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Editorial on the Research Topic

Psychology and mathematics education

We use numbers and fractions every day, for example when we are doing our shopping

or baking a cake. But mathematics is, of course, much more: it is the language of science,

or, to use Galileo’s words, “the book of Nature is written in mathematical language”

(Galileo, 1623) and some mathematical competencies beyond basic arithmetic are required

in most professions. Basic mathematics, i.e., elementary arithmetic, elementary geometry

and some elements of calculus, is taught in school, not just for everyday life, but as a

tool for many different professions. In school, however, mathematics is either “loved” or

“hated”, as Hersh and John-Steiner masterfully describe in their book “Loving and Hating

Mathematics” (Hersh and John-Steiner, 2010). Research in mathematics education has

definitely contributed to reducing school students’ hatred of mathematics and this reduction

may be seen as one of its many goals.

In contrast with mathematics, the field of mathematics education is strongly

interdisciplinary; the closest field to influence it directly is psychology. In fact, mathematics

education is consistently shaped by both behavioral and cognitive perspectives, since

so many factors—the power of visualizations, the effect of representation formats,

but also factors like gender, self-efficacy, etc.—influence and sometimes determine

students’ performance.

Our aim for this Research Topic and for the collection of papers we are now publishing

has thus been to illustrate the relevance of such various psychological perspectives for

mathematics education using the contributions of colleagues from around the world. All

the contributions we have collected address these interdisciplinary perspectives explicitly

or implicitly.

We were surprised by the success of our Research Topic, which was perhaps triggered

by the wide range of possible research directions addressed by its general title. The largest

section of the papers presents empirical, original research carried out by a wide variety of

specialists, with interesting results and suggestions for educators in the classroom. Other

papers, which describe psychological features of mathematics education, review factual

evidence and the relevant literature. Thus, the collection we present has a descriptive as well

as a pragmatic and a prescriptive orientation. It consists of 39 contributions by 109 authors,

including 29 original research articles, four brief research reports, three reviews, and three

conceptual analyses.
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Due to the large number of original research articles, we have

decided to arrange them according to different sub-topics, which

we list here:

1. Visualizations and representation formats

2. Reasoning, argumentation and biases in connection

with mathematics

3. The influence of motor skills

4. Mathematics anxiety as a determining factor

5. Gender and its consequences for students’ performance

6. Cultural differences, self-efficacy and consequences for

mathematical development

7. Teachers’ views, beliefs and culture in connection with

teaching mathematics.

We now proceed to describe these sub-topics and cite examples

from the corresponding papers.

1. Visualizations and representation
formats—their fostering of
mathematical intuitions

As we wrote in the overview for this Research Topic, a

great inspiration for our endeavor was provided by the work of

Herbert Simon with his concept of bounded rationality and its

direct descendent, ecological rationality. The ecological rationality

perspective allows a novel way of viewing typical aspects of

mathematics education, pointing at its fundamental links with

cognitive psychology.

We cite here one of Herbert Simon’s most famous statements

concerning the fundamental importance of representation for

solving problems:

“Solving a problem simply means representing it so as to make the

solution transparent.” (Simon, 1996, p. 132)

According to Simon, a solution becomes transparent if it

emerges from the representation of the structure in terms of

which the problem has been modeled. The structure results from

an effort of adaptation between the endeavors to solve it and

the conceptual constructions of the mind. Adopting the phrasing

of Gigerenzer and his school, an adaptation is successful if it

is ecologically rational (c.f. Gigerenzer et al., 1999). Ecological

rationality is thus considered a fundamental characteristic of

successful representations: it refers to behaviors and thought

processes that are adaptive and goal-oriented in the context of the

representational environment in which the organism is situated.

Constructing a representation that makes a problem easily

solvable provides evolutionary advantages in terms of time

resources to agents adopting it (Martignon et al., 2020). The

most popular example from mathematics is the representation of

numbers based on the decimal number system. This example is so

fundamental for Mathematics in every-day life, that it deserves a

short digression: the positional representation, as is well known,

made its way into the western world several centuries after its

inception in India. Dysfunctional systems like Roman numerals

had forced people in Europe to outsource their counting and

computing: during the late Middle Ages and early Renaissance the

Abakists did the numerical operations for businessmen, translating

Roman numerals into strings of marbles and working with them

on their abaci. Their results were then translated back into Roman

numerals. Herbert Simon had wondered about the “theoretical”

reasons that make the Hindu-Arabic number system somuchmore

adaptive to our minds than Roman numerals. In fact, he wrote:

“We all believe that arithmetic has become easier since Arabic

numerals and place notation replaced Roman numerals, although

I know of no theoretical treatment that explains why” (Simon,

1996).

The studies of ecological rationality and simple heuristics by

Gigerenzer and his school have provided good explanations (see

Martignon et al., 2020 for a brief synthesis of the main arguments):

the mind/brain, as has been empirically demonstrated, is akin to

a sequential, lexicographic treatment of features for comparison

tasks or classifications. In the case of two numbers in the decimal

positional system their coefficients of powers of 10 are the features a

comparison is based on. In fact, when having to compare, say 3.456

and 3.461, for instance, we first check that they are equally long. i.e.,

they have the same number of digits. Then we start checing each

digit from left to right, stopping when we find a difference in digits

and determine the largest number accordingly. This procedure can

be described by a fast-and-fugal tree, as in the illustration at the

center of Figure 1. A fast-and-frugal tree is a simple lexicographic

decision tool that proceeds in a sequential way. Its success is the

consequence of the non-compensatory weights of its features, as, in

the case of numbers, powers of 10 (Figure 1, Left).

Obviously, the decimal positional system has other

fundamental advantages for computing.

The illustration in the right panel of Figure 1 represents an

illustration from the Margarita Philosophica (by Gregor Reisch)

of 1503. Here the allegory of Arithmetica in the center, looks

benevolently toward the “Algarist”, on the left side, who works with

numbers in the positional system. On the right side, the Abakist,

computes with marbles.

The relevance of ecological rationality for our Research Topic

is made evident in several of the papers here. In fact, several

authors address aspects of visualizations and representations in

mathematical contexts which foster the adaptation of the mind

to the mathematical contexts involved. Mathematics education

treats representations of mathematical situations and entities

as a fundamental aspect of didactics in the classroom. Of

course, multiple representations of mathematical entities are

possible: the advantages of juggling between them have been

treated extensively by Dreher et al. (2016). However, as work in

this Research Topic demonstrates, for many types of problem,

such as fractions and probabilities, different representations

can be mathematically equivalent, yet be far from cognitively

equivalent. That is, some representations are more adaptive

and advantageous than others because they are aligned to

the cognitive systems of human problem-solvers. Representing

numbers geometrically has an ecological aspect, and the paper by

Kempen et al. demonstrates empirically how figurative numbers

enhance numerical understanding.

Approaching the realm of functions in mathematics, for

instance, we recall that it would be cumbersome to think about

them without the coordinate system introduced in the early

seventeenth century by Descartes. Today, much progress has been
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FIGURE 1

Aspects of the decimal representation system. On the left side, three powers of 10 are illustrated by means of cylinders of corresponding heights.

They correspond to the weights of the simple non-compensatory linear model, which characterizes our number system. In the center of the figure, a

simple, fast, and frugal tree describes the quick yet sequential decision procedure we use for number comparison. On the right side, the reader sees

a famous illustration of Arithmetic represented through an allegory by Reisch in the Margarita Philosophica, who contemplates with a benevolent

smile the “algarist” (image source: Typ 520.03.736, Houghton Library, Harvard University). The algarist performs computations based on the positional

system, while the “abakist”, on the other side of the illustration, uses marbles for computation with his abakus. The work of abakists was fundamental

during the beginnings of the Renaissance, when businessmen employed them to perform all their computations. The decimal positional system

made arithmetic calculations simple, transparent, and thus accessible for everyone.

achieved in dynamic visualizations of functions in coordinate

systems. These visualizations allow us to go even further and to

greatly improve the understanding of certain aspects of functions.

In this connection, we mention the paper by Rolfes et al. in which

the authors show that students can learn covariational aspects of the

concept of function significantly better with dynamic visualizations

than with static representations. However, as they also specify, there

seems to be no significant difference in learning with linear or

interactive dynamic visualizations.

A natural question related to representations seems to be

whether self-generated drawings can always be of help. The

answer seems to be that this is not always the case. Self-

generated drawings are not always adaptive. In fact, only aspects

of them, like their quality, may be of value. Krawitz et al.

carried out a replication and elaboration study on the negative

effect of self-generated drawings on the number of students’

linear overgeneralisation and problem-solving performance. The

drawing quality, but the not visual monitoring, affected the

number of over generalizations. These results indicate the great

importance of the quality of drawing as a strategy for problem-

solving.

One mathematical field that has profited immensely from the

search for adaptive representations is probability and statistics.

Statistical situations concerning data sets profit hugely from

dynamic representations. Hood et al. found that dynamic

graphs in digital publications can potentially be used for

communicating interactions (and other complex relationships)

effectively. They are not, however, a panacea for people’s

challenges in understanding complicated data and more work

is needed to take effective advantage of opportunities in digital

data presentations.

Probabilistic inference has also profited greatly from adaptive

representations: we recall here that it has been a milestone

in the field of probabilistic reasoning to discover how certain

representations and visualizations foster Bayesian reasoning

(Gigerenzer and Hoffrage, 1995) while others hamper it.

The paper by Eichler et al. is especially inspiring, quite in

the spirit of ecological rationality, because of the empirically

supported claim that people’s strategies for solving Bayesian tasks

are triggered by corresponding representations, exactly in the sense

of Herbert Simon.

Another relevant finding in this field is that the characteristic of

visualization making the nested-sets structure of a Bayesian

situation transparent has a facilitating effect on people’s

Bayesian reasoning (Macchi, 2003). Trees and double trees

with nodes representing natural frequencies have been

proven very effective in this context. A practical extension

of the tree format with natural frequencies is the so-called
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“frequency net” proposed by Binder et al.. Here the disposition

allows for sequential treatment in four directions but also

provides a view of all relevant frequencies of conjunctions at

a glance.

Another question that arises in the context of natural

frequencies is whether younger children may exhibit

forms of Bayesian reasoning when presented with simple

formats of information. The paper by Till et al. presents an

intervention study showing that primary school children

at the age of nine to ten can understand probabilities

and solve Bayesian problems using natural frequency

formats. Hence, natural frequencies appear to be a suitable

representation for grasping probabilities at an early stage and

thus might support understanding more abstract contexts in

higher grades.

It is a crucial result, that people may perform correct

Bayesian inferences without recurring at all to numerical

formats of information: Leuders et al. analyzed how

people update their hypotheses based on uncertain

evidence (e.g., teachers’ updating their assumptions

based on students’ solutions), when they only have

access to non-numerical information. They showed that

people need strong support to apply a rational Bayesian

strategy and otherwise resort to biased strategies for

processing information–analogous to the strategies found in

numerical settings.

The review by Neth et al. solves several well-known problems

by representing them more transparently. Politely phrased as

re-framing representational effects and suggesting a change in

perspective, a more apt description of their achievement is to

effectively put an end to academic debates and scientific practices

that are sustained by obscure abstractions and idiosyncratic

terminologies. Encouraged by editors and reviewers, the authors

resisted the temptation to distribute their insights across several

articles. The published product is long and detailed, but

rewards its readers by seeing how numerous scientific puzzles

and their solutions are alternative perspectives on a shared

representational construct.

2. Reasoning, argumentation, and
biases in connection with
mathematics

Reasoning is the basis not only of mathematical thought, but of

critical thinking in general. In an era of fake news and propaganda

proliferated by social media, critical thinking acquires even greater

relevance and has been declared one of the competencies of the 21st

century by the OECD.

The work by Macchi et al. is represented in this Research

Topic by two papers related to the improvement of logical and

mathematical performance (Bagassi et al.; Bagassi and Macchi) of

children through a pragmatic approach, on the one hand, and on

the possibility of facilitating problem-solving by viewing it as the

overcoming of misunderstandings, on the other.

Another important field in the realm of reasoning deals with

how humans cope with syllogisms. These used to be the basis

of reasoning in the traditional approach to rigorous thinking.

Syllogisms and how humans handle them have been a matter of

research through the centuries. They are the essence of classical

logic. But in heuristic decision-making, which definitely takes place

when students approach problem-solving in mathematics, less

“classical” logics may play an important role. In Chapter 3 of “The

Science of the Artificial” Simon recommends the use of multiple

logics and in Chapter 5, he explains how

“[m]ultiple logics may become necessary when approaching

heuristic decision making” (Simon, 1996).

The paper by Vargas et al. introduces variations on syllogistic

experimental tasks by (1) reshaping the pragmatics of the

communication situations faced along the dimension of

cooperative vs. adversarial attitudes and (2) rendering explicit

the construction of counter-examples. It presents evidence on a

significant switch in participants’ performance and the strategies

they employ while reasoning.

The question on how to foster argumentation skills deals

with the design of adequate learning environments and can be

influenced, as Sommerhoff et al., show, by whether a sequential or a

concurrent instructional approach is used in the classroom. Their

paper highlights that sequential and concurrent approaches are

both effective in supporting the resources underlying mathematical

argumentation and proof skills; however, the concurrent approach

can have slightly better effects on mathematical argumentation

skills, especially in the case of weaker students.

The paper with most views so far is the one by Bruckmaier

et al. on the cognitive illusions studied by Kahneman and

Tversky, which released a flurry of fundamental investigations on

human reasoning. They provide a unified framework for the basic

treatment of the classical teasers analyzed by the school associated

with Tversky and Kahneman.

Playing games may sharpen reasoning and lead to concept

formation. Özel et al. report having worked with children

from 8 to 10 years old, who played different versions of a

code-breaking game in guided game-based instruction. After

this process, a post-test showed that children were remarkably

sensitive to key principles in their mathematical reasoning

when dealing with information. This adds to evidence that

game-based instruction can be a powerful tool for making

mathematics moreintuitive.

Through playing games the phenomenon of “help-

seeking”, which is so relevant in the context of learning

and problem-solving, can be efficiently analyzed, as

Taylor et al.. They show that help-seeking is not

correlated with a real need for help. The important

paper by Jonsson et al. is devoted to how mathematical

understanding can be fostered by creativity and

cognitive proficiency.

Pursuing another line, in their paper, Reinhold et al. empirically

analyzed the biases—the natural number bias in particular—

that make working with fractions difficult, especially for low-

achieving students.

The paper by Yang et al. analyzes how concept formation,

and understanding of categories fosters analytical and

mathematical competencies.
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3. The influence of individual learner
characteristics

3.1. The influence of motor skills

The paper by Fischer et al. on the surprising effect of fine

motor skills to mathematical insight is particularly relevant. This

is the only paper in the whole Research Topic collection that treats

connections between movement and mathematical competency.

3.2. Mathematics anxiety as a determining
factor

Three papers in our collection treat mathematics anxiety in

connection with mathematics in the context of school (Maldonado

Moscoso et al.; Primi et al.) Among the psychological factors

that trigger impairments in mathematics, mathematics anxiety

has been suggested to play a key role. It has been defined as

feelings of apprehension and increased physiological reactivity

when individuals have to manipulate numbers, solve mathematical

problems or when they are exposed to an evaluative situation

connected with mathematics. Mathematics anxiety involves

psychological arousal, negative cognitions, escape and/or avoidance

behaviors and, when the individual cannot avoid the situation,

performance deficits. It is described as a multidimensional

construct that is related to, but distinct from, other forms of anxiety,

such as trait, social or test anxiety. Mathematics anxiety has been

shown to hinder mathematics performance. This phenomenon is

very common not just among school students. Adults suffer from it

as well.

The paper by Primi et al. describes a new scale for measuring it

already in young children.

The paper by Moliner et al. describes a how peer tutoring

among school students can become a factor thast reduces

math anxiety.

3.3. Gender and its consequences on
students’ performance

In the paper by Uclés et al. on “Gender Differences in

Visuospatial Abilities and Complex Mathematical Problem Solving”

the authors provide empirical evidence that students with

the ability to solve complex mathematical problems exhibit

stronger spatial skills. It also shows that boys and girls

present similar spatial abilities, and that there is no significant

interaction between the ability to solve complex problems

and gender.

3.4. Cultural di�erences, self-e�cacy, and
consequences for mathematical
development

The role of self-efficacy for mathematical development has

become ever more evident since the discoveries of Bandura in the

second half of the 20th century (Bandura, 1997). The paper by Siefer

et al. reveals that including written data (notes) and non-verbal

data (gestures and actions) leads to a more accurate analysis of

self-explanations than an analysis solely based on verbal data. This

influence is even stronger for the categorization of self-explanations

as “adequate” or “inadequate”.

In the paper by Siefer et al. the authors explore the

potential multi-dimensionality of self-efficacy focused on three

task characteristics:

(1) the representational format,

(2) embedding in a real-life context,

(3) the required operation.

The paper highlights the fact that even within a specific content

domain students’ self-efficacy can and should be considered a

multi-dimensional construct.

The paper by Salle describes how self-explanation, gestures and

notes trigger self-assurance and self-efficacy.

The paper by Zakariya addresses causal relationships

between the previous and current mathematics performance of

undergraduate students.

Pursuing another line, in their paper Meng et al. deal

with the thought-provoking topic of the influence of specific

cultural phenomena in connection with self-efficacy. In fact, it

treats cultural aspects which are apparently more specific to

upbringing in China, and shows that these aspects have an

influence on factors analogous to self-efficacy when dealing with

mathematical tasks.

Findings by Wang and Sperling revealed that those

interventions grounded in metacognition-oriented theories

and those interventions that targeted multiple strategies including

cognitive, metacognitive, and motivational, tended to yield

effective increases in both mathematics achievement and

self-regulated learning.

4. Teachers’ views, beliefs, and culture
in connection with teaching
mathematics

The role of teachers, their training and their views in the

discussion on mathematics education is treated by two papers in

the collection.

The paper by Patterson et al. shows the positive effects of

special units of teacher training on the performance of students.

The findings indicate that students profit from their teacher’s

participation in special training interventions.

The paper by Tanas et al. addresses how the views of

teachers on technology and their perceived ease of technology

use affects their use of technology in the mathematics

classroom. These new tools provide education with many

new opportunities, but their application often meets with a

variety of difficulties. Many of those difficulties are general

and appear across different areas of technology use. The

paper confirms that perceived usefulness has a stronger direct

impact on technology use and that user friendly technology

increases use.
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Besides research articles, our Research Topic contains two

research reports, one systematic review, three conceptual analyses,

two review articles and ends with an opinion.

5. Further contributions: research
reports, systematic review, conceptual
analyses, review article and opinion

5.1. Research reports

Sturm et al. report on an empirical study on how the attitudes

and beliefs of young students correlate with their problem-solving

performance. They also claim that this correlation can be affected

by student participation in a training programme.

In his brief research report Rolfes treats the interpretations of

pictorial charts involving differences in areas and differences in

volumes, as understood by readers of popular reports. His claim

is that readers do not seem to interpret two-dimensional pictures

of three-dimensional objects spatially.

5.2. Systematic review

The paperWang et al. analyzes findings on social-cognitive self-

regulated learning and discuss implications for good practices in

the classroom.

5.3. Conceptual analyses

In Bertram the author examines future directions in research

on digital games in mathematics and computer science education.

She highlights the importance of a sound psychological foundation

for the development of learning games and the need for

interdisciplinary research projects and randomized controlled

experimental designs to evaluate the effectiveness of games and

game features.

The analysis of Kramer on iconic mathematics is extremely

pertinent to the realm of ecological rationality in the context

of mathematics education. It reminds us of the necessity of

reviewing representations of mathematical entities and processes

that produce features that are appealing to the mind/body and thus

become easy to grasp.

The analysis by Kurdoglu et al. describes one step in the

conceptual view on uncertainty and is therefore relevant for the

realm of decision-making, having connotations (implications?)

that are meaningful for the teaching of probability. It deals with

complete uncertainty, a situation that goes beyond mathematically

structured scenarios. Under very high levels of uncertainty,

decision-makers rely on heuristics to no avail. Kurdoglu et

al. posit that eristic reasoning (i.e. self-serving inferences for

hedonic pursuits), rather than heuristic reasoning, is adaptive

when uncertainty is extreme. They explain how decision-makers

can benefit from heuristic vs. eristic reasoning under different

levels of uncertainty. Although the authors establish no immediate

connection with mathematics in the classroom, their approach is

novel and clearly relevant.

5.4. Review article

In Barrocas et al. the authors mostly review the large collection

of their own discoveries concerning finger-counting as related to

later arithmetic abilities. Their report fits in perfectly with the

intention of the Research Topic.

5.5. Opinion

As a final perspective from the Research Topic, we cite here

the paper by Simplicio et al. Here the authors insist that results

from research should find their way into classrooms, but they

see the need for more integration of different perspectives and

fruitful collaborations between researchers of different disciplines

and educators. Only then, they claim, are there real chances of

transferring results from basic research into educational practice.

Yet, they also point out that, as has been said by Minshall (2009),

“knowledge transfer is a ‘contact sport’; it works best when people

meet to exchange ideas, . . . and spot new opportunities”.

We definitely agree with their statements and conclude the

description of our Research Topic with the hope that more steps

toward the integration of research on the psychology and even on

the neuroscience of mathematics acquisition are soon taken at all

levels of research and implementation.
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In this paper we present a laboratory experiment in which 157 secondary-school
students learned the concept of function with either static representations or dynamic
visualizations. We used two different versions of dynamic visualization in order to
evaluate whether interactivity had an impact on learning outcome. In the group learning
with a linear dynamic visualization, the students could only start an animation and run it
from the beginning to the end. In the group using an interactive dynamic visualization,
the students controlled the flow of the dynamic visualization with their mouse. This
resulted in students learning significantly better with dynamic visualizations than with
static representations. However, there was no significant difference in learning with
linear or interactive dynamic visualizations. Nor did we observe an aptitude–treatment
interaction between visual-spatial ability and learning with either dynamic visualizations
or static representations.

Keywords: concept of function, covariation, dyna-linking, animation, dynamic visualization, static representation,
visual-spatial ability

INTRODUCTION

Students in the fields of science, technology, engineering, and mathematics (STEM) often have to
acquire knowledge about a process, i.e., a situation that changes over time. In biology, the dynamic
process of cell division is key content; in geography, the eruption of a volcano is a process of change
over time; in engineering, comprehending how a machine works involves understanding a dynamic
situation; and in mathematics, functional relationships (e.g., the path–time relationship of a moving
car) often have to be interpreted dynamically—for example, how much does the dependent variable
y (e.g., path) change if the independent variable x (e.g., time) changes by 1x, or at which value of x
is the strongest increase of y?

Concept of Function
This kind of dynamic thinking is subsumed in mathematics education under thinking of function
as covariation in contrast to thinking of function as correspondence (Vollrath, 1989; Confrey and
Smith, 1994; Thompson, 1994). The aspect of correspondence focuses on the pairwise assignment
of values of the domain to values of the range. Calculating the function value of a given function
(e.g., f (x) = 2x2

+ 3x+ 1) for a particular value (e.g., x = 5) or finding the zeros of the function f are
typically function tasks that address the correspondence conception of function. Traditionally, this
static view of a function as pointwise relations plays an important role in teaching the concept of
function in school (Hoffkamp, 2011; Thompson and Carlson, 2017). The covariation conception,
however, focuses on the interdependent covariation of two quantities, that is, the effect of a change
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of the value of the domain on the value of the range or vice
versa. This thinking of function as covariation is considered
“fundamental to students’ mathematical development”
(Thompson and Carlson, 2017, p. 423). Furthermore, the
aspect of covariation is a central aspect of calculus and can,
therefore, be considered calculus-propaedeutic. Covariational
thinking can be further split into quantitative and qualitative
covariation (Rolfes et al., 2018). In a quantitative covariational
analysis, a function is examined in numbers (e.g., calculation
of a rate of change). In contrast, in a qualitative covariational
analysis, the functional relationship is explored by the visual
shape of the graph and without the precise function values
(Rolfes et al., 2018). Quantitative covariational thinking requires
different skills than qualitative covariational thinking, and they
form psychometrically two correlated but separate dimensions
(Rolfes, 2018).

In mathematics education, one notes that mathematical
objects (e.g., functions) are not directly accessible apart from
external representations (Duval, 2006). Therefore, a difference
exists between the abstract mathematical object and its
representations. Hence, a form of representation is needed to deal
with a function. The tabular, graphical, algebraic, and situational
representation are four typical forms of representation of a
function (Janvier, 1978). The unanimous opinion in mathematics
education states that the ability to translate between different
forms of representations is one aspect of a deep understanding
of the concept of function (e.g., Janvier, 1978; Duval, 2006).

Learning Dynamic Processes With
Dynamic Visualizations
One main challenge for teachers and students of all STEM
subjects is as follows: how is a dynamic process best learned,
and how can we enable students to construct mental models
(Johnson-Laird, 1980) that adequately represent the dynamic of
the content? The traditional approach uses one or several static
pictures to illustrate the process. In textbooks, the cell division
process is displayed with static pictures marking crucial steps in
the process. Likewise, the process of an eruption of a volcano
or the working of a machine is often illustrated with one or
more pictures. On the basis of these static pictures, students
are required to generate a dynamic mental representation of the
processes of cell division, an eruption of a volcano, or the working
of a machine. In mathematics, the presentation and learning
of dynamic content is even more complicated than in other
STEM subjects. If the functional relationship under consideration
models a real-life situation (e.g., a path–time relationship), the
underlying dynamic situation (e.g., the movement of a car)
is often not illustrated at all. Instead, an abstract graph is
displayed as a static representation of the functional relationship.
Students are required to draw a connection between the real-life
situation and the underlying functional relationship on the basis
of this static graph. Afterward, they have to “animate” the graph
mentally to solve a covariation task (e.g., does the speed of the car
increase or decrease?). With the advent of modern technology, a
new approach to learning dynamic content has become possible:
dynamic visualizations (e.g., animations) of processes (e.g., cell

division, eruption of a volcano) that can display the dynamic
content dynamically. This approach corresponds with the notion
held by many that static representations are the best method
for learning about static content, and dynamic visualizations
the most appropriate for dynamic content (Ploetzner and Lowe,
2004; Schnotz and Lowe, 2008). Based on this congruency
hypothesis between external and mental representations, for
example, Karadag and McDougall (2011) argued that e.g., “the
term ‘increasing’ points out a dynamic process, which is quite
difficult to understand in a static media” (p. 175).

Dynamic visualizations can be defined as representations
that change their graphical structure during the presentation
(Schnotz et al., 1999; Ploetzner and Lowe, 2004). Kaput (1992)
considered as characteristic for dynamic visualizations that
time has an “information-carrying dimension” (p. 525). In
dynamic visualizations, the states of objects can change as a
function of time (Kaput, 1992). Dynamic visualizations can be
further subdivided into linear dynamic and interactive dynamic
visualizations. In the case of linear dynamic visualizations (e.g.,
non-interactive animations), the change takes place automatically
and cannot be influenced. Interactive dynamic visualizations,
on the other hand, give learners “some control over how these
changes are presented to them” (Ploetzner and Lowe, 2004,
p. 235). Schwan and Riempp (2004) pointed out that interactive
dynamic visualizations “enable the user to adapt the presentation
to her or his individual cognitive needs” (p. 296). However,
interactivity could also have negative effects on cognition if
managing interactive features burdens the learner with additional
cognitive load (Schwan and Riempp, 2004).

For scientific content, empirical findings concerning
learning with dynamic visualizations could seldom corroborate
assumed advantages for this mode of learning. Often, dynamic
visualizations showed no higher learning effect than static
representations. In an experiment conducted by Hegarty et al.
(2003), understanding of how flushing cisterns work increased
when both static representations and dynamic visualizations were
used; however, there was no evidence that dynamic visualizations
led to a higher learning effect than did static representations.
Mayer et al. (2005) found no advantages in instructions
containing dynamic visualizations regarding learning about
various types of scientific content (braking systems, ocean waves,
toilet tanks, lightning). Instead, for some content, learning with
paper-based static representations proved significantly more
effective than learning with dynamic visualizations.

Dyna-Linking as a Form of Dynamic
Visualization in Mathematics
In mathematics, a graph is a pivotal form of representation when
dealing with the concept of function. The ability to connect
the situational with the graphical representation is considered
essential to understanding graphs (Janvier, 1978; Hoffkamp,
2011). One approach to foster this ability is providing a real-
time link between a motion and a graphical representation (e.g.,
Brasell, 1987; Thornton and Sokoloff, 1990; Nemirovsky et al.,
1998; Radford, 2009; Urban-Woldron, 2014). This real-time link
can be produced by motion detectors that record motions of
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persons or objects with a sensor. These data are then displayed
in real-time as a kinematic Cartesian graph on a screen, and
students have to explore and interpret these kinematics graphs.
Brasell (1987) found out in an experiment that the immediate
display of the graph on a screen is crucial since a lag of
only 30 s already impaired learning. Nemirovsky et al. (1998)
concluded, based on their case study with a motion detector,
that graphing motions “allows students to encounter ideas such
as distance, speed, time, and acceleration” (p. 169). The learning
environments using a motion detector have in common that they
try to foster a rather conceptual and qualitative than a procedural
and quantitative understanding of functional relationships.

A related approach to highlight the connection between
two forms of representation is through dynamic linking of
representations in a dynamic visualization; this is referred to as
hot linkages (Kaput, 1992) or dyna-linking (Ainsworth, 1999). In
dyna-linking, two representations are linked so that the effect of
an action in one is automatically displayed in the linked second
(Kaput, 1992; Ainsworth, 1999). Figure 1 shows an example of
dyna-linking a representation of an equilateral triangle with a
graph. The graph displays the relationship between the length of
the path on the perimeter of triangle ABC from P to Q and the
length of the corresponding chord PQ. Starting in vertex A, point
Q moves counterclockwise along the triangle line until it reaches
vertex A again. The effect of this alteration is simultaneously
displayed in the triangle and the graph.

In educational research, various reasons for the advantageous
nature of dyna-linking were put forward. One says a system that
automatically translates between forms of representation should
reduce learners’ cognitive load, thereby freeing up cognitive
capacity to learn the relationship between representations
(Kaput, 1992; Scaife and Rogers, 1996; Ainsworth, 1999;
Karadag and McDougall, 2011). Some researchers also
considered the idea of supplantation (Salomon, 1979/1994)
as the underlying beneficial principle of dyna-linking (Vogel
et al., 2007; Hoffkamp, 2011). Salomon postulated that mental

FIGURE 1 | Screenshot (translated into English) of dyna-linking two
representations (equilateral triangle and corresponding graph). The effect of a
movement of point Q is displayed simultaneously in the triangle ABC and the
coordinate system.

operations could supplant mental operations if learners
are unable to perform the operations by themselves. Vogel
et al. (2007) pointed out that supplantation can support
the learner’s mental operations in connecting a graph
with the underlying situation concerning both aspects of a
function (correspondence and covariation). Furthermore, the
framework of instrumental genesis (Rabardel, 2002) can be
considered as a theoretical underpinning of the effectiveness
of dyna-linking. When a dynamic visualization in the form
of dyna-linked representations as an artifact is put into an
interactive relationship with a specific task and students’
mental schemes, it transforms into an instrument that can
enhance learning.

Some empirical studies evaluated the effect of dynamic
visualizations in terms of dyna-linking situational and graphical
representations on learning covariational aspects of the concept
of function. Hoffkamp (2011) performed a qualitative study
with 25 10th grade students. A geometrical situation (area
within a triangle) was dynamically linked to the corresponding
graph (relationship between area and a length) in a learning
environment. Hoffkamp concluded that dyna-linked interactive
visualizations “not just lead to the manipulation of some points
or lines, but really activate the formation of an intuitive access
of calculus” (p. 370). She observed that especially asking for
verbalizations prompted conceptualization processes and led to
students integrating a dynamic view into their conception of
function (Hoffkamp, 2011).

In an experimental study with 133 middle-school students,
Vogel et al. (2007) evaluated the effect of supplantation on
the ability to interpret graphs. The students were divided
into three experimental groups. The full supplantation group
had to interpret graphs concerning variables of a geometric
object (e.g., relationship between radius and surface area of
a cylinder when the volume is fixed). They received support
via an interactive dynamic visualization that dyna-linked the
graph with a representation of the geometric object. In the
reduced supplantation group, the graph was linked with a
representation of the geometric object for one particular value,
but no dyna-linking was available. In the no-supplantation
group, the students only had the graph available and no
representation of the geometric object at all. The experiment
showed that linking the graph with a representation of
the geometric object had a significantly positive effect on
learning to interpret graphs. There was, however, no significant
difference between the two forms of linking (full vs. reduced
supplantation), that is, dyna-linking was not more beneficial
than linking the graphical and situational representations in
a static manner.

In two experiments with 111 eleventh graders and 24 tenth
graders, Ploetzner et al. (2009) investigated which kind of
visualizations most helped students to relate motion phenomena
to line graphs. The students in the control group only received
dyna-linked representations of a moving runner and the
corresponding piecewise line graph. In the experimental group,
the students also received vectors representing the distance
covered by the runner at different points in time. The result
showed that adding vectors which dynamically represent the
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covered distance compared to “only” dyna-linking the motion of
the runner with the piecewise line graph had no additional effect.

What Are Favorable Conditions for
Learning With Dynamic Visualizations?
Lowe and Ploetzner (2017) conclude that dynamic visualizations
have “not proven to be the educational magic bullet that
many assumed it would” (p. xv). The explanation for the
rather disappointing empirical results concerning learning with
dynamic visualizations remains up for discussion. van Gog
et al. (2009) suggest that dynamic visualizations place a higher
load on working memory; that is, learners need to process the
information that is visible at the time as well as remember
previous information, and relate and integrate that information
to understand the dynamic visualization. These requirements,
combined with a constant stream of information, increase the
load on working memory. As a result, information shown
at the beginning of a dynamic visualization might be lost
from memory before it can be linked to information shown
later. These problems of transitivity do not exist with static
representations because they can be studied repeatedly (van
Gog et al., 2009; Höffler and Leutner, 2011). Additionally, from
a constructivist perspective, dynamic visualizations, like dyna-
linking, can be considered problematic because learners may
remain too passive or even be discouraged from worrying
about translations of representations (Ainsworth, 1999). This
could result in the desired ability to perform translations
between representations not being developed by dyna-linking
(Ainsworth, 1999). Mayer et al. (2005) have speculated that
the mental simulation of a dynamic process based on a
static representation could achieve a higher learning effect
than that achieved by merely receptively contemplating a
dynamic visualization.

The lack of solid empirical evidence for a learning effect
of dynamic visualizations, combined with various theoretical
rationales concerning the disadvantages, raises the question
of whether there are any circumstances in which dynamic
visualizations are conducive to learning. Pea (1985) gave some
fundamental thoughts on the role of computers and dynamic
visualizations. He argued that the computer could be viewed
as cognitive technology that not only amplified but reorganized
cognition and “helps transcend the limitations of the mind”
(p. 168). Therefore, in mathematics, the use of computers
and dynamic visualizations shifts the activities more to a
meta-level (e.g., interpreting graphs instead of constructing
graphs from a table) instead of doing the same as before
but “faster, more often and more accurately” (Dörfler, 1993,
p. 168). As a consequence, new kinds of tasks are necessary
to initiate cognitive activities on the meta-level (Dörfler,
1993).

Some researchers tried to identify the functional role of
dynamic visualizations in learning a given content. Schnotz
and Rasch (2008) proposed that dynamic visualizations could
promote learning if cognitive resources are freed up: if a mental
process becomes feasible for a learner only through dynamic
visualization, it fulfills an enabling function. If a process can also

be carried out with the aid of a static representation, but the
dynamic visualization considerably reduces an otherwise very
high cognitive load, the dynamic visualization has a facilitating
function (Schnotz and Rasch, 2008). Consequently, dynamic
visualizations should be most effective in challenging tasks.
Tversky et al. (2002) suggested a congruence principle between
external and internal representations: dynamic visualizations
are only more beneficial than static representations when the
dynamically presented content is congruent with the internal
representations that the learner must construct.

Furthermore, some general conditions appear to influence
learning with dynamic visualizations positively. First, interaction
options while learning with dynamic visualizations appear to
enhance learning. Experiments have shown that even relatively
small interactive elements, such as pausing and replaying
a dynamic visualization, can increase learning success (e.g.,
Mayer and Chandler, 2001; Hasler et al., 2007). This positive
effect could be caused by the reduction of cognitive burden
on working memory (Spanjers et al., 2010). In general,
interactively manipulating dynamic visualizations could enhance
learning because they hinder the acceptance of a dynamic
visualization in a passive way (De Koning and Tabbers, 2011).
Nevertheless, even interaction options are Janus-faced: they can
also produce negative effects, such as random clicks or the
omission of interaction options (De Koning and Tabbers, 2011).
Interactive information places additional demands on learners
and potentially limits the cognitive resources available, thus
detrimentally affecting the learning process. One could reduce
the processing demands of interactivity by constraining the
experiment space in an interactive dynamic visualization (Klahr
and Dunbar, 1988; van Joolingen and de Jong, 1997), that is,
reducing the interaction possibilities.

Second, cognitive activation appears essential when learning
with dynamic visualizations. Hegarty et al. (2003) found that
understanding increased when learners had to predict the
dynamic behavior of a machine from static representations.
De Koning and Tabbers (2011) concluded that interactive
manipulations combined with understanding processes
might increase the learning effect of dynamic visualizations.
Additionally, De Koning et al. (2009) advocated highlighting
certain parts of a dynamic visualization in order to draw learners’
attention to these areas.

The Role of Visual-Spatial Ability in
Learning With Dynamic Visualizations
In addition to general factors like interaction and cognitive
activation that appear to enhance the learning effect, moderating
factors might influence the impact of dynamic visualizations on
learning. Dealing with dynamic visualizations requires visual-
spatial ability. Therefore, visual-spatial ability could have a
moderating effect on learning with dynamic visualizations,
thereby generating an aptitude–treatment interaction (Snow,
1989). In the literature, there are two competing theses about
the aptitude–treatment interaction between visual-spatial ability
and learning with dynamic visualizations. On the one hand,
the ability-as-compensator hypothesis assumes that dynamic
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visualizations are particularly advantageous for learners with
low visual-spatial ability (Mayer and Sims, 1994; Mayer, 2001).
People with low visual-spatial ability are less able to animate
their own mental representations and use dynamic visualizations
to compensate for their lack of skill (Hegarty and Kriz,
2008; Höffler and Leutner, 2011; Sanchez and Wiley, 2014).
Therefore, the availability of external dynamic visualizations
could help learners with limited spatial imagination to construct
satisfactory mental models (Hegarty and Kriz, 2008; Höffler
and Leutner, 2011), the dynamic visualization serving as a
"cognitive prosthesis" (Hegarty and Kriz, 2008, p. 7). Further,
a theoretical foundation for the compensation thesis can be
deduced from the theory of supplantation (Salomon, 1979/1994).
For our research, the theory of supplantation would imply that
external dynamic visualizations could supplant mental processes
related to dealing with functional relationships requiring visual-
spatial imagination.

The ability-as-enhancer thesis, on the other hand, assumes
that learners with good spatial imagination benefit more from
dynamic visualizations than do learners with poor spatial
imagination (Mayer and Sims, 1994; Huk, 2006; Höffler and
Leutner, 2011). In this case, visual-spatial ability serves to amplify
the learning process. An amplifying effect could result because
dynamic visualizations may place a higher demand on spatial
imagination due to their transitivity than static representations
(Höffler and Leutner, 2011). Thus, only students with high visual-
spatial ability would be able to process the information presented
in rapid succession in a dynamic visualization (Hegarty and Kriz,
2008), because visual-spatial imagination is associated with larger
spatial working memory (Miyake et al., 2001). This relationship
would make dynamic visualizations detrimental to learners with
poor visual-spatial ability.

Empirical results on the aptitude–treatment interaction
between visual-spatial perception and learning with dynamic
visualizations are inconsistent. In an experiment with 162
students, Sanchez and Wiley (2014) found no aptitude–treatment
interaction between the performance in a paper folding task and
the learning with dynamic visualizations. In three experimental
groups, the students had to read a text about the eruption
process of a volcano. The text was accompanied either by static
pictures or by a linear dynamic visualization or there were no
pictures at all. Nevertheless, in the same study but using another
measure of visual-spatial ability—a test for predicting the motion
of various objects—dynamic visualizations were found to have
a compensating effect (Sanchez and Wiley, 2014). Narayanan
and Hegarty (2002) and Hegarty et al. (2003) failed to find
an aptitude–treatment interaction in an experiment using static
illustrations and non-interactive animations with 100 students
learning how a flushing cistern works. Höffler and Leutner
(2011), on the other hand, identified a compensating effect of
dynamic visualizations in an experiment examining chemical
content (role of surfactants during the washing process) involving
25 students. The text was illustrated either with a system-paced
animation or four static pictures representing the key moments
of the process. In a second experiment with 43 students, these
same authors (Höffler and Leutner, 2011) were able to replicate
an aptitude–treatment interaction.

Present Study
The theoretical findings raise the question to what extent
dynamic visualizations influence learning of a core mathematical
idea like the concept of function. Therefore, the present study
investigated the following three hypotheses:

Hypothesis 1 (H1): Dynamic visualizations of geometrical
situations dyna-linked with the corresponding graph are
more beneficial than only providing static representations
of a geometrical situation and the corresponding graph for
learning about the aspect of covariation of a function.

Learning with dynamic visualizations is not more beneficial
per se than learning with static representations. Dealing with
functional relationships that focus on the aspect of covariation
does, however, require the execution of dynamic mental
processes. A higher learning effect of dynamic visualizations
compared with static representations is to be expected if dynamic
visualizations considerably facilitate the learning process, or even
just enable it (Schnotz and Rasch, 2008).

Hypothesis 2 (H2): Using interactive dynamic
visualizations of geometrical situations dyna-linked
with the corresponding graphs are more beneficial than
using linear dynamic visualizations for learning about the
aspect of covariation of a function.

Interactive dynamic visualizations allow or even require
learners to influence the flow of a dynamic visualization.
Therefore, learners can control the flow of information and
prevent the information overload of working memory. In
addition, systematic variations can be deliberately explored.
However, the number of variations in the interactive dynamic
visualization should be kept low to facilitate a focused
learning process.

Hypothesis 3 (H3): There is an aptitude–treatment
interaction between visual-spatial ability and learning
about the aspect of covariation of a function with
linear or interactive dynamic visualizations of geometrical
situations dyna-linked with graphs.

The ability-as-compensator and the ability-as-enabler
hypotheses offer two rationales postulating an aptitude–
treatment interaction between visual-spatial ability and
representational form, albeit in different directions.

MATERIALS AND METHODS

Overview and Experimental Design
An experiment consisting of three lessons of 45 min each was
performed to check the validity of the hypothesis (cf. Overview
in Figure 2). In the first lesson, six control variables were
collected (cf. subsection instruments). The intervention with a
computer-based learning environment took place in the second
lesson (cf. subsection learning environment). The students were
randomly assigned to one of three experimental groups and
individually learned for 25 min using a static representation,
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FIGURE 2 | Overview of the experimental design.

a linear dynamic visualization, or an interactive dynamic
visualization. The core content of the learning environment
was the learning of qualitative covariational thinking. The
computer-based posttest was administered during the second
lesson, immediately following the intervention. Finally, four
more control variables were collected in the third lesson. The
whole experiment took place in three mathematics lessons within
one school week.

Participants
One hundred and fifty-seven students (88 eighth-graders;
69 ninth-graders) of an academic track secondary school
(Gymnasium) in the German state of Rhineland-Palatinate
participated in the study. Nearly all students of the seven
Grade 8 and 9 classes voluntarily participated in the experiment.
Each gender was almost equally represented (55% female; 42%
male; 3% N/A). The mean age was 14.2 years (SD = 0.66).
The state’s curriculum requires functional relationships to be
covered in grades 8 and 9 (Ministerium für Bildung et al.,
2007). The focus of the curriculum, however, is on linear
and quadratic functions, the procedural-technical handling of
algebraic expressions, and the display in graphs. A qualitative
analysis of general functional relationships, in particular with
regard to the aspect of covariation, is not a regular part of
mathematics lessons in these grades. Therefore, the content of
the intervention and the posttest (see below) can be considered
relatively unknown to the students.

Learning Environment
The computer-based learning environment consisted of 19 tasks.
The aim of the learning environment was to foster students’
ability in qualitative covariational thinking. The stimulus in
the first task (Figure 3) was an equilateral triangle, in which
a chord was drawn from point P to a point Q. The chord’s

endpoint Q was variable, while the starting point P was fixed
at vertex A. Thus, this geometric configuration constituted
a functional relationship between the length of the path on
the perimeter of triangle ABC from point A to point Q and
the length s of the chord PQ. We selected this problem as
the initial content of our learning environment because it
provided different demanding covariational tasks (cf. Roth,
2005) and was almost certainly unknown to the students. This
geometrical configuration required students to evaluate what
effect a variation of the geometrical configuration, that is, moving
the endpoint of a chord, has with regard to covariational
aspects. Intentionally, quantitative covariational thinking was not
addressed. Instead, the focus was to prompt a more conceptional
understanding of covariation.

In Task 1, the students had to work out at which point
the chord was at its longest based on the representation of
the equilateral triangle. The students had to substantiate their
answer to stimulate cognitive activation and to avoid guessing
behavior. In Task 2, the students had to argue at which point
the chord was at its shortest. The same representation of an
equilateral triangle was also used in the following tasks 3 to 6, in
which students were asked further questions about the functional
relationship between the length of the path and the length of
the chord—for example, in which part does the length of the
chord increase, and in which part does it decrease? The intention
of the first six tasks was to engage students in covariational
thinking in a geometrical situation. The graph was purposely not
introduced before this point. Rather, the students should first
acquire a profound understanding of the situational context and
its covariational aspects.

Students learned the connection between the situational and
graphical representation in the following six tasks according
to a predict-observe-explain scheme that has shown beneficial
in previous research (Urban-Woldron, 2014). In tasks 7 to 9,
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FIGURE 3 | First task of the three experimental conditions in the learning environment (translated into English).
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students had to predict the form of the graph for different sections
(point Q moving from A to B, from B to C, and from C to A).
Corresponding lengths were colored with the same color (Kozma,
2003) to support the students’ ability to translate between the
situational and graphical representation. Tasks 10 to 13 displayed
the connection between the representation of the triangle and the
complete graph of the functional relationship (c.f., Figure 1) so
that students could check the correctness of their predictions and
explain why the graph has this particular form. In the last six tasks
(tasks 14 to 19), students had to answer similar questions for a
rectangle instead of a triangle. None of the students’ answers were
assessed or explicitly corrected.

The tasks of three experimental groups were accompanied
by three different forms of representation in the learning
environment (Figure 3): when learning with the linear dynamic
visualization, students could only watch an animation and
observe the movement of a point Q on the triangle line
ABC and its effect on the length of chord PQ; the students
learning with the interactive dynamic visualization could use
their mouse to drag the point Q along the triangle line and
study the effect of their manual manipulation; students in the
third experimental group had to solve the same tasks using static
representations and to simulate mentally the point’s movement
without external support.

The mathematical content of the 19 tasks in the learning
environment was identical for the three experimental groups,
but the instructional text differed where necessary. For example,
students using a linear dynamic visualization were instructed to
“animate point Q on the perimeter of the triangle by clicking
on the play button.” Those working with an interactive dynamic
visualization were asked to “drag point Q with the mouse
along the perimeter of the triangle,” while those using a static
representation were prompted to “move point Q in your mind
along the perimeter of the triangle.”

During the intervention, every student worked with the digital
learning environment without external support of instructors.
Collaboration between students was not allowed and did not
take place. The students were unaware of the experimental
variation and which group they belonged to until the very end
of the experiment.

The original German learning environment is reported in
Supplementary Material 1.

Instruments
A number of variables were collected on participants’ attitudes
and abilities. The main reason for including these variables
was to check whether the randomized assignment into
experimental groups led to groups with approximately equivalent
preconditions. Furthermore, these variables allow controlling
their effect on the outcome (cp. Maxwell et al., 2018). Therefore,
we tried to identify covariates that could be assumed to correlate
with the posttest (see explanation below) as the outcome variable
from a theoretical or empirical perspective. We selected the
three scales for measuring mathematics self-efficacy, mathematics
anxiety, and intrinsic motivation to learn mathematics (Ramm
et al., 2006) from the program for international student
assessment (PISA). We specifically chose these because, as our

own secondary analysis of PISA data showed, they displayed
substantial predictive power for mathematics performance in
the German PISA 2003 sample. In addition, we included the
two PISA variables attitudes toward computers and computer-
related locus of control, because of the computer-based learning
setting of our experiment. Cognitive potential usually has high
predictive power on mathematics performance. Therefore, we
administered the subtest matrices analogies in the German
adaptation of the cognitive ability test (Heller and Perleth, 2000).
Additionally, visual-spatial ability was assessed because it is a
relevant part of intelligence and because we assumed an ATI-
effect between visual-spatial ability and learning with dynamic
visualization (cp. H3). We used three different scales: the first,
dice rotation, and second, compounding two-dimensional figures,
were selected from the German intelligence test I-S-T 2000R
(Amthauer et al., 2001); the third was the paper-folding test of the
Educational Testing Service (Ekstrom et al., 1976). In general,
a further important predictor of mathematics performance is
prior knowledge. Because the learning environment and the
posttest included graphs, we assessed students’ ability to deal
with graphs. Hence, we developed a graph comprehension test
that had sufficient internal consistency (α = 0.73). It consisted of
21 items that required students to analyze graphs qualitatively.
The original German graph comprehension test is presented in
Supplementary Material 2.

The computer-based posttest (α = 0.71) comprised 14 items
(see Figure 4). Here, students had to apply or “transfer” their
acquired knowledge to different figures (e.g., rectangular
triangles, rectangles, pentagons). Static representations
accompanied all the items because we were interested in
how dynamic visualizations can improve the learning process
and prompt elaborate mental representations so that the students
can subsequently apply their acquired knowledge on static
representations without the need for dynamic visualizations.
As Dörfler (1993) pointed out, “so-called visualizations
of mathematical concepts [. . .] remain an integrative and
constitutive part of the respective concept for the individual” (p.
169). The posttest was designed as a level test, and the students
were given sufficient time (approx. 15 minutes) to complete all
the items. The original German posttest items are reported in
Supplementary Material 3.

Posttest-Only Design
We used a posttest-only design for the following reasons.
First, because students were randomly assigned to one of
the three experimental conditions, and the group sizes were
sufficiently large. Hence, we can assume that confounding
variables (e.g., prior knowledge, intelligence) are balanced out
in the groups (Maxwell et al., 2018). Second, we feared an
interaction between pretesting and the intervention, that is,
that the students would behave differently with a pretest,
because of the specific nature of the learning content. Third,
we collected several covariates to control for the effect
of these variables on the outcome. Fourth and finally, in
a pre-posttest-design, there is a risk of the test showing
a floor effect in the pretest or a ceiling effect in the
posttest. Therefore, we decided the best way to perform the
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FIGURE 4 | Exemplary item of the posttest (translated into English).

experiment was to refrain from administering a content-
specific pretest.

Data Analysis
Analysis of the Experimental Effect
A covariance analysis was performed to analyze whether the
learning effects in the three experimental groups differed
significantly. The advantage of a covariance analysis over an
ANOVA is that it additionally takes into account the effect
of the control variables on the outcome (Field et al., 2012;
Tabachnick and Fidell, 2014). We used the regression approach
of a covariance analysis because it leads to identical results as
an ANCOVA but is more general and flexible (Field et al., 2012;
Tabachnick and Fidell, 2014).

The first hierarchical regression analysis was intended to
identify covariates that had a significant impact on the posttest.
Therefore, the control variables were gradually added to the
model as predictors in a first regression model. The order
of entry to the model was based on theoretical expectations
of which variables might explain a larger proportion of the
variance. Significant predictors for the posttest were ultimately
identified as covariates based on the results of the hierarchical
regression analysis.

The covariance analysis was performed in the second
regression analysis. Orthogonal contrasts were used to determine
the experimental effect. Since the design of the experiment was
slightly unbalanced due to randomization—that is, the three
experimental groups did not have the exact same number of
subjects—the contrast coefficients had to be adjusted to ensure
the orthogonality of the contrasts (c.f., Pedhazur, 1997). A total

score for visual-spatial ability was generated by calculating a
mean of the standardized values of the three different visual-
spatial ability variables.

Analysis of the Aptitude–Treatment Interaction
A moderated regression analysis was performed to analyze the
aptitude–treatment interaction between visual-spatial ability and
experimental effect.

Dealing With Missing Values
Items not seen by a student due to absence during the experiment
were coded as missing. Items on the ability scales seen but
not answered by students were rated as incorrect (graph
comprehension, posttest, matrices analogies, dice rotation,
compounding two-dimensional figures, and paper-folding test).
In the case of the attitude scales (mathematics self-efficacy,
mathematics anxiety, intrinsic motivation to learn mathematics,
attitudes toward computers, and computer-related locus of
control), seen but unanswered items were coded as missing.

Of the 157 students, five were not present for all three lessons
of the experiment. As a result, several of their scale values
were incomplete. Therefore, the data of these five subjects were
excluded from the analysis. Of the 152 students who participated
in all three lessons, six had at least one missing value on an
attitude scale because they had not answered one or more
items. Therefore, the missing values of these six students were
replaced by multiple imputations. Overall, four control variables
were affected by the imputations. The regression analyses were
therefore performed based on the observed and imputed data of
these 152 students.
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FIGURE 5 | Boxplots of the raw posttest scores of the three experimental
groups.

In the multiple imputations, five imputations were performed
resulting in five complete data matrices for the remaining 152
students. Hierarchical regression was performed on each of these
five data matrices, and the test statistics pooled. The pooling
of the F-values was determined using the D∗1-statistic (Reiter,
2007), while the pooling of the determinative coefficient R2 was
performed using Fisher’s (1915) z-transformation (c. f., Enders,
2010). The regression coefficients and their standard errors were
calculated in accordance with Rubin’s (1987) approach. For the
significance testing of the pooled regression coefficients by t-tests,
the adjusted degrees of freedom were determined using Barnard
and Rubin’s (1999) formula for small to medium sample sizes.

Software
Regression analyses were performed using the software package R
(R Core Team, 2017). Multiple imputations were calculated with
the package Mice (van Buuren and Groothuis-Oudshoorn, 2011).

RESULTS

Learning Effect of Experimental Groups (H1 and H2)
The descriptive analysis of the posttest results showed mean
differences between the three experimental groups (see Figure 5).
The group learning with static representations had a mean
posttest score of M = 5.98 (SD = 3.12), while the groups learning
with linear dynamic and interactive dynamic visualizations
achieved a mean posttest score of M = 7.04 (SD = 3.04) and
M = 7.67 (SD = 2.79), respectively.

To determine whether the means differed significantly, a
covariance analysis was performed by inserting covariates as
predictors in a multiple regression model. An analysis of
variance showed that the mean score of the control variables
did not differ significantly between the three experimental
groups (see Table 1). In addition, no signs of significant
variance heterogeneity were found, as revealed by Levene’s test
(see Table 1). Furthermore, different regression weights of the
control variables could not be identified. Thus, three important

preconditions for covariance analysis (covariate independent of
group effect, variance homogeneity, and homogeneous regression
weights) could be assumed.

In the first multiple hierarchical regression (see Table 2),
significant predictors for the posttest were identified for later
inclusion as covariates in the analysis. For this purpose, the graph
comprehension test was included in the regression model in step
1. The graph comprehension test had a significant influence,
β = 0.47, t(151) = 6.58, p < 0.001 and explained 22.3 percent of
the variance of the posttest score, F(1, 151) = 43.31, p < 0.001. An
additional significant 9.3 percentage point of explained variance
was provided by the four different facets of intelligence (matrices
analogies, dice rotation, compounding two-dimensional figures,
and paper-folding test), F(4, 147) = 5.01, p < 0.001. The
regression weights of the four individual variables did not,
however, differ significantly from 0. Including the scales for
attitude to mathematics in step 3 significantly increased the
proportion of variance explained by a further 7.2 percentage
points, F(3, 148.03) = 5.62, p = 0.001. However, only the
regression weight of the variable intrinsic motivation to learn
mathematics was significant, β = 0.30, t(141.98) = 3.56, p < 0.001.
In step 4, the scales anxiety in mathematics and self-efficacy in
mathematics were also included in the regression model. Here as
well, the regression coefficients did not differ significantly from
0; nor did the inclusion of the two variables significantly increase
the proportion of variance explained, F(2, 149.03) = 1.50, p = 0.23.

In a second step, control variables from the first regression
analysis were summarized for or eliminated from inclusion
as covariates in a regression model. The four variables
measuring cognitive ability (matrices analogies, dice rotation,
compounding two-dimensional figures, and paper-folding test)
showed multicollinearity from both a theoretical and an
empirical point of view. As multicollinearity should be avoided
in multiple regression (Tabachnick and Fidell, 2014), the four
scales were aggregated into a single value as the standardized
sum of the individual variable values. Since all four scales
were sub-facets of intelligence tests, this aggregated value was
called intelligence. Of the five attitude scales, only the intrinsic
motivation to learn mathematics variable was used as a covariate
in the second regression model since the four other variables did
not significantly contribute to the variance explained.

Thus, the three covariates graph comprehension, intelligence,
and intrinsic motivation to learn mathematics were included as
predictors in the second hierarchical multiple regression model
(see Table 3). Together, they accounted for 38.1 percent of the
variance of the posttest, F(3, 148.04) = 30.57, p < 0.001. For a
more comprehensible depiction of the experimental effects, the
adjusted mean scores for the three experimental groups after
eliminating the effect of the covariates were determined (see
Figure 6). After controlling for the covariates, the experimental
group that had learned with static representations had an
adjusted mean posttest score of Madj = 6.12, while the
groups learning with linear dynamic and interactive dynamic
visualizations had respective adjusted mean posttest scores of
Madj = 7.20 and Madj = 7.34.

In order to determine whether the adjusted mean posttest
scores differed significantly between the groups, orthogonal
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TABLE 1 | Descriptive statistics of the control variables.

Experimental group ANOVA Levene

S LD ID Fb p Fb p

Variable n1 = 54
M (SD)

n2 = 50
M (SD)

n3 = 48
M (SD)

Graph comprehension 10.1 (3.4) 9.0 (4.1) 10.4 (4.2) 1.65 0.20 1.40 0.25

Dice rotation 9.4 (3.4) 9.5 (3.3) 10.1 (4.0) 0.61 0.54 1.77 0.17

Compounding two-dimensional figures 9.9 (3.5) 10.2 (3.6) 10.7 (3.4) 0.64 0.53 0.09 0.91

Paper-folding test 11.3 (3.8) 10.9 (3.8) 11.9 (3.9) 1.33 0.27 0.09 0.92

Matrices analogies 16.9 (5.8) 15.9 (6.0) 16.8 (5.2) 0.42 0.66 0.43 0.65

Intrinsic motivation to learn mathematicsa 7.8 (2.7) 8.7 (2.7) 8.6 (2.6) 2.02 0.13 0.51 0.60

Attitudes toward computers 11.7 (2.7) 11.3 (2.7) 11.1 (3.4) 0.65 0.52 2.40 0.09

Computer-related locus of controla 21.4 (5.0) 21.5 (5.2) 20.6 (5.4) 0.44 0.64 0.05 0.95

Mathematics anxietya 9.8 (3.6) 9.0 (3.4) 8.6 (3.4) 1.67 0.19 0.45 0.64

Mathematics self-efficacya 23.6 (3.2) 24.0 (3.6) 24.2 (2.9) 0.46 0.63 1.55 0.21

S = static; LD = linear dynamic; ID = interactive dynamic. aThe values for these variables represent pooled values based on five imputations. bDegrees of freedom of the
F values of the variables vary depending on whether missing values have been imputed or whether the answers were complete.

contrasts were inserted into the second regression analysis. Since
the number of subjects in the experimental groups was not
completely balanced (static: n1 = 54, linear dynamic: n2 = 50,
interactive dynamic: n3 = 48), the contrasts were adjusted to the
size of the experimental groups. Therefore, for the comparison of
static representations and dynamic (linear dynamic or interactive
dynamic) visualizations, the contrast coefficient K1 = (-98, 54,54)
was used, whereas the linear dynamic and the interactive dynamic
group were compared using the contrast coefficient K2 = (0, -48,
50). Thus, the sum of the weighted contrast products was 0, and
the tested hypotheses were non-redundant and independent (c.f.,
Pedhazur, 1997).

TABLE 2 | Hierarchical regression with posttest as dependent variable.

Posttest score

Predictor 1R2 ß

Step 1 0.223***

Graph comprehension 0.47***

Step 2 0.093***

Dice rotation 0.12

Compounding two-dimensional figures 0.08

Paper-folding test 0.16

Matrices analogies 0.08

Step 3 0.072**

Intrinsic motivation to learn mathematics 0.30***

Mathematics anxiety 0.06

Mathematics self-efficacy 0.09

Step 4 0.013

Attitudes toward computers −0.166

Computer-related locus of control 0.12

Total R2 0.401***

N 152

From step 3 on, the coefficients of determination and the regression coefficients
are pooled values based on five imputations. **p < 0.01, ***p < 0.001.

TABLE 3 | Hierarchical regression supplemented by contrasts.

Posttest score

Predictor 1R2 ß

Step 1 0.381***

Graph comprehension 0.27***

Intelligence 0.37***

Intrinsic motivation to learn mathematics 0.28***

Step 2 0.032*

Contrast 1 (S vs. LD/ID) 0.18**

Contrast 2 (LD vs. ID) 0.02

Total R2 0.413***

N 152

S = static; LD = linear dynamic; ID = interactive dynamic. The coefficients of
determination and the regression coefficients are pooled values based on five
imputations. *p < 0.05, **p < 0.01, ***p < 0.001.

The integration of orthogonal contrasts contributed
significantly to a 3.2 percentage points increase in explained
variance of the posttest score, F(2, 149.04) = 4.00, p = 0.02.
This means that experimental group had a significant effect on
posttest scores. Specifically, there was a significant difference in
learning between static and dynamic visualizations, β = 0.18,
t(145.03) = 2.81, p = 0.006. However, no significant difference
could be identified between learning with linear dynamic and
learning with interactive dynamic visualizations, β = 0.02,
t(145.03) = 0.30, p = 0.77.

To verify the robustness of the results, a simple regression
analysis was performed in addition to the described covariance
analysis. No covariates were included as predictors in this
regression analysis. The integration of the contrasts resulted
in a significant proportion of the variance explained, at 5.3
percent, F(2, 150) = 4.19, p = 0.02. Consistent with the
covariance analysis, the experimental groups with linear dynamic
or interactive dynamic visualizations learned significantly more
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FIGURE 6 | Adjusted mean posttest scores of the three experimental groups.
**p < 0.01; ns = nonsignificant.

than the experimental group with static representations did,
β = 0.21, t(150) = 2.70, p = 0.008, whereas there was no significant
difference in learning between linear dynamic and interactive
dynamic visualizations, β = 0.08, t(150) = 1.04, p = 0.30.

Aptitude–Treatment Interactions (H3)
Hypothesis 3 postulated aptitude–treatment interactions between
visual-spatial ability and learning with dynamic visualizations.
Therefore, a moderated regression analysis (see Table 4) was
performed to determine whether visual-spatial ability had
a moderator effect. In the first step, the predictors graph
comprehension, visual-spatial ability, and intrinsic motivation
to learn mathematics, as well as the two orthogonal contrasts,
were included in the regression model. These five predictors
accounted for 40.4 percent of the variance of the posttest,

TABLE 4 | Hierarchical regression for analyzing aptitude–treatment interaction.

Posttest score

Predictor 1R2 ß

Step 1 0.404***

Graph comprehension 0.33***

Visual-spatial ability 0.31***

Intrinsic motivation to learn mathematics 0.24***

Contrast 1 (S vs. LD/ID) 0.18**

Contrast 2 (LD vs. ID) 0.02

Step 2 0.015

Contrast 1 × Visual-spatial ability 0.09

Contrast 2 × Visual-spatial ability −0.13

Total R2 0.419***

N 152

S = static; LD = linear dynamic; ID = interactive dynamic. The coefficients of
determination and the regression coefficients are pooled values based on five
imputations. **p < 0.01, ***p < 0.001.

F(5, 146.04) = 19.93, p < 0.001; visual-spatial ability showed a
significant main effect, β = 0.31, t(145.04) = 3.45, p < 0.001. In the
second step, interactions between the contrasts and visual-spatial
ability were included in the regression model. The interaction
terms did not significantly contribute to the explained variance,
F(2, 149.04) = 1.86, p = 0.16.

DISCUSSION

Learning With Dynamic Visualizations
In our experiment, dynamic visualizations were significantly
more beneficial for learning than were static representations.
Thus, in accordance with Hypothesis 1, an empirically verifiable
added value of dynamic visualizations was found. Potential
reasons for the effect can be inferred from the design of the
learning environment and the dynamic visualizations.

For example, the dynamic visualizations may have functioned
as scaffolding for the construction of a satisfactory mental model.
The content in the experiment required a relatively high cognitive
effort to mentally simulate the dynamic without external support.
In the static representation condition, movement of the point
along the perimeter of a triangle or quadrilateral had to
be simulated and the effects of this variation analyzed and
assessed in working memory. An incorrect mental simulation
of the dynamic process most likely led to inadequate inferences
about the graph’s shape. This result complies with the idea of
supplantation (Salomon, 1979/1994) that was assumed by Vogel
et al. (2007) und Hoffkamp (2011) as a theoretical underpinning
of dyna-linking. Dynamic visualizations are conducive to
learning if they supplant a mental process the student is unable
to perform. Therefore, dynamic visualizations can be used
to overcome a hurdle in learning mathematics. Conversely,
dynamic visualizations do not show a positive learning effect
if students do not need supplantation, that is, that they can
carry out the necessary mental processes successfully without a
dynamic visualization.

Furthermore, the content in the learning environment was
developed gradually in all three experimental groups. The
students in each group first had to anticipate the form of the
graph. The correct graph became visible in a subsequent task.
The group learning with static representations could hence also
see whether their mental simulation of the dynamic process
was correct. In contrast with the experimental groups learning
with dynamic visualizations, however, the static representations
group had very little opportunity to understand why their
considerations may have been wrong; those in the dynamic
visualizations groups could contemplate the dynamic on the
screen, subsequently correct any erroneous considerations and
ideally explore explanations for the shape of the graph. In the
dynamic visualization of the equilateral triangle, for example,
students could observe that in the middle section the length of
the chord decreased more and more slowly until a local minimum
was reached; and that the length of the chord then increased
speed until it reached a local maximum in the next corner. Being
able to observe this process in the dynamic visualization groups
made it easier for these learners to realize that the graph in the
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middle section had to have a symmetrical convex shape with a
local minimum in the middle. The group learning with static
representations, on the other hand, could only observe that the
graph had a convex symmetric form with a local minimum in
the following task. If these learners did not correctly anticipate
this form (e.g., due to faulty mental simulation of the dynamic
process), no help was available to generate a satisfactory mental
model and to understand why the graph shape presented was
correct. To draw conclusions solely from the illustrated form
of the graph about why their mental simulation of the dynamic
process was faulty would have required a considerable, in some
cases excessive, amount of cognitive effort from the learners.
Therefore, dynamic visualizations may have enabled the other
student groups to construct a more meaningful and coherent
model of the learning content.

Hypothesis 2 could not be corroborated as no difference
between learning with interactive and learning with linear
dynamic visualizations was found. A greater learning effect of
interactive dynamic visualizations was postulated primarily for
two reasons. First, it was assumed that interactive dynamic
visualizations would make it possible to control and investigate
the aspects that were relevant to the particular problem more
precisely (Ploetzner and Lowe, 2004) and therefore induce a
deeper processing of the learning content (Palmiter and Elkerton,
1993). When asked about the location of the local minima
of the length of the chord, for example, the chord could be
manipulated more precisely and repeatedly at the relevant point.
When using a linear dynamic visualization, the visualization had
to be observed carefully; the transitory moment at which the
chord became minimal could not be missed. Overall, it seems
that the transitivity of the linear dynamic visualization (Höffler
and Leutner, 2011) had no negative effect on learners. It seemed
that the learners did not experience additional difficulties in
processing the changes in the linear dynamic visualization, as
shown in some previous research (cp. Bétrancourt and Tversky,
2000). In our experiment, it was just as beneficial to observe the
dynamic process in a linear dynamic visualization as it was to
work with an interactive dynamic visualization.

Despite this, the experiment also showed that interactivity
had no negative effects. Under the assumption that interactivity
ties up cognitive resources unavailable for the learning process
(Ploetzner and Lowe, 2004), a negative effect of interactive
compared with linear dynamic visualizations would theoretically
have been understandable. One reason for the non-negative
effect of interactivity could be that the interaction possibilities in
the experiment were implemented very sparingly, and thus, the
interactivity caused no relevant higher cognitive load. Learners
could only move the point on the perimeter of the triangle.
Other interactive design options (e.g., moving the corner points
of the figure or shifting the starting point of the chord) were
intentionally disabled to keep the cognitive load and potential
negative effects caused by the interaction option low.

In sum, the theoretically assumed advantage of interactive
dynamic visualizations over linear dynamic visualizations could
not be proven empirically. The potential of interactivity might
only come to light in more complex and multifaceted tasks
like Hoffkamp’s (2011). In these tasks, the learners could

be more able to regulate the cognitive load imposed by a
dynamic visualization through interactive actions. Furthermore,
the possibility to investigate a task more focussed in an interactive
dynamic visualization may come more into play with a variety of
interaction options because they enable students to focus their
attention on a particular feature of the dynamic visualization.

Aptitude–Treatment Interaction
Regarding Hypothesis 3, no significant aptitude-treatment
interaction between visual-spatial ability and learning with
dynamic visualizations was found, despite a significant main
effect of visual-spatial ability in our experiment. Therefore, a
one-directional effect, as assumed by the ability-as-enhancer or
the ability-as-compensator thesis, could not be corroborated.
However, we should point out that the absence of a significant
effect did not prove that there is no aptitude-treatment
interaction. The two assumed effects might have balance out,
that is, that both an enhancing and a compensating effect of
visual-spatial ability on learning with dynamic visualizations
exist. Furthermore, the non-significance could be caused by a lack
of power of the experiment. It seems unlikely that our findings
were the result of the scales of visual-spatial ability used, as in
Sanchez and Wiley (2014) experiment, since we selected several
subscales that covered various sub-factors (c.f., Carroll, 1993) of
visual-spatial ability.

Limitations
The intervention in the experiment only took 25 min. Hence, it
was a relatively short and limited learning process. This raises
the question of how sustainable the learning process induced by
dynamic visualization really was. On the one hand, the differences
in learning gains may add up in longer learning units; that is,
that the difference between learning with static representations
and learning with dynamic visualization becomes even greater in
longer learning units. On the other hand, dynamic visualizations
might only enable faster access to the content. In a longer
intervention, after a slower "ignition phase," the group learning
with static representations could reach a level as high as that
reached by the groups learning with dynamic visualization. One
might consider examining which of these two effects occurs
during prolonged interventions in a further experiment.

Research Desiderata
The main intention of the experiment was to find any empirical
evidence for the effect of dynamic visualizations vs. static
representations in learning essential mathematical content.
Despite its success, just a modest effect of dynamic visualizations
compared with static representations was found. Many aspects
concerning dynamic visualizations in learning and teaching
mathematics remain unclear.

First, the conditions under which dynamic visualizations
in mathematics education are conducive to learning have not
yet been satisfactorily clarified. It has already been suggested
that limiting the interaction possibilities appears to prevent
excessive cognitive load. A further experiment might elucidate
the question of how an excessive level of interaction might hinder
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learning. Our experiment also did not show that interactive
dynamic visualizations are more beneficial than linear dynamic
visualizations. Experimental studies that take a closer look at
comparisons between interactive dynamic and linear dynamic
visualizations are therefore desirable.

Furthermore, the experiment was based on the assumption
that a didactically designed learning environment is needed
to generate positive learning effects of dynamic visualizations.
Therefore, the dynamic visualizations were integrated into a
learning environment in which the students had to explore
tasks with increasing difficulty and complexity. This approach
could also be validated or falsified by means of further
empirical investigation. Two experimental groups could work
with the same interactive dynamic visualization: one could
work freely and without concrete content-related problems with
an interactive dynamic visualization (possible task: "Explore
the computer-based learning environment and describe what
discoveries you make"); while the other could be given pre-
structured and targeted assignments. Such a design could be used
to determine to which extent simply exploring an interactive
dynamic visualization itself induces a learning process.

Finally, it would be beneficial to investigate the learning
effect of dynamic visualizations for further mathematical content.
These studies should be combined with further in-depth
theoretical considerations about the advantages that learning
with dynamic visualizations can offer regarding these contents.
For example, in calculus, many students struggle to comprehend
limiting processes (e.g., derivative, integral). Therefore, several
dynamic visualizations are available to support the learning and
teaching of calculus. Against the backdrop of our quantitative
results and findings based on qualitative research from Hoffkamp
(2011), it seems plausible to assume that the appropriate use of
dynamic visualizations could be beneficial in teaching calculus.
However, an empirical validation with quantitative experiments
of the effectiveness of teaching and learning with dynamic
visualizations in calculus is still pending. Furthermore, the
use of dynamic visualizations for learning dynamic aspects in
stochastics (e.g., the law of large numbers or central limit
theorem) or geometry (e.g., construction tasks) has not yet been
sufficiently empirically investigated.

CONCLUSION

Eventually, we can draw some conclusions for teaching
mathematics from the present study. On the one hand, we
can state that, under certain conditions, dynamic visualizations
can support learning better than static representations.
For example, embedding dynamic visualizations into an
elaborated learning environment seems beneficial. In
consequence, through the interactive relationship between
dynamic visualization as an artifact and the tasks, the
dynamic visualization can transform into an instrument
that enables learning (Rabardel, 2002). It is reasonable

to assume that other mathematical content (e.g., calculus,
probability theory) can bring out this potential of dynamic
visualizations as well.

On the other hand, the effect of dynamic visualizations was
rather modest, and interactivity had no additional effect at all.
Other cognitively activating features in a learning environment
like predict-observe-explain (Urban-Woldron, 2014) could
have a higher effect on learning mathematics than dynamic
visualizations. Therefore, the present study confirms that
expectations in using dynamic visualizations in teaching
mathematics should be realistic: Dynamic visualizations are no
magic bullets, but to a certain degree, they can facilitate learning
processes in mathematics.
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In teaching statistics in secondary schools and at university, two visualizations are
primarily used when situations with two dichotomous characteristics are represented:
2 × 2 tables and tree diagrams. Both visualizations can be depicted either with
probabilities or with frequencies. Visualizations with frequencies have been shown
to help students significantly more in Bayesian reasoning problems than probability
visualizations do. Because tree diagrams or double-trees (which are largely unknown
in school) are node-branch structures, these two visualizations (in contrast to the 2 × 2
table) can even simultaneously display probabilities on branches and frequencies inside
the nodes. This is a teaching advantage as it allows the frequency concept to be
used to better understand probabilities. However, 2 × 2 tables and (double-)trees
have a decisive disadvantage: While joint probabilities [e.g., P(A∩B)] are represented
in 2 × 2 tables but no conditional probabilities [e.g., P(A|B)], it is exactly the other
way around with (double-)trees. Therefore, a visualization that is equally suitable for
the representation of joint probabilities and conditional probabilities is desirable. In
this article, we present a new visualization—the frequency net—in which all absolute
frequencies and all types of probabilities can be depicted. In addition to a detailed
theoretical analysis of the frequency net, we report the results of a study with 249
university students that shows that “net diagrams” can improve reasoning without
previous instruction to a similar extent as 2 × 2 tables and double-trees. Regarding
questions about conditional probabilities, frequency visualizations (2 × 2 table, double-
tree, or net diagram with absolute frequencies) are consistently superior to probability
visualizations, and the frequency net performs as well as the frequency double-tree.
Only the 2 × 2 table with frequencies—the one visualization that participants were
already familiar with—led to higher performance rates. If, on the other hand, a question
about a joint probability had to be answered, all implemented visualizations clearly
supported participants’ performance, but no uniform format effect becomes visible.
Here, participants reached the highest performance in the versions with probability
2 × 2 tables and probability net diagrams. Furthermore, after conducting a detailed
error analysis, we report interesting error shifts between the two information formats
and the different visualizations and give recommendations for teaching probability.

Keywords: frequency net, natural frequencies, conditional probabilities, joint probabilities, Bayesian reasoning
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INTRODUCTION

Experimental cognitive psychology research on the effects of
natural frequencies and visualizations focuses primarily on
conditional probabilities, especially on Bayesian tasks like the
famous mammography problem and similar cognitive illusions
like the Monty Hall problem (Kahneman et al., 1982; Gigerenzer
and Hoffrage, 1995; Goodie and Fantino, 1996; Hoffrage et al.,
2000; Krauss and Wang, 2003; Barbey and Sloman, 2007;
Spiegelhalter et al., 2011; Baratgin, 2015; Operskalski and Barbey,
2016; McDowell and Jacobs, 2017).

However, conditional probability tasks, and especially
Bayesian tasks are only one aspect of teaching probability at
secondary schools and university. Tasks on joint probabilities also
play an important role in stochastic education, as they contribute
significantly to the general understanding of probabilities (see,
e.g., Pfannkuch and Budgett, 2017). In this article, we seek to
broaden the field of natural frequencies and visualizations in
Bayesian reasoning to questions about joint probabilities and to
that end present a new visualization that is equally suitable for
both types of probabilities.

In the teaching of statistics at secondary school and university
level, two visualizations are primarily used when situations
with two dichotomous characteristics are represented: 2 × 2
tables and tree diagrams. Both visualizations can be depicted
with probabilities or with frequencies. Visualizations with
frequencies have been shown to help students significantly
more than probability visualizations in Bayesian reasoning
problems (Binder et al., 2015, 2018). Tree diagrams and
their extensions to double-trees can even display both
information formats simultaneously, which is an advantage
from a pedagogical point of view.

However, 2 × 2 tables and (double-)trees each have a decisive
disadvantage with respect to the probability representation:
While in 2× 2 tables, aside from marginal probabilities, only joint
probabilities [e.g., P(A∩B)] are represented but no conditional
probabilities [e.g., P(A|B)], (double-)trees present conditional
probabilities but no joint probabilities. Although it is possible
to see joint probabilities in the double-tree with frequencies by
skipping a level and reading “160 of 10,000,” there is no branch
provided to display the corresponding joint probabilities directly,
which has disadvantages from an educational point of view (the
same holds true for 2× 2 tables).

In this article we present a new visualization—the frequency
net (also a node-branch structure)—in which all frequencies
as well as all probabilities can be depicted simultaneously. In
section “The Frequency Net and Net Diagrams” a detailed
theoretical analysis of this new visualization is presented.
Furthermore, we will report results of an empirical study on this
visualization, conducted with 249 university students, in which
we systematically varied the information format (probabilities vs.
frequencies) and the visualization (no visualization, 2 × 2 table,
double-tree, or frequency net) of the task. In addition to the
typical questions for conditional probabilities, we also asked joint
probability questions. Finally, a systematic analysis of the typical
errors that occurred is presented—separately for information
format, visualization and inference type.

VISUALIZATIONS OF STATISTICAL
INFORMATION

Conditional Probabilities and Bayesian
Reasoning
Many professionals, like medical doctors and judges in
court have to make important decisions based on statistical
information. Often, Bayesian inferences are necessary
for such decision-making processes, for example when a
radiologist has to assess and communicate the statistical
meaning of, for instance, a positive mammography
screening. Many empirical studies have documented faulty
inferences and even cognitive illusions among professionals
of various disciplines, like physicians (Hoffrage and
Gigerenzer, 1998; Garcia-Retamero and Hoffrage, 2013),
those in the legal profession (Hoffrage et al., 2000), and
managers (Hoffrage et al., 2015a), as well as secondary or
university students (Ellis et al., 2014; Binder et al., 2015;
Böcherer-Linder and Eichler, 2019).

Consider, for instance, the mammography problem, in
which the prevalence of the disease has to be linked with
the sensitivity and the false-positive rate for a mammogram
in order to determine the probability that a woman with a
positive mammogram actually has breast cancer (adapted from
Eddy, 1982; see also Gigerenzer and Hoffrage, 1995; Siegrist
and Keller, 2011; Micallef et al., 2012; Garcia-Retamero and
Hoffrage, 2013; the numbers given below were adjusted in such
a way that the positive predictive value corresponds to the
one from the current German mammography screening report,
Kooperationsgemeinschaft Mammographie, 2018).

Mammography Problem – Probability Format
The probability of breast cancer is 2% for a woman of a
particular age group who participates in a routine screening.
If a woman who participates in a routine screening has breast
cancer, the probability is 80% that she will have a positive
mammogram. If a woman who participates in a routine
screening does not have breast cancer, the probability is 10%
that she will have a false-positive mammogram.

What is the probability that a woman of this age group
who participates in a routine screening and has a positive
mammogram actually has breast cancer?

The correct solution can be determined using Bayes’ formula
and is about 14%. However, most people in reality estimate
such (a posteriori) probabilities to be much higher (Eddy,
1982; Hoffrage and Gigerenzer, 1998). In the last 25 year, to
help prevent that kind of dangerous misjudgment, research
has intensively examined the concept of natural frequencies in
Bayesian reasoning problems, both theoretically and empirically
(Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998;
McDowell and Jacobs, 2017; McDowell et al., 2018). These studies
have shown that many more people are able to answer this type
of question if all statistical information is presented using natural
frequencies rather than confusing probabilities:
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Mammography Problem – Natural Frequency Format
200 out of 10,000 women of a particular age group who
participate in a routine screening have breast cancer. 160 out
of 200 women who participate in a routine screening and have
breast cancer will have a positive mammogram. 980 out of
9,800 women who participate in a routine screening and have
no breast cancer will have a false-positive mammogram.

How many of the women of this age group who participate in a
routine screening and receive positive mammograms actually
have breast cancer?

This mode of representation makes it possible to imagine
concrete persons, the nested-set relations get transparent, and
thus the solution algorithm becomes simpler. Now it is easy
to see that 160 + 980 women receive positive mammograms
and only 160 out of these 1,140 women actually have breast
cancer. A recent meta-analysis by McDowell and Jacobs (2017)
summarized 35 studies that implemented natural frequencies and
found an average performance in natural frequency versions of
Bayesian reasoning problems of about 24%, compared to only 4%
in studies that used probability versions (for details see McDowell
and Jacobs, 2017).

Another strategy for improving Bayesian reasoning is using
visualizations such as 2 × 2 tables (Steckelberg et al., 2004;
Binder et al., 2015), tree diagrams (Sedlmeier and Gigerenzer,
2001; Yamagishi, 2003; Steckelberg et al., 2004; Binder et al.,
2015; Budgett et al., 2016; Reani et al., 2018), double-trees
(Wassner, 2004; Khan et al., 2015; Böcherer-Linder and Eichler,
2019), Euler diagrams (Sloman et al., 2003; Micallef et al., 2012;
Sirota et al., 2014; Reani et al., 2018), roulette-wheel diagrams
(Yamagishi, 2003; Brase, 2014), frequency grids (Cosmides
and Tooby, 1996; Sedlmeier and Gigerenzer, 2001; Garcia-
Retamero et al., 2015), Eikosograms (sometimes also called
unit squares or mosaic plots; e.g., Oldford and Cherry, 2006;
Böcherer-Linder and Eichler, 2017; Pfannkuch and Budgett,
2017; Talboy and Schneider, 2017), or icon arrays (Zikmund-
Fisher et al., 2014; Brase, 2008, 2014; Reani et al., 2018). Since
the visualization of statistical information is as successful as
the natural frequency strategy (McDowell and Jacobs, 2017),
there have also been efforts in recent times to develop new
visualizations with specific advantages, such as the dot diagram
(which is a hybrid visualization of a 2 × 2 table, an Euler
diagram, and an icon array; Wu et al., 2017) the turtleback
diagram (Yan and Davis, 2018), or interactive diagrams like
pachinkograms (Budgett and Pfannkuch, 2019; Starns et al.,
2019). For an overview of typical visualizations for situations
with two dichotomous characteristics, see Spiegelhalter et al.
(2011), or Binder et al. (2015), and for a classification of
typical visualizations used for branching, nested-set relation, or
frequency, see Khan et al. (2015).

Note that 2 × 2 tables, tree diagrams, and double-trees all
have the advantage that they can be constructed easily with
paper and pencil by teachers or students. In contrast, most
of the other diagrams mentioned above are complicated to
produce, which is especially problematic when base rates are
extreme (as in typical medical Bayesian reasoning problems).

Area-proportional Euler diagrams, for instance, are unsuitable
for teaching because drawing such illustrations is geometrically
difficult. In the Eikosogram, areas can become so small that they
can almost no longer be effectively represented in the diagram
(if the base rate is very small). Similarly, the icon array is
based on small symbols instead of geometrical areas, and thus
many symbols have to be produced in the case of small or
unmanageable proportions (such as 0.1%), entailing an enormous
amount of effort to draw, for instance, 1,000 or even in some cases
10,000 small icons. Therefore the focus of this article is on 2 × 2
tables, tree diagrams, and double-trees, which are displayed in
Figure 1.

Furthermore, these three visualizations usually display
the statistical information explicitly as numbers. In these
visualizations, the statistical information can be expressed
either as probabilities or as absolute frequencies (see, e.g.,
Figure 1) but only in (double-)trees can both formats be
displayed simultaneously.

However, from an educator’s point of view, it would be
helpful if a visualization could display both absolute frequencies
and probabilities simultaneously because this would allow one
to switch representations instantly and to see the meaning
of marginal probabilities, conditional probabilities, or joint
probabilities in terms of intuitive absolute frequencies that
could be combined to natural frequencies (e.g., “160 out of
200”). Yet only in node-branch structures like tree diagrams
and double-trees—but not in 2 × 2 tables—can absolute
frequencies and probabilities be displayed at the same time
(see, e.g., “branching,” Khan et al., 2015). Note that these
visualizations are especially helpful when they contain absolute
frequencies rather than probabilities (e.g., Binder et al., 2015;
Bruckmaier et al., 2019).

From Bayesian Reasoning to Other
Statistical Judgments: Teaching
Probability in Secondary School and
University
In teaching probability and statistics at secondary school
level, Bayesian tasks are only one of a number of probability
tasks covered. In fact, there are 16 different probabilities
in a situation with two dichotomous events (A and B):
Four marginal probabilities [P(A), P(Ā), P(B), P(B̄)], four
joint probabilities [P(A∩B), P(A∩B̄), P(Ā∩B), P(Ā∩B̄)],
and eight conditional probabilities [P(A|B), P(Ā|B),
P(A|B̄), P(Ā|B̄), P(B|A), P(B̄|A), P(B|Ā), P(B̄|Ā)]. Thus
far, research on the effect of natural frequencies and
visualizations predominantly focuses on the notoriously
difficult Bayesian conditional probabilities (for exceptions,
see Böcherer-Linder and Eichler, 2017; Bruckmaier et al.,
2019) due to their impact for important real-world
decisions in many domains (see, e.g., Hoffrage et al., 2000;
Operskalski and Barbey, 2016).

However, judgment errors with severe consequences can
also occur in connection with joint probabilities, for example
in association with the difficult concept of independence
of events such as occurred in the famous trial of Sally
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FIGURE 1 | 2 × 2 tables, tree diagrams, and double-trees (left in probabilities, right in frequencies) for the mammography problem.

Clark (see, e.g., Schneps and Colmez, 2013; Barker, 2017;
Jessop, 2018). In this trial, Sally Clark was charged with
murdering her two infant sons, who had actually died of
sudden infant death syndrome (SIDS). The court expert

Roy Meadow made two probabilistic judgment errors here:
(1) The court committed the typical “prosecutor’s fallacy”
(Hill, 2004), which again is based on misinterpretation of
conditional probabilities; and (2) Meadows’ calculation was
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based on the assumption that two SIDS within a family
are stochastically independent, which is not the case. Thus,
because of their mathematical value as well as because of their
practical relevance, the typical (Bayesian) inverted conditional
probabilities should be examined, but—importantly—also joint
probabilities, especially when it comes to the visualization of
these probabilities.

Table 1 shows four potential advantageous features of
visualizations in situations with two dichotomous events: (1)
The possibility to display all four joint probabilities directly,
(2) the possibility to display all eight conditional probabilities,
(3) the possibility to display probabilities and frequencies
simultaneously (then it is possible to understand probabilities
with the help of frequencies), and (4) the possibility for
both reading directions to be represented at the same time.
Therefore, Table 1 shows the suitability of 2 × 2 tables,
trees, and double-trees for visualizing those 16 probabilities
that can occur in situations with two dichotomous events
[besides P(�) and P(Ø)]. This results in a disadvantage for
teaching mathematics: Either the students learn to always
select the appropriate visualization for each task, or they
have to accept the fact that they sometimes first have to
perform an extra calculation before the visualization can
be completed (for a detailed explanation, see Binder et al.,
under review). If, for example, only joint probabilities are
given in a task, these probabilities cannot be written directly
into the double-tree—because in double-trees, no branch is
available for depicting joint probabilities. In this case, the
joint probabilities must be converted in a previous calculation
into conditional probabilities, which can then be displayed in
the (double-)tree.

Furthermore, as mentioned above, the double-tree as a node-
branch structure has one feature that might be an advantage
for teaching—compared to the 2 × 2 table—because it can
represent probabilities as well as frequencies, including their
mutual relations at the same time. In contrast to what one sees in
“basic” tree diagrams, both reading directions are simultaneously
evident in double-trees. However, even the advantageous double-
tree has three disadvantages:

• Missing joint probabilities: There are no branches on which
the (four) joint probabilities can be directly depicted. If such
branches are added, the diagram becomes cumbersome.
• Crossing branches: Two branches overlap in the lower

part of the double-tree. This may be problematic for
learners, since it carries the risk of confusing the
conditional probabilities that are positioned on the two
crossing branches.

FIGURE 2 | Schematic net diagram for two abstract events A and B and their
counter-events Ā and B̄, representing four marginal probabilities, four joint
probabilities, and eight conditional probabilities.

• Doubled node: One of the nodes of the double-tree appears
twice—namely the one that represents the total sample (e.g.,
10,000 women).

The Frequency Net and Net Diagrams
This article presents a novel visualization that enables the four
marginal probabilities, all four joint probabilities, and all eight
conditional probabilities to be taken in at a glance: the frequency
net. Figure 2 shows a schematic net diagram for two abstract
events A and B, and their respective counter-events Ā and
B̄. Moreover, in Figure 3, net diagrams (with probabilities,
absolute frequencies, and both information formats) concerning
the mammography problem are displayed. For a visualization
coming close to our frequency net, yet without including joint
probabilities (or corresponding branches), see Soto-Andrade
(2019), and for a similar schematic visualization without joint
probabilities or any numbers, see Wikipedia (without date)1.

It has to be noted that absolute frequencies and probabilities
can be displayed simultaneously in net diagrams (see Figure 3,
below). Therefore the frequency net, consisting of a node-
branch structure, is an enhancement of a double-tree. As in
the double-tree, all four marginal probabilities and all eight
conditional probabilities can be depicted. In addition and in
contrast to the double-tree, the net diagram has four branches
for the joint probabilities. Furthermore, and also in contrast to

1https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_2D.svg

TABLE 1 | Advantages and disadvantages of 2 × 2 tables, trees, double-trees, and net diagrams.

Advantage 2 × 2 table Tree diagram Double-tree Net diagram

All joint probabilities can be displayed directly X X

All conditional probabilities can be displayed directly (Only 4 out of 8) X X

Probabilities and frequencies can be presented simultaneously X X X

Both “reading directions” are equally evident X X X
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FIGURE 3 | Net diagram with probabilities (top), frequencies (middle), or both information formats simultaneously for the mammography problem.
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FIGURE 4 | Both possible tree diagrams and the 2 × 2 table are included in the net diagram. (A) Net diagram with highlighted tree A; (B) Net diagram with
highlighted tree B; (C) Net diagram with highlighted frequency 2 × 2 table; (D) Net diagram with highlighted probability 2 × 2 table.

the double-tree, no branches cross each other, and none of the
nodes appears twice.

The frequency net can also be seen as a hybrid version of a
tree diagram combined with a 2 × 2 table: On the one hand,
the frequency net consists of two tree diagrams that have been
carefully placed one on top of the other (see Figures 4A,B; the
two possible tree diagrams are also represented in a double-tree).
On the other hand, the frequency 2 × 2 table is included in
the four corner nodes (Figure 4C) of the net diagram, and the
probability 2 × 2 table is included on the four branches for the
corresponding joint probabilities (Figure 4D).

In the middle node of the net diagram (Figure 2), an
(imaginary) sample size is displayed to which all further statistical
information refers. First, the four marginal probabilities can

be found from the middle node horizontally and vertically:
P(A), P(B), P(Ā) and P(B̄). Second, the joint probabilities are
plotted diagonally from the middle node to the corner nodes:
P(A∩B), P(Ā∩B), P(A∩B̄), P(Ā∩B̄). Finally, the eight conditional
probabilities are found at the borderlines of the net diagram:
P(A|B), P(Ā|B), P(A|B̄), P(Ā|B̄), P(B|A), P(B̄|A), P(B|Ā), and
P(B̄|Ā).

Note that in the net diagram, the following four probability
rules apply, which are described separately in detail for
probabilities and frequencies in Binder et al. (under review):

• Line rule: The sum of probabilities on opposing horizontal
or vertical branches, both starting from the middle
node is always 1.
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TABLE 2 | Correct solution and typical incorrect Bayesian strategies with regard to the correct solution “F out of D” in a typical Bayesian reasoning task (according
to Gigerenzer and Hoffrage, 1995; Steckelberg et al., 2004; Zhu and Gigerenzer, 2006; Días and Batanero, 2009; Eichler and Böcherer-Linder, 2018;
Bruckmaier et al., 2019).

Probabilities (with b, c, d, etc.) Frequencies (with A, B, C, etc.)

Correct solution (Bayesian) k = f/d = b·j/(b·j + m·c) F out of D = F out of (F + G)

Incorrect Algorithm (Non-Bayesian)

Joint occurrence (Gigerenzer and Hoffrage, 1995) f = b·j = d·k F out of A

Fisherian/Representative thinking/Transposed conditional (Gigerenzer and
Hoffrage, 1995; Zhu and Gigerenzer, 2006; Días and Batanero, 2009)

j = f/b F out of B

Base rate only/Conservatism (Gigerenzer and Hoffrage, 1995; Zhu and
Gigerenzer, 2006)

b B out of A

Evidence only (Zhu and Gigerenzer, 2006) d = f + g = b·j + c·m D out of A = (F + G) out of A

Likelihood substraction (Gigerenzer and Hoffrage, 1995) j – m = f/b – g/c (F out of B) – (G out of C)

Pre-Bayes (Steckelberg et al., 2004; Zhu and Gigerenzer, 2006) Not applicable B out of D = B out of (F + G)

Correct positive rate/false positive rate (Steckelberg et al., 2004) j/m Not applicable

FIGURE 5 | Schematic representation of 2 × 2 tables, double-trees, and net diagrams (left in probabilities, right in frequencies).

• Triangle rule (
∧

= multiplication rule in the tree diagram): If
you multiply the probabilities of the two “legs” in the eight
elementary right-angled triangles, you get the probability
displayed on the dashed hypotenuses.

• V-rule (
∧

= addition rule in the tree diagram): The sum
of the probabilities of two adjoining diagonal (dashed)
branches always equals the probability that is displayed on
the enclosed branch [e.g., P(A∩B)+ P(A∩B̄) = P(A)].
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• X-rule: The probabilities on all four diagonal branches
added together result in 1.

Since we present in our results not only the performance of
participants but also an analysis of their errors, we will consider in
the next section prior research results concerning error analyses
in Bayesian reasoning.

Typical Errors in Bayesian Reasoning
and Typical Errors With 2 × 2 Tables
Typical Errors in Bayesian Reasoning
From an educational point of view, it seems obvious to examine
participants’ performance in relation to different information
formats or visualizations. Equally interesting, however, is
analyzing the reasons why participants were not able to solve
a given task. In fact, many statistics educators, and also the
psychologist McDowell and the statistician Jacobs, stress the
importance of examining erroneous cognitive algorithms in
Bayesian reasoning (McDowell and Jacobs, 2017). Weber et al.
(2018), for example, found that many people who could not solve
Bayesian reasoning tasks in the natural frequency format had first
converted the statistical information back into probabilities and
then subsequently failed in solving the task correctly. Lehner and
Reiss (2018); Reani et al. (2018), and Bruckmaier et al. (2019)
examined decision-making strategies (e.g., in contingency tables)
with the help of eye-tracking analysis and found that eye-tracking
is a useful method for investigating correct and incorrect solution
algorithms, based on certain probability visualizations.

However, the demanding effort that an eye-tracking study
involves is not always necessary. In many cases, the tasks can
be constructed in such a way that the wrong solution itself
already makes the faulty solution algorithm apparent. Along
these lines, Gigerenzer and Hoffrage (1995) classified the wrong
answers given by participants in “write-aloud protocols” and
identified typical wrong answers in pure text versions of Bayesian
tasks (see Table 2; compare also Eichler et al., under review;
Steckelberg et al., 2004; Zhu and Gigerenzer, 2006; Días and
Batanero, 2009; Eichler and Böcherer-Linder, 2018; Bruckmaier
et al., 2019). Table 2 summarizes the few existing classifications
of incorrect Bayesian reasoning strategies. While Gigerenzer and
Hoffrage (1995) describe the typical erroneous strategies based
on probabilities, Zhu and Gigerenzer (2006) and Eichler and
Böcherer-Linder (2018) choose an explanatory approach based
on frequencies. Bruckmaier et al. (2019), however, merge these
two types of error presentation.

It has to be noted that the research findings obtained
thus far are also consistent with the alignment hypothesis:
Some presentations of statistical information create “a better
alignment between presented and requested relationships, and
this should facilitate the comprehension of the requested
ratio beyond the represented quantities” (Tubau et al., 2019,
p. 1808; see also Johnson and Tubau, 2017). One common
error in the text-only version of Bayesian reasoning problems
is the Fisherian. In a frequency version, this error occurs
because participants are mapping presented numbers onto
the requested ratio without a proper comprehension of the
relevant relationships.

To this date, there has only been limited research on how error
patterns shift when (1) the information format is changed, and (2)
an additional visualization is shown. Such results are still lacking,
especially with regard to non-Bayesian questions such as the one
for joint probabilities. However, it has been understood since
Gigerenzer and Hoffrage (1995) that in the pure text versions of
Bayesian tasks, the errors joint occurrence and Fisherian are to be
expected in both information formats. Furthermore, Bruckmaier
et al. (2019) found evidence in an eye-tracking study that the
joint-occurrence error appears more frequently in a probability
2 × 2 table than in a frequency 2 × 2 table. All errors of
Table 2 are related to the notation that is shown in Figure 5
(uppercase letters stand for absolute frequencies while lowercase
letters represent probabilities, see also Bruckmaier et al., 2019).

Typical Errors With 2 × 2 Tables
Besides the above-mentioned studies on typical errors in Bayesian
reasoning, there are several studies on typical errors and strategies
regarding non-Bayesian judgments made with the use of a 2 × 2
table, for instance depending on different developmental stages
in childhood (Batanero et al., 1994; Lehner and Reiss, 2018).
Most of these studies focus on situations in which the proportion
“F out of D” has to be compared with “I out of E” in 2 × 2
tables with frequencies (e.g., “Which one is larger?”). While
there are several correct multiplicative strategies for solving this
task (McKenzie, 1994), there are also various additive strategies
that generally do not correspond to valid modeling of the
situation and therefore can lead to misjudgments (Shaklee and
Hall, 1983; Ufer et al., 2011; Lehner and Reiss, 2018). The
present article, however, focuses on “simpler” inferences than
the one just described. Instead of those complex comparisons
of two different distributions, fewer mental steps are required
for answering the questions in the present empirical study. The
studies mentioned above are more about “read beyond the data,”
whereas the present study is more about “read between the
data” (Curcio, 1989). To the best of our knowledge, there are
no comprehensive studies concerning typical difficulties in the
simple act of choosing a number or a piece of information or even
making simple inferences from a 2 × 2 table (for a study on the
subject, albeit with only a few participants, see Bruckmaier et al.,
2019). Furthermore, there are no studies on the efficiency of the
frequency net thus far.

RESEARCH QUESTIONS

The main goal of the present study is to examine empirically
whether the net diagram can already be understood intuitively by
participants without any prior explanation. We will explore the
following research questions regarding the new visualization.
Research question 1:
Depending on the information format (probabilities vs.
frequencies), what effect do various visualizations (text only vs.
2 × 2 table vs. double-tree vs. net diagram) have on the ability of
participants to solve a

a) conditional probability task?
b) joint probability task?
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With respect to (a), we expect that all visualizations depicted
with frequencies will have a positive effect on participants’
performance. Since 2× 2 tables are taught in secondary school (in
Germany) but double-trees and net diagrams are not, this study
cannot deliver a fair direct comparison of these visualizations.
Rather, this study is intended to test the hypothesis that the
net diagram—although structurally completely unknown—is
already as supportive to participant understanding as the other
two visualizations.

Since no previous research results are available on question
(b), it is rather explorative in nature. However, due to the frequent
confusion of conditional probabilities with joint probabilities
in typical Bayesian reasoning problems, we expect the opposite
confusion to occur regarding the question for joint probabilities
and assume that some participants will answer this question
erroneously with a conditional probability.
Research question 2:

What is the effect of all three visualizations—again depending
on information format—on specific errors that typically appear
when asking for

a) conditional probability?
b) joint probability?

Do certain visualizations prevent or provoke specific errors?
Since Bruckmaier et al. (2019) have already found, in an
eye-tracking study with 24 participants, first indications that
the 2 × 2 table with probabilities, for example, provokes
the joint-occurrence error, we would like to examine this
hypothesis in particular.

We also expect to find other erroneous strategies than those
typical mistakes reported thus far because the presentation of a
(fully completed) 2 × 2 table, a double-tree, or a net diagram
show more statistical information than a tree diagram or purely
textual Bayesian tasks, and therefore makes other typical error
patterns possible.

EMPIRICAL STUDY

Design
In a paper-and-pencil questionnaire, participants were presented
with two situations that are typical for Bayesian reasoning
problems, the mammography problem and a short version of
the economics problem (Ajzen, 1977; for problem formulations,
see Table 5). The statistical information was either given in the
structure of a typical Bayesian task (i.e., base rate, sensitivity,
and false-alarm rate), or within a visualization (without any
additional text provided with the statistical information). The
presented diagrams were completely filled with numbers (either
with frequencies or with probabilities). Therefore, in most cases,
participants simply had to choose the correct number/pair of
numbers, and no genuine inference was necessary (see Table 4).

The design of the study (see Table 3) includes two factors of
interest (visualization and format of information) and one factor
that was not of interest (context), resulting in a 4× 2× 2 design:

• Factor 1: Visualization: Bayesian text vs. 2 × 2 table vs.
double-tree vs. net diagram.
• Factor 2: Format of information: probabilities vs.

frequencies.
• Factor 3: Context: mammography problem vs. economics

problem (not a factor of interest).

Each participant received one of the two problem contexts
with probabilities and the other with frequencies. In that
way, the order of context and information format was varied
systematically. Furthermore, if, for instance, in one of the two
problems a 2 × 2 table was displayed, in the other problem
either no visualization, a double-tree, or a net diagram was
presented. Note that in the versions with visualizations, the text
with the statistical information was not presented additionally,
so that participants had to use the visualization. A former
study showed no effect on participants’ performance whether
one provides the text with an additional visualization or not
(Binder et al., 2018). Because with the text version it is only
possible to formulate text with either conditional probabilities
or joint probabilities (compare standard menu vs. short menu
in Gigerenzer and Hoffrage, 1995), we decided to provide only
“Bayesian text versions” (i.e., no text with joint probabilities),
which is more in line with previous research. The amount of
information given is therefore different in each version: Each of
the Bayesian text versions consists of three pieces of information,
but note that the three pieces of information in the natural
frequency version are composed of five absolute frequencies. The
net diagram used in our study displayed all 16 probabilities in the
probability version (see Figure 3, above), or all 9 frequencies in
the frequency version (see Figure 3, middle). In the frequency
2 × 2 table, frequency double-tree, and frequency net all nine
absolute frequencies are displayed. Whereas the probability
2 × 2 table shows only joint probabilities (in addition to
marginal probabilities), the double-tree displays only conditional
probabilities (in addition to marginal probabilities). However,
with the net diagram implemented in our study, one can see all
16 probabilities at a glance.

In Table 3 the design of the study is illustrated, resulting in 16
implemented versions, and in Table 5 the corresponding problem
formulations are denoted. In each of the 16 versions, two different

TABLE 3 | Design of the 16 tested problem versions.

Context

Mammography problem Economics problem

In
fo

rm
at

io
n

fo
rm

at

Probabilities

• Bayesian text
• 2 × 2 table
• double-tree
• net diagram

• Bayesian text
• 2 × 2 table
• double-tree
• net diagram

Frequencies

• Bayesian text
• 2 × 2 table
• double-tree
• net diagram

• Bayesian text
• 2 × 2 table
• double-tree
• net diagram

Two questions were asked for each of the 16 versions: The first question addressed
a conditional probability and the second question addressed a joint probability.
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TABLE 4 | Mental steps that are necessary for answering each question.

Required for answering

Visualization Question for a conditional probability/frequency Question for a joint probability/frequency

Probabilities

Bayesian text Genuine inference necessary Genuine inference necessary

2 × 2 table Genuine inference necessary Choose a number (probability)

double-tree Choose a number (probability) Genuine inference necessary

net diagram Choose a number (probability) Choose a number (probability)

Frequencies

Bayesian text Genuine inference necessary Genuine inference necessary

2 × 2 table Choose a pair of numbers (frequencies) Choose a pair of numbers (frequencies)

double-tree Choose a pair of numbers (frequencies) Choose a pair of numbers (frequencies)

net diagram Choose a pair of numbers (frequencies) Choose a pair of numbers (frequencies)

questions were asked: The first question addressed a conditional
probability and the second question addressed a joint probability.

Note that in contrast to many other studies, our tasks
do not require a genuine inference and thus fewer mental
steps are required (with the exception of the Bayesian text
versions; compare Ayal and Bayth Marom, 2014). Since
the visualizations already provide a good deal of statistical
information, in many cases only the matching number(s)
has (have) to be chosen from the visualization (i.e., in the
one case the requested probability and in the other case
the two absolute frequencies that form the corresponding
natural frequency). In the following we will only speak of
something as a genuine inference if it was not enough simply
to select one or two numbers but instead was necessary
to combine further numbers, for example, with addition,
subtraction, multiplication, or division being necessary to
solve the problem.

Table 4 displays the requested cognitive strategies for
answering the implemented tasks. Since Ayal and Bayth
Marom (2014) have shown that participants perform poorly on
complicated tasks that require more mental steps, we distinguish
three different levels of complexity in Table 4. Whereas in the
Bayesian text versions a genuine inference is always necessary,
in most other versions it is sufficient to identify and choose
the correct number (in probability versions) or the correct pair
of numbers (in frequency versions), which is much easier than
making a genuine inference because it requires fewer mental
steps. However, according to Cognitive Load Theory (Sweller,
2003), it is probably not so easy to find the right number
among many numbers.

It has to be noted that whereas all university students are
already familiar with 2 × 2 tables from secondary school, most
have never seen a double-tree or a net diagram before. It should
also be noted that a question asking for natural frequencies is
unusual in German secondary education.

Please note that the main focus of the present empirical
study is the question of conditional probabilities. In the current
study, the order of questions for conditional probabilities and
joint probabilities is not varied systematically (in that case, twice
as many participants would have been required.). This could
influence the responses of the participants who have already
answered a question about conditional probabilities, for example.

There were no time constraints for completing the
questionnaire (participants required about 20 min for both
tasks). Participants were examined in small groups of about
10–20 persons. Pocket calculators were distributed, which could
be used at any time during the study.

Instrument
Each participant was presented two successive tasks that varied in
terms of (1) visualization (Bayesian text vs. 2× 2 table vs. double-
tree vs. net diagram), (2) information format (probabilities
vs. frequencies), and (3) problem context (mammography vs.
economics problem). All versions began with a cover story (see
also Table 5); after that, one of the four different kinds of
visualizations (including no visualization) was given (see Figure 1
above and below for the 2× 2 tables and the double-trees, and see
Figure 3 above and in the middle row for the net diagrams for the
mammography context). Finally, two questions were provided in
the same format as the information in the text: One question for
a (Bayesian) conditional probability/frequency and one question
for a joint probability/frequency (see Table 5).

Participants
Participants were N = 249 German university students in the
fields of Pharmacy (N = 117), Human Movement Sciences
(N = 33), student teacher for primary school (N = 90), and
student teacher for secondary school (N = 9). 184 students were
female, 65 male, and the mean age value was 20.6 (SD = 2.2).
From their secondary school education, all students were familiar
with 2× 2 tables containing probabilities, 2× 2 tables containing
frequencies, and tree diagrams containing probabilities, yet not
with tree diagrams containing absolute frequencies, double-trees,
or net diagrams.

The study was carried out in accordance with the University
Research Ethics Standards. Students were informed that their
participation was voluntary (two students refrained from
participating) and anonymity was guaranteed.

Coding
Conditional Inferences
The correct solution for the mammography problem in the
frequency version is 160 out of 1,140 and for the economics
problem 205 out of 613. The answer was coded as correct if
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TABLE 5 | Problem formulations.

