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Editorial on the Research Topic

Recent Trends in Computational Fluid Dynamics

Computational fluid dynamics (CFD) [1] can be described as the set of techniques that assist the
computer to provide the numerical simulation of the fluid flows. The three basic principles that can
determine the physical aspects of any fluid are the i) energy conservation, ii) Newton’s second law,
and the iii) mass conservation. These flow problem can be described in terms of these basic laws.
Mathematical equations, which are usually in the form of partial differential equations, portrayed the
fluid behavior in the flow domain.

The solutions and interactive behavior of solid boundaries with fluid or interaction between the
layers of the fluid while flowing are visualized using some CFD techniques. CFD helps replace these
differential equations of fluid flow into numbers, and these numbers are beneficial in time and/or
space which enable a numerical picture of the complete fluid flow. CFD is powerful in examining a
system’s behavior, beneficial, and more innovative in designing a system [2]. Also, It is efficient in
exploring the system’s performance metrics, whether it is for the yielding higher profit margins or in
enhancing operational safety, and in various advantageous features [3].

Nowadays, CFD techniques are usually applied in various fields [4–8] i.e. car design,
turbomachinery, ship design, and aircraft manufacturing. Moreover, it is beneficial in
astrophysics, biology, oceanography, oil recovery, architecture, and meteorology. Numerous
numerical Algorithm and software have been developed to perform CFD analysis. Due to the
recent advancement in computer technology, numerical simulation for physically and
geometrically complex systems can also be evaluated using PC clusters. Large scale
simulations in different fluid flow on grids containing millions and trillions of elements can
be achieved within a few hours via supercomputers. However, it is completely incorrect to think
that CFD describes a mature technology, there are numerous open questions related to heat
transfer, combustion modeling, turbulence, and efficient solution methods or discretization
methods, etc. The coupling between CFD and other disciplines required further research,
therefore, the main goal of this issue is to fill an essential gap that is greatly missed in this
field. We sincerely hope that this issue will be beneficial to the readers to present the recent
findings in the field and shed some light on the industrial sector.

Rafique et al. [9] used Buongiorno model to discuss the Casson nanofluid boundary layer flow
through an inclined surface under the impact of Dufour and Soret. This nonlinear model is beneficial
to understand the mechanism of heat and mass transfer by contemplating various essential features
of the proposed boundary layer. Further, the Keller-box technique has been used to simulate the
results. The results show that the Dufour effect has a strong impact on the temperature profile and
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that the thermophoresis produces an inverse impact on the
concentration profile as compared with the temperature profile.

Shah et al. [10] investigated the CVFEM simulation to determine
the nanoparticle’s migration toward a permeable domain. The
considered fluid model contains aluminum oxide nanoparticles.
Darcy law, thermal radiation, Lorentz force, and shape factor. The
proposed approach is beneficial for the two common schemes of
CFD. In the proposed study, it was found that higher convection
occurs due to the great influence of shape factor. According to the
authors’ simulation, it was shown that the magnetic field and
temperature gradient have an inverse relationship. Later, Shah
et al. [11] studied the behavior of couple stress fluid and non-
isothermal convection with magnetic effects over a nonlinear sheet.
Analytical simulation with the help of homotopy analysis method
has been proposed for the solutions. According to their study, they
found that the primary velocity faces significant resistance during
the flow. In their proposed simulation, they noticed that magnetic
effects produce resistance in the angular velocity, but enhances the
temperature profile. Also, the Grashof number and Hall effects
show a positive response to the temperature profile.

Shah et al. [12] contemplated the Mohand decomposition
scheme to examine the Kortewege–De Vries equations. The
fractional derivatives are expressed by Caputo fractional
derivative operator. The validation and effectiveness of this
scheme have been determined using numerical examples for
integer order and fractional problems. According to their
results, they concluded that the proposed scheme is easily
adaptable, straightforward, and beneficial to solve nonlinear
problems.

Irfan et al. [13] investigated the magnetized nanofluid motion
with variable features propagating through a radiatively
stretching sheet. Their proposed scheme was a numerical
shooting method and the bvp4c built-in command in
MATLAB. It was noticed that the thermophoresis, thermal
conductivity, radiation parameter, and Brownian motion boost
the thermal boundary layer. Further, in the proposed simulation,
it was found that the Prandtl number suppresses the thermal
profile. On the other hand, Brownian motion and Lewis numbers
were seen to cause a strong influence on concentration profile,
whereas the thermophoretic force was seen to produce and
opposite effects. Later, Irfan et al. [14] used computational
formulation, i.e., simplified finite difference scheme to
establish and discuss the effects of porosity, thermal radiation,
a magnetic and electric field with heat generation and absorption.
A comparative study is also given using the simplified finite
difference scheme and bvp4c where it was noticed that the model
has a higher convergence rate.

Shafiq et al. [15] examined and discussed the motion of carbon
nanotubes (CNTs) (single- and multi-walled) over a Riga plate.
The Riga plate is filled with water as a base fluid. They used the
Marangoni model for the fully developed electro-
magnetohydrodynamics flow. They proposed homotopy
analysis method for the graphical and numerical outcomes.
They noticed that multi-walled CNTs have higher velocity as
compared with single-walled CNTs. They found similar
outcomes of the magnetic field on temperature as already
done by Shah et al. [11].

Bilal et al. [16] used a similar scheme used by Rafique et al. [9]
to examine flow behavior betwixt a pair of rotating disks. They
used the theory of the Cattaneo–Christov and Darcy model to
formulate the proposed formulation. Further, Karman
transformations have been used to model the mathematical
modeling and numerical outcomes presented using the finite
difference approach. They found that a higher Reynolds number
produces resistance in the radial and axial velocities at the lower
disk as compared with the upper disk. Further, the thermal profile
was reduced due to the strong impact of the Prandtl number. At
the lower disk, the shear drag coefficient diminishes while at the
upper disk, the wall shear coefficient increases. Later, Ullah et al.
[17] considered a similar geometry [16] with a three-dimensional
Darcy–Forchheimer model and nanofluid flow. A computational
shooting scheme was used to operate the proposed formulation.
They found that the Darcy–Forchheimer model effects are
negligible on the concentration and temperature profile.

Ahmed et al. [18] analyzed the concealed behavior of
thermally radiative and magnetically influenced cAl2O3–H2O
and Al2O3–H2O nanofluid flow through a wedge. Combined
simulation of shooting and RK scheme was used to evaluate the
numerical outcomes. Their simulation shows that the Hartree
pressure gradient significantly enhances the nanofluids velocity.
The proposed composition of cAl2O3–H2O and Al2O3–H2O
becomes denser due to the strong impact of volume fraction
and accordingly opposes the velocity field. The thermal profile
cAl2O3–H2O and Al2O3–H2O rises for higher volume fraction.

Ahmed and Khan [19] examined the mechanism of sodium-
alginate (C6H9NaO7) through a vertical heated plate with
acceleration. Further, they contemplated the effects of convection
and discussed the entropy generation. Laplace transforms with a
combination of integral transforms that were used to generate the
exact results. It was concluded that the maximal entropy can be
achieved by taking higher values of Brinkmann number, fluid
parameter, and Grashof number. It was also noticed that the
Bejan number can also be maximal if the Prandtl number is
high. The proposed fluid model reveals a dual impact.

Bhatti et al. [20] performed a theoretical analysis of the blood
flow under the suspension of nanoparticles and microorganisms
through an anisotropic artery in a sinusoidal form. The authors
investigated a nonlinear Sutterby fluid model as blood to examine
the rheological effects. A perturbation approach was used to
elaborate on the series solutions. In their analysis, it was found
that the non-Newtonian effects are in favor to resist the flow.
Further, they noticed that the wall shear stress diminishes due to
the stenosis, nanoparticle, and thermal Grashof number.
Moreover, The Peclet number was found to create resistance
in the microorganism profile. The results of this study play a
significant role in biomedical engineering. Riaz et al. [21]
presented a study that is beneficial for the urinary tract
infections when the flow is sinusoidal. This analysis is essential
to examine white particles occurring in the urine. They
investigated the flow in a curved configuration with flexible
walls and filled with particles in a fluid. A lubrication theory
and perturbation approach was used to formulate the governing
equations. Further, they also carried out the numerical results for
the pressure along the whole channel.
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Alzahrani et al. [22] investigated the magnetohydrodynamics
of a 3D flow through a rotating permeable conduit under the
effect of Dufour and Soret and viscous dissipation. A viscous
electrically-conducting fluid is considered upon which applied a
magnetic field. Suitable transformations are used to transform
from a nonlinear partial differential system of equations to an
ordinary system of equations after which results were computed
numerically using the shooting method. Then the pertinent
parameters affecting the physical variables of the flow field
have been thoroughly investigated.

Sanni et al. [23] studied the MHD flow of an incompressible
Maxwell fluid flow induced by a quadratic stretching sheet
through a 2D boundary layer. A variable magnetic field was
applied to the flow with heat transfer, thermal radiation, and
viscous dissipation. The system of partial differential equations
has been transformed into ordinary differential equations (ODEs)
by using some similarity variables. Numerical results have been
achieved to find solutions to the energy and momentum
equations in a closed-form.

Ahmed et al. [24] studied the peristaltic micropolar fluid flow
influenced upon by heat and mass transfer with the magnetic
field. The system of governing equations has been presented using
a curvilinear coordinate system where they were further reduced
using a lubrication approximation. Solutions were then derived
by implementing the finite difference method.

Khan et al. [25] explored the thermal Eyring–Powell nano-
liquid with triple diffusion via a periodic-moving system. A
combination of some important parameters, such as the
porosity parameter and magnetic effect, was also discussed.

The Buongiorno’s nanofluid theory was investigated through
the thermophoretic and Brownian motion effects. Further, the
homotopy algorithm was used in order to analyze the fluid flow in
a non-dimensional form.

Karuppusamy et al. [26] examined an entropy generation of a
nanofluid of third-order with slip effect. The flow investigated
was caused by a stretchable sheet through a porous plate under
the influence of thermal radiation. Several other influential effects
were taken into accounts such as the non-Fourier heat flux,
convective surface boundary, and nanoparticle concentration
on zero mass flux conditions. Similarity variables have been
used in order to solve the governing physical system of
equations and modify it into a nonlinear system of ODEs.
Results were obtained using the usual homotopy algorithm to
discuss the outcomes of the analysis.
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In this article, the effects of a Casson Nanofluid boundary layer flow, over an inclined

extending surface with Soret and Dufour, is scrutinized. The model used in this study

is based on the Buongiorno model of the thermal efficiencies of the fluid flows in the

presence of Brownian motion and thermophoresis properties. The non-linear problem

for Casson Nanofluid flow over an inclined channel is modeled to gain knowledge on

the heat and mass exchange phenomenon, by considering important flow parameters

of the intensified boundary layer. The governing non-linear partial differential equations

are changed to non-linear ordinary differential equations and are afterward illustrated

numerically by the Keller-Box scheme. A comparison of the established results, if the

incorporated effects are lacking, is performed with the available outcomes of Khan and

Pop [1] and recognized in a nice settlement. Numerical and graphical results are also

presented in tables and graphs.

Keywords: casson nanofluid, MHD, power law fluid, soret effect, dufour effect, inclined surface

INTRODUCTION

In recent times, nanofluid has accomplished an incredible position among scientists because of
its dynamic thermal performance and notable potential in the number of heat transfers without
any pressure drops. Nanofluid is a formula of various nanoparticles, containing Al2O3, Cu, CuO,
in a base liquid, for example, oil, water, ethylene glycol, and so forth. It is investigated through
examination that the thermal conductivity of base fluid is usually not exactly the same as the
nanofluid Choi and Eastman [2]. Nanofluid is used as a working fluid (base fluid) due to its
high thermal conductivity. Buongiorno [3] examined the causes that perform a key job in the
advancement of nanofluid’s thermal conductivity. He perceived that the Brownian movement
and thermophoresis effects in conventional fluid play an important role to enhance the thermal
conductivity of the fluid. Nield and Kuznetsov [4] considered the result of thermophoresis and
Brownian movement on the boundary layer stream. The steady flow of nanofluid on an extending
sheet was examined by Khan and Pop [1]. Anwar et al. [5] presented the Brownian movement and
thermophoresis impact on the heat and mass exchange of nanofluids over a non-linear extending
sheet. Suriyakumar and Devi [6] examined the nanofluid flow over a slanted sheet. Ziaei-Rad et al.
[7] investigated a similar solution of nanofluid stream on a slanted surface. Thumma et al. [8]

9

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00139
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00139&domain=pdf&date_stamp=2019-10-11
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ilyaskhan@tdtu.edu.vn
https://doi.org/10.3389/fphy.2019.00139
https://www.frontiersin.org/articles/10.3389/fphy.2019.00139/full


Rafique et al. Casson Nanofluid Over Inclined Surface

discussed the nanofluid flow on a slanted plate by incorporating
the heat source. Govindarajan [9] discussed the flow of
nanofluid over a slanted sheet by incorporating a non-uniform
temperature. Khan et al. [10] illustrated the heat and mass
transfer of MHD Jeffery nanofluid flow over an inclined sheet.
Nanofluid flow with radiation effects on a slanted surface was
examined by Chakraborty [11]. Recently, different scholars
investigated the nanofluid flow on different models, as some of
them are given in references [12–18].

The investigation of boundary layer flow and heat exchange
on a stretching surface has been considered by various experts
due to its immense mechanical and designing applications in
the field of industry, and engineering, for example, strengthening
and tinning of copper wires, assembling plastic and elastic sheets,
non-stop cooling and fiber turning, expulsion of polymer, wire
drawing, food processing, and paper, and so forth. Boundary
layer flow on a steady surface was first investigated by Sakiadis
[19]. Additionally, Crane [20] considered the closed structure
solution of boundary layer flow on an extending sheet. Ali
et al. [21] investigated the conjugate effects of heat and mass
exchange on MHD free convection flow over an inclined
plate. Ramesh et al. [22] investigated the boundary layer flow
over the slanted sheet with convective boundaries. MHD free
convection dissipative fluid stream past over an inclined sheet
was investigated by Malik [23]. The boundary layer flow on a
slanted sheet through convective boundaries was discussed by
Ramesh et al. [24]. Griffiths [25] investigated the non-Newtonian
boundary layer flow over a slanted sheet. Soret and Dufour effect
over a slanted plate was discussed by Pal and Mondal [26].
Pandya and Shukla [27] investigated the unsteady MHD flow
over a slanted surface by taking viscous dissipations. Thermal
radiation impacts are important in solar plants [28].

In 1959, Casson offered the Casson fluid model for the flow of
viscoelastic liquids. Casson fluid is a shear thinning fluid which
should have zero viscosity at an infinite rate of shear and infinite
viscosity at zero rates of shear, yielding stress under which no
flow takes place. Some examples of Casson fluid are, honey,
jelly, sauce, soup etc. [29] Ali et al. [30] examined the Casson
fluid flow on a slanted sheet by incorporating the Soret-Dufour
effects. Manideep et al. [31] studied the Casson fluid flow on
vertically inclined sheets. Shamshuddin et al. [32] numerically
investigated the effect of chemical reaction on Casson fluid
flow on a slanted plate. Casson fluid flow over a slanted plate
calculated by Vijayaragavan and Kavitha [33]. Prasad et al. [34]
investigated the Casson fluid flow over an inclined sheet by
considering the hall current. Jain and Parmar [35] studied the
inclined Casson fluid flow on a permeable sheet. Sailaja et al. [36]
studied the Casson fluid flow on a vertical sheet by incorporating
the angle effect. Rawi et al. [37] discussed the Casson fluid flow
over a slanted sheet by considering nanoparticles. Rauju et al.
[38] discussed the Casson fluid flow on a vertically slanted sheet.
The Casson fluid model is more compatible with blood flow
simulation [39, 40].

Persuaded by the above referred literature review, and due to
the growing needs of non-Newtonian nanofluid flows in industry
and engineering areas, the present work focuses on the Casson
nanofluid flow over a non-linear inclined stretching surface with
Soret and Dufour effects. Casson nanofluid is more helpful for

cooling and friction reducing agents compared to Newtonian
based nanofluid flow [15]. To the best of the author’s knowledge,
the solution of the Casson nanofluid flow over a non-linear
inclined stretching surface with radiation, as well as Soret and
Dufour effects with the Keller-Box method, has not yet been
reported. The model under consideration is newly developed
from Khan and Pop [1] and results obtained from the current
study are new. In this work, we found that the Dufour effect
reduces the Nusselt and Sherwood number due to Soret impact.
A non-linear form of radiative heat exchange also enhances the
fluid temperature. This study is very useful in nuclear reactors,
MHD generators, and in geothermal energy. In the future, it can
be extended on an exponentially inclined stretching surface.

PROBLEM FORMULATION

A steady, two-dimensional boundary layer flow of Casson Nano
fluid over a non-linear slanted extending surface on angle γ
is considered. The extending and free stream velocities are
taken as, uw (x) = axm and u∞ (x) = 0. Where, “x” is the
coordinate dignified in the direction of the extending surface with
“a” supposed constant. An external transverse magnetic field is
assumed normal to the flow path. The Brownian motion and
thermophoresis effects are considered. The temperature T and
Nano particle fraction C at the wall take the constant values
Tw and Cw, while the ambient forms for the nanofluid mass
and temperature fractions C∞ and T∞ are accomplished as y
approaches to immensity, as shown in Figure 1.

The flow equations for this study [1] are given by:

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ν(1+

1

β
)
∂2u

∂y2
+ g [βt (T − T∞)

+ βc (C − C∞)] cosγ −
σB0

2(x)u

ρ
(2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
−

1

(δc)f

∂qr

∂y
+ τ

[

DB
∂C

∂y

∂T

∂y

+
DT

T∞

(

∂T

∂y

)2
]

+
DTKT

CsCp

∂2C

∂y2
, (3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DTKT

T∞

∂2T

∂y2
, (4)

Here, the Rosseland approximation (for radiation flux) is
defined as:

qr = −
4σ

∗

3k
∗

∂T4

∂y
, (5)

Where, σ
∗

is the Stefan-Boltzmann constant and k
∗

is the
mean absorption coefficient. It is assumed that the temperature
difference between the free steam T∞ and local temperature T
is small enough, expanding T4 in Taylor series about T∞ and
neglecting higher order terms for:

T4 ∼= 4T3
∞
T − 3T4

∞
, (6)
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FIGURE 1 | Physical geometry and coordinate system.

Using Equations (5) and (6) the Equation (3) converts into:

u
∂T

∂x
+ v

∂T

∂y
= (α +

16σ
∗

3k
∗

(δc)f
)
∂2T

∂y2
+ τ

[

DB
∂C

∂y

∂T

∂y

+
DT

T∞

(

∂T

∂y

)2
]

+
DTKT

CsCp

∂2C

∂y2
, (7)

Where u and v are the velocity components in the x and y
directions, respectively, g is the acceleration due to gravity,
B0 is the uniform magnetic field strength, σ is the electrical
conductivity, u is the viscosity, δf is the density of the base
fluid, δp is the density of the nanoparticle, β is the Casson
parameter, βt is the coefficient of thermal expansion, βc is
the coefficient of concentration expansion, DB is the Brownian
diffusion coefficient and DT is the thermophoresis diffusion
coefficient, k is the thermal conductivity, (δc)p is the heat
capacitance of the nanoparticles, (δc)f is the heat capacitance of

the base fluid, α =
k

(δc)f
is the thermal diffusivity parameter,

τ =
(δc)p
(δc)f

is the ratio between the effective heat capacity of the

nanoparticle and heat capacity of the fluid.
The subjected boundary conditions are:

u = uw (x) = axm, v = 0 , T = Tw , C = Cw at y = 0,

u → u∞ (x) = 0, v → 0 , T → T∞ , C → C∞ at y → ∞, (8)

The non-linear partial differential equations are reduced into
non-linear ordinary differential equations. For that purpose, the
stream function ψ = ψ(x, y) is defined as:

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (9)

continuity (Equation 1) is satisfied identically.
The similarity transformations are defined as:

ψ =

√

2vaxm+1

m+ 1
f (η), θ(η) =

T − T∞

Tw − T∞

,

φ(η) =
C − C∞

Cw − C∞

, η = y

√

(m+ 1)axm−1

2v
. (10)

On substituting (Equation 7), system of Equations (2),
(3), and (7) reduce to the following non-linear ordinary
differential equations:

(1+
1

β
)f ′′′ + ff ′′

−

(

2m

m+ 1

)

f ′
2
+

2

m+ 1
(λθ − δφ) cosγ

−

(

2M

m+ 1

)

f ′ = 0 (11)

PrNθ
′′
+ f θ ′ + Nbφ

′θ ′ + Ntθ
′2
+ Dfφ

′′
= 0 (12)

φ′′ + Lefφ′ + SrLeθ ′′ = 0 (13)

Where,

λ =
Grx

Re
, δ =

Gc

Re
,M =

σB0
2 (x)

aρ
, Le =

ν

DB
Pr =

ν

α
,

Nb =
τDB (Cw − C∞)

ν
,Nt =

τDt (Tw − T∞)

ν T∞

, (14)

Grx =
gβt (Tw − T∞) x

aν
,Re =

uwx

ν
,Gcx =

gβc (Cw − C∞) x

aν
,

PrN =
1

Pr
(1+

4

3
N),N =

4σ
∗

T3
∞

αk
∗

,

Df =
DTKT (Cw − C∞)

νCsCp (Tw − T∞)
, Sr =

DTKT (Tw − T∞)

νT∞ (Cw − C∞ )
,

Here, primes denote the differentiation with respect to η, λ
Buoyancy parameter, δ Solutal buoyancy parameter, M is the
magnetic parameter called Hartmann number, ν is the kinematic
viscosity of the liquid, Pr denotes the Prandtl number, Le
denotes the Lewis number, Nb denotes the Brownian motion
parameter, Nt indicates thermophoresis parameter, and N is the
radiation parameter.

The corresponding boundary conditions are transformed to:

f (η) = 0, f ′ (η) = 1, θ (η) = 1, φ (η) = 1 at η = 0,

f
′

(η)→ 0, θ (η)→ 0, φ (η)→ 0 as η→ ∞,(15)
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The skin friction, Sherwood number and Nusselt number for the
present problem are defined as:

Nux =
xqw

k (Tw − T∞)
, Shx =

xqm

DB (Cw − C∞)
,Cf =

tw

uw2ρf
(16)

Where,

qw = −k
∂T

∂y
, qm = −DB

∂C

∂y
, τw = µ(1+

1

β
)
∂u

∂y
at y = 0 (17)

The associated expressions of dimensionless reduced Nusselt
number −θ ′ (0), reduced Sherwood number −φ′ (0), and skin
friction coefficient Cfx are defined as

− θ ′(0) =
Nux

(1+ 4
3N)

√

m+1
2 Re

,−φ′(0) =
Shx

√

m+1
2 Re

,Cfx = Cf

√

2

m+ 1
Re

(18)
Where, Re = uwx

ν
is the local Reynolds number.

The converted non-linear differential (Equations 9–12) with
the boundary conditions (14) are elucidated by the Keller box
scheme consisting of the steps; finite-differences technique,

TABLE 1 | Comparison of the reduced Nusselt number −θ ′ (0) and the reduced

Sherwood number −θ ′(0) when M, N = 0, β → ∞, δ, Sr, Df , λ = 0, m = 1, Pr =

Le = 10 and γ = 90◦.

Nb Nt Khan and Pop [1] Present Results

−θ ′(0) −φ′(0) −θ ′(0) −φ′(0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294

0.2 0.2 0.3654 2.5152 0.3654 2.5152

0.3 0.3 0.1355 2.6088 0.1355 2.6088

0.4 0.4 0.0495 2.6038 0.0495 2.6038

0.5 0.5 0.0179 2.5731 0.0179 2.5731

Newton’s scheme, and the block elimination process clearly
explained by Anwar et al. [41]. This method has been extensively
applied and it looks to be the most flexible compared to
common techniques. It has been presented as much quicker,
easier to program,more efficient and easier to practice. Currently,
there are many alternative techniques to solve such types of
problems [42].

RESULTS AND DISCUSSION

This portion of study manages the calculated results of converted
non-linear ordinary differential (Equations 8–10) with boundary
conditions (12) elucidated via Killer-box method. Concerning
numerical results of physical parameters, including Brownian
motion parameter Nb, radiation parameter N, thermophoresis
parameter Nt, magnetic factor M, buoyancy factor λ, solutal
buoyancy factor δ, inclination factor γ , Prandtl number Pr,
Lewis number Le, Dufour effect Df , Soret effect Sr, non-linear
stretching parameter m, and Casson fluid parameter β , several
figures and tables are prepared. In Table 1, in the deficiency
of Dufour effect Df , Soret effect Sr, buoyancy parameter λ,
solutal buoyancy constraint δ, magnetic factor M, radiation
parameter N and non-linear stretching parameter ‘m’ K with γ
= 90

◦

when Casson parameter β → ∞ produces a reduced
Nusselt number−θ ′ (0) , the reduced Sherwood number−φ′ (0)
equate with existing outcomes of Khan and Pop [1]. The
consequences establishes a brilliant settlement. The effects of
−θ ′ (0), −φ′ (0), and Cfx(0), against changed values of involved
physical parameters Nb, Nt, M, β , λ, δ, γ , m, Le, Df , Sr, N,
and Pr are shown in Table 2. From Table 2 is can be clearly
seen that−θ ′ (0) declines for growing values of Nb,Nt,M,Le, Df ,
m, γ , β , N, and increases with enhancing numerical values of
λ, δ, Sr, and Pr. Moreover, it is perceived that −φ′ (0) enhanced
with the larger values of Nb, λ, δ, Nt, Le, N, Pr, Df , and
drops for bigger values of M, m, β , Sr, and γ . Physically, the
thermal boundary layer thickness enhances, as the Brownian

TABLE 2 | Values of the reduced Nusselt number −θ ′(0), the Sherwood number −φ′(0) and the Skin-friction coefficient Cfx (0).

Nb Nt Pr Le M N β λ δ Sr Df m γ −θ ′(0) −φ′(0) Cfx(0)

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.6916 1.6014 0.3363

0.5 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.2708 1.7585 0.3372

0.1 0.5 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.3705 1.7040 0.3361

0.1 0.1 10.0 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.7296 1.6079 0.3373

0.1 0.1 6.5 10.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.4719 2.4822 0.3832

0.1 0.1 6.5 5.0 0.5 1.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.6544 1.5441 0.5936

0.1 0.1 6.5 5.0 0.1 5.0 1.0 0.1 0.9 0.1 0.1 0.1 450 0.4602 1.6358 0.3283

0.1 0.1 6.5 5.0 0.1 1.0 5.0 0.1 0.9 0.1 0.1 0.1 450 0.6746 1.5789 0.3587

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.5 0.9 0.1 0.1 0.1 450 0.7039 1.6218 0.2119

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 2.0 0.1 0.1 0.1 450 0.7115 1.6356 0.0927

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.2 0.1 0.1 450 0.7168 1.5084 0.3096

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.2 0.1 450 0.4126 1.7004 0.3367

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 1.0 450 0.6629 1.5541 0.6146

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.1 0.1 600 0.6854 1.5909 0.4058

Bold values show variation in that parameter.
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parameter Nb increases impacting a large extent of the fluid.
Moreover, for large values of thermophoresis effects, the Nusselt
number decreases and the Sherwood number increases because,
the thermal boundary layer becomes thicker due to deeper
diffusion penetration into the fluid. On the other hand, Cfx(0)
rises with the growing values of Nb, Le, M, β , Pr, γ , m, Df ,
and drops with the higher values of, λ, δ, Nt, N, and Sr.
The current results are novel and show the impact of the
buoyancy parameter, solutal buoyancy parameter and inclination
parameter impacts on the driven flow in the presence of Soret and

Dufour effects on power-law fluid which is currently unavailable
in the literature.

An image of the effect of factor M on velocity profile is
portrayed in Figure 2. According to Figure 2, by improving the
constraint M, the velocity outline reduces. Since the magnetic
field produces Lorentz force, by slowing down the speed of the
liquid. On the other hand, the velocity profile slows down for
large values of the non-linear stretching parameter m, shown in
Figure 3. Physically, the momentum boundary layer thickness
reduces for higher values ofm.

FIGURE 2 | Velocity profile for several values of M.

FIGURE 3 | Velocity profile for several values of m.
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The impact of the buoyancy factor is shown in Figure 4. It is
observed that the velocity profile rises by improving the buoyancy
limit. It is due to the fact that buoyancy effect increases the
strength of the fluid flow whereby the boundary layer thickness
and velocity enhances. Figure 5 indicates that the velocity outline
increases by enhancing the solutal buoyancy factor. Physically,
the buoyancy parameter reduces the viscous forces whereby
the velocity upturns. In addition, the opposite impact can be

seen in temperature and concentration profiles for large values
of δ.

Figure 6 interprets the significance of inclination factor γ on
the velocity outline. It is perceived in Figure 6 that the velocity
outline runs down by enhancing the values of γ . Moreover, the
circumstances indicate that the maximum gravitational force acts
on flow in the case of γ = 0, because in this state the sheet
will be vertical. On the other hand, for γ = 900, the sheet will

FIGURE 4 | Velocity profile for several values of λ.

FIGURE 5 | Velocity profile for several values of δ.
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FIGURE 6 | Velocity profile for several values of γ .

FIGURE 7 | Velocity profile for several values of β.

be horizontal which causes the decline in velocity profile as the
power of the bouncy forces drop.

The effect of the Casson parameter on the velocity parameter
is presented in Figure 7. It is observed that for large values of
the Casson parameter, the velocity profile decreases. The reason
behind this behavior is that by increasing the values of the
Casson parameter, β increases the fluid viscosity i.e., reducing the
yield stress. Therefore, the momentum boundary layer thickness
reduces [43].

Figures 8, 9 show the effect of the Brownian motion on
the temperature and concentration profiles, respectively. The
temperature sketch enlarges on enlarging Nb; on the other
hand, concentration distribution enlightens a dissimilar style.
Physically, the boundary layer heats up due to the development
in the Brownian motion which is inclined to transport
nanoparticles from the extending sheet to the motionless liquid.
Therefore, the absorption nanoparticle lessens. Figures 10, 11
present temperature and concentration profiles for altered values
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FIGURE 8 | Temperature profile for several values of Nb.

FIGURE 9 | Concentration profile for several values of Nb.

of thermophoresis parameters Nt. It is perceived that both
temperature and concentration contours upsurge by growing
the thermophoresis parameter because thermophoresis causes
the small particles to compel away from a warm surface to the
cold one.

Figure 12 reveals that by growing the values of the Prandtl
number parameter Pr, the temperature profile drops because
the thermal boundary layer viscosity declines when growing the

Prandtl number Pr. In short an upturn in the Prandtl number Pr
means a deliberate amount of thermal dispersion.

Figure 13 shows that the temperature profile becomes large
for larger values in parameter Df . This can be justified as an
increase in the Dufour parameter, causing an increase in the
concentration gradient, resulting in a mass diffusion taking place
more rapidly. In this way, the rate of energy transfer related
to the particles becomes higher. That is why the temperature
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FIGURE 10 | Temperature profile for several values of Nt.

FIGURE 11 | Concentration profile for several values of Nt.

profiles enhance. The impact of the Soret number on the
concentration profile is observed similar to the impact of
the Dufour number on the temperature profile. As parameter
Sr increases, the concentration profile increases as displayed
in Figure 14. Additionally, Figure 15 indicates a temperature
profile enhanced for large values of N.

CONCLUSIONS

This study explored the heat and mass exchange of Casson
nanofluid flow over a non-linear slanted extending sheet. The
numerical results are successfully obtained via the Keller-Box
method and are finally performed with the resulting outcomes
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FIGURE 12 | Temperature profile for several values of Pr.

FIGURE 13 | Temperature profile for several values of Df .

of already published work [1]. The main findings of the current
study are summarized as:

• The velocity outline decreases by enhancing the
inclination parameter.

• An increment in Casson fluid factor declines the
velocity profile.

• Improving the buoyancy and solutal buoyancy parameters
cause an enhancement in the velocity profile.

• Temperature profile upturns when increasing the
radiation factor.

• Dufour effect causes the enhancement in the
temperature profile.

• Mass diffusion and energy of the fluid upturns by enhancing
the Brownian motion factor.

• The thermophoresis factor increases the temperature profile
and decreases the concentration profile.
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FIGURE 14 | Concentration profile for several values of Sr.

FIGURE 15 | Temperature profile for several values of N.
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The steady non-isothermal convective heat transfer in magnetohydrodynamic micropolar

fluid flow over a non-linear extending wall is examined. The fluid flow is treated with

strong magnetic field. The influence of magnetic field, Hall current, and couple stress are

mainly focused in this work. The fluid flow problem is solved analytically. The impact

of developing dimensionless parameters on primary, secondary, and angular velocity

components and temperature profile are determined through graphs. The primary

velocity component has reduced throughout the flow study. The greater magnetic

parameter, Hall parameter and couple stress parameter have increased the secondary

velocity component while the local Grashof number has reduced the secondary

velocity component. The greater magnetic parameter and Hall parameter have reduced

the angular velocity component. The greater magnetic parameter has increased the

temperature profile while the Hall parameter and local Grashof number have decreased

the temperature profile. The impact of developing dimensionless parameters on skin

friction coefficient and local Nusselt number are determined through Tables.

Keywords: hall MHD generator system, convective heat transfer, magnetohydrodynamic, micropolar fluid, couple

stress, hall current, HAM

INTRODUCTION

The flow of non-Newtonian fluids has plentiful importance in industries and modern technology.
Recently, the couple stress fluid among non-Newtonian fluid has acquired the exceptional position
due to the spin field in the fluid. The elementary concept of couple stress was established by Stokes
[1]. Khan et al. [2] deliberated the suggested model of couple stress fluid in a uniformly porous
stretching channel. The axial velocity function heightens while the radial velocity function declines
for escalating couple stress. The couple stress effect on heat transfer in four different nanofluids
flows was determined by Farooq et al. [3]. Srinivasacharya et al. [4] explored the couple stress fluid
flow. They originate that the couple stress parameter diminishes the fluid velocity and temperature
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while heightens the concentration. Ramzan et al. [5] deliberated
the couple stress fluid flow over extending sheet. It is found
that velocity profiles along both directions are declined with
the escalation in couple stress parameter. Also the fluid
temperature escalated with viscous dissipation effect. Hayat
et al. [6] determined the heat transmission rate in the couple
stress flow over extending surface and originate that the heat
transfer intensifies with the rising estimations of the couple
stress. Over an extending sheet, the couple stress fluid flow was
determined by Turkyilmazoglu [7]. It is concluded that over a
stretching sheet the couple stress gives double solution while
over shrinking sheet it gives triple solution. The unsteady couple
stress fluid flow was determined by Awad et al. [8]. Here, the
fluid velocity and temperature decline with heightened couple
stress. Sreenadh et al. [9] examined the fluid flow with couple
stress impact. Hayat et al. [10] analyzed the mass transfer in
couple stress fluid with chemical reaction. Khan et al. [11]
scrutinized the incompressible and unsteady couple stress fluid
flow considering three dimensional cylindrical polar coordinate
systems. Hayat et al. [12] measured the flow of couple stress
nanofluid with convective conditions. The fluid temperature
and concentration are increased with escalating couple stress
parameter. The dissipation influence on couple stress nanofluid
flow was determined by Ramzan [13]. The magnetic field impact
on couple stress nanofluid flow was determined by Hayat et al.
[14]. In this article, the authors determined that temperature of
fluid flow up surged with the large estimation of couple stress
parameter. With Cattaneo-Chritov heat flux Hayat et al. [15]
deliberated the flow of couple stress nanofluid flow. They found
that the velocity components are increased while the temperature
is decreased with the couple stress parameter. Umavathi et al.
[16] deliberated the laminar flow of couple stress fluid and heat
transmission considering horizontal plates. Umavathi et al. [17]
scrutinized the fluid flow with couple stress impact in between
two infinite porous walls. They concluded that the fluid velocity
and temperature are reduced in the boundary layer regime.
Srinivasacharyulu et al. [18] observed the couple stress fluids
flow over stretching walls. Zueco et al. [19] inspected the couple
stress nanofluid in a rigid channel. Zakaria [20] deliberated the
couple stress fluid under magnetic field impact. Ellahi et al. [21]
determined the couple stress blood flow under the impact of
activation energy and chemical reaction.

In recent times, the researchers have got interest in
megnetohydrodynamic (MHD) owing to plentiful applications
in industrial, engineering, and medical devices. Rudolf et al. [22]
briefly reviewed the properties of magnetic field in the universe.
The MHD nanofluid flow with chemical reaction was deliberated
by Hayat et al. [23]. The fluid flow velocity is reduced with higher
estimation of magnetic field, and temperature escalated with
chemical reactions and Dufour influences. The heat transmission
in the flow of MHD nanofluid over unsteady extending sheet was
observed by Lin et al. [24]. The fluid flow velocity is reduced with
heightens in magnetic field while the temperature of the fluid
escalated. The heat transfer in the flow of MHD incompressible
second-grade nanofluid was deliberated by Ramesh et al. [25].
The MHD nanofluid flow in a symmetric channel was probed
by Reddy et al. [26]. The elementary study of micropolar fluid
was introduced by Eringen [27]. Bég et al. [28] presented the

applications of micropolar fluid flow. Uddin et al. [29] probed
the MHD micropolar fluid with Hall effect. Here, interesting
results are concluded. The velocity of the fluid heightens with
the escalation in magnetic field while the temperature of the
fluid reduces with higher estimation of magnetic field (i.e.
M>2). Khan et al. [30] determined the radiation and inertial
coefficient influences on the flow of nanofluid. The higher
inertial coefficient, porosity parameter, and coupling parameter
reduce the fluid velocity and the temperature heightens with
the escalation in thermal radiation. Dawar et al. [31] deliberated
the unsteady MHD nanofluid with viscous dissipation effect.
Here, the authors originate that the fluid flow velocity reduces
with escalation in magnetic field and the fluid flow temperature
reduces with viscous dissipation impacts. Kumam et al. [32]
probed the MHD Casson nanofluid flow. Shah et al. [33]
deliberated the flow of MHD thin film fluid with radiation
impact. The MHD Casson nanofluid flow in a cylindrical tube
was considered by Ali et al. [34]. The nanofluid flow with Hall
effect was studied by Shah et al. [35]. The MHD nanofluid
flow with magnetic and electric fields, and Hall impacts was
determined by Shah et al. [36]. Kumar et al. [37] investigated
the MHD nanofluid with magnetic and heat sink/source impacts.
Temple et al. [38] scrutinized the nanoparticles of ferromagnetic
for their size and magnetic properties. Ellahi et al. [39] examined
the MHD nanofluid flow with thermal conductivity. Asadollahi
et al. [40] deliberated the phase change of a fluid in a square
microchannel. The most relevant and new studied studies can be
reads in Ellahi et al. [41–43], Bhatti et al. [44], Ameen et al. [45],
Vo et al. [46], Ahmad et al. [47], Sheikholeslami et al. [48], Ali
et al. [49], and Ullah et al. [50].

In view of the above mentioned literature survey, the
authors are in position to examine the three-dimensional MHD
micropolar fluid flow over an extending wall with couple stress,
Hall current and viscous dissipation influences. Section of
Problem Formulation agrees with problem formulation. In the
section of Solution by HAM, the recommended model is solved
by HAM. Results section includes the results of the problem
and the section of Discussion of the problem is presented
independently. The final observations are obtainable in the
section of Conclusion.

PROBLEM FORMULATION

We assume the incompressible, steady, and electrically
conducting couple stressed flow of micropolar fluid and
heat transfer in the near wall zone of MHD Hall generator. The
wall is considered as non-linearly stretching and concerned with
x−direction (as shown in Figure 1). The magnetic field B0 is
functional in y−axis. In the presence of magnetic field, the Hall
current influences the electrically conducting fluid. The flow of
fluid develops to 3D due to the Hall current, which increases
the force in z−direction. All properties of fluid are considered
constant and isotropic.

The principal equations for the fluid flow can be written
as [27, 28]:

∂v

∂y
+

∂u

∂x
= 0, (1)
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v
∂u

∂y
+ u

∂u

∂x
= ν

∂2u

∂y2
− ν′

∂4u

∂y4
−

B0

ρ
Jz

+ gβ (T − T∞) + K1
∂N

∂y
, (2)

v
∂w

∂y
+ u

∂w

∂x
= ν

∂2w

∂y2
− ν′

∂4w

∂y4
+

B0

ρ
Jx, (3)

G1

K2

∂2N

∂y2
= 2N +

∂u

∂y
, (4)

v
∂T

∂y
+ u

∂T

∂x
=

κ

ρcp

∂2T

∂y2

+
σµeB

2
0λ

ρcp
(

m2λ2 + 1
)

(

w2
+ u2

)

, (5)

with

u = U = Pxn, v = 0, w = 0, N = 0, T = Tw = T∞

+ Axγ at y = 0,

u → 0, w → 0, N → 0, T → T∞ at y → ∞. (6)

Here, the positive n indicates the acceleration of the wall and
negative n indicates the deceleration of wall form the origin
whereas n = 0 is the case for stationary wall, u, v and w are
the velocity components, N is the micro-rotation, T denotes

the fluid temperature, Jx =
σµeB0λ

1+m2λ2 (λmu− w) and Jz =

σµeB0λ
1+m2λ2 (u− λmw) are the currents along x− and z−directions

correspondingly, also electrical conductivity-σ , fluid viscosity-
µe, applied uniform magnetic field-B0, Hall parameter-m, couple
stress viscosity-ν′, λ = cosα where α indicates the angle
between the magnetic field and the transverse plane to the
plate, thermal expansion volumetric coefficient-β , kinematic
viscosity-ν, fluid density-ρ, Eringen vortex viscosity-K2, thermal
conductivity-κ , Eringen spin gradient viscosity-G1, specific heat-
cp, γ , and A-constants.

FIGURE 1 | Geometrical illustration of the micropolar fluid flow.

To transform the coordinate system to a non-dimensional
one and this is achieved readily via non-similar transformations,
simultaneously eliminating one of the independent variables and
reducing the PDEs into ODEs, the following transformation
variables are defined.

ξ = y

√

√

√

√

√

P

(

n+ 1

)

2ν
x

n−1
2 , u = Pxnf ′

(

ξ

)

,

v = −

√

Pν

(

n+ 1

2

)

x
n−1
2

(

f +
n− 1

n+ 1
ξ f ′
(

ξ

))

, (7)

w = Pxng

(

ξ

)

, N = P

√

√

√

√

√

P

(

n+ 1

)

2ν
x

3n−1
2 h

(

ξ

)

,

θ

(

ξ

)

=
T − T∞

Tw − T∞

,

The transformed equations are defined as:

f ′′′ + ff ′′
− N1h′ −

2

n+ 1

[

nf ′
2
− Grθ

+
Mλ

1+m2λ2

(

f ′ +mλg
)

]

−
n+ 1

2
Kf ′′

′′′
= 0, (8)

g′′ + fg′ −
2

n+ 1

[

nf ′g −
Mλ

1+m2λ2

(

mλf ′ − g
)

]

−
n+ 1

2
Kg′′′

′
= 0, (9)

G

(

n+ 1

2

)

h′′ − f ′′ − 2h = 0, (10)

1

Pr
θ ′′ + f θ ′

−
2

n+ 1

[

γ f ′θ −
Mλ

1+m2λ2
Ec
(

f ′
2
+ g2

)

]

= 0, (11)

with transformed boundary conditions:

f = 0, f ′ = 1, g = 0, h = 0, θ = 1 at ξ=0,

f ′ → 0, g → 0, h → 0, θ → 0 as ξ → ∞. (12)

Here, Gr =
gβ(Tw−T∞)x

U2 symbolizes the Grashof number, M =

σµeB
2
0x

ρU characterizes the Hartmann number in which B0 =
P
√
x

is the scaled magnetic field strength, G =
G1Px

n−1

K2ν
represents

the micro-rotation parameter, m Hall parameter, K =
ν′

ν2Px2(n−1)

represents the dimensionless couple stress parameter, γ indicates
the non-isothermal power-law index, N1 =

K1
ν
characterizes the

material parameter, Pr =
ρνcp

κ
embodies the Prandtl number,

Ec = U2

cp(Tw−T∞)
epitomizes the Eckert number, and n represents

the non-linear wall geometric parameter.
For primary and secondary velocity components, the skin

frication are defined as:

τwx = µ
∂u

∂y

∣

∣

∣

∣

y=0

=
µU
√
x

√

(

U (n+ 1)

2ν

)

f ′′ (0), (13)
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FIGURE 2 | Impact of M on f ′ (ξ).

FIGURE 3 | Impact of M on g (ξ).

τwz = µ
∂w

∂y

∣

∣

∣

∣

y=0

=
µU
√
x

√

(

U (n+ 1)

2ν

)

g′ (0), (14)

Using Equation (7), the skin fraction coefficients for primary and
secondary velocities are reduced as:

Cfx =
τwx

1
2ρU

2
=

√

2 (n+ 1)

Re
f ′′ (0), (15)

Cfz =
τwz

1
2ρU

2
=

√

2 (n+ 1)

Re
g′ (0). (16)

The Nusselt number is specified by:

Nux = −
x

(Tw − T∞)

∂T

∂y

∣

∣

∣

∣

y=0

= −

√

Re (n+ 1)

2
θ ′ (0), (17)

SOLUTION BY HAM

To solve the Equations (8)–(11) using boundary conditions (12),
we proceed HAM with the following manners.

FIGURE 4 | Impact of M on h (ξ).

FIGURE 5 | Impact of M on θ (ξ).

Initial gausses

f0(ξ ) = 1− eξ , g0(ξ ) = 0, h0(ξ ) = 0, θ0(ξ ) = e−ξ. (18)

Linear operators

Lf (f ) =
d3f

dξ 3
−

df

dξ ,
Lg(g) =

d2g

dξ 2
− g, Lh(h) =

d2h

dξ 2
− h,

Lθ (θ) =
d2θ

dξ 2
− θ , (19)

with the following properties:

Lf (s1 + s2e
−ξ

+ s3e
ξ ) = 0, Lg(s4e

−ξ
+ s5e

ξ ) = 0,

Lh(s6e
−ξ

+ s7e
ξ ) = 0, Lθ (s8e

−ξ
+ s9e

ξ ) = 0,
(20)

where si(i = 1− 9) are arbitrary constants.
The consequential non-linear operatorsNf ,Ng ,Nh, andNθare

specified as:

Nf

[

f (ξ ;2), g(ξ ;2), h(ξ ;2), θ(ξ ;2)
]
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FIGURE 6 | Impact of Gr on f ′ (ξ).

FIGURE 7 | Impact of Gr on g (ξ).

FIGURE 8 | Impact of Gr on h (ξ).

=
∂3f (ξ ;2)

∂ξ 3
+ f (ξ ; τ )

∂2f (ξ ;2)

∂ξ 2
− N1

∂h(ξ ;2)

∂ξ

−
2

n+ 1

[

n

(

∂f (ξ ;2)

∂ξ

)2

− Grθ(ξ ;2)

FIGURE 9 | Impact of Gr on θ (ξ).

FIGURE 10 | Impact of m on f ′ (ξ).

FIGURE 11 | Impact of m on g (ξ).

+
Mλ

1+m2λ2

(

∂f (ξ ;2)

∂ξ
+mλg(ξ ;2)

)]

−
n+ 1

2
K

∂5f (ξ ;2)

∂ξ 5
, (21)
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FIGURE 12 | Impact of m on h (ξ).

FIGURE 13 | Impact of m on θ (ξ).

Ng

[

g(ξ ;2), f (ξ ;2)
]

=
∂2g(ξ ;2)

∂ξ 2
− f (ξ ;2)

∂g(ξ ;2)

∂ξ

−
2

n+ 1

[

ng(ξ ;2)
∂f (ξ ;2)

∂ξ
−

Mλ

1+m2λ2

(

mλ
∂f (ξ ;2)

∂ξ
− g(ξ ;2)

)]

−
n+ 1

2
K

∂4g(ξ ;2)

∂ξ 4
, (22)

Nh

[

h(ξ ;2), f (ξ ;2)
]

= G

(

n+ 1

2

)

∂2h(ξ ;2)

∂ξ 2

−
∂2f (ξ ;2)

∂ξ 2
− 2h(ξ ;2), (23)

Nθ

[

θ(ξ ;2), f (ξ ;2), g(ξ ;2)
]

=
1

Pr

∂2θ(ξ ;2)

∂ξ 2
+ f (ξ ;2)

∂θ(ξ ;2)

∂ξ

−
2

n+ 1

[

γ θ(ξ ;2)
∂f (ξ ;2)

∂ξ

FIGURE 14 | Impact of K on f ′ (ξ).

FIGURE 15 | Impact of K on g (ξ).

−
Mλ

1+m2λ2
Ec

(

(

∂f (ξ ;2)

∂ξ

)2

+
(

g(ξ ;2)
)2

)]

, (24)

The zeroth-order problems from Equations (8)–(11) are:

(1− 2)Lf
[

f (ξ ;2)− f0(ξ )
]

= 2h̄fNf

[

f (ξ ;2), g(ξ ;2), h(ξ ;2), θ(ξ ;2)
]

, (25)

(1− 2)Lg
[

g(ξ ;2)− g0(ξ )
]

= 2h̄gNg

[

g(ξ ;2), f (ξ ;2)
]

, (26)

(1− 2)Lh
[

h(ξ ;2)− f0(ξ )
]

= 2h̄hNh

[

h(ξ ;2), f (ξ ;2)
]

, (27)

(1− 2)Lθ

[

θ(ξ ;2)− θ0(ξ )
]

= 2h̄θNθ

[

θ(ξ ;2), f (ξ ;2), g(ξ ;2)
]

. (28)

The equivalent boundary conditions are:

∂f (ξ ;2)
∂ξ

∣

∣

∣

ξ=0
= 1, f (ξ ;2)

∣

∣

ξ=0
= 0, g(ξ ;2)

∣

∣

ξ=0
= 0,

h(ξ ;2)
∣

∣

ξ=0
= 0, θ(ξ ;2)

∣

∣

ξ=0
= 1,

∂f (ξ ;τ )
∂ξ

∣

∣

∣

ξ→∞

= 0, g(ξ ; τ )
∣

∣

ξ→∞
= 0, h(ξ ; τ )

∣

∣

ξ→∞
= 0,

θ(ξ ; τ )
∣

∣

ξ→∞
= 0.

(29)
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TABLE 1 | Influence of M, Gr, G, N1, m, Ec, Pr, n, and K on Cfx .

M Gr G N1 m Ec Pr n K Cfx

0.2 0.2 0.3 0.2 1.1 0.1 0.72 1.1 0.1 −1.233236

0.3 −1.339327

0.4 −1.443959

0.4 −1.391409

0.6 −1.338869

0.8 −1.286370

0.4 −1.286278

0.6 −1.286189

0.8 −1.286101

0.3 −1.288813

0.4 −1.291526

0.5 −1.294238

1.3 −1.173870

1.5 −1.097241

1.7 −1.042032

0.3 −1.045267

0.6 −1.044867

0.9 −1.044467

1.0 −1.046198

5.0 −1.050270

10.0 −1.050834

1.2 −1.081639

1.3 -.1117715

1.4 −1.152781

0.3 −1.561382

0.5 −2.936200

0.7 −8.747216

When 2 = 0 and 2 = 1 we have:

f (ξ ; 1) = f (ξ ), g(ξ ; 1) = g(ξ ), h(ξ ; 1) = h(ξ ),

θ(ξ ; 1) = θ(ξ ). (30)

By Taylor’s series expansion f (ξ ;2), g(ξ ;2), h(ξ ;2), and
θ(ξ ;2) can be written as:

f (ξ ;2) = f0(ξ )+
∞
∑

q=1
fq(ξ )2

q, g(ξ ;2) = g0(ξ )+
∞
∑

q=1
gq(ξ )2

q,

h(ξ ;2) = h0(ξ )+
∞
∑

q=1
hq(ξ )2

q, θ(ξ ;2) = θ0(ξ )+
∞
∑

q=1
θq(ξ )2

q,
(31)

where

fq(ξ ) =
1
q!

∂f (ξ ;2)
∂ξ

∣

∣

∣

2=0
, gq(ξ ) =

1
q!

∂g(ξ ;2)
∂ξ

∣

∣

∣

2=0
,

hq(ξ ) =
1
q!

∂h(ξ ;2)
∂ξ

∣

∣

∣

2=0
, θq(ξ ) =

1
q!

∂f (ξ ;2)
∂ξ

∣

∣

∣

2=0
.

(32)

The secondary constraints h̄f , h̄g , h̄h and h̄θare nominated in
such a way that the series (31) converges at 2 = 1, changing

2 = 1 in Equation (31), we get:

f (ξ ) = f0(ξ )+
∞
∑

q=1
fq(ξ ), g(ξ ) = g0(ξ )+

∞
∑

q=1
gq(ξ ),

h(ξ ) = h0(ξ )+
∞
∑

q=1
hq(ξ ), θ(ξ ) = θ0(ξ )+

∞
∑

q=1
θq(ξ ).

(33)

The qth−order problem satisfies the following:

Lf
[

fq(ξ )− χqfq−1(ξ )
]

= h̄fU
f
q(ξ ),

Lg
[

dq(ξ )− χqdq−1(ξ )
]

= h̄gU
g
q (ξ ),

Lh
[

Fq(ξ )− χqFq−1(ξ )
]

= h̄hU
h
q (ξ ),

Lθ

[

Dq(ξ )− χqDq−1(ξ )
]

= h̄θU
θ
q (ξ ).

(34)

The equivalent boundary conditions are:

fq(0) = f ′q(0) = f ′q(∞) = 0, gq(0) = gq(∞) = 0,

hq(0) = hq(∞) = 0, θq(0) = θ ′q(∞) = 0. (35)

Here,

U
f
q(ξ ) = f ′′′q−1 +

q−1
∑

k=0

fq−1−kf
′′

k − N1h′q−1
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TABLE 2 | Influence of M, Gr, G, N1, m, Ec, Pr, n, and K onCfz.

M Gr G N1 m Ec Pr n K Cfz

0.2 0.2 0.3 0.2 1.1 0.1 0.72 1.1 0.1 0.210288

0.3 0.312368

0.4 0.410969

0.4 0.412875

0.6 0.414780

0.8 0.416684

0.4 0.416776

0.6 0.416866

0.8 0.416953

0.3 0.414227

0.4 0.411502

0.5 0.408776

1.3 0.295179

1.5 0.221561

1.7 0.171285

0.3 0.171296

0.6 0.171313

0.9 0.171330

1.0 0.171273

5.0 0.171144

10.0 0.171127

1.2 0.166810

1.3 0.162582

1.4 0.158615

0.3 0.191738

0.5 0.184492

0.7 0.184488

−
2

n+ 1

[

n
(

f ′q−1

)2
− Grθq−1

+
Mλ

1+m2λ2

(

f ′q−1 +mλgq−1

)

]

−
n+ 1

2
Kf ′′

′′′

q−1, (36)

U
g
q (ξ ) = g′′q−1 +

q−1
∑

k=0

fq−1−kg
′

k −
2

n+ 1



n

q−1
∑

k=0

f ′q−1−kgk

−
Mλ

1+m2λ2

(

mλf ′q−1 − gq−1

)

]

−
n+ 1

2
Kg′′′

′

q−1,

(37)

Uh
q (ξ ) = G

(

n+ 1

2

)

h′′q−1 − f ′′q−1 − 2hq−1, (38)

Uθ
q (ξ ) =

1

Pr
θ ′′q−1 +

q−1
∑

k=0

fq−1−kθ
′
k −

2

n+ 1



γ

q−1
∑

k=0

f ′q−1−kθk

−
Mλ

1+m2λ2
Ec

(

(

f ′q−1

)2
+
(

gq−1

)2
)]

, (39)

where,

χq =

{

0, if 2 ≤ 1
1, if 2 > 1.

RESULTS

Electrically conducting steady non-isothermal convective heat
transfer in magnetohydrodynamic micropolar fluid flow over
a non-linear extending wall is examined. Modeled equations
are solved analytically through HAM. The impact of obtained
important parametersM, Gr,m, and K on the fluid flow behavior
are displayed in Figures 2–15.

DISCUSSION

In this section we have discussed the effects of obtained
parameter which are shown graphically and numerically through
tables. The greater Hartmann number strongly reduced the
primary and angular velocity profile owing to the Lorentz
drag force components as appear in Equations (8) and (9).
The components are negative and positive and thus inhibit
the fluid flow. According to the secondary Lorentz drag
force is truthfully positive and is assistive to secondary
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TABLE 3 | Influence of M, Gr, G, N1, m, Ec, Pr, n, and K on Nux .

M Gr G N1 m Ec Pr n K Nux

0.2 0.2 0.3 0.2 1.1 0.1 0.72 1.1 0.1 1.567232

0.3 1.553232

0.4 1.539852

0.4 1.540408

0.6 1.540960

0.8 1.541507

0.4 1.541508

0.6 1.541508

0.8 1.541508

0.3 1.541500

0.4 1.541493

0.5 1.541486

1.3 1.557281

1.5 1.567616

1.7 1.574715

0.3 1.530638

0.6 1.464505

0.9 1.398349

1.0 1.524106

5.0 1.893057

10.0 1.952805

1.2 1.437652

1.3 1.475901

1.4 1.513178

0.3 1.515541

0.5 1.518194

0.7 1.523959

momentum development when the magnetic field is positive.
These impacts are depicted in Figures 2, 4. The opposite
impacts of M on secondary velocity and temperature functions
are depicted in Figures 3, 5. It is perceived that the strong
magnetic field has direct relationship with the secondary
velocity and temperature functions. Against the magnetic
field, the upsurge in temperature function is an attribute to
the dissipation in kinetic energy consumed in dragging the
micropolar. In addition, the temperature is always supreme at
the wall.

Figures 6–9 display the consequence of Gr on f ′ (ξ),
g (ξ), h (ξ), and θ (ξ). The influence of Gr on f ′ (ξ) is
portrayed in Figure 6. Here, the velocity heightens with the
acceleration in Grashof number near the wall. However, the
free convention current deteriorates at a critical distance
from the wall which conserved into the free stream. A
similar impact of Grashof number secondary velocity can
be seen in Figure 7. Near the wall the fluid flow escalates
with greater Grashof number but thereafter a deceleration
started after some critical distance. Furthermore, the greater
proportion of the region is observed for secondary velocity
in comparison of primary velocity. Figure 8 reveals the
consequence of Gr on h (ξ). The angular velocity heightens

via Grashof number. A very quick growing behavior in the
whole boundary layer regime is observed in the angular
velocity. Figure 9 reveals the impact of Gr on θ (ξ). The
intensifying Grashof number shrinks the boundary layer
thickness, consequently the decline in temperature function
is depicted.

Figures 10–13 reveal the impact m on f ′ (ξ), g (ξ), h (ξ),
and θ (ξ). Figure 10 reveals the impact of m on f ′ (ξ).
Acceleration in m escalates the f ′ (ξ) in the neighborhood of
the wall. Further toward the free stream, after some critical
points the primary velocity function reduces. The drag force
moderates which produce acceleration in f ′ (ξ) and in conclusion
f ′ (ξ) diminishes. Figure 11 reveals the impact of m on g (ξ).
Acceleration in m escalates the g (ξ) throughout the fluid flow.
The Hall term in Equation (9) is effectively positive for positive
magnetic field parameter. This assists to support the cross flow
and demonstrates in significant cross flow spurt. Figure 12

reveals the impact of m on h (ξ). The Hall current parameter
shows dual behavior in the flow of fluid. An enhancement in
h (ξ) is perceived nearer to the wall and then deceleration to
the flow stream is observed at some critical points. Generally,
nevertheless the Hall current emboldens the rotary motions of
microelements. Figure 13 reveals the impact of m on θ (ξ). The
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temperature function is regularly inhibited with Hall current
parameter. Here, the decline in thickness of the boundary layer
is perceived.

Figures 14, 15 reveal the impact of K on f ′ (ξ), g (ξ),
h (ξ), and θ (ξ). At the point when an extra force added to
the fluid which contradicts the fluid stream, this resistance
makes a couple forces thus a couple stresses are persuaded
in the fluid. This sort of fluid is recognized as couple
stress fluid. Generally, the couple stress parameter and
couple stress viscosity parameter n′ has direct relationship.
The growing couple stress parameter leads the fluid to
be more viscous which reduces the fluid flow. Therefore,
the escalation approximations of couple stress parameter
reduced the primary and secondary velocity as shown in
Figures 14, 15. Additionally, the couples stress parameter is
associated with the fluid motion. Therefore, it has no impact on
temperature function.

Tables 1–3 are displayed to observe the impact of embedded
parameters on velocities and temperature profiles. The impact
M, Gr, G, N1, m, Ec, Pr, n, and K on Cfx and Cfz are shown in
Tables 1, 2. The rising value of M, N1, n, and K augmented the
skin friction along x-axis Cfx where Gr, G, and m have opposite
impact on the skin friction along x-axis Cfx. The higher value
of M, Gr, G, and Ec augmented skin friction along z-axis Cfz

where, m, N1, n, and K reduces the skin friction along z-axis
Cfz . The influence of M, Gr, N1, m, Ec, Pr, n, and K on heat flux
Nux are presented in Table 3. The greater value of Gr, m, Pr, n,
and K augmented the heat flux Nux while, remaining parameter
reduces the heat flux Nux. It should be noted that G has no
impact on Nux.

