodium yoelii CU (PyCU), Plasmodium vinckei DS (PvDS), and Plasmodium chabaudi AJ (PcAJ) in single or

mixed species infections per gravid mosquito. Data points represent the mean oocyst burden of mosquitoes fed on individual mice (n = 5 per group). There was no

statistical difference between PyCU in single and in mixed infections with either PcAJ or PvDS (A), PvDS was suppressed when mixed with PyCU on day 5 PI (B) and

PcAJ was suppressed in mixed infections with PyCU and PvDS on day 5 PI (C). Detailed statistical values relating to significance are given in Supporting Table 1.

parasite that is enhanced in mixed infections with P. yoelii, a
result we observed both in the case of two strains of P. chabaudi
and one of P. vinckei. We contend, therefore, that increasing

reticulocytaemia does not explain the increase in virulence of
mixed strain infections. This is supported by the fact that we
also observed increased virulence (in terms of persistence of
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infection and decreased red blood cell density) in mixed-species
infections composed of P. chabaudi and P. vinckei, both of which
predominantly infect normocytes.

We found that the time at which the constituent species
of a mixed-species infection were introduced to the host had
a significant impact on disease outcome. Most studies on
mixed malaria parasite species infections in mice introduce the
constituent species contemporaneously (27, 28). For example, the
parasite species combination P. yoelii and P. vinckei causes 100%
mortality when introduced to mice contemporaneously. We
found that when P. yoelii was inoculated seven days prior to the
inoculation of P. vinckei, virulence was much reduced, although
the mixed infection still caused significantly more pathology
and mortality than the constituent species in single infections.
Similarly, when inoculated into mice contemporaneously with
P. vinckei, P. yoelii suffered a reduction in cumulative parasite
density throughout the infection (a proxy measurement of
parasite fitness), whereas P. vinckeiwas unaffected.When P. yoelii
was introduced to mice a week before P. vinckei, the opposite
trend was observed, with little reduction in the cumulative
parasite density of P. yoelii, but a significant reduction in that of
P. vinckei. We show, therefore, that it is not just the phenotypes of
the constituent species of mixed infections that affect pathology
and parasite fitness in combination, but also the time at which
each species infects the host.

It is possible that interactions between malaria parasite
species in mixed infections may be modulated through the
host immune response. Molineaux et al. (42) suggested that in
mixed infections of P. falciparum and P. malariae, the immune
response stimulated by rising P. falciparum parasitaemias can
inhibit P. malariae, but that P. falciparum survives longer due to
its more rapid growth rate. This immune-mediated antagonism
(43) agrees with observations suggesting that P. falciparum could
reduce the prevalence of P. malariae (44).

There is some evidence to suggest a degree of cross-protection
between malaria parasite species due to species-transcending
immunity (36, 45). We wondered whether the lack of ability
to control the P. vinckei parasitaemia toward the end of the
mixed infection of P. vinckei and P. yoelii may be due to
the phenomenon of “original antigenic sin” (46) rendering the
acquisition of antibodies specific to P. vinckei sub-optimal due
to the larger quantity of P. yoelii antigen present in the early
stages of the infection. To test this, we immunized mice through
exposure to and subsequent cure of a P. yoelii infection, and then
challenged with P. vinckei. Contrary to the expectations of the
original antigenic sin hypothesis, we observed no effect on the
severity of the P. vinckei infection in P. yoelii-exposed compared
to non-exposed mice.

Infection with malaria parasites is known to detrimentally
affect the fitness of the infected mosquito (47). Mixed species
malaria parasite infections occur in nature (4, 48), and as
mixed species parasite infections caused dramatically different
disease outcomes in mice, we investigated whether mosquito
fitness was also affected. We measured longevity and progeny
production in groups of mosquitoes fed on single and mixed
species infections. In contrast to the significant alterations in
pathogenicity observed in mice, there appeared to be no fitness

differences between mosquitoes carrying single or mixed species
infections. Linked to this, we did not observe significantly
increased oocyst numbers in mosquitoes infected with mixed
species, when compared to the highest-oocyst producing single
constituent species, suggesting there was no significant alteration
in transmission-stage investment by the species in mixed stage
infections (31).

We found that the transmissibility of P. vinckei and P.
chabaudi to mosquitoes was reduced in the presence of P. yoelii
in co-infections compared to single infections. This was reflected
in the lower number of oocysts of these two species inmosquitoes
that had fed on mixed species infections also containing P.
yoelii compared to those that had fed on single infections. Most
significantly, transmission of P. chabaudi to mosquitoes was
blocked completely by the presence of P. yoelii on day 5 of the
infection. There were no reductions, however, in the numbers
of P. yoelii oocysts. Of the three species, P. yoelii produces
significantly higher oocyst burdens in mosquitoes than either
P. chabaudi or P. vinckei, a phenomenon linked to the former
species having much higher gametocyte production during the
early stages of infection. One possible mechanism that may
account for this observation involves gamete incompatibility; we
propose that given the fact that in a mixed species infection
containing P. yoelii, there will be significantly more P. yoelii
microgametes than of the other species. If P. yoeliimicrogametes
can recognize and attempt to fertilize the macrogametes of the
second species, then a large proportion of these macrogametes
will be rendered non-productive (assuming hybrids are non-
viable) (49). Consistent with this theory is the fact that both
P. chabaudi and P. vinckei also produce fewer oocysts when in
mixed infection with each other, but much less so than when
mixed with P. yoelii, reflecting, perhaps, the more even numbers
of gametocytes produced by these two species.

A limitation of these experiments is that mosquitoes were
allowed to feed onmice at only two time points, days 3 and 5 post-
inoculation, rather than throughout the course of the infection.
These two time points were chosen as they represent the days of
maximum transmissibility of P. yoelii (day 3), P. chabaudi, and
P. vinckei (day 5). However, these results offer only a snapshot of
transmission success on these particular days, and it is possible
that different outcomes would have been observed at different
time-points throughout the infection.

The experiments described here were conducted using
multiple strains of three species of rodent malaria parasites in
6-week old, female CBA mice. If the same experiments were
to be conducted with different parasite strains and species,
and in different host strains, then different outcomes might be
expected. The disease progression of rodent malaria parasites
is dramatically affected by mouse host strain, sex, and age
(50), and it is likely that the interactions between species in
mixed infections would be similarly affected. It should also be
remembered that Mus musculus is not the natural host of the
rodent malaria parasites, and neither is Anopheles stephensi its
natural vector. It is likely that the interactions between the species
tested here would result in different outcomes in their natural
hosts. Furthermore, blood stage infections in mice were initiated
by intravenous inoculation of infected blood, and not by the
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more natural route of sporozoite inoculation, another factor
that may have a significant impact on the outcome of mixed
species infections.

An illustration of the degree to which different outcomes
may be observed in different experimental systems is given by
the comparison of our results with those of Snounou et al.
(34). Whereas, we observed dramatic increases in host mortality
in mixed species infections containing a normocyte specialist
and P. yoelii, Snounou et al. observed the opposite effect; with
less mortality in P. vinckei + P yoelii and P. chabaudi +

P. yoelii mixed species infections than in single infections of
the normocyte-invaders (34). Similarly, although Ramiro et al.
reported increased virulence in mixed infections in a similar
manner to our observations, the mechanism for this outcome
appears to differ; in our case facilitation of the normocyte
invading species led to increased parasitaemia, whereas Ramiro
et al. report increased growth of the reticulocyte invading species
(27). In both these examples, there were differences between
experiments in crucial parameters such as the sex, strain and age
of the host mice used, the particular strains of malaria parasites,
their passage histories, and routes of inoculation; all factors
known to influence the outcome of experimental infections.

We cannot, then, make any predictions about the possible
effects of mixed species human infections based on the results
presented here, except to expect that there would be interactions
between parasite species within the host, and that these would
impact on disease outcomes.

As the world moves toward reducing the burden of malaria,
the importance of mixed-species malaria infections will
rise. Diagnostic techniques with improved sensitivities are
revealing a greater prevalence of P. ovale and P. malariae
in P. falciparum endemic areas than previously thought
(7). Intervention strategies such as anti-vector programs,
and the development and employment of new drugs and
vaccine will often be more effective against one species of
parasite than they will against others (51, 52). In regions
where P. falciparum prevalence is decreasing, the prevalence
of non-falciparum malaria parasite species often becomes
more apparent, highlighting the importance of mixed-species
infections. There is a need, therefore, to better understand
how the interactions between malaria parasites species

infecting the same host can impact disease progression and
parasite fitness.

The experiments described here show that the disease
outcomes ofmixed vs. single species infections can differ andmay
be influenced by the phenotypic characteristics of the constituent
species and the order in which they infect the host.
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Recent years have seen an unprecedented rise in the incidence of multidrug-resistant

(MDR) Gram-negative bacteria (GNBs) such as Acinetobacter and Klebsiella species.

In view of the shortage of novel drugs in the pipeline, alternative strategies to prevent,

and treat infections by GNBs are urgently needed. Previously, we have reported that

the Candida albicans hypha-regulated protein Hyr1 shares striking three-dimensional

structural homology with cell surface proteins of Acinetobacter baumannii. Moreover,

active vaccination with rHyr1p-N or passive immunization with anti-Hyr1p polyclonal

antibody protects mice from Acinetobacter infection. In the present study, we use

molecular modeling to guide design of monoclonal antibodies (mAbs) generated against

Hyr1p and show them to bind to priority surface antigens of Acinetobacter and Klebsiella

pneumoniae. The anti-Hyr1 mAbs block damage to primary endothelial cells induced by

the bacteria and protect mice from lethal pulmonary infections mediated by A. baumannii

or K. pneumoniae. Our current studies emphasize the potential of harnessing Hyr1p

mAbs as a cross-kingdom immunotherapeutic strategy against MDR GNBs.

Keywords: monoclonal antibodies, Candida Hyr1, Acinetobacter baumannii, Klebsiella pneumoniae, passive

vaccine, molecular modeling, cross-kingdom immunotherapy

INTRODUCTION

Infections caused by multidrug-resistant organisms (MDROs) pose increasing therapeutic
challenges. In the past decade, Acinetobacter baumannii has emerged as one of the most common
MDROs in hospital-acquired infections, causing a range of diseases from pneumonia to sepsis
or wound infections (1–6). Of great concern is that 40–70% of A. baumannii isolates are now
extensively drug resistant (XDR; i.e., resistant to all antibiotics except colistin or tigecycline),
reflecting a >15-fold increase since 2000 (1, 6–8). Likewise, the Enterobacteriaceae organism
Klebsiella pneumoniae causes high rates of morbidity and mortality in critically ill, hospitalized
patients. In recent years, strains of K. pneumoniae have exhibited resistance to almost all classes
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of antibacterial drugs, including carbapenems (9–11). Together,
Acinetobacter and carbapenem-resistant K. pneumoniae (KPC)
have been prioritized by the U.S. Centers for Disease Control
and Prevention (CDC) as two of the top “serious threat level
pathogens” owing to resistance, failure of the current standard of
treatment, and high mortality rates. Amplifying these concerns,
the existing drug development pipeline against these pathogens is
sparse, and it is almost certain that these organisms will develop
resistance to any future approved antibiotics. Hence, novel
strategies to prevent and treat life-threatening infections caused
by these and related MDRO pathogens are urgently needed.

We previously developed innovative computational molecular
modeling and bioinformatics strategies to discover novel
vaccine and immunotherapy candidates targeting more
than one high-priority pathogen. The application of this
methodology has been used to successfully discover and
develop novel cross-kingdom vaccines (12). Among other
advances, this discovery strategy culminated in the identification
of Candida albicans Hyr1p, a hypha-regulated cell surface
protein. Although Hyr1p is strictly expressed on C. albicans
hyphae, it has no effect on the fungus germination and
subsequent hyphal formation (13). However, we have shown
that Hyr1p contributes to C. albicans virulence by resisting
phagocyte killing (a major host defense mechanism against
candidiasis) through a mechanism that is yet to be identified
(14). Indeed, mice vaccinated with Hyr1p are protected from
C. albicans infections (14, 15). Recently, we found that the
Hyr1p shares striking three-dimensional (3-D) structural and
epitope homologies with antigens present on the Gram-negative
bacterium (GNB) A. baumannii, including with the putative
hemagglutinin/hemolysin protein FhaB, outer membrane
protein class A (OmpA), and a number of siderophore-binding
proteins (16). All these putative cross-reactive antigens are
known contributors to bacterial virulence. Specifically, FhaB
and OmpA help in bacterial adhesion and biofilm formation
(17–19). Also, OmpA plays a role in conferring multidrug
resistance of A. baumannii to antibiotics (20). Finally, the
A. baumannii siderophore acinetobactin was shown to be
required for bacterial infection by acquiring iron from the
host (21), therefore implicating siderophore receptors in the
virulence of the bacterium. Polyclonal antibodies (pAbs) raised
against peptides derived from the Hyr1p N-terminus blocked
A. baumannii-mediated lung epithelial cell damage and killed
the bacterium in vitro (16). Importantly, anti-Hyr1p pAbs
completely protected mice from A. baumannii infections. These
results provided compelling proof of concept for targeting
Hyr1p for developing immunotherapies against GNBs and
laid a groundwork for generation and evaluation of the
efficacy of anti-Hyr1p monoclonal antibodies (mAbs) targeting
MDR GNBs.

In the current study, we generated mAbs against peptide
#5 of Hyr1 and affirm that these mAbs not only recognize
different clinical isolates of A. baumannii but also bind to drug-
resistant K. pneumoniae. We further demonstrate the efficacy
of these targeted mAbs in blocking bacterial-mediated host
cell damage and in protecting mice against lethal pulmonary
infection by both MDR bacteria. Given that there are currently

no immunotherapies against GNBs and the alarming rate at
which MDROs are increasing as a global threat to public
health, active, or passive vaccination strategies using vaccines or
mAbs, respectively, are now highly attractive immunotherapeutic
modalities to prevent or treat these refractory infections either as
standalone or antibiotic-adjunctive therapies.

RESULTS

Hyr1p Is Structurally Homologous to Target
Surface Antigens of Klebsiella pneumoniae
Our previous studies involving complimentary homology
and energy-based modeling algorithms identified structural
domains conserved between Hyr1p and the GNB Acinetobacter
baumannii (16). We questioned if other GNBs could similarly
share conserved physiochemical structural domains. Of great
relevance, we identified strong homology between Hyr1p and
filamentous hemagglutinin B (FhaB) of Klebsiella pneumoniae
(Figures 1A–D). This highly conserved homology was reflected
at the level of amino acid sequences in a shared target motif
(Figures 1A–B), relative structural integration of this motif in
the larger holoproteins (Figure 1C), and overall 3-D homology of
the two proteins (Figure 1D). Furthermore, ourmodeling studies
revealed four other proteins in K. pneumoniae that displayed
conserved 3-D homology with Hyr1p: OmpA, transporter of
nutrients B (TonB), fimbrial protein (Fmp), and the biopolymer
export protein D (ExbD). Following energy minimization and
hydrogen-bond optimization to yield 3-D structure models,
these proteins were aligned further with a 14-amino-acid
peptide of Hyr1p (LKNAVTYDGPVPNN; also called peptide
#5)–a highly antigenic, surface-exposed domain of the protein,
for which anti-peptide pAbs were shown to protect against
murine A. baumannii infection (16). This was done to localize
specific homology sites hypothesized to confer protective efficacy
(Figures 1A–D). Modeling data demonstrated that the identified
3-D structures corresponded with a conserved sequence region
within each target antigen (Figure 1E). Based on strong efficacy
seen in cross-kingdom immunization studies of prior modeling-
predicted antigens (e.g., Hyr1p vs. A. baumannii) (16), the
current model predictions were interpreted as supporting
confidence in cross-protective efficacy against K. pneumoniae.

Anti-Hyr1 Monoclonal Antibodies Bind to
Gram-Negative Bacteria
We previously reported that pAbs raised against Hyr1 peptide
#5 blocked virulence functions of A. baumannii in vitro
and completely protected diabetic and neutropenic mice from
Acinetobacter bacteremia and pulmonary infection, respectively
(16). Encouraged by these results, and to enhance the therapeutic
potential of such antibodies, we developed mAbs against the
same surface-exposed and immunodominant peptide (peptide
#5). These mAbs (all IgM isotypes) were tested for their abilities
to bind to Candida albicans as well as the GNB A. baumannii
or K. pneumoniae. Four individual fluorescein isothiocyanate
(FITC)-labeled mAb clones (H1, H2, H3, and H4; 100µg/ml)
were tested against three prototypic MDRGNB strains, including
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FIGURE 1 | Localization of Hyr1 peptide #5 and putative cross-reactive epitopes in modeled Klebsiella pneumoniae target sequences. (A) Sequence alignments

between Hyr1 peptide #5 and putative cross-reactive motifs within K. pneumoniae FhaB sequence; identical residues are boxed. (B) van der Waals space-filling

models illustrating conservation of amino acid physicochemistry in the highly homologous motifs; coloration is a modified RasMol schema (Gly, Ala–cream; Asn,

Gln–khaki; Thr–orange; Val–green; Asp–red). (C) Comparative models of Candida albicans Hyr1 and K. pneumoniae FhaB showing homologous cross-reactive

domains in red van der Waals space-filling spheres within the homologous domains of the two proteins. (D) Superimposition overlay of the homologous regions of

Hyr1 and FhaB showing strong 3-D homology in antiparallel β-sheet facets and overall structures in which the conserved target motifs exist. Peptide #5 is shown in

red as van der Waals space-filling spheres in the comparative Hyr1 and FhaB models. (E) Individual models for four targeted cross-reactive antigens of K. pneumoniae

(OmpA, TonB, Fmp, and ExbD) are shown with domains homologous to Hyr1 peptide #5 in red. Sequence alignments between Hyr1 peptide #5 and cross-reactive

target motifs with identical residues are boxed; also shown are domains showing identical and/or physicochemically conserved residues as space-filling spheres;

coloration is a modified RasMol schema (Gly, Ala–cream; Asn, Gln–khaki; Thr, Ser–orange; Val, Ile, Leu, Met, Cys–green; Trp, Tyr, Phe–olive green; Asp, Glu–red; Arg,

Lys–blue; His–sky blue; Pro–chartreuse).

A. baumannii (HUMC-1, XDR clinical isolate); K. pneumoniae-
RM (KPC-RM, carbapenem-resistant clinical isolate); and K.
pneumoniae-QR (KP-QR, MDR strain sensitive to carbapenem).
The extent of mAb binding to each of the pathogen surfaces, as
compared with isotype-matched non-specific control antibodies,
was then quantified by flow cytometry. Of the four mAb clones
tested, compared with the isotype-matched control IgM, H3, and
H4 displayed the highest levels of binding to all GNBs, with at
least 10–300-fold increases (Figure 2A). Binding potential was
also visualized by a shift in the peaks of the anti-Hyr1p IgM
binding vs. the isotype-matched control antibodies (Figure 2B).

The right shift in the peaks of individual mAb also correlated with
their respective increase in mean fluorescence of the cells.

Next, we compared the relative binding ability of the mAb
clones to recognize the distinct GNBs. Clone H3 bound to all
three organisms even at low mAb concentrations. Specifically,
30µg/ml of H3 mAb bound 82, 75, and 90% of A. baumannii
HUMC-1, KP-QR, and KPC-RM cells, respectively, whereas the
isotype-matched control did not bind to any of the bacterial cells
(<1%). The binding of the H3 mAbs to either A. baumannii or
K. pneumoniae was maintained even at a very low concentration
of 300 ng/ml, demonstrating 4–10-fold increase over the binding
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FIGURE 2 | Binding of monoclonal antibodies (mAbs) targeting Hyr1 peptide #5 to Gram-negative bacteria (GNBs). MAb clones (and isotype-matched control) IgM

were evaluated for binding to Acinetobacter baumannii (HUMC-1), Klebsiella pneumoniae-QR (KP-QR), and K. pneumoniae-RM (KP-RM) at a concentration of

100µg/ml. The extent of binding was quantified by flow cytometry after staining the bound antibodies with Alexa 488-conjugated secondary antibody. Data were

represented as mean fluorescence intensity of the Ab-bound bacteria (A). The degree of binding was also visualized by a shift in the peaks in the anti-Hyr1 IgM

binding conditions vs. the control antibodies (B).

FIGURE 3 | Monoclonal antibody (mAb) clone H3 targeting Hyr1 peptide #5 binds Gram-negative bacteria (GNBs) in a dose-dependent manner. MAb clone H3 (and

IgM isotype control) were evaluated for binding to HUMC-1, KP-QR, and KP-RM at concentrations ranging from 30 to 0.1µg/ml. The extent of binding was quantified

by flow cytometry after staining the antibodies with Alexa 488-conjugated secondary antibody. Data were represented in a scatter plot highlighting the percentage of

bacteria that were bound by the Abs.

ability of the isotype-matched control IgM (Figure 3). Similarly,
the H4 clone bound to each of the GNBs at 30µg/ml of
concentration (data not shown). We further evaluated the

binding of the two clones H3 and H4 against other drug-resistant
clinical isolates of A. baumannii and K. pneumoniae (KPC).
The mAbs bound HUMC-6, HUMC-12, KPC-6, and KPC-8
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at significantly higher capacity as than does the control IgM
(Supplementary Figure 1). These results indicate that binding of
mAbs to the surface of the target GNBs is not isolate specific,
supporting our consensus epitope hypothesis.

Monoclonal Antibodies Protect Host Cells
From Damage by Gram-Negative Bacteria
Our previous studies demonstrated that anti-Hyr1p pAbs not
only bound to A. baumannii but also inhibited the ability of
bacterium to interact with and damage mammalian cells (16).
Thus, we hypothesized that the mAbs would similarly block
damage of host cells caused by these GNBs. Concordant with this
hypothesis, mAb clones H3 and H4 at 15 or 30µg/ml blocked
the ability of A. baumannii (HUMC-1) and K. pneumoniae
(KP-QR or KPC-RM) to damage A549 lung alveolar epithelial
cells. Specifically, both mAbs showed a dose–response inhibition
of GNB-mediated A549 cell damage with the 15µg/ml of
dose resulting in 40–90% inhibition and the 30µg/ml dose
causing ∼70–100% inhibition (Figure 4A). The two mAbs also
protected A549 cells from damage by other clinical isolates of
GNBs such as HUMC-6 and KPC-8 (Supplementary Figure 2).
Consistent with these results, both mAbs at 15µg/ml resulted
in ∼40–70% inhibition of A. baumannii HUMC-1- or KP-QR-
mediated damage to primary human umbilical vein endothelial
cells (HUVECs). However, it took a higher mAb concentration,
30µg/ml, to protect HUVECs from KPC-RM (Figure 4B).
Overall, these results show that mAbs raised against Hyr1 peptide
#5 bind to MDR A. baumannii and K. pneumoniae strains and
mitigate the ability of these bacteria to damage host cells in vitro.

Anti-Hyr1 Monoclonal Antibodies Protect
Mice From Pulmonary Infection Caused by
Acinetobacter baumannii or Klebsiella
pneumoniae
We tested the ability of the mAbs, given their efficacy in
reducing GNB-induced host cell damage in vitro, to protect
mice from GNB infection. Pneumonia is a life-threatening
manifestation of the disease caused by both A. baumannii and
K. pneumoniae (22–25). Thus, we evaluated H3 and H4 for
their ability to protect against such infections caused by A.
baumannii HUMC-1. Although benign in immunocompetent
individuals, A. baumannii can cause life-threatening pneumonia
in immunosuppressed hospitalized patients (25). Thus, we
additionally evaluated the efficacy of mAb therapy in a
neutropenic mouse model infected with HUMC-1 via inhalation.
The mAbs were administered intraperitoneally (i.p.) at a dose
of 30 µg/mouse, in established infection on Days +1 and +4
relative to infection. Placebo mice were treated in an identical
regimen with an isotype-matched control IgM. Treatment with
mAb H4 yielded a high (70%) overall survival, vs. 20% overall
survival for control IgM treatment (P < 0.06). Impressively,
complete protection (100% survival) was conferred in mice
receiving H3 mAb treatment, P < 0.001 (Figure 5A). Surviving
mice appeared healthy on Day +21 post infection, when the
experiment was terminated.

We next evaluated the efficacy of mAbs in a similar
mouse model of K. pneumoniae pulmonary infection.
Our in vivo optimization studies showed that KP-QR
exhibits pronounced lethality even in healthy immune
competent mice (Supplementary Figure 3A), whereas KPC-
RM is avirulent despite high inocula used for infection
(Supplementary Figure 3B). Thus, we evaluated the protective
effect of mAbs against the KP-QR-mediated pneumonia in
mice. Immunocompetent mice were infected intratracheally
with KP-QR and treated twice as above with either the H3 or
H4 mAbs, or isotype-matched control IgM. Almost 60% of
mice treated with H4 survived the otherwise lethal challenge by
KP-QR (P < 0.05). Consistent with protection against host cell
damage, even greater efficacy was observed with mAb H3, which
exhibited protection trending to 80% survival vs. 20% survival in
mice treated with isotype-matched IgM (P < 0.05) (Figure 5B).
Surviving mice appeared healthy at 21 days post infection at the
experimental endpoint.

We also performed studies to assess the effect of the mAb
treatment on the bacterial burden in lung tissues, along with
survival efficacy. Mice were infected as above and treated with
H3 mAb once at 6 h post infection for KP-QR and twice (6 h
and a repeat dose on Day +3 post infection) for A. baumannii
HUMC-1. Mice were sacrificed on Day +2 for KP-QR and Day
+4 for HUMC-1, and the lungs were harvested for bacterial
burden enumeration by quantitative culture. Corroborating the
survival data and in comparison with treatment with isotype-
matched IgM control, H3mAb treatment resulted in 1.5- or 3-log
reductions in lung bacterial burden of HUMC-1 (P < 0.01) or
KP-QR (P < 0.001), respectively (Figure 5C).

Together, these results demonstrate that therapeutic mAbs
derived from innovative methods to exploiting cross-kingdom
epitope homology exhibit striking efficacy in life-threating GNB
infection. These results emphasize the strong proof-of-concept
translational potential to develop such agents as novel therapeutic
modalities for prevention or treatment of infections due to MDR
GNBs in immunocompetent as well as immunosuppressed or
immunodeficient patients.