Mammography problem Economics problem

Probability version Natural frequency version Probability version Natural frequency version

C
o

ve
r

st
o

ry Imagine you are a reporter for a women’s magazine and you want to write an article about breast
cancer. As a part of your research, you focus on mammography as an indicator of breast cancer.
You are especially interested in the question of what it means when a woman has a positive result
(which indicates breast cancer) in such a medical test. A physician explains the situation with the

following information:

Imagine you are interested in the question, of whether career-oriented students are more
likely to attend an economics course. Therefore the school psychological service evaluates

the correlations between personality characteristics and choice of courses for you. The
following information is available:

V
is

ua
liz

at
io

n

• Text only (no visualization):
The probability of breast cancer is 2% for a woman who
participates in routine screening. If a woman who
participates in routine screening has breast cancer, the
probability is 80% that she will have a positive test result. If
a woman who participates in routine screening does not
have breast cancer, the probability is 10% that she will have
a positive test result.

• Text only (no visualization):
200 out of 10,000 women who participate in
routine screening have breast cancer. Out of
200 women who participate in routine
screening and have breast cancer, 160 will have
a positive result. Out of 9,800 women who
participate in routine screening and have no
breast cancer, 980 will also have a positive
result.

• Text only (no visualization):
The probability that a student attends the
economics course is 32%. If a student attends
the economics course, the probability that he is
career-oriented is 64%. If a student does not
attend the economics course, the probability
that he is still career-oriented is 60%.

• Text only (no visualization):
320 out of 1,000 students attend the
economics course. Out of 320 students
who attend the economics course, 205
are career-oriented. Out of 680
students who not attend the economics
course, 408 are still career-oriented.

• 2 × 2 table (prob.), or
• double-tree (prob.), or
• net diagram (prob.)

• 2 × 2 table (nat. freq.), or
• double-tree (nat. freq.), or
• net diagram (nat. freq.)

• 2 × 2 table (prob.), or
• double-tree (prob.), or
• net diagram (prob.)

• 2 × 2 table (nat. freq.), or
• double-tree (nat. freq.), or
• net diagram (nat. freq.)

Q
ue

st
io

n
1

–
co

nd
.p

ro
b

.

What is the probability that a woman who participates in
routine screening and receives a positive test result has
breast cancer?

How many of the women who participate in
routine screening and receive a positive test
result have breast cancer?

What is the probability that a student attends
the economics course if he is career-oriented?

How many of the students who are
career-oriented attend the economics
course?

Answer: ____ out of ____ Answer: _______ Answer: ___ out of ____ Answer: _______

Q
ue

st
io

n
2

–
jo

in
t

p
ro

b
.

What is the probability that a woman who participates in
routine screening receives a negative test result and has
breast cancer?

How many of the women who participate in
routine screening receive a negative test result
and have breast cancer?

What is the probability that a student attends
the economics course and is not
career-oriented?

How many of the students are not
career-oriented and attend the
economics course?

Answer: _______ Answer: ____ out of ____ Answer: _______ Answer: ____ out of ____
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both correct absolute numbers were provided. In the probability
versions of the tasks, the answer was classified as correct if the
exact probability was provided (14.03% in the mammography
problem and 33.4% in the economics problem). In addition, the
answers were also coded as correct if the solution was rounded up
or down to the next full percentage point (e.g., in the economics
problem the correct solution is 33.4%, and therefore answers
between 33 and 34% were classified as a correct solution; see
also Gigerenzer and Hoffrage, 1995). To be conservative, we
also coded the answer as correct if the solution algorithm was
correctly specified but no final result was calculated.

Joint Inferences
The correct solution for the mammography problem in the
frequency version is 40 out of 10,000 and for the economics
problem 115 out of 1,000. Again, the answer was only coded
as correct if both correct absolute numbers were provided in
the frequency version. In the probability versions of the tasks,
the correct answer of the mammography problem is 0.4%, and
every answer between 0.4% and 0.5% (but exclusive of 0.5%
because 0.5% was one of the expected wrong solutions) was
coded as correct. In the economics problem, the correct solution
was 11.5%, and every answer between 11% and 12% was coded

as correct. We have also classified the answer 0.1 as correct
for two participants because it was clearly recognizable that
the solution algorithm was correct and the result was only
incorrectly rounded. In these two cases it was a Bayesian text
version with probabilities and a version with a probability net.
The classification of these two answers as correct was therefore
conservative against our research question.

RESULTS

Participants’ Performance With Respect
to Conditional Inferences
Figure 6 shows participants’ performance on the question for
conditional probabilities across contexts (because context was
no factor of interest in our study). Supplementary Figure S1,
however, shows participants’ performance on the question for
conditional probabilities, separately for the two different contexts
(mammography problem vs. economics problem).

With regard to the question for conditional probability,
two relevant results can be observed. First, students performed
better when statistical information was presented in frequencies
(58% correct inferences across context and visualization)

FIGURE 6 | Percentages of correct inferences in the question for a conditional probability, separated for information format and visualization type (across both
contexts).
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than in probabilities (23% correct inferences across context
and visualization). This finding holds true for both contexts
and for all three visualizations. Second, the presentation
of a visualization leads to higher performance rates (48%
correct inferences) compared to a Bayesian text problem
(19% correct inferences; again holding true across all versions
and conditions).

As expected, the highest performance was achieved in
problems using the only visualization participants knew from
secondary school lessons: the 2 × 2 table with frequencies
(78% correct inferences). However, participants also performed
very well with the frequency double-tree and the frequency
net (60 and 61% correct solutions), which students had not
encountered in their secondary education. The more mental
steps required for answering the question correctly, the lower the
performance rate.

In order to statistically compare the effects of information
format and types of visualization, we estimated a generalized
linear mixed model with a logit link function to predict
performance regarding the question for a conditional
probability. In this model, we specified the probability version
without any visualization (Bayesian text in probabilities) as the
reference category and included the possible explanatory factors
“frequencies,” “2 × 2 table,” “double-tree,” and “net diagram”
via dummy coding.

The (unstandardized) regression coefficient for frequencies
was significant (b1 = 1.88, SE = 0.27, z = 6,97, p < 0.001), and
presenting a corresponding 2 × 2 table (b2 = 1.81, SE = 0.36,
z = 4.99, p < 0.001), double-tree (b3 = 1.76, SE = 0.37,
z = 4.78, p < 0.001), or net diagram (b4 = 1.77, SE = 0.36,
z = 4.91, p < 0.001) also led to a significant regression coefficient
(b0 = −2.83, SE = 0.38, z = −7.39, p < 0.001). Thus with regard
to conditional inferences, frequencies and all visualizations were
helpful for solving the task.

Furthermore, the actual level of education (“Semesterzahl”),
grade point average (German “Abiturnote” from high school),
and field of study were collected from all participants. These
variables (and also the context of the task: mammography
problem vs. economics problem) were then implemented
as potential predictors in the generalized linear mixed
model. It turned out that the context, the grade point
average, and studying to be a secondary school teacher
significantly predicted the probability of solving a conditional
inference correctly. However, implementing these factors
in the generalized linear mixed models did not change the
results substantially. Furthermore, there were no significant
order effects. However, there was a slight tendency for the
second task (joint probability/frequency) to be correctly
completed less frequently than the first task (conditional
probability/frequency), as has been shown in earlier studies
(Binder et al., 2018).

Although this article does not do any in-depth comparison of
the different visualizations (because one visualization was known
for the participants, the others two were not), it can be noted
that performance on tasks using double-tree and net diagram
are remarkably high given the fact that neither of these two
visualizations has been explained in advance.

Participants’ Performance With Respect
to Joint Inferences
Figure 7 shows participants’ performance with respect to
joint probabilities and frequencies across context (because
context was no factor of interest in our study). Supplementary
Figure S2, however, shows participants’ performance with respect
to joint inferences, separately for the two different contexts
(mammography problem vs. economics problem).

The study shows three interesting results: (1) If the frequency
versions only are considered, each visualization of the situation
was similarly helpful for the participants—no matter which of
the visualizations (2 × 2 table, double-tree, or net diagram)
was used. (2) In contrast to conditional inferences in typical
Bayesian reasoning problems, the question of joint probabilities
does not reveal a format effect (probabilities vs. frequencies).
Tasks with frequencies were not processed better than tasks with
probabilities. Possible reasons for this differential format effect
are outlined in the discussion. (3) The highest performance
was reached with probability 2 × 2 tables (which is in line
with Bruckmaier et al., 2019; Binder et al., under review)
and probability nets. Note that in these versions, the number
of mental steps required is also the fewest. In both cases
only one number has to be read from the diagram, while in
the double-tree a genuine inference is required (compare also
Table 4).

Note again that the main focus of the present empirical study
was conditional inferences. The order of questions for conditional
probabilities and joint probabilities was not varied systematically.
This could have influenced the responses of participants who
had already answered a question about conditional probabilities
before the question on joint probabilities.

Again, in order to statistically compare the effects of
information format and type of visualization, we estimated a
generalized linear mixed model with a logit link function to
predict performance in a joint probability question.

This time, the (unstandardized) regression coefficient for
frequencies was not significant (b1 =−0.05, SE = 0.19, z =−0.26,
p = 0.80), but presenting a 2 × 2 table (b2 = 2.04, SE = 0.31,
z = 6.53, p < 0.001), double-tree (b3 = 0.69, SE = 0.30,
z = 2.28, p = 0.02), or net diagram (b4 = 1.53, SE = 0.30,
z = 5.09, p < 0.001) led to a significant regression coefficient
(b0 = −1.41, SE = 0.26, z = −5.46, p < 0.001). Thus
regarding joint inferences, 2 × 2 tables and net diagrams
were most helpful. Also, double-trees led to a significantly
higher performance rate compared to a Bayesian textual
version of the task. However, there is no frequency effect in
joint inferences.

Again, the level of education, grade point average, and field
of study of the participant, as well as the context and the order
of the task, were implemented as potential predictors in the
generalized linear mixed model. We found that only the grade
point average significantly predicted the probability of a joint
inference being correct. However, implementing these factors in
the generalized linear mixed models did not change the results.
Furthermore, there were no significant effects of order, context,
level of education, or field of study.
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FIGURE 7 | Percentages of correct inferences in the question for a joint probability, separated for information format and visualization type (across both contexts).

Typical Errors and Error Shifts Regarding
Conditional Inferences
Figure 8 shows—separated by version—the respective errors that
occurred regarding conditional inferences. Note that only errors
that occurred in at least 5% of the cases in one of the examined
versions are mapped in Figure 8. This means in concrete terms
that if one error occurred in one version (e.g., in the Bayesian
text version with probabilities) in 5% of the cases or more (e.g.,
the error “base rate only”), this error is also displayed for all
other versions (even if this error only occurs in 2% of the cases
in the probability net). Other errors that can be clearly classified
but which were committed by only one or two participants
per version are thus assigned to the category, “Other uniquely
classifiable errors.”

Essentially, participants made two main mistakes regarding
conditional inferences: (1) joint occurrence, which is the
confusion of the conditional information P(A|B) with the
joint information P(A∩B) [e.g., indicating the proportion of
women with a positive mammogram and breast cancer P(T+∩B)
instead of the correct conditional information P(B|T+)], and
(2) Fisherian, which means that participants confused P(A|B)
with P(B|A) [e.g., indicating the sensitivity of the mammography
P(T+|B) as the correct solution instead of the positive predictive

value P(B|T+)]. Furthermore, in some cases the base rate only
error occurs, which means providing only the base rate of,
for example, breast cancer P(B) as an answer. This error most
often appeared in the Bayesian text version in probabilities. It
is noticeable that most of the wrong solution strategies could
be clearly classified. The errors evidence only (see, e.g., Zhu and
Gigerenzer, 2006) and Pre-Bayes (see, e.g., Steckelberg et al., 2004;
Zhu and Gigerenzer, 2006) only occurred very rarely. In contrast
to Gigerenzer and Hoffrage (1995), who sometimes observed the
error likelihood-substraction (especially in probability versions),
that error did not occur in our study. In the Bayesian text version
with probabilities, there was (as one would expect) the highest
proportion of participants who could not give a solution (11%).

The analysis of the error pattern in Figure 8 shows three
main results: First, an interesting result (according to our
hypothesis) is obtained by comparing the probability 2 × 2
table with the frequency 2 × 2 table. Bruckmaier et al. (2019)
have already provided evidence that the probability 2 × 2 table
provokes the joint-occurrence error, which we replicated (56%
of the participants). The error rate, on the other hand, drops
considerably if the information is presented in frequencies (only
11% of the participants made this error when the information was
presented in this way). It seems as if it is not at all clear to many
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FIGURE 8 | Typical errors on the question for a conditional probability, separated for information format and visualization type (across both contexts). In particular,
the two errors Fisherian and joint-occurrence could be observed.

participants that the joint probability in the probability 2 × 2
table must be associated with another number. With frequencies,
however, this necessity does seem to be clear to participants.

Second, if one compares all probability visualizations, it
becomes clear that the joint-occurrence error appears primarily in
versions in which the joint probability is directly represented—
most frequently in the 2 × 2 table and second most frequently
in the net diagram—because the correct solution is also shown
there. As expected, the joint-occurrence error appears most rarely
in the version with the probability double-tree. The reason why
that error is comparatively rare in this version is that the joint
probability first has to be calculated using the multiplication rule
in the double-tree.

Third, if one compares all frequency visualizations, a shift of
Fisherian and joint-occurrence errors can be observed. While
Fisherian and joint-occurrence errors appear about as frequently
in the 2 × 2 table, Fisherian errors in the frequency double-tree
and in the frequency net hardly occur at all. A confusion of the
“reading direction” is therefore less frequent in the frequency
double-tree and the frequency net. In these two visualizations,
however, joint occurrence appears more frequently. It seems less
clear to participants that the total number should not be chosen
as the reference set. It should be a focus of future research to

investigate the extent to which the error patterns change after a
training with the different visualizations.

Typical Errors and Error Shifts Regarding
Joint Inferences
While typical error patterns for conditional inferences are already
recognized because of earlier research, we now systematically
consider the error patterns regarding joint inferences. Figure 9
shows—separated by version—the respective errors. When
naming these errors, we refer to the expressions from Figure 5
[e.g., the expression “p-error” means that the participant
erroneously answered the question with P(B|T–) instead of
P(B∩T–)]. Again, only errors that occurred in at least 5% of the
cases in one of the examined versions are mapped in Figure 9.
This means in concrete terms that if one error occurs in one
version (e.g., in the Bayesian text version with probabilities) in
5% of the cases or more (e.g., the “m-error”), this error is also
displayed for all other versions (even if this error only occurs
in 3% of the cases in the probability net). Errors that can be
clearly classified but which were committed by only one or two
participants are again grouped in the category “Other uniquely
classifiable errors.”
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FIGURE 9 | Typical errors on the question for a joint probability, separated for information format and visualization (across both contexts). In the versions with
frequencies, two main errors can be observed: the confusion of the joint probability either with the conditional probability p or the conditional probability q. In the
versions with probabilities, on the other hand, more diverse error patterns appear: Specific errors are provoked by the pure text version with probabilities and the
probability double-trees.

Figure 9 shows three results: First, if we look at the frequency
versions, we can see at a glance that the error patterns are
less diverse than they are in the probability versions. In the
frequency versions two errors occur often: the confusion of
the joint probability [e.g., P(T–∩B)] with one of the two
corresponding conditional probabilities [i.e., P(T–|B) = : q-error
and P(B|T–) = : p-error; these errors are structurally equivalent to
the joint-occurrence error]. Actually, it should be assumed that
the p-error occurs as frequently as the q-error because there is no
reason why P(A∩B) should be confused with P(A|B) rather than
P(B|A). However, it is understandable that the q-error occurs
more frequently in the Bayesian text version, because this error is
algorithmically easier to calculate in this version. But in the three
versions with a visualization, this argument is no longer valid.
Both conditional probabilities, p-error and q-error, can now be
read from the diagrams with equal ease. Here we have defined a

clear reading direction for the visualizations by the nature of our
question. We asked for the probability of “negative mammogram
and breast cancer” and not for the probability “breast cancer
and negative mammogram” (which is of course mathematically
equivalent). The participants now seemed to examine the three
visualizations along the lines of the question, which more often
provokes the p-error. It would be interesting in a new study
to vary the order of events in the question and, for example,
to examine in an eye-tracking study whether our hypothesis is
correct that the error patterns p-error and q-error are provoked
by the order of events.

Second, it is noticeable that in the probability versions various
error patterns appear—for example in the Bayesian text version
with probabilities. In addition to a few errors that we could not
classify, there are many error patterns that can be clearly classified
but which occur only very rarely. However, two confusions
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occurred more frequently (both in the responses of 5 out of 61
persons): the confusion of the required joint probability with
the conditional probabilities m-error [i.e., P(T+|nB)] and n-error
[i.e., P(T–|nB)]. In these cases, participants obviously misread the
negations in the question.

Third, specific errors can also be observed in the probability
double-tree. This was to be expected, since in the probability
versions more mental steps are necessary for solving the task
with the double-tree, while the required joint probability can
be read directly from the probability 2 × 2 table or from the
probability net. The two double-tree confusions are particularly
interesting here. We provoked these two confusions inadvertently
by writing the two conditional probabilities l and p on the
branches in such a way that it was difficult to see which of
the two pieces of information belonged to which branch (as in
Figure 1). We assume that both university and school students
also often follow that path when drawing a double-tree and
that these mistakes are therefore ecologically valid. However,
we could have prevented this error by designing the double-
tree as shown in Figure 5, so that confusion between the two
branches l and p would be less likely. Double-tree confusion I
consists of the fact that many of the participants confused the
joint probability with the conditional probability p (like many
other participants) and additionally confused the branches p and
l. If we had designed the double-tree in such a way that the
conditional probabilities p and l could be better distinguished,
these participants would presumably have committed the p-error.
Double-tree confusion II, on the other hand, would have led to the
correct answer, because here the participants correctly calculated
the joint probability using the multiplication rule. However, they
confused the branches and thus the probabilities p and l and
came to a wrong result. If we had made the lower branches in
the double-tree clearer, these participants would probably have
calculated the joint probability correctly.

In addition to these three main findings, the occurrence of
the independence error is also interesting—here the participants
calculated the joint probabilities by multiplying the associated
marginal probabilities. The students probably remembered the
formula P(A∩B) = P(A) · P(B) and did not consider that this
formula only applies if the events are independent. Furthermore,
some participants committed the double joint probability error,
which means that they tried to calculate the joint probability from
both above in the double-tree and below with the multiplication
rule. Each of these calculations would lead to the right solution on
its own. However, the participants then added these two results
and came to a solution of exactly twice the probability they
were looking for.

DISCUSSION

In this article the frequency net is presented as a new tool
for simultaneously visualizing probabilities and frequencies,
a capability that is not possible with the use of existing
visualizations such as the 2 × 2 table, the tree diagram, and the
double-tree. Whereas 2× 2 tables only display joint probabilities
but no conditional probabilities, tree diagrams and double-trees

only display conditional probabilities but no joint probabilities.
Before the frequency net, no visualization had the capacity to
represent all 16 probabilities that can occur in a situation with
two dichotomous characteristics (i.e., four marginal probabilities,
four joint probabilities, and eight conditional probabilities) and
all frequencies simultaneously. The fact that the frequency net
can enable visualization of (1) probabilities and frequencies
and (2) joint probabilities and conditional probabilities is a
didactic advantage because performing demanding additional
calculations based on a net diagram is no longer necessary.

In an empirical study conducted with university students,
the net diagram was already as intuitively understandable (to a
comparable degree) as the 2 × 2 table and the double-tree, even
without prior explanations. In a similar way, Binder et al. (under
review) could show that secondary school students (grade 10)
were also able to use this tool intuitively without prior instruction,
and that the net diagram even supported the students in this study
in solving probability problems better than a tree diagram or a
double-tree did.

An analysis of typical error patterns shows—regarding
conditional inferences—a remarkable error shift from probability
2× 2 tables to frequency 2× 2 tables. Whereas many participants
committed the joint-occurrence error with probability 2 × 2
tables, this error disappeared almost completely with the
frequency 2 × 2 table. The analysis of errors regarding joint
inferences—on which there have been only a few previous
studies—reveals that the formulation of the question [P(A∩B)
vs. P(B∩A)] seems to provoke either a q-error or a p-error (see
also section Future Research). Furthermore, many different error
patterns occurred in the Bayesian text version with probabilities.
Especially interesting, however, were the errors specific to the
double-tree, some of which were provoked by our having written
the labels 86 and 0.5% in unfavorable positions on the crossing
branches (so that these numbers could not unambiguously be
assigned to the appropriate branches). It is very likely that
these mistakes would also occur if participants were asked
to create their own double-tree (because these positions in
the double-tree seem like a good place to write these two
conditional probabilities). Also interesting is the occurrence of
the independence error and the double-joint probability error,
which occur predominantly in the probability double-tree.

Limitations
The present article and Binder et al. (under review) can of course
only provide first indications of the efficacy of the net diagram
in teaching probabilities—even though these first indications are
very promising. In the teaching context, for example, learners
have to be instructed that branches in the net can now also display
joint probabilities (whereas the widely used tree diagrams only
carry marginal probabilities and conditional probabilities).

Furthermore, it could also be argued that the presentation of
the information in a frequency net does not make the sequential
character of the situation as transparent as it is in a tree diagram.
However, the error analysis does not indicate that the reading
direction (Fisherian error) becomes confused more frequently
with the net diagram than it does with the double-tree or even
the 2× 2 table (a bit more rare).
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The main limitation of the net diagram is that it cannot be
extended as flexibly as the tree diagram. Tree diagrams can be
adapted to 2-test cases, 3-test cases, etc. (Hoffrage et al., 2015b;
Binder et al., 2018). However, it should be noted that even the
double-tree cannot be expanded flexibly to 2-test cases, 3-test
cases, and other complex Bayesian reasoning tasks. In any case,
these kinds of tasks are rarely the focus of teaching stochastics at
the secondary-school level.

Future Research
The missing format effect regarding joint inferences is at the
same time interesting and unusual. One reason for its being
missing, however, could be the formulation of the question and
especially the required answer structure (“____ out of ____”)
in the frequency format, which is unusual to students. In the
teaching of stochastics at secondary-school level, two different
types of questions are used: (1) Questions about a probability
or a proportion, which students are expected to answer in
percentages, fractions, or decimal fractions, or (2) in lower-
level classes, questions like “How many are X and Y?” which
students are expected to answer with an absolute frequency (e.g.,
“200”) but not with a pair of absolute frequencies, namely natural
frequencies (e.g., “200 out of 10,000”). Therefore, it would be
quite possible that the participants were confused by the unusual
answer format (“____ out of _____”). Hence, for future research
it would be interesting to examine whether there is actually a
format effect if, for example, one asks for a probability or a
proportion in the frequency version of the task.

Furthermore, in future research a systematic variation of
the order of the questions (conditional probabilities vs. joint
probabilities) should be implemented in order to identify any
possible sequence effect. In the present study, the question for
a conditional probability was always asked as the first question
and the question for a joint probability as the second question.
This could have influenced participants’ performance and also
the errors that occurred in second-question responses, due
to, for example, an Einstellung effect or a mental set effect
(Luchins, 1942).

Future research should focus more on error analysis than
just measuring the performance of participants in Bayesian
reasoning. Furthermore, not just the typical Bayesian tasks
should be examined but also other probability tasks that are
focused on stochastic teaching in schools (see also Böcherer-
Linder and Eichler, 2017; Bruckmaier et al., 2019). Moreover,
in future research on the net diagram, it would be desirable
to include additional control variables because various other
factors are known to have an impact on performance in
Bayesian reasoning tasks. For example, individual differences of
participants, particularly cognitive abilities such as numeracy,
graphicacy, and spatial abilities, have an impact on performance
rates in Bayesian reasoning problems (e.g., Chapman and Liu,
2009; Micallef et al., 2012; Johnson and Tubau, 2013; Ayal
and Bayth Marom, 2014). In addition, the length of the text
(Johnson and Tubau, 2013) and the specific numerical values for
population size, base rate, sensitivity, and false-alarm rate can
influence accuracies (Schapira et al., 2001).

Since one advantage of the net diagram is that it can display
both probabilities and frequencies, it would be interesting to
implement in further studies a net diagram that displays both
types of representation simultaneously (see Figure 3, below). It
would also be important to examine net diagrams that only show
the statistical information, which is needed for solving the task at
hand (because that is the way it would be done at school).

In further investigations, training studies might be
implemented, which are fairer in terms of existing prior
knowledge of certain visualizations from school. With training
studies is it possible to examine whether students are able
to create frequency nets on their own by first explaining the
structure of the frequency net to students and then have them
drawing their own frequency nets for subsequent tasks.
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When Can Making a Drawing Hinder
Problem Solving? Effect of the
Drawing Strategy on Linear
Overgeneralizations and Problem
Solving
Janina Krawitz* and Stanislaw Schukajlow

Department of Mathematics, University of Münster, Münster, Germany

The strategy of making a drawing has been claimed to facilitate mathematical problem
solving. However, De Bock et al. (2003) surprisingly found that drawing negatively
affected performance in solving non-linear geometry problems, in which the area or
volume of similar figures or solids had to be determined by a given scaling factor. The
authors suggested that making a drawing increased the number of overgeneralizations
and negatively affected students’ performance. Our study involves a partial replication
and also an important validation and extension of this study by addressing two factors:
low-quality drawing strategy and poor visual monitoring, both of which might explain the
negative effect of drawing. First, we expected that improving the quality of the drawing
strategy by prompting students to highlight important information in their drawings
would diminish the negative effect of the drawing strategy. Second, we expected
that fostering visual monitoring while drawing, by offering problems with small scaling
factors, would diminish the negative effect of the drawing strategy. We conducted a
randomized controlled trial with 180 students (ninth- to eleventh-graders) to investigate
the effects of drawing and visual monitoring on solving non-linear geometry problems.
Our results replicated the previous finding that drawing negatively affects performance.
We confirmed that linear overgeneralizations are a prevalent reason for this finding.
Elaborating on previous findings revealed that the quality of the drawing strategy but
not visual monitoring was responsible for the effect of the drawing strategy on linear
overgeneralizations. Furthermore, an exploratory analysis of students’ awareness of
linear overgeneralizations indicated that improving the quality of drawing strategy and
enhancing visual monitoring did not lead to a greater awareness of the mistakes learners
made because of linear overgeneralizations. We conclude that the way the drawing
strategy is used determines whether it is useful or damaging, and more efforts are
essential to enable students to apply it appropriately.

Keywords: drawing strategy, geometry problems, illusion of linearity, linear overgeneralizations, monitoring,
problem solving, self-generated drawing
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INTRODUCTION

Making a drawing is considered a powerful strategy in
mathematical problem solving (Pólya, 1945). According to
the theory of external representations (Cox, 1999), it can
support problem solving by helping problem solvers organize
the information, and it can make missing and implicit
information (e.g., relations between objects) explicit. Therefore, it
deepens understanding and facilitates self-explanatory activities.
Empirical evidence for the benefits of drawing for problem
solving has been found in various studies (e.g., Van Essen
and Hamaker, 1990; Hembree, 1992; Zahner and Corter, 2010;
Rellensmann et al., 2016). However, the drawing strategy does
not seem to be helpful for solving some types of problems,
and surprisingly, it can even be disadvantageous by decreasing
students’ performance in solving non-linear geometry problems
(De Bock et al., 2003). It seems that drawing leads to an
increase in students’ well-known tendency to engage in linear
overgeneralizations, which means that learners tend to apply
linear models to non-linear situations (Van Dooren et al., 2005).
From a broader perspective, this finding demonstrates the need
to investigate the processes elicited by the drawing strategy
and the key factors that determine the beneficial use of the
strategy. On the basis of these considerations, the goals of the
present study are twofold: (a) to replicate De Bock et al. (2003)
surprising finding that drawing hinders students’ ability to solve
non-linear geometry problems and (b) to find explanations for
this unexpected phenomenon. On the basis of prior research,
we suggest that the insufficient quality of the drawing strategy
and a lack of opportunity to use the drawing strategy for
monitoring purposes are crucial factors that have contributed to
the negative effects of drawing. Our aim is to clarify whether these
factors come into play while students solve non-linear geometry
problems and, more specifically, whether it is possible to diminish
the negative effect of drawing by addressing these factors.

DRAWING STRATEGY AND LINEAR
OVERGENERALIZATIONS

Self-Generated Drawing
External visual representations are omnipresent in contexts of
learning and education. Thus, they serve different functions.
First, the ability to deal with external visual representations such
as drawings can be considered a learning goal on its own because
in many situations in class and everyday life, it is necessary to
interpret, construct, and work with them (National Governors
Association Center for Best Practices and Council of Chief
State School Officers, 2010). Second, they have been claimed to
enhance learning by relieving working memory, promoting self-
explanation activities, and leading to a deeper understanding of
the learning material (Cox, 1999; Mayer, 2005; Van Meter and
Garner, 2005). An important distinction has to be made between
ready-made and self-generated external visual representations.
For the latter, learners construct representations on their own,
which means that they are actively involved in externalizing
their mental representation, which includes the processes of

organizing, selecting, and integrating the information given in the
problem (Van Meter and Garner, 2005). In the present paper, we
focus on self-generated drawing. We define the drawing strategy
as the process of constructing an external visual representation
that corresponds to the mathematical problem structure and is
aimed at solving the problem (Van Meter and Garner, 2005).

Self-generated drawing influences the process of problem
solving, as it guides the learner’s attention and directs or even
determines his or her actions. Theories of cognition assume
that when beginning to solve a problem, humans construct
an internal representation of the problem situation called a
mental model (Johnson-Laird, 1980). While drawing, the mental
model is transformed into an external visual representation (i.e.,
a drawing). This process is more than a simple translation
because it involves a re-organization of the given information
and dynamic iterations between the mental model and the
externalized model in order to match both representations (Cox,
1999). Re-organizing the information can make key elements
of the problem and its relations visible so that the information
can be more easily processed after a drawing is constructed (see
section “Quality of Drawing Strategy”) (Larkin and Simon, 1987).
In order to successfully solve the problem, it is crucial that the
structure of the problem be adequately presented in the external
visual representation. Otherwise, drawing could cause perceptual
and cognitive biases, which might guide the problem solver away
from the goal (Zhang, 1997; Cox, 1999).

Studies investigating the effect of drawing on problem solving
performance have arrived at divergent findings. A number of
empirical studies have found that drawing positively affects
problem solving in mathematics (Van Essen and Hamaker, 1990;
Hembree, 1992; Zahner and Corter, 2010; Rellensmann et al.,
2016). Strong support for the benefits of the drawing strategy
were provided by the meta-analysis conducted by Hembree
(1992). Training students to draw was identified as the most
effective treatment for improving problem solving performance
compared with training them to use other strategies such as
handling extraneous data, verbalizing concepts, or using guess-
and-test procedures. However, several factors seem to determine
whether the drawing strategy is helpful or not. For example, Van
Essen and Hamaker (1990) found that drawing showed a positive
effect for fifth-graders but not for first- and second-graders,
indicating that the benefits of making a drawing depend on the
specific difficulties learners encounter while solving problems.
Another important factor seems to be the type of problem
because, for some types of problems, drawing was shown to be
beneficial [e.g., probability problems (Zahner and Corter, 2010)
or arithmetic word problems (Van Essen and Hamaker, 1990)],
whereas for other types of problems, in particular non-linear
geometry problems, no effect (De Bock et al., 1998) or even
a negative effect (De Bock et al., 2003) was found. The most
important factor that determined whether making a drawing was
beneficial or not seemed to be the quality of the drawing strategy,
which we address in the next section.

Quality of Drawing Strategy
The quality of the drawing strategy refers to the correctness and
the explicit presentation of key information. Accordingly, the
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high-quality use of the drawing strategy means that the drawing
as the product of the drawing process is correct and complete
with regard to the important elements and their relations. Both
criteria need to be met so that the rapid processing capabilities
of a learner’s visual system can be used to make perceptual
judgments instead of depending on difficult logical inferences
(Cox, 1999).

Research on self-generated drawing has shown that the
benefits of drawing are strongly related to the quality with which
the drawing strategy is applied (Van Garderen and Montague,
2003; Uesaka et al., 2007; Schwamborn et al., 2010; Mason et al.,
2013; Rellensmann et al., 2016). Learners who apply the drawing
strategy in a high-quality way perform better on problem solving
and learning outcome tests than learners who apply the drawing
strategy in a lower quality manner. Problem solving research
has shown that students often fail to use a high-quality drawing
strategy because they tend to generate pictorial representations
with merely a decorative function instead of depicting important
elements and their relations (Hegarty and Kozhevnikov, 1999;
Van Garderen and Montague, 2003). For non-linear geometry
problems, a qualitative analysis of students’ solutions indicated
that the quality with which the drawing strategy was applied
was usually too poor – regarding correctness and the explicit
presentation of key information – to help students solve the
problems (De Bock et al., 1998). Hence, the request to draw
is probably not enough, and it might be necessary to give
students support that will render the drawing strategy more
helpful for problem solving. Empirical indications for this claim
have been provided in studies of text-based learning. In the
study by Van Meter (2001), applying the drawing strategy was
more effective for conditions in which students’ drawing process
was supported by providing illustrations or prompts to compare
the illustrations with self-generated drawings. It was found that
supporting students’ drawing activities had a positive effect on
the performance of comprehensive free recall but not recognition
items. These results indicate that improving the quality of the
drawing strategy is essential for students’ performance if the
assessment requires them to build connections between the
information given in the problem, as is the case when students
solve non-routine mathematical problems.

Visual Monitoring
Another important factor in the context of research on self-
generated drawing is that the drawing strategy can enhance
monitoring processes. Monitoring has been claimed to
be essential for problem solving (Flavell, 1979) and plays
an important role in detecting incorrect intuitions and
misconceptions such as linear overgeneralizations (Van
Dooren et al., 2004). The drawing strategy can be considered
a tool that can be used for monitoring for the following
reasons. When students use the drawing strategy, they
construct a visual representation on the basis of an abstract
symbolic representation. As visual representations are limited
in abstraction, they aid processability and lead to the generation
of new information (Stenning and Oberlander, 1995). Hence,
the drawing strategy can be used to detect inconsistencies. In
particular, in problem solving, the drawing strategy can be

applied with the goal of revealing mistakes and inaccuracies
in the student’s mental model of the problem situation. In the
following, when the drawing strategy is applied for monitoring
purposes, we refer to this as visual monitoring.

Empirical evidence for the claim that drawing strategy can
be used for monitoring purposes can be derived from the study
by Stylianou (2011). The problem solving activities of experts
(mathematicians) and novices (middle school students) were
analyzed by using qualitative methods in order to identify the
purposes of the drawing strategy. Both experts and novices
used the drawing strategy to monitor the progress of problem
solving, including checking the correctness and making informed
decisions about subsequent actions. However, in contrast to
experts, middle school students engaged in visual monitoring
only infrequently and – if at all – to verify their result at
the end of the problem solving process. This finding indicates
the importance of supporting school students in their visual
monitoring activities.

Further indications come from text-based learning research.
Van Meter (2001) analyzed the think-aloud protocols of fifth-
and sixth-graders who read a science text under two conditions:
Self-generated drawing compared with working with ready-made
drawings. It was found that students who used self-generated
drawing engaged in significantly more monitoring events, such as
looking back and self-questioning, compared with students who
worked with ready-made drawings. Further, monitoring events
were higher when students received additional support during
their drawing activity. Hence, supporting students’ drawing
activities is crucial for determining the way in which the drawing
strategy is used. In sum, drawing seems to fulfill monitoring
purposes, and supporting the drawing activities increases visual
monitoring. However, research has yet to determine the extent to
which these results are valid for mathematical problem solving.

Linear Overgeneralizations
Misconceptions often emerge when learners generalize their
prior knowledge by systematically activating it in contexts in
which it is inappropriate (Smith et al., 1993). A well-known
example of such a misconception is the “illusion of linearity,” the
tendency to apply linear models to non-linear situations, which
will be referred to as linear overgeneralizations in the following.
Linearity and especially proportionality can be considered the
simplest but also the most important property of mathematical
relationships (two quantities change with an equal amount of
growth). Many facts of the real world are based on linear
and proportional relationships. Also in mathematics education,
linearity plays a central role and emerges during the time children
are in school in the contexts of different mathematical topics
ranging from arithmetic word problems, to linear functions,
to advanced concepts such as the diameter and circumference
of a circle. However, the intensive treatment of linearity might
result in the disadvantage that some students will develop false
conceptions, namely, the idea that linear models have a kind
of universal validity. As a consequence, they might mistakenly
transfer the principle of linearity to non-linear contexts.

Empirically, students’ strong tendency to engage in linear
overgeneralizations has been supported by a large amount of
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research that has included different age groups ranging from
primary school (Van Dooren et al., 2005) to university students
(Esteley et al., 2010) and has referred to different mathematical
domains such as arithmetic word problems (Van Dooren et al.,
2005, 2010), algebraic patterns (Stacey, 1989), geometry (De Bock
et al., 1998, 2003; Ayan and Bostan, 2018), and probability (Van
Dooren et al., 2003). More specifically, linear overgeneralizations
seemed to increase after linear problems were taught in class (Van
Dooren et al., 2005), supporting the assumption that students’
experiences with linear concepts in the mathematics classroom
are responsible for their strong tendency to engage in linear
overgeneralizations. However, even very young students (second-
and third-graders) tend to give linear answers to non-linear
problems, indicating that other factors also need to be taken
into account. One of these factors could be individuals’ tendency
to reduce information in their environment into structures
that are as simple as possible, which is known as the “Law
of simplicity” (Chater and Vitányi, 2003). As linearity and in
particular proportionality is the simplest form of relationship
between two quantities, this bias may also occur independent of
the effect of students’ experiences with linear problems in class.

One of the most investigated types of problems with regard
to linear overgeneralizations is the non-linear geometry problem,
in which students are asked about how enlarging or reducing
a geometrical figure affects its area or volume. For example:
“You need approximately 400 g of flower seed to lay out
a circular flower bed with a diameter of 10 m. How many
grams of flower seed would you need to lay out a circular
flower bed with a diameter of 20 m?” (De Bock et al., 1998,
p. 68). A series of studies demonstrated that students between
the ages of 12 and 16 were usually not able to solve such
problems (De Bock et al., 1998, 2002b, 2003). Overall, these
studies reported particularly low solution rates for younger
students (rates of 2% and 7% for correct solutions for 12- to
13-year-olds), but wrong answers were usually given among the
older students too (23% correct solutions for 13- to 14-year-
olds; 17%, 22%, 43% correct responses for 15- to 16-year-olds).
Building on these findings, De Bock et al. (2002a) conducted
an interview study to investigate which aspects are responsible
for the frequent appearance of linear overgeneralizations. They
found that some of the students had the firm conviction that
any relationship between two variables could be expressed by
a constant of proportionality. However, the majority of the
students used linear models in an intuitive manner, without
being aware of the model they chose. Students apparently
do not recognize the mistakes they make on the basis of
linear overgeneralizations and therefore probably perceive that
their solutions to these problems are correct even when
they are incorrect.

Further, a teaching experiment conducted by Van Dooren
et al. (2004) showed that it is possible to decrease the number
of linear overgeneralizations in the solutions to such problems.
In 10 experimental lessons, major holes in students’ prior
geometrical knowledge and their linearity preconceptions were
addressed by eliciting cognitive conflicts. Further aims of
the intervention were to facilitate students’ meta-conceptual
awareness, including monitoring and enhancing a deeper

understanding from the use of multiple external representations
of the central mathematical contents. Although the automatic
use of linear strategies was successfully reduced, some of the
students in the experimental group still tended to engage
in linear overgeneralizations, whereas others started to also
apply non-proportional strategies to proportional problems,
indicating that the intervention was not successful in terms
of fostering a deep conceptual understanding of differences
in linearity and non-linearity in some of the students. These
results provide the first hints that external representations
might be beneficial for diminishing linear overgeneralizations.
Further support comes from the study by De Bock et al.
(2002b) who found that providing ready-made drawings
of the original and scaled figures on graph paper had
a positive albeit small effect on solution rates for non-
linear geometry problems. Graph paper allows comparisons
to be made of the areas of the figures by counting the
squares and thus facilitates the recognition of the non-linear
relationship of the areas.

We view these findings as initial indications of the
importance of external representations for overcoming linear
overgeneralizations and performance. Further indications
pointing in the opposite direction come from research on
self-generated drawing.

Effects of the Drawing Strategy on Linear
Overgeneralizations and Performance
A series of experimental studies investigated the impacts
of making a drawing on linear overgeneralizations and
performance. In one of these studies (De Bock et al., 1998),
students in a drawing condition were instructed to draw before
solving each item. The instructions were given at the beginning
of the test using an example item. Contrary to theoretical
considerations, no effect of making a drawing on performance
was found. The percentage of correct solutions for the group of
12- to 13-year-old students remained at only 2% and was also
found to be low for 15- to 16-year-old students regardless of the
drawing instructions.

Different drawing instructions were implemented in a
subsequent study (De Bock et al., 2003). In the drawing condition,
students between the ages of 13 and 16 were given a drawing
of a geometrical object for each problem (e.g., a square) and
were asked to complete the drawing by supplementing a scaled
copy of the object using the given scaling factor. The surprising
finding was that students who received these instructions showed
significantly lower solution rates than the control group (23% vs.
44%). An additional analysis of the solution processes from this
study suggested that self-generated drawing did not elicit visual
solution strategies such as “paving” – determining the area of a
plane figure by paving it with similar Figures – and hence, the
drawing strategy was apparently not applied appropriately. This
is a potential reason why drawing is not beneficial, but it does
not explain the negative effect. An analysis of the problems used
in this study provided another reason for this result. Making
a drawing might hinder students’ progress while solving non-
linear problems because the process of drawing might divert
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their attention to unimportant elements or even to elements that
could interfere with their solution process: Figures are typically
depicted by their circumferences, which change linearly through
scaling. In the process of drawing, learners work with linear
relationships and may erroneously transfer them to the area.
This might render the quality of the drawing strategy insufficient
because key information (i.e., the area) is not made salient
in the drawing. Increasing the quality of the drawing strategy
by highlighting the area in the drawings may guide learners’
attention to the important elements of the problem, thus helping
them identify non-linear properties while drawing.

Another aspect that also affects the recognition of non-
linearity concerns visual monitoring. Visual monitoring should
reveal that the area changes non-linearly through scaling.
However, visual monitoring might potentially not come into
effect if the size of the scaling factor is too large. For problems
with small scaling factors (e.g., doubling the side length), the
difference between the area or volume of the original and
of the modified figure becomes salient while drawing so that
visual monitoring should uncover the non-linear relationship.
Whereas for large scaling factors (e.g., if the side length is
twelve or more times larger), the difference in the area or
volume cannot be easily visually estimated. Consequently, it
can be expected that visual monitoring, enabled by using small
scaling factors, can help learners overcome their difficulties with
linear overgeneralizations so that they will demonstrate better
performance in problem solving. However, even if students
recognize the non-linear relationship by engaging in high-quality
drawing or visual monitoring, they are not necessarily able to
solve the problem. Instead, they might change the problem by
imposing an inappropriate structure that enables them to apply
available solution strategies (Goos, 2002). It is possible that they
might detect the non-linear property of the area but nevertheless
use linear models to solve the problem because they lack adequate
solution strategies (Weber, 2001). Students who recognize the
non-linear relationship of the areas are probably aware of their
inappropriate application of linear overgeneralizations and will
consequently perceive their lower performance in solving the
problems than students who do not recognize the non-linear
relationship. Thus, we assume that students’ perceptions of their
performance in solving non-linear geometry problems might be
an indicator of students’ awareness of the non-linear property of
the problems. Data on students’ perceived performance will help
us interpret the effect of drawing quality and visual monitoring
on linear overgeneralizations and performance.

RESEARCH QUESTIONS AND
EXPECTATIONS

On the basis of theoretical considerations and prior empirical
findings, we posed the following research questions:

1. Does the instruction to make a drawing of the scaled figure
lead to a larger number of linear overgeneralizations and
have a negative effect on problem solving performance of
non-linear geometry problems?

2. Does improving the quality of the drawing strategy
by highlighting important information in the drawing
decrease the number of linear overgeneralizations and
diminish the negative effect of the drawing strategy on
problem solving performance?

3. Does visual monitoring decrease the number of linear
overgeneralizations and diminish the negative effect of the
drawing strategy on problem solving performance?

4. Does drawing or visual monitoring affect students’
perceived performance when solving non-linear geometry
problems?

Expectations for Research Question 1
(Drawing)
The first research question addresses the replication of De Bock
et al.’s (2003) finding that making a drawing hinders students’
ability to solve non-linear geometry problems. Following
theoretical domain-specific considerations regarding the reasons
for learners’ linear overgeneralizations, we assume that self-
generated drawing distracts learners and draws their attention
toward elements of the problem that interfere with their
solution process, for example, the linear relationship of the
circumferences of the original and scaled figures in problems
with rectilinear plane figures. Because of the very common
tendency to engage in linear overgeneralizations (Van Dooren
et al., 2008), they may erroneously transfer the linear relationship
of the circumferences to the non-linear relationship of the
areas. The same considerations can be made for problems
with non-rectilinear figures and solids regarding the linear
property of the diameter and the non-linear property of the
volume. Thus, we expected the drawing strategy to increase
the number of linear overgeneralizations and negatively affect
problem solving performance.

Expectations for Research Question 2
(High-Quality Drawing):
We expected that increasing the quality of the drawing
strategy by highlighting key information would diminish the
negative effect of the drawing strategy. Hence, we expected
that students applying a high-quality drawing strategy and
students not applying the drawing strategy would show the
same number of linear overgeneralizations and performance
in solving non-linear geometry problems. Further, we expected
fewer linear overgeneralizations and higher performance from
students who applied the high-quality drawing strategy than
students who used the lower quality drawing strategy. The
rationale behind these expectations is that the effects of the
drawing strategy strongly depend on drawing quality. One
key characteristic of a high-quality drawing is the explicit
presentation of key information. For non-linear geometry
problems, mistakes are made due to an inappropriate focus on
the side length or the diameter of the figure or solid and its
linear properties instead of considering the area or the volume,
respectively. Hence, highlighting the area or volume of the
drawn figure or solid will improve the quality of the drawing
strategy and should lead to fewer linear overgeneralizations
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and a higher performance than the use of a lower quality
drawing strategy.

Expectations for Research Question 3
(Visual Monitoring)
We expected that visual monitoring would diminish the negative
effect of the drawing strategy. Consequently, visual monitoring
while drawing should lead to a similar number of linear
overgeneralizations and a similar performance in solving non-
linear geometry problems in comparison with solving the
problems without a drawing. In addition, we expected that visual
monitoring would lead to fewer linear overgeneralizations and
a higher performance than drawing without visual monitoring.
We enhanced visual monitoring by using small scaling factors
instead of large ones on the basis of our assumption that for small
scaling factors, the non-linear relationship of the areas becomes
salient while drawing. Consequently, visual monitoring could
help overcome the linear overgeneralizations that were elicited by
the drawing strategy.

Expectations for Research Question 4
(Effects on Perceived Performance)
The fourth research question followed an exploratory approach.
Thus, we did not have specific expectations. The aim of analyzing
students’ perceived performance is to increase the validity by
using different indications of students’ success (Rovers et al.,
2019) and to gather further information that helps to explain
the findings from our experimental study. Students’ perceived
performance in the drawing and visual monitoring conditions
will provide indications of students’ awareness of the non-linear
property of the problems. Students who notice the non-linear
relationship because they make a high-quality drawing or engage
in visual monitoring might lack the mathematical knowledge to
proceed and will therefore nevertheless stick to the application of
linear models and will report lower perceived performance.

MATERIALS AND METHODS

Sample and Procedure
The present study involved 198 students (57.1% female,
mean age = 16.15 years) from nine classes, including
ninth-graders (12.6%), tenth-graders (48.5%), and eleventh-
graders (38.9%). Students came from four high-track schools
(German Gymnasium) and one comprehensive school
(German Gesamtschule).

Students in each class were randomly assigned to one of five
groups: Students in the experimental conditions received either
drawing (D) or drawing with highlighting (DQ) instructions,
aimed at increasing the quality of the drawing strategy, and the
test version with either large [11, 12, or 13 as used in the study
by De Bock et al. (2003)] or small scaling factors (3, 4, or 5),
aimed in enhancing visual monitoring (V− and V+ groups).
These conditions resulted in four combinations of experimental
conditions (DV−, DV+, DQV−, DQV+). Students in the
control group (CG) received no drawing instructions and the

test version with large scaling factors as in the study by De
Bock et al. (2003). All groups worked on a paper-and-pencil test
consisting of four experimental items, which were non-linear
geometry problems, and three additional buffer items. All items
were taken from the study by De Bock et al. (2003). Drawing and
drawing with highlighting instructions were embedded in each
item on the test. Figure 1 shows a sample item with drawing
with highlighting instructions as used in the version of the test
that was administered in the DQ condition. Students in the D
group received the same drawing instructions (part a) but no
highlighting instructions (part b).

After taking the test, students completed a questionnaire. The
aim of the questionnaire was to collect data on how solving non-
linear geometry problems and the experimental treatment were
perceived by the students. Thus, the questionnaire included four
statements for measuring students’ perceived performance.

Treatment Check
To check the implementation of the treatment, we examined
whether students in the experimental and control groups
followed the instructions. The results confirmed that students
followed the drawing instructions and the instructions to draw
and highlight. As intended, the number of drawings in the D
groups was significantly higher than in the CG [96.1% vs. 40.2%;
t(43.636) = 7.542, p < 0.001, d = 1.903]. Further, the number of
highlighted drawings in the DQ groups was significantly higher
than in the CG [80.0% vs. 0.65%; t(84.756) = 22.526, p < 0.001,
d = 3.608] and D groups [80.0% vs. 2.4%; t(109.960) = 15.798,
p < 0.001, d = 3.033]. However, 19 of 41 participants of the
control group made at least for one of the items a spontaneous
drawing. These students seem to perform similar or even better
than students who did not make a drawing (50.0% vs. 45.5%
correct solutions; 18% vs. 29% linear overgeneralizations). To
ensure that spontaneous drawings did not distort our results, we
again addressed our research questions by analyzing an adjusted

FIGURE 1 | Sample item with drawing and highlighting instructions. Tasks
were adopted from De Bock et al. (2003, p. 449).
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subsample. The adjusted subsample included only students who
acted in accordance with their condition. As our analysis revealed
nearly the same effect sizes for the adjusted subsample and the
whole sample, we analyzed the whole sample in our study.

In addition, we examined students’ age and last mathematics
grade by computing an ANOVA to ensure the comparability of
the treatment conditions. As expected, no significant difference
between the groups was found (p > 0.10).

Measures
Linear Overgeneralizations and Problem Solving
Performance
Linear overgeneralizations were estimated by analyzing whether
the solution was based on a linear model (coded 1) or not (coded
0). Students’ performance was analyzed by assigning a score of
1 for the correct solution and a score of 0 for an incorrect
solution. Two independent coders were involved in scoring
the test booklets. Inter-rater reliability was calculated for each
problem on a subset of 20% of the test booklets which were scored
by both coders with sufficient inter-rater agreement (Cohen’s
κ ≥ 0.773). Reliability was satisfactory (Cronbach’s α = 0.729
for linear overgeneralizations and 0.754 for performance). All
problems were taken from De Bock et al. (2003) and are listed
here in the version for the V− groups in Table 1.

Perceived Performance
Students rated the statements on the questionnaire using a five-
point Likert scale (from full disagreement to full agreement). The
scale for measuring perceived performance was adapted from
prior studies (Hänze and Berger, 2007; Schukajlow and Krug,
2014; Schukajlow et al., 2015, 2019a). It included four items:
“I noticed that I really understood the arithmetic problems”;
“I felt able to master the arithmetic problems”; “I feel able
to master similar arithmetic problems”; and “I felt confident
about my knowledge about the topic today.” The scale reliability
(Cronbach’s α) was 0.863.

Data Analysis
The hypotheses were tested with a 3× 2 MANOVA with Drawing
(no drawing, D, DQ) and Visual Monitoring (V− and V+) as
the independent variables and Linear Overgeneralizations and
Performance as the dependent variables. There was homogeneity

TABLE 1 | Experimental items in the V− groups.

Experimental items in the V− groups

The side of square C is 12 times as large as the square D. If the area of square C
is 1,440 cm2, what’s the area of square D?

The diameter of a circle E is 11 times as large as the diameter of a circle F. If the
area of circle E is 242 cm2, what’s the area of circle F?

The side of a cube G is 13 times as large as the side of a cube H. If the volume of
cube G is 2,197 cm3, what’s the volume of cube H?

The diameter of sphere M is 12 times as large as the diameter of a sphere N. If
the volume of sphere M is 172,800 mm3, what’s the volume of sphere N?

All items were adapted from De Bock et al. (2003). For students in the V+ groups,
the same problems were used but with smaller scaling factors (3, 4, and 5).

of variance as assessed with Levene’s test (p > 0.05). Significant
main effects were further analyzed with post hoc Tukey tests.
The reported p-values for Linear Overgeneralizations and
Performance were one-tailed due to our directional expectations.
We followed De Bock et al. (2003) procedure to ensure the
comparability of the results. This included conducting our
analysis with only two of four experimental items. Including all
four items in the MANOVA revealed the same results because the
effect sizes from the two analyses were very similar.

To analyze Perceived Performance, we conducted a
2 × 2 ANOVA with Drawing (D, DQ) and Visual Monitoring
(V− and V+) as factors. Homogeneity of variance was
confirmed. Because of the exploratory approach, no assumptions
were made about the direction of the effects, and two-tailed
p-values are reported.

RESULTS

An overview of the mean scores and standard deviations
for all variables in the different experimental conditions is
presented in Table 2.

Effect of Drawing Strategy on Linear
Overgeneralizations and Performance
In line with our expectations, the drawing strategy increased
the number of linear overgeneralizations. Students who applied
the drawing strategy with a lower quality (D groups) tended
to make more linear overgeneralizations than students who did
not use this strategy (CG) (43.5% vs. 24.4%). The MANOVA
revealed a marginally significant main effect of Drawing
on Linear Overgeneralizations [F(2,197) = 1.970, p = 0.071;
η2

p = 0.020]. Post hoc comparisons using the Tukey test indicated
significant differences (p < 0.05, dCohen = −0.461) between
students who used the drawing strategy and the control group,
which did not draw.

Further, our expectation that the drawing strategy would
have a negative effect on performance was confirmed. Students
who applied the drawing strategy with a lower quality (D
groups) achieved significantly lower performance scores than
students who did not use this strategy (28.6% vs. 47.6%). The
MANOVA revealed a significant main effect of Drawing on
Performance [F(2,197) = 4.323, p < 0.05; η2

p = 0.043], and
post hoc comparisons indicated significant differences (p < 0.05

TABLE 2 | Mean scores (and standard deviations) of all variables in the different
experimental conditions.

Variable CG DV− DV+ DQV− DQV+ Total

Linear
Overgeneralizations

0.24 0.39 0.49 0.34 0.36 0.36
(0.39) (0.43) (0.46) (0.43) (0.43) (0.43)

Performance 0.48 0.27 0.31 0.22 0.33 0.32

(0.46) (0.39) (0.44) (0.39) (0.39) (0.42)

Perceived
Performance

3.73 3.28 3.92 3.34 3.76 3.60
(0.82) (0.78) (0.75) (0.88) (0.83) (0.85)
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dCohen = 0.436) between students who applied the drawing
strategy and students who did not.

These findings did not interact with the use of the two
test booklets (large- or small-sized scaling factors), which
were administered to the D and DQ groups but were not
administered to the CG group for economic reasons (large scaling
factors only). We will elaborate on this point in the results
for the third research question (see section “Effect of Visual
Monitoring on Linear Overgeneralizations and Performance”).
To ensure comparability, we conducted an additional analysis
in which only the groups who received the test version with
the large scaling factor were included (CG, DV−, DQV−).
The results were similar with even stronger effect sizes (Linear
Overgeneralizations: η2

p = 0.022; Performance: η2
p = 0.069).

Effect of High-Quality Drawing Strategy
on Linear Overgeneralizations and
Performance
We were able to partly confirm the hypothesis that the high-
quality drawing strategy (DQ) would diminish the negative effect
of the drawing strategy. As expected, students who used the high-
quality drawing strategy engaged in linear overgeneralizations
comparably as often as students who did not use the drawing
strategy (CG) (35.0% vs. 24.4%). Post hoc Tukey tests confirmed
that there were no statistically significant differences between
students who used the high-quality drawing strategy and
the control group (p = 0.198, dCohen = −0.261). However,
contrary to our expectations, students who used the high-
quality drawing strategy did not show significantly fewer linear
overgeneralizations than students who used the drawing strategy
with a lower quality (D) (35.0% vs. 38.9%, Tukey tests: p = 0.211,
dCohen = 0.197).

Further, we expected that students who used the high-quality
drawing strategy (DQ) would show the same performance as
students who did not use the drawing strategy (CG). Contrary
to our expectations, Tukey tests indicated that the mean
performance score for the DQ group was significantly lower
(p < 0.05, dCohen = 0.471) than the score for the CG (27.5%
vs. 47.6%). Also the comparison of the two drawing conditions
yielded results that went contrary to our expectations: The use
of high-quality drawing strategy (DQ) did not lead to a higher
performance than a lower quality use of the drawing strategy with
a lower quality (D) (27.5% vs. 28.6%; p = 0.493, dCohen = 0.027).

Effect of Visual Monitoring on Linear
Overgeneralizations and Performance
We expected that the use of a drawing strategy would not hinder
problem solving when used for monitoring purposes, referred to
here as visual monitoring. Visual monitoring was operationalized
by the smaller-sized scaling factor because we assumed that a
smaller scaling factor would make relations between objects in the
drawing salient and would therefore inspire visual monitoring.

The results did not confirm our expectations. Students in
the visual monitoring group did not differ in the number of
linear overgeneralizations from students who could not perform
visual monitoring (42.0% vs. 32.5%). There was no significant

main effect of Visual Monitoring on Linear Overgeneralizations
[F(1,197) = 0.698, p = 0.202; η2

p = 0.004], and there was also no
effect of the Visual Monitoring × Drawing interaction on Linear
Overgeneralizations [F(1,197) = 0.334, p = 0.282; η2

p = 0.002].
Our expectations were not confirmed for performance either:

Visual monitoring did not diminish the negative effect of the
drawing strategy on performance (32.0% vs. 32.1%). As was
already found for the number of linear overgeneralizations,
there was no significant main effect of Visual Monitoring on
Performance [F(1,197) = 1.312, p = 0.127; η2

p = 0.007], and there
was no effect of the Visual Monitoring× Drawing interaction on
Performance [F(1,197) = 0.337, p = 0.281; η2

p = 0.002].

Effect of Drawing Strategy and Visual
Monitoring on Perceived Performance
The results of the ANOVA showed that the quality of the
drawing strategy did not affect students’ perceived performance
[F(1,153) = 0.183, p = 0.670; η2

p = 0.001]. Students who were
given the high-quality drawing strategy (DQ) perceived that their
performance was the same as students who were given the lower
quality strategy (D) (M = 3.54, SD = 0.88 vs. M = 3.58, SD = 0.83).

However, the results revealed a significant effect of
visual monitoring on students’ perceived performance
[F(1,153) = 16.357, p < 0.01; η2

p = 0.097]. Students in the
visual monitoring group perceived a significantly higher
performance than their peers who could not easily engage in
visual monitoring (M = 3.84, SD = 0.79 vs. M = 3.32, SD = 0.83).

Further, no significant effect of the Drawing × Visual
Monitoring interaction on Perceived Performance was found
[F(1,153) = 0.571, p = 0.571; η2

p = 0.004].

DISCUSSION

The present study was aimed at replicating De Bock et al. (2003)
finding that the drawing strategy hinders students’ ability to
solve non-linear geometry problems. We also aimed to elaborate
on the potential reasons for this finding by addressing two
factors: the quality of the drawing strategy and visual monitoring.
Furthermore, we performed an exploratory analysis of students’
perceived performance in order to gather information about
students’ awareness of linear overgeneralizations with the
hope that this would help us interpret the results of our
experimental study.

Negative Effect of the Drawing Strategy
Our results replicated the previous findings of a negative effect
of the drawing strategy on the performance of non-linear
geometry problems and confirmed the previous assumption that
linear overgeneralizations are a prevalent reason. We found
that students who applied the drawing strategy (D groups)
made more linear overgeneralizations than students who did not
draw. Self-generated drawing seems to guide learners toward
mistakenly focusing on the linear relationships depicted in the
drawings. However, the effect of the drawing strategy on the
number of linear overgeneralizations was smaller than the effect
for performance, indicating that applying the drawing strategy
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may have also resulted in other mistakes, perhaps because of
the cognitive cost associated with the externalization process
(Zhang, 1997).

Further, the replication of the negative effect of drawing on
performance indicates that the findings are stable across different
samples. Even the solution scores were very similar to the ones
reported by De Bock et al. (2003), with a rate of about 75% for
incorrect solutions in the drawing group and 50% in the non-
drawing group in both studies.

On a global level, the finding that self-generated drawing
hinders students’ ability to solve non-linear geometry problems
shows that drawing strategy is not a one-size-fits-all solution
and stresses the need to elaborate on the factors that determine
beneficial strategy use.

Quality of Drawing Strategy
Following theoretical considerations about the importance of the
quality of self-generated drawing that was confirmed in prior
research, we expected that the drawing strategy would hinder
students’ ability to solve non-linear geometry problems because it
would be applied insufficiently when students solved non-linear
problems. Therefore, we increased the quality of the drawing
strategy by addressing its key feature by explicitly presenting
information that is essential for solving the problem.

The results confirmed the importance of the quality of
the drawing strategy. Improving the quality of the drawing
strategy diminished the increase in linear overgeneralizations that
previously resulted from the drawing strategy. In particular, we
found that students who used a high-quality drawing strategy
did not differ in the number of linear overgeneralizations they
made from students who did not use the drawing strategy,
whereas students who applied a lower quality drawing strategy
made a larger number of linear overgeneralizations compared
with non-drawing students. This finding helps to explain the
negative effect of self-generated drawing on solving non-linear
geometry problems: Applying the drawing strategy in a high
quality way ensures that the area, which is a key element of the
problem, will be visible in the drawing. This seems to prevent at
least some of the students from being guided by their drawing
toward mistakenly focusing on elements of the problem that
will interfere with their ability to solve the problem, such as
the linear properties of the circumference or the side length.
However, more efforts are essential for investigating how we
can improve drawing quality so that the drawing strategy can
become beneficial.

Contrary to our expectations, we found that improving the
quality of the drawing strategy did not diminish the negative
effect of self-generated drawing on performance, although it did
diminish the negative effect with respect to the number of linear
overgeneralizations. Apparently, improving the quality of the
drawing strategy did not help students solve the problems. Even
the high-quality use of the drawing strategy did not seem to elicit
the visual solution strategies that could help students find the
right solution. In line with prior research, this finding points
out the lack of visual solution strategies, such as calculating the
area by paving the figure in order to solve non-linear geometry
problems (De Bock et al., 2002b, 2003). Future research should

investigate whether training students to use visual solution
strategies can lead to the beneficial use of the drawing strategy.

Visual Monitoring
Another factor that we addressed in order to explain the negative
effect of drawing strategy was visual monitoring, the use of the
drawing strategy for monitoring purposes. Monitoring has been
identified as essential for problem solving (Flavell, 1979) and was
found to be important for detecting linear overgeneralizations
(De Bock et al., 2002a). For non-linear geometry problems, we
assumed that visual monitoring would take place for problems
with small scaling factors but would not for large ones because
the non-linear relationship of the areas becomes salient while
drawing when small scaling factors are used.

However, the findings did not confirm our expectation that
visual monitoring diminishes the effect by which self-generated
drawing hinders students’ ability to solve non-linear geometry
problems. Visual monitoring did not affect the number of
linear overgeneralizations or performance. One potential reason
for this finding is that students’ tendency to engage in linear
overgeneralizations is very strong and difficult to change by
engaging in subtle actions such as visual monitoring (De Bock
et al., 2007). Visual monitoring may have helped students
recognize the non-linear relationship between the areas while
drawing, but because students lacked knowledge of how to
proceed, they stuck to their use of the linear models they
were familiar with to solve the problem. Another reason
might be that students did not even notice the non-linear
relationship of the areas while drawing because they did not
use the drawing strategy for monitoring. Consequently, our
assumption that visual monitoring takes place when the drawing
strategy is applied to problems with small scaling factors needs
to be reconsidered. Previous research has indicated that, in
contrast to experts, students use the drawing strategy only
infrequently to monitor their solution processes (Stylianou,
2011), so they might not have engaged in visual monitoring
even though the non-linear property of the area was made
salient while they were drawing. We need more research
on how visual monitoring affects the drawing strategy and
on how to clarify the mechanisms that can improve visual
monitoring in students.

Taken together, our findings confirmed the idea that
applying a strategy can have negative effects on students’
performance. The use of a drawing strategy and its effects on
solving non-linear problems demonstrates that more efforts are
essential for clarifying which factors, apart from fostering linear
overgeneralizations, affect the decrease in students’ performance.
On a more general level, we argue that there is a need to also
further investigate the negative effects of other strategies and
identify why some students are misguided when they apply a
specific strategy even when this strategy might be helpful for
the majority of students. The quality of strategy use seems to
be an important factor that should be addressed more often in
research on strategies. In addition, research on cognitive factors
such as strategic knowledge about drawing (Lingel et al., 2014;
Rellensmann et al., 2019) or on emotional and motivational
factors such as enjoyment of drawing and the costs of drawing
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(Uesaka and Manalo, 2017; Schukajlow et al., 2019b) can
contribute to clarifying the conditions under which drawing is
helpful and when it has a hindering effect.

Awareness of Linear Overgeneralizations
On the basis of theoretical considerations, we assumed that
increasing the quality of the drawing strategy and enhancing
visual monitoring would affect students’ awareness of linear
overgeneralizations even if it did not affect their performance.
Learners may recognize the non-linear property of the problem
but might still stick to linear models because they lack the
mathematical knowledge necessary to proceed. Indications of
whether students were aware of their linear overgeneralizations
could be derived from their perceived performance. If students
did not notice that drawing guided them incorrectly toward an
inadequate use of linear models, they presumably perceived that
their performance was higher than the performance of students
who were aware that their solution was probably wrong because
they made inappropriate linear assumptions.

In order to validate our findings, we conducted an exploratory
analysis of students’ perceived performance. Our findings
indicated that neither improving the quality of drawing strategy
nor enhancing visual monitoring led to a greater awareness
of linear overgeneralizations. This finding is in line with
prior research that pointed to the intuitive nature of linear
misconceptions (Van Dooren et al., 2004, 2008).

It seems that students also encountered other difficulties
while solving the problems, ones that did not rely on the non-
linear properties of the problem. Students in the group in
which visual monitoring was enhanced by using small scaling
factors perceived that their performance was even higher than
students in the low visual monitoring group who worked on
problems with large scaling factors, although the two groups
had the same performance scores. The use of small scaling
factors probably led to a higher perceived performance because
it facilitated the calculations, but it did not lead to a higher
performance because the learners made mistakes on the basis
of the linear overgeneralizations that they were not aware of.
These points indicate that we also need to investigate other
difficulties students encounter in solving non-linear geometry
problems with the help of a drawing strategy in order to develop
a complete picture of the difficulties encountered while solving
non-linear problems.

STRENGTHS AND LIMITATIONS

We investigated the effect of the drawing strategy for solving non-
linear geometry problems by using an experimental design with
drawing conditions and a control group that was not instructed
to draw. We implemented a treatment check, which showed
that students reliably followed the instructions. However, 19 of
41students in the control group spontaneously made drawings.
Therefore, we additionally analyzed an adjusted subsample that
included only the students in drawing conditions who actually
drew and the students in the control group who did not draw.
This analysis showed the same results as the previous analyses.

In order to keep the design of the study as simple as possible,
the control group worked only on the test version with large
scaling factors. As noted in Section “Effect of Drawing Strategy
on Linear Overgeneralizations and Performance,” we conducted
additional analysis to ensure the comparability of the different
drawing conditions. However, the design of our study does not
allow to compare students of no drawing and drawing conditions
for tests with small scaling factors.

Another important limitation is that our findings are valid
for the effects of instructions to make a drawing, but not for
spontaneous drawing activity. Descriptive analysis of students’
solutions indicated that students’ spontaneous drawing did not
have negative (or even might have slightly positive) effects on
students’ achievement-related outcomes. Thus, it might be that
spontaneous drawing activity is positively related to students’
achievement-related outcomes. Identifying task- and person-
related factors that predict spontaneous use of drawings for
non-linear problems is another open question.

A further limitation concerns the operationalization of the
factors of drawing quality and visual monitoring. On the basis
of theoretical considerations, we assumed that drawing quality
would improve if we highlighted the key information given in
the problem. Further, we assumed that visual monitoring would
be enhanced by the use of small scaling factors compared with
large scaling factors. Although both assumptions are plausible,
our manipulation might address other factors in addition to these
two factors. For example, using small scaling factors decreases the
difficulty of the calculations.

As our study was a partial replication of the study by De Bock
et al. (2003), we decided to use the same material to render the
results as comparable as possible and therefore included only
two items in the analyses. As reported in the method section,
additional analyses based on all of the four experimental items
showed the same results, but future research should increase the
number of items to strengthen the validity of these findings.
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The use of figurate numbers (e.g., in the context of elementary number theory) can
be considered a heuristic in the field of problem solving or proving. In this paper,
we want to discuss this heuristic from the perspectives of the semiotic theory of
Peirce (“diagrammatic reasoning” and “collateral knowledge”) and cognitive psychology
(“schema theory” and “Gestalt psychology”). We will make use of several results taken
from our research to illustrate first-year students’ problems when dealing with figurate
numbers in the context of proving. The considerations taken from both theoretical
perspectives will help to partly explain such phenomena. It will be shown that the use of
figurate numbers must not be considered to be any kind of help for learners or some way
of ‘easy’ mathematics. Working in this representational system has to be learned and
practiced as another kind of knowledge is necessary for working with figurate numbers.
The named findings also touch upon the concept of ‘proofs that explain.’ Finally, we
will highlight some implications for teaching and point to a number of demands for
future research.

Keywords: figurate numbers, mathematical proof, proof that explain, diagrammatic reasoning, generic proof

INTRODUCTION

There are different ways of communicating facts and ideas in mathematics. Besides the
mathematical symbolic language, geometric representations can also be used: in figurate numbers,
“numbers are classified according to their geometric representation as sets of dots” (Weaver, 1974,
p. 661). These figurate numbers have a long tradition in mathematics history: even the ancient
Greeks and the Chinese, for example, used the geometric order of points to perform mathematics
(see Chemla, 2012). As Steinweg (2002, p. 131; our translation) puts it: “Figurate numbers can
be considered as a cultural heritage of mathematics.” Even today, these kinds of representations
can be found in mathematical journals (e.g., Gallant, 1983; Wakin, 1984) as well as in school
mathematics (e.g., Norman, 1991; Conway and Guy, 1996). While figurate numbers can constitute
a unique playground for conjecturing and proving, its use can also be helpful in the context of
problem solving. However, besides the useful advantages that are linked with the use of geometric
representations, some research results point to possible obstacles.
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In this article, we want to discuss the use of figurate numbers
in mathematics from different perspectives. In this sense, each
section will have a different focus on this topic. (This is why
the structure of this paper is different from ‘normal’ papers with
an empirical focus). The paper aims at getting deeper into the
phenomenon of using figurate numbers in mathematics and in
learning mathematics. This ‘deeper’ is concerned with two foci:
(1) Why is it possible to do mathematics by making use of
figurate numbers? (2) What problems are associated with the use
of figurate numbers in mathematics for learners?

First, we will summarize the use of such representations
in mathematics, especially in the field of problem solving
and proving. In this context, we also want to highlight
some useful benefits from the educational point of view.
In a second step, we will discuss the use of figurate
numbers from two theoretical perspectives. The semiotic
perspective of “diagrammatic reasoning” of Peirce opens the
view for the meaning of the “diagrams” used and the
importance of the rules for dealing with them and reading
and understanding corresponding calculations. The field of
cognitive psychology will help to elaborate on the concepts
of learning and understanding and hint to possible obstacles
when doing mathematics in this context. In a third step, we
will summarize different findings from our research to illustrate
and underline the considerations taken from both theoretical
perspectives. Finally, some implications for research and teaching
are highlighted.

FIGURATE NUMBERS IN MATHEMATICS
AND MATHEMATICS EDUCATION

Many sequences in mathematics can be illustrated by using a
special kind of geometric representation as sets of dots and the
other way round (examples are shown in Figure 1).

In addition to the arithmetic properties, the geometric shapes
may lead to special kinds of insights. In Figure 2, for example,
the transition from a square to the next is done by adding two
sides and one dot in the corner. This ‘is why’ the difference
of two consecutive square numbers is always an odd number.
Such types of insights that correspond to understanding have a
special quality that can hardly be explained by purely behaviorist
descriptions (Köhler, 1959, p. 731). We will return to this fact
later in the context of cognitive psychology (see section “Some
Insights From Cognitive Psychology”).

It becomes obvious, that figurate numbers can be useful
for both clarifying and illuminating mathematical issues.
Accordingly, they can be used in a variety of ways in mathematics
and mathematics education. In the following sections, we will
elaborate on three different aspects: Figurate numbers in the
context of problem solving, in the context of mathematical proof
and for educational purposes.

Geometric Representations in the
Context of Problem Solving
Being confronted with a ‘problem’ in mathematics, one might
follow different heuristic strategies, like having a look at examples

and special cases or trying to follow a forward/backward strategy.
Another heuristic is using a change of representation [compare
the idea of “deciding on a notation” or “change of representation
to see the problem from a fresh perspective” in Mason et al.
(1982) and the heuristic of variation, variation of representation,
described in Schwarz (2018), p. 3 ff].

We consider the following example: “Which natural numbers
can be written as a sum of consecutive natural numbers?”.

Having a look at some concrete examples, one might have
different conjectures:

3 = 2+ 1; 5 = 2+ 3; 7 = 3+ 4 . . .

Conjecture: All odd numbers can be written as corresponding
sums.

1+ 2+ 3 = 6; 2+ 3+ 4 = 9; 4+ 5+ 6 = 15;

5+ 6+ 7 = 18 . . .

Conjecture: The sum of three consecutive natural numbers is
always divisible by three. Accordingly, numbers from the three
times table can be written as consecutive sums. (It is a hypothesis
to be proven that this is true for all multiples of 3).

This gives a partial answer to the initial question: all
numbers from the three times table can be written as sums of
consecutive numbers.

This idea can be transmitted to the sums of four consecutive
numbers:

1+ 2+ 3+ 4 = 10; 2+ 3+ 4+ 5 = 14; 4+ 5+ 6+ 7 = 22;

5+ 6+ 7+ 8 = 26 . . .

In this case, the sums of four consecutive numbers are not
divisible by four. However, one realizes that numbers like 10+
n · 4 (n ∈ N0) can be written as consecutive sums.

What about the sum of five consecutive numbers?

1+ 2+ 3+ 4+ 5 = 15; 2+ 3+ 4+ 5+ 6 = 20;

3+ 4+ 5+ 6+ 7 = 25

Conjecture: The sum of five consecutive natural numbers is
always divisible by five. Accordingly, numbers from the five times
table starting with 15 can be written as consecutive sums. (It is
a hypothesis to be proven that this is true for all multiples of 5
greater or equal to 15).

One might follow this investigation by having a look at
concrete examples. However, a change of representation can be
helpful in this case. In the field of figurate numbers, even and
odd numbers can be represented by two rows of dots with equal
long rows (“even”) or with the difference of one dot (“odd”) (see
Figure 3). Having a closer look at this structure of odd numbers,
one easily divides the figure representing the odd number ‘in
the middle,’ obtaining two consecutive natural numbers (see
Figure 4).

The sums of consecutive numbers can be represented
by ‘stairs’ of dots (see Figure 5). Following this idea, the
sum of three consecutive numbers always has three steps,

Frontiers in Psychology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 11806465

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01180 June 15, 2020 Time: 22:37 # 3

Kempen and Biehler Using Figurate Numbers

FIGURE 1 | Some examples of figurate numbers (and their relationship to sequences): triangular numbers, square numbers, and hexagonal numbers.

FIGURE 2 | The transition from one square number to the next represented
by figurate numbers.

FIGURE 3 | Even and odd numbers represented by figurate numbers.

the sum of four has four, and so on. The phenomenon
explaining the assumptions above is the following: having
an odd number of stairs, one always has a line in the
middle. Accordingly, the dots overhanging on one side can be
transformed to the other side obtaining equal long rows. This
transformation does not work with an equal number of stairs
(see Figure 6).

FIGURE 4 | Odd numbers divided into two consecutive natural numbers.

FIGURE 5 | The sums of 3, 4, and 5 consecutive numbers represented by
figurate numbers.

Summarizing our ‘problem’: all odd numbers and all
numbers that are divisible by an odd number can be
written as sums of consecutive numbers. The numbers left
are the powers of two (1, 2, 4, 8, 16, . . .). And indeed,
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FIGURE 6 | The transformation of odd numbers for obtaining equal long rows
of dots.

FIGURE 7 | Generic proof with figurate numbers (Figure similar to Kempen
and Biehler, 2019a, p. 735).

as one can show – these numbers cannot be written as
respective sums.

As we have seen, the use of figurate numbers can help
investigate a problem (here: in elementary arithmetic) and may
even lead to a solution. More than this, the usage of figurate
numbers above also answers the question, why the assumptions
are true in every case. This fact opens the view for using figurate
numbers in the context of mathematical proving, too.

Figurate Numbers and Mathematical
Proof
In the investigation above, an argument was found to explain,
why the sum of three consecutive natural numbers is always
divisible by three (see Figure 6). This idea can also be used
to prove the corresponding claim. However, in the context
of concrete examples, the question of generality arises. One
characteristic of mathematical proof is the issue of generality.
The given argument concerning the transformation of one
dot to the former shortest row can be used in every possible

FIGURE 8 | A proof using geometric variable (Figure similar to Kempen and
Biehler, 2019a, p. 736).

case! This is due to the shape of stairs on the right-hand
side when representing the sum of any three consecutive
natural numbers by figurate numbers. This kind of proof,
giving some concrete examples to illustrate an overall idea and
explicating its generality is called “generic proof” (e.g., Dreyfus
et al., 2012, p. 200 f.). A complete generic proof is shown
in Figure 7.

In comparison, one feature of the mathematical symbolic
language is the possibility to express generality, e.g., by
using algebraic variables. A corresponding proof with algebraic
variables might be:

For all n ∈ N : n+ (n+ 1)+ (n+ 2) = n+ n+ n+ 1+ 2

= 3n+ 3 = 3 · (n+ 1)

Since (n+ 1) ∈ N the sum is divisible by three.
In the context of figurate numbers, a special kind of symbol

has been introduced to represent an arbitrary number of dots to
express some kind of generality, too. Kempen and Biehler (2019a,
p. 735) call this a “geometric-variable.” Geometric-variables
allow the construction of mathematical proof in the context of
figurate numbers expressing generality by its use of symbols (see
Figure 8).

There are a lot of proofs collected in the literature making
use of such geometric representations, called “charming proofs”
(Alsina and Nelsen, 2010) or “proofs without words” (Nelsen,
1993, 2000; Alsina and Nelsen, 2009). From a meta point of view,
such proofs are said to bear a special kind of explanatory quality
(e.g., Hanna, 1990, 2018; Hemmi, 2006).

A Closer Look at the Idea of Explanatory Proofs
The famous distinction between proofs that prove and proofs
that explain has been given by Hanna (1990). However, the idea
of explanation allows for different approaches (Hanna, 2018).
In the philosophy of mathematics, the explanatory quality is
stressed by the connections between mathematical statements
and their mutual relationships. From a pedagogical point of
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FIGURE 9 | An explanatory proof for the sum of the first n ∈ N natural numbers making use of figurate numbers.

view, the idea of explanation is combined with some insights
as to why a statement is true. In the following, we will refer
to this pedagogical concept of explanation. We also refer to the
characterization of proofs that explain, considered in Lockwood
et al. (2019), for their description links the concept with the
features of different representations systems that will be useful
in the theoretical consideration from a semiotic point of view
(see below). “We interpret, then, that a proof that explains
allows for a prover to make meaning of whatever formal
representation system he or she may be working with in order
to connect ideas to some semantic system.” (ibid., p. 777). The
idea of a semantic system is taken from the distinction between
semantic and syntactic proof production that seems to be helpful
for our discussion.

Weber and Alcock (2004) describe two different ways
of producing mathematical proofs. The syntactical proof
production is done by “manipulating correctly stated definitions
and other relevant facts in a logically permissible way. [. . .]
The prover does not make use of diagrams or other intuitive
and non-formal representations of mathematical concepts.”
(ibid., p. 210). In a semantic proof production, a person
uses instantiations of the mathematical objects to guide the
formal inferences in the proving process. With instantiations,
the authors describe “a systematically repeatable way that
an individual thinks about a mathematical object, which
is internally meaningful to that individual” (Weber and
Alcock, 2004, p. 210). As Weber (2010b, p. 34) puts it,
an explanatory proof “allows the reader to translate the
formal argument that he or she is reading to a less formal
argument in a separate semantic representation system”.
(The author uses the term semantic representational system
in opposite to a formal representational system). They
give the following descriptions of an even function as an
example: in a formal representational system, an even function
satisfies the condition ∀ x ∈ R : f (x) = f (−x). In a semantic
representational system, this concept might be described
“informally as a function whose graph is symmetric around the
y-axis” (ibid., p. 34).

This conceptualization of proof that explains gives a hint
of why such explanatory proofs often make use of geometric
descriptions to reach the conclusion: The representation system
of figurate numbers can be considered to be such a semantic
representation system, as it constitutes a non-formal way for
communicating mathematical ideas. In this sense, proofs making
use of geometric representations are considered to have a
special kind of explanatory quality. As an example, we give an

explanatory proof for the formula 1+ 2+ . . .+ n = n(n+1)
2 (see

Figure 9).

Figurate Numbers for Educational
Purposes
In elementary school, figurate numbers can be used to get insights
into the nature of natural numbers and the decimal systems and
to promote mathematics as a science of patterns (e.g., Steinweg,
2002). Even at elementary school, figurate numbers offer the
possibility to discuss generality and to introduce students to the
idea of reasoning (e.g., Söbbeke and Welsing, 2017). Sequences
of figurate numbers can be used in middle school to foster
algebraic thinking (e.g., Rossi Becker and Rivera, 2006; Britt and
Irwin, 2008). Moreover, the context of figurate numbers may
serve as a playground to perform exploration and conjecturing in
the interplay of algebra, arithmetic, and geometry (e.g., Weaver,
1974; Flores, 2002). For the context of first-year pre-service
teachers at university, Kempen (2019, p. 21) highlights several
benefits of the use of figurate numbers. Their use. . .

• . . . offers the possibility to take up students’ prior
experiences from school mathematics, also concerning
mathematical reasoning,
• . . . offers a non-symbolic language for the pre-service

teachers they can use in their daily life as a teacher in the
future,
• . . . makes it possible to involve the students in conjecturing

and proving and helps to highlight the process aspect of
mathematics,
• . . . may help to highlight the advantages of the

mathematical symbolic language in comparison.

Moreover, in the comparison of the single test of some
concrete examples, generic proofs and so-called ‘formal proofs’
making use of algebraic variables, the important distinction
between purely empirical verification and the matter of generality
in mathematical proofs can be stressed.

THEORETICAL CONSIDERATIONS

Diagrammatic Reasoning
In this section, we will analyze the use of figurate numbers
from a semiotic point of view. This will help us discuss
possible obstacles in their usage when reading and constructing
mathematical proofs.
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Peirce (1839–1914) uses the word “diagram” in a wide
sense. He calls those signs and their combinations “diagrams”
that can be used, read and understood in the context of a
wider representational system, where the rules for dealing with
the diagrams are constituted. As an example, we mention
the following diagrams: “a2,” “2x+ 5y+ 6x,” and “7b2.” The
meaning of the signs, their combinations and the possibility
of transformations are given by the representational system of
algebra. From a semiotic point of view, the area of figurate
numbers can be considered to be such a representation system,
too. Fischer (2010) describes the corresponding rules for dealing
with the symbols:

Natural numbers are represented by the quantity of dots.
Summation corresponds to joining amounts of dots,
multiplication to the duplication of dots. Subtraction is
done by eliminating dots (by erasing or crossing them). Dividing
means to divide the dots into equal subgroups. (ibid., p. 86;
our translation).

Following Peirce’s semiotic theory and his view on
mathematics as “diagrammatic reasoning” (Hoffmann, 2003;
Dörfler, 2008), the work in a representational system presupposes
certain knowledge (“collateral knowledge”) about this system
(Hoffmann, 2005). This knowledge comprises facts about the
construction of diagrams, their usage and the interpretations
of possible results. In some sense, this collateral knowledge can
be seen as an implicit instruction manual for the use of the
whole representational system. When performing or learning
mathematics, one has to have the corresponding collateral
knowledge, in order to work with the diagrams used or offered.

Peirce describes the mathematical activity making use of
diagrams as the essential feature of mathematics:

By diagrammatic reasoning, I mean reasoning which constructs
a diagram according to a percept expressed in general terms,
performs experiments upon this diagram, notes their results,
assures itself that similar experiments performed upon any
diagram constructed according to the same percept would have
the same results, and expresses this in general terms (Conference
on Sensation-Mediation-Perception, 2012, p. 2).

This sequence of four phases [(i) construction of a diagram,
(ii) performing experiments, (iii) observing the results, and (iv)
determining the overall generality] describes the way new insights
are gained in mathematics (see Dörfler, 2006, p. 211). The idea
of diagrammatic reasoning, considered as the basic activity in
mathematics, can be transmitted to the concept of mathematical
proof. We will illustrate this by stating two different proofs
concerning the claim “The sum of an odd number and its double
is always odd.”

The proving process for a so-called “formal proof” is shown
in Table 1.

Overall, the meaning of the collateral knowledge in the
different phases as well as for the whole proving process becomes
clear. We will compare this use of diagrams and the meaning of
the corresponding collateral knowledge when dealing with the
representational system of figurate numbers in the context of
mathematical proof.

The corresponding proof in the representational system
of figurate numbers (using geometric variables) is shown
in Table 2.

At this stage, we would like to highlight that several
representational systems can be used to perform mathematical
proving. The quality of a representational system has to be judged
in comparison to its usefulness in this context. On the one hand,
the writer of the proof has to have the corresponding collateral
knowledge to construct such proofs. On the other hand, the
reader of the proof also has to have this knowledge, to be able
to read and to understand the proof correctly. Learners have to
acquire certain collateral knowledge before they can be successful
in working with any (geometric) representation.

Some Insights From Cognitive
Psychology
In this section, we will enrich the discussion about the use of
figurate numbers by referring to different strands from cognitive
psychology. After discussing basic aspects of understanding and
the schema theory (see section “Diagrammatic Reasoning”), we
will have a look at the perception of figurate numbers from the
area of Gestalt psychology (see section “Some Insights From
Cognitive Psychology”). Finally, the specific role of pictures and
texts for understanding are revisited.

Understanding and the Extension of Existing Schema
From the perspective of cognitive psychology, the meaning of
previous knowledge for learning is highlighted. Understanding
is conceptualized as the integration of new information
into the existing knowledge to build new schema (see
Lee and Seel, 2012 for a summarized description). When
working with (geometric) representations, this previous
knowledge concerns semantical and syntactical issues. Since
one person’s knowledge has an individual character, the process
of understanding is an individual matter, too. However, the
process of understanding (of getting new insights) must
not be considered to be just some kind of accumulation.
New information is integrated into one person’s existing
knowledge and leads to elaboration, to the extension of
existing schemata (Axelrod, 1973; Minsky, 1975; Collins
et al., 1980). Following the perspective of the schema theory,
one’s knowledge is organized and arranged in a specific way.
DiMaggio (1997) brings in the schema aspect here: a schema
describes a pattern of thought that organizes categories of
information and the relationships between them. In this sense,
the knowledge about the use and meaning of (geometric)
representations is organized as a whole and constitutes a
so-called schema. Combined with the concept of proof, the
corresponding schema becomes evident. Again, a learner
has to be acquainted with an adequate schema before being
able to work with such representations or gain new insights
from their usage.

When being confronted with a mathematical claim, a learner
might activate the schema ‘figurate numbers’ in the context of
proving. Activating this schema, several ‘blank spaces’ arise that
have to be filled with respective knowledge:
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TABLE 1 | Description of the proving process for a so-called “formal proof” following the concept of diagrammatic reasoning.

Phase 1: Construction of the diagram One possibility to prove this claim is by constructing diagrams in the
representational system of algebra. Here, one needs an odd number, its double
and the sum.

2n+ 1, 2 · (2n+ 1) with n ∈ N0,
2n+ 1+ 2 · (2n+ 1)

Phase 2: Performing experiments The constructed diagrams can be transformed according to the rules of the
representational system. (This transformation can be done either in an
exploratory manner or with a certain objective).

= 3 · (2n+ 1) = 6n+ 3
= 2 · (3n+ 1)+ 1

Phase 3: Observing the results The constellation of diagrams obtained can be read and interpreted according
to the rules of the representation system. Here, the result can be understood as
an odd number.

2 (3n+ 1)+ 1 is an odd number,
because (3n+ 1) ∈ N.

Phase 4: Determining the overall generality The correctness of the result in a syntactical sense is a consequence of the
correct usage of operations and transformations and the consistency of the
representational system. The final insight follows by the interpretation of the final
diagram and the link with the initial conjecture.

Accordingly, the sum of an odd
number and its double is always
odd.

TABLE 2 | Description of the proving process for making use of figurate numbers following the concept of diagrammatic reasoning.

Phase 1 In the representational system of figurate numbers, odd numbers can be represented by the
combination of two rows of dots that differ in one dot. We use a geometric variable to represent an
arbitrary number of dots, highlighting the fact that we are dealing with one arbitrary odd number.

Phase 2 The summation of the diagrams is done by putting them together.

Phase 3 After combining all the rows of dots linearly, we obtain two rows of dots that differ in one dot.

Phase 4 The correctness of the result in a syntactical sense is a consequence of the correct usage of operations
and transformations and the consistency of the representational system “figurate numbers.” The final
insight follows by the interpretation of the final diagram and the link with the initial conjecture.

Accordingly, the sum of an odd number
and its double is always odd.

– Geometrical representation (start): what kind of geometrical
representation (e.g., shape) seems to be appropriate to
represent the situation given in the context of the claim?

– Operations (start): which operations in the context of figurate
numbers seem to be appropriate for being a translation of the
operations mentioned in the given claim?

– Transformations: which transformations in the context of
figurate numbers can be used to verify the given claim?

– Geometrical representation (end): what kind of geometrical
representation should be reached after the transformations
were done? What geometrical arrangement is considered to be
a translation of the desired mathematical results?

– On a meta level: (1) why and when to use figurate numbers?
(2) why is it possible and legitimate to perform mathematical
proving with figurate numbers?

It becomes obvious that these demands have to be handled on
top of the mathematical problem itself. This is also the case when
using the algebraic language, but normally, learners have much
more experience in using the algebraic language and therefore
have a more complete schema in this case.

Some Remarks on Perception of Arrangements From
the ‘Gestalt Psychology’
When dealing with figurate numbers, the question arises: why
and how do we perceive such elements as arrangements in larger
structures? For using figurate numbers to do mathematics and/or
to grasp a general idea in a given pattern, it might be necessary
to realize different structures within the whole. We take Figure 2
as an example: in this Figure, a 4 times 4 square is given. The
transition from the previous to the given one results from seeing
the following elements: the previous square (3 times 3), the two

newly placed sides at the top and the right and the new point at
the top right corner. Finally, for a general understanding of the
transition from one square (number) to the next, this concrete
pattern has to be recognized as a general one. The coming
together of these aspects are necessary for obtaining the intended
insight. This requires seeing one pattern in different ways. The
Gestalt psychology gives some hints to why this activity might
be problematic. Wertheimer (1938, p. 71; emphasis in original)
describes this phenomenon as follows:

The concrete division which I see is not determined by some
arbitrary mode of organization lying solely within my own
pleasure; instead I see the arrangement and division which is given
there before me. And what a remarkable process it is when some
other mode of apprehension does succeed!

This author names several principles trying to explain the
arrangement of stimuli perceived. Such impressions rely among
others on the factor of proximity (this concerns the distance
between individual elements) and the factor of similarity (the
tendency to band similar or equal elements together)1. We
cite two short examples (ibid., p. 72 and 74) to illustrate
these principles.

Having a look at the sequence shown in Figure 10, one tends
to ‘see’ naturally groups of two dots being near to each other (so
to say the sequence “ab | cd | ef | gh”). Somehow it would be
possible to always group the two dots next to the gap (“a | bc | de
| fg | h”), which tends to be much harder. As Wertheimer puts it:
(ibid., p. 73; emphasis in original): “[. . .] that form of grouping is
most natural which involves the smallest interval. They all show,
that is to say, the predominant influence of what we may call

1Concerning the perception of arranged stimuli, Wertheimer (1938) also mentions
the factor of continuity and the factor of closure.
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FIGURE 10 | Sequence to illustrate the “factor of proximity” (patterns similar
to Wertheimer, 1938, p. 72).

FIGURE 11 | Different geometric interpretations of the triangular numbers.

The Factor of Proximity.” In the sequence shown in Figure 11,
all distances between the dots are exactly the same. However, the
picture seems to contain vertical rows of dots. One might try
to see a pattern of horizontal lines, but this tends to be harder.
Accordingly, the factor of similarity describes the tendency to
group similar elements.

By making use of such principles (implicitly), one’s perception
of figurate numbers (e.g., their geometrical shape as a whole or
the phenomenon of detecting several sub-groups in the whole
figure) might be explained.2 A first and simple example is
given in Figure 12. The way one interprets the pattern of the
triangular numbers has effects on the geometrical interpretation
of the corresponding formula. Following interpretation (i), the
new number line is always added on the right-hand side.
Accordingly, the previous number is detected on the left in
the actual pattern. In interpretation (ii), the new number line
is added below the former pattern and (iii) offers a diagonal
interpretation. Finally, the representation as a pyramid (iv)
offers some more interpretation. However, one interpretation
is necessary for a person for ‘seeing’ the connection between
the given formula and the corresponding geometric shapes. It
becomes obvious, that different interpretations can lead to a
number of misunderstandings between teachers and learners or
among the learners.

Another example might be the fact, that the sum of two
consecutive triangular numbers is always a square number.
A more complex example of seeing a subpattern in the whole
is given in Figure 13. Do you ‘see’ why the difference of two
cube numbers is always a hexagonal number (Figure 13)? Adding
three lines makes it much easier to see this relationship. The
respective connection in the transition from one cube to the

2Similar principles for the grouping of patterns (proximity, collinearity, and good-
continuation) could be verified empirically by Kubovy and van den Berg (2006).

next can be calculated easily: cn − cn−1 = n3
− (n− 1)3

= n3
−[

n3
− 3n2

+ 3n− 1
]
= 3n2

− 3n+ 1 = hn .
In accordance to the patterns or shapes perceived, operations

on these figures (see section “Diagrammatic Reasoning”) might
be considered as “pro-structural,” when being in line with the
perceived structures or when leading to new ones, or as “contra-
structural” (ibid., p. 76), when destroying some structure. Thus,
the perception of a shape might guide one’s operations.

However, seeing a different arrangement after perceiving the
first one tends to be difficult (Wertheimer, 1938, p. 71):

[. . .] one sees a series of discontinuous dots upon a homogeneous
ground not as a sum of dots, but as figures. Even though there
may here be a greater latitude of possible arrangements, the dots
usually combine in some “spontaneous,” “natural” articulation –
and any other arrangement, even if it can be achieved, is artificial
and difficult to maintain.

For each individual, through the coming together of the
various named principles and the individual’s experiences, a
certain initial interpretation of what has been experienced
emerges. If one tries to see another interpretation, the earlier
stimuli must be overcome.

From a meta-level, it seems to be significant, not only for the
phenomenon of figurate numbers, that some kind of quantity is
translated into orderly spaced identical elements. In our cases,
these orderly spaced identical elements are considered to convey
special kinds of insights. However, this principle can be detected
in other parts of mathematics, too. As an example, we point to
the meaning of such representations for estimating quantities
(e.g., Hansen et al., 2015). Another example is the translation
of quantities into position in space as one basic principle of
many data graphs such as scatter plots (some nice examples are
discussed in Garcia-Retamero and Cokely, 2017).

About the Role of Figurate Numbers Seen as
‘Pictures’
Our focus is on the interplay of mathematical content and the use
of figurate numbers. To be successful in achieving understanding,
learners have to combine the given content with its interpretation
in the context of figurate numbers and to integrate this
information into one coherent mental representation. Since
figurate numbers are a specific type of representation that
somehow resembles a picture, it could be assumed that, unlike
conventional texts, they could fulfill different functions in the
process of understanding. Accordingly, we will take a first
look at the role that ‘pictures’ play in our everyday process of
understanding. [For this discussion, we will shortly leave the
interpretation of pictures and its parts as diagrams in a wider
representational system in the sense of Peirce (see above), for our
intention is to highlight a normal or naïve role of pictures for the
individual in the context of understanding].

As a part of our living in the real world, we seem to
have learned that reading a text is about acquiring information
and about constructing mental models. Pictures, particularly
given in addition to a text, are about reading off information
(compare Zhao et al., 2020). Furthermore, pictures can constrain
the interpretation of a text (Ainsworth, 1999) and serve a
scaffolding function for constructing mental representation (e.g.,
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FIGURE 12 | The connection between cube numbers and hexagonal numbers.

FIGURE 13 | A student answer, which belongs to the category “empirical” [“=21 result odd→ claim”].

Eitel and Scheiter, 2015) that might lead to the construction
of deeper understanding (Ainsworth, 2008). However, research
has shown, that learners often fail to exploit such advantages
and the use of (several) representation might hinder learning
(ibid.). When one works with figurate numbers, the ‘pictures’
themselves become the center of interest. At first glance, it
might seem quite unnatural that these pictures should contain
all relevant information (and not a given text), this phenomenon
might contradict previous experiences. In addition, one is also
asked to work with these pictures; the diagrams should be
(intentionally) changed and new information should be taken
from the result. This change in function may prevent learners
from fully exploiting the potential of the figurate numbers.

For the process of problem solving, the search for a suitable
representation of the problem can serve as a promising heuristic
(see section “Geometric Representations in the Context of
Problem Solving”). A type of representation will emphasize
certain or characteristic features of the initial problem (see also
Dunbar, 1998, p. 294). In this sense, a change of presentation will
also change the problem: This change may affect the initial state,
the target state and/or the set of applicable operations (ibid.; see
also section “Diagrammatic Reasoning”). In summary, it can be
said that a problem discussed in another representation system
can be considered a different problem.

FINDINGS FROM OUR RESEARCH
UNDERLINING THE THEORETICAL
CONSIDERATIONS ABOVE

In this section, we will recapitulate findings and experiences
from our empirical research in the context of figurate
numbers. The research presented here touches upon the
following aspects: students’ proof construction making use of
figurate numbers (see section “Students’ Proof Construction
With Making Use of Figurate Numbers”), students’ perceived
explanatory power, conviction, and proof-acceptance (see section
“Proof-Acceptance, Explanatory Power, and Conviction”), and
students’ perception of proofs making use of figurate numbers
(see section “Students’ perception of proofs making use of
figurate numbers”). Due to the size of this paper, we will
only report on the main findings. For deeper descriptions
of the methodology used and further results the relevant
references will be given.

Students’ Proof Construction With
Making Use of Figurate Numbers
The authors investigated pre-service teachers’ proof construction
in the winter term 2013/2014 (Biehler and Kempen, 2015) and
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2014/2015 (Kempen, 2017, 2019) in the context of the transition-
to-proof course “Introduction into the culture of mathematics.”
In both years, the students were asked to prove a given claim in
the final exam of the course by using four different kinds of proofs
they had learned about before. The claim to be proven was: “The
sum of six consecutive natural numbers is always odd.” These
four different kinds of proofs comprise:

(1) One proof with concrete examples making use of natural
numbers. In this case, the overall argument to verify
the given claim in general was explicated in a narrative
(“generic proof with numbers”3).

(2) One proof with concrete examples making use of figurate
numbers. In this case, the overall argument to verify
the given claim in general was explicated in a narrative
(“generic proof with figurate numbers”).

(3) One proof making use of figurate numbers and geometric
variables to highlight the general quality of the argument
given in the geometrical representation (“proof with
figurate numbers making use of geometric variables”).

(4) One so-called formal proof making use of algebraic
variables (“formal proof”).

The authors developed a set of categories for summarizing all
proving attempts and for comparing the results evenly between
the different kinds of proof. A summarized version of the
set of categories is described below (compare Kempen, 2017,
p. 388 f.); the examples illustrating the categories concern the
generic proof with figurate numbers. The claim to be proven is
mentioned above.

(1) n. p.: not processed.
(2) Empirical: The truth of the statement is inferred from a

subset of (concrete) examples (see Figure 14).
(3) Pseudo: the answer is given by merely stating or

paraphrasing the statement that the sum is always
odd/wrong solutions/irrelevant information/construction
(see Figure 15).

3Concerning the concept of generic proofs see Section “Figurate Numbers and
Mathematical Proof.”

FIGURE 14 | A student answer, which belongs to the category “pseudo.”

FIGURE 15 | A student answer, which belongs to the category “fragmentary.”

FIGURE 16 | A student answer, which belongs to the category “sound
argument” [“Three points can always be used for completing the rectangle.
Thus, we obtain the product by multiplying the sides (here: 6·4)” which is
even. Since there are always three points left, and three is an odd number, the
sum of the even and the odd number will always be odd].

FIGURE 17 | Boxplots concerning students’ measured proof acceptance.

(4) Fragmentary: only fragmentary information is
given/meaningful arrangement of figurate numbers
without further information (see Figure 16).

(5) Sound argument: the students derives the conclusion from
a connected argument and from generally agreed facts of
principles that might contain (minor) inaccuracies (see
Figure 17).

In both years, the students were asked to prove the given claim
with all four kinds of proof in the final exam of the course. The
corresponding results are shown in Table 3.

First, we would like to stress that several students did not
even try to solve the given task by using figurate numbers
(“GenFig” + “GV”) in the winter term 2013/2014, even though,
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TABLE 3 | Results [%] concerning students’ proof productions in the context of
the course “Introduction into the culture of mathematics” concerning four different
kinds of proofs (“genN,” generic proof with numbers; “genFig,” generic proof with
figurate numbers; “GV,” proof with geometric variables; “FP,” formal proof).

Winter term 2013/14
(n = 139)

Winter term 2014/15
(n = 107)

GenN FP GenFig GV GenN FP GenFig GV

n. p. 3 3 6 18 0 2 1 4

Empirical 7 0 7 0 1 0 0 0

Pseudo 22 15 37 45 6 8 14 34

Fragmentary 14 3 24 9 11 6 36 10

Sound argument 54 79 27 28 82 84 50 52

Sum 100 100 100 100 100 100 100 100

they were sitting an exam to pass the course. Moreover, the
higher percentage of pseudo answers and the lower results of
proving attempts belonging to the category “sound argument”
when working with figurate numbers (“GenFig” + “GV”) are
astonishing in both years.4

To sum up, these results highlight students’ difficulties
in making use of figurate numbers to construct
mathematical proofs.

Proof-Acceptance, Explanatory Power,
and Conviction
Kempen and Biehler (2019b) investigated the perceived
explanatory power, conviction, and proof acceptance concerning
the four different kinds of proof (see above) in the context of
pre-service teachers at the University of Paderborn in Germany.

We will rely on the following research questions taken from
the study of Kempen and Biehler (2019b)

(i) How do pre-service teachers rate the different kinds of
proofs concerning the perceived explanatory-quality and
conviction at the beginning of their university studies?

(ii) How can students’ proof acceptance of the four kinds of
proofs be described?

While Kempen and Biehler (2019b) investigated the changes
in students’ proof perception and acceptance while attaining the
course “Introduction into the culture of mathematics,” we will
have a close look at the corresponding results from the pre-test
at the beginning of the course.

To answer the research question (i), the students were asked to
rate one proof of each kind (see above) concerning the perceived
explanatory power and conviction on a six-level Likert scale ([1]
“totally Disagree” . . . [6] “totally agree,” see Table 4). We cite
the example for the so-called formal proof (Kempen and Biehler,
2019b, p. 39 f.) for the claim “For all natural numbers a, b, c:
If b is a multiple of a and c is a multiple of a, then (b + c) is a
multiple of a.”

Let a, b, c be natural numbers.

4The different results between the 2 years can be explained by referring to several
changes made in the whole course (see Kempen, 2019 for description of the whole
research project).

TABLE 4 | The items concerning “conviction” and “explanatory power” for the
rating of the four different kinds of proof.

The reasoning. . . Totally disagree Totally agree

[1] [2] [3] [4] [5] [6]

Convinces me that the statement
holds in every case.

Explains why the statement is true.

. . .

Since b is a multiple of a, there exists a natural number n with:
n · a = b.

Since c is a multiple of a, there exists a natural number m with:
m · a = c.

We have: b+ c = n · a+m · a = a · (n + m). Since (n +
m) is a natural number, (b + c) is a multiple of a.

Q.e.d.

As indicated in Table 4, students were asked to rate other
statements concerning the given proofs, too. These statements
comprised the aspects verification, interpretation as purely
empirical verification, the existence of counterexamples, the
importance of variables, the interpretation as testing of concrete
cases and correctness. The mean of the different ratings for
each kind of proof was considered to be one’s score in “proof
acceptance.” I.e., a high scale value represents a high level
of acceptance concerning a given ‘proof ’ and vice versa. This
construction of one scale was confirmed by a corresponding
factor analysis. The reliabilities of the constructed scales for the
four kinds of proof out of the eight items were very high (all
Cronbach’s alpha > 0.88). Accordingly, we used the following
conceptualization for “proof acceptance” to answer the research
question (ii):

“‘proof acceptance’ is conceptualized as the extent to which
an individual perceives verification, conviction and explanation
when reading a mathematical proof combined with the extent, the
reader does consider the reasoning to be a correct mathematical
proof” (ibid., p. 31).

We quote the corresponding results:
With regard to both conviction and explanatory power, the

formal proof achieved the highest ratings (Table 5), whereas the
proof with geometric variables achieved the lowest. The results

TABLE 5 | Statistical data concerning the items “conviction” and “explanatory
power” (“genN,” generic proof with numbers; “genFig,” generic proof with figurate
numbers; “GV,” proof with geometric variables; “FP,” formal proof).

Conviction Explanatory power

genN genFig GV FP genN genFig GV FP

n 74 74 68 72 74 74 68 72

Mean 3.32 4.38 2.96 5.35 3.82 4.50 2.85 5.15

Median 3.00 5.00 3.00 6.00 4.00 5.00 3.00 6.00

SD 1.664 1.411 1.688 1.050 1.511 1.274 1.730 1.206

Minx 1 1 1 2 1 1 1 2

Max 6 6 6 6 6 6 6 6
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TABLE 6 | Statistical significance of the differences between the medians concerning “conviction” and “explanatory power” (p-value, Wilcoxon-test) with effect sizes
[Pearson’s correlation coefficient (r)].

Conviction Explanatory power

genFig GV FP genFig GV FP

genN p < 0.001 (r = 0.47) – p < 0.001 (r = 0.71) P = 0.001 (r = 0.39) p = 0.001 (r = 0.41) p < 0.001 (r = 0.58)

genFig – p < 0.001 (r = 0.59) P < 0.001 (r = 0.49) – p < 0.001 (r = 0.63) P = 0.001 (r = 0.40)

GV – – p < 0.001 (r = 0.75) – – p < 0.001 (r = 0.70)

TABLE 7 | Statistical data concerning proof acceptance scales.

acc_genN acc_genFig acc_GV acc_FP

n 74 74 67 72

Mean 2.79 3.67 2.96 5.15

Median 2.50 3.50 2.88 5.63

SD 1.18 1.27 1.27 1.02

Min 1.00 1.00 1.00 1.00

Max 6.00 6.00 6.00 6.00

Cronbach’s alpha 0.886 0.912 0.896 0.939

concerning the generic proofs are located between these kinds
of proofs. All differences concerning the medians are pairwise
highly statistically significant (p ≤ 0.001, Wilcoxon-test) with
medium and high effect sizes (see Table 6).

The results concerning students’ proof acceptance are shown
in Table 7 and Figure 17. The score concerning the generic proof
with numbers (mean of 2.79) was quite low, as was the acceptance
of the proof with geometric variables. Again, the formal proof
achieved the highest score (mean: 5.15).

All differences between the means are highly statistically
significant (p ≤ 0.001; t-test) with medium to high effect sizes,
except for the difference between the generic proof with numbers
and the proof with geometric variables (see Table 8).

To sum up, the students in our study struggled with the
interpretation of figurate numbers in the context of proving. The
use of these geometric representations in such proofs did not lead
to an increased perception of conviction or explanatory power.
On the contrary, the proof making use of algebraic variables
(the ‘formal proof ’) was perceived as the most convincing and
explanatory argument. The same is true for the measured proof-
acceptance values5.