CONCLUSION

In the current paper, the MHD micropolar boundary layer flow
and heat transfer over a non-linear extending sheet infused by a
strong magnetic field with couple stress, viscous dissipation and
Hall impact have been determined.

The final observations are:

• The primary velocity reduces with greater magnetic
parameter, local Grashof number, Hall parameter and
couples stress parameter.

• The secondary velocity increases with greater magnetic
parameter, Hall parameter and couple stress parameter.

• The secondary velocity decreases with greater local
Grashof number.

• The angular velocity reduces with greater magnetic parameter
and Hall parameter.

• The angular velocity increases with greater local
Grashof number.

• The temperature profile increases with greater
magnetic parameter.

• The temperature profile increases with greater Hall parameter
and local Grashof number.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

ZS and PK developed the numerical method and led the
manuscript preparation. AD contributed to the code
development and to the article preparation. EA and PT
contributed to the analysis and discussion of the results.

FUNDING

This research was funded by the Center of Excellence in
Theoretical and Computational Science (TaCS-CoE), KMUTT
under Grant KMUTNB-61-GOV-A-0.

ACKNOWLEDGMENTS

This work was supported by the research program International
Research Common Laboratory in cooperation under Renewable
Energy Research Centre (RERC)—King Mongkut’s University
of Technology North Bangkok (KMUTNB), Center of
Excellence in Theoretical and Computational Science (TaCS-
CoE)—King Mongkut’s University of Technology Thonburi
(KMUTT), and Groupe de Recherche en Energie Electrique de
Nancy (GREEN)—Université de Lorraine (UL) under Grant
KMUTNB-61-GOV-A-01.

REFERENCES

1. Stokes VK. Couple stresses in fluids. Phys Fluids. (1966)

9:1710–5. doi: 10.1063/1.1761925

2. Khan NA, Mahmood A, Ara A. Approximate solution of couple stress

fluid with expanding or contracting porous channel. Eng Comput. (2013)

30:399–408. doi: 10.1108/02644401311314358

3. Farooq M, Islam S, Haroon T. Heat transfer analysis of

the couple stress fluid between two parallel plates. Heat

Trans Res. (2011) 42:737–80. doi: 10.1615/HeatTransRes.20120

00996

4. Srinivasacharya D, Kaladhar K. Mixed convection flow of couple stress fluid

in a non-darcy porous medium with Soret and Dufour effects. J Appl Sci Eng.

(2012) 15:415–22.

5. Ramzan M, Farooq M, Alsaedi A, Hayat T. MHD three-dimensional flow

of couple stress fluid with Newtonian heating. Eur Phys J Plus. (2013)

128:49. doi: 10.1140/epjp/i2013-13049-5

6. Hayat T, Mustafa M, Iqbal Z, Alsaedi A. Stagnation-point flow of

couple stress fluid with melting heat transfer. Appl Math Mech. (2013)

34:167–76. doi: 10.1007/s10483-013-1661-9

7. Turkyilmazoglu M. Exact solutions for two-dimensional laminar flow

over a continuously stretching or shrinking sheet in an electrically

conducting quiescent couple stress fluid. Int J Heat Mass Transfer. (2014)

72:1–8. doi: 10.1016/j.ijheatmasstransfer.2014.01.009

8. Awad F, Haroun NAH, Sibanda P, Khumalo M. On couple stress effects

on unsteady nanofluid flow over stretching surfaces with vanishing

nanoparticle flux at the wall. J Appl Fluid Mech. (2016) 9:1937–

44. doi: 10.18869/acadpub.jafm.68.235.24940

Frontiers in Physics | www.frontiersin.org 10 November 2019 | Volume 7 | Article 17131

https://doi.org/10.1063/1.1761925
https://doi.org/10.1108/02644401311314358
https://doi.org/10.1615/HeatTransRes.2012000996
https://doi.org/10.1140/epjp/i2013-13049-5
https://doi.org/10.1007/s10483-013-1661-9
https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.009
https://doi.org/10.18869/acadpub.jafm.68.235.24940
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shah et al. Micropolar Fluid in Hall MHD Generator System

9. Sreenadh S, Kishore SN, Srinivas ANS, Reddy RH. MHD free convection

flow of couple stress fluid in a vertical porous layer. Adv Appl Sci Res.

(2011) 2:215–22.

10. Hayat T, Awais M, Safdar A, Hendi AA. Unsteady three dimensional

flow of couple stress fluid over a stretching surface with chemical

reaction. Nonlin Analy Mod. Cont. (2012) 17:47–59. doi: 10.15388/NA.17.1.

14077

11. Khan NA, Aziz S, Khan NA. Numerical simulation for the unsteady

MHD flow and heat transfer of couple stress fluid over a rotating

disk. PLoS ONE. (2014) 9:e95423. doi: 10.1371/journal.pone.

0095423

12. Hayat T, Aziz A, Muhammad T, Ahmad B. Influence of magnetic field

in three-dimensional flow of couple stress nanofluid over a nonlinearly

stretching surface with convective condition. PLoS ONE. (2015)

10:e0145332. doi: 10.1371/journal.pone.0145332

13. Ramzan M. Influence of Newtonian heating on three dimensional

MHD flow of couple stress nanofluid with viscous dissipation and

joule heating. PLoS ONE. (2015) 10:e0124699. doi: 10.1371/journal.pone.

0124699

14. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. Simultaneous effects

of magnetic field and convective condition in three dimensional

flow of couple stress nanofluid with heat generation/absorption. J

Braz Soc Mech Sci Eng. (2017) 39:1165–76. doi: 10.1007/s40430-016-

0632-5

15. Hayat T, Muhammad T, Alsaedi A. On three-dimensional flow of

couple stress fluid with Cattaneo–Christov heat flux. Chin J Phys. (2017)

55:930–8. doi: 10.1016/j.cjph.2017.03.003

16. Umavathi JC, Chamkha AJ, Manjula MH, Al-Mudhaf A. Flow and heat

transfer of a couple-stress fluid sandwiched between viscous fluid layers. Can

J Phys. (2005) 83:705–20. doi: 10.1139/p05-032

17. Umavathi JC, Malashetty MS. Oberbeck convection flow of a couple

stress fluid through a vertical porous stratum. Int J Nonlin Mech. (1999)

34:1037–45. doi: 10.1016/S0020-7462(98)00074-2

18. Srinivasacharyulu N, Odelu O. Flow and heat transfer of couple stress fluid

in a porous channel with expanding and contracting walls. Int Commun

Heat Mass Transfer. (2009) 36:180–5. doi: 10.1016/j.icheatmasstransfer.2008.

10.005

19. Zueco J, Beg OA. Network numerical simulation applied to pulsatile non-

Newtonian flow through a channel with couple stress and wall mass flux

effects. Int J Appl Math Mech. (2009) 5:1–16.

20. Zakaria M. Hydromagnetic fluctuating flow of a couple stress fluid

through a porous medium. Korean J Comput Appl Math. (2002)

10:175–91. doi: 10.1007/BF02936216

21. Ellahi R, Zeeshan A, Hussain F, Asadollahi A. Peristaltic blood

flow of couple stress fluid suspended with nanoparticles under the

influence of chemical reaction and activation energy, Symmetry. (2019)

11:276. doi: 10.3390/sym11020276

22. Rudolf AT, Baumjohann W, Balogh. A. The strongest magnetic fields

in the universe: how strong can they become? Front Phys. (2014)

2:59. doi: 10.3389/fphy.2014.00059

23. Hayat T, Iqbal R, Tanveer A, Alsaed A. Soret and Dufour effects in MHD

peristalsis of pseudoplastic nanofluid with chemical reaction. J Mol Liq. (2016)

220:693–706. doi: 10.1016/j.molliq.2016.04.123

24. Lin Y, Zheng L, Zhang X, Chen G. MHD pseudo-plastic nanofluids

unsteady flow and heat transfer in a finite thin film over stretching

sheet with internal heat generation. Int J Heat Mass Transf. (2015)

84:903–11. doi: 10.1016/j.ijheatmasstransfer.2015.01.099

25. Ramesh K, Devakar M. The influence of heat transfer on

peristaltic transport of MHD second grade fluid through

porous medium in a vertical asymmetric channel. J Appl Fluid

Mech. (2015) 8:351–65. doi: 10.18869/acadpub.jafm.67.222.

23471

26. Reddy MG, Reddy KV. Influence of Joule heating on MHD peristaltic

flow of a nanofluid with compliant walls. Process Eng. (2015)

127:1002–9. doi: 10.1016/j.proeng.2015.11.449

27. Eringen AC. Theory of micropolar fluids. J Math Mech. (1966)

16:1–18. doi: 10.1512/iumj.1967.16.16001

28. Bég AO, Bhargava R, Rashidi MM. Numerical Simulation in Micropolar

Fluid Dynamics. Saarbrücken: Lap Lambert Academic Publishing GmbH

KG (2011).

29. Uddin Z, Kumar M. Hall and ion-slip effect on MHD boundary layer

flow of a micro polar fluid past a wedge. Sci Iran. (2013) 20:467–76.

doi: 10.1016/j.scient.2013.02.013

30. Khan A, Shah Z, Islam S, Dawar A, Bonyah E, Ullah H, Khan A.

Darcy-Forchheimer flow of MHD CNTs nanofluid radiative thermal

behaviour and convective non uniform heat source/sink in the rotating

frame with microstructure and inertial characteristics, AIP Adv. (2018)

8:125024. doi: 10.1063/1.5066223

31. Dawar A, Shah Z, Khan W, Idrees M, Islam S. Unsteady squeezing flow

of magnetohydrodynamic carbon nanotube nanofluid in rotating channels

with entropy generation and viscous dissipation. Adv Mech Eng. (2019)

11:1–18. doi: 10.1177/1687814018823100

32. Kumam P, Shah Z, Dawar A, Rasheed HU, Islam S. Entropy

Generation in MHD radiative flow of CNTs casson nanofluid in

rotating channels with heat source/sink. Math Problems Eng. (2019)

2019:9158093. doi: 10.1155/2019/9158093

33. Shah Z, Dawar A, Kumam P, Khan W, Islam S. Impact of nonlinear thermal

radiation on MHD nanofluid thin film flow over a horizontally rotating disk.

Appl. Sci. (2019) 9:1533. doi: 10.3390/app9081533

34. Ali F, Sheikh NA, Khan I, Saqib M. Magnetic field effect on blood

flow of Casson fluid in axisymmetric cylindrical tube: a fractional

model. J Magn Magn Mater. (2017) 423:327–36. doi: 10.1016/j.jmmm.2016.

09.125

35. Shah Z, Dawar A, Alzahrani EO, Kumam P, Khan A, Islam S. Hall

effect on couple stress 3D nanofluid flow over an exponentially stretched

surface with Cattaneo Christov Heat Flux Mode. IEEE Access. (2019) 7:

64844–55. doi: 10.1109/ACCESS.2019.2916162

36. Shah Z, Islam S, Gul T, Bonyah E, Altaf KhanM. The electrical MHD and Hall

current impact on micropolar nanofluid flow between rotating parallel plates.

Results Phys. (2018) 9:1201–14. doi: 10.1016/j.rinp.2018.01.064

37. Kumar KA, Reddy JV, Sugunamma V, Sandeep N. Simultaneous

solutions for MHD flow of williamson fluid over a curved sheet

with nonuniform heat source/sink. Heat Transfer Res. (2019)

50:581–603. doi: 10.1615/HeatTransRes.2018025939

38. Temple RC, Mihai AP, Arena DA, Marrows CH. Ensemble magnetic

behavior of interacting CoFe nanoparticles. Front Phys. (2015)

3:52. doi: 10.3389/fphy.2015.00052

39. Ellahi R, Zeeshan A, Shehzad N, Alamri SZ. Structural impact of

Kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal

conductivity: application of cooling process. J Mol Liquids. (2018)

264:607–15. doi: 10.1016/j.molliq.2018.05.103

40. Asadollahi A, Rashidi S, Esfahani JA, Ellahi R. Simulating phase change

during the droplet deformation and impact on a wet surface in a square

microchannel: An application of oil drops collision. Eur Phys J Plus. (2018)

133:306. doi: 10.1140/epjp/i2018-12135-6

41. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of MHD and

slip on heat transfer boundary layer flow over a moving plate

based on specific entropy generation. J Taibah Univ Sci. (2018)

12:476–82. doi: 10.1080/16583655.2018.1483795

42. Ellahi R, Bhatti M, Pop I. Effects of hall and ion slip on MHD peristaltic flow

of Jeffrey fluid in a non-uniform rectangular duct. Int J Num Methods Heat

Fluid Flow. (2016) 26:1802–20. doi: 10.1108/HFF-02-2015-0045

43. Ellahi R, Sait SM, Shehzad N, Mobin N. Numerical simulation and

mathematical modeling of electro-osmotic couette–poiseuille flow of

MHD power-law nanofluid with entropy generation. Symmetry. (2019)

11:1038. doi: 10.3390/sym11081038

44. Bhatti MM, Zeeshan A, Ellahi R, Shit GC. Mathematical modeling of heat

and mass transfer effects on MHD peristaltic propulsion of two-phase

flow through a Darcy-Brinkman-Forchheimer Porous medium. Adv Powder

Technol. (2018) 29:1189–97. doi: 10.1016/j.apt.2018.02.010

45. Ameen I, Shah Z, Islam S, Nasir S, Khan W, Kumam P, Thounthong P.

Hall and Ion-Slip Effect on CNTS nanofluid over a porous extending

surface through heat generation and absorption. Entropy. (2019)

21:801. doi: 10.3390/e21080801

Frontiers in Physics | www.frontiersin.org 11 November 2019 | Volume 7 | Article 17132

https://doi.org/10.15388/NA.17.1.14077
https://doi.org/10.1371/journal.pone.0095423
https://doi.org/10.1371/journal.pone.0145332
https://doi.org/10.1371/journal.pone.0124699
https://doi.org/10.1007/s40430-016-0632-5
https://doi.org/10.1016/j.cjph.2017.03.003
https://doi.org/10.1139/p05-032
https://doi.org/10.1016/S0020-7462(98)00074-2
https://doi.org/10.1016/j.icheatmasstransfer.2008.10.005
https://doi.org/10.1007/BF02936216
https://doi.org/10.3390/sym11020276
https://doi.org/10.3389/fphy.2014.00059
https://doi.org/10.1016/j.molliq.2016.04.123
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.099
https://doi.org/10.18869/acadpub.jafm.67.222.23471
https://doi.org/10.1016/j.proeng.2015.11.449
https://doi.org/10.1512/iumj.1967.16.16001
https://doi.org/10.1016/j.scient.2013.02.013
https://doi.org/10.1063/1.5066223
https://doi.org/10.1177/1687814018823100
https://doi.org/10.1155/2019/9158093
https://doi.org/10.3390/app9081533
https://doi.org/10.1016/j.jmmm.2016.09.125
https://doi.org/10.1109/ACCESS.2019.2916162
https://doi.org/10.1016/j.rinp.2018.01.064
https://doi.org/10.1615/HeatTransRes.2018025939
https://doi.org/10.3389/fphy.2015.00052
https://doi.org/10.1016/j.molliq.2018.05.103
https://doi.org/10.1140/epjp/i2018-12135-6
https://doi.org/10.1080/16583655.2018.1483795
https://doi.org/10.1108/HFF-02-2015-0045
https://doi.org/10.3390/sym11081038
https://doi.org/10.1016/j.apt.2018.02.010
https://doi.org/10.3390/e21080801
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shah et al. Micropolar Fluid in Hall MHD Generator System

46. Vo DD, Shah Z, Sheikholeslami M, Shafee A, Nguyen TK. Numerical

investigation of MHD nanomaterial convective migration and

heat transfer within a sinusoidal porous cavity. Phys. Scr. (2019)

94:115225. doi: 10.1088/1402-4896/ab2ced

47. Ahmad MW, Kumam P, Shah Z, Farooq AA, Nawaz R, Dawar A,

et al. Darcy–Forchheimer MHD Couple Stress 3D nanofluid over an

exponentially stretching sheet through cattaneo–christov convective heat

flux with zero nanoparticles mass flux conditions. Entropy. (2019)

21:867. doi: 10.3390/e21090867

48. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I. Uniform

magnetic force impact on water based nanofluid thermal behavior

in a porous enclosure with ellipse shaped obstacle. Sci Rep. (2019)

9:1196. doi: 10.1038/s41598-018-37964-y

49. Ali AY, Ali Y, Kumam P, Babar K, Ahmed A, Shah Z. Flow of a nanofluid and

heat transfer in channel with contractingexpanding walls. IEEE Access. (2019)

7:102427–36. doi: 10.1109/ACCESS.2019.2928030

50. Ullah A, Alzahrani EO, Shah Z, Ayaz M, Islam S. Nanofluids thin

film flow of reiner-philippoff fluid over an unstable stretching surface

with brownian motion and thermophoresis effects. Coatings. (2019)

9:21. doi: 10.3390/coatings9010021

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Shah, Kumam, Dawar, Alzahrani and Thounthong. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physics | www.frontiersin.org 12 November 2019 | Volume 7 | Article 17133

https://doi.org/10.1088/1402-4896/ab2ced
https://doi.org/10.3390/e21090867
https://doi.org/10.1038/s41598-018-37964-y
https://doi.org/10.1109/ACCESS.2019.2928030
https://doi.org/10.3390/coatings9010021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 06 November 2019
doi: 10.3389/fphy.2019.00164

Frontiers in Physics | www.frontiersin.org 1 November 2019 | Volume 7 | Article 164

Edited by:

Muhammad Mubashir Bhatti,

Shanghai University, China

Reviewed by:

Tehseen Abbas,

University of Education

Lahore, Pakistan

Titan Chandra Paul,

University of South Carolina Aiken,

United States

*Correspondence:

Zahir Shah

zahir.sha@kmutt.ac.th

Poom Kumam

poom.kum@kmutt.ac.th

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 19 August 2019

Accepted: 11 October 2019

Published: 06 November 2019

Citation:

Shah Z, Babazadeh H, Kumam P,

Shafee A and Thounthong P (2019)

Numerical Simulation of

Magnetohydrodynamic Nanofluids

Under the Influence of Shape Factor

and Thermal Transport in a Porous

Media Using CVFEM.

Front. Phys. 7:164.

doi: 10.3389/fphy.2019.00164

Numerical Simulation of
Magnetohydrodynamic Nanofluids
Under the Influence of Shape Factor
and Thermal Transport in a Porous
Media Using CVFEM

Zahir Shah 1*, Houman Babazadeh 2,3, Poom Kumam 4,5,6*, Ahmad Shafee 7 and

Phatiphat Thounthong 8

1 SCL 802 Fixed Point Laboratory, Science Laboratory Building, Center of Excellence in Theoretical and Computational

Science (TaCS-CoE), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand, 2Department for

Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam, 3 Faculty of

Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam, 4 KMUTT-Fixed Point Research

Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of

Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand, 5 KMUTT-Fixed Point Theory and

Applications Research Group, Science Laboratory Building, Faculty of Science, Theoretical and Computational Science

Center (TaCS), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand, 6Department of Medical

Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, 7 Public Authority of Applied

Education and Training, Applied Science Department, College of Technological Studies, Shuwaikh, Kuwait, 8Department of

Teacher Training in Electrical Engineering, Faculty of Technical Education, Renewable Energy Research Centre, King

Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

In this article, the migration of nanomaterials through a permeable domain was modeled

numerically. Aluminum oxide was dispersed into testing fluid which was selected water

in the current paper. Utilizing Darcy LAW for a porous medium helps us to find simpler

form of equations. Influences of shape factor and radiation on the thermal conduct

of nanoparticles within a porous region were scrutinized. Nanomaterial within such

region is applied under the Lorentz force. CVFEM approach for simulation goals has

been applied. This approach provides the advantages of two common CFD methods.

Impacts of radiation, magnetic, buoyancy parameters on the treatment of nanomaterials

were demonstrated. Outcomes showed that greater amounts of shape factor cause

stronger convection. Reverse relationships exist between the Hartmann number and

temperature gradient.

Keywords: nanoparticle’s shape, porous space, magnetic force, darcy LAW, radiation, nanofluid, CVFEM

INTRODUCTION

Nanotechnology is one of the most interesting fields nowadays. It is interesting due to its vast
applications in solar cells, food, fuel cells, batteries, and fuel, etc. In simple, nanotechnology has
made its way to each and every branch. Investigators started interest in this field and developed a
new sub-branch of nanotechnology, nanofluids. Nanofluids were utilized by Choi [1] for the first
time. In real-world fluids exist in abundance, among all, nanopowders can be offered as the most
applicable fluids both from its use and its unique nature. Nanofluids are two-phase nanometer-size
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fluids in which base fluid ranging up to 100 nm. Nanofluids are
used in metal oxides, oxides ceramics, and allotropes of carbon
and in other chemical stable elements. Nanoparticles nowadays
play a key role in thermal analysis. Pak and Cho [2] used
titanium dioxide and, and found an improvement in the heat
flux. Nanofluids in which the nanoparticles size range less than
are considered more ideal [3]. Radiation impact on nanomaterial
flow was performed by Zeeshan et al. [4] and they added the
impact of MHD on titanium dioxide transportation. Impose of
nanomaterial into usual carrier fluid leads to greater conductivity
[5–10]. Copper oxide migration within an absorptive medium
with the use of Lorentz force in the actuality of magnetic force has
been demonstrated by Sheikholeslami [11]. A numerical survey
is performed by Sheikholeslami [12] for CuO-H2O nanofluid in
a penetrable medium with the help of a microscopic technique.
Shah et al. [13] have worked on the 3-D nanofluid flow of
third-grade fluid with physical properties inside a rotating
frame. An analytical investigation is performed by Dawar et
al. [14] for Casson fluid with MHD carbon nanotubes (CNT’s)
inside a rotating channel. A numerical survey is presented
by Sheikholeslami and Shehzad [15] by analyzing Fe3O4–H2O
nanofluid flow with inside a permeable channel. To depict
the changes in flow style in the appearance of Kelvin forces,
Sheikholeslami and Vajravelu [16] examined the FHD impact
on nanomaterial flow. CNT migration in a time-dependent
problem has been analyzed by Ahmed et al. [17] and they
supposed the plate is porous and Lorentz force was added in
momentum equations. The transfer of heat due to convection
of ferrofluid is described by Yimin et al. [18]. In recent years,
Thermal irreversibility in nanofluid through a pipe with a
turbulator by means of FVM was analyzed by Sheikholeslami
et al. [19]. For a detailed survey, interested readers are referred
to Sheikholeslami et al. [20], Dat et al. [21], Bhatti et al. [22],
Sheikholeslami [23], Cattaneo [24], Sheikholeslami and Shehzad
[25] for more detail and related study of nanofluids flow.
Cattaneo [24] made a modification in the thermal relaxation
time to improve the heat transfer effects. Cattaneo attempt made
for a specific material and obtained some interesting results in
the heat transmission investigation by presenting an innovative
flux approach. A Maxwell fluid was realized to this model by
Mustafa [26] for the study of upper convection. A numerical
investigation is performed by Ai and Sandeep [27] by considering
this model for MHD Casson-ferrofluid for heat transfer analysis.
Previous articles on Nanomaterials for dissimilar phenomena
and their usages can be found [28–33]. Sheikholeslami et al. [34]
recently presented the application of electric and magnetic field
of nanofluid and ferrofluid and with transfer in an enclosure
walls. Jawad et al. [35, 36] studied nanofluid thin film and their
applications. Nasir et al. [37, 38] have studied 3-D nanomaterial
flow CNTs and thermal analysis along a stretching surface.
Entropy generation in nanofluid flow can be studied in Alharbi
et al. [39]. The studied of nanofluids are further extended to
liquid film due to its abundant uses in various sciences [40–48].
Nanomaterial transportation over a wedge was scrutinized by
Hassan et al. [49]. An experimental approach was performed by
Sheikholeslami et al. [50] to study the boiling of refrigerant with
the use of nanoparticles.

FIGURE 1 | Present tank and sample element.

TABLE 1 | Coefficient of carrier fluid.

Coefficient values Al2O3-H2O

α1 52.813488759

α2 6.115637295

α3 0.6955745084

α4 4.17455552786

α5 0.176919300241

α6 −298.19819084

α7 −34.532716906

α8 −3.9225289283

α9 −0.2354329626

α10 −0.999063481

Though there is intense research in the literature about
nanofluid modeling and the MHD effect in different categories,
there is still limited information about the complex geometries
and Darcy model. Additionally, the radiative effect is an
important source. The determination of this article is to study
the migration of nanopowder within a porous space. The
effects of shape factor and radiation on the thermal conduct of
nanomaterials within a porous space were scrutinized.

PROBLEM EXPLANATION

In this modeling and simulation, water-based nanofluid exists
through permeable geometry has considered. Impact of Lorentz
force and thermal behavior are taken on nanofluid. Sketch of
the porous tank is depicted in Figure 1. Nanofluid is thermally
conducting and impact of Lorentz force was involved. Control
Volume finite element technique with a triangular element has
been used (see Figure 1). Needed boundary constraints were
established in Figure 1. The Darcy LAW [15] is involved for
porous terms.
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TABLE 2 | Some physical thermal features.

Cp
(

jkg−1K−1
)

Cp
(

jkg−1K−1
)

β ×

105
(

K−1
)

K
(

Wm−1.K−1
)

σ(� ·m)−1

H2O 4,179 4,179 21 0.613 0.05

Al2O3 765 765 0.85×10−5 25 1 × 10−10

TABLE 3 | Structure of m at dissimilar values.

Shape

5.7 3.7 4.8 3 m

TABLE 4 | Deviation of Nuave at different mesh size when Ra = 600,

Ha = 0,Rd = 0.8 and φ = 0.04.

Mesh size

41 × 121 51 × 151 61 × 181 71 × 211 81 × 241

5.0591 5.0688 5.0715 5.0767 5.0793

FIGURE 2 | Justification for nanofluid [5].

GOVERNING EQUATIONS, FORMULATION,
AND CVFEM

Nanopowder migration through a permeable domain with the
help of Darcy model was considered in the current article and

involving single-phase model results in below equations:

∂u

∂x
+
∂v

∂y
= 0 (1)

µnf

K
u = −

∂P

∂x
+ σnf B

2
0

[

(sin γ ) v (cos γ )− u(sin γ )2
]

(2)

µnf

K
v = −

∂P

∂y
+ (T − Tc) gρnf βnf

+ σnf B
2
0 (cos γ ) [(sin γ ) u− (cos γ ) v] (3)

∂qr

∂y

(

ρCp

)−1

nf
+

(

∂T

∂y
v+ u

∂T

∂x

)

= knf

(

∂2T

∂y2
+
∂2T

∂x2

)

(

ρCp

)−1

nf
,

,

[

T4 ∼= 4T3
c T − 3T4

c , qr = −
4σe

3βR

∂T4

∂y

]

(4)

The fundamental characteristics of nanofluid are estimated as:

ℜnf = ℜf +
(

ℜs −ℜf

)

φ (5)

ℜ = Cpρ

(ρβ)nf + (ρβ)f (φ − 1) = φ(ρβ)s (6)

ρnf = (1− φ)ρf + φρs (7)

σnf

σf
− 1 =

(

−1+ σs
σf

)

(3φ)
(

2+ σs
σf

)

+ φ

(

1− σs
σf

) (8)

To apply the effects of shape factor and kBrownian, the following
correlations were examined:

µeff = µstatic +
kBrownian

kf
×
µf

Prf

kBrownian = 5× 104cp,f ρf g
′(dp,φ,T)φ

√

κbT

ρpdp
(9)

g′
(

dp,φ,T
)

=

(

a1 + a5Ln
(

dp
)2

+ Ln (φ) a4Ln
(

dp
)

+ a2Ln
(

dp
)

+a3Ln (φ)
)

Ln (T)+
(

a6 + a10Ln
(

dp
)2

+ a8Ln (φ)

+a7Ln
(

dp
)

+ a9Ln
(

dp
)

Ln (φ)
)

knf

kf
=

−ℑmφ + kp + ℑφ + kf +mkf + kf

kfm+ kp + ℑφ + kf
,

ℑ = kp − kf (10)

Equation (11) presents a dimensionless form:

9 = ψ/αnf , θ =
T − Tc

1T
,1T = L

q′′

kf
, (X,Y) = L−1

(

x, y
)

(11)

So, the last format of equations is:

∂29

∂Y2 +
∂29

∂X2 = −Ha
A6
A5

[

2 (sin γ ) ∂29
∂X ∂Y (cos γ ) +

∂29

∂Y2

(

sin2γ
)

+ (cos γ ) ∂
29

∂X2 (cos γ )
]

−
A3 A2
A4 A5

∂θ
∂X Ra

(12)
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FIGURE 3 | Changing in behavior of nanofluid with rise of φ on nanofluid behavior. (φ = 0.04 (—) and φ = 0 (———)) when m = 5.7,Rd = 0.8,Ra = 600,Ha = 0.

(

1+
4

3
RdA4

)

∂2θ

∂Y2
+

(

∂2θ

∂X2

)

=
∂θ

∂X

∂9

∂Y
−
∂9

∂X

∂θ

∂Y
(13)

The mentioned variables in Equation (13) are:

Ha =
σfK B20
µf

, Ra =
g K (ρβ)f L1T

µf αf
, Rd = 4σeT

3
c /
(

βRkf
)

A1 =
ρnf
ρf

, A2 =
(ρCP)nf
(ρCP)f

, A5 =
µnf

µf
,

A3 =
(ρβ)nf
(ρβ)f

, A6 =
σnf
σf

, A4 =
knf
kf

(14)

Besides, summarizations of boundaries are:

θ = 0.0 on outer surfaces

9 = 0.0 on all walls
∂θ

∂n
= 1.0 on inner wall (15)

Nuloc and Nuave are:

Nuloc =
1

θ



1+
4

3

(

knf

kf

)−1

Rd





(

knf

kf

)

(16)

Nuave =
1

S

s
∫

0

Nuloc ds (17)

Simulation Technique, Grid and Verification
Sheikholeslami [29] has been discovered a new approach namely
CVFEM for analyzing thermal problems. This technique utilizes
a triangular element and the Gauss-Seidel approach uses for
the final step of calculating scalars. Tables 1–3 illustrate the
properties of carrier fluid. Grid size must be independent of
outcomes and we present special cases in Table 4. Validation for
presents study for nanofluid [5] are presented in Figure 2 and
provide nice accuracy.

RESULTS AND DISCUSSION

In this article transportation of electrically and thermally
conducting nanomaterial with different shapes were modeled
numerically. Aluminum oxide was dispersed into testing fluid
which was selected water in current paper. Utilizing Darcy low
for porous medium helps us to find simpler form of equations.
Impacts of shape factor and the radiation on thermal conduct
of nanoparticles inside a permeable space were investigated.
Impacts of Radiation parameter, shape factor, magnetic force, and
fraction of alumina have been demonstrated. The Darcy Law is
involved for a permeable term in geometry.

Impacts of imposing nanopowders into H2O by selecting
other parameters are shown in Figure 3. Actually this is the
nanofluid scattering rule. It is observed that nanofluid motion
augmented with the imposing of nanoparticles. The impacts
of Hartmann for different cases were plotted in Figures 4, 5.
Impose of the Lorentz effect declines themotion of nanoparticles.
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FIGURE 4 | Showing variation of Ha when φ = 0.04, m = 5.7, Rd = 0.8, Ra = 100.

Actually, with the augmentation of the magnetic parameter,
the top two eddies were amalgamate together and the thermal
spiral disappear. It is observed that adding magnetic impact,
stronger conduction occurs. Reverse relationships exist between
the Hartmann number and temperature gradient. Impacts of
scrutinized variables on Nusselt number were displayed in
Figure 6. Variations for different cases are presented here.

Distortion of isotherms augments in consequence of augment
in buoyancy and makes stronger vortex which indicates the
growth of free convection. With the domination of convective
mode, isotherms become more complex with generating plume.

Therefore, increasing permeability and buoyancy termmakes the
Nusselt number to augment. Resistance against the nanomaterial
migration reduces with augment of Lorentz forces and in turn,
Nusselt number can reduce. Temperature distribution becomes
less complex with involving magnetic field and higher Lorentz
force can eliminate the plumes. Shear stress among nanoparticles
declines with augment of permeability of the region. So, the
power of the flow augments with rise of permeability which
indicates greater convective flow. The influence of permeability
on the style of nanofluid flow reduces with decreasing buoyancy
forces. Greater nanofluid mixing occurs within the domain with
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FIGURE 5 | Showing variation of Ha when φ = 0.04, m = 5.7, Rd = 0.8, Ra = 600.

the rise of buoyancy forces and this influence reduces with
imposing magnetic field. Resistance against the nanomaterial
migration declines with augment of Darcy number but opposite
phenomena appear with augment of the Hartmann number.
Magnetic forces work against buoyancy forces, which can reduce
the strength of streamline and imposing greater magnetic force,
leads to conduction domination. The temperature gradient
becomes independent on the Lorentz forces again, owing to the
weakening of the buoyancy.

Changes of Nusselt number respect to variables are
presented in Figure 6. The mathematical relationship has

presented in Equation (18).

Nuave = 3.34+ 0.087m+ 1.04Rd + 0.19Ra− 0.14Ha

+1.1× 10−2mHa− 0.092RdHa− 0.19RaHa

+1.359× 10−4m2 (18)

It is concluded that the augment in distortion of temperature
with buoyancy terms and permeability enhances the gradient
of temperature. Moreover, transmission mode improves with a
boost of the Lorentz force. Thus, convection diminishes with the
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FIGURE 6 | How Rd, m, φ, Rd, Ha affect the Nuave.
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escalation of the magnetic field. It is found from Figure 6 that
Nusselt number is augmenting function for radiation parameter.

CONCLUSIONS

In current CVFEM simulation, nanomaterial was offered as a
feasible way to more augmentation of convection in permeable
tank and various shapes of powder ware involved. To manage
the migration of particles, magnetic forces was employed, and the
influence of radiation has been imposed in the energy equation.
Outcomes prove that augmenting Lorentz force declines the
convection and make isotherms to lower dense near the wall. An
indirect relationship was reported for temperature gradient and
Lorentz forces. Furthered distortion was observed in isotherms
with the rise of buoyancy force.
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NOMENCLATURE

Lf Latent heat of solidification

Cp Heat capacity

dp Diameter of alumina

NEPCM Alumina-enhanced PCM

T ˙̇̇ Temperature

k Thermal conductivity

CVFEM Control volume based finite Element method

Etotal Energy saving

Greek symbols

φ Concentration of alumina

κb Boltzmann constant

α Diffusivity

Subscripts

nf Nano enriched PCM

f fluid

P solid
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This article deals with the nanofluid flow and heat transfer of the MHD free stream over

an exponentially radiating stretching sheet accompanied by constant and variable fluid

characteristics together. The underlying governing partial differential equations (PDEs)

have been translated into nonlinear ordinary differential equations (ODEs) by incorporating

adequate similarity transformations. By using the shooting method and the MATLAB

built-in solver bvp4c, the corresponding ODEs are effectively solved. The impact on the

skin friction coefficient (quantifying resistance), the local Nusselt number (heat transfer

rate) and the local Sherwood number (mass transfer rate) on the surface due to

the flow field variables has been computed against various parameters i.e., magnetic

parameter M, Prandtl number Pro, Lewis number Le, thermophoresis parameter Nt,

Brownian motion parameter Nb, velocity parameter λ, radiation parameter Rd and

thermal conductivity parameter ǫ. Graphs are also plotted to study the impact of distinct

parameters on velocity, temperature and concentration profiles. It has been noted by

raising the values of ǫ, the heat transfer rate reduces for variable fluid properties. On the

other hand, raising Pro increases the heat transfer rate.

Keywords: magnetohydrodynamics (MHD), exponentially stretching sheet, nanofluid, shooting method, constant

and variable fluid properties

1. INTRODUCTION

Because of a stretching surface, studying fluid dynamics is essential as it has many practical
and industrial applications. In a number of industrial and manufacturing processes, material
production occurs and involves sheets of metal, and polymer. For instance, cooling an infinite
metal plate in a cooling bath, the boundary layer along material handling conveyors, plastic sheet
aerodynamic extrusion, the boundary layer along a liquid film in condensation procedures, paper
manufacturing, glass blowing, steel spinning and plastic film drawing.

Boundary layer for incompressible flow on a moving flat plate was studied by Sakiadis [1]. The
study focused on the flow through a moving flat plate while considered static fluid contrary to the
work by Blasius [2] who considered flow over a fixed plate. The study carried out by Crane [3]
diverted to the study of boundary layer flow of a fluid with high viscosity and uniform density on
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a plate being stretched linearly. Magyari and Keller [4] conducted
the research on an exponentially stretching steady surface to
explore heat andmass transfer in the boundary layers but without
variable fluid properties and MHD consideration. Elbashbeshy
[5], who researched the features of flow and heat transfer over
an exponentially stretching permeable sheet, adds a different
dimension to this inquiry. The considered research is without
the characteristics of MHD and varying fluid properties. Many
researchers have extended the work for different flow model.
But most of those studies have been focusing on constant
fluid properties. The analysis of boundary layer flow with
variable fluid properties on a moving flat plate in a parallel
free stream was studied by Bachok et al. [6]. They computed
solution numerically. Andersson and Aarseth [7] investigated the
properties of fluid under the influence of temperature.

Magnetohydrodynamics (MHD) is the study of the flow of
electrically conducting fluids in an electro-magnetic-fields. MHD
flow research is of significant concern in contemporary processes
of metallurgy and metalworking. Makinde et al. [8] examined
the MHD flow of variable viscosity of nanofluid over a radially
stretching sheet. They indicated that Brownian motion enhances
the rate of mass transfer. Mukhopadhyay et al. [9] carried out
the study of investigation of magnetic field effects on a fluid flow
with variable viscosity on heated surface. They reported that the
fluid velocity reduces as the viscosity declines. The influence of
temperature on viscosity during heating surface was investigated
by Elbashbeshay and Bazid [10] and evaluated solution with the
help of a shooting method. The effect of variable fluid properties
on the hydro-magnetic flow and heat transfer over a nonlinearly
stretching sheet was discussed by Popley et al. [11]. They have
numerically addressed their problem. Similarly, the influence of
a study of temperature-dependent fluid properties on MHD free
stream flow and heat transfer over a nonlinearly stretching sheet
was studied by Prasad et al. [12].

Some important applications for radiative heat transfer are the
MHD accelerator, high temperature plasmas, power generation

FIGURE 1 | Structure of the flow problem.

devices and cooling of nuclear reactors. Many procedures occur
in engineering areas at higher temperatures and understanding
the transfer of radiative heat becomes very crucial for the
design of appropriate equipment. Heat transfer assessment of
boundary layer flow with radiation is also vital in electrical
power generation, astrophysical flows, solar power technology,
and other industrial areas. Raptis et al. [13] recorded the impact
of thermal radiation over a semi-infinite stationary plate on the
MHD flow of a viscous fluid. Devi and Reddy [14] presented
analysis of the radiation and mass transfer effects on MHD
boundary layer flow due to an exponentially stretching sheet
with heat source. Mukhopadhyay [15] discussed the slip effects
on MHD flow over an radiating exponentially stretching sheet
with suction/blowing. The influence of radiation effect over an
exponentially stretching sheet was studied by Ishak [16] and
Mabood et al. [17]. Bidin and Nazar [18] carried out a numerical
study to investigate the effect of thermal radiation on boundary
layer flow over an exponentially stretching sheet. Poornima and
Reddy [19] presented an analysis of the radiation effects on
MHD free convective boundary layer flow of nanofluids over a
nonlinear stretching sheet. Most of the above studies have not
discussed variable fluid properties and radiation simultaneously.

Because of the unique physical and chemical properties of
nanometer-sized products, nanofluids have many applications
in the industrial sector. Nanofluids are composites of solid-
liquid materials, typically 1–100 nm, consisting of powerful
nanoparticles or liquid-suspended nanofibers. The term
nanofluid was suggested by Choi [20]. He revealed that
supplying a tiny quantity of nanoparticles to conventional
fluids (<1 percent by volume fraction) improved the heat
conductivity of the fluid by ∼2 times. Nield and Kuznestov
[21] studied convected boundary layer flow of nanofluid in
a porous medium. They considered natural convection past
a vertical flat plate. Khan et al. [22] presented non-aligned
MHD stagnation point flow of nanofluid with variable viscosity
over a stretching sheet with radiation effect. They found
that non-alignment of the reattachment point decreases
with an increase in magnetic parameter M. Bachok et al.
[23] discussed stagnation-point and heat transfer flow over
an exponentially stretching/shrinking sheet in a nanofluid.
They discovered that the solution obtained for shrinking
sheet is not unique. Nada et al. [24] examined the effect of
nanofluid while variable properties are taken into account.
They considered enclosures for the studies. Malik et al. [25]
studied Casson nanofluid’s boundary layer flow over a cylinder
that stretches exponentially and found solution numerically.
Eid [26] addressed the impact of chemical reaction over an
exponentially stretching sheet on the MHD boundary layer flow
of two-phase nanofluid. They found that thermal boundary
layer is dependent on the reaction and source parameter.
Gangaiah et al. [27] examined the MHD flow of nanofluid in
the presence of viscous dissipation and chemical reaction over
an exponentially stretching sheet. They showed that thermal
boundary layer depends on viscous dissipation parameter. The
effect of different variables like variable viscosity, buoyancy
and variable thermal conductivity on mixed convection heat
transfer due to an exponentially stretching sheet was discussed
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by Abel et al. [28]. They obtained solution numerically. In
Yousif et al. [29] and Ellahi et al. [30], they have discussed
MHD Carreau and non-Newtonian nanofluid flow over an
exponentially and slippery walls, respectively. Unsteady flow
with CNT-based MHD nanofluid, variable viscosity and a
permeable shrinking surface have been discussed in Ahmed
et al. [31]. See also Thoi et al. [32] for a different fluid flow
aspect in a Y-shaped fin. Previous studies mostly concern with
nanofluid with variable viscosity but these are devoid of variable
thermal conductivity.

There exists a very extensive literature with and without
nanofluid on the topic of a constant fluid properties. But not
many studies were dedicated to explore the effects of variable
fluid properties on nanofluid flow. To bridge that gap, the present
research focuses on the effects of variable viscosity and variable
thermal conductivity on the boundary layer nanofluid flow. The
structure of the paper is as follows. In section 2, we formulate
the fundamental physical problem’s mathematical model. The
constant and variable fluid characteristics are discussed in section
3. The numerical methods are outlined in section 4. Results and
analysis are presented in section 5. Conclusion of the current
work is drawn at the end in section 6.

2. PROBLEM FORMULATION

We consider a laminar, MHD nanofluid flow over an
exponentially stretching sheet with thermal radiation. The

sheet is situated at y = 0. A variable magnetic field B(x) = Boe
x
2L

has been applied normal to the sheet. Figure 1 is the geometry of
the flow, in which x-axis is along and y-axis is taken as normal to
the sheet.

Let Uw = ae
x
L is the wall velocity, whereas U∞ = be

x
L is a

free stream velocity, in which stretching parameters a, b > 0.
The sheet has been kept at constant wall temperature Tw and
T∞ refers to the ambient temperature. Under the hypothesis of
a low magnetic Reynolds number, the induced magnetic field is
ignored. The boundary layer equations with Buongiorno model
[33] which regulate the above flow are:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂v

∂y
= U∞

dU∞

dx
+

1

ρ

∂

∂y
(
µ∂u

∂y
)−

σB2

ρ
(u− U∞), (2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y
(
k∂T

∂y
)+

τ (DB
∂T

∂y

∂C

∂y
+

DT

T∞

(
∂T

∂y
)2)−

1

ρcp

∂qr

∂y
,

(3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
, (4)

where the coordinates of velocities (u, v) are along x− and
y− axes, respectively. µ is a fluid viscosity coefficient, B(x)
is a variable magnetic field along the y− axis. Here T is the
temperature, C is the nanoparticles concentration, cp is the
specific heat constant, DB is the Brownian motion coefficient,

DT is the thermophoretic diffusion coefficient, τ =
(ρc)p
(ρc)f

is the

ratio of the effective heat capacity of the nanoparticle material
to the heat capacity of the fluid and qr is the radiative heat flux.
Appropriate boundary conditions complete the above system by:

u = Uw (x) = ae
x
L , v = 0,T = Tw,C = Cw at y = 0

u → U∞ = bex/L,T → T∞,C → C∞ as y → ∞ (5)

Using the following similarity transformation on above equations
which are defined as:

η =

√

a

2νL
e

x
2L y, ψ =

√

2aνLe
x
2L f (η), θ =

T − T∞

Tw − T∞

,

u = ae
x
L f

′

(η), v = −

√

νa

2L
e

x
2L (f (η)+ ηf

′

(η)).

(6)

Equation (1) is identically satisfied. Moreover, when above
similarity variables used in Equations (2), (3), and (4) which
yields:

(
µ

µo
f
′′

)
′

+ 2(λ2 − (f
′

)2)+ ff
′′

−M(f
′

− λ) = 0,

(7)

(1+
4

3
Rd)(

k

ko
θ
′

)
′

+ Pro(f θ
′

− f
′

θ + Nbθ
′

φ
′

+ Nt(θ
′

)2) = 0,

(8)

φ
′′

+
Nt

Nb
θ
′′

+ Le(fφ
′

− f
′

φ) = 0.

(9)

The boundary conditions transformed into:

f (0) = 0, f ′(0) = 1, θ(0) = 1, f ′(∞) = λ, θ(∞) = 0,φ(0) = 1,φ(∞) = 0,

(10)

whereM =
2σB20L

ρa is a magnetic parameter, λ =
b
a is a ratio of the

free stream velocity to the velocity of the stretching sheet, Pro =
µocpo
ko

is the Prandtl number, Nb =
τDB(Cw−C∞)

ν
is the Brownian

motion parameter, Nt =
τDT (Tw−T∞)

T∞ν
is the thermophoresis

parameter, Rd =
4σ ∗T3

∞

k0k∗
denotes the radiation parameter and

Le =
ν
DB

is the Lewis number.

3. ANALYSIS ON FLUID PROPERTIES

This section comprises of two subsections. Firstly, an overview
of the constant fluid properties will be presented followed by the
discussion on variable fluid properties.
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3.1. Case A: Constant Fluid Properties
For this case, Equations (7), (8), and (9) can be adjusted as follows
to incorporate constant fluid properties:

f
′′′

+ 2(λ2 − (f
′

)2)+ ff
′′

−M(f
′

− λ) = 0 (11)

(1+
4

3
Rd)θ

′′

+ Pro(f θ
′

− f
′

θ + Nbθ
′

φ
′

+ Nt(θ
′

)2) = 0 (12)

φ
′′

+
Nt

Nb
θ
′′

+ Le(fφ
′

− f
′

φ) = 0 (13)

3.2. Case B: Variable Fluid Properties
For this case, viscosity and thermal conductivity in Equations (7),
(8), and (9) is considered variable and taken as a function of a
temperature. For viscosity we write:

µ(T) =
µref

1+ γ(T − Tref )
, (14)

where we follow Andersson and Aarseth [7] and reference within
to write above expression (14). In above γ is a fluid property. If

TABLE 1 | (For Case A) Comparison of −θ ′(0) for different values of M, Rd and Pr0, when λ = Nb = Nt = Le = 0.

Rd M Pr0 Magyari and Keller [4] Ishak [16] Mukhopadhay [15] Mabood et al. [17] Present study

0 0 1 0.9548 0.9548 0.9548 0.95478 0.9548

2 – – 1.4715 1.47151 1.4715

3 1.8691 1.8691 1.8691 1.86909 1.8691

5 2.5001 2.5001 2.5001 2.50012 2.5001

10 3.6604 3.6604 3.6604 3.66039 3.6603

1 0 1 – – 0.5312 0.53121 0.5312

0 1 1 – – 0.8611 0.86113 0.8611

0.5 0 2 – 1.0735 1.0735 1.07352 1.0735

3 – 1.3807 – 1.38075 1.3808

1 – 1.1214 – 1.12142 1.1214

1 1 – – 0.4505 0.45052 0.4505

TABLE 2 | (For Case B) Comparison of the values of f ′′(0), θ ′ (0) and φ′(0) for different values of ǫ and λ when M = λ = Rd = 0,Pr0 = 1, θr = −5, Le = 1.3.

λ ǫ −f ′′(0) f ′′(0) −θ ′(0) −θ ′(0) −φ′(0) −φ′(0)

bvp4c Shooting Method bvp4c Shooting Method bvp4c Shooting Method

0 0 1.4218 1.4218 0.6162 0.6162 0.8951 0.8951

0 0.2 1.4204 1.4204 0.5604 0.5604 0.9188 0.9188

0 0.4 1.4193 1.4192 0.5163 0.5163 0.9367 0.9367

0.5 0 0.9771 0.9771 0.6898 0.6898 1.1075 1.1075

0.5 0.2 0.9762 0.9762 0.6383 0.6383 1.1292 1.1292

0.5 0.4 0.9755 0.9755 0.5975 0.5975 1.1455 1.1455

2 0 –3.0187 –3.0188 0.9261 0.9261 1.6143 1.6143

2 0.2 –3.0163 –3.0165 0.8716 0.8716 1.6337 1.6337

2 0.4 –3.0143 –3.0145 0.8274 0.8274 1.6482 1.6483

TABLE 3 | (For Case B) Comparison of the values of f ′′(0) and θ ′ (0) for different values of θr and λ when M = 0,Pr0 = 10, ǫ = 0.

λ θr f ′′(0) f ′′(0) −θ ′(0) −θ ′(0) −φ′(0) −φ′(0)

bvp4c Shooting method bvp4c Shooting method bvp4c Shooting method

0 –10 1.3539 1.3539 0.6223 0.6223 0.9082 0.9081

0 –1 1.8658 1.8657 0.5753 0.5753 0.8085 0.8085

0 –0.5 2.2863 2.2863 0.5360 0.5360 0.7281 0.7281

0.5 –10 0.9299 0.9299 0.6923 0.6923 1.1119 1.1119

0.5 –1 1.2869 1.2868 0.6744 0.6744 1.0814 1.0814

0.5 –0.5 1.5816 1.5810 0.6220 0.6620 1.0611 1.0611

2 –10 –2.8719 –2.8720 0.9227 0.9227 1.6088 1.6088

2 –1 –3.9846 –3.9848 0.9459 0.9459 1.6457 1.6457

2 –0.5 –4.9021 –4.9026 0.9611 0.9611 1.6692 1.6692
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To ≈ Tref then above formula (14) becomes:

µ =
µo

1− T−To
θr(Tw−To)

=
µo

1− θ(η)
θr

, (15)

here θr =
−1

γ(Tw−To)
. If the above viscosity relation is incorporated

in the Equation (7), then it can be rewritten as:

θr

(θr − θ)
f
′′′

+
f
′′

θ
′

θr

(θr − θ)2
+2(λ2−(f

′

)2)+ff
′′

−M(f
′

−λ) = 0. (16)

The variable thermal conductivity is expressed in terms of
temperature by following Prasad et al. [12] as:

k(T) = ko(1+ ǫθ) (17)

Under this above relation the mathematical form of Equation (8)
can be described as:

(1+
4

3
Rd)((1+ ǫθ)θ

′′

+ ǫ(θ
′

)2)

+Pro (f θ
′

− f
′

θ + Nbθ
′

φ
′

+ Nt(θ
′

)2) = 0. (18)

To measure the roughness, heat transfer rate and mass transfer
rate onto the surface, we calculate the skin friction coefficient Cf

the local Nusselt number Nux and the local Sherwood number
Shx, respectively, i.e.,

Cf =
τw

ρU2
w

=
f
′′

(0)
√
2Rex

, (19)

Nux = −
xqw

Tw − T∞

= −

√

xRex

2L
θ
′

(0) , (20)

Shx = −
xjw

Cw − C∞

= −

√

xRex

2L
φ

′

(0). (21)

4. NUMERICAL PROCEDURE

4.1. Shooting Method
To apply the shooting technique to Cases A and B together
with the boundary conditions, we transformed boundary value
problem (BVP) into an initial value problem (IVP) and convert
higher order ODEs into a system of first order ODEs. The
Newton-Raphson technique was used to locate the root. After
that, the order five Runge-Kutta method was implemented
to determine the IVP solution. The shooting method is
implemented in MATLAB. For Cases A and B, the system of first
order ODEs are written as,

(a) Case A:

f = y1, f
′

= y2, f
′′

= y3, f
′′′

= y
′

3 = −2(λ2 − y22)− y1y3

+M(y2 − λ),

y4 = θ , y5 = θ
′

, θ
′′

= y
′

5 = −
Pro

(1+ 4
3 )Rd

(y1y5 − y2y4 + Nby5y7

+Nty
2
5),

y6 = φ, y7 = φ
′

,φ
′′

= y
′

7 = −Le(y1y7 − y2y6)−
Nt

Nb
y
′

5.

(b) Case B:

f = y1, f
′

= y2, f
′′

= y3, f
′′′

= y
′

3 =
(y3y5)

(y4 − θr)

+
(y4 − θr)

θr
(2(λ2 − y22)+ y1y3 −M(y2 − λ)),

y4 = θ , y5 = θ
′

, θ
′′

= y
′

5 =
−ǫy25
1+ ǫy4

−
Pro

(1+ ǫy4)(1+
4
3Rd)

(y1y5 − y2y4 + Nby5y7 + Nty
2
5),

y6 = φ, y7 = φ
′

,φ
′′

= y
′

7 = −Le(y1y7 − y2y6)−
Nt

Nb
y
′

5.

TABLE 4 | (For Case B) Comparison of the values of f
′′

(0) and θ
′

(0) for different values of Rd and Pr0 when M = λ = ǫ = 0, θr = −5,Nb = 0.8,Nt = 0.5, Le = 1.3.

Rd Pro −f
′′

(0) −f
′′

(0) −θ
′

(0) −θ
′

(0) −φ
′

(0) −φ
′

(0)

bvp4c Shooting method bvp4c Shooting method bvp4c Shooting method

0 1 1.4218 1.4218 0.6162 0.6162 0.8951 0.8951

2 1.4264 1.4263 0.7611 0.7610 0.8452 0.8452

3 1.4285 1.4285 0.8193 0.8193 0.8274 0.8274

5 1.4304 1.4304 0.8608 0.8608 0.8186 0.8186

10 1.4319 1.4319 0.8805 0.8805 0.8196 0.8196

0.5 1 1.4181 1.4181 0.4910 0.4910 0.9396 0.9396

2 1.4231 1.4231 0.6585 0.6585 0.8802 0.8802

3 1.4257 1.4257 0.7423 0.7423 0.8514 0.8514

5 1.4285 1.4285 0.8193 0.8193 0.8274 0.8274

10 1.4309 1.4309 0.8687 0.8687 0.8182 0.8182

1 1 1.4158 1.4158 0.4162 0.4163 0.9689 0.9689

2 1.4207 1.4207 0.5790 0.5790 0.9082 0.9082

3 1.4235 1.4235 0.6738 0.6738 0.8749 0.8749

5 1.4268 1.4268 0.7726 0.7726 0.8415 0.8415

10 1.4299 1.4299 0.8517 0.8517 0.8199 0.8199
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FIGURE 2 | Velocity profile f
′

(η) for different M (For Case B).

4.2. bvp4c
Using MATLAB bvp4c algorithm, BVP can even be solved. bvp4c
solver employs the collocation technique in the background. It
manages to find a solution after supplying initial guess, domain
size and the number of points. Please see reference [34] for more
detail and examples.

5. RESULTS AND DISCUSSION

In Table 1, we compute the local Nusselt number and compared
its values with published results for distinct parameters Prandtl
number Pr0, radiation parameter Rd and magnetic parameterM.

Table 2 illustrates that the skin friction coefficient is not
significantly changed whereas the local Nusselt number drops for
ǫ and increases for the values of λ. The local Sherwood number
grows with the rise of λ and ǫ. It is observed in Table 3 that the
local Nusselt and the Sherwood numbers rises with a rise of λ
but the skin friction coefficient held opposite behavior. For fixed
values of λ = 0, 0.5 and an increase in viscosity parameter θr
brings the increasing change in the skin friction coefficient but
the local Nusselt and Sherwood numbers has shown decreasing
behavior. Table 4 demonstrates that as Pro and Rd rises, there is
a negligible change in the skin friction coefficient. But the local
Nusselt numbers decreases and local Sherwood number increases
by increasing the values of radiation parameter Rd. Moreover, the
local Nusselt number increases by increasing Prandtl number but
the local Sherwood number decreases.

Figure 2 shows that the momentum boundary layer thickness
is reduced with the increase in M. It happens because of a

FIGURE 3 | Velocity profile f
′

(η) for different θr (For Case B).

FIGURE 4 | Temperature profile θ (η) for different ǫ (For Case B).

transverse magnetic field as it opposes the phenomenon of
transport. The Lorentz force generates resistance to the fluid flow
with a rise ofM and slows down the velocity.
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FIGURE 5 | Temperature profile θ (η) for different Nb (For Case B).

FIGURE 6 | The concentration profile φ(η) for different Nb (For Case B).

In Figure 3, we observe that by rising the viscosity parameter
θr , a momentum boundary layer thins. Figure 4 shows that there
is a rise in temperature profile with an increase in thermal
conductivity parameter ǫ.

FIGURE 7 | Temperature profile θ (η) for different Nt (For Case B).

FIGURE 8 | Concentration profile φ(η) for different Nt (For Case B).

Figures 5, 6 are plotted for different values of Brownian
motion parameter Nb and we observe that by increasing Nb

thermal boundary layer thickness increases while concentration
boundary layer decrease by increasing Nb.
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FIGURE 9 | Temperature profile θ (η) for different Pro (For Case B).

FIGURE 10 | Temperature profile θ (η) for different Rd (For Case B).

As seen in Figures 7, 8 that by increasing
thermophoresis parameter Nt , temperature and concentration
profiles increases.

FIGURE 11 | Concentration profile φ(η) for different Le (For Case B).

Figure 9 indicates that by increasing Pro the thermal
boundary layer thickness decreases. This is because, when
Pro increases, the thermal diffusivity decreases and thus
the heat is diffused away from the heated surface more
slowly and in consequence increase the temperature gradient
at surface.

Figure 10 shows that temperature and thermal boundary layer
thickness increases when the radiation parameter intensifies.
Figure 11 describe the influence of the Lewis number Le
on concentration profile. We observe that by increasing Le
there is decrease in concentration profile. Lewis number
is the ratio of Prandtl number and Schmidt number, so
with the increase in Lewis number Le, molecular diffusivity
decreases. As a result, increase in Le the nanoparticle fraction
is lowered.

6. CONCLUSIONS

The current study offers the findings of a two-dimensional MHD
flow of an incompressible fluid through an exponentially
stretched sheet whereas treating viscosity and thermal
conductivity constant in Case A and variable for Case B.
The significance of various parameters on velocity, temperature
and concentration is examined. The study’s main results for Case
B are as follows:

• Momentum boundary layer thickness decrease by
increasing fluid viscosity parameter θr and magnetic
parameterM.
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• Thermal boundary layer thickness increases by increasing
the thermal conductivity parameters ǫ, Brownian motion
parameter Nb and thermophoretic parameter Nt .

• Thermal boundary layer thickness decreases by increasing the
Prandtl number Pr0 whereas increases for radiation parameter
Rd.

• Concentration boundary layer thickness increases by
increasing thermophoretic parameter Nt whereas decreases
by increasing Brownian motion parameter Nb and Lewis
number Le.
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NOMENCLATURE

a,b positive constant (ms−1)

(u, v) the velocity components (m s−1)

µ the coefficient of viscosity (Pa s)

ρ the density of fluid (kg m−3)

ǫ the thermal conductivity parameter of the fluid

M magnetic parameter

T fluid temperature (K)

k the thermal conductivity (W m−1 K−1)

cp the specific heat capacity (J kg−1 K−1)

qr the radiative heat flux (W m−2)

τ ratio of heat capacities of nanofluid and base fluid

DB Brownian coefficients (m2 s−1)

DT thermophoresis diffusion coefficients (m2 s−1)

T∞ the ambient fluid temperature (K)

σ the electrical conductivity (S m−1) (S is siemens)

Tw constant temperature at the wall (K)

B0 applied magnetic field (N m−1 A−1)

σ ∗ Stefan-Boltzman constant (W m−2K−4)

k∗ mean absorption coefficient (m−1)

C∞ the ambient fluid concentration

Pro the ambient Prandtl number

θr fluid viscosity parameter

Tref reference temperature (K)

Le Lewis number

Nt thermophoresis parameter

Nb Brownian motion parameter

λ free stream velocity parameter

Rd thermal radiation parameter

Cf the skin friction coefficient

Nux the local Nusselt parameter

Shx the local Sherwood parameter
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This pagination is executed to exemplify flow features exhibited by viscous fluid between

two coaxially rotated disks. Thermal analysis is performed by using Cattaneo-Christov

heat flux theory. Porosity aspects are also taken into account. Mathematically

structured non-linear PDEs are transmuted into non-linear ODEs by employing Karman

transformations. Afterward, solution is heeded by applying implicit finite difference

scheme renowned as Keller box method. Interpretation of flow controlling parameters

on axial, tangential, and radial components of velocity, thermal distribution is exhibited.