DISCUSSION

Phylogenetically diverse pathogens may exploit common host
settings and rely on convergent virulence strategies (e.g., cell
adhesion, invasion, and injury). Indeed, the fungus Candida
albicans and certain GNBs, such as Acinetobacter baumannii
and Klebsiella pneumoniae, infect similar immunocompromised,
burn, and surgical wound patients in intensive care units (ICUs)
or otherwise hospitalized (7, 19, 26). Interestingly, Candida
species colonization among ICU patients have been identified
as an independent risk factor for development of A. baumannii
ventilator-associated pneumonia (27). Similarly, Candida and
Klebsiella are the most frequent pathogens of the respiratory tract
of patients with chronic obstructive pulmonary disease (COPD)
(28, 29). Independent of such an association, Candida and GNBs
individually cause healthcare-associated infections, often leading
to significant morbidity and mortality. As a group, GNBs in
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FIGURE 4 | Monoclonal antibodies (mAbs) targeting Hyr1 peptide #5 prevents HUMC-1-, KP-QR-, and KP-RM-induced A549 lung alveolar epithelial cells and

primary human umbilical vein endothelial cells (HUVECs) damage. HUMC-1-, KP-QR-, and KPC-RM-induced A549 cell injury in the presence of 15 or 30µg/ml of an

isotype-matched IgM, mAb H3, or mAb H4 (A). Damage to HUVECs by HUMC-1 and KP-QR (in the presence of 15µg/ml of H3 and H4), also KPC-RM (30µg/ml of

the mAbs) (B). Cell damage was determined by 51Cr-release assay after 48 and 24 h for HUMC-1 and KP, respectively. Percentage damage was normalized to IgM

isotype-matched control after subtracting spontaneous cell damage. *P < 0.001 vs. control IgM. N = 12 per group from three independent experiments.

particular, including A. baumannii and K. pneumoniae, have
evolved into MDR pathogens that cause infections that are often
incurable (30). Hence, novel approaches that address antibiotic
resistance and leverage or amplify immune function represent
highly logical strategies to combat this resistance crisis.

Our group has developed advanced computational, molecular
modeling, and bioinformatics strategies to discover novel vaccine
antigen candidates that leverage the concept of convergent
immunity to target more than one high-priority human pathogen
(16, 31, 32). This strategy, also known as unnatural or
heterologous immunity, has been previously applied in the
development of viral and bacterial vaccines in which an antigen
protects against another pathogen from the same or from a
different kingdom (12, 25). We have previously validated this
approach by demonstrating cross-kingdom immuno-protection
against C. albicans and Staphylococcus aureus, in which the C.
albicans cell surface adhesin/invasion proteins [agglutinin-like
sequence (Als) family of proteins] share epitope and functional
homology with MSCRAMMs of S. aureus (e.g., clumping factor
A) (33). A recombinant form of N-terminus of the Als3p
(rAls3p-N) elicits robust T- and B-cell responses and protects
mice from both Candida and methicillin-resistant S. aureus
(MRSA) infections (32, 34–39). Most recently, we reported that
a distinct hyphal cell surface protein of C. albicans, Hyr1p, has
epitope homologies with candidate antigens of the MDR GNB A.

baumannii (16). Indeed, with the use of different mouse models,
active or passive immunization (with pAbs) targeting either
Als3p or Hyr1p protected mice from S. aureus or A. baumannii
infections, respectively (16, 32, 34). In particular, antibodies
against one specific surface-exposed and highly antigenic 15-mer
peptide of Hyr1 (peptide #5) offered the highest protection to
host cells from A. baumannii both in vitro and in vivo (16).

Homology and energy-based modeling was conducted to
compare the overall and target motif-specific physicochemical
features of Hyr1 protein with candidate K. pneumoniae target
antigens. These methods predicted Hyr1p to share 3-D and
sequence conservation with a number of proteins expressed
on the K. pneumoniae surface. In addition to FhaB, significant
homologies were observed between the Hyr1 peptide #5 domain
that induced highly protective antisera, and OmpA, TonB, Fmp,
and ExbD common to K. pneumoniae and other high-priority
GNBs. Encouraged by the potential of the pAbs, and to further
the clinical relevance of our studies, we generated mAbs against
the highly antigenic peptide #5 of the Hyr1p. Similar to pAbs,
the current results demonstrate that the mAbs blocked the MDR
A. baumannii- or K. pneumoniae-mediated host cell damage
and protected mice from otherwise lethal pulmonary infections
caused by these pathogens. Initial functional assays revealed
that four different mAb clones (H1–H4) recognized the two
genera of bacteria for in vitro binding at low concentrations
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FIGURE 5 | Monoclonal antibody (mAb) clones H3 and H4, targeting Hyr1 peptide #5, protect mice from HUMC-1- or KP-QR- induced pneumonia.

Immunosuppressed CD-1 male mice (n = 10/group from two experiments) were infected with HUMC-1 via inhalation [average 5 × 1010 colony-forming units (CFU)]

(A). Immunocompetent mice (n = 10/group from two experiments) were infected intratracheally with KP-QR (average 3.4 × 107 CFU) (B). Intraperitoneal (i.p.)

treatment with mAb H3, H4, or isotype-matched control IgM started 24 h and repeated at 96 h post infection (30 µg/mouse each dose). *P < 0.05, P = 0.06, and **P

< 0.001 vs. control IgM by log-rank test. For CFU measurement, H3 and control IgM were administered 6 h and 3 days post infection, and lungs harvested from mice

at Day +4 (for HUMC-1) (C) and at Day +2 (for KP-QR) post infection (D).

of the antibodies. This targeting propensity was extended also
to include several MDR clinical isolates of A. baumannii and
K. pneumoniae.

The ability of the mAbs (H3 and H4) to block GNB-mediated
damage of host cells was more pronounced in A. baumannii
HUMC-1, A. baumannii HUMC-6, and K. pneumoniae KP-
QR than in KPC-RM or KPC-8. Virulence factors, including
capsule, lipopolysaccharide, fimbriae, and siderophores, have
been identified as important for the virulence and/or resistance of
KP strains to antibiotics (40). Thus, the resistance of KPC strains
KPC-RM or KPC-8 to mAbs could conceivably be due to the
difference in the exostructure of these organisms [e.g., differences
in lipopolysaccharide (LPS) hindrance and reported production
of a larger repertoire of siderophores] (40). Consistent with this
hypothesis, our recent findings emphasized the importance of
anti-Hyr1 peptide #5 pAbs in blocking iron uptake, leading to
killing of the GNB A. baumannii (16).

Importantly, the mAbs afforded nearly 70% protection from
cellular damage by all GNBs tested, supporting their potential
use as preventive or therapeutic modalities with a capacity to
block virulence of GNBs. Our recent report using bioinformatics,
homology, and energy-based modeling strategies established
that C. albicans Hyr1p shares striking epitope homology to A.
baumannii FhaB protein, and anti-peptide #5 pAb bound to
FhaB as well as two other proteins on A. baumannii based
on two-dimensional Western blotting assays (16). The other

two A. baumannii proteins with considerable homology to
Hyr1p included the OmpA, and a ferric siderophore outer
membrane binding protein (TonB) (16). Not surprisingly, these
three proteins are well conserved in K. pneumoniae displaying
>60% sequence homology [protein sequence National Center
for Biotechnology Information (NCBI) blast alignment] and
even greater 3-D homology to their Acinetobacter counterparts.
Whether these proteins have a significant role in virulence
or nutrient uptake–and hence blocking their function would
contribute to the killing mechanisms afforded by the mAbs–is the
subject of ongoing research by our group.

Because the mAbs significantly blocked the capacity of GNBs
to damage host cells in vitro, we evaluated their potential
to protect against lethal pulmonary infections caused by two
prototypic MDR GNBs. In a validated mouse model, mAb H4
afforded>60% survival to infection by KP-QR as well as HUMC-
1, as compared with control IgM having a 20% survival rate.
Moreover, the mAb H3 provided 80–100% survival protection
to mice from either of these GNBs, similar to that conferred
by pAb (16). The efficacy seen by both H3 and H4 mAbs is
afforded at the low concentration of 30 µg/mouse. This low
dose of the mAb is about 1.2 mg/kg, which is within the dosage
range of 1–15 mg/kg of most mAbs approved for human use
(41, 42). This efficacy suggests that the mAbs likely neutralize
functions of specific targets on the bacteria and attenuate their
ability to exert virulence mechanisms or to cause disease in the
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host. This hypothesis is further supported by the observation
that treatment with mAbs significantly mitigated dissemination
of KP-QR and HUMC-1 to distal target organs within 2–4 days of
treatment, vs. mice treated with control antibodies. These results
provide compelling evidence of the robustness of the antibodies
in abrogating pathogenesis, early in the onset of infection as well
as in the setting of established infection.

In addition to specificity and safety, a key advantage of using
mAbs as anti-infective therapy is their well-documented long
half-life, which can exceed 21 days (43, 44). Because the patient
population at risk of developing infections with Acinetobacter,
Klebsiella, and Candida are well-defined, this property of mAbs
may afford an extended protection during the time span of
the greatest vulnerability. In turn, prevention of such infections
would translate to reduced use of antibiotics and hence a
reduced pressure for the emergence of drug resistance. For
example, mAbs can be used to prophylax patients at risk of
MDR GNBs. Another envisioned usage of these mAbs is their
administration as adjunctive therapy with antibiotics. In this
respect, we have demonstrated synergy of anti-peptide #5 pAb
with imipenem or with colistin in killingA. baumannii at reduced
minimum inhibitory concentration (MIC) of both antibiotics
(16). Similarly, the anti-peptide #5 pAb synergistically acted with
colistin in abrogating biofilm growth of A. baumannii (16).

In theory, one caveat for using novel Abs to treat infections
caused by organisms known to develop antimicrobial resistance
is the potential development of resistance to these Abs. However,
cross-resistance between small molecule antimicrobials and
antibacterial mAbs is unlikely because of the distinct therapeutic
targets and pharmacological mechanisms that antibodies have
as compared with traditional antimicrobials (45). In concept,
other potential bacterial defense mechanisms could occur, such
as synthesis of antibody-neutralizing proteins (e.g., protein
A of S. aureus, which binds antibody Fc domain and
prevent opsonophagocytosis (46)), or proteases to degrade the
administered mAb (47, 48). However, none of the antibodies
approved for treating infectious diseases [currently, there are
only three Food and Drug Administration (FDA)-approved mAb
to treat inhalational anthrax (49, 50) or Clostridium difficile (42)
have encountered this issue, and development of resistance has
not been reported.

In summary, we have demonstrated that mAbs raised against
peptide #5 of Hyr1 target A. baumannii and K. pneumoniae
and disrupt their ability to damage to host cells in vitro. More
importantly, these mAbs protect mice from lethal pulmonary
infections mediated by two high-priority GNBs. Thus, such
mAbs have credible potential for development as prophylactic or
adjunctive therapy to prevent or treat life-threatening infections
in patients susceptible to MDR A. baumannii or K. pneumoniae.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The bacterial strains used in this study are clinical isolates
collected from Harbor-UCLA Medical Center (Torrance, CA).
Acinetobacter baumannii strains HUMC-1 and HUMC-6 were
separated from patients’ sputum, and HUMC-12 was separated

from a patient’s wound and are XDR to all antibiotics, except
colistin and tigecycline. Klebsiella pneumoniae strains were
categorized into KPC or non-KPC isolates. The KPC-RM, KPC-
6, and KPC-8 isolates resistant to carbapenem antibiotics possess
bla KPC plasmid gene and separated from patients’ sputum,
whereas KP-QR is a non-KPC but multidrug-resistant isolate
separated from a patient’s sputum and resistant to gentamicin,
kanamycin, and ampicillin/sulbactam antibiotics. All bacteria
were cultured in tryptic soy broth (TSB) overnight at 37◦C with
shaking at 200 rpm. To obtain a log-phase bacterial suspension,
overnight cultured bacteria were passaged in a fresh media
(1:100) at 37◦Cwith shaking for 3 h or until the cell concentration
reached an OD600 of 0.5 (∼2 × 108 cells/ml) for both A.
baumannii andK. pneumoniae isolates. The bacteria were diluted
to the desired concentration from this stock.

Computational Modeling of Structural
Homology
Our previously validated Hyr1 model (16) was used as a
template to seek structural homologs in K. pneumoniae having
predicted epitopes for cross-kingdom immune protection. The
Phyre 2.0 (51) and iTasser (52) platforms were used to generate
homology models for Hyr1 and putative-related proteins. Results
were scored based on 3-D threading homology and sequence
relatedness and were integrated to identify conserved structural
domains. As a confirmatory measure, additional stochastic
modeling was carried out using the Quark server (53). Select
regions of resulting comparative homologs were then subjected
to 3-D alignment to identify areas of greatest homology using
the Smith–Waterman (54) algorithm as implemented within
Chimera (55). Sequence alignments to identify putative shared
epitopes between Hyr1 and other proteins were carried out using
CLUSTALW (56).

Generation of Monoclonal Antibodies
Thirty micrograms of rHyr1 peptide #5 (synthesized by ProMab
Biotechnologies, Richmond, CA) in 1 mg/ml of alum was used
to immunize Balb/c mice (n = 10). The mice were boosted two
times every 2 weeks with the same antigen concentration. Two
weeks after the last boost, antibody titer was determined by
ELISA plates coated with rHyr1 peptide #5. The spleens were
collected, and the splenocytes were fused with hypoxanthine-
guanine phosphoribosyltransferase (HGPRT)-negative murine
myeloma cells at ratio 5:1 by slowly adding polyethylene glycol
(PEG) to the cells pellet followed by adding Protein Free
Hybridoma Media (PFHM) (Gibco, 12040077) supplemented
with 20% heat-inactivated fetal bovine serum (FBS) (Corning,
35-016-CV). The cells were spun and re-suspended in 20% FBS
PFHM and then incubated in 24-well plate at 37◦C with 5%
CO2 for 48 h. The media were replaced with hypoxanthine–
aminopterin–thymidine (HAT) selection media for 8 days and
then 20% FBS PFHM hypoxanthine-thymidine (HT) media
for 2 weeks. The grown hybridoma clones were diluted by
microdilution in microtiter plates to achieve one cell per well
and propagated in 10% FBS PFHM. The supernatant from the
grown clones was tested for anti-Hyr1 antibodies using ELISA.
The selected positive and stable clones were cultured in PFHM
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without FBS, and the cell numbers were adjusted to be 2× 105/ml
for optimum production of mAbs.

Detoxification and Purification of the
Supernatant Containing the Monoclonal
Antibodies
The supernatant containing the antibodies was concentrated
using 100-kDa cutoff centrifugal concentrating tube (Amicon,
UFC910024). HiTrap HP column (GE Healthcare, 17511001)
was used to purify the concentrated mAbs and then was
buffer exchanged with endotoxin-free Dulbecco phosphate-
buffered saline (PBS) without calcium or magnesium (Gibco,
14190250). Endotoxin was tested using a chromogenic limulus
amebocyte lysate assay (BioWhittaker Inc.), and all mAbs
had low-range endotoxin level of <0.015 EU/ml. The isotype
of the mAbs was identified using ELISA and confirmed by
molecular weight using sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE).

Surface Staining and Binding Assay
Bacterial cells (5 × 106 cells) re-suspended in 2% FBS–PBS
were incubated with anti-Hyr1 mAbs or isotype-matched IgM
control (BD Biosciences) for 2 h at a range of concentrations
(100–0.1µg/ml). The bacterial cells were washed three times with
cold 2% FBS–PBS. The bound anti-Hyr1 mAbs to the bacterial
cells were detected with anti-mouse FITC-labeled secondary
antibodies (Thermo Fisher Scientific). The unbound antibodies
were washed three times with cold 2% FBS–PBS before the
measurement of the fluorescent-stained bacterial cells using flow
cytometry (Becton Dickinson FACSCalibur), where it is adjusted
to detect up to 20,000 events per sample.

Cell Damage Assay
The in vitro ability of mAbs to protect either A549 cells or
HUVECs from damage caused by direct contact with bacteria
was measured using 51Cr release assay, modified from previous
method (57). Isolation of HUVECs was performed in the
laboratory under a protocol approved by institutional review
board (IRB). Because umbilical cords are collected without donor
identifiers, our IRB considers themmedical waste and not subject
to informed consent.

Alveolar epithelial A549 cells and HUVECs were incubated
overnight in 24-well plates with F-12K or Roswell Park Memorial
Institute (RPMI1640) medium supplemented with 10% FBS,
containing 1 µCi/well of Na2

51CrO4 (ICN Biomedicals, Irvine,
CA). The next day, unincorporated tracer was aspirated, and the
wells were rinsed three times with warm Hanks’ Balanced Salt
Solution (HBSS). One milliliter of media containing HUMC-
1 or KP-QR (pre-incubated with mAbs or IgM isotype control
for 1 h on ice) was then added to host cells in each well at a
multiplicity of infection (MOI) of 1:100 (host cells to bacteria),
and the plate was incubated for 48 or 24 h, respectively, at 37◦C
in 5% CO2. At the end of the incubation, all the media were
gently aspirated from each well, after which the mammalian
cells were lysed by the addition of 0.5ml of 6N NaOH. The
lysed cells were aspirated, and the wells were rinsed twice
with RadioWash (Atomic Products, Inc., Shirley, NY). These
rinses were added to the lysed cells, and the 51Cr radioactivity

of the medium and the cell lysates was determined. Control
wells containing media but no organisms were processed in
parallel to measure the spontaneous release of 51Cr. After
corrections were made for the differences in the incorporation
of 51Cr in each well, the specific release of 51Cr was calculated
by the following formula: (experimental release–spontaneous
release)/(total incorporation–spontaneous release).

Animal Models
Male CD-1 immunocompetent mice (4–6 weeks old) were
used for Klebsiella (KP-QR) intratracheal infection or
immunosuppressed mice infected with A. baumannii (HUMC-
1) by an aerosolization chamber to induce pneumonia by
inhalation. Mice were immunosuppressed by administrating
cyclophosphamide (200 mg/kg) (i.p.) and cortisone acetate (250
mg/kg) (subcutaneous) on Days −2, +3, and +8 relative to
infection as previously described Gebremariam et al. (57). A
total of 30 µg/mouse of mAbs or isotype-matched control were
administrated (i.p.) on Day +1 and on Day +4 post infection.
Survival of mice served as an endpoint. For quantitative
measurement of bacterial burden, mAbs were administered
6 h after infection, and a repeat dose was given on Day +3.
Mice were euthanized on Day +4 for A. baumannii and on
Day +2 for K. pneumoniae. Lungs were harvested aseptically
and homogenized, and the bacterial burden was determined by
quantitative culturing on tryptic soy agar plates.

Statistical Analysis
The percentage of cell damage and tissue bacterial burden was
compared using non-parametric Mann–Whitney test. The log-
rank test was used to determine the difference in survival studies.
P < 0.05 was considered significant.
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T cells provide essential immunosurveillance to combat and eliminate infection from

pathogens, yet these cells can also induce unwanted immune responses via T

cell receptor (TCR) cross-reactivity, also known as heterologous immunity. Indeed,

pathogen-induced TCR cross-reactivity has shown to be a common, robust, and

functionally potent mechanism that can trigger a spectrum of human immunopathologies

associated with either transplant rejection, drug allergy, and autoimmunity. Here, we

report that several virus-specific CD8+ T cells directed against peptides derived from

chronic viruses (EBV, CMV, and HIV-1) presented by high frequency HLA-A and -B

allomorphs differentially cross-react toward HLA-B27 allotypes in a highly focused and

hierarchical manner. Given the commonality of cross-reactive T cells and their potential

contribution to adverse outcomes in allogeneic transplants, our study demonstrates that

multiple antiviral T cells recognizing the same HLA allomorph could pose an extra layer

of complexity for organ matching.

Keywords: cross-reactivity, CMV, EBV, HIV-1, HLA, T cells, TCR

INTRODUCTION

A hallmark of human antiviral T cells is their ability to recognize viral peptide antigen bound to
a self-human leukocyte antigen (HLA) on the surface of infected cells. Whilst this recognition
often displays exquisite specificity, it is not uncommon for some of these T cells to cross-react
with closely related peptide-HLA (pHLA) complexes, such as a peptide from a different viral strain
(1). Given that T cells are inherently cross-reactive, by nature of thymic selection (i.e., recognition
of self) and their interaction with foreign antigen in the periphery, cross-strain reactivity is a
beneficial property affording protection to mutant viral strains and preventing immune escape.
More remarkably, some T cells are also capable of recognizing apparently distinct pHLA including
non-self or allogeneic pHLA (2–4), self-pHLA that have undergone some form of perturbation
resulting in an altered self-peptide repertoire (5), and self-pHLA expressed in different tissues
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(6). These forms of heterologous immunity, otherwise known as
T cell cross-reactivity, are not beneficial to the host and can lead
to transplant rejection, drug hypersensitivity and autoimmunity,
respectively. Moreover, these potentially hazardous T cell
responses are the price paid to maintain immune potential
to combat the vast array of pathogenic challenges during a
lifetime. Hence, cross-reactivity is an intrinsic feature of T
cells, necessitated by the limited availability of unique human
T cell receptor (TCR) clonotypes (<108 distinct TCRs) to
maintain immunity against tremendous pathogenic diversity
(>1015 pHLA combinations) (7).

Childhood exposure to common viruses results in the
induction of a robust immune response that controls the
infection and generates long lasting immune memory. A small
proportion of some viruses (e.g., herpesviruses including Epstein-
Barr virus [EBV] and cytomegalovirus [CMV]) are able to evade
the immune response by entering into a latent state inside
the host cells. In fact, for these common herpesviruses up to
90% of individuals maintain viral latency by adulthood (8). The
persistence of a memory pool of T cells against the virus generally
controls outbreaks of viral reactivation. Recurrent reactivation
episodes maintain these memory T cells at high frequency,
facilitating rapid deployment and activation. Virally triggered
cross-reactive T cells have predominantly been explored in
infections where there is a high likelihood of their relevance
after transplantation. This is particularly so for EBV and CMV,
which establish latency in the host following naturally acquired
or vaccine-induced immunity. These viruses have been directly
implicated as risk factors associated with allograft rejection and
graft vs. host disease (8), with studies demonstrating that high
frequencies of herpesvirus-derived cross-reactive T cells (up to
85%) or clones (up to 45%) co-recognize alternate HLA allotypes
(3, 9–11). Whilst there is a high likelihood that cross-reactive T
cells are involved in clinical rejection (11–13), this has yet to be
formally proven.

Allo-HLA cross-reactivity by antiviral T cells has been
reported across a variety of HLA class I (A and B loci)
and II (DRB1 locus) restricted targets [reviewed in (14)].
In some instances, antiviral T cells derived from either the
same or heterologous viruses are capable of recognizing an
identical HLA allomorph. For instance, HLA-B∗44:02 is cross-
recognized by B∗08:01-restricted LC13 cytotoxic T lymphocytes
(CTL; EBV EBNA3A325−333), B∗35:08-restricted SB27 CTL
(EBV BZLF152−64) and A∗02:01-restricted 5101.1999.23 CTL
(herpes simplex virus-2 VP13/14289−298) (15–19). Given the
commonality of cross-reactive T cells and their potential to
contribute to adverse immune responses in allogeneic transplants
we wanted to determine whether multiple antiviral CTLs
recognizing the same HLA allomorphs would contribute an extra
layer of complexity for organ matching. This study examines the
extent of T cell cross-reactivity generated by three heterologous
viruses (i.e., EBV, CMV, and human immunodeficiency virus-1

Abbreviations: HD, healthy donor; HLA, human leukocyte antigen; LTR, lung

transplant recipient; PBMC, peripheral blood mononuclear cells; pHLA, peptide-

HLA; TCR, T cell receptor.

[HIV-1]) toward different HLA-B27 allotypes, which may have
clinical implications for transplantation.

MATERIALS AND METHODS

Study Participants and Peripheral Blood
Mononuclear Cells Isolation
Participant HLA typing is shown in Supplementary Table 1.
Peripheral blood mononuclear cells (PBMC) were isolated
by standard Ficoll-Paque (GE Healthcare, Uppsala, Sweden)
density gradient centrifugation and cryopreserved at −196◦C
until required.

Virus-Specific CD8+ T Cell Lines or Clones
EBV, CMV, or influenza A (IAV)-specific CD8+ T cell lines were
generated from chronically-infected individuals following in
vitro expansion of PBMC stimulated with gamma-irradiated
peptide-pulsed autologous cells (1µM peptide, 3,000 Rads)
at a 2:1 ratio in RF10 [composed of RPMI 1640 (Life
Technologies, Grand Island, NY) supplemented with 2mM
MEM non-essential amino acid solution (Life Technologies),
100mM HEPES (Life Techologies), 2mM L-glutamine (Life
Technologies), penicillin/streptomycin (Life Technologies),
50mM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO), 10%
heat-inactivated FCS (Sigma-Aldrich)] supplemented with 20
U/mL IL-2 (PeproTech, Rocky Hill, NJ) for 13 days at 37◦C,
5% CO2 as previously described (4, 11). Peptides for CMV:
HLA-A∗02:01-restricted pp65-derived NLVPMVATV (A2NLV)
epitope, EBV: HLA-B∗07:02-restricted EBNA-3A-derived
RPPIFIRRL (B7RPP) epitope and IAV: HLA-A∗02:01-restricted
matrix protein-derived GILGFVFTL (A2GIL) epitope. Virus-
specific CD8+ T cell clones from chronically-infected individuals
were generated following single-cell sorting based on tetramer
staining using the HLA-B∗57:01-restricted TSTLQEQIGW
(B57TW10) epitope derived from HIV-1 Gag protein for A16 and
457 (20) or EBV: B7RPP epitope for HD9G6 (21), as previously
described (2, 22, 23).