Students’ Perception of Proofs Making
Use of Figurate Numbers
Kempen and Biehler (2015) conducted an interview study
with 12 first-year pre-service teachers to investigate students’
perceptions of proofs making use of concrete examples in
elementary number theory. These students participated in the
course “Introduction into the culture of mathematics,” where
they were introduced to the concept of proving. In the context

5This study was originally conducted with a bigger sample size. The students dealt
with in Kempen and Biehler (2019b) are those, that could be tracked from the
pre- to the post-test. The whole sample contains 145 pre-service teachers. The
corresponding results are discussed in Kempen (2018). However, also in the whole
sample, the overall results are nearly the same: the formal proof achieves the
highest ratings and acceptance-score.

TABLE 8 | Statistical significance of the differences between the means of the
acceptance scores (p-value, t-test) with effect sizes (Cohen’s d).

acc_genFig acc_GV acc_FP

acc_genN p < 0.001 (Cohen’s
d = 0.663)

p = 0.412 (–) p < 0.001 (Cohen’s
d = 2.229)

acc_genFig – P = 0.001 (Cohen’s
d = 0.427)

p < 0.001 (Cohen’s
d = 1.269)

acc_GV – – p < 0.001 (Cohen’s
d = 1.845)

of the course, the varying use of concrete examples, figurate
numbers, and algebraic variables played an important role
(see Kempen and Biehler, 2019a,b). In this research study,
the students were asked to work on the following task:
“Prove or disprove: If one takes a natural number and adds
its square, the result will always be divisible by 2.” After
students’ initial answers, an interview phase followed. Here,
the students were asked to explain their proving attempts to
reason why they used the respective approach in contrast to
the other ones they had learned in the course. We transcribed
each session and analyzed the transcripts and students’ proof
constructions. We looked for common and characteristic
patterns in students’ comments to categorize them as cases
of a certain type.

This study reveals some interesting results concerning
learners’ perspective on the usage of figurate numbers. Following
students’ responses in the interview, proofs making use of figurate
numbers (i) are hard to construct because one always has to
have a special “idea” and (ii) can be harder to understand than
formal proofs. As an example, we cite the following statements
from three different students (taken from Kempen, 2019, p. 260
f.; authors’ translation):

[. . .] compared to the one with figurate numbers, but since [with
figurate numbers; L. K.] you always need an idea first, right? That’s
why I like it worse, compared to the formal proof, because one
always has to have an idea.

[. . .] we know at an early age if we multiply a number by two,
that the result is logically divisible by 2. Here [in the case of
figurate numbers; L. K.] one has to consider horizontal/vertical,
odd number above/even number below. The feeling of looking at
and understanding is easier here [in the case of the formal proof;
L. K.]. Here one shows, no matter which natural number you take,
multiplied by two will be logically divisible by 2.

I find that [the formal proof; L. K.] is most understandable for
everyone. If someone else were to look at it, he or she would most
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likely understand it, instead of such proofs with figurate numbers,
where one would have to think over and over again.

These results point to the fact, that the use of figurate numbers
(even for university students) cannot be considered as being that
easy. Argument (i) points to the problems that have already
been raised in the context of schema theory: starting with a
mathematical claim, one has to translate the given information
to the representational system of figurate numbers. This means
that a geometrical interpretation of the given facts has to be
undertaken. The second argument highlights the fact that the
use of figurate numbers must not be considered as being easier
than the use of the algebraic symbolic language. As already
mentioned in the context of Peirce’s semiotic theory, dealing with
a representational system has to be learned and practiced. In this
way, learners might acquire the respective collateral knowledge to
work in this system.

SUMMARY, CONCLUSION, AND
IMPLICATIONS FOR TEACHING AND
RESEARCH

It has been shown above that figurate numbers can be used in
mathematics in various ways, e.g., for illustrating, clarifying, and
illuminating mathematical issues. Moreover, in the context of
problem solving and proving, a change to this special kind of
representational system and working with it can be considered
to be a useful heuristic. Especially in the context of mathematical
proof, working with such ‘semantic’ representational system
(Lockwood et al., 2019) is said to increase the explanatory
power of mathematical proof leading to so-called proofs that
explain. Besides, the use of such representation is said to ease the
transition to algebra and to contribute to a meaningful concept
of variable. Finally, working within this field can constitute a
playground for exploration, conjecturing, and proving in the
interplay of algebra, arithmetic, and geometry.

However, the discussion of part of Peirce’s semiotic theory led
to a closer look at the representational system ‘figurate numbers.’
For working with the corresponding symbols and signs, a
special kind of knowledge (“collateral knowledge”) is necessary.
This knowledge comprises facts about the construction of
diagrams, their usage and the interpretations of possible results.
Working with figurate numbers in mathematics (especially in
mathematical proving) can be conceptualized as diagrammatic
reasoning, i.e., reasoning by making use of such diagrams. It
became clear that performing mathematics with figurate numbers
or understanding someone else’s performance presupposes the
existence of the corresponding collateral knowledge.

The discussion about necessary prior knowledge and
the acquisition of new understanding could be elaborated
by referring to cognitive psychology. Here, learning and
understanding are combined with the integration of new
information into the existing knowledge to build new schema.
In addition to parts of knowledge referring to the use of such
representations (an appropriate ‘translation’ of a mathematical
issue to the system of figurate numbers, the choice of operations

to achieve a selected aim) some meta-knowledge about the usage
of such representations (e.g., “why and when to use them”) is
necessary, too. Since geometric representations like figurate
numbers fulfill distinct functions in the context of understanding
and the construction of mental models, the question arose,
as to how learning processes change while changing the
representational system. Finally, it became obvious, that one
problem or task changes fundamentally when changing the
representational system, because the initial state of the problem,
the goal state and/or the set of operations that can be applied will
differ fundamentally. Besides, the semiotic considerations above
hint toward the fact, that while changing a representational
system, another collateral knowledge is necessary, that can
be developed more or less than the previous one for each
person. This is also true for the interpretation of learning and
understanding by referring to a corresponding schema.

Insights from the Gestalt psychology made it possible to
investigate the phenomenon of ‘seeing’ patterns within the
arrangements of figurate numbers. However, corresponding
principles of perception do not constitute universally valid rules,
the individual experiences play another constitutive part. That
is why the individual’s perception of geometric arrangements
may be different to someone else’s. (The corresponding reading
and understanding of a perceived geometric shape is again a
matter of collateral knowledge). Working with figurate numbers
demands a flexible perception about recognizing patterns,
imaging future constellations, and eventually grasping a general
idea. Furthermore, the identification of patterns does also
affect the perception and awareness of possible operations or
transformations that can be used, being “pro-structural” and
“contra-structural.” Accordingly, the individual’s perception of
a given arrangement may influence its choice of operations or
transformations which, of course, also indicates the possibilities
of achieving the respective goals and possible insights. The
coming together of all these aspects illustrates the demands
placed on learners when working with figurate numbers.
Finally, the way of working with these ‘pictures’ for performing
operations, achieving results, and getting new insights may
contradict previous experiences about the role of pictures and
texts in the context of learning.

In chapter 4, we summarized some findings from our own
empirical research concerning the use of figurate numbers
in a variety of aspects concerning the topic “mathematical
proof.” As could be observed in every study, the students
struggled with the use and the understanding of figurate
numbers. This was somehow in contrast to the descriptions in
the literature, highlighting the benefits of the use of figurate
numbers for educational purposes. Concerning students’ proof
productions, the learners struggled the most in constructing
mathematical proofs by using figurate numbers. However,
the students succeeded much better in construction generic
proofs with numbers (instead of figurate numbers) and formal
proofs. In this sense, the use of the representational system
of Algebra seemed to be much easier for them than the one
of figurate numbers and lead to the construction of proofs
at a higher level. Concerning perceived explanatory power
and conviction, the formal proof making use of algebraic
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variables always got the highest ratings. In this sense, the
pre-service teachers in our study did not perceive a special
kind of explanatory power and conviction in the context
of the representational system ‘figurate numbers.’ Moreover,
such proofs achieved significantly less scores concerning the
individual’s “proof acceptance” than the formal proof. Taken
together, these students seemed to appreciate especially the
mathematical symbolic language in the context of proving.
Results from our interview study could partly explain the
results obtained. Students mentioned the necessity for a
special “idea” when working with figurate numbers. When
working with natural numbers (generic proof with numbers) or
algebraic variables (formal proof), the students did not mention
such challenges.

Finally, we will combine the theoretical considerations and the
empirical findings. In the studies presented, the representational
system of algebra (making use of algebraic variables in the
context of elementary arithmetic) led to the biggest success
when being used by students. These results can be explained
by the fact that this representational system is the most used
and practiced one in school mathematics. Other representational
systems (as figurate numbers) are used less. Accordingly,
students did not have enough time to acquire the corresponding
collateral knowledge and to practice its use. Working within
a representational system can be described by the four phases
of diagrammatic reasoning [(i) construction of a diagram, (ii)
performing experiments, (iii) observing the results, and (iv)
determining the overall generality]. In all of these phases,
a special kind of knowledge is necessary to cope with the
respective aspects of a representational system. The lack of
collateral knowledge will prevent the construction of correct
mathematical proofs.

The named hints from schema theory highlighted the aspects,
learners have to be (implicitly) aware of when working with
figurate numbers in mathematics, too. When trying to prove a
given claim, all aspects named in the given statement have to be
transmitted to the representational system of figured numbers.
Then, the conclusion has to be faced, again interpreted in the
context of figurate numbers. Finally, this goal has to be achieved
using the possible operations in this representational system.
Again, students’ problems when working with figurate numbers
can be partly explained by making use of such aspects from
the schema theory. However, the corresponding understanding
and interpretations belong to the individual’s perception which
also affects the identification and selection of suitable operations.
Accordingly, the given problem changes by undertaking a
change of the given representational system and it also changes
due to the individual’s perception. These perceptions could be
elaborated by pointing to the Gestalt psychology. In addition,
there is not only the need for perceiving and constructing a
first pattern, as the initial state of a given problem. There
are multiple arrangements and possibilities the learner has
to recognize. A change in perception is difficult to achieve.
However, this is a necessary prerequisite for making targeted
transformations.

Both theoretical perspectives mentioned above highlight
the necessity of corresponding prior knowledge for being

able to work with and to understand the representational
system of figurate numbers. In this sense, the use of such
representations is no guarantee to lead to special insights.
The explanatory quality of such ‘pictures’ or ‘proofs’ has
to be considered as an ‘offer’ and not as a ‘present.’ The
understanding of a representation is an individual process (of
elaboration) and relies on the individual’s previous knowledge
and perception. All kinds of representations (or representational
systems) constitute a learning content at the first level. Even
so-called ‘explanatory’ representations have to be read and
to be understood by a certain reader, who has to have the
corresponding collateral knowledge (in the sense of Peirce,
see above). Considering learning as an active process based
on one’s prior knowledge highlights the subjective nature and
the relativity of the understanding of given representations.
Accordingly, such ‘explanatory proofs’ making use of geometrical
representations are not self-evident nor self-explanatory (see also
Jahnke, 1984); ‘explanatory proofs’ cannot be considered to be
explanatory by themselves.

These considerations lead to several implications for
teaching: As Dörfler (2006) points out, learners have to perform
several activities to get used to a representational system,
i.e., to acquaint the corresponding collateral knowledge.
These activities comprise (i.a.): manipulating (performing
calculations) with the diagrams, performing experiments on
the diagrams to explore their characteristics, investigating
the relationships between such diagrams, inventing new
diagrams, etc. Some examples of such activities can be found
in modern textbooks. Kempen and Biehler (2019a) proposed
some learning environment for first-year pre-service teachers
to cope with different representational systems in the context of
mathematical proof.

The perspective of schema theory highlights the questions,
what kind of knowledge concerning the representational system
as a whole is necessary to construct a coherent schema for
dealing with this system in mathematics. (This knowledge
also touches upon some kind of meta knowledge concerning
mathematics). Such question can partly be discussed from the
perspective of diagrammatic reasoning (see above). However, the
Gestalt psychology stresses the individual’s perception in this
context. Besides, affective factors might also contribute to the
individual’s perspective.

The theoretical considerations above also lead to
implications for research. The use of geometric representation
in mathematical activities (like problem solving or
conjecturing and proving) has to be investigated at different
stages and in different institutions. Here, the aspect of
“acceptance” should be considered, too, constituting a
basis for the individuals work and understanding. This
is also true when considering different research areas of
mathematics and different representations in the context
of proving (e.g., Weber, 2010a). Finally, the phenomenon
of getting some ‘insights’ demands further research. Haider
and Rose (2006) have proposed a way for detecting
‘insights’ empirically. Besides, philosophical investigations
seem to be promising for conceptualizing this unique
moment of ‘understanding-why’ (e.g., Lawler, 2019).
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People often struggle with Bayesian reasoning. However, previous research showed
that people’s performance (and rationality) can be supported by the way the statistical
information is represented. First, research showed that using natural frequencies instead
of probabilities as the format of statistical information significantly increases people’s
performance in Bayesian situations. Second, research also revealed that people’s
performance increases through using visualization. We have built our paper on existing
research in this field. Our main aim was to analyze people’s strategies in Bayesian
situations that are erroneous even though statistical information is represented as natural
frequencies and visualizations. In particular, we compared two pairs of visualization with
similar numerical information (tree diagram vs. unit square, and double-tree diagram
vs. 2 × 2-table) concerning their impact on people’s erroneous strategies in Bayesian
situations. For this aim, we conducted an experiment with 540 university students.
The students were randomly assigned to four conditions defined by the four different
visualizations of statistical information. The students were asked to indicate a fraction in
response to four Bayesian situations. We documented the numerator and denominator
of the students’ responses representing a basic set and a subset in a Bayesian
situation. Our results showed that people’s erroneous strategies are highly dependent
on visualization. A central finding was that the visualization’s characteristic of making
the nested-sets structure of a Bayesian situation transparent has a facilitating effect on
people’s Bayesian reasoning. For example, compared to the unit square, a tree diagram
does not explicitly visualize the set-subset relations that are relevant in a Bayesian
situation. Accordingly, compared to a unit square, a tree diagram partly hinders people
in finding the correct denominator in a Bayesian situation, and, in particular, triggers
selecting a wrong numerator. By analyzing people’s erroneous strategies in Bayesian
situations, we contribute to investigating approaches to facilitate Bayesian reasoning
and to further develop the teaching of Bayesian reasoning.

Keywords: Bayesian reasoning, Bayesian situations, natural frequencies, strategies, visualization

INTRODUCTION

Bayes’ formula is one of the main models for dealing with inferential judgment of situations of
uncertainty (Gigerenzer and Hoffrage, 1995). Reasoning in such situations, known as Bayesian
situations, is a challenge for students in school (e.g., Wassner, 2004; Weber et al., 2018); adult
laymen in real life (e.g., Colomé et al., 2018); and even experts in different professions, such
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as physicians, lawyers, or managers (Gigerenzer, 2014; Hoffrage
et al., 2015). A typical Bayesian situation concerning an unspecific
medical context is given in Figure 1.

Although it is important to judge Bayesian situations in
various aspects of real life, research from recent decades showed
that experts as well as laymen and students have severe difficulties
with Bayesian reasoning (Kahneman et al., 1982; McDowell
and Jacobs, 2017). McDowell and Jacobs (2017) revealed that
only about 4% of people were able to calculate a probability
in a Bayesian situation when the statistical information
was given by percentages or rather probabilities, such as
P

(
disease|test positive

)
=

10%·60%
10%·60%+90%·20% = 25% representing

the solution of the Bayesian situation in Figure 1.
However, research gained results refer to two approaches

of representing statistical information that facilitate Bayesian
reasoning. Research showed that using an appropriate Bayesian
strategy in a Bayesian situation is highly dependent on the
way the statistical information is presented. The first approach
is using natural frequencies (Gigerenzer and Hoffrage, 1995;
Cosmides and Tooby, 1996). The meta-analysis by McDowell
and Jacobs (2017) showed that the rate of correct responses
increases from approximately 4% to about 25% if the statistical
information in a Bayesian situation is presented in the form
of natural frequencies. Figure 2 presents the Bayesian situation
in Figure 1 using natural frequencies. The second facilitating
approach is using visualization (McDowell and Jacobs, 2017).
Research demonstrates a facilitating effect of different kinds
of visualizations, such as tree diagrams (e.g., Sedlmeier and
Gigerenzer, 2001), double-tree diagrams (e.g., Böcherer-Linder
and Eichler, 2019), 2 × 2-tables (e.g., Binder et al., 2015),
unit squares (e.g., Böcherer-Linder and Eichler, 2017), Euler
diagrams (e.g., Sloman et al., 2003), roulette-wheel diagrams
(e.g., Yamagishi, 2003), bar graphs (e.g., Starns et al., 2019),
frequency grids (e.g., Sedlmeier and Gigerenzer, 2001), or icon
arrays (e.g., Brase, 2009). In particular, studies using visualization

FIGURE 1 | A typical Bayesian situation in an unspecific medical context
(Johnson and Tubau, 2015, p. 3).

FIGURE 2 | The Bayesian situation of Figure 1 with natural frequencies.

in addition to natural frequencies reported an increase of
correct responses in Bayesian situations from about 40–70%
(Garcia-Retamero and Hoffrage, 2013; Binder et al., 2015;
Böcherer-Linder and Eichler, 2017).

The aim of this paper is to contribute to the field of facilitating
Bayesian reasoning by focusing on those people who fail to use
the correct Bayesian strategy (Zhu and Gigerenzer, 2006) in a
Bayesian situation although the statistical information is given
by natural frequencies and by visualization. For this purpose,
we investigate particularly erroneous and non-Bayesian strategies
(cf. Zhu and Gigerenzer, 2006) of 540 undergraduate students
concerning four Bayesian situations. Furthermore, we investigate
relationships between erroneous strategies and properties using
two pairs of visualizations of Bayesian situations. We restrict our
focus to these two pairs of visualizations for two reasons. First,
our aim was to investigate visualizations that are appropriate
for training, regardless of available tools such as paper and
pencil, or computers (cf. Bruckmaier et al., 2019). This excludes
visualization representing a frequency style (Khan et al., 2015)
from our study. For example, to draw an icon array with 1,000
icons is not appropriate in a paper-pencil situation. Second, from
the other two styles (Khan et al., 2015), that is, the branch
style and the nested style, we selected two visualizations each
that were found to have a facilitating effect, but that differed in
the numerical information. Thus, we investigated relationships
between two pairs of visualizations, providing mostly the same
numerical information (i.e., tree diagram vs. unit square, and
double tree diagram vs. 2× 2-table), and the erroneous strategies
of the students. Since the main aim of our study was to
investigate erroneous non-Bayesian strategies when Bayesian
situations are presented in a supportive way including both
natural frequencies and visualizations (cf. McDowell and Jacobs,
2017), we desisted from defining a condition in which the
Bayesian situations were only supported by natural frequencies,
or in which the Bayesian situations were given in a probability
format. A related investigation was presented by Gigerenzer and
Hoffrage (1995) or Zhu and Gigerenzer (2006).

THEORETICAL PERSPECTIVES ON
NATURAL FREQUENCIES AND
VISUALIZATION

Two perspectives are proposed to explain the “natural frequency
facilitation effect” (McDowell and Jacobs, 2017, p. 5). The
first perspective refers to an ecological rationality (Gigerenzer
and Hoffrage, 1995; Johnson and Tubau, 2015). A human
strategy is “ecologically rational to the degree that it is adapted
to the structure of an environment” (Todd and Gigerenzer,
2000, p. 730). A possible evolutionary reason for the ecological
rationality of a frequency format is “that the mind is tuned
to frequency formats, which is the information format humans
encountered long before the advent of probability theory”
(Gigerenzer and Hoffrage, 1995, p. 697). This evolutionary
explanation of the benefit of representing Bayesian situation in
a frequency format was also supported by Cosmides and Tooby
(1996). Gigerenzer and Hoffrage (1995) further emphasized
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the match between natural frequencies and a natural sampling
process that leads to reduced computational complexity in a
Bayesian situation (Brase and Hill, 2015; Johnson and Tubau,
2015; McDowell and Jacobs, 2017).

The second perspective is called “nested-set hypothesis”
(Sloman et al., 2003, p. 297). This hypothesis is based on a
dual-process model, including a “primitive” and error-prone
associative system, and a rule-based system respecting the “logic
of set inclusion” (Barbey and Sloman, 2007, p. 244). Thus, in
this perspective, the main assumption is that a representation
of statistical information that “makes nested set relations
transparent” (Barbey and Sloman, 2007) triggers a rule-based
system and therefore facilitates Bayesian reasoning. Accordingly,
proponents of the nested-sets perspective suggest that “any
manipulation that increases the transparency of the nested-sets
relation should increase correct responding” (Sloman et al., 2003,
p. 302; cf. also Mandel, 2015; Mandel and Navarrete, 2015).
We discuss a concrete example of a transparency of nested-sets
relations in visualizations in the next section.

Some researchers recommend neglecting the differences of the
two theoretical perspectives on the natural frequency facilitation
effect (Brase and Hill, 2015; Johnson and Tubau, 2015; McDowell
and Jacobs, 2017). Thus, Johnson and Tubau (2015, p. 5)
suggested that “in order to advance the discussion, we need to
move away from the standard ‘natural frequency vs. nested-sets’
debate.” Putting this debate in the background means to focus
on the basis of the natural frequency facilitating effect, that is, to
provide an transparent structure of the statistical information and
simpler computation compared to a probability format (Johnson
and Tubau, 2015; McDowell and Jacobs, 2017).

There is a broad consensus that visualization facilitates
Bayesian reasoning (e.g., Brase, 2009; Spiegelhalter et al., 2011;
Khan et al., 2015; McDowell and Jacobs, 2017). Depending on
the theoretical perspectives outlined above, different facilitating
properties of visualizations are proposed. Proponents of the
ecological rationality perspective suggest “real, discrete, and
countable” objects as facilitating property of visualization
(Cosmides and Tooby, 1996, p. 33; cf. also Tubau et al.,
2019). Proponents of the nested-sets perspective suggest that
“the transparency of the nested-sets” (Sloman et al., 2003,
p. 302) facilitates Bayesian reasoning. Transparency means
making “set inclusion and set membership” visible (McDowell
and Jacobs, 2017, p. 6; cf. also Sloman et al., 2003). Accordingly,
an Euler diagram or a roulette wheel diagram (Yamagishi,
2003) that include transparency of a nested-sets relation
are proposed as facilitating visualization. Moro et al. (2011)
also recommend making the relative proportions of sets and
subsets transparent. Beyond the theoretical perspectives, Garcia-
Retamero and Hoffrage (2013) or Binder et al. (2015) give
evidence that visualizations have an additional facilitating effect
when the statistical information in a Bayesian situation is given
by natural frequencies. Our own research (Böcherer-Linder
and Eichler, 2019) focused on the effect of five visualizations
including the natural frequency format (tree diagram, double
tree diagram, 2 × 2-table, unit square, and icon array) on
people’s performance concerning Bayesian reasoning tasks. The
results provided evidence that visualizing discrete and countable

objects (cf. Cosmides and Tooby, 1996; Brase, 2009), and
making the nested-sets relation transparent (Sloman et al., 2003;
Barbey and Sloman, 2007), have a facilitating effect on people’s
performance concerning Bayesian reasoning tasks. However, we
found that making nested sets transparent has a much stronger
effect compared to visualizing discrete and countable objects
(Böcherer-Linder and Eichler, 2019).

VISUALIZATION OF BAYESIAN
SITUATIONS

This paper is based on the theoretical discussion summarized
above and on existing empirical research including our own
findings. Instead of comparing performance rates for Bayesian
reasoning tasks, here we focus on erroneous “non-Bayesian
strategies” (Zhu and Gigerenzer, 2006, p. 296) that people
use instead of a correct Bayesian strategy and ask for specific
characteristics of visualizations that trigger erroneous strategies.
As outlined in the introduction, we restrict our focus in this
research to two pairs of visualizations: tree diagram and unit
square, double-tree diagram and 2 × 2-table (Figure 3). We
discuss each of the four visualizations of Bayesian situations
regarding their main properties below. We further refer to the
solution in the medical context given in Figures 1, 2, respectively.
Using the abbreviation � for a sample, H for hypothesis (in this
case having a disease), and D for data (in this case a positive test
result), the solution for the medical context given with natural
frequencies is P (H|D) = P(H∩D)

P(D) =
6

6+18 =
1
4 .

A common visualization of Bayesian situations representing
a branch style (Khan et al., 2015) is a tree diagram (e.g., de
Veaux et al., 2012; Utts and Heckard, 2015; Figure 3A), which
is often found to facilitate Bayesian reasoning (Sedlmeier and
Gigerenzer, 2001; Steckelberg et al., 2004; Binder et al., 2015;
Budgett et al., 2016). A tree diagram implies a hierarchy of sets
(events) that are highlighted by nodes (cf. Böcherer-Linder and
Eichler, 2017; Bruckmaier et al., 2019). Thus, a set inclusion
following this hierarchy, such as (H ∩ D) ⊆ H, is transparent
(cf. also the findings of Bruckmaier et al., 2019). Concerning the
solution P (H|D) of a Bayesian reasoning task, the set H ∩ D
is given by a single node, but the set D is given by two nodes
representing H ∩ D and H̄ ∩ D. Since the nodes and the related
branches are parts of different paths of the tree, the set inclusion
(H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is not transparent (Böcherer-
Linder and Eichler, 2017). Furthermore, the hierarchy of the tree
diagram implies the conjunction of events, such as H ∩ D, only
implicitly in the second level of the tree.

A unit square (Eichler and Vogel, 2015; Figure 3B)
representing a nested style (Khan et al., 2015) was also found
to facilitate Bayesian reasoning (Oldford, 2003; Böcherer-Linder
and Eichler, 2017, 2019; Talboy and Schneider, 2017). In a unit
square, the set inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D as well
as (H ∩ D) ⊆ H and (H ∩ D̄) ⊆ H are presented in one row or
in one column. Thus, physically neighboring fields in a column
or row represent subsets of the same set. For this reason, we
understand a unit square as a visualization that makes the nested-
sets relation in a Bayesian situation transparent. More specifically,
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FIGURE 3 | Tree diagramm (A), unit square (B), double-tree diagram (C), and 2 × 2-table (D) visualizing the Bayesian situation of Figure 2. The indication of the
sets were added for illustrating the discussion in the text.

we call this transparency “graphical transparency.” A unit square
further shows the proportions of sets and subsets (cf. Moro
et al., 2011). Although Talboy and Schneider (2017) suggest this
area proportionality as an important property of a visualization
of a Bayesian situation, we did not found a facilitating effect
of this property concerning people’s performance in Bayesian
reasoning tasks (Böcherer-Linder and Eichler, 2019). A unit
square does not include a hierarchy. A unit square includes
similar numerical information as a tree diagram concerning a
Bayesian situation. We call the amount of numerical information
“numerical transparency.” Although there are slight differences,
we understand the numerical transparency of a tree diagram and
a unit square as comparable.

A double-tree diagram (Figure 3C) has also been found to
facilitate Bayesian reasoning (Wassner, 2004; Böcherer-Linder
and Eichler, 2019). The double-tree diagram represents a branch
style (Khan et al., 2015), and emphasizes two different hierarchies
in a Bayesian situation. One hierarchy is the same as in a tree
diagram, showing, for example, the relation � ⊇ H ⊇ (H ∩ D)
with � = (H ∪ H̄). The second hierarchy shows inversely, for
example, the relation (H ∩ D) ⊆ D ⊆ � with � = (D ∪ D̄). For

this reason, the set inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is
visualized in both cases by a branch that connects the subset with
the basic set (Figure 3C). Thus, the set inclusion is transparent.
In addition, a double tree diagram includes more numerical
information compared to a tree diagram and a unit square,
namely for every nine sets and subsets in a simple Bayesian
situation, such as the situation shown in Figure 1. Thus, the
numerical transparency of a double tree diagram is higher than
the numerical transparency of a tree diagram and a unit square.
The conjunction of events (e.g., H ∩ D) is visible since there exist
branches to each of the two basic sets, that is, to H and to D.
However, the conjunction of events is not explicitly visualized.

Further, a 2 × 2-table (Figure 3D) representing a nested style
(Khan et al., 2015) facilitates Bayesian reasoning (Binder et al.,
2015; Böcherer-Linder and Eichler, 2019). A 2× 2-table includes
the same numerical information of the nine sets and subsets in a
simple Bayesian situation as a double tree diagram. Thus, a 2× 2-
table provides the same numerical transparency than a double
tree diagram, but shows a higher numerical transparency than
a tree diagram and a unit square. The set inclusion (H ∩ D) ⊆
D and (H̄ ∩ D) ⊆ D as well as (H ∩ D) ⊆ H and (H ∩ D̄) ⊆ H
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is presented in one row or in one column in a 2 × 2-table.
Subsets of the same set are given in neighboring fields in the
same row or same column (c.f. Figure 3D; Böcherer-Linder and
Eichler, 2019). For example, H ∩ D and H̄ ∩ D are represented
by neighboring fields in the same row in a 2 × 2-table. A 2 × 2-
table does not include a hierarchy of events. The conjunction of
events such as H ∩ D is explicitly visualized. For example, the
events H and D are represented by a side of a field that represents
the conjunctive event H ∩ D.

To conclude, if a set and subset are connected by a branch
(or path) or are given by neighboring fields in a row or
column, we assume the transparency of a set inclusion and,
thus, the transparency of a set-subset relation in a Bayesian
situation (graphical transparency). Furthermore, a visible relation
between two sets and their intersection set makes the nested-
sets structure of a Bayesian situation transparent (cf. Barbey
and Sloman, 2007; McDowell and Jacobs, 2017). Finally, we
differentiated between the two pairs of visualizations concerning
the amount of numerical information (numerical transparency).
A tree diagram and a unit square provide mostly the same
numerical information, although there are slight differences.
For example, in a tree diagram, there is additional numerical
information of the sample size (#�), as compared to the unit
square. The double tree diagram and the 2 × 2-table provide the
same numerical information.

STRATEGIES IN BAYESIAN SITUATIONS

To summarize the existing knowledge about people’s strategies
in Bayesian situations, we use Figure 4, including a tree
diagram, a unit square, a double-tree diagram, and a 2 × 2-table.
For every visualization, n is the size of on abstract sample.
Based on n, we define the following natural frequencies:
h1 := n · P (H) , h2 := n · P

(
H̄

)
, d1 := h1 · P (D|H) , d2 :=

h1 · P
(
D̄|H

)
, d3 := h2 · P

(
D|H̄

)
and d4 := h2 · P

(
D̄|H̄

)
.

A Bayesian strategy (Zhu and Gigerenzer, 2006) produces the
correct response P (H|D) = d1

d1 +d3
.

Since the correct identification of the basic set D is crucial in a
Bayesian situation, we first refer to erroneous strategies involving
a correct identification of the basic set D. After this, we report
other erroneous strategies.

A strategy first described by Zhu and Gigerenzer (2006) is
called “pre-Bayes” and is represented by the quotient of h1

d1+d3
.

In this strategy, the correct basic set D, or rather, the frequency of
d1 + d3, is chosen as denominator, but an incorrect numerator is
chosen by confusing the sets H and H ∩ D.

The strategy is “evidence only” (Zhu and Gigerenzer, 2006), is
represented by the quotient of d1+d3

n . In this strategy, the correct
basic set, that is, D = (H ∩ D) ∪ (H̄ ∪ D) is connected to the
whole sample (�) represented by the frequency of n.

Further strategies do not include D, or rather the frequency
d1 + d3, but include H ∩ D as subset represented by d1 as the
numerator of the correct solution. One erroneous strategy is
described in mathematics education research (Diaz and Batanero,
2009) as well as in psychological research (Zhu and Gigerenzer,

2006) and is given by d1
h1

. This strategy is based on the reciprocal
value of the conditional probability of the correct Bayesian
strategy. For this reason, Diaz and Batanero (2009) called this
strategy “transposed conditional” fallacy. Zhu and Gigerenzer
(2006) named this strategy “representative thinking” following
Dawes (1986). A further name was given by Gigerenzer and
Hoffrage (1995), who called this strategy “Fisherian.”

A further erroneous strategy is called “joint occurrence” and is
represented by the quotient of d1

n (Zhu and Gigerenzer, 2006). In
this case, people seem to over-emphasize the conjunction H ∩ D,
and to neglect H̄ ∩ D.

An erroneous strategy that neither includes the correct
basic set D represented by the frequency d1 + d3 nor
the subset H ∩ D represented by frequency d1 is called
“conservatism” and is given by the quotient of h1

n (Zhu
and Gigerenzer, 2006). The same strategy is called “base-rate
only” by Gigerenzer and Hoffrage (1995).

Diaz and Batanero (2009) described an erroneous strategy
without naming it that is represented by the reciprocal value
of the correct quotient, that is, d1+d3

d1
. We call this strategy

“inverse Bayes.” This strategy may be explained through correct
identification of the basic set and the subset in a Bayesian
situation but also through confusing the correct relationship of
the frequencies representing these sets.

Further erroneous strategies were reported by Gigerenzer
and Hoffrage (1995), but these strategies were restricted to a
probability format of statistical information (e.g., a likelihood-
subtraction). In addition, some erroneous strategies that were
observed in the cited studies were not categorized since
the frequency of these strategies were small. Gigerenzer and
Hoffrage (1995) summarized related strategies as “not identified
strategies,” Zhu and Gigerenzer (2006) subsumed these strategies
to “guessing.”

A study by Bruckmaier et al. (2019) also focused on people’s
strategies in Bayesian situations. Since the study was based on
an eye-tracking method, the study included a very small sample
size of 24 students. Bruckmaier et al. (2019) found only strategies
discussed so far for the students’ Bayesian reasoning to be
supported by natural frequencies and a tree diagram or 2 × 2-
table. The findings concerning the tree diagram supported the
hypothesis that the hierarchy of the tree diagram triggers people
to identify a subset-set relation in different levels of the tree. The
results referring to the 2 × 2-table are difficult to interpret for
our purposes, because participants solved the same tasks with the
2× 2-table that had been solved before with the tree diagram.

Although the participants, materials, and methods were
different in the cited studies, we present the frequencies for the
Bayesian strategy and further erroneous strategies for different
studies and samples in Table 1.

In each of the cited studies, the focus is on strategies
representing people’s way of identifying a combination of a
basic set and subset, or rather, a fraction. In this study, we
aim at enhancing the focus by differentiating between choosing
a denominator and a numerator of a fraction representing
a basic set and subset. Given the specific properties of
the visualizations of Bayesian situations, we hypothesize that
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FIGURE 4 | Tree diagram (A), unit square (B), double-tree diagram (C), and 2 × 2-table (D) with natural frequencies.

TABLE 1 | People’s strategies for dealing with Bayesian situations in prior research.

Authors Zhu and Gigerenzer,
n = 135, young

students

Gigerenzer and
Hoffrage, n = 405,

univ. students

Bruckmaier, Binder, Krauss and
Kufner, n = 24, university students

Diaz and
Batanero, n = 177

and 206

Format Frequency Frequency Frequency Probability Probability

Visualization None None Tree (2 × 2-table) Tree (2 × 2-table) None

Strategy

Bayesian strategy d1/(d1 + d3) 36.9% 45.8% 43.3% (81%) 29.5% (32%) Not reported

Pre-Bayes h1/(d1 + d3) 11.5% Not reported 2.2% (0%) Not reported Not reported

Evidence only (d1 + d3)/n 4.6% Not reported Not reported 10% (0%) Not reported

Representative thinking d1/h1 1.8% 12.3% 17.4% (4.3%) 37.5% (2.1%) Without frequency

Joint occurrence d1/n Not reported 4.5% 21.7% (8.5%) 8% (55.3%) Not reported

Conservatism, Base rate only h1/n 5.3% 2.9% Not reported Not reported Not reported

Inverse Bayes (d1 + d3)/d1 Not reported Not reported Not reported Not Reported Without frequency

Guessing and other strategies 39.8% 33.5% 15.2% (6.4%) 15% (10.6%) Not reported

different visualizations trigger people to choose specific basic
sets and subsets.

HYPOTHESES

Our approach is to analyze which set (numerator) and
subset (denominator) people choose depending on the different
visualizations. Based on this, a structured set of hypotheses refers

to the following selection of a denominator and numerator in a
Bayesian situation:

H1: Selection of the correct denominator

H1.1: Selection of the correct numerator provided the
denominator is correct

H1.1.1: Specific response in the numerator provided
the denominator is correct
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H2: Selection of the correct numerator

H2.1: Selection of the correct denominator provided the
numerator is correct

H2.1.1/2: Specific responses in the denominator
provided the numerator is correct

H3: Erroneous strategy depending on the numerical
proportion of numerator and denominator

Now, we provide the rationale behind every hypothesis and
formulate the hypotheses more specifically. Since we divided the
four visualizations in two pairs of visualizations, in which each
pair of visualization provides the same amount of numerical
information (numerical transparency), we also divided the
hypotheses for each pair: the hypotheses labeled “a” concern the
pair of tree diagram and unit square, and the hypotheses labeled
“b” concern the pair of double tree diagram and 2 × 2-table.
Finally, we do not formulate directional hypotheses referring
to the facilitating effect of visualizations between the two pairs
of visualizations.

A main challenge in Bayesian situations is to identify the
correct basic set (D), that is, to identify d1 + d3 (Figure 4) as
the denominator in Bayes’ formula (cf. Sloman et al., 2003). In
a tree diagram, the subsets H ∩ D and H̄ ∩ D are represented by
two nodes of different paths that have no visible direct relation.
Thus, the set inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is not
transparent (cf. McDowell and Jacobs, 2017). To use the correct
denominator d1 + d3 requires adding the two frequencies d1 and
d3. In a unit square, the subsets H ∩ D and H̄ ∩ D are directly
related since they are represented by neighboring fields (in a
row). Thus, the set structure of a Bayesian situation and the set
inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is more transparent
than in the tree diagram (cf. Sloman et al., 2003; Moro et al.,
2011). As in the tree diagram, the correct denominator in a
Bayesian situation, that is, d1 + d3 has to be computed by a simple
addition. For this reason, the first main hypothesis is as follows:

Hypothesis 1a: People who use a unit square refer to d1 + d3
as the denominator more frequently than those who use a tree
diagram.

In a double-tree diagram, both subsets H ∩ D and H̄ ∩ D
are connected to the basic set D by a branch. Thus, the set
inclusion mentioned above is transparent in the hierarchy of the
double-tree diagram. Further, the correct denominator in Bayes’
formula is directly given as a frequency and needs no additional
computation (numerical transparency). In a 2 × 2-table, the
two subsets H ∩ D and H̄ ∩ D are represented by neighboring
fields (in a row), and the frequency of the basic set D, that
is, the frequency d1 + d3, is directly given. Since the double
tree diagram and unit square do not seem different regarding
numerical and graphical transparency, we did not formulate a
directed hypothesis.

Based on the correct identification of the basic set D and
the denominator d1 + d3, it is a further challenge to identify
the correct subset H ∩ D, or rather, the correct numerator d1 in
Bayes’ formula (cf. Sloman et al., 2003). In the hierarchy of a
tree diagram, H ∩ D and H ∩ D̄ appear explicitly as subsets of

H. Moreover, H̄ ∩ D and H̄ ∩ D̄ appear explicitly as subsets of
H̄. However, the tree diagram does not make the set inclusion
(H ∩ D) ⊆ D transparent since (H ∩ D) and

(
H ∩ D̄

)
are not

directly related. In a unit square, the set inclusion (H ∩ D) ⊆
(H ∩ D) ∪ (H ∩ D̄) is directly related since it is visualized by
neighboring fields of a row. If the basic set D was identified before,
the mentioned set inclusion is transparent. For this reason,
the structure of the tree diagram seems to hinder people in
identifying both the basic set and subset in a Bayesian situation.
Hence, a subsequent hypothesis is as follows:

Hypothesis 1.1a: Restricted to those who identify d1 + d3
as correct denominator: People who use a tree diagram fail
to identify d1 as numerator of the correct solution more
frequently than those who use a unit square.

A double-tree diagram makes this set inclusion outlined above
transparent: In the second hierarchy of a double tree, the set
inclusion (H ∩ D) ⊆ D is given by a branch. The set inclusion
(H ∩ D) ⊆ D is also visualized in a 2× 2-table in a row including
two frequencies of subsets and the sum of these two frequencies.
For this reason, we did not formulate a directed hypothesis
regarding a difference between the double tree diagram and the
2× 2-table.

People who correctly identified the basic set D and the related
frequency d1 + d3 may fail to identify the correct numerator
(d1) in Bayes’ formula. Based on our main assumption about
the transparency of a set inclusion, in a tree diagram H, H̄,
or � are transparently related to H ∩ D and H̄ ∩ D (Figure 4).
To differentiate between the three possible sets, we follow Zhu
and Gigerenzer (2006), who argued that people do not use a
combination of a numerator and a denominator that results in
a fraction above 1 (cf. also Chapman and Liu, 2009). However,
the mentioned fraction with a denominator d1 + d3 is below
1 only for specific numerators h1 and is never below 1 for a
numerator n. The possible quotient h1/(d1 + d3) is known as pre-
Bayes strategy by Zhu and Gigerenzer (2006), but this quotient
is not always below 1. Thus, the pre-Bayes strategy is highly
dependent on the Bayesian situation and the concrete frequencies
in this situation. This is apparent also in the results of Bruckmaier
et al. (2019), who used two situations with h1/(d1 + d3) > 1 and,
accordingly, found nearly no pre-Bayes strategy. In our study,
we used situations with h1/(d1 + d3) > 1, and situations with
h1/(d1 + d3) < 1. Considering Zhu and Gigerenzer (2006), we
expect few answers representing the pre-Bayes strategy in the first
case. We refer later to the difference of situations concerning the
value of h1/(d1 + d3) below or above 1.

Referring to the transparency of a set-subset relation, for a unit
square there is no meaningful reason to select H, or rather h1, as
the numerator in a Bayesian situation.

A similar difference could be identified concerning the second
pair of visualizations: In a double tree diagram, H ∩ D and H̄ ∩ D
are obviously transparently related to D by a branch. However, H
and H̄ or � are related to D by a path (Figure 4). For this reason,
the erroneous pre-Bayes strategy is also plausible for the double
tree diagram if people fail to identify d1 as the correct numerator.
For a 2 × 2-table there is no meaningful reason to select H, or
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rather h1, as the numerator in a Bayesian situation. Thus, our
hypotheses are as follows:

Hypothesis 1.1.1a: Restricted to those who identify d1 + d3 as
correct denominator: People who use a tree diagram use h1
as numerator in a Bayesian situation more frequently than
those who use a unit square.
Hypothesis 1.1.1b: Restricted to those who identify d1 + d3 as
correct denominator: People who use a double tree diagram
use h1 as numerator in a Bayesian situation more frequently
than those who use a 2× 2-table.

The corpus of hypotheses formulated so far focuses on
selection of the basic set (correct: D) in a Bayesian situation or
the denominator (correct: d1 + d3) in Bayes’ formula. However, it
is possible to change the perspective and focus on the selection of
a subset, or rather, a numerator in a Bayesian situation. Actually,
the visualizations allow for selecting a frequency representing
a set, and selecting a second frequency representing either a
basic set or a subset. The correct subset H ∩ D is transparently
visualized as a conjunction of two sides, representing the sets H
and D in the related field in a unit square and a 2 × 2-table.
This structure of sets and the subset H ∩ D does not seem to
be as transparent as in the double tree diagram, since H and D
represent paths in two different hierarchies. The tree diagram
does not make the structure of the sets H and D and the subset
H ∩ D explicitly transparent. For this reason, we expect a unit
square and 2 × 2-table to facilitate the identification of the
conjunction H ∩ D as a relevant subset in a Bayesian situation.
Thus, the second main hypothesis is as follows:

Hypothesis 2a: People who use a unit square refer to d1 as the
numerator in the correct solution more frequently than those
who use a tree diagram.
Hypothesis 2b: People who use a 2× 2-table refer to d1 as the
numerator in the correct solution more frequently than those
who use a double tree diagram.

Furthermore, with the same rationale outlined for hypothesis
1.1, it is possible to develop a hypothesis based on correct
selection of the subset H ∩ D, or rather, the correct numerator d1.
The basic set D is not transparent in the tree diagram (see above),
but is transparently visualized in a unit square. For this reason, a
further hypothesis is as follows:

Hypothesis 2.1a: Restricted to those who identify d1 as correct
numerator: People who use a unit square refer to d1 + d3 as
the denominator in their solution more frequently than those
who use a tree diagram.

Since there is no theoretical difference concerning the
numerical or graphical transparency of a double-tree diagram
and a 2 × 2-table, we formulated no directional hypothesis
concerning the identification of the correct denominator given
a correct numerator.

With the same argumentation as outlined above, the hierarchy
of a tree (and partly also the double-tree) may influence the
selection of a denominator (basic set) using a path of the tree,
namely h1 or n. Hence, a further pair of hypotheses regarding

an erroneous response with the correct numerator in a Bayesian
situation is as follows:

Hypothesis 2.1.1a: Restricted to those who identify d1 as
correct numerator: People who use a tree diagram use h1 as
denominator in a Bayesian situation more frequently than
those who use a unit square.
Hypothesis 2.1.1b: Restricted to those who identify d1 as
correct numerator: People who use a double tree diagram use
h1 as denominator in a Bayesian situation more frequently
than those who use a 2× 2-table.
This confusion is called “representative thinking” strategy in
Table 1.
Hypothesis 2.1.2a: Restricted to those who identify d1 as
correct numerator: People who use a tree diagram, use n as
denominator in a Bayesian situation more frequently than
those who use a unit square.
Hypothesis 2.1.2b: Restricted to those who identify d1 as
correct numerator: People who use a double tree diagram use
n as denominator in a Bayesian situation more frequently
than those who use a 2× 2-table.
This confusion is called “joint occurrence” strategy in Table 1.

Referring to people’s strategies in Bayesian situations reported
so far, we neglected the evidence-only strategy, that is, (d1 + d3)/n,
and the conservatism strategy, that is, h1/n. We analyzed both
erroneous strategies without a directional hypothesis for both
pairs of visualizations.

As outlined above, an erroneous strategy may highly be
influenced by the given situation that is represented by specific
natural frequencies. For example, if h1/(d1 + d3) > 1, we
expect only few people to use the pre-Bayes strategy compared
to situations in which h1/(d1 + d3) < 1. For this reason,
we formulate – independent from specific visualizations – the
following hypothesis:

Hypothesis 3: In Bayesian situations with h1/(d1 + d3) < 1,
people follow a pre-Bayes strategy more frequently compared
to Bayesian situations with h1/(d1 + d3) > 1.

MATERIALS AND METHODS

Our sample consisted of 540 undergraduate students enrolled
in two mathematics courses for prospective primary school
teachers. Bayesian reasoning was not part of their curriculum.

The students were randomly assigned to the four
visualizations. The subsamples differed a little and had the
following sizes: 122 students were assigned to the tree diagram,
120 students to the double tree diagram, 146 students to a
2× 2-table, and 152 students to a unit square.

Each student received a test referring to a specific
visualization, such as a tree diagram, comprising two parts.
The first part consisted of one page with a brief explanation of
how to construct a specific visualization (cf. Böcherer-Linder and
Eichler, 2017). Every explanation started with a table including
the statistical information in a natural frequency format. The
explanations for every visualization consisted of two further steps
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FIGURE 5 | Sample task including a Bayesian situation. In the original tasks, only one of the four visualizations was shown.

describing how to construct the specific diagram. The number
of explanation-steps was kept constant to provide the same
amount of supporting information in every condition. However,
the explanations among the visualizations differed due to their
different characteristics. Also, the level of familiarity was different
among the visualizations. 98% of students indicated familiarity
with a tree diagram, and 86% indicated familiarity with a 2 × 2-
table. By contrast, only 33% were familiar with a unit square, and
28% were familiar with a double tree diagram. We discuss these
differences later. The second part of the questionnaire consisted
of four Bayesian tasks. One of the tasks is given in Figure 5, and
the other tasks are available in a free accessible repository1. In
these tasks, the Bayesian situation was represented by only one
specific visualization. We did not use natural frequencies in the
brief description of the Bayesian situation in the text (except the
total sample size), but only within the visualizations. Therefore,
problems could only be solved by reading the information from
the visualization. This decision was made to be able to analyze
the facilitating effect of the visualization. In every Bayesian
situation, we asked students to indicate a fraction representing
the mathematical expression for the relation of the cardinal
numbers of the set (denominator) and subset (numerator). Thus,
the fraction is an expression of the data partition in a Bayesian
situation (Barbey and Sloman, 2007). In this regard, to ask for a

1https://osf.io/w64n5/

fraction is the mathematical version of a single-step frequency
question (Girotto and Gonzalez, 2001). Asking for a fraction is
also related to the common format for responses in textbooks for
school or university (e.g., Utts and Heckard, 2015).

The students had 15 min to complete the test. No intervention
was delivered during the test.

The numbers in every Bayesian situation were chosen in a
way that allowed identifying which sets a student had selected for
determining the numerator and the denominator of his or her
response. As mentioned before, the focus on the denominator
and numerator allows for specifying the students’ identification
of basic sets and subsets in a Bayesian situation. In some of the
tasks, one of which is shown in Figure 5, the fraction h1/(d1 + d3)
is below 1; in other tasks, the fraction h1/(d1 + d3) is above 1.

For analyzing students’ strategies, we regarded only those
solutions that included a fraction or a number. There were also
students who completed, for example, two tasks, but did not
provide a solution to the other two tasks. For this reason, the
amount of strategies that students showed differed among the
four Bayesian situations. In the results section, we indicate the
number of strategies shown by the students, as well as the missing
responses. The data is provided in a free accessible repository (see
text footnote 1).

Firstly, we documented each combination of a denominator
and numerator in a descriptive way, also including versions that
were cancelled down. Following Zhu and Gigerenzer (2006), we
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TABLE 2 | Limits for estimating an erroneous strategy as systematic.

Visualization Tree diagram Unit square Double-tree 2 × 2-table

n 272 235 194 156

k 10 9 8 7

did not analyze the few solutions that provided a fraction above 1
in detail, except for the specific analysis concerning hypothesis 3.
For this reason, we did not regard the inverse Bayes’ strategy that
Diaz and Batanero (2009) proposed (see Table 1).

For the inferential analysis, we referred to systematic
strategies. To estimate whether a student’s response represented
a systematic strategy or was a result of guessing, we followed
Zhu and Gigerenzer (2006) and compares the student’s responses
with a guessing model. The basis of this model is the amount
of single numbers and simple sums of two numbers that are
provided in a Bayesian situation. Nine of these numbers or sums
are given in a 2 × 2-table (Figure 3). We further added 1 as a
possible number since some of the students’ responses consisted
of a natural number. In these cases, we assumed a denominator
of 1. We further assumed that the students chose two different
numbers or sums representing different sets for the numerator or
denominator. Thus, we regarded 10 × 9 = 90 different possible
responses. Only half of these responses consisted of a fraction
below 1. One of these responses represents the Bayesian strategy.
For erroneous strategies, we assumed a uniform distribution
and, accordingly, a probability of 1/44 for every strategy. We
used this model to decide whether a response was based on a
systematic strategy or guessing. We used a binomial distribution
in which p equals 1/44 and n is given by the number of erroneous
responses for a specific visualization. Based on this distribution,
we determined an integer k for that the probability of the interval
[k; n] is lower than 0.05, but bigger than 0.05 for [k-1; n]. Table 2
shows the values of k for the different visualizations. Thus, if
a certain erroneous strategy is given in k or more than k of
the students’ responses, we defined this strategy as systematic
erroneous strategy.

We used a χ2–test for independence for the statistical analyses.
To measure the effect of differences between two visualizations,
we used the odds ratio, but also reported Cohen’s d.

This experiment was carried out in accordance with
the University Research Ethics Standards. Participation was
voluntary, without financial incentives, and anonymity was
guaranteed. A written, informed consent was not required as per
local legislation and institutional requirements.

RESULTS

Strategies
First, we describe the results in a descriptive way, concerning
absolute and relative frequencies with which the students
indicated different fractions in the four Bayesian situations.
We consider these fractions by indicating the numerator and
the denominator.

Each table in Figure 6 shows the numerators that the students
at least once provided in the first row, and the denominators
that the students at least once provided in the first column. In
each cell, the absolute frequency and relative frequency are given.
The last row and the last column indicate the sums. The sum
in the second row indicates the number of responses that could
not be interpreted. The gray shaded fields represent fractions that
no student provided as response. Further, the fields with a thick
frame represent the fractions that were reported as an erroneous
strategy in literature (cf. Table 1). The black field represents the
Bayesian strategy.

The results concerning systematic strategies are given in
Table 3, based on the guessing model outlined in the methods
section. The strategies are sorted in the same way as in Table 1.
The frequencies refer to the number of responses in which
the fraction in the first column or an equivalent fraction was
indicated. Beyond the erroneous strategies reported so far, we
identified and labeled two further erroneous strategies with
regard to existing strategies, namely, a pure evidence strategy,
and a likelihood strategy. These two erroneous strategies may be
understood as systematic strategies for at least one of the four
visualizations, and are given in Table 3 in italics. The category
“guessing” includes the amount of responses that could not be
interpreted or that were seldom indicated. Finally, we indicated
the amount of missing responses for every visualization. The
impact of the visualization on the amount of missing responses
is highly significant. Here, a very familiar visualization, a
2 × 2-table, has significantly less missing responses than the
other three visualizations. However, since our aim was to
analyze people’s erroneous strategies in Bayesian situations and
the impact of different visualizations on these strategies, we
neglect the missing responses in the following section. For an
analysis of people’s performance in Bayesian situations when
using visualizations that also include incomplete tasks, see
Böcherer-Linder and Eichler (2019).

Results Concerning the Hypotheses
Hypotheses Concerning the Correct Denominator
The first hypothesis refers to differences in students’ abilities to
indicate the correct basic set represented by d1 + d3. The results
given by absolute and relative frequencies referring to each of
the visualizations in brackets are shown in Table 4. The order of
the visualization, that is, tree diagram – unit square in the first
pair, and double tree diagram – 2 × 2-table in the second pair,
represents the order in all hypotheses. Thus, in these hypotheses,
we assume that the visualization on the right side of the two pairs
is more efficient than the visualization on the left side.

A χ2-test for independence indicating d1 + d3 did not produce
a significant difference between a tree diagram and unit square
(df = 1, χ2 = 2.91, p = 0.088). By contrast, the difference between
a double tree diagram and 2 × 2-table was significant (df = 1,
χ2 = 10.17, p < 0.05), with a small effect (odds ratio: 1.60;
Cohen’s d = 0.20). Thus, hypothesis 1 was not confirmed, since
the difference between a tree diagram and unit square was less
pronounced than expected. By contrast, we found an unexpected
difference between the double tree diagram and 2× 2-table.
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FIGURE 6 | Students’ answers to Bayesian tasks differentiated to denominators and numerators.
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TABLE 3 | Descriptive results of students’ responses concerning the Bayesian strategy and erroneous strategies. n indicates the number of students in a condition. The
percentages are related to the amount of responses (excluding missing responses). The amount of missing responses is also given.

Visualization Tree diagram (n = 122) Unit square (n = 154) Double-tree (n = 120) 2 × 2-table (n = 148) Sum average

Bayesian strategy d1/(d1 + d3) 162/37.3% 312/57.0% 238/55.1% 410/72.4% 1122/56.7%

Pre Bayes h1/(d1 + d3) 94/21.7% 26/4.8% 64/14.8% 34/6.0% 218/11.0

Evidence only (d1 + d3)/n 12/2.8% 4/0.7% 7/1.6% 1/0.2% 24/1.2%

Representative thinking (d1/h1) 69/15.9% 64/10.7% 35/8.1% 56/9.9% 224/11.3%

Joint occurrence d1/n 22/5.1% 44/8.0% 30/6.9% 18/3.2% 114/5.2%

Conservatism h1/n 14/3.2% 14/2.6% 9/2.1% 3/0.5% 40/2.0%

Pure evidence d1/1 8/1.8% 10/1.8% 14/3.2% 7/1.2% 39/2.0%

Likelihood d1/d3 6/1.4% 19/3.5% 2/0.5% 1/0.2% 28/1.4%

Guessing 58/13.4% 54/9.9% 33/7.6% 36/6.4% 181/9.1%

Missing responses 54 61 48 18 181

In an exploratory way, we also tested post-hoc the difference
between visualizations regarding pairs of visualizations that
differ in terms of the numerical information. Since there were
four further pairs of visualizations with different numerical
information, we ran χ2-tests using the Bonferroni-correction. In
this case, the difference between a unit square and double tree
diagram was significant (p∗ = 4p < 0.05, Cohen’s d = 0.17). The
difference between a unit square and 2 × 2-table was highly
significant (p∗ = 4p < 0.001), with a medium effect (Cohen’s
d = 0.37). Finally, the difference between a tree diagram and both
a double-tree diagram and 2 × 2-table was highly significant
(p∗ < 0.001), with a nearly medium effect: Cohen’s d being
between 0.24 and 0.45.

Hypothesis 1.1 refers to applying the Bayesian strategy
restricted to those students who indicates d1 + d3 as denominator.
In a subordinated hypothesis 1.1.1, we explored further if there
was a dependency of the visualization, and a tendency to use
h1 as numerator given the correct denominator d1 + d3. Due to
the difference in the Bayesian situations, we involved only two
Bayesian situations with h1 < d1 + d3 for hypothesis 1.1.1. The
related results for both hypotheses (1.1 and 1.1.1) are shown in
Tables 5, 6.

The visualization seems to have a strong impact on the ability
to correctly combine d1 + d3 and the correct numerator d1.
A χ2-test found a highly significant difference between a tree
diagram and a unit square (df = 1, χ2 = 71.16, p < 0.001),
with a nearly high effect (odds ratio 6.2; d = 0.72). Also, the
difference between a double tree diagram and 2 × 2-table was
highly significant (df = 1, χ2 = 26.59, p < 0.001), with a medium
effect (odds ratio 3.0; d = 0.38). For this reason, hypothesis
1.1 was confirmed.

TABLE 4 | Frequencies for indicating d1 + d3 as denominator in a Bayesian
situation.

Visualization Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

d1 + d3

indicated
256

(59%)
341

(62%)
304

(70%)
448

(79%)
1349
(68%)

d1 + d3 not
indicated

178
(41%)

206
(38%)

128
(30%)

118
(21%)

630
(32%)

TABLE 5 | Frequencies for indicating the correct numerator when d1 + d3 is given
as correct denominator in a Bayesian situation.

Visualization
(d1 + d3

indicated)

Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

d1 as
numerator

162
(63%)

312
(92%)

238
(78%)

410
(92%)

1122
(83%)

not d1 as
numerator

94
(37%)

29
(8%)

66
(22%)

38
(8%)

227
(17%)

TABLE 6 | Frequencies for indicating h1 as numerator when d1 + d3 is given as
correct denominator in a Bayesian situation.

Visualization
(d1 + d3

indicated), only
cases with
h1/(d1 + d3) < 1)

Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

h1 used as
numerator

75
(50%)

23
(12%)

48
(28%)

29
(13%)

175
(24%)

h1 is not used as
numerator

73
(50%)

176
(88%)

121
(72%)

197
(87%)

567
(76%)

TABLE 7 | Frequencies for indicating d1 as the correct numerator in a
Bayesian situation.

Visualization Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

d1 as
numerator

268 (62%) 449 (82%) 320 (74%) 493 (87%) 1530 (77%)

Other
numerator

166 (38%) 98 (18%) 112 (26%) 73 (13%) 464 (23%)

Moreover, the difference between the tree diagram and both
a double-tree diagram and 2 × 2-table was highly significant
(p∗ = 4p < 0.001). The odds ratios were between 2.1 and 6.3, and
Cohen’s d showed a medium effect for the double-tree diagram
(d = 0.33), and a nearly high effect for the 2 × 2-table (d = 0.72).
Finally, the difference between a double-tree diagram and a unit
square was highly significant (p∗ = 4p < 0.001; d = 0.38). This
means that both tree diagrams seem to hinder identification of
d1 as numerator of the correct solution if the correct basic set is
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identified. This is also apparent in the comparison of a double
tree diagram and unit square, although a double tree diagram
provides more numerical information than a unit square.

For hypothesis 1.1.1, a χ2-test provided a highly significant
result (df = 1, χ2 = 64.09, p < 0.001) concerning the difference
between a tree diagram and unit square, with a high effect
(odds ratio: 7.0; d = 0.93). The visualization strongly impacted
the pre-Bayes strategy when d1 + d3 was identified as correct
denominator. Further, the difference between a double-tree
diagram and 2× 2-table was highly significant (df = 1, χ2 = 14.94,
p < 0.001), with a medium effect (d = 0.39). Thus, hypothesis
1.1.1 was confirmed. Both tree diagrams seem to trigger people to
choose a node in the hierarchy of tree diagrams for identifying an
adequate numerator.

Again, the difference between a tree diagram and both a
double-tree diagram and 2 × 2-table was highly significant
(p∗ = 4p < 0.001). The effect sizes varied concerning the odds
ratio between 2.6 and 7.3, while Cohen’s d implied an at least
medium effect (d = 0.46 for double-tree, and 0.88 for a 2 × 2-
table). Moreover, the difference between a double-tree diagram
and a unit square was highly significant (p∗ = 6p < 0.001;
d = 0.39), although a double tree diagram provides more
numerical information than a unit square.

Hypotheses Concerning the Correct Numerator
For testing Hypothesis 2, we analyzed the two pairs of
visualizations concerning the use of the correct numerator d1.
The related results are shown in Table 7.

The ability to identify the correct numerator in a Bayesian
situation was highly impacted by the visualization. The difference
between a tree diagram and unit square was highly significant
(df = 1, χ2 = 50.87, p < 0.001), with a medium effect (odds
ratio: 2.8; d = 0.46). Further, the difference between the double-
tree diagram and 2 × 2-table was significant (df = 1, χ2 = 27.54,
p < 0.001), with a medium effect (d > 0.33). Thus, hypothesis
2 was confirmed. The tree diagrams seem to systematically
hinder people to identify the correct numerator. Again, the
difference between a tree diagram and both a double-tree diagram
and 2 × 2-table was highly significant (p∗ = 4p < 0.001).
Moreover, the difference between a double-tree diagram and unit
square was significant (p∗ = 4p < 0.05; d = 0.17), although
a double tree diagram provides more numerical information
than a unit square.

Hypothesis 2.1 refers to the amount of correct solutions
with the indication of d1 as correct numerator. In a pair of
subordinated hypotheses (2.1.1 and 2.1.2), we further explored

TABLE 9 | Pre-Bayes strategy for situations with d1 + d3 > h1 and with
d1 + d3 < h1.

Visualization Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

h1/(d1 + d3) > 1:
pre-Bayes

19 (9%) 3 (1%) 16 (7%) 5 (2%) 43 (4%)

h1/(d1 + d3) > 1:
no pre-Bayes

205 (91%) 268 (99%) 209 (93%) 265 (98%) 947 (96%)

h1/(d1 + d3) < 1:
pre-Bayes

75 (38%) 23 (9%) 48 (24%) 29 (10%) 175 (19%)

h1/(d1 + d3) < 1:
no pre-Bayes

123 (62%) 232 (91%) 153 (76%) 253 (90%) 761 (81%)

the dependency of the visualizations and tendency to use h1 or
n as denominator given the correct numerator d1. The results
concerning these three hypotheses are shown in Table 8.

For hypothesis 2.1.1, a χ2-test showed that the dependency
of indicating h1 as denominator given d1 as correct numerator
and the visualization was significant. The difference between a
tree diagram and a unit square was highly significant (df = 1,
χ2 = 14.67, p < 0.001), with a nearly medium effect (odds ratio:
2.1, Cohen’s d = 0.29). By contrast, the difference between a
double tree diagram and a 2 × 2-table was not significant. Thus,
hypothesis 2.1.1 was partly confirmed for hypothesis 2.1.1a).

Further, the difference between a tree diagram and a
double-tree diagram and 2 × 2-table was highly significant
(p∗ = 4p < 0.01), with a medium effect (d = 0.39 and 0.37).

The tendency to identify the incorrect denominator n
combined with the correct numerator d1 was partly impacted
by the visualization. The difference between a tree diagram
and unit square was not significant. By contrast, the difference
between a double-tree diagram and 2 × 2-table was significant
(df = 1, χ2 = 11.44, p < 0.001), with a small effect (odds ratio:
2.7; d = 0.23). Thus, hypothesis 2.1.1 was partly confirmed for
hypothesis 2.1.1b). Moreover, the difference between the three
visualizations, that is a tree diagram, a double tree diagram and
a unit square, and a 2× 2-table was significant with a small effect.

Hypothesis Concerning the Specific Proportion of
Numerator and Denominator
Finally, we tested hypothesis 3. Table 9 shows the results for both
scenarios, d1 + d3 > h1, and d1 + d3 < h1. The relative frequency
is based on the number of solutions for each visualization in each
of the two scenarios.

TABLE 8 | Frequencies for indicating the correct solution, n as denominator, or h1 as denominator, given d1 as the correct numerator in a Bayesian situation.

Visualization (d1 as numerator) Tree diagram Unit square Double-tree 2 × 2-table Sum

d1 + d3 as denominator 162 (60%) 312 (70%) 238 (74%) 410 (83%) 1122 (73%)

not d1 + d3 as denominator 106 (40%) 137 (30%) 82 (26%) 83 (17%) 408 (37%)

h1 used as denominator 69 (26%) 64 (14%) 35 (11%) 56 (11%) 224 (15%)

Other denominator 199 (74%) 385 (86%) 285 (89%) 437 (89%) 1271 (85%)

n used as denominator 22 (8%) 44 (10%) 30 (9%) 18 (4%) 114 (7%)

Other denominator 246 (92%) 405 (90%) 290 (91%) 475 (96%) 1416 (93%)
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The difference concerning the sum of the four visualizations
produced a highly significant result (df = 1, χ2 = 98.75,
p < 0.001). The highly significant difference appeared
for each of the visualizations as well. Thus, the context
represented by a specific proportion of the numerator and
denominator has a significant impact on the pre-Bayes strategy
in Bayesian situations.

Use of the Strategies Described in the
Literature
Additionally, we analyzed differences between the visualizations
referring to the erroneous strategies reported in Table 1. Table 10
indicates if a visualization in the first column shows a significantly
higher amount of people showing a specific strategy. We do
not regard the accumulation of hypotheses in this case. For this
reason, the results must be interpreted carefully. Referring to the
pre-Bayes strategy, we again restricted the analysis to two tasks.

DISCUSSION

The main aim of this paper was to contribute to the field
of facilitating Bayesian reasoning by focusing on people who
fail to use the correct strategy in a Bayesian situation, even
though the statistical information is given by natural frequencies
and visualization. We focused on two pairs of visualizations.
According to Khan et al. (2015), the visualizations within a
pair provide mostly the same numerical information but differ
in style, that is, a branch style and a nested style, and further
differ in graphical transparency. Visualizations between the two
pairs differ in at least the numerical information and, thus,
in numerical transparency. To investigate people’s erroneous
strategies, we differentiated between identifying the correct basic
set and the correct subset of the nested-sets structure in a
Bayesian situation. We realized this approach by asking people
to respond with a fraction. This allowed us to analyze erroneous
responses concerning the denominator and the numerator.
However, since other studies use a single step frequency version
for a response, findings in these studies must be compared
with caution with our results. Our results provide substantial
evidence that people’s strategies in Bayesian situations are
strongly dependent on different visualizations. Thus, a specific
visualization hinders or facilitates identification of the relevant
basic set D represented by the denominator d1 + d3, and the
relevant subset H ∩ D represented by the numerator d1.

We first analyzed different strategies regarding identification
of the correct basic set D (hypothesis 1). We found that
numerical transparency has the main impact. We did not find
significant differences within the two pairs of visualization, that
is, between a tree diagram and a unit square, and between
a double tree diagram and a 2 × 2-table. By contrast, but
as expected, the difference between the two visualizations
that provide the relevant subset (D) numerically (double tree
diagram and 2 × 2-table) and the two visualizations that
do not provide this numerical information (tree diagram and
unit square) is significant. Against expectations, a unit square
was not found to be more effective for identification of the
correct basic set in a Bayesian situation compared to the tree
diagram. This was an unexpected result, since the mentioned
partition of D is transparent in the unit square, but not in a
tree diagram. Regarding a differentiation between the relevant
basic set (denominator) and subset (numerator), our result
contributes to the discussion of transparency of the nested-sets
relation in a Bayesian situation by focusing on the visualizations’
characteristics (cf. Sloman et al., 2003).

In subordinated hypotheses, the students’ responses were
restricted to those in which the basic set D was correctly
identified. The correct identification of the basic set in
visualizations representing a nested style (unit square, 2 × 2
table, cf. Khan et al., 2015) almost always goes along with the
use of a Bayesian strategy: 92% of the responses with the correct
basic set show the correct Bayesian strategy. Students who use
a visualization representing the branch style (tree diagrams, cf.
Khan et al., 2015) and who identified the correct basic set use
the correct Bayesian strategy to a lesser extent: only 78% of the
students using a double-tree diagram and 63% of the students
using a tree diagram used the Bayesian strategy, although they
were able to identify the correct basic set D. More specifically,
our results show that both tree diagrams trigger the identification
of H as a relevant subset. We expected a difference between a
tree diagram and unit square since the relation between the basic
set D and the subset H ∩ D is not visualized in the hierarchy
of the tree diagram and is therefore not transparent. However,
a study by Bruckmaier et al. (2019) suggests that people tend
to search for a set-subset relation in the hierarchy of a tree
diagram. For this reason, the tree diagram hinders use of the
Bayesian strategy compared to other visualizations such as unit
square, since a tree diagram obscures the nested-sets structure of
a Bayesian situation. We did not expect the difference between a
double tree diagram and 2 × 2-table, and even between a double
tree diagram and unit square. This result provides evidence

TABLE 10 | Differences among the visualizations referring to strategies shown in Table 1 based on the entirety of students’ answers.

Tree diagram Unit square Double-tree 2 × 2-table

Tree diagram p < 0.001: pre-Bayes p < 0.001: rep. think. p < 0.01: pre-Bayes
p < 0.05: evid. only, p < 0.001: pre-Bayes evid. only

p < 0.01: rep. think. conserv.
Double-tree p < 0.001: pre-Bayes p < 0.001: pre-Bayes

p < 0.01: joint occ.
2 × 2-table
Unit square p < 0.001: joint occ.

p < 0.01: conserv.
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that a graphical transparency is effective beyond a numerical
transparency. A possible, but speculative interpretation of this
result, is that the two hierarchies in a double-tree diagram partly
trigger people to identify the basic set D with its subsets H ∩ D
and H̄ ∩ D. If this is the case, the challenge is the same as for a
tree diagram, that is, to identify a subset of (H ∩ D) ∪ (H̄ ∩ D)
in the (first) hierarchy of a double-tree diagram. However, this
interpretation should be investigated in future research.

A second analysis started with identification of the correct
subset H ∩ D. As expected, the result indicated that identifying
the correct subset H ∩D is strongly impacted by the visualization.
Thus, a 2 × 2-table and a unit square are more effective for
identifying the correct subset in a Bayesian situation, although
the subset is given by a node in both tree diagrams. We interpret
this result by the transparency of the subset H ∩ D as an
intersection set. Thus, a field within a 2 × 2-table or unit square
implies representing an intersection of sets represented by the
two sides of the field. By contrast, the hierarchical path of both
tree diagrams makes the property of H ∩ D as intersection set
not transparent to the same extent. This result agrees with the
findings of Bruckmaier et al. (2019) regarding the analysis of
people’s ability to identify conjoint probabilities in a tree diagram
and a 2 × 2-table. Our results concur with the findings of Binder
et al. (2020), who found that a 2 × 2-table facilitates identifying
conjoint events compared to a double tree diagram. The result
also goes along with our own finding in Böcherer-Linder et al.
(2018) that people’s performance can be increased by making the
subset H ∩ D as intersection set, graphically transparent.

The results for hypothesis 2.1 are similar to the results for
hypothesis 1: it is easier to identify the correct basic set (D)
in the 2 × 2-table and the double-tree diagram, for which the
basic set is explicitly given (numerical transparency), than in
a unit square and a tree diagram. In contrast to the results
concerning hypothesis 1, it is easier to identify the basic set
in a unit square than in a tree diagram, for which the basic
set D is not transparent. The result concerning hypothesis 2.1.1
strengthens the assumption that a visualization’s hierarchy may
be a disadvantage when dealing with Bayesian situations. Thus, a
unit square was found to be significantly more effective compared
to a tree diagram in order to avoid the representative thinking
strategy (d1/h1), when the correct subset is identified. Also, a
double tree diagram is more effective in avoiding this strategy
than a tree diagram. We interpret this result considering the
property of the double-tree diagram to propose two possibilities
for identifying the correct basic set in the hierarchy of the tree,
that is, the nodes representing the frequencies of h1 and of d1 + d3,
whereas the tree diagram proposes only the node representing h1.

With hypothesis 3, we regarded the influence of the
Bayesian situation’s context that is given by the two scenarios
h1/(d1 + d3) < 1 and h1/(d1 + d3) > 1. The difference in the
Bayesian situations strongly impacts the amount of responses
showing the pre-Bayes strategy. Thus, whereas the pre-Bayes
strategy is of minor importance if h1/(d1 + d3) > 1, it is an
often used strategy if h1/(d1 + d3) < 1. This finding is apparent
for each of the four visualizations. Accordingly, research either
yielded the pre-Bayes strategy (Zhu and Gigerenzer, 2006), or not
(Bruckmaier et al., 2019).

The strategies described so far in literature (Table 1) are
mostly dependent on visualization. The most prominent strategy
is the correct Bayesian strategy that people used in between
37.3% (tree diagram) to 72.4% (2 × 2-table) of the cases.
Thus, visualization was again found to strongly impact people’s
performance in Bayesian situations. Nevertheless, there are some
studies that did not find a facilitating effect of visualization (e.g.,
icon arrays in Sirota et al., 2014; Euler-diagrams in Brase, 2009).
For this reason, and congruent with the research of Binder et al.
(2015) and Binder et al. (2020), we found that visualization
in combination with natural frequencies strongly impacted
people’s performance in Bayesian situations. We have analyzed
differences in people’s performance concerning visualization
before (Böcherer-Linder and Eichler, 2019). In this paper,
erroneous strategies are of particular importance. In this regard,
our findings replicate the results of Zhu and Gigerenzer (2006)
with respect to the existence of the main strategies (Table 1).
However, the work of Zhu and Gigerenzer (2006) is expanded
through our research, since the strategies are described as being
dependent on different visualizations. Further, we contribute to
the analysis of erroneous strategies by a differentiated focus
on the basic set D and the subset H ∩ D. In our results, the
most prominent erroneous strategy was the pre-Bayes strategy.
As outlined above, this strategy depends on the situation and
visualization. Particularly, a unit square and a 2 × 2-table are
more effective at avoiding the pre-Bayes strategy compared to
both tree diagrams. The second significant erroneous strategy is
the representative thinking strategy. The representative thinking
strategy is highly dependent on a visualization, and seems to be
triggered especially by a tree diagram and its hierarchy as outlined
in hypothesis 2.1.2.

The other systematic erroneous strategies are of less
importance if all visualizations are considered. However, for a
part of the visualizations, specific strategies are of importance.
For example, since it seems to be easy to identify the correct
subset (numerator) in a Bayesian situation when a unit square
is used (Table 7), to identify in addition the correct basic set
(denominator) seems to be a bigger challenge and yields a
considerable amount of joint occurrence strategy (d1/n) and
likelihood strategy (d1/d3).

Our results contribute to existing research on Bayesian
reasoning, particularly to research concerning people’s erroneous
strategies in Bayesian situations. Moreover, our results have
implications for mathematics education, specifically the teaching
and learning of conditional probabilities and Bayes’ formula.
Due to the relevance of these subjects for inferential judgements
in situations of uncertainty in real life and the relevance of these
subjects for learning probability in school, understanding how
to facilitate Bayesian reasoning and avoid erroneous strategies is
important. A striking result concerns a property of a tree diagram
compared to the three other visualizations that differ in graphical
transparency (unit square), numerical transparency (double tree
diagram), or graphical and numerical transparency (2× 2-table):
a tree diagram seems to trigger the identification of an erroneous
basic set and, in particular, an erroneous subset in a Bayesian
situation. This result is interesting, since the tree diagram is
one of the most common visualizations of Bayesian situations
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(e.g., Utts and Heckard, 2015). For this reason, favoring the
tree diagram as a visualization to improve Bayesian reasoning
may be questioned.

Further, our results can be used to improve trainings of
Bayesian reasoning that are based on a double-tree diagram
(Wassner, 2004) or a unit square (Talboy and Schneider,
2017). When using a double-tree diagram, a specific focus
must be put on identifying the correct subset H ∩ D, and
emphasizing the related node as representing the intersection
set H ∩ D that allows for the set inclusion (H ∩ D) ⊆ D.
When using a unit square, our results imply that a specific
focus must be put on identification of the correct basic
set, since most of the students found a correct strategy
based on this identification. We assume that a brief training
focusing on the mentioned aspects can result in a considerable
impact on the facilitating effect of a double-tree diagram
and a unit square.

A 2 × 2-table seems to appear as an optimal visualization
of a Bayesian situation. Although this statement is clearly
supported by the results of this study and is also implied
by other studies (Binder et al., 2015; Bruckmaier et al., 2019;
Böcherer-Linder and Eichler, 2019), this statement must be
interpreted carefully. Firstly, for the students in our study,
the 2 × 2-table was a very familiar visualization. With our
study design, we were not able to estimate the impact of
this fact. However, the results regarding the tree diagram
that was also very familiar to the students provided evidence
that familiarity is not as important for a facilitating effect as
other characteristics of a visualization. Furthermore, we follow
Bruckmaier et al. (2019), stating that a 2 × 2-table is restricted
to Bayesian situations that are given in a natural frequency
format. If a Bayesian situation is given in a probability format
with P (H) , P (D|H) and P

(
D|H̄

)
, the conditional probabilities

cannot be visualized by a 2 × 2-table. Thus, to draw a
2 × 2-table based on this information in the probability
format necessitates computing the information in a 2 × 2-
table. This is not necessary for the other visualizations, that
is, a tree diagram, a double-tree diagram, or a unit square.
For this reason, we assume that the facilitating effect of a
2 × 2-table is restricted to situations in which the statistical
information of a Bayesian situation is entirely given in a natural
frequency format.

Finally, an open question remains about the effect of
visualizations on people’s erroneous strategies when they have
been trained in using visualizations before. This research
may lead to further enhancement on the facilitating effect
of visualization and its impact on people’s strategies in
Bayesian situations.

CONCLUSION

We illustrated that people’s strategies in Bayesian situations
depend strongly on specific visualizations of the statistical
information in these situations. Different visualizations trigger
specific ways of identifying a basic set and related subset in
Bayesian situations. Although each of the visualizations in our
research, that is, a tree diagram, a unit square, a double-tree
diagram, and a 2 × 2-table were found to improve people’s
performance in Bayesian situations, a tree diagram triggers
significantly more erroneous strategies in comparison to the
other three visualizations. The differences may be explained
by a numerical transparency. In our research, the numerical
transparency is implied if the basic set of a Bayesian situation is
explicitly given by a field or a node. However, beyond the amount
of numerical information, making the nested-sets structure of a
Bayesian situation graphically transparent seems to help avoid
erroneous strategies. In our research, the nested-sets structure
of a Bayesian situation was in particular graphically transparent
when a subset could be clearly identified as an intersection set.
Our findings contribute to the debate about beneficial graphical
properties of visual representations of statistical information in
Bayesian situations, and serve as an empirical foundation in
mathematics education for designing interventions to improve
Bayesian reasoning.
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Cognitive psychology has shown that understanding numerical information is deeply

related to the format in which this information is presented; percentages are difficult

to grasp whereas frequency formats are intuitively accessible. This plays a vital role

in the medical domain where difficult risk-related probability judgments have to be

made both by professionals and their patients. In this article, we demonstrate that

the idea of representing statistical information in terms of frequency formats is not

only helpful for communicating risks, but can be applied to primary school stochastics

when percentages and fractions are not available. For this purpose, we report on an

intervention study conducted in grade 4 in primary school. The results show, on the

one hand, that primary school students could already solve Bayesian reasoning tasks

in the pretest when natural frequencies were used. On the other hand, the students

profited from the intervention where they used different representations, namely colored

tinker cubes and natural frequencies in order to describe and quantify frequencies and

probabilities. These results go along with findings from cognitive psychology that activities

with hands-on material as well as pointing out to the underlying nested-sets structure can

foster Bayesian reasoning. The results are discussed in particular with regard to teaching

stochastics in (primary) school.

Keywords: natural frequencies, Bayesian reasoning, representations, empirical study, primary school

THEORETICAL BACKGROUND

Why do people find probability and statistics unintuitive and difficult? I’ve been working in this area for

around 35 years, and after all this time have finally arrived at an answer. Because probability and statistics

are unintuitive and difficult.

–Spiegelhalter and Gage (2014)

The core idea of this paper is to provide empirical evidence from an intervention study in primary
school that demonstrates that probability and statistics are not—per se—unintuitive and difficult.
It appears that the way stochastic concepts and contents are communicated and represented is
often unintuitive and difficult but, can be—at least partly—made accessible already to primary
students by using natural frequencies in combination with enactive, hands-on material and
activities. In our study, we focus on Bayesian reasoning in the sense of inferring or adjusting
probabilities for hypotheses “upon receiving new evidence” (Vallée-Tourangeau et al., 2015, p.
4). First of all, there is an a-priori probability P(H) for a certain hypothesis to be true. When
receiving new information (data = D), this probability might be adjusted. In many stochastic
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situations the conditional probability P(D|H) can be determined
from the context. However, what is often of interest is the
inversion of this conditional probability, namely P(H|D). In
these cases, the Bayes’ theorem that can be applied in order to
calculate the inversion of such a conditional probability what
can be considered as an update of the a-priori probability.
Research clearly shows that it is very difficult for many people
to understand conditional probabilities and in particular the
Bayes’ theorem (Gigerenzer and Hoffrage, 1995; Sedlmeier, 2001;
Sedlmeier and Gigerenzer, 2001; Hoffrage et al., 2002; Wassner,
2004). With regard to our sample, we won’t focus on the
Bayes’ theorem in this study. However—as we will show in
this paper—primary school students can already understand
the core idea of Bayesian reasoning in the sense of updating
probabilities, if the used representation format is adequate, e.g.,
if natural frequencies are used. In the following, we will describe
how natural frequencies can support human understanding in
specific situations.

The Role of Natural Frequencies in Human
Comprehension of Situations of
Uncertainty
The way statistical or numerical information is communicated
is deeply related to the processes of the human mind and its
mechanisms (Gigerenzer and Hoffrage, 1995; Sedlmeier, 2001;
Hoffrage et al., 2002; Spiegelhalter et al., 2011). During the last
50 years, there have been disputes between advocates of the
heuristics-and-biases tradition and evolutionary psychologists
about humans’ reasoning and judgment capabilities under
uncertainty (Samuels et al., 2002). The hot-button issue is the
question of whether human beings lack a sense for probability
(Piattelli-Palmarini, 1994) or whether they do indeed have a form
of instinct for it (Pinker, 1997). The scholars with a pessimistic
mindset come primarily from the ranks of the heuristics-
and-biases program. Piattelli-Palmarini (1994), Bazerman and
Neale (1986) as well as Gould (1992) state that humans are
somewhat probability-blind when reasoning and judging under
uncertainty. From their perspective, humans are not capable
of making probability-related judgments because of one main
reason: The human mind is “not built to work by the rules
of probability” (Gould, 1992, p. 469). As a result, human
choice behavior will always deviate from normatively appropriate
judgments (Samuels et al., 2002). One of the most popular
proponents and founder of the heuristics-and-biases program
is Daniel Kahneman. In his opinion, there is little hope of
eliminating wrong intuitions and biases in probabilistic thinking
through instruction (Kahneman, 2011). In contrast, several
evolutionary psychologists argue that probabilistic phenomena
are too pervasive in nature for humans to lack a sense of
them (Pinker, 1997). Almost every incident in everyday life
can be described as a probabilistic phenomenon. As a result,
the human mind must be capable of dealing with randomness.
Moreover, the reasons for the difficulties mentioned above
hark back to counterintuitive formats in which probabilities
are communicated (Gigerenzer, 1991). Information should be
presented in the way people naturally think (Pinker, 1997). As a

consequence, cognitive illusions such as the base-rate fallacy or
the conjunction fallacy may just disappear (Gigerenzer, 1991).
We will now introduce the concept of natural frequencies, a
format that might support understanding probabilities.

The concept of natural frequencies was first put forward by
Gigerenzer and Hoffrage (1995). It can be vividly illustrated as a
natural movement people perform when they, e.g., extract two
apples from a basket with 10 apples, or certain tokens from
a larger set of tokens (see Figure 1). The relations between
those subsets can be interpreted as “nested sets.” The so-called
“nested-sets theory” is based on the idea that Bayesian reasoning
is deeply intertwined with the understanding of the relation
within sets and their subsets (McDowell and Jacobs, 2017;
see also Section Possible Explanations for the Advantages of
Natural Frequencies: The Nested-Sets Theory and the Ecological
Rationality Framework).

In order to show the specific and intuitive nature of natural
frequencies, we contrast them to numerical expressions of
percentages. For instance, when describing the proportion of
colored tokens from the image in Figure 1, we can either say 7
out of 40 are colored (natural frequencies) or we can say 17.5%
tokens are colored (relative frequency as percentage).

Both expressions are mathematically equivalent; however,
one appears to be adapted to the human mind because of the
natural movement we associate with this expression. We can
directly obverse and count the numbers involved in the natural
frequency of colored tokens (Hoffrage et al., 2002). Expressions
in terms of percentages are more difficult to grasp because of the
normalization to 100. This might be explained by the following:
the base rate describes the frequency of a certain feature (seven

FIGURE 1 | Sampling using frequencies: cover image of a German

schoolbook for upper-secondary level mathematics (source: Diepgen et al.,

1993).
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colored tokens) in relation to the population (a total of 40
tokens). Normalization means dividing this absolute frequency
by the total number in the population (and multiplying it with
100). As a result of this normalization, the information about
the absolute numbers within the population disappear. On the
one hand, this procedure facilitates comparing populations of
different sizes. On the other hand, this process increases the level
of abstraction, since there are no absolute, countable entities in
the standardized frequencies, i.e., the percentages.

People might say that natural frequencies are not
mathematically valid. Whereas, 7 out of 40 might be considered
as only one arbitrary numerical example of the underlying
proportion, the percentage 17.5% is the commonly used and
most generally accepted representation of this proportion. And
it is true that dealing with natural frequencies might not be
easy when comparing or computing proportions since sizes of
the underlying populations might be different—in contrast to
percentages. However, an argument for using natural frequencies
is that 7 out of 40 can indeed be considered as a representative
of the underlying proportion if we think of it as an expected
value. For instance, this expected value can easily be interpreted
as the mean proportion of the following: 5 out of 40; 9 out of
40; 6 out of 40 and 8 out of 40. Another argument for using
natural frequencies is that they are suitable for describing
conditional probabilities. Referring to the example in Figure 1,
the conditional probability P (green token | colored tokens) can
be described as 2 green out of 7 colored tokens, which is more
easy to interpret than the percentage 29% (rounded value of 2/7).
Again, a natural movement can be associated, i.e., extracting the
colored tokens out of the large set of all tokens and taking the
two green tokens out of the small subset of colored tokens.

Natural Frequencies Can Support the Understanding

of Bayesian Reasoning Tasks
Within the pioneering edition Judgment under uncertainty—
Heuristics and Biases by Kahneman et al. (1982, p. 253), Eddy
stressed that medical doctors do not follow the Bayes’ formula
when solving the following task:

The probability that a woman aged 40 has breast cancer (B) is
1% (P(B) = prevalence = 1%). According to the literature, the
probability that the disease is detected by a mammography (M)
is 80% (P(M+|B) = sensitivity = 80%). The probability that the
test mis-detects the disease, although the patient does not have it
is 9.6% (P(M+|B) = 1 - specificity = 9.6%). If a woman aged 40
is tested as positive, what is the probability that she indeed has
breast cancer P(B|M+)?

Application of the Bayes’ formula yields the following result:

P (B|M+) =
P(M+| B) · P(B)

P(M+| B) · P(B) + P(M+| negB) · P(negB)

= 0.8 · 0.01
0.8 · 0.01 + 0.096 · 0.99 = 7.8 % (1)

Thus, although having a positive mammography, the probability
of breast cancer is only 7.8%, while Eddy (1982) reports that
95 out of 100 doctors wrongly estimated this probability to be
between 70 and 80% in his empirical study.

In order to support the estimation of such conditional
probabilities, Gigerenzer and Hoffrage (1995) investigated the
corresponding representation of uncertainty. In Eddy’s task from
above, quantitative information was represented as probabilities.
Gigerenzer and Hoffrage presented an adaption of Eddy’s task
to medical doctors: The original probabilities were replaced
by a different representation of uncertainty, namely natural
frequencies. The adapted task was as follows (ibid., p. 688):

Hundred out of every 10,000 women aged 40 who participate in
routine screening have breast cancer. 80 of every 100 women with
breast cancer will be detected as positive by a mammography.
950 out of every 9 900 women without breast cancer will also
be detected as positive by a mammography. Here is a new
representative sample of women aged 40 who have been detected
as positive by a mammography in routine screening. How many
of these women do you expect to actually have breast cancer?

Putting the numbers into Bayes’ formula yields the
following result:

P (B|M+) =
80 (cancer & T+)

80 (cancer & T+) + 950 (no cancer & T+)

= 80
1030 = 80 out of 1030 (2)

Gigerenzer and Hoffrage (1995) reported that nearly half (46%)
of all doctors gave the correct answer to this adapted task. This
study was one of the first of several studies that empirically
confirmed the positive effects of representing information in
terms of natural frequencies instead of percentages (Gigerenzer
and Hoffrage, 1995; see also Macchi, 1995; Girotto and Gonzalez,
2001). In the following section, we will present further empirical
studies comparing natural frequencies with other probability
formats such as percentages in order to get a more profound view
of their potential benefit.

Natural Frequencies—A Panacea for Solving

Bayesian Reasoning Problems?
The frequency-probability-effect, i.e., the fact that using
natural frequencies produces higher solution rates than using
probabilities, is a very robust phenomenon. It has been replicated
in many studies (see, e.g., the meta-analysis of McDowell
and Jacobs, 2017). Nevertheless, the correctness of judgments
concerning the medical test problem is far from being accurate—
even if natural frequencies are used (Pighin et al., 2018). In
some cases, single-event probabilities have indeed shown some
advantages over natural frequencies. In this sense, Pighin et al.
(2018) found that the communication of test results in terms
of chances compared to natural frequencies better helped
patients to interpret their personal situation. Moreover, Ayal and
Beyth-Marom (2014) found evidence that tasks using a natural
frequency format were only solved better if not more than one
mental step was required. There is evidence that in more complex
tasks with several mental steps, probability formats outperform
natural frequencies. This might be due to the normalization
of the frequencies that is characteristic for probabilities and
percentages and that helps to compare and compute different
values (Ayal and Beyth-Marom, 2014).
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These findings relativize the frequency-probability-effect
and, hence, have to be accounted for in this research field.
Nevertheless, they play only a minor role for our study conducted
in primary school. If any, quantifications of probabilities in
primary school are restricted to frequency formats in the sense
of “The probability to get a red cube is, e.g., 3 out of 10.”

Two opposite theories, the Nested-Sets Theory and the
Ecological Rationality Framework, have been established that
provide explanations for the frequency-probability-effect. We
will briefly present and contrast them in the following section.

Possible Explanations for the Advantages of Natural

Frequencies: The Nested-Sets Theory and the

Ecological Rationality Framework
McDowell and Jacobs (2017) state a long-lasting controversy
with regard to possible explanations of the frequency-probability-
effect. Proponents of the Ecological Rationality Framework ERF
(e.g., Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996)
assume that there is a specialized module in the human mind
that automatically processes natural frequencies. According to
ERF, this module has developed through evolution based on
an appropriate matching between the human mind and the
structure of the environment (McDowell and Jacobs, 2017). As
a consequence, the presentation of a Bayesian reasoning task
in terms of natural frequencies increases solution rates as these
natural frequencies correspond to people’s natural environment
for millions of years. In particular, the advantages of using natural
frequencies are independent from the individual’s cognitive
resources (Lesage et al., 2013).

A contrary view is expressed by the Nested-Sets Theory
(NST) that explains the frequency-probability-effect as a result
of emphasizing the nested-sets structure of the Bayesian problem
when probabilities are translated into frequency format (Girotto
and Gonzalez, 2001; Barbey and Sloman, 2007). By using natural
frequencies, this nested-sets structure becomes more prominent
and visible. As a result, the analytical system of human mind is
triggered and executive resources get available that can be used
for calculating a correct answer. Lesage et al. (2013) examined
the relationship between cognitive capacity and performance on
Bayesian reasoning tasks. Participants with rather low cognitive
capacity did not benefit much from facilitating the tasks via
using natural frequencies. This finding is in line with NST that
states that people with rather low cognitive resources profit less
from the nested-sets structure visible in natural frequencies. In
contrast, ERF claims that the benefits of using natural frequencies
should rather equally apply for people with different levels of
cognitive capacity since everyone has such a specialized module
that automatically processes natural frequencies.

With regard to the focus of this study, we will not
go into further details concerning the presented theories.
However, they both emphasize that natural frequencies can
help the understanding of, e.g., conditional probabilities or
Bayesian reasoning tasks. Moreover, NST provides an analytical
explanation for the benefit of using natural frequencies: When
people get aware of the nested-sets structure of a Bayesian
reasoning task (i.e., by natural frequencies), they will perform
better on these tasks. Although this theory can serve as a

theoretical basis for our study, as primary school students are
able to work on such nested-sets, it has to be noted that there are
different factors that mediate people’s performance on Bayesian
tasks. Such factors will be presented in the following.

Critical Factors Mediating Performance on Bayesian

Reasoning
The meta-analysis of McDowell and Jacobs (2017) reveals
important factors that account for different performances in
Bayesian reasoning tasks. Two of the strongest factors concern
the characteristics of the tasks and they apply for both natural
frequencies and probabilities. First, task performance increases
substantially if task complexity is reduced (see in particular
Ayal and Beyth-Marom, 2014). This means for instance that
less irrelevant information is given in a task or that less mental
steps in the mathematical computations are required. Second,
if participants are given visual aids, they perform much better
since these external representations can clarify the underlying
nested-sets structure (McDowell and Jacobs, 2017).

Concerning individual factors, cognitive abilities and thinking
dispositions (Sirota et al., 2014), text comprehension (Johnson
and Tubau, 2015), as well as numeracy and cognitive reflection
(Sirota and Juanchich, 2011) predict Bayesian reasoning
performance in both natural frequencies and probability formats.
As the meta-study of McDowell and Jacobs (2017) indicates that
a high level of numeracy leads to better Bayesian reasoning,
Johnson and Tubau (2013) focused their study on this concrete
individual characteristic. They found that short and clear natural
frequency problems lead to less differences between people
with low and high numeracy skills. Hence, both high and
low numerate participants were able to adequately solve short
Bayesian reasoning tasks using natural frequencies. The solution
rates became smaller when the problems were presented in the
form of longer word problems both in the natural frequencies
and the probability format.

Whereas there are several studies focusing on such individual
factors mediating the ability to solve Bayesian reasoning
problems, there is only little research on how for example
interactivity-based intervention improves performances on
Bayesian reasoning tasks. Vallée-Tourangeau et al. (2015)
conclude that enabling an enactive, physical manipulation of
the problem information leads to substantially better statistical
reasoning, without a specific training or instruction. In their
study, participants benefited by working with malleable physical
representations of a problem, namely playing cards. The
participants who solved the problems with playing cards
performed better than their peers without.

Although the mentioned studies reveal important findings
about mediating factors on people’s performance in Bayesian
reasoning tasks, there is still the need to explore how this
performance can be fostered. In particular, it stands to reason if
and how young students with limited experiences in stochastics
can be supported in this perspective. Therefore, the next section
will present to what extent stochastics and Bayesian reasoning are
taught at primary school.
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Stochastics and Bayesian Reasoning in
Primary School—Status Quo and Potential
Teaching stochastics in primary school is required by the German
curricular standards but restricted to descriptive statistics (e.g.,
gathering, representing, and analyzing data in the context of tasks
related to the students’ everyday lives such as “How do you get
to school?”) and basic random experiments (e.g., performing
experiments with dice and spinners and discussing whether an
event is “impossible”, “certain” or “likely” (KMK, 2004)). There
is a strong focus on qualitative probability judgments and basic
quantitative probability (e.g., “Are you more likely to get a
number on the dice between 1 and 2 or a number between 3 and
6?”). Nevertheless, young students’ potential does not appear to
be fully exploited, as several studies suggest that primary school
students are able to do more profound stochastics.

Lindmeier and Reiss (2014), for example, show that children
aged from 9 to 12 years can acquire elementary competencies
regarding inferential statistics. In their experiment, the students
took random samples out of a box with an unknown amount of
red and blue cubes. After several trials, they had to estimate the
amount and proportion of red and blue cubes in the box.

Other studies indicate that students in primary school are
able to grasp an elementary form of conditional probabilities and
Bayesian reasoning if these concepts are introduced using natural
frequencies (Martignon and Kurz-Milcke, 2006; Martignon and
Krauss, 2009; Latten et al., 2011; Till, 2015). Due to the students’
young age, these studies focus on their ability to capture the
statistical or probabilistic phenomena instead of on their ability
to work out the Bayes’ formula. Promoting such a propaedeutic
understanding of (conditional) probabilities also appears to be
an important basis for further learning as, for instance, Diaz and
Fuente (2007) show that students often approach probabilities in
an algorithmic way: They master the techniques but do not catch
the underlying phenomenon.

The study of Zhu and Gigerenzer (2006) used specific tasks
promoting (an elementary form of) Bayesian reasoning bymeans
of natural frequencies. Before presenting such student tasks, we
will introduce a task by Kahneman (2011, p. 6–7) that served
as a model for Zhu and Gigerenzer. In Kahneman’s task, which
often results in wrong judgments, an individual is described by a
neighbor as follows:

Steve is very shy and withdrawn, invariably helpful but with very
little interest in people or in the world of reality. A meek and tidy
soul, he has a need for order and structure, and a passion for detail.
Is Steve more likely to be a librarian or a farmer?

According to Kahneman’s (2011) research, most people answered
that Steve is probably a librarian. However, as there are five times
as many farmers as librarians in the United States, the absolute
number of shy and helpful farmers is larger than the absolute
number of shy and helpful librarians. Hence, the right answer to
Kahneman’s task is that it is more likely that Steve is a farmer. The
most common mistake in this kind of task is that people neglect
the base rate. Gigerenzer and Hoffrage (1995) claim that this
typical fallacy—as well as some others—disappears when using
natural representation formats.

In order to use such tasks that focus on Bayesian reasoning
already in primary school, Kahneman’s task was adapted to this
age group by Zhu and Gigerenzer (2006). Latten et al. (2011)
implemented these ideas several years later in a short learning
environment (the cited learning environment originates from
Multmeier, see, e.g., Multmeier, 2012). In this adaption, librarians
became princesses; farmers became mermaids, and the attribute
shy became wearing a crown:

5 out of 60 fairytale characters are princesses, and 4 of these
5 princesses wear a crown. The other 55 out of 60 fairytale
characters are mermaids, and 12 of these 55 mermaids wear
a crown.

The corresponding question in this task is as follows: “Imagine
you see a fairytale character wearing a crown.Would she be more
likely to be a princess or a mermaid?”

When solving this task, the students have to concentrate only
on the people wearing a crown and mask out all people without
crown. Then they can compare the given natural frequencies
of fairytale characters with crowns: 4 out of 16 characters with
crowns are princesses, whereas 12 out of 16 characters with
crowns are mermaids. Therefore, if they were to see a character
with the attribute wearing a crown, it would be more likely to be
a mermaid! By comparing the concrete numbers, students can
realize that although almost every princess wears a crown (4 out
of 5), there are altogether more mermaids with a crown. Hence,
the attribute wearing a crown applies to more mermaids, which
is why it is more likely for a character with a crown to be a
mermaid. Understanding these nested-sets structure is essential
for Bayesian reasoning.

The presented typical Bayesian reasoning task can be made
even more accessible by combining the use of natural frequencies
with iconic representations, such as icon arrays (Kurz-Milcke
et al., 2011). Several studies have shown the positive effects
of visual representations for (probabilistic) problem-solving
(Corter and Zahner, 2007; Brase, 2008; Garcia-Retamero et al.,
2010; Gaissmaier et al., 2012; McDowell and Jacobs, 2017).
As a result of representing statistical information by means
of visual representations, subset structures become visible,
which is particularly conducive to understanding Bayesian
reasoning problems. The big advantage of such visually perceived
representations is that all proportions of the relevant features
are visible what might help students to intuitively grasp all
proportions (Scholz and Waschescio, 1986). Figure 2 displays
an iconic representation related to the above-described student
task. This representation helps students to realize that there
are so-called symptomatic characteristics for certain fairytale
characters such as crowns for princesses. In the above-presented
task, it helps the students to get aware that the symptomatic
characteristic crown does not automatically lead to a higher
probability for princesses. As, in this example, the absolute
number of mermaids wearing a crown is higher than that of the
princesses, the correct answer for the task above is “mermaid.”

Of course, there are also other representations that could help
students to work on the described Bayesian task. For instance, it
can alternatively be modeled using hands-onmaterial in the form
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FIGURE 2 | Iconic representation of a typical Bayesian task: Icon array. See Till (2015, p. 91).

FIGURE 3 | Enactive representation of a typical Bayesian task: Tinker cubes. See Till (2015, p. 91).

of colored tinker cubes. Figure 3 displays such an example. In this
simplified version, there are 2 princesses (red) and 8 mermaids
(blue). 1 of the 2 princesses and 2 of the 8 mermaids wear a
crown (marked in yellow). The other fairytale characters wear no
crowns (marked in green). The base rate of princesses is 2 out
of 10 (prior probability). Looking for princesses in the sample
of the characters with crowns yields a base rate of 1 out of 3
(posterior probability).

The previous section shows that there are possibilities of
introducing conditional probabilities and Bayesian reasoning
already in primary school. In the following, we will sketch
empirical results related to using natural frequencies in Bayesian
reasoning tasks—in secondary but also in primary school.

Empirical Research on Students’ Bayesian
Reasoning
In an intervention study, Wassner (2004) compared two ways
of teaching the Bayes’ formula in a sample of 15- to 17-year-old
students: one with probabilities and one with natural frequencies.
The students who worked with natural frequencies performed
significantly better in the posttest than the students who worked
with probabilities. Wassner also reported on long-term effects of
the intervention.

In the experimental study “The dog ate my homework!,”
Spiegelhalter and Gage (2014) asked 14- to 16-year-old students
to model the following Bayesian task: Within a school class,
several students were accused of lying about the reasons why they

had forgotten their homework. Hence, the study participants had
to find out how likely it was that the accused or non-accused
students were lying or telling the truth. In order to encode the
binary variables (lying/telling the truth; accused/non-accused),
the students worked with colored tinker cubes; moreover, all
students created 2 × 2 tables and empirical frequency trees. All
of these representations were based on natural frequencies, the
concrete numbers of students’ attributes (lying/telling the truth
and accused/non-accused) were assigned randomly. This class
experiment indicated that students could easily do probability
calculations based on natural frequencies. However, due to the
study design, it was not possible to determine the representation
format that led to the highest growth in learning.

Zhu and Gigerenzer (2006) showed that children aged from
9 to 11 years can already work successfully on typical Bayesian
tasks when the relevant information is presented as natural
frequencies. The researchers used a set of ten tasks presented in
two different ways: The information was given as probabilities
in percentage form to one group of children and as natural
frequencies to the other group. The students working with
probabilities could not find any right solution at all. In contrast,
even the youngest students (aged 9 years) from the group
working with natural frequencies solved 14% of the tasks. The
10-year-olds in this group solved 42% and the 11-year-olds 47%
of the tasks. These findings indicate that also very young students
can deal with conditional probabilities when natural frequencies
are used.
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In an experiment, Martignon and Kurz-Milcke (2006) asked
students aged from 8 to 10 years to construct stochastic situations
using tinker cubes and stochastic urns. One of their aims
was to foster the development of dynamic mental imagery
to represent stochastic situations. The experiment consisted
of a so-called “urn arithmetic” in which first elements of
expanding proportions were fostered. The students had to
compare proportions by constructing equivalent urns in the
following manner: We have two urns, namely U1 (1 red: 2 all)
and U2 (2 red: 5 all). Which urn is more convenient if we
want a red tinker cube? (Martignon and Kurz-Milcke, 2006).
Without knowing about fractions the students discussed how
to enlarge an urn without changing the odds (1 out of 2 = 2
out of 4). The authors consider “this first confrontation with
comparison of proportions and similarity of proportions [as]
a fundamental previous step before fractions are introduced”
(Martignon and Kurz-Milcke, 2006, p. 3). In their experiment
Martignon and Kurz-Milcke also used Kahneman’s Bayesian task
related to girls’ and boys’ mathematical enthusiasm and modeled
the situation with a big urn in the involved classes. All students
in the corresponding class were represented by tinker towers,
i.e., a combination of two colored tinker cubes (red/blue for
the students’ gender, yellow/green for their math enthusiasm).
After having gathered the relevant information about the whole
class, the towers were categorized in a tree diagram. Based on
this tree diagram, students formulated questions such as: “I
have a blue cube (boy) behind my back. Do you think I am
likely to be a math enthusiast?” Although there was no formal
testing in this experiment, the authors stated that representing
conditional probabilities via tinker towers in combination with
tree-like layouts on the classroom floor helped students to work
on Bayesian tasks.

Martignon and Krauss (2009) conducted a study in which
they introduced a tool box for decision-making and reckoning
with risk. This study was conducted in six grade 4 primary
school classes. The students aged 9 to 10 were confronted
with a sequence of tasks and playful activities involving,
e.g., elementary Bayesian reasoning [“princess/mermaid task”
presented in chapter Stochastics and Bayesian Reasoning in
Primary School—Status Quo and Potential (Latten et al., 2011)]
as well as the comparison of proportions and risks. One focus
of the training was dealing with the Wason selection task, a logic
puzzle about deductive reasoning. By following logical principles,
students needed to figure out which cards to flip over to figure out
certain rules. Hence, this game bridges between logical thinking
and conditional probabilities. Furthermore, the primary school
students played the game “Ludo” and were asked to compare
different moves and the associated risks. The authors stated that
these playful tasks and activities were fruitful. Again, this study
confirmed that primary school students can successfully work on
Bayesian tasks.

The study RIKO-STAT (e.g., Kuntze et al., 2010) assessed
different competencies in the area of statistical literacy in a
sample of primary school, secondary school, and university
students. The tasks for the primary school students required
them to apply, e.g., an elementary approach to expected values,
risk reduction, and comparing proportions. The students were

also confronted with the above-described Bayesian reasoning
task addressing mermaids and princesses (chapter Stochastics
and Bayesian Reasoning in Primary School—Status Quo
and Potential). All in all, the students’ performance showed
considerable weaknesses, and hence, the authors argued in favor
of encouraging statistical and probabilistic thinking earlier and
more deeply at school. Furthermore, the authors reported that the
primary school students performed well on the Bayesian tasks.
Analyzing the primary students’ strategies showed that many
intuitively used an approach focusing on natural frequencies
which led to satisfying solution rates, whereas the secondary
school students mostly used percentages and did not perform
well. The authors assumed that they would have performed
better if these secondary school students had applied natural
frequencies instead of percentages.

Based on the results from RIKO-STAT, researchers
from Ludwigsburg University of Education and cognitive
psychologists from the Harding Center for Risk Literacy in
Berlin investigated in a sample of primary school students
aged 9 to 10 their competencies related to risk (Latten et al.,
2011). In this intervention study consisting of six lessons, the
students were confronted with first elements of expected values,
risk reduction, conditional probabilities, and comparisons of
proportions. The authors reported of significantly improved
competencies due to the intervention.

The above-mentioned findings show that natural frequencies
can be used to foster students’ Bayesian reasoning. In the next
section, we will outline the corresponding research desideratum
of our study.

Research Desideratum
Since several decades, there is vast empirical evidence that many
people have difficulties with Bayesian reasoning—even if they
dispose of high cognitive capacity and high numeracy (e.g.,
Kahneman et al., 1982; Sirota and Juanchich, 2011; McDowell
and Jacobs, 2017). One idea to foster Bayesian reasoning,
is to confront already young children with corresponding
situations and tasks in order to develop valid intuitions. This
idea is based and supported by considerations of the previous
sections that outlined (a) theoretically-driven explanations for
the intuitive character of natural frequencies, (b) empirical
findings confirming their advantages compared to probabilities
represented as percentages and, in particular, (c) empirical
results indicating that natural frequencies can successfully be
used at primary school, where percentages, ratios, and fractions
are not explicitly addressed—at least not in Germany. In this
perspective, the first research question of this study investigates
how successful primary school students are with specific
Bayesian reasoning tasks represented in natural frequencies. The
corresponding research question is:

• To what extent are students in grade 4 able to solve Bayesian
reasoning tasks when the information is given in terms of
natural frequencies?

Considering empirical evidence from prior research leads to the
hypothesis that already young students can handle with such
tasks. This study aims at confirming these prior studies and to
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enlarge them by quantitative evidence—asmost of the cited study
do not provide quantitative results.