Assurance of computed data is done by managing comparison for skin friction

coefficients at walls of disks. From the attained outcomes, it is addressed that the

magnitude of axial and radial velocities diminishes at lower disk contrary to upper disk

for intensifying magnitude of Reynolds number. Increment in tangential component of

velocity is also demonstrated for uplifts values of Reynolds number. It is also concluded

that thermal field decrements for increasing of Pr and thermal relaxation parameter. It is

worthy to mention that shear drag coefficient at wall of lower disk decreases conversely

to the wall shear coefficient magnitude at wall of upper disk.

Keywords: Cattaneo Christov heat flux model, permeable medium, fluid flow with coaxially rotated disks, implicit

finite difference scheme, coaxially rotated disks, viscous fluid

INTRODUCTION

Rotational fluid flow generated by coaxial disks is one of the classical problems of fluid mechanics.
In recent years, it has become a popular research area and has persuaded researchers due to
magnificent theoretical and practical significance in engineering and applied sciences. Some
important practical fields in which rotatory flow is capitalized are rotor–stator system, gas
turbine engineering, air rotational cleaners, medical equipment, chemical engineering, and thermal
power–generating systems. In view of its capitalization in various processes, researcher fraternity is
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examining such type of flows in current days. Inaugurated work
on flow induced due to rotating disk is performed by Karman
[1]. He introduced transformations and provided a mathematical
framework for construction of ordinary differential systems of
rotational flows from Navier Stokes theory. Cochran [2] also
used these transformations to scrutinize rotating disk flow by
using numerical integration scheme. Batchelor [3] validated that
Karman transformation can be evenly used for fluid flow between
two coaxial rotating disks. Rotating flow by two coaxial disks is
primarily examined by Stewartson [4]. Chapple and Stokes [5]
elucidated the flow features of fluid between two coaxially rotated
disks. Mellor et al. [6] bestowed comprehensive treatment of fluid
flow restricted between two coaxial infinite disks, one rotating,
and other stationary. Thermal aspects of fluid between rotational
disks were discussed by Arora and Stokes [7]. Interpretation
of flow phenomenon between porous stationary disk and solid
rotating disk was manipulated by Kumar et al. [8]. Xun et al. [9]
considered rotating disk of variable thickness and adumbrated
the flow features of Power law fluid. Hall effects on an unsteady
MHD (magneto hydrodynamics) flow of viscous incompressible
electrically conducting fluid between two rotating disks with non-
coincident parallel axes embedded in a porous viscous medium
were accorded by Das et al. [10]. Asgher et al. [11] conducted
Lie group analysis on the thermal features of fluid manifested
by rotating disks. Elmaboud et al. [12] discussed peristaltic flow
induced by sinusoidal wave propagating with constant speed on
the walls of two-dimensional infinite rotating channel by heeding
semi-analytical solutions.

In the most recent couple of decades, researcher fraternity
has shown fantastic energy in exploring the heat propagation
by means of a wave mechanism rather than essentially by
diffusion. Late studies affirm that this is not just a low-
temperature phenomenon but heat transfer mechanism also
occurs at high temperature through diffusion. Just about 200
years prior, thermal features in various circumstances and
especially in flowing fluid environment were interpreted by
Fourier law of heat conduction [13]. However, this law is
inadequate in comprehending complete description about the
heat exchange procedure among multiple connected surfaces
in various conditions because of its disablement to fulfill the
principle of causality. Later on, in 1948, Cattaneo [14] modified
Fourier law by viewing the inadequateness generated by Fourier
law of heat conduction and explored that this law explains
the thermal attribute at low temperature because it generates
parabolic heat equation in which initial disturbance are felt
throughout the domain. After getting thorough analysis about
Fourier law and viewing vector field aspect of heat flux, he
included thermal relaxation time term to control generated
thermal inertia, which is known as Maxwell-Cattaneo law.
Afterward, Christov [15] proposed that objective time derivative
instead of material time derivative is used for exact fulfillment of
causality principle. He changed the time derivative in Maxwell-
Cattaneo model by Oldryod upper convective derivative, which
has successfully preserved the material invariant formulation
and famously known as Cattaneo-Christov heat flux law.
Cattaneo-Christov heat flux model has bounteous applications in
engineering and modern industrial procedures like in skin burns

and nanofluids, cooling of electronic devices, food technology,
nuclear reactor cooling, power generation, heat exchangers,
heat propagation in tissues, and so many. The uniqueness and
stability of the solution for governing temperature equations
by Cattaneo-Christov model in some initial and boundary
value problems were proven by Straughan [16]. Additionally,
steadiness of structure of Cattaneo-Christov heat flux model with
uniqueness was revealed by Ciarletta and Straughan [17]. Tibullo
and Zampoli [18] explicated the behavior of Cattaneo-Christov
heat flux model in incompressible fluid flows. Aqsa [19] and
Haddad [20] heeded numerical solution for thermal convection
of an incompressible viscous fluid by obliging Cattaneo-Christov
heat flux model. Mekheimer and Elmaboud [21] interpreted
the aspects of temperature-dependent viscosity and thermal
conductivity on peristaltic flow of a Newtonian fluid in a vertical
asymmetric channel. Mekneimer [22] addressed heat transfer
features of peristaltic couple stress fluid in asymmetric channel
generated by wave with different phase and amplitudes. All
of the abovementioned thought-provoking investigations have
generated prodigious interest of researchers toward the analysis
of flow in the presence of thermal aspects [23–26].

Transport procedures through porous space are commonly
encountered in various chemical, mechanical, geophysical,
electrochemical, and metallurgical routines. The theory about
macroscopic movement of fluid in porous medium comprises
differential equation that expresses linear relation between
velocity and pressure gradient. Initially, Henry Darcy [27] (in
1856) presented a law to explicate the dynamic phenomenon
in porous medium by working on the flow of sandy water
through pebbles. Several technological processes depend on
porous media theory, such as hydrology, oil exploration, solar
collectors, porous insulations, packed beds, chromatography,
heterogeneous catalysis, control of shear stresses at the seabed
bottom, and oscillatory flow through seabed ripples. Darcy
theory has promising applications in the field of biomedicine
and the development of biological clogging and flow through
tissues [28]. Granular material [29] where significant amount of
pore structures exist has application in manufacturing, paper,
ceramic products, and textiles. Taseer et al. [30] addressed
the flow behavior of Maxwell nanofluid in porous medium by
implementing zero mass flux condition. They capitalized on
Darcy-Forchheimer law to depict the flow pattern. They found
that porosity parameter mounts the magnitude of temperature
and concentration of particles. Seddeek [31] probed convective
heat transfer in fluid immersed in porous medium. Analytical
results for Darcy flow was described by Jha and Kaurangini [32].
Aziz et al. [33] computed the traveling wave solution for the
time-dependent viscoelastic fluid by way of a porous flat plate.

Magnetohydrodynamics is the study of the interaction
between magnetic field and conductive fluid. The essence about
magnetization is that the external magnetic field controls the
turbulence in flow field. In addition, the magnetized flows differ
from ordinary fluids because the generated current in the bulk
fluid produces volumetric Lorentz force that extensively modifies
the features. In recent years, magnetization and its impact on flow
features have attained pervasive focus due to its extraordinary
industrial applications, such as magnetized materials processes,
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manufacturing of glass, and MHD controlled electric generators.
So the analysis of application of magnetic field has experienced
great development and diversity. Andersson [34] performed
exclusive study by manipulating electromagnet hydrodynamic
waves mathematically. The stretched flow of two-dimensional
Newtonian fluid under the effects of applied magnetic field was
contemplated by Andersson [34]. Liu [35] extended the work
of Andersson [34] and described the heat and mass transfer of
MHD viscous fluid flow over stretching surface. He computed
exact solution of the problem by following the procedure of
Andersson [34]. The impact of normally impinging magnetic
field on boundary layer flow of Newtonian fluid over permeable
stretching sheet was analyzed by Kumaran et al. [36]. Yirga
and Tesfay [37] developed the numerical simulations for MHD
viscous fluid flow over non-linear stretching sheet. The fluid flow
equations were solved via Keller-Box method, and variations in
physical quantities were presented regarding different parametric
conditions. Recently, Yasin et al. [38] simulated the problem
of two-dimensional MHD viscous nanofluid flow over porous
stretched sheet. The formulated equations were solved by
implementing well-known shooting technique. Mabood et al.
[39] developed the approximate analytic solution of MHD
boundary layer fluid flow over exponentially stretching surface.
Some of the literature regarding the mentioned aspects is
accessed through the references [40–43].

Present disquisition is addressed to excogitate thermophysical
features exhibited in viscous fluid flow between two coaxially
rotating disks embedded in permeable medium by obliging
Cattaneo-Christov heat flux law. According to author’s
knowledge and available literature survey, it is found that
very concise work is done so far in this direction. Tremendous
engineering and practical application generated by rotating
disk flows make present analysis highly potential. The authors
hope that this manuscript will serve as a reference study
for future researches. The article is strategized in such a
way that the literature assessment is presented in section
Introduction, whereas the mathematical structuring is provided
in section Mathematical Model. The explanation about
the solution methodology is debated in section Numerical
Procedure. Comprehensive analysis and interpretation of
flow controlling parameters are disclosed in section Results
and Discussion. Last, the outcome norms are listed in
section Conclusions.

MATHEMATICAL MODEL

Consider a steady, incompressible flow of viscous fluid between
two coaxially rotated disks. The lower disk is placed at z = 0,
whereas the distance between the disks is h units. Lower and
upper disks possess angular velocities �1 and �2, respectively,
and a1 and a2 are corresponding stretching rates (Figure 1).
Porous medium between disks is considered, and Cattaneo-
Christov heat flux model is obliged to analyze thermal features
of fluid flow model.

We have used cylindrical coordinates (r, θ , z) with velocity
components (û, v̂, ŵ) to the velocity profile and temperature

equations as follows:

∂ û

∂r
+

û

r
+

∂ŵ

∂z
= 0, (1)

û
∂ û

∂r
+ ŵ

∂ û

∂z
−

v̂2

r
= −

1

ρ

∂ p̂

∂r
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(

∂2û
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+

1

r
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+

∂2û
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−

û
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−
σβ2

0

ρ
û−
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k0
û, (2)

û
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+ ŵ

∂ v̂

∂z
+

ûv̂
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= υ

(
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+

1
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+
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−
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0

ρ
v̂−
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k0
v̂ (3)

û
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∂ŵ
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ρ
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(
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+
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∂ŵ
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)

−
µ

k0
ŵ, (4)

FIGURE 1 | Physical configuration of the problem.

FIGURE 2 | Schematic representation of domain.
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FIGURE 3 | Behavior of f (ξ ) for different Re.

FIGURE 4 | Behavior of f ′(ξ ) for different Re.

ρCp

(

û
∂T̂

∂r
+ ŵ

∂T̂

∂z

)

= −∇ ·
−→q , (5)

with boundary conditions:

û = ra1, v̂ = r�1, ŵ = 0, T̂ = T̂1 at z = 0,

û = ra2, v̂ = r�2, ŵ = 0, T̂ = T̂2 at z = h,
(6)

where Equations (3–5) are referred to Hayat et al. [25], also

pressure is expressed as p̂, T̂1and T̂2 are the temperatures of upper
and lower disks, and flux of heat−→q satisfies:

−→q +γ

(

∂
−→q

∂t
+ V.∇−→q −

−→q .∇V+ (∇.V)−→q

)

= −k∇T̂, (7)

where γ is the thermal relaxation parameter (It is defined as the
parameter that controls the speed of heat waves produced within

the system and makes them move with finite speed to follow the
principle of causality), and k is the thermal conductivity. Now, we
omit q from the Equations (5, 7) and obtain:

(

û
∂T̂

∂r
+ ŵ

∂T̂

∂z

)

=
k

ρCp

(

∂2T̂

∂r2
+

1

r

∂T̂

∂r
+

∂2T̂

∂z2

)

−γ

(

û2
∂2T̂

∂r2
+ ŵ2 ∂2T̂

∂z2
+ 2ûŵ

∂2T̂

∂r∂z

+

(

û
∂ û

∂r
+ ŵ

∂ û

∂z

)

∂T̂

∂r
+

(

û
∂ŵ

∂r
+ ŵ

∂ŵ

∂z

)

∂T̂

∂z

)

. (8)

Equations (2–5) and Equation (8) are transformed into
ordinary differential equations by obliging Von Karman
transformations [1]:

û = r�1f
′ (ζ ) , v̂ = r�1g (ζ ) , ŵ = −2h�1f (ζ ) ,
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FIGURE 5 | Behavior of f (ξ ) for different A1.

FIGURE 6 | Behavior of f ′(ξ ) for different A1.

θ =
T̂ − T̂2

T̂1 − T̂2

,

p̂ = ρf�1vf

(

P (ζ ) +
1

2

r2

h2
ǫ

)

, ζ =
z

h
. (9)

Mass conservation is identically satisfied, and Equations (2–4, 6,
8) take the following form:

f ′′′ + Re

(

2ff ′′
− f ′

2
+ g2 −

1

β
f ′ +Mf ′

)

− ǫ = 0, (10)

Re

(

2f ′g − 2fg′ +
1

β
g +Mg

)

− g′′ = 0, (11)

P′ = Re

(

2

β
f − 4ff ′

)

− 2f ′′, (12)

1

Pr
θ ′′ + 2Ref θ ′ − 4λRe

(

f 2θ ′′ + ff ′θ ′
)

= 0, (13)

with

f (0) = 0, f (1) = 0, f ′ (0) = A1, f
′ (1) = A2, g (0) = 1,

g (1) = τ , θ (0) = 1, θ (1) = 0, P (0) = 0, (14)

where

Re =
�1h

2

vf
, Pr =

(

ρCp

)

f
vf

kf
, λ = γ�1,

A1 =
a1

�1
, A2 =

a2

�2
, τ =

�2

�1
,β =

k0�1

v
,

(15)

where Re denotes Reynolds number, Pr is the Prandtl
number, A1 and A2 are scaled stretching parameters, λ is
the thermal relaxation, τ and β are rotational number and
porosity parameter.
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FIGURE 7 | Behavior of f ′(ξ ) for different A2.

FIGURE 8 | Behavior of f (ξ ) for different A2.

To make a simpler form of Equation (10), we removed ǫ.

f (iv) + Re

(

2ff ′′′
+ 2gg′ −

1

β
f ′′ −Mf ′′

)

= 0. (16)

The pressure parameter ǫ can be found by using Equations (10
and 14) as:

ǫ = f ′′ (0) − Re

(

(

f ′ (0)
)2

−
(

g (0)
)2

+
1

β
f ′ (0) −Mf ′ (0)

)

.

(17)

Equation (17) vanishes due to the given initial conditions in
Equation (14).

The radial and tangential components of shear stress at lower
disk are τzr and τzθ

τzr = µ
∂ û

∂z

∣

∣

∣

∣

z=0

=
µr�1f

′′(0)

h
, τzθ = µ

∂ v̂

∂z

∣

∣

∣

∣

z=0

=
µr�1g

′(0)

h
. (18)

where τw is the total shear stress, which is defined as:

τw =

√

τ 2zr + τ 2zθ. (19)

Cf 1 and Cf2 are the skin friction coefficients at lower and upper
disks defined as:

Cf 1 =
τw|z=0

ρ(r�1)
2
=

1

Rer

(

(

f ′′ (0)
)2

+
(

g′ (0)
)2
)1/2

, (20)

Cf 2 =
τw|z=h

ρ(r�1)
2
=

1

Rer

(

(

f ′′ (1)
)2

+
(

g′ (1)
)2
)1/2

, (21)

where Rer =
r�1h
v is the local Reynolds number.
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FIGURE 9 | Behavior of g(ξ ) for different Re.

FIGURE 10 | Behavior of g(ξ ) for different A2.

NUMERICAL PROCEDURE

Manipulation of accurate solution is necessary for physical
interpretation of current work. Initially, equations are modeled
by using Karman approximation and afterward, we have
attained an intricate system of ordinary differential Equations
(10–13) along with boundary conditions in Equation (14).
We have applied Keller-box scheme referred to [40, 44–
46], that is, the implicit finite difference scheme. For the
implementation of this technique, first, we have to transform it
into a system of first-order equations and define new variables
u
(

y, ζ
)

, v
(

y, ζ
)

,

w
(

y, ζ
)

, s
(

y, ζ
)

, t
(

y, ζ
)

and θ
(

y, ζ
)

= q(y, ζ ) are

f ′ = u, u′ = v, v′ = w, g′ = s and q′ = t, (22)

and Equations (11–13, 16) are reduced to

s′ − Re

(

2ug − 2fs+Mg +
1

β
g

)

= 0, (23)

t′ + 2PrReft − 4PrλRe
(

f 2t′ + fut
)

= 0, (24)

w′
+ Re

(

2fw+ 2gs−Mv−
1

β
v

)

= 0. (25)

Similarly, the boundary conditions are converted into the
following forms

f (0) = 0, u (0) = A1, g (0) = 1, q (0) = 1,
f (1) = 0, u (1) = A2, g (1) = τ , q (1) = 0.

(26)

Average and center difference gradients at the point of net
derivatives are demarcated in Figure 2 and mathematically
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FIGURE 11 | Behavior of g(ξ ) for different τ .

FIGURE 12 | Behavior of g(ξ ) for different β.

as below

ηo = 0, ηk = ηk−1 + ηk, k = 1, 2, 3, . . . , k ηk = η∞.

Applying the Newton iteration fk+1 = fk + δfk, for all dependent
variables involved in linearized non-linear algebraic equations
and substituting these expressions in non-linear equations and
neglecting quadratic and higher order terms in δ, a linear
tridiagonal system is presented as follows:

δfk − δfk−1 −
hk

2

(

δuk + δuk−1

)

= (r1)
k−

1

2

,

δuk − δuk−1 −
hk

2

(

δvk + δvk−1

)

= (r5)
k−

1

2

,

δvk − δvk−1 −
hk

2

(

δwk + δwk−1

)

= (r6)
k−

1

2

,

δgk − δgk−1 −
hk

2

(

δsk + δsk−1

)

= (r7)
k−

1

2

,

δqk − δqk−1 −
hk

2

(

δtk + δtk−1

)

= (r8)
k−

1

2

,

(a1)k δfk + (a2)k δfk−1 + (a3)k δuk

+ (a4)k δuk−1 + (a5)k δgk + (a6)k δgk−1 + (a7)k δsk

+ (a8)k δsk−1 = (r2)k− 1/2 ,
(

b1
)

k
δfk +

(

b2
)

k
δfk−1 +

(

b3
)

k
δuk +

(

b4
)

k
δuk−1

+
(

b5
)

k
δtk +

(

b6
)

k
δtk−1 = (r3)k− 1/2 ,
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FIGURE 13 | Behavior of θ (ξ ) for different Re.

FIGURE 14 | Behavior of θ (ξ ) for different β.

(c1)k δfk + (c2)k δfk−1 + (c3)k δvk + (c4)k δvk−1

+ (c5)k δwk + (c6)k δwk−1 + (c7)k δgk + (c8)k δgk−1

+ (c7)k δsk + (c8)k δsk−1 = (r4)k− 1/2 ,

with boundary conditions are:

δfo = 0, δuo = A1, δgo = 1, δqo = 1,
δfk = 0, δuk = A2, δgk = τ , δqk = 1,

where

(a1)k = (a2)k = hRe
(

sk−1/2

)

,

(a3)k = (a4)k = hRe
(

gk−1/2

)

,
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1

β
+M

)

,
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(
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)

,
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(
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)

,
(

b1
)

k
=
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b2
)

k
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(

wk−1/2

)

,

(

b3
)

k
=
(

b4
)

k
= hRe

(

M +
1

β

)

,

(

b5
)

k
= 1+ 2hRe

(

fk−1/2

)

,
(

b6
)

k
= −1+ 2hRe

(

fk−1/2

)

,
(

b7
)

k
=
(

b8
)

k
= 2hRe

(

sk−1/2

)

,
(

b9
)

k
=
(

b10
)

k
= 2hRe

(

gk−1/2

)

,

(c1)k = (c2)k = 2hRePr
(

tk−1/2 − 2λfk−1/2

)

,

(c3)k = (c4)k = 2hRePrλ
(

tk−1/2

) (

fk−1/2

)

,

(c5)k = 1+ 2hRePr
(

tk−1/2 − 2λ
(

fk−1/2

)2
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+
(

uk−1/2

) (

fk−1/2

)

)

,

(c6)k = −1+ 2hRePr
(

tk−1/2 − 2λ
(

fk−1/2

)2

+
(

uk−1/2

) (

fk−1/2

)

)

,

and

(r1)k = fk−1 − fk + h
(

uk−1/2

)

,

(r5)k = uk−1 − uk + h
(

vk−1/2

)

,

(r6)k = vk−1 − vk + h
(

wk−1/2

)

,

(r7)k = gk−1 − gk + h
(

sk−1/2

)

,

(r8)k = qk−1 − qk + h
(

tk−1/2

)

,

(r2)k = sk−1 − sk + hRe



2uk−1/2gk−1/2 − 2f
k−

1

2

s
k−

1

2

+

(

M +
1

β

)

gk−1/2
1

2
s
k−

1

2



 ,

(r3)k = wk−1 − wk + hRe
(

2fk−1/2wk−1/2 + 2gk−1/2sk−1/2

−

(

M +
1

β

)

vk−1/2

)

,

(r4)k = tk−1 − tk + hRePr
(

2fk−1/2tk−1/2 − 4λ
(

fk−1/2fk−1/2

+fk−1/2uk−1/2tk−1/2

)

)

.

Now, we consist the tridiagonal blockmatrices of given linearized
equations in the form:

Aδ = r (27)

where
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. . .

. . .

. . .
. . .

. . .

. . .
. . .
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Ak−1
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[Bk] [Ak]
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[δ2]
...
[

δk−1
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[r1]
[r2]
...
[

rk−1

]

[rk]



















(28)

In Equation (28), the elements are defined as:

[A1] =

























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 −1 −ek 0 0 0 0 0

0 0 −1 −ek 0 0 0 0

0 0 0 0 −1 −ek 0 0

0 0 0 0 0 0 −1 −ek

























, ek =
1
2hk

[αk] =

























1 −ek 0 0 0 0 0 0

(a1)k 0 (a3)k (a5)k (a7)k (a9)k 0 0
(

b1
)

k

(

b3
)

k
0 0

(

b5
)

k

(

b7
)

k
0 0

(c1)k (c3)k 0 0 0 0 0 (c5)k
0 −1 −ek 0 0 0 0 0
0 0 −1 −ek 0 0 0 0
0 0 0 0 −1 −ek 0 0
0 0 0 0 0 0 −1 −ek

























,

2 < k < K − 1,

[αK] =

























1 −ek 0 0 0 0 0 0

(a1)k 0 (a3)k (a5)k (a7)k (a9)k 0 0
(

b1
)

k

(

b3
)

k
0 0

(

b5
)

k

(

b7
)

k
0 0

(c1)k (c3)k 0 0 0 0 0 (c5)k
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

























,

[βk] =

























−1 −ek 0 0 0 0 0 0

(a2)k 0 (a4)k (a6)k (a8)k (a10)k 0 0
(

b2
)

k

(

b4
)

k
0 0

(

b6
)

k

(

b8
)

k
0 0

(c2)k (c4)k 0 0 0 0 0 (c6)k
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

2 < k < K

[Ck] =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 −ek 0 0 0 0 0
0 0 1 −ek 0 0 0 0
0 0 0 0 1 −ek 0 0
0 0 0 0 0 0 1 −ek

























, 1 < k < K − 1,
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FIGURE 15 | Behavior of θ (ξ ) for different A1.

FIGURE 16 | Behavior of θ (ξ ) for different Pr.

FIGURE 17 | Behavior of θ (ξ ) for different λ.
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[δk] =
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, 1 < k < K,

A = LU, (29)

These computations are repeated until some convergence criteria
are satisfied.

RESULTS AND DISCUSSION

Current segment is dedicated to elucidate the numerical
and graphical impact of velocity parameters involved and
temperature profile and coefficient of skin friction. Variation in
axial velocity against Reynolds number is adorned in Figure 3. It
is found that axial velocity at lower disk decays with increment
in Re. The reason behind this fact is that Re has direct relation
with inertial forces. Therefore, with increase of Re, inertial effects
dominate and cause the velocity of lower disk to decelerate.
Figure 4 expresses the impact of Re on radial component of
velocity. It is explored that with the increase of Re, velocity of
lower disk diminishes and upper disk uplifts. It is seen from
the picture that half of its portion from 0.0 to 0.6 represents
velocity pattern of lower disk and from 0.6 to 1.0, it discloses
radial velocity for upper plate. Impact of scaled stretching
parameter on axial component of velocity at lower disk is
exemplified in Figure 5. It is evidenced that with the increment
of A1, f (ξ) mounts at lower disk because stretching rate is
decreasing continuously. Figure 6 is portrayed to manifest the
variation in radial against A1 velocity for lower and upper
disks. It is found that radial component of velocity increases
for the lower disk as compared to upper disk. This is due
to the stretching rate of the lower disk that is continuously
increasing and upper disk decrements. It is exhibited in Figure 7

that f ′(ξ ) decays with A2 for lower disk and mounts in the
case of upper disk. The justification behind this impact is
that stretching rate of the upper disk is more than that of
the lower disk. The behavior of axial velocity with stretching
scaled parameter A1 of upper disk is depicted in Figure 8.
For larger values of A2, the axial velocity of fluid decrements
near the upper disk and upsurging behavior is noticed at the
lower disk. By increasing A2, velocity magnitude along radial
direction in the vicinity of the upper disk increases, so velocity
along axial direction as an outcome depreciates. The impact of Re
on tangential component of velocity g(ξ ) is disclosed in Figure 9.
It is fond that with increase of Re, g(ξ ) suppresses. By increasing
Re, inertial forces increase so more velocity is induced by the
inertial forces. Behavior of tangential velocity g(ξ ) against A2

is stretched in Figure 10. It is found that g(ξ ) decrements and
f ′(ξ ) uplifts for A2. With increase of A2, stretching rate of the
upper disk increases, and as an outcome, axial velocity increases
and tangential velocity decreases. The variation in g(ξ ) with
rotational parameter is revealed in Figure 11. Positive attribute
in g(ξ ) is observed against τ . With the increase of rotational
parameter τ , centrifugal force is induced, which as an outcome
uplifts the tangential component of velocity. Curves investigating
the aspects of β on tangential component of velocity are adorned
in Figure 12. It is justified by the fact that momentum equation
1
β

is a dimensionless parameter, so with the increase of β ,

momentum profile is tangential and its direction diminishes.
Positive impact on thermal distribution against Re is observed
in Figure 13. With increase of Re, viscous forces decrement
and velocity of fluid particle increases. Thus, the temperature
is defined as average motion of fluid molecules so thermal
field molecules due to uplifts of movement of particles. The
impact of θ(ξ ) against β is anticipated and shown in Figure 14.
Increase in thermal magnitude is observed if β is increased.
Since increase in β raises the rotation of disks, by increasing
the rotation of disk, more rotational motion in fluid is generated
and as a consequence kinetic energy of fluid molecule increases.
The increase in kinetic motion raises the temperature profile.
Variation in thermal profile by varying A1 in the range of
(0.0 ≤ A1 ≤ 1.5) is revealed in Figure 15. It is observed that
temperature of fluid boosts against the values of A1. As we
increase the A1, the stretching rate increases, the fluid particles
between disks exceeds, and hence temperature boosts up. The
impact of Prandtl number Pr on θ(ξ ) is exhibited in Figure 16.
It is found that thermal distribution decreases with Pr. This is
due to the fact that Pr is the ratio of viscous diffusion to thermal
diffusion. Thus, by increasing Pr, thermal diffusion decreases
so temperature decreases. Figure 17 is adorned to study the
impact of thermal relaxation parameter on thermal distribution.
Declined attribute in temperature against thermal relaxation
parameter λ is depicted. It is because of the fact that with the

TABLE 1 | Influence of skin friction coefficient at wall of upper and lower disks.

β A2 Re A1 τ Cf0 Cf1

0.9 2.408192 2.408998

1 0.4 0.01 0.4 0.8 2.408139 2.409217

1.1 2.408104 2.409237

0.5 2.607267 2.808388

0.9 0.6 0.01 0.4 0.8 2.806343 3.207760

0.4 2.408201 2.418441

0.1 2.40905 2.42920

0.9 0.4 0.2 0.4 0.8 2.409095 2.4292

0.01 2.807079 2.608925

0.5 3.2062 2.808669

0.1 0.5 0.2 0.6 2.401948 2.403120

0.4 2.399815 2.401084

0.7 2.399815 2.401084

0.1 0.5 0.2 0.4 0.9 2.399810 2.401089

1 2.399560 2.401093
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TABLE 2 | Comparison of f ′′(0) and g′(0) with Stewartson [4], Hayat et al. [24], and Hayat et al. [25] when φ = A1 = A2 = 0 and Re = 1.

τ f′′(0) −g′(0) f′′(0) −g′(0) f′′(0) −g′(0) f′′(0) −g′(0)

Stewartson [4] Hayat et al. [23] Hayat et al. [25] Present

−1 0.06666 2.00095 0.06666 2.00095 0.06666 2.00095 0.06666 2.00094

−0.8 0.08394 1.80259 0.08394 1.80259 0.08399 1.80259 0.08396 1.80257

−0.3 0.10395 1.30442 0.10395 1.30442 0.10395 1.30443 0.10395 1.30445

0 0.09997 1.00428 0.09997 1.00428 0.09997 1.00428 0.09997 1.0043

0.5 0.0663 0.50261 0.06663 0.50261 0.06667 0.50261 0.06668 0.50265

increase of λ, fluid particles will take more time to transfer heat
to its neighboring particles, thus the temperature decreases.

Table 1 numerically discloses the influence of porosity
parameter β, stretching parameters A1 and A2, and Reynolds
number Re. The skin friction coefficient increases for greater
value of Re and stretching parameters A1 and A2, whereas it
decreases for increasing values of porosity parameter β and
rotating parameter τ at the upper and lower disks. Table 2
gives assurance of present work by constructing comparison
with previously published literature for skin friction coefficient
along radial and tangential components. Here, τ ≥ 0
shows the rotation of both disks in the same direction,
τ ≤ 0 represents the direction of rotation of both disks
in opposite direction, and τ = 0 means upper disk
is fixed.

CONCLUSIONS

Current exertion is devoted to analyze the impact of Cattaneo-
Christov heat flux theory on fluid flow between the two
parallel rotating disks. Equations are modeled in the form of
partial differential equations and then transformed into ordinary
differential expressions. These ODE (ordinary differential
equations) are tackled by Keller-box scheme. The key findings are
summarized as follows:

• At the lower disk, the radial and axial velocity profile increases

for maximum value of A1 while the same effects at upper disk

for greater A2.
• For rotational and stretching parameters, the tangential

velocity profile increases at disk with variation of parameters.
• Thermal effects are reduced for both thermal relaxation and

Prandtl number.
• The skin friction coefficient at both disks is less for greater

value of rotational parameter.
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NOMENCLATURE

(û,v̂,ŵ) Dimensional velocity components (f,g,h) Dimensionless velocity components

Cp Specific heat Cf 1 Local radial skin friction coefficient on the lower disk

Cf 2 Local tangential skin friction coefficient on upper disk Pr Prandtl number

p Fluid pressure q Heat flux

(r,ϕ, z) Thermophoresis parameter Re Reynolds number

T̂1 Temperature in lower disk T̂2 Temperature at the upper disk

Greek Symbols

A1,A2 Scaled stretching parameters ǫ Pressure parameter

ζ Dimensionless similarity variable λ Thermal conductivity

τ Rotational number β Porosity

a1,a2 Stretching rate θ Dimensionless temperature

ρ Fluid density �1,�2 Angular velocity on the disks
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This study examines Darcy-Forchheimer 3D nanoliquid flow caused by a rotating disk

with heat generation/absorption. The impacts of Brownian motion and thermophoretic

are considered. Velocity, concentration, and thermal slips at the surface of the rotating

disk are considered. The change from the non-linear partial differential framework to

the non-linear ordinary differential framework is accomplished by utilizing appropriate

variables. A shooting technique is utilized to develop a numerical solution of the

resulting framework. Graphs have been sketched to examine how the concentration

and temperature fields are affected by several pertinent flow parameters. Skin friction

and local Sherwood and Nusselt numbers are additionally plotted and analyzed.

Furthermore, the concentration and temperature fields are enhanced for larger values

of the thermophoresis parameter.

Keywords: rotating disk, Darcy-Forchheimer flow, nanoparticles, heat absorption/generation, slip conditions,

numerical solution

1. INTRODUCTION

Flow due to a rotating disk plays an indispensable role in numerous modern items encompassing
rotating machinery, apparatuses, rotors, and flywheels. As of late, rotating disks have become
a significant component of many pieces of machinery, for example, thermal power-creation
frameworks, rotor-stator turning circle reactors, electrical controls, stopping mechanisms, pivoting
sawing machines, and rotational air cleaning systems. Close investigations of laminar boundary
layer flow were carried out by Von Karman [1]. Turkyilmazoglu and Senel [2] examined the
linked features of heat and mass exchange arising from the revolution of a hard and permeable
disk. Entropy generation in slip flow by the turning of a permeable disk with MHD and variable
properties was clarified by Rashidi et al. [3]. Nanofluid flow because of the revolution of a disk
was explored by Turkyilmazoglu [4]. Hatami et al. [5] investigated the impacts of the contraction,
turning, and heat of disks on the movement of nanofluids. They utilized a least-square strategy
for solution development. Mustafa et al. [6] deciphered the three-dimensional rotating flow of
nanofluids over a stationary disk. Sheikholeslami et al. [7] created numerical models of nanofluid
splashing on a slanted turning disk. Transient thermophoretic molecule deposition through the
constrained convective flow of micropolar liquid over a pivoting disk was examined by Doh and
Muthtamilselvan [8]. Hayat et al. [9] discussed Darcy-Forchheimer flow of carbon nanotubes in

70
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response to a turning disk. Aziz et al. [10] gave a numerical
report on nanofluid flow from the pivoting of a disk, looking at
the impacts of slip and heat absorption/generation. Synthetically
responsive flow of third-grade nanofluid over a stretchable
turning disk with heat generation was broken down by Hayat
et al. [11]. The radiative flow of a suspension of nanoparticles
and gyrotactic microorganisms by the variably thick surface
of a turning disk was clarified by Qayyum et al. [12]. Hayat
et al. [13] presented a numerical simulation of the radiative
flow of carbon nanotubes due to the revolution of a disk with
partial slip.

The low thermal productivity of working fluids is a guideline
problem for several heat transport components in engineering
applications. For this reason, some researchers are making
efforts to develop an innovative course for the improvement
of the thermal efficiency of working fluids. Various measures
have been proposed by experts to improve the thermal efficiency
of fluids. Accordingly, the incorporation of nanomaterial
into the working fluid, making what is termed a nanofluid,
is extremely promising. Recent assessments of nanofluids
reveal that working fluid has totally different features with
the addition of nanomaterial. This is because the thermal
efficiency of the working liquid is lower than that of the
nanomaterial. Nanofluid is suspension of fluids containing
standard fluid with the particles of nano-measure. Such
nanomaterials are utilized in materials, MHD control generators,
oil stores, cooling of nuclear reactors, vehicle transformers,
and various others [14–18]. Choi and Eastman [19] coined
the term nanofluid. They proposed that nanomaterials are
a groundbreaking contender for the development of heat
transport via the customary fluids. Buongiorno proposed a
numerical model of convective transport by nanofluid [20].
Here, thermophoresis and Brownian motion are viewed
as the most important slip mechanisms. Heat transfer
increase by nanofluids in a two-sided top-driven heated
square hole was considered by Tiwari and Das [21]. The
significance of a CuO-water nanomaterial on the outside of
heat exchangers was tentatively examined by Pantzali et al. [22].
Few ongoing studies on nanofluid flow can be found in the
literature [23–45].

Motivated by the above-mentioned articles, the objective here
is to examine the impacts of heat absorption/generation inDarcy-
Forchheimer 3D nanofluid flow caused by a rotating disk and
the impacts of slip. Both Brownian diffusion and thermophoretic
phenomena occur in view of the existence of nanoparticles.
Velocity, concentration, and thermal slips are accounted
for. The obtained framework is solved numerically by the
shooting technique. Concentration, temperature, skin friction,
and local Sherwood and Nusselt numbers are also analyzed
through plots.

2. MATHEMATICAL MODELING

Let us examine steady Darcy-Forchheimer 3D nanoliquid
flow caused by a rotating disk with slip and heat
absorption/generation. A disk at z = 0 rotates with constant

FIGURE 1 | Flow model and coordinate system.

angular velocity � (see Figure 1). The impacts of Brownian
motion and thermophoretis are accounted for. The velocities are
(u, v, w) in the directions of increase in (r, ϕ, z), respectively. The
resulting boundary layer expressions are [45, 46]:
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It is subject to the boundary conditions [10] :

u = L1
∂u

∂z
, v = r� + L1

∂v

∂z
, w = 0, T = Tw + L2

∂T

∂z
,
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C = Cw + L3
∂C

∂z
at z = 0, (7)

u → 0, v → 0, T → T∞, C → C∞ as z → ∞. (8)

Here u, v, and w represent the velocity components in the
directions r, ϕ, and z while ρf , µ and, ν

(

= µ/ρf
)

depict the
fluid density, dynamic, and kinematic viscosities respectively,
Cb the drag factor, L1 the velocity slip factor, L2 the thermal
slip factor (ρc)p, the effective heat capacity of nanoparticles, T
the fluid temperature, k∗ the permeability of porous space, C
the concentration (ρc)f , the heat capacity of the liquid, L3 the
concentration slip factor, C∞ the ambient concentration, DT the

thermophoretic factor, F = Cb/rk
∗
1/2
the non-uniform inertia

factor, k and α∗
= k/(ρc)f the thermal conductivity and thermal

diffusivity, respectively, DB the Brownian factor, Q the heat

FIGURE 2 | Variations of θ (ζ ) for Fr.

FIGURE 3 | Variations of θ (ζ ) for β.

generation/absorption factor and T∞ the ambient temperature.
Selecting [10]:

u = r�f ′(ζ ), w = −(2�ν)1/2f (ζ ), v = r�g(ζ ),

φ(ζ ) = C−C∞

Cw−C∞
, ζ =

(

2�
ν

)1/2
z, θ(ζ ) = T−T∞

Tw−T∞
.

}

(9)

Continuity Equation (1) is trivially verified, while Equations (2)−

(8) yield

2f ′′′ + 2ff ′′
− f ′

2
+ g2 − λf ′ − Frf ′

2
= 0, (10)

2g′′ + 2fg′ − 2f ′g − λg − Frg2 = 0, (11)

1

Pr
θ ′′ + f θ ′ + Nbθ

′φ′
+ Ntθ

′
2
+ δθ = 0, (12)

FIGURE 4 | Variations of θ (ζ ) for Nt.

FIGURE 5 | Variations of θ (ζ ) for Nb.
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1

Sc
φ′′

+ fφ′
+

1

Sc

Nt

Nb
θ ′′ = 0, (13)

f (0) = 0, f ′(0) = αf ′′(0), g(0) = 1+ αg′(0),

θ(0) = 1+ βθ ′ (0) , φ(0) = 1+ γφ′ (0) , (14)

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0. (15)

Here, Fr stands for the Forchheimer number, α for the velocity
slip parameter, λ for the porosity parameter, Nt for the
thermophoresis parameter, β for the thermal slip parameter, Pr
for the Prandtl number, Nb for Brownian motion, δ for the heat
absorption/generation parameter, γ for the concentration slip

FIGURE 6 | Variations of θ (ζ ) for δ.

FIGURE 7 | Variations of φ(ζ ) for Fr.

parameter, and Sc for the Schmidt number. Non-dimensional
variables are defined by
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(16)

FIGURE 8 | Variations of φ(ζ ) for γ .

FIGURE 9 | Variations of φ(ζ ) for Nt.
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The coefficients of skin friction and the Nusselt and Sherwood
numbers are

Re1/2r Cf = f ′′(0), Re1/2r Cg = g′(0), Re−1/2
r Nu = −θ ′(0),

Re−1/2
r Sh = −φ′(0), (17)

where Rer = 2(�r)r/ν represents the local rotational
Reynolds number.

3. NUMERICAL RESULTS AND
DISCUSSION

This section depicts the contributions of various physical
variables like thermophoresis parameter Nt , Forchheimer

number Fr, thermal slip parameter β , heat generation/absorption
parameter δ, Brownian number Nb, and concentration slip
number γ on The concentration φ(ζ ) and temperature
θ (ζ ) distributions. The effect of Forchheimer variable Fr

FIGURE 10 | Variations of φ(ζ ) for Nb.

FIGURE 11 | Variations of Nu(Rer )
−1/2 for Nt.

on θ (ζ ) is portrayed in Figure 2. A larger value for Fr
shows expanding behavior of θ (ζ ) and the related thermal
layer. Figure 3 shows the impact of thermal slip β on
temperature θ (ζ ). Temperature is reduced by increasing
thermal slip β . Figure 4 demonstrates the effect of Nt

on the temperature field θ (ζ ). A larger thermophoresis
parameter Nt value leads to a higher temperature field
and thicker dynamically warm layer. The reason for
this conflict is that growth in Nt yields high grounded
thermophoresis control, which further allows movement of
the nanoparticles in the fluid zone. A long way from the
surface, a more grounded temperature scattering θ (ζ ) and
continuously warm layer is thus created. The impact of Nb

on the temperature profile θ (ζ ) is portrayed in Figure 5.
Physically, the irregularity of nanoparticle movement increases
by enhancing Brownian motion, due to which collision of
particles occurs. Thus, kinetic energy is converted into heat
energy, which produces an increase in the temperature field.
Figure 6 shows how heat generation/absorption δ influences

FIGURE 12 | Variations of Nu(Rer )
−1/2 for Nb.

FIGURE 13 | Variations of Sh(Rer )
−1/2 for Nt.
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FIGURE 14 | Variations of Sh(Rer )
−1/2 for Nb.

TABLE 1 | Comparative values of f ′′(0) and g′(0) for value of Fr when λ = 0.2 and

α =0.

Present results Naqvi et al. [45]

Fr f ′′(0) g′(0) f ′′(0) g′(0)

0.2 0.43478 −0.78139 0.4347813 −0.7813904

temperature dispersion θ (ζ ). Here, δ > 0 portrays heat
generation and δ < 0 for heat absorption. Both temperature
θ (ζ ) and the warm layer are upgraded with increasing
δ. Figure 7 shows that concentration φ(ζ ) is higher for
larger values of the Forchheimer variable Fr. Figure 8 shows
how concentration φ(ζ ) is influenced by concentration slip

γ . Concentration is reduced at higher estimations of γ .
Figure 9 demonstrates how the thermophoresis parameter Nt

influences the concentration φ(ζ ). By improving thermophoresis
parameter Nt , the concentration φ(ζ ) is increased. Figure 10
depicts the impact of Brownian motion Nb on concentration
φ(ζ ). It has been noted that a stronger concentration φ(ζ ) is
developed by utilizing greater Nb. Figures S1, S2 display the

impacts of Fr on CfRe
1/2
r and CgRe

1/2
r , respectively. It is noted

that CfRe
1/2
r is a decaying function of Fr, while the reverse

situation is observed for CgRe
1/2
r . The effects of Nt and Nb on

Nu(Rer)
−1/2 are highlighted in Figures 11, 12, respectively. Here,

Nu(Rer)
−1/2 reduces for Nt and Nb. The effects of Nt and Nb on

Sh(Rer)
−1/2 are portrayed in Figures 13, 14, respectively. Here,

Sh(Rer)
−1/2 is an increasing factor ofNt , while the opposite trend

is seen for Nb. The figures in Table 1 were computed to validate
the present results with previously published results in a limiting
sense. Here, we see that the present numerical solution is in good
agreement with the previous solution by Naqvi et al. [45] in a
limiting sense.

4. CONCLUSIONS

In this paper, Darcy-Forchheimer 3D nanofluid flow caused
by a rotating disk with heat generation/absorption is studied.
Brownian motion and thermophoretic phenomena occur with
the existence of nanoparticles. Velocity, concentration, and
thermal slips are accounted for. A higher Forchheimer number
Fr depicts similar behavior for concentration and temperature.
A larger β corresponds to a lower temperature field. Higher
γ depicts decreasing behavior for the concentration field.
A stronger temperature field is observed for Nb and Nt .
Concentration φ(ζ ) displays the reverse behavior for Nb and Nt .
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In the present article, fractional view of third order Kortewege-De Vries equations

is presented by a sophisticated analytical technique called Mohand decomposition

method. The Caputo fractional derivative operator is used to express fractional

derivatives, containing in the targeted problems. Some numerical examples are

presented to show the effectiveness of the method for both fractional and integer order

problems. From the table, it is investigated that the proposed method has the same rate

of convergence as compare to homotopy perturbation transform method. The solution

graphs have confirmed the best agreement with the exact solutions of the problems and

also revealed that if the sequence of fractional-orders is approaches to integer order, then

the fractional order solutions of the problems are converge to an integer order solution.

Moreover, the proposed method is straight forward and easy to implement and therefore

can be used for other non-linear fractional-order partial differential equations.

Keywords: analytical solution, Mohand transform, Adomian decomposition, caputo derivatives, third order

Kortewege-De Vries equations

1. INTRODUCTION

The class of partial differential equations known as Korteweg-De Vries (KDV) equation which play
a vital role in the diverse field of physics such as fluid mechanics, signal processing, hydrology,
viscoelasticity and fractional kinetics [1, 2]. The KDV equation was first time derived by Korteweg
and Vries in 1895. The KDV equation used to model long waves, tides, solitary waves, and wave
propagating in a shallow canal. A partial differential Kortewege-De Vries equation of third order is
also applied to study the non-linear model of water waves in superficial canal certain namely canal
[3], in the time when wave in water was of important concentration in applications in navigational
design and also for the awareness of flood and tides [4, 5]. The applications in numerous areas
of physics, applied science and other scientific applications, therefore the excessive amount of
investigation as a research work has been capitalized in the study of KDV equations [6–10]. We
considered the third order time fractional KDV equation in the form [1]

∂γ u(χ ,ℑ)

∂ℑγ
+ κu(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+ λ

∂3u(χ ,ℑ)

∂χ3
+ ψ(χ ,ℑ), 0 < γ ≤ 1, (1)

78

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00244
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00244&domain=pdf&date_stamp=2020-01-17
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:poom.kum@kmutt.ac.th
https://doi.org/10.3389/fphy.2019.00244
https://www.frontiersin.org/articles/10.3389/fphy.2019.00244/full
http://loop.frontiersin.org/people/800361/overview
http://loop.frontiersin.org/people/827640/overview
http://loop.frontiersin.org/people/800383/overview
http://loop.frontiersin.org/people/73178/overview
http://loop.frontiersin.org/people/731533/overview


Shah et al. Fractional View Analysis of Third Order

with initial source

u(χ , 0) = u(χ),

where, κ and λ are real numbers.
The KdV equations of fractional order can be applied to

examine the influence of the higher-order wave dispersion. The
KdV-Burgers equation defines the waves on lower water surfaces.
The strength of fractional KdV equation is the non-local property
[11–21]. For a higher order Korteweg-de Vries equation, which
is a natural extension of the Korteweg-de Vries equation written
in a bilinear form, a Bcklund conversion in bilinear forms is
provided. For this higher-order equation the Bcklund transition
is given in ordinary forms and the inverse scattering scheme
[22], Korteweg-de Vries type of equations 3rd order coefficient
variable [23] and Solution of the third order Korteweg-De Vries
homotopy perturbation approach using elzaki transform [24].

In few decades, integral transform of various types such as
Fourier transform, Laplace transform, Hankel transform, Mellin
transform, Z-transform, Wavelet transform, Elzaki transform,
Kamal transform, Mahgoub transform, Aboodh transform,
Mohand transform, Sumudu transform, Hermite transform etc.,
gained a enormous importance in solving advanced model in the
field mathematics, physics and engineering [25–36].

In the current article, we have applied the Mohand transform
with decomposition procedure for the analytical treatment of
time fractional KDV equation. The Mohand Transform is one
of the new integral transform use for the analytical treatment
of different physical phenomena are molded by Differential
Equations (DEs) of integer order or Fractional Partial Differential
Equations (FPDEs). Recently, Kumar and Viswanathan used
Mohand transform and solved the mechanics and electrical
circuit problems [37]. Aggarwal have Comparatively Studied
Mohand and Aboodh transforms for the solution of differential
equations. The numerical applications reflect that both the
transforms (Mohand and Aboodh transforms) are closely related
to each other [38]. Sudhanshu Aggarwal have also discussed the
comparative study of Mohand and Laplace transforms, Mohand
and Sumudu transforms, Mohand and Mahgoub transforms
[39–41]. Sudhanshu Aggarwal have successfully discussed the
Mohand transform of Bessels functions of zero, one and two
orders, which is very useful for solving many equations in
cylindrical or spherical coordinates such as heat equation, wave
equation etc. [42]. The exact solution of second kinds of linear
Volterra integral equations get by using Mohand transform. It is
claimed that Mohand transform take very little time and has no
large computational work [43].Mohand transform have also used
the for solution of Abel’s integral equation. The obtained results
show that Mohand transform is a powerful integral transform
for handling Abel’s integral equation [44]. The remaining section
of the paper are managed as follows. In the second section, we
present some related definitions of fractional calculus and basic
concepts of Mohand transform. The third section presents the
implementation the proposed methodology. The four section
represent different models of KDV equation are examined
separately and plotted. Finally, we depict our conclusions.

PRELIMINARIES CONCEPTS

In this section, we present some basic necessary definitions
and preliminaries concepts related to fractional calculus and
Mohand transform.

DEFINITION

Mohand transform first time was define by Mohand and
Mahgoub of the function u(ℑ) for ℑ ≥ 0 in the year 2017. The
Mohand transform which is represented by M(.) for a function
u(τ ) is define as [45]

M{u(ℑ)} = R(υ) = υ2
∫

∞

0
u(ℑ)e−υℑdℑ, k1 ≤ υ ≤ k2, (2)

The Mohand transform of a function u(ℑ) is R(υ) then u(ℑ) is
called the inverse of R(υ) which is expressed as.

M−1
{R(υ)} = u(ℑ), M−1 is inverse Mohand operator. (3)

DEFINITION

Mohand transform for nth derivatives [46]

M{un(ℑ)} = υnR(υ)− υn+1u(0)− υnu′(0)− · · · − υ2un−1(0),

(4)

DEFINITION

Mohand transform for fractional order derivatives [46]

R{uγ (ℑ)} = υγR(υ)−

n− 1
∑

k= 0

uk(0)

υk−(γ+1)
, 0 < γ ≤ n, (5)

DEFINITION

Caputo operator of fractional partial derivative [47]

Dγτ g(χ ,ℑ) =















∂ng(χ ,ℑ)

∂ℑn
, γ = n ∈ N,

1

Ŵ(n− γ )

∫

ℑ

0 (ℑ − φ)n−γ−1gn(φ)∂φ, n− 1 < γ < n

(6)

2. IMPLEMENTATION OF MOHAND
TRANSFORM

In this section we have considered the time fractional KDVmodel
in the form

∂γ u(χ ,ℑ)

∂ℑγ
+ κu(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+ λ

∂3u(χ ,ℑ)

∂χ3
= ψ(χ ,ℑ),

0 < γ ≤ 1, (7)

with initial source

u(χ , 0) = u(χ).

where, κ and λ are real numbers.
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Applying Mohand transform [45]

M

{

∂γ u(χ ,ℑ)

∂ℑγ
+ κu(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+ λ

∂3u(χ ,ℑ)

∂χ3

}

= M
{

ψ(χ ,ℑ)
}

, 0 < γ ≤ 1, (8)

by using the transform property, we can simplify as

υγ {R(υ)− υu(0)} + M

{

κu(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
+ λ

∂3u(x, τ )

∂x3

}

= M
{

ψ(x, τ )
}

, (9)

after some evaluation, Equation (8) simplified as

R(υ) = υu(0)+
1

υγ
M

{

−κu(x, τ )
∂u(x, τ )

∂x
− λ

∂3u(χ ,ℑ)

∂χ3

}

+
1

υγ
M

{

ψ(χ ,ℑ)
}

, (10)

by applying inverse Mohand transform

u(χ ,ℑ) = υu(0)+M−1

{

1

υγ
M

{

−κu(χ ,ℑ)
∂u(χ ,ℑ)

∂χ

−λ
∂3u(χ ,ℑ)

∂χ3

}

+
1

υγ
M

{

ψ(χ ,ℑ)
}

}

. (11)

Finally we obtain the recursive general relation as

u0(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

ψ(χ ,ℑ)
}

}

m = 0

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

−κum(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−λ
∂3um(χ ,ℑ)

∂χ3

}}

, m ≥ 0. (12)

THEOREM

Letχ andY be two Banach spaces andT :χ → Y be a contractive
nonlinear operator, such that for all u; u∗ ∈;χ , ||T(u)−T(u∗)|| ≤
K||u− u∗||, 0 < K < 1 [48].

Then, in view of Banach contraction theorem, T has a unique
fixed point u, such that Tu = u: Let us write the generated series
(12), by the Mohand decomposition method as

χm = T(χm−1), χm−1 =

m− 1
∑

j= 1

uj, j = 0, 1, 2, · · ·

and supposed that χ0 = u0 ∈ Sp(u), where Sp(u) = {u∗ ∈

χ : ||u− u∗|| < p} then, we have

(B1)χm ∈ Sp(u)

(B2) lim
m→∞

χn = u.

Proof
(B1) In view of mathematical induction form = 1, we have

||χ1 − u1|| = ||T(χ0 − T(u))|| ≤ K||u0 − u||.

Let the result is true form− 1, then

||χm−1 − u|| ≤ Km−1
||u0 − u||.

We have

||χm−u|| = ||T(χm−1−T(u))|| ≤ K||χm−1−u|| ≤ Km
||u0−u||.

Hence, using (B1), we have

||χm − u|| ≤ Km
||u0 − u|| ≤ Kmp < p,

which implies that χm ∈ Sp(u).
(B2): Since ||χm − u|| ≤ Km

||u0 − u|| and as a limm→∞

Km
= 0.
Therefore; we have limm→∞ ||un − u|| = 0 ⇒ limm→∞

un = u.

3. APPLICATIONS AND DISCUSSION

Here, we have implemented theMohand transform on some time
fractional KVD equations.

Example 4.1: Consider the third order time fractional KVD
equation [49]

∂γ u(χ ,ℑ)

∂ℑγ
+ 6u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(13)

with initial source

u(χ , 0) = χ .

Taking Mohand transform of Equation (12), we get

υγ {R(υ)− υu(0)} = M

{

−6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(14)

after some evaluation, Equation (13) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

−6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(15)

by applying inverse Mohand transform, we get

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

−6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(16)

thus, by using recursive scheme of Equation (11), we get
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u0(χ ,ℑ) = u(0) = χ , (17)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

−6um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, m = 0, 1, · · · . (18)

From the recursive formula (17),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

−6u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) = −6χ
ℑ
γ

γ !
, (19)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

−6u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

−6u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,

u2(χ ,ℑ) = 72χ
ℑ
2γ

(2γ )!
, (20)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

−6u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ

−6u1(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ
− 6u2(χ ,ℑ)

∂u0(χ ,ℑ)

∂χ

−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) = −864χ
ℑ
3γ

(3γ )!
− 216χ(2γ )!

ℑ
3γ

(3γ )!γ !γ !
, (21)

Similarly for m = 3, we can get

u4(χ ,ℑ) = 10368χ
ℑ
4γ

(4γ )!
+ 2592χ(2γ )!

ℑ
4γ

(4γ )!γ !

+5184χ(3γ )!
ℑ
4γ

(4γ )!(2γ )!γ !
, (22)

...

The Mohand transform solution for example 4.1 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)

+u4(χ ,ℑ)+ · · · . (23)

u(χ ,ℑ) = χ − 6x
ℑ
γ

γ !
+ 72χ

ℑ
2γ

(2γ )!
− 864χ

ℑ
3γ

(3γ )!

−216χ(2γ )!
ℑ
3γ

(3γ )!γ !γ !
+ 10368χ

ℑ
4γ

(4γ )!

+2592χ(2γ )!
ℑ
4γ

(4γ )!γ !
+ 5184χ(3γ )!

ℑ
4γ

(4γ )!(2γ )!γ !
+ · · · .

(24)

For particular case γ = 1, the Mohand transform solution
become as

u(x, τ ) = χ(1− 6ℑ + 36ℑ2
− 216ℑ3

+ 1296ℑ4
+ · · · ). (25)

The calculated result provide the exact solution in the close form

u(χ ,ℑ) =
χ

1+ 6ℑ
. (26)

Example 4.2: Consider the third order time fractional KVD
equation [50]

∂γ u(χ ,ℑ)

∂ℑγ
+ u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(27)

with initial source

u(χ , 0) = 1− χ .

Taking Mohand transform of Equation (26)

υγ {R(υ)− υu(0)} = M

{

−u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(28)

after some evaluation, Equation (27) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

−u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(29)

taking inverse Mohand transform of Equation (28)

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

−u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(30)

by using the recursive scheme Equation (11), we get

u0(χ ,ℑ) = u(0) = 1− χ , (31)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

−um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, (32)

From the recursive formula (31),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

−u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) = (1− χ)
ℑ
γ

γ !
, (33)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

−u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

−u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,
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u2(χ ,ℑ) = 2(1− χ)
ℑ
2γ

(2γ )!
, (34)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

−u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ

−u1(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ
− u2(χ ,ℑ)

∂u0(χ ,ℑ)

∂χ

−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) = 6(1− χ)
ℑ
3γ

(3γ )!
. (35)

...

The Mohand transform solution for example 3.2 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)+ .. (36)

u(χ ,ℑ) = 1− χ + (1− χ)
ℑ
γ

γ !
+ 2(1− χ)

ℑ
2γ

(2γ )!

+6(1− χ)
ℑ
3γ

(3γ )!
+ · · · . (37)

For particular case γ = 1, the Mohand transform solution
become as

u(χ ,ℑ) = 1− χ(1+ ℑ+ ℑ
2
+ ℑ

3
+ · · · ). (38)

The calculated result provide the exact solution in the close form

u(χ ,ℑ) =
1− χ

1− ℑ
. (39)

Example 4.3 Consider the third order time fractional KVD
equation [6]

∂γ u(χ ,ℑ)

∂ℑγ
− 6u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(40)

with initial source

u(χ , 0) = 6χ .

Taking Mohand transform of Equation (39)

υγ {R(υ)− υu(0)} = M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(41)
after some evaluation, Equation (40) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(42)

by applying inverse Mohand transform, we get

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(43)

thus, by using recursive scheme of Equation (11),
we get

u0(χ ,ℑ) = u(0) = 6χ (44)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

6um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, m = 0, 1, · · · . (45)

From the recursive formula (44),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) = 216χ
ℑ
γ

γ !
, (46)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

+ 6u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,

u2(χ ,ℑ) = 15552χ
ℑ
2γ

(2γ )!
, (47)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ
+ 6u1(χ ,ℑ)

∂u1(χ ,ℑ)

∂χ

+6u2(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) = 1119744χ
ℑ
3γ

(3γ )!
+ 279936χ(2γ )!

ℑ
3γ

(3γ )!γ !γ !
, (48)

...

The Mohand transform solution for example 4.3 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)+ · · · . (49)

u(χ ,ℑ) = 6χ + 216χ
ℑ
γ

γ !
+ 15552χ

ℑ
2γ

(2γ )!
+

1119744χ
ℑ
3γ

(3γ )!
+ 279936χ(2γ )!

ℑ
3γ

(3γ )!γ !γ !
+ · · · . (50)

For particular case γ = 1, the Mohand transform solution
become as

u(χ ,ℑ) = 6χ(1+ 36ℑ + 1296ℑ2
+ 46656ℑ3

+ · · · ). (51)
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The calculated result provide the exact solution in the close form

u(χ ,ℑ) =
6χ

1− 36ℑ
. (52)

Example 4.4 Consider the third order time fractional KVD
equation [6]

∂γ u(χ ,ℑ)

∂ℑγ
− 6u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(53)

with initial source

u(χ , 0) =
6

χ2
.

Taking Mohand transform of Equation (52)

υγ {R(υ)− υu(0)} = M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(54)

after some evaluation, Equation (53) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(55)

by applying inverse Mohand transform, we get

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

.

(56)

Thus, by using recursive scheme of Equation (11), we get

u0(χ ,ℑ) = u(0) =
6

χ2
, (57)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

6um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, m = 0, 1, · · · . (58)

FIGURE 1 | Represents the exact and analytical solution of example 4.1.

FIGURE 2 | Represents the solution at different fractional order.
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From the recursive formula (44),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) =
−288

χ5

ℑ
γ

γ !
, (59)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

+6u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,

u2(χ ,ℑ) =
12096

χ8

ℑ
2γ

(2γ )!
, (60)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ

+6u1(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ
+ 6u2(χ ,ℑ)

∂u0(χ ,ℑ)

∂χ

−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) =
4354560

χ11

ℑ
3γ

(3γ )!
−

2488320

χ11
(2γ )!

ℑ
3γ

(3γ )!γ !γ !
, (61)

...