Antigen-Presenting Cells and HLA Cell
Surface Expression
C1R transfected cells expressing different HLA-I molecules
(HLA-A∗02:01, -B∗07:02, -B∗57:01, -B∗27:01 to -B∗27:10) were
used as antigen-presenting cells (APCs), maintained in RF10
with selection antibiotics [Geneticin G418 (0.4–0.5 mg/ml;
Roche Diagnostics, Mannheim, Germany) or hygromycin B (0.3
mg/ml; Life Technologies, Carlsbad, CA)] as required (4, 24).
Increased HLA-I expression [compared to C1R Parental, which
has low levels of HLA-A and HLA-B expression and normal
HLA-C (25)] was confirmed via flow cytometry by indirect
staining with appropriate antibodies; anti-human pan HLA-I
(W6/32 hybridoma; for C1R.A∗02:01, C1R.B∗07:02, C1R.B∗57:01
shown in Supplementary Figure 1A), anti-human HLA-B7/27
(ME1 hybridoma; for C1R.B∗27:01 to C1R.B∗27:10 shown in
Supplementary Figure 1B) and a secondary goat anti-mouse
IgG phycoerythrin (PE) (1:200 dilution; Southern Biotech,
Birmingham, AL). All hybridomas were produced in-house.
Stained cells were acquired on LSRII flow cytometer [Becton
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Dickinson (BD), San Jose, CA]. Flow cytometry data was
analyzed using FlowJo software (TreeStar, Ashland, OR).

Specificity and Functionality of CD8+ T Cell
Lines or Clones
The specificity and activation of virus-specific CD8+ T cells were
assessed by anti-CD8 and tetramer (A2NLV or B7RPP) co-staining,
followed by intracellular staining (ICS) for functional Th1
cytokine production using flow cytometry (11, 26). Briefly, 2 ×

105 day 13 T cells were stimulated with media (negative control),
Dynabeads R© Human T-Activator anti-CD3/CD28 (positive
control; Life Technologies) or 1 × 105 APC (±1µM peptide)
for a total of 6 h at 37◦C, 5% CO2 with 10µg/mL brefeldin A
(Sigma-Aldrich) added for the last 4 h. T cells were phenotyped
with anti-CD8 PerCP Cy5.5 or allophycocyanin (APC) (1:20 or
1:40 dilution, clone SK1, BD Biosciences, San Jose, CA), HLA-
A2NLV or HLA-B7RPP tetramer (conjugated to either PE or APC)
and LIVE/DEAD fixable aqua stain (1:750 dilution, Thermo
Fisher Scientific, Waltham, MA). T cells were then fixed in 1%
paraformaldehyde (ProSciTech, Kirwan, Queensland, Australia),
permeabilized in 0.3% saponin (Sigma-Aldrich) containing anti-
IFNγ PE-Cy7 (1:250 dilution, clone B27, BD Biosciences) and
anti-TNFα V450 (1:400 dilution, clone Mab11, BD Biosciences),
then acquired on LSRII flow cytometer. Flow cytometry data was
analyzed using FlowJo software. The HIV-1 B57TW10 CD8+ T
cell clones, A16 and 457, were assessed for functionality toward
cognate peptide by (i) staining of cell surface anti-CD3 V450 and
anti-CD137 APC (BD Biosciences) for 20min and then analyzed
on the FACSCanto II (BD) according to standard procedures, and
(ii) functional cytotoxicity against single HLA expressing K562
cell line loaded with cognate peptide, using target cell 7-AAD
uptake as readout, as previously published (27). This study shows
the data for A16, with 457 being published elsewhere (20). Gating
strategies are shown in Supplementary Figure 2. Tetramers were
produced in-house by refolding soluble HLA α-heavy chain-BirA
and β2-microglobulin with peptide to create monomers, which
were then conjugated at a 4:1 molar ratio to streptavidin-PE or
-APC (Life Technologies) (24).

αβTCR Identification
Virus-specific CD8+ T cells lines were incubated with 1µM
peptide or relevant peptide-pulsed C1R transfected cells for
2 h before detection of cytokine secretion using an anti-
IFNγ antibody (IFNγ Secretion Assay Detection Kit APC;
Miltenyi Biotec, Auburn, CA) as previously described (28).
CD8+ T cells were single-cell sorted directly into semi-skirted
96-well plates (Bio-Rad Laboratories Inc., USA) based on
tetramer specificity and ± IFNγ production (FACSAria I,
BD Biosciences operated by FlowCore, Monash University).
Sorted plates were immediately stored at −80◦C until required.
TCR analysis of paired complementarity determining region
(CDR)3α and β loops were carried out using multiplex
nested RT-PCR and sequencing of α and β gene products
as previously described (29). For virus-specific CD8+ T cell
clones, αβTCR usage was determined by DNA Sanger sequencing

using either TCR-specific PCR for HD9G6 (30) or next-
generation sequencing using published primer sequences (31) for
A16 and 457.

TCR Expression in SKW3.hCD8αβ Cells
Full-length human TCRα and TCRβ cDNA was cloned into
a self-cleaving 2A peptide-based pMIG vector as described
previously (32). HEK293T packaging cells were incubated with
4mg pEQ-pam3(-E) and 2mg pVSV-G packaging vectors, in
the presence of 4mg pMIG vector each containing a specific
TCR transgene using Lipofectamine 3000 (Life Technologies).
HEK293T cell culture supernatant containing virus particles
carrying the TCR transgene was then used to retrovirally
transduce GFP-tagged SKW3.hCD8αβ cells or GFP-tagged
SKW3.hCD8αβ.CD3 [for LTR5 TCR only (28)], which are
negative for endogenous TCRαβ but contain CD3 and signaling
components, as previously described (28). SKW3.hCD8αβ.TCR
(hereafter referred to as SKW3) cell lines were maintained in
RF10. Routine monitoring of TCR cell surface expression on
SKW3 transduced cells was performed using anti-CD3 PE-Cy7
(1:500 dilution, clone SK7, BD Biosciences), anti-CD8 PerCP
Cy5.5 (1:20 dilution, clone SK1, BD Biosciences) and GFP.
Gating strategy shown in Supplementary Figure 3. Activation of
SKW3.TCRs were assessed via cell surface staining with anti-
CD3 PE-Cy7 (1:500 dilution, clone SK7, BD Biosciences), anti-
CD8 PerCP Cy5.5 (1:20 dilution, clone SK1, BD Biosciences)
and anti-CD69 APC (1:50 dilution, clone L78; BD Biosciences)
following 16–20 h incubation with stimuli at 37◦C, 5% CO2.
A representative gating strategy for SKW3.HC5 is shown
in Supplementary Figure 4, with CD69 mean fluorescence
intensity (MFI) values calculated after gating on FSC vs. SSC,
single cells, GFP+ cells, live cells, CD3+CD8+ cells and then
CD69+ cells.

Statistical Analysis
Statistical significance was determined by non-parametric one-
way ANOVA (Kruskal-Wallis test) with post-hocDunn’s multiple
comparison test or unpaired Student’s t-test using Prism 8
(GraphPad) with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗∗p < 0.0001.
Error bars indicate the mean± SEM.

RESULTS

Generation of Virus-Specific CD8+ T Cell
Lines and Clones
Virus-specific CD8+ T cells can be generated following
stimulation with viral cognate peptide-pulsed autologous
PBMCs. To demonstrate both specificity and functionality,
in vitro expanded T cell lines or clones were co-stained with
anti-CD8 and tetramer phenotypic markers for identification of
virus-specific T cells. As expected, variations in the frequency
of expanded tetramer+CD8+ T cell lines were observed for
both EBV and CMV (Figures 1A,B, middle panels), ranging
between 32.6–90.7% (n = 6) and 6.15–74.0% (n = 2) of
the total CD8+ T cell population for B7RPP and A2NLV,
respectively. In addition, CD8+ T cell clones raised against
the HIV-1 B57TW10 epitope in patients A16 and 457 showed
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FIGURE 1 | Characterization of virus-specific CD8+ T cells. Virus-specific CD8+ T cell lines and clones for (A) EBV, (B) CMV, and (C) HIV-1 were examined for

specificity following either re-stimulation with HLA-restricted APCs pulsed with cognate viral peptide or bulk PBMC sorting, using both anti-CD8 and specific tetramer.

The functionality of virus-specific CD8+ tetramer+ T cells was assessed either using IFNγ production for T cell lines or via the CD137 activation marker for HIV-1 T cell

clones. Cells were gated on FSC vs. SSC, single cells, CD8+, CD8+tetramer+, CD8+ IFNγ+ cells. Representative plots are shown.

very high frequencies following tetramer-specific PBMC bulk
sorting (Figure 1C, middle panels), which were similar to the
high frequencies observed against the EBV-B7RPP epitope (i.e.,
HD9G6). To assess the functionality of the EBV- or CMV-specific
CD8+ T cell lines to produce the pro-inflammatory cytokine
IFNγ, cells were restimulated with HLA-restricted APCs

pulsed with cognate viral peptide. The frequency of IFNγ

production ranged from 17.2 to 67.0% and 38.4 to 68.2% of
the CD8+ tetramer+ T cell population for B7RPP and A2NLV,
respectively (Figures 1A,B, lower panels). For HD9G6, the
functionality of this B7RPP-specific CD8+ T cell clone is
published elsewhere (21). For B57TW10-specific CD8+ T cell
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clones A16 and 457, the activation marker CD137, which
induces downstream effects of proliferation and cytolytic
activity, was used to assess functionality when stimulated with
cognate TW10 peptide (Figure 1C), with data for 457 reported
elsewhere (20).

Increased Sensitivity for TCR
Cross-Reactivity Detection Using SKW3
Reporter Cells
We have previously reported that CMV-specific CD8+ T cells
raised against A2NLV were differentially cross-reactive toward

three HLA-B27 allotypes (B∗27:07 > B∗27:09 > B∗27:05). These
T cells were also shown to remain relatively stable following
lung transplantation, but increased significantly in response to
CMV reactivation (4, 11). Further characterization of the cross-
reactive A2NLV-specific TCR repertoires from two unrelated
individuals showed a striking similarity for the cross-reactive
TCR clonotype. Additionally, this study also demonstrated that
expression of cross-reactive TCRs in SKW3 cells was a robust
system that maintains specificity without the need for continuous
in vitro expansion of T cell lines or clones for further functional
immunoassays (28). In this study, we extended the HLA-B27
allotype panel (B∗27:01–B∗27:10) to map the immunogenic

FIGURE 2 | Activation of SKW3.A2NLV TCR cells by HLA-B27–expressing APCs. SKW3.TCR activation was measured using cell surface CD69 upregulation after

16–20 h stimulation with C1R.A*02:01 ± cognate NLV peptide and a panel of C1R.B27 transfectants. CD69 MFI values were calculated after gating on FSC vs. SSC,

single cells, GFP+ cells, live cells, CD3+CD8+ cells then CD69+ cells. Mean ± SEM are shown (a single experiment with triplicate data is shown from independent

biological replicates performed at least twice). Statistical significance denoted by *p < 0.05 and **p < 0. 01 was determined by repeated measures non-parametric

ANOVA (Kruskal–Wallis test) with post-hoc Dunn’s multiple comparison test.

TABLE 1 | Virus-specific αβTCR signatures.

Virus and

HLA/epitope

TCR α-chain β-chain References

TRAV CDR3 TRAJ TRBV CDR3 TRBJ

EBV

B7 RPP

LTR54.1 38-1 CAFSYNNNDMRF 43 4-1 CASSQETGIYTQYF 2-3

LTR54.2 38-1 CAFIQGAQKLVF 54 4-1 CASSQEAFNYEQYF 2-7

LTR117 38-1 CAFASSNTGKLIF 43 4-1 CASSQDIWTSGYTF 2-3

LTR119 38-2/DV8 CALGGGAQKLVF 54 28 CASRLGLGDREDEKLFF 1-4

HD9G6 14/DV4 CAMRDDTGGFKTIF 9 19 CASSISSGVAYEQYF 2-7 (21)

CMV

A2 NLV

HC5 3 CAVRGTNARLMF 31 12 CASSSVNEAFF 1-1 (28)

LTR5 3 CAVRNNNARLMF 31 12 CASSIVNEAFF 1-1 (28)

HIV-1

B57 TW10

A16.1 4 CLVGEVRGGFKTIF 9 4-3 CASSQARGGAETQYF 2-5

A16.2 4 CLVGGEDYKLSF 20 4-3 CASSQARGGAETQYF 2-5

457 39 CAVDINTSGTYKYIF 40 10-3 CAISRQGARQETQYF 2-5 (20)
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profiles of cross-reactive virus-specific T cells (SKW3.LTR5 and
SKW3.HC5), which were previously derived from two HLA-A2+

donors recognizing both the CMV A2NLV epitope and HLA-B27
molecules (28). Stimulation of both SKW3.LTR5 and SKW3.HC5
with our new panel of C1R.B27 allotypes reconfirmed our
previous findings of an immunogenic hierarchy (B∗27:07 >

B∗27:09 > B∗27:05) but also revealed additional cross-reactivity
toward B∗27:03 for SKW3.LTR5 and B∗27:10 > B∗27:03 >

B∗27:02 for SKW3.HC5. All negative, background (media and
C1R Parental, C1R.A∗02:01) and positive (CD3/CD28 beads,
C1R.A∗02:01+NLV) controls were as expected (Figure 2).

Given the utility of SKW3 reporter cells for profiling
TCR cross-reactivity, we adopted this approach to further
explore HLA-B27 allorecognition patterns by immunodominant
HLA-restricted virus-specific T cells. Here, several cognate
peptide-specific CD8+ T cells identified using either the ICS
immunoassay (i.e., T cell lines) or tetramer sorting (i.e.,
T cell clones) were sequenced for paired TCR α and β

chains. The highest frequency αβTCR was then selected for
retrovirus transduction into SKW3 cells (Table 1). Following
transduction, extremely high levels of clonality of >90% were
easily achieved and maintained by sorting the top 10% of
GFP+CD3+ cells if TCR expression decreased during long-term
sub-culturing (Figure 3).

Dissection of Virus-Specific TCR
Cross-Reactivity Toward HLA-B27
Allotypes Reveals Distinct Patterns of
Allorecognition
Here we investigated whether EBV-B7RPP-specific CD8+ T
cells could cross-recognize HLA-B27 molecules as a potential
trigger of allorecognition. Following validation with the cognate
peptide, we re-stimulated our day 13 in vitro-expanded B7RPP-
specific CD8+ T cells, which were generated from five EBV-
seropositive individuals (HD14, LTR54, LTR117, LTR119, and

LTR130), against a panel of HLA-B27-expressing APCs in a
6 h ICS assay with functionality assessed via Th1 cytokine
production (i.e., TNFα+ or IFNγ+ alone or dual TNFα+IFNγ+).
Specificity of the B7RPP-specific CD8+ T cells was confirmed
in all individuals by reactivity to C1R.B∗07:02 in the presence
of cognate RPP peptide. Remarkably, differential patterns of
HLA-B27 allorecognition were observed across these individuals.
Here, B7RPP-specific CD8

+ T cells from HD14 demonstrated a
moderate response to B∗27:02 and weak responses to B∗27:08,
LTR54 showed a very dominant response to B∗27:08 only,
LTR117 recognized several allotypes with B∗27:02 > B∗27:01
> B∗27:07 and similar levels for B∗27:03/08/09, LTR119 weakly
recognized B∗27:02/08 and LTR130 moderately responded to
B∗27:08. All negative, background (media and C1R Parental,

C1R.B∗07:02) and positive (CD3/CD28 beads) controls were as

expected (Figure 4A, Table 2). Therefore, for the first time, we

report a new model of EBV/HLA-B27 cross-reactivity that was
observed across multiple individuals.

To explore these HLA-B27 allorecognition patterns in
greater depth we generated SKW3.TCR cells expressing the
B7RPP-specific TCR observed at the highest frequency for
LTR54 (LTR54.1 and LTR54.2), LTR117 and LTR119, in
addition to the published HD9G6 TCR, which showed cross-
reactivity toward HLA-B∗40:01 (21) (Table 1). For LTR54,
two TCRs with the same α and β-chain variable regions but
different junction regions and CDR3 loops were observed. To
investigate whether these contrasting regions were pivotal for
allorecognition both TCRs were expressed in SKW3 cells. As
observed with the immunogenic hierarchies of CMV A2NLV
cross-reactive TCRs for HC5 and LTR5, we demonstrated greater
sensitivity of allorecognition using SKW3.TCR reporter cells.
The patterns were as follows: LTR54.1 strongly recognized
B∗27:08 and to a weaker extent B∗27:02/07/04/06/09, whilst in
comparison LTR54.2 also strongly responded to B∗27:08 but
weakly recognized alternate B27 allotypes B∗27:06/01/02/04/07;
LTR117 recognized most of the allotypes with the strongest

FIGURE 3 | αβTCR expression of SKW3 reporter cells. Retrovirally transduced SKW3 cells expressing cross-reactive virus-specific αβTCRs for (A) EBV, (B) CMV, and

(C) HIV-1 were monitored for stable cell surface TCR expression. Cells were gated on FSC vs. SSC, single cells, GFP+CD3+ cells. Representative plots are shown.
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FIGURE 4 | EBV B7RPP allorecognition of HLA-B27 molecules. (A) Day 13 in vitro expanded B7RPP-specific CD8+ T cells were stimulated with C1R.B*07:02 ±

cognate RPP peptide and a panel of C1R.B27 transfectants before performing a 6 h ICS, with T cell responses measured by the production of Th1 cytokines (i.e.,

TNFα+ or IFNγ+ alone or dual TNFα+ IFNγ+) after gating on CD8+tetramer+ T cells. (B) SKW3.TCR activation was measured using cell surface CD69 upregulation

after 16–20 h stimulation with C1R.B*07:02 ± cognate RPP peptide and a panel of C1R.B27 transfectants. CD69 MFI values were calculated after gating on FSC vs.

SSC, single cells, GFP+ cells, live cells, CD3+CD8+ cells then CD69+ cells. Mean ± SEM are shown (single experiments with duplicate data for ICS assay and CD69

assay are shown from independent biological replicates each performed at least twice).

toward B∗27:01/02 followed by B∗27:10/08/04/09/06/07;
LTR119 showed weak responses across several allotypes
with B∗27:02/07 followed by B∗27:08/04; and finally HD9G6
strongly recognized B∗27:08/01 then B∗27:05/07/09/02/04/03
(Figure 4B, Table 2).

A recent report highlighted that HIV-1-specific memory
T cells generated from Gag B57TW10 epitope can mediate
abacavir-induced hypersensitivity reactions through molecular
mimicry (20). Therefore, we explored the alloreactive potential
of B57TW10-specific CD8+ T cells toward HLA-B27. TCRs
from two T cell clones (A16 and 457) raised against the
Gag B57TW10 epitope were expressed in SKW3 cells for
functional evaluation. Sequencing of the A16T cell clone
revealed two α-chains with different junction regions and
CDR3 loops, therefore both TCRs were independently

expressed in SKW3 cells (Table 1). Strikingly, comparisons
of SKW3.A16.1 and SKW3.A16.2 show a 9-fold difference in
recognition of C1R.B∗57:01 cells presenting cognate TW10
peptide (positive control), suggesting that A16.2 TCR is the
primary driver of the cognate peptide recognition. Yet despite
this, SKW3.A16.1 recognizes both B∗27:07 and B∗27:05 at a
similar magnitude to B∗27:05 allorecognition by SKW3.A16.2.
For SKW3.457, responses were biased toward B∗27:01 and
B∗27:02 (Figure 5, Table 2). Furthermore, we examined whether
immunodominant IAV A2GIL-specific CD8+ T cells, from
an alternate RNA virus that induces acute viral infection,
could also alloreact toward HLA-B27 allotypes. Here, a total

of six healthy donors were screened, and interestingly no

significant allorecognition was observed above background
levels (Supplementary Figure 5).
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TABLE 2 | Comparison of T cell cross-reactivity using cellular immunoassays.

Assays: ICS for T cells, CD69 upregulation for TCR.

Cognate Viral Peptide Presented by
HLA-B27 Allotypes Does Not Confer
Additional Immunogenicity
To demonstrate that virus-specific TCR cross-reactivity toward
HLA-B27 allotypes is bona fide and cannot be influenced by
the presence of cognate peptide we examined the immune
response of SKW.HC5 (i.e., CMV A2NLV), SKW3.LTR54.1 (i.e.,
EBV B7RPP), and SKW3.457 (i.e., HIV-1 B57TW10) toward a
panel of HLA-B27 stimulators in the absence and presence of
cognate peptide. All SKW3.TCR lines generated responses to
negative, background (media and C1R Parental, C1R.A∗02:01
or C1R.B∗07:02 or C1R.B∗57:01) and positive (CD3/CD28
beads and C1R.A∗02:01+NLV or C1R.B∗07:02+RPP or

C1R.B∗57:01+TW10) controls as expected. Importantly, no
differences in the magnitude of HLA-B27 allorecognition was
observed between APCs in the presence or absence of cognate
peptide across all three SKW3.TCR lines. However, surprisingly
a statistically significant difference was determined following
stimulation of SKW.HC5 with C1R.B∗27:05+NLV (p < 0.0001),
which could indicate a role for the presented peptide, however
this requires further confirmation (Figure 6).

DISCUSSION

In this study, we examined the cross-reactive potential of CD8+

T cells specific for immunodominant epitopes derived from
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FIGURE 5 | HIV-1 B57TW10 allorecognition of HLA-B27 molecules. TCR activation was measured using cell surface CD69 upregulation after 16–20 h stimulation with

C1R.B*57:01 ± cognate TW10 peptide and a panel of C1R.B27 transfectants. CD69 MFI values were calculated after gating on FSC vs. SSC, single cells, GFP+

cells, live cells, CD3+CD8+ cells then CD69+ cells. Mean ± SEM are shown (a single experiment with duplicate data is shown from independent biological replicates

performed at least twice).

three different chronic viruses (i.e., CMV, EBV, and HIV-1),
presented by commonly expressed HLA (i.e., A2, B7, and B57).
We demonstrated that these virus-specific CD8+ TCRs were
capable of vigorous cross-reactivity toward specific HLA-B27
allotypes, and that the immune responses were hierarchical and
varied considerably across the three chronic viruses.

Whilst, we previously reported a defined pattern of strong
HLA-B27 T cell cross-reactivity (B∗27:07 > 09 > 05) by CMV
A2NLV CD8+ TCRs for both LTR5 and HC5 (11, 28), this
study extended the number of B27 subtypes examined and
revealed additional cross-reactivity toward B∗27:10 > 03 >

02 for HC5. Interestingly, despite subtle sequence differences
in the CDR3 regions of both the α- and β-chains (2 and 1
amino acids, respectively) between LTR5 and HC5, the fine
specificity of strong TCR interactions with B∗27:07/09 allotypes
were maintained. The data suggests that the composition of the
allopeptide(s) presented by each HLA-B27 allomorph are similar
or alternatively, of high affinity and that molecular flexibility
of the CDR3 loops aids promotion of TCR engagement (33,
34). In contrast, weaker responses toward B∗27:02/03/10 show
delineation in TCR interaction, with LTR5 not demonstrating
recognition of these allotypes, which may be due to weak
TCR interactions below the assay sensitivity threshold. This
suggests that the allopeptide contribution required to form the
ternary complex is impacted by the variability observed in the
CDR3 regions, which is supported by structural studies of the
murine 2C TCR demonstrating that variations in the CDR3α
loop dictated TCR affinity and cross-reactivity between distinct
ligands (35). Indeed, the importance of the TCR variable domains
in promoting high affinity interactions with pHLA complexes
was also shown with the human HLA-A2-restricted cancer
antigen MART-1 (36). Further investigations are required to

decipher the allopeptide(s) presented by these HLA-B27 allotypes
and determine their exact role in conferring cross-reactivity.

We next examined the magnitude of cross-reactivity exhibited
by EBV-specific B7RPP CD8+ T cells toward HLA-B27 allotypes.
In the five HLA-B7+ individuals, including a healthy donor
and immunosuppressed patients, allorecognition resulted in
production of proinflammatory Th1 cytokines (IFNγ and TNFα)
mainly toward either B∗27:02 or B∗27:08. Although, it should be
noted that an additional screen of four healthy donors showed
no HLA-B27 cross-reactivity, suggesting that allorecognition is
driven by private TCR usage. The B7RPP CD8+ TCR repertoires
were sequenced for three of these individuals to determine
their clonotypic profiles. Interestingly, only two clonotypes were
observed for LTR54 (i.e., LTR54.1 and LTR54.2), which differed
in the CDR3 and J regions of both TCRα- and β-chains. Both
TCRs were expressed in SKW3 cells for further functional
validation. Additionally, comparison of the B7RPP CD8+ TCR
clonotypes showed a high degree of similarity between LTR54.1
and LTR117, with differences only noted in the CDR3α- and
β-loops. Whilst, LTR119 and the previously reported B7RPP
CD8+ T cell clone, HD9G6 (21), are vastly different from the
other TCRs in this cohort. Interestingly, the strongest TCR
cross-reactivity was relatively restricted to B∗27:08 (LTR54.1,
LTR54.2, HD9G6) and B∗27:02 (LTR117), although there was a
degree of allorecognition toward other subtypes for most TCRs.
These observations highlight that both private (i.e., LTR119 and
HD9G6) and shared (i.e., LTR54.1 and LTR117) TCR specificities
contribute to cross-reactivity, and that the cross-reactive pattern
diversity is dependent on the Vβ region (2, 15, 16). Furthermore,
Amir et al. (2) also reported that T cell clones with identical Vβ

regions from the same individual held private specificities and
generated different alloreactions. For example, in donor BDV
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FIGURE 6 | HLA-B27 presentation of cognate viral peptide does not confer additional immunogenicity. (A) SKW.HC5 (i.e., CMV A2NLV ), (B) SKW3.LTR54.1 (i.e., EBV

B7RPP), and (C) SKW3.457 (i.e., HIV-1 B57TW10) TCR activation was measured using cell surface CD69 upregulation after 16–20 h stimulation with HLA-restricted

C1R transfectants ± cognate peptide and a panel of C1R.B27 transfectants. CD69 MFI values were calculated after gating on FSC vs. SSC, single cells, GFP+ cells,

live cells, CD3+CD8+ cells then CD69+ cells. Mean ± SEM are shown (single experiment with triplicate data). Statistical significance using unpaired Student’s t-test is

denoted by ****p < 0.0001.

a T cell clone raised against CMV B7RPHERNGFTVL with TCR
Vβ7.2 recognized DRB1∗08:01, whilst another T cell clone from
same individual with the identical Vβ did not. Additionally,
in donor FKR an influenza A2GIL T cell clone with Vβ17
recognized allogeneic HLA-B∗64:01 but another T cell clone with
the identical Vβ failed. These T cell clones had private differences
in TCR sequence, which effectively abrogated alloreactivity.