Moreover, and based on the idea that primary school students
can successfully work on Bayesian reasoning tasks via natural
frequencies, it stands to reason if and how primary school
students can be supported in this regard. For this age group,
a play- and activity-based approach appears to be adequate
that could prepare a valid basis for the further learning
about Bayesian reasoning (Martignon and Kurz-Milcke, 2006;
Martignon and Krauss, 2009; see also Johnson and Tubau, 2015).
The intervention of this study was conceived in this sense as it
involves playful learning with enactive representations like tinker
cubes. The intervention will be described in the Methods Section
in more detail. The corresponding research question focuses on
evaluating the effectiveness of this intervention:

• How does a specific intervention affect primary students’
performance in tasks related to conditional probabilities and
Bayesian reasoning?

As numeracy has proven to be a predictor of Bayesian reasoning
in prior research (Johnson and Tubau, 2013), we will control for
this covariate when investigating research question 2.

Previous studies have indicated that young students’ Bayesian
reasoning can be fostered through activities such as in our
intervention, but often, a statistical effect has not been proven
empirically. In particular, most of the cited studies do not provide
an experimental design enabling to quantitatively evaluate an
intervention effect of using natural representations. This study
closes this research gap and seeks to support the above-
mentioned findings using a pretest-posttest design including a
control group. In the following, we will describe the method used
in this study.

METHODS

Sample
In this study, 244 grade 4 students (131 girls) aged between 8 and
12 years (M = 9.5, SD = 0.61) took part. The students came
from 12 classes from six different schools in the surroundings
of a medium-sized city in the south of Germany. Eight classes
including 152 students were part of the treatment group and four
classes including 92 students served as control group (baseline).
The classes were not assigned randomly to the different test
conditions due to pragmatic reasons (see Limitations Section). In
each of the classes, there were around 20 students. As conditional
probabilities and Bayesian reasoning are usually taught in grade
10 or 11 at the earliest, the students had no previous school
experience with these topics.

Design of the Study
In order to determine particular intervention effects, a pre-,
post-, follow-up test design with a treatment and control
group was chosen. All students from the treatment and control
group completed the tests; however, only the students from the
treatment group attended stochastics-specific lessons, whereas
the students from the control classes attended general and non-
stochastics-specific math lessons in the time between the testings.

The pre- and posttests were administered directly before and after
the intervention; the follow-up test was conducted 3months after
the posttest. These temporal distances were comparable in the
treatment and control group.

The intervention effects were analyzed via a multiple
regression in SPSS 25. Covariates, such as students’ age, gender,
and their grades were collected. In this study, we control for the
covariate “grades in Mathematics” as a safeguard against possible
biases of the intervention effect due to general mathematical
competency represented by these grades. This appears to be
important as numeracy has shown to be an influencing factor
of Bayesian reasoning performances (Sirota and Juanchich, 2011;
Johnson and Tubau, 2013).

Intervention
The intervention included elements of several classroom
experiments and studies which had been conducted before at the
University of Education in Ludwigsburg as well as at the Max-
Planck Institute in Berlin (Martignon and Kurz-Milcke, 2006;
Martignon and Krauss, 2009; Latten et al., 2011). In particular,
the intervention comprised tasks and activities related to risk and
decisions under uncertainty that were intended also to foster first
intuitions of expected values. In the first lesson, the students were
confronted with a play-based simulation of the following trade-
off: “Either you choose one candybar for sure or you can toss a
coin. If you get heads, you win four candybars. Otherwise you go
empty-handed.” In the second and third lesson the focus was on
proportional reasoning as well as on relative and absolute risks
(see e.g., Till, 2014, 2015). In the fourth lesson, the students were
confronted with a typical Bayesian task during an ordinary 45-
min lesson. Because of the focus of this article, we will present
the content of this lesson in more detail. The following task,
which was adapted from the medical test problem (see chapter
Stochastics and Bayesian Reasoning in Primary School—Status
Quo and Potential), was discussed in this lesson:

“In a school yard, there are two girls—one with long hair and
one with short hair. There are also eight boys—two with long hair
and six with short hair. If I told you that I talked with one of these
children with long hair. Would you bet it was a girl?”

At the beginning of the lesson, the students were asked several
questions about the distribution of different characteristics
within their own class such as “How many girls are in this class?”
“How many students play soccer in a sports club?” By doing so,
the class was introduced to represent the considered population.
Afterwards, the initial question relating to countable entities was
turned into a probabilistic question: “Imagine someone picks
one student out of your class. What is the probability that this
person is a girl or a boy?” After some qualitative judgments
addressing for instance terms such as “more likely,” the class
made quantitative judgments formulated as frequencies (“8 out
of 21”). In the sense of Bayesian reasoning, these statements can
be understood as a-priori probabilities. After these preparative
activities, the task described above was introduced. In order
to really understand this Bayesian task and to clarify the
nested-sets structure of the problem, a little role play was
performed: 10 students (two girls and eight boys) representing
the characteristics described in the task were asked to line up in
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front of the class. The other students described the distribution
of the characteristics in the two groups (girls and boys). By doing
so, they were unknowingly introduced to natural frequencies: “2
out of 10 children are girls; 1 out of 2 girls has long hair, whereas
2 out of 8 boys have long hair.” Therefore, the characteristic
long hair is more typical for a girl. The teacher then asked “I
talked with one of these children with long hair. Would you bet
it was a girl?” The class discussed about the right answer. In
order to make this situation more accessible, the teacher asked
the students with long hair to make a step forward. Now all
students gave the right answer because they realized the nested-
sets structure related to the characteristic “long hair.” Afterwards,
the students used colored tinker cubes to encode the features boy,
girl, long hair, and short hair in order to model the situation.
By putting two cubes together, students were able to represent
related characteristics (i.e., a long-haired boy).

Instrument
According to Diaz and Fuente (2007), there are no standardized
tests of (young) students’ understanding of conditional
probabilities and Bayesian reasoning. Therefore, test items were
used that are comparable to the items of Zhu and Gigerenzer
(2006). They were structured in the same way as the medical test
problem (Eddy, 1982; Cosmides and Tooby, 1996). However,
different cover stories were created for the pre-, post-, and
follow-up test.

In order to illustrate the test inmore detail, we will present and
describe two items in the following. The Item FEU (see Figure 4
on the left) is characterized by the fact that students first are
asked by a sub-item (a) to determine the a-priori probability of
the hypothesis that a student of a certain school comes from
the city [P(H)]. Afterwards, they are asked in sub-item (b) to
update this probability when new information is given, namely
the fact that the observed child has a mobile phone [P(H|D)].
Sub-item (a) draws the students’ attention to the frequencies of
children coming from the city and the village within the whole
set. Sub-item (b) draws their attention to children from the city

and village within the subset of children having a mobile phone.
As the sub-item (a) might be considered as a trigger to think
about the nested-sets structure given in the task—what might
help students to answer also sub-item (b)—we label such items as
“guided tasks.” In addition to such “guided” tasks, there are “non-
guided” task (LaH) that are mathematically equivalent to the
presented type-(b) sub-item of the “guided” tasks (see Figure 4

on the right). However, students‘ attention here is not drawn to
the nested-sets structure by a preceding type-(a) sub-item. The
students are asked about the a-posteriori probability relating to
the number of princesses in the subset of individuals wearing
a crown [P(H|D)] without being triggered to the frequency of
princesses in the whole set.

As mentioned above, we consider the “guided task” as easier
to solve because students are triggered to think about and
determine the a-priori probability of a hypothesis and then
update this probability into an a-posteriori probability when
new information is gathered. This consideration is in line with
the nested-sets theory (Girotto and Gonzalez, 2001; Barbey and
Sloman, 2007) as students’ attention is drawn to the nested-sets
structure of the given situation. As the sample items illustrate,
the tasks were written in a short and comprehensible language to
make sure that students of both groups (treatment and control
group) exactly understood what they were required to do. The
pre-, post-, and follow-up tests all included items where the
students (a) had to mark the right answer (single-choice format),
(b) fill in the blanks with their answer, or (c) give an explanation
for their answer. Hence, altogether there were six items yielding
to a maximum score of six points. Tasks with missing values were
coded as zero because the students had enough time to complete
the tests.

Beyond tasks referring to Bayesian reasoning such as
the presented ones, the test included also tasks involving,
e.g., elementary comparisons of probabilities, proportions and
frequencies, trade-offs as first elements for expected values, and
risk reductions. As these tasks are not addressed in this article,
we do not report on them in more detail. More information

FIGURE 4 | On the left: “Guided” task (FEU); on the right: “Non-guided” task (LaH).
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about the test instrument can be found in Till (2015). For ease
of reading, in the following we will label the test scores referring
to the Bayesian reasoning items only as pre-, post-, and follow-up
test scores.

RESULTS

In the following, we present the results of this study in
two subsections: First, we report and analyze students’ overall
performance on the Bayesian reasoning tasks (both treatment
and control group) at the different times of testing (see research
question 1 und 2). Second and in order to investigate the
intervention effects (research question 2) in more detail, we will
present solution frequencies of the two items FEU and LaH that
were already introduced in the Methods Section.

The overall average of the Bayesian pretest score was 2.96
(SD = 1.48) out of 6 points. The students from the control
group had significantly higher pretest scores compared to the
students from the treatment group (Mtreatment = 2.81, SD= 1.48;
Mcontrol = 3.22, SD = 1.44; t(242) = 2.11, p = 0.036, Cohen’s d
= 0.28). After the intervention, the students from the treatment

TABLE 1 | Average test scores of the treatment and control group.

Pretest Posttest Follow-up test

Treatment 2.81 (SD = 1.48) 4.20 (SD = 1.86) 3.84 (SD = 1.86)

Control 3.22 (SD = 1.44) 3.75 (SD = 1.74) 3.64 (SD = 1.88

group outperformed the students from the control group with
a marginally significant p-value [Mtreatment = 4.20, SD = 1.86;
Mcontrol = 3.75, SD = 1.74; t(225) = 2.24, p = 0.071, Cohen’s d
= 0.26]. The increase from pre- to posttest was significant both
in treatment [t(143) = −8.39, p < 0.001, Cohen’s d = 0.83] and
control group [t(82) = 2.74, p = 0.008, Cohen’s d = 0.33]. After
3 months, the follow-up test scores of the treatment group were
still higher (Mtreatment = 3.84, SD = 1.86; Mcontrol = 3.64, SD =

1.88), though this difference was not significant [t(226) = 0.7595,
p= 0.448]. Table 1 displays an overview of these results.

In order to get more insight into the intervention effects, a
multiple regression was performed including also the covariate
grades in Mathematics (considered as a representative of
students‘ numeracy). Two models were compared (see Table 2):
In the first model, the predictors pretest Bayes score and
grades in Mathematics explained 17% of the variance of the
posttest Bayes score (pretest predicting follow-up test: 23%).
Both predictors proved to be significant, which means that, on
average, students with good grades in Mathematics (considered
as numeracy) and students with high pretest scores also achieved
high posttest scores.

For the second model, the third predictor test condition
(dummy-coded with 0 for the control group and 1 for the
treatment group) additionally explained 2% of variance. Hence,
19% of the posttest results can be explained by the three
predictors pretest score, grade in Mathematics, and test condition.
The fact that the predictor test condition had a significant
regression weight of 0.18 (p < 0.01) indicates that the short
treatment had a significant effect. Determining the effect size
for pretest-posttest-designs with treatment and control group

TABLE 2 | Prediction of the posttest results of the Bayesian tasks.

Model 1 Model 2

Variable B SE B β B SE B β

Pretest Bayes score 0.31 0.08 0.25*** 0.34 0.08 0.27***

Grade in mathematics −0.54 0.13 −0.27*** −0.55 0.13 −0.28***

Test condition (dummy-coded: contr. = 0; treat. =1) 0.65 0.23 0.17**

(adj.) R2 0.18 0.20

1R2 0.02

**p < 0.01; ***p < 0.001.

TABLE 3 | Prediction of the follow-up test results of the Bayesian tasks.

Model 1 Model 2

Variable B SE B β B SE B β

Pretest Bayes score 0.39 0.08 0.30*** 0.40 0.08 0.31***

Grades in mathematics −0.64 0.12 −0.32*** −0.65 0.12 −0.33***

Test condition (dummy-coded: contr. = 0; treat. =1) 0.40 0.23 0.10

(adj.) R2 0.26 0.27

1R2 0.01

*** p < 0.001.
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FIGURE 5 | Comparison of solution rates related to two different items

(treatment group).

FIGURE 6 | Comparison of solution rates related to two different items (control

group).

(corrected in the sense ofMorris, 2008) indicated amedium effect
size of d = 0.59. The findings related to the prediction of the 3-
months-delayed follow-up test result were similar (see Table 3),
whereas in this case the test condition was not significant.

As mentioned above and in order to get insight into the
intervention effect in more detail, we will now present solution
frequencies of two concrete items. As we only consider two items,
we do not use t-tests or other inferential statistics. The item FEU
represents a so-called “guided task” whereas the item LaH is a
“non-guided” task (see Methods Section).

Figures 5, 6 show the different solution frequencies of the
treatment and the control group on the two tasks. In the pretest,
the majority of the students (68% both in control and treatment
group) were able to complete the “guided task” FEU. Only about
23% of the students from the treatment group and 36% of the
control group solved the “non-guided” task.

After the treatment, 64% of the students from the treatment
group solved the “non-guided task”, the solution frequency in
the control group was 49%. The solution rates of the posttest
concerning the “guided task” were still high in both groups
(treatment group 73%; control group 66%).

DISCUSSION

The first—and perhaps the most important—result of this study
is the relatively high average pretest score of all students. Even
without prior confrontation with Bayesian text problems, the
students on average achieved half of the maximum test score.
This is even more meaningful when we consider the difficulties
that adults (medical doctors, lawyers) have with such tasks
(Gigerenzer et al., 2008; Gaissmaier et al., 2012). One explanation
of this finding might be the task’s representation format, namely
natural frequencies. Existing literature (e.g., Gigerenzer and
Hoffrage, 1995; Sedlmeier and Gigerenzer, 2001; Hoffrage et al.,
2002; Wassner, 2004; Zhu and Gigerenzer, 2006) shows that
people benefit from working with natural frequencies when
they have to solve probability-related tasks. This applies in
particular for a special kind of probability task, the medical test
problem, as difficult conditional probabilities and their inversions
become easier to understand if they are presented in terms
of natural frequencies. Barbey and Sloman (2007) explain that
natural frequencies lead to a clear representation of the subset
relationships (see also NST, e.g., Girotto and Gonzalez, 2001) and
to a simplification of numerical calculations (Sedlmeier, 2001;
Sedlmeier and Gigerenzer, 2001; Wassner, 2004). Therefore, we
assumed that this format might be also suitable for primary
school. This assumption could be confirmed by the present study.

Beyond the representation format of natural frequencies,
another explanation of the rather strong average pretest scores
might be the short and simple question format of our test
instrument that was obviously easy to understand for the
children. In particular, this question format made visible the
nested-sets structures underlying the tasks. In each task, a given
set of individuals with certain attributes had to be considered
and absolute numbers had to be compared. As the study shows,
many students managed to solve the inversion of the conditional
probability task even without the support of the intervention.
These results go along with findings from McDowell and Jacobs
(2017) according to which short and simple text formats as well
as the communication in terms of natural frequencies facilitate
Bayesian reasoning tasks. Moreover, the comparison between
the “guided” and “non-guided” tasks shows that the students of
both groups had less problems with the “guided” task. This is
even more impressive when we consider that the “guided task”
was arithmetically more demanding than the “non-guided” one
(“guided task”: A small school with 60 children; “non-guided
task”: A castle with 10 women). In line with the Nested-Sets
Theory (Girotto and Gonzalez, 2001; Barbey and Sloman, 2007),
this finding was to be expected as the type-(a) sub-item of
the “guided” task draw the students’ attention to the nested-
sets structure and hence makes it more visible. However, as
these type-(a) sub-items do not draw the students’ attention
directly to the structure focused in the type-(b) sub-items, this
expectation had to be empirically confirmed. The higher solution
rates (pretest) of both groups for the “guided task” confirm that
making the nested-sets structure visible helps the students to
solve the task.

In the following, we will discuss the intervention effects. A
comparison of the results after the intervention reveals that
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there was a significant difference in students’ performance in
the test condition. Directly after the intervention and even 3
months later, the students of the treatment group achieved higher
test scores than their peers in the control group. Although the
absolute differences between the two groups in their average
scores in the posttests were not large (Table 1; similar also in the
follow-up tests), the scores of the children in the treatment group
showed a significantly larger increase from pre- to posttest with a
medium effect size (Table 2). These results empirically confirm
that young students’ Bayesian reasoning could be fostered by
the short intervention providing a first experience with natural
frequencies and modeling stochastic situations using tinker
cubes. Hence, using natural frequencies once again showed up to
be appropriate already in primary school. Moreover, the playful
and hands-on intervention including a role-play and modeling
nested-sets structures with tinker cubes proved to be supporting
for the students. This is in line with Vallée-Tourangeau et al.
(2015) who claim that making all sets and subsets explicit by
enabling enactive activities related to the problem information
substantially improves statistical reasoning. One reason for the
rather moderate absolute differences between treatment and
control group in the post- and follow-up test scores (see Table 1)
might be that the maximum score was limited to 6 what means –
together with the relatively high pretest scores—that there wasn’t
much improvement potential for the students. Another reason
might be the short duration of the intervention of only one lesson.
In such a short period, large improvements cannot to be expected.
However, the medium effect sizes allow us to be optimistic about
the potential of this approach.

Comparing the intervention effects related to the “guided” and
“non-guided” tasks shows that the solutions rates of the “guided”
task were relatively stable over time in both groups. However,
within the treatment group, the solution rate of the “non-guided”
task considerably increased, and even in the control group, higher
posttest scores were recorded. We interpret this as follows: For
the “guided” tasks, there was a kind of ceiling effect leading to
no substantial differences from pre- to posttest. Moreover, the
intervention effect appears to be moderate on tasks where the
nested-sets structure is already triggered by the task itself. In
contrast, the intervention appears to support students’ ability to
recognize the nested-sets structure particularly in tasks where
it is not triggered automatically. The fact that also the students
in the control group increased their solution frequency in this
task indicates that already the repeated dealing with (“guided”
and “non-guided”) Bayesian reasoning tasks supports students’
corresponding performance. Hence, experiences with nested-sets
structures appear to help students in developing their Bayesian
reasoning. In our study, they could particularly be supported by
a corresponding training using hands-on activities (and natural
frequencies) but also the individual dealing with such tasks can
(moderately) improve their corresponding abilities. The slight
improvement of the children in the control group is not limited
to the “non-guided” tasks but can also be seen in the overall
Bayesian reasoning score. This might be explained by familiarity
with the test items or (subconscious) learning effects of working
on them (including possibly also the informal exchange of the
participants between pre- and posttest). It also highlights once

again the importance of using an appropriate representation
format—which was also used in the test items.

Implications for Future Research
The idea of this article was to evaluate the effect of a
representation format that facilitates probabilistic reasoning,
namely natural frequencies, in a sample of young students.
In contrast to other studies, the focus was not on comparing
different factors (e.g., representation format, task-complexity,
numeracy) and their influence on Bayesian reasoning
performances. In the present study the intention was to
empirically prove that an activity-based and playful training can
lead to better performances on Bayesian reasoning tasks. Our
results show, that already this short intervention had a medium
effect, that might be strengthened by a longer duration of the
intervention. However, this expectation of a more substantial
effect by a longer intervention should be empirically proven.
Moreover, the used test instrument should be enlarged by more
Bayesian reasoning tasks in order to get a more detailed insight
into the effects of such a longer intervention.

Although this study confirmed that students can be fostered
in their Bayesian reasoning by an activity-based and playful
training it also raises issues for further research. For instance,
we support the claim of research that focuses on the following
questions: “What strategies are the participants pursuing
when solving Bayesian reasoning problems? Which aids are
helpful for recognizing the nested-sets structure?” (e.g., playing
cards/modeling the subset-relationships via tinker cubes). With
this demand we join the research desideratum of McDowell and
Jacobs (2017) as well as Vallée-Tourangeau et al. (2015). This
desideratum could be approached by qualitative studies in which
students communicate their thoughts via interviews or open-
ended questions when solving Bayesian reasoning problems.

Implication for Teaching Statistics in
Primary and Secondary School
What are the consequences for teaching probability and statistics
(in primary school)? Should we refrain from working with
percentages and use only natural frequencies from now on? Of
course not. In primary school where fractions and percentages
are not available yet, natural frequencies seem to be a suitable way
to quantify probabilities at an early stage. In this perspective, our
study shows that it is possible to teach already primary school
students in Bayesian reasoning when using natural frequencies.
We consider such early and playful experiences with Bayesian
reasoning as important in order to establish a basis for more
abstract contexts (e.g., the formal calculation of probabilities
in general or the Bayes‘ theorem). Although our study shows
that the early fostering of Bayesian reasoning can be successful,
we see two obstacles for its implementation at school: First,
time is limited and therefore teachers might put more emphasis,
e.g., on arithmetic skills than on statistics. Second, in German
primary schools, a considerable number of teachers did not
study Mathematics as a main subject. Particularly these teachers
cannot draw on solid prerequisites to teach Bayesian reasoning.
Developing and implementing primary school teacher trainings
could help to overcome both of these obstacles. In particular,
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teachers here could learn about the importance and benefit of
using natural frequencies in primary and secondary school: They
allow the quantification of probabilities without using fractions
and percentages. Furthermore, they also contribute to strengthen
the concept of ratios and fractions at an early stage. Additionally
and as our study shows, teachers can use them to introduce
Bayesian reasoning at an early stage. For this purpose, also
hands-on activities such as using the described tinker cubes
can be introduced what illustrates the playful character and the
appropriateness of a teaching unit based on the ideas of our
intervention for young students. Such teacher trainings might at
least lead to overcome the prejudice that statistics and Bayesian
reasoning are per se too difficult for primary school. In a longterm
perspective, such teacher trainings and implementations of
Bayesian reasoning in primary school might have the potential
to increase the number of people making reasonable decisions
under uncertainty. We are absolutely convinced that enhancing
good decisions under uncertainty goes along with an appropriate
statistics education at school.

Limitations
Even though the intervention had an effect on the students’
understanding of conditional probabilities and Bayesian
problems, there are some limitations that relate to the design
of the study. First, students who participated in a training were
compared to students who had no training at all (baseline
control group). Although no different treatments were tested
against each other, comparing the treatment group to a baseline
control group appears to be appropriate in order to evaluate
the effectiveness of new ideas and learning approaches. Second,
in this study, the classes were not assigned randomly to the
different test conditions. This is caused by the fact that in
Germany, school interventions hinge on the willingness of
the teachers. Some teachers wanted their class to be part of
the intervention. Others only wanted to be part of the control
group. In order not to refuse participation in this study to any
of the teachers, their corresponding requests were satisfied.
Therefore, and as we consider a large number of students in the
treatment group as more important than in the control group,
their ratio is not perfectly balanced. In order to account for the
different pretest scores in the treatment and control group, this

variable was controlled for in the multiple regression analysis.
A multilevel analysis due to the hierarchical structured sample
(classes/schools) has not been carried out as the sample of this
study was not large enough. Further studies with bigger samples
could take into account this hierarchical structure.
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A diagnostic judgment of a teacher can be seen as an inference from manifest
observable evidence on a student’s behavior to his or her latent traits. This can
be described by a Bayesian model of inference: The teacher starts from a set
of assumptions on the student (hypotheses), with subjective probabilities for each
hypothesis (priors). Subsequently, he or she uses observed evidence (students’
responses to tasks) and knowledge on conditional probabilities of this evidence
(likelihoods) to revise these assumptions. Many systematic deviations from this model
(biases, e.g., base-rate neglect, inverse fallacy) are reported in the literature on Bayesian
reasoning. In a teacher’s situation, the information (hypotheses, priors, likelihoods)
is usually not explicitly represented numerically (as in most research on Bayesian
reasoning) but only by qualitative estimations in the mind of the teacher. In our
study, we ask to which extent individuals (approximately) apply a rational Bayesian
strategy or resort to other biased strategies of processing information for their
diagnostic judgments. We explicitly pose this question with respect to nonnumerical
settings. To investigate this question, we developed a scenario that visually displays
all relevant information (hypotheses, priors, likelihoods) in a graphically displayed
hypothesis space (called “hypothegon”)–without recurring to numerical representations
or mathematical procedures. Forty-two preservice teachers were asked to judge
the plausibility of different misconceptions of six students based on their responses
to decimal comparison tasks (e.g., 3.39 > 3.4). Applying a Bayesian classification
procedure, we identified three updating strategies: a Bayesian update strategy (BUS,
processing all probabilities), a combined evidence strategy (CES, ignoring the prior
probabilities but including all likelihoods), and a single evidence strategy (SES, only
using the likelihood of the most probable hypothesis). In study 1, an instruction on
the relevance of using all probabilities (priors and likelihoods) only weakly increased
the processing of more information. In study 2, we found strong evidence that a
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visual explication of the prior–likelihood interaction led to an increase in processing the
interaction of all relevant information. These results show that the phenomena found
in general research on Bayesian reasoning in numerical settings extend to diagnostic
judgments in nonnumerical settings.

Keywords: Bayesian reasoning strategies, information processing, judgment under uncertainty, teachers’
diagnostic judgment, visualization of Bayesian update

INTRODUCTION

Judgments on other people’s knowledge, even when based on
accurate knowledge and sound evidence, are uncertain and
fallible (Nickerson, 1999). For example, when teachers assess
students’ abilities, their diagnostic judgments are based on
evidence available in a concrete situation (e.g., the student’s
solution on a task) and on their prior knowledge on the
student’s abilities. Generally, teachers’ judgments are framed by
their theoretical knowledge (e.g., pedagogical content knowledge
about typical misconceptions) (Schrader, 2009; Herppich et al.,
2018; Loibl et al., 2020).

Often, such diagnostic judgments are investigated with respect
to their accuracy and their dependence on personal and
situational characteristics (for a meta-analysis, see Südkamp
et al., 2012). Less often to be found is research on the cognitive
processes underlying the diagnostic judgments of teachers (e.g.,
Glock and Krolak-Schwerdt, 2014; Pit-ten Cate et al., 2016).
For many years, diagnostic judgments of clinicians have been
investigated with a focus on cognition, e.g., within the heuristics-
and-bias paradigm (cf. Round, 2001; Gill et al., 2005; Croskerry,
2009) and with respect to Bayesian reasoning (Edwards, 1968;
Gigerenzer and Hoffrage, 1995; Griffiths et al., 2008).

A diagnostic judgment of a teacher can be seen as an inference
from manifest observable evidence on a student’s behavior to
his or her thinking or latent traits. Usually, such an inference is
inherently uncertain. Hence, the result of a diagnostic judgment
is rather a set of hypotheses about the observed student with
varying plausibility than an unequivocal classification of the
student. For example, a student may give a wrong answer when
asked to compare two decimals – e.g., stating that 4.8 < 4.63 –
because he or she treats the fractional parts of decimal numbers
as natural numbers (8 < 63). Many students do so consistently
(Moloney and Stacey, 1997) with a high probability. However, an
uncertainty remains, since even students with this misconception
may occasionally solve a task correctly. In addition, students
with other misconceptions may give the same wrong answer
(e.g., by ignoring the decimal point: 48 < 463), and even those
students who do understand decimals well may occasionally (i.e.,
with a low probability) give a wrong answer. Therefore, the
inference from the observed behavior to an underlying cognition
is uncertain, even though the students’ cognitions are well known,
as is the case for comparing decimals.

From the perspective of the accuracy of teachers’ judgments,
these uncertainties can be interpreted as reduced diagnosticity
either due to imperfect specificity or sensitivity of the tasks or
due to inadequate knowledge or reasoning of the teachers. As a
consequence, one would strive to optimize the tasks or to train the
teachers. However, from the perspective of the cognitive processes

underlying the judgment, one may probe deeper into the teachers’
thinking and ask how teachers incorporate such uncertainties in
their judgments.

A prominent approach that describes judgments under
conditions of uncertainty is the Bayesian model of inference
(Edwards, 1968; Gigerenzer and Hoffrage, 1995; Cosmides and
Tooby, 1996; Griffiths et al., 2008): An initial uncertainty is
modeled as a set of assumptions (hypotheses) about a situation,
with subjective probabilities for each hypothesis (often called
“priors” or “base rates”). Subsequently, observed data (i.e.,
“evidence”) is used to update these probability assumptions –
provided one knows the plausibility of the evidence, expressed
by its conditional probabilities (also called “likelihoods”).

The ideal probabilistic model for this “updating process” is
given by formal Bayesian reasoning. The Bayes’ formula can
be used to describe, by means of probability calculus, how the
probabilities of hypotheses change when evidence is produced:

P (Hi|E) = P (E|Hi) × P (Hi) ×
1

6jP
(
E|Hj

)
P
(
Hj
)

posterior
probability of
hypothesis Hi,
given data E

likelihood of
data E under
hypothesis Hi

prior
probability of
hypothesis Hi

Normalization
to have sum of
probabilities = 1

Many researchers argue that people are capable of intuitively
applying the Bayesian update strategy, represented numerically
by this formula, when they make judgments under conditions
of uncertainty (e.g., Martins, 2006; Zhu and Gigerenzer, 2006;
Girotto and Gonzales, 2008). However, there is also much
evidence for systematic deviation from this model. Some of
the most often reported biases relate to disregarding the prior
distribution (base-rate neglect, Kahneman and Tversky, 1996,
p. 584) by only considering the likelihoods proportionally:
P(Hi|E) ∝ P(E|Hi) – in an extreme form even mistaking one
conditional probability for the other: P(Hi|E) = P(E|Hi) (inverse
fallacy, Villejoubert and Mandel, 2002). Another biased strategy
would be to assume wrong base rates for the hypotheses P(Hi),
for example an anchoring bias caused by an expert blind spot, i.e.,
experts’ tend to overestimate the knowledge of novices (Nathan
and Koedinger, 2000). We use the term Bayesian (update)
strategy only for the (approximative) application of the Bayes’
rule above. However, it might be sensible to apply a broader
understanding of Bayesian reasoning (Baratgin and Politzer,
2010; Mandel, 2014; see section “Discussion”).

In the context of diagnostic judgments of teachers, the
diagnostic situation is structurally analogous to the judgment
situations indicated in the literature above, which does not refer
to teachers: A teacher’s prior assumptions (hypotheses) on a
students’ latent trait (e.g., a decimal-comparison misconception)
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relies on his or her estimation of the typical prevalence (base
rates) of these misconceptions. A student’s behavior or response
to a task (manifest data, evidence) can be used to revise these
assumptions (by updating the prior hypotheses).

The structure of this updating process in the context of
teachers’ diagnostic judgment on student knowledge is displayed
in Figure 1: In order to update the probabilities of the
hypotheses [from P(Hi) to P(Hi|E)], the teacher processes
his or her diagnostic knowledge (i.e., prior probabilities and
conditional probabilities) as well as the information provided
in the diagnostic situation (i.e., the evidence). Uncertainty
plays a major role in this updating process: Students do
not respond consistently (cf. conditional probabilities), and
different student knowledge may lead to same responses
(ambiguity/limited diagnosticity).

However, a teacher’s situation also differs from the situation
typically encountered in research on Bayesian reasoning, since
these pieces of knowledge and information are usually not
explicitly represented by numbers but only by qualitative and
subjective estimations in the mind of the teacher. Any assumed
process of Bayesian reasoning therefore also relies on processing
such information in a qualitative, nonnumerical way.

Against this background, we ask to which extent individuals,
who are asked for a diagnostic judgment in a situation as
described here, are able to (approximately) apply a rational
Bayesian strategy or resort to other “biased” strategies of
processing information for their diagnostic judgments. We
explicitly pose this question with respect to nonnumerical
settings, bearing in mind that Bayesian and other types of
reasoning are already researched and reported extensively for
numerical settings.

To systematically investigate this question, we develop a rich
scenario of diagnostic judgment (three possible hypotheses,
diagnostic tasks with limited reliability, and diagnosticity) that
is displayed in an optimized way for accessing all relevant
information (prior probabilities, conditional probabilities,
updating procedure) in a qualitative way, without recurring to
numerical representations or mathematical procedures (as, e.g.,
systematically investigated in Hoffrage et al., 2015).

THEORETICAL BACKGROUND

Teachers’ Diagnostic Judgments Under
Uncertainty – Through the Lens of
Bayesian Reasoning
Identifying learners’ misconceptions is one key task of teachers
in order to address these misconceptions adequately in teaching
(Weinert et al., 1990). However, such diagnostic judgments are far
from straightforward and – like many types of human judgment –
characterized by uncertainty (Tversky and Kahneman, 1974;
Kozyreva and Hertwig, 2019; Mandel et al., 2019). As described
earlier, students with different misconceptions can show the same
behavior (i.e., give an identical answer to a task) – either because
the task cannot distinguish between several misconceptions
or because the students do not respond consistently. Both
phenomena are sources of uncertainty for teachers’ diagnostic

judgments. In order to judge in a rational way, teachers have to
apply effective strategies to deal with the diverse uncertainties.
When doing so, teachers usually do not resort to numerical
or mathematical procedures of probability calculus but take
into account their knowledge (gained by experience or based
on literature) on the assumed relative probabilities of the
misconceptions and the expected (in)consistency of students’
answers in a qualitative, nonnumerical manner. In other words,
they may engage in Bayesian reasoning without applying the
explicit Bayesian formula (cf. Martins, 2006). Although the
literature on Bayesian reasoning in many different contexts
abounds, all studies rely on numerical representation and
calculation of some sort, and no research relates to the situation
of teachers’ diagnostic judgments as depicted in Figure 1. Still,
the literature on Bayesian reasoning provides many insights into
various strategies and biases in Bayesian reasoning and viable
support structures to influence these strategies systematically, as
outlined in the following.

There is evidence that humans are capable of utilizing
Bayesian update strategies when making judgments under
uncertainty (Martins, 2006; Girotto and Gonzales, 2008). Even
children are able to do so, at least if the information is provided in
natural frequencies instead of probabilities (Zhu and Gigerenzer,
2006; Pighin et al., 2017). However, as indicated above, children
and adults also often fail to apply the Bayesian update strategy
(e.g., Gigerenzer and Hoffrage, 1995; Weber et al., 2018). Instead,
they consistently process only a part of the relevant information,
resulting in reasoning strategies that deviate from optimal
Bayesian reasoning (e.g., Gigerenzer and Hoffrage, 1995; Zhu and
Gigerenzer, 2006; Cohen and Staub, 2015).

There is some discussion whether it is appropriate to consider
these strategies defective (using the term “biased”) or whether
they may be effective in certain situations (ecological rationality:
Simon, 1955; Gigerenzer and Hoffrage, 1995). However, this
discussion is not relevant for our investigation, since we do not
address the questions of effectiveness (i.e., ecological validity) of
the strategies under investigation.

Against this background, two questions and the respective
lines of research (although not conducted specifically for the
case of teachers’ diagnostic judgments) are of relevance for our
research interest:

(1) Which (biased) strategies of processing (nonnumerical)
information do individuals apply, when not following a
Bayesian update strategy?

(2) How can individuals be supported in (approximatively)
applying an Bayesian update strategy?

Biased Strategies of Processing Information for
Updating Judgments
One of the most familiar and often studied judgment situations
refers to a medical test of an illness with given prevalence [i.e.,
base rate P(H)], a given sensitivity [i.e., positive-when-true rate,
likelihood P(E|H)] and a given specificity [i.e., negative-when-
false rate P(¬E|¬H)] (e.g., Gigerenzer and Hoffrage, 1995). In
such a situation, the probability that a person, selected at random,
who receives a positive test result actually has the disease P(H|E)
can be calculated according to the Bayes rule. The posterior

Frontiers in Psychology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 678112113

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00678 July 1, 2020 Time: 18:33 # 4

Leuders and Loibl Bayesian Reasoning in Non-numerical Settings

FIGURE 1 | The structure of teacher’s diagnostic judgment based on knowledge, evidence, and information processing and the role of uncertainty.

probability P(H|E) is the rational choice for the judgment on
the patient’s state given the evidence of the test. Since the base
rate is low in most medical diagnostic test situations, the Bayes
rule leads to a much lower posterior probability estimations than
most individuals typically estimate (ibid.), even when strongly
supported (Weber et al., 2018). Indeed, research has shown that
humans often do not apply the Bayes rule, resulting in biased
judgments, where the most often reported biases in judgment
updating relate to disregarding the prior distribution (base-rate
neglect, Kahneman and Tversky, 1996, S. 584).

In a systematic analysis on the types of update strategies
in the context of Bayes reasoning tasks (i.e., tasks with a
similar structure to the prototype described above), Cohen and
Staub (2015) showed that most participants’ judgment strategies
amount to not making use of all sources of information (prior
probabilities of hypotheses and likelihoods of evidence under
each hypothesis), leading to biased update strategies. They further
provided evidence that most participants seem to estimate the
posterior probability based on only one of the multiple provided
probabilities or by computing a weighted sum of several, but not
all probabilities. In their studies, the most frequently used pieces
of information were the likelihood of the evidence (i.e., positive-
when-true rate) and the likelihoods of the evidence under the
other hypotheses (i.e., positive-when-false rate).

The findings of Cohen and Staub (2015) rely on an analysis
of intraindividual consistency in strategy use. Thereby, they
substantiate the earlier classification of interindividual differences
in strategies by Zhu and Gigerenzer (2006): In their studies with
fourth to sixth graders and adults, they also found strategies
focusing on one probability. Subjects either considered only the
priors P(H) (called conservatism, Edwards, 1968; or base rate
only, Gigerenzer and Hoffrage, 1995) or only the likelihood
of the evidence at hand P(E|H) (called representative thinking

or Fisherian, Gigerenzer and Hoffrage, 1995; inverse fallacy,
Villejoubert and Mandel, 2002). In their studies, no one used
the joint occurrence of the evidence (P(E|H)· P(H) = P(E ∧ H)),
a strategy found by Gigerenzer and Hoffrage (1995). Subjects
who actually computed a weighted sum focused only on the
evidence [e.g., P(E|H)/6P(E|Hi)], called evidence only (Zhu and
Gigerenzer, 2006). These subjects took the likelihoods of the
evidence under all hypotheses into account (i.e., true and false
positive rate) but disregarded the base rate. Thus, this strategy
can also be considered a type of base-rate neglect (Tversky and
Kahneman, 1974; Bar-Hillel, 1983). Gigerenzer and Hoffrage
(1995) found another similar strategy (likelihood subtraction), in
which subjects take into account more than a single likelihood in
their computation in a subtractive fashion and ignore the base
rate [P(E|H)− P(¬E|¬H)]. Zhu and Gigerenzer (2006) found
an additional strategy, not reported elsewhere, which they called
“Pre-Bayes.” It corresponds to taking the correct denominator
but focusing on the positive-when-true rate as numerator. While
the children in their study frequently used this strategy, it may
have been triggered by the presentation of the Bayes problems
with natural frequencies, which makes the positive-when-true
rate salient. Table 1 provides an overview of the most common
strategies. From the point of view of information processing, they
can be categorized as prior-only strategies (POS), single evidence
strategies (SES), combined evidence strategies (CES), and the
Bayesian update strategy (BUS).

The multitude of erroneous strategies appears to suggest
that humans do not succeed well in situations of Bayesian
reasoning, even when the situation is presented in an accessible
way, using natural frequencies and visual representations
(Weber et al., 2018). Nevertheless, Martins (2006) argued that
humans do take uncertainties into account by revising their
judgments based on new information in a way that resembles
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TABLE 1 | Overview of most common update strategies.

Processed information

Strategy types, variants/denotations Likelihood/positive-
when-true rate

Likelihoods of alternatives/
positive-when-positive rate

Prior probabilities/
base rate

Prior-only strategy (POS) Conservatism (Edwards, 1968; Zhu and
Gigerenzer, 2006); base-rate only
(Gigerenzer and Hoffrage, 1995)

X

Single evidence strategies
(SES)

Representative thinking (Zhu and
Gigerenzer, 2006); Fisherian (Gigerenzer
and Hoffrage, 1995); inverse fallacy
(Villejoubert and Mandel, 2002)

X

Combined evidence
strategies (CES)

Evidence only (Zhu and Gigerenzer, 2006);
likelihood subtraction (Gigerenzer and
Hoffrage, 1995)

X X

Bayesian update strategy
(BUS)

Bayesian update (correct application of the
Bayes’ rule)

X X X

the rational Bayesian strategy. Similarly, Nickerson (1999) stated
that the refinement of one’s knowledge on people relies on an
ongoing adjustment process and is based on evidence that one
collects. The facts that Bayesian reasoning has been identified at
least for some situations, groups, and cases by prior research (e.g.,
Gigerenzer and Hoffrage, 1995; Zhu and Gigerenzer, 2006; Cohen
and Staub, 2015) and that any form of reduction of numerical
calculation and information saliency of presentation appears
to be effective (see section “Supporting the Application of the
Bayesian Update Strategy”) support the assumption that humans
are, in principle, capable of intuitively applying the essence of the
Bayes’ rule, depending on the situational conditions.

In a nutshell, the strategies differ in the amount and
type of processed information. While research has shown
individual differences with regard to the use of the available
information (Cohen and Staub, 2015), the perception and
processing of information also depend on the representation of
the situation and the amount of support, which we will analyze in
the next section.

Supporting the Application of the Bayesian Update
Strategy
How individuals process the relevant information for Bayesian
reasoning highly depends on the situation (cf. McDowell and
Jacobs, 2017). During the last decades, research has investigated
how to represent the information in a way that supports
individuals in applying the Bayes update strategy. The common
idea is to assist the individuals in gathering the relevant
information and constructing an adequate structural mental
model of the situation. The most prominent representation
strategies that have been shown to be effective are (a) using
natural frequencies instead of probabilities (cf. meta-analysis by
McDowell and Jacobs, 2017) and (b) visualizations that increase
the salience of the structure (e.g., Khan et al., 2015; Böcherer-
Linder and Eichler, 2017).

Multiple studies have shown that people are better in solving
Bayesian tasks that are represented with natural frequencies (also
called natural sampling) than tasks that present the information
in the form of probabilities (e.g., Zhu and Gigerenzer, 2006; Hill

and Brase, 2012; for a meta-analysis, see McDowell and Jacobs,
2017). The Bayesian update strategy is computationally simpler
if probabilities are represented as joint frequencies because the
base rate is already contained in the joint frequencies, and,
therefore, there is no need to additionally include the base rate
in the calculation. However, this advantage is only relevant in
settings with numerical representations and calculation demands.
In addition to the reduced computational load, it has been argued
that, in Bayesian tasks with natural frequencies, the information
is given in the same chronological order in which information is
naturally acquired (ecological rationality framework, Gigerenzer
and Hoffrage, 1995). Moreover, the way the information is
provided highlights the structure of the task (i.e., the nested-
set relations, Sloman et al., 2003) and thereby facilitates the
construction of an adequate situation model.

Another way to increase the salience of the structure of
the situation (i.e., nested-set relation) is to provide adequate
visualizations (for an overview, see Khan et al., 2015), such
as tree diagrams (Yamagishi, 2003; Weber et al., 2018) or unit
squares (Böcherer-Linder and Eichler, 2017; Pfannkuch and
Budgett, 2017). Notably, visualizations increase the performance
not only for tasks presented with probabilities but also for tasks
presented with natural frequencies (McDowell and Jacobs, 2017),
indicating an added value in additionally presenting the nested-
set structure with visualizations. When comparing different
visualizations, Böcherer-Linder and Eichler (2017) argue that the
tree diagram reveals the nested-set relation only in a numerical
way, whereas the unit square adds a geometrical, qualitative
representation. This assumption receives support by the finding
that the unit square supported the correct application of the
Bayes’ rule more than the tree diagram. One can assume that
such nonnumerical representations, which render saliency to
relevant information (to overall structure and to the relative
sizes) support Bayesian reasoning. However, so far, visualizations
have only been provided in addition to the numerical values,
not in isolation.

Another potential way of supporting the use of the available
information would be to highlight the relevance of the
information. In a different area of teachers’ diagnostic skills
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(noticing students’ beliefs), Zeeb et al. (2019) have shown
that highlighting the relevance of integrating different types
of knowledge (and giving an example) significantly improved
the integrated used of different types of knowledge. It seems
reasonable that such an instruction on the relevance of
integration could also be beneficial in the context of judgment
under uncertainty by fostering the use and integration of all
available information.

Modeling Bayesian Reasoning in Nonnumerical
Settings
In our study, the focus on teachers’ diagnostic judgments is
accompanied by two central premises for the theoretical framing
and the ensuing investigations.

As first premise, we recognize that the literature on Bayesian
reasoning focuses – by always providing numerical information –
on applying the Bayes rule by (more or less extensive) calculation.
While the numerical information is often accompanied with
graphical representation to visualize the structure of the situation
(e.g., Böcherer-Linder and Eichler, 2017), no study solely relied
on qualitative, nonnumerical information. However, in the
context of teachers who update their judgments regarding their
students’ misconceptions based on the students’ solution, the
pieces of information are rather not represented by numbers
but only by qualitative estimations, and thus, the process of
Bayesian reasoning also relies on processing such information in
a qualitative and approximative way.

As a second premise, we note that research explains the fact
that humans often fail to apply the Bayesian update strategy
appropriately on the basis that they often do not use (perceive
and process) all relevant information and instead apply different
biased strategies. While such strategies have been found in the
context of numerical Bayesian reasoning, it seems reasonable
to assume that similar strategies also appear in processing
the available qualitative (i.e., nonnumerical) information in the
context of judgments under uncertainty. More precisely, the
following strategies (known from the literature on numerical
Bayesian reasoning) can also be expected in nonnumerical
settings, considered here:

(a) the rational (i.e., mathematically correct) BUS, that is,
processing the conditional probabilities of a student’s
solutions under all plausible hypotheses (likelihoods of
evidence) and the prior probabilities of these hypotheses,

(b) a CES (cf. evidence only: Zhu and Gigerenzer, 2006;
Likelihood subtraction: Gigerenzer and Hoffrage, 1995),
that is, ignoring the prior probabilities, but combining the
data likelihoods regarding all hypotheses (by considering
a normalized, relative size),

(c) a SES (cf. representative thinking: Zhu and Gigerenzer,
2006; Fisherian: Gigerenzer and Hoffrage, 1995;
inverse fallacy: Villejoubert and Mandel, 2002), that
is, only considering the data likelihood regarding
the most probable hypothesis (i.e., ignoring both the
data likelihoods regarding the alternative (less likely)
hypotheses and the prior probabilities).

However, a POS (cf. conservatism: Edwards, 1968; Zhu and
Gigerenzer, 2006; base rate only: Gigerenzer and Hoffrage, 1995),
that is, not updating the judgment at all, seems less likely as
teachers generally focus on and react to their students’ responses
and, thereby, naturally process the evidence.

Since we are interested in the use of information rather
than the mere perception, we aim at constructing a situation
in which all information necessary for the individual to
generate a judgment is available and maximally salient. We
then investigate whether individuals under these circumstances
actually perform judgments that resemble Bayesian reasoning.
To specify a scenario for our investigation, we first describe
the types of hypotheses and evidence on students that we
restrict our investigation to (see section “Decimal Strategies
and their Diagnostics”) and then specify the environment
(diagnostic situation) which frames the judgments processes of
the participants (see section “A Computer-Based Setting for
Nonnumerical Diagnostic Strategies”).

Decimal Strategies and Their
Diagnostics
In order to investigate the expected updating strategies described
above in a single coherent framework of teachers’ diagnostic
strategies, we use the case of diagnostic judgment on students’
decimal comparison misconceptions, since in this area, a theory
on students’ (mis)conceptions is empirically well founded (e.g.,
Moloney and Stacey, 1997).

Although these misconceptions are sometimes called
strategies, in the following, we prefer using the term
misconceptions to reduce confusion with the strategies applied
by teachers during the diagnostic judgment process.

The three most prevalent decimal-comparing misconceptions
are shown in Table 2. The table also presents examples
for the most frequent types of diagnostic tasks to detect
the misconceptions.

Studies on the prevalence of these misconceptions often
investigate students from different age groups, countries, and
school types (Sackur-Grisvard and Léonard, 1985; Nesher and
Peled, 1986; Padberg, 1989; Resnick et al., 1989; Moloney and
Stacey, 1997; Steinle, 2004; Heckmann, 2006). They reveal that
there is a considerable variation depending on the stage of
curriculum. For example, the whole-number misconception is
dominant in younger children. The shorter-is-larger-conception
typically arises after the introduction of fractions and then
decreases with each grade. In Germany, at the start of grade 5
(before the introduction of fractions), a relative frequency of the
misconceptions WN/ID/SL of 60%:30%:10% (Heckmann, 2006)
is a plausible assumption for a distribution of misconceptions and
will be used in our study.

A Computer-Based Setting for
Nonnumerical Diagnostic Strategies
In section “Teachers’ Diagnostic Judgments Under Uncertainty –
Through the Lens of Bayesian Reasoning,” we obtained an
overview on Bayesian judgment in order to generate plausible
assumptions on teachers’ information processing strategies
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TABLE 2 | Common misconceptions when comparing decimal fractions (cf. Moloney and Stacey, 1997).

Decimal comparing misconceptions Description Diagnostic task and response

Whole-number misconception (WN) Students interpret the decimal point as a separator
of two numbers and consider the sizes separately

“4.125 > 4.7 because 125 > 7”

Ignore-decimal-point misconception (ID) Students ignore the decimal point and proceed as if
they compared natural numbers

“2.45 < 1.328 because 245 < 1328”

Shorter-is-larger misconception (SL) Some students consistently choose the number
with fewer decimal places as the larger

“2.3 > 2.67 because tenths are larger than hundredths” or
“because a third is larger than 1/67”

during diagnostic judgments. In section “Decimal Strategies
and Their Diagnostics,” we analyzed a content area (comparing
decimals) in order to define a research-based knowledge base on
students’ misconceptions, diagnostic tasks, and the uncertainties
connected to this topic, initially independently from the teacher
using this knowledge.

In order to investigate the genesis of diagnostic judgments (a)
under the condition of uncertainty and (b) in a nonnumerical
setting, we use this theoretical basis to follow the research
strategy of the DiaCoM framework (Loibl et al., 2020), which
was designed to generally structure research on diagnostic
judgment processes. Its components are the following: (1)
specification and systematic variation of the diagnostic situation
with regard to perceptible information (here: evidence on
students’ solutions to given tasks), (2) specification of relevant
diagnostic knowledge (here: prior probabilities and conditional
probabilities), (3) specification of diagnostic thinking as cognitive
processing of information and knowledge (here: the use of
information during Bayesian or non-Bayesian updating), and
(4) operationalization of diagnostic judgment (here: posterior
probabilities) and prediction of this judgment.

(1) Specification of the Diagnostic Situation

Identifying students’ misconceptions is one key task of
teachers in order to address these misconceptions adequately.
However, these judgments regarding students’ misconceptions
often are not straightforward. As described earlier, students with
different misconceptions can come to the very same answer –
either because the task cannot distinguish between several
misconceptions or because the students do not follow their
erroneous strategy with complete consistency. Both factors lead
to judgments under uncertainty.

In our study, the students’ misconception space is restricted
to the three most frequent decimal comparing misconceptions
as described above (see section “Decimal Strategies and their
Diagnostics”). This restriction also implies that we do not include
students who fully understand decimals and therefore solve all
comparison tasks correctly (most of the time). Thus, a teacher
in our study assumes to encounter a student who pertains to
one of three mutually exclusive misconception groups. This
defines the set of three hypotheses (WN, ID, and SL) for the
diagnostic judgment.

A piece of evidence that a teacher encounters in our study
consists of a student’s response to one of the three diagnostic tasks
as presented in Table 3. Each task is assumed to have a sensitivity
of 80% throughout all cases. We keep this feature of the diagnostic

tasks constant because, in this study, we are not interested in the
influence of variation in sensitivity but in the use or disregard
of information on evidence in general. Furthermore, assuming
the same sensitivity for all tasks reduces the amount of diagnostic
information that has to be processed.

A feature that typically arises in diagnostic judgments
is the phenomenon that the tasks do not detect students’
misconceptions unambiguously – a situation that has been only
rarely addressed in research on Bayesian reasoning. The resulting
pattern in the set of evidences (three task types with two
responses depending on three misconceptions) used in this study
is presented in Table 3. It results from the combination of the
(erroneous) mathematical student reasoning pertaining to each
misconception and the mathematical structure of the numbers
in the task. An in-depth analysis of all conceivable task types to
induce erroneous results and detect misconceptions (i.e., varying
length of the part before and after comma, position of zeroes,
especially leading and trailing zeroes) showed that the task types
chosen here are most straightforward to allow diagnosing the
misconceptions. Another task type, not used here, would be, e.g.,
3.95 > 3.76, which would not allow to differentiate between any
two of the misconceptions.

The evidence presented in a single diagnostic situation
comprises a diagnostic task and a student’s response, one at a
time. To each teacher, several cases of different students are
presented in a row.

(2) Specification of Diagnostic Knowledge

In order to achieve adequate judgments (probabilities for
possible hypotheses), an individual has to take into account
diagnostic knowledge on different probabilities: the prior
probabilities for the different misconceptions as well as the
likelihoods for each misconception given certain evidence.
Figure 2 illustrates how this information can be displayed
graphically in a distinct and comprehensive manner.

• The three hypotheses (WN, DL, SL) are represented
as vertices spanning a planar equilateral triangle (see
Figure 3).
• The interior and boundary of this triangle comprises all

possible distributions of three probabilities: (p1, p2, p3)
with p1 + p2 + p3 = 1, and thus constitutes a ternary
hypothesis space (or for short “hypothegon”).1 A location

1Each hypothesis triple (p1, p2, p3) with p1 + p2 + p3 = 1 can be found at a unique
point within the hypothegon with the sizes of each pi as its relative height from
the side opposite to the vertex. Mathematically, this is formalized by so-called
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TABLE 3 | Pattern of most likely response (evidence E) of each task under the condition of a student’s misconception (hypothesis H).

Hypothesis Decimal comparing misconceptions Task 1: 4.8 > 4.63 Task 2: 3.7 > 3.02 Task 3: 3.49 > 3.4

H1 Whole-number misconception (WN) Wrong Right Right

H2 Ignore-decimal-point misconception (ID) Wrong Wrong Right

H3 Shorter-is-larger misconception (SL) Right Right Wrong

The likelihood of the evidence indicated in the table is P ( E|H) = 0.8.

at a vertex indicates the certainty of the hypothesis (e.g.,
p1 = 1); the center point represents a uniform distribution
(p1 = p2 = p3 = 1/3).
• The prior distribution is represented twofold: with the

position of the “prior point,” the prior distribution and
by the length of three bars, pointing to the respective
hypotheses. Figure 2 shows the position and bar diagram
for a prior probability (base rate) of 60, 30, and 10% of the
three misconceptions.
• The likelihoods of the two possible responses

(right/wrong) to a given task are represented qualitatively
as stacked bars at the corners of the hypothegon. For
example, the task 4.8 > 4.63 is responded correctly.
The likelihood of a correct response by a student with
misconception WN is 20%, same as by a student with
misconception ID. The likelihood of a correct response
by a student with misconception SL is 80%.

To be able to process the given information, teachers
require knowledge on the misconceptions (cf. see section
“Decimal Strategies and Their Diagnostics”), and they have to
understand the meaning of the probabilities involved (cf. see
section “Teachers’ Diagnostic Judgments Under Uncertainty –
Through the Lens of Bayesian Reasoning” and Specification
of the Diagnostic Situation). Both types of knowledge can
be manipulated by instruction. Furthermore, teachers have
to pay attention to all information given. As indicated in
section “Supporting the Application of the Bayesian Update
Strategy,” this attention can be manipulated by the representation
of the information (especially the nested-set relation) or by
relevance instruction.

(3) Operationalization of Observable Diagnostic Judgment

In the same manner in which the prior probabilities for
hypotheses are located in the hypothegon, also the updated
hypotheses, i.e., the posterior probabilities, can be represented as
locus within the hypothegon, and the updating process amounts
to moving the point to a new position. The new locus of
the point represents the qualitative estimation of the posterior
probabilities. In this way, the updating procedure can be executed
in an intuitive manner: moving closer towards a hypothesis

“barycentric homogeneous coordinates” (or “convex combinations”), introduced
by Möbius (1827). Beyond applications in physics, chemistry, or biology, the
ternary diagram (sometimes called De Finetti diagram) is occasionally used in
social science to visualize normalized triples of quantified cognitive constructs
(e.g., De Finetti, 1971, 2017 for distributions of subjective probability; Susmaga and
Szczêch, 2015 for interestingness measures, Jøsang, 2016 for formalized subjective
logic).

expresses a strengthened belief, positioning the point between
two hypotheses expresses (subjective) ambiguity (see Figure 2).

(4) Specification of Diagnostic Thinking

With diagnostic thinking, Loibl et al. (2020) refer to the
assumed processing of information. As summarized in section
“Modeling Bayesian Reasoning in Nonnumerical Settings,” we
assume that teachers process all or only part of the information
given (i.e., evidence, prior probabilities, and/or likelihoods),
corresponding to the update strategies discussed in section
“Teachers’ Diagnostic Judgments Under Uncertainty – Through
the Lens of Bayesian Reasoning.” Although teachers are not
assumed to mathematically calculate the posterior probabilities,
the four update strategies can still be presented by formulas.
The formulas as well as the results of the three update
strategies for the example given above are displayed at the
right side of Figure 3. The fourth strategy (prior only) is
excluded from our analysis, since it would be realized by not
moving the point – which is an improbable behavior under the
circumstances of the study. The green dots in the triangle in
Figure 3 correspond to the locus of the point for the posterior
probabilities, when teachers judge according to one of the
three strategies:

(a) They may only process the likelihood of the hypothesis
with the highest likelihood (SES). In the example, this is
SL with a likelihood of 80%. When no further information
is processed, this likelihood is taken as probability of the
hypothesis. We assume that the remaining probability of
20% is (possibly implicitly) distributed over the remaining
hypotheses. This strategy leads to the locus of the
smallest green dot.

(b) They may process and balance the likelihoods of all three
hypotheses (CES), i.e., they consider the following values:
WN 20%, ID 20%, and SL 80%. The relative sizes (i.e.,
normalized to give a sum of 1) are taken as probabilities
of the hypotheses. This would result in WN 17%, ID 17%,
and SL 67%. These posterior probabilities are represented
by the locus of the middle green dot.

(c) They may process all relevant information following the
Bayes’ rule (BUS), which leads to the following posterior
probabilities: WN 46%, ID 23%, and SL 31%, represented
by the locus of the biggest green dot.

RESEARCH QUESTIONS

When people update their hypotheses based on uncertain
evidence (e.g., teachers’ updating their assumptions based on
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FIGURE 2 | Hypothegon representing a ternary hypothesis space, a judgment as a position in this space, and the evidence likelihoods (conditional probabilities) of
the response. In order to make a judgment (posterior), one can drag the point to a new position.

FIGURE 3 | Hypothegon (left hand side) and visualization of update strategies (right hand side).

students’ solutions), they may only have access to nonnumerical
information. When only part of the information on relevant
probabilities is processed, this may result in updating strategies
different from Bayesian reasoning. We investigate the following
research question (RQ1):

Can common types of updating strategies known from numerical
settings also be detected in a nonnumerical setting?

H1: We hypothesize that the following strategies are identifiable
within the nonnumerical setting described above:

• a Bayesian update strategy (BUS), that is, processing all
probabilities (priors and likelihoods),

• a combined evidence strategy (CES), that is, ignoring the
prior probabilities (also known as base rate neglect), but
taking into account the likelihoods of the evidence under
all hypotheses,
• a single evidence strategy (SES), that is, ignoring the

prior probabilities (base-rate neglect) and only using the
likelihood of the most probable hypothesis (also known as
inverse fallacy).

In our setting, the nonnumerical information on the
probabilities relevant for Bayesian reasoning is represented in a
salient manner. However, the existence of non-Bayesian updating
strategies within this setting (as commonly found in other
settings, see above) suggests that not all individuals use all of
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this information. In numerical settings, this can be influenced by
means of instruction or representation. Therefore, we investigate
the following research question (RQ2):

Does instruction on the relevance of using all probabilities (priors
and likelihoods) increases the processing of more information
represented in the nonnumerical setting?

H2: We hypothesize that the instruction increases the individuals’
processing of information, leading to an increase in the BUS and
a decrease in the SES.

METHODS

Participants
The 26 preservice teachers who participated in the study all
completed their bachelor in teaching mathematics and took
courses in a master program on teaching mathematics at the
time of the study. Participants were randomly assigned to two
conditions: one condition with a salient presentation of priors
and likelihoods (“control condition”) and one condition with an
additional instruction on the relevance of priors and likelihoods
(“relevance instruction condition”, see section “Influence of
instruction (RQ2)”]. With these conditions, we aim to increase
the variance of the different strategies in order to identify
strategy types (RQ1) and to test our assumptions regarding the
processing of information (RQ2). The descriptive statistics of the
participants are presented in Table 4.

Generating Evidence on Updating
Strategies (RQ1) – The Nonnumerical
Setting
In our study, the investigation of Bayesian reasoning in
nonnumerical settings is framed by a scenario of diagnostic
judgment as described in section “A Computer-Based Setting for
Nonnumerical Diagnostic Strategies.” It is a complex judgment
situation with

• three possible hypotheses (on students’ misconceptions),
• two possible outcomes (right/wrong responses),
• three task types with limited diagnosticity.

All relevant pieces of information (prior probabilities,
conditional probabilities, updating procedure) are represented
graphically and qualitatively, i.e., without numerical
representations or formulas, within the hypothegon on a
computer screen (Figure 3). Thus, the updating of an initial
judgment does not rely on mathematical procedures. As
preservice teachers are not assumed to be familiar with
this representation, they first received an oral step-by-step
instruction (about 20 min) that included showing the different
features of the diagnostic environment. The instruction provided
information about the misconceptions and the diagnostic tasks
(including the sensitivity) and explained the meanings of the
hypothegon, i.e., the triangle, the bar charts, and the positions of
the judgment point. We also informed that we did not include
students who fully understand decimals and solve comparison

tasks correctly. A comprehension test with three items tested the
understanding of the representation.

After the instruction, the participants had to judge 12 cases
by moving the point and thus updating the probabilities for the
three hypotheses. Each case represented a student (by a gender-
neutral name), a task and the students’ response (with a reminder
if the response was right or wrong). The prior probabilities were
set to 60% for WN, 30% for ID, and 10% for SL in all cases
for two reasons: First, these percentages fit to the frequencies
found in studies with different age groups (see section “Decimal
Strategies and Their Diagnostics”). Second, these percentages
allow to differentiate between different update strategies.

As our pilot studies showed that participants need several
cases to get used to the representation and stabilize their updating
strategy, we implemented two analogous sequences of six task-
response combinations and only analyzed the updating strategy
of the second sequence. The cases were balanced with respect
to the pattern of misconception–task–response combination (see
Table 5): Three task responses had a high likelihood only for
one misconception; three task responses had high likelihoods for
two misconceptions.

Updating Strategies (RQ1) – A Bayesian
Classification Approach
In order to assess and compare the subjects’ use of update
strategies, we constructed cases with values for the probabilities
(priors and likelihoods) that allow for distinguishing the
subjects’ diagnostic thinking (i.e., use of information, update
strategy) by evaluating the evidence on their diagnostic judgment
behavior (i.e., choice of posterior probabilities via location in
the hypothegon).

The judgment of a subject, represented by his or her choice
of position (Figure 4, left hand side) may, in some cases, be
attributed unambiguously to one update strategy but may, in
other cases, be consistent with more than one update strategy
(Figure 4, right hand side).

In order to account for this uncertainty in interpreting a
subject’s judgment, we used an analysis based on a Bayesian
classification approach: We assume that each subject had a
consistent update strategy and model our knowledge on the
subject’s strategy by a set of probabilities:

pi

(̂
HBUS

)
= probability of the hypothesis2 that subject i has

the Bayesian update strategy (BUS),

and analogously pi

(
ĤCES

)
and pi

(
ĤSES

)
We then account for the fact that subjects only approximately

determine their updated posterior in the qualitative approach,
by attributing to the evidence Ê (i.e., the subjects’ chosen locus
of a judgment) the likelihood p(Ê |ĤBUS

) under the condition
of him or her having a strategy (e.g., BUS) with the following

2We use the circumflex accent to avoid confusion between the subjects’
(i.e., teachers’) hypotheses H on students’ misconceptions with our (i.e., the
researchers’) hypotheses Ĥ on the teachers’ strategies.
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TABLE 4 | Descriptive statistics of participants of study 1 and study 2 [means (SD)].

Study 1 Study 2

(1) Control
condition

(2) Relevance instruction
condition

Total (1 + 2) Interaction explication
condition

N 14 12 26 16

Gender female/male 10/4 7/5 17/9 9/7

Age 24.14 (1.66) 23.25 (1.14) 23.73 (1.48) 24.06 (1.61)

Semester 7.93 (1.14) 7.12 (0.58) 7.58 (0.99) 8.00 (1.32)

High school diploma, grade 1(best) through 5 2.51 (0.43) 2.31 (0.42) 2.42 (0.43) 2.33 (0.52)

Understanding of setting (max. 3 points) 3.00 (0.00) 2.92 (0.29) 2.96 (0.20) 2.90 (0.30)

Gaussian distribution

p
(

Ê
∣∣ĤBUS

)
=

1
N

exp
(
−

1
d

∣∣∣Ê − Ê BUS
∣∣∣2) ,

and analogously p
(

Ê
∣∣ĤCES

)
and p

(
Ê
∣∣ĤSES

)
.

Ê is represented by the probability vector belonging to the location
of the actual judgment and Ê BUS by the probability vector
belonging to the location when applying the BUS. Using this
model to update the probability of the hypotheses pi

(
ĤBUS

)
,

pi

(
ĤCES

)
, and pi

(
ĤSES

)
on each subject with the evidence

Êi,j from the cases j = 1...6 as described above, we define a
naive Bayesian classification procedure (Duda et al., 2012). This
approach has proven valid also in many cases with dependencies
between the likelihoods (Domingos and Pazzani, 1997).

The normalization factor N of this probability density need
not be calculated, since it cancels out when we evaluate ratios of
probabilities. The parameter d represents the radius within the
probability density decreases to 1

e ≈ 37% from its maximum. We
chose d = 0.1 as a value that allows for an efficient distinction
and reflects the imprecision of approximative nonnumerical
judgments. For the numerical analysis of the data, we used a
discrete approximation on 1,250 points in a hexagonal lattice
within the hypothegon.3

Figure 4 illustrates the probability distribution for two cases
and demonstrates how the Bayesian classification approach
accounts for the fact that evidence can be considered to support
more than one hypothesis on the subjects’ strategies.

When a subject judges consistently by applying one strategy in
all six cases, e.g., BUS, the evidence should lead to a considerable
increase in the respective posterior probability for this strategy

pposterior
i

(
ĤBUS

)
∝ p

(
Êi,6

∣∣ĤBUS
)

p
(

Êi,1
∣∣ĤBUS

)
· pprior

i

(
ĤBUS

)
and a decrease in the posterior probabilities for the other
strategies. The classification of the subject i as having strategy
BUS vs. CES vs. SES is then supported by the amount of change
in the probability ratios. These changes of probability based on
evidence are typically expressed by Bayes factors. In the present

3The calculations were programmed by the first author in CindyScript (Richter-
Gebert and Kortenkamp, 2000; www.cinderella.org), the code can be made
available by request.

TABLE 5 | Description of the six analyzed cases in the order of the presentation.

Likelihood of response under the
condition of misconception . . . (presented

as bar at the respective vertex)

Case: task and response WN ID SL

1 3.7 > 3.02 Right 80% 20% 80%

2 4.8 < 4.63 Wrong 80% 80% 20%

3 3.49 > 3.4 Right 80% 80% 20%

4 3.7 < 3.02 Wrong 20% 80% 20%

5 4.8 > 4.63 Right 20% 20% 80%

6 3.49 < 3.4 Wrong 20% 20% 80%

analysis, there are six possible ratios of two hypothesis, of which
two are independent. BFBUS:CES(i), for example, is defined by

pposterior
i

(
ĤBUS

)
pposterior

i

(
ĤCES

) = ∏
j=1...6

p
(

Êi,j

∣∣∣ĤBUS
)

p
(

Êi,j

∣∣∣ĤCES
)

︸ ︷︷ ︸
·

pprior
i

(
ĤBUS

)
pprior

i

(
ĤCES

)
def

BFBUS:CES (i)

To substantiate the classification decision for each subject,
we recur to (a) the ratio of the dominant hypothesis to the
subsequent one, e.g., BFBUS:CES(i) = 100:1 and (b) the highest
posterior probability, when assuming equally distributed priors,
e.g., pposterior

i

(
ĤBUS

)
= 99.9%.

Influence of Instruction (RQ2)
To test our hypotheses with regard to research question 2, we
designed a relevance instruction. Participants were randomly
assigned to one of two conditions. Participants in the control
condition did not receive further instruction and proceeded
as described above. Participants in the relevance instruction
condition received verbal explanations on how to incorporate all
relevant information in the update following the Bayesian update
strategy (without explicit reference to Bayes):

Use all the information given to you by the different
bars. This works best in the following way: First, note the
probabilities for the three misconceptions. Most students
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have the WN misconception; very few have the SL
misconception. Second, look at how well each of the three
misconceptions fit to the student’s response: If a student
solves the problem 4.8 > 4.63 correctly, SL fits because
these students are likely to solve the task correctly. Thus,
the SL misconception becomes more likely. However, that
does not rule out the other misconceptions: For instance,
the WN misconception does not fit. Nevertheless, it is
possible that the student has the WN misconception but
does not answer consistently. This is quite likely because,
in general, it is highly probable that a student has the WN
misconception. Thus, you should consider the probabilities
for the misconceptions again. (1) First, look at all the
probabilities for the misconceptions. (2) Then, lock at the
misconceptions that fit to the response, which ones are
more likely. (3) Then, also look at the misconceptions that
do not to the response, which ones are still probable [(1)–(3)
was also repeated as reminder].

The instruction did not include an example of the procedure
in order to avoid superficial copying of the updating strategy. In
both conditions, there was a short reminder to use all information
(control condition) and to remember the instruction (relevance
instruction condition) just before the last six cases (i.e., before the
cases chosen for the analysis).

Differences in the distribution of the three update strategies
between the conditions are analyzed using a Bayesian
contingency tables test (with a joint multinomial model)
(Gunel and Dickey, 1974).

RESULTS

Distribution of Strategies (RQ1)
The evaluation of the judgments according to the Bayesian
classification approach described in section “Generating
Evidence on Updating Strategies (RQ1) – The Nonnumerical
Setting” resulted in a set of parameters for each participant,
which allow for a classification decision:

(a) The Bayes factor BFBUS:CES(i) indicates the increase of the
likelihood of one classification over the other (here, BUS
over CES). Here, we focus for each subject on the ratio
of the dominant hypothesis to the subsequent one, e.g.,
BF1:2(i) = 100:1.

(b) The posterior probabilities pposterior
i

(
ĤBUS

)
,

pposterior
i

(
ĤCES

)
, and pposterior

i

(
ĤSES

)
describe the

certainty of the classification under the assumption
of equal priors. For example, ppost,max

i = 99.9% can be
regarded as a 99.9% certainty of explaining a participants’
judgments by the Bayesian update strategy.

The certainty for the classification [described by both, BF1:2(i)
and ppost,max

i ] of the 26 participants to one of the three assumed
types of updating strategy (BUS, CES, and SES) is listed in Table 6.
We indeed identified the assumed types of updating strategies
known from numerical settings in our nonnumerical setting (cf.

H1), with most participants classified as following either CES
or SES. Only four participants were classified as using the BUS.
Notably, all of these four participants were classified with very
strong evidence.

Overall, most participants could be classified with strong
evidence. However, four participants could only be classified
with weak evidence (BF1:2(i) between 1 and 3), all of these
classified as CES or SES.

Effect of Relevance Instruction on
Information Processing (RQ2)
To test whether the instruction on the relevance of priors
and likelihoods (relevance instruction condition) increased the
likelihood of processing more information, we compared the
distribution of the three assumed strategies (BUS, CES, and
SES) across the two conditions. Descriptively (see Table 7),
fewer participants of the relevance instruction condition were
classified as using the SES strategy in comparison to their
counterparts in the control condition (cf. hypothesis 2). However,
the Bayesian contingency tables test revealed a Bayes factor
(BF10) of only 3.139. Following the interpretation of Lee and
Wagenmakers (2014), a Bayes factor of 3 can be regarded as
only anecdotal (or at most moderate) evidence for different
distributions across the conditions.

DISCUSSION

Classification of Updating Strategies
(RQ1)
In our study, we attempted to theoretically distinguish and
empirically detect the types of updating strategies, which are
suggested by the general literature on Bayesian reasoning, also
in a nonnumerical setting of diagnostic judgments. As shown in
Table 1, we classified these strategies with respect to different
levels of information use (priors, single, or combined evidence).
For most subjects in our sample, we could produce very strong
evidence for their use of a BUS, CES, or SES. Overall, our
results support the plausibility of the classification of strategies
by the level of information use. The relatively low number of
participants (4 out of 26), which included all information in
their judgment and therefore can be assumed as performing
(nonnumerical) Bayesian reasoning, is in line with previous
findings (McDowell and Jacobs, 2017).

Notably, the only subjects (4 out of 26) with weak evidence
were classified as CES or SES. This is explainable by the fact that,
in our realization (i.e., with the given priors and likelihoods),
these two strategies lead to less distinct posterior probabilities (cf.
Figure 4). Furthermore, our classification approach was based on
the assumption of a relative stability of the strategy use by each
individual (cf. Cohen and Staub, 2015). It therefore does not allow
to investigate any intra-individual variation of the strategy use in
a similar approach as Cohen and Staub (2015).

In our study, we used a specific nonnumerical, graphical,
and computer-based realization for assessment of reasoning
strategies, applying a triangular representation of a ternary
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FIGURE 4 | Calculated positions of the exact strategies Bayesian update strategy (BUS), combined evidence strategy (CES), single evidence strategy (SES), and a
teachers’ actual judgment J for two task–response configurations. The circles define areas of similar likelihoods in 10% percentile steps. On the left hand side,
judgment J has highest likelihood for BUS; on the right hand side, it can be regarded as evidence for SES, but also for CES and less for BUS.

TABLE 6 | Certainty of classification.

BF1:2 > 1 >3 > 10 >30 > 100 >1000 Sum

(ppost,max
i ) (>50.0%) ( > 75.0%) (>90.9%) ( > 96.7%) (>99.0%) ( > 99.9%)

BUS 0 0 0 1 0 3 4

CES 3 1 0 0 0 6 10

SES 1 2 2 2 1 4 12

Sum 4 3 2 3 1 13 26

Evidence Weak Moderate Strong Very strong Extreme Extreme

hypothesis space, the “hypothegon.” We consider our findings
as indicative of the feasibility of this approach and envision
to use the “hypothegon” paradigm for further investigations of
nonnumerical reasoning (see section “Overall Discussion”).

Admittedly, there are limitations connected to the concrete
realization: The approach requires a theoretically justified
selection of hypothesis prior to the analysis. We chose three
fundamental strategy types (BUS, CES, and SES). However,
we cannot exclude that other, quite different strategy types –
or mixtures of strategies – may be found to explain the
subjects’ behavior. This could be investigated by further
validation studies recurring either to think aloud data or to
experimental variation.

Our classification of the strategies draws on a naive
Bayesian classifier procedure, which allowed to rationally
deal with the multiple evidence (on subjects’ judgments
on different cases) and the relative contributions of each
evidence to multiple hypotheses (on subjects’ possible
updating strategies).

However, the robustness of the results with respect to the
assumptions of this classification procedure should be reflected.
We checked that a variation of the “gaussian classification radius”
(d = 0.1) within reasonable limits (0.05 < d < 0.20) had no
essential influence on the classification results. Furthermore,
the assumption of independence of the consecutive judgments,
which is essential to naive Bayesian classification, was not

TABLE 7 | Distribution of strategies across conditions.

BUS CES SES Total

Control condition 1 4 9 14

Relevance instruction condition 3 6 3 12

Total 4 10 12 26

empirically tested within our framework but made theoretically
plausible by varying and balancing the cases.

Impact of Relevance Instruction on
Information Use (RQ2)
The prevalence of non-Bayesian updating strategies (22
out of 26 subjects) suggests that (although all relevant
information was presented in a salient manner) not all
individuals use all information. Moreover, our results
showed that the instruction on the relevance of using all
probabilities (priors and likelihoods) did not substantially
increase the likelihood of processing more information.
Our study revealed only anecdotal evidence of an increase
in the BUS and a decrease in the SES in the relevance
instruction condition in comparison to the control condition.
To explain this finding, we consulted literature and
compared our relevance instruction to the most common
approaches of supporting Bayesian reasoning in numerical
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FIGURE 5 | Hypothegon with visual explication of the interaction of priors and
likelihoods.

settings: using frequencies instead of probabilities (e.g.,
Zhu and Gigerenzer, 2006; Hill and Brase, 2012) and
using visual representations (Böcherer-Linder and Eichler,
2017; Pfannkuch and Budgett, 2017). These approaches
can also be interpreted as setting a focus on the subset
of possibilities defined by new evidence (cf. Baratgin and
Politzer, 2010 for a differentiation between focusing and other
revision processes). The deeper analysis of these support
approaches revealed that they do not only highlight the
relevance of using all information (as in our relevance
instruction) but also explicitly show how these pieces of
information are connected. More specifically, they display
the interaction (i.e., multiplication) of likelihoods and priors
as follows.

If likelihoods are presented as joint frequencies (e.g., 2 of the
10 students with SL solve this task correctly), the priors (for
this example 10 of 100 students) are already contained in the
joint frequencies. In addition, joint frequencies verbally highlight
the interaction of the likelihoods and priors (i.e., 2 of 10 of
100, called nested-set relations, Sloman et al., 2003) and thereby
facilitate the construction of an adequate situation model of
the prior–likelihood interaction. Another way to increase the
salience of the multiplicative prior–likelihood interaction is to
provide adequate visualizations (for an overview, see Khan et al.,
2015). Research has shown that complementing the numerical
values with nonnumerical representations that render salience
to the prior–likelihood interaction (such as the unit square, e.g.,
Böcherer-Linder and Eichler, 2017) support Bayesian reasoning.
Against this background, we devised a visual representation of
the prior–likelihood interaction in our nonnumerical setting
(see Figure 5) and investigated its effect on the processing
of all information in a second study. By scaling the length
of the likelihood bars in relation to the size of the priors,
the multiplicative nature of the prior–likelihood interaction is
explicitly shown and – similar as in the unit square – allows
to compare the absolute lengths of the likelihood bars as direct
representations of the posteriors.

RESEARCH QUESTION OF STUDY 2

The finding of the predominance of non-Bayesian updating
strategies within our setting, even in the relevance instruction
condition, suggests that not all individuals are able to process
the interaction of the information (priors and likelihoods).
In numerical settings, this can be influenced by means of
representations that make the interaction explicit. Therefore, we
investigate the following research question (RQ3):

Does a visual explication of the prior–likelihood interaction
in the nonnumerical setting increases the processing of the
information in the sense of Bayesian reasoning?

H3: We hypothesize that a visual explication of the prior–
likelihood interaction in an interaction explication condition
leads to an increase in the BUS and a decrease in the SES in
comparison to the control condition of study 1.

DESIGN OF STUDY 2

Additional 16 preservice teachers from the same cohort as study 1
participated in the study. The descriptive statistics are presented
in Table 4.

To test our hypotheses with regard to research question 3,
we designed a visualization that makes the interaction of the
probabilities (priors and likelihoods) explicit (see Figure 5).

Participants in the interaction explication condition received
the same instruction as participants in the relevance instruction
condition from study 1. In addition, at the end, the visualization
was explained as follows: “We can see that the smaller green
portion of the bar for the WN misconception is about the
same size as the larger green portion of the bar for the
SL misconception. Thus, if a student solves the problem
correctly, it is equally likely that he or she has the WN or the
SL misconception.”

RESULTS OF STUDY 2

We first analyzed the certainty for the classification [both
BF1:2(i) and ppost,max

i ] of the 16 new participants to one
of the three assumed types of updating strategy (BUS, CES,
and SES). As shown in Table 8, all participants could be
classified with strong or extreme evidence. As further support
for hypothesis 1 (H1), we again identified all three assumed
types of updating strategies, now with most participants classified
as using the BUS.

To test whether the explication of the prior–likelihood
interaction (interaction explication condition) increased
the likelihood of processing the interaction of all relevant
information, we compared the interaction explication
condition to the control condition (study 1) with regard to
the distribution of the three assumed strategies (BUS, CES, and
SES). Descriptively (see Table 9), participants of the interaction
explication condition were less often classified as using the
SES and more often classified as using the BUS in comparison
to their counterparts in the control condition (cf. hypothesis
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TABLE 8 | Certainty of classification of participants in interaction explication condition.

BF1:2 > 1 >3 > 10 >30 > 100 >1000 Sum

( ppost,max
i ) (>50.0%) (>75.0%) (>90.9%) (>96.7%) (>99.0%) (>99.9%)

BUS 0 0 2 0 0 7 9

CES 0 0 3 0 1 2 6

SES 0 0 0 0 0 1 1

Sum 0 0 5 0 1 10 16

Evidence Weak Moderate Strong Very strong Extreme Extreme

3). The Bayesian contingency tables test revealed a Bayes
factor (BF10) of 327.993, which can be regarded as extreme
evidence for different distributions across the conditions.
The results of this study are discussed within the section
“Overall Discussion.”

OVERALL DISCUSSION

Identifying Update Strategies in a
Nonnumerical Setting
In this work, we analyzed how people update their hypotheses
based on uncertain evidence (e.g., teachers’ updating their
assumptions based on students’ solutions), when they only
have access to nonnumerical information. Based on the
results from numerical settings, we assumed that people
tend to process only part of the information on relevant
probabilities, resulting in updating strategies different
from Bayesian reasoning. With regard to RQ1, we showed
that the three assumed updating strategies (BUS, CES,
and SES), which are known from numerical settings, are
indeed also identifiable within the nonnumerical setting
investigated in our studies.

Moreover, in line with findings from numerical settings,
most participants did not follow the BUS when no further
support was given. This finding supports the notion that
subjects do not process and integrate all available information.
Thus, we consider these findings as a validation of an
information processing account of Bayesian (or non-Bayesian)
reasoning. In numerical settings, the processing of information
has been effectively influenced by means of instruction or
representation (e.g., Khan et al., 2015; Böcherer-Linder and
Eichler, 2017). In this vein, we devised similar interventions
in the nonnumerical setting and conducted two studies.
In study 1, an instruction on the relevance of using all
probabilities (priors and likelihoods) increased the processing
of more information represented in the nonnumerical setting
only weakly (RQ2).

A deeper analysis of research on Bayesian reasoning
revealed that not only the quantity of information use is
relevant but also its specific quality, more specifically the
interaction (i.e., multiplication) of likelihoods and priors
in the judgment process. Therefore, we supplemented the
intervention by explicit instruction and representation of
this interaction (similar to the representations used in

TABLE 9 | Distribution of strategies across conditions.

BUS CES SES Total

Control condition 1 4 9 14

Interaction explication condition 9 6 1 16

Total 10 10 10 30

numerical studies, e.g., Böcherer-Linder and Eichler, 2017).
In study 2, we found very strong evidence that the visual
explication of the prior–likelihood interaction led to
an increase in processing the interaction of all relevant
information (RQ3).

These divergent effects of the two interventions suggest
that many individuals do not merely fail to process all
information (possibly altered by relevance instruction) but
are missing to account for the interaction of these pieces
of information correctly. This issue can only be influenced
by reducing the necessity to convert the information. In
numerical settings, this has been done effectively by presenting
the probabilities as joint frequencies that already contain
the priors, which automatically highlights the structure of
the task (i.e., the nested-set relations, Sloman et al., 2003).
Nonnumerical settings allow providing visualizations to
increase the salience of the structure of the situation. This
approach has already been shown effective in supporting
the calculation in numerical settings (e.g., Böcherer-Linder
and Eichler, 2017) and has now also proven effective in a
nonnumerical setting.

To better understand this effect and also the interplay between
numerical and nonnumerical information, further research with
systematic combination and variation of the type of displayed
information should be conducted.

Benefits and Limitations of the Specific
Nonnumerical Setting (“Hypothegon”)
The environment to investigate Bayesian reasoning in
nonnumerical settings is framed and supported by the
specific choice of a graphical representation, which we dubbed
“hypothegon.” It comprises the triangular representation of a
ternary hypothesis space and allows for the intuitive localization
of probability distributions (priors and posteriors) and their
change (updating). This has proven an effective setting for
the nonnumerical presentation of probability information and
investigation of updating strategies.
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Although the hypothegon heavily relies on the ternary
situation of three hypotheses (represented in two dimensions),
it can be extended in two directions: Two hypotheses can
be represented along a line segment (which has already been
done frequently); four and more hypotheses can be represented
by multiple projections of subspaces. However, the intuitive
interpretation probably is limited by the ternary case. In our
specific setting, we could demonstrate that it is possible to render
it sufficiently comprehensible, at least to adults (cf. Table 4,
Understanding of setting).

Of course, the hypothegon can be further shaped and used in
research within and beyond the context of teacher judgements.
In addition, within the context of teacher judgement, there
are many aspects that we excluded from our studies. For
example, it is plausible that teachers do not only perceive
and process one piece of evidence at a time (i.e., one task–
response case), but rather integrate the information from several
responses from one student in order to form a decision. In
the current studies, we refrained from such multistep cases to
reduce complexity. However, a better understanding of how
several pieces of evidence on a student interact and how
teachers process this information would allow to investigate
research questions such as: How much evidence do teacher
process before feeling confident in the decision (cf. Codreanu
et al., 2019)? Do other teacher variables, such as his or
her mindset alter the number of processed evidence (cf.
Weinhuber et al., 2019)?

Furthermore, teacher judgment also relies on the context
of judgment and on teachers’ knowledge and goals. While in
our study with student teachers, the restriction of contextual
information helped to model and identify basic strategies, a more
realistic setting can be expected to have considerable influence on
the information processing.

The Ecological Rationality of
(Non)Bayesian Reasoning in Diagnostic
Judgments
We characterized the BUS by a complete (approximate) use of
probability information and Bayesian reasoning – which from a
mathematical point of view can be regarded as optimal. From
this point of view, the contrasting strategies (CES and SES) are
characterized by a prior neglect and thus suboptimal.

By modeling the situation in a nonnumerical way
(probabilities as bars, uncertainty as prior position between
hypotheses), we tried to avoid the normative framing of
mathematically correct statistical reasoning, which is often
applied in research in Bayesian reasoning (Mandel, 2014).
However, in our experimental framework, we instructed
the subjects with respect to the intended interpretation of
the external representation. Thus, we did not investigate
their mental reasoning processes, e.g., when accepting or
discarding given base rates as priors or when interpreting
the change of position as update. Therefore, we would
not consider judgments, which we classify as CES or SES,

categorically as non-Bayesian reasoning. Baratgin (2002) as
well as Baratgin and Politzer (2010) distinguish between
focusing and updating. They refer to focusing when –
given that all information is known and conforming to the
Bayesian rule – humans revise their probability estimation by
focusing on the relevant subset of the initial probability space.
They refer to updating when humans’ posterior probability
estimation is coherent with a revision of their beliefs about
the situation. While we assume focusing processes when
investigating the BUS strategy, our nonnumerical setting
also provides an opportunity to explore subjective belief
revisions more deeply.

Furthermore, we do not assume that these strategies, when
applied in the diagnostic context of teachers judging students,
necessarily imply better or worse performance. There may be
many reasons why also normatively deficient strategies can be
regarded as cognitively successful, thus reflecting perspective
of ecological rationality (Simon, 1972; Kozyreva and Hertwig,
2019). As a heuristic, SES and CES may be adapted to
relevant situations. For example, teachers may use a first
judgment as orientation for gaining further information on the
student, e.g., by selecting more specific tasks or by eliciting
verbal explanations. More generally speaking, when diagnostic
judgments are integrated in complex instructions, their adequacy
cannot be evaluated by their local optimality. Finally, in reality,
priors (base rates) may be either much less extreme and
therefore less relevant than assumed here, or the probabilities
used here may even be partially known or unknown to the
teacher so that a more fundamental type of uncertainty arises
(Gigerenzer, 2008).

In this respect, there are still many open questions as to the
status of the investigated strategies within the ecology of realistic
settings. A first step of investigating such question could be the
analysis of the boundary conditions of “optimality” with respect
to parameters and types of heuristics.
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Cognition is both empowered and limited by representations. The matrix lens model

explicates tasks that are based on frequency counts, conditional probabilities, and

binary contingencies in a general fashion. Based on a structural analysis of such

tasks, the model links several problems and semantic domains and provides a new

perspective on representational accounts of cognition that recognizes representational

isomorphs as opportunities, rather than as problems. The shared structural construct

of a 2×2 matrix supports a set of generic tasks and semantic mappings that provide a

unifying framework for understanding problems and defining scientific measures. Our

model’s key explanatory mechanism is the adoption of particular perspectives on a

2×2matrix that categorizes the frequency counts of cases by some condition, treatment,

risk, or outcome factor. By the selective steps of filtering, framing, and focusing on

specific aspects, the measures used in various semantic domains negotiate distinct

trade-offs between abstraction and specialization. As a consequence, the transparent

communication of such measures must explicate the perspectives encapsulated in

their derivation. To demonstrate the explanatory scope of our model, we use it to

clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and

to integrate the scientific measures from various semantic domains within a unifying

framework. A better understanding of problem structures, representational transparency,

and the role of perspectives in the scientific process yields both theoretical insights and

practical applications.
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1. INTRODUCTION

Solving a problem simply means representing it
so as to make the solution transparent.

(Simon, 1981, p. 153)

Human cognition is both empowered and limited by
representations. Some of the greatest scientific discoveries—like
the heliocentric cosmos, the Indo-Arabic number system,
and the double-helix structure of the DNA molecule—involve
fundamental changes in representations (Kuhn, 1962). Problems
in logic and mathematics essentially ask for the explication
of information that is provided in the problem formulation
and are solved, or dissolved, by finding a superior problem
representation (Polya, 1957). Although the history of psychology
is littered with representational effects, the demands and rigidity
of mental constructs are typically portrayed as a source of
problems, rather than as opportunities for insight and solutions.

This article promotes a representational account for
solving problems based on frequency counts and conditional
probabilities that gravitates around the notion of a 2×2 matrix
as its core construct. Just like the logical conditional (Wason
and Johnson-Laird, 1972, p. 92), the humble 2×2 matrix is a
chameleon that appears in many guises. Its structural simplicity
is deceiving, as it accommodates an enormous manifold of
measures and meanings. By explicating their shared structure,
the model developed here integrates a wide variety of measures
from different semantic domains in a unifying framework.
As we will see, highly selective steps of filtering, framing,
and focusing on particular parts of a 2×2 matrix eventually
capture some scientific measure. Our model explicates this
process and highlights the key role of adopting particular
perspectives for gaining insights. Understanding how this
mechanism simultaneously reveals and encapsulates some aspect
of information that was implied by the original matrix builds
conceptual bridges between domains and enables the transparent
communication of scientific results. Before introducing our
model, we recapitulate the role of representations in psychology
and introduce a problem that we will revisit repeatedly
throughout this article.

1.1. Reframing Representational Effects
The history of psychology is reflected in its representational
constructs. Classic studies have lamented the rigidity of mental
representations, and attributed their damaging effects to some
lack of mental dexterity known as Einstellung (Luchins,
1942), functional fixedness (Duncker, 1945), or negative transfer
(Bartlett, 1958). By contrast, desirable traits like creativity
and productive thinking were seen as requiring a flexible re-
organization of problem parts (Wertheimer, 1959). When the
right representation is found, both chimpanzees and humans
appear to stumble upon the problem’s solution in a sudden flash
of insight (Köhler, 1925).

Representations also provide the foundations for cognitive
theories of thinking and problem solving. In the psychology of

FIGURE 1 | The rabbit-duck illusion (Jastrow, 1899).

reasoning, people’s responses to logical puzzles are based on a
dynamic interplay of structure and content (Wason and Johnson-
Laird, 1972). Beyond purely formal aspects of arguments, it
has been shown that mental models of tasks and domains,
the plausibility of premises, and concerns for relevance and
linguistic pragmatics can both facilitate and inhibit logical
thinking (Gentner and Stevens, 1983; Johnson-Laird, 1983;
Sperber and Wilson, 1986; Nickerson, 1998). When specific
contents increase the likelihood of valid conclusions, so-called
facilitation effects were often attributed to the availability of
particular representations (e.g., pragmatic reasoning schemas,
Cheng andHolyoak, 1985), or to the evolution of domain-specific
inference algorithms (e.g., a cheater detection module, Cosmides
and Tooby, 1992).

Psychological investigations of judgment and decisionmaking
have been dominated by research on heuristics and biases
(Tversky and Kahneman, 1974) and documented striking framing
effects on decisions (Tversky and Kahneman, 1981). Early
research on human problem solving was shaped by the problem
space hypothesis (Newell and Simon, 1972), which postulates
that we search and traverse a space of mental states until
reaching our goal. Subsequent work addressed the benefits of
diagrams (Larkin and Simon, 1987), contrasted the difficulty of
representational isomorphs (Kotovsky et al., 1985), and studied
tasks that distribute information across themind and the external
environment (Hutchins, 1995). Overall, researchers accumulated
ample evidence for representational effects (Zhang and Norman,
1994): Different representations of a shared problem structure
can cause dramatic differences in cognition and behavior.

A problem with representational accounts of cognition is that
their explanations can be too narrow and specific. Although
some explanation may be perfectly obvious, they remain hard
to verbalize or generalize. When an ambiguous image can be
viewed as either a rabbit or a duck (see Figure 1), a hint that
the duck’s beak can be seen as the rabbit’s ears may ease the
mental flip, but provides no material for scientific theories. Just
as being too narrow is a problem, representational accounts that
aspire to be general can easily get vacuous. For instance, when
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any possible conclusion can be explained as a valid deduction
based on implicit premises (Henle, 1962) or in reference to “other
things the speaker knows” (Braine and O’Brien, 1991, p. 192),
overly wide and flexible explanations risk becoming circular
(Smedslund, 1970). Similarly, most biases and fallacies can be
explained as the result of improper representations or as resulting
from deficient information processing (Fiedler and Juslin,
2006). Consequently, accounts that blur the boundaries between
representational structures and processes are too permissive and
vague to be useful. And although Simon (1981) rightly insists that
problems are solved by making their solution transparent, it is far
from simple to explicate a problem’s mental representation, let
alone its transparent solution.

How can we capitalize on Simon’s insight that transparent
representations are solving problems? In this article, we
essentially promote a notion of positive framing effects. In
our view, a productive representational account requires a
revolution, in the literal sense that implies a reversal or shift in
perspective. Rather than gravitating around a particular problem
and examining its possible representations, we must anchor
our investigations in the analysis of shared representational
structures. Shifting from focusing primarily on tasks to
pivoting around particular representations has immediate
benefits: Starting from the representation avoids getting trapped
in problem-specific trivialities and allows for non-circular
accounts of representational transparency. Instead of serving
as convenient post-hoc explanations for observed behavior,
representational constructs can be studied independently and
prior to specific tasks. Ideally, this will illuminate aspects that
were obscured before and replace retrospective explanations by
genuine predictions. And rather than portraying representational
isomorphs as problems to-be-solved, the discovery of a common
underlying structure provides opportunities for clarifications and
builds conceptual bridges between semantic variants of tasks
and domains.

To illustrate this approach, this article proposes an abstract
model for analyzing problems that rely on binary frequency
counts and probabilistic measures derived from them. Ourmodel
is anchored in the representational construct of a 2×2 matrix,
which we employ to reframe a variety of measures and problems.
As this construct is shared across many semantic domains,
explicating its structural features and the mechanisms operating
upon them illuminates and links many concepts and tasks that
are typically treated in isolation. Before we can unfold this model,
we introduce a problem that allows illustrating the steps and
tasks involved in our approach. But rather than merely serving
as a sandbox, this problem has provoked intense theoretical
debates within psychology and beyond, and will be rendered
more transparent by our framework.

1.2. The Mammography Problem
The mammography problem (Eddy, 1982) is the drosophila of
a research tradition that has been haunting both psychology
and clinical diagnostics for decades. Typical problems in this
tradition ask for inferring the probability of a potential cause
(e.g., some medical condition C) given an observed effect
(e.g., a positive test result T). In its standard form, the

problem provides a condition’s base rate (e.g., the prevalence of
cancer, p(C) = 1%), the conditional probability of correctly
detecting the condition’s presence (e.g., the mammography test’s
sensitivity, p(T |C) = 80%), and the conditional probability
of falsely detecting the condition in its absence (e.g., the
test’s false positive rate, p(T |¬C) = 9.6%). Solving the
problem consists in computing the value of the conditional
probability p(C |T), which denotes the test’s positive predictive
value (PPV). Such problems are often framed as requiring
“Bayesian reasoning,” as their mathematical solution can be
derived by Bayes’ theorem:

p(C |T) =
p(C) · p(T |C)

p(C) · p(T |C) + p(¬C) · p(T |¬C)

=
0.01 · 0.80

0.01 · 0.80 + (1− 0.01) · 0.096
≈ 7.8%.

In a seminal paper, Gigerenzer and Hoffrage (1995) devised
15 variants of this problem and presented them in different
formats (see Table 1). Importantly, they reported facilitation
effects for two types of representational changes: Both expressing
the problem in frequency formats (or natural frequencies) and
using a short version containing fewer numbers (aka. short
menu) boosts the rate of correct solutions (see the meta-
analysis by McDowell and Jacobs, 2017). Whereas, Gigerenzer
and Hoffrage (1995) describe their manipulations in terms
of information representation, they explain the observed
effects primarily as computational facilitation. For instance,
the algorithm for solving the problem in frequency formats
simplifies to:

p(C |T) =
n(T ∩ C)

n(T)
=

n(T ∩ C)

n(T ∩ C) + n(T ∩ ¬C)

=
8

8 + 95
=

8

103
≈ 7.8%.

The mammography problem’s notoriety has many reasons. For
both experimental participants and medical professionals, the
problem seems of high practical relevance, but is frustratingly
difficult. Most naïve respondents estimate its solution to be
around 70 or 80%, thus misjudging the true value by an
order of magnitude. Theoretically, the error committed in the
context of such problems has been described by a confusing
array of concepts—including base rate neglect (Kahneman
and Tversky, 1973), base rate fallacy (Bar-Hillel, 1980), and
insensitivity to prior probability (Tversky and Kahneman,
1981)—and attributed to an inverse fallacy (Eddy, 1982) or a
heuristic of representativeness (Kahneman and Tversky, 1972b).
Even when the problem’s solution is known, the discrepancy
between the mammography’s high sensitivity and its low PPV
remains perplexing. In addition to the theoretical challenge of
explaining people’s poor performance, researchers in applied
psychology, clinical diagnostics, and information visualization
face the practical challenge of improving it. In numerous
attempts to train people (e.g., Sedlmeier and Gigerenzer,
2001; Ruscio, 2003; Sirota et al., 2015) or support their
performance by visual aids (e.g., Brase, 2008; Moro et al.,
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TABLE 1 | Three versions of the mammography problem (from Gigerenzer and Hoffrage, 1995, Table 1, p. 688), and an overview of the information provided and required

for solving each version (probabilities p in blue, frequencies n in green, and parts of required solutions in red).

Problem description Information % correct*

(a) The probability of breast cancer is 1% for a woman at age forty who participates
in routine screening.

p(C)=0.010

(b) If a woman has breast cancer, the probability is 80% that she will get a positive
mammography.

p(T |C)=0.800

(c) If a woman does not have breast cancer, the probability is 9.6% that she will also
get a positive mammography.

p(T |¬C)=0.096

S
ta
n
d
a
rd

P
ro
b
a
b
ili
tie

s

A woman in this age group had a positive mammography in a routine screening.
What is the probability that she actually has breast cancer? %

p(C |T )=?

4%

(a) 10 out of every 1,000 women at age forty who participate in routine screening
have cancer.

n(C)=10

N=1,000

(b) 8 of every 10 women with breast cancer will get a positive mammography.
n(C ∩ T )=8

n(C)=10

(c) 95 out of every 990 women without breast cancer will also get a positive
mammography.

n(¬C ∩ T )=95

n(¬C)=990

n(T ∩ C)=?

n(T )=?N
a
tu
ra
lF

re
q
u
e
n
c
ie
s

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect
to actually have breast cancer? out of %

24%

(d) 103 out of every 1,000 women at age forty get a positive mammography in
routine screening.

n(T )=103

N=1,000

(e) 8 of every 1,000 women at age forty who participate in routine screening have
breast cancer and a positive mammography.

n(C ∩ T )=8

N=1,000

n(T ∩ C)=?

n(T )=?

S
h
o
rt
F
re
q
u
e
n
c
ie
s

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect
to actually have breast cancer? out of %

36%

*Estimates of correct answer rates (from McDowell and Jacobs, 2017) for problems in this format.

2011; Garcia-Retamero and Hoffrage, 2013; Binder et al., 2015,
2020; Böcherer-Linder and Eichler, 2017; Eichler et al., 2020),
solutions rates remained frustratingly low (e.g., Micallef et al.,
2012; Khan et al., 2015; Weber et al., 2018). Thus, despite
considerable progress, it is still controversial to what extent
humans are able to solve such problems, how they perform
the required calculations, and which aspects of the task,
person, or task environment help or hinder their performance
(see Navarrete and Mandel, 2016; McDowell and Jacobs, 2017,
for reviews).
We contribute to these debates by proposing new perspectives
on the problem. Rather than focusing on differences between
representational formats, we explicate the steps and processes
that lead from the provided information (i.e., probabilities or
frequencies) to the measures required for solving the problem.
As we will show, this illuminates the geometric nature of
the underlying problem representation in ways that explain
both the problem’s difficulty and the observed facilitation
effects. As a collateral benefit, our analysis can be applied
to related problems and allows defining a large variety of
scientific measures from seemingly distinct domains in a unified
framework. Our account is embedded in a broader model that
emphasizes the role of 2×2 matrices as a key construct of
scientific inquiry.

2. THE MATRIX LENS MODEL

This article introduces an abstract matrix lens model of
scientific inquiry. As an analytic device, this model explicates
the steps and processes that we perform when solving
problems based on frequency counts, binary contingencies,
and probabilistic measures derived from them. The core
representational component of our model is the structural
construct of a 2×2 matrix that frames and sculpts a large
variety of measures in seemingly distinct tasks and domains.
The key mechanism invoked by our framework is the
adoption of particular perspectives on parts of this matrix. By
selectively focusing on some aspects while ignoring others, highly
specialized measures trade-off gains in depth and resolution with
losses in context and scope. As a consequence, the transparent
communication of such measures must explicate the perspectives
encapsulated in their derivation.

Figure 2 illustrates the steps of our model as a pipeline
of adopting increasingly specific perspectives. When providing
a numeric answer to a scientific question, we dramatically
reduce the world’s complexity by selecting and zooming
into relevant aspects to eventually capture the value of
some measure (e.g., PPV). An initial step of filtering (P1)
categorizes some population of elements on binary dimensions
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FIGURE 2 | The matrix lens model describes scientific inquiries that reduce complexity in several steps by adopting increasingly specific perspectives on particular

aspects of the world. Its initial steps reduce the dimensions of explicitly represented information by filtering, framing, and focusing (P1–P3) to capture a particular

measure (e.g., a diagnostic test’s positive predictive value, PPV). By contrast, the final step of presenting (P4) can widen the scope by creating representations that are

transparent when explicating the perspectives adopted during the measure’s derivation.

to yield a binary grid of frequency counts as a prerequisite
for the model’s two main steps, whose geometric nature
corresponds to the visual process of adopting particular
perspectives. A second framing step (P2) selects and arranges
dimensions to construct a specific 2×2 matrix. Given this
matrix, a focusing step (P3) further selects and highlights
some particular aspect to derive a quantitative measure. The
value of this measure implicitly contains the entire chain
of transformations and thus encapsulates the perspectives
adopted in the measure’s derivation. An additional step of
presenting (P4) communicates the measure as a scientific
result. Whereas, the model’s three initial steps (P1–P3)
reduce complexity—by selectively carving out, organizing and
compressing information—its final step (P4) widens the scope by
adding information and providing an interpretation. As a pre-
scriptive consequence, a measure’s verbal or visual presentation
is transparent when explicating the perspectives that were
encapsulated in its derivation.

Capturing some noteworthy aspect of the world by viewing it
through the lens of a 2×2 matrix requires a mix of numeric and
representational skills. Selecting the right measure out of a large
variety of options typically requires both task-related experience
and domain-specific knowledge. Although the measures deemed
relevant and their labels vary between tasks and domains, the
basic steps and mechanisms mostly remain the same. In the
following, we first illuminate the structural elements of each
step by abstracting from the content and semantics of specific
tasks. This will portray the act of scientific measurement as
a deliberate, strategic, and intricately coordinated process that
encompasses different levels, decisions, and parameters. Just like
a photographer is not merely pointing a lens in the direction of
an object of interest and then randomly triggers the shutter, a
scientist aiming to answer a question is not randomly screening
data and computing metrics that may or may not answer a
question. In practice, and particularly in experts, this process may
nevertheless unfold in an automatic and intuitive fashion. This
allows for glitches and errors, if something breaks down or is led
astray, as well as for systematic biases, due to schematic processes
and preferred perspectives. Overall, our model emphasizes the
selective and directional elements of scientific investigations and
reveals scientific insights as a matter of adopting and presenting
particular perspectives.

2.1. Filtering
The reductionist nature of our model is most obvious in its
initial step of filtering, which categorizes a population of elements
on binary dimensions and acts as a sieve for all subsequent
steps. The object being filtered is defined as some population of
elements that can be measured on our dimensions of interest.
Although this population can comprise any well-defined set of
elements, we usually encounter subsets of samples and elements
that represent events or individuals. Measuring elements requires
a dimension of interest and a scale that assigns values to elements.
An elementary type of measurement is categorization, which uses
some rule to assign or arrange elements into groups.

The elements of a population can be categorized in many
different ways. In this paper, we limit ourselves to cases of
binary categorization in which the categories employed are
dichotomous, exhaustive, and mutually exclusive, so that each
element falls into exactly one of two categories on any dimension
of interest. As an example, suppose we aimed to investigate
what may have contributed to surviving the sinking of the
RMS Titanic in 1912. Our population of elements consists of
the N = 2, 201 passengers on board of the Titanic on its
fatal maiden voyage. Suitable dimensions of interest could be
the age, sex, or class of each passenger (see Dawson, 1995).
To satisfy the constraint of binary dimensions, any variable
describing the passengers must be dichotomous. Although the
variable Age is continuous when expressed in terms of years, it
can be categorized into Adult vs. Child. Similarly, the variable
Sex is often categorized into Female vs. Male, despite allowing
for finer distinctions. A key outcome variable in this example is
each passenger’s Survival, categorized into Alive vs. Dead. Cross-
classifying all elements on d binary dimensions arranges them
in a d-dimensional grid. The top cube of Figure 3 illustrates
this for d = 3 dimensions. As each of three variables contains
two categories and all of their 2d = 8 possible combinations
exist, the population is dissected into eight sub-cubes that
show the frequency counts of individuals for every category
combination. Interestingly, any two-dimensional visualization of
a three-dimensional problem introduces artifacts that are based
on properties of the representation, rather than the problem.
For instance, depicting categories as the cells of a cube implies
an element of spatial clustering that mere classification does
not provide. Similarly, an issue of arranging categories arises
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FIGURE 3 | Filtering the population of N = 2, 201 passengers of the RMS Titanic on d = 3 binary dimensions and framing the resulting frequency grid as three distinct

2×2 matrices. The top cube shows the frequency counts of eight subgroups resulting from categorizing all elements by the binary variables Age, Sex, and Survival.

Due to aggregation, all arrows are uni-directional. Arrows from cube to matrices show the three possible two-dimensional projections along each of the cube’s axes.

The three 2×2 matrices (A–C) result from adding the frequency counts of the collapsed dimension. (Color marks Adult category; pattern marks Female category; bold

font marks Alive category. Titanic image adapted from: https://commons.wikimedia.org/wiki/File:RMS_Titanic_3.jpg).

due to constraints of viewing a 3d-object from a particular
perspective. Here, the sub-cube in the hidden lower corner
of the population cube—which is obscured by the currently
adopted angle of view and thus drawn separately, shifted to the
right—shows that 338 male adults survived the disaster. The
tension between the properties of a represented object and the
effect of highlighting or occluding some aspects by choosing a
particular representation forms a recurring theme throughout
this article: Whereas, some subjective elements—like choosing
particular dimensions or binary cut-off values—are an inevitable
consequence of reducing a multi-faceted world to a 2d-grid,
merely representational constraints often occur as side-effects
and can be mitigated by choosing other representations.

Overall, the initial step of filtering imposes a binary
perspective upon the world. Although the range of questions that
can be addressed within this framework remains substantial, it is
clear that this step is highly selective and reduces complexity by
many orders of magnitude. By rendering chosen variables from
shades of gray as either black or white, certain aspects of the
world are emphasized while others are ignored. For instance, if
the variable of a passenger’s Class is available but not considered
in this step, it is lost and cannot be recovered later.