The Mohand transform solution for example 4.3 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)+ .. (62)

u(χ ,ℑ) =
6

χ2
−

288

χ5

ℑ
γ

γ !
+

12096

χ8

ℑ
2γ

(2γ )!
+

4354560

χ11

ℑ
3γ

(3γ )!

−
2488320

χ11
(2γ )!

ℑ
3γ

(3γ )!γ !γ !
. (63)

For particular case γ = 1, the Mohand transform solution
become as

u(χ ,ℑ) =
6

χ2
−

288

χ5
ℑ +

6048

χ8
ℑ
2
−

103680

χ11
ℑ
3
+ · · · . (64)

The calculated result converge to the exact solution in the
close form

u(χ ,ℑ) =
6χ(χ3

− 24ℑ)

(χ3 + 12ℑ)2
. (65)

FIGURE 3 | Represents the exact and analytical solution of example 4.2.
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FIGURE 4 | Represents the exact and analytical solution of example 4.3.

FIGURE 5 | Represents the solution of example 4.3 at γ = 0.75, γ = 0.5.

4. RESULTS AND DISCUSSION

In Figure 1, the exact and analytical solutions of example 4.1 are
presented. The solution-graph have confirmed that the obtained
results are in good contact with the exact solutions of example
4.1. In Figure 2, the fractional-order solutions are calculated
at fractional-order γ = 1, 0.9, 0.7, and 0.5. The solutions
graphs are expressed in both two and three dimensions. The
convergence phenomena can be observed from Figure 2. The
similar implementation and results can be seen in Figures 3–7
for example 4.3 and 4.4 also. In Table 1, the results of MDM
are compared with the results of HPTM which provide identical
results. It is observed that the proposed method has the sufficient
accuracy and rate of convergence to the exact solutions of
the problems. It is also investigated that the proposed method

provided the simple and straightforward implementation for all
examples 1, 2, 3, and 4. These investigations of results have
confirmed that the present method can be extended to other
fractional-order problems arising in science and engineering.

5. CONCLUSION

The proposed method is considered to be one of the pre-eminent
and new analytical technique, to solve fractional order partial
differential equation. In current research article, the proposed
method is applied to solve fractional-order kortewege-De Vries
equations. The current method is constructed by using Mohand
transformation along with Adomian decomposition method.
The new hybrid method is very useful to handle the analytical
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FIGURE 6 | Represents the exact and analytical solution of example 4.4.

FIGURE 7 | Represents the solution of example 4.4 at γ = 0.75, γ = 0.5.

TABLE 1 | Comparison of MDM and HPTM [49] of example 1 at ℑ = 0.5.

MDM MDM MDM Absolute

error

Absolute

error

χ γ = 0.55 γ = 0.75 γ = 1 HPTM

(γ = 1)

MDM

(γ = 1)

0.1 0.0712628292 0.0893256192 0.0970873 7.86E-08 7.85E-08

0.2 0.1425256585 0.1786512385 0.1941746 1.57E-07 1.56E-07

0.3 0.2137884877 0.2679768577 0.2912619 2.35E-07 2.35E-07

0.4 0.2850513169 0.3573024770 0.3883492 3.14E-07 3.14E-07

0.5 0.3563141462 0.4466280962 0.4854365 3.93E-07 3.93E-07

0.6 0.4275769754 0.5359537154 0.5825238 4.71E-07 4.71E-07

0.7 0.4988398046 0.6252793347 0.6796111 5.50E-07 5.50E-07

0.8 0.5701026338 0.7146049539 0.7766984 6.29E-07 6.29E-07

0.9 0.6413654631 0.8039305732 0.8737857 7.07E-07 7.07E-07

1 0.7126282923 0.8932561924 0.9708730 7.86E-07 7.86E-07

solutions of fractional-order partial differential equations. To
verify, the validity of the suggested method some numerical
examples of time fractional third order KdV equations are

considered to solve it analytically. The solution graphs have
confirmed the validity and reliability of the suggested method
toward the solutions of other fractional-order non-linear partial
differential equations.
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The objective of this article is to explore radiativeMarangoni boundary layer flow of carbon

nanotubes along a surface that is an electromagnetic actuator, such as a Riga surface. A

comparative study is conducted to investigate the behavior of Lorentz forces on the basis

of nanoparticle temperature fluxes with two different types of carbon nanotubes, namely

single-wall carbon nanotube and multi-wall carbon nanotubes saturated into water as

the base fluid. The proposed schemes of governing equations are then converted

into ordinary differential equations by similarity transformation. One of best analytical

methods, the homotopy analytical method, is utilized for the solution of the governing

equations and the convergence of the control parameters. Embedded dimensionless

parameters of the flow fields are examined via graphical illustrations. It is observed that

an increase in the modified Hartmann number increases the velocity field but reduces

the temperature distribution.

Keywords: Marangoni boundary layer flow, carbon nanotubes, Riga plate, thermal radiation, series solutions

1. INTRODUCTION

Marangoni boundary layer flow phenomena are characterized by gradients in surface tension due to
variations in surfactant concentration, concentration of solute, and variations in temperature along
the interface. In light of the enhanced significance of surface forces and greater interface extensions,
Marangoni boundary layer flows become pertinent in microgravity and in earth gravity. On the
other hand, for a duly defined sufficient large Reynolds number, Marangoni boundary layers are
edge dissipative flows and form thin dissipative films near unrestricted surfaces [1]. These types of
flows have widespread application in diverse fields of engineering and practical projects such as for
stabilizing soap films, drying silicon wafers after wrap processing steps, growing crystals, spreading
thin films, nucleating vapor bubbles, processing semiconductors, and welding and for use in packed
distillation columns, falling film spectator, artificial rain, and materials science. In view of their
importance, many researchers have studied and reported results for these types of flows. The first
contribution to this research area was by Napolitano [2] during his survey of steady dissipative
layers. Lin and Zheng [3] theoretically investigated the problem of Marangoni boundary layer flow
and heat transfer of copper-water nanofluid over a porous medium disk. They concluded that the
Marangoni parameter has a destabilizing effect on all the other parameters such as temperature,
shear stress, velocity, and boundary layer velocity. Moreover, to achieve an analytical solution of

89
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the said model, they employed the Homotopy Analysis Method
(HAM). Recently, Tiwari et al. [4] presented a mathematical
model for electrically conducting Marangoni MHD flow
saturated with carbon nanotubes (CNTs) as the nanoparticles
in a base fluid over a porous medium. An analytical method
was adopted to achieve a solution for this project. A similarity
solution of Marangoni convection boundary layer flow, taking
into account the impacts of gravitational and external pressure,
has been studied by Zhang and Zheng [5]. They showed
that flow and heat transfer phenomena were substantially
affected by the Marangoni convection parameter and the Prandtl
number. A numerical method was adopted by Mehdi et al. to
investigate the influence of different nanoparticles on Marangoni
convection boundary layer flow [6]. The study showed that
some nanoparticles with low thermal conductivity have a greater
amplification effect on heat transfer phenomena than other
recommended particles. Sheikholeslami and Ganji [7] considered
Marangoni boundary layer flow to investigate the effect of the
magnetic field on various nanofluids. The results illustrated that
a Lorentz force increase causes the velocity of nanofluid to
decrease. Remeli et al. [8] investigated suction and injection in a
nanofluid via Marangoni-driven boundary layer flow. The effect
of the injection parameter is to decrease the velocity profile, while
the suction parameter increases the velocity profile and delays the
separation of the boundary layer. The effects of particle shape on
Marangoni convection boundary layer flow of a nanofluid were
addressed by Ellahi et al. [9]. They considered different types of
nanoparticles, such as needle-shaped, disc-shaped, and sphere-
shaped. They discussed the said flow model in the context of
nanoparticles and found that with an increase in the volume
fraction and size of the particles, the surface temperature gradient
fluctuated correspondingly. The maximum heat transfer rate at
the surface was found in the case of sphere-shaped particles.
Further, numerous studies on Marangoni boundary layer flow of
several types can be found in the literature [10–12].

The characteristic of nanofluid of tremendously intensifying
heat transfer and thermal convection has led to its broad
application in innumerable fields, such as in biomedical
devices and in highly advanced technical contexts such as the
cooling of microchips, nanodrug delivery, nuclear reactions and
radiators, etc. To reconcile the issues associated with high-
temperature mixtures and to improve thermal conductivity
in practice, nanoparticles are soaked into a base fluid. Many
contributions have been made to the literature on nanoparticles
that disseminate in the base fluid to attain excellent thermal
properties [13–15]. According to Tiwari et al. [16], the adding of
nanoparticles within a base fluid alone is not enough. CNTs had
a six-times improved thermal conductivity compared to other
nanomaterials [17]. Through the enhancement of various models
of CNTs, these tubes have a wide span of properties such as
thermal and electronic [18]. Similarly, solid nanoparticles have
higher conductivity than do liquids. Therefore, CNTs are a topic
of interest for advanced technology due to their electrical and
isolated structure. In recent years, different applications of CNTs
[19–21] have been investigated to develop ideal materials ranging
from ultra-strong fibers to field emission. These tubes have
extensive uses and applications in various fields such as providing

increased energy density for capacitors, modeling the structures
of catalysts, detecting proteins that indicate the existence of
oral cancer, for gas storage, for water purification devices,
for detecting bacteria in drinking water, for minimizing the
weight of coaxial cable in aerospace applications, for improving
battery lifetime, as an extra powerful fiber, etc. In this regard,
Hayat et al. [22] utilized carbon nanotubes in water flow under
homogenous-heterogeneous reactions and with melting heat
transfer effects. Two different types of CNTs, i.e., SWCNT and
MWCNT, were incorporated in water for the flow model. It was
found that, in comparison with other nanofluids, the minimum
thermal resistance and maximum heat transfer was achieved
when MWCNT was disseminated in the base fluid. Moreover,
the surface thickness of carbon nanotubes with heat transfers in
stagnation point flow was examined by Hayat et al. [23].

From the last few decades, many researchers have turned
their attention toward the study of flow fields with different
configurations. One of the new geometries devised by Gailitis
and Lielausis [24] for weakly conducting fluids is the so-called
Riga plate. The novelty of this plate is that it incorporates and
imposes magnetic and electric fields, which properly instigates
Lorentz forces parallel to the wall to constrain the flow of
weakly conducting fluid. Avoiding boundary layer separation,
it may be utilized as an efficient agent for submarine pressure
drag, skin friction, and radiation. The related theory has
important features and is employed in many areas such as
engineering, geophysics, astrophysics, industrial procedures, and
MHD generators. Pantokratoras et al. [25] addressed boundary
layer flow based on a weakly conducting fluid passing through a
Riga plate. Their analysis demonstrated that by keeping quality,
suitable size of nanoparticles, and adjusting the magnitude of
flow, aiding and opposing Lorentz force due to the Riga plate
in order to control the skin friction. Magyari and Pantokratoras
[26] carried out an investigation to extend the idea of opposing
and aiding mixed convection flows through a Riga plate. Further,
Pantokratoras [27] addressed Blasius and Sakiadis type flows over
a Riga plate. Hayat et al. [28] explored the flow of nanofluid
through a convectively heated Riga plate with variable thickness.
The results demonstrated that for larger values of the modified
Hartman number, the velocity distribution exhibited decreasing
behavior. Shafiq et al. [29] analyzed the impact of radiation
in stagnation point flow of Walters’ B fluid through a Riga
plate. Their observations indicated that due to enhancement
of the strength of Newtonian heating, the temperature and
surface heat transfer significantly increased. Theoretical and
numerical discussion by Bhatti et al. has shown the effects
of thermal radiation with EMD through a Riga plate [30].
Further, a Cattaneo-Christov model for third-grade nanofluid
flow toward a Riga plate has been developed by Naseem et al. [31]
by using a semi-analytical method, i.e., the optimal homotopy
analysis method (OHAM). The proposed theory was adopted
together with the newly esteemed zero nanoparticles mass flux
condition to investigate mass and thermal diffusions. Thermal
radiation and heat transfer phenomena play a central role in
advanced technological systems through boundary layer flow.
The important applications of this flow in the aforementioned
fields can be seen in the literature [32–34]. Henceforth, in
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various flow fields, the importance of thermal radiation cannot be
overlooked. Non-linear radiation and Joule heating inMarangoni
mixed convection flow were demonstrated by Hayat et al. [35].
The impact of exponential temperature on radiation effects and
particle shape was examined by Lin et al. by utilizing heat transfer
of copper water-based nanofluid and Marangoni boundary layer
flow [36]. Hayat et al. [37] reported the effect of Joule heating
and thermal radiation in the flow of third-grade fluid over a
radiative surface. They studied whether the presence of an electric
field and the radiation parameter caused the temperature and
velocity to increase. A revised model of second-grade nanofluid
magnetohydrodynamic Falkner Skan flow was examined by
Hayat et al. [38]. A few other interesting investigations are given
in Ellahi et al. [39–44], Bhatti et al. [30, 45, 46], Ellahi and Riaz
[47], and Waqas et al. [48].

The main intention of the present study is to interpret
radiative Marangoni-driven boundary layer flow utilizing
different types of CNTs (SWCNTs and MWCNTs) over a
Riga plate. To the best of our knowledge, such a study does
not yet exist in the literature. Suitable transformations are
utilized to establish a non-linear system of equations. The
homotopy analysis method (HAM) is utilized for convergent
series solutions. The impacts of several influential parameters
on the physical quantities of interest are analyzed through
tables and graphs. The upcoming sections illustrate the
mathematical model and explore the effects of the different
physical parameters on the velocity and temperature
profiles, respectively.

2. MATHEMATICAL SCHEME OF THE
PROBLEM

We consider Marangoni boundary layer flow of carbon-
nanoliquids (SWCNTs and MWCNTs) toward a Riga surface
along with radiation phenomenon. The Riga plate comprises a
spanwise connected array of permanent magnets and irregular
electrodes attached to a horizontal surface. Lorentz forces
generated by the Riga plate and directed along the free stream are
responsible for optimally controlling the proposed flow field. The
base fluid, water, is packedwith SWCNTs andMWCNTs. Further,
the governing equations for the flow form may be expressed
as (1–5):

∂ ŭ

∂ x̆
+

∂ v̆

∂ y̆
= 0, (1)

ŭ
∂ ŭ

∂ x̆
+ v̆

∂ ŭ

∂ y̆
= ŭe

dŭe

dx̆
+

µnf

ρnf

∂2ŭ

∂ y̆2
+

πM0 J0 Exp[−
π
b
y̆]

8ρnf

−g β̆(T − Tw), (2)

ŭ
∂T

∂ x̆
+ v̆

∂T

∂ y̆
= αnf

∂2T

∂ y̆2
−

1

(ρcp)nf

∂qr

∂ y̆

+
µ

(ρcp)nf

(

∂ ŭ

∂ y̆

)2

, (3)

and the boundary conditions are set as

v̆ = 0, T = T0,
µnf

µf

∂ ŭ

∂ y̆
=

∂T

∂ x̆
at y̆ = 0,

ŭ = ŭe, T = Te at y̆ → ∞ . (4)

The velocity components in the x̆ and y̆ directions mentioned
in the expressions are ŭ and v̆ , the fluid density is denoted
by ρ, the velocity of external flow is ŭe(x), ρnf indicates the
nanofluid density, µnf is the nanofluid dynamic viscosity, j0
stands for the applied current density within the electrodes, M0

is the magnetization of the permanent magnets, b indicates the
width of the magnets and electrode, the constant temperature of
the Riga plate is denoted by Tw where Tw > 0, K is the thermal
conductivity, cp represents the specific heat, µ is the dynamic
viscosity, and T is the nanofluid temperature. The boundary
temperature distribution is T0(x), and (ρcp)nf is the nanofluid
heat capacity. The nanofluid effective density is αnf . The radiative
heat flux qr is defined as

qr = −
4σ ∗

3k1

∂T4

∂ y̆
, (5)

where σ ∗ is the Stefan-Boltzmann constant and k1 is the mean
absorption coefficient. Through Taylor’s series, we have T4 ∼=

4T3
eT − 3T4

e , where Te is the ambient temperature, and then
energy equation now reduces to the following expression:

(ρcp)nf

(

ŭ
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+ v̆

∂T

∂ y̆

)

=

(

16σ ∗T3
∞
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+ K

)
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+ µ

(
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.

(6)
Moreover, the mathematical properties of CNTs are
demonstrated by the following Equation (19–22)

αnf =
knf

(ρcp)nf
, µnf =

µf

(1− φ)2.5
, v̆nf =

µnf

ρnf
,

knf

kf
=

2φ k̆CNT
kCNT −kf

ln
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kCNT −kf
ln

k̆CNT+k̆f
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,

ρnf = ρf (1− φ)+ ρs(cp)CNT φ , (7)

where k̆f is the fluid thermal conductivity, knf is the nanofluid
thermal conductivity, the nanofluid solid volume fraction is φ,

and µf is the fluid dynamic viscosity.
µ̂nf

µ̂f

∂u
∂y

∣

∣

∣

y=0
=

∂T
∂x

∣

∣

∣

y=0

denotes Marangoni condition at the interface. The linear relation
of surface tension σ is given as:

σ = σ0 [1− γ1 (T − Te)] , (8)

where γ1 = −
1
σ0

∂σ
∂T > 0 represents the surface tension

temperature coefficient, and σ0 represents surface tension. The
directions of the driving forces depend on the orientation of the
temperature gradients in nanoliquids ∇T.
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The similarity transformation is introduced:

u
(

x, y
)

= u0x
(2r−1)/3f ′ (η) ,

v
(

x, y
)

=
1

3
u0l0x

(r−2)/3
[

(2− r) ηf ′ (η) − (1+ r) f (η)
]

,

T
(

x, y
)

= Te − h0x
rθ (η) , η = x(r−2)/3 y

l0
, (9)

where h0, u0, and l0 represent constants. The values of u0 and l0
take the following form when h0 = 1:

u0 =

(

3

1+ r

)1/3

r2/3, l0 =

(

3

1+ r

)1/3

r−1/3, (10)

after the above-mentioned transformations, Equations (1)–(6)
take the following form:

1

(1− φ)2.5(1− φ +
ρ
CNT
ρf

φ)
f ′′′ + ff ′′

− (
2r − 1

1+ r
)[(f ′)2 − 1]

+
3

1+ r
λθ(η)+

3

1+ r
Q Exp[−cη] = 0, (11)

(

1+
4

3
R

)

knf
kf

[(1− φ)+
(ρcp)CNT
(ρcp)f

φ]
θ ′′

−
3

1+ r
Pr

[

rf ′θ −
1+ r

3
f θ ′

]

− Pr Ec (f
′′

)2 = 0,

(12)

in which

Q =
πM0J0x̆

8ρnf ŭ2e
, R =

4σ 3T3
∞

3knf k∗
, Pr =

cpµ

k
, Ec =

ŭ2e x̆
1
3 (r−2)

ρ c2ph0
,

(13)
where Q denotes the modified Hartmann number, R represents
the radiation parameter, Pr indicates the Prandtl number, and Ec
symbolizes the Eckert number.

3. SOLUTION METHODOLOGY

To find the series solution of the underlying problem, the
Homotopy Analysis Method is adopted. Therefore, the auxiliary

linear operators (If , Iθ ) and the initial guess (
(

f̆0, θ̆0

)

) may be

defined as:

f̆0(η) = η + (1− φ)2.5(1− e−η), θ̆0(η) = e−η, (14)

Iθ (θ̆) =
d2θ̆

dη2
− θ̆ , If (f̆ ) =

d3 f̆

dη3
−

df̆

dη
, (15)

If [K1 + K2Exp(η)+ K3Exp(−η)] = 0,

Iθ [K4Exp(η)+ K5Exp(−η)] = 0, (16)

where Kh (h = 1− 5) are arbitrary constants.

The zeroth-order problem design is

(1− p̆)If [f̆ (η , p̆)− f̆0(η)] = p̆h̄fMf

[

f̆ (η , p̆)
]

, (17)

∂ f̆ (η ; p̆)

∂η

∣

∣

∣

∣

∣

η = 0

= 0,
1

(1− φ)2.5
∂2 f̆ (η ; p̆)

∂η2

∣

∣

∣

∣

∣

η = 0

= −1,

∂ f̆ (η ; p̆)

∂η

∣

∣

∣

∣

∣

η →∞

= 1, (18)

(1− p̆)Iθ [θ̆(η , p̆)− θ̆0(η)] = p̆h̄θMθ

[

θ̆(η , p̆), f̆ (η , p̆)
]

, (19)

θ̆(η ; p̆)
∣

∣

∣

η = 0
= 1, θ̆(η ; p̆)

∣

∣

∣

η →∞

= 0, (20)

The non-linear operators are

Mf

[

f̆ (η ; p̆)
]

=
1

(1− φ)2.5[1− φ +
(ρ̃cp)CNT
(ρ̃cp)f

φ]

∂3 f̆ (η , p̆)

∂η3

+ f̆ (η , p̆)
∂2 f̆ (η , p̆)

∂η2
−

2r − 1

1+ r

(

∂ f̆ (η , p̆)

∂η

)2

+
2r − 1

1+ r
+

3

1+ r
λθ(η)+

3

1+ r
Q Exp[−cη ], (21)

Mθ

[

f̆ (η ; p̆), θ̆(η ; p̆)
]

=

(

1+
4

3
Rd

)

knf
kf

[1− φ +
(ρ̃cp)CNT
(ρ̃cp)f

φ]

∂2θ̆(η , p̆)

∂η2

−
3

1+ r
Pr

[

r
∂ f̆ (η , p̆)

∂η
θ̆(η , p̆)

]

−
3

1+ r
Pr

[

−
1+ r

3
f̆ (η , p̆)

∂θ̃(η , p̆)

∂η

]

−Pr Ec

(

∂2 f̆ (η , p̆)

∂η2

)2

, (22)

where, 0 ≤ p̆ ≤ 1 and h̄f and h̄θ designate zero free
auxiliary parameters.

Themth-order deformation problem is

If

[

f̆m (η) − χ̆m f̆ (η)

]

= h̄fP
f̆
m (η) , (23)

∂2 f̆m(η , p̆)

∂η2

∣

∣

∣

∣

∣

η = 0

= 0,
∂ f̆m(η , p̆)

∂η

∣

∣

∣

∣

∣

η →∞

= 0,

f̆m(η ; p̆)
∣

∣

∣

η = 0
= 0, (24)

Iθ

[

θ̆m (η) − χ̆mθ̆m−1 (η)

]

= h̄θP
θ̆
m (η) , (25)

θ̆m(η ; p̆)
∣

∣

∣

η = 0
= 0, θ̆m(η ; p̆)

∣

∣

∣

η→∞

= 0, (26)
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P
f̆
m (η) =

1

(1− φ)2.5[1− φ +
ρ
CNT
ρf

φ]
f ′′′m−1 (η)

−

m−1
∑

k=0

fm−1−kf
′′

k −
2r − 1

1+ r

[

m−1
∑

k=0

fk f
′

m−1−k − (1− χm)

]

+
3

1+ r
λθm−1(η)+

3

1+ r
Q Exp[−cη], (27)

P
θ̆
m (η) =

(

1+
4

3
Rd

)

k̃nf
kf

[1− φ +
(ρcp)CNT
(ρcp)f

φ]
θ ′′m−1(η)

−
3

1+ r
Pr

m−1
∑

k=0

[

rf ′kθm−1−k −
1+ r

3
fm−1−kθ

′

k

]

−PrEc

m−1
∑

k=0

f ′m−1−kf
′

k, (28)

where

χ̆m =

{

0,m ≤ 1
1,m > 1

. (29)

For p̆ = 0 and p̆ = 1, we have

f̆ (η , 0) = f̆0(η), f̆ (η , 1) = f̆ (η), (30)

θ̆(η , 0) = θ̆0(η), θ̆(η , 1) = θ̆(η). (31)

The solutions f̆ (η; p̆) and θ̆(η; p̆) vary from the primary solutions

f̆0(η) and θ̆0(η) to the final solutions f̆ (η) and θ̆(η), respectively,
where p̆ differs from 0 to 1. The Taylor series expansion follows:

f̆ (η , p̆) = f̆0(η)+

∞
∑

m=1

f̆m(η)p̆
m, f̆m (η) =

1

m!

∂m f̆m(η , p̆)

∂ p̆m

∣

∣

∣

∣

∣

p̆=0

,

(32)

θ̆(η , p̆) = θ̆0(η)+

∞
∑

m=1

θm(η)p̆
m, θ̆m (η) =

1

m!

∂mθ̆(η , p̆)

∂ p̆m

∣

∣

∣

∣

∣

p̆=0

.

(33)

The above series solutions converge if the auxiliary parameters
are properly nominated. Therefore,

f̆ (η) = f̆0(η)+

∞
∑

m=1

f̆m(η), (34)

θ̆(η) = θ̆0(η)+

∞
∑

m=1

θ̆m(η), (35)

The general solutions
(

f̆m, θ̆m

)

via special solutions
(

f×m , θ×m
)

are

f̆m(η) = f×m (η)+ K1 + K2Exp(η)+ K3Exp(−η), (36)

θ̆m(η) = θ×m (η)+ K4Exp(η)+ K5Exp(−η), (37)

where Kh (h = 1− 5) are the elaborated constants.

4. CONVERGENCE OF SERIES SOLUTIONS

The convergence phenomenon of HAM solution is dependent
on auxiliary parameters ℏf and ℏθ , which control and adjust the
convergence of the derived series solution. Therefore, ℏ− curves
are portrayed in Figures 2A,B for different values of the physical
parameters in terms of SWCNT and MWCNT. The suitable
values of these parameters ℏf and ℏθ are −0.78 ≤ ℏf < −0.19,
−0.19 ≤ ℏθ < −0.03 for SWCNT and −0.66 ≤ ℏf < −0.1,
−0.22 ≤ ℏθ < −0.01 for MWCNT.

5. DISCUSSION

The major contribution of this section is to explore the physical
influence of different dimensionless parameters on the velocity
and temperature profiles. A physical sketch of the problem
is given in Figure 1. The graphs in Figures 3–11 depict the
results of the comprehensive analysis. We divide this section
into three subsections for simplicity and clarity. In the first
subsection, exploration is made of the physical impact of various
parameters on the velocity profile. A discussion of the effects of
the same parameters along with the radiation parameter on the
temperature profile is given in the next subsection. The third
subsection is based on the performance of the Nusselt number
under the influence of different parameters.

The impact of fluid parameter r on the velocity profile is
illustrated in Figure 3 for both SWCNT and MWCNT. The
velocity distribution is noted to decrease with the intensification
of parameter r. Further, the velocity profile is seen to be higher
in the case of MWCNT with a base fluid of water. Figure 4
is plotted to indicate the effect of the nanofluid solid volume
fraction φ for both SWCNT and MWCNT. It is shown that
the velocity distribution increases with the enhancement of the
nanofluid volume fraction. In addition, a stronger response is
seen with MWCNT than with SWCNT. This is due to the low
density of MWCNT. Figures 5, 6 display the effects of variation
in the convection parameter λ on the velocity profile in both
opposing (λ < 0) and assisting (λ > 0) flows. Under these
circumstances, the velocity profile and the momentum boundary
layer thickness exhibit increasing behavior with the buoyancy

FIGURE 1 | Physical model of the problem.
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FIGURE 2 | (A) ℏ−curve for f
′′′

(0). (B) ℏ−curve for θ
′

(0).

FIGURE 3 | Significance of r on f
′

(η).

FIGURE 4 | Significance of φ on f
′

(η).

parameter for both SWCNT and MWCNT. Basically, the mixed
convection may be defined as the ratio of buoyancy forces to
inertial forces. The reason behind enhancement in the velocity
of the fluid is the buoyancy force, which influences the inertial
force, increasing the value of the mixed convection parameter.
Moreover, MWCNT shows an increasing trend throughout the

FIGURE 5 | Significance of λ on f
′

(η).

FIGURE 6 | Significance of λ on f
′

(η).

field in comparison to SWCNT. The effect of the Hartmann
number Q on the velocity profile is shown in Figure 7 for
both SWCNT and MWCNT. Physically, an increase in the
modified Hartmann number increases the velocity field. The
structure of the Hartmann number is the ratio of electromagnetic
force to viscous force. Since the increasing phenomenon of the
velocity profile is dependent on an increase in Q, this indicates
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development in the Lorentz force, which is generated by the
presence of a magnetic field in the flow field and acts against the
flow if the magnetic field is applied in the normal direction. The
significance of the modified Hartmann number Q is exhibited
in Figure 8 for both SWCNT and MWCNT. An increment
in the Hartmann number correlates with a reduction in the
temperature distribution.

FIGURE 7 | Significance of Q on f
′

(η).

FIGURE 8 | Significance of Q on θ (η).

FIGURE 9 | Significance of R on θ (η).

The effect of variation of radiative parameter R on
temperature profile θ(η) is plotted in Figure 9 for both MWCNT
and SWCNT. The behavior inferred from this figure is that there
is an enhancement in temperature distribution and in the related
boundary layer thickness due to the increment in R. Hence, the
temperature profile is an increasing function of the radiative
parameter. Hence, the enhancement in the temperature profile
due to an increase in the radiative parameter causes a reduction
in the absorption coefficient. Further, SWCNT shows a stronger
response compared with MWCNT.

The physical effect of fluid parameter r on the velocity field
is depicted in Figure 10 for both SWCNT and MWCNT. The
velocity profile is noted to increase with escalation in parameter

FIGURE 10 | Significance of r on θ (η).

FIGURE 11 | Significance of φ on θ (η).

TABLE 1 | Thermophysical characteristics of base fluid and nanoparticles

(SWCNT and MWCNT).

Physical properties Base fluid Nanoparticle

Water SWCNT MWCNT

ρ
(

kg/m3
)

997 2, 600 1, 600

cp (J/kgK) 4, 179 425 796

k (W/mK) 0.613 6, 600 3, 000
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TABLE 2 | Convergence of homotopy solutions when α = 0.01, β = 0.1,

γ = 0.1, δ = 0.3, M = 0.1, Re = 2, Pr = 6.2, Ec = 0.1, and ℏf = ℏθ = −0.7.

Order of approximation −f ′′′ (0) −θ ′(1)

SWCNT MWCNT SWCNT MWCNT

1 0.6233 0.6377 0.8953 0.8222

2 1.5232 1.5591 0.9254 0.8660

5 1.6222 1.6602 0.9465 0.8824

10 1.7655 2.5195 1.5623 0.9520

15 1.7863 2.5195 1.5832 1.0323

20 2.5462 2.5195 1.6322 1.0323

27 2.5462 2.5195 1.6322 1.0323

30 2.5462 2.5195 1.6322 1.0323

40 2.5462 2.5195 1.6322 1.0323

TABLE 3 | Numerical values of the Nusselt number for both SWCNT and MWCNT

at different values of other parameters.

r λ Q φ R γ RexNu

SWCNT MWCNT

0.1 0.2 0.5 0.5 0.5 0.3 3.0955 5.2872

0.2 2.8231 3.7121

0.3 1.8597 2.2123

0.2 0.0 0.5 0.5 0.5 0.3 2.5732 2.3426

0.1 1.4831 1.3842

0.2 1.1492 0.9625

0.3 0.4 0.0 0.5 0.5 0.3 0.4428 0.5424

0.2 1.4074 1.5421

0.4 1.5945 1.6442

0.2 0.2 0.2 0.1 0.5 0.3 5.1262 4.2354

0.2 3.5624 3.3298

0.3 2.5121 2.2133

0.1 0.2 0.2 0.5 0.0 0.3 3.8691 2.9894

0.2 5.4701 4.3278

0.5 6.0772 5.9985

0.1 0.2 0.2 0.5 0.5 0.0 1.8691 2.3287

0.1 2.1682 2.8652

0.2 3.6253 3.7536

r. Figure 11 depicts the influence of the nanofluid solid volume
fraction φ for both SWCNT and MWCNT. It is observed that
with the augmentation of the nanofluid volume fraction, the
velocity profile shows a reduction.

Table 1 presents the thermophysical properties (density,
specific heat, and thermal conductivity) of the base fluid
(water) and carbon nanotubes (SWCNT and MWCNT). Table 2
shows that the series solutions are convergent up to four
decimal places for the velocity profile at the 10th order
of approximation for MWCNT and at the 20th order of
approximation for SWCNT. Similarly, for the case of the
temperature field, the 20th order of approximation for SWCNT
and 15th order of approximation for MWCNT were observed

for convergence. Further, Table 3 displays the behavior of
the local Nusselt number for different values of physical
parameters such as fluid parameter r, convection parameter λ,
Hartman number Q, volume fraction φ, radiative parameter
R , and parameter γ . The desired results were observed
for both SWCNT and MWCNT. It is concluded that the
Nusselt number shows decreasing behavior for larger values
of r, λ, and φ in the cases of both SWCNT and MWCNT.
On the other hand, the Nusselt number shows stronger
behavior for larger values of Q, R , and γ for both
SWCNT and MWCNT.

6. FINAL OBSERVATION

The key points are as follows:

• Increment in the velocity profile is based on increases in
the modified Hartmann number, buoyancy-assisting flow
parameter, and solid volume fraction.

• The velocity profile for water-based MWCNT is higher than
that for SWCNT for all of the discussed fluid parameters.

• Enhancement in parameter r results in a reduction in the
velocity distribution.

• Augmentation in the temperature field is based on increment
in the radiative parameter, whereas the Hartmann number,
buoyancy-assisting flow parameter, and solid volume fraction
have the opposite effect on the temperature profile to the
radiative parameter.

• SWCNT shows excellent agreement with the temperature
distribution than MWCNT for all proposed fluid parameters.

• For larger values of Q, R , and γ , the local Nusselt number
increases for both SWCNT and MWCNT.

• The Nusselt number illustrates decreasing behavior for larger
values of r, λ, and φ in the cases of SWCNT and MWCNT.
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NOMENCLATURE

ŭe External flow velocity

(h0, u0, l0) constants

b Width of magnets and electrode

µnf Nanofluid dynamic viscosity

j0 Applied current density within electrodes

(cp)nf Nanofluid heat capacity

ρnf Nanofluid density

αnf Nanofluid effective density

T0 Temperature at boundary

Te Temperature of external fluid

Tw Temperature of fluid at Riga plate

Ŵ Buoyancy force parameter

β Nanoparticle thermal parameter

qr Radiative heat flux

k̆f Fluid thermal conductivity

knf Nanofluid thermal conductivity

ρnf Nanofluid density

ρ
CNT

Carbon nanotube density

φ Nanofluid solid volume fraction

λ Convective parameter

Q Modified Hartman number

R Radiation parameter

Pr Prandtl number

Ec Eckert number

M0 Magnetic parameter
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This study considers sodium-alginate (C6H9NaO7) fluid over an accelerated vertical

plate. The plate is heated from the bottom. A non-Newtonian model of C6H9NaO7 is

considered. The convection term in the momentum equations is also considered. The

dimensionless form of the problem is constructed based on dimensionless variables. The

integral transformation of Laplace is used to develop the exact solution to the problem.

Explicit expressions are obtained for the velocity field and temperature distribution. The

corresponding skin-friction and Nusselt number results are computed based on this.

Equations for entropy generation (EG) and Bejan number (BN) are developed. The results

are plotted and discussed for embedded parameters. Most significantly, the results for

EG and BN are computed and discussed.

Keywords: heat transfer, entropy generation, Casson fluid, exact solutions, integral transform

INTRODUCTION

Entropy generation (EG) is a tool that helps to assess improved results, enhance achievements, and
reduce the loss of energy in thermal engineering systems (TES) [1]. Recently, this technique has
been applied to TES operating with nanofluids [2]. The EGmethod is used to develop performance
standards for thermal engineering equipment. In the literature, Bejan is considered to be the first
to point out the various factors behind EG [3, 4] in TES. Bejan [5] introduced the EG number,
referred to as the Bejan number, which is the ratio of EG due to heat transfer to the total EG of
the system. Moreover, he indicated the conditions of the second law of thermodynamics related
to the convection problems of nanofluids. Selimefendigil et al. [6] demonstrated the magnetic-
resistive convection flow of nanofluids (CuO-water and Al2O3-water) in a restricted trapezoidal
cavity. Quing et al. [7] investigated EG in radiative flow of Casson nanofluids over permeable
stretchable sheets. A detailed review of EG in nanofluid flow was presented by Mahian et al. [8],
who collected and critically discussed recent studies with a wide range of applications. The study
organized different aspects of heat-transfer problems and EG in the current state of the art, making
suggestions for useful future directions.

Darbari et al. used the response surface method (RSM) to conduct a numerical sensitivity
analysis of the effect of nanoparticles (Al2O3) in water-based nanofluids on EG [9]. The results
indicated that the total EG comprised EG due to friction and due to heat conduction. The sensitivity
analysis of EG highlighted the influence of the Reynolds number, particle size, and solid-volume
fraction. Ellahi et al. [10] mathematically analyzed EG in natural-convection boundary-layer flow
of nanofluids near an inverted cone. It was found that EG was produced because of nanoparticles.
Sheikholislami et al. [11] revealed that the EG and heat-transfer rate were enhanced by volume
friction and Rayleigh number during the flow of various types of nanofluids in a cavity containing

100
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square-shell rectangular heated objects. Saqib et al. [12]
developed a Caputo-type fractional model for the mixed-
convection flow of different types of nanofluids. The exact
analytical results for velocity, temperature, EG, and Bejan
number were obtained via the Laplace-transform technique
and presented in figures and tables with physical explanations.
Khan et al. [13] described the EG in unsteady magnetic fluid
dynamics (MHD) flow through porous media, combining the
effects of mass and heat transfer. The effects of several factors
on EG, Bejan number, and velocity distribution were reported in
numerous figures. Bhatti et al. [14] analyzed the EG of Eyeling-
Powell nanofluids through a permeable stretchable surface.
The effects of magnetohydrodynamics (MHD) and non-linear
thermal radiation were also considered. Li et al. [15] considered
EG in forced-convection flow of Al2O3-water nanofluids. They
reported the impact of Reynolds number (Re), height ratio, and
pitch ratio on EG.

Khan et al. [16] obtained an exact solution for the problem
of convection-MHD flow of sodium-alginate-based Casson-
type nanofluids with the effects of MHD and Newtonian
heating. Haq et al. [17] used an exact analysis and developed
an exact solution for the free-convection problem of viscous
fluid, which depends strongly on time and the slippage
condition. Khan et al. [18] generated exact solutions for a
rotating viscous fluid such that the fluid exhibits eccentric-
concentric rotation. Ahmed and Khan [19] examined the
mixed-convection flow of SA-NaAlg nanofluids such that the
base fluid is taken as MoS2. Khater et al. [20, 21] studied
two different problems using the magnetohydrodynamics effect
with a Hall current. In this problem, the analysis of entropy
generation is considered for Casson fluid over an accelerated
plate. The problem in dimensionless form is solved by using
the Laplace transform technique, and the results are plotted
and discussed.

DESCRIPTION OF THE PROBLEM

Consider the unsteady, incompressible mixed-convection flow of
a Casson fluid near an infinite vertical plate. It is assumed that, at
τ ≤ 0, the system is at rest at a temperature of θ∞. At τ = 0+,
the plate starts moving with a variable velocity of v (0, τ) = Aτ ,
and the temperature of the plate increases from θ (η, 0) = θ∞
to θ (0, τ) = θw. At this stage, mixed convection occurs owing to
the change in temperature and the motion of the plate. The initial
fluid motion is in the vertical direction and is governed by the
following partial differential equations (momentum and energy
equations) [16, 19].

ρ
∂v (η, τ)

∂τ
= µ

(

1+
1

β

)

∂2v

∂η2
+ ρgβθ

(

θ(η, τ )− θ∞
)

, (1)

ρcp
∂θ(η, τ )

∂τ
= k

∂2θ(η, τ )

∂η2
, (2)

These are associated with the following physical initial and
boundary conditions.

V (η, 0) = 0, θ (η, 0) = θ∞
v (0, τ) = Aτ , v (∞, τ) = 0
θ (0, τ) = θw, θ (∞, τ) = θ∞







, (3)

where ρ is the density, v (η, τ) the x-component of the velocity
vector, µ the dynamic viscosity, g the gravitational acceleration,
βθ the volumetric thermal expansion, θ(η, τ ) the x-component of
the temperature vector, cp the heat capacitance, and k the thermal
conductivity of the fluid. To remove the units, the following
dimensionless variables are introduced into Equations (1)–(3).

v∗ =
v

(vA)
1
3

, η∗ =
ηA

1
3

ν
2
3

, τ ∗ =
τA

2
3

ν
1
3

, θ∗(η, τ ) =
θ − θ∞

θw − θ∞
,

This yields the following form.

∂v

∂τ
=

(

1+
1

β

)

∂2v

∂η2
+ Grθ , (4)

Pr
∂θ

∂τ
=

∂2θ

∂η2
, (5)

V (η, 0) = 0, v (0, τ) = τ , v (∞, τ) = 0
θ (0, τ) = 1, θ (∞, τ) = 0, θ (η, 0) = 0

}

, (6)

where Gr =
gβθ1θ

A ,Pr =
µcp
k
.

Entropy Generation
The following entropy-generation relation is developed to
optimize the heat transfer and minimize the energy loss in the
system defined in Equations (4)–(6) [3–5, 12, 13].

sgen =
k

θ2
∞

(

∂θ

∂η

)2

+
µ

θ∞

(

1+
1

β

)(

∂v

∂η

)2

. (7)

Using the non-similarity variable, ∂θ/∂η = 1θA
1
3 ν−

2
3 ∂θ∗/∂η∗

and ∂v/∂η = A
2
3 ν−

1
3 ∂v∗/∂η∗ are derived and incorporated into

Equation (7), which yields

Ns =

(

∂θ

∂η

)2

+
Br

�

(

1+
1

β

)(

∂v

∂η

)2

, (8)

where

Ns =
sgenν

4
3 θ2∞

kA2/3(1θ)2
, Br =

µA
2
3 ν

2
3

k1θ
, � =

1θ

θ∞
=

θw − θ∞

θ∞
.

Bejan Number
Bejan is generally considered in the literature to be the
first person to point out various factors for optimizing
the performance of thermal systems. He developed Bejan’s
number, which is the ratio of heat-transfer entropy production
to total entropy production, and proposed aspects of the
second law of thermodynamics that consider various problems
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associated with mixed convection. The Bejan number is
given by

Be =

k

θ2
∞

(

∂θ

∂η

)2

k

θ2
∞

(

∂θ

∂η

)2

+
µ

θ∞

(

1+
1

β

)(

∂v

∂η

)2
(9)

and

Be =

(

∂θ

∂η

)2

(

∂θ

∂η

)2

+
Br

�

(

1+
1

β

)(

∂v

∂η

)2
. (10)

EXACT SOLUTIONS

In the literature, mixed-convection problems are handled using
numerical or approximate methods, and exact solutions are
limited. Here, the exact solutions are obtained using the Laplace
transform method. Applying the Laplace transform to Equations
(4)–(6) gives

qv
(

η, q
)

=

(

1+
1

β

)

∂2v(η, q)

∂η2
+ Grθ(η, q) (11)

v
(

0, q
)

=
1

q2
, v

(

∞, q
)

= 0 (12)

Pr qθ
(

η, q
)

=
∂2θ(η, q)

∂η2
(13)

θ
(

0, q
)

=
1

q
, θ

(

∞, q
)

= 0 (14)

The second-order partial differential Equation (13) is solved
using the transform boundary conditions (14) as follows.

θ
(

η, q
)

=
e−η

√
Pr q

q
(15)

Inverting the Laplace transform yields

θ (η, τ) = erfc

(

η
√
Pr

2
√

τ

)

(16)

Similarly, the solution of Equation (11) using Equations (12) and
(15) is given by

v
(

η, q
)

=
a1

q2
e−η

√
γ q

+
a0

q2
e−η

√
Pr q (17)

where

(

1+
1

β

)

=
1

γ
, a0 =

Grγ

γ − Pr
, a1 = 1− a0.

With the inverse Laplace transform,

v(η, τ ) = a1







(

1

2
η2γ + τ

)

erfc

(

η
√

γ

2
√

τ

)

− η

√

τγ

π
e

η2γ

4τ







+a0







(

1

2
η2 Pr+τ

)

erfc

(

η
√
Pr

2
√

τ

)

− η

√

τ Pr

π
e

η2 Pr

4τ






.

(18)

Special Case:Note that Equation (18) is reduced to the following
form for Newtonian fluid ( 1

β
→0):

v(η, τ ) = (1−
Gr

1− Pr
)







(

1

2
η2 + τ

)

erfc

(

η

2
√

τ

)

− η

√

τ

π
e

η2

4τ







+
Gr

1− Pr







(

1

2
η2 Pr+τ

)

erfc

(

η
√
Pr

2
√

τ

)

− η

√

τ Pr

π
e

η2 Pr

4τ






.

(19)

FIGURE 1 | Velocity plot for τ.

FIGURE 2 | Velocity plot for Gr.
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Skin Friction
In the dimensionless form, skin friction is defined as

cf =

(

1+
1

β

)

∂v(η, τ )

∂η

∣

∣

∣

∣

η=0

(20)

Nusselt Number
The heat-transfer rate in the dimensionless form is given by

Nu =
∂θ(η, τ )

∂η

∣

∣

∣

∣

η=0

(21)

FIGURE 3 | Velocity plot for β.

FIGURE 4 | Temperature plot for τ.

RESULTS AND DISCUSSION

In this paper, we conducted an entropy generation (EG) analysis
for accelerated flow of non-Newtonian fluid. EG, also known as
the second law of thermodynamics, is quite useful in heat transfer
problems such as in analyzing heat exchangers. This section
highlights the influence of different parameters on velocity,
temperature, entropy generation, and Bejan number. Since, in
this work, sodium-alginate is taken as a counter-example of a
Casson fluid, the Prandtl number (Pr) value is taken as 13.09

FIGURE 5 | Entropy generation plot for τ.

FIGURE 6 | Entropy generation plot for �.
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in all of these figures. This value of Pr is computed from Pr =

µcp/k, µ = 0.002; k = 0.6376; cp = 4175.
Figure 1 shows the effects of time τ on velocity. It is found

that an increase in time results in an increase in the velocity
profile. Physically, the fluid is considered to be unsteady, and
thus velocity increases with time. Figure 2 highlights the effect
of Gr: the velocity profile increases with increasing Gr Value.
The increase in Gr enhances the buoyancy force, causing the
velocity to increase. The physical interpretation indicates that
positive values of Gr show heating of the fluid or cooling of
the boundary surface. The effect of the Casson parameter, β ,
is highlighted in Figure 3; a dual effect is generated. Initially,

FIGURE 7 | Entropy generation plot for Gr.

FIGURE 8 | Entropy generation plot for β.

near the plate, the velocity is found to increase, and then away
from the plate, it decreases for large values of β . This is because
an increase in β reduces the boundary-layer thickness. Figure 4
shows the influence of time τ on the temperature profile, where
the maximum values of time τ lead to an increase in temperature.

The impact of EG (Ns) for dissimilar values of τ is highlighted
in Figure 5. An increase in time τ leads to an increase in EG.
Figure 6 presents the EG values for different values of �. �

is defined as the temperature difference, and an increase in
temperature difference decreases entropy generation. Figure 7
presents the influence of unlike values ofGr on EG. The buoyancy
forces increase with increasing Gr values, which results in an

FIGURE 9 | Entropy generation plot for Br.

FIGURE 10 | Bejan number plot for t.
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increase in entropy generation. In addition, an increase in Gr
could save energy in the system.

The effect of β is shown in Figure 8; it is significant
to note that the thickness of the velocity boundary layer
decreases with increasing Casson parameter value, and hence
EG increases. Furthermore, at high values of β , i.e., β →

∞, Newtonian fluid behavior is observed. The decrease in
the Casson parameter leads to an increase in fluid plasticity.
The influence of Brickman’s number, Br, is investigated in
Figure 9. A large value of Brickman’s number produces
a high amount of heat via viscous dissipation and vice
versa. Therefore, high values of Brickman’s number increase
entropy generation.

FIGURE 11 | Bejan number plot for �.

FIGURE 12 | Bejan number plot for Gr.

The influence of time parameter τ on Bejan number variation
is highlighted in Figure 10. The influence of time τ leads to
a decrease in Bejan number. Figure 11 shows the effect of the
temperature difference, �, on the Bejan number; the maximum
value of � corresponds with an increase in the Bejan number.
Figure 12 highlights the change in Bejan number with respect
to Gr. It is detected that a greater Gr value decreases the Bejan
number. This is because heat-transfer reunification becomes
dominant in the region near the plate with increasing Gr value.
In Figure 13, the Bejan number can be seen to decrease with
increasing Casson parameter β . The Bejan number variation for
different Br values is reported in Figure 14. Larger values of Br
are associated with decreasing Bejan number.

FIGURE 13 | Bejan number plot for β.

FIGURE 14 | Bejan number plot for Br.
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TABLE 1 | Effect of variation of different variables on Cf.

t β Gr Pr Cf

1 0.1 5 0.6 1.5

2 1.811

3 2.05

0.3 2.147

0.5 2.219

7 3.598

9 5.695

0.7 1.215

0.8 0.975

TABLE 2 | Effect of variation of different variables on Nu.

τ Pr Nu

1 0.6 0.219

2 0.077

3 0.042

1.2 0.309

2.2 0.418

Table 1 examines the effect of different factors on skin friction.
It is observed that the skin friction increases with increasing
τ , β , and Gr values. Table 2 highlights the effect of the variation
in τ and Pr on Nusselt number. The Nusselt number decreases
up to the maximum value of τ and increases for the maximum
value of Pr.

CONCLUDING REMARKS

An exact analysis of entropy generation in sodium-alginate
fluid over an accelerated heated plate is conducted via Laplace-
transform methods. The Bejan number Be and local entropy
generation Ns are discussed for various parameters. The effects
are displayed for different embedded parameters. The main
conclusions are:

• For maximum entropy generation Ns, we need to maximize
the t, Gr, β , and Br values. In contrast, for minimum values,
we need to minimize the Pr and � values.

• For the maximum Bejan number, Be, we need to maximize the
Pr and � values. In contrast, for minimum values, we need to
minimize the t, Gr, β , and Br values.

• The Casson parameter, β , exhibits dual effects.
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NOMENCLATURE

u -Velocity of the fluid, [ms−1]

θ -Temperature of the fluid, [K]

g -Acceleration due to gravity, [ms−2]

cp -Specific heat at a constant pressure, [jkg−1K−1]

Gr -Thermal Grasshof number, (= βTw )

k -Thermal conductivity of the fluid, [Wm−2K−1]

Nu -Nusselt number, [−]

Pr -Prandtl number, (= µcp/k)

θ∞ -Fluid temperature far away from the plate, [K]

q -Laplace transforms parameter

A -Arbitrary constant [ms−2]

GREEK SYMBOLS

ν -Kinematic viscosity of the fluid, [m2s−1]

µ -Dynamic viscosity, [kgm−1s−1]

ρ -Fluid density, [kgms−3]

βθ -Volumetric coefficient of thermal expansion,[K−1]

β -Casson fluid parameter

Bγ -Brinkman number

� -Dimensionless temperature function
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In the present article, we have presented a theoretical study on the swimming of

migratory gyrotactic microorganisms in a non-Newtonian blood-based nanofluid via an

anisotropically narrowing artery. Sutterby fluid model is used in order to understand

the rheology of the blood as a non-Newtonian fluid model. This fluid pattern has the

ability to show Newtonian and non-Newtonian features. The mathematical formulation

is performed via continuity, temperature, motile microorganism, momentum, and

concentration equation. The series solutions are obtained using the perturbation scheme

up to the third-order approximation. The resulting solutions are discussed with the

help of graphs for all the leading parameters. The graphical results are also presented

for non-tapered, diverging, and converging artery. We further discuss the velocity,

temperature, swimming microorganism and temperature distribution. Moreover, the

variation of impedance and the impact of wall shear stress are discussed and presented

through the graphs.

Keywords: Sutterby fluid, wall shear stress, motile microorganism, anisotropically tapered artery, nanoparticles,

perturbation solutions

INTRODUCTION

Throughout the previous decade, nanofluids have gained essential importance due to their
extensive fields of applications especially in the biomedical sciences. Different theoretical and
experimental studies have been presented based on the formulation of nanofluids [1–4]. Nanofluids
are beneficial in improving the thermo-physical features i.e., thermal diffusivity, convection,
and conductivity of the governing fluid. In biomedical science, nanofluids are helpful for the
bacteriostatic activity, nano-drug delivery, labeling of cancerous tissues, magnetic resonance
imaging (MRI), localized therapy, cancer therapeutics, production of ferrofluids and magnetic
resonance imaging, etc. Further, they are also beneficial in nano-cryosurgery. Ferrofluids can be
utilized as contrast agents for MRI and are helpful in cancer detection. In this case, the ferrofluids
are made up of iron oxide nanoparticles and are recognized as superparamagnetic iron oxide
nanoparticles (SPIONs). Recently, the localized delivery of cancer medicine to the cancer patient

109
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at the affected part. With the help of the heat transfer
process, it can also be used for detergency. Because of these
significant applications, different authors examined the behavior
of nanofluids in different situations. Bég and Tripathi [5]
presented a Mathematica simulation of the bioengineering
model with the help of peristaltic configuration and nanofluids.
Tripathi and Bég [6] analyzed the drug delivery systems
using a peristaltic flow of nanofluids and presented the exact
mathematical solutions. Kothandapani and Prakash [7] explored
the behavior of a heat source on an MHD non-Newtonian
hyperbolic tangent nanofluid model in an asymmetric tapered
conduit. El-Dabe et al. [8] discussed the influence of slip in mild
stenosis tapered artery using peristaltic simulation. Akbar [9]
addressed the blood flow with thermal conductivity in a non-
tapered stenosis artery filled with blood. She further discussed
the shape properties of the nanoparticles. Abbas et al. [10]
presented a blood flow model using nanofluids and explained
the applications of drug delivery and magnetic field phenomena.
Akbar [11] studied the metal-based nanomaterials suspended in
the blood propagating via a tapered stenotic artery and explained
the applications of Nanomedicines. Bhatti et al. [12] discussed
the heat transfer properties and the applications of the blood
clot model with variable viscosity. They considered the two-
phase model with peristalsis. Bhatti et al. [13] also discussed
the behavior of titanium magneto-nanoparticles suspended in
Sisko fluid. Some more essential studies on the blood flow and
nanofluids can be found from Shit et al. [14], Riaz et al. [15],
Ijaz and Nadeem [16], and Abdelsalam and Bhatti [17] and in the
references therein.

The macroscopic movement of the fluid as a result of the
spatial variation of density over an area causes additive mobility
in the swimming microorganisms known as bioconvection.
The self-driven motile microorganisms tend to improve the
base fluid in a particular direction producing a bio-convective
stream. The moving microorganisms are divided into various
types i.e., chemotaxis or oxytactic, gyrotactic microorganisms,
and negative gravitaxis. The nanoparticles are not self-driven
as compared with motile microorganisms, and their motion
is due to the impact of the Brownian motion and the
thermophoresis effect. Bioconvection in the nanofluids is
anticipated to be feasible if the concentration of nanoparticles
is small and as a result it won’t be able to produce an
essential enhancement in the base fluid viscosity. Bioconvection
in the presence of nanoparticles was initially considered in
Kuznetsov and Avramenko [18, 19]. Later, Kuznetsov [20]
presented the suspension of nanoparticles with gyrotactic
microorganisms using the Buongiorno’s theory. Bég et al. [21]
investigated the bioconvection flow with nanofluids through
a porous medium numerically. Akbar [22] considered the
bioconvection flow through a symmetric channel filled with
nanoparticles and presented a bio nano-engineering model.
Bhatti et al. [23] also inspected the behavior of a varying
magnetic field and clot blood model using Jeffrey fluid
model with nanoparticles and microorganisms. Ahmed et al.
[24] considered the magnetized laminar flow of nanofluid
and gyrotactic microorganisms through a non-Darcy porous
medium. Chakraborty et al. [25] researched the extrinsic

magnetic influence and bioconvection flow with nanoparticles
with convective boundary conditions. Few important studies
on the motile gyrotactic microorganisms and nanofluids can be
found in Shahid et al. [26], Waqas et al. [27], Waqas et al. [28],
and Sohail et al. [29].

From the above survey, it is observed that blood flow
in the presence of nanoparticles has been discussed, but no
attention has been devoted to discussing the simulation of motile
gyrotactic microorganisms and nanoparticles suspended in the
blood propagating through an anisotropically tapered artery.
In most of the aforementioned studies, work has been done
with nanoparticles propagating through tapered artery, however,
no one considered the presence of gyrotactic microorganism
in blood. Mathematical modeling has been performed on the
basis of temperature, momentum, concentration and motile
microorganism equations followed by an approximation
in wavelength being long with and inertia-free flow. The
Homotopy perturbation scheme is employed to obtain the
series results. The governing equations are nonlinear and
coupled and the exact solutions are not possible, whereas some
other numerical/analytical methods [30–32] are beneficial to
solve these kinds of problems. All the outcomes are presented
graphically and plotted against the leading parameters. The
behavior of temperature, velocity, concentration, and motile
microorganism profile have been considered. Furthermore,
wall shear and variation of impedance are also investigated
and presented graphically. According to the results, it is
found that the flow behavior through converging, diverging
and non-tapered arteries are uniform throughout the
whole channel.

MATHEMATICAL MODELING

We consider a tube having finite length “L” filled with nanofluids
and motile gyrotactic microorganisms. We present here the
theoretical model of the swimming of nanoparticles with
motile gyrotactic microorganisms in non-Newtonian blood flow
propagating in an anisotropically tapered artery. A Sutterby
fluid model is used to represent the rheology of the blood. The
governing fluid is incompressible and having constant density.
Let (r, θ , z) be the cylinderical polar coordinates while z lies
along the axis, whereas r, θ are considered along the radial
and circumferential direction (see Figure 1). We consider the
temperature and concentration at the wall of the tube as T1 and
C1, respectively. The anisotropically tapered stenosed artery with
time-variant stenosis is geometrically defined as

R(z)

R0
=















τ (t)
[

ξz + R0 −
δ cos9
L0

(

11− 94
3L0

(z − d)

+
32
L20
(z − d)2 − 32

L30
(z − d)3

)]

; d ≤ z ≤ 3
2L0,

τ (t) (1+ ξz) ; otherwise

(1)

where R(z) denotes the tapered arterial segment and the artery
radius with composite stenosis, t the time, L0 the stenosis length,
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FIGURE 1 | Flow structure.

δ is the stenosis height, R0 is the normal artery radius in the non-
stenotic zone, 9 is the tapering angle, and ξ = tan9 shows the
slope of the tapered vessel i.e.,

9 =







< 0, converging artery
= 0, non-tapered artery
> 0, diverging artery

(2)

The time-variant, τ (t), is defined as

τ (t) = 1+
α (1− cosωt)

eαωt
, (3)

where α is constant and ω is the radial frequency of the
forced oscillation.

The equations governing the flowmodel can then be written as

∇ · Ṽ = 0, (4)

ρf

(

∂Ṽ

∂t
+ Ṽ · ∇Ṽ

)

= −∇ · p+∇
2
· Ṽ

+
[

ρfTe (1− C1) (T − T1)

−
(

ρp − ρf
)

Te (C − C1)

− (n− n1) 2
(

ρm − ρf
)]

g, (5)

where Ṽ = [U,V] are the components of velocity, T is the
nanofluid temperature, T1 is the reference temperature, p is

the pressure, 2 is the average volume of a microorganism,
n is the concentration of microorganisms, ρf is the density
basefluid at the reference temperature, ρp is the nanoparticles’
density, ρm is the density of microorganisms, g is the
gravity vector, Te is the base fluid volumetric coefficient of
thermal expansion, and µ the viscosity of the suspension (the
suspension contains the nanoparticles, microorganisms, and
base fluid).

The temperature equation reads as

(ρc)f

(

∂T

∂t
+ Ṽ · ∇T

)

= ∇ ·
(

kf∇T
)

(6)

+ (ρc)p

[

DB∇C · ∇T +
DT

T1
∇T · ∇T

]

,

where DT and DB, kf , (ρc)f and (ρc)p are the thermophoretic
diffusion and Brownian coefficient, thermal conductivity,
volumetric heat capacities for the nanofluid and
nanoparticles, respectively.

The concentration equation with no chemical reaction
reads as

(

∂C

∂t
+ Ṽ · ∇C

)

= DB∇
2C +

DT

T1
∇T · ∇T, (7)

The conservation of microorganisms’ reads as

(

∂n

∂t
+ Ṽ · ∇n

)

+
bWc

C0 − C1
∇ (n · ∇C) = −Dmo∇

2n, (8)

where b is the chemotaxis constant, Wc is the maximum cell
swimming speed, and Dmo is the diffusivity of microorganisms.

The stress tensor for Sutterby fluid reads as

S =
µ

2

[

sinh−1Bς

Bς

]m

A1. (9)

where A, B are material constants and

ς =

√

trac A2
1

2
, (10)

A1=grad V+
(

grad V
)T
.