For the herpesvirus TCRs, the allorecognition hierarchy
remained relatively static for the strongest responses, but this
was not observed in the case of HIV-1 B57TW10 CD8

+ TCRs in
that 457 and A16 TCRs were completely focused toward different
HLA-B27 allotypes. Here, we show that 457 TCR cross-reacted
strongly toward B∗27:02 > 01, with two TCRs derived from A16
strongly recognizing B∗27:05/07 for A16.1 and B∗27:05 for A16.2.
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Comparison of their TCRs revealed that their signatures were
completely different, supporting that the B57TW10 specificity is
driven by private TCR usage in these two individuals. Particularly
of interest was the dual expression of two different TCRα-
chains from the A16T cell clone, which when independently
expressed in SKW3 reporter cells, showed reactivity differences
not only toward the B27 subtypes but also importantly against
the cognate antigen. We observed that the A16.2 TCR was
geared toward cognate antigen recognition, with the A16.1 TCR
being more alloreactive. Up to 30% of human peripheral T
cells naturally express dual TCRα-chains (37), with multiple
studies demonstrating that the allelic inclusion facilitates a
heightened immune response by providing an additional chance
for antigen recognition and engagement [extensively reviewed
in (38)].

So, what drives the preferential HLA-B27 allorecognition
displayed by these virus-specific TCRs? Undoubtedly, the
polymorphic nature of the B27 molecule itself greatly influences
the peptide cargo being displayed to surveying T cells (Figure 7).
In our study, the A2NLV CD8+ TCRs preferentially bind to
B∗27:07/09/05, which differ by 1 (B∗27:09) and 5 (B∗27:07)
amino acids compared to the consensus B∗27:05 allotype. These
polymorphisms directly impact the D/E (position 114, peptide
contacts P5–P7) and F (position 116, peptide contact P9) peptide-
binding pockets, which are known immunological hot spots
for non-permissive HLA mismatches in transplantation (39–43).
Given that the public A2NLV CD8+ TCR co-recognizes these
three molecules and their relative impact on the peptide-binding
pockets D/E and F, suggests that each may be presenting an
alternate allopeptide with affinity above a threshold to promote
TCR engagement. This is supported by the prototypic HLA-B8-
restricted LC13 TCR which is capable of engaging with HLA-
B∗44:05 presenting either an allotype or mimotope (18). In
addition, we cannot exclude that the same allopeptidemay also be
presented by all HLA-B27 molecules, with allorecognition being
impacted by differences in conformational flexibility. Indeed,
a study by Loll et al. demonstrated that a HLA-B27-derived
self-peptide derived from vasoactive intestinal peptide receptor
type 1 (epitope; RRKWRRWHL) is differentially presented by
AS-associated B∗27:04 and B∗27:05 compared to the non-AS-
associated B∗27:06 and B∗27:09 due to structural variations in
molecular dynamics (44). For B7RPP CD8+ TCRs, recognition
was focused toward B∗27:08/02/01, with B∗27:01 and B∗27:02
differing by a single amino acid (position 80) and both differing
from B∗27:08 by 5 amino acids (positions 77, 80–83), all of
which also influence the F peptide-binding pocket (Figure 7).
Finally, for the B57TW10 CD8+ TCRs we observed completely
divergent recognition of B27 allotypes by 457 (B∗27:01/02) and
A16 (B∗27:05/07). However, a common feature is involvement of
the F pocket at positions 80 and 116, respectively. Interestingly,
the F pocket not only determines the carboxy terminal motif of
HLA-I peptides (45), but in other HLA-B27 allotypes has also
been shown to affect anchoring sites (i.e., B∗27:06; P3, P�-2,
and P�) (46). Moreover, positions 114 and 116 are important
for the chaperone tapasin, involved in loading of optimal
peptides on HLA-I molecules (47, 48). Whilst, the identification
of allopeptides has been a major limiting factor hampering

FIGURE 7 | HLA-B27 polymorphisms and amino acid chemical properties.

B27:01-B*27:04, B*27:06-B*27:10 amino acid polymorphisms were

compared to the consensus sequence for B*27:05. The chemical properties of

substituted residues and their influence on HLA-I peptide-binding pockets

are detailed.

translational impact in clinical studies, further investigations are
warranted to assess the true impact of T cell cross-reactivity.

Here we analyzed three HLA-B27 cross-reactivity models,
including our newly identified EBV/HLA-B27 model, using
T cell lines/clones and the more fine-tuned TCR-specific
SKW3 cell lines, to reveal the diversity and breadth of cross-
reactivity against different HLA-B27 allotypes. Specifically, we

showed that cross-reactive TCRs (LTR5, HC5, LTR119, A16.1)
derived from the three heterologous viruses were capable of
recognizing B∗27:07, with cross-reactive TCRs from two viruses
recognizing either B∗27:01 (LTR117, HD9G6, 457), B∗27:02
(LTR119, 457), or B∗27:05 (HC5, A16.1, A16.2). Collectively,
this study demonstrated selective TCR cross-reactivity toward
HLA-B27 allotypes by chronic latent viruses, which may evoke
clinically relevant alloreactivity following transplantation.
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Supplementary Figure 1 | HLA cell surface expression of APCs. APCs were

stained with primary antibody either (A) pan-HLA-I W6/32 or (B) anti-HLA-B7/27

ME1, followed by secondary goat anti-mouse IgG PE. A secondary (2◦) antibody

alone control was used for background staining. MFI was calculated after gating

FSC vs. SSC then primary antibody histogram. Representative plots are shown.

Supplementary Figure 2 | Gating strategy for specificity and functionality of

virus-specific CD8+ T cells. Representative virus-specific CD8+ tetramer+ T cells

was assessed for either (A) IFNγ production with cells gated on FSC vs. SSC,

single cells, live cells, CD8+, CD8+tetramer+, and CD8+ IFNγ+ cells or (B) CD137

activation with cells gated on FSC vs. SSC, CD3+ or CD8+, CD8+tetramer+, and

CD3+CD137+ cells.

Supplementary Figure 3 | Gating strategy for SKW3.TCR expression.

Representative cell surface TCR expression for SKW3.LTR119 is shown. Cells

were gated on FSC vs. SSC, single cells, GFP+CD3+ cells.

Supplementary Figure 4 | Gating strategy for CD69 upregulation assay.

Representative CD69 cell surface upregulation for SKW3.HC5 is shown following

stimulation with media, C1R.A∗02:01+NLV (cognate peptide), C1R.B∗27:01

(non-cross-reactive B27 allele) and C1R. B∗27:07 (cross-reactive B27 allele).

CD69 MFI values were calculated after gating on FSC vs. SSC, single cells, GFP+

cells, live cells, CD3+CD8+ cells, and then CD69+ cells.

Supplementary Figure 5 | IAV A2GIL allorecognition of HLA-B27 molecules. (A)

Representative gating strategy of NM003 d13 A2GIL-specific CD8+ T cells

stimulated with C1R.A∗02:01+GIL peptide; FSC vs. SSC, single cells, live cells,

CD8+, CD8+tetramer+ and IFNγ+TNFα+ cells. (B) Day 13 in vitro expanded

A2GIL-specific CD8+ T cells were stimulated with C1R.A∗02:01 ± cognate GIL

peptide and a panel of C1R.B27 transfectants before performing a 6 h ICS, with T

cell responses measured by the production of Th1 cytokines (i.e., TNFα+ or IFNγ+

alone or dual TNFα+ IFNγ+) after gating on CD8+tetramer+ T cells. Mean ± SEM

are shown (single experiment with duplicate data).

Supplementary Table 1 | HLA class I typing of study participants.
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Flaviviruses consist of significant human pathogens responsible for hundreds of millions
of infections each year. Their antigenic relationships generate immune responses
that are cross-reactive to multiple flaviviruses and their widespread and overlapping
geographical distributions, coupled with increases in vaccination coverage, increase the
likelihood of exposure to multiple flaviviruses. Depending on the antigenic properties of
the viruses to which a person is exposed, flavivirus cross-reactivity can be beneficial
or could promote immune pathologies. In this review we describe our knowledge
of the functional immune outcomes that arise from varied flaviviral immune statuses.
The cross-reactive antibody and T cell immune responses that are protective versus
pathological are also addressed.

Keywords: flavivirus, dengue, Zika, yellow fever, tick-borne encephalitis, cross-protection, vector-borne

INTRODUCTION TO FLAVIVIRUSES

Flaviviruses are enveloped single-stranded positive-sense RNA viruses that share conserved
structural and genomic features (1). The viral genome encodes for three structural and seven
non-structural proteins that are needed for virus replication and assembly (1). Some of the
most prominent mosquito-borne flaviviral human pathogens include the hemorrhagic fever
viruses, dengue (DENV) and yellow fever (YFV), and neurotropic viruses, such as West Nile
(WNV), Japanese encephalitis (JEV), Saint Louis encephalitis (SLEV), and Zika (ZIKV). Yet
other flaviviruses that are human pathogens, such as Kyasanur forest disease (hemorrhagic) and
Powassan (encephalitic) viruses, are tick-borne. Additional flaviviruses have no known vector
(2) while others are thought to be restricted to insects or bats and are not reported to cause
human disease (3). Phylogenetic analysis has shown that flaviviruses cluster in genomic similarity
according to their dominant vector (Figure 1), which also is a major contributing factor to the
often-overlapping global distribution patterns of each flavivirus. The genetic differences amongst
flaviviruses result in both conserved and species-specific attributes, such as cellular and tissue
tropism upon infection and, importantly for the purposes of this review, antigenic properties.

CLASSIFICATION AND ANTIGENIC RELATIONSHIPS AMONG
FLAVIVIRUSES

The name flavivirus (flavus- means “yellow” in Latin) stems from early research done on the YFV
vaccine in 1930s, for which a Nobel Prize was awarded to Marx Theiler in 1951 (4). In the initial
classification scheme, arthropod-borne viruses were classified based on their ability to replicate and
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FIGURE 1 | The antigenic relationships among flaviviruses. Phylogenetic analysis demonstrates that flaviviruses cluster not just antigenically but also group
according to their known transmission vectors. Some of the most significant flaviviral human pathogens belong to the JEV, Spondweni, DENV, YFV, and mammalian
TBV serocomplexes, respectively (arched lines cover viruses of the same serocomplex). Some of their most common vectors are also listed, such as the mosquito
species Culex (blue) and Aedes (green) and various species of ticks (red). Other flaviviruses have no known vector, for example, viruses of the Modoc, Rio Bravo, and
Entebbe bat virus complex (black). Among the Aedes mosquito-borne viruses of the YFV serocomplex, Saboya virus (pink) has been successfully isolated from the
phlebotomine sand flies (85). Phylogenetic analysis was conducted using molecular evolutionary genetic analysis (MEGA-7) software (86). The full-length polyprotein
amino acid sequences from various flaviviruses were obtained from the NCBI database and pairwise aligned using Clustal W. The phylogenetic tree was constructed
by using the maximum likelihood method based on the Jones-Taylor-Thornton (JTT) matrix-based model (87). The consensus tree representing 200 bootstrap is
presented (88). Branches that were reproduced in less than 50% bootstrap replicates are collapsed. The nodes show bootstrap support values from replicates.

transmit through arthropods and distributed in to two groups
belonging to the family Togaviridae (5). Group A comprised of
arthropod-borne viruses such as chikungunya and sindbis (now
in the genus alphavirus) and Group B comprised of viruses
such as YFV and DENV (now in the genus flavivirus, and
the subjects of this review). Because of the distinct antigenic
characteristics of flaviviruses, they were later classified in to
the new genus, flavivirus of the family Flaviviridae (6). The
first arthropod-borne virus cross-reactivity was observed in
complement fixation tests (7), which allows a complement
reaction to occur on the surface of red blood cells (RBCs) when
serum is added in the presence of a known antigen. Later,

the hemaggIutination inhibition assay, involving inhibition of
virus-induced hemagglutination (or aggregation of RBCs) in the
presence of serum was used to describe flavivirus cross-reactivity
(8). Further, serological studies utilizing virus-neutralizing tests
have strengthened the concept of flavivirus cross-reactivity and
segregated flaviviruses that are mosquito-borne, tick-borne, and
those with no known arthropod vectors (5, 9). The antigenic
similarities between flaviviruses are a secondary attribute that
emerges owing to their genetic similarities. As a result, infection
with one flavivirus results in both species-specific and flavivirus
cross-reactive antibodies. The majority of flaviviruses that are
relevant to human disease were organized into 8 serocomplexes
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plus 17 independent viruses that were not antigenically similar
enough to warrant inclusion in a serocomplex (9) (Figure 1).
Serocomplexes were defined by the ability of polyclonal post-
immune sera against one flavivirus to neutralize others (10).
Using DENV as an example, there are 4 serotypes of DENV
(DENV1-4), which induce antibodies that are able to cross-
neutralize each other to a certain degree, especially at high
concentrations, in spite of those antibodies being insufficient to
provide efficient neutralization and protection from secondary
heterologous infections in vivo (10). In contrast, DENV-immune
sera were unable to neutralize ZIKV, even though the serology
indicated a relationship by another serological method [e.g.
Enzyme-linked immunosorbent assay (ELISA)], supporting its
close relationship to DENV but indicating that it falls into
an independent serocomplex (11, 12). First described using
human sera, these flavivirus cross-reactive immune responses
appear to be consistent for multiple mammalian species,
including rodents and non-human primates (13–15). During
the acute phase of infection and disease, flavivirus cross-
neutralizing antibodies can be induced, but these are usually
not durable and cross-neutralization is not retained following
a few months (12). Those exposed to multiple flaviviruses may
also generate responses more difficult to decipher and which
cross-neutralize viruses from distantly related serocomplexes
(16, 17).

With the global spread of flavivirus vectors, increased
human mobility, and increased vaccine coverage against
flaviviruses, we are not only concerned with how pre-existing
immunity could affect a heterologous challenge with a new
virus from the same serocomplex (e.g. DENV2 infection
followed by DENV1 infection) but also how immunity is
influenced by sequential exposure to multiple flaviviruses from
differing serocomplexes. Notwithstanding the potential of anti-
flavivirus memory immune responses to influence subsequent
infections, the high degree of immune cross-reactivity to
flaviviruses makes infections, and prior exposures difficult
to definitively identify when virologic confirmation is not
possible (18).

FUNCTIONAL IMMUNE OUTCOMES OF
SEQUENTIAL FLAVIVIRUS INFECTIONS

As humans have become more likely to experience more
than one flavivirus infection during a lifetime, there is a
need to understand how pre-existing immunity to a flavivirus
impacts subsequent flavivirus infection outcomes. Early studies
in humans exploring the nature of immune protection against
flaviviruses observed that functional immune responses (virus
neutralization) and the course of infection were modulated in
the context of pre-existing flavivirus cross-reactive immunity
(19, 20). While human studies have been largely correlation-
based, studies using animal models have provided more definitive
functional disease outcomes. For example, immunity to JEV
and SLEV was protective against lethal WNV challenge in a
hamster model (15). Similar cross-protection was observed when
mice were immunized with Usutu virus and challenged with

WNV (21). Within the same serocomplex, prior exposure to
Kunjin or Murray Valley encephalitis (MVEV) viruses in pigs
was also protective against JEV challenge (22). These studies
suggest that cross-reactive immunity may be protective within
the JEV serocomplex. In contrast, in a human DENV challenge
study, immunity to DENV only provided lasting protection
against a homologous DENV serotype (10, 19). Within the
YFV complex, primary infection of rhesus macaques with
Wesselsbron virus (from the YFV serocomplex) was protective
against YFV challenge (13) and, more recently, examining
the possibility of cross-protection against viruses in differing
serocomplexes, JEV vaccination was shown to provide cross-
protection against DENV and to increase the kinetics of the
development of neutralizing antibody responses (14). Certain
DENV or ZIKV-specific human monoclonal antibodies also
can protect against a Spondweni virus challenge in immune
compromised mice (23). However, primary infection with WNV
(from the JEV serocomplex) or Banzi virus (from the YFV
complex) failed to provide any protection against YFV challenge
(13). The differences between cross-protection versus pathology
have been more controversial in the context of how pre-existing
immunity to DENV influences subsequent ZIKV infection. While
some studies in immune compromised mice have suggested
that DENV T cell immunity can be protective against ZIKV
infection in adult mice (24), other studies in STAT2-KO mice,
with impaired immunity, showed prior DENV immunity can
enhance infection in adult mice and infection and fetal demise
in pregnant mice (25, 26). In immune competent mice, pre-
existing DENV immunity can enhance the development of a
microcephaly phenotype in fetuses (27, 28), which is a key
characteristic pathology of disease. These studies suggest that
various factors determine cross-protection, some of which are
discussed below.

FLAVIVIRUS CROSS-REACTIVE T CELL
RESPONSES

Various subsets of T cells are essential for efficient infection
clearance and for the development of robust antibody responses
against flaviviruses. Flavivirus reactive T cell epitopes have been
identified in both viral structural and non-structural proteins
and for CD8 and CD4 T cells (14, 29). Often, we expect
that the T cell epitope must be 100% conserved to induce
recall of a memory T cell from a previous infection; however,
similar epitopes with only minor substitutions often are able
to activate T cells as well although with potentially differing
degrees of responses (30, 31). Early studies using murine T
lymphocyte clones demonstrated T cell cross-reactivity similar
to that observed using antibody neutralization tests (32, 33). For
example, T cell clones specific to Kunjin or WNV showed cross-
reactivity with MVEV or vice versa (32), suggesting T cell cross-
reactivity within the JEV serocomplex. T cell cross-reactivity
between two different serocomplexes has also been observed.
CTL clones specific for DENV reacted and proliferated against
Kunjin (JEV serocomplex), a virus from different serocomplex
than DENV (34). Similarly, DENV or ZIKV induced CD8
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T cell responses are also noted to be highly cross-reactive
against each other (35). While the majority of flavivirus cross-
reactive CD8 T cells are directed against viral non-structural
proteins, studies using chimeric viruses have identified cross-
reactive CD8 T cell epitopes that are present in the viral
envelope protein (36). This suggests that both conserved non-
structural proteins and variable structural proteins contribute
toward the development of the flavivirus cross-reactive CD8 T
cell repertoire. Interestingly, for human T cells, prior exposure to
DENV skewed the immunodominance of ZIKV-specific T cells
toward non-structural proteins (35), yet these cross-activated T
cells retained their ex vivo functionality (37). This cross-reactivity
may be beneficial for clearing a secondary infection since it
has been shown that a vaccine utilizing non-structural epitopes
of DENV can protect against DENV infection in mice (38).
Still, the broad question of whether flavivirus cross-reactive CD8
T cells are protective or pathological in nature remains to be
resolved. Indeed, within the DENV serocomplex, certain cross-
reactive CD8 T cell epitopes have been associated with severe
disease in humans (39, 40), illustrating the potential of cross-
reactivity to reduce the efficiency of an antigen-specific response
during a heterologous secondary challenge (10), a well-known
phenomenon termed “original antigenic sin” (Figure 2).

CD4 T cells also have the potential to be cross-reactive and
unique clones have been shown to have ex vivo stimulation in
response to various flaviviral antigens (14, 41, 42). More recently,
the functional role of serocomplex cross-reactive CD4 T cells
has been identified, where they were shown to be associated
with improved viral clearance during secondary serocomplex
heterologous infection (14). Genetic similarity appeared to
be a factor in cross-protection in this context, where JEV
provided better CD4-dependent cross-protection against DENV
than the more distantly related YFV in the mouse model
(14). Importantly, CD4 T follicular helper (Tfh) cells with
an effector memory phenotype were shown to be critical for
efficient memory recall and in improving the quality of antibody
responses, providing a mechanism of cross-protection (14). In
humans vaccinated against JEV, cross-reactive T effector memory
cells were also identified, which could be activated to proliferate
and produce interferon-gamma in response to antigens from
all of the heterologous viruses tested including DENV, YFV,
and ZIKV (14). During heterologous DENV infections, CD4
effector memory T cells that have a TEMRA phenotype, which
is cytotoxic in nature, have also been identified (43, 44) and
these may be present and recalled, in addition to cross-reactive
Tfh cells, during heterologous flavivirus infection. It is probable
that flavivirus cross-reactive CD4 TEMRA cells are also present
in individuals exposed to varied flavivirus infections or vaccines
but their frequency may be very low. However, the antigen
presenting molecule, MHC-II is highly polymorphic in humans
and therefore flavivirus CD4 T cells responses can be restricted
to certain HLA-types making identified cross-reactive epitopes
likely relevant for only those with the given HLA-types (10).
Virion structure also determines cross-reactive CD4 T cell
immunodominance, as certain structural protein conformations
can provide immunodominant epitopes that are conserved
structurally but not genetically among flaviviruses (45, 46).

FLAVIVIRUS CROSS-REACTIVE
ANTIBODY RESPONSES

The surface glycoprotein of a flavivirus consists of type-
specific and serocomplex cross-reactive epitopes, owing to
which the antibodies evoked are both type-specific and cross-
reactive in nature (47–49). Structural determinants such as
the conformation of epitopes and the presence of flavivirus
conserved residues on the surface of the viral envelope (E) protein
determine antibody binding and neutralization properties. For
instance antigenic epitopes present on the surface of E protein,
which consists of domains I, II, and III, are both linear and
quaternary and immune activation to E generates antibodies that
are largely neutralizing against the virus of same type (50–52).
In the context of immune responses to E protein, antibodies
that are neutralizing are better generated by the quaternary
structures of E protein dimers, compared to the monomeric
form of the protein (53). Moreover some E dimer epitopes are
conserved across related flaviviruses and evoke antibodies that
are cross-neutralizing to flaviviruses of differing serocomplexes,
for example antibodies that can neutralize both DENV and ZIKV
(54, 55). However, antibodies targeting the E protein fusion
loop epitopes, which are conserved across various flaviviruses
are also broadly cross-reactive but studies so far have indicated
that they are poorly neutralizing (51). These weakly neutralizing
cross-reactive antibodies may influence the course of subsequent
flavivirus infection, as discussed below.

Both antibody specificity and concentration can govern the
ability of antibodies to neutralize or enhance the uptake of
virus by Fc-receptor bearing cells (56). In some cases, individual
monoclonal antibodies that are capable of cross-neutralization
may be identified from an otherwise sub-neutralizing pool (57).
Conversely, weakly neutralizing antibodies often can lead to
neutralization at high concentrations as was shown with WNV
(58) which may factor in to the period of relative resistance
to similar viral infections in the months immediately following
infection (56). As a result of the decay of antibody in serum in
the years following vaccination or natural infection, subsequent
functional responses to new flaviviruses can be temporal (56).

There are antigenic relationships amongst flaviviruses that
are rarely functionally tested in vivo in humans due to the
infrequency of the two sequential infections. For example,
antibody cross-reactivity to Yokose virus (from the Entebbe bat
virus serocomplex) is also observed in patients’ sera infected
or vaccinated with DENV or YFV (59). Yet, other sequential
flavivirus challenges are much more common, such as the high
probability of re-exposure to multiple serotypes of DENV or
sequential exposures to DENV and ZIKV (60, 61). Much of
our understanding of how flavivirus cross-reactive antibodies
influence subsequent exposures to flaviviruses has been obtained
in models of sequential DENV infections, where antibody-
dependent enhancement of infection (ADE) by a heterologous
serotype is consistently observed (10). This results from the
binding of virus that is complexed with sub-neutralizing
antibodies to the Fc receptors of immune cells including dendritic
cells, monocyte/macrophages and mast cells (10). In this context,
opsonization of virus can lead to enhanced infection in the
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FIGURE 2 | Flavivirus cross-reactive cellular immune responses. Infection or vaccination against a flavivirus (Type-1) results in a primary immune response dominated
by generation of Type-specific antibodies and T cell responses, followed by a memory formation. Owing to their antigenic relatedness, flavivirus cross-reactive
antibodies and T cells (CD4 & CD8) are also generated. A secondary challenge with a second flavivirus (Type-2) can potentially reactivate cross-reactive memory T
cells, those, which have higher specificity for Type-1 than for Type-2 flavivirus. These weakly cross-reactive memory T cells may outcompete naive T cells that would
be more specific for Type-2, resulting in T cell original antigenic sin. However, memory T cells could also provide cross-protection directly by acquiring CTL function
resulting in enhanced killing of virus-infected cells. Importantly cross-reactive CD4 Tfh cells can be recalled in the lymph node germinal centers, providing help to B
cells, and improving both affinity and avidity of antibodies that are cross-reactive and neutralizing. Flavivirus cross-reactive antibodies also interact in different ways
during a secondary flavivirus infection. After primary infection, high affinity and Type-specific antibodies are produced, which can neutralize virus when present at
optimal concentrations. However, during secondary heterologous flavivirus infection, pre-existing cross-reactive, sub-neutralizing antibodies may lead to
opsonization of virus particles and enhanced uptake by various immune cells such as monocytes via Fc receptors, resulting in increased virus replication, a
phenomenon termed antibody-dependent enhancement (ADE).

immune cell types, resulting in both increased virus production
and heightened production of pro-inflammatory mediators (10).
Aside from opsonization, antibodies can also trigger alternate

immune activation pathways such as Fc receptor cross-linking or
antibody-dependent cellular cytotoxicity (ADCC) (10). During
secondary heterologous exposures, mast cells activation is
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observed downstream of IgG or IgE cross-linking upon virus
binding (62, 63). NK cell mediated ADCC also can trigger release
of pro-inflammatory and cytotoxic mediators (64). ADE occurs
not only for DENV, but for other combinations of viruses from
differing serocomplexes, such as DENV and ZIKV (65). Indeed,
ADE of the attenuated YFV strain 17D was shown to occur in
vivo in humans, depending on JEV vaccine-induced antibodies
from a prior immunization (66). However, Fc receptor activation
and binding by virus-immune complexes may not always be
detrimental to the host. For example, prior vaccination to JEV
was shown to enhance uptake of YFV vaccine (strain 17D)
by antigen presenting cells in mouse lymph nodes, leading to
increased immunogenicity of the attenuated YFV vaccine (66)
and suggesting a potential utility to ADE when it improves
adaptive immune responses.