2.2. Framing
A second step of framing reduces our object of inquiry to two
dimensions by transforming the binary grid into a 2×2 matrix.
When the elements of our population are clustered as a
three-dimensional cube, adopting perspectives on this cube
corresponds to viewing it from particular directions. Figure 3
illustrates this step geometrically as projections along each of
the cube’s dimensions. Crucially, each of the three resulting
2×2 matrices (Figures 3A–C) is an abstraction of the categorical

information that achieves simplification by further aggregating
over one of the cube’s dimensions. As the three projections are
orthogonal, any two 2×2 matrices provide the marginal sums
of the third matrix, but do not allow reconstructing it without
additional information. Again, our Titanic example illustrates
that adopting particular perspectives on an object implies
both reduction and specialization. Switching to a different
representation can sacrifice, hide, or reveal information that was
implicit before. Additionally, changing representations imposes
new constraints that can illuminate or obscure particular aspects,
but may also introduce representational artifacts. As we shall see,
each 2×2 matrix allows answering a wide range of questions.
But all insights provided by increasingly detailed comparisons
and metrics come at the price that other aspects are obscured
or lost. Thus, the benefits of adopting any particular perspective
incur potential costs of neglecting or abandoning alternative
view-points and interpretations.

When categorizing the elements of a population on two binary
dimensions, their cross-tabulation as a 2×2 matrix provides “the
crudest possible division” (Pearson, 1904, p. 21) into four sub-
groups, with each table cell displaying the frequency count of
the corresponding category combination. The core construct of
our model is also known as a binary contingency table (e.g.,
Everitt, 1977; Powers, 2011)—a term coined by Karl Pearson, who
pioneered its statistical analysis (in Pearson, 1904). Alternatively,
the same four-fold table is also known as confusion matrix (e.g.,
Fawcett, 2006; Ting, 2011; Chicco, 2017) or error matrix (e.g.,
Stehman, 1997). To anyone familiar with the literature on the
subject, these latter terms seem uncannily appropriate, as they not
only apply to the table itself, but also characterize the plethora of
measures and interpretations it subsequently spawned, and even
provide an apt description of the state of mind of many of its
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students. We see three types of reasons for the confusing nature
of 2×2 matrices:

1. Structural reasons: A first source of errors is the deceptive
simplicity of its structure. While any 2×2 matrix provides
a “simple four-fold division of the universe” (Pearson,
1904, p. 3), actually framing this construct implies
(a) the selection of two binary dimensions, and (b) their
arrangement in a spatial layout. As there exists no
standard layout of a given 2×2 matrix, swapping the
order of its dimensions and their categories allows for
23 = 8 different ways of representing the same information
(see Supplementary Figure 1). Although all these spatial
variants are mirror images or rotations of a single
2×2 matrix, this flexibility in expression allows for a
multiplicity of surface structures that differ between authors,
applications, and domains.

2. Semantic reasons: A second source of confusion is that
seemingly similar surface structures vary substantially in
their semantic interpretations. Both the specific dimensions
mapped to the axes of a 2×2 matrix and the relations
between their categories influence its meaning. For
instance, many binary distinctions (e.g., Alive/Dead,
Adult/Child) imply preferences that carry over to the
perception of corresponding matrix cells. Similarly,
particular combinations of categories (e.g., Adult/Alive
vs. Child/Dead) give rise to further evaluations. Thus,
the four cells of an interpreted matrix can vary both
categorically (e.g., positive/negative, correct/incorrect,
etc.) and as matters of degree (e.g., some cells are more
relevant than others). Within our visual metaphor, we can
think of these semantic aspects as re-introducing colors,
patterns, or shades to a 2×2matrix, and exuding substantial
implications beyond its binary structure.

3. Terminological reasons: A third and particularly vexing type
of reasons for the confusing nature of 2×2 matrices is
that different semantic domains not only frame different
matrices, but also label the resulting measures by distinct
concepts. As a consequence, the same measures often
appear in different terminological disguises, rendering their
identification and selection difficult and error-prone.

Fortunately, these structural, semantic, and terminological
sources of confusion can be reduced by adopting an analytic and
functional perspective on a shared representational construct.
In the following sections, we use a framed 2×2 matrix as a
foundation for tackling each of the confusions in turn. From a
functional viewpoint, we can ask: Which generic goals or tasks
are supported by a 2×2 matrix? Regarding semantic issues, we
will explicate the typical mappings and terminologies of different
domains. Before addressing the semantic and terminological
issues (in sections 3, 4), the next step of focusing provides the key
mechanism of our model.

2.3. Focusing
Given a well-defined 2×2 matrix, focusing on parts of this
structure supports distinct tasks that reveal increasingly specific
aspects. These tasks remain implicit when using mathematical

concepts and formulas to define measures based on the contents
of matrix cells. By contrast, our model explicates these tasks and
shows how themeasures arise by adopting particular perspectives
on the 2×2 matrix. Whereas, a numeric value encapsulates the
perspective adopted in its derivation, our structural approach
illuminates both the specific detail provided by each measure and
its limits due to ignoring all other aspects.

Before explicating the mammography problem in our model,
we introduce some abstract nomenclature. The highlighted
panel of Figure 4 provides abstract labels for the dimensions,
categories, and cells of a 2×2 matrix. In the absence of any
semantic interpretation, the lowercase letters a, b, c, and d
describe a 2×2 matrix by denoting the frequency counts
of its top-left, top-right, bottom-left, and bottom-right cell,
respectively. Using a matrix-based framework for structuring our
analysis primarily provides us with a methodological tool. Thus,
rather than claiming that the 2×2 matrix provides a superior
type of visualization (see e.g., Binder et al., 2020; Eichler et al.,
2020, for comparisons between alternatives), we use its geometric
potential for distinguishing between locations and directions.

As a result of framing, we can refer to the dimensions and
categories of a 2×2 matrix by combining the corresponding
labels. Figure 4I cross-tabulates the primary dimension of a True
condition (consisting in the presence or absence of cancer, C
vs. ¬C) with a secondary dimension of a positive or negative
Test outcome (T vs. ¬T) to yield a 2×2 matrix containing
the four possible combinations of all category levels. Thus, the
cell label ‘a’ and the number of elements in set C ∩ T are two
ways of referring to the same frequency count. The numeric
values in Figure 4I result from reconstructing themammography
problem’s probability information in terms of frequencies. When
assuming a sample ofN = 1, 000 women of the target population,
a cancer prevalence of P(C) = 1% implies that 10 of them are
expected to have cancer [N · P(C) = 1, 000 · 0.01 = 10]. Next,
the sensitivity of the screening test p(T |C)= 0.80 suggests that
a = 10 · 0.80 = 8 of the women with cancer also test positively
(C ∩ T). For the N − 10 = 990 women without cancer, the
probability for a positive test is p(T |¬C)= 0.096, so that b =

990 · 0.096 ≈ 95 receive a false positive test result (¬C ∩ T). All
other frequencies of the 2×2matrix can then be computed, as the
four elementary cells add up to the total number of individuals in
the population (i.e., N = a + b + c + d = 1, 000 women), as do
the sums of its row and column margins (e.g., N = 103 positive
+ 897 negative test outcomes). Thus, Figure 4I provides a well-
defined 2×2 matrix that estimates the frequency counts of the
mammography problem for a sample of N = 1, 000 women.

Which types of tasks are supported by a 2×2 matrix? And
which numeric transformations are required to address these
tasks? The panels of Figure 4 identify five types of tasks in a
generic fashion:

1. Frequencies: The only type of task directly supported
by a 2×2 matrix is the evaluation of frequencies. For
instance, Figure 4I shows that—given a population of N =

1, 000 women—a majority of d = 895 of them do not have
cancer and receive a correct negative test result (¬C ∩ ¬T).
Adding cells of joint frequencies across rows or columns
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FIGURE 4 | The structure of the 2×2 matrix and labels for its dimensions, categories, and cells. Numbered panels express the mammography problem in a

2×2 matrix framework to illustrate the transformations of cell values from frequency counts (I), to probabilities (II), and conditional probabilities (III). Arrows represent

the direction of adopted perspectives and numeric transformations, with curved exits indicating information that is lost by a transformation and needs to be added

when moving in the opposite direction. Cell background color marks category C (cancer present); pattern marks category T (positive test outcome); bold font marks

category correspondence (correct cases). Numbers shown in blue, green, and red mark the provided probabilities, corresponding frequencies, and the solution of the

problem, respectively.

allows comparing frequency counts between category levels.
For instance, the marginal sums reflect that there are fewer
womenwith thanwithout cancer (10 vs. 990), and fewer with
a positive than with a negative test result (103 vs. 897).

2. Proportions and probabilities: A second type of task
supported by the 2×2 matrix is the assessment and
comparison of proportions. Expressing frequencies in
terms of proportions facilitates comparisons of relative
magnitudes by standardizing cell values and their sums
to a reference value. As the frequency counts of the four
original cell values add up to the population size N, dividing
them by N normalizes their values to a sum of 1, allowing
for their interpretation as the probability of each category
combination (see Figure 4II). As this transformation leaves
all relative proportions within the 2×2 matrix intact, all
row and column values still add up to their marginal
sums. Some of these marginal sums convey interesting facts
about the original 2×2 matrix. For instance, adding the
probabilities of the left column yields the prevalence of

cancer in the population [P(C) = 1%], and adding those
of the top row reflects the test’s bias for positive outcomes
[P(T) = 10.3%]. However, the benefits of convenient
expression and comparison of cell values come at the cost
that all information regarding the population size N is lost
in the transformation.

3. Correspondence: The tabular structure of the 2×2 matrix
primarily suggests combining rows or columns of cell values,
but combining other configurations is often informative. A
special type of aggregation consists in adding the diagonals
of a 2×2 matrix (i.e., the frequencies a + d vs. b +

c in Figure 4I, or their corresponding proportions in
Figure 4II). In the mammography problem, the diagonals
mark the correspondence between a woman’s true condition
and her test outcome. Any instance in the top-left or
bottom-right cells (i.e., the counts of a and d) represents a
woman with a correct test result (due to the correspondence
C ∩ T or ¬C ∩ ¬T), while any element in the top-right or
bottom-left cells (i.e., b and c) represents a woman with
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an incorrect test result (due to a lack of correspondence,
¬C ∩ T or C ∩ ¬T). Whereas, correctness is a categorical
property of each individual (Rescher, 1998), accumulating
the groups of all correctly diagnosed women (a + d = 903)
and all incorrectly diagnosed women (b + c = 97), and
computing their proportion (by dividing both sums by N),
yields continuous measures of accuracy (90.3%) and error
rate (9.7%). Both measures fit into our increasingly familiar
pattern of gaining abstraction while sacrificing detail: On
one hand, they provide easily interpretable values on a
convenient scale from 0 to 1. On the other hand, the
normalization and aggregation in their derivation obscure
not just the population size N, but all differences between
accurate instances (a vs. d) or inaccurate instances (b vs. c)
have also vanished.

4. Conditional probabilities: A key transformation of a
2×2matrix consists in dividing its cell values by its marginal
sums to obtain conditional probabilities (see Figure 4III).
The three sub-panels A–C differ in the reference class on
which the cell values (of Figures 4I,II) were conditionalized.
Adopting a by row, by column, or by diagonal perspective
on a 2×2 matrix normalizes its values in the corresponding
direction (i.e., the rows, columns, or diagonals of Panels A,
B, and C, add to a sum of 1).

As we explicate the semantics of diagnostic measures
and other domains later (in sections 3, 4), we only contrast
two conditional probabilities that matter in the context of
the mammography problem here. By adopting a by column
perspective on the 2×2 matrix, Panel B normalizes cell
values on the presence or absence of cancer (C vs. ¬C).
Thus, the top-left cell of Panel B shows that the conditional
probability of receiving a positive test result given that
a woman has cancer is P(T|C) = 80.0%. This is the
sensitivity of themammography test provided by the original
problem formulation (in blue). By contrast, Panel A adopts a
by row perspective and normalizes its values on the possible
outcomes of a mammography test (T vs.¬T). Thus, the top-
left cell of Panel A shows that the conditional probability of
having cancer given a positive test result is P(C|T) = 7.8%
(in red). This is the test’s positive predicted value (PPV) and
the solution to the original problem.

As with previous transformations, computing
probabilities that normalize values by a particular
perspective yields highly specialized measures that render
comparisons in one direction simple and transparent, but
drop any information regarding the base rates of rows,
columns, and diagonals. For instance, whereas Figures 4I,II
show that women with cancer (C) and with a positive test
result (T) are clear minorities, this information is lost in the
transformations to Figure 4III.

5. Contingencies: Detecting the degree of covariation or
contingency between events is an important adaptive task.
In the context of a 2×2 matrix, detecting contingency
concerns the relation between its dimensions. In the
absence of contingency, both dimensions are independent
of each other, whereas the presence of contingency implies
a dependency, association, or correlation between them.

Contingency-related questions are answered by assessing
differences in conditional probabilities (e.g., by subtracting
or dividing two conditional probabilities) or computing
more comprehensive metrics (e.g., the χ2-score, or the
Matthews correlation coefficient, MCC). We discuss some of
these metrics in the context of classification and diagnostics
(in section 4.1).

Importantly, any measure based solely on the values
of a transformed 2×2 matrix inherits both the benefits
and limitations of its origin. Hence, any measure based
exclusively on the conditional probabilities of Panel A may
be highly informative for answering questions that are
conditionalized on a specific Test outcome, but is useless or
misleading for addressing tasks that require the absolute
frequency or proportion of women with vs. without cancer
or with vs. without a particular test outcome.

The five types of tasks enabled by a 2×2 matrix reach from
relatively simple comparisons (based on the frequency or
probability of cells or cell combinations) to more complex
judgments (involving assessments of correspondence,
conditional probability, and contingency). However, solving
a specific problem does typically not recruit all of these tasks.
For instance, solving the mammography problem primarily
requires adopting a particular perspective on a 2×2 matrix that
cross-classifies the target population’s health condition C by
test outcomes T. Comparing the values provided and required
in Figures 4II,III reveals the essence of the mammography
problem: The test’s sensitivity for detecting cancer p(T |C) is
conditionalized on a low cancer prevalence P(C), whereas the
required PPV p(C |T) is conditionalized on a proportion of
positive test results P(T) that is more than ten times higher than
the prevalence. More generally, a conditional probability p(C |T)
typically differs (a) from the unconditional probability P(C)—
unless C and T are independent—and (b) from the inverse
conditional probability p(T |C)—unless P(C) and P(T) are
equal. Thus, both the meaning and the value of a conditional
probability vary drastically as a function of its reference class1.

Our model solves the mammography problem by framing
a 2×2 matrix and focusing on a particular location in a
larger framework of probabilistic measures. Before exploring
the semantics and labels of additional locations, we should
realize that even relatively simple scientific problems are typically
not solved by providing a measure and its value (“The PPV
is 7.8%.”). Instead, successfully answering a question by deriving
a suitable measure is not the end of a scientific enterprize, but
the beginning of its dissemination and interpretation. While
it is non-controversial that communicating scientific results in
a transparent fashion is desirable, explaining what this means
and how it can be achieved is far from clear. Interestingly,
our model implies a non-circular and non-trivial notion of
representational transparency.

1While the non-reversible nature of conditional probabilities seems puzzling in
the abstract, an example makes it obvious: Given the population of all U.S. citizens
from 1789 to 2020, the conditional probability P(male|U.S. president) = 1, but the
inverse conditional probability P(U.S. president|male) is almost zero.
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2.4. Presenting
How can we communicate scientific results in a transparent
fashion? For probabilistic measures, the standard solution is to
either assume that one’s audience is familiar with the measure’s
definition or to provide it as a mathematical formula. This
is perfectly transparent to anyone at ease with the notation
and the axioms governing their interpretation, but opaque
and intimidating to anyone else. Alternatively, visualizations
can be powerful tools for communicating abstract information.
While most people agree that most presentations of scientific
findings benefit from clear and transparent visualizations (e.g.,
Tufte, 2001), precisely explaining why visualization help remains
challenging (see Streeb et al., 2020, for a systematic review).
A full-fledged theory of visualizing metrics derived from
2×2 matrices is still lacking (though see, e.g., Micallef et al.,
2012; Binder et al., 2015, 2020; Khan et al., 2015; Böcherer-
Linder and Eichler, 2017, 2019; Eichler et al., 2020, for studies
contrasting specific types of visualizations). But as we began this
article with Simon’s (1981) notion that a problem’s solution lies in
its transparent representation, we owe an account of what renders
representations transparent. Our model suggests a non-circular
definition of representational transparency:

A representation is transparent with respect to a specific task
when it explicates the perspective required for solving the task.

When applying this definition to measures derived from a
2×2 matrix, we obtain:

A particular measure’s representation is transparent

when it explicates the perspective adopted during the
measure’s derivation.

Several aspects of these definitions are noteworthy: First, both
definitions of transparency are explicitly constrained to a specific
task. If this task consists in quantifying some aspect of a
2×2 matrix, a transparent representation of the resulting
value must explicate the perspective adopted in the measure’s
derivation. Seeking a more general definition of representational
transparency (i.e., beyond the tasks considered in section 2.3
and the measures defined in section 4.2) would need to consider
the representation’s ecological rationality (see Todd et al., 2012,
for details).

Second, the definitions are applicable, but not limited to
visualizations. They specifically allow for verbal explications or
mathematical notations. Similarly, the definitions are deliberately
silent and agnostic about specific types of graphs and the visual
feature(s) to which a measure is being mapped. For instance, a
measure’s numeric value can be expressed by an angle, area, co-
ordinate, or length. Which of those features is most appropriate
depends on many factors, including the task to be performed
(e.g., does it require a qualitative judgment or a quantitative
comparison?), a value’s context and magnitude, and the viewer’s
perception, graph literacy, and motivation.

Third, explicating a measure’s perspective typically requires
that the measure is being shown, rather than merely being
implied by other representational elements. However, merely

depicting some measure in a visualization is not sufficient for
achieving transparency. For instance, mapping the values of
probabilities (e.g., accuracy, PPV, or the effects of risks or
treatments) to spatial locations or the heights of bars may
explicate their numeric magnitude, but provides no information
on how the values were derived. In fact, visualizations that
invite comparisons between non-transparent measures may even
obscure and manipulate information, rather than reveal it (see
section 5.3 for examples).

How can we explicate the perspectives adopted in the
derivation of a particular measure? Although mathematical
definitions help explicating how measures are computed, we
believe that visualizations are more accessible to a wider
audience. Our definition of representational transparency can
be read as providing prescriptive guidance, but there is no
simple recipe for turning it into a procedure for creating
transparent visualizations. Given a vast repertoire of options,
we can only provide some examples here. In fact, most of the
figures in this article explicate perspectives adopted on a shared
representation of a 2×2 matrix. For instance, Figure 4 illustrates
how probabilities and conditional probabilities are derived from
the joint frequencies of a 2×2 matrix. In sections 3, 4, we extend
this approach to additional visualizations (e.g., hierarchical trees
in Figure 5) and more complex measures (e.g., of contingency
and odds in Figure 6). Similarly, the perspectives adopted
on a 2×2 matrix for deriving the sensitivity or PPV of a
diagnostic test can be expressed in the form of an icon.
Given the 2×2 matrix of the mammography problem (shown
in Figure 4I), the contrast between the test’s sensitivity (sens)
and its positive predictive value (PPV) can be depicted as:

sens =
a b

c d = 80% vs. PPV =
a b

c d = 7.8%. Although such

icons seem suitable for expressing frequencies, probabilities, and
conditional probabilities in a compact fashion, they assume a
framed 2×2 matrix and reach their limits for more complex
measures (e.g., the aggregate scores of Figure 6 or Table 3).
Additional options for visually explicating particular perspectives
on tasks involving probabilistic measures include icon arrays,
unit squares, tables, tree diagrams, and frequency nets (see Neth
et al., 2018, for generating different visualizations from a shared
representation, and Binder et al., 2015, 2020, and Böcherer-
Linder at al., 2019, 2020 for empirical comparisons).

While this article promotes the matrix lens model as an
analytic device, a 2×2 matrix may also turn out to be a useful
visualization for many problems. For instance, a key structural
feature of a 2×2 matrix—as an external representation—is
that it explicates two orthogonal dimensions. If this also is an
important feature of a problem, representing it as a 2×2 matrix
may facilitate solving it. However, if the task’s structure or
semantics impose an order on two dimensions, a hierarchical
representation (like a unit square or tree) may provide a better
fit. Thus, rather than suggesting that the 2×2 matrix is the right
representation for all problems, we emphasize that evaluating a
visualization’s degree of fit to a particular task pre-supposes an
analysis of the task’s structural and semantic aspects. In section 3,
we will see that the semantics of many tasks and domains
imply a three-dimensional structure. As a consequence, any
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two-dimensional visualization contains visual artifacts that select
and emphasize some aspects while omitting or obscuring others.
Although visualizations can be tailored to fit to specific tasks,
the downside of any such specialization is a loss of generality.
Thus, if problems or domains require transfers betweenmeasures
or tasks, the costs of tailored visualizations may outweigh their
benefits. Overall, the question which visualization fits best for
which task—and for which audience—remains an important
challenge for future research.

3. SEMANTICS

The previous section introduced the matrix lens model as a
general approach for solving tasks based on frequency counts,
conditional probabilities, and binary contingencies. The model’s
steps were illustrated by framing specific 2×2 matrices of Titanic
passengers and deriving some measures of the mammography
problem. However, the model was expressed in abstract terms,
involving simple geometric transformations, and a set of basic
tasks that could be applied on any population of elements that is
filtered into binary dimensions and viewed through the structural
construct of a 2×2 matrix. Its key mechanism of adopting
particular perspectives on this construct derived measures as
locations in a matrix-based framework. The meanings of these
matrices seemed arbitrary, merely motivated by examples, and
did not matter much.

In practice, scientific problems are rarely posed in a semantic
vacuum, but rather embedded in specific contexts. As people
typically solve problems within particular domains, the concepts
and categories used to frame 2×2 matrices vary as a function
of domain-specific contents. Similarly, the preferred perspectives
adopted on 2×2 matrices and the terminology of corresponding
measures differ substantially between domains.

Semantic questions address issues of meaning, interpretation,
and relevance. To clarify semantic sources of confusion in the
context of 2×2 matrices, we first describe typical task domains
and then identify some standard mappings of matrix dimensions
and categories in these domains (in section 3.1). Discovering a
shared structural feature will then allow us to propose a simplified
model that explicates the structure that underlies a range of
problems in several domains (in section 3.2).

3.1. Mapping Meanings to Dimensions
Due to their structural simplicity, 2×2 matrices feature
prominently in many tasks and domains. Unfortunately, the
commonalities between these uses are obscured by the flexibility
in arranging a given 2×2 matrix (see section 2.2) and the distinct
terminologies of scientific fields (see section 4.2). We use the
term task domain to denote a discipline or field with a common
set of questions and applications. As the questions that can be
addressed by a 2×2 matrix crucially depend on its dimensions,
we characterize task domains by the semantic categories of their
typical dimensions.

Table 2 lists the task domains considered in this paper and
defines a default mapping of their dimensions. For instance,
the mammography problem stems from the task domain of
medical diagnostics. The corresponding 2×2 matrix (shown in
Figure 4) mapped each patient’s true condition to X and the
test outcome to Y . Table 2 also notes the origins of the matrix
dimensions and the dependencies between them (in the right-
most three columns). When using an existing test to diagnose
a disease, the true condition X is given by the environment
and the test outcome Y is given by the test. As discussed in
section 2.3, the matrix diagonal represents the correspondence
between the other two dimensions. In the context of diagnostics,
this correspondence implies the correctness of a test result and is
listed as a third dimension Z.

Beyond medical diagnostics, Table 2 provides default
mappings for 2×2 matrices of additional task domains that
we cannot cover in detail in this paper. In classification, the
criteria of a true class X and a predicted class Y can both be
freely chosen by the analyst during training, but the identity
of X is externally given when applying a classifier. The field of
information retrieval combines notions from signal detection
theory and categorization to search for relevant documents,
but uses a distinctive terminology for its metrics (e.g., precision
vs. recall). Its signature task typically implies large numbers of
irrelevant documents that are to be ignored (i.e., high values in
cell d or joint category ¬X ∩ ¬Y) as, for instance, expressed in
the null invariance property by Tan et al. (2004).

The domains of risk and treatment are similar insofar as both
freely set or define the levels of some (independent) Factor X and
measure or observe the environmental consequences on some
(dependent) Factor Y . As treatment effects are often measured
as increases or decreases of medical conditions, such conditions

TABLE 2 | Semantic mappings of concepts to three dimensions of 2×2 matrices in different task domains or disciplines.

Task domain or discipline
Semantics of dimensions Origin and dependencies

X Y Z X Y Z

Medical diagnostics True condition Test outcome Correctness Given by environment Given by test Defined by X and Y

Classification (training) True class Predicted class Class match Free distribution Free Defined by X and Y

Classification (application) True class Predicted class Class match Given by environment Free distribution Defined by X and Y

Information retrieval Relevance Retrieval Correctness Given by interest Free Defined by X and Y

Risk Risk factor Outcome Correspondence Free Given by environment Defined by X and Y

Treatment Treatment factor Effect/condition Correspondence Free Given by environment Defined by X and Y

Some dimensions are given by external factors (��), while others can be chosen (��), or are defined by the other two dimensions (�).
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can also be mapped to dimension Y of 2×2 matrices (resulting
in rotations by 90◦, relative to the standard 2×2 matrix of
medical diagnostics). Consequently, the referents of the medical
terms prevalence and incidence should always be noted.

Importantly, all domains considered in Table 2 share a
structural element: Whereas, the semantic contents mapped
to dimensions X or Y can be chosen freely or are given
by external factors, dimension Z is always determined by X
and Y . Inspecting the semantics of dimension Z—noted as
“correctness,” “class match,” or “correspondence”—reveals that
they all imply some notion of accuracy. As a consequence of
this regularity, the 2×2 matrix {X,Y} (i.e., with an implicit
dimension Z) fits closely to the semantic structure of the task
domains considered here. In the absence of a specific task,
this particular 2×2 matrix is semantically privileged, but some
tasks may benefit from an explication of Z. Applying the
correspondence constraint to a 3D-grid (from section 2.1) yields
a modified geometric model that gives rise to more specialized
perspectives that explicate particular dimensions and introduce
representational constraints.

3.2. The Structure of Task Domains
All problems mapped by the task domains of Table 2 correspond
to a shared three-dimensional structure. This partial cube
model (see Figure 5) is created by three orthogonal binary
dimensions X, Y , and Z, under the constraint that Z represents
the correspondence between X and Y . In contrast to our initial
Titanic example (in Figure 3), the partial cube model only
contains four cells with frequency counts, as four category
combinations are rendered impossible by the constraint on Z
(e.g., the triple XY¬Z cannot exist). Thus, the partial cube model
is fully determined by the frequency counts a, b, c, and d.

As before, viewing the model from the direction of one
of its axes collapses the corresponding dimension and frames
three distinct 2×2 matrices (A–C). Geometrically, adopting
one of these perspectives implies a projection from the 3D-
model to a 2D-matrix. But due to the fragmentary nature
of the partial cube, these projections no longer require any
aggregation over the dimension from which it is being viewed.
Thus, each of the three possible 2×2 matrices fully preserves
the frequency information of the 3D-model. Although the three
matrices only differ in the arrangement of the four frequency
counts, they are not identical. Crucially, each 2×2 matrix
explicitly represents two of the three original dimensions (as its
horizontal and vertical dimensions), whereas the third dimension
is implicitly represented (as its diagonal). The 2×2 matrix with
two orthogonal dimensions {X,Y} and an implicit dimension Z
matches the semantic structure of tasks in which the third
dimension is defined as the correspondence of the other
two dimensions (as in Table 2). Thus, Matrix A is the most
compact 2D-representation that preserves the 3D-structure of
the underlying task domain and is semantically privileged
over the other matrices, unless a task requires that category
correspondence is explicated.

Each 2×2 matrix can be organized further by reading
out its four cells in either a by row or by column fashion.
Geometrically, this process corresponds to the two possible

projections from a 2D-matrix into an ordered list of cells.
Collapsing a matrix into a list is also known as stacking
dimensions (Mihalisin et al., 1991), and can be augmented as
a hierarchical tree that illustrates how each matrix is parsed
into the ordered sequence formed by its leaves. Depending on
the angle from which a matrix is being viewed, the projection
results in two distinct trees and lists per matrix: The left
tree below each matrix uses the horizontal dimension as the
tree’s first branching criterion (i.e., dissecting the matrix in a
by column fashion) before using the vertical dimension as the
tree’s second branching criterion (dissecting the cells of each
column by row). The right tree below each matrix assumes a
different projection angle, thus reversing the branching criteria
of the left tree and reordering the list’s four frequency counts
into a different order as the tree’s leaves. The six trees and lists at
the bottom comprise all possible ways of projecting the original
frequency counts into one-dimensional lists (see Supplement 1

for details).
To clarify the status of the geometricmodel shown in Figure 5,

note that the top cube explicates the actual structure underlying
any task with semantic mappings that define one dimension as
the correspondence between two others (i.e., dimension Z in
Table 2). More precisely, the image of the partial cube provides
a visualization of this structure, but its geometry models the
essential aspects of tasks with three orthogonal dimensions
and the correspondence constraint. By contrast, all lower-
dimensional visualizations (e.g., the 2×2 matrices and trees
in Figure 5) selectively depict some particular aspect of this
structure. Depending on the current task, such visualizations
can both increase and decrease the transparency of particular
measures (see section 2.4). As the discovery of a shared
representational structure has the potential to integrate the
terminologies and metrics used in many different domains, it is
important to understand in which sense the representations on
the three levels of Figure 5 are identical to and differ from each
other. On the one hand, all ten images contained in Figure 5 are
informationally equivalent (Larkin and Simon, 1987). In contrast
to the projections in Figure 3, every 2×2 matrix, hierarchical
tree, or list of counts contains the frequency information of the
original cube, and thus can be reconstructed from any other
image. (Supplement 1 shows that the three-, two-, and one-
dimensional models enable an identical number of 24 distinct
projections.) On the other hand, this does not imply that all
these images are equal. Instead, they differ substantially in
the ways in which they explicate and organize information.
Strictly speaking, only the partial 3D-cube faithfully represents
the three-dimensional nature of the underlying problem. By
adopting particular perspectives, all two- or one-dimensional
projections distort this structure by imposing new constraints
and introducing representational artifacts that can have both
desirable or undesirable consequences, depending on the task to
be solved. For instance, framing a 2×2 matrix by selecting and
arranging two dimensions not only renders the third dimension
implicit, but also alters the proximity relations between cells (as
some become neighbors, while others are separated). Similarly,
whereas the original cube contains no hierarchy, each tree depicts
one dimension as the primary and unconditional branching
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FIGURE 5 | The partial cube model shows the geometry of frequency counts resulting from categorizing a population by two binary dimensions X and Y if a third

dimension Z expresses the correspondence between X and Y . Given a population size N, the correspondence constraint reduces the full model (containing 23 cells)

to four cells (df = 3). Arrows are bi-directional and show projections from higher- to lower-dimensional spaces, and vice versa. There exist three distinct

2×2 matrices (A–C) and six distinct one-dimensional representations (augmented as trees)—all others are mirror images or rotations of these (see Supplement 1 for

details). Although all perspectives are informationally equivalent, the dashed region marks the 2D- and 1D-visualizations that are semantically privileged for tasks in

which dimension Z can remain implicit. (Cell color marks category X; pattern marks category Y ; bold font marks correct classifications Z.)

criterion (dissecting the population into two subsets) and one
other dimension as a second branching criterion (appearing to
be dependent and conditional upon the first). Importantly, the
structure of a matrix or tree is blind to all semantic constraints
of specific tasks or domains. Thus, a chosen representation
neither needs to correspond to a user’s current task (e.g., a
2×2 matrix of X by Y can be shown to ask questions about Z),
nor match the causal or statistical properties of a domain (e.g.,
the second branching criterion of a tree can be independent
of its first). As mismatches between the properties of tasks and
representational features make problems more difficult, whereas
matches can render solutions transparent, it matters which
particular representation is chosen. (We elaborate on this point
in section 5.)

4. INTEGRATION

We originally motivated the matrix lens model by the mammo-
graphy problem and showed how it can be solved by framing
and focusing on parts of a 2×2 matrix (see section 2). We then
added semantic mappings to an abstract model and argued that
tasks in various domains share the same underlying structure
(section 3). However, both the matrix lens model (shown in
Figure 2) and the reduced structural geometry of the partial
cube model (Figure 5) seemed ill-motivated if they only allowed
to compute the PPV of this particular problem. To justify our
investment, we now extend the scope of our model in two ways:
First, we show how additional measures of clinical diagnostics
can be derived by adopting slightly different perspectives on the

same matrix. Locating these measures in our structural account
also allows illuminating two key dichotomies in the context
of diagnostic testing. In section 4.2, we further generalize our
model to additional domains and show how a large variety of
measures and terminologies can be understood in a matrix-
based framework.

4.1. Integrating Metrics of Classification
and Diagnostics
Our model solved the mammography problem by adopting a
particular perspective on a 2×2 matrix to derive a test’s PPV
(Figure 4). As the geometry of the matrix and the abstract
tasks performed with this construct are independent of a
particular content, we can generalize our analysis to other
situations involving classification tasks and diagnostic tests.
Figure 6 provides a glimpse of the additional measures that
are available by framing and focusing on particular aspects of
a 2×2 matrix. Figure 6 uses the same layout as Figure 4, but
replaces the four frequencies a, b, c, and d, by the nomenclature
of true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN), which is widely used in the domain of
classification and clinical diagnostics. As before, Figures 6I–III
show frequencies, probabilities, and conditional probabilities,
but Figure 6IV adds likelihood ratios (LR+ and LR−) as row-
wise ratios of the conditional probabilities in Figure 6IIIB.
The highlighted formulas below each matrix compute metrics
that summarize its quality in different ways: By computing the
diagonal total of correct cases, accuracy (ACC), or two measures
of contingency as the difference between conditional probabilities
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FIGURE 6 | Key metrics for measuring diagnostic classification performance based on a 2×2 matrix of frequency counts that denote true positives (TP), false

positives (FP), false negatives (FN), and true negatives (TN). Panels I–III correspond to Figure 4, whereas Panel IV computes likelihood and odds ratios from

conditional probabilities (III) or frequencies (I). The diagram explicates the relations and dependencies between metrics, arithmetic transformations (e.g., normalizing,

computing conditional probabilities, or odds), and corresponding changes of perspective. (See Figure 4 for a numeric example and Table 3 for definitions and

alternative names.)

in a particular direction (1PR vs. 1PC). A noteworthy
aspect of Figure 6 is that some conditional probabilities (in
Figures 6IIIA,B) are not only labeled as “rates” (e.g., TPR,
FPR), but carry dedicated names (e.g., sens, spec, PPV, NPV)
or even multiple names (e.g., sens ∼= recall, PPV ∼= precision).
As we will see in Table 3, this reflects their role and relevance
in various domains. But irrespective of semantics, Figure 6

shows dependencies in a diagrammatic fashion. For instance, by
conditionalizing the 2×2 matrix by row, all values of Figure IIIA
(e.g., PPV, NPV) depend on a condition’s prevalence (prev),
but not on a test’s bias. Conversely, by conditionalizing the
2×2matrix by column, all values of Figure 6IIIB (e.g., sens, spec)
depend on bias, but not on prevalence (prev).

In addition to the familiar frequencies, probabilities,
and conditional probabilities, Figure 6 defines three more
comprehensive measures that further combine and transform
conditional probabilities. The diagnostic odds ratio (DOR,
defined in Figure 6IV) is a global indicator of discriminative
performance that allows comparisons between diagnostic tests
(see Glas et al., 2003; Šimundić, 2009, for details). Whereas,
its formula implies that it integrates all four elementary
frequencies of the 2×2 matrix, the geometry of Figure 6

shows that its value depends on a test’s sensitivity (sens)
and specificity (spec, both in Figure 6IIIB), but decidedly

not on a condition’s prevalence (prev, Figure 6II), as this
information was dropped when adopting a by column
perspective on the original matrix before calculating the
likelihood ratios2.

Additionally, the lower right panels of Figure 6 define two bi-
directional scores that reintegrate the two perspectives adopted
by computing conditional probabilities (in Figures 6IIIA,B). The
F1-score is the harmonic mean of precision (i.e., PPV) and recall
(i.e., sens) and is called triangular (in Figure 6V) as it focuses on
the top-left cell and combines two measures that conditionalize
the number of true positives (TP) both by row and by column.
The χ2-score (Figure 6VI) is even more encompassing by multi-
plying both directional measures of contingency (i.e., 1PR and
1PC) and additionally including the population size N, which
otherwise is lost when transforming into probabilities. Finally,
the same panel also mentions the popular Matthews correlation
coefficient (MCC) as another quadrangular measure closely
related to the χ2-score.

2DOR is a quadrangular score (see its definition in Figure 6IV) that can also be
calculated by first adopting a by row perspective on the matrix, computing two
column-wise likelihood ratios, and then their odds ratio. Thus, DOR values are
also independent of bias.
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Introducing these measures within a structural model of
2×2 matrices—rather than using mathematical notation—has
two advantages: First, visually illustrating the perspectives
adopted by the measures and separating them from the
numerical transformations required for their derivation
highlights their dependencies and limitations. For instance,
realizing that diagnostic situations usually imply a trade-off
between two different errors (i.e., incorrect classifications FP
vs. FN), Figure 6 visually explains the inverse relationship
between sensitivity and PPV (i.e., recall and precision).
Second, explicating the perspectives adopted by otherwise
abstract measures and locating them within a structural
framework increases their transparency and facilitates
their understanding.

The distinction between adopting two perspectives on a
2×2 matrix also helps explaining two key dichotomies in the
domain of clinical diagnostics. First, developing a new test
adopts a different perspective than applying an existing test
(Linn, 2004). Developing a test assumes that each element’s
true condition (and hence the condition’s prevalence in the
population) is known. Based on this assumption, developers
adopt a by column perspective and aim to design a test that
meets certain criteria, typically formulated in terms of sensitivity
and specificity. By contrast, applying an existing test assumes
that the test’s properties are known (as in the mammography
problem). Based on this information, we can ask questions
about the predictive power of a test result. But in order to
adopt the corresponding by row perspective (e.g., for computing
the test’s PPV or NPV), we need an actual prevalence value
(which may diverge from the prevalence value assumed during
test development).

An ideal test would exhibit perfect sensitivity and perfect
specificity. But given that we typically need to compromise
between both measures, shifting perspectives on the 2×2 matrix
also illuminates the difference between testing for screening
vs. for diagnostic purposes (Morrison, 1998; Streiner, 2003;
Trevethan, 2017). In screening an entire population, our primary
goal is to reliably detect all diseased individuals (i.e., rule out
only healthy individuals, Zakowski et al., 2004). Assuming that
the prevalence of the condition is low and we have options
for further testing, this implies maximizing sensitivity (sens)
by minimizing misses (FN), at the expense of accepting some
false positives (FP). Adopting an alternative by row perspective
on the 2×2 matrix resulting from such a screening scenario,
we realize that minimizing misses (FN) at the expense of false
positives (FP) will increase the test’s NPV, at the expense of
lowering its PPV. By contrast, diagnostic testing typically starts
with a suspicion (e.g., the presence of symptoms or a positive
test result) and assumes a higher prevalence of disease. Here,
our primary goal is to avoid unnecessary treatments by reliably
identifying all healthy individuals (i.e., rule in only diseased
individuals, Zakowski et al., 2004). This implies maximizing
specificity (spec) by minimizing false positives (FP) at the
expense of accepting some misses (FN). Viewing the resulting
2×2 matrix from a by row perspective shows that this will
increase a test’s PPV at the expense of lowering its NPV. In
practice, additional factors—like differences in costs, prevalences,

and the availability of other tests or treatments—will also
matter. Importantly, our model helps rendering these theoretical
relationships more transparent.

4.2. Integrating Metrics and Terminologies
Across Domains
Beyond the realms of classification and diagnostics, the
2×2 matrix construct features prominently in many additional
contexts and domains. While many authors have provided
overviews that define and summarize the measures used within a
domain, few have explained and linkedmeasures across domains.
When realizing that an impressive wealth of important measures
is based on the relatively simple construct of a 2×2 matrix,
the lack of an integrative account is striking and calls for an
explanation. We see three obstacles and corresponding sources
of confusion:

1. First, any attempt to bridge domains faces terminological
difficulties. For instance, authors from clinical diagnostics
(e.g., Selvin, 1996; Massart et al., 1998; Šimundić, 2009)
use different names for the same concepts than those
rooted in signal detection theory (e.g., Green and Swets,
1974; Stanislaw and Todorov, 1999) or those from machine
learning and information retrieval (e.g., Rijsbergen, 1979;
Fawcett, 2006; Baeza-Yates and Berthier, 2011; Powers, 2011;
Ting, 2011).

2. Domains differ in their conceptual needs and thus develop
and use different metrics. Whereas, experts in medical
diagnostics primarily focus on the conditional probabilities
and odds ratios discussed in section 4.1 (see Figure 6),
the merits of triangular scores—like the F- and G-scores,
lift, or the Jaccard index—mainly matter in the context of
classifier development and information retrieval tasks (e.g.,
Rijsbergen, 1979; Powers, 2011).

3. A subtle but pervasive barrier to an integrative account is
of a functional nature: Whereas, most domains mentioned
so far primarily address some variant of a classification
task (e.g., “Which of two classes does an individual belong
to?” or “What would be a good criterion to distinguish
between these two categories?”), the domains of risk and
treatment primarily evaluate the consequences of some
categorical distinction (e.g., “Which outcomes are observed
if the risk factor is present?” or “What are the effects of
being treated?”). Although such questions can readily be
addressed in a 2×2 matrix framework, the corresponding
research traditions differ substantially in their constraints
and study designs. Importantly, the usefulness of any
particular measure cannot be determined solely from its
formula or label, but depends on boundary conditions.
An example is the measure of relative risk (RR), which
corresponds to the positive likelihood ratio (LR+) defined
in Figure 6: RR can be a useful measure for comparing
the outcomes for individuals exposed to some risk factor
to those of unexposed individuals (Sauerbrei and Blettner,
2009), a deceptive and misleading measure that inflates
the absolute magnitude of effects (Gigerenzer et al., 2007;
Noordzij et al., 2017), or an un-informative and nonsensical
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measure if the risk factor’s prevalence was fixed by the
study design (Sauerbrei and Blettner, 2009). Thus, choosing
and using measures in a sensible manner requires more
than just knowing their names and definitions—it requires
understanding their roles in answering particular questions
and their match to the study design that generated the
2×2 matrix.

Despite these obstacles, Table 3 provides an overview of metrics
across domains. Previous accounts mostly focused on covering
one domain (see, e.g., Hasenclever and Scholz, 2016, for a
mathematical/statistical approach, or Todeschini et al., 2012, for
an extensive comparison from a bio-chemical point of view) or
on connecting two domains (e.g., Powers, 2011). By contrast,
our model integrates a wide variety of measures from different
domains in a uniform approach and provides—to the best of
our knowledge—the most encompassing account so far. Beyond
satisfying an encyclopedic ambition to collect key measures from
different domains in one place, Table 3 organizes them in a
systematic fashion and links various domains and terminologies.

Overall, successful focusing on a single measure reduces
the complexity of the world to a one-dimensional answer
(see Figure 2). As we have seen, any measure provided as
such an answer is a highly specialized tool that—given precise
boundary conditions—serves particular purposes. By abstracting
from the original data and combining many aspects, the more
complex measures gain generality, but simultaneously obscure
and encapsulate the perspectives adopted during their derivation.

Besides defining each measure in terms of frequencies and
probabilities, Table 3 also provides visual icons that show the
perspective adopted on a 2×2 matrix when deriving the measure
and thus implicitly contained in it. We trust that readers will find
these visual and diagrammatic illustrations more illuminating
than a purely mathematical treatment. Ideally, locating measures
and their inter-relations in a shared 2×2 matrix framework will
facilitate their comprehension and, hopefully, help to choose and
use them more responsibly. To illustrate how the 2×2 matrix
construct can clarify theoretical debates, the next section applies
our approach to some problems that are known to puzzle and
perplex people when expressed in conventional form.

5. APPLICATIONS

Our model views the world through the lens of a 2×2 matrix.
Being a theoretical framework, its primary purpose is to enable
insights by explicating the process that reduces selected aspects of
a complex and continuous world to a numeric measure.Whereas,
such measures are typically defined in terms of mathematical
formulas, our structural account reveals them as particular
perspectives on a 2×2 matrix. Showing how the measures of
different domains are based on a common construct and a shared
set of basic tasks allows an integrative view of their assumptions
and terminologies.

Beyond a better understanding of theoretical concepts and
their relations, a practical benefit of our model lies in its potential
for clarifying familiar problems. In the following, we provide
three case studies that demonstrate how ourmodel can be applied

to ongoing debates regarding the difficulty and facilitation of
Bayesian reasoning tasks (sections 5.1, 5.2), and to address the
question whether the women and children of the Titanic were
successfully rescued first (section 5.3). True to its analytic nature,
our model will not solve these debates, but increase transparency
by providing alternative perspectives.

5.1. Perspectives on Natural Frequencies
and Nested Sets
How can we render the mammography problem more
transparent? We argue that our model makes three inter-
related contributions that help to clarify the theoretical debate
surrounding this problem. First, we provide a representational
explanation of the problem’s difficulty. As we have shown
(in sections 1.2, 2.3), the mammography problem revolves
around three conditional probabilities: Whereas, the test’s
sensitivity p(T |C) and false positive rate p(T |¬C) are
given, the problem asks for the test’s PPV p(C |T). When
arranging the problem’s joint frequencies or probabilities in a
2×2 matrix (as in Figures 4, 6) we see that the two conditional
probabilities provided adopt a by column perspective on the
matrix (Figures 4IIIB, 6IIIB), whereas the problem’s solution
requires adopting a by row perspective on the same matrix
(Figures 4IIIA, 6IIIA). Geometrically, the problem requires the
reversal of an adopted perspective before adopting an alternative
perspective. Mathematically, providing the prevalence p(C)
renders the reversal possible (i.e., we can re-construct Panel II
from Panel IIIB). In practice, however, this requires first
computing two joint probabilities [i.e., p(C ∩ T) = p(C)p(T|C)
and p(¬C ∩ T) = p(¬C)p(T|¬C)] before Bayes’ theorem can
be used to compute the desired solution p(C |T). Thus, within
our 2×2 matrix framework, the crux of the Bayesian inversion
task are its representational demands, which are reflected in
its computational complexity. Even when fully understanding
the information provided and the question asked, solving the
standard mammography problem requires two representational
shifts: Reversing an implicit perspective and pivoting to an
alternative perspective.

As a second contribution, our model partially explains why
expressing the problem in the standard frequency format makes
its solution much easier. We propose two representational
reasons for the facilitative effect of natural frequencies on
Bayesian inference. First, let us assume that the four basic
frequencies (a–d) are framed as a 2×2 matrix (as in
Figures 4I, 6I). Given this matrix, the desired PPV p(C |T) can
be derived in a straight-forward manner—by focusing on the top
row (i.e., women with a positive test result T) and computing
the ratio a

a+b . Arithmetically, this operation is identical to the
computationally simple solution based on a natural sampling
process (e.g., Gigerenzer and Hoffrage, 1995; Hoffrage et al.,
2000, 2002). Comparing the representational complexity of this
process to the one outlined for the probability format reveals
a stark contrast: Instead of reversing an implicit perspective
before switching to another, we only need to adopt a single
right perspective on the 2×2 matrix. But what if natural
frequencies are not already framed neatly in 2×2 matrix form?
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TABLE 3 | Definition of metrics and corresponding formulas based on the 2×2 matrix, and alternative names in different domains or disciplines.

Formula
Icon

Measure

Frequencies Probabilities Classification/Diagnostics Alternative names Treatment/Risk

Hits oz

a N · P(X ∩ Y )
a b

c d

TP True positives ghj lnr tαβ γ ǫ

Support δ

FA False Alarms oz

b N · P(¬X ∩ Y )
a b

c d

FP False positives ghlnrtαβ γ ǫ θ

Type I error q

Misses oz

c N · P(X ∩ ¬Y )
a b

c d

FN False negatives ghj lnr tαβ γ ǫ θ

Type II error q

F
re
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u
e
n
c
ie
s

d N · P(¬X ∩ ¬Y )
a b

c d
TN True negatives ghj lnr tαβ γ ǫ CR Correct rejections o

a+c
a+b+c+d

P(X )
a b

c d
prev Prevalence (X) r tαβ γ ι Generality d prevX Prevalence/incidence (X) rsyαζ

Response/Label bias t
a+b

a+b+c+d
P(Y )

a b

c d

bias Bias o

SR Success rate z
Prevalence/incidence (Y )

Overall correct classification γ
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a+d
a+b+c+d

P(Z) = P((X ∩ Y ) ∪ (¬X ∩ ¬Y ))
a b

c d

ACC Accuracy ghltβ

diagnostic effectiveness β

TPR True positive rate lnotǫ

HR Hit rate lo
AR+ Absolute risk (+) cs

Recall dhl twǫ
a

a+c
P(Y |X )

a b

c d

sens Sensitivity lnr tαβ γ ǫ ι

1− β Power mr
EER Experimental event rate x

b
b+d

P(Y |¬X )
a b

c d

FPR False positive rate l t

FAR False alarm rate oz

AR− Absolute risk (−)
Fallout htw

α Significance level mr CER Control event rate x

Miss rate o
c

a+c
P(¬Y |X )

a b

c d

FNR False negative rate j t

β

d
b+d

P(¬Y |¬X )
a b
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spec Specificity lnr tαβ γ ǫ ι

TNR True negative rate notǫ

Inverse recall t

C
o
n
d
it
io
n
a
l
o
n
X
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1− α

Precision dhlǫ

Confidence ta
a+b

P(X|Y )
a b

c d

PPV Positive predictive value nrβ ǫ ι

PPP Positive predictive power γ

b
a+b

P(¬X|Y )
a b

c d
FDR False discovery rate e

c
c+d

P(X|¬Y )
a b
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FOR False omission rate j
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n
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n
Y
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d
c+d
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NPV Negative predictive value nrβ γ ǫ ι Inverse precision t spec Specificity α
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TABLE 3 | Continued

Formula
Icon

Measure

Frequencies Probabilities Classification/Diagnostics Alternative names Treatment/Risk

TS Threat score z
a

a+b+c
P(X ∩ Y |X ∪ Y )

a b

c d

Jaccard index wη

CSI Critical success index z

Dice coefficient t
2a

2a+b+c
2 · P(X|Y ) · P(Y |X )

/

(

P(X|Y )+ P(Y |X )
) a b

c d

F1 F1 score l tη

PS+ Proportion of specific agreement t

T
ri
a
n
g
u
la
r

a√
(a+b)(a+c)

√

P(X|Y ) · P(Y |X ) = P(X ∩ Y )
/

√

P(X ) · P(Y )
a b

c d
G G(2) score tη Cosine δ

(a+b+c+d)·a
(a+b)(a+c) P(X ∩ Y )

/

(

P(X ) · P(Y )
) a b

c d
Lift f Interest δ

M
ix
e
d

ad−bc
(a+b+c+d)2

P(X ∩ Y )−
(

P(X ) · P(Y )
) a b

c d
Piatetsky-Shapiro’s rule-interest δ

a
a+c

− b
b+d

= ad−bc
(a+c)(b+d) P(Y |X )− P(Y |¬X )

a b

c d

1PC Contingency (columns) bt

BI (Bookmaker) Informedness t
ARR Absolute risk reduction vζ

ARI Absolute risk increase c

Attributable risk s

J Youden’s index nβ θ
Risk difference s

Uplift u

NNT Number needed to treat a
(a+c)(b+d)
ad−bc

1
/(

P(Y |X )− P(Y |¬X )
)

a b

c d

NNH Number needed to harm c

(

ad−bc
(a+c)(b+d) + 1

)/

2
(

P(Y |X )− P(Y |¬X )+ 1
)

/

2
a b

c d
BACC Balanced accuracy g

RRR Relative risk reduction svζ
ad−bc

(a+c)(b+d)

/

b
b+d

= ad−bc
ab+bc

(

P(Y |X )− P(Y |¬X )
)

/

P(Y |¬X )
a b

c d

RRI Relative risk increase c

MK Markedness t
a

a+b
− c

c+d
= ad−bc

(a+b)(c+d) P(X|Y )− P(X|¬Y )
a b

c d

1PR Contingency (rows) bt

E Difference coefficient i

2·(ad−bc)
(a+b)(c+d)(a+c)(b+d)

P((X∩Y )∪(¬X∩¬Y ))
P(X )·P(Y )+P(¬X )·P(¬Y )

a b

c d
κ Cohen’s Kappa ptγ

r Correlation coefficient p
ad−bc√

(a+b)(c+d)(a+c)(b+d)

√

P(Y |X )− P(Y |¬X ) ·
√

P(X|Y )− P(X|¬Y )
a b

c d

MCC Matthews correlation coefficient bt

Root mean square contingency i
φ Phi coefficient tγ

D
if
fe
re
n
c
e
-b

a
s
e
d

(a+b+c+d)(ad−bc)2

(a+b)(c+d)(a+c)(b+d) N ·
(

P(Y |X )− P(Y |¬X )
)(

P(X|Y )− P(X|¬Y )
) a b

c d
χ2 Contingency krt Test for independence
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TABLE 3 | Continued

Formula
Icon

Measure

Frequencies Probabilities Classification/Diagnostics Alternative names Treatment/Risk

cs Class ratio t
a+c
b+d

P(X )/P(¬X )
a b

c d

Pre-test/prior odds r tγ

Skew d
Odds yζ

a
b

P(X|Y )/P(¬X|Y )
a b

c d
Post-test odds (+) rγ

S
im

p
le

c
d

P(X|¬Y )/P(¬X|¬Y )
a b

c d
Post-test odds (−) r

RR+ Relative risk csxy
a

a+c

/

b
b+d

= ab+ad
ab+bc P(Y |X )/P(Y |¬X )

a b

c d

LR+ Positive likelihood ratio norβ γ ι Neyman-Pearson test m

Risk ratio y

c
a+c

/

d
b+d

= bc+cd
ad+cd

P(¬Y |X )/P(¬Y |¬X )
a b

c d
LR− Negative likelihood ratio noβ γ ι

Odds ratio η OR Odds ratio orxyγ ζ
ad
bc

= ad−bc
bc

+ 1 P(Y |X )·P(¬Y |¬X )
P(Y |¬X )·P(¬Y |X ) =

P(X∩Y )·P(¬X∩¬Y )
P(¬X∩Y )·P(X∩¬Y )

a b

c d

DOR Diagnostic odds ratio npβ

Cross ratio i ψ̂ Approximate relative risk k

ad−bc
ad+bc

DOR−1
DOR+1

a b

c d
Q Yule’s Q ipδη

O
d
d
s

R
a
ti
o
s

√
ad−

√
bc√

ad+
√
bc

√
DOR−1√
DOR+1

a b

c d
Y Yule’s Y ipδη

Colors in icons represent arithmetic operations: •
• ;

•
• − •

• ;
•
•

/

•
• . Yellow icons (•, •, •, • and •) indicate more complex calculations, often combining perspectives, as shown in Figure 6. Note that many measures of contingency can be

formulated as scaling the determinant (i.e., ad− bc) of the 2×2 matrix. Superscripts denote the following references: aAkobeng (2005), bAllan (1980), cAndrikopoulou and Morgan (2017), dBaeza-Yates and Berthier (2011), eBenjamini

and Hochberg (1995), fBrin et al. (1997), gBrodersen et al. (2010), hChicco (2017), iEdwards (1963), jErman et al. (2012), kEveritt (1977), lFawcett (2006), nGlas et al. (2003), mGigerenzer et al. (2004), oGreen and Swets (1974),
pHasenclever and Scholz (2016), qHowell (2013), rMassart et al. (1998), sNoordzij et al. (2017), tPowers (2011), uRadcliffe and Surry (2011), vRanganathan et al. (2016), wRijsbergen (1979), xSackett et al. (1996), ySauerbrei and Blettner

(2009), zSchaefer (1990), αSelvin (1996), βŠimundić (2009), γ Streiner (2003), δTan et al. (2004), ǫTing (2011), ζ Tripepi et al. (2007), ηWarrens (2008), θYouden (1950), ιZakowski et al. (2004).
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Interestingly, assuming the absence of a 2×2 structure may
render the adoption of the right perspective even easier. Our
second representational reason for the higher likelihood of
correct solutions when expressing the problem in the standard
frequency format considers the identities and semantics of the
joint frequencies provided. Note that the problem statement
explicitly provides only two of four joint frequencies: a = 8
and b = 95. The semantic category shared by these frequencies
is T (i.e., women with a positive test outcome). Noticing
this common element is the mental equivalent of adopting a
by row perspective on the 2×2 matrix, or constructing an
hierarchical tree that uses the Test outcome dimension as its
first branching criterion. (As we will see in Figure 7B, adopting
this perspective essentially solves the problem.) Thus, framing
the joint frequencies as a 2×2 matrix facilitates the solution
by requiring fewer perspective changes than starting from two
conditional probabilities and a prior. And providing only the
two joint frequencies that need to be combined for deriving
the correct solution may even act like a mental nudge into the
right direction.

Given abundant evidence for the facilitative effects of natural
frequencies on Bayesian reasoning, a puzzling finding from
decades of research is that about 75% of the participants facing
such problems still fail to provide the correct solution (McDowell
and Jacobs, 2017). Thus, a very good question (raised by
Weber et al., 2018) is: Why is Bayesian reasoning in frequency
formats still so difficult? Our third contribution builds on the
previous two and provides an analytic answer to this question.
As we have seen, the mammography problem in its standard
probability format provides sufficient information for applying
Bayes’ theorem or for translating the problem into an alternative
representation using natural frequencies. By specifying the
cancer prevalence p(C), the test’s sensitivity p(T |C), and its false
positive rate p(T |¬C), the three measures typically provided
adopt a by column perspective on a 2×2 matrix framed by
True condition as its Dimension X (see Figures 4, 6). As a
consequence, reconstructing the frequency matrix from the
probabilities provided implies building a hierarchical tree that
first dissects the population by True condition before branching
by Test outcome (see Tree A of Figure 7, which shows provided
probabilities as blue edges). Importantly, expressing the problem
in the standard frequency format provides five key nodes of the
same tree (in green and in red). Thus, although the underlying
problem structure actually enables three 2×2 matrices and
six hierarchical trees (see Figure 5), the only tree that can
directly be constructed from the provided information splits the
population by True condition (i.e., adopts a by column perspective
on the matrix). By contrast, the PPV measure solving the
problem adopts a by row perspective on the same matrix. Hence,
instructing a representation of Tree A for computing the PPV
still requires a change in perspective: Rather than combining
tree leaves by True condition, they must be combined by Test
outcome (to see that the number of women with positive tests
is 8 + 95 = 103). Making this change effectively constructs an
alternative tree that corresponds to adopting a by row perspective
on the 2×2 matrix (see Tree B of Figure 7, which explicitly
represents both frequencies required for computing the PPV

in red). Importantly, both trees are perfectly transparent, but
with respect to different tasks. Both standard formats instruct
Tree A which transparently represents the information provided
by the problem. The task remains difficult because its solution
is not obvious in this representation—only Tree B adopts the
perspective required for deriving the PPV and thus provides
a transparent representation of the task’s solution. Thus, our
geometric analysis shows that Bayesian reasoning is and remains
vexing as long as it requires a crucial representational shift
between problem statement and solution. Even when expressing
the Bayesian problem in terms of natural frequencies, the
perspective implicitly adopted by the provided information has
problem solvers, metaphorically, and literally, barking up the
wrong tree. Taking (Simon, 1981) seriously, we suggest: By
making the problem’s solution transparent, the right tree solves
the problem.

Accepting this insight raises an intriguing conundrum: If the
crux of Bayesian problem solving consists in the representational
shift, what remains when we provide people with a transparent
representation of the solution? Removing the need for a
perspective change essentially dissolves the Bayesian aspect of the
original problem3. Thus, it should not surprise us that providing
participants with the crucial elements of Tree B (as in the short
menu formats by Gigerenzer and Hoffrage, 1995) or both trees
(as in the double tree by Wassner, 2004) improves the likelihood
of correct solutions. What should surprise us, however, is that
their rate fails to reach 100%. Based on our representational
analysis, instructing the problem in a short menu format (or
one of its visual analogs) essentially tests participants’ ability
to recognize the solution when its key elements are provided
to them. As the term “facilitation effect” seems misleading in
the absence of a Bayesian problem, it may be more appropriate
to view this experimental condition as providing an upper
performance benchmark (in the sense of Neth et al., 2016), which
assess people’s ability or willingness for deriving and reporting
a conditional probability when the representational demands of
the Bayesian problem have been removed. The empirical finding
that the solution rates in conditions with short menu formats
only rise by about 12% (McDowell and Jacobs, 2017) suggests that
participants suffer from additional difficulties that prevail beyond
the representational demands of Bayesian reasoning (e.g., lack of
comprehension, motivation, or numerical skills. See Brase, 2009a;
Ferguson and Starmer, 2013; Weber et al., 2018, for suggestions).

Figure 8 summarizes our arguments on the representational
demands of Bayesian reasoning and the facilitation effects
of natural frequencies and short menu formats. Beyond the
computational differences (shown in the lower right panel),
the information provided by the problem and the perspectives
required and suggested for solving it differ substantially between
the three problem versions. The probability format (Figure 8I)
mixes a marginal probability and two conditional probabilities
that both adopt a by column perspective. The two joint
probabilities of the 2×2 matrix containing probabilities (marked

3In technical terms, providing p(T) and p(C ∩ T)—or the corresponding joint
frequencies—no longer requires Bayes’ theorem for computing the posterior
probability p(C|T) from a prior p(C) and the likelihoods p(T|C) and p(T|eg C).
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FIGURE 7 | A 2×2 matrix of the mammography problem and two trees resulting from adopting a by column vs. a by row perspective on it. Computing the PPV from

natural frequencies for a population of N = 1, 000 women requires realizing that 8 out of 103 women with a positive test result also have cancer. Irrespective of its

format, the information provided by the Bayesian problem (probabilities in blue, frequencies in green or red) only allows the direct construction of Tree A. However, only

Tree B explicitly represents both frequencies required for solving the task (in red). Thus, while Tree A provides a transparent representation of the problem, Tree B

renders its solution transparent.

as missing parts of the Solution in Figure 8) are necessary
for solving the problem, but first need to be computed from
the probabilities provided. The natural frequencies format
(Figure 8II) presents information in the same (by column)
perspective as the probability format (as indicated by the
vertical arrows), but provides frequencies instead of probabilities.
Reducing this difference to a mere change in representational
format ignores the representational differences between both
panels. Figure 8II renders it obvious why the problem’s solution
is facilitated: The two joint frequencies that are explicitly
mentioned in the problem are also required for computing its
solution and suggest the right by row perspective. Finally, the
short frequencies format (Figure 8III) abandons the by column
perspective of the other panels. By providing a joint and
a marginal frequency, the alternative by row perspective is
suggested and implies the solution. Especially if the answer
asks for frequencies (i.e., 8 out of 103), the short frequency
format essentially becomes a search task that does not require
any calculation.

To clarify, our representational account does not compromise
the key argument of Gigerenzer and Hoffrage (1995), who
demonstrate the facilitative effects of frequency formats
on Bayesian reasoning. But whereas previous authors saw
the benefits of short menu formats primarily in reducing
computational complexity (e.g., Ferguson and Starmer, 2013;
Fiedler et al., 2000; Mellers and McGraw, 1999), we argue that
removing the need for a perspective change fundamentally

alters the problem. Whereas, natural frequencies only facilitate
performance by implying a more goal-directed representation
of the Bayesian problem, the short menu format suggests
this alternative perspective, thereby explicating the problem’s
solution in a transparent fashion. Despite these contributions,
any attempt to explain all existing data solely on the structure
of a 2×2 matrix would inevitably fall short, as its geometry
remains silent about the difference between joint frequencies
and joint probabilities (i.e., Figures 4I,II, 6I,II). Studies
demonstrating the impact of representation formats (e.g.,
Sedlmeier and Gigerenzer, 2001; Brase, 2008) and the relevance
of analytical abilities (e.g., Sirota et al., 2014) show that
representation format, problem content and context, and
individual differences jointly matter for performance in
Bayesian reasoning.

Our analysis has both theoretical and practical implications
for investigations of Bayesian reasoning. Theoretically, our
account is compatible with the basic tenets of nested-sets
theory, which claims that Bayesian inference is facilitated by
rendering certain subset relations and their reference classes
more transparent (e.g., Mellers and McGraw, 1999; Sloman
et al., 2003; Yamagishi, 2003; Barbey and Sloman, 2007). But
advocates of nested-sets theory have been criticized that “the
mechanism by which the subset structure is revealed has not
been specified. Nor is it clear how the joint event formats
help participants to visualize the nested structure.” (McDowell
and Jacobs, 2017, p. 1293). By contrast, our model provides
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FIGURE 8 | A matrix-based account explicating the difficulty of Bayesian reasoning and two types of facilitation effects (on the example of the mammography

problem, as studied by Gigerenzer and Hoffrage, 1995, p. 688). (Color coding and lowercase letters next to arrows in Panels I–III refer to the problem descriptions in

the three formats shown in Table 1.)

concrete suggestions how specific sets are made accessible (by
filtering and framing) and how subset structures are revealed
(by focusing on different parts of a shared representational
structure). In fact, our notion of adopting particular perspectives
provides a mechanism that explains why some formats or
menus facilitate the problem’s solution more than others:
Given a 2×2 matrix, both natural frequencies and short
menu formats enhance the salience of the perspective that
renders the problem’s solution transparent. Various authors
have expressed similar ideas—see, for instance, the notion of
backward reasoning by Johnson and Tubau (2015), the problem-
representation transfer hypothesis by Sirota et al. (2015), or ideas
on the importance of task-compatible reference classes by Ayal
and Beyth-Marom (2014) and Talboy and Schneider (2018)—
but anchoring their hypotheses in a structural account makes
these notions more specific and concrete. Finally, the apparent
discord between natural frequencies and a nested-sets account
dissolves within our model: Natural frequencies are an implicit
result of filtering and framing (see sections 2.1, 2.2). Nested-
sets theory describes how natural frequencies are selected and
explicated, which our model depicts as particular ways of focusing
(section 2.3).

As a practical implication, our representational account
appoints a key role to the systematic study of visualizations for
improving Bayesian reasoning. Researchers in both visualization
(e.g., Cleveland and McGill, 1985; Ziemkiewicz and Kosara,
2010) and psychology (e.g., Talboy and Schneider, 2017;
Böcherer-Linder and Eichler, 2019) agree that proportional

visual mappings are essential for providing useful visual aids.
However, our analysis suggests that experimental designs should
move beyond comparing performance with and without visual
aids (e.g., Brase, 2009b; Garcia-Retamero and Hoffrage, 2013)
or contrasting seemingly haphazard selections of graphical
representations (e.g., Micallef et al., 2012; Khan et al., 2015). As
a comprehensive study of visualizations for Bayesian reasoning
is still lacking, existing classifications of visual representations
are typically described as collections of examples (e.g., Binder
et al., 2015, Figure 1, p. 3; McDowell and Jacobs, 2017,
Figure 2, p. 1283; and Böcherer-Linder and Eichler, 2019,
Figure 3, p. 3). Although some noteworthy structural accounts
of visualizations exist (e.g., Khan et al., 2015; Böcherer-
Linder and Eichler, 2017, 2019), they were mostly framed
in terms of nested-sets. Lacking the mechanisms of adopting
particular perspectives on a shared representation, they could
not benefit from the three-dimensional structure underlying
all Bayesian reasoning problems (see Figure 5) or justify why
some representations are privileged, while others are mis-
leading. As we have shown (in sections 2, 3), contrasting
different visualization types risks comparing apples with oranges
(e.g., a 2×2 matrix with two optional perspectives, with
the particular perspective of a tree or unit square). To
be aware of such categorical distinctions, we must always
specify: Which particular version of each visualization is being
shown? A methodological consequence of our model is that
researchers can identify a visualization’s exact role: Which
problem representation does it imply and which perspective
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does it adopt or suggest? Does a visualization merely explicate
the information provided by the problem, or does it show
the problem’s solution? By mapping particular aspects of the
Bayesian problem space to specific visual features, future studies
of visual aids can measure the interplay between the task’s
psychological demands, visual features of representations, and
viewers’ background knowledge and graphical literacy much
more precisely.

5.2. Perspectives on Bayesian Brain
Teasers
Psychology has a long tradition of studying Bayesian problem
solving with toy tasks that serve as entertaining brain teasers
and appear to show people’s inability for straight thinking (e.g.,
Kahneman and Tversky, 1973; Bar-Hillel, 1980; Bar-Hillel and
Falk, 1982). Such tasks let probabilistic events unfold within some
narrative and lure most naïve participants into providing an
intuitive, but false solution.

To demonstrate the generality of our model, we first use it
to explicate another notorious instance of base rate neglect (e.g.,
Kahneman and Tversky, 1973; Tversky and Kahneman, 1974).
A famous problem in this area is the cab problem (originally
introduced by Kahneman and Tversky, 1972a, and extensively
analyzed by Bar-Hillel, 1980; Birnbaum, 1983; Macchi, 1995):

A cab was involved in a hit-and-run accident at night. Two
cab companies, the Green and the Blue, operate in the city.
You are given the following data:

1. 85% of the cabs in the city are Green and 15% are Blue.
2. A witness identified the cab as a Blue cab. The court

tested his ability to identify cabs under the appropriate
visibility conditions. When presented with a sample
of cabs (half of which were Blue and half of which
were Green) the witness correctly identified each color
in 80% of the cases and erred in 20% of the cases.

What is the probability that the cab involved in the
accident was Blue rather than Green?

This problem description provides base-rate information [i.e., the
prevalence of both types of cabs: p(Green) = 0.85, p(Blue) =

0.15], diagnostic information (i.e., the reliability of the witness
testimony: p(blue |Blue) = p(green |Green) = 0.80), and asks
for an inverse conditional probability (i.e., p(Blue |blue)). The
problem’s correct solution is 41%, but the median and mode of
participants’ answers in empirical studies is 80%, thus coinciding
with the credibility of the witness and appearing to neglect the
base rate information.

The problem information can be used to frame a 2×2 matrix
that cross-tabulates an actual condition (Was the cab Blue or
Green?) with two alternative witness testimonies (Does the witness
report a blue or green cab?). Figure 9 locates the details provided
by the problem (shown in blue) in our explanatory framework.
This reveals the close correspondence of the cab problem to
the mammography problem (see Figure 4). Again, the provided
conditional probabilities (in Figure 4III) adopt a by column
perspective on an implicit 2×2 matrix that can be reconstructed
by multiplying each condition’s specific information (i.e., the

sensitivity and specificity of the witness) by the corresponding
base rates (for Blue vs. Green cabs). Geometrically, solving the
problem by Bayes’ theorem requires first reversing the implicit
by column perspective (to compute the joint probabilities of
Panel I) and then adopting an orthogonal by row perspective (to
derive the desired conditional probability p(Blue |blue), shown
in red, and corresponding to the mammography’s PPV).

Interestingly, this analysis reveals two distinct rationales for
erroneously answering 80%. First, participants could divide the
top-left cell by the row sum, but erroneously use the conditional
probabilities (of Figure 4III), rather than the unconditional
probabilities (of Figure 4I). This error of false inputs (E1)
explicates the essence of base rate neglect as performing the
right calculation with the wrong inputs. A merely informal
account of this notion could easily confuse it with another
error, which also ignores all base rates. This second error fails
to distinguish p(Blue |blue) from its inverse p(blue |Blue) and
reports the testimony’s sensitivity or specificity as the desired
answer. Mistakenly reporting a false measure (E2) as the solution
has been labeled as an inverse fallacy (Eddy, 1982; Koehler,
1996) and attributed to using a Fisherian algorithm (Gigerenzer
and Hoffrage, 1995) or representative thinking (Dawes, 1986;
Zhu and Gigerenzer, 2006). The prominent hypothesis that a
representativeness heuristic, which uses similarity or the degree
of correspondence of an instance to a category as a proxy for
judging its probability, may cause and explain the observed errors
(Kahneman and Tversky, 1972b, 1973), has been criticized as
overly narrow and vague (Gigerenzer, 1991, 1996). As accounts
of representativeness typically invoke notions of saliency and
correspondence, they can be consolidated with our structural
attempt for rendering task representations and problem solutions
more obvious. The fact that our model is much narrower
than an arguably vague notion may actually be a benefit: Not
only does it allow us to pin-point the precise location of
potential errors, but also offers a new role for representativeness
as explaining why people preferentially adopt the mis-leading
by column perspective.

Our framework can accommodate problems that feature more
than two options. For instance, the three-door or Monty Hall
problem (Selvin, 1975; vos Savant, 1990) is named after a TV show
in which a contestant faces a choice between three doors (D1–
D3). Behind one random door lurks the grand price of a car,
whereas each of the other two doors conceals a goat. After
the contestant selects a door (e.g., D1), the host (who knows
all objects’ locations) opens another door (e.g., D3) to reveal a
goat. The question whether the contestant should now switch
to the other door (D2) has sparked an intense public debate
and inspired extensive studies (e.g., Granberg and Brown, 1995;
Krauss and Wang, 2003; Baratgin, 2009).

Explicating the Monty Hall problem by our model extends
the previous examples in two ways: First, accounting for a
probabilistic task with three options renders the mapping from
narrative to diagnostic scenario more challenging. Second, the
standard two-door scenario of the problem (in which the host
reveals a goat and the contestant thus seems to face a choice
between two remaining doors, Krauss and Wang, 2003) departs
from the problems discussed so far by requiring that the interplay
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FIGURE 9 | The cab problem (Kahneman and Tversky, 1972a) corresponds closely to the mammography problem by providing base rate information [e.g., the

prevalence of p(Blue) = 0.15] and two types of diagnostic information (p(blue|Blue) = p(green|Green) = 0.80, indicating the testimony’s sensitivity and specificity). The

problem’s solution is p(Blue|blue) = 0.41, which is the inverse conditional probability of the given sensitivity p(blue|Blue) = 0.80, and corresponds to the PPV of the

mammography problem. The analysis explains the problem’s difficulty and reveals two ways of erroneously answering 80% (E1 vs. E2) that explicate the informal

notions of base rate neglect and representativeness. Panel I contains probabilities, whereas Panels II and III contain conditional probabilities. (Blue cells mark

Blue cabs; shaded cells mark testimonies of “blue”; red areas mark potential errors; yellow areas highlight the solution’s perspective.)

between the situation and the host’s options must be taken into
account. Figure 10 depicts the standard scenario as a 3×3matrix
(on the left): Its X-dimension denotes the three possible locations
of the car (C1–C3) and its Y-dimension denotes the three doors
that the host can open (D1–D3). Figure 10I indicates the number
of possible cases as the host’s options for opening doors given
the contestant’s initial choice and the car’s actual location. As
there are N = 3! = 6 possible arrangements of a car and
two distinct goats and each car location is equiprobable (i.e.,
U{C1,C2,C3}), each column contains two cases. If the contestant
initially selects D1, only D2 or D3 can be opened. Which of
these doors is opened depends mostly on the car’s location: If the
car is at C2 or C3, the host must open D3 or D2, respectively,
to reveal a goat. If the car is at C1, both D2 or D3 hide goats
and could be opened, but we assume that the host has no
preference and hence opens both doors equally often in those
cases. The lower 3×3 matrix (Figure 10III) expresses the same
setup in terms of probabilities that are conditionalized on car
location (i.e., by column). Whereas, only the host can know
which of the four possible combinations (i.e., non-zero cells in
Figures 10I,III) is realized in an actual game, a savvy contestant

could reconstruct all possible cases and their probabilities from
the problem description. But even if an appropriate matrix is
framed, a crucial element for solving the problem consists in
adopting the right perspective on it.

To further clarify the contestant’s dilemma, we frame the
initial 3×3 matrix as a 2×2 matrix that collapses C2 and C3 into
one column (to only distinguish C1 from C2∨3) and removes the
impossible row D1 (Figure 10II). As in our previous examples,
we can now adopt a by row or a by column perspective on this
matrix. The problem’s solution is derived by conditionalizing C1

on the identity of the opened door (i.e., by row). Using either
a 3×3 or the 2×2 matrix (Figures 10I–III), this shows that
p(C1 |D3) = p(C1 |D2) = 1

3 . Thus, the conditional probability
that the car is at C1 given that either D3 or D2 has been
opened is identical to its original probability p(C1) = 1

3 . By
contrast, adopting the same perspective on any alternative door
shows that p(C2∨3 |D2) = p(C2∨3 |D3) = 2

3 , implying that the
contestant should switch in both cases.

Although switching doors would double the contestant’s
chances for winning the car, 87% of naïve participants prefer
to stick with their initial choice (Granberg and Brown, 1995).
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FIGURE 10 | Explicating the Monty Hall problem (vos Savant, 1990) in its standard two-door scenario (Krauss and Wang, 2003). The 3×3 matrices map three

equiprobable car locations (C1–C3) to the three doors that the host can open (D1–D3) and depict all possible combinations after the contestant selects D1 in terms of

frequencies (I) and conditional probabilities (III). Removing the distinction between C2 and C3 and the impossible row D1 frames a 2×2 matrix that illustrates the

contestant’s dilemma (II). Adopting a by row perspective yields the solution p(C1 |D3)=
1
3 and p(C2∨3 |D3)=

2
3 , indicating that the contestant should switch doors.

Adopting a by column perspective on the same matrix yields p(Di |Cj ) = .50 for all combinations (IV), indicating that conditionalizing the host’s action on the car’s

location is uninformative. The fact that three potential errors (i.e., false framing, E1, false inputs, E2, and reporting a false measure, E3) all yield the same erroneous

value of 50% explains why this false intuition is so compelling. (Blue cells mark the contestant’s initial choice; red areas mark potential errors; yellow areas highlight the

solution’s perspective.)

A key argument for their inertia is the intuition that the host’s
elimination of a losing option creates a new situation that implies
a 50–50 chance of winning with each of the remaining doors. This
uniformity belief (Falk, 1992, p. 202) ignores that the host’s action
depends on both the contestant’s choice and the car’s location
and falsely assumes that the game is re-set after a goat has been
revealed (see Baratgin, 2009, for an analysis of this updating
interpretation). In our model, the false assumption of two equi-
probable options (i.e., U{C1,C2∨3}) would frame an erroneous
2×2 matrix in which all cell values were equal. As such a matrix
would fail to reflect the actual situation, we refer to this error
as false framing (E1). Once such a misleading 2×2 matrix has
been framed, the illusion that the chance of winning is 50% for
either option is inevitable, as it would follow from adopting any
arbitrary perspective on it.

Interestingly, our analysis shows two additional options for
the same conclusion. Adopting a by column perspective on the
correct 2×2 matrix (Figure 10II) yields a 2×2 matrix that
contains values of 0.50 in all of its cells p(Di |Cj) (Figure 10IV).
This essentially means that the door opened by the host is an
uninformative diagnostic test when conditionalizing on the car’s
location (by column), rather than on the identity of the open
door (by row). Assuming this unhelpful perspective on a correct
2×2matrix, the error of false inputs (E2) would perform the right

calculation on the wrong inputs and constitute another instance
of base rate neglect. Similarly, computing the inverse of the
actually relevant conditional probability [i.e., p(D3 |C1), rather
than p(C1 |D3)] would report a false measure (E3) and could
be described as an inverse fallacy or resulting from a Fisherian
algorithm or representative thinking (see above). However, the
fact that all of these errors yield the same value of 50% may
explain why this false intuition is so compelling.

Having explicated three notorious problems of Bayesian
reasoning by our framework, we trust that analogous accounts
could illuminate related problems—like the engineer-lawyer
problem (Kahneman and Tversky, 1973), the conjunction fallacy
(Tversky and Kahneman, 1983), or the three-prisoners problem
(Falk, 1992)—and more remote phenomena, like the class-
inclusion task (Politzer, 2016), or Simpson’s paradox (Simpson,
1951). Our model explains their difficulty by the interplay of
two factors: (a) the challenge of constructing an appropriate
problem representation, and (b) a discrepancy between an
implicit perspective adopted by the problem information and
the perspective required for the solution. The first obstacle lies
in framing an appropriate 2×2 matrix. This is particularly
challenging when the problem involves three or more options
that obscure the binary nature of the underlying diagnostic
test. But even if an appropriate 2×2 matrix has been framed,
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the specific information provided by the problem can still
be misinterpreted or may shift the reasoner’s focus into a
misleading direction. A purely analytic account can reveal
and distinguish between potential errors, but not disentangle
them any further. While adopting the right perspective on an
appropriate representation may also make a problem’s solution
transparent, our model’s main purpose consists in explicating
problems structures and pinpointing potential errors, rather than
resolving them.

Despite their theoretical appeal and practical ramifications,
textbook problems of Bayesian reasoning require only a small
part of our overall framework. In fact, the scope of the matrix
lens model also extends beyond the domain of classification
and clinical diagnostics that comprise the majority of measures
defined in Table 3. To illustrate its generality, we now address a
pertinent question raised in our introductory example.

5.3. Perspectives on Surviving the Titanic
When using the population of Titanic passengers to illustrate the
initial steps of ourmodel (in sections 2.1, 2.2), we evaded themost
obvious question: Who survived the disaster? A more nuanced
version of this query would aim to identify factors that contribute
to a passenger’s survival. Given that an emergency protocol
known as the Birkenhead drill demands the preferential rescue
of women and children when abandoning a ship, a seemingly
straightforward question would ask: Were women and children
successfully rescued first?

Before addressing this question, we need to prohibit two
simplistic answers. For instance, a categorical interpretation of
the drill would require that all women and children must be
saved prior to rescuing any adult male. However, given that the
disaster killed over two thirds of the ship’s population (67.7%,
see Figure 3), demanding that the victims must not contain
a single female or child seems overly conservative. Similarly,
adopting a continuous approach but merely counting the victims
or survivors per group would ignore their base rates, which
are heavily skewed toward adults and males. Rather than
comparing the frequencies of individual cells, our model should
enable us to derive a comprehensive measure that provides a
quantitative answer to the question: To what degree was the
policy implemented? Interestingly, this is surprisingly difficult
and implies making several choices that substantially shape
our answer.

Our analysis assumes a binary grid of the Titanic’s population
(see section 2.1) and begins by framing an appropriate
2×2 matrix (section 2.2). Although Figures 3A–C provide three
alternative perspectives on the three-dimensional Titanic data,
none of them allows answering our question. For rather than
expressing Survival as a function of Age (Figure 3B) or Sex
(Figure 3C), measuring the drill’s success requires a 2×2 matrix
that collapses female adults and children of both sexes into a
combined Rescue category and contrasts their Survival status with
that of male adults. This matrix can be constructed from the
binary grid and is shown in Figure 11. Evaluating this matrix
is a matter of perspective: For an individual of either group,
being Alive is certainly better than beingDead. However, viewing
the 2×2 matrix from the drill’s normative angle implies that

saving a female or child is preferable to saving a male adult. If
there are victims among female and children, any adult male
survivor may face misgivings. Due to this constellation, the
diagonal of the 2×2 matrix does not denote accuracy, but rather
whether a category combination can or cannot conflict with the
policy. Our model’s crucial step of focusing (section 2.3) adopts a
particular perspective on the 2×2matrix to derive ameasure that
captures the desired aspect. To illustrate that this step includes
important choices, we adopt two distinct perspectives:

1. Comparing survival rates: To control for the base rates of
both Rescue categories, we adopt a by column perspective
on the 2×2 matrix and compute each group’s chances
of survival (see the measures of absolute risk, AR, in
Table 3). This reveals that the survival rate of male adults
was only 20%, whereas the survival rate among women
and children was 70% (or mortality risks of 80 and 30%,
respectively). The difference between both risks can be
expressed as an absolute risk reduction (ARR) of 50% for
women and children or—possibly inflating the effect—
as an increase of the relative survival rate of women
and children by a factor of 2.5 (relative to adult males).
As relative risks are notoriously misleading (Gigerenzer
et al., 2007), simply contrasting the absolute magnitude
of both survival rates suggests that women and children
were prioritized.

2. Computing odds for conflict cases: An alternative perspective
on the same matrix directly contrasts the cells that can
conflict with the rescue policy. Re-framing the matrix
arranges it so that its former diagonals form its rows.
Focusing exclusively on the top row contrasts 161 women
and children who died with 338 adult men who survived.
Importantly, the larger number of the latter group implies
that there was sufficient rescue capacity for saving allwomen
and children. Computing the odds between both numbers
reveals that for any dead woman or child there were 2.1 seats
in lifeboats occupied by adult men. Although the magnitude
of this value seems similar to the relative risk factor of 2.5
(in 1), it points in the opposite direction and suggests that
women and children were not prioritized.

Obtaining two results with opposite conclusions presents us with
a puzzle: Which answer is correct? Actually, as either result
is incomplete, rather than wrong, both results together allow
for a more balanced assessment of the rule’s success: While
women and children survived at a considerably higher rate
than male adults, a better allocation of seats in lifeboats would
have boosted their survival chances even further. Interestingly,
each individual result could easily be mistaken as the only
one and be used to mislead people. By accurately reflecting a
particular aspect of the problem, each result obscures the original
information and prevents an alternative perspective. Especially
when only communicating the value of some cryptic measure and
showing a seemingly informative, but decidedly non-transparent
visualization (see Figures 11A,B), the manipulative potential of
any such analysis is substantial.

The lesson to be learned here is not to stop analyzing data
or to avoid drawing conclusions. Instead, we must learn to
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FIGURE 11 | Applying the matrix lens model to evaluate whether women and children on the Titanic were successfully rescued first. Any answer depends on the

policy’s interpretation and the perspectives adopted on the data. Comparing survival rates between groups suggests that women and children received preferential

treatment, but computing row odds for cases in conflict with the policy supports the opposite conclusion. Presenting only one measure in a non-transparent fashion

(as in A vs. B) would obfuscate the problem, rather than solving it.

be skeptical about seemingly objective measures that remain
non-transparent. As we have shown, adopting perspectives
is an inevitable part of the scientific process and the price
to be paid for the benefits of abstraction and specialization
that come with particular measures. Thus, the antidotes to
ignorance and pseudo-scientific propaganda are not doubts or
disdain for highly-specialized scientific tools, but their profound
comprehension and transparent communication within a
risk-savvy society (Gigerenzer and Gray, 2011; Gigerenzer, 2014).
Dealing flexibly and responsibly with alternative perspectives
and results requires a level of insight into the meaning and
limits of measures that goes beyond mere rote learning of
definitions and formulas. While our theoretical model may
contribute to a better understanding of metrics and their proper
interpretation, the key challenge for educators and instructors
is to design effective training programs that render scientific
insights more transparent for scientists, their audiences, and
students (Martignon and Hoffrage, 2019).

6. DISCUSSION

In this article, we link the basic construct of a 2×2 matrix
to the typical semantic interpretations of binary dimensions
that are of interest in different domains. This explains a large
variety of scientific measures in a unifying framework. We
illustrate how our model can be applied to explicate notorious
problems of Bayesian reasoning, as well as to address scientific
questions of a more general nature. While this highlights the
problems’ structural similarities and pinpoints potential errors
more precisely than previous explanations, it also reveals that the
selective and organizational processes of filtering, framing, and
focusing imply characteristic trade-offs: The price of increasing
resolution on some particular aspect is a loss of detail and
context. Importantly, any perspective adopted in the derivation
of a measure is rendered implicit and encapsulated in its numeric

value. Thus, a transparent communication and visualization of
scientific results needs to explicate the perspective adopted in
their derivation.

Although we trust that our approach makes contributions
to various fields, some caveats may help to pre-empt possible
misunderstandings. Rather than providing a unique account.
our model stands in a long tradition of expressing cognitive
phenomena in visual metaphors (see Supplement 2). Regarding
our goals, we provide an analytic tool for studying problems,
not a recipe for resolving them. Although our model is
abstract and flexible enough to be applied to other problems,
its structural mapping to a specific problem is not always
straightforward. Thus, our approach may help others in solving
similar problems, but such benefits are not automatic and
yet to be shown. Similarly, this article uses visualizations to
render our model’s steps and processes more concrete (see
Figures 2–5), but the model itself is abstract, rather than visual
in nature. Whereas, most steps of our model (i.e., the steps
of filtering, framing, and focusing) are descriptive, its final step
(presenting) allows for prescriptive applications. But even when
using our notion of transparency for evaluating visualizations
of numeric measures, there is no guarantee that those that
conform to our definition will yield benefits in comprehension
or performance. Thus, our model can be used to generate
hypotheses, but their success and reach remains to be tested in
empirical studies.

Overall, analyzing tasks in the form and terms of
2×2 matrices is primarily a methodological tool for revealing
structural similarities between problems and suggests where
to look for possible errors and solutions. By contrast, our
framework is silent about which perspective solves a given
problem, nor provides us with a magic potion that adopts the
right perspective on all problems. As all models are wrong on
some level, ours must prove its worth by changing our reader’s
perspectives on related problems.
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7. CONCLUSION

Could you restate the problem?
Could you restate it still differently?

(Polya, 1957, p. 75)

In the 1999 science fiction movie The Matrix, swallowing a red
pill reveals the world as a technological projection: Everything
perceived to be real turns out to be a mere illusion. Real science is
less spectacular, but also full of projections. And in sharp contrast
to the action thriller, adopting particular perspectives is in fact a
theoretical tool for gaining insights and discovering meaningful
relations about the world.

The matrix lens model illustrates a sequence of steps that
filter information, frame it as a 2×2 matrix, and focus on
increasingly specific aspects of the world. Adopting distinct
perspectives on the shared structural construct of the 2×2matrix
yields a rich variety of measures that enable high levels of
abstraction and specialization. But any gain in the resolution of
details comes at the cost of reducing generality and limiting the
scope of possible conclusions. Beyond explicating the dialectic
epistemology of scientific measures, the model integrates a
rich variety of concepts into a common framework. Our
geometric approach shows the shared underlying structure of
many semantic domains, highlights links between a confusing
range of measures, and may help to clarify or resolve several
academic debates.

Applying our model to both theoretical and practical
problems provides new perspectives on them. From a theoretical
stance, our model suggests structural explanations for the well-
known facilitation effects of frequency formats, and precisely
describes potential errors in related problems of Bayesian
reasoning. By explicating the representational nature of such
problems, we show how a shift in perspective essentially
solves them. With regard to solving scientific problems by
analyzing data, our model reveals the choices inherent in the
selection of measures and cautions against drawing premature
conclusions on the basis of seemingly objective values. As
any quantitative measure selectively illuminates some aspect
of the world and encapsulates the perspective adopted in its
derivation, we should be skeptical whenever facing results
that we do not fully understand or are not presented in a
transparent fashion.

Visual illusions do not disappear by explaining them.
But once we become aware that an ambiguous image can
alternatively be seen as a rabbit or a duck, our familiarity
with the image can ease the flip between both interpretations.
Consequently, it should not surprise us that representational
problems persist even when their underlying mechanisms
become transparent. For students of clinical diagnostics,
it will remain perplexing that medical tests with high
sensitivity and specificity can still exhibit poor predictive
values. Similarly, it will continue to seem peculiar and vexing
when two measures that adopt different angles on the same

data support opposite conclusions. But realizing that such
phenomena are neither paradoxical nor inconsistent is an
intellectual step that requires instruction and training. Thus,
understanding that conflicts between measures—or between
people reporting them as facts—are an inevitable consequence of
their inherent perspectives is an important insight on the path to
scientific literacy.

The red pill to swallow for the scientific enlightenment
of modern societies lies in translating these insights into an
educational strategy. Given the key role of perspectives for the
meaning and interpretation of scientificmeasures, understanding
how measures encapsulate particular viewpoints is an important
skill for scientists and their audiences. The costs incurred by
this explication are outweighed by the fact that scientists stand
to benefit twice from embracing the representational nature
of their investigations: Beyond enabling them to choose their
measures more responsibly and wisely, a more transparent
communication of their results may also enable more trust in
their findings.

The notion of insight implies suddenly seeing a solution.
As we have shown, adopting the right perspective on a
problem makes its solution obvious—it becomes simple and
transparent. We show that capturing scientific measures
and explicating problems in terms of adopting particular
perspectives on the structural construct of a 2×2 matrix reveals
aspects that remain obscure in any isolated treatment. We
trust that readers will discover additional opportunities for
framing problems in this form and hope that viewing them
through the lens of a 2×2 matrix will render their solutions
more transparent.
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Comparing the Efficacy of Static and
Dynamic Graph Types in
Communicating Complex Statistical
Relationships
Jeffrey Chase Hood, Cade Graber and Gary L. Brase*

Department of Psychological Sciences, Kansas State University, Manhattan, KS, United States

Graphs are useful tools to communicate meaningful patterns in data, but their efficacy
varies considerably based on the figure’s construction and presentation medium.
Specifically, a digital format figure can be dynamic, allowing the reader to manipulate
it and little is known about the efficacy of dynamic figures. This present study
compared how effectively static and dynamic graphical formats convey relationship
information, and in particular variable interactions. Undergraduates (N = 128, 56%
female, Mage = 18.9) were given a brief tutorial on main effects and interactions in data
and then answered 48 multiple-choice questions about specific graphs. Each question
involved one of four figure types and one of four relationship types (main effect only,
interaction only, main effect and interaction, or no relationship), with relationship types
and graphical formats fully crossed. Multilevel logistic regression analysis revealed that
participants were fairly accurate at detecting main effects and null relationships but
struggled with interaction effects. Additionally, the static 3D graph lowered performance
for detecting main effects, although this negative effect disappeared when participants
were allowed to rotate the 3D graph. These results suggest that dynamic figures in
digital publications are a potential tool to effectively communicate data, but they are not
a panacea. Undergraduates continued to struggle with more complicated relationships
(e.g., interactions) regardless of graph type. Future studies will need to examine more
experienced populations and additional dynamic graph formats, especially ones tailored
for demonstrating interactions (e.g., profiler plots).

Keywords: graphs, data interpretation, main effects, interaction effects, graph design

INTRODUCTION

The information processing limitations of the human brain make unaided interpretations of
large datasets impractical. This is particularly problematic in science where researchers attempt
to identify trends, covariances, and interdependences within large sets of data in order to gain
insights about variables of interest. Quantitative, theoretically driven research requires effective
ways to meaningfully consolidate and interpret data. One common way to simplify the complexity
of data is through graphical representation (graphs). However, there is no consensus on a “best”
way to graph data and plenty of evidence of frequent misinterpretations of graphs and figures.
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This research investigates the efficacy of various graph
formats, specifically including both simple and more complex
relationships between variables and including graph formats
beyond traditional print representation (e.g., interactive figures).

The purpose of graphical data representations is to condense
the information in the data set, and in particular the
relevant properties (e.g., trends or covariations), while faithfully
maintaining the integrity of the overall dataset representation.
This can aid the researcher both in data analysis and in the
communication of results. However, not all graphs achieve these
goals. Mistakes in the transmission of information via graphs can
either be a consequence of presentation error, in which false or
misleading information is depicted (i.e., lying with statistics) or
they can be the result of misinterpretation of a “correct” graph
on the part of the reader. The willful production of false or
misleading graphs is a matter for ethical discussions. The present
research is concerned with the ability to interpret faithfully
presented graphs with different constructions.

The following subsections briefly describe some known
influential considerations in graph construction and the necessity
of certain graph elements. This leads to the issues associated
with multidimensionality; how one should graph data that co-
vary in more than two dimensions (i.e., two-way and higher
interactions). Higher-order relationships are, by their nature,
more complex and difficult to comprehend. As such, difficulty
of building effective graphs increases, but so does the utility of
graphs to facilitate the interpretation of these relationships.

Principles of Effective Graphs
A seminal review of the essentials of effective graph design
comes from Kosslyn (2006), which includes eight fundamental
principles that will be used in this paper. The first two of these
principles are the principle of Relevance (graphs should have
no more and no less information than necessary to convey the
intended message) and the principle of Appropriate Knowledge
(graph efficacy is contingent on the appropriate prior knowledge
of the reader). The next two principles are those of Salience
(the greatest perceptible differences in a graph should direct the
reader to the most relevant components) and Discriminability
(meaningful differences should differ by large enough margins
to be visually distinguished; e.g., see supporting research by
Hollands and Spence, 2001). The next two principles are the
principle of Compatibility (the information format should map
intuitively onto the intended message; e.g., see supporting work
by Gattis and Holyoak, 1996) and the principle of Information
Changes (the graph display should remain constant to intuitively
signify unchanging information, and should change to signifying
that the information is changing). The final two principles
rest a bit more on the inherent mental characteristics of
people’s memory and visual cognition. The principle of Capacity
Limitations says that graphs should not ask people to balance
more than about four pieces of information simultaneously,
due to the limitations of human working memory capacity
(Cowan, 2010; see also work by Meyer et al., 1997). Lastly, the
principle of Perceptual Organization says that graphs should
utilize the tendencies of the visual system to group objects by their
proximity, orientation, and visual similarity to each other.

Early research, naturally, focused on more straightforward
and clear possible implications of these principles (e.g., graphs
showing a simple difference between two means or a single
correlation). Traditional graphing methods, if they follow the
recommendations detailed above, are well-suited to portray
single effects. A difference between two groups could, for
example, easily be illustrated in a graph of two columns (Principle
of Relevance), and a large effect should be reflected in the
difference between the two columns being easily discriminable
(Principle of Discriminability). Furthermore, it is relatively easy
to make the bars prominent against a plain background (Principle
of Salience), and visually similar in shape and color (Principle of
Compatibility). Such a graph also proffers only a few pieces of
information (per the Principle of Capacity Limitations).

Many research findings, however, are more complex and
nuanced than the basic example described above. A simple
finding often leads to further research that branches and narrows,
with potential moderating and mediating factors or other
complications. As the research shifts to these more contingent
relationships there is a need for graphical representations that can
clearly and effectively portray those complex situations.

Multidimensionality in Graphs
How data are portrayed graphically should reflect the
information those data represent. One would not reasonably
use a line graph to depict the proportion of a population
that likes lemon meringue (a pie chart would surely be better
for this). The challenge that arises when the information is
complex, multivariate, and involves interactions is to have
a graph portrayal that faithfully and effectively conveys
those relationships.

As a starting point, suppose we have data that includes a
simple categorization of people by sex (i.e., male or female) that
can be denoted by two numbers, and also people’s height that
can be defined on a numerical scale. All of the information
about each person is contained in a simple pair of numbers so
far: x (sex) and y (height). Every unique pair of x and y values
in this sample could then be plotted on a Cartesian plane and
the result would be a scatterplot. If one plots the averages of
the y values (height) for both categories of x (sex) and draw
bars from the x-axis up to those points, then the result is the
traditional bar graph described earlier. If one replaces the bars
with a line connecting the two average values, then the result
is an illustration of the bivariate correlation between the two
variables. Regardless of the graphical format, one can see that at
the gross level of examination the number of dimensions used to
display information is equal to the number of dimensions used
to define each participant. The inclusion of additional variables
to the description of the individual therefore complicates the
graph construction.

What happens when we extend this example by incorporating
a third variable? Whereas before each participant was defined
only by a score on x (sex) and y (height), now each can
additionally be described on a third dimension, z, that could
signify the participant’s age. The analysis must consequently
be expanded, as the inclusion of this second predictor variable
increases the number of potential effects from one to three: the
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main effect of sex on height, the main effect of age on height, and
the interaction effect of sex and age on height. After examination
of the two main effects, one sees that age is positively correlated
with height and that males are taller on average than females.
However, both of these effects are qualified by the contingency
between them (i.e., their interaction). While males are on average
taller than females at maturity, females tend to reach their full
height at an earlier age than males. In this example, age acts as
a moderating variable and describes why, during adolescence, it
not uncommon that males tend to be shorter than females of the
same age, a detail lost in the earlier, simpler example.

For the graphs described thus far, the information can be
displayed in a two-dimensional (2D) format without violation
of Kosslyn’s principles. However, this is only because one of the
predictors in this scenario, sex, is categorical. Commonly, three
or more of the variables of interest are continuous. In such cases
a researcher faces the choice of either subdividing the continuum
into sections (categorize by section in order to simplify analyses)
or retaining the full continuum. The subdividing tactic is very
common in psychological research (Young, 2016), but research
suggests that maintaining the continuous integrity of one’s data
is almost always the preferable choice. This is because the
categorization of continuous data unnecessarily reduces the
power of the study and masks underlying contingencies/non-
linearities, the discoveries of which may require an intact
continuum (Young, 2016). One way to resolve the conflicting
objectives of clear graph communication is to explore some more
advanced graph options. Three or more continuous variables
are difficult to present and interpret graphically in traditional
2D formats that impose visuo-spatial constraints. The current
research examined the efficacy of four different graph formats
in displaying different types of relationships between three
continuous variables (see Figure 1).

Two-Dimensional Scatterplot With Delineating Color
Bar
The top-left graph in Figure 1 shows a 2D x-y scatterplot and
allows the third variable to vary as a function of color. Color is
easily displayed along a continuum for color (a color scale) that
can be consulted alongside the scatterplot of data points, allowing
for more immediately accurate observations of each data point’s
level on the 3rd dimension. This method is compatible with all
color-enabled print and digital media, but it does not involve any
interactive elements for user manipulation of graphs.

Color Contour Plot
Though strictly for displaying general trends/relationships
among variables rather than the entire set of individual data
points, a color contour plot (top-right in Figure 1) is a natural
extrusion of the 2D scatterplot of predictor variables into a
third dimension (color). The result is a topographical surface
that denotes how a region’s “height” (the level of the dependent
variable, coded by a color continuum) is differentially affected by
various combinations of the values of the two predictor variables
(i.e., “height” fluctuates across graphical regions). This method
may permit a more intuitive interpretation of trend than that of
the above method, given that both predictor variables are assigned

to the 2D space while the dependent variable is afforded its own,
unique dimension. Indeed, there is evidence that interpretation
accuracy depends upon the assignment of the variables to either
the x-axis or legend space (Ali and Peebles, 2013). This method
also requires color-enabled media but does not make use of
interactive elements.

Three-Dimensional Static Graph in Perspective
The third graph type (Figure 1, bottom-left) is a 3D scatterplot
on which the three continuous variables are plotted along the
x-, y-, and z-axes. This image is static and is “tilted” at an angle
to give the illusion of depth perception. This perspective mimics
the visual sense of depth and should facilitate discrimination of
distances and relationships among data points in a graph. By
nature, a 3D graph requires observers to make use of such depth
cues as occlusion, proximity, and gridline reference (Dosher
et al., 1986). However, consigned to a single static viewpoint, the
observer may have trouble resolving the overall trend depending
on how much variability is present and how well any one
particular viewpoint can capture it. Even though this method
may pose a more viable option to traditional outlets that lack
color-enabled media, the loss of informative function is costly.

Three-Dimensional Rotatable Graph in Perspective
The last graph type (Figure 1, bottom-right) is a rotatable variant
of the 3D perspective graph and takes advantage of digital
publishing’s capability to mitigate some of the weaknesses of the
static variant. With this version readers can utilize cues such
as motion parallax to better judge the distances and relative
positions of data points as they rotate the graph. However, this
method’s ostensible functional advantages over static graphs are
hampered by its compatibility shortcomings; only certain types
of media (e.g., interactive digital outlets) will be able to employ it.

The 3D rotatable graphs are by far the most versatile of these
four options in terms of functionality; they display all variables
along three principle axes and so avoid the relegation of any
variable to a symbolic space like a legend (Principle of Capacity
Limitations). The intuitive correspondence between a number
line and a continuum of numerical data also, in principle, makes
the changes in values of each variable easier to grasp (Principle of
Compatibility). Inasmuch as humans are biologically accustomed
to localizing and tracking objects through 3D space, people
should be very capable of discerning relationships among
those data points (Principle of Perceptual Organization). The
complication for the 3D rotatable graph is that it runs up against
the limitations of traditional (2D paper) media.

Two-dimensional color graphs are currently common for
several reasons: they are easily constructed, similar to bar and
line graph formats (Principle of Appropriate Knowledge) and
the overall relationship between the x- and y-axis variables
can be quickly gauged. Ali and Peebles (2013) found that
people perform well in discerning the relationship between the
dependent y variable and a legend-bound z variable delineated
by color. Interactions between the two independent variables,
however, may present a greater difficulty for 2D color graphs
than for the 3D rotatable format. It is not immediately clear, for
instance, how the effect on y of any specific x value would be
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FIGURE 1 | Examples of the four graph types, each displaying the same main effects(s) only relationship. Clockwise from top left: 2D Color Plot, Contour Plot, 3D
Rotatable Plot, and 3D Static Plot.

modulated by color shifts (the representative z value), or vice
versa. Indeed, unless the observer knows to scrutinize specific
patterns (“twisting” or “spreading” in the data points), she may
be at a loss. It should also be noted that inspection of spatial
patterns alone does not give one much insight into the specifics
of an interaction. One must attend to color changes while also
attending to spatial patterns if one is to discover anything of
import about the interaction, and this can overtax one’s working
memory (Principle of Capacity Limitations).

Although lacking actual rotatable functionality, the 3D static
graph has been utilized in research media (e.g., Khemlani et al.,
2012). The features of a 3D rotatable graph (described above)
similarly apply to the static version, except the critical element
of rotation functionality. This one missing element, though,
can critically hamper an observer’s understanding of data sets
containing important interactions that cannot be orientated in
such a way that guarantees the visibility of all relationships and
interactions (Principle of Salience).

There is relatively little precedence for 2D contour plots in
the psychological literature. There is, however, reason to believe
that the discernibility of main effect relationships is differentially
affected by the assignment of the independent variables to either
the axis or the legend (Ali and Peebles, 2013). From this,
it is not unreasonable to assume that a similar phenomenon
may exist for the assignment of the dependent variable. The
unconventionality of this graph type, however, may impair its
being accurately interpreted.

Hypotheses
Two hypotheses guided the following research. The first
hypothesis is that there will be an effect of graph type on accurate
interpretation, with average accuracy being, from best-to-worst:
3D rotatable, 2D color, 3D static, and 2D contour. This hypothesis
is consistent with Kosslyn’s principles, Ali and Peebles (2013),
and most people’s intuitions. The second hypothesis is that there
will be an effect of relationship type on accurate interpretation,
with accuracy being, from best-to-worst: no relationship, main
effect(s) only, interaction only, and main effect(s) with an
interaction. This order follows directly from the increasing level
of complexity across these four types.

METHOD

Participants
A total of 179 undergraduate students enrolled at a state
university in the Midwest participated in the study. Of these,
responses from 51 participants were dropped due to failing
a priori exclusion criteria (38 were removed for completing the
study in under 5 min, two for completing less than 75% of the
study, and 11 for answering correctly at or below chance levels,
all indicators of low-quality responding). Therefore, data from
128 participants (56% female, Mage = 18.9) were analyzed. All
participants were recruited from a general psychology course
that required participation in their choice of research studies at
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the university. This study was carried out in accordance with
the recommendations and with the approval of the researchers’
Institutional Review Board (IRB).

Design and Materials
Participants all completed a randomized series of graph
interpretation tasks, followed by basic demographic questions
(age, sex, education, major, and standardized test scores). The
graph interpretation task consisted of 48 different graphs that
varied by type and depicted relationship, but that all exhibited
three continuous variables labeled x, y, and z. For the sake of
simplicity, participants were instructed to treat y as the dependent
variable and x and z as the two independent variables. Each graph
was one of four possible types (2D Color Plot, 2D Contour Plot,
3D Static, or 3D Rotatable; see Figure 1) and depicted one of
four possible relationships:(1) only main effect(s); (2) only an
interaction; (3) main effect(s) and an interaction; and (4) no
main effects and no interaction (see Figure 2 for examples).
In the 2D contour plot, the x-axis was the horizontal axis,
the z-axis was the vertical axis, and the y-axis was a vertically
presented color gradient located to the right of the graph. In
the other three graphs, the x- and y-axes denoted the horizontal
and vertical axes, respectively, while the z-axis denoted an axis
orthogonal to the first two in the 3D graphs and a color gradient
in the 2D color plot graph similar to that of the contour
plot. This effectively split the stimuli into 16 type/relationship
pairings, and three distinct sets of randomly generated data were

utilized across the graph types for each of the four relationships,
resulting in a total of 48 tasks. All stimuli were created using the
Plotly graphing website1. The study design thus was a repeated-
measures experiment (per the criteria in Keppel, 1991; Shadish
et al., 2002; Rosenthal and Rosnow, 2008).

Procedure
The survey was presented through an online survey software
(Qualtrics) and included an informed consent process and
instructions about the nature of the task. Prior to the actual
tasks, participants were shown a tutorial page with definitions for
“main effect” and “interaction”, followed by two examples (one
containing only a main effect and one containing a main effect
and an interaction). The examples displayed the data sets in each
of the four representative graph types and were accompanied by
a brief explanation of how one could go about interpreting the
correct relationship.

During the test itself a small key containing shorter definitions
of the terms “main effect” and “interaction” was located above
each graph so that participants could reference these during the
test. Graphs were presented one at a time in conjunction with four
response options (the four possible relationships), from which
participants were told to choose the option that best described
what they saw in the data. Afterward, participants supplied
demographics information and were debriefed.