The boundary conditions are given by

∂u

∂r
=

∂T

∂r
=

∂C

∂r
=

∂n

∂r
= 0, at r = 0

u = 0,T = T1,C = C1, n = n1, at r = R(z) (11)
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The non-dimensional quantities are defined as

r̂ =
r

R0
, ẑ =

z

R0
, v̂ =

L0

Uaδ
v, R̂ =

R

R0
, p̂ =

R20
UaL0µ

p,T

= (1− θ)T1 + T0,

C = (1− φ)C1 + C0, n = (1− χ) n1 + n0, δ̂ =
δ

R0
, L̂

=
L

L0
, ξ̂ =

L0ξ

R0
. (12)

whereUa is the averaged velocity over a section of the whole tube.
Substituting with Equation (12) into the governing

mathematical model assuming the case of mild stenosis
and creeping flow yields (after dropping the hat)

∂p

∂r
= 0, (13)

∂p

∂z
=

1

r

∂

∂r
[rSrz]+ Tgθ + Ngφ − Rbχ , (14)

1

r

∂

∂r

(

∂θ

∂r
r

)

+
∂θ

∂r

[

Tb
∂8

∂r
+ Tt

(

∂θ

∂r

)]

= 0, (15)

1

r

∂

∂r

(

∂φ

∂r
r

)

+
Tt

Tb

1

r

∂

∂r

(

∂θ

∂r
r

)

= 0, (16)

1

r

∂

∂r

(

∂χ

∂r
r

)

= Pl

[

∂χ

∂r

∂φ

∂r
+
(

2̄ + χ
) ∂2φ

∂r2

]

, (17)

and

Srz =

[

1− β

(

∂u

∂r

)2
]

(

∂u

∂r

)

, (18)

whereas for Newtonian fluid the results can be achieved by
taking β = 0.

The parameters used above are defined as

β =
mB2U2

a

6R20
,Tb =

DB (C0 − C1) (ρc)p

kf (ρc)f
,

Tt =
DB (T0 − T1) (ρc)p

kfT1(ρc)f
,

Ng = −
Teg

(

ρp − ρf
)

R20 (T0 − T1)

µUa
,

Pl =
bWc

Dmo
, 2̄ =

n1

n0 − n1
,

Tg =
TegρfR

2
0 (1− C1) (T0 − T1)

µUa
,

Rb =
(n− n1) 2

(

ρm − ρf
)

gR20
µUa

. (19)

In the above equation, Tg is the local temperature Grashof
number, Ng is the local particle Grashof number, Rb is the
bioconvection Rayleigh number, Tb is the Brownian motion

parameter, Tt is the thermophoresis parameter, Pl is the Peclet
number, 2̄ is a constant, and β is the fluid parameter.

The boundary conditions read.

u′ = 0, θ ′ = 0,φ′
= 0,χ ′

= 0, at r = 0,

u = 0, θ = 0,φ = 0,χ = 0, at r = R. (20)

SERIES SOLUTIONS

The solutions of Equations (13) to (17) can be obtained using a
Homotopy perturbation method. And thus, the Homotopy Ps for
Equations (13) to (17) are defined as

Ps (ū, ζ ) = (1− ζ ) [ℓ (ū) − ℓ (ū0)]

+ ζ

[

ℓ (ū) − 3β
∂2ū

∂r2

(

∂ ū

∂r

)2

−
β

r

(

∂ ū

∂r

)3

+ Tg θ̄ + Ng φ̄ − Rbχ̄ −
∂p

∂z

]

, (21)

Ps
(

θ̄ , ζ
)

= (1− ζ )
[

ℓ
(

θ̄
)

− ℓ
(

θ̄0
)]

+ ζ

[

ℓ
(

θ̄
)

+ Tb
∂φ̄

∂r

∂θ̄

∂r
+ Tt

(

∂θ̄

∂r

)2
]

, (22)

Ps
(

φ̄, ζ
)

= (1− ζ )
[

ℓ
(

φ̄
)

− ℓ
(

φ̄0

)]

+ ζ

[

ℓ
(

φ̄
)

+
Tt

Tb

1

r

∂

∂r

(

∂θ̄

∂r
r

)]

, (23)

Ps (χ̄ , ζ ) = (ζ − 1) [ℓ (χ̄0) − ℓ (χ̄)]

+ ζ

[

ℓ (χ̄) − Pl
∂

∂r

(

(

χ̄ + 2̄
) ∂φ̄

∂r

)]

, (24)

where ζ ∈ [0, 1]the embedding parameter.
The linear operator reads as

ℓ =
∂2

∂r2
+

1

r

∂

∂r
, (25)

and the initial guesses read as

w̄0 = θ̄0 = φ̄0 = χ̄0 =
r2 − R2

c2
, (26)

where c (6= 0) is a constant.
The above initial guess is chosen in such a way that the

following initial guess satisfied the linear operator as given in
Equation (25) as well as satisfy all the governing boundary
conditions as given in Equation (20).

Defining the following expansions

ū = ū0 + ζ ū1 + ζ 2ū2 + . . . , (27)

θ̄ = θ̄0 + ζ θ̄1 + ζ 2θ̄2 + . . . ., (28)

φ̄ = φ̄0 + ζ φ̄1 + ζ 2φ̄2 + . . . ., (29)

χ̄ = χ̄0 + ζ χ̄1 + ζ 2χ̄2 + . . . ., (30)
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FIGURE 2 | Velocity curves for multiple values of (A) β, (B) Tt, (C) Tb.

FIGURE 3 | Temperature curves for multiple values of Tb, Tt.

FIGURE 4 | Concentration curves for multiple values of Tb,Tt.

Using the series expansions in Equations (27–30) in the
Homotopy equations [see Equations (21) to (24)], we get the set
of linear differential equations, after comparing the powers of ζ .
By applying the property of Homotopy perturbation method, i.e.,
ζ → 1, we get

u = ū = ū0 + ū1 + ū2 + . . . , (31)

θ = θ̄ = θ̄0 + θ̄1 + θ̄2 + . . . ., (32)

φ = φ̄ = φ̄0 + φ̄1 + φ̄2 + . . . ., (33)

χ = χ̄ = χ̄0 + χ̄1 + χ̄2 + . . . ., (34)

The final results for all the governing equations are obtained as

u (r) = u0 + r2u1 + r4u2 + r5u3 + r6u4 + · · · , (35)

θ (r) = θ0 + r3θ1 + r4θ2 + r5θ3 + r6θ4 + · · · , (36)

φ (r) = φ0 + r3φ1 + r4φ2 + · · · , (37)

χ (r) = χ0 + r2χ1 + r4χ2 + r6χ4 + · · · . (38)

where un, θn,φn,χn, with n = 1, 2, 3 . . . are the constants which
can be found using the calculations through a computational
software Mathematica 10.3v.

The flux Q can be determined as

Q =

R
∫

0

2ru (r, z) dr. (39)

Q =
℘

f (z)
, (40)
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FIGURE 5 | Motile microorganism curves for multiple values of (A) Tt and Tb,

(B) Pl .

where ℘ = −
dp
dz
.

The impedance can be determined as

λ =
1

Q

∫

0

℘dz, (41)

The wall shear stress is calculated as.

Srz =
1

2
℘R

∣

∣

∣

∣

r=R

. (42)

DISCUSSION

We have discussed the graphical behavior of all the leading
parameters for the temperature, velocity, motile microorganism
and concentration profiles. The effects of wall shear stress and
the variation of impedance are also investigated to see the
behavior of blood during the swimming of microorganisms and
the movement of nanoparticles. With the aid of said perturbation
scheme, we obtained the third order approximation against each
profile. All the numerical computations have been performed
using computational software Mathematica. Figures 2–7 are
plotted for different profiles with all the emerging parameters
i.e., Peclet number Pl, height of stenosis δ, angular frequency ω,
fluid parameter β , local temperature Grashof number Tg , local
particle Grashof number Ng , bioconvection Rayleigh number Rb,
thermophoresis parameterTt , and BrownianmotionTb. All three
cases i.e., diverging, converging, and non-tapered artery, have
been plotted with the help of Equation (2).

Figure 2 presents the behavior of the velocity profile against
the fluid parameter β , thermophoresis parameter Tt , and

FIGURE 6 | Wall shear stress for multiple values of (A) Tt and Tb, (B) Tg and Ng, (C) δ and ω, (D) Ry .
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FIGURE 7 | Impedance profile for various values of (A) β; Black line: β = 0,

Red line: β = 1. (B) Ry ; Black line: Ry = 0, Red line: Ry = 12. (C) Tt; Black

line: Tt = 0.2, Red line: Tt = 2. (D) Tb; Black line: Tb = 0.1, Red line: Tb = 1.

Brownian motion parameter Tb. In order to understand the
behavior of hemodynamics in a specific artery or lesion, it is
necessary to have a knowledge of blood velocity within the flow
pattern. The hemodynamic velocity in the artery is not the same
at all the points [33]. We can see from Figure 2A that the
distribution of velocity at the center of the channel is maximum
while it attains a minimum value when it gets close to the wall.
Further, we can notice that in the case of non-Newtonian fluid,
β = 4, the velocity of the blood diminishes. However, we can
see a turning point between r ∈ (0.6, 0.8) the artery where the
velocity turns opposite as compared with the core of the channel
and decreases as it gets closer to the wall of the artery. The
significant change in the velocity gradient among different points
in the artery exists because of the friction forces that play an
essential role among the fluid at the walls and the flowing fluid.
The friction forces occur because of the viscosity features. The
viscosity represents the resistance to the flow, and it attains a
minimum value if the trivial force on the fluid layer generates a
velocity higher than that layer associated with the adjoining layer,
and the converse is true [34, 35]. Figure 2B shows the behavior
of the thermophoresis parameter Tt on the velocity profile. It is
noticed from this figure that by enhancing the thermophoresis
parameter, the nanoparticles start moving quickly and tends to
repel from the hotter to a colder area. But it doesn’t affect the
velocity of the fluid. However, it causes resistance in the velocity
of the fluid. Brownian motion plays a simultaneous role with
thermophoresis. However, both parameters similarly affect the
velocity profile (see Figure 2C). Brownian motion occurs due to
the collision of suspended particles in random direction in the
working fluid. Higher values of Brownian motion reveals that the
particles collide very quickly which causes the resistance in the
motion of the base fluid.

Figures 3, 4 are plotted for temperature and concentration
distributions for multiple values of Tt and Tb. In Figure 3, we
can see that the temperature profile rises with the increment
in Tt and Tb. The enhancement of both parameters tends
to repel the particles quickly. Therefore, the particles start
moving from one region to the other area (i.e., hotter to colder
part). Both parameters produce a force i.e., thermophoretic

force and random movement of suspended particles which
resist the fluid motion and as result the temperature profile
increases. Figure 4 shows that the concentration profile that
is shown to be inversely proportional to the temperature

profile. By increasing both parameters, the concentration
profile tends to diminish remarkably. Figure 5 is plotted
to judge the variation of motile microorganisms with Pl,
Tt , and Tb. It can be noticed from Figure 5A that the
motile microorganisms ’distribution rises due to the strong
influence of the Brownian motion parameter. However, a

converse behavior has been observed for the thermophoresis
parameter. In Figure 5B, we can see that the Peclet number
produces resistance in the motile microorganism profile.

By increasing Peclet number, it is noticed that advection
propagation transport in more dominant as compared
with diffusion propagation rate, which suppress the motile
microorganism profile.
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Figure 6 shows that the behavior of wall shear stress, that has
been plotted using Equation (42), with δ, ω, Tg , Ng , Rb, Tt , and
Tb. The wall shear stress is an essential part of the blood flow,
and it can be described as the fluid flowing over the surface of
the conduit artery. From Equation (42) we can see that wall shear
stress is directly proportional to the velocity gradient close to the
wall of the artery. That shows how quickly the velocity of the fluid
is when propagating from one point on the artery wall to another
point adjacent to the point in the perpendicular direction of the
wall. However, low wall shear stress belongs to low velocities,
accordingly, the higher residence time of the fluid closer to the
wall. And as a result, this velocity gradient close to the wall
is known as the wall shear rate. We can see from Figure 6A

that wall shear stress is reduced due to the strong influence of
the thermophoresis parameter, however, an inverse behavior has
been noticed with a variation of Tb. In Figure 6B, we can see
that local temperature Grashof number and local particle Grashof
number suppress the wall shear stress remarkably. However,
we noticed that the height of the clot enhances the wall shear
stress, whereas the angular frequency tends to diminish the wall
shear stress as shown in Figure 6C. In Figure 6D, we found
that bioconvection Rayleigh number doesn’t affect the wall shear
stress significantly and the effect is minimal.

Figure 7 is schemed to judge the variation of impedance
distribution for multiple values of β , Rb, Tt, and Tb. Figure 7A is
sketched for impedance vs. height of the clot for various values of
the fluid parameter. We can see from this figure that impedance
profile rises with an increase in the height of the clot, whereas
it decreases simultaneously due to an enhancement in the fluid
parameter. In Figure 7B, the effect of bioconvection Rayleigh
number is shown incrementally decreasing. Further, it is noticed
that an increase in the angular frequency ω implies to a decrease
in the impedance profile. Also, it is seen in the whole domain that
the thermophoresis parameter tends to suppress the impedance
profile, as shown in Figure 7C. In Figure 7D, the impedance
profile rises due to the strong influence of the Brownian motion
parameter. However, it is seen that the impedance profile tends
to reduce with an increment in time.

CONCLUDING REMARKS

A theoretical study on the swimming of nanoparticles
with motile gyrotactic microorganisms in non-Newtonian

blood flow propagating in an anisotropically tapered artery
has been presented. Sutterby fluid model is presented to
understand the rheology of the blood. The mathematical
modeling is formulated using continuity, temperature,
motile microorganism, momentum and concentration
equation. The Homotopy perturbation method is applied
to obtain the series solutions. All the graphical results
are presented for diverging, converging, and non-tapered
artery. The main results from the present study has been
summarized below:

i. The non-Newtonian effects tends to resist in the
fluid motion.

ii. Thermophoresis and Brownian motion parameter oppose
the fluid motion.

iii. Temperature profile increases as the artery changes
from converging to diverging shape with an
increase in the thermophoresis parameter and
Brownian motion.

iv. The concentration profile tends to diminish due
to the strong impact of Brownian motion and
thermophoresis parameter.

v. The Peclet number significantly opposes the motile
microorganism profile.

vi. Thermal Grashof number opposes the wall shear stress
profile and similar behavior is observed due to an increment
in nanoparticle Grashof number.

vii. The shear stress at the wall is reduced due to an
increment in the height of stenosis and the bioconvection
Rayleigh number.

viii. The impedance profile decreases due to with an
increase in bioconvection Rayleigh number, fluid
parameter, and thermophoresis parameter, whereas
it increases with an increase in the Brownian
motion parameter.
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The objective of this paper comprises two key aspects: to establish descriptive

mathematical models for constant and variable fluid flows over a variable thickness

sheet by inducting applied electric and magnetic fields, porosity, radiative heat transfer,

and heat generation/absorption, and to seek their solution by constructing a novel

numerical method, the Simplified Finite Difference Method (SFDM). We resort to similarity

transformations to implicate partial differential equations (PDEs) into a set of ordinary

differential equations (ODEs). Optimal results for a pair of ODEs obtained from SFDM are

assessed by drawing a comparison with bvp4c and existing literature values. SFDM has

been implemented in MATLAB for both constant and variable fluid properties. Tabulated

numerical values of the skin friction coefficient and local Nusselt and Sherwood numbers

are measured and analyzed against different parameters. The influence of distinct

parameters on velocity, temperature, and nanoparticle volume fraction are explained

in great detail via diagrams. The skin friction coefficient for variable fluid properties is

greater than for constant fluid properties. However, the local Nusselt number is lower for

variable fluid properties than with constant fluid properties. Surprisingly, high-precision

computational results are achieved from the SFDM.

Keywords: electrical magnetohydrodynamics (EMHD), variable thicked surface, nanofluid, simplified finite

difference method (SFDM), variable fluid properties

1. INTRODUCTION

Fluid mechanics has many applications in contexts from the human biological system to the
manufacturing industry. For example, the study of breathing in biological systems uses bio-
fluid dynamics. Cooling is another such phenomenon, which is important in electronics and
the automobile industry. Investigating stretching sheet flows is relevant to many significant
applications. All of this plays a vital role in technological advances such as those of polymer
manufacturing and cooling processes in glass and paper productionHayat et al. [1]. Having variable
thickness becomes useful in minimizing the weight of architectural elements Hayat et al. [1].

Hayat et al. [1, 2] analyzed the consequences of Cattaneo-Christov heat flux and a temperature-
dependent fluid thermal conductivity on fluid flow over a variable thickness sheet and showed
that variable conductivity enhances the temperature distribution. They also maintained that the
temperature profile decreases with the thermal relaxation parameter. Mabood et al. [3] discussed
the non-Darcian MHD convective flow and claimed that temperature rise depends on the Eckert
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number. In the context of a stretching sheet for variable
thickness, Fang et al. [4] has tackled the boundary layer flow and
analyzed multiple solutions. Khader and Ahmed [5] computed a
numerical solution for variable sheet thickness with slip velocity
and pointed out that the skin friction coefficient increases
with the wall thickness parameter. Daniel et al. [6] discussed
the thermal stratification effects on MHD radiative flow of
nanofluid for a variable thickness sheet. They submitted that the
thermal stratification effect reduces temperature. Reddy et al.
[7] investigated the MHD flow and heat transfer of Williamson
nanofluid over a variable thickness sheet with variable thermal
conductivity and identified that the velocity profile decreases
with the wall thickness parameter when m < 1. Daniel
et al. [8] examined the effect of thermal radiation on electrical
MHD flow of nanofluid over a stretching sheet with variable
thickness and concluded that the thermal radiation did impact
the nanofluid temperature.

Magnetohydrodynamics is the study of the flow of electrically
conducting fluids in an electro-magnetic-field. The study of
MHD flow is of considerable interest in modern metallurgical
and metal-working processes. Noreen et al. [9] examined the
numerical solutions of magnetohydrodynamic boundary layer
flow of tangent hyperbolic fluid toward a stretching sheet.
They showed that the skin friction coefficient increases with an
increase in M. Mukhopadhyay et al. [10] conducted a study
to assess the effects of fluid flow with constant and changeable
viscosity on a heated surface. They noticed that a decrease in
viscosity causes the velocity to decrease with increasing distance
along the stretching sheet. Nadeem et al. [11] examined MHD
three-dimensional Casson fluid flow through a porous linear
stretching plate and concluded that the stretching parameter
resulted in decreasing behavior of the velocity profile. Mabood
et al. [12] investigated MHD boundary layer flow and heat
transfer of nanofluid over a non-linear stretching sheet. They
note that the boundary layer thickness grows with Brownian
motion. Zhang et al. [13] discussed the MHD flow and radiation
heat transfer of nanofluids in porous media with variable surface
heat flux and chemical reaction. They examined three types of
nanoparticles. Popley et al. [14] addressed the overall impact
of varying liquid characteristics upon hydro-magnetic motion
and heat transfer across a non-linear stretching surface. They
demonstrated that the free stream velocity induces a reduction
in the boundary layer thickness. Mohsen et al. [15] discussed
nanofluid flow with convective heat transfer considering Lorentz
forces and showed that heat transfer rises with the Hartmann
number. Patel [16] studied the effects of heat generation, thermal
radiation, and Hall current on MHD Casson fluid flow past an
osculating plate in a porous medium. They stated that the Hall
current boosts mobility in both directions. Farooq et al. [17]
discussed the MHD flow of Maxwell fluid with nanomaterials
due to an exponentially stretching surface. The influence of the
thermophoresis parameter on the temperature distribution is
negligible. Magnetohydrodynamic (MHD) boundary layer flow
past a wedge with heat transfer and viscous effects of nanofluid
embedded in porous media was investigated by Ibrahim and
Tulu [18]. They discover that the pressure gradient influences the
boundary layer thickness. The impact of 3D Maxwell nanofluid

flow over an exponentially stretching surface in terms of heat and
mass transfer was explored by Ali et al. [19]. They showed that
the skin friction coefficient decreases with the Deborah number.

Nanofluids solid-liquid suspensions consisting of solid
nanoparticles of size 1-100 nm and liquid Mabood et al. [3].
Due to reports of their having significantly enhanced thermal
properties, nanofluids have drawn great interest recentlyMabood
et al. [3]. The term nanofluid was proposed by Choi and Eastman
[20], who demonstrated that the introduction of a small number
of nanoparticles (< 1 percent by volume fraction) to traditional
liquids increased the fluid thermal conductivity by approximately
two times Nadeem et al. [11]. The numerical simulation of
nanofluid flow with convective boundary conditions was studied
by Das et al. [21], who demonstrated that the surface convection
parameter enhances the heat transfer rate. Mabood and Das
[22], in their analysis, communicated melting heat transfer
of hydromagnetic nanofluid flow with a second-order slip
condition. Cao et al. [23] discussed the MHD flow and heat
transfer of fractional Maxwell viscoelastic nanofluid over a
moving plate by using a finite difference method and found
that the average Nusselt number is higher with a rise in the
fractional derivative parameter. Das et al. [24] studied the effects
of a magnetic field on an unsteady mixed convection flow of
nanofluids containing spherical and cylindrical nanoparticles.
Narayana et al. [25] discussed the effects of thermal radiation
and a heat source on an MHD nanofluid past a vertical plate
in a rotating system with a porous medium. They used three
different nanoparticles and showed that they enhance the heat
transfer rate, a result that can be used in heat exchanger
technology. The influences on stagnation-point flow toward a
stretching/shrinking sheet in a nanofluid were discussed by
Mansur et al. [26] using the Buongiorno model. They proved
that the thermophoresis parameter reduces the heat transfer
rate. Makinde [27] studied viscous dissipation and Newtonian
heating over a flat plate in a nanofluid. The heat transfer rate
rises with the nanoparticle volume fraction and the Biot number.
Ali et al. [28] discussed a numerical study of unsteady MHD
Couette flow and heat transfer of nanofluids in a rotating system
with convective cooling and indicated that the rotation has a
significant effect on velocity and heat transfer. Ashwinkumar and
Sulochana [29] investigated the effect of radiation absorption
and buoyancy force on the MHD mixed convection flow
of Casson nanofluid. They noticed that the volume fraction
of nanoparticles governs the temperature distribution. Under
temperature control, Andersson and Aarseth [30] revisited the
fluid properties of a liquid. The effect of variable fluid properties
on the hydromagnetic flow and heat transfer over a non-linearly
stretching sheet was discussed by Prasad et al. [31]. Hayat et al.
[32] discussed mixed convection flow across a porous sheet and
reported that the thermal boundary layer thickness is lowered
with Pr. Reddy et al. [33] probed the effect of variable thermal
conductivity on MHD flow of nanofluid over a stretching sheet.
They considered convective boundary conditions. Zaka et al.
[34] applied numerical simulation for Darcy-Forchheimer flow of
nanofluid by considering a rotating disk. They reported that the
temperature distribution is enhanced with the thermophoresis
parameter. Shah et al. [35] discussed the nanofluid flow for
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different shape factors. They managed to show that the shape
factor causes stronger convection. Zeeshan et al. [36] reported the
effect of radiative nanofluid flow under a pressure gradient due
to entropy generation and observed an increase in entropy with
an increase in the pressure gradient. Ellahi et al. [37] investigated
flow of a power-law nanofluid with entropy generation and noted
that the skin friction coefficient increases at the heated wall.
Yousif et al. [38] analyzed the momentum and heat transfer
of MHD Carreau nanofluid over an exponentially stretching
surface and used the shooting method to compute the solution.
Sarafraz et al. [39] discussed the pool boiling heat transfer
characteristics of an iron oxide nano-suspension considering
a constant magnetic field and found that bubble formation is
intensified due to the magnetic field. Fujimoto [40] described
multi-scale simulation on adaptive meshes.

This paper is arranged in the following way. A mathematical
formalism of the physical model is explained in section Problem
Formulation. Section Fluid Properties Analysis addresses
constant as well as varying liquid characteristics. Section Physical
Quantities provides physical quantities, and an overview of
the numerical process has been given in section Numerical
Procedure. Results and discussion are presented in section Result
and Discussion. In section Conclusions, the conclusion is drawn.

2. PROBLEM FORMULATION

We assume an electrical magnetohydrodynamic (EMHD), two-
dimensional, steady, laminar flow of nanofluid over a non-linear
stretching sheet with variable thickness. A variable magnetic field

B(x) = Bo(x + b)
n−1
2 (n 6= 1) and variable electrical field E(x) =

Eo(x + b)
n−1
2 (n 6= 1) are applied normal to the direction of flow.

The sheet is stretching with non-linear velocity Uw = Uo(x +

b)n(n 6= 1), where b is the dimensional constant and Uo is the
reference velocity. Therefore, the surface is considered not to be

flat, and its thickness varies as y = A(x + b)
1−n
2 (n 6= 1), where

A is a very small constant to hold the sheet thin enough. We also
observe that for n = 1, the current problem reduces to a flat sheet.
The geometry of the problem is shown in Figure 1, where the
x-axis has been taken along the sheet and y-axis is normal to it.

The induced magnetic field has been neglected under the
assumption of a small magnetic Reynolds number. The boundary
layer equations governing this flow are Daniel et al. [6, 8] and
Irfan et al. [41]

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y
(
µ∂u

∂y
)+

σ

ρ
(E(x)B(x)− B2(x)u)−

µ

ρK(x)
u(2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y
(
k∂T

∂y
)+ τ (DB

∂T

∂y

∂C

∂y
+

DT

T∞

(
∂T

∂y
)2)

−
1

ρCp

∂qr

∂y
+

σ

ρCp
(uB(x)− E(x))2 +

Q(x)

ρCp
(T − T∞), (3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
, (4)

Here, u and v are the velocity components parallel to the x− and
y− axis, respectively. Further, µ is the viscosity, ρ is the density,

ν is the kinematic viscosity, Cp is the specific heat capacity, B
is the magnetic field. T and C are the fluid temperature and
nanoparticle fraction, respectively. The temperature of the fluid
at the wall and ambient temperature are denoted by Tw and T∞,
respectively. DB and DT are the Brownian diffusion coefficient

and thermophoretic diffusion coefficient, respectively. τ =
(ρc)p
(ρc)f

is the ratio of the effective heat capacity of the nanoparticle
material to the heat capacity of the fluid, qr is the radiative

heat flux, Q(x) = Q0(x + b)
n−1
2 is the volumetric rate of heat

generation, and K(x) = K0(x+ b)n−1 is a variable permeability.
The above system is completed with the following appropriate

boundary conditions, taking to view of [32] and [33]:

u = Uw(x) = Uo(x+ b)n, v = 0, −k
∂T

∂y
= hs(Tf − T),

DB
∂C

∂y
+ DT

∂T

∂y
= 0 at y = A(x+ b)

1−n
2

u −→ 0, T −→ T∞, C −→ C∞ as y −→ ∞ (5)

To the above equations, (1)-(4), the following relevant
transformations will be utilized:

ψ =

√

2

n+ 1
νUo(x+ b)n+1f (η),

ξ = y

√

(
n+ 1

2
)
Uo(x+ b)n−1

ν
,α = A

(

(n+ 1)U0

2ν

)
1
2

η = ξ − α = y

√

(
n+ 1

2
)
Uo(x+ b)n−1

ν
− α

θ =
T − T∞

Tw − T∞

, φ =
C − C∞

Cw − C∞

, u = Uo(x+ b)nf
′

(η),

v = −

√

2

n+ 1
νUo(x+ b)n−1(f (η)+ η

n− 1

n+ 1
f
′

(η)). (6)

Equation (1) is identically satisfied. In addition, when the above
similarity variables are applied to Eqations (2), (3), and (4),
it yields:

(
µ

µo
f
′′

)
′

−
2n

n+ 1
f
′2
+ ff

′′

+M(E1 − f
′

)− Kp
µ

µo
f
′

= 0, (7)

(1+
4

3
Rd)(

k

ko
θ
′

)
′

+ Pro(f θ
′

+ Nbθ
′

φ
′

+ Nt(θ
′

)2

+MEc(f
′

− E1)
2
+

2

n+ 1
sθ) = 0, (8)

φ
′′

+
Nt

Nb
θ
′′

+ LeProfφ
′

= 0. (9)

The equivalent boundary conditions in terms of similarity
variables are specified as:

f (0) = α(
1− n

1+ n
), f ′(0) = 1, , f

′

(∞) = 0, θ
′

(0) = −Bi(1− θ(0))

θ(∞) = 0, Nbφ
′

(0)+ Ntθ
′

(0) = 0, φ(∞) = 0, (10)

where M =
2σB2o

ρUo(n+1)
is a magnetic parameter, α is the wall

thickness parameter, E1 =
Eo

BoUo(x+b)n
is the electric field, and
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FIGURE 1 | Schematic diagram of the problem.

Kp =
2ν

KoUo(n+1)
is the permeability constant. Pro =

µoCp

ko
is

the Prandtl number, Nb =
τDB(Cw−C∞)

ν
is the Brownian motion

parameter, Nt =
τDT (Tw−T∞)

T∞ν
is the thermophoresis parameter,

Ec =
U2
w

Cp(Tw−T∞)
is the local Eckert number, Rd =

4σ ∗T3
∞

kok∗

denotes the radiation parameter, s =
Qo(x+b)
ρuwCp

is the heat source

parameter, Bi is the Biot number, and Le =
ν
DB

is Lewis number
Irfan et al. [41].

3. FLUID PROPERTIES ANALYSIS

We illustrate the main theme of this work through the following
two subsections.

3.1. Case A: Constant Fluid Characteristics
For this case, we rewrite Equations (7), (8), and (9) into the
following set of equations Irfan et al. [41]:

f
′′′

−
2n

n+ 1
f
′2
+ ff

′′

+M(E1 − f
′

)− Kpf
′

= 0 (11)

(1+
4

3
Rd)θ

′′

+ Pro(f θ
′

+ Nbθ
′

φ
′

+ Nt(θ
′

)2 +MEc(f
′

− E1)
2

+
2

n+ 1
sθ) = 0 (12)

φ
′′

+
Nt

Nb
θ
′′

+ ProLefφ
′

= 0 (13)

3.2. Case B: Variable Fluid Properties
In this case, we express viscosity and thermal conductivity as a
function of temperature Andersson and Aarseth [30]

µ(T) =
µref

1+ γ (T − Tref )
(14)

In (14), above, γ is a property of a fluid. Assuming To ≈ Tref ,
we get

µ =
µo

1− T−To
θr(Tw−To)

=
µo

1− θ(η)
θr

(15)

Here, θr =
−1

γ (Tw−To)
. Inserting Equation (15) into Equation (7),

we get

θr

(θr − θ)
f
′′′

+
f
′′

θ
′

θr

(θr − θ)2
−

2n

n+ 1
f
′2
+ff

′′

+M(E1−f
′

)−Kp
θr

θr − θ
f
′

= 0

(16)
Following Prasad et al. [31], the changeable thermal conductivity
is expressed as

k(T) = ko(1+ ǫθ) (17)

Using Equation (17) in Equation (8), we get.

(1+
4

3
Rd)((1+ ǫθ)θ

′′

+ ǫ(θ
′

)2)+ Pro(f θ
′

+ Nbθ
′

φ
′

+ Nt(θ
′

)2 +MEc(f
′

− E1)
2
+

2

n+ 1
sθ) = 0 (18)

4. PHYSICAL QUANTITIES

The important physical parameters are defined as follows.
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4.1. Skin Friction Coefficient
The wall friction coefficients for case A and case B are defined as

Cf =
τw

ρu2w
=

√

1+ n

2Rex
f
′′

(0) (CASE A)

Cf =
τw

ρu2w
=

θr

θr − θ(0)

√

1+ n

2Rex
f
′′

(0) (CASE B)

4.2. Local Nusselt Number
The local Nusselt numbers for Cases A and B are the same and
can be written as

Nux = −
(x+ b)qw

ko(Tw − T∞)
= −(1+

4

3
Rd)

√

(1+ n)Rex

2
θ
′

(0)

4.3. Local Sherwood Number
The local Sherwood number for both Case A and Case B is

Shx = −
(x+ b)jw

Cw − C∞

= −

√

(1+ n)Rex

2
φ

′

(0) (19)

5. NUMERICAL PROCEDURE

The system of ODEs for Case A and Case B, along with the
boundary conditions, are first transformed into a system of
first-order ODEs. We use two numerical methods to find the
solution of these ODEs. The first method is the SFDM [42], and
the second is implemented through MATLAB’s built-in solver
bvp4c. The details of the methods and the implications are
described below.

5.1. Simplified Finite Difference Method
(SFDM)
The algorithm and necessary details for the simplified FDM are
as follows:

1. We first reduce the third-order ODE into a group of first-
and second-order ODEs. This reduction of order simplifies the
process of finite difference approximation. The ODE already
written in second order cannot be reduced.

2. For further simplification, we use a Taylor series to linearize
the system of nonlinear ODEs.

3. We replace the derivatives in linear ODEs with the
corresponding finite difference approximation formulas.

4. In the end, we reach an algebraic system of
equations that can be solved efficiently by the
Thomas algorithm.

5. The process will be repeated for energy and concentration
equations.

An explanation of SFDM has been illustrated in the flowchart.
Generally, we find the results when N = 1, 000 grid points in
the η direction. The domain to achieve steady state varies due to
the effects of different parameters, but the domain η = 7 seems

sufficient for our results. To initiate, we assume f
′

= F in (11),
and then we get

d2F

dη2
=

2n

n+ 1
F2 − f

dF

dη
−M(E1 − F)+ KpF (20)

We can write this expression for the function f as

χ1(η, F, F
′

) =
2n

n+ 1
F2 − f

dF

dη
−M(E1 − F)+ KpF

(21)

Let us approximate dF
dη

in the above equation by forward

difference approximation

χ1(η, F, F
′

) =
2n

n+ 1
F2i − fi(

Fi+1 − Fi

h
)−M(E1 − Fi)+ KpFi

(22)

The coefficients of second-order ODE read as

An = −
∂χ1

∂F
′
= −(−f ) = f = fi (23)

Bn = −
∂χ1

∂F
= −(

4n

n+ 1
F +M + Kp) = −(

4n

n+ 1
Fi +M + Kp)

(24)

Dn = χ1(η, F, F
′

)+ BnFi + An
Fi+1 − Fi

h
(25)

After some manipulation, (25) becomes

aiFi−1 + biFi + ciFi+1 = ri, i = 1, 2, 3....,N (26)

where

ai = 2−hAn, bi = 2h2Bn−4, ci = 2+hAn , ri = 2h2Dn

(27)
In matrix-vector form, it is written compactly as

AF = s (28)
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where

A =













b1 c1
a2 b2 c2

....
aN−2 bN−2 cN−2

aN−1 bN−1













(29)

F =













F1
F2
.
.

FN−1













s =













s1
s2
.
.

sN−1













(30)

The matrix A is a tridiagonal matrix and is written in LU-
Factorization as [43]

A = LU (31)

where

L =













β1
a2 β2

....
aN−2 βN−2

aN−1 βN−1













(32)

and

U =













1 γ1
1 γ2

....
1 γN−2

1













(33)

where L and U are the lower and upper triangular matrices,
respectively. Here the unknowns (βi, γi), i = 1, 2, ...,N − 1 are
to be related as [43]

β1 = −1−
λ

h
, γ1 =

λ

β1h
(34)

βi = bi − aiγi−1, i = 2, 3, ...,N − 1 (35)

βiγi = ci, i = 2, 3, ....,N − 2 (36)

After defining these relations, (31) becomes

LUF = s, UF = z, and Lz = s (37)

and we have













β1
a2 β2

....
aN−2 βN−2

aN−1





































z1
z2
z3
.
.
.

zN−2

zN−1

























=

























s1
s2
s3
.
.
.

sN−2

sN−1

























(38)

The unknown elements of z can be found by

z1 = s1/β1, zi =
si − aizi−1

βi
, i = 2, 3, ...,N − 1 (39)

and













1 γ1
1 γ2

....
1 γN−2

1

































F1
F2
.
.
.

FN−2

FN−1





















=





















z1
z2
.
.
.

zN−2

zN−1





















(40)

We then get

Fi−1 = zi−1, Fi = zi − γiFi+1, i = N − 2,N − 3, ..., 3, 2, 1
(41)

which is a solution of (20). We can easily find f from f
′

= F,
which in discretization form

fi+1 − fi

h
= Fi (42)

gives a required solution of (11). A similar procedure
can also adopted for solutions θ and φ. For the sake
of brevity, we only present coefficients for these ODEs
and leave out the details that follow on the same line
as presented above. For example, the energy equation
(12) is

d2θ

dη2
= −(

Pro

(1+ 4
3Rd)

(f
dθ

dη
+ Nb

dθ

dη

dφ

dη
+ Nt(

dθ

dη
)2

+MEc(
df

dη
− E1)

2
+

2

n+ 1
sθ)) (43)

χ2(η, θ , θ
′

) = −(
Pro

(1+ 4
3Rd)

(fi(
θi − θi−1

h
)

+ Nb(
θi − θi−1

h
)(
φi − φi−1

h
) (44)

+ Nt(
θi − θi−1

h
)2 +MEc(Fi − E1)

2
+

2

n+ 1
sθi))

Ann = −
∂χ

∂θ
′
= −(−

Pro

(1+ 4
3Rd)

(f + Nbφ
′

+ (2Ntθ
′

) (45)

Ann =
Pro

(1+ 4
3Rd)

(fi + Nb(
φi − φi−1

h
)+ 2Nt(

θi − θi−1

h
)) (46)

Bnn =
2Pro

(n+ 1)(1+ 4/3Rd)
s (47)

d2φ

dη2
=

−Nt

Nb

d2θ

dη2
− LeProfφ

′

(48)

χ3(η,φ,φ
′

) =
−Nt

Nb

θi−1 − 2θi + θi+1

h2
− LePro(fi

φi − φi−1

h
)(49)

Similarly, the coefficients for (13) are written as

Annn = ProLefi, Bnnn = 0 (50)

Boundary conditions can easily be discretized by following the
above procedure.
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5.2. bvp4c
To solve the system of ODEs for Case A and Case B, we first
transformed the system into first-order ODEs to compute the
solution using bvp4c. For Case A it gives,

(a) Case A:

f = v1, f
′

= v2, f
′′

= v3, f
′′′

= v
′

3 =
2n

n+ 1
v22 − v1v3

−M(E1 − v2)+ Kpv2,

TABLE 1 | Resemblance of −f
′′

(0) from the literature for various n values (CASE A).

n α Fang et al. [4] Khader and Ahmed [5] Present result (bvp4c) Present result (SFDM)

10 0.25 1.1433 1.1433 1.1433 1.1433

9 1.1404 1.1404 1.1404 1.1404

7 1.1323 1.1322 1.1323 1.1323

5 1.1186 1.1186 1.1186 1.1186

3 1.0905 1.0904 1.0905 1.0905

1 1.0000 1.0000 1.0000 1.0000

0.5 0.9338 0.9337 0.9338 0.9338

0 0.7843 0.7843 0.7843 0.7843

−1/3 0.5000 0.5000 0.5000 0.5025

−0.5 0.0833 0.0833 0.0833 0.0867

10 0.5 1.0603 1.0603 1.0603 1.0603

9 1.0589 1.0588 1.0589 1.0589

7 1.0550 1.0551 1.0551 1.0551

5 1.0486 1.0486 1.0486 1.0486

3 1.0359 1.0358 1.0359 1.0359

2 1.0234 1.0234 1.0234 1.0234

1 1.0000 1.0000 1.0000 1.0000

0.5 0.9799 0.9798 0.9799 0.9798

0.00 0.9576 0.9577 0.9576 0.9577

−0.5 1.1667 1.1667 1.1667 1.1669

TABLE 2 | Resemblance of the values of −f
′′

(0) for different values of parameters M, n,α,E1, and θr .

Case B Case A

M n α E1 Kp θr −f
′′

(0)(bvp4c) −f
′′

(0) (SFDM) −f
′′

(0)(bvp4c) −f
′′

(0) (SFDM)

0 0.5 0.3 0.1 0.1 −5 1.075408 1.075408 0.996308 0.996308

0.3 1.184031 1.184031 1.097247 1.097247

0.7 1.335487 1.335487 1.236298 1.236298

0.1 0 0.983771 0.987475 0.907889 0.907889

0.5 1.106245 1.106245 1.025923 1.025923

1 1.160763 1.160763 1.078835 1.078835

0.5 0.4 1.125682 1.125682 1.043448 1.043448

0.7 1.185376 1.185376 1.097515 1.097515

1 1.247097 1.247097 1.153791 1.153791

0.3 0.5 1.025633 1.025633 0.954581 0.954581

1 0.940761 0.940761 0.877466 0.877466

1.5 0.864007 0.864007 0.807036 0.807036

0.1 0.1 1.106245 1.106245 1.025923 1.025923

0.3 1.205899 1.205899 1.12657 1.12657

0.5 1.294325 1.294325 1.216757 1.216757

0.1 −10 1.066455 1.066455

−1 1.391356 1.391356

−0.5 1.703479 1.703479
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TABLE 3 | Comparison of the values of −θ
′

(0) and φ
′

(0) for different values of Rd, Ec, Le, Nb, Nt, n, Pro, s, α, and ǫ for Case B with Case A, respectively.

Case B Case A

Rd Ec Le Nb Nt n Pro s α ǫ −θ
′

(0) −φ
′

(0) −θ
′

(0) −φ
′

(0)

0.4 0.1 1 0.1 0.2 0.5 1 0.1 0.3 0.2 0.2125241 −0.4250431 0.2477734 −0.4955469

0.7 0.1682977 −0.3365954 0.2047175 −0.409435

1 0.1331988 −0.2663976 0.1704 −0.3407401

0.2 0.2 0.2450324 −0.4900648 0.2790463 −0.5580926

0.6 0.2263721 −0.4527441 0.2603162 −0.5206325

1 0.2077006 −0.4154012 0.2415691 −0.4831381

0.1 0.7 0.2507037 −0.5014074 0.2847274 −0.5694548

1 0.2496957 −0.4993915 0.2837261 −0.5674523

1.3 0.2489893 −0.4979786 0.283001 −0.566002

1 0.2 0.2496958 −0.2496958 0.2837261 −0.2837261

0.5 0.2496958 −0.0998783 0.2837261 −0.1134905

0.7 0.2496958 −0.07134165 0.2837261 −0.08106461

0.1 0.1 0.2532452 −0.2532452 0.2869886 −0.2869886

0.2 0.249657 −0.4993915 0.2837261 −0.5674523

0.4 0.2424194 −0.969777 0.2770397 −1.108159

0.2 0 0.28097 −0.5619401 0.3176236 −0.6352471

0.5 0.2496957 −0.4993915 0.2837261 −0.5674523

1 0.236645 −0.4732899 0.268578 −0.5371561

0.5 0.7 0.1808165 −0.361633 0.2169344 −0.4338689

1 0.2496957 −0.4993915 0.2837261 −0.5674523

1.3 0.3014584 −0.6029168 0.3334471 −0.6668941

1 0 0.3226349 −0.6452698 0.3492327 −0.6984654

0.1 0.2496957 −0.4993915 0.2837261 −0.5674523

0.1 0.4 0.2597021 −0.5194042 0.2935494 −0.5870988

0.7 0.2886493 −0.5772986 0.3219052 −0.6438104

1 0.3160671 −0.6321342 0.3486554 −0.6973109

0.3 0.3 0.2380814 −0.4761629

0.5 0.2168179 −0.4336357

0.8 0.1892523 −0.3785047

v4 = θ , v5 = θ
′

, θ
′′

= v
′

5 = −
Pro

(1+ 4
3 )Rd

(v1v5 + Nbv5v7

+ Ntv25 +MEc(v2 − E1)
2
+

2

n+ 1
sv4),

v6 = φ, v7 = φ
′

,φ
′′

= v
′

7 = −LeProv1v7 −
Nt

Nb
v
′

5.

(b) Case B: The transformed ODEs for Case B are,

f = u1, f
′

= u2, f
′′

= u3, f
′′′

= u
′

3 =
(u3u5)

(u4 − θr)

+
(u4 − θr)

θr
(−

2n

n+ 1
u22 + u1u3 +M(E1 − u2)− Kpu2),

u4 = θ , u5 = θ
′

, θ
′′

= u
′

5 =
−ǫu25
1+ ǫu4

−
Pro

(1+ ǫu4)(1+
4
3Rd)

(u1u5 + Nbu5u7 + Ntu25 +

MEc(u2 − E1)
2
+

2

n+ 1
su4),

u6 = φ, u7 = φ
′

,φ
′′

= u
′

7 = −LeProu1u7 −
Nt

Nb
u
′

5.

6. RESULT AND DISCUSSION

In this section, we present the outcomes of our results both in
tabulated and graphical forms.

In Table 1, we compare our results with the literature for
the skin friction coefficient against different values of n while
fixing α = 0.25 and α = 0.5. The SFDM shows an excellent
agreement with bvp4c and the literature. In summary, the
skin friction coefficient is higher for Case B and lower values
for Case A.

In Table 2 we calculate the skin friction coefficient for
various parameters like magnetic parameter M, power law
index n, electric field E1, porosity parameter Kp, variable
thickness α, and viscosity parameter θr . Its value goes up
by changing M, n, α, Kp, and θr , while it gets lower by
changing E1. Table 3 shows the heat and mass transfer rates for
various parameters.
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An electric field parameter, E1, enhances the velocity of the
fluid, as can be seen in Figure 2. Lorentz force is responsible for
increasing velocity due to the fact that the skin friction coefficient
(as shown in Table 2) decreases.

FIGURE 2 | Velocity f ′(η) for different values of E1.

FIGURE 3 | Velocity f ′(η) for different values of Kp.

In Figure 3, we observe that the momentum boundary layer
thickness thins with an increase in porosity parameter Kp. This
decrease in velocity profile is due to an increase in skin friction for
increasing values of porosity parameter Kp. Moreover, increasing

FIGURE 4 | Velocity profile f ′(η) for different values of θr .

FIGURE 5 | Temperature profile θ (η) for different values of α.
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porosity provides resistance to the flow, which ultimately reduces
the velocity of the fluid.

Figure 4 describes the velocity profile for different values
of viscosity parameter θr . It is observed that the momentum
boundary layer thins with an increase in fluid viscosity parameter

FIGURE 6 | Temperature profile θ (η) for different values of Rd.

FIGURE 7 | Temperature profile θ (η) for different values of Pro.

θr . This can be related toTable 2, where we can see that increasing
viscosity parameter θr leads to the magnitude of the skin friction
coefficient increasing, which causes the reduction in velocity.
Increasing viscosity provides more resistance to the fluid motion
since higher shear stress is required to move viscous fluids.

FIGURE 8 | Temperature profile θ (η) for different values of Bi .

FIGURE 9 | Temperature profile θ (η) for different values of Ec.
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The effect of variable thickness parameter α on temperature
can be seen in Figure 5. It is observed that only some energy is
transmitted from the surface to the liquid when we raise the wall
thickness parameter. Physically, it shows that as we enhance wall

FIGURE 10 | Concentration profile φ(η) for different values of Nb.

FIGURE 11 | Concentration profile φ(η) for different values of Nt.

thickness parameter α, less heat is transferred from the sheet to
the fluid. The temperature profile therefore decreases.

Figure 6 is plotted to demonstrate the effect of thermal
radiation parameter Rd on the temperature profile. It is found
that with the rise in Rd, the temperature profile increases
significantly, as an increase in the radiation parameter provides
more energy to the fluid, which increases the thickness of the
thermal boundary layer.

In Figure 7, it is observed that an increase in Prandtl number
Pro causes a reduction in the temperature profile. The reason
for this decrease is that smaller values of Prandtl number Pr0
are equivalent higher thermal conductivity. Since the thermal
conductivity of air is higher, ultimately, the temperature is higher.
However, a high Prandtl number corresponds to low thermal
conductivity and lower temperature flow.

In Figure 8, we illustrate the influence of Biot number Bi on
the temperature profile. It is seen that for higher values of Biot
number Bi, the thermal boundary layer thickness increases. This
increase in temperature profile is due to the heat transfer rate,
which enhances for higher values of Biot number Bi. Since the
thermal conductivity is dominant compared to convection, heat
transport increases as the Biot number increases.

To examine the effects of the Eckert number Ec on the
temperature distribution, we plot Figure 9. For higher values
of the Eckert number Ec, it is evaluated that somehow the
temperature profile rises and the thermal boundary layer gets
thinner. Eckert number Ec is the ratio of the kinetic energy of
fluid and enthalpy. For increasing values of Eckert number Ec,
the kinetic energy increases, which causes an enhancement in
fluid temperature.

FIGURE 12 | Temperature profile θ (η) for different values of ǫ.
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Figure 10 is plotted to illustrate the effect of the Brownian
motion parameter on the concentration profile. It is concluded
that higher values of Brownian motion parameter Nb cause a
reduction in the nanoparticle concentration profile.

Figure 11 is presented to characterize the behavior of
thermophoresis parameter Nt on the concentration profile. It is
noted that by increasing the thermophoresis parameter, we find a
reduction in the nanoparticle concentration profile.

In Figure 12, it is found that an increase in variable thermal
conductivity parameter ǫ enhances the temperature profile.
Table 3 indicates that the Nusselt number decreases with
increasing ǫ. Due to this, the heat transfer rate increases, and
hence the temperature profile increases.

7. CONCLUSIONS

This analysis achieved two goals. Firstly, an assessment of
distinctive features for constant and variable properties has
been done. Secondly, we adopted a new numerical process, the
SFDM, to compute solutions and compared its accuracy with
bvp4c. The notable results for both cases, Case A and B, are
as follows:

• The numerical technique, the SFDM, has produced excellent
results with high accuracy, as shown in Tables 1, 2.

• Momentum boundary layer thickness grows with an
increase in the electric field E1, whereas it decreases with

increases in porosity parameter Kp and fluid viscosity
parameter θr .

• The thermal boundary layer thickness rises when radiation
parameter Rd, Biot number Bi, Eckert number Ec, or
thermal conductivity parameter ǫ rises, while it decreases for
higher values of variable thickness parameter α and Prandtl
number Pro.

• The concentration boundary layer thickness decreases with
increasing Nb and increases with increasing Nt.

• It is shown that the results are different for constant and
variable fluid properties. For variable fluid properties, heat
transfer and mass transfer rates are lower than with constant
fluid properties. The skin friction coefficient is higher for
variable fluid properties than for constant fluid properties.
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NOMENCLATURE

(u, v) Velocity components

b Positive constant

n Power law index

B(x) Applied magnetic field

E(x) Applied electric field

µ Coefficient of viscosity

ρ Density of fluid

σ Electrical conductivity of the fluid

M Magnetic field parameter

E1 Electric field parameter

Kp Permeability parameter

T Fluid temperature

k Thermal conductivity

Cp Specific heat capacity

qr Radiative heat flux

Q(x) Heat generation/absorption parameter

C Concentration

τ Ratio of heat capacities of nanofluid to heat capacities of

base fluid

(ρC)p Heat capacities of nanofluid

(ρC)f Heat capacities of base fluid

DB Brownian coefficients

DT Thermophoretic diffusion coefficients

T∞ Ambient fluid temperature

Tw Constant temperature at wall

C∞ Ambient fluid concentration

Cw Fluid concentration at wall

Pro Prandtl number

Le Lewis number

Nt Thermophoresis number

Nb Brownian motion parameter

α Wall thickness parameter

Rd Thermal radiation parameter

σ ∗ Stefan-Boltzman constant

k∗ Mean absorption coefficient

ǫ Thermal conductivity parameter of the fluid

θr Fluid viscosity parameter

Bi Biot number

Ec Eckert number

s Heat source parameter

Rex Local Reynolds number

τw Surface shear stress

qw Wall heat flux

jw Wall mass flux

Cf =
τw

ρu2w
Skin friction coefficient

Nux = −
(x+b)qw

ko (Tw−T∞)
Nusselt parameter

Shx = −
(x+b)jw
Cw−C∞

Sherwood parameter

K(x) Permeability
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Heat Transfer Analysis for Non-linear
Boundary Driven Flow Over a Curved
Stretching Sheet With a Variable
Magnetic Field
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Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan

A 2-D boundary-layer flow induced by non-linear (quadratic) stretching of a curved

surface of an incompressible MHD viscous fluid is investigated. Heat transfer analysis is

presented including viscous dissipation and thermal radiation. A radially variablemagnetic

field is applied that satisfies Maxwell’s equation and incorporates the curvature effects.

A new similarity variable and similarity transformation are introduced to reduce the

governing PDE’s into ODE’s. A numerical procedure is adopted to find the solution of

momentum and energy equations. The numerical scheme is validated with the existing

data. The results are illustrated graphically and discussed physically. Comparison with

the literature shows a significant improvement compared to existing studies.

Keywords: curved surface, non-linear stretching, MHD, variable temperature, viscous dissipation, Joule heating,

radiation, CST and PSVT

INTRODUCTION

Stretching is one of the most important mechanisms for boundary driven flows. Crane [1] was
the first to present an exact analytical solution for linear stretching on a flat plate. Since then a
lot of theoretical and numerical studies have been conducted with applications in the polymer
industry and engineering processes. Linear stretching was extended to non-linear and exponential
stretching velocities for plane surfaces and tubes in Newtonian and non-Newtonian fluids [2–13].
The stretching of curved surfaces is now being studied for its mathematical interest as a method for
solving non-linear governing equations in curvilinear coordinates and for understanding boundary
driven flow behavior and generalized flow geometry. As the body of literature about stretching
is so large it cannot be cited here, we will focus on curved surfaces only. Sajid et al. [14] was
first to introduce the concept of flow due to the linear stretching of the curved surface in a
Newtonian fluid. They concluded that the velocity decreases as the radius of curvature increases,
or the velocity and the boundary layer thickness increase for the curved surface in comparison
with the flat surface. In addition, the pressure gradient is variable contrary to the constant pressure
gradient for the flat surface. Sanni et al. [15] discussed non-linear power law stretching velocity.
Magnetohydrodynamic (MHD) flow over a curved linear stretching surface with heat transferred
to an electrically conducting fluid in the presence of a transversely applied magnetic field was
presented by Abbas et al. [16]. We observe that the studies for MHD flow in the curvilinear
geometry are normally undertaken using a uniform magnetic field [17–24]. However, we find
that the magnetic field must be such that it satisfies the solenoidal property

(

div B = 0
)

. Hence,
the assumption of a uniform magnetic field is valid for a rectangular coordinate system but not
for curvilinear coordinates. Variable magnetic fields are used for the treatment of peptic ulcers,
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medical diagnosis and in medical therapeutic techniques. In
industry, the growing of pure crystal semiconductors can be
controlled using a variable magnetic field [25, 26]. Some other
papers about curved structures also include: Reddy et al. [27]
which analyzed a dual solution of nanofluid flow due to a curved
stretching surface under the influence of non-linear radiation.
The flow of a nanofluid with carbon nanotubes caused by
a curved stretching surface, with internal heat generation, is
examined by Saba et al. [28]. Naveed et al. [29] documented
dual solutions of MHD viscous fluid flow past a shrinking
curved surface. Hayat et al. [30] discussed a numerical solution
for hydromagnetic fluid flow under Soret and Dufour effects.
In the presence of variable viscosity and carbon nanotubes,
Nadeem et al. [31] investigated an MHD nanofluid over a curved
stretching surface. For the solutionmethodology, new similarities
have been defined which take into account the effects of both
linear and non-linear stretching velocities. In the literature, the
similarity for the non-linear stretching velocity is defined in a
way that takes care of the linear part only. We believe that it
results in incomplete governing equations and incomplete results
missing out the effects of the non-linear part. This motivates us to
define a new similarity transformation, resulting in the complete
set of governing equations and improved results which addresses
the non-linear part of the velocity as well. Mathematically, the
objective of the present study has been to formulate the Lorentz
force for variable magnetic field in the curvilinear coordinates
and to redefine the similarity transformation to improve upon
the results of the non-linear stretching velocity for a flat surface.
This is accomplished for the flow and heat transfer analysis over
the non-linear stretching of a curved surface in an electrically
conducting viscous fluid in the presence of a variable magnetic
field. The important observations are that the velocity induced by
the boundary decreases as the the magnetic field and the radius of
curvature increases. Thus, the flow field and the boundary layer
thickness can be maintained with the help of these parameters.
The non-linear contribution of the boundary velocity has more
significant effect than the linear part. Detailed consequences of
this study are discussed in the last section.

PROBLEM FORMULATION

Consider the steady two-dimensional boundary-layer flow and
heat transfer for an incompressible hydromagnetic viscous fluid
moving over a curved surface. The flow is induced by a non-
linear (quadratic) stretching velocity of the form ax + bx2 (a
and b being the dimensional constants), and the energy equation
includes the viscous dissipation and thermal radiation. A variable
applied magnetic field, given as B (r) = RBo(R+ r)−1

êr , is
acting in the radial direction compared to the curved surface. The
variable magnetic field is taken on purpose to make it consistent
with Maxwell’s equation (∇.B = 0). The governing equations
are modeled using curvilinear coordinates. The Lorentz force
F = J×B and the current density J in the absence of an electrical
current (E = 0) are expressed as:

J = σ (V× B) (1)

F = (−σRBo(R+ r)−1u, 0, 0). (2)

FIGURE 1 | Physical geometry of the problem.

We observe that an electrically conducting fluid transverses a
curved path along the stretching surface (instead of in a linear
direction), and the magnetic field is perpendicular to the flow
direction. Using Equaion (1), the Lorentz force takes the form
F = (−σRBo(R+ r)−1u, 0, 0) which takes a constant value as
R goes to infinity. In the above equation, σ is the electrical
conductivity of the fluid, êr is the unit vector in the radial
direction and Bo is the strength of the applied magnetic field;
whereas u and v are the components of velocity field in the x−
and r−directions. The geometry of the flow is given in Figure 1.

The boundary layer equations [16] in the presence of a variable
magnetic field can be given as follows:

∂r [(R+ r) v] = − R∂xu (3)

v∂ru+
Ru
R+r ∂xu+

uv
R+r = −

1
ρ

R
R+r ∂xP

+υ

{(

1
R+r ∂r[(R+ r) ∂ru]

)

−
u

(R+r)2

}

−
σB20R

2

ρ(R+r)2
u (4)

u2

R+r =
1
ρ
∂rP (5)

v∂rT +
Ru
R+r ∂xT =

K
ρCp

{

1
R+r ∂r[(R+ r) ∂rT

}

+
u

ρCp

(

∂ru−
u

R+r

)2
−

1
ρCp

∂rqw +
σR2

ρCp(R+r)2
u2, (6)

where u is the viscosity of the fluid, ρ is the fluid density, p is the
pressure, Tw is the temperature of the surface at γ = 0, T∞ is the
ambient temperature, K is the thermal conductivity of the fluid,
Cp is specific heat of the fluid at constant pressure, and qw is the
heat flux.

The boundary conditions for all a, b∈ R satisfied by the
velocity and the temperature fields are:

uw = ax+ bx2, v = vw = 0,T = Tw at r = 0 (7)

u = 0, ∂ru = 0,T → T∞ as r → ∞. (8)

In Equation (7), a and b determine the strength of the linear and
non-linear parts of the stretching velocity, respectively.

The similarity variables given in [2–4] are revisited and
modified for generalized curvilinear coordinates to include both
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a linear and non-linear part. These are now defined as:

γ = r

{

a+ bx

υ

}
1
2

,= axg′ (γ ) + bx2h′ (γ ) ,

R = k

{

υ

a+ bx

}
1
2

, p = ρu2wP (η) (9)

v = −
R

R+ r

{

υ

a+ bx

}
1
2
{[

ag (γ ) + 2bxh (γ )
]

+
d

2
(

a+ bx
)

{[

γ
[

axg′ (γ ) + bx2h′ (γ )
]

−
[

axg (γ ) + bx2h (γ )
]]}}

. (10)

Equation (3) is identically satisfied; however, Equations (4) and
(5) together with Equations (9) and (10) yield

a2x







−

k
[

gg′′ −
(

g′
)2

− 2p1 (γ )

]

k+ γ
−

k(gg′ − 1
k
g′)

(

k+ γ
)2

−
g′′

k+ γ
− g′′′ +

Hak2g′

(k+ γ )2

}

+abx2

{

−
k
[

h′′g + 2hg′′ − 3h′g′ − 6p2 (γ )
]

k+ γ

−
k
(

2hg′ + h′g
)

(

k+ γ
)2

−
h′′ + g′′

k+ γ
+

h′ + g′

(

k+ γ
)2

− (h′′′ + g′′′)

+
Hak2h′

(k+ γ )2

}

+ b2x3







−

2k
[

hh′′ −
(

g′
)2

+
1
k
h′′ − 2p3 (γ )

]

k+ γ

−
k
[

hh′ − 1
k
h′

]

(

k+ γ
)2

− h′′′

}

= 0 (11)

a2x

[

(

g′
)2

k+ γ
− pi

′(γ )

]

+ abx2
[

2h′g′

k+ γ
− 2pj

′(γ )

]

+b2x3

[

(

h′
)2

k+ γ
− pk

′ (γ )

]

= 0 (12)

where
(

Ha =

√

σB0
2a2/µ

)

is the Hartman number.

The boundary conditions in the dimensionless form are:

g (0) = 0, g′ (0) = 1, h (0) = 0, h′ (0) = 1 at γ = 0

(13)

h′ (∞) = 0, h′′ (∞) = 0, g′ (∞) = 0, g′′ (∞) = 0 as γ → ∞.