Phylogenetic analyses suggest a close relationship between
DENV and ZIKV (67) and studies testing human anti-DENV sera
demonstrated a high degree of cross-reactivity (11). As discussed,
despite this high cross-reactivity, DENV-specific antibodies fail
to cross-neutralize ZIKV (12), but may lead to opsonization of
ZIKV viral particles (65). Not only was this shown to occur
in conventional antigen presenting cells, dependent on the Fc
gamma receptors, DENV antibodies can also enhance uptake of
ZIKV in the syncytiotrophoblasts, and fetal endothelial cells of
the placenta in a mechanism dependent on the fetal neonatal Fc
Receptor, FcRN (27). In support of the role of antibody dependent
enhancement of ZIKV pathology in vivo in humans, mothers
with antibodies that were highly enhancing to ZIKV were shown
to have fetuses (or children) with more severe microcephaly
phenotypes (68). This pathological influence of DENV immunity
during subsequent ZIKV infection may be specific for the context
of pregnancy, since epidemiologic studies in humans suggest
that ZIKV infection rates may be reduced in DENV immune
non-pregnant individuals (69).

Pre-existing immunity also has the potential to improve
cross-reactive antibody responses that are developed during a
heterologous flavivirus infection. When JEV immunity led to
faster induction of neutralizing antibodies to DENV, adoptive
transfer studies showed that it was based on recall of a
heterologous memory response and increased germinal center
activity in lymph nodes, resulting in gains in antibody avidity
and neutralization against DENV in JEV-exposed animals (14).
However, there are also indications that the quality of antibodies
can be impeded by prior flavivirus immunity. For example, in
one study, individuals pre-vaccinated against YFV were shown
to have a lower ratios of neutralizing to ELISA antibody titers
(70), emphasizing that the quality of immune responses and
not only the magnitude are important in determining the
potential of cross-reactive immunity to induce protection versus
pathology (Figure 2).

IMPLICATIONS FOR RATIONAL
FLAVIVIRUS VACCINE DESIGN

Herd immunity needs to be maintained to keep the population
protected from certain flaviviruses for which vaccines are

available. YFV is an example of this need since outbreaks of
YFV in South America and Africa have occurred in recent
years coinciding with reductions in vaccine coverage (71, 72).
The success of the YFV vaccine has largely been attributed
to its safety and effectiveness as an attenuated vaccine that
induces immune activation of multiple pathways including
innate responses, and effective T cell and antibody responses
(73). A vaccine does not need to provide 100% of individual’s
life-long durable protection to be effective, but the YFV vaccine
often does. For this reason, it has been used as the “backbone”
for other vaccines including the Sanofi Pasteur DENV vaccine,
Dengvaxia (74). This means that the non-structural proteins of
the 17D YFV vaccine were used to construct chimeric viruses
with the structural proteins of each of the DENV1-4 viruses
(74). Aside from its validated safety, the YFV backbone was
also chosen for this DENV vaccination strategy because the
replication rates could be closely matched for all serotypes,
promoting similar antigen persistence in vivo (74). This was to
counteract the problem that was discovered early on in DENV
vaccine design, where one or two of the 4 serotypes replicated
much more efficiently in vivo, leading to immune dominance
and poor coverage against multiple serotypes (75). Dengvaxia
(76) has been licensed in several countries and although the
effectiveness differs between serotypes it is not clear if this is due
to residual differences in antigen persistence between chimeric
vaccine strains or due to the influence of prior DENV immunity
present in the various populations where the vaccine was tested.
More pressing, in spite of the moderate and acceptable levels
of efficacy shown, some safety concerns were raised, including
that children, which were likely a surrogate for flavivirus-naïve
individuals since the vaccine was tested in hyperendemic regions,
were more likely to require hospitalization (77). Since then, it
has been surmised that an ADE-like response may be occurring
in certain vaccinated individuals having breakthrough cases,
which is induced by the antibodies to the vaccine (78). It is
also possible that the mismatch of the virus non-structural
proteins to DENV is a contributing factor to the development
of breakthrough cases in vaccinated individuals (10). Supporting
this, T cell responses in YFV vaccinated mice were not efficiently
recalled in DENV stimulated T cells and YFV-induced CD4 T
cell responses showed little cross-reactivity for DENV epitopes
(14). Human cross-reactive T cell responses between YFV and
DENV have been detected (14). Alternate backbones have been
used for DENV vaccine strategies, including the JEV backbone,
which was protective in mouse models (79) and a conserved
DENV backbone, itself (80). The Takeda vaccine, for example
adopted this strategy, using a DENV2 backbone with DENV1-
4 structural proteins (80, 81). This strategy has the potential
to provide increased recall of vaccine-induced T cell responses
during natural infection with DENV viruses. Recently a clinical
trial demonstrated efficacy of the Takeda vaccine in humans
in a dengue-endemic region as well (82), although the long-
term effects of vaccination and the persistence of protection
will need to be monitored alongside the potential of any
breakthrough severe disease. Importantly these vaccines illustrate
how homologous and heterologous immunity to flaviviruses
can change the protective capacity of a vaccine and potentially
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even influence its safety. Although we are concerned with
the potential of cross-reactive immunity to induce pathologies
following vaccination against flaviviruses, the indications that
cross-protective immunity can be induced also highlight the
potential of rationale design of cross-protective vaccines that are
effective against multiple flaviviruses in the future.

OUTLOOK

In spite of many recent advances toward flavivirus directed
vaccines, the world wide burden of flaviviruses is actually
increasing. The potential of cross-reactive immunity to influence
the infection outcomes and the fact that the immune profile of
individuals can change over time, being different in the months,
versus years, versus decades following infection, emphasizes the
need to continue studying how cross-reactive immunity works
and influences infection outcomes. Compounding this is the issue
of flavivirus emergence. The flavivirus genus contains diverse
viruses that are present in the environment and hidden in
unexplored reservoirs. The recent emergence of WNV in North

America in 1999 (83), ZIKV in the South Pacific in 2013-2014
(84) and South America in 2015-16 (61) and resurgence of YFV
(72), in spite of a highly effective vaccine, and growing vaccine
coverage for DENV emphasizes the need to consider how cross-
reactive immunity will influence infection by those flaviviruses
we expect and also those that don’t have a significant burden in
humans at this time.
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The infection dynamics between different species of Plasmodium that infect the
same human host can both suppress and exacerbate disease. This could arise from
inter-parasite interactions, such as competition, from immune regulation, or both.
The occurrence of protective, cross-species (heterologous) immunity is an unlikely
event, especially considering that strain-transcending immunity within a species is
only partial despite lifelong exposure to that species. Here we review the literature
in humans and animal models to identify the contexts where heterologous immunity
can arise, and which antigens may be involved. From the perspective of vaccine
design, understanding the mechanisms by which exposure to an antigen from one
species can elicit a protective response to another species offers an alternative strategy
to conventional approaches that focus on immunodominant antigens within a single
species. The underlying hypothesis is that certain epitopes are conserved across
evolution, in sequence or in structure, and shared in antigens from different species.
Vaccines that focus on conserved epitopes may overcome the challenges posed
by polymorphic immunodominant antigens; but to uncover these epitopes requires
approaches that consider the evolutionary history of protein families across species. The
key question for vaccinologists will be whether vaccines that express these epitopes
can elicit immune responses that are functional and contribute to protection against
Plasmodium parasites.

Keywords: malaria, Plasmodium, heterologous, cross-species, immunity, vaccines, epitopes

INTRODUCTION

A malaria vaccine would have a tremendous impact on vulnerable populations, with the potential to
save nearly half a million lives annually and prevent over 200 million cases (1). Yet the development
of an efficacious vaccine remains elusive. One of the biggest challenges facing malaria vaccine
development is the complex life cycle of the parasite (Figure 1). The sporozoite form of the parasite
invades hepatocytes in the liver, undergoes schizogony, and then enters the blood stage. In the
blood, some of the parasites differentiate to form gametocytes that can be taken up by mosquitoes
during a blood meal, resulting in onward parasite transmission. The challenge to vaccinologists
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is that the parasite expresses antigens that are largely stage-
specific during its lifecycle and no single defining vaccine
target or even whole organism vaccine can protect against
all stages. Despite this, there are multiple opportunities for
vaccines to interrupt the parasite life cycle (2). A vaccine
that prevents sporozoite colonization of hepatocytes could
protect individuals from Plasmodium infection, while a vaccine
targeting the blood stage could curb the clinical manifestation
of disease, and a gametocyte-targeting vaccine could block
transmission to mosquitoes.

Of the six species of Plasmodium that infect humans,
P. falciparum causes the greatest mortality and morbidity
worldwide (1). In high transmission settings, millions of young
children are at risk of dying from severe falciparum malaria until
they acquire immunity to severe disease later in childhood. As
such, current vaccine efforts are largely focused on P. falciparum.
Only one licensed vaccine exists, RTS,S, and this vaccine is
currently undergoing pilot roll-out in several African countries.
The target of RTS,S is the surface circumsporozoite surface
protein (CSP) that is expressed on the surface of P. falciparum
sporozoites (3). While this vaccine aims to prevent liver stage
infection, the results from earlier vaccine trials suggest good
immunity in the first six months but then a significant waning of
immunity over time, resulting in poor long-term vaccine efficacy
(3). This is likely due in part to the low dose of sporozoites
inoculated by mosquitoes that fails to reactivate memory B-cells,
combined with antigenic polymorphisms in the T-cell epitopes
of the CSP (4). Other vaccines target P. falciparum blood stage
antigens and they also face significant challenges, primarily due to
antigenic polymorphisms that reduce the efficacy of allele-specific
vaccines against natural infections (5).

The limitations of current experimental vaccines may
reflect a shortcoming in the traditional approach to antigen
discovery (6). Candidates, particularly blood stage antigens,
are often identified as targets of neutralizing antibodies
in immune sera; but the corollary is that this strategy
selects for immunodominant epitopes that are under strong
immune selection, and consequently, are highly polymorphic.
Incorporating conserved and cryptic epitopes (epitopes not
normally exposed to the immune system) into vaccines may
overcome these challenges.

Here we consider whether epitopes conserved across species
can be exploited in vaccine design. This idea may seem heretical
given the absence of sterile immunity following lifelong exposure
to a single species, and our understanding that the immune
response to malaria is largely considered strain-specific. In fact,
cross-species immunity has doubtlessly been selected against due
to the co-circulation of multiple Plasmodium species competing
for the same human host. Competition between parasites likely
resulted in the evolution of different virulence and life cycle
strategies as a form of mutual adaptation, and within these
species-specific adaptations arose antigenic diversity in virulence
genes of that parasite. Nevertheless, the shared evolutionary
history among the six species of Plasmodium purports that
many proteins will be homologous in origin, with common
structures and/or functions. As such, it is likely that there are
subdominant or even immunologically cryptic epitopes that

remain conserved across multiple species. As a vaccine strategy,
this presents an opportunity to direct the immune response
against these conserved epitopes and exploit them in a cross-
species malaria vaccine.

In this review, we discuss the evidence for immunological
cross-reactivity between Plasmodium species and the rationale
for considering a cross-species vaccine approach. We define
heterologous immunity and cross-reactivity as immunological
interactions between two different Plasmodium species and not
between two strains of the same species. We first consider
the clinical outcomes of natural infection in areas co-endemic
for multiple species, deliberate human infection studies, and
infections in animal models. Next we describe the parasite-
specific immune responses to different species of Plasmodium
and the antigens that may mediate cross-species immunity.
Lastly, we provide a rationale for mapping conserved epitopes in
antigens from different species and developing these epitopes as
vaccine candidates.

OBSERVATIONS FROM NATURALLY
EXPOSED POPULATIONS

Interactions between different species of Plasmodium are evident
from a number of epidemiological studies of naturally exposed
populations [reviewed in (7, 8)]. These are often reported
as negative interactions, where co-infection with two species
exacerbated disease (7), or provide no evidence of interaction
at all - infection with one species had no demonstrable impact
on the risk or severity of infection from another species (7).
Yet concurrent studies from South Asia and Oceania gave rise
to findings in support of cross-species immunity (9–11). In
particular, there is compelling data that infection with P. vivax
confers a degree of clinical protection against P. falciparum.
This was observed in a prospective study in Sri Lanka, where
the severity of symptoms from P. falciparum infection was
lessened following a P. vivax infection, inferred as “clinical
tolerance” to the more virulent species (9). Further support
for this phenomenon was garnered from cross-sectional and
longitudinal studies in Vanuatu where the incidence of severe
malaria (severe anemia and cerebral malaria) was much lower
than expected for an area hyperendemic for P. falciparum
and P. vivax (10). The authors proposed that cross-species
immunity may contribute to clinical protection and impact
the infection dynamics of these two species (12). Subsequent
data from a large-scale prospective analysis of health-center
morbidity in Papua New Guinea provided further evidence that
P. vivax infection was associated with clinical protection against
P. falciparum disease (11). In all of these studies, P. falciparum
never protected against P. vivax infection.

The hypothesis that one species could suppress the
pathogenicity of another (7) could also account for other unusual
epidemiological observations from co-endemic areas. For
example, distinct seasonal patterns characterized the incidence
of P. falciparum and P. vivax in Vanuatu (13) and between
P. falciparum and P. malariae in Nigeria (14), where each species
was dominant at different times of the year and appeared to alter
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the infection dynamics of the other. Inter-species suppression
of infection may also explain the recurrence of latent P. vivax
or P. malariae following treatment of P. falciparum infections
(15), and the low frequency of mixed infections in populations
where multiple species co-exist (16, 17). In fact, this led to the
suggestion by Cohen (16) that, “If heterologous immunity can
indeed greatly reduce the prevalence of mixed infections, as is
claimed, then a malaria vaccine need not be specific to each of
the species, strains, or antigenic variants of Plasmodium in order
to be effective.”

In none of these studies was there evidence that prior infection
with one species reduced the risk of subsequent infection with
another species. This is consistent with the lack of sterile
immunity to any species of malaria, even against different
strains within the same species. Rather, the evidence from these
population-based studies suggests that the interactions among
species may occasionally be protective and reduce the clinical
course of disease. Even this cautious interpretation is subject
to challenge by the many confounding factors that plague
these types of epidemiological studies. It is very difficult to
follow precisely the course of infection in individuals, even
in longitudinal studies. This limitation is particularly apparent
in light of the high frequency of submicroscopic infections
revealed in more recent studies using molecular diagnostics
(18). We cannot exclude persistent, submicroscopic infections
of one species that could impact interpretation of these data.
Alternative explanations to cross-species immunity have also
been raised, including non-specific antiparasitic effects (19),
ecological competition between parasites for the same mosquito
host, and density-dependent mechanisms such as competition
for red blood cells and nutrients within the human host (7, 16,
20). Given these limitations, we turn to studies with controlled
infections in humans and laboratory animals to assess the validity
of cross-species immunity.

EXPERIMENTAL HUMAN INFECTIONS

One of the earliest studies to deliberately infect human volunteers
with P. vivax and P. falciparum was from the 1930s (21). Eight
volunteers were infected with either P. vivax or P. falciparum
from the bite of an infected mosquito then infected with the
heterologous parasite either during the incubation period, the
clinical phase, or following a recent infection with the first
parasite. In the majority of these cases, the second infection
was established, with no evidence of sterile immunity in these
volunteers. Yet there was no discussion of whether the severity
of symptoms during the second infection was affected by the
primary infection.

The subsequent era of experimental human infections from
1940 to 1963 centered on malaria therapy treatments of
patients with neurosyphilis. Treatment often resulted in multiple
sequential infections with homologous or heterologous species,
especially if the first treatment did not meet the therapeutic
goals or due to limited availability of mosquitoes and patients
infected with a particular species as a source of parasites for
treatment. This may confound the interpretation of the results

when comparing sequential infections to mono-infections since
the reason for treatment failure is not known. Furthermore,
homologous protection in control subjects was not always
assessed. Despite this inherent variability, the malaria therapy
cases yielded a wealth of data on the outcomes of infection with
different species.

One of the earliest comprehensive reviews of these cases
evaluated the effects of a primary malaria infection with
P. falciparum, P. ovale, P. malariae, or P. vivax on patients re-
infected with either the same or a different species (22). Upon
homologous re-infection, the severity of the subsequent infection
was significantly reduced but heterologous re-infections gave
variable results. The outcome depended on the combination
and order of species for the primary and secondary infections.
In fifteen patients with a P. vivax infection followed by a
P. falciparum infection, no effect on the second infection was
observed when peak asexual parasitemia, gametocytemia and
fever episodes were compared to single infections in malaria-
naïve individuals. Similarly, there was no effect of a P. malariae
infection on a subsequent P. falciparum infection (n = 6).
However, previous infection with P. vivax led to lower parasite
densities and fewer fever episodes during a subsequent P. ovale
infection in 15 patients, compared to naïve individuals. When
the order of these infections was reversed and P. ovale was given
first, there was no effect on fever or parasitemia during the
following P. vivax infection; however, the P. vivax infections were
self-limiting, and no drug treatment was required.

There was a similar effect when a P. falciparum infection
followed a P. ovale infection (n = 11). In these cases, there was
obvious modification of the severity of the P. falciparum infection
resulting in a much lower proportion of patients requiring
treatment and in those that did, a lower therapeutic dose was
sufficient. In fact, no curative doses of drugs were needed if the
P. falciparum infection was preceded by a P. ovale infection.
When the order of these infections was reversed in eleven
patients, there was no effect of prior P. falciparum infection on the
subsequent P. ovale infections. Only a small number of patients
received a P. vivax infection after a P. malariae infection, but the
P. vivax infection in 2 of 3 patients resolved spontaneously.

A later review of different patient files from the same time
period suggested some cross-reactivity of P. falciparum with
P. malariae, but not with P. vivax or P. ovale (23). The frequency
of P. falciparum hyperparasitemia (≥ 10,000/µL) and fever was
not affected by prior infection with P. vivax or P. ovale but
was reduced when the P. falciparum infection was preceded by
a P. malariae infection. This latter observation was countered
in another review, concluding there was no evidence that past
or current P. malariae infection affected P. falciparum asexual
parasitemia; yet interestingly, there was an effect on P. falciparum
gametocytemia (24). The authors proposed that the balance
between asexual parasitemia and gametocytemia could be altered
by the presence of the other species.

Collectively, the data from select human experimental studies
bolster the evidence for cross-species interactions observed in the
field studies, although this is clearly not a consistent occurrence.
These studies further highlight the non-reciprocal nature of
parasite interactions that appear to be predicated on the temporal
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sequence of infection and support a mechanism of partial
heterologous immunity that can limit disease severity from the
secondary infection.

INFECTIONS IN EXPERIMENTAL
ANIMALS

Animal models of malaria offer an analogous approach
to investigate cross-species immunity in a controlled
environment. Early studies that investigated interactions
between P. gallinaceum and P. lophurae in chickens corroborated
the findings of the various human studies that heterologous
immunity can be non-reciprocal (25). Chickens infected with
either P. gallinaceum sporozoites or blood stage parasites
followed by infection with homologous parasites [as sporozoites
or infected red blood cells (iRBCs)], or iRBCs of the heterologous
species P. lophurae, exhibited marked reductions in both
homologous and heterologous parasitemia. But when the order
of the inoculations was reversed, weak heterologous immunity
was observed and only in chickens that were hyperimmune to
P. lophurae (following 4 or 5 infections).

There is ample evidence from mouse models that vaccination
with attenuated sporozoites can elicit cross-species protection
[reviewed in (26, 27)]. Mice immunized with X-irradiated
P. berghei sporozoites were completely protected from
heterologous challenge with P. vinckei sporozoites and
immunization with irradiated P. chabaudi sporozoites
induced sterile protection against infection with P. berghei
(28). Furthermore, both irradiated and genetically attenuated
P. berghei sporozoites inhibited intrahepatic development of
P. yoelii sporozoites based on copies of parasite 18S ribosomal
RNA quantified by qRT-PCR (29). Even immunization with
P. falciparum sporozoites protected 60% of mice from a P. berghei
infection (but not a P. yoelii infection) and passive transfer of
IgG from these P. falciparum vaccinated mice protected naïve
mice from a P. berghei sporozoite challenge (30). Similarly,
chemically attenuated P. berghei sporozoites protected mice
from challenge with P. yoelii sporozoites (31). In this case,
cross-species protection was short-lived and did not last beyond
10 days post-immunization (31).

Likewise, blood stage murine parasites are capable of inducing
cross-species immunity, which was reviewed extensively by
Richie (7, 8). For instance, protection - measured as reduction
in mortality - was observed when P. berghei-vaccinated mice
were challenged with P. yoelii and when P. vinckei-vaccinated
mice were challenged with P. chabaudi (32). Similar to Taliaferro
and Taliaferro’s observations (25) with P. gallinaceum and
P. lophurae in chickens, heterologous immunity in mice was non-
reciprocal (32). Prior infection with P. berghei or vaccination
with formalin-fixed blood-stage parasites reduced mortality
in mice from P. yoelii infection, but no protection was
observed when the species order was reversed. Similarly, mice
vaccinated with P. vinckei were protected from P. chabaudi
but not the inverse. One exception was the reciprocal cross-
species protection between the blood stages of P. berghei and
P. vinckei. After vaccination or infection with either parasite,

40–50% of mice survived a lethal heterologous challenge with
the other species. From these studies and others, the genetic
background of the mouse is likely to impact cross-protection.
P. chabaudi immunization did not protect against P. yoelii
challenge in outbred CD-1 mice (32), whereas partial protection
was observed in BALB/c mice, and complete protection in
C57BL/6 and CBA mice (33). More recently, this was observed
using a different vaccination scheme termed ‘controlled infection
immunization’ where mice were immunized with one species
while under doxycycline chemoprophylaxis then challenged with
the heterologous species (34). C57BL/6 mice immunized with
P. chabaudi or P. yoelii promoted survival following heterologous
challenge with the reciprocal parasite (34). While in BALB/c mice,
protection was non-reciprocal; only P. chabaudi immunization
could protect against P. yoelii, mirroring the findings from
the older study.

Immunity in the studies described above was defined as
protection from mortality, but as McColm and Dalton discuss
(32), there is evidence of significant modulation of infection
between species. This clinical suppression of disease was apparent
as reduced parasitemia over the course of infection and delayed
mortality relative to controls. Similarly, cerebral malaria was
prevented in mice with a P. berghei ANKA infection if they had a
co-infection with P. yoelii (but not with P. vinckei or P. berghei
NK25) (35). It is important to note that in many of these
studies the effects of non-specific anti-disease factors (such as
cytokines or hormones) on secondary infections are impossible to
separate from specific immune responses. Non-specific immune
factors in sera from mice with a malaria infection inhibited
in vitro growth of P. falciparum independent of antibody levels
(36). Another factor may be hepcidin, which is upregulated
in response to a blood stage malaria infection and inhibits a
concurrent liver stage infection irrespective of the strain or
Plasmodium species (37).

CROSS-REACTIVE ANTIBODIES

The evidence supporting cross-species protection from human
and animal studies validates efforts to explore heterologous
vaccine strategies but also begs an understanding of the
underlying immune mechanisms. Rather unexpectedly, insight
into the immunological basis of cross-reactivity first emerged
from attempts to develop species-specific diagnostic tests. In
testing the specificity of a complement fixation assay for malaria
diagnosis, Kingsbury detected cross-reactivity between P. vivax
and P. falciparum antigens (38). Sera from 6 of 12 individuals
with acute P. vivax infection reacted to P. falciparum antigens
in a precipitin test, and likewise, 5 of 16 sera from patients
infected with P. falciparum reacted to P. vivax antigens. However,
a later paper by Mayer and Heidelberger (39) suggested that
the specificity of the test was compromised by reactivity of sera
with human stromata in the antigen preparations. In a different
precipitin test developed by Taliaferro et al. (40, 41), sera from
patients in Honduras infected with P. vivax reacted with antigens
prepared from a P. falciparum-infected placenta. Surprisingly,
heterologous reactions were as strong as the homologous ones.
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These findings were replicated in two separate studies in
Honduras with over 500 sera but not in a later study in Puerto
Rico with antigens prepared in the same manner (42). The
results from the Puerto Rico study were deemed inconclusive and
the inconsistency attributed to the generally poor performance
of the precipitin test at that time. Serological cross-reactivity
was later observed against P. falciparum and P. vivax crude
antigens prepared from short-term culture of parasites isolated
from infected patients, but the homologous reactions were more
intense than the heterologous reactions (43).

With the advent of techniques to fluorescently label
antibodies, their recognition of antigens from distinct malaria
species could be directly observed under the microscope with the
immunofluorescence assay (IFA). In one of the first records of
this method applied to the study of human malaria, fluorescently
labeled immunoglobulin from a patient with a long-standing
P. vivax infection recognized RBCs infected with the simian
malaria species P. cynomolgi (although not P. berghei) (44). This
finding was replicated in another study where sera from P. vivax-
infected patients (n = 4) recognized thin blood smears made
from monkeys infected with P. cynomolgi (45). Homologous
parasites were recognized much more strongly than heterologous
parasites, but cross-reactivity in this case was reciprocal: serum
from 5 volunteers infected with P. cynomolgi recognized two
strains of P. vivax (Chesson and Venezuelan strains) by IFA using
thin blood smears made from infected patients (45). Similarly,
antibodies from a laboratory worker following an accidental
P. cynomolgi infection recognized thin smears of P. vivax iRBCs
as strongly as those infected with P. cynomolgi (44).

Immunological cross-reactivity between P. vivax and
P. falciparum was also demonstrated with sera from naturally
infected individuals (46). Sera from 9 out of 29 individuals with
a P. vivax infection recognized P. falciparum iRBCs, while sera
from 11 out of 21 individuals with a P. falciparum infection
recognized P. vivax iRBCs. In this same study, cross-reactivity
was also observed in individuals deliberately infected with
P. vivax or P. falciparum. Based on the antibody titers against
homologous versus heterologous iRBCs, P. vivax sera were more
cross-reactive against P. falciparum iRBCs than the converse.