1https://plot.ly/

FIGURE 2 | Examples of the four relationship types, each displayed by a 2D Color Plot. Clockwise from top left: Main Effect Only, Main Effect with Interaction, no
Effects, and Interaction only.
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RESULTS

The data were analyzed using multilevel logistic regression in
order to model the within-subject dependencies inherent in
repeated-measure data and to appropriately account for the
dichotomous nature of the outcome variable (i.e., correct or
incorrect). When using multilevel modeling, it is important
to determine the appropriate random effects structure for the
model before analyzing any fixed effects. To do this, the Akaike
information criteria (AIC) of three models were compared to
assess random effect model fit (Burnham and Anderson, 2004).
These models were: (1) a random effects structure that only
allowed the intercepts to vary by participant; (2) a random
effects structure that allowed both the intercepts and slopes (i.e.,
main effects) to vary by participant and; 3) a random effects
structure that allowed the intercepts, slopes, and interactions
between slopes to vary by participant. The AIC with the
lowest value indicates the best-fitting model (Burnham and
Anderson, 2004), with a difference of 10+ units demonstrating
considerable evidence for a superior fit. The three random
effect structures had AICs of 8224.31, 7566.23, and 7629.04,
respectively, providing strong evidence that the random effects
structure allowing both the slope and intercepts to vary by
participant fits best.

Subsequently, the fixed effects were added to the random
effect structure to examine any effects of the predictor variables
(i.e., graph type and relationship type) on the outcome variable
(participant performance). This was done by comparing the fit
of two models, again using the AIC. The first model contained
the main effects of both graph type and relationship type only.
(Both predictors were included simultaneously based on two
considerations: (a) both are experimentally manipulated variables
with associated hypotheses, and (b) atheoretically testing all
possible models would needlessly increase the likelihood of
spurious results.) The second model tested was identical to the
first with the addition of an interaction coefficient between graph
type and relationship type.

When the AICs of these models were compared, the second
model containing both main effects and the interaction had
a considerably lower AIC (AIC = 7456.42) than did the
simpler model lacking the interaction term (AIC = 7494.61)
suggesting the more complex model fits the data better.
Figure 3 displays participants’ overall performance across
the different graph types by relationship type and Table 1
displays the model coefficients. Performance decreased as a
function of relationship complexity, supporting Hypothesis 2.
Performance generally did not vary across graph type, however,
with the exception that the interpretation of main effects
was significantly worse on the static 3D scatterplots and this
negative effect was mitigated when participants could rotate the
3D scatterplot. Thus, graph type did not affect performance
in most cases, contrary to Hypothesis 1. The results suggest
that the efficacy of a particular graph format may, in some
situations, depend on the type of relationship it is intended to
communicate, and specifics of this conjecture should be pursued
in further research.

FIGURE 3 | Proportion of questions answered correctly by Graph and
Relationship Type. “ME” indicates a main effect and “I” indicates an interaction
effect (i.e., “ME”+“I” is a main effect and an interaction. Note error bars
represent 95% confidence intervals.

TABLE 1 | The effects of graph type, relationship type, and their interaction on
participant performance.

Predictors Fixed effects Estimate Std.
Error

p

– Intercept 0.37 0.16 0.017

Graph types 3D Static −1.1 0.17 <0.001∗

3D Rotatable −0.31 0.17 0.075

Contour plot −0.22 0.17 0.19

Relationship No effect 0.15 0.23 0.509

types Interaction only −1.19 0.21 <0.001∗

Main effect and interaction −1.07 0.2 <0.001∗

Interactions 3D Static ∗ No relationship 1.32 0.24 <0.001∗

3D Static ∗ Main effect and 0.81 0.24 <0.001∗

interaction

3D Static ∗ Interaction only 1.31 0.24 <0.001∗

3D Rotatable ∗ No relationship 0.42 0.24 0.083

3D Rotatable ∗ Main effect and 0.19 0.23 0.419

interaction
3D Rotatable ∗ Interaction only 0.08 0.24 0.728

Contour Plot ∗ No relationship 0.45 0.24 0.059

Contour Plot ∗ Main effect and −0.08 0.23 0.73

interaction
Contour Plot ∗ Interaction only 0.07 0.24 0.773

∗ indicates a statistically significant effect.

DISCUSSION

Interpreting interactions in data is difficult, as many research
methods and statistics instructors know well, yet there is scant
work directly addressing how to improve this issue. Conventional
wisdom is that graphical representations help in recognizing
interaction effects. Kosslyn’s (2006) eight principles can serve
as a useful foundation for basic graph construction, but these
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principles are insufficient when building a graph to portray
higher dimensions. There are unresolved disagreements at
this level about fundamental properties of visual displays and
the efficacy with which different graphs convey the requisite
information. It is also imperative to remember that the most
effective methods of communicating complex results may be
emerging methods that leverage modern technologies and
graphing methods. An empirical and experimental approach to
graph optimization can help identify better methods and thereby
help to make those methods a part of standard research practices.

The present study found that the lack of any effect is
decently perceivable by people, and interactions (either alone
or with a main effect) remain difficult to perceive across all
graph formats used in the present study (Table 1). Main
effects are relatively difficult to perceive in static 3D graphs,
relative to other graph formats (see Figure 3). Unfortunately,
static 3D graphs seem to also be a currently popular
presentation option because it does not require dynamic- or
color-enabled media. An implication of the present study,
however, is that 3D static graphs should be discarded in
favor of either their 2D counterparts or, format permitting,
their 3D rotatable variants. Further study is warranted for
graphs of more complex relationships, for which the results
were inconclusive.

The present study points toward a few future research
directions. Overall performance, though above chance, was poor.
Introductory psychology undergraduates (and perhaps people
in general) are ill-equipped to identify complex continuous
relationships in graphs. Graphical literacy should be a concern
for educators and employers across all fields that work with data.

The poor overall performance in the current study also limits the
extent to which broader effects of graph and relationship type
on statistical interpretation can be measured. Assessing a more
graph-savvy population (e.g., researchers in a quantitative field)
could reveal clearer effects with greater variability in performance
ability. Additionally, there is clear potential for creating and
implementing novel graph types that are geared to facilitate the
interpretation of interactions (e.g., a profiler plot).
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We report on a study on syllogistic reasoning conceived with the idea that subjects’

performance in experiments is highly dependent on the communicative situations

in which the particular task is framed. From this perspective, we describe the

results of Experiment 1 comparing the performance of undergraduate students in 5

different tasks. This between-subjects comparison inspires a within-subject intervention

design (Experiment 2). The variations introduced on traditional experimental tasks

and settings include two main dimensions. The first one focuses on reshaping the

context (the pragmatics of the communication situations faced) along the dimension

of cooperative vs. adversarial attitudes. The second one consists of rendering explicit

the construction/representation of counterexamples, a crucial aspect in the definition

of deduction (in the classical semantic sense). We obtain evidence on the possibility of

a significant switch in students’ performance and the strategies they follow. Syllogistic

reasoning is seen here as a controlled microcosm informative enough to provide insights

and we suggest strategies for wider contexts of reasoning, argumentation and proof.

Keywords: syllogisms, deductive reasoning, logic, counterexamples, argumentation, situated cognition,

mathematics education, proof

INTRODUCTION

The acquisition of reasoning proficiency according to logical standards is a central topic in regard
to the development of critical thinking competencies. It inheres also in the development of
mathematical argumentation and proof. Even so, the experimental evidence from the psychology
of reasoning and from mathematics education has widely documented well-rooted difficulties
concerning the reasoning skills of students (and humans, in general). In this context, syllogistic
reasoning is a paradigmatic case which can provide pre-eminent insights for several reasons:
first, the study of the topic accumulates more than a 100 years of experimental study [starting
with (Störring, 1908)] with the corresponding corpus of experimental approaches, robustness of
observed phenomena and variety of theoretical explanations (Khemlani and Johnson-Laird, 2012).
Second, syllogisms clearly illustrate the dichotomy between normative standards and the actual
performance of subjects. Moreover, even in this very restricted context, it is possible to observe a
full spectrum of diversity in performance, from some syllogisms that are almost always correctly
answered, to some others that are practically always wrong. Third, from a historical perspective,
the topic has clearly emerged in a very specific context of argumentation and disputation and has
been for centuries a characteristic model for this kind of reasoning. Finally, during more than two
millennia, we can see a diversity of theoretical, and didactic approaches to the subject including a
diversity of semiotic registers.
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Given the relevance of the subject to the issues alluded
to before, and the experimental evidence so far, two natural
questions emerge: what can explain the fact that typical
performance in the usual syllogistic tasks does not adhere to
Classical Logic? Are there other situations or experimental
settings which can elicit reasoning closer to this logical standard?

Following the path of Vargas et al. (submitted), the proposal
of the present paper is to show how, even if we have chosen
a tiny fragment of full first-order classical logic, in regard to
syllogisms we can already see important changes in reasoning
tied to the use of representations and the pragmatic situations
from which particular reasoning mechanisms emerge. We report
on two subsequent experiments. In the first one we compare how
undergraduate subjects perform on 5 different tasks intended
to understand how different thinking strategies are followed by
subjects depending on the communicative situations. The second
experiment, more educationally oriented, is based on the insights
provided by the first experiment. It studies the trajectories of
students in a sequence of tests and short interventions. These
are intended to lead them to a shift in their performance based
on their understanding of the kind of reasoning that they are
expected to attain normatively.

In what follows, we first elaborate on the theoretical
background just outlined focusing on the two fundamental
aspects which support the design: the importance of
communicative settings for reasoning, and the use of the
construction of counterexamples in argumentation and
proof (Sections Plurality of Goals in Communication and
Reasoning and Construction of Counterexamples: Modeling
and Countermodeling as Tools for Syllogistic Reasoning). We
describe and report then on Experiments 1 and 2 (Sections
Experiment 1: Recognizing the Diversity of Communication
Contexts and Goals and Experiment 2: Integrating the Tasks as a
Didactic Sequence). In the final discussion (Section Results) we
develop connections with the psychology of reasoning and the
implications for education, particularly in regard to the literature
on argumentation and proof in mathematics education.

PLURALITY OF GOALS IN
COMMUNICATION AND REASONING

Experimental study of Aristotelian syllogisms has led to a very
neat conclusion: answers of untrained subjects in the customary
tasks are very far from being correct from the point of view of the
intended, classical interpretation. There have been different kinds
of explanations in the psychological literature that try to give
an account of experimental data [see (Khemlani and Johnson-
Laird, 2012) for an overview].1 A natural suggestion is that

1Among these different accounts of performance in syllogistic reasoning there is
probability, see e.g., (Chater and Oaksford, 1999). Our general attitude to this
is “the more the merrier”: classical logic, preferred model nonmonotonic logic,
probability, . . . A multiple logics approach can embrace other bits of mathematics
too. Probability is often taken to be a monolithic replacement for classical logic
as a normative standard. This we absolutely reject. But there are also often
misinterpretations of probability going on. A probabilistic interpretation of a
situation is very close to a classical logical one. From our point of view, the most
important point is that it cannot be the logic within which interpretations are

syllogisms are a kind of task limited to academic environments
and for which we show no capacity beyond this, i.e., without
instruction or specific training. An extreme illustration is offered
by Luria (1976) experiments in the 1930s showing how illiterate
subjects had a tendency to refuse the endorsement of any
conclusion at all about facts not known to them beforehand,
just from the information provided by premises. According
to him, they tended not to rely on information beyond their
personal experience (as is essential in hypothetical reasoning) and
not to accept premises as having general validity. Furthermore,
they even conceived syllogisms not as unified wholes, but as
unintegrated pieces of information. A later study carried on in
Liberia by Scribner (1975), showed similar dispositions, which
were in fact interpreted as a case of an “empirical bias” (Scribner,
1977). This illustrates how syllogisms (and logic in general)
are not context independent mechanisms but emerge from the
analysis of particular communicative/pragmatic situations. It
therefore seems natural to consider experimentally the kind
of situation and discourse in which syllogistic arguments first
appeared in philosophy, namely, the context of argumentation,
discussion and refutation. They are not, in short, a description
of deductive processes executed in abstracto by individual minds.
Syllogistic arguments are originally about a context of adversarial
communication. What we do primarily in communication,
instead, has a cooperative character determined by a fundamental
“verbal contract.” Hence, very commonly, we are not strictly
limited by what the speaker makes explicit, but most of the
times we “complete” the message with a background given by
intended common assumptions. We do not communicate just
what is explicit or concluding what is “entailed” (in the strict
sense) by the externalized sentences. We infer, in addition to
this, also a series of “implicatures,” as they are known after
Grice (1975) and, more widely, we frame the information in
order to convey a message or interpret available information.
Here we take the general view that different communicative
or pragmatic demands may put into action different reasoning
strategies and mechanisms, and that considering a plurality
of logics may give us appropriate tools for their description
(Stenning and van Lambalgen, 2008). From this point of view,
what are often considered simply as “mistakes” are frequently
sensible conclusions which may even adhere to the rules of a
particular logic. This is highly relevant for educational purposes
because of the prevalence of categories such as “correct” or
“incorrect” often used as if having absolute character.

developed— that requires a logic like the version of LP used in (Stenning and
van Lambalgen, 2008), which can model our narrative ability to accommodate
new information into the interpretation at every sentence by importing general
knowledge (see Stenning and van Lambalgen, 2010 for extended discussion).
A further general issue is whether the full force of probability is required to
model what may be conditional frequency reasoning. If the mathematical/logical
framework is taken to be involved in the mental computations (not merely
providing some externally imposed normative standard), then there are real
issues how these probabilities are computed, whereas conditional frequencies
could be made available in, for example, the LP nets of semantic memory in
(Stenning and van Lambalgen, 2008), and may well be the basis of the judgements
made in experiments on “probabilistic models” of the syllogism, and possibly the
explanation of the well-known frailties of naive probabilistic reasoning.
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The previous discussion connects at different points with
research in education. On one side, the general view that human
cognition, and mathematical cognition, in particular, happens
as a social and communicational phenomenon, challenges more
traditional, internalistic views on thinking and learning which
ignore, both experimentally and educationally, their essential
character. Inspired largely by Vigotsky, this view has been
stressed repeatedly in mathematics education research, since its
“social turn” (Lerman, 2000; Sfard, 2008; Roth and Radford,
2011).

On the other side, an important point of connection relates
to the literatures on argumentation and proof. Our view on the
context/communicational dependency of reasoning is in line in
fact with integrating the “social dimension” of proof (Balacheff,
1987) and with the “shift to a pragmatic view of proof” (Hanna
and Jahnke, 1993). Which particular communicational activities
relate to the logic behind argumentation and proof? How can
we contextualize proof so that it emerges more in continuity
with other human practices, and not as an epistemological
rupture with them (Duval, 1991, 1992)? Even if the birth of
the concept of mathematical proof in Ancient Greece is still
debated, philological evidence suggests that it originated from the
development of argumentative and dialogic discourse as seen in
philosophy and that “the practice of a rational discourse provided
a model for the organization of a mathematical theory according
to the axiomatic-deductive method. In sum, proof is rooted in
communication” (Jahnke, 2010).2 This communication, given its
dialectical nature, is adversarial at a fundamental level and in a
technical sense. These historical origins continue to be present
in the practice of proof production, which requires a dialectics
with (real or potential) refutations (Lakatos, 1976). In this sense,
an adversarial disposition is skeptically oriented leading an
“opponent” to look for countermodels or counterexamples to
what the “proponent” says (Dutilh Novaes, 2018). It is in fact,
primarily, through the exhibition of individual counterexamples
that an argument is refuted, as we will elaborate next.

CONSTRUCTION OF
COUNTEREXAMPLES: MODELING AND
COUNTERMODELING AS TOOLS FOR
SYLLOGISTIC REASONING

As noted before, in syllogistic reasoning the usual instructions
do not prompt answers according to what “logically follows.”
As with many other reasoning tasks, simple rephrasing or
emphasis in the instructions do not lead to substantial changes
in performance. This way, asking for “necessary conclusions” or
deductions “valid in general” does not usually lead to substantial
improvement or disambiguation. We propose a change in the
contextualization of the materials which may encourage an
integration of what precisely “logically” or “necessary” means in
this practice. Even if experimental evidence seems to indicate
that we are not “naturally” capable of syllogistic reasoning in
general, we are more inclined to see here what may be expressed

2See also, e.g., (Lloyd, 1979) and, more recently, (Netz, 2003) on this topic.

using the competence vs. performance dichotomy, but with more
than one competence possible. Actual low performance may be
caused because performance deviates from the competence that
is normatively established. But performance has to be measured
against the right competence, and performance aimed at other
norms may be successfully elicited by appropriate contexts which
invoke their ecological source (Simon, 1956, 1990).

What do we logically expect when asking if a conclusion
“logically follows” from some premises? Even if in some
traditions still influential in education “logical” is conceived
from this definition of a deductive system or a set of syntactic
transformations (or inference rules), we believe that, in the
context of ‘naive’ untrained reasoners, a more accessible
approach is semantic. In classical logic (Tarski, 1936), the
definition of the entailment relation establishes that a sentence φ

follows from set of sentences Γ (indicated as Ŵ � ϕ) if and only if
every model of Γ is also a model of φ.3 This may be rephrased by
saying that there is not a model for Γ that is a countermodel for
φ (a counterexample). The validity of a deduction is equivalent to
the impossibility of getting a counterexample for it.

The problem of the exploration of possible counterexamples
and their generation may not be finite or even decidable in
general. This may be overcome in the particular case of syllogistic
reasoning where we deal only with a vocabulary of three monadic
predicates. In this case models are sets of a certain number of
individuals, with interpretations for the predicates.4 Problems
with valid conclusions have always 1-element models.5 This
property (“case identifiability”), leads in fact to an algorithm for
extracting conclusions from a pair of premises (Stenning and
Yule, 1997). In this way, for valid problems we limit ourselves
to the case of 1-element models. This is not the case in general
for the premises of non-valid problems: pairs of premises here
may need 2-elements to be modeled. Therefore, when we come
to the problem of the construction of counterexamples, at
least 2 elements may be indispensable. In general, in fact, we
have that a conclusion fails to follow from a pair of premises
if and only if there is a countermodel. And we also know
that countermodels never require more than 2 elements (1-
element models would not suffice, in general). Moreover, if
there is not such a countermodel, as can be established by an
exhaustive examination, the inference is valid (the conclusion
follows from the premises). It is worth noticing that refutation

3The notion has been further elaborated more recently through Etchemendy
(1990) distinction between “interpretational” and “representational” semantics.
The approach in our experiments is closer to the last one. See also the distinction
between formal vs. material consequence in (Read, 1994).
4The fact that the identification of individuals with a particular one of eight
possible types (corresponding to the assertions and negations of the three monadic
predicates present in a syllogism) may be used to decide the validity of an
argument is in fact already present in Aristotle’s works, namely through the
ekthesis technique of proof [(Kneale and Kneale, 1962), p. 77]. According to
Hintikka (2004), ekthesis operates like the rules of instantiation in modern logic. It
consists of choosing a particular individual (or, in another interpretation, a sub-
class) to represent a general term. This is the sense that “ekthesis” also had in
geometry, extensively used by Euclid in passing from a general statement into
consideration of a particular object be it a point, a line or a triangle. Once this step
is done, it is usually followed by the characteristic use of auxiliary constructions.
5See Section Problem Selection for this notion.
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by countermodeling is in general a separate and distinct process
from proof. Syllogisms are exceptional in that examination of
2-element models leads both to a refutation method and to a
decision method for validity. We propose that psychologically,
these processes remain distinct for naive subjects in the syllogism.

Despite this crucial role that the construction of
counterexamples may play in regard to the analysis of
syllogistic thinking, the topic has been almost completely
absent from experimental testing in the psychology literature.
One exception is Bucciarelli and Johnson-Laird (1999) where the
authors performed an experiment asking for the construction
of counterexamples. In fact, according to the basic tenets of
mental models theory, people make deductions by building
“models” and searching for counterexamples (Johnson-Laird
and Byrne, 1991). Bucciarelli and Johnson-Laird consider the
counterexamples of their experiment as a means to “externalize
the process of thought” concluding that individuals are capable
of generating them. Our results suggest that beyond being a
simple externalization of internal processes, asking for this kind
of external representation may modify strategies of reasoning or,
even more, the goals themselves pursued in reasoning and the
corresponding logic. This is more clearly the case if, as in our case,
the counterexamples construction is embedded in adversarial
communication (in contrast to cooperative communication
that, we claim, usually predominates in the conventional
experiments). As we will see, results show a remarkable
difference of performance between our counterexample tasks
and more traditional ones.

Besides psychological experiments and theories, the use of
examples (and counterexamples) in the learning and teaching
of mathematics has been widely acknowledged (as well as
in mathematicians’ practices). The mathematics education
literature has recently addressed the role of examples and
counterexamples [see, e.g., (Watson and Mason, 2005), or
the special issues on “The Role and Use of Examples
in Mathematics Education” (Bills and Watson, 2008) and
“Examples in mathematical thinking and learning from an
educational perspective” (Antonini et al., 2011)]. The formation
and exploration of an “example space” (Watson and Mason,
2005) is essential to mathematical thought, and fundamental
for learning:

“Examples can therefore usefully be seen as cultural mediating
tools between learners and mathematical concepts, theorems,
and techniques. They are a major means for ‘making contact’
with abstract ideas and a major means of mathematical
communication, whether ‘with oneself ’, or with others. Examples
can also provide context, while the variation in examples can
help learners distinguish essential from incidental features and,
if well-selected, the range over which that variation is permitted.”
(Goldenberg and Mason, 2008).

A change in disposition already occurs when we deal with the
exploration of examples and counterexamples. This is reflected
in our Experiment 1 results. Nevertheless, grasping the sense of
counterexamples and adjusting the relevant conventions in the
semiotic representation used in each particular situation is not
something automatic or easy. This is the case in mathematical
contexts, in general, but we will face the same obstacles in our

study. Our Experiment 2 addresses these difficulties proposing
strategies on how they can be dealt with.

EXPERIMENT 1: RECOGNIZING THE
DIVERSITY OF COMMUNICATION
CONTEXTS AND GOALS

The aim in Experiment 1 was to explore the effects that
countermodeling in an adversarial setting produces in syllogistic
reasoning. This is done comparing performance across 5 tasks
described below. Most of the studies of syllogistic reasoning
present pairs of premises and ask the subject for a conclusion
of syllogistic form from a menu including the option “none of
the above” either explicitly from a menu presented in each trial,
or from instructions at the beginning about the constraints on
the form of conclusions (the generation paradigm). In some cases
experiments propose, besides the pair of premises, a conclusion
whose validity, given the premises, is to be judged (the evaluation
paradigm). We use both approaches in our tasks.

Methods
Materials and Procedure
Each subject answered a booklet in just one of the conditions
described next. Subjects were assigned conditions in a random
order. So, these five conditions are essentially separate
experiments with random subject sampling from the same
population. They had 60min to do this even if in practice
many of the participants finished before, predominantly around
45min. The booklets had 16 problems for all tasks, aside from
the evaluation task which was substantially less demanding.
For this task, participants had to answer the whole set of 32
problems studied. The order of presentation of the problems
was also random, with three different such orders for each set
of problems. The tasks studied are the following (for the exact
phrasing of the instructions see the Supplementary Material):

• Conventional (CV): The draw-a-conclusion task usually
considered in the literature [see e.g., (Johnson-Laird and
Steedman, 1978) or (Khemlani and Johnson-Laird, 2012)].
Given a pair of premises, participants are asked to decide what
follows. Conclusions are selected from a menu offering the
eight classical possibilities plus a “none of the above” option.

• Evaluation task (EV): This task has been also extensively
present in the literature (see, for example, Rips, 1994 for a large
experiment comprising 256 of the 512 possible syllogisms).
The two premises of a syllogism and a conclusion are
presented to participants. They are asked to evaluate whether
the conclusion follows or not. Here the proposed conclusions
are the same as in the CMA and CMA2 tasks described next.
The aim here is to provide a task that is similar to CV, in
the sense that no countermodel construction is asked and
that is not an adversarial situation, but that at the same time
is directly comparable with the results of the countermodels
tasks. In this sense, the EV task is crucial in the experiment
because it can either confirm or disconfirm the differences
already noticed between CV and other tasks (Vargas et al.,
submitted) and see if they are really attributable to other
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differences such as the collaborative/ adversarial context, the
active construction of models, the subjects’ involvement in
justifying their own judgment, or if they are only by-products
of the format of the questions (e.g., nine options choice vs. a
Yes/No answer).

• Countermodels Adversarial (CMA): This is essentially the
“Syllogistic Dispute” task in Vargas et al. (submitted) which
proposes the construction of countermodels in a betting
situation against Harry-the-snake. Participants are presented
a pair of premises and a proposed conclusion. They have to
bet whether this conclusion is valid or not. They are thus in
competition with Harry, the nefarious character who proposes
the bets and who is trying to empty their wallets. We apply a
small variation to the countermodel construction: 2-element
countermodels were requested. Syllogism AI3 will serve as an
example. Suppose the following premises are given:

All the students taking linguistics are taking Arabic.

Some of the students taking geometry are taking Arabic

Harry proposes the following bet:

Some of the students taking geometry are taking linguistics.

Besides having to judge whether this follows or not, participants
must provide the counterexample in this last case by ticking or
crossing each course if the student is taking it or not:

Student 1:

Linguistics
Arabic
Geometry
Student 2:

Linguistics
Arabic
Geometry

• Countermodels Adversarial 2 (CMA2): With the same
structure of CMA (a proposed conclusion from two given
premises, and the construction of counterexamples when
possible) but in this case with another story/context. Instead
of a betting situation and Harry-the-snake, participants are
asked to play the role of a professor who must correct the
answers (conclusions) offered by students as valid inferences
in an exam. If the conclusion does not follow (i.e., if the exam
script that they are correcting presents a mistake) participants
must provide a counterexample as a didactic tool for their
imaginary pupil in order to explain why it does not follow. This
is a familiar, technically adversarial, situation: an examination.

• Communication-conclusions task (COMM-C) This task is
proposed with the idea that what participants actually do
in CV is to play a cooperative game which the task is an
attempt to mimic. Here subjects are introduced into a game:
each participant has an imaginary team-mate who wants to
communicate to her an assigned statement. Following the
syllogistic structure (with b the middle term and a and c
the other ones) this statement is about terms a and c. This
communication cannot be done directly: the team-mate can
only express something about a and b, and something about b

and c. The participant is presented with two statements (which
play the role of “premises”) which “come from her teammate.”
The task is to decide which sentence is it most likely that the
team-mate is trying to communicate from a menu of nine
possibilities (a possibility for: “no favorite guess” is included).
It is emphasized that this is a cooperative task in the precise
sense that the subject should think of him or herself as working
in a team with the source of the premises. The team-mate
is trying to communicate a sentence, and our participant is
trying to guess it. Both of them are scored as teams (pairs)
according to how often they succeed in their mutual goal. The
instructions assert that “If you can guess what sentence he has
in mind from the pair of premises (s)he gives you, then your
team win five points. If you guess wrong, then you both lose
1 point. There is also the option: ‘Have no preferred guess,’ in
which case you neither win, nor lose any points.” In this game
the points are established in order to encourage a preferred
option rather than “Have no preferred guess” if the participant
is not sure. But in the case of total indifference, choosing this
last option has greater expected value than random selection
of some other answer.

It is important to emphasize, for comparison purposes, that, in
their structure, CV and COMM-C tasks follow the generation
paradigm, whereas EV, CMA, and CMA2 tasks follow the
evaluation paradigm.

Tasks CMA and CMA2 require, besides an evaluation
of validity, the construction of counterexamples. For the
reason explained in Section Construction of Counterexamples:
Modeling and Countermodeling as Tools for Syllogistic
Reasoning (with two elements it is always possible to construct
a counterexample, if one exists), we standardized the required
countermodels to 2-element ones.

Problem Selection
As indicated above, beyond purely historical interest, syllogisms
constitute a microcosm complex enough to reveal wide variation
in typical performance from subjects. So, it is a topic revealing
a wide spectrum at the level of misalignment from normative
expectations. Studying the whole set of 512 possible pairs of
premises and proposed conclusions was not feasible in the time.
We limited ourselves to a subset of 32 of these possibilities,
presenting 16 to each of our participants. The selection of these
problems was heavily biased toward the ones which could reveal
the use or absence of classically valid reasoning, and therefore,
those which turn out to be solved by other strategies. This is
revealed by traditional performance in the CV task, already well-
documented in the literature. Our choice was therefore focused
on those problems which turn out to be “difficult” in the CV task.
A prominent phenomenon in this task is a clear incapacity for
detecting that the majority of the problems (out of 64 pairs of
premises) have no valid conclusions. Those problems with no
valid conclusions which are judged by subjects as having one,
reveal a tendency to reason cooperatively. Table 1 rehearses the
basic properties that motivated the selection of the 32 problems
used. They were divided in two sets (indicated in the last column
of the table), balanced according to these properties, both logical
and psychological, namely:
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TABLE 1 | The 32 problems selected in the study, their premises, existence, or absence of valid conclusions, the proposed conclusions in the tasks following the

evaluation paradigm, percentage of correct answers in the literature CV task, the ES classification, the matched vs. mismatched classification and our two

sets subdivision.

Problem Premise 1 Premise 2 VC / NVC Proposed

conclusion

% Correct answers

(literature)

ES classification Matched /

mismatched

Set

AA3 Aab Acb NVC Aac 31 0 Mat 1

AE1 Aab Ebc VC Eac 87 2 Mat 1

AE2 Aba Ecb VC Oac 1 5 Mis 1

AE4 Aba Ebc VC Oac 8 5 Mat 1

AI3 Aab Icb NVC Ica 37 0 Mat 1

EI1 Eab Ibc VC Oca 8 4 Mis 1

EI2 Eba Icb VC Oca 37 4 Mat 1

EI3 Eab Icb VC Oca 21 4 Mis 1

EI4 Eba Ibc VC Oca 15 4 Mat 1

IA2 Iba Acb NVC Ica 12 0 Mat 1

IO1 Iab Obc NVC Oac 33 0 Mat 1

IO2 Iba Ocb NVC Oca 49 0 Mis 1

OA1 Oab Abc NVC Oac 20 0 Mis 1

OI3 Oab Icb NVC Oac 49 0 Mis 1

OI4 Oba Ibc NVC Oca 47 0 Mat 1

OO1 Oab Obc NVC Oac 37 0 Mis 1

AE3 Aab Ecb VC Eca 81 2 Mis 2

AI1 Aab Ibc NVC Eac 16 0 Mat 2

AO1 Aab Obc NVC Oac 14 0 Mat 2

AO2 Aba Ocb NVC Oca 17 0 Mis 2

EA1 Eab Abc VC Oca 3 5 Mat 2

EA2 Eba Acb VC Eca 78 2 Mat 2

EA3 Eab Acb VC Eac 80 2 Mis 2

EA4 Eba Abc VC Oca 9 5 Mat 2

IA3 Iab Acb NVC Iac 28 0 Mat 2

IE1 Iab Ebc VC Oac 44 4 Mat 2

IE2 Iba Ecb VC Oac 13 4 Mis 2

IO3 Iab Ocb NVC Oca 53 0 Mis 2

IO4 Iba Obc NVC Oac 54 0 Mat 2

OI1 Oab Ibc NVC Oac 36 0 Mis 2

OI2 Oba Icb NVC Oca 31 0 Mat 2

OO2 Oba Ocb NVC Oca 42 0 Mis 2

• Validity rate: an equal number of logically valid and non-
valid problems in both sets. This number is in proportion
with the number of valid/non valid problems among the 64
problems (seven valid and nine with no valid conclusion in
each set, which reflects the fact that among the 64 possible
pairs of premises there are 27 with valid and 37 with no valid
conclusions). In the 4th column of Table 1 (“VC/NVC”), we
indicate for each problem if it has any valid conclusion (a “VC
problem”) or if it has no valid conclusion (an “NVCproblem”).

• Difficulty: the main measure of this is given by the typical
performance of subjects in the conventional task. We used
for this the results from the meta-analysis in Khemlani and
Johnson-Laird (2012) which are reported in the 6th column in
the table. This performance motivates also the “empty-sets”6

6The name is explained by the fact that a first criterion for the classification
of problems arises from the observation that existential presuppositions are

classification (ES classification) introduced in Vargas
et al. (submitted). This classification reflects and provides
explanations for the variation of VC problem difficulty in the
drawing of valid conclusions in the CV task (NVC problems
are all classified 0 by ES). This will be also used repeatedly
in our graphs. The ES classification sorts all syllogisms with
any valid conclusions into five classes7 on the basis of their
quantifiers and whether the conclusion quantifier is already
used in one or more premises. Starting from the “easiest,”
problems with:

traditionally assumed in the field and this leads to a clear performance divergence
from problems that require this assumption in order to have a valid conclusion
and problems that do not. This substantial difference occurs with double universal
problems (our classes 2 and 5).
7All problems without any valid conclusions are conventionally assigned the
number “0.”
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1. one existential and one universal premise and a valid
conclusion with a positive quantifier from a premise;

2. two universal quantifiers and a valid universal conclusion;
3. one existential premise and one universal premise, and a

conclusion with a negative quantifier from a premise;
4. one existential and one universal premise with a valid

conclusion requiring a quantifier not in the premises; and
5. two universal premises, but only existential valid

conclusions.8

Matched/mismatched rate: a pair of premises is matched if the
middle term is either positive in both premises or negative in
both premises. Otherwise it is mismatched. Problem AE2, for
instance, is mismatched because in the premises All b are a, No
c are b, the term b appears, respectively, as positive and negative
(rephrasing No c are b as “c implies not b”). We considered this
property to be important in the problems selection and balancing
because it is related to the ease in constructing counterexamples.
With matched problems we can naturally produce 1-element
models9 of the two premises in which the conclusions proposed
are automatically also true, so changes are necessary in order
to produce counterexamples. These 1-element models can be
produced for mismatched problems only by using the truth of
universal statements with antecedents defining empty sets, i.e.,
by rejecting the existential import of universal statements. The 1-
element models that result from integrating the premises using
empty-antecedent reasoning are immediately countermodels of
the most popular conclusions. This regularity holds only because
the bets were chosen as the commonest invalid conclusions in
the meta-analysis data, and those have a particular property of
“figurality” defined in Vargas et al. (submitted).

The conclusions in the table (5th column) were used in tasks
under the evaluation paradigm, namely, EV, CMA, and CMA2,
where they are proposed after the two premises. Participants
should either accept or reject that the conclusion necessarily
follows from the premises. The conclusions presented were
selected according to the following criteria: for VC problems the
conclusion is chosen to be valid. If more than one conclusion
is valid, we chose the most frequently selected in the CV

8This simple classification is motivated by the fact that it correlates highly with
the percentage of correct answers of the valid problems in the Conventional Task
meta-analysis 0.94, p= 2.288e-12.
9Logical models are here sets of elements, each element of which represents a type
of individual defined by the three properties and their negations. This is because
the syllogism has no identity relation to distinguish individuals of the same type. So
there are eight types of element which can be notated: ABC,¬ABC, A¬BC, AB¬C,
¬A¬BC, A¬B¬C,¬AB¬C, ¬A¬B¬C. Because these are types of thing, repetition
of the same type in a model is redundant. So, there are just these eight types of
element in any models of the syllogism. 1-element models contain just one of these
eight types; 2-element models contain two (distinct types), up to a maximum of
eight types i.e. the single 8-element model. We are only concerned with models of
up to two elements because they are always sufficient for countermodeling. NB.
Models and elements are semantic objects—sets of things. But they can either
be thought of as collections of things (shoes and ships and tins of sealing wax
. . . ) with their relevant element labels from the possibilities above stuck on. Or
their elements can be represented by sentences composed of conjunctions of three
atomic propositions, such as say (¬A ∧ B ∧ ¬C). Models are then sets of these
sentences. The syllogism is so simple a fragment of classical logic that syntactic
representation in the mind is hard to distinguish from semantic representation.
This becomes important for assessing some psychological theories of the syllogism.

task, according to the meta-analysis in Khemlani and Johnson-
Laird (2012). This last criterion was also applied for non-valid
problems, namely, we chose the most popular specific conclusion
for each problem, in this case obviously a non-valid one. This
makes it as difficult as possible for our subjects to detect the
invalidity of the proposed conclusions.

Participants
A total of 244 undergraduate students (mean age = 22.4) from
first to third-year courses in the Ludwigsburg University of
Education distributed thus: CV: 82, EV: 22, CMA: 54, CMA2:44
COMM-C: 42. The difficulty of the two countermodeling
tasks (CMA and CMA2) led in some cases either to the
non-comprehension of the task or to failure to comply with
instructions. We excluded from all our analyses the answers
of a total of 3 and 5 participants, respectively, in CMA and
CMA2. These are subjects who did not provide any complete
construction of countermodels. We did not consider their
answers evaluating the validity of the conclusion because the
counterexamples part was crucial in our experiment as an
exploration of the effects obtained with this construction. This
made these data uninterpretable for us. We take the systematic
failure to provide counterexamples in these subjects as a clear
indication that it was by far more demanding than the other
tasks, but also more difficult to grasp without further indications
or explanations.10

Evaluation of Problems and Countermodels
Universal statements can be interpreted in different ways and
models can be considered to be adequate for them according to
two well-known options. On one hand, since Aristotle, a long-
established convention determines that universal statements are
false when the antecedent property is empty in the domain
because they are considered to have existential import. So, a
universal statement does presuppose in this interpretation the
existence of something to which the predicate is applicable.
On the other hand, according to modern semantics, truth does
not require existence for universal statements. Given, e.g., the
syllogistic problem AA1 (All A are B, all B are C) the universal
conclusion All A are C is a valid one (the type Barbara). Now,
if we consider the particular conclusion Some A is C, it is validly
inferred only if the universal first premise has existential import
leading to type Barbari. This inference is not valid under the
modern interpretation and, from this perspective is an example
of the “existential fallacy.”

The traditional Aristotelian view is adopted in most of the
psychological literature, notably in the criterion for scoring
accuracy. We follow this convention even if it is not clear
that either of the interpretations should be adopted from a

10It is also worth clarifying that in EV we had only 22 participants, given that
(as planned in the design) booklets included twice the number of problems in
comparison to the other tasks. We used this design since EV was by far the less
demanding task in time. Finally, the sample size in the CV task is remarkably
larger because in this case we could include the data from a previous experiment.
In this experiment we had a booklet generation mistake in the tasks different from
CV. This experiment was conducted a semester before in the same institution and
courses at the same university level (from first to third year).
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psychological point of view, or that it should be absolutely
mandatory in education from a normative stance. For this
reason, we will consider the modern interpretation in some
of our analyses and will emphasize that some of our subjects
in Experiment 2 do follow it explicitly.11 Even if our focus
here will be on the evaluation judgment of the tasks and
not on the counterexamples produced, the construction of
counterexamples allows us to observe where the divergence
between the interpretations is present, since we can see where
subjects use empty sets for interpreting their terms (see Vargas
et al., submitted).

RESULTS

The CV Task
As a first consideration Figure 1 compares the performance in
the CV task across the 32 problems of our experiment 1 subjects
with what we know from the meta-analysis (Khemlani and
Johnson-Laird, 2012). Our participants present similar patterns
in their answers in comparison with the literature, as seen by
the high correlation (Spearman coefficient of 0.78, p < 0.001).
As seen in the scatterplot, our participants have a performance
slightly lower in most of the problems, but the tendencies
are clearly the same. We may also see in the figure different
clusters of problems confirming that the ES classification captures
to a great extent the degree of difficulty of the problems
in this task remaining stable across groups. This stratified
analysis of the problems based on their structural characteristics
gives us suggestive insights into the different strategies used
by subjects. Problems in group 5, for instance, have a valid
conclusion whose type (kind of quantifier) is an existential
one not present in the premises (both universal) i.e., they
require existential presuppositions. This makes these problems
particularly difficult in this task leading to correct answers being
practically absent, according to the traditional scoring with
existential presuppositions, both in the literature and in our
subjects, as is evident in Figure 1. The commonest responses in
these problems are actually universal, which are invalid.

The EV Task
This task is also present in the literature (Rips, 1994). Our
results indicate that, as expected, there are important differences
with the CV task even if conclusions must be drawn with care
given their different structure. In principle the tasks are not
comparable, so it is difficult to interpret the apparent increase
in the overall accuracy between CV and EV from 27.6 to
46.4 % (see Figure 2). The difference in performance between
both tasks is more evident in groups 4 and 5 of the ES-
classification (see Figure 3) for natural reasons: these problems
are commonly incorrect in CV because participants prefer to
generate conclusions different from the correct ones (which are
not valid with the premises). In EV, instead, these conclusions
are presented without other possible options which enter in

11Vargas et al. (submitted) presents some evidence, based on counterexample
analysis, that existential presuppositions are not compatible with the results of the
CMA task (compatible instead with modern interpretation of classical logic). Even
so, they can well be present in the Conventional Task.

FIGURE 1 | Comparison of the CV task performance across the 32 problems

between the literature and Experiment 1 groups. Colors follow the ES

classification.

competition with them. In the class 2 of the ES-classification, the
two tasks are closer.

It is worth also noticing that there is in EV a strong asymmetry
between valid and non-valid problems which is reflected in a
percentage difference of almost 25 points in favor of the former.

The CMA and CMA2 Tasks
As explained before, the CMA and CMA2 tasks share the same
structure: a deduction evaluation, followed by counterexample
construction when possible, in an adversarial setting. In them
we obtained an overall improvement in accuracy and reduction
of the imbalance in determining the validity vs. non-validity
of conclusions, as seen in Figure 2. We have an accuracy
improvement in regard to the EV task: mean scores pass from
46.4 in EV to 55.7 and to 65.1, respectively, in CMA and
CMA2 (p = 0.0004348 between EV and CMA and p = 1.598e-
11 between EV and CMA2). The difference between valid and
invalid problems decreases from 24.7 to 19 and to 16.7 points
in EV, CMA and CMA2. This reduction in the imbalance is
also significant: p = 0.004586 between EV and CMA and p =

0.0002718 between EV and CMA2.
We compare CMA and CMA2 with EV, respectively, in

Figures 4, 5. It is noticeable here that the improvement is not
just in the means, but also present for almost all problems
taken individually.

CMA and CMA2 offer the additional countermodel data
which deserves separate analysis which will not be done
here. Nevertheless, it is worth mentioning that, despite the
improvement in conclusion evaluation, the generation of
countermodels is far from perfect: in these tasks the percentage
of correct countermodels is 20 and 31% of possible ones
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FIGURE 2 | Five tasks comparison in performance. Generation paradigm (left) and evaluation paradigm tasks (right).

FIGURE 3 | Comparison between the CV and the EV tasks. Performance

across the 32 problems. Colors follow the ES classification.

(namely, for each participant the 9 non-valid problems out
of 16 presented to her). Calculating the chance levels of
correct countermodeling is complex. There are 64 possible 2-
element models different in principle among which 28 avoiding
reorderings and repetitions of elements. For each problem there
are different subsets which are correct. On the other hand
there are relatively simple properties of problems that will filter
out possibilities. The psychological process of countermodel
construction is also complex the most direct evidence being

FIGURE 4 | Comparison between the EV and the CMA tasks. Performance

across the 32 problems. Colors follow the ES classification.

that participants take around three to four times as long per
problem. The analysis in Vargas et al. (submitted) provides
strong evidence that its subjects are trying to do classical logical
countermodeling despite their many errors. The construction
of counterexamples poses difficulties due to high demands on
executive functions (workingmemory in particular). Besides this,
it poses a number of problems difficult to clarify by means of
test instructions alone. This motivated a different approach in
Experiment 2.
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FIGURE 5 | Comparison between the EV and the CMA2 tasks. Performance

across the 32 problems. Colors follow the ES classification.

The COMM-C Task
The purpose of this task was to substantiate the idea that
what participants do in the CV task is essentially framed in
a context of cooperative communication. If instructions ask
subjects explicitly to do precisely this, we obtain in fact very
similar results. Correlation between CV and COMM-C is 0.75
(Spearman coefficient, p < 0.00005). This is in fact the highest
correlation obtained between all tasks (Table 2). As shown in
the scatterplot in Figure 6, the ES classification is also essentially
respected. Subjects perform similarly as in CV, only that the
collaborative attitude leads even more to the extreme, so to
speak. We can see this in the fact that the conclusions of the
problems in ES class 2 are endorsed even more frequently. In
general, subjects extract more valid conclusions for VC problems
in COMM-C than in CV (average scores 38.2 and 34.2% in
generating valid conclusions). Similarly, a conclusion for NVC
problems is “guessed” even more frequently without exception in
any of the problems, a characteristic collaborative strategy. This
leads to an even increased asymmetry between VC and NVC
problems. According to our instructions for COMM-C, under
a situation of complete uncertainty, the payoffs of selecting “no
preferred guess” would be larger. This means that the conclusions
they select seem at least to some extent plausible for them in the
communicative game.

What Does Countermodeling Elicit?
Our comparison across tasks is guided by the idea that there
is a change in disposition: CV, EV, and COMM-C tasks on the
one hand (cooperative), and CMA and CMA2 on the other
(adversarial). From the point of view of the answer format we
have on the one hand the CV and COMM-C tasks (choose from
a menu of conclusions), and on the other, the CMA, CMA 2, and
EV tasks (determine the validity given a proposed conclusion).

TABLE 2 | Correlations (Spearman coefficients) between the 5 tasks in

Experiment 1.

CV COMM-C EV CMA CMA2

CV 1 0.75

(p = 0.0000)

0.50

(p = 0.0035)

0.56

(p = 0.0008)

0.63

(p = 0.0001)

COMM-C 0.75

(p = 0.0000)

1 0.67

(p = 0.0000)

0.46

(p = 0.0087)

0.54

(p = 0.0016)

EV 0.50

(p = 0.0035)

0.67

(p = 0.0000)

1 0.66

(p = 0.0000)

0.70

(p = 0.0000)

CMA 0.56

(p = 0.0008)

0.46

(p = 0.0087)

0.66

(p = 0.0000)

1 0.66

(p = 0.0000)

CMA2 0.63

(p = 0.0001)

0.54

(p = 0.0016)

0.70

(p = 0.0000)

0.66

(p = 0.0000)

1

p-values in parentheses.

FIGURE 6 | Comparison between the CV and the COMM-C tasks.

Performance across the 32 problems. Colors follow the ES classification.

Even if all tasks are all positively correlated (Table 2), some
significant differences are obtained as can be seen in Figure 2. On
the one hand, both in CMA and CMA2 we see an improvement
in the overall accuracy across problems. Here, the more direct
comparison is with EV. Particularly salient is the improvement
with regard to NVC problems (red columns) which leads to a
large reduction of the VC/NVC performance asymmetry. The
spectrum varies from large differences in the COMM-C and CV
tasks. In these we see differences of 27.4 and 11.6 percentage
points, but the strong asymmetry in these tasks is more evident
if we re-score these tasks in a way that bisects the possibilities
(any valid conclusion vs. no valid conclusion). This is designed
to capture the over-inferencing which is so characteristic of
the NVC problems in the conventional task. In this way, the
generation paradigm tasks are evaluated in a bivalent way which
makes them at least approximately comparable with those of
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the evaluation paradigm. If we consider the judgment that
“something follows” in valid problems, accuracy rates for CV
and COMM-C are of 84.2% and 93.8%. The difference between
valid and non-valid problems is therefore striking: 61.6 and 83
percentage points.

Under the evaluation paradigm the differences range from
24.7 (EV task) to 19 (CMA task) and 16.7 (CMA2 task).
These effects of countermodeling are significant, as reported in
subsection The CMA and CMA2 Tasks.

Back to the comparison between CV and COMM-C, we
noticed in subsection The COMM-C Task how close they
are. Participants in the conventional task do not answer
following classical norms consistently, leading to an extremely
irregular performance across problems (Figure 1). This may
be attributed to a great extent to the fact that they do not
interpret the task goal in the same way the experimenter does.
The purpose of the COMM-C task is to clarify what those
aims may be. The very large correlation between the two
tasks indicates that what subjects do in both is very similar:
they understand the CV task essentially as a communication
task, from a cooperative stance. As may be expected, this
cooperative disposition is more extreme in COMM-C: a higher
tendency to believe that valid conclusions do follow from
premises, and the correspondent difficulty of refraining from
endorsing conclusions from the menu (low performance in
NVC problems). We see COMM-C as a caricature of CV in
the sense that its more striking characteristics are exaggerated,
though perhaps not by much. This tells us that participants
in CV are not attempting but failing to do the intended
task, but that they are really doing another, fundamentally
different task. To get them to do the required classical logical
task is an important educational goal, but one first has to
communicate the goal, before resorting to accusations of
poor performance.

The cooperative task of interpreting and understanding
discourse can be approached through logical tools (van
Lambalgen and Hamm, 2005; Stenning and van Lambalgen,
2008). We interpret the data as indicating that subjects
understand the CV task by assimilating it to this logic of
discourse interpretation which radically differs from classical
logic. Nevertheless, results are usually evaluated from the
perspective of the latter which leads to the conclusion that
subjects have “poor reasoning” competence. The COMM-C task
attempts to understand what the team-mate is conveying. This
is something very close to cooperative discourse interpretation:
an attempt to reconstruct the intended situation described (the
intended or “preferred” model, in the technical sense).12

EXPERIMENT 2: INTEGRATING THE TASKS
AS A DIDACTIC SEQUENCE

The effects obtained in Experiment 1 indicate clear tendencies
when we take (as experimenters and educators usually do)

12Here the term is used informally, but we mention that it has a technical
counterpart in the preferential semantics (Shoham, 1987) for non-monotonic
logics.

classical logic as our benchmark. The results obtained comparing
the spectrum of tasks suggest that there are good reasons why
“naive” subjects deviate from this particular logic and suggest
also in which direction we should move if our goal is to
obtain results according to it. Again, the goals pursued matter.
Experiment 2 explores what we can obtain from an intervention
designed in this direction. We implement three successive tests
(pretest, posttest 1, and posttest 2) with the idea of facilitating
the transition from an initial (cooperative) point, toward an
adversarial classical logic one.

We start from the observation that, as noticed in subsection
The CMA and CMA2 Tasks, the countermodeling tasks are
highly demanding and that even if we see a change in
disposition and performance, correct countermodel production
is generally not attained. Understanding the construction of
counterexamples needs in general more than the bare written
instructions of the usual experiments. We focus then on
the clarification of this notion, crucial for us as an external
tool supporting the definition of the (classical) inference
relation, as already explained in Section Construction of
Counterexamples: Modeling and Countermodeling as Tools for
Syllogistic Reasoning.

Methods
Materials
We focused here on a within-subjects comparison of the tasks
EV and CMA2 (the one that seemed most promising from
Experiment 1 to obtain a shift toward classical reasoning). The
instructions were the same as in Experiment 1 but in this case
instructions (including the countermodeling explanation) were
carefully explained and not just provided in the booklets: see
the procedure.

The problem selection was the same as in Experiment 1. In
the pretest and posttest 1 the problems were the 16 of set 1
(see Table 1). In posttest 2 we applied the problems both of set
1 and set 2, each to half of the participants. This allowed us
to test the trajectories of problems of set 1 (comparing along
the three tests). At the same time, we applied set 2 problems
in the third test in order to control for possible plain memory
or training effects along the three trials with the same set of
problems, using a set with similar characteristics (as discussed
above in section Materials and Procedure). As in Experiment 1,
the order of presentation of the problems in all the booklets was
randomly generated and different these orders were randomly
distributed to the participants.

Participants
These were 36 1st and 2nd year mathematics students at
University El Bosque in Bogotá. The mean age was 20.3. They
were beginning their studies with introductory courses. From
the point of view of logic, their knowledge was limited to a
basic semi-formal logic course (partially or totally completed by
the time of the experiments), mostly focused on propositional
logic, truth tables and quantifiers notation for mathematical
statements. The experiment was conducted separately in a total
of 5 small groups (from 5 to 9 students each) during class hours
with students from different courses.
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Procedure
The sequence was designed with alternating tests and short
interventions over three sessions based on the following stages:

• First session: After a very short, 5min introduction the
pretest was administered. The purpose was explained as to
complement their knowledge of logic with learning about
syllogisms. The starting point was the EV task. As we
explained, we were interested in their initial answers previous
to any instruction. Typically, students finished the 16 problems
within 30min.

• Second session: We implemented the first intervention,
comprising some quick history of Aristotelian logic and
syllogisms. We provided instructions on the countermodeling
technique, which were explained in detail. We passed then
to some practice with 2 or 3 example problems which they
worked on individually. Their counterexample proposals were
discussed and corrected in the group. Questions were clarified
by the experimenter. This intervention took around 45min.
We then conducted posttest 1 with the framework of CMA2.
In this experiment we introduced a variation with regard to
Experiment 1: in order to emphasize that the source of the
answers was really a student, we selected some of the answered
booklets from the first session and presented them in an
anonymized and randomized way. An hour was assigned for
the test but most of the students finished in 40min.

• Third session: A second intervention consisted in giving back
to participants their corrected pretest and posttest 1. Special
attention was given to providing individual feedback on the
counterexamples constructed. This was facilitated by the fact
that the groups were small. Pretest and posttest 1 were given
back not only in order to correct the mistakes and clarify
concepts, but also with the didactic aim of making participants
aware of how far their starting point was from classical
validity, and how substantial improvement could be attained
by the use of counterexamples (a means for reaching the
concept of entailment, as explained in SectionConstruction of
Counterexamples:Modeling and Countermodeling as Tools

for Syllogistic Reasoning). Additional time for questions
was given. In total, this took around 30min. Next, posttest
2 was administered, again asking to evaluate the validity
of a deduction, and to construct a counterexample when
possible. Here again, an hour was assigned for the 16
problems. Most of the students took around 40min in order
to complete the test. A total of four participants missed this
last session.

The three sessions were held a week apart. At the end, all the
results of the three tests were shown to the participants, with a
reflection on the didactic effect obtained by them individually
and as a group.

RESULTS

If we take the mean performance, we have a mean of 44, 59.2,
and 85.3% for validity judgements, respectively, in the pretest,
posttest 1 and posttest 2 (Figure 7).

FIGURE 7 | Performance on the 3 tests of Experiment 2.

FIGURE 8 | Boxplots showing the subjects’ performance distribution in the

three stages of Experiment 2. Left: performance in problems evaluation. Right:

performance in correct countermodel construction in the two last stages.

We interpret these results as a progressive attainment of our
intended target. This can be seen also examining the distribution
of individual scores (over 16 problems) attained by each of the
participants on each of the tests (Figure 8; see also the table in
the Supplementary Material).

In the pretest the mean score (7.04), the median (6), and
22 out of 36 participants had scores not greater than 8. With
16 problems, this means chance level or below. There were
extreme cases of seven students with 25% or less correct answers,
reflecting how misleading intuition can be in this task (they were
providing answers almost opposite to the task that was required).

In posttest 1 we obtain a large improvement in the evaluation
of the conclusions (Figures 7, 8). We attribute this, in part,
to the change of perspective by taking over the position of a
professor correcting a test from a student. This, together with the
countermodel construction, led, as expected, to results similar to
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FIGURE 9 | Comparison between the pretest (EV task) and posttest 1 (CMA2

task) in Experiment 2. Performance across the 16 problems of set 1. Colors

follow the ES classification.

the ones observed in Experiment 1 comparing EV with CMA2
(44 and 59.2% of pretest, and posttest 1 are very close to the 46.4
and 65.1% obtained in EV and CMA2 in Experiment 1).

As observed in Experiment 1, this is an already important
change which reflects an adversarial context. Even so, there is
still clearly place for improvement. Above all, countermodeling
constructions in posttest 1 are very frequently wrong. Seven
participants provided two or less correct countermodels (out
of nine possible); four did not construct even one. This alone
confirms the difficulties involved in the process of understanding
and performing well with the notion of counterexample, as
already observed in Experiment 1. This motivated the necessity
of a further stage for feedback and clarification, as addressed in
our third session. The results obtained confirm this hypothesis
and are close to being optimal. In posttest two we achieved
another important improvement in evaluating the validity of
the proposed conclusions, but more revealing than this, an
improvement in the construction of the countermodels (mean
score = 6.47 over nine possible countermodels with nine
subjects having all of them correct; see also Figure 8-right). This
improvement was present both with the same set of problems (set
1), or with a changed one (set 2). There is no significant difference
between students with the two sets (p= 0.5178).

Figures 9, 10 provide a comparison between the different
stages across the 16 problems of set 1. The first one is a close
analog of comparing EV with CMA2 in Experiment 1 (Figure 4).
In contrast, the comparison in Figure 10 shows an improvement
absent in all the other tests considered in both experiments.
On the one hand, all the problems have mean scores above
65%, with OI3 and OI2 having even 100%. On the other hand,
we can see that all invalid problems clearly “move upwards”
As we see in Figure 7, accuracy differences between valid and

FIGURE 10 | Comparison between the pretest (N = 36) and posttest 2

(N = 15) in Experiment 2. Performance across the 16 problems of set 1.

Colors follow the ES classification. Problems in class 5 (AE2 and AE4) are

hidden behind OA1.

TABLE 3 | Correlations (Spearman coefficients) between the 3 stages in

Experiment 2.

Pretest Posttest 1 Posttest 2

Pretest 1 0.72 (p = 0.0018) 0.39 (p = 0.1371)

Posttest 0.72 (p = 0.0014) 1 0.61 (p = 0.0128)

Posttest 2 0.39 (p = 0.1371) 0.61 (p = 0.0128) 1

p-values in parentheses.

invalid problems decline from round 25–15 percentage points
between the pretest and posttest 1. In posttest 2 the asymmetry
is completely eliminated (with mean performance in non-valid
problems even higher). This is supported by the fact that the
pretest and posttest 2 are uncorrelated (Table 3).

With few exceptions participants presented a sustained
improvement in evaluating correctness of problems across the
three trials (see the table in the Supplementary Material). Even
the clearest exception (student S05) was an extremely revealing
case. He was the oldest student (45), well above all the others
(mean age = 20.3). He already had a professional qualification
and had some knowledge of the topic. In the first test, in
fact, he made use of Euler-Venn diagrams as a support and
obtained the highest score. In the second test, he performed
worse than before. In the third session, when receiving his
feedback, he manifested his discomfort with having to use a
different technique from that already known to him in dealing
with syllogistic reasoning. In posttest 2 he performed even worse.
He passed successively from 13 to 11 and to 9 correct answers.
From the conversation with him, it was clear that he was trying
to accommodate our counterexamples construction within the
scheme of his knowledge of diagrams, already consolidated.What
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the other students learned along the process is apparently more
directly acquired starting only from their intuitive knowledge,
than with a previously existing scheme which could not easily
be abandoned because the participant already felt confident
using it.

Some Typical Strategies, Interpretation
Obstacles, and Disambiguations
Experiment 2 allowed us also to obtain further information
besides that provided from the data from the tests. After
each session, notes on the arguments and questions from the
students were taken. We present next some of the more salient
phenomena revealed.

Strategies of Countermodeling Construction
Among the notions introduced in the tests, probably the most
difficult one to acquire fully is that of countermodeling and how
it can be used in regard to validity: a deduction is not valid
if there is a model of the premises which is not a model of
the conclusion. The double negative character of this procedure
places heavy demands on subjects’ attention needed for forcing
premises to be true, forcing the conclusion to be false, and
integrating the existence of such a construction with a judgment
of the invalidity of the deduction. In fact, two salient tendencies
in countermodeling (Vargas et al., submitted) are either, (1) to
provide a model of the premises forgetting that the conclusion
should not hold in order to have a countermodel, or (2) to then
change the model to make the bet false, but not notice that one of
the premises is then not true, so the countermodel fails because
it is not a premise model. These can be calculation problems
without conceptual confusion.

Another kind of misunderstanding observed here was about
what a countermodel (or a counterexample) is. Given that
we asked for universes with two elements, participants often
considered that the validity or invalidity of the statements should
be evaluated on each of the elements of the structure or the
universe, and not globally. Typically, in their first encounter
with having to construct counterexamples (in the intervention of
our session 2) a conclusion such as Some of the students taking
geometry are taking linguistics, was confronted with a situation
such as:

Student 1:

Linguistics ✗

Arab ✓

Geometry ✓

Student 2:

Linguistics ✓

Arab ✓

Geometry ✓

In this case, some participants understand that Student 1
constitutes a counterexample whereas Student 2 constitutes an
example, leading to the belief that a counterexample is provided.
This is incorrect because the particular affirmative statement is
true in themodel: there is some student taking both geometry and
linguistics, namely, Student 2. In the vocabulary of model theory,
they are confusing the notion of a structure not being a model for
a statement, with the notion of there being an instance, within

the structure, of the negation of the statement. An explanation
emphasizing that truth in a structure must take it as a whole turns
out to be very useful in clarifying such misconceptions.

Which algorithm do individuals follow for countermodeling
construction? Participant S20 was very conscious about what he
did, and about the fact that he switched during posttest 1. First,
he began constructing a model of the premises and only then
tried to provide a countermodel of the conclusion. At the end, he
noticed that for him it was easier to begin countermodeling the
conclusion and then try to satisfy the premises. In fact, there was
an improvement over the test: his only three mistakes were in the
problems presented in position 3, 5, and 12, with no mistakes in
his last 4 problems. Also, in his final test, after making this explicit
remark, he performed perfectly both in conclusions evaluation
(16/16) and correct countermodeling construction (9/9 possible
countermodels). He changed his strategy because, as he indicated,
it was easier, then, to remember that the conclusion had to be false
in order to obtain a countermodel. We point to this case because,
even if we believe that such a conscious metalevel monitoring
as exhibited by S20 was not generally present, it indicates that
countermodel construction may put into action clearly different
algorithmic strategies even with such simple models as these.

Interpretation of the Quantifiers
Two well-known concerns regarding the interpretation of
the quantifiers involved in the statements were posed by
our students.

The first was about the “conversational” use of the existential
(or “particular”) statements. Student S33 said, during the
feedback on session 3, that some of his “mistakes” in posttest 1
were occasioned because he interpreted all existential assertions
(Some A are B) as affirming also that Some A are not B.
This implicature (Grice, 1975), is usually explained in terms
of informativeness (“Make your contribution as informative as
is required”).

Student S29 made explicit the same interpretation during
the feedback session. In fact, she did so as an explanation of
the fact that in some cases she added a third element to the
countermodels. Two elements, in fact, are not always enough
when assuming such an interpretation.

A second perplexity was about universal statements. For
example, during the explanation of session 2, we used Syllogism
AI3 as an example:

All the students taking linguistics are taking Arabic.

Some of the students taking geometry are taking Arabic

Conclusion:

Some of the students taking geometry are taking linguistics.

Participant S25 proposed the following counterexample:

Student 1:

Linguistics ✗

Arabic ✓

Geometry ✓

Student 2:

Linguistics ✗
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Arabic ✓

Geometry ✓

She argued that the first premise is true in this case, because if
there is no student taking linguistics, then the universal statement
holds. This led to a debate in class. It is well-known that this is
the key feature that distinguishes the Aristotelian and themodern
interpretation of the universal quantifier. As explained in section
“Evaluation of Problems and Countermodels,” for Aristotle,
universal statements have existential import whereas modern
interpretations do not require this. Was the premise true or not?
We clarified the point emphasizing the historical development
just mentioned. We did not commit to any of these conventions
as “the correct” one, explaining that the interest of their answers
in the tests was not in adhering to one or other of these normative
positions, but to analyze how they reason. Educationally, it
was an opportunity for us for emphasizing the conventional
and historical character of some logical rules. Therefore, they
were “allowed” to construct counterexamples according to their
choice. Interestingly, in both posttest 1 and posttest 2 student
S25 presented a systematic tendency in modeling all the universal
affirmative statements in the premises using “empty antecedents”
(interpreting the universal as an implication). This one was an
extreme case, but seven other participants stated explicitly (when
interrogated) that they had used this feature in at least some of
the problems. In the table in the Supplementary Material we
report in separate columns the scores from the two normative
standpoints (“traditional” vs. “modern”). The countermodels
data provide us here with strong evidence of reasoning
with empty sets, indicating that a unique logical standpoint
(as traditionally used) may hide other reasoning strategies
equally legitimate.

Decidability and Proof
A final aspect that emerged during the discussions with
participants that we want to emphasize, is that some of the
questions and concerns reflected their conceptions about proof
and mathematical procedures.

Student S09, for instance, was looking for an algorithmic
mechanism for constructing counterexamples. He realized that
at some point not everything was completely determined at
each step of the construction about the two elements of the
models. Some of the features were usually underdetermined by
the premises. Part of the work was an exploration, sometimes
hypothetical, which could eventually lead to a counterexample.
The fact of having two or more possibilities and having to
suppose something without knowing the final result produced a
manifest anxiety in him. His conception about mathematics was
procedural and he expected to reduce argumentation and proof
to this level.

Two different students commented independently that a
procedure for establishing validity of conclusions is needed.
Counterexample construction is in fact a means which in
principle leads only to showing invalidity.

As student S01 asked in session 3: “Professor: is there any
way to be sure that the conclusion follows? Counterexamples
tell you that a conclusion does not follow, but what about
correct conclusions?” From this, it could be made clear to

them that in this particular case, the combinatorial exhaustive
search in the space of models with two elements led to the
establishing of validity (as explained in Section Construction of
Counterexamples: Modeling and Countermodeling as Tools for
Syllogistic Reasoning), and that this was feasible in a reasonable
time. In this case, the situation led naturally to the implicit
understanding of the metalogical notions we wanted to reach
such as the concept of logical necessity.13

GENERAL DISCUSSION

The fields of cognitive psychology and mathematics education
meet at different points in their subject of study. Even if
their particular aims do not always coincide and mutual
communication is not straightforward, there is a recognized need
for interaction between them [see e.g., (Gillard et al., 2009; Star
and Rittle-Johnson, 2016)].

The present study is an attempt at such an interaction. Its
focus is on the crossroad of cognitive psychology (the topic of
study, the design of the tests), educational psychology (class-
based interventions, the learnability and teachability of a topic)
and mathematics education (the role of counterexamples for
mathematical reasoning, the emergence of the notion of proof
and refutation). We see the two experiments presented as
complementing each other taking into account the strengths and
weaknesses of each discipline.

We see such an interaction taking place at the fundamental
levels that guided our study: the role of counterexamples in
reasoning, and the communicative goals pursued at the base of
this process.

On the one hand, as already indicated in Section Construction
of Counterexamples: Modeling and Countermodeling as
Tools for Syllogistic Reasoning, the theme of examples
and counterexamples plays a role both in psychology and
mathematics education and can be addressed from the logical
point of view, where “models” and “countermodels” have a
precise definition. We addressed the problem here, in a very
constrained situation, with this level of precision. This allows
us to conclude that the process of generating a preferred
model12 in reasoning is not necessarily accompanied by a
subsequent search for counterexamples (as proposed by the
mental models theory). And that mental models explanations
of the conventional tasks do not fit the evidence—it is not just
that countermodeling does not take place—what does take place
is interpretable as inference in a different logic. The explicit
generation of counterexamples leads in our experiments to
completely different results compared with tasks which do not
require this generation. It leads also, in our view, to a completely
different notion of deduction and the logic underlying it.14

We think that this difference is more generally crucial in
mathematical reasoning.

13This was probably obtained owing to the fact that our participants were
mathematics students and their particular involvement with mathematical proofs
even at their early stage.
14It is clear, as also confirmed here, that participants do not primarily follow
classical logic in traditional syllogistic tasks. Actual performance on them may
be approached more properly with non-monotonic logics (Stenning and van
Lambalgen, 2008).
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As we can infer from our second experiment, the generation
of counterexamples requires in many respects a process of
familiarization, disambiguation and mastery. We could see this
process in a relatively simple situation (2-element models,
3 monadic predicates, a limited non-recursive syntax). It is
even more necessary in the far more complex range of
mathematical contexts.

On the other hand, context and communication determine the
kind of reasoning that is elicited. The issue of context dependency
has been widely documented in the psychological literature,
and acknowledged in different ways from approaches such as
ecological rationality or situated cognition. It is also present to a
large extent in educational contexts, in particular inmathematics.
The communicational situations may vary the goals pursued
to the point of representing completely different “games”
(Wittgenstein, 2003). The game of cooperative communication
and construction of an intended model, differs completely
from the adversarial search for possible counterexamples that
attempt to defeat a statement or argument, as illustrated by the
results presented here. We interpret these results as suggesting
that adversarial argumentation, classical logic deduction, and
mathematical proof may be seen as linked in a continuum if
appropriate contextual prompts are provided. These prompts
can materialize in communities of practice as emerging from
particular communicative situations and dispositional attitudes.
In this sense, the question of whether there is continuity
or rupture between argumentation and proof (Duval, 1991,
1992) cannot be answered in general terms, but only within
a context. The answer is contingent on how the kind of
communication and argumentation operating in a particular
setting is interpreted by subjects. If this interpretation is based
on a cooperative disposition or “game”15, then there is indeed
a rupture. The contrary occurs if it is experienced as an
adversarial one. In this case we obtain a skeptically guided,
oppositional search in the “example space.” As Balacheff (1987)
put it: “intellectual proof mobilizes a meaning against another,
a relevance against another, a rationality against another”.16

We see in the different tasks studied here indications of the
presence of these two dispositions: CV, COMM-C, and EV show
a primary tendency toward a cooperative setting, whereas our
countermodeling tasks are tied to an adversarial stance, both
when it is a manifest competition (CMA) or when it is an
“adversarial cooperation” (CMA2). These are, even in the limited
contexts of our experimental settings, cases of “engagement
structures” (Goldin et al., 2011). We see in particular the “Let
Me Teach You” structure operating in CMA2 in order to help
students grasp the game being played from a situation that they
know well.

Given this contextual character of communication and
reasoning and how the diversity of situations leads to different
processes and outcomes we want to stress that it inheres
not only the descriptive, but also the normative aspect of

15“Game” not only inWittgenstein’s sense, but also in the Games Theory sense that
it can be cooperative or adversarial (zero-sum or non-zero-sum).
16Our translation and emphasis.

logic and its role in psychology. We believe that both
the cognitive psychology and the mathematics education
literatures still miss and require pluralistic accounts on how
we reason. These should go beyond the crude dichotomy
between “correct” and “incorrect”17 answers in reasoning
tasks, usually evaluated exclusively by standards of classical
logic. This manifests itself in psychological experiments, where
participants may well be trying to do a task different
from the one intended by experimenters (Stenning and van
Lambalgen, 2008). The situation is analogous in education,
where the notion of “error” is often considered as more
clear-cut than it is. Reasoning is a manifold process which
may require different norms18 in different situations and,
accordingly, “errors” may be sensible inferences depending on
the interpretation adopted. They are not primarily something
to be “eliminated,” an attitude that in traditional education
often involves emotional and even moral implications (Oser
and Spychiger, 2005). We believe, on the contrary, that to
a large extent, learning to reason is learning the particular
communicative conventions at use in a particular discourse,
a process which usually also requires appropriate support
through modes of representation.19 From this perspective we
believe that pluralistic accounts which integrate this diversity
of communication and cognitive situations are needed. The
results of our study indicate how tasks comparable from
their “formal” structure prompt in practice different kind of
answers. Rationality should not be thought of just as something
abstractly and generally either possessed or not, but as emerging
in particular ecological contexts (Simon, 1956), here of a
communicational kind.
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This study aimed to examine the specific means and internal processes through which
mathematical understanding is achieved by focusing on the process of understanding
three new mathematical concepts. For this purpose interviews were conducted with
54 junior high school students. The results revealed that mathematical understanding
can be achieved when new concepts are connected to at least two existing concepts
within a student’s cognitive structure of. One of these two concepts should be the
superordinate concept of the new concept or, more accurately, the superordinate
concept that is closest to the new concept. The other concept should be convertible,
so that a specific example can be derived by changing or transforming its examples.
Moreover, the process of understanding a new concept was found to involve two
processes, namely, “going” and “coming.” “Going” refers to the process by which
a connection is established between a new concept and its closest superordinate
concept. In contrast, “coming” is a process by which a connection is established
between an existing convertible concept and a new concept. Therefore the connection
leading to understanding should include two types of connections: belonging and
transforming. These new findings enrich the literature on mathematical understanding
and encourage further exploration. The findings suggest that, in order to help students
fully understand new mathematical concepts, teachers should first explain the definition
of a given concept to students and subsequently teach them how to create a specific
example based on examples of an existing concept.

Keywords: mathematical understanding, mathematical concepts, cognitive structure, internal network,
connection

INTRODUCTION

Mathematical understanding entails knowing, perceiving, comprehending, and making sense of
the meaning and connotation of mathematical knowledge. Acquiring mathematical understanding
plays an important and crucial role in mathematics learning. Bartlett contended that mathematical
understanding can reduce the burden of memory, filter out invalid information in the brain,
and maintain the longevity of memory (Bartlett, 1932). Further, Davis observed that it can
help students assimilate and transfer knowledge by improving their transferability (Davis, 1992).

Frontiers in Psychology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 525493184185

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.525493
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2021.525493
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.525493&domain=pdf&date_stamp=2021-11-22
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.525493/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-525493 November 16, 2021 Time: 15:22 # 2

Yang et al. Inner Process of Mathematical Understanding

Pasnak et al. (2016) asserted that it can improve students’ capacity
for inductive and deductive reasoning, thereby enhancing their
ability to solve mathematical problems fluently. Moreover, Huang
and Yu (2002) and Zhang and Wang (2005) emphasized
that it can motivate students to acquire additional knowledge
(Huang and Yu, 2002; Zhang and Wang, 2005). Lv (2012)
argued that by enhancing their ability to solve mathematical
problems it can improve students’ ability to solve social
problems. Xu (2014) posited that it can improve students’
overall academic performance. Consequently, mathematical
understanding has always been a popular topic in the field of
mathematics education, and it has attracted the attention of many
mathematics education researchers (Hiebert and Carpenter,
1992; Cai and Ding, 2015). In 1989 the National Association
of Mathematics Teachers clearly stated that “the focus of the
mathematics curriculum should be “mathematical concepts and
understanding,” and mathematical education researchers and
instructional designers must take mathematical understanding
as the primary focus of mathematical research” (Hirsch, 1989).
Therefore an exploration of the characteristics of mathematical
understanding, especially its internal characteristics, is important
and valuable. Accordingly, to extend this line of inquiry, this
study aimed to examine the internal processes through which
mathematical understanding is achieved in order to enhance
mathematics teaching and student learning.

LITERATURE REVIEW

Because mathematical understanding is very important and
valuable, it has been widely researched since the middle of the last
century (Pasnak et al., 2016). However, a review of these studies
revealed that the literature focused primarily on the overall
characteristics (Skemp, 1976; Li, 2009; Bi et al., 2011; Lv, 2013;
Wang and Qi, 2014), types (Greeno and Riley, 1987; Zhou, 1998;
Zheng, 2001; Wang G. M., 2006; Xu, 2012; Yang, 2012; Lv, 2013),
and levels (Buxton, 1978; Herscovics and Bergeron, 1983; Tian,
1993; Pirie and Kieren, 1994; Ma, 2001; Wiggins and McTighe,
2005; Yu and Yang, 2005; Yu, 2006; Xiang, 2007; Martin, 2008;
Liu, 2011; Wang and Qi, 2014) of mathematical understanding
and the factors that affect it (Perkins and Blythe, 1994; Kong,
2001; Lin and Wen, 2001; Cheng and Huang, 2003; Yuan, 2005;
Yu and Yang, 2005; Su, 2006; Yu, 2006; Lei, 2007; Stylianides
and Stylianides, 2007; He, 2009; Shi, 2011; Zhang, 2011; Li,
2012; Xu, 2012; Liu, 2015; Zhao, 2016), which correspond the
external characteristics of mathematical understanding. Only
a few studies have focused on its internal characteristics, i.e.,
its internal psychological characteristics, especially the internal
processes of mathematical understanding.

Reviewing these few studies on the internal characteristics of
mathematical understanding, especially on the characteristics
of the internal psychological process of mathematical
understanding, it can be seen that there are four different
views at present. The first view, which is also the earliest one,
holds that the internal process of mathematical understanding
is one in which mathematical knowledge is comprehended and
represented in the learners’ minds and links with each other

are established. For example, Lesh et al. (1980) contended that
the process of mathematical understanding refers to the state
and process in which mathematical knowledge is represented
in different ways, and associations between or within these
representations are made (Lesh et al., 1980; Post et al., 1982;
Wang et al., 2012a).

The second view is that the process of mathematical
understanding refers to the transformation of mathematical
knowledge representation For instance, Mayer (1989)
contended that the process of mathematical understanding
involves transmission, reflection, reception, measurement,
and transformation. Anderson (2008) conceptualized
this in the process of mathematical understanding; an
individual changes mathematics knowledge from one
representation to another.

The third view believes that the internal process of
mathematical understanding is a comprehensive, complex, and
iterative process. The most famous scholars who hold this
view are Pirie and Kieren (1994). They proposed a theory
of mathematical understanding characterized by transcendent
recursion. They contended that mathematical understanding
is a holistic, dynamic, hierarchical, non-linear, recursive,
and internalized psychological process. “Holistic” means that
mathematical understanding is a process that involves not only
knowledge of mathematics but also knowledge about other
domains (e.g., life skills) and practical knowledge. “Dynamic”
indicates that mathematical understanding is a process in
which many different types of knowledge are integrated.
“Hierarchical” suggests that the process of mathematical
understanding can be divided into several levels. “Non-
linear” implies that mathematical understanding progresses
through different routes. “Transcendent recursion” indicates
that mathematical understanding is a multi-threaded repetitive
process (Pirie and Kieren, 1994; Ma, 2001; Li and Zhang, 2002;
Martin, 2008). Additionally, Liu (2009) holds similar views and
conceptualizes mathematical understanding as a process that
involves the ongoing, dynamic, sublevel, non-linear, and repeated
organization and reorganization of knowledge.

The fourth point of view is the most widely held one,
which proposes that in the internal process of mathematical
understanding, knowledge enters the learner’s brain and
interacts with the original knowledge to form a new cognitive
structure, which means that it is a cognitive activity. For
instance, Davis (1992) contended that in the internal process of
mathematical understanding, a new idea is incorporated into
a larger framework that has previously existed in the learner’s
mind. Zheng (2001) contended that, from a traditional point of
view, mathematical understanding refers to the ability to grasp
the essence of an object, while from a broader point of view
or from the viewpoint of modern psychological perspectives,
it is a process of incorporating an object into an appropriate
schema. Huang and Yu (2002) conceptualized mathematical
understanding as a dynamic process of constructing cognitive
structures and assigning meaning to knowledge. Chen and
Weng (2003) posited that mathematical understanding
involves restructuring, reorganizing, and rebalancing pre-
existing cognitions. Wang (2004) believed that mathematical
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understanding is a cognitive activity that helps individuals
gradually understand the essence and laws of mathematics
by combining their own knowledge and experience. Yu and
Yang (2005) conceptualized that mathematical understanding
involves assimilation and adaptation, whereby new mathematical
information is incorporated into existing cognitive structures.
Zhang and Wang (2005) regarded mathematical understanding
as a dynamic process of creating representations and knowledge
networks based on existing knowledge. Zhang and Guo (2007)
proposed that mathematical understanding is a process by which
learners establish links between different domains of knowledge
and modify or expand the cognitive structures of their knowledge
in these domains. According to Li and Wu (2011), in the process
of mathematical understanding, mathematical knowledge enters
a cognitive structure and forms an internal network with
pre-existing knowledge.

Apparently the above four views are different, although
they all address the issue of the internal psychological process
of mathematical understanding. The first view emphasizes
representation and the connection between representations; the
second emphasizes the transformation of representation; the
third emphasizes comprehensive regression; and the fourth
emphasizes the formation of new cognitive structures. However,
they are undoubtedly of great help to our comprehension of
mathematical understanding because they help us gain a more
in-depth understanding of the internal process of mathematical
understanding and shed light on methods for examining
mathematical understanding.

Additionally, it is also obvious that these views fail to provide
more specific and detailed information about the process of
mathematical understanding to help us understand it completely.
For instance, the second view believes that mathematical
understanding is the process of transformation of mathematical
knowledge or its representation, but how is such a representation
transformed? What kind of transformation is most conducive
to the generation of mathematical understanding? The fourth
view insists that in the internal process of mathematical
understanding, knowledge “enters” the learner’s brain and
interacts with the original knowledge to form a new cognitive
structure. But what kind of original knowledge is invoked to
interact with the new knowledge? What are the characteristics
of the new cognitive structure after the formation of a new
mathematical understanding etc.? Due to the existence of such
unmapped zones, many mathematics teachers find it difficult
to apply these views to practical mathematics teaching (Zhang,
2006; Zhang and Ning, 2006). Therefore it is necessary to
undertake an in-depth investigation of this construct to delineate
the concrete processes that underlie mathematical understanding
and create a detailed profile of the internal characteristics of
mathematical understanding. This study contributes to this
research area by exploring the internal psychological processes
that underlie mathematical understanding. It focuses on the
following two research questions:

(a). When new mathematical knowledge is processed, under
what specific internal situations does the understanding of
it take place?

(b). What kind of previously acquired knowledge present in the
cognitive structure is essential for the formation of new
mathematical knowledge?

THEORETICAL BASIS

Understanding is a word that educators and researchers often
use during the process of teaching and conducting educational
research. However, very different perspectives on understanding
have been documented in the literature (Cai and Ding, 2015).
Greeno (1987) contended that understanding is a method of
comprehending a knowledge structure. Chen (1995) observed
that understanding is a kind of cognitive activity that involves
a search for connections and relationships between things until
their essential laws are ascertained. Wiske (1998) conceptualized
understanding as the act of transcending available information
and creatively using one’s knowledge. Zhu (2004) pointed out that
understanding refers to the process of knowing and restructuring
experiences to achieve rational control over them.

It is therefore possible that the diverse perspectives on
mathematical understanding reflect the various ways in which
understanding has been conceptualized. For example, Sierpinska
(1987, 1990, 1994) contended that mathematical understanding is
an action that helps one understand the meaning of knowledge.
According to Simmons (1988), mathematical understanding
refers to the unique and profound manner in which individuals
perceive, reflect upon, and interpret a subject and express
it in different ways. Wang S. H. (2006) emphasized that
understanding refers to the process in which one uses his/her
own experiences and cognitive processes to deal with new
things, integrate new knowledge, solve new problems, and,
thus, constantly construct and improve his/her own cognitive
structure. Zhang and Guo (2007) posited that understanding is
a reflection of learning activities, different from memorization
and memory. When it comes to the interpretation of the internal
process of mathematical understanding, the above-mentioned
four viewpoints emerge.

However, most scholars and researchers generally agree
that mathematical understanding falls within the purview of
mathematics learning. Mathematical understanding is closely
related to mathematical cognitive structures and processes. It
is the process by which new mathematics knowledge becomes
part of an individual’s internal cognitive structure by connecting
with previously acquired mathematics knowledge and integrating
it with the internal network (Mayer, 1989; Davis, 1992; Huang
and Yu, 2002; Yu and Yang, 2005; Zhang and Wang, 2005;
Zhang and Guo, 2007; Li and Wu, 2011; Cai and Ding, 2015).
In other words, most scholars and researchers generally agree
with the fourth view mentioned above. Hiebert and Carpenter
(1992) observed that “[a] mathematical idea, procedure, or fact is
understood if it is part of an internal network. More specifically,
mathematics is understood if its mental representation is part
of a network of representations.” In this regard, they made the
following observations.

The idea that understanding mathematics makes connections
between ideas, facts, or procedures is not new. It is a
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theme that runs through classic works within mathematics
education literature and emerges frequently in more recent
discussions of representation and understanding in mathematics.
Many of those who study mathematics learning agree that
understanding involves recognizing relationships between pieces
of information (Hiebert and Carpenter, 1992). In accordance
with this perspective, scholars and researchers generally believe
that mathematical understanding evolves as representations of
mathematical knowledge become interwoven into increasingly
structured and cohesive networks. Subsequently, as networks of
mental representations of mathematical knowledge grow larger
and more organized when new representations are incorporated
or new associations are made, one’s understanding is also
enhanced (Zhang and Wang, 2005; Li and Wu, 2011). Overall,
this growth process is holistic, dynamic, hierarchical, non-linear,
transcendent recursive, and an internalized psychological process
(Pirie and Kieren, 1994; Ma, 2001; Martin, 2008). During this
process an individual will try to represent mathematical concepts
in different ways and draw connections between or within
representations (Post and Reys, 1979; Post et al., 1982; Anderson,
2008). Therefore the first three views mentioned above are still
widely accepted by scholars and researchers.

Many scholars and researchers have contended that as
individuals continue to grow and develop, their level of
mathematical understanding will transform accordingly. Indeed,
“the degree of understanding is determined by the number and
strength of the connections. A mathematical idea, procedure,
or fact is understood thoroughly if it is linked to existing
networks with stronger or more numerous connections” (Hiebert
and Carpenter, 1992). For example, Skemp (1976) classified
mathematical understanding into two types: instrumental and
relational. Instrumental understanding refers to knowledge
about what a symbol represents; relational understanding
includes not only the knowledge about what symbols represent
but also a comprehensive understanding of their nature
and relationships (Skemp, 1986). Buxton (1978) divided
mathematical understanding into four levels: rote memorization,
observation, deep understanding, and logical understanding.
Herscovics and Bergeron (1983) divided it into four levels:
intuitive, procedural, abstract, and formal. Greeno and Riley
(1987) divided it into three types: compliance, implicit, and
explicit understanding. Pirie and Kieren (1994) classified it as
eight levels: primitive knowing, image making, image having,
property noticing, formalizing, observing, structuring, and
inventizing (Martin, 2008). Wiggins and McTighe (2005) divided
it into five dimensions: explanation, interpretation, application,
insight, empathy, and self-awareness. Recently, Yu and Yang
(2005) divided it into five levels: zero, common sense, logical,
conceptual, and endless. The zero level is characterized by a
lack of understanding, which is the beginning of the process
of understanding. The common sense level is characterized
by rudimentary understanding. The logic level entails deep
understanding, which refers to the process of connecting old
and new knowledge to form a structure through logical thinking.
The conceptual level is a deeper understanding, which refers to
the emergence of new concepts on the basis of the formation
of new cognitive structures. The endless level is characterized

by the acquisition of more meanings or knowledge on the basis
of previous understanding after thinking or applying the new
knowledge again (Yu and Yang, 2005).

The easiest means to enlarge a network of mental
representations is to connect a representation of a new fact
or procedure to an existing network. Another method is
reorganization, in which [R]epresentations are rearranged, new
connections are formed, and old connections may be modified
or abandoned. The construction of new relationships may force
the reconfiguration of the affected networks. The reorganizations
may be local, widespread, and dramatic, reverberating across
numerous related networks. Reorganizations are manifested
both as new insights, local or global, and as temporary confusion.
Ultimately, understanding increases as the reorganization
yields more richly connected cohesive networks Hiebert and
Carpenter (1992). Existing networks are crucial factors that
affect mathematical networks. They affect the relationships that
are constructed and their subsequent understanding. Hiebert
and Carpenter (1992) observed that “the notion of building
understanding by constructing relationships that yield larger,
more cohesive internal networks is useful in analyzing a number
of issues related to understanding mathematics.”

How are networks of mental representations configured?
Current scholars and researchers believe that it consists of many
nodes and connections and is very complex. The nodes in
this network include elements such as concepts, signs, figures,
formulae, axioms, and theorems (Papert, 1993; Wilkerson-Jerde
and Wilensky, 2011). The connections are the relationships that
exist between nodes. Such networks can be divided into three
basic types: linear, tree, and net. A combination of these three
basic structures can yield a three-dimensional synthetic structure
(Li and Wu, 2011). There are individual differences in the number
of nodes and connections, the strength of the connections, and
the way in which nodes are connected. The number of nodes
and connections has been found to be larger in gifted students,
and the distribution of their nodes is uneven (Yang et al., 2018).
Regarding the organization of these nodes, many researchers have
contended that they can be divided into many different layers
(Wo, 2000).

Regarding the relationships that enhance mathematical
understanding and those that are formed by the connections
drawn between newly and previously acquired mathematics
knowledge within an individual’s internal cognitive structure,
scholars have contended that they can be classified as two types
depending on whether they are based on (a) similarities and
differences or (b) inclusion. The former type of relationship
is established within a representation form by the noting of
the correspondences between different external representational
forms and within a given form. They are likely to be found
in networks that resemble webs because the delineation of
similarities and differences does not necessarily result in the
emergence of higher-order relationships. The second type of
relationship emerges when one mathematical fact or procedure
is perceived to be a special case of another and is based on the
notion of inclusion or general and specific cases. Accordingly,
such relationships are likely to be found in hierarchical networks
(Hiebert and Carpenter, 1992).
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In accordance with this perspective, for a long time scholars
and educators have always emphasized that, in order to
help students understand mathematical concepts appropriately,
definitions and specific examples should be presented and
explained to students as a part of the teaching process.
A definition of a mathematical concept is a statement or
description of its connotation and characteristics, and it
represents a generic construct that subsumes other lower-order
constructs. It indicates the position of a concept within the entire
conceptual system, its similarities to other domains, and the
differences between them (Cao and Cai, 1989). For example,
the following is a definition of a right triangle: a triangle with
a right angle is a right triangle. This definition specifies the
geometric figure of a right triangle and delineates the difference
between a triangle and a right triangle. A specific example of a
concept is obviously subsumed by this concept in accordance
with its denotation (Cao, 2008). For this reason, many scholars
and researchers often examine mathematical understanding by
focusing on mathematical concepts as their units of interest
(Pirie and Kieren, 1994).

Mathematical understanding is an internal process.
Therefore, how can we judge whether an individual has
achieved mathematical understanding following mathematical
learning, and how can we evaluate his/her degree and level
of mathematical understanding? In general, scholars and
researchers contend that this can be inferred based on external
performance because internal psychological activities always
manifest themselves externally (Michell, 1999; Thorndike and
Thorndike-Christ, 2009). Additionally, they proposed that an
individual’s mathematical understanding should be judged based
on his/her comprehensive performance because a single task can
be performed correctly even by an individual who lacks adequate
understanding. For example, Hiebert and Carpenter proposed
that all the following aspects should be assessed to determine
an individual’s mathematical understanding: (a) student errors,
(b) the relationship between symbols and symbolic programs
and corresponding references, (c) the relationship between
symbolic procedures and informal problem-solving situations,
and (d) the connection between different symbolic systems
(Hiebert and Carpenter, 1992).

However, scholars and researchers most commonly use the
oral report method to ascertain an individual’s current level
of mathematical understanding (Pirie and Kieren, 1994). This
method requires students to describe the meaning of their
mathematical knowledge in their own words after mathematical
learning has occurred; subsequently, experts judge whether
their understanding is correct or incorrect (Nickerson, 1985).
Evidently, it not only meets the afore-mentioned criteria and
operationalizability but is also easier to use than the other
methods proposed by Hiebert and Carpenter (1992). For this
reason, many scholars and researchers consider it to be an ideal
way to assess mathematical understanding accurately (Borgen,
1998; Wang et al., 2012b).

The general criteria for judging mathematical understanding
using the oral report method are accuracy and clarity of an
individual describing newly acquired knowledge in his/her own
words and his/her awareness of the sources of this knowledge.

Specifically, if an individual describes the meaning of newly
acquired mathematics knowledge in their own words clearly
and accurately and can also specify how they acquired this
new mathematics knowledge, then they are considered to have
understood the respective piece of knowledge. Otherwise, they
are considered to have not adequately understood it (Mao et al.,
2015). Many existing studies have shown that this is an obvious
hallmark of one’s true understanding of knowledge (National
Governors Association Center for Best Practices [NGA Center],
and Council of Chief State School Officers [CCSSO], 2009).
According to Shao (1997), the objective of this method is to
ascertain whether an individual is capable of describing a piece
of mathematics knowledge in their own words, irrespective of
their level of understanding. To ascertain whether an individual
has arrived at a deep understanding of a concept, it is necessary
to examine whether their narrative of knowledge is detailed,
accurate, comprehensive, and systematic (Shao, 1997).

In accordance with the above views and approaches toward
mathematical understanding and the practical situation of
teaching mathematical understanding, this study adopted
the oral report method to assess students’ understanding
of mathematical knowledge and hypothesized that: (1)
mathematical understanding will be achieved when newly
acquired mathematics knowledge is connected to multiple (rather
than single) mathematics knowledge acquired previously. The
newly acquired mathematics knowledge cannot be understood
by merely drawing connections between itself and a single
piece of previously acquired knowledge, even though it has
entered an existing network and a new network is formed; and
(2) one piece of previously acquired mathematics knowledge
should be superordinate knowledge of the newly acquired
mathematics knowledge. The connections between arbitrary
previously acquired mathematics knowledge and newly acquired
mathematics knowledge cannot help to realize a complete
mathematical understanding.

MATERIALS AND METHODS

Participants
We recruited 54 second-grade students from a junior high school
in Jinan, China. Moreover, the academic performance of 14, 27,
and 13 students was excellent, average, and poor, respectively.
Participant characteristics are summarized in Table 1. Their
average age was 13.24 years (SD = 0.4).

We recruited second-grade junior high school students
because they are older than primary school students and
possess foundational mathematics knowledge. Conversely, they
are younger than high school students and are yet to acquire
substantial amounts of mathematics knowledge. Therefore we

TABLE 1 | Students’ information.

Excellent students Average students Poor students

Male 5 13 8

Female 9 14 5
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speculated that it may be easier and more convenient to teach
new mathematics knowledge and examine the extent of their
understanding and the underlying processes.

The participants were divided into different groups based
on their academic performance. Specifically, they had taken
two-semester examinations in the past. The average of
the two examination scores was computed and ranked.
Using these ranks, they were divided into the following
categories: excellent (top 25%), average (between 25 and
75%), and poor (bottom 25%). Because of the simplicity of
such an operationalization, this is the most popular means
of classifying school students (Maker, 1982; Johnson, 2000;
National Council of Teachers of Mathematics, 2000).

This study was conducted in accordance with the
recommendations of “The Guidelines of the International
Committee of Medical Journal Editors” and “The Adolescent
Mental Health Specialized Committee of Chinese Mental
Health Association.” Prior to data collection, we obtained
written informed consent from all the parents of non-adult
participants and all adult participants (i.e., 37 teachers who
participated in subsequent interviews). The parents and adult
participants provided written informed consent in accordance
with the Declaration of Helsinki. This study was approved by
the ethics committee of the School of Psychology of Shandong
Normal University.

Instrument
Based on the discussion we had with the students’ mathematics
teachers and analysis of previously acquired mathematics
knowledge, we chose to focus on the following three
mathematical concepts in this study: a twin prime (TP), a hetero-
plane straight line (HPSL), and a semi-regular polyhedron (SRP).
A TP is a pair of prime numbers with a numerical difference
of 2. The HPSL consists of two straight lines in two different
planes. The SRP is a convex geometrical figure enclosed by two
or more types of polygons. In addition to the afore-mentioned
explanations, another reason for focusing on mathematical
concepts to study students’ mathematical understanding is that
not only are they commonly found in mathematics textbooks
for junior high school students, but they also constitute a major
proportion of the mathematics knowledge contained in them.

As, according to the mathematics curriculum in China, junior
high school students are yet to learn these concepts, we chose to
focus on these three concepts. However, our discussions with five
junior high school mathematics teachers revealed that it would
not be difficult for junior high school students to learn these three
concepts because they are closely related to the concepts that they
have previously learned.

In order to enhance the brevity and effectiveness of the
research instruments, we refined the questions that were used in
the study based on the results of a preliminary investigation, in
which we conducted interviews with 37 experienced junior high
school mathematics teachers (the durations for which they had
been teaching mathematics were > 10 years).

The main question that we used in the preliminary
investigation was as follows: To help students understand
mathematical concepts, what knowledge is it important to teach?

Their responses included the names of concepts, their definitions,
specific examples, the method of creating examples, graphics,
relevant historical knowledge, relevant exercises, and practical
applications. These results are consistent with those of Cai and
Ding (2015). The details are presented in Table 2.

The method of creating examples is a concrete means of
generating an example for a new concept based on examples of
previous concepts. For example, the following means of deriving
an ellipse is a method of creating an example: we can create an
oblique section by using a plane to cut a cylinder obliquely. The
edges of this oblique section are elliptical; therefore, an ellipse can
be derived from a cylinder.

It can be inferred from Table 2 that definitions of concepts,
concrete examples, and the method of creating examples
were all frequently reported. Therefore we focused on these
elements in this study.

For TP, we provided the following method of creating
examples: (a) find a prime number and (b) add 2 (larger number)
and subtract 2 (smaller number) from this number. If the
resultant larger (or smaller) number is also a prime number,
then you have identified a pair of TPs. If this larger (or smaller)
number is not a prime number, then try another prime number.
With regard to the HPSL, we provided the following method
of creating examples: (a) first finding a cuboid, (b) drawing
two straight lines in their two adjacent planes, and (c) ensuring
that they do not intersect on the intersection line of the two
adjacent planes and have different angles when compared to the
intersection line. The following method of creating examples
of an SRP is provided by: (a) finding a cube, (b) connecting
the midpoint of each edge, and (c) cutting off eight peripheral
triangular pyramids with a plane. The resultant figure is an SRP
because it is a convex geometrical figure that is enclosed by two
types of polygons (i.e., a regular triangle and square).

Data Collection
Procedure
We defined the three afore-mentioned mathematical concepts
and generated three concrete examples and methods for creating
concrete examples by interviewing five junior high school
mathematics teachers. On four different cards, we wrote down
the name of a concept (card A), its definition (card B), a specific
example (card C), and a method of creating a specific example
(card D). Twelve cards were used.

Individual interviews for collecting information on
mathematical understanding were conducted in accordance
with the following steps:

(1) One of 54 students was chosen randomly.

TABLE 2 | The frequency of teachers’ answers.

D SE MME RHK RE PA

Frequency 37 36 23 7 14 15

Percentage 100 97.30 62.12 18.92 37.84 40.54

D, definition; SE, specific examples; MME, method of creating examples; RHK,
relevant historical knowledge; RE, relevant exercises; PA, practical application.
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(2) One of the three afore-mentioned concepts was selected
randomly. The student was shown the card with its
name (card A) and asked if they have previously learned
about this concept or can understand it. If they had
learned about this concept or could understand it, then
further exploration was terminated, another concept from
the remaining cards was then randomly selected and
the student was asked the above question again. If the
student could understand all three concepts, the interview
was terminated, and we reverted to step (1) choosing
another student. This continued until all the students were
interviewed. If they did not understand the mathematical
concept, only then did we proceed to the next step.

(3) One of the three study plans was randomly selected,
namely, α, β, and γ (a detailed description of plans α, β,
and γ are presented at the end of this section. Each plan
was divided into two parts). The chosen study plan was
executed in the following steps:

(a) Implementation of the first part of the plan. When
students finished the learning process, they were asked
if they had understood the concept. If they said “yes,”
they were asked to describe the meaning of this concept
in their own words. Then we proceeded to step (b). If
they said “no,” then we proceeded directly to step (b).

(b) Implementation of the second part of the plan. When
students finished the learning process, they were asked
if they have understood the concept. If they said “yes,”
they were asked to describe the meaning of this concept
in their own words again. If they said “no” again,
then the interview that focused on this concept was
terminated and we proceeded to step (2) to choose
another concept. This continued until all three concepts
had been tested.

(c) Students were asked to recount how they transitioned
from a state of not understanding the mathematical
concept to a state of understanding. They were asked
to identify the cards that helped them understand the
mathematical concepts, describe the role the contents
on that card played in their learning, and how it helped
them understand the concept.

(d) Students were asked to identify any other content
that helped them understand the concepts. If their
responses were valid, they were asked to describe the
role played by the specific content and how it helped
them understand the concepts.

(e) Students were asked to identify the contents that were
unnecessary, and explain why they considered them
to be unnecessary.

(f) Students were asked to prioritize the presented content
to help other students learn and understand this
concept completely.
After the students finished it, the interview that focused
on this concept was terminated.

(4) Step (2) to choose another concept was proceeded to.
This continued until all three concepts were tested.

During this process, the concepts and plans to be used
earlier were abandoned.

(5) Once an interview with a student had been terminated, the
interviewer reverted to step (1), chose another student, and
repeated the afore-mentioned steps. This continued until
all the students had been interviewed.

Plans
There are six types of complete permutations for cards B,
C, and D. To enhance the efficiency of the research (under
the condition of ensuring the effect), we chose three of these
permutations according to the results of an advance investigation
with 37 experienced junior high school mathematics teachers.
They are permutations in BCD, BDC, and CDB. They are
considered by most teachers to be helpful for students to
understand mathematical concepts compared with the other
three permutations. For these three selected permutations, we
designed the following plans for the interview:
Plan α

Part 1: The student was shown card B, which contained
a definition of the mathematical concept, and card C, which
presented a specific example of the concept. The student was
allowed to read the contents and think about it aloud in order
to understand the concept independently.

Part 2: The student was shown card D, which described a
method of creating an example of a concept, and allowed the
student to read the contents and think about it aloud in order
to understand the concept independently.
Plan β

Part 1: The student was shown card B, which contained
a definition of the mathematical concept, and card D, which
described the method of creating an example of the concept. The
student was allowed to read the contents and think about it aloud
in order to understand the concept independently.

Part 2: The student was shown card C, which presented
conceptual examples, and allowed the student to read the
contents and think about it aloud in order to understand the
concept independently.
Plan γ

Part 1: The student was shown card C, which contained a
specific example of the concept, and card D, which described a
method of creating an example of the concept. The student was
allowed to read the contents and think about it aloud in order to
understand the concept independently.

Part 2: The student was shown card B, which contained a
definition of the mathematical concept. The student was allowed
to read the contents and think about it aloud in order to
understand the concept independently.

The above procedures and plans are somewhat complicated;
however, they can help researchers to identify the specific
factors that affect students’ mathematical understanding and
explore the internal processes that underlie their mathematical
understanding. In view of this, this study firmly adopted them.

Three or four students were interviewed each day after class
(i.e., in the afternoons) for a total duration of 3 weeks. Their
mathematics teachers determined the order in which they would
be interviewed. They were interviewed in a school campus
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activity room. Four mathematics teachers and four graduate
students majoring in mathematics education served as research
assistants with their consents. They were required to maintain a
detailed and comprehensive record of the selected and used plans
and the responses and behaviors of the students.

Assessment of Mathematical Understanding
After the interviews were completed, we collected and collated
the records of all the research assistants and validated each
student’s answers and behaviors. Then we analyzed each student’s
description of the concept they had learned in steps (a) and
(b) and classified the extent of their understanding of the new
concepts. To ensure the objectivity and reliability of the analytic
process, we invited two experienced researchers (experts in the
assessment of mathematical understanding) to independently
analyze the data. Next, the other researchers checked and
reviewed their results and discussed the combined results with
the two expert researchers. The criteria used to assess students’
mathematical understanding were the accuracy, clarity, and
comprehensiveness of their descriptions of the meanings of
the newly learned concepts in their own words. If a student’s
description of the meaning of a new concept was accurate,
clear, and comprehensive, then he/she was considered to have
understood the respective concept adequately. If a student’s
description of the meaning of a new concept was inaccurate,
unclear, or incomprehensive, then he/she was considered to
have not understood it adequately. If a student could not
describe the meaning of a new concept or his/her description
was completely wrong or extremely unclear, then he/she was
considered to have not understood it yet. Finally, we examined
all the student responses that pertained to the contents they
considered important for mathematical understanding and their
priorities and analyzed the underlying meanings.

RESULTS

All the students completed their interviews within 30 min
(M = 23.13, SD = 6.47). When the names of the new concepts
were presented to the students, none of them mentioned that
they had seen or heard of them before. This indicated that the
three afore-mentioned mathematical concepts were new to the
54 students and were suitable for this study.

Students’ Understanding of the New
Concepts Post-implementation of Part 1
of the Study Plans
Following the implementation of part 1 of plan α, only 12.5 and
17.65% of students had fully understood the new concepts of
TP and HPSL, respectively. Most of the students understood the
new concepts only partially. Following the implementation of
part 1 of plan β, about 70% of students (mainly students with
excellent and average academic performance) fully understood
the new concepts. Only some students (mainly students with poor
academic performance) did not fully understand the concepts,
and a few students had not yet understood the concepts.
Following the implementation of part 1 of plan γ, only 10.53%

of students had fully understood the concepts, and over 71% of
students (mainly students with excellent academic performance)
partially understood the concepts. In other words, almost none
of the students fully understood the new concepts. The students’
understanding of the new concepts following the implementation
of part 1 of the plans is summarized in Table 3.

Moreover, group comparisons of their level of understanding
post-implementation of part 1 of the three plans for each new
concept revealed no significant differences between male and
female students and between students with excellent, average, and
poor academic performance.

Students’ Understanding of the New
Concepts Post-implementation of Part 2
of the Study Plans
Following the implementation of part 2 of plans α, β, and γ,
it could be seen that over 71.43% of the students had fully
understood the new concepts. Only a few students (mainly
students with poor academic performance) had not yet fully
understood the new concepts. The students’ understanding of the
new concepts post-implementation of part 2 of the plans is shown
in Table 4.

Additionally, group comparisons of their level of
understanding post-implementation of the second part of
the three plans for each new concept revealed no significant

TABLE 3 | Students’ understanding after part 1 of the study plan.

FULL (P) NOT FULL (P) NOT YET (P) Total

TP Plan α 2 (12.5) 14 (87.5) 0 (0) 16

Plan β 17 (70.83) 5 (20.83) 2 (8.3) 24

Plan γ 0 (0) 12 (85.71) 2 (14.29) 14

HPSL Plan α 3 (17.65) 14 (82.35) 0 (0) 17

Plan β 11 (68.75) 5 (31.25) 0 (0) 16

Plan γ 0 (0) 15 (71.43) 6 (28.57) 21

SRP Plan α 0 (0) 12 (85.71) 2 (14.29) 14

Plan β 15 (71.43) 6 (28.57) 0 (0) 21

Plan γ 2 (10.53) 17 (89.47) 0 (0) 19

FULL, fully understood; P, percentage, NOT FULL, not fully understood; NOT YET,
not yet understood.

TABLE 4 | Students’ understanding after part 2 of the study plan.

FULL (P) NOT FULL (P) NOT YET (P) Total

TP Plan α 13 (81.25) 3 (18.75) 0 (0) 16

Plan β 20 (83.33) 3 (12.5) 1 (4.17) 24

Plan γ 10 (71.43) 3 (21.43) 1 (7.14) 14

HPSL Plan α 14 (82.35) 3 (17.65) 0 (0) 17

Plan β 14 (87.5) 2 (12.5) 0 (0) 16

Plan γ 15 (71.43) 4 (19.05) 2 (9.52) 21

SRP Plan α 13 (92.86) 1 (7.14) 0 (0) 14

Plan β 18 (85.71) 3 (14.29) 0 (0) 21

Plan γ 15 (78.95) 4 (21.05) 0 (0) 19

FULL, fully understood; P, percentage; NOT FULL, not fully understood; NOT YET,
not yet understood.
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differences between male and female students and between
students with excellent, average, and poor academic performance.

The Contents That Play the Most
Important Role in Understanding New
Concepts
The cards that students selected when they were required to
identify the contents that played the most important role in
helping them understand the new concepts were recorded. After
collecting statistics and analysis, we found that all students
(including students with excellent, average, and poor academic
performance) considered the definitions of new concepts,
examples, and the method of creating a specific example, to have
played a very important role in helping them understand the
new concepts. In particular, about 40% of students believed that
definitions and over 31% of students believed that the method of
creating a specific example, were important factors that facilitated
this process. The statistical results are presented in Table 5.

Group comparisons of what the students considered to be the
most important content that had helped them understand the
new concepts revealed no significant differences between male
and female students and between students with excellent, average,
and poor academic performance.

The Prioritization of Contents That
Facilitate the Understanding of New
Concepts
The responses that students provided when they were required to
prioritize the relevant contents that enhanced the understanding
of learners, were recorded and analyzed. According to the results,
over 50% of the students (including students with excellent,
average, and poor academic performance) considered the order
“A, B, C, and D” to be the best sequence of presentation of
the contents pertaining to new concepts. In other words, they
believed that successively presenting the names of concepts, their
definitions, specific examples, and the method of creating a
specific example would be the most helpful and effective means of
helping learners understand a new concept. The detailed results
are presented in Table 6.

Group differences in the prioritization of the contents that
pertained to each new concept revealed no significant differences
between male and female students and between students with
excellent, average, and poor academic performance.

TABLE 5 | The most important contents for understanding.

RC TP HPSL SRP Total

F (P) F (P) F (P) F (P)

Card B 24 (44.44) 25 (46.3) 21 (38.89) 70 (43.21)

Card C 13 (24.07) 11 (20.37) 12 (22.22) 36 (22.22)

Card D 17 (31.48) 18 (33.33) 21 (38.89) 56 (34.57)

RC, relevant cards; P, percentage; F, frequency.

The Students’ Oral Reaction During the
Implementation of Part 1 of the Plans
In the process of implementing part 1 of plan α, after reading
the definition, most students looked at the following examples,
and then returned to the description of definition, and started
to repeat the keywords in a low voice several times “a pair,”
“difference,” “straight line,” “two planes,” “two or more,” and
“polyhedrons,” and then said “it should be like this,” “it should
be correct,” “that is it.” In the process of implementing part
1 of plan β, after most students had read the definitions and
methods continuously, most students turned to the definitions,
read them silently again, and then whispered the keywords “a
pair,” “different,” “straight line,” “two planes,” “more than two,”
and “polygon,” then turned to the method, read it silently again,
and then said “this way, this way., understand,” “this way.um.,
understood.” In the process of implementing part 1 of plan γ,
most students went through the examples at first, then turned
to the method, read it silently over and over, while whispering
“this way. this way. um.,” “somewhat understanding” and “some
understanding.”

Students’ Oral Reaction During the
Implementation of the Second Part of
the Plans
In the process of implementing part 2 of plan α, after reading
the description of the method, most students stared at the
description, paused for a while, and then said “Oh, I understand,”
“Oh, that’s it. I get it.” At this time, most students raised their
heads and looked at the examiner with a smile. In the process
of implementing part 2 of plan β, after reading the example,
most students said “Well, yes, I understand,” “Yes, no problem.
I understand.” In the process of implementing part 2 of plan γ,
after reading the definition, most students stared at the definition
narrative, and then confidently said, “I understand” At this point,
students often looked up and leaned back.