(14)

Equation (12) along with Equation (11) gives

2k

k+ γ
P
1

(γ ) = g′′′ +
g′′

k+ γ
−

g′

(

k+ γ
)2

+
kgg′′

k+ γ

+
kgg′

(

k+ γ
)2

−
k
(

g′
)2

k+ γ
−

Hak2

(k+ γ )2
g′ (15)

6k

k+ γ
P
2

(γ ) = g′′′ + h′′′ +
h′′ + g′′

k+ γ
−

h′ + g′

(

k+ γ
)2

+
kh′′g

(

k+ γ
) +

2khg′′
(

k+ γ
) −

3kh′g′

k+ γ

+
2khg′

(

k+ γ
)2

+
kh′g

(

k+ γ
)2

−
Hak2

(k+ γ )2
h′ (16)

4k

k+ γ
P
3

(γ ) = h′′′ +
h′′

k+ γ
−

h′

(

k+ γ
)2

+
2khh′′

k+ γ

+
2khh′

(

k+ γ
)2

−
2k

(

h′
)2

k+ γ
. (17)

The pressure inside the boundary layer is now expressed as:

P (γ ) = a2p1 (γ ) + abp2 (γ ) + bp3(γ ). (18)

Using the limit ξ → ∞, Equations (15)−(17) reduce to

g′′′ + gg′′ −
(

g′
)2

−Ha2g′ = 0 (19)

h′′′ + g′′′+h′′g + 2hg′′ − 3h′g′ −Ha2h′ = 0 (20)

h′′′ + 2hh′′ − 2
(

h′
)2

= 0 (21)

At this point, we make some observations of vital importance.
One, the similarity transformation as defined in this paper
considers the contribution of both linear and non-linear parts
of the stretching velocity through the terms “a” and “b.”
The similarity used in the literature for non-linear stretching

(η = y
√

a
υ
) is deficient in that its only involves a which only

corresponds to the linear part of the stretching velocity [2–4].
This omission leads to the omission of terms in the momentum
equations and consequently results in an incomplete solution.

Eliminating the pressure from Equations (15), (16), and (17),
we obtain self-similar equations as given below:

g
′v
+

2g′′′

k+ γ
−

g′′

(

k+ γ
)2

+
g′

(

k+ γ
)3

+
kgg′′′

k+ γ
−

kg′g′′

k+ γ

+
kgg′′

(

k+ γ
)2

−
k
(

g′
)2

(

k+ γ
)2

−
kgg′

(

k+ γ
)3

−
Ha2k2g′′

(

k+ γ
)2

+
Ha2k2g′

(k+ γ )3
= 0 (22)

h
′v
+ g

′v
+

2(h′′′ + g′′′)

k+ γ
−

h′′ + g′′

(

k+ γ
)2

+
h′ + g′

(

k+ γ
)3

+
k
(

gh′′′ + 2hg′′′ − 2h′′g′ − h′g′′
)

k+ γ
−

k
(

2hg′ + h′g
)

(

k+ γ
)3

+
k
(

gh′′ − 3h′g′ + 2hg′′
)

(

k+ γ
)2

−
Ha2k2h′′

(

k+ γ
)2

+
Ha2k2h′

(k+ γ )3
= 0 (23)

h
′v
+

2h′′′

k+ γ
−

h′′

(

k+ γ
)2

+
h′

(

k+ γ
)3

+
2khh′′′

k+ γ
−

2kh′h′′

k+ γ

+
2khh′′

(

k+ γ
)2

−
2k

(

h′
)2

(

k+ γ
)2

−
2khh′

(

k+ γ
)3

= 0. (24)
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HEAT TRANSFER ANALYSIS

The thermal boundary layer Equation (6) is solved for a
constant surface temperature and variable surface temperature,
in sequence.

Constant Surface Temperature (CST)
In this case, T = T(r) and the Equation (6) reduces to

v∂rT =
K

ρCp

{

1

R+ r
∂r [(R+ r) ∂rT]

}

+
u

ρCp

(

∂ru−
u

R+ r

)2

−
1

ρCp
∂rqw

+
σR2

ρCp(R+ r)2
u2 (25)

The boundary conditions are

T = T w|r=0
and T|r→∞ = 0 (26)

and the dimensionless temperature distributions is of the form,

θ(γ ) =
T − T∞

Tw − T∞

. (27)

Variable Surface Temperature (PSVT)
Expressing T = T(x, r) in the form

T (x, r) = T∞ + A
(x

l

)n
θ(γ ) (28)

and the boundary conditions

T w|r=0
= T∞ + A

(x

l

)n
and T|r→∞ = 0 (29)

in which n∈ R is the index of wall temperature parameter, and A
is the dimensional wall constant.

The radiative heat flux qw under Rosseland’s approximation is
given by

qw = −
4σ ∗

3k∗
∂rT

4 (30)

where k∗ and σ ∗ are the mean absorption coefficient and the
Stefan-Boltzmann constant, respectively.

Taylor’s series is employed in the expansion of the temperature
variation (T4) about T∞, and we get

T4
≈ 4T3

∞
T − 3T4

∞
. (31)

Substituting Equation (31) in Equation (30), we have

∂rqw = −
16σ ∗T3

∞

3k∗
∂rrT. (32)

After using Equation (32), the energy Equation (25) and (6) for
CST and PSVT cases reduce to

v∂rT =
K

ρCp

(

1+
16σ ∗T3

∞

3k∗K

)

∂rrT

+
µ

ρCp

(

∂ru−
u

R+ r

)2

+
K

ρCp
∂rT +

σR2

ρCp(R+ r)2
u2 (33)

v∂rT +
Ru

R+ r
∂xT =

K

ρCp

(

1+
16σ ∗T3

∞

3k∗K

)

∂rrT

+
µ

ρCp

(

∂ru−
u

R+ r

)2

+
K

ρCp
∂rT +

σR2

ρCp(R+ r)2
u2.(34)

Equations (33) and (34) after using Equation (9), (10), (27), and
(28) give

(

1+ Rd
)

θ ′′ +
θ ′

(k+ γ )
+

Prk
(

g + 2h
)

θ ′
(

k+ γ
)

+EcPr

(

h′′ + g′′ −
h′ + g′

k+ γ

)2

+
wk2

(

h′ + g′
)2

(

k+ γ
)2

= 0 (35)

(

1+ Rd
)

θ ′′ +
θ ′

(k+ γ )
+

Prk
[(

g + 2h
)

θ ′ − n
(

h′ + g′
)

θ
]

(

k+ γ
)

+EcPr

(

h′′ + g′′ −
h′ + g′

k+ γ

)2

+
wk2

(

h′ + g′
)2

(

k+ γ
)2

= 0 (36)

The boundary conditions become

θ |γ=0 = 1 and θ |γ→∞ = 0 (37)

where Pr
(

= Cpµ/ko
)

, Ec
(

= U2/(Cp (Tw − T∞) )
)

,
Ec

(

= U2/CpA (x)n
)

, Rd
(

= 16σ ∗T3
∞

/3k∗K
)

andw (= H2
aEcPr)

are Prandtl’s number, Eckert’s number, the modified Eckert
number, Radiation and Joule heating parameters, respectively.
Equation (36) is locally similar and corresponds to CST if n = 0.

The surface frictional drag and other important quantities
experienced by the fluid flow at the surface are the skin-friction
coefficients Cf , Nusselt numberNu and Local NusseltNu∗. These
are defined as follows:

Cf =
τrx|r=0
1
2ρu

2
w

,Nu =
xqw

k∗(T − Tw)
and Nu∗ =

xqw

k∗B (x)ω
(38)

such that

τrx|r=0 = µ

(

∂ru−
u

R+ r

)

r=0

;R
1
2
ex =

√

(

c+ dx

υ

)

x2;

qw = −k∗ ∂rT|r=0 (39)

Equations (38) and (39) give

−
1

2
R

1
2
exCf =

(

f ′′ (0) + g′′ (0) −
2

k

)

(40)

NuR
1
2
e = − θ ′(0),Nu∗R

1
2
ex (41)

We notice that Equation (41) is subjected to the heat conditions
defined in Equation (37).
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TABLE 1 | Comparison of the present results of the Skin-friction coefficient and the Local Nusselt number.

Curvature Magnetic parameter Abbas et al. (u = cx) [16] Present results (u = cx), d = 0

ξ M −R
1
2
esCf −θ ′(0) −R

1
2
esCf −θ ′(0)

5 0.2 1.22881 0.43268 1.20372 0.42418

10 0.2 1.12311 0.41896 1.10709 0.41132

20 0.2 1.07541 0.41094 1.06389 0.40365

50 0.2 1.04849 0.40571 1.03958 0.39864

100 0.2 1.03982 0.40390 1.03175 0.39691

200 0.2 1.03553 0.40298 1.02788 0.39604

1,000 0.2 1.03212 0.40224 1.02480 0.39533

10 0.2 1.12311 0.41896 1.10709 0.41132

10 0.4 1.18306 0.40717 1.16408 0.39975

10 0.6 1.27633 0.38927 1.25344 0.38190

10 0.8 1.39562 0.36727 1.36870 0.35953

10 1.0 1.53419 0.34304 1.50358 0.33447

FIGURE 2 | (A) Effects of k on stream function f (γ). (B) Effects of k on stream function g(γ).

COMPUTATIONAL METHODOLOGY

In this present work, our focus is to present physical and plausible
solutions for the three momentum equations in response to a
curved structure through a numerical approach. Substituting
Equation (22) into Equation (23), differentiating the resulting
equation and accommodating Equation (24) gives

g
′v
+

2g′′′ + kgg′′′ − kg′g′′
(

k+ γ
) −

g′′ − kgg′′ + k
(

g′
)2

+ (Ha)2 k2g′′

(

k+ γ
)2

+
g′ − kgg′ − (Ha)2k2g′

(k+ γ )3
= 0 (42)

hv −
7h′′′

(

k+ γ
)2

+
5h′′

(

k+ γ
)3

−
5h′

(

k+ γ
)4

+
4khh′

(

k+ γ
)4

−
2k

(

2hh′′′ − 2h′h′′
)

(

k+ γ
)2

−

2k
[

2hh′′ − 2
(

h′
)2

]

(

k+ γ
)3

+

k
[

3gg′′ −
(

g′
)2

]

(

k+ γ
)3

−
3kgg′

(

k+ γ
)4

−

k
[

ggiv −
(

g′′
)2

]

(

k+ γ
)

+
k
(

2hgiv + h′g′′′ − h′′′g′ − 3h′′g′′
)

(

k+ γ
) +

kghiv
(

k+ γ
)

−
k
(

3h′′g + 6hg′′ − 3h′g′
)

(

k+ γ
)3

+
3k

(

2hg′ + h′g
)

(

k+ γ
)4

−
(Ha)2 k2

(

h′′′ + g′′′
)

(

k+ γ
)2

−
(Ha)2 k2

(

h′′ + g′′
)

(

k+ γ
)3

+
(Ha)2 k2(3h′ + g′)

(k+ γ )4
= 0 (43)

At this point, the solution of the non-linear coupled
system of differential Equations (35), (36), (42),
and (43) as subject to boundary conditions from
Equations (13), (14), and (37), is obtained by using
the shooting method with Runge-Kutta algorithms
in MATLAB. The initial expression of the higher
order system into first order differential equations
are transformed into an initial value problem by

considering
(

g, g′, g′′, g′′′, h, h′, h′′, h′′′, h′v, θ , θ ′
)T

=

(s1, s2, s3, s4, s5, s6s7, s8, s9, s10, s11)
T . The implementation of

our numerical technique into the above system of equations
gives the following.
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FIGURE 3 | (A) Effects of k on velocity field u(γ). (B) Effects of Ha on velocity field u(γ). (C) Effects of a on velocity field u(γ). (D) Effects of b on velocity field u(γ).
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, (45)

where z =
1

(k+γ )
and zk =

1
(1+Rd)

. The unknown initial

values N1, N2, N3, N4, N5 and N6 are approximated with the
help of Newton’s method till the required conditions (h′ (γ ) =

0, h′′
(

gamma
)

= 0, g′ (γ ) = 0, g′′ (γ ) = 0, g′′′ (γ ) =

0, θ ′ (γ ) = 0) are satisfied as γ → ∞. The initial guesses are
given by

g′′ = N1

g′′′ = N2

h′′ = N3

h′′′ = N4

h′v = N5

θ ′ = N6































η=0

. (46)
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FIGURE 4 | (A) Effects of Pr on temperature field θ(γ ). (B) Effects of Ec′, Ec on temperature field θ(γ ). (C) Effects of Rd on temperature field θ(γ ). (D) Effects of n on

temperature field θ(γ ). (E) Effects of w on temperature field θ(γ ). (F) Effects of Ha on temperature field θ(γ ).

Expanding Equation (46) about γ = ∞

g′′ (γ , N1 + 1N1,N2 + 1N2,N3 + 1N3,N4

+1N4,N5 + 1N5,N6 + 1N6)

= g′′ (γ , N1,N2,N3,N4,N5,N6) +
∂g′′

∂N1
1N1 +

∂g′′

∂N2
1N2

+
∂g′′

∂N3
1N3 +

∂g′′

∂N4
1N4 +

∂g′′

∂N5
1N5 +

∂g′′

∂N6
1N6. (47)

The remaining conditions (g′′′, h′′, h′′′, h′v, θ ′) are subsequently
expressed in the form of Equation (47). The required Jacobian
Matrix computed (for γ = ∞) after several processes is given as

ÂX̂ = B̂, (48)

where X̂ = (N1,N2,N3,N4,N5,N6)
T , B̂ =

(B1,B2,B3,B4,B5,B6)
T and the iterations that generate the

above Matrix takes the form:

For
i = 1 (1) 6
j = 1(1)6

}

(49)

Â
(

i, j
)

= s (11i+ 3)

×s
(

11j+ 3
)

+ s (11i+ 4) × s
(

11j+ 4
)

+s (11i+ 7) × s
(

11j+ 7
)

+s (11i+ 8) × s
(

11j+ 8
)

+ s (11i+ 9)

×s
(

11j+ 9
)

+ s(11i+ 11)× s(11j+ 11)(50)

B̂ (i) = − (s (3) × s (11i+ 3) + s (4)

×s (11i+ 4) + s (7) × s (11i+ 7) + s (8)

×s (11i+ 8) + s (9) × s (11i+ 9) + s (11) × s(11i+ 11)
)

.(51)

The final point of the boundary layer region is determined
successfully when no changes occur at s = 1 to a tolerance
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FIGURE 5 | (A) Effects of k on pressure profile P(γ ). (B) Effects of Ha on pressure profile P(γ ). (C) Effects of a on pressure profile P(γ ). (D) Effects of b on pressure

profile P(γ ).

FIGURE 6 | (A) Effects of k on surface drage force. (B) Effect of Ha on surface drag force.

value of 10−8. Our interest focuses in investigating the flow
characteristics: velocity, temperature, momentum and thermal
boundary layer thickness over a curved surface under certain
physical parameters.

RESULT AND DISCUSSION

In this section, we present the effects of characterizing parameters
on flow and thermal behavior. Table 1 gives the surface drag
force and heat transfer rate for CST/PSVT cases. Figures 2A,B
establish the patterns of fluid trajectory which decreases as
the radius of curvature, k, increases. Figures 3A,B examine

the behavior of the velocity, u (γ ) , and momentum boundary
layer for an increasing radius of curvature, k, and the Lorentz
force. The fluid velocity and the momentum boundary layer are
found to decrease as these parameters increase. This helps to
control the fluid flow by means of curvature (Figure 3A) and
the Lorentz force (Figure 3B). Thus, besides the well-known
behavior of the Lorentz force, the curvature plays an important
role in reducing the velocity. This alternate way of reducing
the velocity field through the radius of curvature (for curved
structures) has been established for the first time. The effects of
the linear, a, and non-linear, b, parts of the stretching velocity
are presented in Figures 3C,D. It is noted that fixing either a
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TABLE 2 | Numerical values of −R
1
2
exCf and rate of heat transfer at fixed a = 0.5, and b = 0.5.

k Ha Pr Ec’ Ec Rd w −R
1
2
exCf CST (n = 0) PSVT (n = 0.3)

−θ ′(0) −θ ′(0)

5 0.2 0.9 0.2 0.2 0.9 0.1 2.80246 0.25898 0.98254

– 0.3 – – – – – 2.85872 0.25055 0.97141

– 0.4 – – – – – 2.93584 0.23887 0.95599

– 0.2 0.7 – – – – 2.80246 0.20943 0.82570

– – 0.9 – – – – – 0.25898 0.98254

10 – 1.2 – – – – – 0.32758 1.18706

– – 1.5 0.1 0.1 – – – 0.59220 1.52979

– – – 0.2 0.2 – – – 0.38709 1.36450

– 0.3 – 0.3 0.3 – – 2.85872 0.16446 1.18024

– – – 0.2 0.2 0.5 – – 0.45540 1.56950

20 – 2.0 – – 0.7 – – 0.48926 1.71391

– – – – – 0.9 – – 0.45145 1.60176

– 0.4 – 0.3 0.3 1.2 0.1 2.93584 0.13874 1.24422

– – – – – – 0.2 – 0.01932 1.14752

– – – – – – 0.3 – −0.10009 1.05083

– 0.5 – – – – 0.4 3.03237 −0.24530 0.92318

or b and varying the other parameter increases the velocity field
and the boundary layer thickness; inferring that both parameters
are indispensable and equally important. The temperature
profile is found to decrease/increase for increasing/decreasing
Prandtl/Eckert numbers for both CST (Figure 4A) and PSVT
(Figure 4B) according to the physics of heat flow. Increasing
the radiation parameter, Rd, increases the fluid temperature
and the thermal boundary layer thickness (radiation servers as
additional source for heat generation) as shown in Figure 4C.
This effect is more significant in CST than PSVT. Figure 4D
gives a comparison of the temperature distribution between CST
(n = 0) and PSVT (n > 0). It is observed that the thermal
kinetics profile is maintained over the surface for CST. However,
the temperature and thermal boundary layer decreases as the
temperature index, n, increases. Figure 4E expresses the effect
of Lorentz force in the generation of surface heating. Thus, the
application of Lorentz force increases the heat flow characteristic
in both CST/PSVT. The effects of a magnetic parameter on the
temperature and thermal boundary layer thickness are presented
in Figure 4F and show a slight increase with Ha. It is further
observed that heat transfer from the surface to the fluid is more
significant for a constant surface temperature than a variable
surface temperature. This shows an additional effect of magnetic
fields (hitherto unknown) is raising the temperature of the fluid
flow over the curved surface. The pressure gradient P (γ ) in the
boundary layer region for the curved surface cannot be neglected;
whereas it is neglected for the straight surface. However, the effect
of increasing curvature, k, and Ha on the pressure is shown in
Figures 5A,B. We observe from Figure 5A that the pressure rises
from the start of the curved surface and decreases subsequently.
The observation conforms with the velocity behavior which
decreases for large k, while the pressure approaches zero for the
flat surface as (k → ∞). In Figure 5B the pressure decreases

significantly along the curved surface due to an opposing Lorentz
force that suppresses the bulk movement of the fluid. This agrees
with the behavior of the velocity as explained in the figure above.
Figures 5C,D show the effects of stretching strengths a and b on
the pressure. The pressure increases when either a (Figure 5C)
or b (Figure 5D) is increased. This increase is more significant at
the start of the curved surface for b, proving that the strength of
non-linear stretching contributes more effectively compared to
the linear strength of the stretching velocity. This phenomenal
observation is presented for the first time. We further notice
that the flow field characteristic decreases for linear stretching
in Figure 5C while it increases for non-linear stretching in
Figure 5D. The surface drag force for varying curvature and
magnetic field parameters is shown in Figures 6A,B. Figure 6A
shows that the drag force increases with k for increasing Ha,
while in Figure 6B it decreases with Ha as a consequence of
increasing k. Table 1 is presented to show the impacts of a
variable magnetic field in comparison with the constant magnetic
input on surface drag force and heat transfer rate in view of
possible engineering applications. The differences raise a slight
concern due to improvements in the geometry (curvilinear) of
the magnetic field rather that using a constantly applied field
as in the existing literature. Table 2 is computed to tabulate
the numerical values of the skin friction coefficient and the
heat transfer rate (Nusselt/local Nusselt numbers) for CST/PSVT
under varying values of the characterizing parameters.

CONCLUSION

The flow and heat transfer analysis of a two-dimensional steady
hydromagnetic viscous fluid flow due to non-linear (quadratic)
stretching of the curved surface is investigated. The energy

Frontiers in Physics | www.frontiersin.org 9 April 2020 | Volume 8 | Article 113140

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sanni et al. Non-linear Boundary Driven Flow

equation contains viscous dissipation, linear radiation and joule
heating effects. The similarity transformation is improved to
contain both the effects of the linear and non-linear parts of
the stretching velocity on the velocity field. The expression
of Lorentz force is modified for the curved surface. The heat
flow is discussed for the cases of constant surface temperature
(CST) and variable surface temperature (PSVT). The reduced
boundary layer equations are solved numerically using Runge-
Kutta (RK) fourth order algorithms. The salient features of this
work are: (i) Correct modeling of the quadratic stretching is
presented by redefining the similarity transformation. (ii) An
accurate expression of the Lorentz force is obtained for an applied
magnetic field on the curved structure by considering the variable
magnetic field that depends on the radial direction. (iii) The
velocity field and the momentum boundary layer thickness can
be maintained by the curvature and the Lorentz force. (iv) The
effects of the strengths of the linear and non-linear parts of the
stretching velocity are investigated for controlling the flow over
the curved surface. (v) For both CST/PSVT cases the magnetic
field increases slightly due to quantum heat generation caused
by the Lorentz force. (vi) A decrease of the dimensionless radius
of curvature (increasing the curvature) gives a decrease in the
heat transfer from the curved surface to the fluid as compared

to a flat surface. (vii) Increasing the Eckert/Local Eckert number
enhances the temperature field and thermal boundary layer
thickness. (viii) Low thermal conductivity due to an increasing
Prandtl number consequently diminishes the temperature field
and thermal boundary layer thickness. (ix) A high radiation
parameter increases the heat flow from the surface to the fluid.
(x) Variation of the wall temperature (PSVT) index reduces the
heat flow characteristics, consequently it helps in regulating the
heat flow rate generated over a curved sheet. (xi) The pressure
decreases for a large radius of curvature, k, and Ha and increases
due to the non-linear part of the stretching velocity.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

The corresponding author is a PhD student under supervision of
SA and co-guidance QH. All authors work and mediated on, the
technicality, physical intuition, and mathematical significance
contributions of the manuscript content to the research world.

REFERENCES

1. Crane LJ. Flow past a stretching plate. Z Angew Math Phys. (1970) 7:645–

7. doi: 10.1007/BF01587695

2. Kumaran V, Ramanaiah G. A note on the flow over stretching sheet. Acta

Mech. (1996) 116:229–33. doi: 10.1007/BF01171433

3. Raptis, AA, Perdikis C. Viscous flow over a nonlinear stretching sheet in the

presence of a chemical reaction and magnetic field. Int. J. Nonlinear Mech.

(2006) 41:527–9. doi: 10.1016/j.ijnonlinmec.2005.12.003

4. Cortell R. Further results on nonlinearly stretching permeable sheets.

analytic solution for MHD flow and mass transfer. Math Probl Eng. (2012)

2012:18. doi: 10.1155/2012/743130

5. Takhar HS, Raptis AA, Perdikis CP. MHD asymmetric flow past note a semi-

infinte moving plate. Acta Mech. (1986) 65:287–90. doi: 10.1007/BF01176888

6. Kelson NA. Note on similarity solutions for viscous flow over an impermeable

and non-linearly (quadratic) stretching sheet. Int J Nonlinear Mech. (2011)

46:1090–1. doi: 10.1016/j.ijnonlinmec.2011.04.025

7. Cortel R. MHD (magneto-hydrodynamic) flow and radiative

nonlinear heat transfer of a viscoelastic fluid over a stretching

sheet with heat generation/absorption. Energ J. (2014) 74:896–

905. doi: 10.1016/j.energy.2014.07.069

8. Magyari E, Keller B. Heat and mass transfer in the boundary layer on an

exponentially stretching continuous surface. J Phys D Appl Phys. (1999)

32:577–85. doi: 10.1088/0022-3727/32/5/012

9. Partha MK, Murthy PN, Rajasekhar GP. Effect of viscous dissipation on the

mixed convection heat transfer from an exponentially stretching surface.Heat

Mass Transfer. (2005) 41:360–6. doi: 10.1007/s00231-004-0552-2

10. Abd-El-Aziz M. Viscous dissipation effect on mixed convection flow of a

micropolar fluid over an exponentially stretching sheet. Can J Phys. (2009)

57:359–3678. doi: 10.1139/P09-047

11. Ishak A. MHD boundary layer flow due to an exponentially stretching

sheet with radiation effect. Sains Malays. (2011) 40:391–5. Available online

at: http://journalarticle.ukm.my/2406/1/17_Anuar_Ishak.pdf

12. Zeeshan A, Ellahi R. Series solutions for nonlinear partial differential

equations with slip boundary conditions for non-Newtonian

MHD fluid in porous space. Appl Math Inform Sci. (2013)

7:257–65. doi: 10.12785/amis/070132

13. Magyari E, Ali ME, Keller B. Heat and mass transfer characteristics

of self-similar boundary-layer flows induced continuous surface stretched

with rapidly decreasing velocities. Heat Mass Transfer. (2010) 38:65–

74. doi: 10.1007/s002310000126

14. Sajid M, Ali N, Javed T, Abbas Z. Stretching a curved surface in a viscous fluid.

Chinese Phys Lett. (2010) 27:024703. doi: 10.1088/0256-307X/27/2/024703

15. Sanni KM, Asghar S, Jalil M, Okechi NF. Flow of viscous fluid

along a nonlinearly stretching curved surface. Results Phys. (2017) 7:1–

7. doi: 10.1016/j.rinp.2016.11.058

16. Abbas Z, Naveed M, Sajid M. Heat transfer analysis for stretching flow over

a curved surface with magnetic field. J Eng Thermophys. (2013) 22:337–

45. doi: 10.1134/S1810232813040061

17. Naveed M, Abbas Z, Sajid M. Hydromagnetic flow over an

unsteady curved stretching surface. Eng Sci Technol Int J. (2016)

19:841–5. doi: 10.1016/j.jestch.2015.11.009

18. Imtiaz M, Hayat T, Alsaedi A, Hobiny A. Homogeneous-heterogeneous

reaction in MHD flow due to an unsteady curved stretching surface. J Mol

Liq. (2016) 221:245–53. doi: 10.1016/j.molliq.2016.05.060

19. Imtiaz M, Hayat T, Alsaedi A. MHD convective flow of jeffrey fluid

due to a curved stretching surface with homogeneous-heterogeneous

reactions. PLoS ONE. (2016) 11:e0161641. doi: 10.1371/journal.pone.

0161641

20. Imtiaz M, Hayat T, Alsaedi A. Convective flow of ferrofluid due to a

curved stretching surface with homogeneous-heterogeneous reaction. Powder

Technol. (2017) 310:154–62. doi: 10.1016/j.powtec.2017.01.029

21. Abbas Z, Naveed M, Sajid M. Hydromagnetic Slip flow of nanofluid Over a

Curved Surface with heat generation and thermal radiation. J Mol Liq. (2016)

215:756–62. doi: 10.1016/j.molliq.2016.01.012

22. Hayat T, Rashid M, Imtiaz M, Alsaedi A. MHD Convective flow due to a

curved surface with thermal radiation and chemical reaction. J Mol Liq. (2016)

225:482–9. doi: 10.1016/j.molliq.2016.11.096

23. Hayat T, Sajjad R, Ellahi R, Alsaedi A, Muhammad T. Homogeneous-

heterogeneous reaction in MHD flow of micropolar fluid

by a curved stretching surface. J Mol Liq. (2017) 240:209–

20. doi: 10.1016/j.molliq.2017.05.054

24. Hayat T, Saif RS, Ellahi R, Muhammad T, Ahmad B. Numerical study

of boundary layer flow due to a nonlinear curved stretching sheet

Frontiers in Physics | www.frontiersin.org 10 April 2020 | Volume 8 | Article 113141

https://doi.org/10.1007/BF01587695
https://doi.org/10.1007/BF01171433
https://doi.org/10.1016/j.ijnonlinmec.2005.12.003
https://doi.org/10.1155/2012/743130
https://doi.org/10.1007/BF01176888
https://doi.org/10.1016/j.ijnonlinmec.2011.04.025
https://doi.org/10.1016/j.energy.2014.07.069
https://doi.org/10.1088/0022-3727/32/5/012
https://doi.org/10.1007/s00231-004-0552-2
https://doi.org/10.1139/P09-047
http://journalarticle.ukm.my/2406/1/17_Anuar_Ishak.pdf
https://doi.org/10.12785/amis/070132
https://doi.org/10.1007/s002310000126
https://doi.org/10.1088/0256-307X/27/2/024703
https://doi.org/10.1016/j.rinp.2016.11.058
https://doi.org/10.1134/S1810232813040061
https://doi.org/10.1016/j.jestch.2015.11.009
https://doi.org/10.1016/j.molliq.2016.05.060
https://doi.org/10.1371/journal.pone.0161641
https://doi.org/10.1016/j.powtec.2017.01.029
https://doi.org/10.1016/j.molliq.2016.01.012
https://doi.org/10.1016/j.molliq.2016.11.096
https://doi.org/10.1016/j.molliq.2017.05.054
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sanni et al. Non-linear Boundary Driven Flow

with convective heat and mass conditions. Results Phys. (2017) 7:2601–

6. doi: 10.1016/j.rinp.2017.08.030

25. Aleksander S, Grzegorz C. Application of variable magnetic fields in

medicine−15 years’ experience. Wiad Lek (Warsaw, Poland: 1960).

(2003) 56:9–10. Available online at: https://europepmc.org/article/med/

15049208

26. Hurley DP, Coey JMD.Device for Generating a VariableMagnetic Field. United

State Patent US 6535092B1 (2003). Dublin: Magnetic Solution (Holdings)

Limited.

27. Reddy JVR, Sugunamma V, Sandeep N. Dual solutions for

nanofluid past a curved surface with nonlinear radiation, soret

and Dufour effects. IOP Conf Series J Phys Conf Series. (2018)

1000:012152. doi: 10.1088/1742-6596/1000/1/012152

28. Saba F, Ahmed N, Hussain S, Khan U, Mohyd-Din ST. Thermal

analysis of nanofluid flow over a curved stretching surface suspended

by carbon nanotubes with internal heat generation. Appl Sci. (2018)

8:395. doi: 10.3390/app8030395

29. Naveed M, Abbas Z, Sajid M. Dual solutions in hydromagnetic viscous

fluid flow past a shrinking curved surface. Arab J Sci Eng. (2018) 43:1189–

94. doi: 10.1007/s13369-017-2772-z

30. Hayat T, Nasir T, Ijaz MK, Alsaedi A. Numerical

investigation of MHD flow with Soret and Dufour effect.

Results Phys. (2018) 8:1017–22. doi: 10.1016/j.rinp.2018.

01.006

31. Nadeem S, Ahmed Z, Saleem S. Carbon nanotubes effect in magneto

nanofluid flow over a curved stretching surface with variable viscosity.

Microsyst Technol. (2019) 25:2881–8. doi: 10.1007/s00542-018-

4232-4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Sanni, Hussain and Asghar. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 11 April 2020 | Volume 8 | Article 113142

https://doi.org/10.1016/j.rinp.2017.08.030
https://europepmc.org/article/med/15049208
https://europepmc.org/article/med/15049208
https://doi.org/10.1088/1742-6596/1000/1/012152
https://doi.org/10.3390/app8030395
https://doi.org/10.1007/s13369-017-2772-z
https://doi.org/10.1016/j.rinp.2018.01.006
https://doi.org/10.1007/s00542-018-4232-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 06 May 2020

doi: 10.3389/fphy.2020.00109

Frontiers in Physics | www.frontiersin.org 1 May 2020 | Volume 8 | Article 109

Edited by:

Muhammad Mubashir Bhatti,

Shanghai University, China

Reviewed by:

Maryiam Javed,

Institute of Space

Technology, Pakistan

Noreen Akbar,

National University of Sciences and

Technology (NUST), Pakistan

Arash Asadollahi,

Southern Illinois University

Carbondale, United States

Anwar Shahid,

Nanjing University of Aeronautics and

Astronautics, China

*Correspondence:

Arshad Riaz

arshad-riaz@ue.edu.pk

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 08 January 2020

Accepted: 23 March 2020

Published: 06 May 2020

Citation:

Riaz A and Sadiq MA (2020)

Particle–Fluid Suspension of a

Non-Newtonian Fluid Through a

Curved Passage: An Application of

Urinary Tract Infections.

Front. Phys. 8:109.

doi: 10.3389/fphy.2020.00109

Particle–Fluid Suspension of a
Non-Newtonian Fluid Through a
Curved Passage: An Application of
Urinary Tract Infections
Arshad Riaz 1* and Muhammad Adil Sadiq 2

1Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan, 2Department of

Mathematics, Dammam Community College, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

The current investigation deals with the inclusion of solid particles in the flow of a

non-Newtonian incompressible fluid passing through a symmetric, curved channel

admitting flexible walls and exhibiting wavy characteristics for the passage of fluid.

This analysis reflects the disease of white particles occurring in the flow of urine. The

problem formulation is structured under the constraints of lubrication approach. The

flow is considered to be laminar and steady by transforming the unsteady coordinates

into wave frame coordinates. The governing equations have been formulated with the

help of similarity transformations. The solution of boundary value problems has been

handled by perturbation procedure. The analytical solutions for fluid and particulate phase

velocities, mean flow rates, and pressure gradient profile have been presented, while a

numerical treatment has been carried out for pressure rise. Analyses of fluid velocity and

particulate suspension velocity, pressure gradient, and pressure rise curves under the

variations of material parameters have been discussed by graphs. It is observed from

this investigation that solid particles are curtailing the velocity and pressure of the liquid.

It is also procured that the curvature of the channel also reduces the movement of the

fluid and that the particulate suspension is occurring at the bottom of the container. It

is very considerable that the increase in peristaltic pumping causes a decrease in the

solid particle concentration. This theoretical analysis can help in curing the diseases like

urinary tract infections (UTIs). The analysis may also be pertinent to the flow of other

physiological liquids and industrial solicitation where peristaltic pumping is concerned.

Keywords: analytical solution, eyring-powell model, pumping phenomenon, solid particles, two-phase flow

INTRODUCTION

Peristaltic flows are produced by spreading waves along the exorable membranes of a conduit.
These flows provide an efficient means for fluid transport and are therefore used in the physical
simulation. In clinical and medical contexts, peristaltic flows are meant for the blood transport
within tiny blood vessels or fabricated blood instruments. Fluid trapping and material reflux are
the two wonderful aspects of peristaltic passages. They describe the development and flow of
free transport, called bolus supply. These two factors are of major importance, as they can be
responsible for blood circulation and transport of viruses. From the point of view of mechanical
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engineering, these phenomena highlight the complexity of the
chosen apparatus, but also encourage the fundamental study of
such flows. Studies of peristaltic phenomena have been reported
in Bhatti et al. [1], Hussain et al. [2], and Riaz [3].

It is noticed that the instant flow studies are congested to
Newtonian fluids. The non-Newtonian behavior of fluids is of
greater concern in many areas of science and technology. In
applications for electroosmosis, for example, test accumulation,
discovery, blending, and division of different natural and
synthetic species on a chip coordinated with fluidic siphons and
valves, the liquid rheological conduct for the most part should
be considered. Major comprehension of the non-Newtonian
job in fluid transport through microchannels is imperative in
accurately foreseeing the exhibition and qualities of microfluidic
gadgets. Numerous specialists have researched the entry of non-
Newtonian liquid through peristaltic component [4, 5].

The progression of particles in a liquid is a part of multiphase
mechanism. Such studies are significant in different physical
issues, for example, sedimentation, barometril aftermath, powder
innovation, vaporized filtration, fluidization [6], debris and lunar
streams, and so forth. Moreover, with the assistance of the
continuum hypothesis of blends, it is anything but difficult to
look at different assorted subjects, for example, the rheology
of blood [7], dissemination of proteins, demeanor of particles
in a respiratory tract, and swimming of microorganisms [8].
Besides, molecule portrayal is likewise a significant part in a
generation of molecule, preparing, taking care of, producing, and
in differentmodern scientific applications [9].Molecule portrayal
is an essential and starting approach that aids in a procedure
concerning solid particles. Such a depiction not only includes
the natural static parameters—for example, volume, morphology,
recision, dimensions, and so on—but also their dynamic frame
of mind related to the liquid stream for example maximum
speed and drag constant. Yao et al. [10] considered the multi-
phase course across the penetrable porous passage with walls
impact. He prepared the perturbation solutions by considering
the slip boundary conditions and observed that the slip limit
condition essentially improved the speed of the liquid and a
reduction of slip factor will in general increase the speed through
a channel. Additionally, with an augmentation in volume
portion thickness, liquid axis speed climbs. Mekheimer and Abd
Elmaboud [11] evaluated the viscous fluid and particle mixture
in uniform and non-uniform inlets for peristaltic concept and
exact solutions are structured. Kamel et al. [12] explored the
wave stream of molecule liquid adultration considering a planar
channel having boundary slip and exhibited an arrangement
utilizing perturbation technique. Lozano et al. [13] presented
the peristaltic flow of incompressible Newtonian fluid with alike,
solid particles of spherical shape distribution. They have found
that the pressure in the wrinkled part of the ureter is enhanced
accordingly with larger particle volume fraction.

Experimental work demonstrates that there is no check on
basic speed for a liquid coursing through a curved channel. If the
channel is straight, the loss of the head increases suddenly as the
speed reaches its base value. The head loss varies below the basic
frequency of the speed, but over it approximately as the following
energy. But, through a curved channel, there is no impression

of such an unexpected change at any speed of the stream. One
plausibility is thatmovement through a curved channel is stream-
lined at speeds much more noteworthy than the basic for a
straight channel, however testing seems to indicate that the basic
speed is less in a curved channel than in a straight one. The
mathematical examination of the peristaltic flow of hyperbolic
tangent liquid in a curved channel has been explored by Nadeem
and Maraj [14]. Narla et al. [15] have disclosed the peristaltic
transport of Jeffrey nanofluid in curved channels. They discussed
the dissemination of velocity, temperature, and nanoparticles
fixation for different parameters overseeing the stream with the
concurrent impacts of Brownian movement and thermophoretic
dispersion of nanoparticles.

The urinary mechanism explains the homeostatic regulation
of water and ion content in the blood and the disposal of waste
products of metabolism. The kidneys receive blood from the
renal artery, process it, and return the processed blood to the
body through the renal vein. Urine produced in the kidneys
passes into the urethra. Under normal conditions, peristalsis
in the upper urinary tract begins with the origin of electrical
activity at pacemaker sites located in the proximal part of the
urinary collecting system. This electrical activity spreads distally,
triggering the mechanical event of peristalsis and renal pelvic and
ureteral contractions, which push urine from the kidney into the
bladder [16]. Urine is expelled through the urethra into the outer
body. Likoudis and Roos [17] studied the fluid flow in the ureter
under lubrication approximation and focused their analysis on
the pressure profile in the contracted part. Griffiths [18] studied
the ureter with a one-dimensional lubrication approach and
emphasized the relationship between low and high flow rates,
pressure fields, and peristaltic contractions. Peristaltic flow in
the ureter presents as an important application of peristalsis;
the parameters are reasonably known, and the fluid being
transported is fundamentally non-neutron and incompressible.
Geometrically, however, the problem is complex. Peristaltic
waves in the ureter can occur in multiple forms, either isolated
or periodic, with complete occlusion throughout the cycle.
Although the ureter itself is a tubular duct, the configuration
of the lumen during peristalsis can be altered because its inner
layer is made up of mucosa lined by the transitional epithelium.
In this study, the geometry of having a two-dimensional curved
shape is considered as it is of immense importance in the sense
of applications.

As far as we could possibly know, no endeavor is made
for peristaltic system of Eyring—Powell tensor within the sight
of solid particles coursing through a curved channel. This
examination is uncovered to fill this void in the literature and
present the analytical and numerical examination of the model
chosen. Right off the bat, we have transformed the conservation
of mass and momentum into segment structure of velocity field
and afterward changed over them by presenting wave outline.
After this progression, physical demonstrated conditions have
been diminished into a dimensionless structure by receiving
some new dimensionless parameters. We have assembled the
problem more comprehensively by lubrication constraints. To
assess the nonlinear coupled differential conditions, perturbation
strategy is applied on Eyring–Powell parameter A. The outflows
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FIGURE 1 | Schematic diagram of the problem.

of liquid and particulate suspensions, stream rates, pressure
slope, and pressure rise have been revealed. At last, physical
ailments have been outlined in different diagrams under the
changing estimations of appropriate parameters.

MODELING AND FORMATTING OF THE
PROBLEM

Let us assume the creeping transport through a curved
passage with small solid particles. We have adopted curvilinear
cylindrical coordinates in a three-dimensional curved passage
where R̄ and X̄ rays are selected to be normal and parallel to
the flow, respectively. Moreover, the surfaces of the container
are supposed to be flexible and executing sinusoidal waves
propagating at the lower and upper surfaces at a fixed pace “c.”

The boundary of the panel is expressed mathematically as

H̄
(

X̄, t̄
)

= ã+ b̃cos

(

2π

λ̃
(X̄ − ct̄)

)

. (1)

The symbols, like ã and b̃, represent the radius of the channel
and wave amplitude, accordingly. Moreover, λ̃ is the wavelength,
and t̄ executes time characteristics (see Figure 1). Here, we write
the continuity andmomentum conservation relations of the fluid
and particle phases.

Fluid Phase
For fluid phase, the physical conservation laws of mass
and momentum can be described in component form as

∂

∂R̄

(

(R1 + R̄)U2f

)

+ R1
∂U1f

∂X̄
= 0, (2)

ρ (1− C)

(

∂U2f

∂t
+ U2f

∂U2f

∂R
R1 +

U1fR1

R1 + R

∂U2f

∂X
R1 −

U1f
2
R1

R1 + R

)

= − (1− C)
∂P

∂R

+µs (1− C)

(

R1

R1 + R

∂

∂R

((

R1 + R
)

τ 11
)

+
R1

R1 + R

∂τ 21

∂X
R1 −

R1

R1 + R
τ 22

)

+ CS
(

U2p − U2f

)

, (3)

ρ (1− C)

(

∂U1f

∂t
+ U2f

∂U1f

∂R
R1 +

U1fR1

R1 + R

∂U1f

∂X
R1 +

U2fU1fR1

R1 + R

)

= (1− C)

(

−
R1

R1 + R

∂P

∂X
+

µsR1

R1 + R

∂τ 22

∂X
+

µs

R1 + R

(

R1 + R
) ∂τ 12

∂R
+ τ 12

)

+ CS
(

U1p − U1f

)

, (4)

where C is the partial volume fraction parameter,µs is the solvent
viscosity, U1f and U2f represent the fluid velocities, τ ij exhibits
the stress tensor components whose general form is defined
as [19]:

τ̄ = µ ∂iVi +
1

β
sinh−1

(

∂iVi

l

)

, (5)

where ∂i Vi gives the gradient tensor of velocity vector, the
dynamic viscosity is measured by µ, and flow constants are
represented by β and l.

Particulate Phase
For particle phase, the above defined equation will take the
following form:

∂U1p

∂R
+

R1

R1 + R

∂U2p

∂X
+

U1p

R1 + R
= 0, (6)

ρpC

(

∂U2p

∂t
+ U2p

∂U2p

∂R
+

U1pR1

R1 + R

∂U2p

∂X
+

U1p
2
R1

R1 + R

)

= −C
∂P

∂R
+ CS

(

U2f − U2p

)

, (7)

ρpC

(

∂U1p

∂t
+ U2p

∂U1p

∂R
+

U1pR1

R1 + R

∂U1p

∂X
+

U2pU1pR1

R1 + R

)

= −C
R1

R1 + R

∂P

∂X
+ CS

(

U1f − U1p

)

. (8)

In above relations, ρp, U2p, U1p, and S represent the density of
solid particles, their velocities and drag coefficient, respectively.
The drag coefficient term and the empirical expression for the
suspension viscosity are defined as [1]

S =
4.5µ′

0

R20
λ̄(C), µs =

µ′
0

1− m̄C
,

λ(C) =
4+

(

8C − 3C2
)1/2

+ 3C

4+ 9C2 − 12C
,

m = 0.70e

[

249
100C+

1107
T

exp
(

−
169
100C

)

]

.

Now suggesting the following lab and wave
framework transformations
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x = X − ct, r = R, uf , p = U1f , 1p − c, vf , p = U2f , 2p, p = P. (9)

In new frame of reference, Equations (3), (4), (7), and (8)
transformed into the subsequent form

ρ (1− C)

(

vf
∂vf

∂r
R1 +

(

uf + c
)

R1

R1 + r

∂vf
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)
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(

R1
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)

+ CS
(
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(
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, (10)
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vf − vp
)

, (12)

ρρC

(

vp
∂up

∂r
+

(

up + c
)

R1

R1 + r

∂up

∂x
+

vp
(

up + c
)

R1

R1 + r

)

= −C
R1

R1 + r

∂p

∂x
+ CS

(

uf − up
)

, (13)

Now we introduce the following dimensionless quantities for
further simplification

uf , p =
uf , p

c
, vf , p =

vf

cδ
, h =

H

ã
, p =

ã2

λ̃cµs

p,

Re =
ρãc

µs
, y =

r

ã
, x =

2πx

λ̃
, k1 =

R1

ã
,

h′ =
H′

ã
, ϕ =

b̃

ã
, τij =

ã

µc
τ ij, B =

1

βµl
,

A =
Bc2

6l2ã2
, δ =

2π ã

λ̃
,N1 =

Sã2

µs
. (14)

Injecting the above revealed factors, Equations (10) through
(13) become

Reδ (1− C)

(

vf
∂vf

∂y
+

k1vf

k1 + y
δ
∂vf

∂x
−

(

uf + 1
)2

k1 + y

)

= − (1− C)
∂p

∂y

+ (1− C)

(

δ

k1 + y
τ11 + δ

∂τ21

∂x
− δ

τ22

k1 + y

)

+ δCN1

(

up − uf
)

, (15)

Re (1− C)

(

vf
∂uf

∂y
+ δ

k1
(

uf + 1
)

k1 + y

∂uf

∂x
−

vf
(

uf + 1
)

k1 + y

)

= − (1− C)
k1

k1 + y

∂p

∂x

+ (1− C)

(

δ
k1

k1 + y

∂τ22

∂x
+

1

k1 + y

∂

∂y

((

k1 + y
)

τ12
)

)

+ N1C
(

up − uf
)

, (16)

ReδC

(

δ2vp
∂vp

∂y
+

δ2

λ

k1

k1 + y
vp

∂vp

∂x
−

up + 1

k1 + y

)

= −C
∂p

∂y
+ CN1δ

(

vp − vf
)

, (17)

ReC

(

δvp
∂up

∂y
+

1

λ

k1
(

up + 1
)

k1 + y

∂up

∂x
+ δ

vp
(

up + 1
)

k1 + y

)

= −C
k1

k1 + y

∂p

∂x
+ N1C

(

uf − up
)

. (18)

Now inserting assumptions of long wavelength (δ ≈ 0) and low
Reynolds number (Re ≈ 0), we arrive at

∂p

∂y
= 0, (19)

−
∂p

∂x
+

1

k1

∂

∂y

((

k1 + y
)

τ12
)

+

N1C
(

k1 + y
)

(

up − uf

)

(1− C) k1
= 0, (20)

up = uf −
1

N1

k1

k1 + y

∂p

∂x
, (21)

where the stress component τ12 for Eyring–Powell fluid is found
as [19]

τ12 = − (1+ B)

(

ufy +
1+ uf

k1 + y

)

+ A

(

ufy +
1+ uf

k1 + y

)3

. (22)

After proper substitution, Equation (22) becomes

−
dp

dx
+

1

k1

∂

∂y

(

(

k1 + y
)

(

− (1+ B)

(

ufy +
1+ uf

k1 + y

)

+ A

(

ufy +
1+ uf

k1 + y

)3
))

+
N1C

1− C

(

k1 + y

k1

) (

−
1

N1

k1

k1 + y

∂p

∂x

)

= 0. (23)
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We apply no-slip at the walls and the corresponding boundary
conditions are manufactured as

Uf

(

H′
)

= 0 and Uf

(

−H′
)

= 0. (24)

In dimensionless form, using wave frame, we have

uf
(

h′
)

= −1 and uf
(

−h′
)

= −1, (25)

where dimensionless form of the channel height in wave frame is
disclosed as±h′ = ± (1+ ϕ cos x) .

METHODS AND RESULTS

This section has produced regular perturbation solutions for
small values of A. So, we will use the following series expansion
as a proposed solution for uf

uf =
∑∞

i= 0
Aiui. (26)

The system generated by equating coefficients of exponent A0

dp

dx
+

1

k1

∂

∂y

(

(

k1 + y
)

(

− (1+ B)

(

u0y +
1+ u0

k1 + y

)))

+
N1C

1− C

(

k1 + y

k1

)

(

up − u0
)

= 0, (27)

with corresponding B.Cs

u0
(

h′
)

= −1 and u0
(

−h′
)

= −1 (28)

and the first order system (comparing coefficients of A1) is
achieved as

1

k1

∂

∂y

(

(

k1 + y
)

(

− (1+ B)

(

u1y +
1+ u1

k1 + y

)

(29)

+

(

u0y +
1+ u0

k1 + y

)3
))

N1C

1− C

(

k1 + y

k1

)

+
(

up − u1
)

= 0,

with

u1
(

h′
)

= 0 and u1
(

−h′
)

= 0. (30)

After handling the above obtained problems by executing built-
in commands of the computer software, Mathematica, we finally
get the following results

u0 = −1+
k1(−h′2 + y2) dp/dx

2(1+ B) (C − 1) (k1 + y)
. (31)

u1 =
k31
(

−h′
(

h′ − y
) (

h′ + y
) (

h′2
(

k1 + y
)

− k21
(

3k1 + y
)))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

−
1

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(3k31
((

h′ − k1
)

k21
(

h′ + k1
) (

k1 + y
) ((

h′ − y
)

log
(

−h′ + k1
)

+
(

h′ + y
)

log
(

h′ + k1
)))

(

dp

dx

)3

−

k31
(

2h′ log
(

k1 + y
))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

. (32)

Hence,

uf = −1+
k1
(

−h′2 + y2
) dp

dx

2 (1+ B) (−1+ C)
(

k1 + y
)

+
Ak31

(

−h′
(

h′ − y
) (

h′ + y
) (

h′2
(

k1 + y
)

− k21
(

3k1 + y
)))

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(

dp

dx

)3

−
1

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(3Ak31
((

h′ − k1
)

k21
(

h′ + k1
) (

k1 + y
)

((

h′ − y
)

log
(

−h′ + k1
)

+
(

h′ + y
)

log
(

h′ + k1
)))

(

dp

dx

)3
)

−

Ak31
(

2h′ log
(

k1 + y
))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2
.

(33)

From Equation (21), we get the solution of particulate velocity,
up, which is displayed below

up = −1+
k1
(

−h′2 + y2
) dp

dx

2 (1+ B) (−1+ C)
(

k1 + y
)

+
Ak31

(

−h′
(

h′ − y
) (

h′ + y
) (

h′2
(

k1 + y
)

− k21
(

3k1 + y
)))

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(

dp

dx

)3

−
1

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(3Ak31

(

(

h′ − k1
)

k21
(

h′ + k1
)

(

k1 + y
) ((

h′ − y
)

log
(

−h′ + k1
)

+
(

h′ + y
)

log
(

h′ + k1
)))

(

dp

dx

)3
)

−

Ak31
(

2h′ log
(

k1 + y
))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

−

k1
dp
dx

(

k1 + y
)

N1
.

(34)

Mathematical form of total mean volume flow rate due to fluid
and particles is recognized as

Q = Qf + Qp, (35)

where
Qf = (1− C)

∫

uf dy, (36)

Qf =
4 (1+ B) (−1+ C) h′ − h′

(

h′ − 2k1
)

k1
dp
dx

+ 2k1
(

−h′2 + k21
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B)
(37)

and Qp = C

∫

updy, (38)
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Qp =
4 (1+ B) (−1+ C) Ck1

dp
dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B) (−1+ C) N1
+

C
(

−4 (1+ B) (−1+ C) h′
)

4 (1+ B) (−1+ C) N1

−4
(

h′
(

h′ − 2k1
)

k1
dp
dx

+ 2
(

h′ − k1
)

k1
(

h′ + k1
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

)

4 (1+ B) (−1+ C)
. (39)

Hence, we conclude

Q =
4 (1+ B) (−1+ C) h′ − h′

(

h′ − 2k1
)

k1
dp
dx

+ 2k1
(

−h′2 + k21
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B) (−1+ C) N1

+
4 (1+ B) (−1+ C) Ck1

dp
dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B) (−1+ C) N1
+

C
(

−4 (1+ B) (−1+ C) h′
)

4 (1+ B) (−1+ C) N1
+

−4
(

h′
(

h′ − 2k1
)

k1
dp
dx

+ 2
(

h′ − k1
)

k1
(

h′ + k1
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

)

4 (1+ B) (−1+ C)
. (40)

FIGURE 2 | Change of velocity uf for k1 when

Q = 1, x = 1, φ = 0.1, N1 = 0.9, B = 0.02, A = 0.01, C = 0.12.

FIGURE 3 | Change of velocity uf for N1 when

Q = 1, x = 1, φ = 0.1, k1 = 8, B = 0.02, A = 0.01, C = 0.12.

FIGURE 4 | Change of velocity up for k1 when

Q = 1, x = 1, φ = 0.1, N1 = 2, B = 0.02, A = 0.05, C = 0.01.

FIGURE 5 | Change of velocity up for N1 when

Q = 1, x = 1, φ = 0.1, k1 = 9, B = 0.02, A = 0.1, C = 0.9.
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FIGURE 6 | Change of pressure gradient for k1 when

Q = 1, φ = 0.1, N1 = 1, B = 0.01, C = 0.12.

FIGURE 7 | Change of pressure gradient for N1 when

Q = 1, φ = 0.1, k1 = 1, B = 0.01, C = 0.12.

From the above described Equations (35) through (40), we can
find the value of pressure gradient dp/dx, which is achieved as
shown below:

dp

dx
=

4 (1+ B) (−1+ C)
(

h′ + Q
)

N1

4 (1+ B) (−1+ C) Ck1
(

log
(

k1
)

− log
(

h′ + k1
))

+ k1

1
(

h′
(

h′ − 2k1
)

+ 2
(

h′ − k1
) (

h′ + k1
) (

log
(

k1
)

− log
(

h′ + k1
)))

N1
.

(41)

GRAPHICAL ANALYSIS

In the above section, we have solved the obtained governing
equations for velocity, pressure gradient, and pressure rise
by regular perturbation technique. The observing systems of
differential equations have been handled on a mathematical
software, Mathematica, via built-in DSolve commands. Themore

FIGURE 8 | Change of pressure rise for k1 when

φ = 0.1, N1 = 0.05, B = 0.1, C = 0.1.

FIGURE 9 | Change of pressure rise for N1 when

φ = 0.1, k1 = 1, B = 0.1, C = 0.15.

clarified results can be shown by plotting the graphs of above-
obtained important quantities to see the effect of various physical
parameters on them. The graphs will give a clearer picture of what
is happening to the velocity, pressure gradient, and pressure rise
when changes are made to the values of affecting parameters. To
imagine these theoretical aspects, we have plotted the profiles of
velocities uf and up against the radial coordinate y in Figures 2–

5, the pressure gradient
dp
dx

vs. the coordinate x in Figures 6,
7, and pressure rise along the flow rate Q in Figures 8, 9. The
trapping bolus mechanism has been provoked in Figures 10,
11. It is observed from Figures 2, 3 that when we increase the
numerical values of curvature parameter, k1, and solid particle
concentration,N1, the fluid velocity, uf , is decreasing its height in
most part of the channel for both the parameters expect the lower
part where the velocity is showing almost a constant behavior
with k1. They are usually included in systems that allow solids to
settle to the bottom of the channel without any interruption. This
is showing the physical fact that when channel is more curved
and there are some solid particles placed in front of fluid flow,
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FIGURE 10 | Trapping variation for fluid phase when N1 = 3, φ = 0.04, Q = 1, B = 0.1, A = 0.1, C = 0.03. (A) k = 3.1, (B) k = 3.2, and (C) k = 3.3.

FIGURE 11 | Trapping variation for particulate phase when N1 = 3, φ = 0.04, Q = 1, B = 0.1, A = 0.1, C = 0.03. (A) k = 3.1, (B) k = 3.2, and (C) k = 3.3.

the velocity lowers, which is very much in agreement with the
true experimental and physical facts. Figures 4, 5 are plotted for
velocity of solid particles, up, with the variation of parameters k1
andN1. From these figures, it is captured that the velocity of solid
particles, up, is showing almost a similar character as we have
measured in the graphs of fluid velocity, uf , but the height of
the parabolic path of velocity is less than that of fluid velocity,
which admits that the velocity of particulate phase is less than
that of the fluid phase. This is because the increase in curvature
will slow down the particle’s movement and because the large
amount of particles will affect the motion and suppresses the
fluid. Figures 6, 7 have been drawn to estimate the behavior of

pressure gradient
dp
dx

for different values of curvature parameter,
k1 and N1. It is very obvious from these figures that pressure
gradient profile is decreasing with the increasing magnitudes of
both the parameters, and maximum change in axial pressure is
depicted at the central part of the channel as compared to the
both side corners. Figures 8, 9 shows the variation of pressure
rise quantity, 1p, against the flow rate parameter, Q, to find
the influence of k1 and N1. These two plots can be divided into
two portions, namely Region-I

(

1p > 0, η < 0
)

and Region-II
(

1p < 0, η > 0
)

, and we can observe that point of intersection

of all the lines is almost, the origin. In Region-I, it can be seen
that pressure rise curves are showing inverse behavior with the
variation of k1, but in Region-II, the situation is completely
opposite (see Figure 8). From Figure 9, it is quite clear that 1p
rises proportionally to the increasing values of N1 in Region-I,
while in Region-II, the curves are showing inverse relation.

The most important phenomenon of peristaltic flows is
circulating bolus trapping. The scenario is mentioned in
Figures 10, 11. Figure 10 is developed for fluid phase under the
variation of curvature parameter, k1. It is measured here that
boluses expand against the increasing values of curvature, which
shows that curvature affects the bolus shape directly. Figure 11
also depicts the same results for particulate phase streamlines,
but, in this case, the number of boluses has been reduced to one.

CONCLUSIONS

In the above study, we have obtained the analytical solutions
of peristaltic flow Eyring–Powell fluid model in a curved two-
dimensional channel in the presence of solid particles. This
study can contribute to the curing of diseases like urinary
tract infections (UTIs). The problem is maintained simple
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under the implementation of lubrication approach. Analytical
solutions have been achieved by applying the perturbation
technique. The graphs have been plotted to show the behavior
of some prominent quantities under the variation of pertinent
parameters. From all of the above discussion, the following key
points have been measured:

1. It is noted that both the curvature of the channel and the
presence of solid particles slow the flow velocity, as compared
with the flow in a straight channel and without solid particles.

2. It is observed that the curvature of the channel also affects the
solid suspension velocity in the same manner as fluid velocity.

3. It is noticed that pressure gradient curves are getting lower as
we increase the curvature of the channel and the amount of
solid particles.

4. It is seen that the curvature of the channel decreases the
peristaltic pressure on the negative side of the flow rate
domain and increases on the other side.

5. It is examined from the above analysis that solid particles affect
the pressure rise curves in quite the opposite manner when
compared to the curvature parameter.
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Hidden effects of MHD and thermal radiations for a viscous dissipative nanofluids

(Al2O3 − H2O and γAl2O3 − H2O) are taken under consideration. The models are

formulated by implementing the suitable similarity transformations. Then, two models

are discussed mathematically by using RK scheme together with shooting method. The

results for flow regimes, coefficient of skin friction, thermophysical characteristics, and

heat transfer coefficient are pictured and discussed comprehensively by changing the

pertinent flow parameters. It is observed that the nanofluids velocity increases abruptly for

higher Hartree pressure gradient. For assisting flow situation, the velocity F ′(η) increases

and abrupt decreasing behavior is examined for opposing flow case. The composition of

Al2O3−H2O, and γAl2O3−H2O becomes more dense for high volume fraction therefore,

drops in the velocity field is noted. The temperature of Al2O3 −H2O, and γAl2O3 −H2O

rises rapidly by varying opposing flow parameter γ < 0 and high volume fraction φ. Also,

the temperature β(η) declines abruptly for parameter λ.

Keywords: wedge, host fluid, magnetic field, thermal radiation, viscous dissipation, γAl2O3 nanoparticles, RK

scheme

INTRODUCTION

The analysis of the host fluids saturated by various sort of nanoparticles over a wedge geometry is
of the essential and interesting topic in fluid dynamics and heat transfer phenomena. Currently, the
hidden effects of significant flow parameters like magnetic number, thermal radiation, and viscous
dissipation for regular and nanofluids models becomes important.

The flow and entropy generation analysis in magnetized nanofluid by considering the impacts
of porosity described in Ellahi et al. [1]. The study of effective dynamic viscosity in non-Newtonian
fluids in porous medium reported in Eberhard et al. [2]. The analysis of Roselands heat flux over
non-linear stretchable surface with slip flow conditions was examined in Majeed et al. [3].