In Guatemala, sera from individuals naturally exposed to
P. vivax strongly cross-reacted with asexual P. falciparum
antigens by ELISA (20/43 positive), IFA (35/36 positive) and by
immunoprecipitation assays (32/32 positive) (47). In order to rule
out past P. falciparum infection as the source of these antibodies
(despite > 99% prevalence of P. vivax), the sera were also tested
against the P. falciparum CSP and heat shock protein (HSP) 70
kD-like-molecule repeat peptides by ELISA. Only 2 out of 36 sera
samples recognized the PfCSP repeat peptide and 1 out of 33 sera
samples recognized the P. falciparum HSP70 kD-like-molecule
repeat peptide (48), suggesting the antibodies were truly cross-
reactive. In this study, serological recognition of a HSP70 peptide
was used to rule out antibodies specific to P. falciparum infection,
but this family of proteins contains other epitopes that are shared
across Plasmodium species (49). Given their ubiquitous nature, it
is possible that these and other conserved housekeeping antigens
underpinned some of the cross-reactivity discussed previously.
While these may be viable targets of cross-reactive antibodies,

their validity as vaccine candidates would depend on whether
they elicit functional antibodies.

IFA was also useful to validate the interactions between the
different species of rodent malaria and to develop a model of
antigenic similarity among these parasites (50). Hyperimmune
sera generated by infecting mice three times with either P. berghei,
P. yoelii, P. chabaudi, or P. vinckei revealed that the four
species were serologically indistinguishable by IFA. Sera from
rabbits immunized with soluble antigens from these parasites
gave similar results. These findings form the basis of a proposed
model of antigenic conservation between the four murine malaria
species whereby certain antigens are shared among all four
species, some antigens are shared only between the most similar
pairs of parasites and then others are specific to each species (50).

CROSS-REACTIVE T-CELLS

Cellular immunity is also likely to play a role in cross-
species immunity and may underpin the protective clinical
effects (reduced symptoms and disease severity) - yet there
is scant data on the potential contribution of T-cells to this
immune mechanism. In rodent models, antibody-independent
mechanisms clearly influenced susceptibility to heterologous
challenge (51). For example, B-cell deficient mice chronically
infected with P. yoelii were resistant to lethal challenge with
P. chabaudi (51). Cross-reactive T-cell responses are also vital
to the heterologous immunity observed in murine malaria
models of attenuated sporozoite vaccination. Immunization with
radiation-attenuated P. berghei sporozoites protected 79% of
mice challenged with P. yoelii sporozoites and immunization
with P. yoelii sporozoites protected 63% of mice challenged
with P. berghei sporozoites (52). Heterologous protection was
dependent on CD8+ T-cells whereas antibodies from immunized
mice only recognized homologous, but not heterologous,
sporozoites. In another study, 100% of mice immunized with
genetically attenuated P. yoelii sporozoites were protected against
P. berghei sporozoite challenge (53). The authors suggested that
late-liver stage arresting sporozoites elicited a broadly protective
CD8+ T-cell response.

There are few reports of species-transcending T-cells in
humans. The most definitive study showed that T-cells isolated
from volunteers immunized with attenuated blood stage
P. falciparum parasites proliferated in vitro in response to
P. knowlesi iRBCs (54). Whether these T-cells have functional
activity to protect against heterologous challenge is not known.

POTENTIAL VACCINE TARGETS

The data presented in this review build the case for heterologous
immunity elicited by natural or deliberate infection in animals
and humans. The mechanism of immunity likely involves both
humoral and cellular immunity, but the antigenic determinants
are unknown. To translate the observations spanning the
last century into viable heterologous vaccine candidates, the
conserved targets of immunity must be identified. Given that
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FIGURE 1 | Putative cross-species vaccine candidates at different stages of the parasite life cycle. Arrowheads indicate the direction of cross-reactivity and double
arrowheads show reciprocal cross-reactivity. Gray arrows denote immunological cross-reactivity, but unknown functional activity; purple arrows denote that
heterologous function was not demonstrated; blue arrows denote that heterologous function was demonstrated, and green arrows denote cross-boosting following
heterologous vaccination. The box indicates heterologous cross-stage reactivity (antibodies to the merozoite antigen recognize an iRBC surface antigen).
Spz(Pf) = P. falciparum sporozoites. Subscript letters denote route of exposure to parasite or antigen; C = Controlled human malaria infections (CHMI); V = exposure
through vaccination; N = natural infection. *Antigen recognition was blocked by heterologous antigen in a subset of samples from co-exposed individuals. Created
with Biorender.com.

partial protection is observed in nature and appears to be a
relatively rare event, we expect that multiple vaccine candidates
will be needed to target different stages of the parasite’s lifecycle.
Cross-species vaccines that aim to prevent infection should
target sporozoite antigens to inhibit hepatocyte invasion and
development, while vaccines that target blood stage antigens
could prevent severe disease. Gametocyte antigens are also
attractive targets to prevent the onwards transmission of malaria.
Below, we review the discovery and current knowledge of
potential cross-species antigens from different parasite stages.
We summarized the findings from studies using human malaria
parasite antigens in Figure 1.

Pre-erythrocytic Targets
The focus of immunity to sporozoite/liver stage infection is
largely on CSP. Cross-reactive immune responses between CSP
from P. vivax and P. falciparum have been reported in both
naturally exposed populations (55) and in controlled human
malaria infections (CHMI) (56). In populations from a region in
Brazil endemic for both species, peripheral blood mononuclear

cells (PBMCs) were highly responsive to stimulation with either
PfCSP or PvCSP (55). Responses to both species were especially
frequent in individuals recovering from a recent P. vivax
infection; PBMCs from 35 to 54% of these individuals proliferated
in response to PfCSP (55). These findings suggested that PvCSP
and PfCSP might share cross-reactive T-cell epitopes, while there
was no evidence of heterologous antibody responses. In contrast,
deliberate infection of naïve volunteers with either P. falciparum
or P. vivax by mosquito bite gave rise to heterologous antibody
responses to CSP from each species (56). In both groups,
61% of volunteers had antibodies that cross-reacted with the
heterologous CSP antigen. These heterologous responses were
largely mediated by IgM and not IgG.

Only one study supports a role for CSP in cross-species
protection, a key criterion for pursuing CSP as a heterologous
vaccine target. In mice, a CD8+ T-cell clone generated through
vaccination with irradiated P. yoelii sporozoites recognized
a peptide from PyCSP and the homologous peptide from
P. berghei PbCSP (57). Adoptive transfer of this clone to naïve
mice protected against homologous (P. yoelii) and heterologous
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(P. berghei) sporozoite challenge. The specificity of the T-cell
epitope appears to be critical for cross-species immunity.
In another study, mice were immunized with attenuated
P. berghei sporozoites and CD8+ T-cells that recognized a
different peptide from PbCSP were selected and transferred
into naïve mice (58). These CD8+ T-cells only recognized
the peptide from PbCSP and not a related peptide from
PyCSP that differed in sequence at three amino acid positions.
Consistently, the recipient mice were only protected against
a homologous challenge with P. berghei sporozoites, and not
against heterologous challenge with P. yoelii sporozoites. Similar
species-specific T-cell responses were observed in response
to vaccination with P. yoelii antigens (59, 60). Mice were
immunized with a T-cell epitope from PyCSP and lymph node
cells isolated from these mice specifically inhibited development
of P. yoelii liver stage schizonts in vitro, but not P. berghei
schizonts (59). However, immunization with this epitope did
not significantly protect mice against a homologous sporozoite
challenge. In a follow-up report to this study, Rénia et al. (61)
demonstrated homologous protection by passively transferring
peptide-specific T-cell clones to naïve mice. They failed to
observe inhibitory cross-reactivity of these T-cells against
P. berghei sporozoites in vitro and therefore did not test for
cross-reactivity in vivo.

Consistent with the lack of protection observed in some of
the rodent studies, immunization of mice with P. falciparum
PfCSP conferred no protection against heterologous challenge
with P. berghei sporozoites (30). Similarly, immunization with
B-cell epitopes from the P. falciparum and P. yoelii CSPs inhibited
homologous sporozoite invasion in vitro but had no effect against
heterologous sporozoites (62). It is perhaps not surprising that
cross-species immunity is not mediated through PfCSP. The
RTS,S vaccine based on PfCSP is poorly boosted by natural
infection and fails to elicit robust strain-transcending immunity,
with no prospects for species-transcending immunity since the
CSP repeats in each species are very different (63). However, it
is possible that PvCSP could prove a better candidate. Sera from
mice immunized with a PvCSP vaccine candidate recognized
both P. falciparum and P. berghei sporozoites by IFA (63).
Immunized mice were also protected from a P. berghei infection
initiated by the bite of an infected mosquito. As described
earlier, cross-species immunity is mostly non-reciprocal and in
many of the studies reviewed here, P. vivax confers broader
cross-reactivity compared with P. falciparum.

Other liver stage antigens are potential targets for a
cross-reactive vaccine. Sera from mice immunized with the
P. falciparum cell-traversal protein for ookinetes and sporozoites
(PfCelTOS) recognized P. berghei sporozoites by IFA and
protected 60% of BALB/c mice from infection with P. berghei
sporozoites (64). However, cross-species protection was not
observed when PfCelTOS was expressed from a viral vector
(65). The uis3 gene represents another potential liver stage
target and is conserved across human, primate and rodent
Plasmodium species. It is actively transcribed in sporozoites but
translationally repressed until the parasite infects hepatocytes
(66). Mice immunized with PfUIS3 and challenged with
P. berghei sporozoites exhibited a significant delay in the time

to patent parasitemia (65). It should be noted that PbUIS3 was
not specifically shown to mediate this cross-species protection
and a search for predicted cross-reactive linear epitopes did
not reveal peptides with high conservation between the two
orthologs. PfLSA3, another sporozoite and liver stage antigen
with unknown function, elicits cross-reactive antibody and
cellular immune responses against rodent malaria (67, 68).
PfLSA3-specific antibodies purified from hyperimmune human
sera or from an immunized chimpanzee recognized P. yoelii
sporozoites by IFA and western blot, blocked invasion of
murine hepatocytes by P. yoelii sporozoites and protected mice
from P. yoelii challenge in a pilot experiment (n = 4). The
epitopes shared between the P. falciparum and P. yoelii proteins
enable reciprocal immune recognition as antibodies from mice
infected with P. yoelii recognized peptides from PfLSA3 yet
given the absence of a PfLSA3 ortholog in P. yoelii, these
antibodies may be targeting another related antigen or the cross-
reactivity is not specific. Furthermore, this cross-reactivity is
restricted to P. yoelii, as sera from mice infected with P. berghei
did not cross-react with PfLSA3 and likewise, human PfLSA3
antibodies failed to recognize P. berghei sporozoites or block
invasion of hepatocytes.

Erythrocytic Targets
The merozoite surface protein (MSP) family includes several
blood stage vaccine candidates whose homology across different
Plasmodium species may be exploited for a cross-species vaccine.
For example, IgG responses from a subset of individuals in
Indonesia were cross-reactive to both merozoite surface proteins
PfMSP5 and PvMSP5 (69). Sera from 82 individuals with a
P. falciparum infection, 85 individuals with a P. vivax infection,
85 individuals with mixed infections and 87 exposed, but
asymptomatic individuals, were tested by ELISA. Of these, 107
dual-positive responders were identified that recognized both
PfMSP5 and PvMSP5. Using competition ELISAs, 7 samples were
identified as truly cross-reactive; in other words, recognition of
MSP5 from either species could be blocked by pre-incubation
with the MSP5 from the other species. Although the overall
frequency of cross-reactivity to these two proteins was low
(7%), these findings suggest that a vaccine that targets the
cross-reactive epitopes may protect against more than one
Plasmodium species.

MSP-1 is another viable blood stage candidate. In the CHMI
study described earlier (56), 50% of volunteers infected with
P. vivax had antibodies to PfMSP-1 while 67% of those infected
with P. falciparum recognized PvMSP-1 on day 28 after infection.
Far lower frequencies of cross-reactivity were observed in other
studies. Using a multiplex bead assay, the species specificity
of IgG responses to the MSP119 region from P. falciparum,
P. ovale, P. vivax, and P. malariae was evaluated in sera from
experimentally infected chimpanzees, infected individuals living
in low transmission settings in Haiti and Cambodia (n = 12), and
sera eluted from blood spots collected from individuals living in
a high transmission setting in Mozambique (n = 20) (70). All
of the antibody responses from the chimpanzees were species-
specific and recognition was completely blocked by competition
with the homologous protein. Only one out of 12 samples from
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people living in the low transmission setting and 8 of 20 samples
from people living in high transmission settings showed partial,
and highly heterogeneous cross-reactivity to select other species.
Cross-reactivity was mostly non-reciprocal and there were very
few sera that cross-reacted with all four species of Plasmodium.

Another pair of orthologs that share B-cell epitopes is
PfCLAG9 and PvCLAG7 (71). These proteins localize to the
rhoptries and play a role in erythrocyte invasion. In this study,
cross-reactive antibodies were observed in naturally exposed
populations in the Brazilian Amazon and these findings were
modeled in mice. Antibodies from mice immunized with
PfCLAG9 peptides exhibited very similar surface staining of
RBCs infected with either P. vivax or P. falciparum by IFA. The
functional activity of these antibodies against the heterologous
parasite was not reported.

Antigens that elicit cross-reactive antibodies against
orthologous proteins from non-human and human Plasmodium
species would be attractive vaccine candidates since their broad
conservation across the evolutionary spectrum of these parasites
implicates these proteins in parasite survival. Recombinant
P. falciparum HGPXRT stimulated mouse CD4+ T-cells primed
with the P. yoelii ortholog, implying these proteins share T-cell
epitopes (72). In vivo, mice immunized with P. falciparum
HGPXRT controlled parasitemia and induced partial protection
against a P. yoelii challenge. Another promising group of proteins
are the merozoite-released soluble proteins (MRSPs) (73). Mice
immunized with the P. falciparum MRSPs were protected
against a blood stage P. yoelii infection and IgG purified from
mice infected with P. yoelii inhibited P. falciparum growth and
invasion in vitro. Furthermore, P. falciparum MRSPs bound
to mouse erythrocytes and P. yoelii MRSPs bound to human
erythrocytes, suggesting conservation of functionally related
proteins across the two species.

Apical membrane antigen 1 (AMA1) is another viable cross-
species vaccine candidate; it is an invasion protein present
in many Plasmodium species and there is strong evidence of
structural and functional conservation between orthologs (74). In
fact, PvAMA1 replaced PfAMA1 in transgenic parasites without
compromising parasite growth (74). Polyclonal rabbit antibodies
raised against either antigen recognized the heterologous protein
by western blot and stained the parasites by IFA. Further support
for immunological cross-reactivity among these proteins stems
from epitope mapping studies with a monoclonal antibody
(mAb) raised against PvAMA1 that recognized AMA1 from
P. knowlesi, P. falciparum, P. cynomolgi and P. berghei by IFA (75).
Co-crystallization of the mAb with either PvAMA1 or PfAMA1
revealed striking structural similarity between the epitopes in
both proteins and most of the contact residues were conserved.
Interestingly, this conservation extends to the AMA1 orthologs
from the other Plasmodium species recognized by the same
mAb. It is important to note that in both of these studies on
AMA1, there was evidence of antibody cross-reactivity, but these
antibodies were not functional. The rabbit sera against PfAMA1
did not block RBC invasion by the P. falciparum transgenic
strain that expressed PvAMA1 (74). Likewise, the PvAMA1 mAb
recognized P. cynomolgi but did not block invasion by this species
in vitro (75). This may be due to lower avidity of the PvAMA1

mAb against the heterologous antigens, as shown by surface
plasmon resonance (SPR) with PfAMA1. These data provide a
starting point to design a cross-species vaccine against AMA1
but emphasize the importance of defining epitopes that will yield
inhibitory antibodies against the heterologous species.

Transmission-Blocking Targets
The goal of a transmission-blocking vaccine is to disrupt the
life cycle of the parasite by interrupting transmission to the
mosquito. A vaccine with the potential to achieve this across
multiple species would be a pivotal public health tool to support
malaria elimination. To the best of our knowledge, only the
gametocyte antigen P48/45 has emerged as a candidate for
cross-species recognition. Sera from school-aged children living
in a P. falciparum endemic area of Zimbabwe were highly
cross-reactive to the P. vivax homolog Pvs48/45 (76). Thirty-
six of 49 (73%) samples positive for Pfs48/45 by ELISA also
recognized Pvs48/45. These results were confirmed by western
blot on 23 randomly selected samples. Officially, there was
no P. vivax transmission in the area at the time of sample
collection (2015), but the authors detected one low-level P. vivax
infection out of 27 randomly selected blood samples that were
tested by nested PCR, suggesting a potential caveat to these
findings. Nonetheless, similar results were observed in mouse
models (77). Sera from mice immunized with recombinant
Pfs48/45 or Pvs48/45 recognized the heterologous proteins by
ELISA and IFA. Importantly, the antibody responses against
heterologous antigens were cross-boosted; for example, mice
immunized once with Pfs48/45 then boosted with Pvs48/45
rapidly acquired anti-Pfs48/45 antibodies that were not present
following the primary immunization. This strongly implicates
that specific B-cell epitopes are conserved across the orthologous
proteins. A vaccine based on these epitopes that could be boosted
by natural infection with either species would be a powerful
intervention against malaria.

Cross-Species Immunity to
Heterologous Proteins
All the studies considered above investigated cross-reactivity
between orthologous proteins yet there is evidence (although
sparse) of cross-reactivity between functionally unrelated
antigens from different species. We demonstrated immunological
cross-reactivity between heterologous proteins in P. vivax and
P. falciparum (78, 79) (Figure 2). Based on the unexpected
finding that Colombian men and children had antibodies
to the pregnancy-specific P. falciparum antigen VAR2CSA,
we discovered that prior exposure to P. vivax Duffy Binding
Protein (PvDBP) can give rise to antibodies that cross-react
with VAR2CSA (78). We further mapped an epitope in the
Duffy Binding Like (DBL) domain of PvDBP that mediates
this cross-reactivity (79). Human antibodies affinity-purified
against this epitope can block adhesion in vitro of VAR2CSA-
expressing iRBCs to the placental receptor chondroitin sulfate
A (CSA). The surprising aspect to this immune pathway is
that PvDBP and VAR2CSA are not functionally related. Rather,
they have a common homologous ancestor which gave rise to
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FIGURE 2 | Non-reciprocal, cross-species immunity mediated by conserved domains in functionally distinct proteins from P. vivax and P. falciparum. (i) Antibodies to
the P. vivax merozoite protein PvDBP that arise from natural infection in humans or by vaccination with the recombinant protein in mice recognize epitopes within the
DBL domain of PvDBP (ii). A subset of antibodies (green) that recognize subdomain 1 (SD1; blue) also cross-react with the DBL domains of P. falciparum VAR2CSA
(iii), a protein that mediates sequestration of parasites in the placenta. Although PvDBP is not thought to play a role in P. vivax pregnancy-associated malaria,
antibodies against the SD1 region of PvDBP can block P. falciparum parasites from binding in vitro to CSA, the placental ligand (iv). The recognition sites of these
cross-reactive antibodies in one of the DBL domains of VAR2CSA, DBL5ε, map to two non-overlapping peptides, P20 (orange) and P23 (red) (v). These epitopes are
spatially distinct from the immunodominant epitopes recognized by sera from multigravid women from Tanzania (green). Concordantly, these epitopes are cryptic;
P20 and P23 are not recognized by sera from multigravid women from Uganda, nor by sera from rabbits immunized with VAR2CSA. As observed in other studies of
human and mouse malaria, the immune recognition of these proteins is non-reciprocal as antibodies elicited through natural exposure to VAR2CSA in pregnant
women or through immunization of animals with recombinant VAR2CSA did not recognize SD1. The cross-reactivity of antibodies to PvDBP and VAR2CSA
exemplifies a mechanism of immune recognition to functionally distinct proteins in different Plasmodium species that is mediated by structurally conserved domains.
Modified from (79). Created with Biorender.com.

conserved structural features shared among a large family of
erythrocyte binding proteins (80). These structural domains
are ubiquitous in human and rodent Plasmodium species.
However, the immunogenicity of cross-reactive epitopes within
these proteins is likely variable across species. In P. vivax, the
cross-reactive epitope is subdominant, arising only in a subset
of exposed individuals (79, 81). In turn, these antibodies target
epitopes in VAR2CSA that are cryptic, and reciprocal immunity
is not elicited by exposure to VAR2CSA in pregnancy or by
vaccination (79). Cross-reactivity is therefore a rare event – but
once identified, can be exploited for vaccine design.

It is even conceivable that a vaccine could be designed
to confer protection across species and across parasite stages.
A 60 amino acid peptide based on a cryptic epitope discovered
in PfCSP elicited antibodies in mice that recognized asexual
blood stages of both P. falciparum and P. yoelii by IFA and
blocked P. falciparum merozoite invasion by 70% in vitro (82).
Strikingly, more than 60% of mice immunized with the PfCSP
peptide survived a lethal blood stage infection with P. yoelii
(although only 2 control animals were included). The authors
reported that the PfCSP anti-peptide sera recognized a 60–65 kDa
parasite protein in P. falciparum blood stage lysates. This protein
may be related to TRAP, a protein expressed during liver and
blood stages that shares amino acid similarity to the PfCSP
peptide sequence. Importantly, this study demonstrated that
a peptide vaccine based on a cryptic epitope can focus the
immune response on conserved regions of the protein, with

the potential to target related antigens in other stages of the
parasite life cycle.

DISCUSSION

The Rationale for a Cross-Species
Vaccine
These studies revealed that individual antigens can elicit cross-
reactive immune responses. However, the lack of sterilizing
immunity to malaria during a lifetime of natural infection
implies that a multivalent vaccine would be needed to provide
cross-species protection. It is conceivable that the whole
parasite vaccine approach could replicate the partial cross-
species immunity observed in the studies discussed above.
Parasites attenuated by irradiation, chemical treatment or genetic
modification expose the immune system to a broad spectrum of
antigens for that given stage, including antigens that are highly
conserved across species (e.g. housekeeping antigens). If these
attenuated parasites can persist in vaccinated individuals and
remain metabolically active (83), this creates an opportunity
for sustained antigenic stimulation of either B- or T-cells with
the potential for more robust protection from future infection.
In an older review of CHMI studies, only one volunteer was
immunized with radiation-attenuated P. falciparum sporozoites
and challenged with P. vivax. This person was not protected from
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vivax infection (84). Further CHMI studies are needed to test for
cross-species immunity.

An alternative vaccine approach is to define the conserved
epitopes in related antigens from different species and focus
the immune response on these epitopes. This hinges on the
hypothesis that despite the extreme antigenic diversity in
Plasmodium, there exist evolutionarily conserved epitopes that
can elicit protective antibodies or stimulate cross-reactive T-cells.
Richie argued that selection pressure would favor antigenic
diversity in species that infect the same host to avoid cross-species
immunity that could eliminate both species (7). The continued
scourge of malaria globally supports this tenet.

It is clear from the analysis of Plasmodium genomes that the
immunodominant antigens in all species are highly polymorphic.
Yet if we consider the functions of these diverse antigens, they are
largely restricted to the pathogenesis of a particular species. For
instance, the PfEMP1 virulence factors mediate sequestration of
iRBCs to different tissues as a mechanism of immune evasion.
Sequestration may have evolved to enhance the virulence of
P. falciparum over other species that co-circulate in a given
population and compete for the same host. But since the PfEMP1
family is unique to P. falciparum (and P. reichenowi in primates),
the diversity among the members of the PfEMP1 family hinders
the acquisition of strain-transcending immunity only within
this species. This is also exemplified by the highly polymorphic
proteins involved in erythrocyte invasion. Plasmodium species
exhibit host cell tropism for different types of RBCs and evolved
parasite ligands that bind to host receptors on those specific
cells. In P. vivax, the PvDBP ligand interacts with the Duffy
antigen receptor for chemokines (DARC) to invade reticulocytes;
there is extensive diversity in the PvDBP domain that interacts
with DARC. These polymorphisms are selected to evade immune
responses that would block invasion of reticulocytes, yet they
remain specific to P. vivax and do not impact other species that
require different ligand-receptor interactions for invasion.

Despite the selection for variation in the immunodominant
antigens within each species, many of these proteins evolved
from ancestral homologs. The PfEMP1 and PvDBP proteins
share a common protein architecture which includes DBL
domains. While the functions of proteins with DBL domains
diverged significantly within and across species, these domains
may nevertheless have conserved epitopes that are essentially
‘evolutionary relics’. These epitopes are probably not highly
immunogenic and would induce antibodies with lower avidity
toward their heterologous counterparts. They may even be
cryptic in some proteins, which could explain the non-reciprocal
nature of cross-species immunity observed in so many of the
human and animal studies (Figure 2). Based on the data reviewed
here, we propose that these epitopes may be more exposed in
less virulent parasites and cryptic in more virulent ones. This
could provide a competitive advantage for the benign parasite and
ensure survival of the host.

Strategies and Challenges
We propose that vaccination can refine and amplify a cross-
species immune response to target heterologous antigens. There
are a number of potential vaccine targets identified already

that elicit cross-reactive antibodies (Figure 1) and certainly new
targets to discover (Figure 3). The first step to identify new cross-
reactive B-cell epitopes is to test sera for reactivity to heterologous
parasites (e.g. by IFA). Cross-reactive sera should then be assessed
for functional activity against the heterologous parasite. This
could involve testing the sera in various in vitro assays to measure
effects on invasion, sequestration, transmission-blocking activity,
etc. Most of these assays measure antibody function, with
only indirect assays to measure T-cell mediated responses
(e.g. cytokine production) (85, 86). Even the more established
antibody-based assays, such as the growth inhibition assay,
vary in terms of validity and predictive value, and are largely
antigen and strain-specific (87). Assays to measure adhesion-
blocking activity also vary with the format; for example, the
anti-adhesion activity of VAR2CSA antibodies varies significantly
when compared using a static inhibition of binding assay, a flow-
based assay, and a placental perfusion assay (88). Nevertheless,
these assays can provide insight into the pathway blocked by
those antibodies and generate hypotheses of which antigens are
likely targets. Once the target protein is identified (through
biochemical and/or immunological methods), antibodies specific
to this antigen can be purified from the sera or generated as mAbs.
These antibodies can be characterized in terms of their cross-
reactivity (titers, avidity) and their functional activity against the
heterologous parasite.