DISCUSSION

Based on existing studies on mathematical understanding,
this study aimed to explore the internal processes underlying
mathematical understanding to enhance mathematics teaching
and student learning. Using three mathematical concepts as

TABLE 6 | The best understanding priority.

RC TP HPSL SRP Total

F (P) F (P) F (P) F (P)

A, B, C, D 38 (70.37) 28 (51.85) 31 (57.41) 97 (59.88)

A, C, B, D 4 (7.41) 7 (12.96) 5 (9.26) 16 (9.88)

A, C, D, B 4 (7.41) 6 (11.11) 3 (5.56) 13 (8.02)

A, D, B, C 2 (3.7) 6 (11.11) 5 (9.26) 13 (8.02)

C, D, A, B 6 (11.11) 7 (12.96) 10 (18.52) 23 (14.2)

RC, relevant cards; P, percentage; F, frequency.
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instruments to investigate 54 students, we obtained many results
and gained some insights.

The Important Factors That Affect
Mathematical Understanding
The results showed that all students were able to understand
the three new concepts following the implementation of
parts 1 and 2 of the plans. This finding indicates that the
definitions of concepts, use of examples, and the method of
creating a specific example enabled students to transition from
a state of not understanding to a state of understanding;
consequently, these were the important contents that helped
students understand the new concepts. This is consistent with the
preliminary investigation results and confirms the perspective of
Cai and Ding (2015).

A careful analysis of the mathematical understanding of
students post-implementation of part 1 of plans α, β, and γ

revealed that the definitions of concepts and the method of
creating a specific example were not only important but also
necessary and indispensable. This is consistent with the findings
of some researchers (Cao, 2008; Li and Wu, 2011). Following the
implementation of plan α, it could be seen that almost none of the
students had fully understood the concept because this plan did
not include the presentation of the method of creating a specific
example. Following the implementation of plan β, it could be seen
that most of the students had fully understood the concept even
though this plan did not include the presentation of examples of
the new concept. However, it included the method of creating a
specific example. Following the implementation of plan γ, it was
found that almost none of the students had fully understood the
concept because this plan did not include the presentation of the
definitions of concepts.

Similar conclusions can be drawn from the contents that
the students considered important to their learning and the
students’ oral reactions during the implementation of the plans.
When they were asked to identify the contents that had played
the most important role in helping them understand the new
concepts, about 40% of the students named the definitions of the
concepts, and over 31% of them named the method of creating
a specific example. During the implementation of the plans,
when the students learned the definitions of concepts and the
method of creating a specific example, most of them said, “I
understand,” especially when the definitions of concepts and the
method of creating a specific example were arranged occurred
after other contents.

The Role of Definitions and Methods in
Mathematical Understanding
As mentioned earlier, the definition of a mathematical concept is
a statement or description of its connotations and characteristics.
It indicates the position of a concept within the entire conceptual
system, the concept that it is similar to, and the differences
between them (Cao and Cai, 1989). Accordingly, it reveals the
relationship, connection, and difference between a given concept
and its superordinate concept (Ausubel et al., 1978).

The same is true for the method of creating a specific example.
In this method, an example of a new concept is created based on
an example of a known concept. Consequently, the new example
also reveals the relationship or connection between a related
known concept and a new one, which promotes mathematical
understanding. The only difference is that the relationship or
connection here, was made through the process of creating a
specific example that shows the link between the new concept and
the known one (which shares a juxtaposed relationship with the
new concept) (Ausubel et al., 1978).

Therefore it is the relationships, connections, and
juxtapositions between new concepts and their superordinate
concepts that promote mathematical understanding among
students. This finding is consistent with previous studies (Mayer,
1989; Davis, 1992; Hiebert and Carpenter, 1992; Huang and Yu,
2002; Yu and Yang, 2005; Zhang and Wang, 2005; Zhang and
Guo, 2007; Li and Wu, 2011).

The Process of Understanding New
Mathematical Concepts
If we further analyze the connection between the definitions
of mathematical concepts and the method of creating a
specific example, we find that they not only made the objects
of connection of new concepts different but also altered
the direction of its (connection. Definitions of mathematical
concepts specify the superordinate concept category to which a
new concept belongs; thus the resulting connection delineates the
link between the new concepts and their superordinate concepts.
When students learn the definition of a mathematical concept,
they engage in superordinate learning activities (Ausubel et al.,
1978). Consequently, students generally connect new concepts to
older ones in their minds. The method of creating an example
involves creating an example of an existing concept, from which
an example of a new concept can be derived. Thus the resulting
connection here is the link between the existing and new
concepts. When students learn how to create a specific example,
they engage in juxtaposed learning activities (Ausubel et al.,
1978). Consequently, students generally relate existing concepts
to new ones in their minds.

Therefore the process of understanding new mathematical
concepts should be based on the establishment of a connection
between new and existing concepts in the minds of learners.
This process can be accomplished in two different ways,
namely, “going” and “coming.” “Going” refers to the process of
connecting a new concept with an existing one whose inclusive
level is higher than that of the new concept (which is a
superordinate concept). Its connection direction is from a new
concept to an existing concept. In contrast, “coming” refers to the
process of connecting an existing concept (which is juxtaposed
with the new concept) with the new concept. Its connection
direction is from the old concept to the new concept.

The students indicated what they considered to be the best
sequence of learning mathematical concepts after they had
specified the contents that had played an important role in
helping them understand the concepts. The results of statistical
analyses of their responses revealed that most of the students
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considered the following sequence to be the most helpful to
their process of understanding a new concept: learning the
definition of a mathematical concept and then learning the
method of creating a specific example. This means that to
promote mathematical understanding among students, it may
be best to allow them to connect new mathematical concepts
to (a) the superordinate concepts and, subsequently, (b) existing
juxtaposed concepts. Mathematical understanding is supposed to
be a process of “going” proceeding “coming”.

Previous studies have shown that mathematical understanding
is a process in which new concepts enter an individual’s
cognitive structure, become a part of it, and form a network
of relationships with previously acquired knowledge within the
cognitive structure (Hiebert and Lefevre, 1986; Davis, 1992;
Li and Wu, 2011). In this regard, Hiebert and Carpenter
(1992) observed that “the mathematical understanding occurs as
representations get connected into increasingly structured and
cohesive networks.” However, the present findings reveal that
mathematical understanding, especially complete mathematical
understanding, does not result from the mere entry of a
new concept into the cognitive structure of an individual and
its integration within this structure, which is attributable to
the connections that are formed between new and arbitrary
pieces of previously acquired mathematical knowledge. Instead,
connections must be drawn between the new concept and at
least two existing concepts within the cognitive structure of an
individual. This result supports hypothesis (1) formulated in this
study. With regard to the two existing concepts, one should
be a superordinate concept, to which the new concept belongs,
and the other should be convertible so that a specific example
of the new concept can be derived by means of changing or
transforming its examples. This result supports hypothesis and
(2) formulated in this study.

Additionally, Hiebert and Carpenter (1992) contended that
the relationships that result in mathematical understanding
primarily include similarities, differences, and inclusion.
However, the present findings show that the relationships
that result in mathematical understanding should include
a new dimension, namely, the dimension of “change”
or “transformation.”

CONCLUSION

Mathematical understanding plays an important role in
promoting student learning and the application of mathematical
knowledge. Within the field of mathematics education, research
on mathematical understanding has always been a popular
topic (Cai and Ding, 2015). Grounded in the existing literature,
especially cognitive network theory (Hiebert and Carpenter,
1992), this study focused on three new mathematical concepts to
explore the processes that underlie mathematical understanding
by using a sample of 54 junior high school students and the
oral report method. The results showed that among the many
contents that pertained to the mathematical concepts, their
definitions, examples, and the method of creating a specific
example were considered to be the most important. Notably, the

definitions and the method of creating a specific example were
considered particularly important.

Based on the contributions of (a) the meaning and role
of the definitions of new concepts and (b) the method of
creating a specific example of the processes that underlie
mathematical understanding, several conclusions can be drawn.
First, mathematical understanding is achieved when a connection
between new concepts and at least two previously learned
concepts is established within the cognitive structure of a
learner. One of these two existing concepts should be the
superordinate concept of the new concept, or more accurately,
the superordinate concept that is most proximal to the new
concept. The other concept should be convertible so that a
specific example can be derived by changing or transforming its
examples. Second, the process of understanding a new concept
involves two processes, namely, “going” and “coming.” “Going”
is the process in which a connection is established between a
new concept and its closest superordinate concept. In contrast,
“coming” is a process in which a connection is drawn between
an existing convertible concept and a new one. Third, for a new
concept to be understood, it should be situated in the middle of
a connection between at least two concepts. Finally, in addition
to the three dimensions that have been identified by Hiebert and
Carpenter (1992), the relationships that result in mathematical
understanding should also include a new dimension: change
or transformation.

The present findings therefore suggest that in order to help
students understand new mathematical concepts, teachers should
first present students with the definition and subsequently teach
them how to create a specific example based on an example of a
previously learned concept. This will facilitate the formation of an
interconnected network of new concepts in the minds of students.
When teachers explain new concepts to their students, they
should emphasize the superordinate concept to which the new
concept belongs. Similarly, when teaching students the method
of creating an example, they should emphasize that the example
can be derived from the example of a previously learned concept.

The present findings (a) delineate the concrete processes that
underlie mathematical understanding, (b) clarify the specific
ways in which new concepts should connect to existing concepts
so that mathematical understanding can be achieved, (c)
illustrate the specific form of an internal network following the
achievement of mathematical understanding, and (d) enrich the
existing literature on mathematical understanding.

Although the mathematical concepts that were selected and
examined in this study were all new to the participants, they
were all closely linked to the mathematical knowledge that they
had previously acquired. Will similar results be obtained if the
mathematical concepts that are distant from previously acquired
knowledge are presented to students? This is a noteworthy
question for further study.
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Deductive and logical reasoning is a crucial topic for cognitive psychology and has
largely been investigated in adults, concluding that humans are apparently irrational.
Yet, from a pragmatic approach, the logical level of meaning is only one of possible
communicative interpretations, and the least likely to be assigned if the intent of the
task is not adequately transmitted. Indeed, new formulations of the mathematical tasks
(syllogisms, selection task, class inclusion task, problem solving) of greater relevance
to the problem and to its aim, greatly improved adults’ logical performance. The current
study tested whether pragmatic manipulations of task instructions influenced in a similar
way children’s performance in deductive and logical tasks (Experiment 1) and in insight
problems (Experiment 2). We found that, when task instructions were in accordance with
the conversational rules of communication, 10-year-old children substantially improved
their performance. We suggest that language use imposes constraints in terms of
informativeness and relevance which are crucial in teaching logic and mathematics.

Keywords: deductive reasoning, logical reasoning, insight problems, pragmatic approach, primary school
children, task instructions

INTRODUCTION

Natural language and logic are both intended to transmit meaning effectively or, in other words, to
express thoughts. However, they are fundamentally different. In logic, the speaker wants to convey
a univocal meaning, and any possible acceptation interfering with it is eliminated. Conversely, in
natural language, the speaker constantly exploits the expressive richness of words, and the intended
meaning of an utterance can be understood only by considering the relevant context.

Thus, the context, the identity of the speaker and the listener, the shared knowledge, and the aims
of the communicative act all contribute to determine the interpretation of an utterance through
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sophisticated intention-attribution and inferential processes. The
study of these processes pertains to the field of pragmatics
(Grice, 1989; Mosconi, 1990, 2016; Levinson, 1995; Sperber and
Wilson, 1995). Everything that the text communicates concurs
in the representation of its meaning: not only what literally is
said (the sentence), but also what is implied (the utterance).
The distinction between sentence and utterance is the core
of Grice’s communication theory, according to which phrases
mean more than they literally say. What is implied is inferred
from the intentions attributed to the speaker and the context
through conversational implicatures. The central idea is that
communication is achieved when a recipient recognizes the
special kind of intention with which a communicative act is
produced. More generally, the Gricean theory of implicature
postulates that meaning should be reduced to intention and,
therefore, that semantics has to be reduced to psychology
(Grice, 1975).

In most occasions, human reasoning has a verbal input in
natural language and, contrary to the case of formal languages,
there is no univocal interpretation of a sentence. Hence, the view
that the verbal input to human mental activity is well defined like
in formal logic is an idealization. The consequences for the study
and the assessment of human reasoning, judgment, and problem
solving are straightforward: a pragmatic approach to the study of
thinking and reasoning must consider the relationships between
language, communication, and thought (Mosconi and D’Urso,
1974; Mosconi, 1990; Hilton, 1995; Politzer and Macchi, 2000;
Bagassi and Macchi, 2016). Communication and thinking could
be considered as two sides of the same cognitive process, which
realizes in the discourse.

Accordingly, analysis of the discourse is the proper
methodology for studying reasoning and teaching how to
improve reasoning. Numerous studies (Dulany and Hilton, 1991;
Sperber et al., 1995; Macchi, 2000; Politzer and Macchi, 2000;
Mosconi and Macchi, 2001; Van der Henst et al., 2002; Macchi
and Bagassi, 2006; Baratgin and Politzer, 2010) have shown the
importance of the pragmatic approach to the study of adults
thinking and reasoning, from problem solving, conditional
reasoning, and deductive reasoning to probabilistic reasoning,
in which Mosconi (1990), with his analysis of discourse,
has been a pioneer.

For instance, in recent studies on deductive reasoning with
syllogisms and material implication (Macchi et al., 2019, 2020),
we showed that, in adults, poor performance in logic tasks is not
necessarily caused by poor logical abilities. Rather, it is caused by
the lack of clear communication between the experimenter and
participants. The experimenter expects participants to solve a task
following the rules of logic, but participants are unaware of it and
thus respond adhering to the rules of natural language. Indeed, we
found that when the experimenter expresses the task instructions
and aim clearly, participants’ performance greatly improves.

Furthermore, many developmental studies on reasoning
provide evidence of children’s sensitivity in recognizing the
intentions of the speaker, even in the absence of facilitating
communicative contexts (Rose and Blank, 1974; McGarrigle and
Donaldson, 1975; Kagan, 1981; Markman and Wachtel, 1988;
Politzer, 1993, 2016; Gelman and Bloom, 2000; Diesendruck and

Markson, 2001; Mosconi and Macchi, 2001). Likewise, many
studies (Papafragou and Musolino, 2003; Feeney et al., 2004;
Noveck and Sperber, 2004; Sala et al., 2006; Pouscoulous et al.,
2007) found that children are able to derive the scalar implicature
for “some” if the task is framed in ecological contexts (i.e., movies,
storyboards, etc.), which clarify its aim.

Therefore, children’s reasoning performance may depend
on their expectations concerning other people’s communicative
behavior, as they learn language in a natural context in which
conversational implications are an integral part of the meaning
conveyed by the statements. This pragmatic hypothesis is
supported by the results of a number of experiments concerning
class inclusion, conditional reasoning, conservation of numbers,
reasoning with quantifiers and connectives (McGarrigle and
Donaldson, 1975; Hughes and Donaldson, 1979; Girotto et al.,
1989; Politzer, 1993; Politzer and Macchi, 2000; Mosconi and
Macchi, 2001; Bagassi et al., 2009).

Another factor that influences adult–child communicative
interaction is children’s “attitude of trust” in adults (Harris,
2002; Koenig et al., 2004). In this regard, it has been found that
when children have doubts about a given topic, due to their
limited epistemic state and the ambiguity of the instructions
“they recourse to an important precautionary strategy: attend to
the accuracy of what you hear and trust in (previously) reliable
informants” and therefore agree with the adult-experimenter
(Koenig et al., 2004, p. 698). So, children’s attitude of trust
could be a factor masking their reasoning abilities when the
task is ambiguous.

In the current study, we argue that for a better understanding
of children’s difficulties in solving logical tasks and insight
problems, it is crucial to consider that children as well
as (or even more than) adults can encounter interpretative
difficulties linked to the adoption of natural language and
conversational rules. Pragmatic factors can lead them to a
misinterpretation of the task instructions. Since pragmatic
factors can lead to misinterpretation of task demands, we
postulate that by manipulating the instructions, making them
clearer, an improvement in children’s performance in logical
tasks and understanding problems can be achieved. Pragmatic
manipulations not only consist of verbal aspects of the text
but also in everything that constitutes the problem: i.e., all
those aspects that can create misunderstanding. In the following
experiment, the pragmatic manipulation will take place on
the figure of the problem in task 1, and on the text of the
problem in task 2.

EXPERIMENT 1. THE ATTRIBUTION OF
INTENTIONS IN THE ASSESSMENT
TESTS OF MATHEMATICAL LEARNING

In the light of what has been discussed above, we assume that the
problem formulations proposed to school-age children must take
into consideration their pragmatic skills, the role exercised by
the experimenter–child interaction, and, consequently, the actual
message transmitted by the task. If the correspondence between
what is said and what is communicated is not fully guaranteed,
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the wrong answers of the children can be attributed to factors that
go beyond the logical–mathematical ability that the task intends
to measure. However, the impact that instructions understanding
has on task performance is often disregarded. Here, we show that.

For this purpose, two logical tasks were selected from the
MAT-2 (a mathematics test for elementary school, see Amoretti
et al., 2007), in order to verify the presence of a possible mismatch
between the emitted message and the received message. One
task involved the understanding of probabilities, while the other
concerned geometry.

Notably, this test fits well with recent advances in cognitive
psychology supporting the idea that the human mind is
inherently probabilistic and works under uncertainty (Baratgin
and Politzer, 2006, 2007, 2016). Indeed, children’s inferential
abilities are not assessed only with regard to logical axioms, but
also in reference to probability theory.

Task 1—Probability
Methods
Participants
In the first task, 60 children attending the fifth grade of a primary
school (mean age: 10.4 years; SD: 0.35; F = 27) were randomly
assigned to one of two groups. The task was performed as a single
activity, without a practice task before. Participants received the
instruction by written. One group was administered with the
original version of the task, while the other was tested on the
experimental version1.

Materials and procedure
The original version, included in the Logic and Probability
section of the MAT-2, presents a series of five urns. Each
urn contains white and black balls in different proportions.
Participants are asked to identify the urn from which it is
more convenient to extract, blindfolded, a white ball. The urns
are rectangular and contain seven balls, disposed in two rows,
except for an urn in which the balls are arranged in three rows
(Figure 1). This arrangement seems to be potentially misleading,
shifting the attention of the children from probability calculation
to perceptive and contextual reasoning.

Even if the task aims to assess skills related to probabilistic
reasoning, it does not request from which urn it is more probable
to extract a white ball; rather, it asks to identify from which urn it
is more convenient to catch a white ball. In the urn A, a white
ball is shown on the top left corner, in a position that seems
more easily reachable than any other ball. Hence, it might mislead
children into thinking that urn A offers an easier opportunity to
catch a white ball. Even if the experimenter expects children to
make decisions based on probabilities, the arrangement of the
balls (i.e., the perceptual characteristics of the stimuli) offers a
different way of deciding, which is entirely justifiable from the
children’s point of view.

The perceptual stimulus, therefore, enters into competition
with the probabilistic task and the participant should be able
to exclude the answer that derives from the perceptual analysis

1Written informed consent to participate in this study was provided by the
participants’ legal guardian/next of kin.

of the stimulus. However, given the request of the task (“from
which urn is it more convenient to extract a white ball?”), the
perceptual analysis can become crucial and consequently lead
to a mismatch between the request of the experimenter and the
request as perceived by the participant. In other words, the task
seems to draw the attention of the participants on the accessibility
of the white ball to be caught, thus making crucial the position of
the balls in the urns, rather than their number.

In the experimental version (Figure 2), we propose to
overcome these limitations by making urns round and by
arranging the seven balls with no specific order.

With this new disposition, the perceptual stimulus does
not conflict with the probabilistic task and thus it allows
the emergence of the actual logical and mathematical
competences of the child.

Each participant was tested individually in order to record,
in addition to the answers, the verbal protocols spontaneously
expressed, accompanying the solution process2.

Results
The results indicate that, with the original version, only 50%
of the participants responded correctly to the question; this
percentage increased to 76.7% with the modified version,
registering a statistically significant difference between the two
versions [χ2(1) = 4.59, p < 0.032, ϕ = 0.28]. However, what is
most interesting concerns the distribution of the answers among
the various alternatives (see Table 1).

The experimental version led to an increase in the proportion
of correct answers because the number of children selecting the
perceptually misleading urn decreased significantly [χ2(1) = 7.92,
p < 0.004, ϕ = 0.36]. Hence, as hypothesized, the disposition
of the balls in the urn A in the original version transmitted a
misleading message: it was more “convenient” for participants to

2For both tasks, 1 and 2, participants were informed that they were recorded
and that verbal protocols would be transcribed. We consider verbal protocols
as spontaneous justifications given from the children to their answers. To not
render them artificial, children did not receive specific instructions or training,
and therefore we do not have a systematic collection of protocols.

FIGURE 1 | Stimuli as originally reported in the MAT-2.

FIGURE 2 | Experimental version of the stimuli.
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TABLE 1 | Percentages of choices of each urn recorded with the two
versions of the task.

Question 1 A B C D E

Original 23.3% 50% 16.7% 3.3% 6.7%

Modified – 76.7% 13.3% 10% –

extract from the urn A not because it was more likely to draw a
white ball, but rather just because extracting the white ball was
easier. This was confirmed by the analysis of the verbal protocols,
which showed that participants are led into thinking that there
is a reason why the balls are arranged differently only in urn
A (so as to make the white balls more accessible only in this
urn) and, consequently, believe they must take this information
into account. With the modified version of the task, it emerges
that children of 10 years of age can correctly solve this type
of probabilistic task to a greater extent than would have been
detectable with the original version.

Task 2—Geometry and Fractions
Methods
Participants
The second task was administrated to another group of 60
students from the fifth grade of primary school (mean age:
10.6 years; SD: 0.37; F = 32), who were randomly assigned
to one of two versions of the task: an original version and
an experimental version3. The task was performed as a single
activity, without a practice task before. Participants received the
instruction by written.

Materials and procedure
The task consists of a geometry problem, which also introduces
the concept of fraction and percentage (Figure 3):

Sketch in three different ways a part of the figure corresponding to
the 1/2 fraction.

The correct answer consists in filling in half of each figure,
each time using different parts from those already indicated in
the previous figures. However, the instruction presents a series of
ambiguities from a communicative point of view, which makes
it unsuitable to clearly and unequivocally convey its aim. First,
it is unclear what “in three different ways” is referring to. It
could refer to the ways in which the triangle can be split into

3Written informed consent to participate in this study was provided by the
participants’ legal guardian/next of kin.

FIGURE 3 | Stimuli and instructions as originally presented in the MAT-2.

halves, as intended by the experimenter, but it could also refer to
different ways of shading the triangle (e.g., different types of lines
or colors). Furthermore, the triangles are already subdivided in
different parts, but it is not made clear to participants whether
they should use such subdivisions. Finally, it is asked to outline “a
part of the figure”: this aspect is potentially ambiguous too, since
the term figure can be referred to each triangle, but also to the set
of three triangles which, being presented all together, and being
all identical, can be considered as a whole.

Therefore, an alternative version of the question has been
formulated to resolve the ambiguities in the transmission of the
task goal:

Color 1/2 of the area of each triangle. To color half of the area, use
the parts drawn in the triangle, in order to always have different
combinations for each of the three triangles.

This version explicitly introduces the concept of “area” of the
triangle, a concept necessary to understand that the parts of the
figure are symmetrical and can be inverted to build the half of the
triangle. In addition, it makes direct reference to the use of the
parts in which each triangle has already been divided and to their
combined use in different ways.

Each version has been individually submitted to 30
participants. In order to detect the reason for the errors,
we also collected verbal protocols spontaneously expressed.

Results
Results indicate a very high percentage of errors in the original
version of the task (93.33%). From the analysis of the responses,
it was possible to identify some types of recurring errors
(see Table 2).

As reported in Table 2, in the original version, the task errors
are strictly related to the use of the term “sketch.” Moreover,
the wording outlines in three different ways is interpreted by
participants in numerous different ways. In the case of errors
of type a) and b), participants understand the hatching as
drawing a line that divides the triangle or its parts in half. In
the case of the error of type d), participants adopt different
hatch styles to highlight half of the triangle, without changing
the choice of the parts selected, since the type of line varies.
Overall, the errors attributable to the participants’ incompetence
in identifying three different ways to divide a triangle in

TABLE 2 | Frequencies of the types of errors recorded in the original
version of the task.

Error Description Version
A

a Split in the middle of each triangle by hatching 4

b Division in half of each part of each triangle 2

c Hatching/coloring of half triangle in total (one part for each triangle) 9

d Hatch of the same half in all the triangles, but in different ways 4

e Coloring of the same half in each triangle –

f Hatching/coloring of 2 parts in each triangle 3

g Hatching/coloring of 3 parts in each triangle 4

h Other 2
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half represent only 23.33% of the total errors (answers type
f and g).

On the contrary, the results indicate that 70% of correct
answers have been obtained with the experimental version
of the task. The difference between the correct responses in
the original version compared with those obtained in the
experimental version is statistically significant [χ2(1) = 20.84,
p < 0.001, ϕ = 0.59].

EXPERIMENT 2. INSIGHT PROBLEM
SOLVING IN CHILDREN

In the second experiment, we investigated the source of
problem forming, for the impact that this issue has in
problem solving. Sometimes the difficulty in problem
solving lies in the calculations to be made, the number
of operations to be performed, and the quantity of data
to be processed and remembered (procedural problems,
for instance, the well-known problem of the Tower of
Hanoi). There are, however, other problems in which the
difficulty does not lie in the complexity of the calculations,
but rather in one or more critical points of the text-
problem that are susceptible to misunderstanding (insight
problem solving, for instance, the nine-dots problem, see
Macchi and Bagassi, 2015).

We will focus on this second type of problems since
they allow us to explore our hypothesis regarding the close
interconnection between text and solution understanding.
In our view, the way of thinking involved in insight
problem solving is very close to the process involved in the
understanding of an utterance when a misunderstanding
occurs. In both cases, a more appropriate meaning has to
be selected to resolve the misunderstanding that produced
an “impasse.” The default interpretation (i.e., the “fixation”)
has to be dropped in order to “restructure,” to grasp another
meaning which appears more relevant to the context and the
speaker’s intention.

Many studies have already demonstrated the influence of
pragmatic factors on insight problem solving in adults (Mosconi,
1990, 2016; Macchi and Bagassi, 2012, 2015, 2018; Bagassi and
Macchi, 2016). According to our hypothesis, the difficulty of
these problems is never objective and computational, but instead
subjective and interpretative. The difficulty of the problem
is given by how it is formulated since this brings to the
activation of the default interpretation which obscures the
solution. A re-formulation of the text, more relevant to the
aim of the task, should reduce the problem knot. This time,
language and thought would work together in an interrelated
interpretative “game.” The importance of how the problem is
phrased should not be underestimated, both from the point of
view of how the problem is formed in the solver’s mind and
how it is solved.

We have examined insight problems with children, exploring
as well the hypothesis that a relevant understanding of the text
would promote the resolution of this particular type of problems.
Three well-known insight problems have been investigated (Dow

and Mayer, 2004; Frederick, 2005; Gilhooly and Murphy, 2005)
by submitting a new experimental version for each problem
where we removed pragmatically unfelicitous factors that could
hinder the interpretation relevant to the aim of the task, but
leaving the rest unchanged.

Methods
Participants and Procedure
The participants were 82 children (mean age: 10.45 years, SD:
0.49; F = 46) attending the fifth class of primary school4.

Children were randomly assigned to the control group and to
the experimental group. They were submitted only one version
of each problem to be solved individually, in a randomized
order. The task was performed as a single activity, without a
practice task before. Participants received the instruction by
written. All the children had access to paper and pencil to
perform the calculations and to answer the questions. There
was no time limit.

Materials
The three problems used in our study are listed below.

(1) The Zoo problem:

Yesterday I went to the zoo and I saw giraffes and ostriches.
Altogether they had 30 eyes and 44 legs. How many animals were
there?

(2) The Two Coins problem:

In my pocket, I have two Italian coins that together are 70 cents, but
one is not 20 cents. How could it be?

(3) The Bat and Ball problem:

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than
the ball.

How much does the ball cost?___cents.

For what concerns the first problem, we hypothesized that the
critical issue was the irrelevant information (in this case, the “44
legs”), that was necessary to inhibit to reach the proper solution.
We have thus reformulated the problem (the Zoo Experimental
version) in order to point out that not all the given data are
relevant to respond correctly:

Yesterday I went to the zoo and saw giraffes and ostriches.
Altogether they had 30 eyes and 44 legs. How many animals were
there? Try to use the data of the problem that more than others are
important to decide how many animals there were.

In the Two Coins problem, the use of “but” seems to rule
out the possibility that any 20-cent coins are present. So, in
the experimental version, we have removed “but” in order
to eliminate the conversational implicature underlying this
function word:

In my pocket I have two Italian coins that together are 70 cents; one
is not 20 cents. How could it be?

4Written informed consent to participate in this study was provided by the
participants’ legal guardian/next of kin.
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TABLE 3 | Percentages of correct responses.

Control version (N = 47) Experimental version (N = 35)

Zoo 18% 80%

Two Coins 10% 77%

Bat and Ball 4% 80%

For what concerns the Bat and Ball problem, the answer which
immediately comes to mind is 10 cents, which is incorrect as, in
this case, the difference between $ 1.00 and 10 cents is only 90
cents, not $1.00 as the problem stipulates. The correct response
is 5 cents. Number physiognomics and the plausibility of the
cost are traditionally considered responsible for this kind of error
(Kahneman, 2003; Frederick, 2005).

These factors aside, we argue that if the rhetoric structure of
the text is analyzed, the question concerns only the ball, implying
that the cost of the bat is already known. The question gives the
key to the interpretation of what has been said in the problem
and the given data is thus interpreted in the light of the question.
Hence, “The bat costs $ 1.00 more than” becomes “The bat costs
$ 1.00,” by leaving out “more than” (as already shown with adults,
see Macchi and Bagassi, 2012).

Consequently, we reformulated the text to eliminate this
misleading inference:

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than
the ball.

How much does the ball cost? How much does the bat cost?

Results
Table 3 shows the percentages of children who have provided
the correct answer to the problems presented in their original
and modified versions. For all the problems, in the experimental
conditions, there is statistically significant increase in the number
of participants who correctly solved the problems, respectively,
for the Zoo problem [χ2(1) 29.99, p < 0.001, ϕ = 0.60], for
the Two Coins problem [χ2(1) 37.29, p < 0.001, ϕ = 0.67],
and for the Bat and Ball problem [χ2(1) 47.74, p < 0.001,
ϕ = 0.76].

CONCLUSION

In the current paper, we have addressed the role that pragmatic
and communicative factors play when solving logical and
insight problems. Previous research on adults showed that
manipulating the task instructions of logical problems
systematically lead to a substantial improvement in their
performance (Macchi et al., 2020). However, whether these
facilitatory effects extended to children was still unknown.
Here, we showed that 10-year-old children’s problem-
solving skills are usually underrated, and that when task
instructions adhere to conversational rules, children’s logical
abilities can emerge.

Experiment 1 focused on two tasks concerning the concepts
of probability and geometry. The original versions of the task

instructions presented potentially misleading formulations. In
the first task, the concept of probability was not mentioned in
the instructions, leading participants into thinking that the task
could be solved by taking into account the perceptual accessibility
of the elements rather than the statistical properties of the
environment. Simply by changing the perceptual appearance
of the task, we successfully communicated the intention to
reason about probability and we obtained a significantly greater
number of correct answers. In the second task, the question was
ambiguously formulated and thus it did not adequately convey
the experimenter’s intention. Our pragmatically valid variation
of the task instruction eliminated the types of errors that were
typically found in the original version. Overall, considering the
communicative aspects of the tasks, we were able to obtain
a more effective measure of the mathematical competence of
the participants.

In experiment 2, we investigated the influence of pragmatic
factors on children’s ability to solve insight problems. Insight
problems are fundamentally different from mathematical
problems. The latter are usually solved following a step-by-
step procedure that gradually leads to the solution (Mosconi,
1990). Conversely, insight problems are often solved with a
sudden a-ha! experience. Yet, also insight problems heavily
depend on communicative factors, as the cognitive process
that leads to the solution shares the interpretative nature
that belongs to intention-attribution, which is pivotal in
communication (Macchi and Bagassi, 2015). We tested 10-
year-old children on classic insight tasks (the Zoo problem,
the Two Coins problem, and the Bat and Ball problem)
with the original version of the instructions or with a novel
version that was devised keeping into account the pragmatic
factors at play. The results reported a heavy improvement
in children’s performance with the modified version of
the task instructions, across all problems. The improved
performance that occurred after the reformulations showed
that the difficulty in problem solving arose from difficulties in
understanding the text.

The studies that have examined problem solving in children
have rarely included insight problems (Davidson and Sternberg,
1984, 1998; Sternberg and Davidson, 1995; Bermejo et al., 1996),
presumably considering them too complex. However, children
often find themselves in new situations in which they must
restructure the surrounding context to be able to negotiate it
adaptively. Often, too, these situations require children to use
their creativity and apply alternative or unconventional thinking.
Insight problem solving, given its nature, encourages divergent
thinking to a greater extent than procedural tasks (Wertheimer,
1945; Guilford, 1959; Gilhooly, 2016) and is thus crucial to
reach a wider understanding of the development of problem-
solving skills.

On the educational side, the teaching practices implemented
in classes play an essential role in the nature and quality
of students’ learning (Good and Brophy, 1972; Dupriez and
Dumay, 2009; Slavin, 2009). Future research should thus
investigate if a pragmatic approach in teaching practices could
alleviate many of the difficulties that students face, especially
in mathematics. The need to encourage pragmatic-interpretative
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skills might also benefit students with learning disabilities, that
have been shown to have important developmental gaps in
metacognition (Palincsar and Brown, 1987; Wang et al., 1993;
Cornoldi and Oakhill, 2013). Precisely for this reason, future
studies should explore the relationships among metacognition,
pragmatic abilities, and problem solving.
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Research on Bayesian reasoning suggests that humans make good use of available
information. Similarly, research on human information acquisition suggests that Optimal
Experimental Design models predict human queries well. This perspective contrasts
starkly with educational research on help seeking, which suggests that many students
wait excessively long to ask for help, or even decline help when it is offered. We
bring these lines of work together, exploring when people seek help as a function of
problem state in the Entropy Mastermind code breaking game. The Entropy Mastermind
game is a probabilistic version of the classic code breaking game, involving inductive,
deductive and scientific reasoning. Whether help in the form of a hint was available
was manipulated within subjects. Results showed that participants tended to ask for
help late in the game play, often when they already had all the necessary information
needed to crack the code. These results pose a challenge for some versions of Bayesian
and Optimal Experimental Design frameworks. Possible theoretical frameworks to
understand the results, including from computer science approaches to the Mastermind
game, are considered.

Keywords: help-seeking, Bayesian reasoning, mathematical games, Optimal Experimental Design theory,
information-seeking behavior

INTRODUCTION

Help seeking is an important aspect of the learning process in allowing an individual to advance
their understanding (Nelson-Le Gall, 1985), and develop their independent skill and abilities
(Newman, 1994). Once an individual reaches an impasse – a situation where no progress is
possible – the initiation of help seeking behavior can be valuable for allowing them to move beyond
their impasse (Price et al., 2017).

Interestingly, research also suggests that people often do not effectively utilize opportunities for
help or even ignore them altogether (Aleven et al., 2003). Educational research has suggested that
many students do not know when to ask for help and tend to wait, trying to work something out
for themselves for a relatively long time before asking for hints (Aleven and Koedinger, 2000). In
an analysis of students’ help seeking behavior through completing computer tasks, a clear pattern
emerged: students would attempt a task, they would be provided with feedback and the offer of
help, and then they would decline the help (du Boulay et al., 1999). These findings highlight the
importance of establishing when people ask for help and what factors may influence the help
seeking process.

In this paper, we bring the phenomena of help-seeking and theoretical models of cognition
together, in the context of a mathematical game. Although many types of models of reasoning
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and decision making processes exist (Roberts, 1993; Smith,
2001), we largely focus on probabilistic Bayesian models.
Bayesian models posit that humans make sense of the world
by reasoning inductively about how alternative hypotheses give
rise to observable data. A common assumption is that people
are motivated to find the best explanation to explain the
available data (Chater et al., 2006; Kharratzadeh and Shultz,
2016). In studies of human information acquisition in this
framework, it has frequently been found that people have
good intuitions about which pieces of information are most
informative (Oaksford and Chater, 1994; Nelson, 2005; Coenen
et al., 2018). It is also important to keep in mind that people
are constantly presented with large amounts of information, of
which only some is useful, and must appropriately identify what
information is useful in order to respond and act appropriately
(Hopfinger and Mangun, 2001).

In psychology, mathematics style games and game-like
experimental designs have been influential in models of human
decision making and reasoning. Chess (Burgoyne et al., 2016)
is perhaps the most famous example. One game that has been
suggested for use in teaching scientific reasoning is the popular
code breaking game Mastermind (Strom and Barolo, 2011). The
game was originally designed as a two-player board game in
1970 by Mordecai Meirowitz. Theoretically, Mastermind can be
viewed as a kind of concept learning game, with connections
to work by Bruner et al. (1956), Wason (1960) and others. One
might also relate the deductive logical aspects of the game to
logical reasoning tasks such as Wason’s (1968) Selection Task
and THOG (Wason, 1977) experimental paradigms. Recent work
on Deductive Mastermind (Gierasimczuk et al., 2012, 2013;
Zhao et al., 2018) uses versions of the game in which the
participant is given all the information to uniquely infer the
hidden code. Mastermind can also be viewed as a problem-
solving task (e.g., Simon and Newell, 1971; Newell and Simon,
1988) and analyzed accordingly.

Here we use a computer-based, single-player version of the
Mastermind game. In the computer-based game, the aim is
to guess the secret code generated by the computer using as
few guesses as possible. For each guess made by the player
they receive feedback regarding the colors and positions of
the items in their guess. The player is then expected to learn
from the feedback and to use that feedback to make another
guess which will add to the amount of information they have
about the code. From their guesses the player then tries to
deduce the correct color and position of every item in the
code. We use an app-based version of Entropy Mastermind, a
recently developed, customizable computer-based version of the
game (Schulz et al., 2019). Figure 1 displays the gameplay and
feedback in more detail.

Can probabilistic models explain how people’s knowledge
and beliefs develop when they play Mastermind? Are people’s
queries optimal, or at least highly informative? Bayesian models
suggest that humans are rational about learning and inference
and will use information to ask questions that will maximize their
knowledge (Eberhardt and Danks, 2011). However, Bayesian
models have been criticized on a number of theoretical and
practical points (Jones and Love, 2011), and human probabilistic

FIGURE 1 | Example of the app version of the Entropy Mastermind game.
Participants make guesses by dragging the colors into the gray circles in the
order they choose and then click the make guess button. This generates the
feedback displayed on the right-hand side in the form of either a black circle,
white circle or cross. A cross means that the item in the code is wrong in both
position and color, a white circle means that the item is correct in color but not
position and a black circle means that the item is correct in both position and
color. The position of the feedback does not correspond with the position of
the items in the guess. The first three lines of this example demonstrates that
there are no orange colors in the code but there are two green and two blue.
Guess number four shows that only two of the colors are in the right place
and guess number five shows that none of the items are placed correctly. This
information was used to decipher the correct position of the colors as shown
in guess six.

reasoning can deviate from Bayesian accounts (Eddy, 1982).
One perplexing phenomenon, not yet related in the literature
to Bayesian reasoning, is that when acquiring and processing
information, people can feel they are at an impasse, are “stuck”
(Weisberg, 2015), and be unsure of how to proceed.

The primary aim of this study was to provide the first
quantitative empirical investigation of help-seeking as a function
of problem state, using the Mastermind code-breaking game.
Theoretically, from a purely information-theoretic perspective,
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help would be most informative at the beginning of the game,
when the largest number of codes are possible, and the underlying
entropy in the probability distribution corresponding to the
true code is highest. In other words, in the beginning of the
game, help (in the form of a hint, as we describe below) would
tend to provide much more information, as quantified in bits
or otherwise, than help later in the game. On the other hand,
alternate models that are not purely information-theoretic– for
instance, because they take into account the agent’s resource
limitations– may find help more valuable later on in the game.
This applies to both resource-rational models that operate within
the Bayesian framework (Griffiths et al., 2015) as well as heuristic
models in computer science (e.g., see Cotta et al., 2010, for an
evolutionary algorithm-based approach that maintain less than a
complete representation of the problem state).

When will people ask for help when playing Mastermind? Will
people ask for help when from a mathematical perspective help
is most needed, i.e., early on in the game? Or will people first
seek help when they feel stuck (at an impasse), perhaps late in the
game? We also consider the points at which people ask for help,
and how receiving help influences game play. To investigate these
issues across a variety of experimental conditions, the difficulty
of the game (1296 possible codes, with 4 items and 6 colors;
or 4096 possible codes, with 6 items and 4 colors) and whether
or not it was possible to obtain extra help were manipulated
within participants.

Two specific research hypotheses were examined:
Hypothesis (1): The point at which an individual will ask for

help will be predicted by the number of possible codes remaining,
and the number of previous guesses made.

Hypothesis (2): Participants will need fewer guesses to
complete the code in the help condition compared to the normal
gameplay condition.

MATERIALS AND METHODS

Participants
We aimed to recruit 20 participants through the University
of Surrey’s participation website SONA. The experiment was
expected to take around 60 min to complete, thus participants
were each compensated two lab tokens for their time (if
applicable) and entered into a prize draw for one of two £50
Amazon vouchers. (University of Surrey Psychology students can
earn lab tokens by participating in experiments, which they can
then spend to obtain participation in their own experiments).
Participants gave informed consent, following University of
Surrey procedures.

Materials
The experiment took place in a laboratory room at the University
of Surrey. The participant was given a laptop on which the
Mastermind app was installed and displayed. The laptop was
connected to a second screen so that the experimenter could
observe game play and also had access to a statistics output box
showing the number of possible codes remaining, the entropy of
the set after each guess, and the true code. Next to the computer

was a bell that participants were asked to ring in the help
condition, when they felt stuck and would like to receive a hint.

Design
The experiment used a within-subjects design with two
experimental conditions: normal game play and help offered.
Some participants completed the “normal game play” condition
first before being offered a short break and were then asked
to complete the “help offered” condition of the experiment.
The remaining participants completed the conditions
in reverse order.

In each condition participants played four games. The first
two games involved completing an easy (4-item) code made
up of six equally probable colors (thus containing 6ˆ4 = 1296
possible codes), and the second two games involved completing
a difficult (6-item) code made up of four equally probable colors
(thus containing 4ˆ6 = 4096 possible codes). Uniform probability
distributions across the possible colors were used in all games;
each item in the code was drawn with replacement. Note that
from one game to the next, for a particular (e.g., 4-item) code
length, the difficulty– with respect to any particular guessing
strategy– may vary. However, because games are generated at
random with equal probability, experimental condition (help
available or not) should not be confounded with idiosyncracies
of individual games’ difficulty.

Procedure
Before the experiment, the experimenter showed the participant
the Entropy Mastermind game and explained the rules and
gameplay. Participants were asked to complete a short quiz to
ensure that they understood the rules and were then asked to play
a simple version of the game (3-item code generated with white,
blue, and green appearing with equal probability) to ensure that
they understood.

After this, the experimenter explained that the aim of the game
was to complete the code with the smallest possible number of
guesses. For each game the experimenter recorded: the true code,
how many guesses the participant needed to complete the code,
and the point at which the code could have been deciphered
according to the participant’s guesses and the feedback given.
Participants had up to 18 guesses to break the code in each
game. If the participant was unable to decipher the code within
the 18 guesses available, the total number of guesses needed was
recorded as 19 guesses, for the purposes of statistical analyses.

In the “help” condition, participants were told to ring the
bell when they felt stuck, and that the experimenter would offer
them help, by telling them the color and position of one item in
the code of their choice. There was no limit on the number of
times participants could ask for help per game. Thus, it would be
allowed, if a participant wished, to ask for help multiple times,
from the beginning until the code was solved. In each instance
that help was asked for, the experimenter recorded: the guess
number, the specific guess and feedback of the previous line, the
number of possible codes remaining, the Shannon entropy of the
probabilities of the possible codes at that time, and which item of
the code the participant asked the experimenter to tell them.
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RESULTS

Seventeen participants (13 female, 4 male) completed the
experiment. Fifteen of these participants reported their ages as
ranging from 18 to 52 (median 22, mean 20). Full demographic
information is provided together with the study data at https:
//osf.io/q5rct/.

Each participant had both help available and easy conditions.
In each condition each participant played four games: two games
involved looking for an easy (4-item) code and two games
involved a difficult (6-item) code. Therefore a total of 136 games
of Mastermind were played, including 68 games each in the help
available and normal gameplay conditions, by the 17 participants.
Note that due to experimenter error the order of conditions–
within a particular game length– in which help was offered was
not randomized throughout the experiment. Rather, the first
ten participants completed two games of each code length of
normal gameplay, followed by two games of each code length of
help-available game play. The remaining participants completed
the help offered games first followed by the games of normal
gameplay. Visual inspection of the data suggested no differences
according to the order in which conditions were completed.

The number of guesses needed to complete the code
aggregating across four and six item codes in each condition were
as follows: normal game play condition (M = 10.66, SD = 2.51);
help condition (M = 9.28, SD = 2.15). A paired samples t-test
shows a marginally significant difference for the number of
guesses needed to complete the code in the help condition vs. the
normal gameplay condition [t(16) = −2.05, two-tail p = 0.056].
A 95% bootstrap confidence interval for the difference in number
of queries suggested that the availability of help reduced the
number of queries between [0.12, 2.68] guesses per game.

Of the 68 games where help was available to participants, help
was accepted in 25 games a total of 38 times. Help was requested
much more frequently in the six-item-code games, as in the four-
item-code games. For a four-item code, help was accepted in 8
games a total of 8 times; for a six-item code help was accepted
in 17 games a total of 30 times. A paired t-test confirmed that
participants had a greater tendency to ask for help in 6-item
games than in 4-item games [t(16) = 3.10, two-tail p = 0.007].
A bootstrap 95% confidence interval for the difference in number
of times each participant requested help in the 6-item games,
minus in the 4-item games, was [0.53, 2.12], corroborating the
descriptive statistics and the t-test results.

For the 4-item code, participants always guessed the true
code within the 18 guesses. In 14 of the games with the 6-item
code, participants did not guess the code within the 18 guesses
allowed. The 14 instances of not being able to complete the 6-
item code were split across 8 participants; the maximum number
of games a single participant was unable to complete was 4. In all
games where the participant was unable to complete the code, the
code had already been mathematically determined based on the
feedback from the prior 18 guesses.

Histograms were produced to relate the points when help was
asked for to the number of possible codes remaining (Figure 2)
and the number of previous guesses made so far (Figure 3)
at the point when help was asked for. Visual inspection of the

FIGURE 2 | Histogram showing the distribution of the number of remaining
possible codes at the points in which help was asked for. For purposes of
plotting this histogram, if there were more than 10 possible codes remaining,
the number was truncated to 10.

FIGURE 3 | Histogram showing the distribution of the number of guesses
made so far at the points in which help was asked for.

histogram displaying the number of possible codes remaining
(Figure 2) showed that participants had a strong tendency to ask
for help when the code was already determined, and they had
already received the necessary information to decipher the code.
Interpreting the relationship between the number of guesses
made so far to the tendency to ask for help (Figure 3) is more
difficult, because help tended to be asked for only very late in
the game, and the number of guesses varied by game and code
length. Figure 3 does however suggest that people did not tend
to ask for help early in the game, at which point (from a purely
mathematical standpoint) help would be most valuable. To test
whether help is asked for at a random point in the game, the point
at which help was asked for was coded in terms of the quartile
of the total number of queries in each individual game. Figure 4
shows a histogram displaying this analysis. Visual inspection of
this histogram (Figure 4) showed that participants tended to ask
for help late in the game, with most help being asked for in the
fourth quartile of gameplay.
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FIGURE 4 | Histogram showing the distribution of the number of previous
guesses as represented by quartile of game play at the point that help was
asked for.

A chi square test of independence was conducted to assess
whether the quartile of gameplay was a statistically significant
predictor of when people asked for help. This test compared the
observed number of times help was asked for in each quartile of
gameplay with the number of times we would expect help to be
asked for in each quartile of gameplay if participants asked for
help with equal probability in each quartile. The chi square was
conducted on the combined data for both four and six item codes
to ensure that the assumption of cell frequencies above five was
met. The analysis showed a strong association between quartile of
gameplay and when help was asked for, χ2(3) = 30.29, p < 0.001,
suggesting that the stage of gameplay is a significant predictor of
when people ask for help when playing the mastermind game.

Game Strategies
Participants appeared to adopt one of two qualitatively different
strategies when playing the mastermind game. We think of these
strategies as the “systematic strategy” and the “random strategy.”
The systematic strategy involved testing each color to find out
how many items of the code consisted of that color. (Note that
participants’ frequent use of the systematic strategy effectively
rules out chance responding, despite the fact that people needed
more queries than strategies characterized in the computer
science literature). After the first query, in the systematic strategy,
the participant would then either use a color not included in the
code (if applicable) or another color to decipher the position of
all the items of one color in the code. This strategy was used until
all items in the code had been deciphered; a stylized example is
displayed in Figure 5. The other strategy appears to be much
more random; a stylized example is displayed in Figure 6. In
this strategy participants would test a number of colors in each
guess and did not appear to have any set ways of deciphering the
specific position of each color.

To address this quantitatively, we (NT) went through the
dataset and classified each of the 136 games according to whether
it seemed qualitatively closer to the “systematic” or “random”
strategy. It turns out that our qualitative understanding was

FIGURE 5 | Stylized example (not from actual gameplay) of the systematic
strategy when playing the Mastermind game.

almost perfectly predicted by whether the first query was all
the same color (systematic strategy) or not (random strategy).
Therefore, we operationally defined the systematic strategy as
starting with all the same color in the first query, and the random
strategy as everything else. Of the 136 games played, 71 were thus
classified as random and 65 as systematic.

There was no meaningful difference between the average of
9.74 queries required to identify the true code with a systematic
strategy, vs. the average of 10.12 queries for a random strategy
[t(134) = 0.54, n.s., two-tailed t-test]. However, because the code
length 4 games always occurred in the first part of the experiment,
and there was a slightly greater tendency to use a random strategy
with the code length 4 games, any harm from using the random
strategy might have been counterbalanced by the intrinsically
easier nature of the 4-item games.

A more meaningful measure may be the number of additional
queries required, beyond when the true code was mathematically
determined, for a person to identify the true code. We can in turn
ask whether this additional number of (zero-information-gain)

Frontiers in Education | www.frontiersin.org 5 September 2020 | Volume 5 | Article 533998209210

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-05-533998 September 20, 2020 Time: 11:5 # 6

Taylor et al. Help Seeking in Entropy Mastermind

FIGURE 6 | Stylized example (not from actual gameplay) of the random
strategy when playing the Mastermind game.

queries differed according to the strategy used. By this measure,
the code was more quickly identified by the participant when
a systematic strategy was used than when a random strategy
was used [t(134) = 2.27, p = 0.025, two-tailed t-test; 95% CI for
difference 0.23–3.13, by bootstrap sampling].

Interestingly, however, from a purely information-theoretical
mathematical standpoint, it appears that the random strategy is
more efficient than the systematic strategy. (Here it is important
to keep in mind that we mean the participants’ queries in games
in which the first query was not all of a single item, which could
differ from a theoretical strategy of picking among all feasible
codes with equal probability). The code was mathematically
determined with a smaller number of queries in games with
the random strategy, as compared to the systematic strategy
[t(134) = −4.17, p < 0.0001, two-tailed t-test; 95% CI for
difference 0.66 to 1.83, by bootstrap sampling].

It is thus something of a paradox that the most informative
queries for people are not those that lead mathematically to
identifying the true code in the most efficient manner. We
consider possible explanations below.

DISCUSSION

Help Seeking Behavior
Of the 68 games in which help was offered, help was accepted in
only 30 games. This supports the findings of previous research
that students don’t always utilize opportunities for help (Aleven
and Koedinger, 2000) or even recognize that help would be
beneficial (Aleven et al., 2003).

Some possible explanations for this finding draw upon
research around threat to identity and self-concept. For some
participants asking for or accepting help may be harmful to
their self-concept (Delacruz, 2011), thus discouraging them
from engaging in help seeking strategies, to the detriment of
their learning (Nelson-Le Gall, 1985). It is often the most able
learners who seek help when they reach an impasse, perhaps as
their academic self-concept is more robust, whereas those with
lower abilities appear to have a lower academic self-concept and
subsequently, less awareness of their need for help and/or less
willingness to accept help when offered (Wood and Wood, 1999).

Alternatively, stereotype threat should also be considered
as a possible explanation for the paucity of help seeking we
observed. It is possible that participants may have associated the
Mastermind game with mathematics, either through previous
knowledge, or through the language used by the experimenter,
for instance when mentioning “probabilities” while explaining
the game. It is thought that girls perform more poorly at tasks
associated with maths due to the activation of the stereotype
that boys are more competent at maths (Casad et al., 2017).
Our participants were mostly female; therefore, it is possible that
their help seeking behaviors were blocked due to believing that
Mastermind was a maths game.

Limitations
A caveat is that in the present study, although participants were
told that the aim of the game is to complete the code in as few
guesses as possible, there was no explicit external incentive for
doing so. It is thus possible that participants may have chosen
to continue figuring the code out for themselves because they
enjoyed playing the game.

A further consideration is that participants may have been
primed to ask for help due to the experimenter telling them help
was available if they felt stuck in the help condition. Participants
were allowed to ask for help at any point, however, and our results
are consistent with prior help seeking research.

Educational Implications
Due to the strong links between help seeking behavior and
learning and educational attainment (Ryan et al., 1998), our
findings have strong implications for educational practice. The
findings show that when help is asked for, in many situations all
the necessary information had been obtained. Thus, help is not
needed for acquiring the necessary information but rather for
deciphering the information that had already been obtained. An
interesting direction for further research would be to investigate
the effects of different types of help. One possibility would be to
offer help in the form of highlighting aspects of previous queries
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and feedback to help the participant decipher the information,
rather than giving the position of a specific item in the code.
Another possibility would be to have help available from a
computer, rather than from a person.

The present study also supported previous research that
highlights that help is not always taken advantage of by
students, even though it would be beneficial to advance their
learning. Further research is needed to determine the influence
of stereotype threat, threat to self-concept, and other variables
on help-seeking behavior and to identify other factors that may
also be important. One idea for further studies is to investigate
whether rewarding participants for completing the code in
the fewest number of guesses (e.g., paying them according to
performance, or giving the participant with the fewest average
number of guesses £50) may lead to different patterns of help
seeking. These manipulations would clarify whether willingness
to ask for help can be increased if the stakes are high enough,
thus informing educational practices to improve help seeking and
overall student attainment.

Implications for Theory and Modeling
One theme in Bayesian modeling is that people will find the
best fitting hypothesis for the data available to them. When our
participants asked for help they typically already had all the
necessary information to complete the code. Why is this? It is
something of a paradox that despite being in possession of all of
the information needed to decipher the code, participants were in
many cases unable to do so.

Research on human queries and human assessments of
queries’ expected usefulness, in the Optimal Experimental Design
perspective (Baron et al., 1988; Oaksford and Chater, 1994;
Coenen et al., 2018) has usually found that people have a very
good, if not necessarily a perfect, sense of the relative usefulness
of possible queries. From this standpoint it is surprising that
participants tended to ask for help late in the game, rather
than early in the game, when help would– from a mathematical
standpoint– provide the most information. One crucial point
is that this research, in the vast majority of experimental tasks,
including Schulz et al.’s (2019) information-theoretic model of
Entropy Mastermind, uses the complete probability distribution
when modeling human behavior.

Interestingly, computer science approaches to Mastermind,
except for fairly small versions of the task (e.g., Knuth, 1976),
do not attempt to represent the full probability distribution over
possible codes. Here we focus on computer-science approaches;
for a more mathematical treatment of bounds on the efficiency
of possible solutions, see Doerr et al. (2013). Computer science
approaches typically focus on finding one or more possible
codes from the feasible set of codes that are consistent with the
queries and feedback to date. Berghman et al. (2009) use genetic
algorithms to find codes in the feasible set. Cotta et al. (2010)
use a similar approach, but specifically attempt to find feasible
codes that will maximize obtained information, thus building on
Bestavros and Belal’s (1986) ideas. Merelo et al. (2011) further
introduce the idea of endgames, namely looking for particular
game situations in which known strategies can be used. Merelo-
Guervós et al. (2013) combine an improved genetic algorithm

with an entropy-based fitness score to evaluate the usefulness of
possible queries.

If people (as we strongly suspect) are not fully representing
the possible codes in smaller versions (e.g., with 6ˆ4 = 1296
possible codes) of the game, it would be sensible in the future
to see whether these computer science approaches might offer
good insight into human behavior. For instance, unless guesses
are repeated, the proportion of feasible codes relative to possible
codes is guaranteed to decrease over the course of a game.
Of particular note will be to check whether these approaches
therefore take longer to find items to test in later stages of the
game, thus providing a possible resolution to the paradox of
humans’ greater tendency to ask for help when there is less
information (in terms of bits) to be obtained.

Model variants along these lines would very much be in the
spirit of boundedly Bayesian models (Griffiths et al., 2015; Lieder
and Griffiths, 2019), in which the focus is on keeping models
within the broadly probabilistic framework but incorporating
computational resource limitations. On other concept learning
tasks, for instance the Shepard et al. (1961) task, participants also
need many more learning trials than would be mathematically
required if they have perfect memory (Rehder and Hoffman,
2005); some models (Nelson and Cottrell, 2007) use conservative
(Edwards, 1968) belief updating to model this process. If
Mastermind is viewed as a concept learning task, then the fact
that some participants require additional queries, beyond those
mathematically necessary to infer the code, is not necessarily
surprising. As a point of comparison, Merelo-Guervós et al.
(2013) report a variety of algorithms that can solve a larger
version of the game than we used, namely with codelength 6 and
9 possible colors (i.e., with 9ˆ6 = 531,441 possible codes), with a
mean of less than 7 queries, achieving much better performance
than our participants.

A further potential connection between human psychology
and computer science approaches starts with research on
information foraging (Pirelli and Card, 1999). Information
foraging describes the decision-making process in problem
solving when the information is incomplete and the probabilities
are unclear (Murdock et al., 2017). Attempts to solve these types
of cognitive problems involve tradeoffs between “exploration”
of novel information and using or “exploiting” knowledge to
improve performance (Berger-Tal et al., 2014). How does this
relate to Mastermind? Mastermind, from a purely mathematical
standpoint involves a well-defined problem: both how the hidden
code is generated, and the processes by which one can find the
code, are known and disclosed to the player. (We refer here to
non-strategic versions of Mastermind). However, people may not
have this full information (such as a probability distribution over
several thousand possible codes) ready at hand. One possible
point of connection to information foraging theory is in the
search for new items to possibly test. Many computer science
models use genetic algorithms with populations of possible query
items which are thought or known to be in the feasible set. An
issue in the computer science literature is when to try to improve
the population of known query items through genetic algorithms,
and when to search for new items altogether. This parallels issues
of search in human memory (Hills et al., 2008), when people
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either try to exploit a current semantic region (e.g., to continue
finding feline animals, after they have found cat, lion, tiger, lynx)
or to explore for a new region altogether.

Then there is the paradox that among the two qualitative
strategies that we identified, namely the systematic strategy
and the random strategy, the systematic strategy was perhaps
more useful for human participants, but the random strategy
was clearly more useful from a purely information-theoretic
standpoint, leading to the true code being determined with fewer
queries. Our finding on this parallels earlier work by Laughlin
et al. (1982), who studied a reduced version of Mastermind
with 3 possible colors and 4 positions, entailing 3ˆ4 = 81
possible codes. They found that human players did better
when their first query was all of a single color, even though
computers could solve the game more quickly when the first
query had two items of one color, and one item of each of
two other colors. Why do we find these discrepancies between
theoretical usefulness (for computers) of particular strategies,
and those strategies’ actual usefulness to human game players?
What makes particular queries– or more precisely, particular
query-feedback combinations– easier or harder for people to
assimilate? Are there parallels between what queries are easier
or harder for people to assimilate, and what is easier or harder
for particular computer science approaches to the task? One
possibility to consider is that people may have their beliefs in
a psychological feature space, and may best assimilate query-
feedback combinations that are directly relevant to that feature
space. A prominent possibility here would be that people appear
to focus on figuring out the counts of each color (or type
of item), and all-same-color queries are easily suited to this
kind of belief update. A focus on psychological feature spaces
would be analogous to the successful (Bramley et al., 2017)
approach to causal learning. It would also be worthwhile to
investigate whether the epistemic logical model of inference in
Deductive Mastermind (Zhao et al., 2018), in which participants
are given a game state that uniquely identifies the true code,
also finds the random strategy to be more difficult than the
systematic strategy.

Finally, why is it that many (but not all) participants tended to
need several additional queries, beyond the point where the code
was mathematically determined? This is a kind of opposite result
to Wason’s (1960) finding that participants tended to prematurely
announce that they had figured out the hidden rule in his “2-4-
6” scientific inference task, suggesting that participants on that
task overestimated the information value of the information they
had received. For Mastermind, it seems that imperfect memory

or conservative belief updating (Edwards, 1968; Dasgupta et al.,
2020) needs to be incorporated into probabilistic task models.

Ultimately, whereas the focus of the present work was on
empirically characterizing help-seeking behavior in Entropy
Mastermind, we hope that it will be possible to build probabilistic
or other cognitively meaningful models of people’s behavior on
this task. Such models may also serve development of individually
customized, adaptive tutoring systems, which is a pressing issue
in cognitive science and educational research alike (Anderson
et al., 1995; Bertram, in press).
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Creative Problem Solving as
Overcoming a Misunderstanding
Maria Bagassi and Laura Macchi*

Department of Psychology, University of Milano-Bicocca, Milan, Italy

Solving or attempting to solve problems is the typical and, hence, general function of
thought. A theory of problem solving must first explain how the problem is constituted,
and then how the solution happens, but also how it happens that it is not solved; it must
explain the correct answer and with the same means the failure. The identification of the
way in which the problem is formatted should help to understand how the solution of
the problems happens, but even before that, the source of the difficulty. Sometimes
the difficulty lies in the calculation, the number of operations to be performed, and
the quantity of data to be processed and remembered. There are, however, other
problems – the insight problems – in which the difficulty does not lie so much in the
complexity of the calculations, but in one or more critical points that are susceptible to
misinterpretation, incompatible with the solution. In our view, the way of thinking involved
in insight problem solving is very close to the process involved in the understanding
of an utterance, when a misunderstanding occurs. In this case, a more appropriate
meaning has to be selected to resolve the misunderstanding (the “impasse”), the default
interpretation (the “fixation”) has to be dropped in order to “restructure.” to grasp another
meaning which appears more relevant to the context and the speaker’s intention (the
“aim of the task”). In this article we support our view with experimental evidence,
focusing on how a misunderstanding is formed. We have studied a paradigmatic insight
problem, an apparent trivial arithmetical task, the Ties problem. We also reviewed
other classical insight problems, reconsidering in particular one of the most intriguing
one, which at first sight appears impossible to solve, the Study Window problem. By
identifying the problem knots that alter the aim of the task, the reformulation technique
has made it possible to eliminate misunderstanding, without changing the mathematical
nature of the problem. With the experimental versions of the problems exposed we have
obtained a significant increase in correct answers. Studying how an insight problem is
formed, and not just how it is solved, may well become an important topic in education.
We focus on undergraduate students’ strategies and their errors while solving problems,
and the specific cognitive processes involved in misunderstanding, which are crucial to
better exploit what could be beneficial to reach the solution and to teach how to improve
the ability to solve problems.

Keywords: creative problem solving, insight, misunderstanding, pragmatics, language and thought
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INTRODUCTION

“A problem arises when a living creature has a goal but does
not know how this goal is to be reached. Whenever one cannot
go from the given situation to the desired situation simply by
action, then there has to be recourse to thinking. (. . .) Such
thinking has the task of devising some action which may mediate
between the existing and the desired situations.” (Duncker, 1945,
p. 1). We agree with Duncker’s general description of every
situation we call a problem: the problem solving activity takes
a central role in the general function of thought, if not even
identifies with it.

So far, psychologists have been mainly interested in the
solution and the solvers. But the formation of the problem
remained in the shadows.

Let’s consider for example the two fundamental theoretical
approaches to the study of problem solving. “What questions
should a theory of problem solving answer? First, it should
predict the performance of a problem solver handling specified
tasks. It should explain how human problem solving takes place:
what processes are used, and what mechanisms perform these
processes.” (Newell et al., 1958, p. 151). In turn, authors of
different orientations indicate as central in their research “How
does the solution arise from the problem situation? In what
ways is the solution of a problem attained?” (Duncker, 1945,
p. 1) or that of what happens when you solve a problem, when
you suddenly see the point (Wertheimer, 1959). It is obvious,
and it was inevitable, that the formation of the problem would
remain in the shadows.

A theory of problem solving must first explain how the
problem is constituted, and then how the solution happens,
but also how it happens that it is not solved; it must explain
the correct answer and with the same means the failure. The
identification of the way in which the problem is constituted – the
formation of the problem – and the awareness that this moment
is decisive for everything that follows imply that failures are
considered in a new way, the study of which should help to
understand how the solution of the problems happens, but even
before that, the source of the difficulty.

Sometimes the difficulty lies in the calculation, the number
of operations to be performed, and the quantity of data
to be processed and remembered. Take the well-known
problems studied by Simon, Crypto-arithmetic task, for example,
or the Cannibals and Missionaries problem (Simon, 1979).
The difficulty in these problems lies in the complexity
of the calculation which characterizes them. But, the text
and the request of the problem is univocally understood
by the experimenter and by the participant in both the
explicit (said)and implicit (implied) parts.1 As Simon says,
“Subjects do not initially choose deliberately among problem
representations, but almost always adopt the representation
suggested by the verbal problem statement” (Kaplan and
Simon, 1990, p. 376). The verbal problem statement determines

1The theoretical framework assumed here is Paul Grice’s theory of communication
(1975) based on the existence in communication of the explicit layer (said) and of
the implicit (implied), so that the recognition of the communicative intention of
the speaker by the interlocutor is crucial for comprehension.

a problem representation, implicit presuppositions of which
are shared by both.

There are, however, other problems where the usual
(generalized) interpretation of the text of the problem (and/or
the associated figure) prevents and does not allow a solution to
be found, so that we are soon faced with an impasse. We’ll call
this kind of problems insight problems. “In these cases, where the
complexity of the calculations does not play a relevant part in the
difficulty of the problem, a misunderstanding would appear to be
a more appropriate abstract model than the labyrinth” (Mosconi,
2016, p. 356). Insight problems do not arise from a fortuitous
misunderstanding, but from a deliberate violation of Gricean
conversational rules, since the implicit layer of the discourse (the
implied) is not shared both by experimenter and participant.
Take for example the problem of how to remove a one-hundred
dollar bill without causing a pyramid balanced atop the bill to
topple: “A giant inverted steel pyramid is perfectly balanced on
its point. Any movement of the pyramid will cause it to topple
over. Underneath the pyramid is a $100 bill. How would you
remove the bill without disturbing the pyramid?” (Schooler et al.,
1993, p. 183). The solution is burn or tear the dollar bill but
people assume that the 100 dollar bill must not be damaged, but
contrary to his assumption, this is in fact the solution. Obviously
this is not a trivial error of understanding between the two parties,
but rather a misunderstanding due to social conventions, and
dictated by conversational rules. It is the essential condition for
the forming of the problem and the experimenter has played on
the very fact that the condition was not explicitly stated (see also
Bulbrook, 1932).

When insight problems are used in research, it could be
said that the researcher sets a trap, more or less intentionally,
inducing an interpretation that appears to be pertinent to
the data and to the text; this interpretation is adopted
more or less automatically because it has been validated
by use but the default interpretation does not support
understanding, and misunderstanding is inevitable; as a result,
sooner or later we come up against an impasse. The theory
of misunderstanding is supported by experimental evidence
obtained by Mosconi in his research on insight problem solving
(Mosconi, 1990), and by Bagassi and Macchi on problem
solving, decision making and probabilistic reasoning (Bagassi
and Macchi, 2006, 2016; Macchi and Bagassi, 2012, 2014,
2015, 2020; Macchi, 1995, 2000; Mosconi and Macchi, 2001;
Politzer and Macchi, 2000).

The implication of the focus on problem forming for
education is remarkable: everything we say generates a
communicative and therefore interpretative context, which is
given by cultural and social assumptions, default interpretations,
and attribution of intention to the speaker. Since the text of
the problem is expressed in natural language, it is affected,
it shares the characteristics of the language itself. Natural
language is ambiguous in itself, differently from specialized
languages (i.e., logical and statistical ones), which presuppose
a univocal, unambiguous interpretation. The understanding of
what a speaker means requires a disambiguation process centered
on the intention attribution.
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RESTRUCTURING AS REINTERPRETING

Traditionally, according to the Gestaltists, finding the solution
to an insight problem is an example of “productive thought.”
In addition to the reproductive activities of thought, there
are processes which create, “produce” that which does not
yet exist. It is characterized by a switch in direction which
occurs together with the transformation of the problem or a
change in our understanding of an essential relationship. The
famous “aha!” experience of genuine insight accompanies this
change in representation, or restructuring. As Wertheimer
says: “. . . Solution becomes possible only when the central
features of the problem are clearly recognized, and paths
to a possible approach emerge. Irrelevant features must
be stripped away, core features must become salient, and
some representation must be developed that accurately
reflects how various parts of the problem fit together;
relevant relations among parts, and between parts and
whole, must be understood, must make sense” (Wertheimer,
1985, p. 23).

The restructuring process circumscribed by the Gestaltists to
the representation of the perceptual stimulus is actually a general
feature of every human cognitive activity and, in particular, of
communicative interaction, which allows the understanding, the
attribution of meaning, thus extending to the solution of verbal
insight problems. In this sense, restructuring becomes a process
of reinterpretation.

We are able to get out of the impasse by neglecting the
default interpretation and looking for another one that is
more pertinent to the situation and which helps us grasp
the meaning that matches both the context and the speaker’s
intention; this requires continuous adjustments until all makes
sense.

In our perspective, this interpretative function is a
characteristic inherent to all reasoning processes and is an
adaptive characteristic of the human cognitive system in
general (Levinson, 1995, 2013; Macchi and Bagassi, 2019;
Mercier and Sperber, 2011; Sperber and Wilson, 1986/1995;
Tomasello, 2009). It guarantees cognitive economy when
meanings and relations are familiar, permitting recognition
in a “blink of an eye.” This same process becomes much
more arduous when meanings and relations are unfamiliar,
obliging us to face the novel. When this happens, we
have to come to terms with the fact that the usual, default
interpretation will not work, and this is a necessary condition
for exploring other ways of interpreting the situation. A restless,
conscious and unconscious search for other possible relations
between the parts and the whole ensues until everything
falls into place and nothing is left unexplained, with an
interpretative heuristic-type process. Indeed, the solution
restructuring – is a re-interpretation of the relationship
between the data and the aim of the task, a search for the
appropriate meaning carried out at a deeper level, not by
automaticity. If this is true, then a disambiguant reformulation
of the problem that eliminates the trap into which the
subject has fallen, should produce restructuring and the
way to the solution.

INSIGHT PROBLEM SOLVING AS THE
OVERCOMING OF A
MISUNDERSTANDING: THE EFFECT OF
REFORMULATION

In this article we support our view with experimental evidence,
focusing on how a misunderstanding is formed, and how a
pragmatic reformulation of the problem, more relevant to the aim
of the task, allows the text of the problem to be interpreted in
accordance with the solution.

We consider two paradigmatic insight problems, the
intriguing Study Window problem, which at first sight appears
impossible to solve, and an apparent trivial arithmetical task, the
Ties problem (Mosconi and D’Urso, 1974).

The Study Window problem
The study window measures 1 m in height and 1 m wide. The
owner decides to enlarge it and calls in a workman. He instructs
the man to double the area of the window without changing its
shape and so that it still measures 1 m by 1 m. The workman
carried out the commission. How did he do it?

This problem was investigated in a previous study (Macchi
and Bagassi, 2015). For all the participants the problem
appeared impossible to solve, and nobody actually solved it. The
explanation we gave for the difficulty was the following: “The
information provided regarding the dimensions brings a square
form to mind. The problem solver interprets the window to be a
square 1 m high by 1 m wide, resting on one side. Furthermore,
the problem states “without changing its shape,” intending
geometric shape of the two windows (square, independently of the
orientation of the window), while the problem solver interprets
this as meaning the phenomenic shape of the two windows (two
squares with the same orthogonal orientation)” (Macchi and
Bagassi, 2015, p. 156). And this is where the difficulty of the
problem lies, in the mental representation of the window and
the concurrent interpretation of the text of the problem. Actually,
spatial orientation is a decisive factor in the perception of forms.
“Two identical shapes seen from different orientations take on a
different phenomenic identity” (Mach, 1914).

The solution is to be found in a square (geometric form)
that “rests” on one of its angles, thus becoming a rhombus
(phenomenic form). Now the dimensions given are those of the
two diagonals of the represented rhombus (ABCD).

Figure 1
The “inverted” version of the problem gave less trouble:
[...] The owner decides to make it smaller and calls

in a workman. He instructs the man to halve the area
of the window [...].

Figure 2
With this version, 30% of the participants solved the problem

(n = 30). They started from the representation of the orthogonal
square (ABCD) and looked for the solution within the square,
trying to respect the required height and width of the window,
and inevitably changing the orientation of the internal square.
This time the height and width are the diagonals, rather than the
side (base and height) of the square.
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FIGURE 1 | The study window problem solution.

Eventually, in another version (the “orientation” version) it
was explicit that orientation was not a mandatory attribute of
the shape, and this time 66% of the participants found the
solution immediately (n = 30). This confirms the hypothesis
that an inappropriate representation of the relation between the
orthogonal orientation of the square and its geometric shape is
the origin of the misunderstanding.

The “orientation” version:
A study window measures 1 m in height and 1 m wide. The

owner decides to make it smaller and calls in a workman. He
instructs the man to halve the area of the window: the workman
can change the orientation of the window, but not its shape and
in such a way that it still measures one meter by one meter. The
workman carries out the commission. How did he do it?

While with the Study window problem the subjects who do
not arrive at the solution, and who are the totality, know they
are wrong, with the problem we are now going to examine, the
Ties problem, those who are wrong do not realize it at all and the
solution they propose is experienced as the correct solution.

The Ties Problem (Mosconi and D’Urso,
1974)
Peter and John have the same number of ties.

Peter gives John five of his ties.
How many ties does John have now more than Peter?
We believe that the seemingly trivial problem is actually the

result of the simultaneous activation and mutual interference of
complex cognitive processes that prevent its solution.

The problem has been submitted to 50 undergraduate students
of the Humanities Faculty of the University of Milano-Bicocca.
The participants were tested individually and were randomly

assigned to three groups: control version (n = 50), experimental
version 2 (n = 20), and experimental version 3 (n = 23). All
groups were tested in Italian. Each participant was randomly
assigned to one of the conditions and received a form containing
only one version of the two assigned problems. There was no time
limit. They were invited to think aloud and their spontaneous
justifications were recorded and then transcribed.

The correct answer is obviously “ten,” but it must not be so
obvious if it is given by only one third of the subjects (32%),
while the remaining two thirds give the wrong answer “five,”
which is so dominant.

If we consider the text of the problem from the point of
view of the information explicitly transmitted (said), we have
that it only theoretically provides the necessary information to
reach the solution and precisely that: (a) the number of ties
initially owned by P. and J. is equal, (b) P. gives J. five of his
ties. However, the subjects are wrong. What emerges, however,
from the spontaneous justifications given by the subjects who
give the wrong answer is that they see only the increase of J. and
not the consequent loss of P. by five ties. We report two typical
justifications: “P. gives five of his to J., J. has five more ties than
P., the five P. gave him” and also “They started from the same
number of ties, so if P. gives J. five ties, J. should have five more
than P.”

Slightly different from the previous ones is the following
recurrent answer, in which the participants also consider the
decrease of P. as well as the increase of J.: “I see five ties at stake,
which are the ones that move,” or also “There are these five ties
that go from one to the other, so one has five ties less and the
other has five more,” reaching however the conclusion similar to
the previous one that “J. has five ties more, because the other gave
them to him.”2

Almost always the participants who answer “five” use a
numerical example to justify the answer given or to find a solution
to the problem, after some unsuccessful attempts. It is paradoxical
how many of these participants accept that the problem has
two solutions, one “five ties” obtained by reasoning without
considering a concrete number of initial ties, owned by P. and
J., the other “ten ties” obtained by using a numerical example.
So, for example, we read in the protocol of a participant who,
after having answered “five more ties,” using a numerical example,
finds “ten” of difference between the ties of P. and those of J.:
“Well! I think the “five” is still more and more exact; for me this
one has five more, period and that’s it.” “Making the concrete
example: “ten” – he chases another subject on an abstract level.
I would be more inclined to another formula, to five.”

About half of the subjects who give the answer “five,” in fact, at
first refuse to answer because “we don’t know the initial number
and therefore we can’t know how many ties J. has more than P.,”
or at the most they answer: “J. has five ties more, P. five less, more
we can’t know, because a data is missing.”

2A participant who after having given the solution “five” corrects himself in “ten”
explains the first answer as follows: “it is more immediate, in my opinion, to see
the real five ties that are moved, because they are five things that are moved;
then as a more immediate answer is ‘five,’ because it is something more real, less
mathematical.”
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FIGURE 2 | The inverted version.

FIGURE 3 | The square and parallelogram problem.

Even before this difficulty, so to speak, operational, the text
of the problem is difficult because in it the quantity relative
to the decrease of P. remains implicit (−5). The resulting

FIGURE 4 | Solution.

misunderstanding is that if the quantity transferred is five ties,
the resulting difference is only five ties: if the ties that P. gives to
J. are five, how can J. have 10 ties more than P.?

So the difficulty of the problem lies in the discrepancy between
the quantity transferred and the bidirectional effect that this
quantity determines with its displacement. Resolving implies a
restructuring of the sentence: “Peter gives John five of his ties
(and therefore he loses five).” And this is precisely the reasoning
carried out by those subjects who give the right answer “ten.”

We have therefore formulated a new version in which a pair of
verbs should make explicit the loss of P.:

Version 2
Peter loses five of his ties and John takes them.
However, the results obtained with this version, submitted

to 20 other subjects, substantially confirm the results obtained
with the original version: the correct answers are 17% (3/20)
and the wrong ones 75% (15/20). From a Chi-square test
(χ2
= 2,088 p= 0.148) it results no significant difference between

the two versions.
If we go to read the spontaneous justifications, we find that the

subjects who give the answer “five” motivate it in a similar way to
the subjects of the original version. So, for example: “P. loses five,
J. gets them, so J. has five ties more than P.”

The decrease of P. is still not perceived, and the discrepancy
between the lost amount of ties and the double effect that this
quantity determines with its displacement persists.

Therefore, a new version has been realized in which the
amount of ties lost by P. has nothing to do with J’s acquisition
of five ties, the two amounts of ties are different and then they
are perceived as decoupled, so as to neutralize the perceptual-
conceptual factor underlying it.

Version 3
Peter loses five of his ties and John buys five new ones.
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FIGURE 5 | The pigs in a pen problem.

FIGURE 6 | Solution.

It was submitted to 23 participants. Of them, 17 (74%) gave
the answer “ten” and only 3 (13%) the answer “five.” There was a
significant difference (χ2

= 16,104 p= 0.000) between the results
obtained using the present experimental version and the results
from the control version. The participants who give the correct
solution “ten” mostly motivate their answer as follows: “P. loses
five and therefore J. has also those five that P. lost; he buys another

five, there are ten,” declaring that he “added to the five that P.
had lost the five that J. had bought.” The effectiveness of the
experimental manipulation adopted is confirmed.3

The satisfactory results obtained with this version cannot
be attributed to the use of two different verbs, which proved
to be ineffective (see version 2), but to the splitting, and
consequent differentiation (J. has in addition five new ties), of
the two quantities.

This time, the increase of J. and the decrease of P. are grasped
as simultaneous and distinct and their combined effect is not
identified with one or the other, but is equal to the sum of +5
and−5 in absolute terms.

The hypothesis regarding the effect of reformulation has also
been confirmed in classical insight problems such as the Square
and the Parallelogram (Wertheimer, 1925), the Pigs in a Pen
(Schooler et al., 1993), the Bat & Ball (Frederick, 2005) in
recent studies (Macchi and Bagassi, 2012, 2015) which showed
a dramatic increase in the number of solutions.

In their original version these problems are true brain
teasers, and the majority of participants in these studies needed
them to be reformulated in order to reach the solution. In
Appendix B we present in detail the results obtained (see
Table 1). Below we report, for each problem, the text of
the original version in comparison with the reformulated
experimental version.

Square and Parallelogram Problem
(Wertheimer, 1925)
Given that AB = a and AG = b, find the sum of the areas of
square ABCD and parallelogram EBGD (Figures 3, 4).

Experimental Version
Given that AB = a and AG = b, find the sum of the areas of the
two partially overlapping figures.

Pigs in a Pen Problem (Schooler et al.,
1993)
Nine pigs are kept in a square pen. Build two more
square enclosures that would put each pig in a pen by itself
(Figures 5, 6).

Experimental Version
Nine pigs are kept in a square pen. Build two more squares that
would put each pig in a by itself.

3The factor indicated is certainly the main responsible for the answer “five,” but
not the only one (see the Appendix for a pragmatic analysis of the text).

TABLE 1 | Percentages of correct solutions with reformulated
experimental versions.

Problems Control Version Experimental Version

Square and parallelogram 9 (19%) n = 47 28 (80%) n = 35

Pigs in a pen 8 (38%) n = 25 20 (87%) n = 23

Bat and ball 2 (10%) n = 20 28 (90%) n = 31

Study window 0 (0%) n = 30 21 (66%) n = 30

Frontiers in Education | www.frontiersin.org 6 December 2020 | Volume 5 | Article 538202220221

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-05-538202 December 1, 2020 Time: 16:39 # 7

Bagassi and Macchi Creative Problem Solving

Bat and Ball Problem (Frederick, 2005)
A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than
the ball. How much does the ball cost? ___cents.

Experimental Version
A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than
the ball. Find the cost of the bat and of the ball.

Once the problem knots that alter the aim of the task have
been identified, the reformulation technique can be a valid
didactic tool, as it allows to reveal the misunderstanding and
to eliminate it without changing the mathematical nature of
the problem. The training to creativity would consist in this
sense in training to have interpretative keys different from
the usual, when the difficulty cannot be addressed through
computational techniques.

Closing Thoughts
By identifying the misunderstanding in problem solving, the
reformulation technique has made it possible to eliminate the
problem knots, without changing the mathematical nature of
the problem. With the experimental reformulated versions of
paradigmatic problems, both apparent trivial tasks or brain
teasers have obtained a significant increase in correct answers.

Studying how an insight problem is formed, and not just how
it is solved, may well become an important topic in education. We
focus on undergraduate students’ strategies and their errors while
solving problems, and the specific cognitive processes involved in
misunderstanding, which are crucial to better exploit what could
be beneficial to reach the solution and to teach how to improve
the ability to solve problems.

Without violating the need for the necessary rigor of
a demonstration, for example, it is possible to organize
the problem-demonstration discourse according to a different
criterion, precisely by favoring the psychological needs of the
subject to whom the explanation discourse is addressed, taking
care to organize the explanation with regard to the way his
mind works, to what can favor its comprehension and facilitate
its memory.

On the other hand, one of the criteria traditionally followed by
mathematicians in constructing, for example, demonstrations, or
at least in explaining them, is to never make any statement that is
not supported by the elements provided above. In essence, in the
course of the demonstration nothing is anticipated, and indeed
it happens frequently that the propositions directly relevant and
relevant to the development of the reasoning (for example, the
steps of a geometric demonstration) are preceded by digressions
intended to introduce and deal with the elements that legitimize

them. As a consequence of such an expositive formalism, the
recipient of the speech (the student) often finds himself in the
situation of being led to the final conclusion a bit like a blind man
who, even though he knows the goal, does not see the way, but
can only control step by step the road he is walking along and
with difficulty becomes aware of the itinerary.

The text of every problem, if formulated in natural language,
has a psychorhetoric dimension, in the sense that in every
speech, that is in the production and reception of every
speech, there are aspects related to the way the mind works –
and therefore psychological and rhetorical – that are decisive
for comprehensibility, expressive adequacy and communicative
effectiveness. It is precisely to these aspects that we refer to
when we talk about the psychorhetoric dimension. Rhetoric,
from the point of view of the broadcaster, has studied discourse
in relation to the recipient, and therefore to its acceptability,
comprehensibility and effectiveness, so that we can say that
rhetoric has studied discourse “psychologically.”

Adopting this perspective, the commonplace that the
rhetorical dimension only concerns the common discourse,
i.e., the discourse that concerns debatable issues, and not the
scientific discourse (logical-mathematical-demonstrative), which
would be exempt from it, is falling away. The matter dealt
with, the truth of what is actually said, is not sufficient to
guarantee comprehension.
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APPENDIX A

Pragmatic analysis of the problematic loci of the Ties problem,
which emerged from the spontaneous verbalizations of the
participants:

- “the same number of ties”
This expression is understood as a neutral information, a kind

of base or sliding plane on which the transfer of the five ties takes
place and, in fact, these subjects motivate their answer “five” with:
“there is this transfer of five ties from P. to J. . . ..”

- “5 more, 5 less”
We frequently resort to similar expressions in situations

where, if I have five units more than another, the other has five
less than me and the difference between us is five.

Consider, for example, the case of the years: say that J. is five
years older than P. means to say that P. is five years younger than
J. and that the difference in years between the two is five, not ten.

In comparisons, we evaluate the difference with something
used as a term of reference, for example the age of P., which serves
as a basis, the benchmark, precisely.

- “he gives”
The verb “to give” conveys the concept of the growth of the

recipient, not the decrease of the giver, therefore, contributes
to the crystallization of the “same number,” preventing to grasp
the decrease of P.

APPENDIX B4

Square and Parallelogram Problem
(Wertheimer, 1925)
Given that AB = a and AG = b, find the sum of the areas of
square ABCD and parallelogram EBGD.

Typically, problem solvers find the problem difficult and fail
to see that a is also the altitude of parallelogram EBGD. They
tend to calculate its area with onerous and futile methods,
while the solution can be reached with a smart method,
consisting of restructuring the entire given shape into two
partially overlapping triangles ABG and ECD. The sum of
their areas is 2 x a b/2 = a b. Moreover, by shifting one
of the triangles so that DE coincides with GB, the answer is
“a b,” which is the area of the resultant rectangle. Referring
to a square and a parallelogram fixes a favored interpretation
of the perceptive stimuli, according to those principles of
perceptive organization thoroughly studied by the Gestalt
Theory. It firmly sets the calculation of the area on the sum
of the two specific shapes dealt with in the text, while, the
problem actually requires calculation of the area of the shape,
however organized, as the sum of two triangles rectangles,
or the area of only one rectangle, as well as the sum of
square and parallelogram. Hence, the process of restructuring is
quite difficult.

To test our hypotheses we formulated an experimental
version:

4 Versions and results of the problems exposed are already published in Macchi e
Bagassi 2012, 2014, 2015.

Experimental Version
Given that AB = a and AG = b, find the sum of the areas of the
two partially overlapping figures.

In this formulation of the problem, the text does not impose
constraints on the interpretation/organization of the figure, and
the spontaneous, default interpretation is no longer fixed. Instead
of asking for “the areas of square and parallelogram,” the problem
asks for the areas of “the two partially overlapping figures.” We
predicted that the experimental version would allow the subjects
to see and consider the two triangles also.

Actually, we found that 80% of the participants (28 out
of 35) gave a correct answer, and most of them (21 out of
28) gave the smart “two triangles” solution. In the control
version, on the other hand, only 19% (9 out of 47) gave the
correct response, and of these only two gave the “two triangles”
solution.

The findings were replicated in the “Pigs in a pen” problem:

Pigs in a Pen Problem
(Schooler et al., 1993)
Nine pigs are kept in a square pen. Build two more
square enclosures that would put each pig in a pen by itself.

The difficulty of this problem lies in the interpretation
of the request, nine pigs each individually enclosed in a
square pen, having only two more square enclosures. This
interpretation is supported by the favored, orthogonal reference
scheme, with which we represent the square. This privileged
organization, according to our hypothesis, is fixed by the text
which transmits the implicature that the pens in which the
piglets are individually isolated must be square in shape too.
The function of enclosure wrongfully implies the concept of
a square. The task, on the contrary, only requires to pen
each pig.

Once again, we created an experimental version by
reformulating the problem, eliminating the word “enclosure”
and the phrase “in a pen.” The implicit inference that the pen is
necessarily square is not drawn.

Experimental Version
Nine pigs are kept in a square pen. Build two more squares that
would put each pig in a by itself.

The experimental version yielded 87% correct answers (20
out of 23), while the control version yielded only 38% correct
answers (8 out of 25).

The formulation of the experimental versions was more
relevant to the aim of the task, and allowed the perceptual stimuli
to be interpreted in accordance with the solution.

The relevance of text and the re-interpretation of perceptual
stimuli, goal oriented to the aim of the task, were worked out in
unison in an interrelated interpretative “game.”

We further investigated the interpretative activity of thinking,
by studying the “Bat and ball” problem, which is part of
the CRT. Correct performance is usually considered to be
evidence of reflective cognitive ability (correlated with high
IQ scores), versus intuitive, erroneous answers to the problem
(Frederick, 2005).
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Bat and Ball problem
A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than
the ball. How much does the ball cost?___cents

Of course the answer which immediately comes to mind is 10
cents, which is incorrect as, in this case, the difference between
$ 1.00 and 10 cents is only 90 cents, not $1.00 as the problem
stipulates. The correct response is 5 cents.

Number physiognomics and the plausibility of the cost
are traditionally considered responsible for this kind of error
(Frederick, 2005; Kahneman, 2003).

These factors aside, we argue that if the rhetoric structure of
the text is analyzed, the question as formulated concerns only
the ball, implying that the cost of the bat is already known. The
question gives the key to the interpretation of what has been
said in each problem and, generally speaking, in every discourse.
Given data, therefore, is interpreted in the light of the question.
Hence, “The bat costs $ 1.00 more than” becomes “The bat costs
$ 1.00,” by leaving out “more than.”

According to our hypothesis, independently of the different
cognitive styles, erroneous responses could be the effect of the
rhetorical structure of the text, where the question is not adequate
to the aim of the task. Consequently, we predicted that if the
question were to be reformulated to become more relevant,
the subjects would find it easier to grasp the correct response.
In the light of our perspective, the cognitive abilities involved
in the correct response were also reinterpreted. Consequently,
we reformulated the text as follows in order to eliminate this
misleading inference:

Experimental Version
A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than
the ball. Find the cost of the bat and of the ball.

This time we predicted an increase in the number of
correct answers. The difference in the percentages of correct
solutions was significant: in the experimental version 90% of
the participants gave a correct answer (28 out of 31), and
only 10% (2 out of 20) answered correctly in the control
condition.

The simple reformulation of the question, which expresses
the real aim of the task (to find the cost of both items), does
not favor the “short circuit” of considering the cost of the
bat as already known (“$1,” by leaving out part of the phrase
“more than”).

It still remains to be verified if those subjects who gave
the correct response in the control version have a higher
level of cognitive reflexive ability compared to the “intuitive”
respondents. This has been the general interpretation given in the
literature to the difference in performance.

We think it is a matter of a particular kind of reflexive
ability, due to which the task is interpreted in the light of the
context and not abstracting from it. The difficulty which the
problem implicates does not so much involve a high level of
abstract reasoning ability as high levels of pragmatic competence,
which disambiguates the text. So much so that, intervening only
on the pragmatic level, keeping numbers physiognomics and
maintaining the plausible costs identical, the problem becomes
a trivial arithmetical task.

Frontiers in Education | www.frontiersin.org 10 December 2020 | Volume 5 | Article 538202224225

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


Playing Entropy Mastermind
can Foster Children’s
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Conceptual descriptions and measures of information and entropy were established in the
twentieth century with the emergence of a science of communication and information.
Today these concepts have come to pervade modern science and society, and are
increasingly being recommended as topics for science and mathematics education. We
introduce a set of playful activities aimed at fostering intuitions about entropy and describe
a primary school intervention that was conducted according to this plan. Fourth grade
schoolchildren (8–10 years) played a version of Entropy Mastermind with jars and colored
marbles, in which a hidden code to be deciphered was generated at random from an urn
with a known, visually presented probability distribution of marble colors. Children
prepared urns according to specified recipes, drew marbles from the urns, generated
codes and guessed codes. Despite not being formally instructed in probability or entropy,
children were able to estimate and compare the difficulty of different probability
distributions used for generating possible codes.

Keywords: information, entropy, uncertainty, Max-Ent, codemaking, codebreaking, gamified learning

INTRODUCTION

Information is a concept employed by everyone. Intuitively, the lack of information is uncertainty,
which can be reduced by the acquisition of information. Formalizing these intuitive notions requires
concepts from stochastics (Information and Entropy). Beyond the concept of information content
itself, the concept of average information content, or probabilistic entropy, translates into measures of
the amount of uncertainty in a situation.

Finding sound methodologies for assessing and taming uncertainty (Hertwig et al., 2019) is an
ongoing scientific process, which began formally in the seventeenth and eighteenth centuries when
Pascal, Laplace, Fermat, de Moivre and Bayes began writing down the axioms of probability. This
early work set the foundation for work in philosophy of science and statistics toward modern
Bayesian Optimal Experimental Design theories (Chamberlin, 1897; Good, 1950; Lindley, 1956;
Platt, 1964; Nelson, 2005). Probabilistic entropy is often defined as expected surprise (or expected
information content); the particular way in which surprise and expectation are formulated
determines how entropy is calculated. Many different formulations of entropy, including and
beyond Shannon, have been used in mathematics, physics, neuroscience, ecology, and other
disciplines (Crupi et al., 2018). Many different axioms have been employed in defining
mathematical measures of probabilistic entropy (Csiszár, 2008). Examples of key ideas include
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that only the set probabilities, and not the labeling of possible
results, affects entropy (these are sometimes called symmetry or
permutability axioms); that entropy is zero if a possible result has
probability one; and that addition or removal of a zero-
probability result does not change the entropy of a
distribution. An important idea is that entropy is maximum if
all possible results are equally probable. This idea traces back to
Laplace’s recommendation for dealing formally with uncertainty,
known as the principle of indifference:

If you have no information about the probabilities on the results
of an experiment, assume they are evenly distributed (Laplace,
1814).

This principle is fundamental for establishing what is called
the prior distribution on the results of experiments before any
additional information or evidence on these results leads to an
eventual updating of the prior, typically by means of Bayesian
inference. However, in most experimental situations there is
already some knowledge before the experiment is conducted,
and the problem becomes how to choose an adequate prior that
embodies this partial knowledge, without adding superfluous
information. One and a half centuries later, Jaynes in 1957
observed that Entropy is the key concept for generalizing
Laplace’s attitude, in what is today called the Max-Ent principle:

If you have some information about a distribution, construct
your a priori distribution to maximize entropy among all
distributions that embody that information.

Applying this principle has become possible and extremely
fruitful since the discovery of efficient, implementable algorithms
for constructing Max-Ent distributions. These algorithms began
being developed already in the early twentieth century without
rigorous proofs. Csiszár (1975) was the first to prove a
convergence theorem of what is now called the “iterative
proportional fitting procedure”, or IPFP, for constructing the
Max-Ent distribution consistent with partial information.
Recently computers have become powerful enough to permit
the swift application of the Max-Ent Principle to real world
problems both for statistical estimation and pattern
recognition. Today maximum-likelihood approaches for
automatically constructing Max-Ent models are easily
accessible and used successfully in many domains: in the
experimental sciences, particularly in the science of vision; in
language processing; in data analysis; and in neuroscience (see,
for instance, Martignon et al., 2000). The real-world applicability
of the Max-Ent Principle is thus an important reason for
promoting teaching information, entropy, and related concepts
in school.

Today there is agreement in Germany that the concepts of
“information”, “bit”, and “code” are relevant and should be
introduced in secondary education, and that first intuitions on
these concepts should be fostered even earlier in primary
education (Ministerium für Kultus and Jugend und Sport,
2016). However, this is not easy. Given that mathematically
simpler ideas, for instance of generalized proportions, can
themselves be difficult to convey (see, for instance, Prenzel
and PISA Konsortium Deutschland, 2004), how can one go
about teaching concepts of entropy and information to
children? Our work is guided by the question of how to

introduce concepts from information theory in the spirit of
the “learning by playing” paradigm (Hirsh-Pasek and
Golinkoff, 2004). We describe playful exercises for fostering
children’s intuitions of information content, code, bit and
entropy. In previous work (Nelson et al., 2014; Knauber et al.,
2017), described in Asking Useful Questions, Coding and
Decoding, we investigated whether fourth graders are sensitive
to the relative usefulness of questions in a sequential search task
in which the goal is to identify an unknown target item by asking
yes-no questions about its features (Nelson et al., 2014). The
results showed that children are indeed sensitive to properties of
the environment, in the sense that they adapt their question-
asking to these properties. Our goal is now to move on from
information content to average information content, i.e., entropy;
we develop a more comprehensive educational intervention to
foster children’s intuitions and competencies in dealing with the
concepts of entropy, encoding, decoding, and search (for an
outline of the success of this kind of approach, see Polya,
1973). This educational intervention is guided and inspired by
the Entropy Mastermind game (Özel 2019; Schulz et al., 2019).
Because the requisite mathematical concept of proportion largely
develops by approximately fourth grade (Martignon and Krauss,
2009), we chose to work with fourth-grade (ages 8–10) children.
The intervention study we present here is in the spirit of (Bruner,
1966; Bruner, 1970) enactive-iconic-symbolic (E-I-S) framework.
In the E-I-S framework, children first play enactively with
materials and games. Then they proceed to an iconic (image-
based) representational phase on the blackboard and on
notebooks. Finally, they work with symbolic representations
again on the blackboard and notebook.

INFORMATION AND ENTROPY

Information, as some educational texts propose (e.g., Devlin,
1991, p.6), should be described and taught as a fundamental
characteristic of the universe, like energy and matter. Average
information, i.e., entropy, can be described and taught as a
measure of the order and structure of parts of the universe or
of its whole. Thus, information can be seen as that element that
reduces or even eliminates uncertainty in a given situation
(Attneave, 1959). This description is deliberately linked with
the physical entropy concept of thermodynamics. The more
formal conceptualization of this loose description corresponds
to Claude Shannon’s information theory (Devlin, 1991, p.16).

Thus, a widely used educational practice, for instance in basic
thermodynamics, is to connect entropy with disorder and
exemplify it by means of “search problems”, such as searching
for a lost item. This can be modeled using the concept of entropy:
a search is particularly complicated when the entropy is high,
which means that there is little information about the
approximate location of the searched item and the object can
therefore be located at all possible locations with approximately
the same probability. At the other extreme, if entropy is low, as for
a distribution that is 1 on one event and 0 on all others, we have
almost absolute certainty. Another educational approach is to
describe information as a concept comparable to matter and
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energy. In this approach matter and energy are described as
carriers of information.

A slightly more precise way of thinking about information is
by imagining it as transported through an information channel. A
communication system, also called channel, can be described by
its four basic components, namely a source of information, a
transmitter, a possible noise source, and a receiver. This is
illustrated in Figure 1.

What is the information contained in a message that is
communicated through the channel? This depends on the
distribution of possible messages. An important approach to
information theory, understood as a component of the science
of communication, was formulated by Shannon in the late
forties (Shannon and Weaver, 1949). We illustrate this approach
as follows:

The basic idea behind Shannon’s information is inspired by
the “Parlor game”, the classical version of the “GuessWho?” game
we play today see Figure 2, below, which was well-known at the
beginning of the 20th century. In this game a player has to guess a
certain item by asking Yes-No questions of the other player, who
knows what the item is. Consider an example: If the message
describes one of the locations of a chess board then the player
needs 6 questions to determine the field, if the questions she asks
are well chosen. The same applies for guessing an integer between
1 and 64 if the player knows that the numbers are all equally

probable. The first question can be: “Is the number larger than or
equal to 32?”. According to the answer, either the interval of
numbers between 0 and 31 or the interval between 32 and 64 will
be eliminated. The next question will split the remaining interval
in halves again. In 6 steps of this kind the player will determine
the number. Now, 6 is the logarithm in base 2 of 64, or –log2 (1/
64). This negative logarithm of the probability of one of the
equally probable numbers between 1 and 64 allows for many
generalizations. Shannon’s definition of information content is
illustrated in Figure 2:

Here the event with probability p has an information content
of -log p, just like one square of the chess board has an
information content of −log (1/64) � 6.

The next step is to examine the expected information content
of a distribution on a finite partition of events. This best-known
formulation of average information is what Shannon called
entropy. One of the fundamental outcomes of information
theory was the derivation of a formula for the expected value
of information content on the background of a probabilistic
setting delivered by the information source. For a given
probability distribution p and partition F, the Shannon
entropy is

H(F) � −∑
n

i�1
pi log2 pi

FIGURE 1 |Diagram of an information channel (this is an adaptation of the standard diagram that goes back to Shannon andWeaver, 1949; fromMartignon, 2015).

FIGURE 2 | Generalizing the paradigm for defining information (from Martignon, 2015).
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Shannon entropy is habitually written with the above formula;
note that it can be written equivalently as follows:

H(F) � −∑
n

i�1
pi log2 pi � ∑

n

i�1
pi ( − log2 pi) � ∑

n

i�1
pi log2(1/pi)

The final formulation of Shannon entropy can bemore helpful for
intuitively understanding entropy as a kind of expected
information content, sometimes also called expected surprise
(Crupi et al., 2018). Shannon entropy can be measured
in various units; for instance, the bit (an abbreviation of
binary digit; Rényi, 1982, p. 19) is used for base 2 logarithms;
the nat is used for base e logarithms. A constant multiple can
convert from one base to another; for instance, one nat is log2(e) ≈
1.44 bits.

We have previously conducted studies that established
that children have intuitions about the value of information,
and that children can adapt question strategies to statistical
properties of the environments in question (Nelson et al.,
2014; Meder et al., 2019). Although probabilistic models of the
value of information are based on the concept of entropy, a
number of simple heuristic strategies could also have been used
by children in our previous work to assess the value of questions.
Many heuristic strategies may not require having intuitions about
entropy per se.

In this paper we explore whether primary school students have
the potential to intuitively understand the concept of entropy
itself. We emphasize that in primary school we do not envision
using technical terms such as entropy or probability at all; rather,
the goal is to treat all of these concepts intuitively. Our hope is
that intuitive early familiarization of concepts related to entropy,
coding, information, and decoding may facilitate future formal
learning of these concepts, when (hopefully in secondary school)
informatics and mathematics curricula can start to explicitly treat
concepts such as probability and expected value. A further point
here is that one does not need to be a mathematician to be able to
use the Entropy Mastermind game as an educational device in
their primary or secondary school classroom.

The learning environments we propose are based on
enactive playing either with jars and colored cubes or with
cards. As a concrete example consider a jar like the one
illustrated in Figures 3A–C. Mathematically, the average

information or entropy of the distribution of colors in the
jar in Figure 3A is.

If a jar contains only blue cubes, as in Figure 3B, then pblue � 1
and the entropy of the distribution is defined as 0. The entropy
is larger in a jar with many different colors, if those colors are
similarly frequent, as in Figure 3C: Here the entropy of the

distribution of the jar is −4 (1 /

4 log 1 /

4) � − log(1 /

4) � 2.

A theorem of information theory closely related to
Laplace’s Principle (see Information and Entropy) states
that maximal entropy is attained by uniform distribution.
A key question is whether primary-school children can learn
this implicitly, when it is presented in a meaningful gemified
context.

ASKING USEFUL QUESTIONS, CODING
AND DECODING

Jars with cubes of different colors make a good environment
for guiding children to develop good strategies for asking
questions. This can happen when the aim is to determine
the color of a particular cube. A more sophisticated learning
environment is also just based on jars with colored cubes
where children are led to strategizing at a metacognitive level
on how the distribution of colors in a jar relates to the difficulty
in determining the composition of the jar. The concepts
behind the two learning environments just described are
information content and entropy. Both activities, asking
good questions and assessing the difficulty determining the
composition of a jar, are prototypical competencies in dealing
with uncertainty.

As we mentioned at the beginning of the preceding section, the
game “Guess Who?” is tightly connected to the concepts of
information content and entropy. In that game, just as when
guessing a number between 1 and 64 (see Information and
Entropy) by means of posing yes-no questions, a good strategy

FIGURE 3 | Three jars with three different distributions and corresponding entropies.
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is the split-half heuristic, which consists of formulating at each
step yes-no questions whose answers systematically divide the
remaining items in halves, or as close as possible to halves.

Consider the following arrangement of cards for playing the
“Guess Who?” game in Figure 4:

Which is the best sequential question strategy in this game?
This can be solved mathematically: it is the one illustrated by
the tree in Figure 4, where branches to the right correspond to

the answer “yes”, while branches to the left correspond to the
answer “no”:

We have previously investigated children’s intuitions and
behavior in connection with these fundamental games. Some
studies investigated whether children in fourth grade are able to
adapt their question strategies to the features of the environment
(Nelson et al., 2014; Meder et al., 2019). Other studies investigated
a variety of tasks, including number-guessing tasks and

FIGURE 4 | The grid of the Person Game used in the study reported in (Nelson et al., 2014); the stimuli are reprinted with permission of Hasbro. The optimal
question strategy (from Nelson et al., 2014).
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information-encoding tasks (Knauber et al., 2017; Knauber,
2018).

The Foundation of the Present Study:
Asking Good Questions About the
Composition of Jars Containing Cubes of
Different Colors
The common feature of the study using the “Guess Who?” game
and the study presented here is the investigation of question-
asking strategies. We exemplify question-asking strategies
analogous to those used in the Guess-Who game using jars
filled with colored cubes. One of the cubes is drawn blindly, as
in Figure 5, blindly and the goal of the question asker is to find
out which cube it was. Importantly, only binary yes/no questions
are allowed. Figure 5 shows a jar and its corresponding question-
asking strategy, visualized as tree.

AN EDUCATIONAL UNIT USING ENTROPY
MASTERMIND FOR FOSTERING
INTUITIONS ABOUT ENTROPY
We now describe a novel game-based mathematics intervention
for fostering children’s intuitions about entropy and probabilities
using Entropy Mastermind. Entropy Mastermind (Schulz et al.,
2019) is a code breaking game based on the classic game
Mastermind. In Entropy Mastermind a secret code is
generated from a probability distribution by random drawing
and replacement. For example, the probability distribution can be

a code jar filled with cubes of different colors. The cubes in the jar
are mixed, an item drawn and its color noted. Then, the item is
put back into the jar. The jar is mixed again, another item is
drawn, its color noted and the item is put back into the jar. The
procedure is repeated until the code (for example a three-item
code) is guessed correctly. This code is the secret code the player,
also referred to as code braker, has to guess. To guess the secret
code, the code breaker can make queries. In each query, a specific
code can be tested. For each tested code, the codebreaker receives
feedback about the correctness of the guessed code. Depending on
the context and version of the game, the feedback can be given by
another player, the general game master or the teacher or, in the
case of a digital version of the game, the software. The feedback
consists of three different kinds of smileys: A happy smiley
indicates a guessed item is correct in kind (in our example the
color) and position (in our example position 1, 2 or 3) in the code;
a neutral smiley indicates that a guessed item is the correct kind
but not in the correct position; and a sad smiley indicates that a
guessed item is incorrect in both kind and position. The feedback
smileys are arranged in an array. Importantly, the order of smileys
in the feedback array is always the same: happy smileys come first,
then neutral and lastly sad smileys. Note that the position of
smileys in the feedback array are not indicative of the positions of
items in the code. For example, a smiley in position one of the
feedback array could mean that position one, two or three of the
guess is correct. To figure out which feedback item belongs to
which code item is a crucial component of the problem-solving
process players have to engage in when guessing the secret code.

But where does entropy come into play in Entropy
Mastermind? Between rounds of the game (one round refers to

FIGURE 5 | A jar filled with colored cubes and the corresponding illustration of a question asking strategy and the associated probabilities.
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a code being generated, the process of guessing until the correct
code is guessed) code jars may differ in their composition. For
example, in one round of the game the probability distributionmay
be 99 blue: 1 red and in another game it may be 50 blue: 50 red.
Under the assumption that exactly two colors comprise the code
jar, the entropy of the first code jar is minimal, whereas the entropy
in the second code jar is maximal. Children experience different
levels of entropy in the form of game difficulty. Empirical data from
adult game play shows that in high entropy rounds of the game
more queries are needed to guess the secret code than in the low
entropy rounds (Schulz et al., 2019).

The research question guiding the present work is whether fourth
grade students’ intuitions about the mathematical concept of entropy
can be fostered by a classroom intervention using Entropy
Mastermind. In the following section we present a road map for a
pedagogical intervention on entropy and probabilities for fourth
graders. In An Implementation of “Embodied Entropy Mastermind”
in Fourth Grade we will then report first results on the effectiveness of
Entropy Mastermind following precisely this road map from an
intervention study.