Keeping in mind the importance and popularity of the wedge type flow, Falkner and Skan [4, 5]
focused on this particular direction of fluid mechanics and presented earlier study. They analyzed
the boundary layer model mathematically and extend the case for stretching walls of the wedge.
The work of Falkner and Skan provided a new direction in the fluid dynamics. Rajagopal et al. [6]
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inspired by the work of Falkner and Skan [4, 5] and extended
the boundary layer model for non-Newtonian fluid and found
fascinating results. They analyzed the flow characteristics over
a fixed wedge in the fluid. Later on, Lin et al. [7] inspired
by the concept forced convection and extend the model by
incorporating the various Prandtl values. Hartree [8] discussed
the boundary layer model for approximate solutions and
highlighted important results. Watanabe [9] and Watanabe and
Pop [10] extended the Falkner Skan model by considering the
phenomena of free and forced convection and explored the
hidden effects on the flow characteristics, respectively. They
presented the impacts of magnetic field, suction and injection in
the flow field.

The porosity of the wedge walls affects the flow characteristics
significantly. In the light of this fact, Koh and Hartnett [11]
explored the results for skin friction and local coefficient of
heat transfer and observed significant variations due to porosity
parameter. Similarly, Kumari et al. [12] discussed the phenomena
of mixed convection over a porous wedge. In 2003, Chamkha
et al. [13] reported the radiative Falkner Skan flow and presented
its characteristics over a semi-infinite domain. El-Dabe et al.
[14] prolonged the Falkner Skan model for Casson fluid and
treated the respective non-linear flow model numerically and
incorporated the influences of magnetic field in the flow behavior
and the heat transfer phenomena. The flow characteristics
of Casson fluid over a symmetric wedge was presented by
Mukhopadhyay et al. [15] in 2013. A novel analysis comprising
the impacts of ohmic heating, applied magnetic field, and
mixed convection on radiative flow over a stretchable wedge
reported in Su et al. [16]. The alterations in the flow pattern
of micropolar and Newtonian fluids over a wedge moving in
the fluid and Viscoelastic fluid flow in the presence Lorentz
force reported in Ishak et al. [17, 18] and Rashidi et al.
[19], respectively.

Kandasamy et al. [20] prolonged the Falkner Skan flow
by comprising the impacts of chemical reaction and found
the results for suction or blowing on the radiative flow
over a porous wedge. Hussanan et al. [21] highlighted the
influences of Joule heating in the flow past over an oscillating
plate. They also highlighted the alterations in the flow
characteristics due to convective flow condition and resistive heat
phenomena. A comprehensive analysis of Falkner Skan flow in
the presence of velocity slip phenomena and applied Lorentz
force described by Su et al. [22]. Recently, Ullah et al. [23]
contributed the Falkner Skan model for non-Newtonian nature
of the fluid.

A prominent fact that the regular fluids have less heat
transfer characteristics. For many productions in various
industries required considerable level of heat transfer and
base liquids fail to provide such amount heat. However,
researchers focused and thought to overcome this issue. Finally,
a new class of the fluid developed and titled as Nanofluid.
Basically, the nanofluid is a compound fluid composed by
base liquid with the nanoparticles. These nanoparticles obtained
from various metals and their oxides. In nanofluids, the
volume fraction of the nanoparticles plays the role of back
bone for the heat transfer enhancement. The development

of the nanofluids reduces the problems and issues faced
by the industrialist and engineers. Thus, the analysis of
the nanofluids became an orbit for the researchers and
engineers and explored new and fascinating characteristics of
the nanofluids.

Recently, Rafique et al. [24] reported the numerical
study of Casson nanofluid over an inclined surface and
found the results for flow field. Impact of magnetic field
by considering second slip flow condition on the flow
Casson nanofluid explored by Majeed et al. [25]. In 2019,
Bibi et al. [26] examined the flow model in the presence of
convective boundary condition. The significant analysis for
different sort of nanofluids under various flow conditions
are examined in Saba et al. [27] and Srinivasacharya
et al. [28].

The nanofluid models (Al2O3 − H2O and γAl2O3 − H2O)
considering the phenomena of magnetic field, thermal radiation,
and viscous dissipation is taken over a wedge geometry in
the Cartesian coordinates. Two types of thermal conductivities
are incorporated in the energy equation to enhance the heat
transfer rate in Al2O3 − H2O and γAl2O3 − H2O nanofluids.
The model is described in section Model Formulation and
treated mathematically in section Mathematical Analysis. The
fascinating role of magnetic field and thermal radiation in
the flow regimes explored and explain in section Physical
Interpretation of Results. The quantities related to engineering
interest (Skin friction and local Nusselt number) are presented
and analyzed for varying flow parameters. In the end, major
effects of under consideration model are incorporated.

MODEL FORMULATION

Statement and Geometry
Steady, laminar and viscous incompressible flow of H2O
saturated by Al2O3 and γAl2O3 nanoparticles is taken over a
wedge. The effects of magnetic field and thermal radiation are
taken into account. The velocity at the wedge surface is ŭw =

U

̂

wx
m and at the free stream is Ŭe = U

̂

∞xm and are functions of
x. Here, U

̂

w and U

̂

∞ are constants at the surface and away from
the surface. Furthermore, corresponding to wedge angle λ =

�/π , the Hartree pressure parameter is λ = 2m/(m+1). Induced
magnetic field produced due to the motion of Al2O3 − H2O and
γAl2O3 − H2O nanofluids is neglected through the analysis. The

temperature at the wedge surface is T̂w = T̂∞ + A/x2m and is
a function of x. The temperature at the surface and at the free
stream is Tw and T∞, respectively. The physical theme of the
model comprising the role of Al2O3 and γAl2O3 nanoparticles
is demonstrated in Figure 1 over a semi-infinite region.

Governing Equations and
Non-dimensionalization
In the light of above highlighted assumptions, the following is the
model which govern the flow of nanofluids over a wedge [23, 28]:

∂ û

∂x
+
∂ v̂

∂y
= 0 (1)
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FIGURE 1 | Physical Theme of the Flow.

û
∂ û

∂x
+ v̂

∂ û

∂y
= U

̂

e (x)
dU

̂

e (x)

dx
+
µ̂nf

ρ̂nf

(

∂2û

∂y2

)

−
σ̂nf

ρ̂nf
B20 (x) (u−

˘

Ue (x)) (2)

û
∂T̂

∂x
+ v̂

∂T̂

∂y
=

k̂nf
(

ρ̂cp
)

nf

(

∂2T̂

∂y2

)

+
1

(

ρ̂cp
)

nf

(

∂ û

∂y

)2

−
16σ ∗T3

∞

3k
(

ρ̂Cp

)

nf

(

∂2T̂

∂y2

)

(3)

The law of conservation of mass, momentum and energy
shown in Equations (1–3), respectively. The velocities in x
and y directions are û and v̂, respectively. The velocity at the
free stream, temperature, effective dynamic viscosity, density,
electrical conductivity, thermal conductivity, and heat capacity

are represented by U

̂

e, T̂, µ̂nf , ρ̂nf , σ̂nf , k̂nf , and
(

ρcp
)

nf
,

respectively. Mean absorption coefficient and Stefan Boltzmann
constants are denoted by k and σ ∗, respectively.

The conditions on the flow at the boundaries are defined as
Ullah et al. [23]:

At the surface
û = ûw (x) ,

v̂ = 0,

T̂ = T̂∞ +
A

x−2m

At the free stream
û → U

̂

e (x) ,

T̂ → T̂∞







































(4)

The similarity variables defined in the following way for the
non-dimensionalization of the governing flow model [23]:

û =
∂ψ̂
∂y

v̂ = −
∂ψ̂
∂x

ψ̂ =

√

2νf xÛe(x)

(m+1) F (η)

η =

√

(m+1)Ûe(x)
2νf x

y

β (η) = T̂−T̂∞
T̂w−T̂∞















































(5)

The following models are used to enhance the performance of the
particular model [29]:

ρ̂nf =

{

(1− φ)+
φρ̂s

ρ̂f

}

ρ̂f (6)

µ̂nf = µ̂f (1− φ)
−2.5

µ̂nf = µ̂f (123φ
2
+ 7.3φ + 1)

}

For Al2O3 −H2O and γAl2O3 −H2O, (7)

(

ρ̂cp
)

nf
=

{

(1− φ)+
φ
(

ρ̂cp
)

s
(

ρ̂cp
)

f

}

(

ρ̂cp
)

f

k̂nf = k̂f

{

k̂s+2k̂f−2φ
(

k̂f−k̂s

)

k̂s+2k̂f+φ
(

k̂f−k̂s

)

}

k̂nf = k̂f (4.97φ
2
+ 2.72φ + 1)











(8)

For Al2O3 −H2O and γAl2O3 −H2O (9)

σ̂nf = σ̂f











1+
3
(

σ̂s
σ̂f

− 1
)

φ
(

σ̂s
σ̂f

+ 2
)

−

(

σ̂s
σ̂f

− 1
)

φ











. (10)

The particular values of thermophysical characteristics
embedded in Equations (6–10) are given in Table 1.
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TABLE 1 | Thermal and Physical Properties [29].

Host fluid and

nanoparticles

ρ̂(kg/m3) ĉp(kg
−1K−1) k̂(Wm−1K−1) σ̂ (S/m) Pr

H2O 997.1 4,179 0.613 0.005 6.96

Al2O3 3,970 765 40 3.5× 107 -

After performing the suitable differentiation and
incorporating the effective nanofluids models given in Equations
(6–10) in the dimensional model, the following two models of
nanofluids are obtained:

Al2O3 − H2O Model

F′′′ +
1− φ +

φρ̂s
ρ̂f

(1− φ)−2.5

(

FF′′ + λ
(

1− F′2
))

+
(1− φ)2.5



1+
3

(

σ̂s
σ̂f
−1

)

φ

(

σ̂s
σ̂f
+2

)

−

(

σ̂s
σ̂f
−1

)

φ





−1
M2(1− F′) = 0, (11)













1+
Rd

k̂s+2k̂f−2φ
(

k̂f−k̂s

)

k̂s+2k̂f+φ
(

k̂f−k̂s

)













β ′′

+
1

k̂s+2k̂f−2φ
(

k̂f−k̂s

)

k̂s+2k̂f+φ
(

k̂f−k̂s

)











(

PrFβ ′ − 2λPrF
′

β

)

{

(1− φ)+
φ(ρcp)s
(ρcp)f

}−1
+ PrEcF′′2











= 0. (12)

γAl2O3 −H2O Model

F′′′ +

(

1− φ +
φρ̂s
ρ̂f

)

123φ2 + 7.3φ + 1

(

FF′′ + λ
(

1− F′2
))

+



1+
3

(

σ̂s
σ̂f
−1

)

φ

(

σ̂s
σ̂f
+2

)

−

(

σ̂s
σ̂f
−1

)

φ





123φ2 + 7.3φ + 1
M2(1− F′) = 0, (13)

[

1+
Rd

4.97φ2 + 2.72φ + 1

]

β ′′

+
1

4.97φ2 + 2.72φ + 1











(

PrFβ ′ − 2λPrF′β
)

{

(1− φ)+
φ(ρ̂cp)s
(ρ̂cp)f

}−1
+ PrEcF′′2











= 0. (14)

The conditions at the boundaries at the surface and at the free
stream are as under:

At the surface η = 0
F (η) = 0

F
′

(η) = γ

β (η) = 1
At the free surface η→ ∞

F
′(η)

→ 1
β (η)→ 0















































(15)

The parameters embedded in the models are Eckert number,

Û2 (x)
(

cp
)

f
(Tw − T∞)

, Pr =
µ̂f

(

ĉp
)

f

k̂f
,M2

=
σ̂fB

2
0νf

U

̂

∞(m+ 1)
,

Rd =
16σ ∗T3

∞

3k̂f k
, andγ =

U

̂

w

U

̂

∞

.

Quantities of Engineering Interest
Skin friction and local heat transfer phenomena are of great
importance from engineering point of view. Mathematical
dimensional expressions for these quantities are as under:

C

̂

F =
µ̂nf

ρ̂nf Û2(x)

(

∂ û

∂y

)

↓y=0 (16)

N

̂

ux =





−xk̂nf

k̂f

(

T̂w − T̂∞

)





(

∂T̂

∂y

)

↓y=0, (17)

These expressions reduced in the following non-dimensional
form by implementing the suitable differentiation and
nanofluids models:

C

̂

F

√

Rex =
123φ2 + 7.3φ + 1
(

(1− φ)+ φρ̂s
ρ̂f

) F′′(0), (18)

N

̂

ux (Rex)
−

1
2

=
−

k̂s+2k̂f−2φ
(

k̂f−k̂s

)

k̂s+2k̂f+φ
(

k̂f−k̂s

) β ′ (0) For Al2O3 −H2O

−
(

4.97φ2 + 2.72φ + 1
)

β ′ (0) For γAl2O3 −H2O











,(19)

here, Rex =
xU

̂

(x)

ν

̂

f
is denotes the local Reynold number.

MATHEMATICAL ANALYSIS

Shooting technique [30, 31] is adopted for the mathematical
analysis of the particular nanofluids flow models. The reason
behind this choice is the non-linearity (for instance see [32–40])
of the models over semi-infinite region. To initiate the technique,
the following substitution are made:

︷︸︸︷

y 1 = F,
︷︸︸︷

y 2 = F′,
︷︸︸︷

y 3 = F′′,
︷︸︸︷

y 4 = β ,
︷︸︸︷

y 5 = β ′.(20)
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FIGURE 2 | The effects of λ on dimensionless velocity F ′(η) for (A) γ = 0.4, (B) γ = −0.4.

FIGURE 3 | The effects of (A) γ positive, (B) γ negative on dimensionless φ on dimensionless velocity F ′(η).

FIGURE 4 | The effects of φ on dimensionless velocity F ′(η) for (A) γ = 0.4, (B) γ = −0.4.
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FIGURE 5 | The effects of M on dimensionless velocity F ′ (η) for (A) γ = 0.3, (B) γ = −0.3.

FIGURE 6 | The effects of (A) γ positive, (B) γ negative on dimensionless temperature β(η).

FIGURE 7 | The effects of λ on dimensionless temperature β(η) for (A) γ = 0.4, (B) γ = −0.4.
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FIGURE 8 | The effects of φ on dimensionless temperature β(η) for (A) γ = 0.4, (B) γ = −0.4.

FIGURE 9 | The effects of Ec on dimensionless temperature β(η) for (A) γ = 0.4, (B) γ = −0.4.

FIGURE 10 | The effects of Rd on dimensionless temperature β(η) for (A) γ = 0.4, (B) γ = −0.4.
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FIGURE 11 | The effects of λ on skin friction coefficient.

FIGURE 12 | The effects of M on skin friction coefficient.

Al2O3 − H2O Model
The flow model Al2O3 − H2O can be reduced into the
following form:

F′′′ = −

1− φ +
φρ̂s
ρ̂f

(1− φ)−2.5

(

FF′′ + λ
(

1− F′2
))

−
(1− φ)2.5



1+
3

(

σ̂s
σ̂f
−1

)

φ

(

σ̂s
σ̂f
+2

)

−

(

σ̂s
σ̂f
−1

)

φ





−1
M2(1− F′), (21)

β ′′ =
−1

1+ Rd
k̂s+2k̂f −2φ

(

k̂f −k̂s

)

k̂s+2k̂f +φ
(

k̂f −k̂s

)













1

k̂s+2k̂f−2φ
(

k̂f−k̂s

)

k̂s+2k̂f+φ
(

k̂f−k̂s

)

(

(

PrFβ ′ − 2λPrF′β
)

{

(1− φ)+
φ(ρ̂cp)s
(hatρcp)f

}−1
+ PrEcF′′2)













.(22)

By implementing the transformations made in
Equation (19), the system of Equations. (21, 22)
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FIGURE 13 | The effects of Rd on local Nusselt number (γ > 0).

FIGURE 14 | The effects of Rd on local Nusselt number (γ < 0).
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FIGURE 15 | The effects of Ec on local Nusselt number (γ > 0).

FIGURE 16 | The effects of φ on Effective Dynamic viscosity.
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FIGURE 17 | The effects of φ on Thermal conductivity.

FIGURE 18 | The effects of φ on Electrical conductivity.
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FIGURE 19 | The effects of φ on Effective density.

TABLE 2 | Reliability of the study by comparing with existing scientific literature for

F ′′ (0).

φ = 0,M = 0,Rd = 0, Ec = 0, γ = 0, Pr = 0.73, λ =
2m
m+1

m Current results Existing scientific literature

0.0000 0.46959 0.46960

0.0141 0.5046143 −−

0.0435 0.5689777 0.56898

0.0909 0.6549788 0.65498

0.1429 0.7319985 0.73200

0.2000 0.8021256 0.80213

0.3333 0.9276536 0.92765

0.5000 1.0389035 1.03890

transformed into the following initial value problem:
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Where, A
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and the set of conditions at η = 0 are as:
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Here, n

̂

1 and n

̂

2 are unknown and the accuracy is set as 10− 6.
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γAl2O3 −H2O Model
The model γAl2O3 − H2O reduced into the following pattern:
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By using transformations, the following system is obtained:
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where, A

̂

11 =
1

1+ Rd
4.97φ2+2.72φ+ 1

A

̂

12 =
1

4.97φ2 + 2.72φ + 1
(28)

The initial conditions are same as in Equation (24).

PHYSICAL INTERPRETATION OF RESULTS

The flow parameters like magnetic parameter, thermal radiation,
and viscous dissipation play fascinating role in the flow regimes.
The influences of afore mentioned flow parameters on the flow
field explored graphically and discussed comprehensively in this
section. Moreover, the results for the quantities of engineering
interest are taken into account and discussed. The results plotted
for two cases of the wedge according to the wedge movement. It
is important to mention the cases of flow depending on the value
of parameter γ . The wedge and fluid move in opposite direction
for negative γ and move in alike direction for positive γ .

Velocity Field
Figure 2 interprets the behavior of the nanofluids velocity
(Al2O3 − H2O and γAl2O3 − H2O) for γ > 0 and γ <

0, respectively. From Figure 2A, it is obvious that the velocity
increases when the wedge and the nanofluids move in alike way
(γ > 0). The velocity of Al2O3 − H2O nanofluids increases
abruptly in comparison with γAl2O3 − H2O nanofluid. The
reason behind this is the difference between the effective models
of dynamic viscosity for Al2O3 and γAl2O3. The nanofluid
γAl2O3−H2O becomes more dense due to the dynamic viscosity
containing high volume fraction of the nanoparticles and the

momentum of the fluid drops. Due to drop in momentum, the

velocity starts decreasing. Near the wedge surface, momentum
of the nanofluids declines due to the friction between the wedge
surface and the nanofluids. The effects of the pressure parameter
are very prominent in the region 2 ≤ η ≤ 4. These effects are
elaborated in Figure 2A. Figure 2B highlights the alterations in
the nanofluids velocity for opposing case. The negative values
of γ shows that the nanofluids and wedge move in opposite
direction. For opposing case, the asymptotic region increases for
γAl2O3 −H2O nanofluid.

Figure 3 elaborates the alterations in the velocity F′(η) for
varying wedge parameter γ . Due to altering wedge parameter,
very interesting variations in the velocity field are observed. For
assisting case γ > 0, the velocity upturns abruptly. When the
nanofluids and wedgemove in alike direction then themovement
of wedge in the direction of nanofluids provide extra momentum
to the nanofluids. Therefore, the velocity positively increases.
In the vicinity of the wedge, the velocity increase abruptly for
both sort of nanofluids. For Al2O3 −H2O nanofluid, the velocity
shows asymptotic behavior quickly in comparison with γAl2O3−

H2O. These results are plotted in Figure 3A. Figure 3B shows
that the velocity of the nanofluids drops very quickly over the
domain of interest. The opposite movement of the wedge and
the nanofluids cause the declines in the velocity profile. Due
to the opposite movement, friction between the wedge surface
and the nanofluids slow down the momentum of the nanofluids.
Consequently, the velocity drops.

The volume fraction of the nanoparticles is very key
ingredients which alters the nanofluid characteristics affectively.
These effects are portrayed in Figures 4A,B for assisting and
opposing case, respectively. The behavior of the velocity for
assisting case elaborated in Figure 4A. For increasing φ, the
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nanofluids velocity drops rapidly. For γAl2O3 − H2O, the
prompt decrement in the velocity occurs due to high volume
fraction incorporated in the dynamic viscosity. The velocity
vanishes asymptotically beyond η ≥ 4. Figure 4B portrays
the velocity profile for opposing flow case. For opposing flow,
the velocity declines very abruptly in comparison with assisting
flow. The opposite movement and high volume fraction of the
nanoparticles opposes the opposes the motion. Therefore, the
velocity rapidly drops and asymptotically vanishes beyond η ≥ 6.

The influences in the velocity behavior by altering the
magnetic parameter are depicted in Figure 5. From Figure 5A,
it is observed that the velocity of the nanofluids F′(η) positively
increases for assisting flow. Due to less dense composition of
Al2O3 − H2O nanofluid, the velocity profile increases promptly
as compared to γAl2O3−H2O nanofluid. Similarly, for opposing
case, the velocity field portrayed in Figure 5B. Figure 5B shows
the prompt increasing behavior of the velocity for both sort of
nanofluids. In the region 1 ≤ η ≤ 3.5, these effects of M on the
velocity F′(η) are very rapid.

Temperature Field
The alterations in temperature fields of Al2O3 − H2O and
γAl2O3 − H2O nanofluids by varying the wedge parameter γ
presented in Figure 6. Figure 6A shows that for assisting flow,
the temperature β(η) drops. The drops in the temperature is
due to the alike motion of the nanofluids and wedge. For
Al2O3 − H2O nanofluids, decreasing pattern of the temperature
is quite rapid and prominent in the region 1 ≤ η ≤ 3. The
temperature β(η) vanishes asymptotically at the free stream. An
interesting impacts of γ are observed for opposing flow case.
These alterations are depicted in Figure 6B. When the wedge
moves in the opposite direction of the nanofluids, then due to
the force of friction between the wedge surface and the molecules
of the nanofluids heat produces which favors the temperature
β(η). The temperature increases abruptly near the wedge. The
reason is that the more friction between the molecules of the
nanofluids and the wedge surface. For γAl2O3−H2O nanofluids,
the temperature arises rapidly than Al2O3 −H2O nanofluid.

Figure 7 highlights the influences of pressure parameter λ on
the temperature of Al2O3 −H2O and γAl2O3 −H2O nanofluids.
The pressure parameter λ opposes the nanofluids temperature.
For assisting flow, the temperature is decreasing function of λ and
the decrement in Al2O3 − H2O nanofluid is rapid. Due to high
dynamic viscosity of γAl2O3 − H2O nanofluid, the temperature
drops slowly than Al2O3 − H2O nanofluid. It is observed that
the temperature vanishes at the thermal boundary layer which
starts beyond η > 3. These influences are shown in Figure 7A.
It is investigated that the opposite motion of the wedge and
nanofluids reduces the temperature very rapidly. Due to opposite
motion, the velocity of the momentum drops. Consequently,
the velocity declines which cause the rapid decrement in the
temperature. The role of λ on β(η) is very cleared. Moreover,
for opposing case, thermal boundary layer increases and the
temperature decreases beyond η > 5. This behavior of the
temperature is portrays in Figure 7B.

Figures 8–10 depicted the behavior of temperature β(η) for
volumetric fraction φ, Eckert number Ec and thermal radiation

parameter Rd, respectively. The temperature patterns for both
assisting and opposing case are plotted.

In the study of nanofluids, the importance of volume
fraction cannot be neglected. The volume fraction alters the
temperature effectively and plays vibrant role. The variations
in the temperature for assisting and opposing flow due to
altering φ are plotted in Figures 8A,B, respectively. From
these, it is inspected that the volume fraction favors the
temperature positively. For γ > 0, the increasing pattern
of the temperature is quite slow than γ < 0. The main
reason of this phenomena is the force of friction produces
between the wedge surface and molecules of the nanofluids.
For assisting case, thermal boundary layer decrease and in the
case of opposing flow it starts increases and the temperature
is vanishes beyond η > 3 and η > 4, respectively. For
γAl2O3 − H2O3 the temperature β(η) increases very promptly
due to the dynamic viscosities of Al2O3 − H2O3 and γAl2O3 −

H2O3 nanofluids.
The effects of Eckert number which appears due to the

viscous dissipation are plotted in Figures 9A,B for alike and
opposing flow cases, respectively. The temperature varies almost
inconsequentially for γ > 0 for both sort of nanofluids.
On the other hand, it is inspected that for more dissipative
nanofluids, the temperature β(η) arises rapidly. Thermal
boundary layer decreases for Al2O3 − H2O nanofluid and
increases for γAl2O3 − H2O nanofluid. From Figures 10A,B,
it is obvious that thermal radiation parameter increases the
nanofluids temperature for both the cases. For opposing
case, the temperature β(η) arises quite rapid than alike
flow case.

Skin Friction and Local Nusselt Number
This subsection highlights the behavior of skin friction
and local Nusselt number for different values of the flow
parameters for assisting and opposing flow. It is observed
that the skin friction is directly proportional to the pressure
parameter λ. For opposing flow, skin friction increases
slowly in comparison with opposing flow case. These are
depicted in Figure 11. Figure 12 shows that the magnetic
parameter M favors the skin friction for both assisting and
opposing flows. For assisting case, it varies very slowly
for assisting case while abrupt alterations are observed for
opposing flow.

The alterations in local heat transfer coefficient (Nusselt
number) for different parameters incorporating in Figures 13–
15 for alike and opposing flow cases. It is observed that heat
transfer decreases at the wedge surface for alike flow case for
radiative flow. The heat transfers for γAl2O3−H2O nanofluids is
rapidly drops than Al2O3 − H2O nanofluids. On the other hand,
decrement in the heat transfer is observed for opposing flow.
The heat transfer drops abruptly for γAl2O3 − H2O nanofluid.
These variations are portrayed in Figure 14. Figure 15 depicts
the influences of dissipation phenomena on the heat transfer.
The heat transfer drops abruptly for more dissipative γAl2O3 −

H2O nanofluid and in Al2O3 − H2O nanofluid, these effects are
quite slow.
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Thermophysical Properties
Thermophysical characteristics contribute vibrantly in the flow
regimes of nanofluids. These properties effectively alter the
nanofluid characteristics. The effects of volume fraction φ on
the effective dynamic viscosity, thermal conductivity, electrical
conductivity and density are plotted in Figures 16–19. From
Figure 16, it is clear that the dynamic viscosity of γAl2O3 −

H2O increases exponentially. The for Al2O3 − H2O nanofluids,
these are very slow. Due to this improvement in the dynamic
viscosity, the characteristics of the nanofluids affects. Similarly,
thermal conductivity of γAl2O3 − H2O nanofluid is quite rapid.
However, no major difference between thermal conductivities
of Al2O3 − H2O and γAl2O3 − H2O nanofluids is observed.
Furthermore, electrical conductivity and density of the nanofluid
arises by increasing the volume fraction in feasible domain. These
are elaborated in Figures 18, 19, respectively.

Comparison With Scientific Literature
Table 2 elaborating the reliability of the presented results with
existing scientific literature for F′′(0). It is detected that by
setting different physical parameters equal to zero, our results
meets the existing scientific results in the literature that show
the reliability of the presented physical results and applied
numerical technique.

CONCLUSIONS

A novel radiative and dissipative study on Al2O3 − H2O and
γAl2O3 −H2O nanofluids heat transfer model in the presence of
applied magnetic field is considered over wedge. Two nanofluids
models are obtained corresponding to two different sort of
nanoparticles together with host liquid water. Then the models
are treated mathematically by implementing RK scheme coupled
with shooting method. Finally, the results for the flow regimes,
heat transfer and thermophysical characteristics are plotted and
found the following major outcomes:

i. The velocity of γAl2O3 − H2O nanofluid increases for higher
Hartree pressure gradient parameter.

ii. The assisting flow of nanofluid over wedge favors the velocity
field F′(η) and the velocity drops for opposing flow.

iii. The velocity profile F′(η) drops for higher volume fraction
factor φ of the nanoparticles.

iv. The temperature of the nanofluids arises for opposing flow.
v. The temperature β(η) arises for more dissipative and

radiative nanofluids.
vi. The temperature field β(η) declines for higher Hartree

pressure gradient parameter.
vii. The parameter λ and strength of magnetic field favors the

skin friction coefficient.
viii. For more radiative and dissipative nanofluids, the heat

transfer coefficient drops.
ix. Dynamic viscosity increases abruptly for γAl2O3 − H2O

than Al2O3 − H2O nanofluid which alters the flow
characteristics effectively.

x. Thermal and electrical conductivities increases by increasing
the nanoparticles volume fraction φ.

xi. From comparison of presented results with existing scientific
literature, it is observed that the presented physical results
are valid.
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NOMENCLATURE

Parameter Description SI Unit

Ec Eckert number Dimensionless

F ′ (η) Dimensionless velocity Dimensionless

knf Effective thermal conductivity Wm−1K−1

kf Thermal conductivity of the fluid Wm−1K−1

ks Thermal conductivity of the nanoparticles Wm−1K−1

M Hartmann number Dimensionless

Pr Prandtl number Dimensionless

q(x) Wall heat flux W/m2

Rd Thermal radiation parameter Dimensionless

T Temperature K

Û(x, t) Main stream velocity m/s

û Velocity in x direction m/s

v̂ Velocity in y direction m/s

β(η) Dimensionless temperature Dimensionless

γ Wedge parameter Dimensionless

η Similarity variable Dimensionless

µnf Effective dynamic viscosity kg/ms

µf Dynamic viscosity of the fluid kg/ms

ρnf Effective density kg/m3

ρf Density of the fluid kg/m3

ρs Density of the solid particles kg/m3

(

cp
)

nf
Effective heat capacity of the nanofluid kg−1K−1

(

cp
)

f
Heat capacity of the fluid kg−1K−1

(

cp
)

s
Heat capacity of the nanoparticles kg−1K−1

σ ∗

m Electrical conductivity S/m
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NOMENCLATURE

u, v, w Velocity components x, y, z Coordinate axes

� Angular velocity B0 Magnetic field strength

µ Dynamic viscosity ρ Fluid density

ν Kinematic viscosity p Pressure

σ Electrical conductivity V0 Suction/blowing velocity

T Temperature C Concentration

α∗
m Thermal diffusivity D Mass diffusion coefficient

cs Concentration susceptibility cp Specific heat

kT Thermal-diffusion Tm Fluid mean temperature

a Stretching rate t Time

T0 Temperature at lower plate C0 Concentration at lower plate

F ′, G Dimensionless velocities η Dimensionless variable

θ Dimensionless temperature φ Dimensionless concentration

Sq Squeezing number Ec Eckert number

S Suction/blowing parameter M Magnetic number

� Rotation parameter Pr Prandtl number

Sc Schmidt number Sr Soret number

Df Dufour number Nux Local Nusselt number

τwx , τwz Wall shear stresses Shx Local Sherwood number

Cfx , Cfz Skin friction coefficients Rex Local Reynolds number
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Recently, significant interest has been developed by researchers toward the peristaltic

transport of fluid, as this phenomenon involves a variety of applications in the

biomechanics, bioengineering, and biomedical industries. In the present contribution,

we investigate the effect of heat and mass transfer on magnetically influenced micropolar

flow induced by peristaltic waves. The fundamental laws regarding current flow problem

are employed by using curvilinear coordinates. A reduction of these equations is

made based on lubrication approximation. The solution algorithm is based on the

implementation of the famous finite difference method. The fundamental impacts of

coupling number, micropolar parameter, Hartmann number, Brinkman number, rate

of chemical reaction, and curvature parameter on longitudinal velocity, pressure rise,

temperature, and mass concentration are analyzed in detail. The flow patterns in the

channel illustrating the effects of several involved parameters are also displayed.

Keywords: micropolar fluid, hartmann number, heat and mass transfer, curved channel, implicit finite difference

method

INTRODUCTION

The theory of fluids has gained the attention of scientists, engineers, biologists, andmathematicians
in recent times. Generally, fluids are categorized as Newtonian or non-Newtonian. Newtonian
fluids are those in which viscous stresses sustain a linear relationship between strain rates at
every point. The viscous fluids are referred to as a simple linear model that reports the viscosity.
Examples of Newtonian fluids are water, glycerol, alcohol, thin motor oil, and air. Another class
of fluids is defined as a fluid which fails to follow Newton’s viscosity model. A number of fluids
are non-Newtonian in nature. Examples are custard, ketchup, shampoo, starch, paint, blood, and
suspension. Recently, many researchers have been concentrating on the flows of non-Newtonian
fluids. This is due to the applications of non-Newtonian fluids in polymer processing, biofluid
mechanics, and complex mathematical non-linear constitutive equations.
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Themotivating implication of the Peristalsis phenomenon has
attained a valuable attraction of scientists in the last few years as
it involves fundamental industrial and bioscience applications.
Several investigations are reported regarding the peristaltic
transport of non-Newtonian materials which encountered many
physiology applications. Raju and Devanathan [1] worked on
the peristaltic study of the power law model configured by
a tube, where it was assumed that a sinusoidal with lower
amplitude traveled down along the channel wall. Mekheimer
[2] studied the transport of magnetohydrodynamic viscous and
incompressible peristaltic flow in an inclined planar channel.
Hakeem et al. [3] modeled the peristaltic flow motion equations
for Carreau fluid by using long wavelength assumptions in
a uniform tube. The peristaltic study of Johnson–Segalman
liquid influenced by magnetic force in a 2D flexible channel
has been depicted by Elshahed and Haroun [4]. Hakeem et
al. [5] examined the significance of magnetic force in trapping
evolved regarding the peristaltic flow generalized viscous fluid.
The rheological justification of non-Newtonian Burger’s fluid
due to peristaltic movement encountered by a planar channel
was reported by Hayat et al. [6]. The reported flow model was
based on long wavelength theory, and later on, an exact solution
is developed for a formulated problem. The theoretical model
developed by Haroun [7] signified the rheological consequences
in third-order liquid for a peristaltic phenomenon configured
by the asymmetric channel. Wang et al. [8] studied the
magnetohydrodynamic peristaltic motion of a Sisko fluid in
a symmetric or asymmetric channel. An investigation with
peristaltic aspects for third-grade fluid encountered by a circular
cylindrical tube was performed by Ali et al. [9]. The peristaltic
mechanism of Prandtl–Eyring fluid along with heat transfer
features in a curved channel was evaluated by Hayat et al. [10].
Rafiq et al. [11] investigated ion-slip and Hall features in the
peristaltic flow of nanoparticles with biomedical applications.
Ahmed and Javed [12] used finite element technique to model
Navier–Stokes expressions for the peristaltic phenomenon in the
presence of a porous medium. The influence of electromagnetic
features in the peristaltic flow of Eyring-Powell nanofluid. Asha

FIGURE 1 | Physical problem of the peristaltic flow regime.

and Sunitha [13] involved the Hall effects in peristaltic transport
of nanoparticles in the asymmetric channel.

Non-Newtonian fluids are characterized through a number
of models due to their complexity. Among these models, a
micropolar fluidmodel has been gaining attention of a number of
researchers. In this model, stiff particles cramped into a relatively
minute-volume element are able to move about the center of
the element. The rotational attribute of fluid particles is carried
out through a vector called micro-rotation expressions. It is not
worth remarking that those intrinsic rotation features of the fluid
are associated with rigid body movement for a whole-volume
element which depends upon various factors. Such features are
referred to the micro-rotational effects, and the role of these
factors at macro-scale cannot be taken into account. However,
such effects become important when flow is considered in narrow
gaps, i.e., when geometric dimensions of the flow domain are very
small [14]. In peristaltic flows, fluid is usually pushed through
nano-size vessels, and therefore, it is expected that micro-
rotation of particles reflects some diverse and distinguished
flow characteristics. Important effects cannot be captured by the
Navier–Stokes theory. The fundamental work on the micropolar
fluid theory was first introduced by Eringen [15, 16] to describe
the suspensions of neutrally buoyant rigid particles in a viscous
fluid. The work on micropolar fluid was initiated by Eringen
by involving the micro-rotation features in the classical Navier–
Stokes theory. Ariman et al. [17] studied the application of
micro-continuum fluid mechanics in a broader prospect. The
assessment of a boundary layer for the micropolar fluid has been
successfully examined by Na and Pop [18]. Srinivasacharya et
al. [19] reported a closed-form relation for peristaltic aspects
of micropolar fluid flow due to a circular tube. The model
problem was based on the famous long wavelength and small
Reynolds number assumptions. The peristaltic movement under
the influence of wall properties in 2D flow of micropolar liquid
has been revealed byMuthu et al. [20]. Lok et al. [21] investigated
the steady mixed convective due to vertical moving geometry for
flow of micropolar fluid. Hayat et al. [22] examined the impact
of different waveforms in a peristaltic flow of a micropolar fluid.
The flow of micropolar liquid followed by a peristaltic pattern in
the asymmetric channel has been focused by Ali and Hayat [23].
Another continuation made by Hayat and Ali [24] reported the
endoscope consequences formicropolar fluid flow in a concentric
tube. Another peristaltic phenomenon based on an exploration
for micropolar liquid with implementation of magnetic field
impact was estimated byMekheimer [25]. Ishak et al. [26] studied
the magnetohydrodynamic flow of a micropolar fluid toward a
stagnation point on a vertical surface. Mekheimer and El Kot
[27] used the micropolar fluid model for blood flow through a
stenosed tapered artery. Sajid et al. [28] employed the homotopy
analysis method to discuss boundary layer flow micropolar fluid
through a porous channel. Ashraf et al. [29] examined numerical
solutions portraying the appliance of micropolar material in a
channel having porous walls. Rashidi et al. [30] applied the
differential transform method to get a semi-analytical solution of
micropolar flow in a porous channel withmass injection. Ali et al.
[31] comprehensively studied the peristaltic flow of a micropolar
fluid in a curved channel. The unsteady peristaltic prospective
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for 2D channel flow of micropolar fluid in the presence of heat
and mass transportation has been examined by El-Dabe and
Zeid [32]. The investigation for micropolar fluid in contacting
a wall channel additionally featuring an isotropic porous space

was assessed by Abd Elmaboud [33]. Sui et al. [34] reported
a constitutive diffusion model to investigate the heat transfer
performances in micropolar fluid encountered by a moving
geometry. Waqas et al. [35] numerically predicted the join

FIGURE 2 | (A,B) Impact of Ha on u (η) with γ = 2.5, N1 = 0.5, N2 = 1.2, λ = 0.4, and 2 = 1.5. (B) Impact of Ha on w (η) with γ = 2.5, N1 = 0.5, N2 = 1.2,

λ = 0.4, and 2 = 1.5.

FIGURE 3 | (A,B) Impact of N1 on u (η) with γ = 2.5, Ha = 2, N2 = 0.2, λ = 0.4, and 2 = 1.5. (B) Impact of N1 on w (η) with γ = 2.5, N2 = 0.2, λ = 0.4,

and 2 = 1.5.

FIGURE 4 | (A,B) Impact of N2 on u (η) with γ = 2.5, Ha = 2, N1 = 0.5, λ = 0.4, and 2 = 1.5. (B) Impact of N2 on w (η) with γ = 2.5, N1 = 0.5,

λ = 0.4, and 2 = 1.5.
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features of Maxwell viscoelasticity–based nanofluid additionally
featuring a porous medium. In another contribution, Waqas and
co-workers [36] utilized the bioconvection phenomenon in the
flow of micropolar nanofluid with additional thermal radiation

features. Ali et al. [37] intended the micropolar liquid rheological
significance compiled in calendaring geometry. Ahmed et al. [38]
examined the effects of heat and mass transfer on peristaltic
flow of Sisko fluid through a curved channel. Mekheimer et al.

FIGURE 5 | (A) Impact of Ha on 1p with N1 = 0.5,N2 = 1.2, γ = 2.5, and λ = 0.4. (B) Impact of N1 on 1p with γ = 2.5, N2 = 1.2, and λ = 0.4. (C) Impact of N2 on

1p with N1 = 0.5, γ = 2.5, and λ = 0.4.

FIGURE 6 | (A–D) Variation in θ for various values of (A) Br with N1 = 0.5, N2 = 1.2, λ = 0.4, and γ = 2; (B) N1 with Br = 2, N2 = 1.2, λ = 0.4, and γ = 2; (C) N2

with Br = 2, N1 = 0.5, λ = 0.4, and γ = 2; and (D) Ha with N1 = 0.5, N2 = 1.2, λ = 0.4, and γ = 2.
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[39] studied the effect of gold nanoparticle third-grade fluid on
peristaltic blood flow. Elkhair et al. [40] considered the impact
of heat transfer on oscillatory flow of a dielectric fluid through a
porous medium. Recently, Mekheimer et al. [41] investigated the
behavior of a blood confined by stenotic arterial walls. In another
useful attempt, Mekheimer et al. [42] performed the features of
heat transfer additionally featuring AC current. Nadeem et al. [43,
44] studied hybrid-based nanofluid flow over a curved surface in
different scenarios. Abbas et al. [45] observed transportation of
micropolar hybrid nanomaterial which was externally impacted
by magnetic influence. Sadaf et al. [46] discussed the effect of
heat transfer on fluid motion generated by cilia and a pressure
gradient in a curved channel. In a most recent study, Nadeem et
al. [47] investigated the effect of heat transfer on micropolar fluid
flow over a Riga plate. Some more recent investigations on this
topic are seen in references [48–50].

From the literature cited above, it is noted that the
hydrodynamic flow of micropolar fluid through a curved
channel with peristalsis is studied but less attention is paid
to hydromagnetic aspects of micropolar liquid along with
heat and mass transportation aspects. The prime objective of
this study is to investigate the effects of coupling number,
micropolar parameter, Hartmann number, Brinkman number,
and dimensionless radius of curvature on flow, heat, and mass
transfer characteristics. To this end, the associated equations for
velocity, temperature, and mass concentration are constituted.
The modeled system is numerically interpolated with assistance

of finite difference scheme. The fluid velocity, temperature,
and concentration fields are analyzed for several values of the
involved parameters. It is important to mention that governing
equations for heat and mass transfer for the flow of micropolar
fluid in a curved peristaltic channel are derived for the first time
in the literature.

GOVERNING EQUATIONS

For micropolar fluid, the mathematical expressions in presence
of heat/mass influences are given by [37].

Continuity equation:

Ui,i= 0 (1)

Momentum equation:

ρU̇k = τlk,l + ρfk (2)

Moment of momentum equation:

ρjẇk = mlk,l + ekijτij (3)

Energy equation:

ρcpṪ = kT,ii + τklakl −mklbkl (4)

FIGURE 7 | (A–C) Variation in z at the upper wall for (A) Ha with N1 = 0.5, N2 = 1.2,λ = 0.4, and γ = 2; (B) N1 with Br = 2,, N2 = 1.2,λ = 0.4, and γ = 2; and (C)

N2 with Br = 2, N1 = 0.5, λ = 0.4, and γ = 2.
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Concentration equation:

Ċ = DC,ii +
DkT

Tm
T,ii − k1C (5)

In the above equations, Uk is the velocity, C is the mass
concentration, fk is the body force, T is the symbolized
temperature, τkl is the Cauchy stress tensor, mkl is the moment
stress tensor, p is the pressure, ρ is the fluid density, wk is
the micro-rotation vector, cp is the specific heat at constant
pressure,D is the coefficient of mass diffusivity, KT is the thermal
diffusivity, Tm is the mean temperature, k1 is the rate of chemical
reaction, k is the thermal conductivity, j is the micro moment of
inertia, and dot indicates the material time derivative. Moreover,
τkl,mkl, akl and bkl are given by

τkl = −pδkl +
(

µ+ k2
)

akl + µalk,
mkl = α tr(bmm)δkl + βbkl + γ

∗blk,
akl = vl,k + elkmwm,
bkl = wk,l,















(6)

where µ is the viscosity, k2 is the dynamic micro-rotation
viscosity, elkm is the permutation symbol, and α, β , γ ∗ are the
constants called coefficient of angular viscosity. It is remarked
that Equation (2) has been diminished into a Navier–Stokes
expression when k2 = α = β = γ ∗

= 0. It is further
emphasized that if k2 = 0, both micro-rotation and velocity
are unyoked and micro-rotation does not play to alter the global
motion. Following Eringen [51], the following relations hold for
µ, k2,α,β , and γ

∗

2µ+ k2 ≥ 0, k2 ≥ 0, 3α + β + γ ∗
≥ 0,α ≥ |β| .

MATHEMATICAL MODELING

Consider a curved channel of width 2w coiled in circle having
radius R0 and centerO. An incompressible micropolar fluid flows
inside the channel. The fluid flows due to the wall of the channel
which deforms uniformly. Let T0,T1,C0, and C1 represent
the upper wall temperature, lower wall temperature, upper

FIGURE 8 | (A–D) Change in ϕ for various values of (A) Br with N1 = 0.5, N2 = 1.2, λ = 0.4, and γ = 2; (B) Rc with Br = 2, N1 = 0.5, N2 = 1.2, λ = 0.4, and γ = 2;

(C) Ha with Br = 2,N1 = 0.5, N2 = 1.2, λ = 0.4, and γ = 2; (D) Sc with Br = 2, N1 = 0.5, N2 = 1.2, λ = 0.4, and γ = 2; and (E) Sr with Br = 2,N1 = 0.5,

N2 = 1.2,λ = 0.4, and γ = 2.
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wall concentration, and lower wall concentration, respectively.
The fluid movement is described by following the curvilinear
coordinate system (R,χ ,Z). It is emphasized that χ is specified
in the flow direction and R is radially oriented while Z is assumed
normal to the plane. The flow visualization for the current
problem can be described by sketching Figure 1. The shape of
both walls is described mathematically as [31, 38]

H1 (χ , t) = w+ a sin

((

2π

λ∗

)

(χ − ct)

)

, Upper wall, (7)

H2 (χ , t) = −w− asin

((

2π

λ∗

)

(χ − ct)

)

, Lowerwall, (8)

where λ∗ is the wavelength, c is the wave speed, a is the
amplitude, and t is the time. The present work is based on the
following assumptions:

∂

∂R

{(

R+ R̃
)

U1

}

+ R̃
∂U2

∂χ
= 0, (9)

∂U1

∂t
+ (U1.∇)U1 −

U2
2

R+ R̃
= −

1

ρ

∂P

∂R
+

1

ρ

(

µ+ k2
)

[

∇
2U1 −

U1
(

R+ R̃
)2

−
2R̃

(

R+ R̃
)2

∂U2

∂χ

]

+
k2R̃

ρ
(

R+ R̃
)

∂w

∂χ
, (10)

∂U2

∂t
+ (U1.∇)U2 +

U1U2

R+ R̃
= −

R̃

ρ
(

R+ R̃
)

∂P

∂χ
+

1

ρ

(

µ+ k2
)

[

∇
2U2 −

U2
(

R+ R̃
)2

+
2R̃

(

R+ R̃
)2

∂U1

∂χ

]

−
k2

ρ

∂w

∂R
−

σB∗2R̃2

ρ
(

R+ R̃
)2
U2, (11)

(U1.∇) w = −
γ ∗

ρj





∂2w

∂R2
+

1

R+ R̃

∂w

∂R
+

(

R̃

R+ R̃

)2
∂2w

∂χ2



+
k2

ρj

[

2w−
R̃

R+ R̃

∂U1

∂χ
+
∂U2

∂R
+

U2

R+ R̃

]

, (12)

ρcp

(

∂T

∂t
+ U1

∂T

∂R
+

U2R̃

R+ R̃

∂T

∂χ

)

= k

(

∂2T

∂R2
+

1

R+ R̃

∂T

∂R
+

R̃2

(

R+ R̃
)2

∂2T

∂χ2

)

+
∂U1

∂R

(

−p+ 2µ
∂U1

∂R
+ k2

∂U1

∂R

)

+

(

R̃

R+ R̃

∂U1

∂χ
−

U2

R+ R̃
− w

)(

µR̃

R+ R̃

∂U1

∂χ
+ µ

∂U2

∂R
−

µU2

R+ R̃
+

kR̃

R+ R̃

∂U1

∂χ
−

kU2

R+ R̃
− k2w

)

+

(

∂U2

∂R
+ w

)

(

µR̃

R+ R̃

∂U1

∂χ
+ µ

∂U2

∂R
−

µU2

R+ R̃
+ k2

∂U2

∂R
+ k2w

)

+

(

R̃

R+ R̃

∂U2

∂χ
+

U1

R+ R̃

)(

−p+
2µR̃

R+ R̃

∂U2

∂χ
+

2µU1

R+ R̃
+

kR̃

R+ R̃

∂U2

∂χ
+

kU1

R+ R̃

)

+γ ∗





(

∂w

∂R

)2

+

(

R̃

R+ R̃

∂w

∂χ

)2


 , (13)

∂C

∂t
+ (U1.∇)C = D∇2C +

DKT

Tm





∂2T

∂R2
+

R̃

R+ R̃

∂T

∂R
+

(

R̃

R+ R̃

)2
∂2T

∂χ2



− k1C, (14)

(1) The fluid is assumed as a continuum.
(2) Fluid is incompressible.
(3) The solid matrix is in a local thermal equilibrium with

the fluid.
(4) The walls of the channel are non-compliant.
(5) Flow is laminar with negligible gravitational effects.
(6) Themagnetic Reynolds number is assumed small, and hence,

effects of induced magnetic field are negligible.
(7) Soret and chemical effects are taken into account.

It is further assumed that the flow is subjected to the radial
magnetic field of the form

B =

(

B∗R̃

R+ R̃

)

eR,

where B∗ is the limiting value of B when R̃ → ∞. Thus,
by generalizing Ohm’s law, the body force term in Equation
(2) becomes

ρfk = (J× B)k,

where J = σ (V × B). Here, we neglect the electric field and
invoke the lowmagnetic Reynolds number assumption. Using the
velocity, temperature, concentration, and micro-rotation fields
defined by

U = [U1 (χ ,R, t) ,U2 (χ ,R, t) , 0] , T = T (χ ,R, t) ,

C = C (χ ,R, t) ,w = [0, 0,−w (x, r)]

the set of Equations (1)–(5) in component form becomes [31, 38]

where

U1.∇ = U1
∂

∂R
+

R̃U2

R+ R̃

∂

∂χ
, (15)

and

∇
2
=

1

R+ R̃

∂

∂R

{

(

R+ R̃
) ∂

∂R

}

+

(

R̃

R+ R̃

)2
∂2

∂χ2
(16)

The boundary conditions associated with Equations (9)–(14)
are [8]

U2 = 0, U1 =
∂H1

∂t
, w = 0,T = To, C = Co at R = H1(χ , t), (17)

U2 = 0,U1 =
∂H2

∂t
, w = 0,T = T1, C = C1atR = H2(χ , t). (18)
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The following transformations are suggested to transmute the
fixed wave from (R,χ) to new wave from (r, x)

x = χ − c t, r = R, p = P, u1 = U1, u2 = U2 − c . (19)

The governing flow equation is transmuted into a wave frame
while defining the following appropriate variables [31, 38]:

x̄ =
2πx
�λ∗ , η =

r
�a , γ =

R̃

a
, ū1 =

u1�c , ū2 =
u2�c ,

w̄ =
aw
�c , p̄ =

2πa2p
�λ∗µc , Re =

ρca
�µ , θ =

(T−T1)�(T0−T1) ,

φ =
(C−C1)�(C0−C1) , δ =

2πa
�λ∗ , j̄ = j

�a2 ,N1 =
k2�µ ,N2 =

γ ∗
�a2µ

Moreover, invoking the lubrication approximations (δ ≈ 0, Re ≈
0) reduces to

∂p

∂η
= 0, (20)

−
∂p

∂x
−

1

γ (1− N1)

[

∂

∂η

{

(η + γ )
∂2ψ

∂η2

}

+
1

η + γ

(

1−
∂ψ

∂η

)

− N1 (η + γ )
∂w

∂η

]

−
γHa2

η + γ

(

1−
∂ψ

∂η

)

= 0, (21)

(

2− N1

N2

)[

∂2w

∂η2
+

1

η + γ

∂w

∂η

]

− 2w+
∂2ψ

∂η2
−

1

η + γ

(

1−
∂ψ

∂η

)

= 0, (22)

∂2θ

∂η2
+

1

(η + γ )

∂θ

∂η
+ Br

(

1

η + γ

(

1−
∂ψ

∂η

)

+ w

)

(

∂2ψ

∂η2
+

1

η + γ

(

1−
∂ψ

∂η

)

(1+ N1)+ N1w

)

+

Br

(

∂2ψ

∂η2
− w

)(

∂2ψ

∂η2
+

1

η + γ

(

1−
∂ψ

∂η

)

+ N1

(

∂2ψ

∂η2
− w

))

+ N2Br

(

∂w

∂η

)2

= 0,

(23)

∂2φ

∂η2
+

1

(η + γ )

∂φ

∂η
− Rcφ = −SrSc

(

∂2θ

∂η2
+

1

(η + γ )

∂θ

∂η

)

+ Rc. (24)

In the above equations N1, N2, Re, δ, γ , K
∗, and Rc represent

the coupling number, micropolar constant, Reynolds number,
wave number, radius of curvature, dimensionless permeability
parameter, and dimensionless rate of the chemical reaction
parameter, respectively. Here, the coupling number presents
the coupling between the vortex viscosity and shear viscosity
coefficients, while micropolar parameter is the ratio between the
coefficient of angular viscosity and the shear viscosity coefficient.
Further, the stream function ψ and velocity components u1 and
u2 are related through the expressions

u1 = δ
γ

η + γ

∂ψ

∂x
, u2 = −

∂ψ

∂η
. (25)

Combining Equation (20) with Equation (21), one gets
1

1−N1

[

∂2

∂η2

{

(η + γ )
∂2ψ

∂η2

}

+
∂
∂η

(

1
η+γ

(

1− ∂ψ
∂η

))

− N1
∂
∂η

(

(η + γ ) ∂w
∂η

)]

−
γ 2Ha2

η+γ

(

1− ∂ψ
∂η

)

= 0. (26)

The transmuted boundary assumptions (17)–(18) are

ψ = −
q

2
,
∂ψ

∂η
= 1, w = 0, θ = 0, φ = 0, at

η = h1 = 1+ λsinx, (27)

ψ =
q

2
,
∂ψ

∂η
= 1, w = 0, θ = 1, φ = 1, at

η = h2 = −1− λsinx. (28)

In the above set of equations, λ =
a
�w symbolizes the amplitude

ratio. Our objective is to compute the solution of Equations
(22)–(24) and (26) subject to boundary conditions (27) and (28).

We summarized the following relations for pressure rise per
wavelength

(

1p
)

, heat transfer coefficients zi(i = 1, 2), and
expressions for Sherwood number Shi(i = 1, 2) at the upper and
lower wall surfaces in the following forms:

1p =

2π
∫

0

dp

dx
dx, (29)

zi =
∂hi

∂x

∂θ

∂η

∣

∣

∣

∣

η = hi

, i = 1, 2. (30)

Sh =
∂hi

∂x

∂φ

∂η

∣

∣

∣

∣

η = hi

. i = 1, 2. (31)

NUMERICAL SOLUTION

In this, we numerically address the solution procedure of
Equations (27), (28), and (30) subject to boundary conditions
given in Equations (31) and (32). On this end, we adopted a
famous finite difference procedure to perform such numerical
simulations [52–54]. According to this method, simulations are
performed by the following steps:

(i) As a first step, an iterative procedure has been compiled by
transmuting non-linear flow equations into linear equations at
the (m + 1)th iterative step. Adopting such iterative process,
we get
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∂4ψ (m+1)

∂η4
+

2

(η + γ )

∂3ψ (m+1)

∂η3
−

1

(η + γ )2
∂2ψ (m+1)

∂η2
+

{

1

(η + γ )3
+
γ 2Ha2(1− N1)

(η + γ )2

}

∂ψ (m+1)

∂η

−N1
∂2w(m+1)

∂η2
−

N1

(η + γ )

∂w(m+1)

∂η
−

1

(η + γ )3
−
γ 2Ha2(1− N1)

(η + γ )2
= 0. (32)

∂2θ (m+1)

∂η2
+

1

(η + γ )

∂θ (m+1)

∂η
+ Br

(

1

η + γ

(

1−
∂ψ (m)

∂η

)

+ w(m)

)(

∂2ψ (m)

∂η2
+

1

η + γ

(

1−
∂ψ (m)

∂η

)

(1+ N1)+ N1w
(m)

)

+

Br

(

∂2ψ (m)

∂η2
− w(m)

)(

∂2ψ (m)

∂η2
+

1

η + γ

(

1−
∂ψ (m)

∂η

)

+ N1

(

∂2ψ (m)

∂η2
− w(m)

))

+ N2Br

(

∂w(m)

∂η

)2

= 0, (33)

∂2φ(m+1)

∂η2
+

1

η + γ

∂φ(m+1)

∂η
− Rcφ

(m+1)
= −SrSc

(

∂2θ (m)

∂η2
+

1

(η + γ )

∂θ (m)

∂η

)

+ Rc , (34)

ψm+1
= −

q

2
,
∂ψm+1

∂η
= 1, wm+1

= 0, θ (m+1)
= 0, φ(m+1)

= 0, atη = h1, (35)

ψ (m+1)
=

q

2
,
∂ψ (m+1)

∂η
= 1, wm+1

= 0, θ (m+1)
= 1, φ(m+1)

= 1, atη = h2. (36)

In the above expression, m is the iterative step index. It is
emphasized that the above transmuted set of equations is
linear in ψ (m+1).

(ii) This step deals with utilization of finite difference
approximations of ψ (m+1), w(m+1), θ (m+1), and φ(m+1)

along with their derivatives into Equations (36)–(38), which
results in a linear set of algebraic equations at each
iterative step.

(iii) The solution of the algebraic set of equation constructed
above gives the numerical results for ψ (m+1), w(m+1),
θ (m+1), and φ(m+1). In order to develop the iterative
process, we need initial guesses for ψ (m), w(m), θ (m),
and φ(m) as each cross section. The simulations are

performed up to a desirable accuracy of solution. The
fast convergence solution has been obtained by employing
a successive under-relaxation technique. The values at of
ψ̃ (m+1), w̃(m+1),θ̃ (m+1) and φ̃(m+1) at the (m+1)th iterative
step are determined as

ψ (m+1)
= ψ (m)

+ τ (ψ̃ (m+1)
− ψ (m)),

w(m+1)
= w(m)

+ τ (w̃(m+1)
− w(m)),

θ (m+1)
= θ (m)

+ τ (θ̃ (m+1)
− θ (m)),

φ(m+1)
= φ(m)

+ τ (φ̃(m+1)
− φ(m)),

where τ denotes the under relaxation parameter. For excellent
accuracy of the solution, the values of τ should be taken small. In

FIGURE 9 | Streamlines in wave frame for (A) γ = 2, (B) γ = 2.5, (C) γ = 3, and (D) γ → ∞. The other parameters chosen are N1 = 0.5, N2 = 1.2, and λ = 0.8.
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FIGURE 10 | Streamlines in wave frame for (A) N1 = 0.8, (B) N1 = 1, (C) N1 = 1.2, and (D) N1 = 1.4. The other parameters chosen are Ha = 2, N2 = 1.2, γ = 2.5,

and λ = 0.8.

the current situation, the convincing accuracy of 10−8 has been
achieved for ψ ,w, θ , and φ.

RESULTS AND DISCUSSION

To understand some momentous consequences of peristaltic
aspects of flow features, pumping phenomenon, temperature
distribution and trapping phenomenon for various values of
coupling number (N1), micropolar parameter (N2), Brinkman
number (Br) , Hartmann number (Ha), and curvature parameter
(γ ), various graphs are provided in Figures 2–5 with relevant
consequences. The heat transfer characteristics at both wall
surfaces are also visualized.

The effects of Hartmann number (Ha) on axial velocity u (η)
and micro rotation w (η) are shown in Figures 2A,B. Figure 2A
shows that u (η) reached at peak level with a larger variation
of Ha at the upper channel level in contrast to the lower wall
channel. Figure 2B exhibits the effect of Hartmann number (Ha)
on micro-rotation w (η). In the lower channel region, w (η)
boosted upwith the increment ofHawhile its behavior is reversed
in the upper part. The decrease in velocity with increasing Ha
in the lower part of the channel is attributed to the resistive
nature of the Lorentz force due to the applied magnetic field.
In order to maintain the prescribed flux, the velocity attained a
peak variation in the upper channel portion due toHa. Figure 3A
displays the effects of N1 on axial velocity. The parameter N1

reflects the vortex to the dynamic viscosity ratio of the fluid.
In fact, it is a measure of which viscosity dominates the flow
under consideration. Larger values of N1 correspond to the
situation in which vortex viscosity due to spinning motion of
fluid particles dominates the flow, and as a result, axial velocity

u (η) decreases in the upper channel region. In order to preserve
the prescribed flow rate, the axial velocity u (η) increases in the
lower part of the channel with increasing N1. Figure 3B shows
an enhancement in the magnitude of micro-rotation component
w (η) with increasing N1 in both parts of the channel. Figure 4A
shows the impact of micropolar parameter (N2) on u (η). It is
observed that u (η) increases with increasing N2 in the lower
part of the channel. In contrast, u (η) decreases with increasing

(N2) in the upper part of the channel. Figure 4B shows the effect
of N2 on w (η). It is observed that w (η) decreases in the lower
portion of the channel while it increases in the upper portion with
increasing N2.