To translate these findings into vaccine candidates, the cross-
reactive epitope can be mapped using a variety of approaches.
B-cell epitopes may be linear but are more likely to be
conformational if they represent structurally related epitopes.
Conformational epitopes are certainly more challenging to map
but advances in structural and computational biology provide
valuable tools that support rational vaccine design [reviewed in
(89)]. For example, cross-reactive human or mouse mAbs can
be co-crystallized with the target protein to map the epitope
empirically (75). These antibodies can also be used to screen
peptide libraries (conformationally constrained or linear) or
tested against mutant recombinant proteins to identify the
epitope that mediates cross-reactivity. In parallel, computational
approaches can be applied to protein databases to predict
conserved epitopes. This technique was recently adopted to
predict conserved linear and discontinuous epitopes in CSP
and MSP-1 shared between the P. falciparum and P. vivax
orthologs (56). Computational modeling can also guide the
formulation of vaccines to enhance immunogenicity and to
elicit broadly neutralizing antibodies. Computational simulations
of affinity maturation applied to the antibody response to
P. falciparum AMA-1 revealed that polyvalent vaccines promoted
cross-reactive antibody responses to shared epitopes (across
strains; AMA-1 from different species was not included) (90).
In future, entire proteomes and epitope libraries spanning the
evolutionary spectrum of Plasmodia can be probed using artificial
intelligence and machine learning to discover targets of cross-
species epitopes. It is important to note that the process of
identifying and refining the epitope is iterative and each approach
can complement and inform the other.

Once a cross-species epitope is mapped, the next step is
to reproduce the epitope synthetically such that it can elicit
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FIGURE 3 | Proposed strategy to identify cross-species vaccine candidates based on cross-reactive B-cell epitopes. Given that cross-species immunity is a rare
event in naturally exposed populations, a large number of samples from endemic populations will need to be screened (e.g. by IFA or flow cytometry) to identify sera
that recognize heterologous parasites. Antibody function against the heterologous species should then be confirmed (e.g. invasion, cytoadherence,
transmission-blocking assays), and the antigen that mediates this functional cross-reactivity identified. This can be achieved through a variety of methods, including
depletion or competition experiments. Antigen-specific antibodies can be affinity-purified from sera, or monoclonal antibodies generated using PBMCs from naturally
exposed individuals or from animals vaccinated with the antigen. Functional analysis of these antibodies can then be used to down-select candidate antigens before
applying a variety of empirical approaches to map the cross-reactive epitope. Phage and peptide libraries can be screened with the cross-reactive antibodies.
Mutagenesis techniques, such as site-directed mutagenesis or alanine scanning of recombinant proteins can map residues that are critical for antibody binding.
Physical mapping, such as co-crystallization of the antigen-antibody complex, is another powerful approach to map the contact residues within the epitope. These
experimental tools can be integrated with computational analysis of the antigens from each species. Once a putative cross-reactive epitope is identified, the next
step is to generate a recombinant protein or synthetic peptide that recapitulates this epitope, raise epitope-specific antibodies in animals, and test for cross-reactivity
and function in vitro. It is important to note that the process of identifying and refining the epitope is iterative and each approach can complement and inform the
other to yield potent, functional cross-species antibodies. Created with Biorender.com, including crystal structures PDB accession numbers 1SME and 6R2S.

functional antibodies or protective cellular responses against the
heterologous epitopes in other species. This can be achieved
with engineered recombinant proteins that expose the epitope
preferentially (e.g. 91), linear epitopes conjugated to carrier
peptides, and for conformational epitopes, this is feasible with the
use of peptide scaffolds that restrict the conformation of peptides
as immunogens (e.g. 92). An alternative delivery platform is
the use of transgenic parasites from one species engineered
to express antigens from a different species (93). The success
of these approaches will depend on the fine specificity of the
antibodies and their avidity for the heterologous epitopes. The
avidity of cross-species antibodies observed in human and animal
infections is generally low but different immunization strategies
can be adopted to promote affinity-maturation, including the
choice of adjuvant, delivery platform, dosing, and boosting
schemes (2). As such, several rounds of identification, designing
and testing may be required to produce potent, functional cross-
species antibodies.

One outstanding question is whether these immune responses
would be boosted by natural infection with heterologous species.
This may depend on a number of variables including the intensity

of parasite transmission, host genetics, and immune regulation.
We hypothesize that if the epitope is truly cross-reactive, then
memory B- or T-cells may be expanded by exposure to the
heterologous epitope even if it is not immunogenic in that
species. This phenomenon was recently reported for a cryptic
epitope in group A streptococcus where immunization with the
conserved peptide was boosted by natural infection with different
bacterial strains (94). Similar vaccine strategies are being adopted
against cryptic epitopes in Ebola antigens (95), and toward the
development of a universal influenza vaccine (96–98).

CONCLUSION

The slow progress in developing a malaria vaccine underscores
the many challenges with a traditional vaccine approach. We
need to consider alternative, yet complementary strategies. Thus,
exploiting rare immune mechanisms like cross-species immunity
are worthy of consideration and with our current tools, this
is more amenable than ever before. We don’t expect this
approach to yield a vaccine that provides sterile immunity
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to malaria; but if we could emulate the reduction in disease
severity observed with heterologous infections in humans and in
animal studies, this vaccine could reduce mortality in the most
vulnerable populations and allow natural, strain-transcending
immunity to develop.
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to Secondary Bacterial Pneumonia
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That macrophages adapt to environmental cues is well-established. This adaptation has

had several reiterations, first with innate imprinting and then with various combinations

of trained, tolerant, paralyzed, or primed. Whatever the nomenclature, it represents

a macrophage that is required to perform very different functions. First, alveolar

macrophages are one of the sentinel cells that flag up damage and release mediators that

attract other immune cells. Next, theymature to support T cell priming and survival. Finally

they are critical in clearing inflammatory immune cells by phagocytosis and extracellular

matrix turnover components by efferocytosis. At each functional stage they alter intrinsic

components to guide their activity. Training therefore is akin to changing function. In

this mini-review we focus on the lung and the specific role of type I interferons in

altering macrophage activity. The proposed mechanisms of type I IFNs on lung-resident

alveolar macrophages and their effect on host susceptibility to bacterial infection following

influenza virus infection.

Keywords: type I IFN, trained immunity, alveolar macrophage, lung viral infection, secondary bacterial pneumonia,

epigenome, tolerance

INTRODUCTION

Bacteria entering the respiratory tract are generally tolerated well in healthy adults and their
growth contained by the host commensal microbiome, antimicrobial peptides, phagocytic cells
(predominantly macrophages), mucus entrapment, and ciliary clearance. Some bacteria associated
with respiratory tract infections are part of the normal microbiome in health, such as Streptococcus
pneumoniae, Haemophilus influenza, and S. aureus (1–3). However, severe consequences arise
when the lung microenvironment is perturbed in some way. Perturbations can include underlying
congenital abnormalities (e.g., primary ciliary dyskinesia), underlying chronic disease (e.g., asthma,
chronic obstructive pulmonary disease, cystic fibrosis, idiopathic pulmonary fibrosis), the effect of
the aging process, the premature lung and previous severe infections (4). In all cases, the outcome
depends on the severity of the perturbation, the rate of bacterial growth, and whether the bacterium
is contained in the airspaces or invades the lung tissue and systemic circulation.

Containment of bacteria relies on effective physical and chemical barriers, but also a timely
immune response. Any delay in immunity allows the growth of bacteria to an over-whelming level.
It is interesting to note that conditions associated with bacterial out-growth occur in situations
where the lung has a heavy infiltration of the very cells (macrophages and neutrophils) required
to clear the micro-organism, which suggests they are not functioning properly (5). The function
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and phenotype of any immune cell is influenced by the local
microenvironment and the needs of the tissue at that time. We
referred to this adaptation as “innate imprinting” in 2004 (6) that
was superseded by the term “trained immunity” (7–10). However,
the terminology continues to evolve and now trained immunity
represents a “primed” state that is beneficial, whereas the more
immune paralyzed state (as observed following viral infection
of the lung) is referred to as a “tolerant” state. Trained/tolerant
innate immunity is important in health, disease and disease
resolution. The molecular mechanisms of trained immunity in
health have been described extensively elsewhere (11). Here we
will describe how alveolar macrophages are tolerised during and
following inflammation with a specific emphasis on the role of
type I interferons (type I IFNs).

DO MYELOID CELLS ADAPT?

Specificity and adaptation were once the hallmark of adaptive
immunity alone. However, epidemiological studies as early as
1946 recognized that the Mycobacterium tuberculosis vaccine,
BCG, also protected against childhood mortality caused by
antigenically indistinct organisms, suggesting “adaptation” of
cells of the innate, rather than adaptive, immune system (12,
13). Since then more recent studies have shown that innate
immune cells can display adaptive characteristics (11). In
terms of generating a specific response, it could be argued
that pattern recognition receptors (PRRs), expressed by innate
immune cells, confer specificity. PRRs are germline-encoded
receptors and include the toll-like receptors (TLRs), RIG-I-
like receptors (RLRs), NOD-like receptors (NLRs), and C-
type lectins (14), among others. These receptors vary widely
in the ligands that they bind to, allowing them to detect a
substantial range of molecular patterns, known as pathogen- and
damage-associated molecular pathogens (PAMPs and DAMPs,
respectively) (15). This activates both divergent and convergent
downstream signaling pathways enabling a tailored response to
a specific pathogen (14). Furthermore, it is now recognized that
innate immune cells, for example myeloid cells (7, 8, 16), NK
cells (17, 18) and epithelial cells (19), can acquire “memory”,
characterized as a heightened and quicker response upon re-
exposure to a pathogen. Innate immune memory is well-defined
in organisms that lack an adaptive immune system, including
plants and invertebrates (20, 21). This is more controversial in
vertebrates, partly due to the relatively short half-life of innate
cells, which in the case of monocytes can be up to 1 day in
the circulation (22). However, the presence of innate immune
memory in monocytes has been observed for up to 3 months (13)
and formacrophages 6months ormore (23). This innate immune
memory or trained immunity likely serves as an evolutionary
survival advantage with the innate immune system primed
to combat a secondary pathogen encounter (11). However,
training can lead to deleterious consequences if the outcome is a
macrophage that is tolerant to stimulation. A slower macrophage
response likely protects the host from further tissue damage,
prioritizes a reparative state and prevents the development of
autoimmunity. In the case of severe influenza virus infection,

upon resolution macrophages are unable to respond quickly
enough to curtail bacterial load leading to complications of
secondary pneumonia (24).

TYPE I IFNs

There are many mechanisms associated with susceptibility to
bacterial complications following lung viral infection. However,
type I interferons (IFNs) stand out as particularly important
as they directly impair, or lead to downstream consequences
affecting, bacterial clearance (Figure 1) (25–30). All three types
of interferons (Types I – III) play a major role in innate
and adaptive immunity (14). Of the eight (-α, -β, -δ, -ε, -ζ,
-κ, -τ , and –ω) type I IFNs, the -α, -β forms, which bind
to the IFNAR receptor complex (IFNAR1 and IFNAR2), have
received the most attention with regards to lung viral infection
(32). Receptor binding recruits janus kinase 1 (JAK1) and
tyrosine kinase 2 (TYK2) that leads to the phosphorylation
of Signal Transducer and Activator of Transcription (STATs).
Phosphorylation leads to homodimers and heterodimers; the
precise combination dictating the final transcriptional outcome.
STAT 1 and 2 heterodimers bind to IRF9 to form the ISG
(Interferon Stimulated Gene) factor 3 complex−9 (33, 34). Type
I IFNs also activate the p38-associatedMAPK (mitogen-activated
protein kinase pathway) (35). Type I IFNs have a myriad of
functions in the lung where they are both crucial for the clearance
of viral infection and resolution of inflammation. However, it
is these diverse functions that are thought to contribute to host
susceptibility to bacterial infections following viral infection.

TYPE I IFNs AND HOST SUSCEPTIBILITY

TO SECONDARY BACTERIAL INFECTION

The contribution of type I IFNs to host susceptibly to bacterial
infection is well-established (Table 1). In 2001, Biron’s group
defined a role for IFN α/β in viral-induced sensitization to
bacterial products (36). Viral mimics, such as Poly I:C, also
impair anti-bacterial immunity by induction of type I IFNs (37).
Since then the field has expanded rapidly to show that type I
IFNs decrease neutrophil chemoattractants (CXCL1/2) (25, 26),
reduce IL-17 producing γδ T cells (27), and impair CCL2-
mediated recruitment of macrophages following viral infection
(28). Furthermore, depending on the context type I IFNs can
promote or inhibit NLRP3 inflammasome activation, causing
either an increase in IL-1β that limits γδ T cell activity with
subsequent susceptibility to S. pneumoniae (27) or decreases IL-
1β production enhancing susceptibility to S. aureus (29, 30),
respectively. Additionally, type I IFN induced by viral infection
alters cellular metabolism that may favor bacterial replication,
uptake and adhesion (38). Thesemechanisms have been reviewed
extensively elsewhere (39).

The immune suppressive outcome of enhanced type I IFNs
is exemplified by strategies to inhibit its action. Inhibition of
IFN receptor I- and III-associated TYK2 restores anti-bacterial
immunity in a human ex vivo lung co-infection model (40).
An absence of STAT2 that is downstream of IFN-αR 1/2 makes
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FIGURE 1 | The mechanisms of enhanced host susceptibility to secondary bacterial infection by type I IFNs. Airway epithelial cells and alveolar macrophages are cells

of the innate immune system that are at the first line of defense against infection in the airspaces. The influenza virus activates pattern recognition receptors expressed

by airway epithelial cells and macrophages and leads to the production of type I IFNs, which are crucial in combating the infection. However, type I IFNs also induce

an immunosuppressive state in the resolution phase of infection that enhances host susceptibility to secondary bacterial infection. These mechanisms include: (1)

inhibition of IL-17-producing γδ T cells, (2) Induces macrophage epigenetic modifications, (3) Induces or inhibits inflammasome activation in a context-dependent

manner, (4) Inhibits neutrophil and monocyte infiltration. These mechanisms result in a lung environment ill equipped to fight an increasing bacterial burden.

influenza infection more severe, but prevents the development of
secondary bacterial pneumonia (41). Furthermore, blocking Toll-
like receptor 4 (TLR4) after influenza virus infection decreases
bacterial growth by reducing IFNβ (26). Type I IFN induction
may also contribute to the risk of bacterial infection following the
administration of anesthetics prior to surgery. Infectious risk due
to the immune modulatory effects of anesthetics delays surgical
procedures in patients suspected of a respiratory infection.
However, not all anesthetics cause this problem (42) and
halothane actually reduces bacterial burden in influenza infected
mice by decreasing type I IFN in the mouse lung (43). These
observations suggest that type I IFN-induced tolerance following
severe lung viral infection, although beneficial in limiting excess
tissue damage and restoring tissue to homeostasis, results in a
macrophage unable to deal with a growing bacterial burden.

TYPE I IFNs AND THE RESTORATION OF

THE STEADY STATE

Type I IFNs are directly involved in important processes
necessary to restore the lung to health. A reduction of
inflammatory responses during apoptotic cell clearance is critical
to prevent autoimmunity to self-antigens. Type I IFN receptor
signaling induces suppressor of cytokine signaling (SOCS) 1 and
3 activation during efferocytosis of apoptotic cells by the receptor
tyrosine kinase AXL (44). The combination of AXL and IFNAR1
signaling causes reduced macrophage responses and subsequent
bacterial complications (45, 46). Furthermore, macrophages are
also “tolerised” during the uptake of extracellular matrix turnover
by-products; again an important function to restore homeostasis
(47). The glycosaminoglycan, hyaluronan for example, is a
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TABLE 1 | The effects of viral—induced type I IFN on the inflammatory response to secondary bacterial infections.

Primary viral infection Secondary bacterial

infection

Type I IFN-mediated effects

(↓ = decreased; ↑ = increased)

References

Inflammatory response H1N1 influenza A/PR/8/34 virus

(PR8)

Type 3S. pneumoniae ↓ Neutrophil chemoattractants (CXCL1/2) (25, 26)

Influenza virus A/X31 (H3N2) Type 3S. pneumoniae ↓ IL-17-producing gamma delta T cells (27)

H1N1 influenza A/PR/8/34 virus

(PR8)

Strain P1121,

S. pneumoniae

↓ CCL2- mediated recruitment of macrophages

following viral infection

(28)

Influenza virus A/X31 (H3N2) Type 3S. pneumoniae ↑ NLRP3 inflammasome activation (27)

Influenza A/PR/8/34 H1N1 Methicillin-sensitive

S. aureus

↓ NLRP3 inflammasome activation (29, 30)

Epigenetic modifications H1N1 influenza A/PR/8/34 virus

(PR8)

Type 3S. pneumoniae ↑ Production of the methyltransferase Setdb2

↑ H3K9me3 chromatin marks at the CXCL1 promoter

↓ Neutrophil Infiltration

(31)

prevalent extracellular matrix component in the lung (48), but
it suppresses alveolar macrophage activity and is maintained at
a higher level following resolution of a severe viral infection
(49). Similarly, versican, a chondroitin sulfate proteoglycan, is
expressed at low levels in the healthy lungs, but upregulated
by TLR agonists LPS and Poly I:C and requires TLR, TRIF
and type I IFN signaling. In turn versican up-regulates IL-
10 and IFNβ, leading to an immune suppressive state (50).
Therefore, repairing the damaged lung and restoring the steady
state, impairs inflammation and involves type I IFNs. This
raises the possibility that trained immunity in macrophages
simply represents a change in function from inflammation to
homeostatic maintenance.

EPIGENETIC MODIFICATIONS IN TRAINED

IMMUNITY

The longevity of alterations in lung immunity following severe
viral infection is surprising considering the relatively short
life of innate immune cells. However, alveolar macrophages in
particular, turnover relatively slowly in health (51). Of particular
relevance to the altered reactivity of alveolar macrophages, is
their re-wiring by epigenetic changes (52). Epigenetic changes
are mediated by (micro) miRNAs, DNA methylation, and
histone modifications, amongst others and regulate chromatin
accessibility (53). Chromatin accessibility determines which
genes are visible and therefore impacts on cellular signaling and
gene expression.

Monocyte/Macrophage adaptation is accompanied by
fundamental epigenetic changes (54, 55) and is often associated
with alterations in cellular metabolism (56, 57). Trained
monocytes, producing excess TNFα and IL-6 protect RAG-/-
mice (lacking functional T and B lymphocytes) against
reinfection with Candida albicans due to stable histone
trimethylation at H3K4 (8). Candida binding to Dectin-1
causes stable changes in histone trimethylation at H3K4
and increases the immune responsiveness of monocytes (8).
Similarly, chromatin modifications by BCG vaccination provide
protection to unrelated infections (13). Tolerance induction
in macrophages cultured with LPS results in methylation
at H3K9me2 and H3K9me3 and protects against S. aureus
infection (58). Looking beyond pro-inflammatory processes,

it is clear that in tolerised macrophages not all genes are
repressed in all circumstances. For example, LPS-stimulation
of murine macrophages in vitro represses pro-inflammatory
genes, but enhances genes encoding anti-microbial effector
proteins (16). However, this is often not the case in vivo, where
reduced anti-bacterial immunity and macrophage effector
function are observed following viral infection. This discrepancy,
represents an opportunity since it suggests that some stimuli
lead to a different macrophage outcome. A recent study of
influenza infection followed by a S. pnemoniae strain lacking
the major virulence factor pneumolysin, shows that not all
macrophages are affected equally and that long term epigenetic
changes differ between recruited and resident macrophages
(59). Understanding how to achieve a bactericidal vs. an anti-
inflammatory macrophage outcome could provide strategies to
combat post-viral bacterial pneumonia.

TYPE I IFN-INDUCED EPIGENETIC

MODIFICATIONS

Type I IFN modification of the epigenetic landscape is mostly via
their regulation of interferon-stimulated genes (ISGs) (60, 61).
ISGs encode a wide range of proteins that restrict viral infection
and spread, including inhibition of viral transcription, translation
and replication, the degradation of viral nucleic acids and the
alteration of cellular lipid metabolism (62, 63). Approximately
2,000 human and mouse ISGs have been identified and cataloged
in the Interferome database (64). All classes of IFNs have
overlapping ISGs (65, 66) and so it remains unclear how ISGs
are regulated in order to produce a unique and tailored response
to a given pathogen. Epigenetic modifications are proposed as
one mechanism by which ISG transcription can be context
specific (65). The ISGs induced may depend on the cell type, the
exposure of the cell to other stimuli, such as PAMPs or DAMPs,
or the strength and duration of the interferon stimulus. All
these variables may affect the chromatin landscape and provide
another level of ISG regulation to different environmental cues.
Evidence shows that enhanced transcription of ISGs upon re-
stimulation is not due to increased expression of the required
transcription factors or IFN signaling molecules, but rather as
a result of altered chromatin marks at ISG promoters, thereby
priming or repressing certain ISGs. Of the 1,000 s of ISGs known,
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only half are reported to become primed or display “memory”
upon restimulation (61). Other inflammatory factors present in
the microenvironment also affect the profile of ISGs available.
For example, in response to LPS, type I IFNs prevent the
silencing of inflammatory genes driven by prior TNF exposure
of macrophages. This is mediated by an altered chromatin
state, with increased recruitment of H4ac and H3K4me3 histone
marks that are generally associated with transcriptional activity,
and increased chromatin accessibility at tolerised genes (60). In
addition to driving alterations in the epigenome, type I IFNs
can also be regulated by epigenetic modifications. For example,
miR146a (67), and miR26a (68) promote type I IFNs and reduce
influenza infection in experimental models, whereas miR29a
reduces IFNAR1 and has the opposite effect (69).

MANIPULATION OF THE EPIGENOME TO

REVERSE TOLERANCE IN

MACROPHAGES

An important aspect of viral-induced macrophage tolerance to
consider is whether it can be overcome or reversed in order
to unleash the full inflammatory potential of macrophages
and promote anti-bacterial responses. One possibility could
be via manipulation of epigenetic changes. For example,
histone modifications are reversible and therefore can be
altered. The methyltransferase Setdb2 is an ISG that regulates
the production of the neutrophil chemoattractant CXCL1.
Deletion of Setdb2 decreases H3K9me3 chromatin marks,
releases the CXCL1 promoter from inhibition, enhances airway
neutrophil infiltration and reduces susceptibility to secondary
S. pneumoniae (31). Furthermore, β-glucan can overcome the
tolerised phenotype of macrophages following LPS exposure
(70) and monocytes from experimental endotoxemia in healthy
volunteers. This suggests that it is possible to improve the
antibacterial function of macrophages. A tolerance phenotype is
also observed in other cells. Airway epithelial cells, for example,
are also refractory to TLR agonists following stimulation that can
be restored by histone deacetylase inhibitors (71). Although not
specifically identified to our knowledge, it would be interesting
to determine whether these inhibitors could potentially reverse
macrophage tolerance and reduce susceptibility to secondary
bacterial infections.

TYPE I IFN TREATMENT AND THE

PREVENTION OF BACTERIAL

SUPER-INFECTIONS

The post-viral lung effects of type I IFNs span multiple bacterial
species, including Streptococcus pneumoniae (25), Pseudomonas
aeruginosa (72), Staphylococcus aureus (73) [including multi-
drug resistant forms (41)] and Escherichia coli (74). Furthermore,
the preceding viral infection need not be in the lung. For example,
systemic Lymphocytic choriomeningitis Virus (LCMV) infection
causes apoptosis of granulocytes in the bone marrow leading
to reduced recruitment of neutrophils to the airways during
Listeria monocytogenes or S. aureus infection (75). Therefore,
manipulation of type I IFNs may represent a therapeutic option

once bacterial complications arise following severe viral lung
infection. Targeting of type I IFN responses is currently used
in the treatment of several inflammatory and autoimmune
diseases. For instance, IFNβ is an effective therapy for multiple
sclerosis patients and IFNα has been approved for the treatment
of hepatitis B and C (76). In contrast, the blockade of the
type I IFN receptor with anti-IFNAR, has been an attractive
therapeutic for autoimmune diseases including systemic lupus
erythematosus (SLE) and rheumatoid arthritis, as these diseases
are characterized by a profound IFN gene signature (77, 78).
However, difficulties in developing effective therapies that target
the type I IFN system relies upon selecting the specific type I IFN
to administer or block, and the timing of drug delivery, which
can lead to opposing outcomes. This is observed by the pro-
inflammatory and immunosuppressive mechanisms that type I
IFNs can generate in the tumor microenvironment. Although
IFNα immunotherapy has proven effective in the treatment of
hematological malignancies (79, 80), type I IFN treatment of solid
tumors has shown less potential (81). Conversely, type I IFN
inhibition can promote an anti-tumor responses by unleashing
the inflammatory potential of exhausted T cells and removing
the requirement for combinatorial immune checkpoint inhibitor
immunotherapies (82). Further understanding of the roles of
individual interferons in different inflammatory contexts and
the divergent downstream signaling pathways they trigger is
still required to generate effective treatment options. Currently,
research is lacking for targeting type I IFNs to treat secondary
bacterial pneumonia. However, studies suggest that targeting
the epigenome of ISGs may be a more successful avenue of
investigation. This would more likely limit potential negative side
effects that may arise from removing type I IFNs themselves.

CONCLUSION

Type I IFNs clearly play a central role in bacterial super
infections following lung damage, particularly that caused
by pulmonary viral infection. Here we have focused on the
effect of, predominantly, influenza infection on macrophages.
However, similar processes may exist following infection with
other respiratory viruses, such as respiratory syncytial virus.
Collectively, the evidence suggests that overcoming type I IFN
driven immune suppression may be beneficial for viral-induced
bacterial super infection. Anti-IFNAR (e.g., Sifalimumab) is
already used in the treatment of SLE (83) and could be
repurposed for post-viral lung conditions. However, any
strategy would need to be carefully timed and type I IFN
administration during influenza infection may enhance viral
immunopathogenesis. Bacterial infections mostly arise when
the bulk of viral titer has been eliminated. Sometimes there
is a sufficient and visible window between viral infection
and bacterial outgrowth that would allow timed treatment
to be administered. However, ultimately the problem is
dependent in the first place on the severity of the viral
infection. Studies to date show that any strategy that reduces
the impact of lung viral infection reduces the chances of
developing subsequent bacterial complications. Vaccination
would therefore still seem the best policy; as long as any
attenuated forms do not induce excess type I IFNs themselves.

Frontiers in Immunology | www.frontiersin.org 5 March 2020 | Volume 11 | Article 495155

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Connolly and Hussell Type I Interferons in Secondary Pneumonia

Finally, we should remember that macrophages attune to
the needs of the tissue. Their trained/tolerant/primed state is
therefore not abnormal, but rather represents a macrophage
that has to first inflame to recruit immune cells, then change
to professionally instruct them and finally clear up the
mess afterwards.
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Heterologous immunity (H.I.) is a consequence of an encounter with a specific antigen,

which can alter the subsequent immune response to a different antigen. This can happen

at the innate immune system level—often called trained immunity or innate immune

memory—and/or at the adaptive immune system level involving T memory cells and

antibodies. Viruses may also induce T cell-mediated H.I., which can confer protection

or drive immunopathology against other virus subtypes, related or unrelated viruses,

other pathogens, auto- or allo-antigens. It is important to understand the underlying

mechanisms for the development of antiviral “universal” vaccines and broader T cell

responses rather than just subtype-specific antibody responses as in the case of

influenza. Furthermore, knowledge about determinants of vaccine-mediated H.I. may

inform public health policies and provide suggestions for repurposing existing vaccines.

Here, we introduce H.I. and provide an overview of evidence on virus- and antiviral

vaccine-induced T cell-mediated cross-reactive responses. We also discuss the factors

influencing final clinical outcome of virus-mediated H.I. as well as non-specific beneficial

effects of live attenuated antiviral vaccines such as measles and vaccinia. Available

epidemiological and mechanistic data have implications both for the development of new

vaccines and for personalized vaccinology, which are presented. Finally, we formulate

future research priorities and opportunities.

Keywords: cross-protection, immune memory, molecular mimicry, TCR repertoire, T cell epitope, virus-induced

immunity, immunopathology, immunomodulation

INTRODUCTION

Heterologous immunity (H.I.) arises from previous infections, which alter the immune response
to a subsequent infection with a different pathogen (1). This mechanism is more likely to occur
between closely related antigens, but may also occur among unrelated antigens, including bacteria,
viruses, protozoa, and parasites. H.I. may alter the outcome of infections by providing sufficient
immune protection or, in other cases, aggravating immunopathology (2).

H.I. is mediated by T memory cells or antibodies (Figure 1). Immunoglobulins recognize
antigens when antigenic epitopes attach to paratopes (Table 1) at the antigen-binding site.
Antibodies are potentially polyspecific, capable of binding different epitopes to various antigens.
Furthermore, epitopes sharing similar sequences may bind to the same paratope, providing cross-
protection (4). In the context of molecular mimicry, antibodies may also react to self-antigens,
eliciting autoreactive immunopathology (5).

159

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00513
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00513&domain=pdf&date_stamp=2020-03-31
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chrysanthi.skevaki@uk-gm.de
https://doi.org/10.3389/fimmu.2020.00513
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00513/full
http://loop.frontiersin.org/people/875324/overview
http://loop.frontiersin.org/people/369699/overview


Balz et al. Virus-Induced T Cell-Mediated Heterologous Immunity

FIGURE 1 | Humoral and cellular mediated heterologous immunity. (A) A single antibody has the ability to bind distinct antigens 1 and 2 by different paratopes at the

antigen-binding site. Furthermore, it is able to detect a cross-reactive antigen, whose epitope is similar to the one of antigen 1. (B) (i) T memory cells may be activated

by an unrelated second pathogen, which is cross-reactive with the first encountered pathogen. (ii) The appearance of a second pathogen may elevate cytokine levels,

which potentially lead to TCR-independent T cell activation. (iii) Simultaneous presence of cytokines and remaining antigens of previously encountered pathogens may

stimulate T cells. (iv) High levels of cytokines and tissue damage due to inflammation or chronic diseases result in increased concentrations of self-antigens, which

may be engaged by T cells. Created with BioRender.com, adapted from Welsh et al. (3). APC, antigen presenting cell; IFNγ, interferon γ.

Likewise, cellular-mediated H.I. plays a role in
immunomodulation. This may be elicited via T cell receptor
(TCR) cross-reactivity (one possible mechanism of H.I.),
recognizing similar but distinct antigens or even autoantigens.
T cells may also be activated non-specifically by cytokines

[reviewed in (3)]. Cross-reactive antigens elicit an expansion
of T memory cells, leading to a modified T cell memory pool,
a change in patterns of immunodominance, and an altered
hierarchy of T cell responses (6). This process heavily depends
on the individual private specificities of TCR repertoires and
ultimately results in a modified T cell response (7).

Trained immunity, also known as innate immune memory,

is a recently described adaptation of innate immune cells

following antigenic exposure. Epigenetic reprogramming

leads to production of inflammatory mediators and a shift

in cellular metabolism, providing an enhanced response to
secondary stimulation [reviewed in (8)]. Thus, physiological
processes such as mucosal tolerance, restriction of tissue
damage, innate immunity maturation, and non-specific
vaccine-mediated protection are achieved. Nevertheless, trained
immunity can become maladaptive, causing immune paralysis
or hyperinflammation [reviewed in (9)].

This review presents recent scientific findings regarding virus-
or antiviral vaccine-induced T cell-mediated H.I. and thus
provides some background for the discussion on benefits and
risks of H.I. Implications for future research priorities for vaccine
development are also considered.

VIRUS- AND ANTIVIRAL
VACCINE-INDUCED T CELL-MEDIATED
HETEROLOGOUS IMMUNITY

Influenza Virus
Naïve T cells of donors who self-reported as having no influenza
A Virus (IAV) H1N1/09 exposure or influenza symptoms can
recognize unique strain-specific epitopes using tetramer staining,
whereas the same donors’ memory T cells recognize conserved
epitopes of the surface protein hemagglutinin (HA) (10). In
H1N1/09 infected or vaccinated donors, the frequency of naïve
T cells recognizing unique epitopes was significantly higher
compared to conserved epitope-specific T cells (10). This has also
been shown for CD4+ (10) and CD8+ T cells in mice (11).

Such observations suggest that H.I. influences the severity
of infection (10). An age-related dampening of T-cell mediated
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TABLE 1 | Glossary.

Heterosubtypic Referring to different serotypes of influenza A virus, which

are defined based on the surface proteins hemagglutinin

(HA) and neuraminidase (NA).

HLA molecule The human leucocyte antigen is located on cell surfaces

and may present antigenic peptides to T cells.

Immunodominance Only a few (immunodominant) epitopes are preferentially

targeted by the immune response. The remaining epitopes

evoke barely detectable T cell responses.

Molecular mimicry An alignment of pathogenic structures with those of the

host, which leads to immune evasion. However, structure

similarity of pathogens and self-antigens may elicit

autoreactive immune responses.

Paratope A segment of an antibody’s antigen-binding site, which

complementarily binds an epitope.

Private specificity of

TCR repertoire

TCR repertoires, which are different among individuals.

TCR repertoire All T cell receptor clonotypes expressed by an organism.

H.I. was observed following a second heterologous infection in
ferrets, which allowed the development of significant morbidity
(12). These findings are in agreement with other studies focusing
on aged animals, which showed that the clinical severity of
primary infection is only moderately accentuated (13–16), while
heterologous secondary infection induced severe disease (12,
17, 18). The induction of influenza virus-specific memory T
cells is extensively investigated as they are responsible for
heterologous protection in secondary natural infections with
another influenza strain [reviewed in (19)]. Tissue resident
memory T cells (Trm) in the lung are particularly important in
that respect as they are crucial for achieving optimal protection
[reviewed in (19)]. Previous animal studies showed that a
single intranasal live attenuated IAV vaccine application can
evoke long-lasting protection to heterosubtypic challenge via
Trm response in the lung with a similar phenotype to those of
infected mice (20). Several in silico approaches are available to
identify T cell immunogenic regions on virus proteins. It has been
demonstrated that epitope-rich regions within the nucleoprotein
(NP) of the influenza virus contain highly conserved epitopes and
therefore present promising targets for a T cell-mediated vaccine
due to cross-reactivity with distinct strains (21). Gutiérrez et al.
developed a computational method to compare the efficacy of
conserved T cell epitopes (EpiCC), which may complement
current methods for selecting the best composition of an
associated vaccine (22). Furthermore, CD8+ T cells recognizing
different NP variants were associated with cross-reactive TCR
clonotypes against distinct strains (23). This was shown for
the immunodominant and abundant human epitopes NP338−346

and NP44−52 (23). A structural analysis of the associated HLA
molecules revealed adoption of similar conformation as a basis
for cross-recognition (23).

Spleen cells from IAV-infected animals showed enhanced
IFNγ production after ex vivo stimulation with the hepatitis
C virus (HCV) derived peptide NS31073 (24). Such findings
suggest a private repertoire of pre-existing memory T cells,
which are reactivated after HCV infection (25). Cross-reactivity
was also demonstrated in human peripheral blood mononuclear

cells (PBMCs) of HCV positive patients with severe disease
which responded to the IAV-specific peptide NA231−239 (25).
Additionally, PBMCs of hepatitis B virus patients were incubated
with Epstein-Barr virus EBV-BMLF1280−288 and IAV-M158−66

labeled tetramers and subsequently stained for TCR clones (26).
The TCR repertoire of cross-reactive T cells recognizing IAV and
EBV epitopes was broader compared to non-cross-reactive T cells
and varied among individuals, further supporting an underlying
private specificity (26). The concept of H.I. has recently been
expanded to include allergens, following demonstration of
IAV-mediated protection against allergen-induced experimental
asthma (mediated by memory T cells) in a murine model (27).

Flaviviruses
The high degree of genetic sequence similarity among
flaviviruses is known either to have a protective effect or to
dampen the elicited secondary immune response [reviewed
in (28)]. For Dengue virus (DENV), it is well-known that an
infection with one serotype induces strong and long-lasting
protective immunity against that specific serotype, whereas a
second infection with a heterotypic virus commonly results in
severe disease [reviewed in (29)]. Sub-neutralizing antibody
concentrations from the first infection facilitate virus entry
by promoting Fcγ-receptor uptake, resulting in antibody-
dependent enhancement (ADE) of the infection. However, there
is increasing evidence of a cross-protective cellular immune
response between DENV and Zika virus (ZIKV) [reviewed in
(29)]. Memory T cells isolated from DENV seropositive patients
recognize both DENV- and ZIKV-associated peptides (30).
Furthermore, DENV positive patients responded more strongly
to a ZIKV infection compared to DENV negative subjects
when assessed using T cell stimulation assays (30, 31). Mouse
experiments have also shown, that DENV-exposed pregnant
animals were protected against subsequent maternal and fetal
ZIKV infection (32). This protection was conferred by CD8+

T cells, limiting trans-placental transmission of ZIKV (32).
Although cross-reactivity between DENV and ZIKV is the
most prominent example, other flaviviruses, such as yellow
fever virus (YFV) and Japanese encephalitis virus, also prime
T cell responses toward a subsequent heterologous DENV
infection in mice (33). In this context, the investigators identified
homologous sequences between the flavivirus polyproteins.
Peptides derived from the aforementioned sequences were used
to prime antigen presenting cells, which were subsequently
used to stimulate splenocytes of DENV immunized mice.
Some of these peptides induced enrichment of T memory
cells as well as IFNγ production and proliferation, confirming
cross-reactivity (33).

Human Immunodeficiency Virus
Human immunodeficiency virus 1 (HIV-1)-specific CD8+ T
cell clones showed cross-reactivity against some of the other
investigated HIV-1 epitopes (34). Additionally, three HIV-1-
specific T cell clones recognized the A∗02 restricted IAV matrix
epitope GILGFVFTL (34). Furthermore, a sequence similarity
between the known HIV-1 epitope HIV-Gag [SLYNTVATL
[HIV-SL9]] and the HCV epitope HCV-NS5b [ALYDVVSKL
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[HCV-AL9]] has been observed. HIV-SL9 specific T cells of
HIV-1 patients, who were not co-infected with HCV, recognized
the aforementioned HCV epitope and responded with IFNγ

production and expansion (35).

Hepatitis C Virus
Cross-genotype protective immunity against HCV was
first described in 2003 by Lanford et al. who showed that
chimpanzees, which recovered from a genotype 1 infection,
were subsequently protected from infection with other
genotypes (including genotype 4 and combinations of
genotypes 1–4). These genotypes express proteins of up to
30% amino acid variance (36). This finding, however, has been
challenged by other investigators who showed that chimpanzees
developed chronic disease after being re-challenged with other
genotypes (37).

CD8+ T cell cross-reactivity to NS3 epitopes of two different
genotypes (1 and 3) was observed in a study with 53 anti-
HCV positive injection drug users. Interestingly, CD8+ T cells
recognizing both genotypes were more frequent among HCV
RNA negative patients than in those with detectable viremia,
implying that CD8+ T cell-mediated cross-reactivity may protect
against chronic infection (38).

In another study, an HLA-restricted epitope (HCVNS3-1406)
and its naturally occurring variants from different genotypes
showed that the frequency of cross-reactivity between variants
as well as their T cell priming capacities varied, depending on
the genotype pair (39). Fytili et al. performed a similar study for
another dominant HLA-dependent HCV CD8+ T cell epitope
(HCV NS3-1073), which was associated with clearance of acute
infection, and detected cross-reactivity between the genotype 1
variant and variants of genotypes 4, 5, and 6 but not 2 and 3
(40). The level of cross-reactivity observed in this study could be
predicted through in silico analyses of peptide-MHC complexes
and TCR-interacting surfaces based on topology and electrostatic
features (41).

The same dominant T cell epitope (HCV NS3-1073) was also
found to induce immune response in approximately a third of
>100 seronegative individuals upon ex vivo stimulation. The
presence of CD8+ T cells specific for that epitope was attributed
to cross-reactivity with epitopes derived from other pathogens.
These cells not only reacted to different genotype variants of
that epitope but also to epitopes with little sequence similarity
of other, unrelated viruses (cytomegalovirus, IAV, EBV) (42).
Immunization with a recombinant adenovirus vector containing
mycobacteria, Ebola andHIV antigens also led to T cell responses
against HCV alongside the transgenic antigens (43). Cross-
reactivity between an HCV and a human herpes virus peptide has
also previously been demonstrated (44).

Other Viruses
Severe hand, foot and mouth disease is caused among others
by enterovirus 71. A dominant capsid T cell epitope, which
is highly conserved among enteroviruses, was identified and
found to yield a cross-reactive, HLA-DR restricted response
of human CD4+ T cells to the poliovirus variant of this
epitope (45). Human RV-specific CD4+ T cells were shown

to recognize epitopes shared among different RV strains
(46). Human circulating RV-specific CD4+ T cells recognized
conserved RV capsid protein epitopes, and T cell-mediated
cross-reactivity between different strains was demonstrated
(47). Zhao et al. showed that airway CD4+ T memory
cells specific for a dominant, conserved epitope (SARS-N353)
protect against both SARS- and MERS-CoVs and also against
bat CoV in HLA transgenic murine models (48). Hepatitis
E virus (HEV)-specific CD4+ and CD8+ T cell responses
against different peptide pools from HEV1 were detected in
acute HEV3 patients. A similar response against HEV3- and
HEV1-peptide pools was detected in one subjectwith HEV1
infection (49). Finally, H.I. between the arenaviruses lymphocytic
choriomeningitis virus and Pichinde virus was demonstrated in
murine models and found to be T cell epitope and MHC class
dependent (50).

DISCUSSION

Protection vs. Immunopathology
Overall, virus-induced H.I. appears to be an important
determinant for the final outcome of infections and of
a plethora of dysregulated immune responses such as in
autoimmunity and allograft rejection. In this context, prior
antigenic exposures may boost protective responses [e.g., (27)]
or induce immunopathology depending on the balance between
antigen load and efficiency of effector T cells, which in
turn is influenced by a number of factors. For example, in
the case of flaviviruses, it has recently become evident that
distinct T cell populations, virus serotypes, sequence, and
number of infections, and HLA background all shape the
immunodominance pattern (29). Additionally, patterns of T
cell cytokine response among patients with a secondary DENV
infection were associated with severe (51, 52) or mild dengue (53,
54). Although heterotypic antigens were addressed only in one of
these studies (52), such observations may indicate involvement
of cross-reactive T cells in the clinical manifestation of
DENV infections.

In addition to natural viral infections, antiviral vaccines
may also drive T cell-mediated H.I. and have a major impact
not only against the vaccine antigens but also on completely
unrelated pathogens or other antigens. To date, epidemiological
evidence supporting the role of live attenuated vaccines in
T cell-mediated H.I. is associated with the measles (55–
62), the vaccinia (63–66), and the oral polio vaccine (67–
69). These vaccines reduced overall mortality and/or risk for
asthma, malignancies, and unrelated infections. Furthermore,
they induced changes in the numbers or proportions of
T and B cells, which, depending on persistence of effects,
may influence differentiation, proliferation or survival of
associated cells. Non-specific effects of vaccines have often
been found to be sex-specific and influenced by revaccination
as well as maternal priming. In this regard, knowledge on
the potential of specific T cell epitopes (for any given HLA
background) to offer protection or cause pathology is crucial
for vaccine design including elimination or inclusion of
such peptides.
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Implications for Vaccine Development
The ability to predict the magnitude and mechanism of T
cell-mediated H.I. (Figure 1B) is crucial for specific vaccine
design but also for decisions on public health and vaccination
policies. Structural similarity between T cell epitopes seems to
be important for eliciting cross-reactive responses. Nevertheless,
seemingly distinct epitopes may also bind to the same TCR
and induce H.I. This may be explained by the fact that
sequence similarity is also dependent on the presence of
biochemically similar amino acid substitutions (70). In the
context of developing broadly cross-reactive vaccines against
viruses with great antigenic heterogeneity, regions of highly
conserved proteins among serotypes may elicit cross-reactive T
memory cell responses. This approach along with large scale
systematic monitoring of circulating strains, as in the case
of influenza (in order to minimize mismatch with vaccine-
contained strains) may increase vaccine effectiveness.

Besides their specific effect, it is now known that vaccines may
also exert a non-specific influence on the immune system (71).
For the diphtheria-tetanus-pertussis and measles vaccines, it was
shown that the order of vaccination has an impact on overall
morbidity and mortality (72). The concept that the most recently
administered vaccine leaves a non-specific immunological
imprint until subsequent immunization may guide changes in
the recommended order of childhood vaccinations. Such changes
could result in beneficial non-specific effects with minor changes
of existing national vaccination schemes. Similarly, age at the
time of (initial or booster) immunization with each existing
vaccine may need to be reconsidered based on the accumulating
knowledge on immunosenescence and effects of age on virus-
induced H.I. Accordingly, time of vaccination has been linked
to differences in T cell populations and strength and type of
heterologous immune response (73, 74). Sex-specific differences
in terms of protective non-specific effects of vaccines such as
measles and vaccinia (64, 75–80) have also been described.
Modification of vaccine composition (e.g., enrichment of
particular proteins or epitopes) or conditions of administration
(e.g., age, dose, number of immunizations) could potentially help
us achieve the beneficial heterologous effects of vaccines without
compromising their primary protective effects (vaccine specific).
Indeed, adequate application of knowledge regarding vaccine-
mediated H.I. brings us a step closer to precision medicine
and personalized vaccinology. Administration of live attenuated
vaccines to women as part of preconception health counseling is
another measure, which could enhance protection of offspring in
the first months of life.

The potential of virus- and antiviral vaccine-induced
immunomodulation may also be exploited for novel

applications such as preventing infections among elderly

and immunocompromised populations or non-infectious

inflammatory diseases. In this respect, the choice of a particular

adjuvant or pharmacological modulator is also important
since these may polarize T cell immune responses toward a
specific cytokine output depending on the desired outcome, e.g.,
induction of T1 type of response for prevention of infection as
well as allergies.

Future Research Priorities
The need for new vaccines with higher efficacy and broader and
longer-lasting protection is driven by the moderate protection
provided by current seasonal influenza vaccines against the
included strains, zoonotic and pandemic influenza threats,
and the challenge of complying with annual vaccinations.
Several approaches are currently being investigated with varying
results and distance from truly universal vaccines. The use
of adjuvants, addition of neuraminidase, and inclusion of
specific strains induce broader reactive immune responses albeit
within the same virus subtype. Additionally, immunogenic
influenza HA-stem constructs induce B cells which produce
cross-protective antibodies, at least within a group of viruses.
A particular promising approach for the development of
truly universal influenza vaccines seems to be the induction
of T cells reactive to internal viral proteins, primarily of
Trm in the respiratory mucosa for timely control of viral
replication. Such approaches could also prove useful for
developing vaccines against other respiratory viruses such
as rhinoviruses. Similarly, knowledge gained from current
studies of T cell responses against DENV/ZIKV infections at
several time points, and with different clinical presentations
and history of infection may inform strategies for developing
pan-flavivirus vaccines. Indeed, there is already evidence
for cross-reactive immunogenic epitopes contained in
these viruses.

Properties of virus-induced H.I. may be leveraged beyond
infection protection. We have previously shown an influenza
virus-mediated protection over development of experimental
asthma in a murine model. The protection was conferred by
CD4+ and CD8+ T memory cells, which were transferred
from animals previously infected with influenza or immunized
with cross-reactive influenza peptides to sensitized mice before
challenge with an allergen. Given the global prevalence
of allergies, peptide immunization strategies early in life
could potentially induce protective cellular immune responses
against viruses and allergen-induced asthma, and complement
existing vaccination schedules. Importantly, directing non-
specific beneficial effects of existing live attenuated viral vaccines
against other inflammatory disorders including cardiovascular
disease and cancer could be a quantum leap in the fight against
non-communicable diseases (65, 81–84).

Further immunological and clinical studies are needed
to decipher vaccine-induced H.I.-mediated mechanisms and
impact on morbidity and mortality contributing to health
promotion. Associated potentiators such as booster vaccinations
and maternal priming need to be examined carefully in
different socioeconomic settings and with a sex-differential
analysis (85).

AUTHOR CONTRIBUTIONS

CS and PN planned, structured, and edited the manuscript.
PN searched the literature and integrated all contributions. All
authors wrote distinct parts of the manuscript and critically read,
reviewed, and approved the final version of the manuscript.

Frontiers in Immunology | www.frontiersin.org 5 March 2020 | Volume 11 | Article 513163

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Balz et al. Virus-Induced T Cell-Mediated Heterologous Immunity

FUNDING

CS is supported by Universities Giessen and Marburg Lung
Center (UGMLC), the German Center for Lung Research
(DZL), the Rhön-Klinikum (UKGM), and the Deutsche
Forschungsgemeinschaft (DFG)-funded-SFB 1021 (C04), -KFO
309 (P10), and SK 317/1-1 (Project number 428518790).

ACKNOWLEDGMENTS

We would like to thank the European Society of Clinical
Microbiology and Infectious Diseases (ESCMID) Study Group
on Respiratory Viruses (ESGREV) for providing a platform
for scientific discussion on the topic and Debbie Jordan for
proofreading the manuscript.

REFERENCES

1. Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell

immunity. Nat Rev Immunol. (2002) 2:417–26. doi: 10.1038/nri820

2. Selin LK, Varga SM, Wong IC, Welsh RM. Protective heterologous antiviral

immunity and enhanced immunopathogenesis mediated by memory T cell

populations. J Exp Med. (1998) 188:1705–15. doi: 10.1084/jem.188.9.1705

3. Welsh RM, Che JW, Brehm MA, Selin LK. Heterologous

immunity between viruses. Immunol Rev. (2010) 235:244–66.

doi: 10.1111/j.0105-2896.2010.00897.x

4. van Regenmortel MH. Specificity, polyspecificity, and heterospecificity

of antibody-antigen recognition. J Mol Recognit. (2014) 27:627–39.

doi: 10.1002/jmr.2394

5. Barnett LA, Fujinami RS. Molecular mimicry: a mechanism for autoimmune

injury. FASEB J. (1992) 6:840–4. doi: 10.1096/fasebj.6.3.1740233

6. Selin LK, CornbergM, BrehmMA, Kim S-K, Calcagno C, Ghersi D, et al. CD8

memory T cells: cross-reactivity and heterologous immunity. Semin Immunol.

(2004) 16:335–47. doi: 10.1016/j.smim.2004.08.014

7. Nie S, Lin S-J, Kim S-K, Welsh RM, Selin LK. Pathological features

of heterologous immunity are regulated by the private specificities

of the immune repertoire. Am J Pathol. (2010) 176:2107–12.

doi: 10.2353/ajpath.2010.090656

8. Netea MG, van der Meer JW. Trained immunity: an ancient

way of remembering. Cell Host Microbe. (2017) 21:297–300.

doi: 10.1016/j.chom.2017.02.003

9. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, et al.

Trained immunity: a program of innate immune memory in health and

disease. Science. (2016) 352:aaf1098. doi: 10.1126/science.aaf1098

10. Yang J, James E, Gates TJ, DeLong JH, LaFond RE, Malhotra U, et al. CD4+

T cells recognize unique and conserved 2009. H1N1 influenza hemagglutinin

epitopes after natural infection and vaccination. Int Immunol. (2013) 25:447–

57. doi: 10.1093/intimm/dxt005

11. Schroeder T, Jørgensen LG, Knudsen L, Perko M. Haemodynamisk vurdering

af det cerebrale kredsløb med transkranial doppler-ultralyd hos patienter med

carotisstenose. Ugeskr Laeg. (1990) 152:2110–3.

12. Paquette SG, Huang SS, Banner D, Xu L, Leȯn A, Kelvin AA, et al. Impaired
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