Figures 5A–C exhibit the effect of Hartmann number
(Ha), coupling number (N1), micropolar parameter (N2), and
curvature parameter (γ ) on pressure rise per wavelength (1p).
The profiles of the pressure rise per wavelength for different
values ofHa (Hartmann number) and coupling number (N1) are
shown in Figures 5A,B. It is observed that in pumping region
(

2 > 0, 1p > 0
)

, the pressure rise per wavelength increases with
increasing Ha and N1. The situation is different in the free
pumping (1p = 0) and co-pumping regions (2 > 0, 1p < 0).
Here, 1p decreases by increasing Ha and N1. Figure 5C shows
the effects of micropolar parameter (N2) on1p. In the case of the
micropolar parameter, an opposite trend is observed as seen in
the figure.

The profiles of the temperature field for different values of
the Brinkman number (Br), Hartmann number (Ha), coupling
number (N1), and micropolar parameter (N2) are shown in
Figures 6A–D. It is noted that θ increases over the entire cross
section with each increase in Br,N1, and N2. The increase
in θ with increasing N1 and N2 is due to the retarding
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effect of these parameters on velocity u (η). The Brinkman
number is a parameter which is the ratio of viscous heat
to the heat transported by conduction. Larger values of
Brinkman correspond to the scenario when heat generated
due to viscous dissipation is dominant. In such situation, an
enhanced temperature distribution in the channel has been
justified. Figure 6D shows that θ decreases with increasing
Ha. In order to determine how heat transfer coefficient z is
altered for diverse values of Ha, N1 and N2 are displayed in
Figures 7A–C. The behavior of z is clearly oscillating which
is attributed to the oscillatory nature of the channel walls. A
damping in amplitude of oscillations is observed with increasing
Ha. The effects of B r (Brinkman number), Rc (rate of chemical
reaction), Ha (Hartmann number), Sc (Schmidt number), and Sr
(Soret number) on mass concentration (φ(η)) can be observed
in Figures 8A–E. It is observed that φ(η) is enhanced with
increasing Br, Rc, Sc, and Sr. On the contrary, φ(η) turns down
by varying Ha. The streamlines of flow inside the channel for
different values of curvature parameter (γ ) and coupling number

(N1) are shown in Figures 9, 10. The objective is to investigate the
trapping phenomenon. Figure 9 shows the effect of the curvature
parameter on streamlines. We noticed that for minimum values
of γ , the fluid bolus has been concentrated in the upper channel
region which is divided into symmetric parts due to increment
in γ . The physical consequences of coupling number N1 on
streamlines are investigated by preparing Figure 10. Similar to
earlier observations, the fluid bolus concentrated in the upper
channel portion exists for lesser variation of coupling number

(N1 = 0.8, 1). The bolus has been ripped into two shapes as
N1 gets maximum values. However, the upper part is relatively
bigger as compared to the lower part. The lower part of the
bolus increases in size with increasing N1 to 1.4. It is strongly
anticipated that the upper part of the bolus vanishes with further
increasing N1 and the channel is only filled with a single bolus
concentrated in the lower part.

CONCLUDING REMARKS

We have reported the transportation of the heat/mass
phenomenon in the peristaltic study of micropolar liquid
in a curved channel. The flow model is constructed via relevant
equations which are treated numerically by employing the finite
difference procedure. We summarized important observations
from the current analysis in the following points:

❖ The axial velocity increases with impact of the micropolar
parameter in the vicinity of the lower boundary whereas it
shows an opposite behavior in the upper channel surface.

❖ The axial component of velocity attained the same trend due
to variation of coupling number and Hartmann number.

❖ The pressure rise per wavelength increases with increasing Ha
and N1 in the pumping region.

❖ The temperature inside the channel follows an increasing
trend with increasing N1 and N2. However, it shows a
declining variation due to the impact of Ha.

❖ The concentration of fluid attained maximum variation with
Br and Rc.

❖ The fluid bolus in the upper wall surface is split up into two
parts as N1 assigned leading numerical values.

❖ The streamline symmetry trend has been visualized when
γ → ∞ .
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NOMENCLATURE

j micro moment of inertia [ML2] B∗ magnetic field [Wbm−2]

λ, λ′ amplitude ratio [m] T temperature [K]

ρ density [kgm−3] k∗ thermal conductivity [Wm−1K−1]

8 dissipation function [kgm−1s−3] u1, u2 velocity component [ms−1]

C mass concentration [kg] µ viscosity parameter [kgm−1s−1]

Tm mean fluid temperature [K] c wave speed [ms−1]

D coefficient of mass diffusivity [m2s−1] α∗,β∗, γ ,∗ coefficient of angular velocity [MLT−1]
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This research communicates the triple diffusion perspective of Eyring–Powell

nano-materials configured by a periodically moving configuration. The thermal

consequences of variable natures are utilized as a novelty. Combined magnetic

and porous medium effects are also involved, which result in a magneto-porosity

parameter. The thermophoretic and Brownian motion aspects are reported by using

Buongiorno’s nanofluid theory. The formulated flow equations in non-dimensional forms

are tackled with the implementation of a homotopy analysis algorithm. A detailed

physical investigation against derived parameters is presented graphically. Due to

periodically accelerated surface, the oscillations in velocity and wall shear stress have

been examined.

Keywords: eyring–powell nanofluid, triple diffusion, variable thermal conductivity, oscillatory stretching sheet,

homotopy analysis method

INTRODUCTION

Recent advances in nanotechnology have discovered an advanced source of energy based on
utilization nanoparticles. Nanofluids have been interacted for the impressive thermal properties
that turn into enhancement of energy transportation. The enhancement of thermo-physical
features of conventional base liquids with the addition of micro-sized metallic particles is a
relatively new and interesting development in nanotechnology. Nanoparticles attain microscopic
size, having a range between 1 and 100 nm. Recently, the investigations on nano-materials become a
new class of intense engineering research due to inherent significances in biomedical, chemical, and
mechanical industries, electronic field, nuclear reactors, power plants, cooling systems, diagnoses,
diseases, etc. The primary investigation on this topic was reported by Choi [1], which was further
worked out by several scientists, especially in the current century. The convective features for
nano-materials based on thermophoresis and Brownian movement phenomenon were notified
by Buongiorno [2]. This investigation revealed that the role of thermophoresis and Brownian
motion factors was quite essential for convective slip mechanism. Khan and Pop [3] discussed the
feature of nanofluid immersed in base material confined by moving configuration. Sheikholeslami
et al. [4] reported the features of thermal radiation in magneto-nanoparticle flow between
circular cylinders. The slip flow in nano-material due to porous surface has been reported by

191

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00246
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00246&domain=pdf&date_stamp=2020-07-24
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:iskander.tlili@tdtu.edu.vn
https://doi.org/10.3389/fphy.2020.00246
https://www.frontiersin.org/articles/10.3389/fphy.2020.00246/full
http://loop.frontiersin.org/people/940544/overview
http://loop.frontiersin.org/people/927909/overview


Khan et al. Triple Diffusive Unsteady Flow

Shahzadi et al. [5]. Khan et al. [6] directed their investigation
regarding stability prospective of nanoliquids in a curved
geometry and successfully estimated a dual solution for
the formulated problem. Turkyilmazoglu [7] imposed zero
mass flux constraints regarding asymmetric channels filled by
nanoparticles. Vaidya et al. [8] enrolled the fundamental thermal
characteristics in the three-dimensional (3D) flow of Maxwell
nanofluid where analytical expressions were developed by using
optimal homotopic procedure. Hayat et al. [9] focused on the
thermal properties and developed the 3D flow of Oldroyd-B
fluid featuring mixed convection effects. Some valuable closed-
form expressions for a nanofluid flow problem in porous space
have been computed by Turkyilmazoglu [10]. Krishna and
Chamkha [11] investigated the ion and hall slip effects in the
rotating flow of nanofluid configured by a vertical porous plate.
The enhancement of heat transfer by using hybrid nanofluids
having variable thermal viscosity was reported by Manjunatha
et al. [12]. Sardar et al. [13] used non-Fourier’s expressions for
Carreau nanofluid and suggested some useful multiple numerical
solutions successfully. Alwatban et al. [14] performed a numerical
analysis to examine the rheological consequences in Eyring–
Powell fluid subjected to the second-order slip along with
activation energy. The stability analysis for bioconvection flow
of nanofluid was reported by Zhao et al. [15]. Alkanhal et al. [16]
involved thermal radiation and external heat source for nanofluid
enclosed by a wavy shaped cavity. Kumar et al. [17] discussed
the thermo-physical properties of hybrid ferrofluid in thin-film
flow impacted by uniform magnetic field. Bhattacharyya et al.
[18] evaluated the characteristics of different carbon nanotubes
for coaxial movement of disks. Mekheimer and Ramdan [19]
investigated the flow of Prandtl nanofluid in the presence of
gyrotactic microorganisms over a stretching/shrinking surface.

Recently, researchers specified their attention toward the
complex and interesting properties of non-Newtonian meterials
due to their miscellaneous application in many industries and
technologies. The non-Newtonian materials due to convoluted
features attracted special attention especially in the current
century. The novel physical importance of such non-Newtonian
liquids in various engineering and physical processes, biological
sciences, physiology, and manufacturing industries is associated
due to complex rheological features. Some useful applications
associated with the non-Newtonian fluids include polymer
solutions, certain oil, petroleum industries, blood, honey,
lubricants, and many more. It is commonly observed that
distinctive features of such non-Newtonian fluid cannot be
pointed out via single relation. Therefore, different non-
Newtonian fluid models are suggested by investigators according
to their rheology. Among these, Eyring–Powell fluid is inferred
from kinetic laws of gases instead of any empirical formulas. This
model reduces the viscous fluid at both low and high shear rates
(see Powell and Eyring [19]). Gholinia et al. [20] carried out the
homogenous and heterogeneous impact in flow of Powell–Eyring
liquid due to rotating. Khan et al. [21] focused on viscosity-
dependent mixed convection flow of Eyring–Powell nanofluid
encountered by inclined surface. Salawu and Ogunseye [22]
reported the entropy generation prospective in Eyring–Powell
nanofluid featuring variable thermal consequences and electric

field. Another useful continuation performed by Abegunrin et al.
[23] examined the change in the boundary layer for the flow of
Eyring–Powell fluid subjected by the catalytic surface reaction.
Rahimi et al. [24] adopted a numerical technique to compute the
numerical solution of a boundary value problem modeled due to
the flow of Eyring–Powell fluid. Reddy et al. [25] involved some
interesting thermal features, like activation energy, chemical
reaction, and non-linear thermal radiation in the 3D flow
of Eyring–Powell nanofluid induced via slandering surface.
Hayat and Nadeem [26] examined the flow of Eyring–Powell
fluid and suggested modification in energy and concentration
expressions by using generalized Fourier’s law. Ghadikolaei et al.
[27] reported the Joule heating and thermal radiation features
inflow of Eyring–Powell non-Newtonian fluid in a stretching
walls channel.

The double diffusion convection is a natural phenomenon
that encountered multiple novel applications in area soil
sciences, groundwater, oceanography, petroleum engineering,
food processing, etc. The double-diffusive convection refers to
the intermixing of components of two fluid having different
diffuse rates. However, the situation becomes quite interesting
when double-diffusive convection depends upon more than
two components of fluids. Examples of such multiple diffusive
phenomenons include seawater, molten alloy solidification,
and geothermally heated lakes. The triple diffusion flow
appears in diverse engineering and scientific fields like geology,
astrophysics, disposals of nuclear waste, deoxyribonucleic acid
(DNA), chemical engineering, etc. [28–30].

After careful observation of the previously cited work, it
is claimed that no efforts have been made to report the
triple diffusion flow of Eyring–Powell nanofluid induced by
an oscillatory stretching surface with variable thermal features.
Although some investigations on flow that is due to periodical
acceleration have been available in the literature, thermodiffusion
features for Eyring–Powell nanofluid are not studied yet.
Therefore, our prime objective of this contribution is to report
the triple diffusion aspects of Eyring–Powell nanofluid flow
by using variable thermal properties. The most interesting
convergent technique homotopy analysis procedure is followed
to simulate the solution [31–35]. The graphs are prepared
to see the impact of different flow parameters with relevant
physical consequence.

FLOW PROBLEM

To develop governing equations for unsteady flow of Eyring–
Powell nanofluid, we have considered a periodically stretching
surface where x-axis is assumed along with the stretched
configuration, whereas y-axis is taken normally. The source
of induced flow is based on the periodically moving surface
where amplitude of oscillations are assumed to be small. Let
velocity of the moving surface as u = uω = bx sinωt, b as
stretching rate, ω being angular frequency, whereas t represent
time. The uniform features of the magnetic field are reported by
implementing it vertically. Let T represent the temperature, C
solutal concentration, whereas 8 report the nanoparticle volume
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fraction. Furthermore, T∞, C∞, and 8∞ denote free stream
nanoparticle temperature, free stream solutal concentration, and
volume fraction of nanofluid, respectively. After using such
assumptions, the flow problem is modeled through the following
equations [22, 33]:

∂u

∂x
+

∂v

∂y
= 0, (1)

u

(

∂u

∂x

)

+ v

(

∂u

∂y

)

+
∂u

∂t
=

(

ν +
1

ρf β
∗C

)

(

∂2u

∂y2

)

−
1

2ρβ∗C3

[

(

∂u

∂y

)2
∂2u

∂y2

]

−

(

σB20
ρf

+
νϑ

k′

)

u, (2)

u

(

∂T

∂x

)

+

(

∂T

∂y

)

+
∂T

∂t
=

1

(ρc)p

∂

∂y

(

K (T)
∂T

∂y

)

+ τT

[

DT
∂φ

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2
]

+ DKTC

(

∂2C

∂y2

)

,

(3)

u

(

∂C

∂x

)

+ v

(

∂C

∂y

)

+
∂C

∂t
= Ds

(

∂2C

∂y2

)

+ DKCT

(

∂2T

∂y2

)

,(4)

u

(

∂8

∂x

)

+ v

(

∂8

∂y

)

+
∂8

∂t
= DB

(

∂28

∂y2

)

+
DT

T∞

(

∂2T

∂y2

)

, (5)

where ν is viscosity, ρf fluid density, (β∗,C) fluid parameters,
ϑ permeability of porous medium, σe electrical conductivity,
α1 thermal diffusivity, DKTC Dufour diffusivity, τT =

(ρc)p/(ρc)f ratio of heat capacity of nanoparticles to heat
capacity of fluid, DB Brownian diffusion coefficients, Ds solutal
diffusivity, DT thermophoretic diffusion coefficient, whereas
DKCT Soret diffusivity.

Following boundary assumptions are articulated for current
flow problem

u = u (x, t) = uw sinωt = bx sinωt, v = 0,

T = Tw, C = Cw,8 = 8w at y = 0, (6)

u → 0, v → 0, T → T∞, C → C∞,8 → 8∞ at y → ∞.

(7)

In order to suggest modification in energy equation (3), we used
the following relations for variable thermal conductivity [33, 34]

K (T) = K∞

[

1+ ε
(T − T∞)

1T

]

, (8)

where K∞ ambient fluid conductivity and ε thermal dependence
conductivity constant. Now, before perfume analytical
simulations, first, we reduce the number of independent variables
in the governing equations by using the following variables:

ξ =

(

b

ν

)1/2

y, τ = tω, u = uwfy (ξ , τ) ,

v = −

√

νbf (ξ , τ) , (9)

θ (ξ , τ) =
(T − T∞)

(Tw − T∞)
,ϕ (ξ , τ) =

(

(C − C∞)

Cw − C∞

)

,φ (ξ , τ)

=
(8 − 8∞)

(8w − 8∞)
, (10)

The dimensionless set of equations in view of the previously
mentioned transformations is

(1+ K) fξξξ − Sfξτ − f 2ξ + f fξξ − �fξ − ŴKf 2ξξ fξξξ = 0, (11)

(1+ δθ) θξξ + δ
(

θξ

)2
+ Pr

[

fφξ − Sφτ + Nbθξφξ + Nt
(

θξ

)2

+
(

Nd
)

ϕξξ

]

= 0, (12)

ϕξξ − Sϕτ + Le
(

fϕξ

)

+ Ldθξξ = 0, (13)

φξξ − Sφτ + Ln
(

fφξ

)

+
Nt

Nb
θξξ = 0, (14)

The boundary constraints in the non-dimensional form are

fξ (0, τ) = sin τ , f (0, τ) = 0,

θ(0, τ ) = 1, ϕ(0, τ ) = 1,φ(0, τ ) = 1, (15)

fy (∞, τ) → 0, θ (∞, τ) → 0,ϕ (∞, τ) → 0,φ (∞, τ) → 0,

(16)

where K = 1/µβ∗C and Ŵ = uw
2b/2νC2 denote

the material parameters, � = σB20/ρf b + νϑ/k′b is
magneto-porosity constant, S = ω/b oscillating frequency-
to-stretching rate ratio, Nt = (ρc)pDT (Tw − T∞) /(ρc)fT∞ν

thermophoresis parameter, Pr = ν/αm is Prandtl number, Nb =

(ρc)pDB (Cw − C∞) /(ρc)f ν Brownian motion constant, Nd =

DTC (Cw − C∞) /αm (Tw − T∞)modified Dufour number, Ld =

DCT (Tw − T∞) /αm (Cw − C∞) Dufour Lewis number, Le =

ν/Ds regular Lewis number, whereas Ln = ν/DB nano-
Lewis number.

We define the following relations associated with the
definitions of wall shear stress, local Nusselt number, Sherwood

FIGURE 1 | h− curves for fξξ (0,π/2) , θξ (0,π/2) ,ϕξ (0,π/2), and φξ (0,π/2)

temperature, solutal concentration, and nanoparticle concentration.
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number, and nano-Sherwood number:

Cf =
τw

ρu2w
,Nux =

xqs

k (Tw − T∞)
, Shx =

xjs

DB (Cw − C∞)
,

Shxn =
xqm

Ds (ϕw − ϕ∞)
, (17)

where qs, js, and gs stand for surface heat flux, surface mass flux,
and motile microorganisms flux, respectively. The dimensionless
forms of the previously mentioned physical quantities are

Re
1/2
x Cf = (1+ K) fξξ −

K
3 β
(

fξξ

)

ξ=0
,

Nux Re
−1/2
x = −θξ (0, τ) ,

Shx Re
−1/2
x = −ϕξ (0, τ) ,

Shn Re
−1/2
x = −φξ (0, τ) .



















(18)

TABLE 1 | Comparison of fξξ (0, τ) for τ with Abbas et al. [35] when S = 1,

� = 12, Ŵ = 0, and K = 0.

τ Abbas et al. [35] Present results

τ = 1.5π 11.678656 11.6786560

τ = 5.5π 11.678707 11.678708

τ = 9.5π 11.678656 11.678656

where Rex = uwx̄/ν is mentioned for local Reynolds number.

SOLUTION METHODOLOGY

The structured set of non-linear partial differential equations
(12–16) with boundary conditions (17–18) are simulated
analytically via homotopy analysis technique. Due to efficient and
convincing accuracy, various physical problems in recent years
have been solved by following this procedure. The initial guesses
for the present flow problem are

f0 (ξ , τ) = sin τ
(

1− e−ξ
)

, θ0 (ξ) = e−ξ , ϕ0 (ξ) = e−ξ ,

φ0 (ξ) = e−ξ , (19)

Following auxiliary linear operators that are followed to precede
the solution

£f =
∂3

∂ξ 3
−

∂

∂ξ
, £θ =

∂2

∂ξ 2
− 1, £ϕ =

∂2

∂ξ 2
− 1,

£φ =
∂2

∂ξ 2
− 1, (20)

satisfying

£f
[

a1 + a2e
ξ
+ a3e

−ξ
]

= 0, (21)

FIGURE 2 | Impact of (A) K (B) S on skin friction coefficient.

FIGURE 3 | Impact of (A) K (B) � on velocity.
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£θ

[

a4e
ξ
+ a5e

−ξ
]

= 0, (22)

£ϕ

[

a6e
ξ
+ a7e

−ξ
]

= 0, (23)

£φ

[

a8e
ξ
+ a9e

−ξ
]

= 0, (24)

where a1, . . . a9 are arbitrary constants.

CONVERGENT REGION

The convergence procedure in homotopic solution is regulated
with auxiliary parameters hf , hθ , hϕ , and hφ . On this end,
we prepare h−curves to report the convincible range of such
parameters. It is obvious from Figure 1 that the preferable range
of these such parameters can be utilized from −2 ≤ hf ≤ 0,
−1.2 ≤ hθ ≤ −0.2,−1.4 ≤ hϕ ≤ 0 and−1.2 ≤ hφ ≤ −0.2.

VALIDATION OF RESULTS

Table 1 shows the comparison of present results with Abbas et al.
[35] as a limiting case. An excellent accuracy of results is noted
with these reported investigations.

DISCUSSION

This section aims tomanifest the features of some interesting flow
parameters that appeared in the dimensionless equations, where
material parameter K, magneto-porosity constant �, oscillating
frequency-to-rate of stretching ratio S, Brownian motion Nb,

thermophoresis constant Nt, variable thermal conductivity δ,
Prandtl number Pr, Dufour Lewis number Ld, modified Dufour
constant Nd, regular Lewis number Le, and nano-Lewis number
Ln. During variation of each flow parameter, we fixed some
numerical values to remaining parameters, like K=0.2, � = 0.4,
S = 0.2, Nt = 0.3, Pr = 0.7, Nb = 0.4, Nd,= 0.5, Ld = 0.3,
Le = 0.2, and Ln = 0.3.

Skin Friction Coefficient
The impact of the skin friction coefficient against time τ for
diverse variation of K and S is evaluated in Figures 2A,B.
An interesting periodic oscillation in the wall shear stress is
evaluated by both figures. Furthermore, the growing values of
both parameters increase the amplitude of oscillation sufficiently.
Due to no-slip conditions at the surface, the fluid particles
accelerated together with surface in same amplitude and phase.
However, the occurrence of a phase shift in both curves is
almost negligible.

Velocity Profile
The results reported in Figures 3A,B show the change in velocity
fξ , verse time τ and leading values of material constant K,
and magneto-porosity parameter �. Figure 3A characterized the
influence of K on fξ , which shows that an increment in K leads
to higher velocity amplitude. The physical justification of such
enhancing velocity distribution is attributed to the lower viscosity
of fluid associated with the higher values of K. However, reverse
observations are predicated for �. In fact, magneto-porosity

FIGURE 4 | Impact of (A) δ, (B) K, (C) Nd.
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constant is the combination of magnetic field and porous space.
The existence of a magnetic force encountered the effects of
Lorentz force, in which a declining oscillation behavior is noticed.
Similarly, the permeability of a porous medium also retards
the velocity amplitude due to the loss of fluid. Moreover, the
utilization of magnetic force enhances the apparent viscosity of
fluid up to a certain point of becoming an elastic solid, and
subsequently, the fluid stress can be managed upon changing
the magnetic force. These interesting observations can be
used in various processes, like magnetohydrodynamic drive
ion propulsion, magnetohydrodynamic drive power generators,
electromagnetic material casting, etc.

Temperature Distribution
To visualize the alter profile of nanoparticle temperature θ due
to δ, K, and Nd, Figures 4A–C are prepared. Figure 4A reveals
that temperature distribution θ increases with variable thermal
conductivity constant δ. Figure 4B is constituted to observe the
change in θ due to material parameter K. A fall in θ is associated
with leading variation of K. An increment in viscosity would
yield for arising values of K that increases the fluid velocity but
a decline in the temperature of fluid. The change in θ with effect
of modified Dufour number Nd has been reported in Figure 4C.
A slightly dominant variation in θ is seen with larger values ofNd.

Solutal Concentration Profile
Now, we observe the variation in solutal concentration profile ϕ

by varying regular Lewis number (Le) , Dufour Lewis constant
(

Ld
)

, andmaterial constant (K). Figure 5A is designed to observe
the impact of Le on ϕ. A decreasing solutal concentration
profile ϕ is notified due to Le. Physical explanation of such
decling variation of ϕ can be justified on the fact that Le
captures reverse relation with species diffusion, whichmeans that
when Le is maximum, species diffusion is lower, which leads
to the decrement of the resulting solutal concentration. From
Figure 5B, ϕ increases with the growth of Ld. Physically, Ld
depends upon the Lewis number due to lower mass diffusivity.
Figure 5C presents change in ϕ due to material constant K.
Again, an enhanced distribution of solutal concentration profile
ϕ has resulted for maximum values of K.

Nanoparticle Concentration
The physical consequences of Ln, Nt, and Nb on concentration
distribution φ are deliberated in Figures 6A–C. Figure 6A

specified the input of Ln on φ. A declining concentration
distribution φ is examined in the peak values of Ln. This
decreasing behavior of φ is attributed to the fact that Ln
is associated with the Brownian diffusion coefficient because
Ln expresses the thermal diffusivity-to-mass diffusivity ratio.
This parameter that is referred to the fluid flow in a

FIGURE 5 | Impact of (A) Le, (B) Ld, and (C) K on solutal concentration.
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phenomenon of heat and mass transfer occurs due to convection.
The consequences for another important parameter, namely
thermophoresis constant Nt, are analyzed in Figure 6B. As
expected, a larger concentration distribution φ is reported due

to involvement of Nt. The larger variation of Nt helps to improve
the thermal conductivity of fluid. Physically, the thermophoretic
process is based on collective migrated heat particles in the region
of low temperature and plays a momentous role in many physical

FIGURE 6 | Impact of (A) Ln, (B) Nt, and (C) Nb.

TABLE 2 | Numerical values of −θξ (0, τ) , −ϕξ (0, τ), and −φξ (0, τ), when τ = π/2.

� Pr Nt Nb ε K −θξ (0, τ) −ϕξ (0, τ) −φξ (0, τ)

0.0

0.5

1.0

0.7 0.3 0.3 0.1 0.1 0.62231

0.60854

0.59654

0.55537

0.53876

0.50535

0.54652

0.51828

0.49632

0.2 0.2

0.5

1.0

0.48896

0.55658

0.57875

0.44689

0.47598

0.49535

0.42658

0.46485

0.50280

0.7 0.0

0.4

0.5

0.58029

0.53531

0.51189

0.60986

0.56154

0.519856

0.62384

0.57567

0.53878

0.3 0.2

0.5

0.7

0.49598

0.44357

0.42637

0.455454

0.44543

0.43045

0.43562

0.50635

0.57420

0.3 0.2

0.4

0.6

0.48351

0.46743

0.44092

0.44659

0.42798

0.40659

0.50015

0.48243

0.44564

0.1 0.0

0.4

0.6

0.49359

0.46578

0.43395

0.44659

0.42298

0.41326

0.52658

0.50256

0.47559
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phenomenons. The curve of φ attained maximum level due to
Nt. However, a reduced concentration distribution φ is associated
with Nb, as shown in Figure 6C. The Brownian movement is
based on random pattern moving fluid particles in flow surface.
It is further justified from Equation (16), which clearly shows
that reverse relation is developed between Nb and φ. In fact,
the specified numerical values of Nb are associated to the more
prominent nanoparticle moments that are being pushed back
from accelerated plate to quiescent, which resulted in a retarded
concentration distribution.

Physical Quantities
To perform the numerical simulations for local Nusselt number
−θξ (0, τ) , local Sherwood Number −ϕξ (0, τ) and nanofluid
Sherwood number−φξ (0, τ) , Table 2 is designed. It is observed
that when �, ε, and K assigned larger numerical values, a
decreasing trend in −θξ (0, τ) , −ϕξ (0, τ), and −φξ (0, τ) is
reported. However, these physical quantities increase with the
variation of Pr.

CONCLUSIONS

We have focused on periodically accelerated unsteady flow of
Eyring–Powell nanofluid with utilization of thermal diffusive
features. The variable impact of thermal conductivity, porous
medium, and magnetic field consequences are also utilized.
The important observations from current flow problem are
summarized as:

➢ The magneto-porosity parameter declined the periodic
oscillation in the velocity, and subsequently, the magnitude
of velocity declined.

➢ The wall shear stress oscillates periodically with time that
increases by varying material parameter.

➢ The thermal conductivity with the variable nature is more
effective in enhancing the nanoparticle temperature.

➢ The modified Dufour number increases the
temperature distribution.

➢ It is noted that solutal concentration increases subject to
Dufour Lewis number and material constant.

➢ An increasing change in nanoparticle concentration
determined with nano-Lewis number and a
material parameter.

The observation based on the reported results can be used
to improve thermal extrusion processes, heat exchangers, solar
technology, energy production, cooling processes, etc.
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The prime objective of this article is to explore the entropy analysis of third-order

nanofluid fluid slip flow caused by a stretchable sheet implanted in a porous plate along

with thermal radiation, convective surface boundary, non-Fourier heat flux applications,

and nanoparticle concentration on zero mass flux conditions. The governing physical

systems are modified into non-linear ordinary systems with the aid of similarity variables,

and the outcomes are solved by a homotopy analysis scheme. The impression of

certain governing flow parameters on the nanoparticle concentration, temperature, and

velocity is illustrated through graphs, while the alteration of many valuable engineering

parameters viz. the Nusselt number and Sherwood number are depicted in graphs.

Entropy generation with various parameters is obtained and discussed in detail. The

estimation of entropy generation using the Bejan number find robust application in power

engineering and aeronautical propulsion to forecast the smartness of entire system.

Keywords: entropy generation, Christov-Cattaneo heat flux, third-grade nanofluid, porous medium, homotopy

analytic technique

INTRODUCTION

Nanoliquids are the type of liquids that have small volumetric quantities of nanoscale
(

10−9
− 10−7m

)

metallic
(

Cu, Ti, Hg, Fe, Ag, Au, etc.
)

or non-metallic particles
(

TiO2, SiO2, CuO, Al2O3, etc
)

taken as nano particles. Usually nanoliquids have a colloidal
suspension of nanoparticles inside a base liquid for example water, oil, ethylene glycol, etc. Initially,
Choi [1] proposed the “nanofluid” term. In general, the effective heat transfer enhancement has
the reason of nanoliquids generally restrict up to volume fraction of nanoparticles. Therefore,
in the latest technologies and engineering areas, nanoliquids receiving a phenomenal impact.
Mushtaq et al. [2] attempted the numerical study of the nanoliquids induced by an exponentially
stretchable sheet with rotating flow model. MHD nanoliquid flow toward a porous plate with
internal heat generation effects was presented by Reddy and Chamka [3]. Shit et al. [4] studied
the convective flow of hydromagnetic nanoliquid with entropy generation mechanism. Recently,
Gireesha et al. [5] explained a Hall current effects of two-phase transient nanoliquid flow induced
by a stretchable sheet. Reddy et al. [6] performed the combined convection flow of nanoliquid
toward a semi-infinite vertical flat sheet with convectively heated boundary and Soret effect. Few
more significant studies in this research area are seen in ref ’s [7–13].
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Due to various applications in different technical and
industrial areas, the fluid flow problems toward a stretching
surface have developed. It finds application in rubber and plastic
sheets production, melt-spinning, production of glass-fiber, and
metallic plate cooling systems. Sakiadis [14] studied the uniform
velocity of a magnetohydrodynamic flow past a solid medium.
Magyari et al. [15] examined the first order chemical reaction and
heat generation combination on micropolar fluid flow induced
by a permeable stretching surface. Gupta [16] analyzed the heat
and mass transfer effects of a boundary layer flow induced by a
stretchy sheet with suction or blowing impact.Magyari and Keller
[17] exposed the fluid flow over exponentially extending sheet
with heat and mass transfer impacts. Significances of thermal
boundary layer flow for a linearly stretchy sheet with viscous
dissipation were examined by Cortell [18]. The cutting-edge
research reports on stretching sheet flow are highlighted in these
works of literature [19–24].

Fluid flow saturated in the porous surface have numerous
applications in various fields like geothermal energy, fuel cell
technologies, material processing, etc. Chamkha et al. [25]
described the free convective flow past an inclined plate fitted in
a porous medium of variable porosity with solar radiation. Khan
and Aziz [26] studied the natural convective flow with double
diffusion caused by a vertical porous sheet. Oyelakin et al. [27]
analyzed the slip flow of unsteady radiative Casson nanofluid
toward a stretchy surface. Gorla and Chamkha [28] studied the
nanofluid flow toward a non-isothermal vertical plat entrenched
in a porous sheet. The same research group extended their work
for different models for various applications [29–32].

Heat transport problems in the flow of liquids have been
examined by several researchers for the last decade. In 1822,
Fourier [33] constructed the heat conduction law. This states that
“the heat transfer in a medium with inertial rate.” A parabolic-
type equation was used to state the heat conduction equation.
The problem rising at this time is that there exists no such
object or material that satisfies Fourier’s law, as argued by
Cattaneo [34] when using thermal relaxation time to customize
Fourier’s law. Later, Christov [35] developed and joined the
upper convected Maxwell fluid. This developed model is called a
Christov-Cattaneo heat fluxmodel. Loganathan et al. [36] studied
the thermal relaxation time effects on Oldroyd-B liquid with
second-order slip and cross-diffusion impacts. The Christov-
Cattaneo heat flux model for a third-grade liquid with chemical
reaction effects was examined by Imtiaz et al. [37].

In the last decade, several scientists have researched entropy
generation in the flow of fluids and heat transfer over
a stretching surface. In various engineering and industrial
divisions, the performance of heating and cooling are of
massive importance in different electronic and energy issues.
Aiboud and Saouli [38] examined the MHD viscoelastic
fluid flow with the application of entropy analysis using
Kummer’s function. Makinde [39] presented the thermal
radiation and Newtonian heating impacts of variable viscosity
fluid caused by a semi-infinite plate using shooting quadrature
and obtained the entropy generation number. Loganathan et al.
[40, 41] verified the entropy analysis for the third grade and
Williamson nanoliquid flow caused by a stretchable sheet with

various effects. They employed HAM to solve the non-linear
governing systems.

Based on our research in previously published works, entropy
generation of third-grade nanofluid flow caused by a stretching
sheet with a modified Fourier law has not been discussed with
a high standard of scientific attention. As far as we noticed in
literature, the studies taken for entropy generation are limited
with some parameters viz the Brinkmann number, Reynolds
number, Temperature difference parameter, and Hartmann
number. We have extended our investigations to include
thermal relaxation time, the Biot number, thermal radiation,
slip parameter, porous parameter, etc. The effective collection
and analysis of these results will open new gateways for diverse
engineering application in various streams.

PROBLEM DEVELOPMENT

We were interested in analyzing the entropy and Bejan
number of third-grade nanofluid saturated in a porous medium
with Christov-Cattaneo heat flux. In Figure 1, the stretching
parameter is taken along x direction where TW and CW are
represented the wall temperature and concentration, respectively.
T∞ and C∞ are used to index the ambient temperature and
concentration, respectively. A convective heating temperature
Tf is stimulated at the bottom of the sheet surface. The
Buongiorno nanofluid [42] is used for the present case.

FIGURE 1 | Flow diagram.
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Based on his consideration, the slip mechanisms, namely, the
Brownian diffusion, inertia, Magnus effect, diffusiophoresis,
thermophoresis, gravity, and fluid drainage, were analyzed. He
recommended that the thermophoresis and Brownian diffusion
are essential slip mechanism in low dimensional materials.

The following is an incompressible fluid model containing
body forces with the equation of continuity and motion:

div v = 0 (1)

ρ
dv

dt
= divT + ρb+ J + B (2)

Here, ρ is the fluid density, which is taken as a constant, v
is the velocity field, b indicates the body forces, J denotes the
electric current, and T states the third-grade incompressible
fluids Cauchy stress tensor [43]

T = −pI + µE1 + A∗

1E2 + A∗

2E
2
1 + β1E3

+ β2 (E1,E2 + E2E1)+ β3
(

trE21
)

E1 (3)

where µ, (E1, E2, E3) and A∗

1 , βi indicate the viscosity
coefficient, kinematics tensors, and material modulis as in

E1 = L+ (L)T (4)

En =
d

dt
En−1 + En−1L+ (L)TEn−1, n = 2, 3, and (5)

L = ∇v. (6)

d
dt
is expressed as the material time derivative

d()

dt
=
∂()

∂t
+ v. ∇ (). (7)

The relationship between Clausius-Duhem inequality and
thermodynamically compatible fluid is stated by Fosdick and
Rajagopal [44]:

µ ≥0, A∗

1 ≥ 0, β1 = β2 = 0, β3 ≥ 0 (8)
∣

∣A∗

1 + A∗

2

∣

∣ ≤ 2
√

6µβ3 (9)

T = −pI + µE1 + A∗

1E2 + A∗

2E
2
1 + β3

(

trE21
)

E1 (10)

Boussinesq and normal boundary layer approximations
were considered by Pakdemirli [45]. We made the
following assumptions:

1. The nanoparticles are small and of equal size to the pores.
2. The zero-mass flux of the nanoparticles is included.
3. Christov-Cattaneo heat flux is considering instead of normal

heat flux.
4. The magnetic field in the fluid flow is ignored due to a lower

magnetic Reynolds number.

∂u

∂x
+
∂v

∂y
= 0 (11)

u
∂u

∂x
+ v

∂u

∂y

= ν
∂2u

∂y2
+

A∗

1

ρ

(

u
∂3u

∂y2∂x
+ v

∂3u

∂y3
+
∂u

∂x

∂2u

∂y2
+ 3

∂u

∂y

∂2u

∂x∂y

)

+ 2
A∗

2

ρ

∂u

∂y

∂2u

∂x∂y
+ 6

β∗1

ρ

(

∂u

∂y

)2
∂2u

∂y2
−
σB20
ρ

u−
ν

kp
u (12)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
−

1

ρcp

∂qr

∂y
+

Q0

ρcp
(T − T∞) (13)

+ τ

[

DB
∂C

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2
]

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
(14)

u = uw (x) = ax+ L
∂u

∂y
, − k

∂T

∂y
= hf

(

Tf − T∞

)

,

DB
∂C

∂y
+

DT

T∞

∂T

∂y
= 0 at y = 0

u → 0, T → T∞, c → c∞ as y → ∞ (15)

The energy equation with a Cattaneo-Christov heat flux model is
stated as

u
∂T

∂x
+ v

∂T

∂y
+ λT

(

u2
∂2T

∂x2
+ v2

∂2T

∂y2
+

(

u
∂u

∂x

∂T

∂x
+ v

∂u

∂y

∂T

∂x

)

+ 2uv
∂T2

∂x∂y

)

+

(

u
∂v

∂x

∂T

∂y
+ v

∂v

∂y

∂T

∂y

)

=
k

ρcp

∂2T

∂y2

−
1

ρcp

∂qr

∂y
+

Q0

ρcp
(T − T∞)

+ τ

[

DB
∂C

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2
]

. (16)

Consider the transformation given below:

ψ =
√
aνxf (η) , u =

∂ψ

∂y
, v = −

∂ψ

∂x
, η =

√

a

ν
y,

v =−
√
aνf (η) , u = axf ′ (η) , θ ( η) =

T − T∞

Tf − T∞

,

φ ( η) =
C − C∞

C∞

. (17)

The non-linear governing equations are:

f
′′′

+ f f
′′

− f
′2

+ α1

(

2f ′f
′′′

− f f iv
)

+ (3α1 + 2α2) f
′ ′2

+ 6βRef
′′′

f
′ ′2

− (Mf ′ + Kf ′) = 0 (18)

(

1+
4

3
Rd

)

θ
′′

+ Prf θ ′ + PrSθ − Prγ f 2θ ′′ − Prγ f f ′θ ′

+ PrNb θ ′φ′ + PrNtθ ′
2
= 0 (19)
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φ′′ + Lefφ′ +
Nt

Nb
θ ′′ = 0 (20)

with the end points

f (0) = fw, f
′ (0) = 1+Ŵf

′′

(0), θ ′ (0) = −Bi(1− θ (0)),

Nb φ′ (0)+ Nt θ ′ (0) = 1

f ′ (∞) = 0, θ (∞) = 0,φ (∞) = 0 (21)

The non-dimensional variables are

α1 =
aA∗

1

ν
,α2 =

aA∗

2

ν
,β =

aβ∗1
ν

,Re =
uwx

ν
, Pr = ρCp/k,

M = σB20/ρa,Rd =
(

4σ ∗T3
∞

)

/
(

kk∗
)

, S =
Q0

ρcp
, γ = λTa,

Bi =
hf

k

√

ν�a ,Nb =
τDB

ν
(C∞) , Nt =

τDT

ν

(

Tf − T∞

)

.

The application of physical entitles is such that

Re
1
2Cf = f

′′

(0)+ α1f
′ (0) f

′′′

(0)+ βRe[f
′′

(0)]
3

(22)

Re−
1
2Nux = −(1+

4

3
Rd)θ ′ (0) . (23)

The local mass transfer rate becomes identically zero due to the
zero mass flux state [46]

Re−
1
2 Sh =

Nt

Nb
θ ′ (0) . (24)

ENTROPY OPTIMIZATION

The entropy minimization optimization for fluid friction, heat,
and the irreversibility of mass transfer are given below:

S
′′′

gen =
K1

T2
∞

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2

+
16σ ∗T3

∞

3kk∗

(

∂T

∂y

)2
]

+
µ

T∞

[

2

(

∂u

∂x

)2

+

(

∂v

∂y

)2
]

+

[

∂u

∂y
+
∂v

∂x

]2

+
RD

C∞

[

(

∂C

∂x

)2

+

(

∂C

∂y

)2
]

+
RD

T∞

[(

∂T

∂x

)(

∂C

∂x

)

+

(

∂T

∂y

)(

∂C

∂y

)]

+
σB20
T∞

u2 +
ν

kp
u2. (25)

Using Equation (25) modified with the help of Equation (17),

S
′′′

gen =
K1

T2
∞

[

(

∂T

∂y

)2

+
16σ ∗T3

∞

3kk∗

(

∂T

∂y

)2
]

+
µ

T∞

(

∂u

∂y

)2

+
RD

C∞

(

∂C

∂y

)2

+
RD

T∞

(

∂T

∂y

)(

∂C

∂y

)

+
σB20
T∞

u2 +
ν

kp
u2.

(26)

Dimensionless system of entropy generation is defined as:

EG = Re

(

1+
4

3
Rd

)

θ
′2

+ Re
Br

�
f
′ ′2

+ Re

(

ζ

�

)2

λφ′
2

+ Re
ζ

�
λφ′θ ′ +

Br

�
(M + K)f

′2

. (27)

The Bejan number states

Be =
Entropy genration due to irrevesablity of heat and mass transfer

Total entropy generated

Be =
(

Re
(

1+ 4
3Rd

)

θ
′2

++Re
(

ζ
�

)2
λφ′

2
+ Re ζ

�
λφ′θ ′

)

Re
(

1+ 4
3Rd

)

θ
′2
+ Re Br

�
f
′ ′2

+ Re
(

ζ
�

)2
λφ′2 + Re ζ

�
λφ′θ ′ + Br

�
(M + K)f

′2
.

(28)

HOMOTOPY SOLUTIONS

There are several techniques available to solve non-linear
problems. The homotopy analysis method (HAM) is initially
constructed by Liao [47]. Moreover, he altered a non-zero
auxiliary parameter [48]. This parameter shows the way to
calculate the convergence rate. It also offers great independence
with which to make the initial guesses of the solutions.

The initial guesses for satisfying the boundary conditions

f0 = fw +

(

1

1+ Ŵ

)

1− e−η

θ0 =
Bi ∗ e−η

1+ Bi

φ0 = −

(

Nt

Nb

)

∗
Bi ∗ e−η

1+ Bi
.

Lf , Lθ , and Lφ are the linear operators

Lf = f ′′′ − f ′

Lθ = θ ′′ − θ

Lφ = φ′′ − φ

while obeying the resulting properties

Lf
[

E1 + E2e
η
+ E3e

−η
]

= 0

Lθ
[

E4e
η
+ E5e

−η
]

= 0

Lφ
[

E6e
η
+ E7e

−η
]

The zeroth order deformation is

(

1− p
)

Lf
[

f
(

η; p
)

− f (η)
]

= p hfNf

[

f
(

η; p
)]

(

1− p
)

Lθ
[

θ
(

η; p
)

− θ0 (η)
]

= p hθNθ

[

θ
(

η; p
)

, f
(

η; p
)

,φ
(

η; p
)]

(

1− p
)

Lφ
[

φ
(

η; p
)

− φ0 (η)
]

= p hφNφ

[

φ
(

η; p
)

, θ
(

η; p
)

, f
(

η; p
)]
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where p ǫ [0, 1]
hf , hθ , and hφ are the non-zero auxiliary constants, and Nf ,

Nθ , andNφ are the non-linear operators given by

Nf

[

f
(

η; p
)

, θ
(

η; p
)]

=
∂3f

(

η; p
)

∂η3
−

(

∂f
(

η; p
)

∂η

)2

+ f
(

η; p
) ∂2f

(

η; p
)

∂η2

+ α1

(

2
∂f
(

η; p
)

∂η

∂3f
(

η; p
)

∂η3
− f

(

η; p
) ∂4f

(

η; p
)

∂η4

)

+ (3α1 + 2α2)

(

∂f
(

η; p
)

∂η

)2

+ 6βRe
∂3f

(

η; p
)

∂η3

(

∂f
(

η; p
)

∂η

)2

− (M + K)
∂f
(

η; p
)

∂η

Nθ

[

f
(

η; p
)

, θ
(

η; p
)

, φ
(

η; p
)]

=

(

1+
4

3
Rd

)

∂2θ
(

η; p
)

∂η2

+ Prf
(

η; p
) ∂θ

(

η; p
)

∂η
− Prγ

[

[f
(

η; p
)]2 ∂

2θ
(

η; p
)

∂η2

− Prγ f
(

η; p
) ∂f

(

η; p
)

∂η

∂θ
(

η; p
)

∂η
+ PrSθ

(

η; p
)

+ PrNb
∂θ
(

η; p
)

∂η

∂φ
(

η; p
)

∂η
+ PrNt

[

∂θ
(

η; p
)

∂η

]2

Nφ

[

f
(

η; p
)

, θ
(

η; p
)

, φ
(

η; p
)]

=
∂2φ

(

η; p
)

∂η2

+ Le f
(

η; p
) ∂φ

(

η; p
)

∂η
+

Nt

Nb

∂2θ
(

η; p
)

∂η2

f
(

0; p
)

= fw, f
′
(

0; p
)

= 1+Ŵf
′′

(0 : p), f ′
(

∞; p
)

= 0

θ ′
(

0; p
)

= −Bi
(

1− θ
(

0; p
))

, θ
(

∞; p
)

= 0

φ′
(

0; p
)

= −
Nt

Nb
θ ′
(

0; p
)

,φ′
(

∞; p
)

= 0

Themth order deformation equations are

Lf
[

fm (η)− χmfm−1 (η)
]

= hfRf ,m (η)

Lθ [θm (η)− χmθm−1 (η)] = hθRθ ,m (η)

Lφ [φm (η)− χmφm−1 (η)] = hφRφ,m (η)

where

χm =

{

0, m ≤ 1
1, m > 1

,

Rf ,m (η) = f
′′′

m−1 +

m−1
∑

k=0

[

fm−1−kf
′′

k − f
′

m−1−kfk
′

+α1

(

2f
′

m−1−kf
′′′

k − fm−1−kf
iv
k

)

+ (3α1 + 2α2) f
′′

m−1−kf
′′

k

+6βRef
′′′

m−1−l

l
∑

j=0

f
′′

l−jf
′′

j − (M + K) αfm−1−k
′





Rθ ,m (η) =

(

1+
4

3
Rd

)

θ
′′

m−1 + Pr
∑m−1

k=0

[

θ
′

m−1−kfk

]

− Prγ [

(

fm−l−1

∑l

j=0
f1−j

′θj
′
+ fm−l−1θ

′′

l

)

]

+ PrNb
∑m−1

k=0
θm−1−k

′φk + PrNt
∑m−1

k=0
θm−1−k

′θk
′

+ PrSθm−1

Rφ,m (η) = φ
′′

m−1 + Le
∑m−1

k=0
φm−1−k

′fk

+
Nt

Nb

∑m−1

k=0
θm−1−k

′θk
′

fm (0) = 0, fm
′ (0)−Ŵfm

′′

(0) = 0, θm
′ (0)− Biθm(0) = 0,

φm
′ (0)+

Nt

Nb
θm

′(0) = 0

fm
′ (η)→ 0, θm

′ (η)→ 0, φm (η)→ 0as η→ ∞.

with boundary conditions

fm
′ (0) = fm (0) = fm

′ (∞) = θm (0) = θm (∞) = φm (0)

= φm (∞) = 0.

The appropriate solutions
[

f ∗m, θ
∗
m, φ

∗
m

]

are

fm(η) = f ∗m(η)+ E1 + E2e
η
+ E3e

−η,

ηm(η) = η∗m(η)+ E4e
η
+ E5e

−η,

ηm(η) = η∗m(η)+ E6e
η
+ E7e

−η.

CONVERGENCE ANALYSIS

The auxiliary parameters hf , hθ , and hφ act as a vital part of

convergence series solutions. The h-charts of f
′′

(0), θ ′ (0), and
φ′ (0) for Re,γ, and Nb are shown in Figure 2. From these
curves, the straight line is referred as the h-curve. The convergent
approximation is selected from this straight line of the curves.

We note that h-curve of f
′′

(0), θ ′ (0), and φ′ (0) shrinks as we
enhance the range of Re,γ, and Nb, which shows the larger order
approximation will be needed if the larger value of Re,γ, and Nb
is employed. Approximations values of HAM with CPU time is
denoted in Table 1.
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FIGURE 2 | (A–C) h− curves for hf , hθ , hφ .

TABLE 1 | Order of approximations of HAM.

Order −f
′′

(0) −θ ′(0) φ′(0) CPU time (s)

1 0.5006 0.1603 0.0801 0.422

5 0.5018 0.1474 0.7550 3.688

10 0.5018 0.1454 0.7273 21.781

15 0.5018 0.1441 0.7205 83.750

20 0.5018 0.1435 0.0717 290.735

25 0.5018 0.1432 0.0716 985.219

30 0.5018 0.1432 0.0716 2166.670

COMPUTATIONAL RESULTS AND
DISCUSSION

The numerical calculations of velocity, concentration,
temperature, entropy generation, and the Bejan number
are discussed in this section. The homotopy technique is used
for solving the non-linear governing Equations (18)–(20) with
boundary conditions (21). The graphical results of entropy,
Bejan number, temperature, Nusselt number, nanoparticle
concentration, Sherwood number, and velocity profiles are
computed via different flow parameters included in this study

with the fixed values of α1 = α2 = β = Bi = fw = Nt =

0.2, Re = Pr = Le = Ŵ = 1.0, M = γ = 0.5,Rd = 0.3, Hg =

−0.1, Nb = 0.4, Br = 5.0, and λ = � = ζ = 1.0.

Impact on Velocity
It is observed from Figure 3A that the velocity is reduced to
increase the values of the velocity slip parameter due to the
ratio of stretching velocity and the viscosity of the fluid. The
effect of the slip parameter in velocity has had more impact in
the absence of a porous medium. Figure 3B indicates that the
velocity diminishes when themagnetic field (M) raises. Improved
Lorentz force is observed because of the increasing the values of
M that opposes the fluid motion. Thus, we conclude that the
velocity profile diminishes.

Impact on Temperature
The impact of the radiation parameter Rd on the temperature
profile is examined in Figure 4A. The temperature in the
radiation parameter is high. Comparing the radiation effects
with Christov-Cattaneo and normal heat flux, we observed that
the radiation effect is quite low for Christov-Cattaneo heat
flux. Figure 4B displays the influence of the Biot number on
the temperature profile. From this figure, we observed that
temperature is a rising function of Bi close to the sheet. Since
Bi affects more temperature near the surface. Heat transfer
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FIGURE 3 | (A,B) Impact of Ŵ and M on velocity profile f ′ (η).

FIGURE 4 | (A,B) Impact of Rd and Bi on temperature profile θ (η).

FIGURE 5 | (A,B) Impact of Nb and Nt on concentration profile φ(η).

resistance is higher within the body compared to the surface of
the sheet for rising values Bi.

Impact on Nanoparticle Volume
Concentration
In Figure 5A, the effect of concentration profile with growing
values of the Brownian motion parameter Nb is depicted. In
suction cases, higher values of Nb increase the concentration

profile close to that of the surface of the sheet, and, suddenly,
the concentration begins to fall, stabilizing far away from the
surface of the sheet. This is due to the appearance of passive
surface conditions for the concentration profile. Moreover, the
injection at the sheet shows the concentration is rising near
the sheet, and it diminishes far away from the surface of the
sheet. The influence of the thermophoresis parameter Nt in the
concentration profile φ (η). is highlighted in Figure 5B. When
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FIGURE 6 | (A–H) Impacts of K, Ŵ, fw, β, Bi, γ , Nt, and Nb on entropy generation EG.
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FIGURE 7 | (A–H) Impact of M, Ŵ, Rd, γ , Bi, Br, Nt, and Nb on the Bejan number B.
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there is suction in the sheet, with a rise in Nt, the concentration
of the liquid decreases near to thsheet at certain stage starts to
fall and stabilize away from the endpoints of the surface of the
sheet. When there is an injection at the sheet, higher values of Nt
decreases the concentration profile near the sheet, and it increases
far away from the surface of the sheet.

Impact on Entropy Generation
The Effects of distinct fluid parameters on the entropy generation
profile are highlighted in Figures 6A–G. Figure 6A depicts the
influence of porous parameter in entropy profile. Initially, the
entropy rate increases for the porous parameter at a certain
stage (η= 0.6) before it becomes to fall. The responses of the
slip parameter on entropy generation were succinctly depicted
in Figure 6B. From this figure, it was obviously noted that
entropy generation was inversely proportional to slip parameter.
This causes a decrease in large values of slip parameter and
temperature gradients in the boundary layer when retaining
the fluid friction as we proceed. This occurrence induces
a suppression in entropy generation since heat transfer was
committed. Figures 6C–E displayed the impact of the suction\
injection parameter (fw.), material parameter (β) and Biot
number (Bi) on the entropy profile (EG). Our examination
obtained that higher range of fw, reduces the entropy generation
profile, and the entropy generation rate is enhanced for higherβ
and Bi.

The effect of thermal relaxation time (γ ) on the entropy
genation profile is sketched in Figure 6F. It is obvious that
thermal relaxation time is small for temperature and heat transfer
rates. In addition, domination of the irreversibility in heat
transfer affected the heat flux. Thus, we have seen a small increase
in the entropy of the system. Performance of Nt and Nb on
entropy generation profile (EG) is shown in Figures 6G,H, which
shows that entropy is increased with an increase of Nt, whereas
EG is inversely proportional toNb. The Brownianmotion induces
the nanoparticles temperature, but it reduces the temperature
gradient on wall. As a result, entropy generation parameter
reduces whereNt is directly proportional to temperature gradient
and creates ambient atmosphere for higher values of EG.

Impact on the Bejan Number
The Bejan number (Be) is a dimensionless quantity that specifies
the ratio of entropy generation between heat transfer and the total
entropy generation where Bejan numbers take values from 0 to
1. If Be is nearly equal to 1, the entropy generation will become
more due to heat transfer. It is clear from Figure 7A that, with an
escalation in the applied magnetic field, there is an augmentation
in the Bejan number. The consequence of heat transfer entropy
develops as we move up from the surface. The entropy effect
has full domination because of the heat transfer while it is also
outlying from the region. This is the reason behind how the
augmenting value of M brings a stronger frictional effect, which
leads to an increase in the liquid temperature. There is also a
consequent development in the Be, as shown in Figure 7A. From
Figure 7B, it is observed that the Be is increased for the increase
in the slip parameter (Ŵ). Physically, larger values of (Ŵ) enhance

the temperature gradient inside the regime, which induces the
Bejan number and irreversibility of heat transfer.

Figure 7C states that, with the rise of the radiation constant
Rd, the Bejan number is boosted. This is due to the total entropy
generation dominated by thermal irreversibility. Figure 7D

shows the effect of the thermal relaxation time (γ ) on the Be.
At first, the Be is augmented for higher values of γ at a sudden
point (η = 2.2). Consequently, the Bejan number profile reduces
for the values of γ . Figure 7E shows that the Bi displays a trend
of raising the Be. The demonstration of such an increasing trend
of the Bejan number explains how the entropy production near
the surface is large due to the liquid friction—at least relative
to that of the heat transfer irreversibility. The variation of the
Brinkmann number Br is sketched in Figure 7F. This figure
shows that the Bejan number is reduced, as we have to enhance
the Br. Figures 7G,H shows the influence of thermophoresis (Nt)
and Brownian motion (Nb) parameters on the Bejan number.
From these plots, we note that Ntand Nb have inverse effects on
the Bejan number profile.

Impact on Physical Entities
Figures 8–11 illustrate the effects of different physical parameters
on the local Nusselt number and local Sherwood number.
The influence of fw and γ on Nux is shown in Figure 8: heat
transfer decays for higher values of fw and γ . The same
phenomena can be observed for larger values Hg and γ on the
Nusselt number profile, as presented in Figure 9. The combined
effects of Nb and M as well as Nt and M are shown in
Figures 10, 11, respectively. From these figures, we conclude that
thermophoresis (Nt) and Brownianmotion (Nb) parameters have
produce the converse trend in the mass transfer rate.

FIGURE 8 | Effects of γ and fw on Nux .
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FIGURE 9 | Effects of Hg and γ on Nux .

FIGURE 10 | Effects of Nb and M on Shx .

NUMERICAL CODE VALIDATION

In this segment, we examine the code validation of early
published works of literature. Table 2 validates the results of

FIGURE 11 | Effects of Nt and M on Shx .

TABLE 2 | Validation of −f
′′

(0) and −θ ′(0) for the limiting case

M = 0, K = 0, Nb = 0, Nt = 0, Rd = 0, S = 0, and Bi → ∞.

Order −f
′′

(0) −θ ′(0)

Imtiaz et al. [37] Present Imtiaz et al. [37] Present

1 0.81450 0.8145 0.72778 0.727778

5 0.81211 0.812208 0.58070 0.580701

8 0.81235 0.812345 0.57779 0.577789

14 0.81235 0.812353 0.57871 0.578711

17 0.81235 0.812353 0.57878 0.578778

25 0.81235 0.812353 0.57878 0.57877

30 0.81235 0.812353 0.57878 0.57877

35 0.81235 0.812353 0.57878 0.57877

−f
′′

(0) and −θ ′(0) for the limiting case M = 0, K = 0, Nb =

0, Nt = 0, Rd = 0, S = 0, and Bi → ∞ with Imtiaz
et al. [37]. Moreover, the skin friction rate is also validated by
the same literature [37] when M = K = 0 (see Table 3).
Table 4 exhibits the matching results of reduced Nusselt number
with the references [20, 49–51]. From the above validation,
results show that the current simulation is considered an
efficient one.

KEY RESULTS

The present research work examines the entropy generation
influence on third-grade nanoliquid flow caused by a stretching
sheet in the appearance of Magnetic field, radiation, and
convective heating effects. Christov-Cattaneo heat flux replaces
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TABLE 3 | Comparison of Re0.5Cf for different values when M = K = 0.

α1 α2 β Re Imtiaz et al. [37] Present

0.0 0.1 0.1 0.1 0.04605 0.04605

0.1 1.06680 1.06680

0.2 1.17470 1.17470

0.1 0.0 0.1 0.1 1.12010 1.12010

0.1 1.06680 1.06680

0.2 1.01830 1.01830

0.1 0.0 1.06290 1.06290

0.1 0.1 1.06680 1.06680

0.2 1.07030 1.07030

0.1 0.0 1.06290 1.06290

0.1 1.06680 1.06680

0.2 1.07060 1.07060

TABLE 4 | Matching results of reduced Nusselt number with the restricting case

Rd = Ec = M = Nt = Nb = γ = S = K = Ŵ = fw = 0, and Bi → ∞.

Pr Wang

[49]

Gorla and

Sidawi [50]

Khan and

Pop [20]

Makinde

and Aziz [51]

Present

0.20 0.1691 0.1691 0.1691 0.1691 0.1691

0.70 0.4539 0.5349 0.4539 0.4539 0.4539

2.00 0.9114 0.9114 0.9113 0.9114 0.9114

7.00 1.8954 1.8905 1.8954 1.8954 1.8954

ordinary heat flux. HAM is employed to validate the non-
linear governing equations. Results of velocity, temperature,
nanoparticle volume concentration, the system of entropy, the
Bejan number, mass, and heat transfer rates are presented
graphically. We obtained the following main upshots:

1. A falling tendency of the velocity profile is detectable while we
keep increasing the values of the velocity slip and magnetic
field parameter.

2. An augmentation in the range of radiation parameter and Biot
number causes an increasing trend.

3. The concentration of the nanoparticle volume fraction is
found to be a diminishing function of the thermophoretic
parameter. On the other hand, a contrary impact is identified
for the Brownian motion parameter.

4. The irreversibility of the system rises as we keep enhancing the
values of the Biot number, thermal relaxation time, material
parameter, and the Brinkmann number, but an inverse
occurrence takes place as we increase the slip parameter and
suction/injection parameter.

5. The Bejan number increases with greater values of the slip
parameter, Biot number, thermophoresis parameter, magnetic
parameter, and radiation parameter, whereas it reduces for
larger values of the Brinkmann number and Brownian
motion parameter.
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(Continued)
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