The Entropy Mastermind intervention consists of two
instruction units, each consisting of two regular hours of class.
The first unit is designed to give children the opportunity to
familiarize themselves with the rules of the game. The goal of
this first unit is to convey the important properties of entropy via
game play. Although these properties connect strongly to specific
axioms in mathematical theories of entropy (Csiszár, 2008),
technical terms are not explicitly used in the first unit. The
jargon should be accessible and not intimidating for children at
elementary school level. Students play the game first in the plenary
session with the teacher and then in pairs. Themain goal of the first
unit is to convey to students an understanding of maximum
entropy and minimum entropy. The associated questions
students should be able to answer after game-play include:

• Given a number of different code jars (differing in entropy),
with which jar is it hardest to play Entropy Mastermind?

• With which jar is it easiest to play Entropy Mastermind?
• Students also get the task to generate differently entropic code
jars themselves by coloring black-white code jars themselves,
so as to answer: Which color distribution would you choose
to make Entropy Mastermind as easy/hard as possible?

The second unit is devoted to an in-depth discussion of the
contents developed in the first unit. In addition, other aspects of
the entropy concept are included in the discussion. For example,
how do additional colors affect the entropy of the jar? What role
does the distribution of colors play and what happens if the secret
code contains more or less positions?

An important method to evaluate the effectiveness of
interventions are a pre- and a post-test of the skills or
knowledge intended to train in the intervention. In our first
intervention using the Entropy Mastermind game the pre- and
post-test were designed in the following way: In the pre-test we
recorded to what extent the children already had a prior
understanding of proportions and entropy. As entropy is
based on proportions and children have not encountered the

game yet (and thus may not be able to understand questions
phrased in the context of EntropyMastermind), testing children’s
knowledge of proportions in the pretest sets a baseline for the
assessment of learning progress through game-play.

In the post-test the actual understanding of entropy was
assessed. The post-test allows for phrasing questions in the
Entropy Mastermind context, where more detailed and
targeted questions about entropy can be asked.

Again, the key goals are for children to learn how to maximize or
minimize the entropy of a jar, how to identify the minimum and
maximum entropy jar among a number of jars differing in
proportions, how entropy is affected by changing the number or
the relative proportions of colors in the jar, and that the entropy of a
jar does not change if the color ratios remain the same but the colors
are replaced by others. The data collected in the pre- and post-test
were first evaluated to see whether the tasks were solved correctly or
incorrectly. In addition, the children’s responses were qualitatively
analyzed in order to develop categories for classifying children’s
answers. The aim of this analysis was to find out whether the given
answers were indicative of a deeper understanding of entropy and
whichmisconceptions arose. In addition, an analysis of the children’s
solutions was conducted, which was developed within the framework
of the teaching units, in order to establish how the strategies for
dealing with entropy had been developed during the unit.

INSTRUCTION ACTIVITY

Implementing Entropy Mastermind as an activity in the
classroom can be done in at least two ways: by means of an
“embodied approach” having children play with jars and cubes of
different colors or with a more digital approach, in which they
play with an Entropy Mastermind app. We describe here a
roadmap for a classroom activity based on playing the “jar
game”, which is a physically enactive version of Entropy
Mastermind. The different steps of the intervention are
presented as a possible road map for implementing the
embodied Mastermind activity.

First Unit: Introducing Entropy Mastermind
The first step for the teacher following our roadmap is to
introduce the modified Entropy Mastermind game by means
of an example. The teacher uses a code jar, and several small
plastic cubes of equal size and form, differing only in color. She
asks a student to act as her assistant.

The teacher and (his/)her assistant demonstrate and explain
the following activity:

The teacher (the coder) verifiably and exactly fills a 10 × 10
grid with 100 cubes of a specific color (green) and puts them into
a fully transparent “code jar” so that the children can see the
corresponding proportions. Then she fills the 10 × 10 grid again
with 100 cubes of the same color and places them also into the jar.
Finally she fills the 10 × 10 grid with cubes of another color
(yellow). The teacher notes that it can sometimes be helpful to
look at the code jar when all the cubes are inside, before they get
mixed up. After the cubes have been put in the code jar, they get
mixed up.

Frontiers in Education | www.frontiersin.org June 2021 | Volume 6 | Article 5950007

Özel et al. Playing Entropy Mastermind

231232

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Drawing Cubes to Generate a Code
The teacher can work with a worksheet dedicated to codes and
coding, which she/he projects on the whiteboard.

Guessing the Code:
The assistant, “the guesser”, determines the code by filling in each
square on the worksheet in the “Guess 1” position (see Figure 6):
For the first query, the guesser chooses yellow, yellow, yellow. The
idea that guesses should be minimized is emphasized by having
images of a 1 euro coin next to each guess; after a guess is made, the
teacher crosses out the corresponding 1 euro coin. The aim of the
game is to guess the code as quickly as possible using an efficient
question strategy. The coder gives feedback consisting of one smiley
face and two frowny faces (see Figure 6). The smiley face means
that one of the squares, we don’t know which one, is exactly right:
the right color and the right position. The two frowny faces mean

that two items in the true code match neither the color nor the
position in the guess. Now the guesser knows that the code contains
exactly one yellow cube. Because the only other color is green, the
code must also contain two green cubes. For the second query the
guesser chooses yellow, green, green, as in Figure 6. The feedback
for this guess is one smiley face and two neutral faces. Again, the
order of the feedback smileys does not correspond to positions in
the code; they only tell you how many positions in the guesses are
exactly right (smiley face), partly right (neutral face) or completely
wrong (frowny face). Explaining the feedback is a crucial point in
the classroom. The teacher must ensure that the feedback
terminology is understood. In guess 3 the guesser guesses the
rightmost location of the yellow cube, and is correct, obtaining
all smiley faces in the feedback. The guesser gets a score of 5, because
he had to pay for each of the 3 guesses (include the guess when he
had figured the right code out). There are 5 of 8 “Euros” left.

FIGURE 6 | The Worksheet for playing Entropy Mastermind, completed following an example as illustrated in Guessing the Code.
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This process is repeated with new code jars and recipes and
corresponding worksheets projected on the whiteboard until the
children understand the rules of the game.

Self-Guided Play: Entropy Mastermind in Pairs
The next step for the children is to play the game with small jars
against each other. They are grouped in pairs. A coin toss decides
which of the children in each pair is going to be the first guesser
and who is going to be the first coder.

Filling the Code Jar and Getting the Worksheets
The teacher asks the coder to come to the front. A coin flip
determines whether each pair starts with the 1:2 or 1:12
distribution. According to the distribution, the coder obtains a
previously filled-and-labeled small jar or cup, for example with 20
yellow cubes and 40 green cubes. Furthermore, the coder picks up
four corresponding worksheets, for the three-item-code-length game,
that are already labeledwith the corresponding recipe. The coder goes
back to her place in order to play with her partner (guesser).

Verifying the Proportions
Each pair takes the cubes out of their code jar, verifies that the
proportions are correct, puts the cubes back in, and mixes up the
cubes in the code jar.

Blindly Generating and Guessing the Code
The coder and guesser switch roles and repeat the steps described
in 4. They play the game twice more. Afterward the children turn
in the code jars and the completed worksheets. The teacher adds
up the scores (in euros) for all the children, who played the game
with the 1:2 and the 1:12 code jars. She presents the scores for
each of the two distributions and asks the children about the
connection between the scores and the distributions. We describe
this discussion in the following paragraph.

Discussion With the Children
The teacher leads the classroom discussion. The main topics/
questions are:Which jar was ‘easier’ and which jar was ‘harder’ to
play with? It should be clear that the scores are higher for the 1:12
jar than for the 1:2 jar, without using the word entropy.
Furthermore, the teacher asks: Imagine you could code your
own jar. You have two colors available. How would you choose
the proportions to make the game as easy as possible (minimum
entropy), and how would you choose the proportions to make the
game as hard as possible (maximum entropy)? This discussion is a
good opportunity to see whether children have figured out that
the hardest jar (maximum entropy) in the case of two colors has a
50:50 distribution, and that the easiest (minimum entropy) jar in
the case of two colors has all (or almost all--perhaps task
pragmatics require having at least one jar of each color) cubes
of the same color.

The following questions are intended to prepare students for
the next intervention, while also encouraging them to intuitively
think further about the concept of entropy intuitively:

•What would happen if there were more than two colors in the
code jar?

• Would this make it easier or harder to guess the code?
• Would it depend on the proportions of each color?
•Would it be easier or harder to play if a code jar weremadewith
small scoops or with large scoops, but using the same recipe?

• Would it be easier or harder or the same to guess the code if
the jar contained blue and pink cubes, as opposed to green
and yellow cubes?

• Would increasing the code length from three to four make
the game easier or harder?

Summing up, the goal of the first intervention unit is to introduce
the Entropy Mastermind game, to consolidate children’s
understanding of proportions, and to highlight some principles of
entropy that will apply irrespective of the number of different colors.
In the following, we give an overview of the second unit.

Second Unit: Varying Code Lengths and
Multiple Colors
The procedure of the second unit is similar to that of the first unit.
However, the focus is on fostering children’s intuitions about how
the code length and the number of colors impact on the difficulty of
game play. For this unit, new jars are introduced. One code jar has
three colors with the recipe (2:1:1). This could mean, for instance,
that if four cubes are red, then two cubes are blue and two cubes are
green. Another code jar has six colors with the recipe proportions of
35 cubes of one color and one cube each of the five other colors (35:1:
1:1:1:1). During the independent self-guided group work, the teacher
becomes an assistant to the pupils. Pupils have the opportunity to ask
questions whenever something is unclear to them, thereby giving the
teacher insight into the pupils’ strategies. Following the game play,
the teacher conducts a discussion by asking questions testing
students’ understanding of entropy, such as:

• How many colors are represented?
• What is the relative proportion of each color?
• If you could change the color of a cube in the 2:1:1 jar, to
make it easier/harder, what would you do?

• Would you do the same thing if you could only use specific
colors, or if you could use any color?

• If you had six available colors and wanted to make a code jar
as easy/hard as possible, how would you do that?

The above procedure gives some guidelines for using these
enactive activities and group discussion to foster intuitive
understanding of Entropy. The teachers who implement these
units can devise their own pre-tests and post-test to assess
measures of success. In the next section we describe one such
intervention that we have tested ourselves.

AN IMPLEMENTATION OF “EMBODIED
ENTROPY MASTERMIND” IN FOURTH
GRADE
We now report here on a concrete implementation of Entropy
Mastermind with jars and cubes in fourth grade in an empirical
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study based on intervention with N � 42 students (22 girls and 20
boys between the ages of 9 and 10, including 2 students with learning
difficulties) from two fourth-grade classes in an elementary school.

In this intervention children were tested before and after the
instruction units which were performed following the roadmap
described above. Here we describe the contents of the pre- and
post-test chosen in this particular case. The first author, who
implemented the interventions, analyzed and evaluated the pre-
and post-test. She also analyzed the children’s worksheets during
the instruction unit. The aim of this analysis was to evaluate
children’s strategies when dealing with entropy, and how they
evolved during the unit.

Pre-Test: Building Blocks of Entropy
Because, prior to the Entropy Mastermind unit, children would
not be in a position to answer questions about code jars being
easier or harder for Entropy Mastermind, we decided to have a
pre-test dedicated to the essential implicit competencies required
for understanding entropy, namely dealing with proportions. For
instance, a basic competency for both probability and entropy is
that of being able to grasp whether 8 out of 11 is more than 23 out
of 25. Thus, the tasks chosen for the pre-test (see Figure 7)
allowed us to assess children’s understanding of proportions prior
to the intervention. The tasks used in the pre-test were inspired by
tasks of the PISA Tests of 2003 (Prenzel and PISA Konsortium
Deutschland, 2004), and also from the pre-test of a previous
intervention study performed by two of the authors of this paper
and (Knauber et al., 2017; Knauber, 2018). As an example of such
tasks involving proportions, we present Task 1 in Figure 7A and
we also present a proportion task with a text cover story (Task 3 in
the pre-test) in Figure 7B:

Children’s answers to the Pre-test were quantified and analyzed.

The Post-Test: Assessing Intuitions About
Entropy
In the post-test, Entropy Mastermind-specific knowledge
introduced in the teaching units could be taken into
consideration for the design of the questions. Moreover, the
rules introduced during the instruction unit made it possible
to ask detailed and targeted questions. These questions were
devoted to assessing the way children deal with entropy. It was
possible to assess to what extent children understood how to
maximize or minimize the entropy of a jar, whether they could
design code jars according to predefined distributions, and how
they dealt with comparing jars with different ratios and numbers
of elements. They also made it possible to measure the extent to
which children understood how entropy is affected by the
number of colors in the code jar and that replacing colors
without changing color ratios does not affect entropy. Some
examples of the post-test tasks are given in Figure 8:

Children’s answers to the post-test tasks were also quantified
and analyzed.

We analyzed the results of the pre- and post-test, as well as
of results of a detailed analysis of children’s answers during the
instruction units. Data collected in the pre-test and post-test
were first analyzed quantitatively to determine whether the
tasks were solved correctly or incorrectly. Children’s’ answers
were then analyzed qualitatively by establishing categories and
classifying answers accordingly. The aim of this categorization
was to find features that show to what extent the answers given
are actually based on a correct underlying theoretical

FIGURE 7 | (A) Task 1 of the Pre-test. (B) Task 3 of the Pre-test.
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understanding, and what difficulties arose in dealing with
entropy.

Results of the Pre-Test
71.4% of the students chose the correct answer in Task 1 (see
Figure 9, top; here the orange bars represent correct
argumentation). Because this percentage does not reveal
features of children’s thinking and understanding while
solving the task, a finer classification is also presented in the

bottom panel of Figure 9. A closer look at reasons students gave
for choosing this answer showed that only 2 children out of 42
related the task to proportional thinking. All the other 40
children argued in a way that suggests that proportional
thinking did not take place and thus no intuitions about
entropy in the jars; this is made clear by Figure 9. In
particular, children tended to think that it is easier to draw a
white marble in the jar with a smaller total number of marbles.

Some answers of the children according to the categories will
be shown below:

Answer 1 in Figure 10 presents a child’s response who
reasoned correctly. Here the distributions of the given jars
were compared by multiplying the number of elements of the
smaller jar so as to make it comparable to the number of the larger
quantity.

Answer 2, 3 and 4 are examples of wrong reasoning. The
child’s reasoning in answer 2 corresponds to the category of
children who argued based on the total number of marbles in a
jar: It is easier to draw a white marble out of a jar with less marbles
than the other jar.

The third answer is an example of the following way of
thinking: The less often a marble appears, the greater is the
probability of drawing this ball.

About half of the children’s responses correspond to
preferring a jar with the higher absolute number of convenient
preferred-color marbles.

We show also the answers to Task 2, which was similar to Task
1 with 2 white and 3 black marbles in jar 1, and 6 white and 8
black marbles in jar 2. The rationales that the children gave
mostly corresponded to those of Task 1.

Approximately half of all (47.6%) children chose the
correct answer in Task 2 (see Figure 11). The dominant
argument for Task 2 was, as in Task 1, based on the total
number of marbles in the respective jars, not on the ratio. This
shows that children in the pre-test had poor intuitions on
proportions, which form a building block of the understanding
of entropy.

Because not all children’s responses could be assigned to the
previously formed categories, the category system of Task 1 was
expanded by one category. Statements that relate exclusively to
the arrangement of the marbles in a jar, but do not consider
probabilities, are assigned to this category.

As mentioned before, with the increased number of marbles in
jar 2, additional naive arguments were added to the categorization
system: Because there are more marbles in jar 2, it may happen
that the convenient marbles are covered by the unfavorable
marbles. Due to this fact, one has to reach deeper into the jar
to get the desired marble. Proportions are not considered in this
line of thinking.

Task 3 on lettuce, which explicitly tests proportional thinking,
was correctly solved by 23 children (54.8% of the sample). 19% of
the correctly chosen answers presented arguments by reference to
proportions (see student example in Figure 12A); all other
children gave answers which indicate that proportions were
not considered (see Figure 12B).

All children’s responses for Task 3 could be assigned to the
categories established for the children’s answers in the

FIGURE 8 | Selected tasks from the Post-test: 1, 3, 8, 10, 12.
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previous tasks. Figure 13 shows the distribution of the given
answers:

Results of the Posttest
We give for each task in the posttest a short description and
present the corresponding results. Task 1 requires an
understanding of proportions. The children had to complete
code jars by coloring squares as specified and according to
given distributions. 57.1% of the children (24 children)
fulfilled the requirements and painted all given jars
correctly. 23.8% (10 children) completed two of three jars
correctly, 11.9% (5 children) completed one jar correctly and
7.1% (3 children) colored the squares incorrectly (see task 1 in
Figure 14).

In Task 2, 3 and 4 the children had to identify the jar with the
highest entropy (the “hardest”) out of the three. The jars in Task 2
are made up of cubes of two different colors, while in Task 3 and 4
the number of colors varies between two and five. These tasks
required an understanding of how the level of entropy depends on
the number of colors and their proportions. Task 2 was solved
correctly by 92.9% of the children, task 3 by 81% and Task 4 by
88.1% (see Task 2, 3 and 4 in Figures 14).

In Task 5 and 8 the children had to complete jars by coloring
squares according to a list of colors. They had to maximize
entropy under given conditions. Only 50% of the children

solved task 5 correctly. Nevertheless, 33% of the children
who solved the task incorrectly, distributed their chosen
colors equally, satisfying the requirement that entropy should
be maximal. However, they did not use all the listed colors (see
Tasks 5 and 5 Z in Figure 14).

Task 8 was correctly solved by 73.8% of the children
(Figure 14).

In Task 6, 7 and 9 the children also had to complete jars by
coloring in squares with listed colors. But this time they had to
minimize the entropy under given conditions. These tasks also
differ in the number of listed colors. Observe that Entropy
Mastermind is easiest to play if the jar is coded with only one
color. In this case the entropy is 0 bit. In task 6, four of the given
twelve squares are colored orange and orange is among the listed
colors. 59.5% of the children solved this task correctly by coloring
in the remaining squares in orange as well. 40.5% of the children
solved the task incorrectly: They reduced entropy by coloring all
the squares orange except one. In this solution, entropy is very
low, but not minimal (see Tasks 6 and 6 Z in Figure 14).

Task 7 was solved correctly by 88.1% of the children and Task
9 by 64.3% (see Task 7 and 9 in Figure 14).

Tasks 10 and 11 require an understanding of proportions. Two
jars with different basic quantities and color distributions have to
be compared. 92.8% of the children solved Task 10 correctly and
95.2% solved Task 11 correctly (Figure 14).

FIGURE 9 | Percentages and classification of children’s answers on Task 1.
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Task 12 shows two jars. Both of them have the same number of
squares and the distributions of the colors are identical. They differ
only in the choice of color. This task requires the understanding
that the choice of color does not influence the entropy of a jar.
90.4% of all children solved this task correctly (Figure 14).

Comparison Between the Pre-Test and the
Post-Test in Proportion Comparison
In summary, although an average of 57.9% of all tasks were
correctly solved in the pre-test, the analysis of children’s
reasoning shows that only 9.5% of the answers were actually
based on an intuitive understanding of proportion comparison.
Many children showed misconceptions, such as the incorrect
additive strategy in proportional thinking. Similarly, relationships
between two basic sets were often not considered, and reasoning

was mainly based on the absolute frequency of favorable or
unfavorable marbles.

In the Post-test an average of 77.6% of the tasks were solved
correctly. Nine of the 12 tasks had been designed with the goal that
an understanding of proportion comparison on the one hand, and
entropy on the other, was essential for correct answers. For the
three other multiple-choice tasks, a correct answer by guessing
cannot be excluded, but the solution rates for these tasks are not
conspicuously higher than for the other tasks.

As wementioned, the data collected in the pre-test and post-test
were evaluated in order to determine whether the tasks were solved
correctly or incorrectly. In addition, students’ answers were
analyzed qualitatively by establishing categories, to which the
answers could be clearly and unambiguously assigned. As we
already explained, the categories were based on similarities and
differences between answers: the aim was to assess the extent to

FIGURE 10 | Children’s answers according to the categories depicted in Figure 9.
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which the answers given were actually based on understanding.
Another issue of interest was the type of difficulty that arose in
dealing intuitively with the concept of entropy.

The most relevant aspect of our comparison was the following:
while in the pre-test, children gave answers that indicate incorrect
additive comparisons with regard to proportions, this seldom
occurred in the post-test. Given that the pre- and post-test
items were not exactly the same (because the pre-test could not
contain Entropy-Mastermind-specific questions), some caution
needs to be made in interpreting these results. However--
especially given the much greater theoretical difficulty of the
post-test items--we take the results as very positive evidence for
the educational efficacy of the Entropy Mastermind unit.

CONCLUSION

Competence in themathematics of uncertainty is key for everything
from personal health and financial decisions to scientific reasoning;
it is indispensable for a modern society. A fundamental idea here is
the concept of probabilistic entropy. In fact, we see entropy both as
“artificial” in the sense that it emerges from abstract considerations
on structures imposed on uncertain situations, and as “natural” as
suggested by our interaction with the environment around us. We
propose that Entropy as a measure of uncertainty is fundamental in

consideration of the physical order and symmetry of environmental
structures around us (Bomashenko, 2020).

After having played EntropyMastermind, the majority of fourth-
grade students (77.6%) correctly assessed the color distribution of
code jars in their responses. This can be interpreted as showing that
children were able to develop an intuitive understanding of the
mathematical concept of entropy. The analysis of the students’
written rationales for their answers gave further insight into how
their strategies and intuitions developed during game-play. It seems
that with increasing game experience children tended to regard
Entropy-Mastermind as a strategy game, and not only as a game of
chance. By developing strategies for gameplay, the childrenwere able
to increase the chance of cracking the code, despite the partly
random nature of the game. Many strategies that were used are
based on an understanding of the properties of entropy. It was
impressive how the children engaged in gameplay and improved
their strategies as they played the game. Although we did not include
the post-test items in the pre-test, for the reasons explained above,
and thus direct comparisons between the pre- and post-test are not
straightforward, we infer that children’s high scores in the post-test
are at least partly attributable to their experiences during the Entropy
Mastermind unit.

Qualitatively, children reported that the game Entropy
Mastermind was fun, and their verbal reports give evidence that
the game fostered their intuitions about entropy: students

FIGURE 11 | Percentages and classification of children’s answers on task 2.
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repeatedly asked whether they could play the game again. This
observation corroborates the finding in the literature that students
enjoy gamified learning experiences (Bertram, 2020) and suggests
that games can foster intuitive understanding of abstract concepts
such as mathematical entropy. It is remarkable that we found this
positive learning outcome in elementary school students, whose
mathematical proficiency was far from understanding formulas as
abstract as mathematical entropy at the time of data collection.

Building on the road map described here, we are extending
the Entropy Mastermind unit to include a digital version of the

game and additional questionnaires and test items in the pre-
and post-test (Schulz et al., 2019; Bertram et al., 2020).
We have developed a single-player app (internet-based)
version in which children can play Entropy Mastermind
with differently entropic code jars and varying code lengths.
This makes the Entropy Mastermind App a malleable learning
medium which can be adapted to children’s strengths and
needs. A key issue in future work will be to identify how best to
make the app-based version of Entropy Mastermind adapt to
the characteristics of individual learners, to maximize desired

FIGURE 13 | Categories for the analysis of answers to Task 3 in the pre-test.

FIGURE 12 | (A). Explanation based on comparison. (B) A solution with no comparison of proportions of proportions.
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learning and attitudinal outcomes. The digital Entropy
Mastermind unit is well suited for digital learning in
various learning contexts, for example for remote schooling
during the Covid-19 pandemic. At the same time, the extended
pre- and post-test, including psychological questionnaires and
a variety of entropy-related questions, allows us to generate a
better understanding of the psychology of game-based
learning about entropy.

Summing up, using Entropy Mastermind as a case study, we
showed that gamified learning of abstract mathematical concepts
in the elementary school classroom is feasible and that learning
outcomes are high. We are happy to consult with teachers who
would like to introduce lesson plans based on EntropyMastermind
in their classrooms. Although our focus in this article is on Entropy
Mastermind, we hope that our results will inspire work to develop
gamified instructional units to convey a wide range of concepts in
informatics and mathematics.
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An increasing number of learning goals refer to the acquisition of cognitive skills that
can be described as ‘resource-based,’ as they require the availability, coordination,
and integration of multiple underlying resources such as skills and knowledge facets.
However, research on the support of cognitive skills rarely takes this resource-based
nature explicitly into account. This is mirrored in prior research on mathematical
argumentation and proof skills: Although repeatedly highlighted as resource-based,
for example relying on mathematical topic knowledge, methodological knowledge,
mathematical strategic knowledge, and problem-solving skills, little evidence exists on
how to support mathematical argumentation and proof skills based on its resources.
To address this gap, a quasi-experimental intervention study with undergraduate
mathematics students examined the effectiveness of different approaches to support
both mathematical argumentation and proof skills and four of its resources. Based
on the part-/whole-task debate from instructional design, two approaches were
implemented during students’ work on proof construction tasks: (i) a sequential
approach focusing and supporting each resource of mathematical argumentation and
proof skills sequentially after each other and (ii) a concurrent approach focusing and
supporting multiple resources concurrently. Empirical analyses show pronounced effects
of both approaches regarding the resources underlying mathematical argumentation
and proof skills. However, the effects of both approaches are mostly comparable, and
only mathematical strategic knowledge benefits significantly more from the concurrent
approach. Regarding mathematical argumentation and proof skills, short-term effects of
both approaches are at best mixed and show differing effects based on prior attainment,
possibly indicating an expertise reversal effect of the relatively short intervention. Data
suggests that students with low prior attainment benefited most from the intervention,
specifically from the concurrent approach. A supplementary qualitative analysis
showcases how supporting multiple resources concurrently alongside mathematical
argumentation and proof skills can lead to a synergistic integration of these during proof
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construction and can be beneficial yet demanding for students. Although results require
further empirical underpinning, both approaches appear promising to support the
resources underlying mathematical argumentation and proof skills and likely also show
positive long-term effects on mathematical argumentation and proof skills, especially for
initially weaker students.

Keywords: instructional design, mathematics, mathematics education, whole-task learning, mathematical proof,
higher education, resource-based cognitive skills, argumentation

INTRODUCTION

Today, educators in formal and informal learning settings
deal with increasingly complex skills as learning goals, such
as argumentation or complex problem solving (e.g., National
Research Council, 2012; Osborne, 2013; Greiff et al., 2014), which
require the availability, coordination, and integration of multiple
underlying cognitive resources.

Research from educational psychology focusing on the
support of complex skills has long been examining part- and
whole-task approaches for learning (e.g., Naylor and Briggs, 1963;
Anderson, 1968; Lim et al., 2009). Here, part-task approaches
focus on the acquisition of individual part tasks or steps
within a larger task to later integrate these into the whole
task, whereas whole-task approaches focus on the immediate
acquisition of the larger, entire task. Cumulative evidence
from corresponding research of the last decades generally
points to a higher effectiveness of whole-task approaches to
support complex skills (e.g., van Merriënboer and Kester, 2007;
Melo and Miranda, 2016).

Respective research has focused on different parts of larger,
complex tasks, which can be decomposed into a number
of discrete subtasks, and how those can be learned and
transferred to the overall task. It did not focus on different
(dispositional) resources possibly required for a specific skill.
Still, research from (educational) psychology and mathematics
education (e.g., Koeppen et al., 2008; Schoenfeld, 2010; Blömeke
et al., 2015) has increasingly stressed the fact that many skills
currently focused as educational goals, such as mathematical
argumentation and proof skills, rely heavily on several underlying
resources that need to be coordinated and integrated to solve
problems or successfully meet situations requiring the skill.
Researchers increasingly acknowledge that these skills should
be conceptualized as resource-based cognitive skills. However,
these underlying resources are rarely considered in the design
of learning environments. Although the idea of supporting
a resource-based cognitive skill by “simply” supporting its
resources and their application is compelling, an instructional
dilemma arises: To foster the overarching skill, is it favorable
to focus on each resource and the support of its acquisition
sequentially? Or should the focus rather be on all resources and
their joint application, concurrently? Both approaches appear
to have advantages: The first approach benefits from a higher
decomposition and instructional clarity as all resources are
addressed individually, yet also requires the later transfer from
the individual resources to the overall skill. In contrast, the

second approach may overwhelm students with the resource-
based cognitive skill and its underlying resources all at once, yet
allows an integrated learning of the resources in authentic settings
that support the integration of the resources and already trains
their concurrent application within mathematical argumentation
and proof tasks.

The dilemma mirrors the part-/whole-task debate (see
Figure 1), as (i) supporting each resource underlying a resource-
based cognitive skill sequentially is analog to the part-task
approach, whereas (ii) supporting the resources concurrently
is analog to the whole-task approach. However, the resources
underlying a resource-based cognitive skill go beyond individual
steps or subtasks, may have to be purposefully applied within
multiple steps, and require more than a sequential enchainment
as compared to the individual part tasks. Thus, the transfer
of the central tenet from the part-/whole-task debate, that
whole-task learning is generally more effective for complex
skills, appears questionable and has yet to be investigated
thoroughly. In particular, it is generally unclear how effective
both approaches for supporting the resources are regarding a
complex cognitive skill such as mathematical argumentation
and proof skills and whether any learning gains on the
resources can be instantly transferred or used for mathematical
argumentation and proof.

Over the last decades, increasing evidence suggests that
mathematical argumentation and proof skills should be

FIGURE 1 | Structural equivalence between the part-/whole-task debate
(upper part) and the sequential and concurrent approach to support a
resource-based cognitive skill and its resources (lower part).
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considered as a resource-based cognitive skill. For example,
mathematical topic knowledge, methodological knowledge, or
problem-solving skills have been proposed by prior research as
underlying resources (e.g., Schoenfeld, 1985; Heinze and Reiss,
2003; Ufer et al., 2008; Chinnappan et al., 2012), for example
needed in common proof construction tasks (see Figure 2).

The present contribution addresses the question how
mathematical argumentation and proof skills, as a prototype
of a resource-based cognitive skill, as well as its underlying
resources can be effectively supported. We therefore contrast
two (resource-based) instructional approaches to support the
development of mathematical argumentation and proof skills:
a sequential approach, focusing and supporting each resource
individually one after the other, and a concurrent approach,
focusing and supporting multiple resources concurrently. We
compare students’ learning outcomes in both approaches,
regarding both the resources and overall argumentation and
proof skills, to give first insights into the effects of both
approaches and their feasibility in the context of mathematical
argumentation and proof skills and more generally.

THEORETICAL BACKGROUND

Instructional Approaches for Complex
Skills
The idea that instructional strategies to support the learning
of less complex skills may differ from those to support more
complex skills has been raised repeatedly by educators and prior
research (e.g., Branch and Merrill, 2011). Yet, the idea entails

serious intricacies, starting with the notion of skill complexity,
which is ill-defined.

Naylor and Briggs (1963) gave a seminal account of task
difficulty, differentiating two independent dimensions: task
complexity, accounting for the individual complexity of the
subtasks, and task organization, describing the demands posed
by the interrelationship between the various subtasks and their
integration into the whole task. Their experimental study (Naylor
and Briggs, 1963) suggests that tasks with a high subtask
complexity but low task organization benefit from part-task
training. That is, individual subtasks are trained and afterward
connected using different sequencing strategies. In contrast, tasks
with low subtask complexity but high task organization benefit
from whole-task training, as combining individually learned
subtasks is more complex for these tasks. Further, tasks that
require not only enchaining but also integrating several subtasks
can be more effectively taught using whole-task approaches
(Naylor and Briggs, 1963).

Subsequent research contrived plausible theoretical arguments
and empirical evidence for both approaches: Arguments for the
part-task approach are mostly based on classical learning theories
from psychology research like Adaptive Control of Thought
(ACT; Anderson, 1996) that assume the decomposability of
complex skills into less complex part skills (Anderson, 2002).
Based on these assumptions, for example, multiple computer-
based approaches like cognitive tutors (Anderson et al., 1995)
were developed to support mathematical skills and at least
partially proven to be successful. This atomistic approach
has been challenged by sociocultural and situated conceptions
of learning that highlight the situatedness of learning (e.g.,

FIGURE 2 | Mathematical proof construction task including solution and exemplary highlights for required resources.
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Brown et al., 1989; Lave and Wenger, 1991). The superior
effectiveness of whole-task approaches also gained empirical
support by evidence pointing to difficulties associated with
attempts to transfer and integrate part tasks to the whole task (see
Anderson et al., 1996 for a critical discussion).

Several studies and reviews (e.g., Lim et al., 2009; Melo and
Miranda, 2015; see van Merriënboer and Kester, 2007 for an
overview) document the advantages of whole-task learning for a
broad range of learning goals. For example, a meta-analysis on the
effects of four-component instructional design (4C/ID) learning
environments on school students’ learning (Melo and Miranda,
2016) revealed high positive effects on reproduction (d = 0.70)
and transfer (d = 0.65). Today, many educational theories assume
that learning is evoked and supported best by rich, meaningful
tasks (van Merriënboer, 2002), which are hard to achieve by
focusing on an atomistic approach dissecting whole tasks.

However, empirical studies highlight that, in some situations,
the benefits of learning the resources separately may be higher
than the challenges of integrating and coordinating the tools in
the complex goal task (So et al., 2013) and that additional research
may identify which aspects of a skill influence how effective
different learning approaches are (Lim et al., 2009; Wickens et al.,
2013). For example, Wickens et al. (2013) were able to show that
the effectiveness of part-task training depends not only on task
difficulty but that the approach for segmenting the whole task
into part tasks plays a decisive role. Here, segmenting into parts
that have to be used concurrently in the whole task showed a
particularly negative effect on the transfer of part-task learning
gains to the whole task. Although not prominent in the analysis
by Wickens et al. (2013), another aspect discussed repeatedly
is prior knowledge or attainment (Salden et al., 2006), as with
low prior attainment, both the part tasks and their integration
have to be learned.

Still, what has been described as a complex skill in earlier
research (c.f., Gagné and Merrill, 1990; van Merriënboer, 1997)
seems quite incomparable to skills like argumentation. For
example, creating spreadsheets for monthly sales figures (Merrill,
2002) or handling a mechanic excavator (So et al., 2013) cannot be
seen as equivalent to argumentation skills, since here not only the
integration of several subtasks or subskills in the sense of manual
skills, operations, or activities is required but also an integration
of various resources underlying the skill, which have to be
monitored, coordinated, and regulated. Further, the resources
have to be utilized in different ways (for example, when analyzing
the task, when creating a plan to solve the task, when solving the
task, and when validating the solution), cannot be sequentially
enchained, and have to be used concurrently, interacting with
each other. It is thus unclear if and how according research can be
transferred to more complex cognitive skills and their resources.

Resource-Based Cognitive Skills
Cognitive skills are often conceptualized in the sense of Koeppen
et al. (2008) as latent cognitive dispositions underlying a
person’s performance in a range of specified situations. For
example, mathematical argumentation and proof skills refer
to the cognitive disposition necessary to handle proof-related
situations and activities (e.g., Mejía-Ramos and Inglis, 2009).

Such situations may ask an individual to construct a valid
mathematical proof for a claim or to read a purported proof
and judge its correctness. However, judging a person’s success
in handling these situations is not straightforward but depends
on certain norms to evaluate success. Although norms and
values regarding mathematical proofs are generally seen as
quite consistent (e.g., Heinze and Reiss, 2003; Dawkins and
Weber, 2016), research has still repeatedly shown that they
vary to a certain extent (e.g., Inglis et al., 2013; Andersen,
2018) and should be regarded as a social construct that varies
depending on the community (e.g., Sommerhoff and Ufer,
2019; see Method for a more specific operationalization in the
context of this study).

Generally, cognitive skills are not conceived as monolithic,
indecomposable latent constructs. Several theoretical, as well
as empirical, accounts underline that cognitive skills may
heavily require multiple, correlated but potentially independent
underlying resources. For example, Shulman (1987) discusses
several knowledge facets (e.g., content knowledge, pedagogical
knowledge), as underlying teaching skills and, for example, also
problem-solving skills are assumed to have underlying resources
such as heuristics (e.g., Schoenfeld, 1985; Abel, 2003). A similar
conception can be found in vocational education, where Mulder
et al. (2009) speak of an “integrated set of capabilities consisting
of clusters of knowledge, skills, and attitudes.” The theoretical
discussion and framework by Blömeke et al. (2015) integrate
these ideas and conceptions, emphasizing the relations between
the resources underlying the resource-based cognitive skill and
task performance.

This conception of cognitive skills creates a situation that
is structurally equivalent to the part-/whole-task debate (see
Figure 1). Here, students’ resource-based cognitive skill (e.g.,
mathematical argumentation and proof skills) can be regarded as
analog to the ability to solve whole tasks, whereas the different
resources underlying the resource-based cognitive skill (e.g.,
mathematical topic knowledge) are analog to the ability to
solve the part tasks. This analogy substantially extends the part-
/whole-task debate, bringing up the question whether the results
from the part-/whole-task debate can be transferred to resource-
based cognitive skills. Here, the primary question will be, if (i)
the resource-based cognitive task can be effectively supported
by supporting the resources and (ii) the resources should be
supported sequentially one after the other (similar to learning
individual part tasks) or whether a concurrent approach (which
allows to acquire the resources in a more integrated manner)
is more effective. The answers to these questions are highly
relevant for the teaching and learning of any resource-based
cognitive skill.

Unfortunately, results from prior research (e.g., Salden et al.,
2006; Lim et al., 2009) suggest that there might not be one
answer to this question but that various other aspects, such as
students’ prior attainment, might cause differential effects. For
example, in an intervention study, Lim et al. (2009) were able
to show significant main and interaction effects regarding low
vs. high prior attainment and part- vs. whole-task learning for
some of their posttest measures, while other measures did not
show these effects.
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Mathematical Argumentation and Proof
Skills and Its Underlying Resources
Mathematics educators and educational psychologists widely
agree that mathematical argumentation and proof skills can be
seen as a resource-based cognitive skill (e.g., Schoenfeld, 1985;
Ufer et al., 2008; Chinnappan et al., 2012). For example (see
also Figure 2), students faced with a mathematical proof task
need mathematical topic knowledge to identify the mathematical
objects within the task and unpack their definitions and
meanings. Further, problem-solving skills may be needed to
guide students’ search for a solution and to purposefully apply
heuristics to construct a proof.

Several resources of mathematical argumentation and proof
skills have been proposed over the last decades (see Sommerhoff
et al., 2015 for a review): They have been partly derived
from models for more general skills like problem-solving
(resources, heuristics, control, belief systems; Schoenfeld, 1985)
or self-regulated learning (domain-specific knowledge base,
heuristic methods, metaknowledge, self-regulatory skills, beliefs;
De Corte et al., 2000) or have been proposed by qualitative
studies (mathematical strategic knowledge; Weber, 2001).
Moreover, multiple resources have been partially empirically
validated (e.g., Ufer et al., 2008; Chinnappan et al., 2012) and
shown to account for a large share of students’ variance in
mathematical argumentation skills [41.6% explained variance
in Ufer et al. (2008) by basic knowledge and problem-solving
skills; 72.6% explained variance in Chinnappan et al. (2012)
by content knowledge, problem-solving skills, and reasoning
skills]. Although quite some research indicates various possible
resources of mathematical argumentation skills via theoretical
analyses, qualitative analyses, or correlational research, currently
no concluding list of such resources, no ranking of their
importance, and mostly not even causal evidence justifying
their status exist.

Still, based on various frameworks and findings, the following
four resources appear to represent important cognitive resources
for students’ mathematical argumentation and proof skills:

Mathematical Topic Knowledge
One of the most fundamental and best-researched resources is
mathematical topic knowledge (MTK). Following widely accepted
conceptions (e.g., Hiebert, 1986; Anderson, 1996; Star and
Stylianides, 2013), it entails two facets, namely, conceptual
mathematical topic knowledge, that is, a network of knowledge
about mathematical facts, theorems, objects, and their properties,
as well as procedural mathematical topic knowledge, that is,
partly tacit knowledge, exercised in the accomplishment of a
task (Hiebert and Lefevre, 1986). Both were shown to have
a substantial impact on students’ mathematical argumentation
and proof skills (Ufer et al., 2008; Chinnappan et al., 2012),
matching more general research findings on scientific reasoning
(e.g., Schunn and Anderson, 1999; Kuhn, 2002) from psychology.

Methodological Knowledge
Meta-knowledge on mathematical argumentation and proof,
also called methodological knowledge (MK) (Heinze and Reiss,
2003; Ufer et al., 2009; Sommerhoff and Ufer, 2019), is

considered another important resource underlying mathematical
argumentation and proof skills. It comprises knowledge about
acceptance criteria for mathematical proofs (e.g., the rejection
of circular reasoning or the need for an explicit reference to
an underlying theoretical background) as well as knowledge
about different types of proofs, both of which appear particularly
essential for constructing and validating proofs.

Mathematical Strategic Knowledge
In a qualitative study with mathematics students from different
academic levels, Weber (2001) observed that mathematical
topic knowledge alone is not sufficient to successfully construct
proofs. Students were often unable to identify concepts or
methods necessary for a task or had problems applying them
purposefully. For example, students could not purposefully apply
their (available) knowledge about the fundamental theorem
on homomorphisms, as they did not recognize the theorem
as purposeful in the specific situation, although the given
task included multiple cues implying its usefulness. Data from
several other studies (e.g., Reiss and Heinze, 2004; Selden and
Selden, 2013) support this finding, implying students’ need for
mathematical strategic knowledge (MSK), that is, domain-specific
knowledge linking specific cues and hints within mathematical
tasks with the mathematical methods and concepts that can
be useful for solving the respective task (Weber, 2001). In the
broader context of research, mathematical strategic knowledge
can be seen as a domain-specific version of general problem-
solving heuristics.

In contrast to methodological knowledge, which relates to
meta-knowledge about norms and values in the context of
mathematical proofs and different types of proofs, mathematical
strategic knowledge relates to specific knowledge about how
to approach a specific task and discovering cues for such
approaches. In particular, similar to the observations by Weber
(2001), students may have methodological knowledge about
proofs and thus know what the desired proof should look like
in terms of its acceptance and features but may still be unable to
construct the proof, as they do not know how to approach the
given task, implying a need for mathematical strategic knowledge
beyond methodological knowledge.

Problem-Solving Skills
Next to these three domain-specific resources, problem-solving
skills refer to the cognitive disposition to succeed in various
problem situations, that is, situations in which an undesired
initial state has to be transformed into a goal state, yet the needed
operation to achieve this is not at hand (e.g., Dörner, 1979;
Mayer and Wittrock, 2006). The specific relation of mathematical
proof-construction skills and problem-solving skills as well as
the respective processes has been repeatedly discussed (e.g.,
Mamona-Downs and Downs, 2005; Weber, 2005), resulting
in the identification of differences and similarities, and is
still a matter of debate. However, based on the definition of
problems (e.g., Schoenfeld, 1985) as non-routine tasks for which
a learner has no immediate solution strategy, mathematical
proofs have often been conceptualized as problems (e.g., Weber,
2005). The construction of a proof can thus be seen as a
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multistep problem-solving process that, if successful, generates
a deductive chain of arguments as a solution for the problem
(e.g., Weber, 2005; Heinze et al., 2008). Despite differences
between problem solving and proof construction and the fact
that today content knowledge is seen as a more important
resource, it thus appears plausible that (general) problem solving
skills (PSS) are a resource for mathematical argumentation
and proof skills, which has been underlined repeatedly by
prior research (e.g., Polya, 1945; Schoenfeld, 1985; Reiss and
Renkl, 2002) and also partially quantitatively underpinned by
studies on secondary school students’ geometry proof skills
(Ufer et al., 2008; Chinnappan et al., 2012). Simultaneously, the
use of problem-solving heuristics, that is, strategies or rules-of-
thumb for problem-solving processes, have also been proposed
as important for mathematical argumentation and proof skills.
These are mostly conceptualized in a way that they are employed
when solving a problem and accordingly represent an important
resource for problem-solving skills themselves (e.g., Schoenfeld,
1985; Abel, 2003).

Prior research has generally underlined the importance
of these four cognitive resources for students’ mathematical
argumentation and proof skills. In particular, their importance
is supported by quantitative research results for mathematical
topic knowledge and problem-solving skills (Ufer et al., 2008;
Chinnappan et al., 2012), for methodological knowledge (Ufer
et al., 2009) in the context of secondary school geometry, as
well as for mathematical strategic knowledge by first studies in
undergraduate contexts (Sommerhoff et al., submitted).

Corresponding research thus underlines the status of
mathematical argumentation and proof skills as a resource-
based cognitive skill. However, it is currently unclear what
this implies for educational strategies to support mathematical
argumentation and proof skills and its resources. In particular,
prior research has underlined that training mathematical
argumentation and proofs skills directly by working on proof
(construction) tasks is not particularly effective (e.g., Weber,
2003; Selden and Selden, 2008, 2012). This result is often
attributed to the lack of required resources (see Selden and
Selden, 2008). Moreover, it appears possible but rather intricate
to acquire the lacking resources while working on proof tasks
without explicitly addressing them—solving respective tasks
is already demanding for students. It thus appears more likely
that approaches explicitly focusing and supporting the different
resources as well as their application in the context of proof tasks
may be an effective way of supporting students’ resources as well
as their mathematical argumentation and proof skills.

THE CURRENT STUDY

As pointed out in Theoretical Background, mathematical
argumentation and proof skills represent a resource-based skill
that has multiple underlying skills whose availability is important.
Our study is a first step to explore how acknowledging the
resources underlying a resource-based cognitive skill can be
functional in supporting the learning of the underlying resources
as well as the resource-based cognitive skill itself. For this, we

take up the part-/whole-task debate from instructional design
(Anderson et al., 1996; Lim et al., 2009; Branch and Merrill,
2011) in the pursuit of evidence for the feasibility and respective
benefits of a sequential (analog to the part-task approach)
and concurrent (analog to the whole-task approach) approach
for supporting students’ resource-based cognitive skill and its
underlying resources.

This is done by examining students’ mathematical
argumentation and proof skills, which comprise a resource-
based cognitive skill with mathematical topic knowledge
(MTK), methodological knowledge (MK), mathematical
strategic knowledge (MSK), and problem-solving skills (PSS)
as underlying resources as suggested by prior research. In a
quasi-experimental study with university mathematics students,
we investigated whether supporting each of the four resources
sequentially one after the other or supporting the resources
concurrently in the context of mathematical proofs yields
(higher) learning gains on the resources as well as on overall
mathematical argumentation and proof skills.

The research questions driving the study are the following:

RQ1 What are the effects of a sequential vs. a concurrent
instructional approach on the resources of mathematical
argumentation and proof skills?
Hypothesis: We expected positive effects on the resources
for both approaches. Moreover, we expected that the
sequential approach is superior to the concurrent
approach in supporting the resources of a resource-based
cognitive skill.
Argument: Each of the resources for mathematical
argumentation and proof skills as well as their utilization
within argumentation and proof processes are already
quite complex. Shortcomings of students regarding prior
knowledge, problem-solving skills, and other aspects have
repeatedly been reported (e.g., Harel and Sowder, 1998;
Selden, 2011; OECD, 2014). Based on this high complexity
of the “parts,” the results by Naylor and Briggs (1963)
imply that a sequential approach should be better suited
to support these resources. This appears highly plausible,
as acquiring multiple complex resources at the same time
may prove overly demanding for students as they have
to process too much information for too many different
resources simultaneously. The idea of instructional clarity
supports this, as the sequential condition covers each
resource individually and thus should lead to a higher
instructional clarity, which in turn should be beneficial for
the improvement of students’ resources.

RQ2 What are the effects of a sequential vs. a concurrent
instructional approach on overall mathematical
argumentation and proof skills?
Hypothesis: We expected the concurrent approach to yield
higher or at least comparable learning gains compared to
the sequential approach.
Argument: The hypothesis is implied by the results
from Naylor and Briggs (1963), as overall mathematical
argumentation and proof skills require a high degree
of task or rather “resource organization,” that is, the
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underlying resources need to be purposefully combined
and applied when working on mathematical proof tasks.
Accordingly, an approach integrating the resources and
thereby allowing students to directly experience the
concurrent coordination and application of the resources
within mathematical proof tasks should be favorable and
lead to integrated learning. This is further supported
by a prior review on part-task practice (Wickens et al.,
2013) that revealed smaller effects of part-task training
when parts have to be used concurrently, which holds
for the resources underlying mathematical argumentation
and proof skills.
Furthermore, the sequential approach requires students to
later, that is, after learning about each resource, integrate
the various resources and apply them purposefully when
constructing mathematical proofs. As this does not arise
as naturally as in the concurrent approach, where the
resources are already used in an integrated way during
training, this could pose another obstacle for students
following a sequential approach and may actually hinder
learning overall mathematical argumentation and proof
skills. In line with this argumentation, situated learning
theories (Brown et al., 1989; Lave and Wenger, 1991)
also suggest that students should rather benefit from
the authentic, meaningful combination of resources as
opposed to addressing them individually.

Beyond these research questions quantitatively comparing
both approaches, we were interested in how the expected
learning gains on the resources could shape participants’ proof
construction attempts and lead to the observed results for
the research questions. Here, we were primarily interested in
qualitative insights as to how the resources can be used and
integrated by students in the concurrent condition and if this
integration could lead to productive synergistic effects.

METHOD1

Design, Participants, and Context
We adopted a quasi-experimental pre–post design with two
conditions, corresponding to the sequential and concurrent
approach. The intervention was offered as a voluntary course for
mathematics university students from one of the largest German
universities and was entitled “Mathematical proofs: That’s how
to do it!,” which was aimed toward undergraduate students after
their first semester. A total of 45 students (18 male, 27 female,
mage = 20.82) participated in the study. Of these, 36 were first
year and 9 were second year students who were either enrolled
in a mathematics bachelor’s program or a teaching degree for
secondary education. One can assume that all participants had
participated in proof-based real analysis lectures, giving the
students the necessary foundation for the course. In contrast to
mostly calculation-based ‘calculus’ courses that include only some

1Further details regarding the design of the study, the teaching materials, the
employed instruments, and the obtained data can be requested for research
purposes (e.g., replication/reanalysis) from the authors.

proofs, these lectures are purely proof based and focus on the
creation of an axiomatic, deductively derived theory. However,
the courses are not explicitly designed to be ‘introduction to
proof ’ courses, but mathematical proofs are mostly introduced in
a ‘learning by observing/doing’ manner, mostly without explicitly
covering or even disentangling different aspects of proofs or
different resources needed for proofs. A typical book reflecting
the lectures is from Amann and Escher (2005).

Twenty-one students participated in the sequential condition,
while 24 students participated in the concurrent condition.
Participants’ final school qualification grade (M = 1.922,
SD = 0.52), as well as their final high-school grades in
mathematics (M = 1.86, SD = 0.56), were in between the best and
second-best grade.

Procedure
The course was scheduled across three consecutive days and
consisted of four 2-h intervention sessions plus two sessions for
pretest and posttest (i.e., two sessions per day). Without being
aware of the difference, participants could choose to participate
in one of both parallel groups, each representing one of the
instructional conditions. The course was conducted by two
experienced instructors with a mathematics and mathematics
education background. Instructors swapped groups in the middle
of the intervention to counter instructor effects.

The content of the course was based on topics and proofs from
proof-based real analysis, an introductory topic in undergraduate
mathematics. Both conditions covered the same teacher input,
content, tasks, and time on task. Yet, tasks and content were
arranged in a different order according to both conditions.

To teach the individual resources in both conditions, we
adopted a 4C/ID-inspired instructional design (van Merriënboer
and Kirschner, 2007; van Merriënboer, 2013). Following this
design, the teaching of the resources consisted of an initial
input phase with information on the resources, giving both
a theoretical background as well as information on why,
how, and when they are important during activities related to
mathematical argumentation and proof. This was combined with
a short list of elaboration and monitoring prompts that were
distributed to the students (e.g., MTK: “Excerpt all important
objects and properties from the task, explain these in your
own words, and compare them to the formal definition.;” MSK:
”Search the task for keywords that you know from other tasks.
What methods did you use there?”). The prompts represented
procedural information that students could use while solving
proof construction tasks. They were intended to scaffold the
use and application of the individual resources during these
tasks, to enhance students’ analysis of the tasks according
to each resource, and to stimulate students to elaborate and
reflect on each resource. To show how these prompts can be
purposefully applied, the instructor demonstrated and trained
their use with the students based on an example task (for each
resource individually on one task in the sequential condition;
simultaneously in each of the four tasks in the concurrent
condition). After these input and training phases, which lasted

2Grades are scaled from 1 to 4, with 1 being the best grade.
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about 15 min per resource (distributed over four sessions in the
sequential condition; clustered in two parts in the concurrent
condition; see Figure 3), students worked on proof construction
tasks individually trying to implement what they had just learned
and find more effective approaches to proof construction than
they had before.

The 4C/ID-inspired instructional design was used for two
reasons: First, each of the resources is characterized by a lower
task organization, that is, the aspects within the resources require
less organization as compared to mathematical argumentation
and proof tasks and therefore should benefit from a rather
comprehensive instructional approach (Naylor and Briggs, 1963).
Second, we parallelized instruction on the individual resources
for both conditions, as the research questions relate to effects of
their sequential or concurrent teaching, that is, the arrangement
of the resources within the course, and differences regarding the
teaching of the individual resources between both conditions may
have biased results.

The Sequential Condition
The sequential condition was intended to support each of the
four different resources separately. Accordingly, the course was
split into four sessions of 2 h each for this approach, which each
focused only one of the four resources (Figure 3, upper section).

After the input phase, students worked on exactly four
tasks in each session and analyzed them, focusing on the one
resource that was covered during that session. Each task was
then picked up in a second session and analyzed regarding
the resource covered during that session. Additionally, students
solved the task itself and created an overall solution of the task
(including the correct solution of the task as well as the analyses

regarding each of the two resources), which was discussed
with the instructor.

During students’ analyses and their work on the tasks,
the instructor gave guidance, provided procedural information,
and gave students hints to use specific prompts from the
provided list.

The Concurrent Condition
The concurrent condition also consisted of four 2-h sessions to
have similar learning times/time on task for both conditions.
However, each session included all four resources, providing
students with the opportunity to integrate the individual
resources and see connections among them.

In this condition, the content of the four input phases in
the sequential condition were rearranged to two input phases
at the beginning of the first and third session (Figure 3, lower
section). As all resources were covered during each session, it
was necessary to give a basic amount of supportive information
on all resources in the first session, so that students could work
purposefully with all four resources. The remaining information
was then introduced at the beginning of the third session.

Throughout the course, students from this condition worked
on the same eight proof tasks used in the sequential condition,
yet always analyzed them regarding two of the resources
concurrently within one session. The tasks were distributed over
the sessions so each resource would be covered in every session
and each combination of two resources (e.g., MTK and PSS, MTK
and MK, or MSK and PSS) would occur equally often. The tasks
that had already been analyzed and solved (e.g., Task 3 in Session
1) were reconsidered briefly in the next session as repetitions so

FIGURE 3 | Instructional design used for both conditions within the intervention.
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that each student worked on each task twice as in the sequential
condition to ensure similar coverage.

The students from the concurrent condition received the
same amount and kind of guidance as the students in the
sequential condition.

Instruments
Pretest and posttest of the study included scales for each of the
four resources, one for students’ mathematical argumentation
and proof skills, as well as for covariates and demographic data.
The employed scales were adapted to the content, translated
from English, or self-created if no suitable published scales were
available in the literature. Except for the covariates, which were
only assessed in the pretest, we used non-identic, parallelized
tasks for the pre- and posttest to avoid repetition effects. We
chose this approach over using identical tasks, as it was especially
important for the items within the problem solving and the
mathematical argumentation and proof scale to be unknown
and therefore retain a problem character (e.g., Dörner, 1979;
Schoenfeld, 1985).

The employed scales had been piloted prior to the reported
study. Their reliability was 0.58 < α < 0.81, with 0.58
corresponding to the only scale below 0.6 (mathematical strategic
knowledge) that had been assessed using only four items. As a
newly developed scale for a construct that has not been assessed
quantitatively before, we decided to retain the scale despite of the
low reliability. This decision was backed up by better reliabilities
in the pre- and posttest of the reported study (see below).

The scales contained open as well as closed items. Closed
items were evaluated using mark-recognition software with a
subsequent manual control. Open items were coded by two raters
following theory-based coding schemes. Double coding of over
15% of the data led to an interrater reliability of κ > 0.78
(M = 0.93; SD = 0.10). For each scale, sum scores were calculated
and scaled to values between 0 (worst) and 1 (best).

Dependent Variables
Mathematical Topic Knowledge. The scale was adapted from
existing tests in the context of university mathematics (Wagner,
2011; Rach and Ufer, 2020) and slightly modified to fit the
content area of the study. It contained eight items focusing on
conceptual topic knowledge, assessing fundamental knowledge
such as definitions, theorems, and properties of objects as well
as their connections. It further contained five items focusing
on procedural topic knowledge, assessing routine procedures as
solving equations or using the formula for the geometric sum,
which were required in the employed proofs throughout the
course and the corresponding scale.

Methodological Knowledge. The scale for students’
methodological knowledge was taken from a parallel research
project on the conception of proof (Sommerhoff and Ufer, 2019)
and was initially based on existing scales from secondary school
contexts (Healy and Hoyles, 2000; Heinze and Reiss, 2003; Ufer
et al., 2009). It contained four purported proofs that included
different possible shortcomings related to the nature and concept
of proof (e.g., circular reasoning, unwarranted implications).

Students were required to judge the validity of the purported
proofs and justify their judgments.

Mathematical Strategic Knowledge. Mathematical strategic
knowledge has, to our knowledge, not been quantitatively
measured up to now. Building on the definition of the construct,
we chose four typical tasks, the real analysis as the foundation
for four items. The tasks were presented to students alongside
four excerpts of the same task description. In a multiple-choice
format, students were asked to select those excerpts that indicate
a certain concept or method that would be purposeful to solve
the task. In a subsequent open question, students were asked to
explain their choice and describe what the excerpts would imply.
Closed and open items for each task description were combined
using a dichotomous consistency rating, evaluating whether
the selected excerpts combined with the given explanation
matched the given task.

Problem-Solving Skills. Students’ problem-solving skills were
measured using four open items, asking students to solve
problems that did not require domain-specific knowledge
(neither mathematical nor from another domain), except for
everyday knowledge and basic arithmetic skills. The items were
then scored on a scale from 0 to 4, evaluating if the main steps
for solving the problem were given and justified adequately.
As heuristics are an important resource for problem solving,
students’ knowledge about and their use of problem-solving
heuristics was additionally assessed. Hence, students were asked
how often they made use of 12 different, prototypical problem-
solving strategies (e.g., means-end analysis, creating a sketch)
taken from the literature (Polya, 1945) during proof construction.
Each of the strategies was reflected in four Likert-scale items.
Data from both aspects were combined and rescaled to 0
(minimum) to 1 (maximum).

Mathematical Argumentation and Proof Skills. Besides
the resources, a scale for assessing students’ mathematical
argumentation and proof skills consisting of four proof
construction items (four tasks in the pretest, four parallelized
tasks in the posttest; see Supplementary Material) was included.
The tasks were chosen to be novel to the students yet reflecting
prototypical tasks from real analysis lectures as well as those used
within the intervention itself. The items were scored on a scale
from 0 to 4, evaluating if the main ideas or steps needed for a
valid proof were given and adequately justified. 0 was assigned
for purported proofs that did not include a single main idea, 1
was given when at least one of the main ideas was presented,
whereas the codes 2 and 3 were given if the majority and if
all main ideas were present, while 4 was only given for proofs
including all main ideas as well as a clear overall structure
and reasoning. The scoring was (i) based on a theoretical
analysis of possible solutions and important steps within these
solutions and (ii) explicitly adapted to the norms established
within participants’ mathematics lectures, thus reflecting the
mathematical norms of early undergraduate mathematics rather
than our norms as researchers.

Further Variables
Besides the scales for the dependent variables (resources
and mathematical argumentation and proof skills), we
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also included a shortened scale for conditional reasoning
skills from the literature (Inglis and Simpson, 2008) with
16 items. As conditional reasoning skills are considered
fundamental for any kind of reasoning activity, important
for scholarly activities across disciplines, and were
also shown to significantly predict certain aspects of
mathematical argumentation and proof skills (Leighton
and Sternberg, 2004; Alcock et al., 2014), they were
included to be used as a covariate in the later comparisons
between conditions.

Finally, we gathered demographic data including gender,
degree program, final school qualification grade, and final high-
school mathematics grade.

Implementation Check and Process Data
To check the implementation within both conditions and to
survey process data, students received prefabricated exercise
sheets to work with for all tasks and analyses regarding the
resources. The sheets were gathered and digitalized after every
session throughout the intervention (see Figure 4 for an excerpt
of an exercise sheet showing the analysis of a task regarding
mathematical strategic knowledge). Subsequently, it was checked
whether students had explicitly analyzed the task regarding the
resources and whether the analysis was done on a meaningful or
a superficial level (dichotomous rating).

Additionally, a reflection scale on the content covered by
the course was created for the posttest, probing students about
several topics that may or may not have been covered by the
course (e.g., “I think I learned a lot regarding problem solving”).
To check that both conditions did indeed convey an individual
respectively concurrent conception of the resources, students
were also asked how separated they perceived the different

resources during the intervention (“I think the course separated
the individual prerequisites of proving well.”).

Statistical Analysis
Analyses of covariance (ANCOVAs) were calculated for each
resource including conditional reasoning skills and the pretest
results of the respective resource as covariates to examine the
effectiveness of both approaches regarding the four resources.
We refrained from calculating an overall multivariate ANCOVA
(MANCOVA) as both, not including the pretest scores on
the resources as well as “throwing in” all pretest scores as
covariates seemed inappropriate, both theoretically and from a
methodological point of view.

The second research question was examined similarly by using
an ANCOVA with students’ mathematical argumentation and
proof skills as dependent variable and conditional reasoning skills
and the corresponding pretest results as covariates. To further
analyze the possible influence of prior attainment on the learning
gains, a median split based on the pretest results on mathematical
argumentation and proof skills was calculated, and the effects of
each condition on each subgroup were examined.

Additionally, we calculated Hedges’ gav as a measure
for longitudinal effect sizes (Lakens, 2013) to estimate the
effectiveness of either approach on the resources and on
mathematical argumentation and proof skills beyond their mere
significance, as the number of participants in each group was low,
especially regarding the median split.

For the supplementary qualitative analysis on how the
concurrent approach can shape participants’ proof construction
attempts, a prototypical (based on the pretest scores) participant
of the concurrent condition was randomly selected. Her proof
construction attempts from Task 7 (see Figure 6), which was

FIGURE 4 | Excerpt of a student’s exercise sheet showing an analysis regarding mathematical strategic knowledge (translated).
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covered in the second last and last intervention sessions, were
then qualitatively analyzed to showcase the possible effects of the
concurrent approach, however, not implying any generality of
these exemplary findings. The qualitative analysis should thus be
understood as an existence proof on how the different resources
can be synergistically integrated in the concurrent condition.

RESULTS

Implementation Check
An analysis of the documents used throughout the intervention
confirmed that students in both conditions actively analyzed the
tasks regarding the respective resources and used the provided
prompts to elaborate and reflect on the resources. Overall, 92.5%
of the suggested analyses regarding the resources were completed,
1.9% were missing, and 5.6% were done on a superficial level.

This indication of a correct implementation was further
supported by the results of the posttest: A related samples
Friedman two-way analysis of variance by ranks on the reflection
scale, which probed students about several topics that may or may
not have been covered by the course, showed overall significant
differences between students’ answers on the covered topics
[χ2(6) = 89.048, p < 0.001). Post hoc Dunn–Bonferroni tests
showed significantly lower values for both topics not covered
during the course (“beliefs,” “quantifier logic”) in comparison to
those covered by the course.

Furthermore, a Mann–Whitney U test on students’ rating of
the perceived separateness of the resources showed the expected
significant difference (U = 327.0, p = 0.029; Msequential = 3.0
and Mconcurrent = 3.3), indicating that the participants of the
sequential condition perceived the resources as more separated
than students from the concurrent condition.

Descriptive Results
The employed scales in the pre- and posttest (Table 1) showed
acceptable values and variances as well as no signs of floor or
ceiling effects. Cronbach’s alpha was acceptable 0.64 < α < 0.84
for all scales in pre- and posttest, in particular showing better
values for mathematical strategic knowledge (pretest: 0.64;
posttest: 0.71). No indications for violations against normal
distribution or equality of variances were found for resources and
mathematical argumentation and proof skills.

Pearson correlations for each pair of parallelized scales [MTK,
MK, MSK, PS, MA&P] were calculated to safeguard against
possible problems regarding the comparability of the parallelized
pre- and posttest scales. These showed moderate to strong, highly
significant correlations [r(43) = 0.48 − 0.69, p ≤ 0.001].

The results of the pretest regarding the dependent variables,
that is, the resources as well as students’ mathematical
argumentation and proof skills, suggested that both conditions
were comparable prior to the intervention (Table 1). This was
confirmed by calculating independent samples t-tests comparing
both conditions for each of the resources and mathematical
argumentation and proof skills. None of the tests gained
significance [t(43) < 1.60, p > 0.118], solely methodological

knowledge slightly approached significance [t(43) = 1.75,
p = 0.088] in favor of the participants in the concurrent condition.

The same insignificant differences were found for students’
conditional reasoning skills [t(43) = 0.36, p = 0.720], which
were subsequently used as a covariate, as well as for the
demographic data gathered.

Effects on the Resources (RQ1)
The descriptive results of the posttest (Table 1) showed learning
gains within both conditions for most resources, leading to
pre–posttest effect sizes of gav = 0.35 − 1.73 (Table 2).
Solely students’ problem solving showed small to no gains
depending on the experimental condition (gsequential,av = 0.00 and
gconcurrent,av = 0.25).

Comparing the descriptive results of the posttest between
both conditions (Table 1), slightly higher mean scores for all
resources within the concurrent condition could be observed,
which could be an indication for higher learning gains in this
condition. To statistically control these descriptive findings,
univariate ANCOVAs on the posttest results of each resource
were calculated while controlling for conditional reasoning skills
and the respective pretest score. Results revealed a significant
difference on mathematical strategic knowledge [F(1,41) = 5.19,
p = 0.028, η2 = 0.112], confirming significantly higher learning
gains in the concurrent condition. All other ANCOVAs
were insignificant [F(1,41) < 1.538, p > 0.222], thus not
confirming the descriptive differences between both conditions.
The significant result of the ANCOVA for mathematical strategic
knowledge was also reflected in the (significant) longitudinal

TABLE 1 | Mean values for the scales obtained for both conditions in pre- and
posttest.

Sequential Concurrent

Pretest Posttest Pretest Posttest

M SD M SD M SD M SD

Mathematical Topic
Knowledge

0.33 0.17 0.45 0.21 0.40 0.16 0.49 0.14

Methodological
Knowledge

0.40 0.16 0.54 0.14 0.49 0.17 0.55 0.16

Mathematical
Strategic
Knowledge

0.35 0.16 0.57 0.16 0.39 0.17 0.69 0.18

Problem-solving
Skills

0.53 0.10 0.53 0.09 0.54 0.09 0.57 0.10

Mathematical
Argumentation and
Proof Skills

0.34 0.14 0.29 0.14 0.36 0.18 0.32 0.14

All scales ranged from 0 (minimum) to 1 (maximum).

TABLE 2 | Longitudinal effect sizes (Hedges’ gav) for both conditions.

MTK MK MSK PSS MA&P

Sequential 0.64 0.90 1.36 0.00 −0.30

Concurrent 0.58 0.35 1.73 0.25 −0.27
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FIGURE 5 | Effects of both approaches on methodological knowledge (left) and mathematical strategic knowledge (right).

learning gains [paired samples t-tests: sequential: t(20) = −10.19,
p < 0.001; concurrent: t(23) = −7.48, p < 0.001]. Although the
concurrent condition showed larger effects (gsequential,av = 1.36
and gconcurrent,av = 1.73; Figure 5, left side), adding an interaction
in the ANCOVA turned out insignificant [F(1,40) = 2.56,
p = 0.118, η2 = 0.060], thus not confirming the descriptive
differences in pre–post effect sizes.

Although no statistically significant effect in the ANCOVA
for methodological knowledge was found, descriptive data and
effect sizes gave a first indication for a between-conditions effect
(Figure 5, right side): The gains in the sequential condition
[gsequential,av = 0.90; t(20) = −4.238, p < 0.001] appear to be
larger than in the concurrent condition [gconcurrent,av = 0.35;
t(23) = −1.66, p = 0.110], indicating that students in the
sequential condition caught up with the students from the
concurrent condition. Adding an interaction in the ANCOVA
again turned out insignificant [F(1,40) = 1.21, p = 0.278,
η2 = 0.030].

Effect on Students’ Argumentation and
Proof Skills (RQ2)
The descriptive results of the pretest and posttest for students’
mathematical argumentation and proof skills (see Table 1) and
the corresponding longitudinal effect sizes in both conditions
(gsequential,av = −0.30 and gconcurrent,av = −0.27) showed slightly
lower scores. Descriptive data thus suggests that the tasks in the
posttest were more difficult for students, although they had been
designed to be parallel in structure and comparable in difficulty
to the pretest (see also Discussion; see Supplementary Material
for the items). A one-way ANCOVA on students’ mathematical
argumentation and proof skills in the posttest, controlling for
students’ conditional reasoning skills and their pretest results
on mathematical argumentation and proof skills, showed no
significant difference between both conditions [F(1,41) = 0.144,
p = 0.706].

To examine the longitudinal effects on mathematical
argumentation and proof skills in more detail, we performed
an exploratory analysis comparing students with different
prior attainment, as prior research suggested its possible role
for the effectiveness of either condition (Salden et al., 2006;

Lim et al., 2009). For this purpose, two groups were formed
using a median split according to students’ pretest results
on mathematical argumentation and proof skills. The split
resulted in four groups, a weaker and a stronger group for
both instructional approaches. Calculating the longitudinal
effects for the four groups showed mixed effects of the
intervention (Table 3).

Data suggest that students’ prior attainment had an impact on
the effectiveness of the instructional approaches and may indicate
an expertise reversal effect: Initially, stronger students actually
showed a negative development regarding their mathematical
argumentation and proof skills from pre- to posttest, whereas
initially weaker students outperformed them. Although group
sizes are small, the initially weaker students from the concurrent
condition show a quite positive development (gav = 0.71) with
a medium to large positive effect, whereas the initially weaker
students’ mathematical argumentation and proof skills did not
change profoundly in the sequential condition (gav = −0.06).
In contrast, differences between both conditions for the initially
stronger students appear to be much smaller.

The Concurrent Condition—An
Illustration of Effects
The exploratory analysis based on the median split revealed
first signs of an expertise reversal effect regarding students’
mathematical argumentation and proof skills (not for the
resources), that is, initially stronger students benefit less and

TABLE 3 | Longitudinal effect sizes (Hedges’ gav) on students’ mathematical
argumentation and proof skills for the median-split groups.

Number of
students

Pretest Posttest Effect
size
gavM SD M SD

Weaker Sequential 11 0.22 0.09 0.22 0.10 −0.06

Concurrent 8 0.15 0.11 0.23 0.10 0.71

Stronger Sequential 10 0.46 0.06 0.38 0.14 −0.84

Concurrent 16 0.47 0.08 0.36 0.14 −0.95
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even show a negative development based on the resource-based
interventions as compared to initially weaker students. Especially
weaker students in the concurrent condition seemed to benefit
from the intervention, as the concurrent focus on multiple
resources may have led to a better integration and handling of the
resources in argumentation and proof tasks. Even though data
does not allow a further statistical underpinning of this claim,
a qualitative examination may provide insights into the possible
effects of the concurrent approach for students with lower initial
argumentation and proof skills. For this purpose, we provide a
deeper analysis of a proof construction attempt by Leia (ficticious
name), a prototypical student (based on her pretest scores) from
the “weaker–concurrent” group, which she had created during
the second last session of the intervention. Leia was 23 years
old, in the first year of her bachelor mathematics studies. She
failed both exams from the first semester, which drew heavily on
proof construction.

Leia’s work on the analysis of the given proof task regarding the
resource problem solving (Figure 6) shows three main thoughts,
each fitting to one of the elaboration and monitoring prompts
given to the students. The first two mirror her attempts to make
sense of the meaning of the property of the given sequence,
which seems to work out to a certain degree as the second
point correctly reflects the given property. The third point shows
that she has created a plan for solving the task, even before
actively trying to do so in her actual proof attempt. That is,
she plans to use the general problem-solving heuristic of working
backwards, here starting from the defining property of a Cauchy
sequence (given in mathematical notation). This strategy matches
her work regarding mathematical strategic knowledge (Figure 7;
called “cues and tricks” in the intervention), which focuses on
the analysis of the task formulation and its consequences for the
solution of the task. By concentrating on the structural parts of
the given task, Leia unveils its type, referring to it as a “Show,
that something is X” task. She then lays out a broad idea on
how to solve this type of task by finding the properties that

FIGURE 7 | Leia’s notes regarding mathematical strategic knowledge
(translated).

have to hold for an object to be a member of class “X” and
then showing that these properties hold. Her work regarding this
resource only represents a small aspect of mathematical strategic
knowledge and is very procedural (regarding the solution of the
task). However, it mirrors the heuristic of working backwards
mentioned in her problem-solving analysis from a mathematical
strategic perspective, thus aligning domain-specific and domain-
general strategies.

After carrying out both analyses, Leia starts her proof attempt
(Figure 8). Apparently, she jumps quickly into the proof but is
unsatisfied by her first approach and crosses it out (Line 1). As the
crossed-out line is correct and resembles a reasonable approach
for the task, it may be assumed that Leia hesitates because she
wants to stick to the information and procedures given to her
in the intervention, asking her to clarify what is given and, in
particular, her goal. Leia’s behavior may thus be interpreted as
a hesitation or conflict to pursue her prior approaches to proof
construction, which may be even more profound and difficult for
students with higher prior attainment, who are more convinced
of their prior approaches.

Starting in her third line, she then lays out the definition of
a Cauchy sequence (with one minor error in Line 4), which she

FIGURE 6 | Task description and Leia’s notes regarding problem solving (translated).
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FIGURE 8 | Leia’s proof attempt (translated; line numbers added).

then uses in her actual proof attempt, starting from Line 6. Here,
she can successfully reduce the property of a Cauchy sequence
to the property of the given sequence (Lines 8–10) but fails to
explicate the last proof step and conclude that the resulting term
converges to zero as n increases.

Leia’s work exemplifies that especially low-attaining students
may have benefitted from a structured approach to mathematical
argumentation and proof tasks. In her case, the explicit discussion
of aspects of the task related to the resources required for the task
appear to have helped her to plan her problem-solving process
and to purposefully integrate and apply her mathematical topic
knowledge about Cauchy sequences in her planning process. This
may be seen as a result of the concurrent focus on two resources,
problem-solving skills and mathematical strategic knowledge, as
the conjunction of the results regarding both resources appear to
have shaped her solution.

Leia’s work thus highlights that the intervention had a learning
effect and that she implemented her new knowledge on how to

approach mathematical proof construction tasks. Still, her work
also highlights that this newly acquired, resource-based approach
can also constrain solution processes to a certain degree. She did
not pursue her first approach to proving the statement (Line 1)
but seems to have changed her approach. Apparently, the newly
acquired knowledge was not sufficient for her to adequately judge
how productive her attempt in Line 1 was. This may point to
an insufficient integration of the new knowledge and skills and
that using them in specific proof construction tasks was still
challenging enough to prevent complete and efficient success,
something that may be expected after such a short intervention
and may eventually disappear with more practice and routine.

DISCUSSION

Our intervention study examined two instructional approaches
to support the learning of mathematical argumentation and proof
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skills as a resource-based skill while also aiming at learning
benefits for the included underlying resources themselves. For
this, a sequential approach focusing on each resource individually
one after the other and a concurrent approach focusing on the
resources concurrently, both which were inspired by the part-
/whole-task debate from instructional design (see e.g., Lim et al.,
2009), were compared. Due to the low sample size, especially in
the median split groups, the study’s results have to be handled
with care and can only be interpreted as first evidence regarding
the effectiveness of resource-based instructional approaches.
However, power analysis confirms that the ANCOVAs employed
in this study to compare effects between conditions should have
been suited to identify large effects (f > 0.43) with more than 80%
power. Moreover, results from this study—even if some are only
tentative—will be essential for further research, as multiple effects
and possible mechanisms have been highlighted, which can now
be addressed more specifically by future research.

Effects on the Resources
The analyses of the results revealed that explicit training of
the included resources of mathematical argumentation and
proof skills lead to notable learning gains regarding some of
the resources, while others only showed a slightly positive
development. The longitudinal effect sizes indicate especially
high positive effects for mathematical strategic knowledge. These
may reflect that mathematical strategic knowledge was not
explicitly covered during the participants’ university instruction
on mathematics so that initial learning gains are easy to
achieve. They may, however, also be an indication that
mathematical strategic knowledge is indeed an important, so
far under researched resource of mathematical argumentation
and proof skills.

Comparing the impact of both approaches on the four
resources, no overall significant differences for students’
resources could be found. Solely students’ mathematical strategic
knowledge showed a significant difference in favor for the
concurrent condition. Although our assumption was that the
sequential approach would be superior for the learning of the
resources, this result appears reasonable: Mathematical strategic
knowledge refers to knowledge about cues within mathematical
tasks that lead to promising methods or concepts to tackle the
tasks and further refers to knowledge about strategies to solve
these tasks (Weber, 2001). It therefore is related to creating the
problem space, identifying operators therein, and choosing an
operator that may be useful to accomplish the task (see Newell
and Simon, 1972). The successful use of mathematical strategic
knowledge therefore corresponds to a rather comprehensive
view of tasks and is not only limited to certain aspects of the
task. In particular, mathematical strategic knowledge shows
multiple connections to the other resources, as for example,
mathematical topic knowledge is needed to create the problem
space and identify the operators. Further, methodological
knowledge is needed to identify what a goal state for the problem
is supposed to entail. Accordingly, the concurrent approach may
be especially beneficial for mathematical strategic knowledge as
implied by the data, as it may emphasize and strengthen relations
to other resources.

Effects on Mathematical Argumentation
and Proof Skills
Results on mathematical argumentation and proof skills are quite
surprising, as longitudinal effect sizes suggest a slightly negative
(yet not significant) development based on the intervention.
Multiple possible explanations for this effect arise, each of which
will have to be addressed by future research: The effect may
be a methodological artifact of a more difficult posttest. It may
however, also reflect that mathematical argumentation and proof
skills are highly complex (especially compared to those skills
usually addressed in the part-/whole-task debate) and that the
relatively short intervention may not have sufficed to transfer
the observed learning gains on the resources to mathematical
argumentation and proof skills. Finally, the observed expertise
reversal effect (e.g., Kalyuga et al., 2003) may be responsible for
this overall development as the approach is simply better suited
for even weaker students.

Despite the inconclusive overall development, data are
still suitable to compare the effects of both approaches on
mathematical argumentation and proof skills as intended by
the study. Here, an ANCOVA comparing the posttest results
did not show a significant difference between both approaches
regarding students’ mathematical argumentation and proof skills.
Still, examining this result more closely by forming groups of
differing prior attainment revealed interesting effects: Compared
to initially stronger students, weaker students showed a better
development regarding their mathematical argumentation and
proof skills. Here, especially the students from the concurrent
approach could benefit, suggesting that at least for initially
weaker students, the integration of the individual resources and
their concurrent application within mathematical proof tasks is
important to support overall mathematical argumentation and
proof skills. This is also exemplified in the qualitative analysis of
Leia, an initially weaker student from the concurrent approach.
Her work on the resources and the overall task suggests that
working concurrently on both resources was beneficial for her to
derive a solution for the task and that she was able benefit from
the structured approach to the task by using the resources.

CONCLUSION AND OUTLOOK

The current study highlights that acknowledging the resource-
based nature of a cognitive skill can inspire instruction and
raises new questions for mathematics research and education.
Our study creates first knowledge on the effectiveness of two
resource-based instructional approaches, both of which explicitly
acknowledge the resources underlying a cognitive skill, in the
context of mathematical argumentation and proof skills.

Results suggest that, in the case of mathematical
argumentation and proof skills, the sequential and the
concurrent approach can both be used to support students,
at least regarding the resources. Here, the approaches yielded
mostly similar learning gains, both regarding the substantial
short-term learning gains for mathematical strategic knowledge
as well as regarding the positive, yet less pronounced, effects
for the other resources. Regarding mathematical argumentation
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and proof skills, results of the short intervention do not
show the expected learning gains, and both approaches did
not show large differences as implied by the part-/whole-
task debate (van Merriënboer and Kester, 2007; Branch and
Merrill, 2011) but are mostly comparable in learning gains.
In particular, the concurrent work on the resources appears
to not have led to the expected superior integration of the
resources and their better application within mathematical
proof tasks in comparison to the sequential condition. This
may be due to participants’ struggles to implement the
new approach and focus explicitly on the resources while
solving the tasks so shortly after the intervention. This is
also highlighted by the qualitative example of Leia: Even for
those successful in implementing the approach, there appear
to be certain struggles when starting to solve the task and
shifting from former proof-construction approaches to rather
resource-based approaches.

However, contrary to these short-term findings, long-term
learning effects may be more positive when students have been
better trained and internalized the approaches. Although this
hypothesis will have to be confirmed by future research, it
is supported by somewhat similar research from educational
psychology (Rittle-Johnson and Star, 2011; Ziegler and Stern,
2014) focusing on sequenced learning (similar to the sequential
condition) and contrasting learning (similar to the concurrent
condition). Results reveal that the contrasting condition showed
equal short-term learning as the sequenced condition but
improved long-term learning. It thus appears plausible that the
concurrent approach may be more effective regarding long-
term learning.

Overall, further studies exploring the effectiveness of resource-
based instructional approaches are needed: (i) quantitative
studies with larger samples to obtain higher statistical power,
(ii) qualitative studies focusing on the processes during the
intervention as well as students’ proof construction processes
after the intervention in order to identify how learning gains
on the resources can be transferred to overall mathematical
argumentation and proof skills, and (iii) long-term studies
examining the observed differences regarding prior attainment
and the benefits for weaker students in the long run. Finally,
further studies should put even more focus on mathematical
strategic knowledge, which showed high learning gains in
this study but has the weak point that it was quantitatively
operationalized for the first time in this study.

Another reason for further research and a possible limitation
of this study is the selection and operationalization of the
resources included in the reported study. As pointed out
in the theoretical background and method section of this
paper, there is reasonable evidence to assume that the four
included resources actually are resources of mathematical
argumentation and proof skills and explain the majority
of variance in students’ mathematical argumentation and
proof skills. However, other resources, for example, beliefs
(e.g., Schoenfeld, 1985), could also have been investigated,
and also other operationalizations of the resources could
have been used. Future studies focusing on different
sets of resources and different operationalizations could

strengthen the results, both regarding the effectiveness of
the instructional approaches as well as regarding the status
of the resources.

Finally, including a control condition would be desirable
in future studies to consolidate the results of this study,
especially regarding the possibly negative development of
mathematical argumentation and proof skills. However,
there is no generic choice how to implement such a control
group, as most resources are not explicitly taught in “regular”
university mathematics courses in Germany. We would
therefore rather propose to compare intervention approaches
acknowledging the underlying resources with several other
approaches, not explicitly taking the resources into account
(e.g., Moore, 1994; Selden and Selden, 1995; Heinze et al.,
2008). Outcomes could show whether acknowledging the
underlying resources is beneficial for supporting students’
learning or whether other approaches show superior effects.
Here, special attention should be paid to the comparability
of the interventions, for example, by using academic
learning time, time on task, or equivalent as a general
measure.

Our studies’ main goal was to explore whether two different
approaches inspired by research from instructional design
(sequential and concurrent approach) could be purposefully
transferred to mathematics education and the context to
mathematical proofs in order to support mathematical learning.
In this regard, we were interested if both approaches would yield
different learning gains regarding a resource-based skill and its
resources. Findings reveal that the tenet of the part-/whole-task
debate (Anderson et al., 1996; Branch and Merrill, 2011), that
whole-task approaches are favorable in the context of complex
skills, cannot be transferred directly, at least not regarding short-
term effects.

However, the study indicates that including the resources
into instruction supporting mathematical argumentation and
proof skills as a prototypical resource-based skill is highly
valuable for the learning of the resources. Moreover, the effects
for the initially weaker students in the concurrent condition
underline that supporting these resources can have substantial
positive effects on students’ mathematical argumentation and
proof skills. In this regard, it appears as if the concurrent
approach investigated in this study may be especially suitable
to support students that struggle substantially with learning
proof construction.
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In the present paper we empirically investigate the psychometric properties of some of
the most famous statistical and logical cognitive illusions from the “heuristics and biases”
research program by Daniel Kahneman and Amos Tversky, who nearly 50 years ago
introduced fascinating brain teasers such as the famous Linda problem, the Wason card
selection task, and so-called Bayesian reasoning problems (e.g., the mammography
task). In the meantime, a great number of articles has been published that empirically
examine single cognitive illusions, theoretically explaining people’s faulty thinking, or
proposing and experimentally implementing measures to foster insight and to make
these problems accessible to the human mind. Yet these problems have thus far
usually been empirically analyzed on an individual-item level only (e.g., by experimentally
comparing participants’ performance on various versions of one of these problems).
In this paper, by contrast, we examine these illusions as a group and look at the
ability to solve them as a psychological construct. Based on an sample of N = 2,643
Luxembourgian school students of age 16–18 we investigate the internal psychometric
structure of these illusions (i.e., Are they substantially correlated? Do they form a
reflexive or a formative construct?), their connection to related constructs (e.g., Are
they distinguishable from intelligence or mathematical competence in a confirmatory
factor analysis?), and the question of which of a person’s abilities can predict the correct
solution of these brain teasers (by means of a regression analysis).

Keywords: statistical reasoning, logical thinking, cognitive illusion, Monty Hall problem, Wason task, Linda
problem, hospital problem, Bayesian reasoning

INTRODUCTION

Daniel Kahneman and Amos Tversky demonstrated with numerous examples of what are known
as “cognitive illusions” the psychologically, linguistically, and mathematically possible explanations
for human error in statistical and logical judgment (Tversky and Kahneman, 1974; Kahneman
et al., 1982). The cognitive illusions that they introduced then delivered empirical evidence that
people’s reasoning abilities are deficient with respect to the laws of logic and probability. Empirically
examined and at this point well-known brain teasers are, for instance, the Linda problem, the
hospital problem, the Wason selection task, or typical Bayesian Reasoning problems. Newer cognitive
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illusions like the Monty Hall problem appeared on the stage at
a later date, adding further empirical evidence demonstrating
people’s faulty reasoning strategies. The heuristics and biases
program attracted the attention of many researchers from various
disciplines (e.g., psychology, mathematics [education], logic,
and philosophy) and also greatly influenced important applied
domains such as medicine, jurisprudence, and economics as it
became clear that even experts in those fields are capable of such
logical and statistical fallacies even in their own domains (e.g.,
in medicine: Garcia-Retamero and Hoffrage, 2013; Binder et al.,
2018; in economy: Kahneman and Tversky, 1979; Thaler, 1994; or
in law: Hoffrage et al., 2000; Schneps and Colmez, 2013).

In the 1990s a countermovement to the heuristics and biases
program was started, which was mainly initiated by the German
psychologist Gerd Gigerenzer. In the framework of his research
groups’ “enlightening program,” cognitive tools were developed
in order to equip people to understand cognitive illusions and
statistical brain teasers. The idea behind this research was not to
train people in problem-solving prior to presenting a problem but
simply to change the representation of the presented information.
The most famous example of that is to replace probabilities in
Bayesian reasoning problems (e.g., “80%”) by so-called natural
frequencies (e.g., “8 out of 10”), which leads to substantially
better performance by participants (McDowell and Jacobs, 2017).
This countermovement eventually led to the formation of two
“camps,” one of them developing and implementing “facilitated
versions” of cognitive illusions and arguing for the importance of
problem representation (e.g., Hoffrage et al., 2002; Hertwig et al.,
2008; McDowell et al., 2018), and the other insisting on people’s
general deficiencies regarding statistical and logical reasoning
(e.g., Kahneman and Tversky, 1996; Pighin et al., 2016).

Notably, all of the above-mentioned famous cognitive illusions
are usually studied experimentally on just an individual-item
level by cognitive researchers. This was true in the program of
Kahneman and Tversky (e.g., Kahneman et al., 1982), but also
holds for nearly all authors addressing these brain teasers ever
since. Furthermore, this seems to be true regardless of which of
the two camps a scholar belongs to. Interestingly, experimental
researchers from both camps have yet to investigate whether these
cognitive illusions form a (reflexive or formative) psychometric
construct (in the following: cogIll) in either structure.

At least from a theoretical point of view, there are
already approaches for considering such problems together.
For instance, Stanovich and West (2000) developed the
framework CART (Comprehensive Assessment of Rational
Thinking; e.g., Stanovich, 2016), which describes different
types of tasks and aims to comprehensively assess rational
thinking as clearly distinct from intelligence or corresponding
established constructs. CART includes, for example, items of
probabilistic and statistical reasoning, scientific reasoning, and
probabilistic numeracy. However, it is still “only” a systematic,
theoretically based compilation of (several hundred) items to
capture reasoning; comprehensive results based on their joint
empirical measurement are not yet published—in Stanovich’s
words: “Now, that we have the CART, we could, in theory,
begin to assess rationality as systematically as we do IQ.”
(Stanovich, 2016, p. 32).

In the present study we empirically examine the internal
structure of some prominent cognitive illusions (i.e., the most
famous ones) when they are considered and implemented
simultaneously in one study. The tasks chosen for the present
study (see Figure 1) furthermore have the advantage of
representing a wide range of problem types and thus entailing a
variety of aspects of statistical thinking and logical reasoning.

For example, by means of psychometry we try to answer
the question of whether there is a general ability in humans
to master such brain teasers or whether the (very few) correct
answers given for these problems are rather “random” responses
by participants. In addition, we try to explore the relationship of
such a supposed ability to seemingly similar competencies like
mathematical capacity or general intelligence, and furthermore,
whether (and which of) such related capabilities might predict the
understanding of statistical and logical brain teasers in regression
analyses. By doing so, we will look for possible interactions with
respect to the facilitating representations of cognitive illusions
mentioned above.

To answer our research questions, we use the data of the large-
scale study PISA 2009 in Luxembourg. PISA regularly includes
the assessment of mathematics literacy, reading literacy, and
intelligence, and in Luxembourg in the year 2009, we were able
to supplement tasks in these areas with numerous brain teasers
from Tversky and Kahneman’s heuristics and biases program.
Thus we not only merge distinguished single cognitive illusions
empirically, but also three research traditions theoretically,
namely cognitive psychology (here: judgment under uncertainty),
teaching of mathematics (here: education of probability theory
and statistics), and intelligence research (here: logical and
deductive reasoning).

THEORETICAL BACKGROUND

We first unfold the world of Tversky and Kahneman’s heuristics
and biases program by presenting examples of concrete illusions
(section “Cognitive Illusions From the “Heuristics and Biases”
Program (cogIll)”), and then theoretically shed light on some
established constructs that might come close to cogIll, such as
mathematical ability or intelligence (section “Person-Related and
Task-Related Characteristics Associated With the Ability to Solve
Cognitive Illusions”).

Cognitive Illusions From the “Heuristics
and Biases” Program (cogIll)
In the following, we present the “traditional” versions of five
famous brain teasers that were also addressed in our study (the
versions finally implemented in the present study can be found
in Figure 1). The names of the problems in the headings will
each be followed by the respective logical or statistical concept
(in parentheses) that was identified as being difficult to grasp
with human intuitive thinking. Regarding each single cognitive
illusion, we present and explain the correct solution (including
reporting typical solution rates), describe the underlying faulty
heuristic that most people follow (according to Kahneman
and Tversky), summarize corresponding subsequent research
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Traditional versions
(by Tversky and Kahneman)

Facilitated versions

1a) Wason task (classic version: 
letters and numbers)

Check the following rule: If there is
a vowel on one side of the card,
there is an even number on the
other side.
You see four cards now:

Which of these cards must in any
case be turned over to check the
rule? (In other words: which cards
could violate the rule above?)
E □ K □ 4 □ 7 □

1b) Wason task (context version: franked letters and stamps)

Imagine that you are working for the post office. You are responsible for
checking whether the right stamp is affixed to a letter. The following rule
applies:
If a letter is sent to the USA, at least one 90-cent stamp must be affixed
to it.
There are four letters in front of you, of which you can see either the front
or the back.

Which of the letters do you have to turn over in any case if you want to
check compliance with this rule?
letter 1 □ letter 2 □ letter 3 □ letter 4 □

2a) AIDS test 
(probability version)

The probability that someone is
infected with HIV is 0.01%. The test
recognizes HIV virus with almost
100% probability if it is present. So,
the test is positive. The probability
of getting a positive test result
when you don’t really have the
virus is only 0.01%.
The following diagram illustrates
the information to the probability
specifications.

The test result for your friend is 
positive.
The probability that your friend is 
infected with the HIV virus is 
therefore: _______ %

2b) & c): AIDS test (frequency version with b) tree diagram or c) 
double-tree diagram)

This task involves an assessment of the results of the AIDS test.
It is known that HIV can cause AIDS. Now imagine the following: A friend
of yours gave blood at the hospital. It will then be checked to see if HIV is
present in the blood. The test result is positive. How likely is it that your
friend is actually infected with the HIV?

To answer this question, you will need the following information:
Out of 10,000 people, 1 person is infected with HIV. If the person is
infected with the HIV, the test detects HIV. So the test is positive. Only 1
of the 9,999 people who are not infected with HIV have a positive test.

The following diagram illustrates the information again.

The test result for your friend is positive. How many people who have
received a positive test result are actually infected with HIV?
_______ from _______.

E K 4 7

1 
person

99.99%
test is

negative

99.99%
not infected

with HIV

0.01%
infected
with HIV

100%
test is

positive

0.01%
test is

positive

letter 1

Italy USA

letter 2 letter 3 letter 4

50 
cents

90 
cents

b) (solid lines) or c) 
(solid and dashed lines) 10,000 

people

10,000 
people

9,999
people, not

infected with HIV

1
person, test  
is positive

2
people, test  
is positive

9,998 
people, test  
is negative

9,998 
people, test  
is negative

1
person, test  
is positive

1
person, infected

with HIV

FIGURE 1 | Continued
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FIGURE 1 | All items of cogIll.
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findings, and introduce—if available—didactic tools that can be
used to make the original tasks easier to understand.

Wason Task (Logical Implication)
The “Wason selection task” is a logical problem containing four
cards and one rule. Its traditional version reads as follows (cf.
Wason, 1968; for the versions implemented see Figure 1):

You see four cards showing the signs or symbols A, K, 4, and 7 on
the front side of the cards. The experimenter claims: “If there is a
vowel on one side of the card, then there is an even number on the
other side.”

The experimenter then asks: “Which card(s) must be turned over to
check whether the rule applies?”

In order to check the rule, the cards showing the A and the 7
(but not the 4) have to be turned, since only these cards have the
potential to violate the rule (see below). Originally introduced by
Wason (1966), his selection task—also called the “Wason card-
sorting problem”—has been the subject of dozens of empirical
studies since then (e.g., Cosmides, 1989; Evans and Over, 1996;
Johnson-Laird, 1999; West et al., 2008; Fiddick and Erlich, 2010;
Fitelson and Hawthorne, 2010).

The reason for the enormous interest in this task is that barely
10% of Wason’s participants came up with the right solution to
this seemingly simple problem. Of the 128 students to whom
Wason first posed this problem, only five gave the correct answer.
46% of the students wanted to turn A and 4, and 33% gave just A
as the answer. Indeed, it is usually clear to everyone that the card
showing A has to be turned: if there were an odd number on the
other side, the rule would be violated. Turning the 4, however, is
unnecessary, since even a consonant on the other side would not
violate the rule (note that the rule says nothing about the back
side of consonants). Yet it is crucial to look at the back side of the
card with the 7 because, if there were a vowel on the other side,
the rule would be violated, too.

The problem involves reasoning as to how an “if-A-then-B”
statement can be falsified (cf. West et al., 2008). Logically, this
rule corresponds to the so-called contraposition law, meaning that
the implications “If A, then B” and “If not B, then not A” are
equivalent to each other (and thus, only the conditions “A” and
“not B” have the capacity to violate the rule). Not only is the
correct response to Wason’s selection task usually given by very
few participants, but Wason (1968) noticed that when he tried to
convince participants of their errors, he encountered unexpected
resistance. Interestingly, even when he asked them to turn the
card with the 7, and they discovered an A on the other side, they
claimed that choosing the 7 was unnecessary.

One cognitive explanation for this error is that most people
tend to want to confirm their assumptions with new information
rather than try to refute them. Whoever turns card A has
the possibility of confirming the rule “if vowel, then even
number,” while whoever turns card 7 can at most refute it. There
are multiple instances of confirmation biases in the literature,
according to which such tendencies are deeply human. Since
then, these tendencies have even been proposed to be responsible
for belief in pseudosciences and conspiracy theories (cf. Shermer,
2002; Majima, 2015).

The solution rate for the Wason task can be significantly
increased, however, by replacing the abstract signs or symbols
on the cards with real-world contextualizations, for example by
displaying franked letters with different destinations where it is
necessary to find out whether a specific franking rule is correctly
applied (see Figure 1, right-hand side above). With respect to
the contraposition law, it becomes intuitively evident when, for
instance, considering the following true, real-world implication:
“If I am standing on the Tower Bridge, I must be in London.”
The corresponding reverse (and also true) implication is then: “If
I am not in London, I cannot be on the Tower Bridge.” Such
concrete contextualizations allow even very young students to
intuitively grasp the logic behind the rule and to solve analog
tasks correctly (e.g., compare the “cheating detection paradigm”;
Fiddick et al., 2000; Gummerum and Keller, 2008).

Bayesian Reasoning Problems (Inversion of
Conditional Probability)
So-called “Bayesian reasoning” problems deal with the inversion
of conditional probabilities (well-known examples are, e.g., the
cab problem, the AIDS task, or the economics problem). The
most famous Bayesian reasoning task is certainly what is known
as the “mammography problem” (adapted from Eddy, 1982):

The probability of breast cancer is 1% for a woman of a particular
age group who participates in a routine screening. If a woman who
participates in a routine screening has breast cancer, the probability
is 80% that she will have a positive mammogram. If a woman who
participates in a routine screening does not have breast cancer, the
probability is 10% that she will have a false-positive mammogram.

What is the probability that a woman of this age group who
participates in a routine screening and has a positive mammogram
actually has breast cancer?

The correct answer to the question above—about 8%—
requires Bayesian reasoning, that is, mathematically inverting the
given conditional probabilities in accordance with the formula
of Bayes. According to Bayes’ theorem, the resulting a posteriori
probability p(B| M+) is:

p (B|M+) =
p (M + |B) · p(B)

p (M + |B) · p(B)+ p (M + |¬B) · p(¬B)

=
80% · 1%

80% · 1% + 9.6% · 99%
≈ 7.8%

The correct result is much lower than most people, even
physicians, would expect (Eddy, 1982). The mathematical reason
for the counterintuitive low positive predictive value here is the
extreme base rate (1%) of the disease that might be neglected by
participants (“base-rate neglect”; for alternative explanations see,
e.g., Binder et al., 2018; Weber et al., 2018).

Faulty Bayesian reasoning is of high practical relevance.
For example, several studies show that even medical doctors
(Hoffrage and Gigerenzer, 1998), but patients as well (Garcia-
Retamero and Hoffrage, 2013) have difficulties with similar
situations. Also, most AIDS counselors, for instance, operate
under an illusory belief that positive HIV test results indicate
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certainty (see Gigerenzer et al., 1998; Ellis and Brase, 2015;
Prinz et al., 2015). But in fact, a positive medical test result
usually cannot “prove” the presence of a disease. Because sound
Bayesian reasoning is not only crucial in the medical domain—
inversions of conditional probabilities, for example, are also of
relevance in the courts or in the economy—articles on Bayesian
reasoning even appear repeatedly in the highly distinguished
journals Science (Tversky and Kahneman, 1974; Hoffrage et al.,
2000; Spiegelhalter et al., 2011; Operskalski and Barbey, 2016) and
Nature (Goodie and Fantino, 1996).

There are at least two effective strategies that can foster
insight into such Bayesian problem situations: (1) translating
the statistical information from probabilities (“80%”)
into natural frequencies (e.g., “8 out of 10”; Gigerenzer
and Hoffrage, 1995; see also Figure 1, right), and/or (2)
visualizing the statistical information (for both tools see section
“Visualizations”). Meta-analyses confirm the beneficial effect
of both measures (McDowell and Jacobs, 2017). A detailed
theoretical (psychological and mathematical) discussion on
both Bayesian reasoning and natural frequencies can be
found in Krauss et al. (2020).

Hospital Problem (Empirical Law of Large Numbers)
The so-called “hospital problem” (e.g., Tversky and Kahneman,
1974) is mathematically based on the law of large numbers and
reads as follows (cf. Kahneman et al., 1982):

A certain town is served by two hospitals. In the larger hospital
about 45 babies are born each day, and in the smaller hospital about
15 babies are born each day. As you know, about 50 percent of all
babies are boys. However, the exact percentage varies from day to
day. Sometimes it may be higher than 50 percent, sometimes lower.

For a period of 1 year, each hospital recorded the days on which
more than 60 percent of the babies born were boys. Which hospital
do you think recorded more such days?

The larger hospital

The smaller hospital

About the same (that is, within 5 percent of each other)

Sampling theory entails that the expected number of days on
which more than 60 percent of the babies are boys in general is
(much) greater in a small hospital than in a large one because a
large sample is less likely to stray from 50 percent. More precisely,
it follows from the law of large numbers that a big sample is more
suitable than a small to estimate the parameters of the population
(cf. Sedlmeier and Gigerenzer, 1997; West et al., 2008)—although
the absolute deviation from the expected value increases the
larger the sample is. Interestingly, the mathematician Jacob
Bernoulli claimed in 1736 that the law of large numbers is a rule
that “even the stupidest man knows by some instinct of nature
per se and by no previous instruction” (see Gigerenzer et al.,
1989, p. 29).

According to Tversky and Kahneman (1974), this fundamental
notion of statistics is not a part of people’s repertoire of intuitions.
In order to evaluate the probability of obtaining a particular
result in a sample drawn from a specified population, people
typically rather apply the “representativeness heuristic.” That is,

they assess the likelihood of a sample result, for example that the
average height in a random sample of ten men will be six feet
(183 centimeters), using only the “similarity” of this result to the
corresponding parameter (that is, to the average height of, e.g.,
180 centimeters in the population of men). Because this similarity
does not depend on the size of the sample, people following
the representativeness heuristic will ignore sample size. Indeed,
when Tversky and Kahneman’s (1974) participants assessed the
distributions of average height for samples of various sizes, they
produced identical distributions. For example, the probability of
obtaining an average height greater than six feet was assigned the
same value for samples of 1000, 100, and 10 men. Moreover, their
participants failed to appreciate the role of sample size even when
it was emphasized in the formulation of the problem.

With respect to the hospital problem, most of Tversky and
Kahneman’s participants judged the probability of obtaining
more than 60 percent boys to be the same in the small and in
the large hospital, presumably because these events are described
by the same statistic and are therefore equally representative
of the general population (Tversky and Kahneman call it
“insensitivity to sample size”). However, surprisingly, the solution
rates for the hospital problem have been very different since
then. According to Weixler et al. (2019), performances range
between 0% (Fischbein and Schnarch, 1997) and 85% (Evans
and Dusoir, 1977), the authors attributing the wide range of
solution rates to the fact that the tasks used usually varied in
one or more features and that the groups of people investigated
were different. In disentangling the effects of concrete task and
participant characteristics (see below; e.g., grades: Roth et al.,
2015; gender: Watson, 2000; see also section “Person-Related
and Task-Related Characteristics Associated With the Ability to
Solve Cognitive Illusions”), Weixler et al. (2019) found that, for
example, problem-solving is facilitated in particular when the
deviation from the expected relative frequency is maximal (cf.
Lem, 2015), the ratio between the large and the small sample
is large (cf. Murray et al., 1987), and/or the order of presented
options is “first large, then small sample” (for smaller first: Rubel,
2009, in contrast to the order in Kahneman and Tversky’s, 1972;
for other contexts: Fischbein and Schnarch, 1997; Watson and
Callingham, 2013). These differences in performance eventually
led to contradictory explanations and interpretations of people’s
reasoning (in this regard, e.g., Lem et al., 2011).

Linda Task (Conjunction Rule for Multiplying
Probabilities)
The so-called “Linda task” is based on the conjunction rule for
probabilities (cf. Tversky and Kahneman, 1983; Fiedler, 1988;
Hertwig and Gigerenzer, 1999):

Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

Which statement is more probable?

(a) Linda is a bank teller (B).
(b) Linda is a bank teller (B) and is active in the feminist

movement (F).
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The probability of the simultaneous occurrence of two
events—for example, p(B∩F)—can be mathematically obtained
by multiplying the two involved single probabilities, that is,
p(B) · p(F), or—in the case of the stochastical dependency of B
and F—p(B) · p(F|B). However, the product of two numbers
between 0 and 1 always becomes smaller than each of both
factors, which is why (a) is the correct option. The description
of Linda turns out to be irrelevant here, since it is always
more unlikely that two events will happen simultaneously than
that only one of both constituents will (thus the content of
the events is irrelevant here, too). All that counts are the
terms “probability” and “and,” which the conjunction rule
interprets, respectively, as mathematical probability and the
logical operator “and” (Hertwig, 1995; Gigerenzer and Regier,
1996; Hertwig et al., 2008).

Yet Tversky and Kahneman (1983) found that about 80–90%
of participants judged the second option (B∩F) to be more
probable than the first option (B). In terms of the heuristics
and biases program, the Linda problem is another instance
of the representativeness heuristic, since the second option
seems to be more representative of Linda than the first. The
so-called “conjunction fallacy” in the form of the Linda task
or similar problems has also been examined extensively since
then (e.g., Fiedler, 1988; Reeves and Lockhart, 1993; Donovan
and Epstein, 1997; Hertwig et al., 2008; Wedell and Moro,
2008; Charness et al., 2010). Hertwig and Chase (1998), for
instance, found that the proportion of conjunction fallacies could
be substantially reduced (from 78% to 42%) by changing the
response format from ranking to concrete probability estimation.
Interestingly, although there is no concrete probability given, the
Linda problem can also be understood more easily using the
natural frequency concept introduced in the context of Bayesian
reasoning problems (see above). When participants are simply
instructed to imagine 200 women who fit Linda’s description, they
realize that there must be more women who are bank tellers than
women who are both bank tellers and feminists (for details see,
e.g., Fiedler, 1988; Hertwig and Gigerenzer, 1999).

Monty Hall Problem (Inversion of Conditional
Probabilities; Extended Bayesian Reasoning)
The Monty Hall problem (or “three-door problem” or “goat
problem”), which had not yet been formulated at the time of
Tversky and Kahneman’s first publications but today is one of the
most famous examples of a cognitive illusion, is sometimes even
considered the “queen” of statistical brain teasers (e.g., Gilovich
et al., 2002; Krauss and Wang, 2003; Risen and Gilovich, 2007;
Tubau et al., 2015). The traditional formulation of the Monty
Hall problem (in the real TV game show, the host Monty Hall
played several variations of this setting; see Friedman, 1998) reads
as follows:

Suppose you’re on a game show and you’re given the choice of three
doors. Behind one door is a car; behind the others, goats. You pick
a door, say Number 1, and the host, who knows what’s behind the
doors, opens another door, say, Number 3, which has a goat.

He then says to you, “Do you want to switch to Door Number 2?” Is
it to your advantage to switch your choice?

The intended rules and conditions of the problem are (e.g.,
Krauss and Wang, 2003): After the candidate has chosen a
door, this door stays locked for the time being. The game show
host, who knows behind which door the car is, then opens
one of the two remaining doors, which has a goat behind it.
Afterward, he offers the player the option of either sticking with
his original choice or changing his decision and switching to the
other closed door.

Most people think it does not matter whether the candidate
changes to the last remaining door or stays with his/her first
choice because s/he still has two equally good alternatives to
choose from. However, this reasoning ignores the information
provided by the open door. Indeed, the probability of winning
the car by sticking with the original choice is only 1/3, while the
probability of winning by switching to the last remaining door is
2/3. In fact, the mathematical solution to the Monty Hall problem
turns out to be a (very) special case of Bayesian reasoning, since
the probability that the car is behind Door 2 can be expressed
in terms of Bayes’ rule as follows (assuming that the player first
chooses Door 1 and that Monty Hall then opens Door 3, which is
the standard version):

p (C2|M3) =

p (M3|C2) · p (C2)

p (M3|C1) · p (C1)+ p (M3|C2) · p (C2)+ p (M3|C3) · p (C3)
=

1 · 1
3

1
2 ·

1
3 + 1 · 1

3 + 0 · 1
3
=

2
3

where Ci = car is located behind door i, i = 1, 2, 3, and M3 = Monty
opens Door 3. Note that the solution of course holds regardless of
the door specifications given in the standard version.

As with the illusions (1–4) presented thus far, not only do most
people misjudge this assessment, but the wrong intuition—“both
remaining alternatives have a 50% chance of winning”—often
appears to them to be “obvious” (Paley, 2005), and they even dare
to offer a higher wager as a result of that belief (vos Savant, 1997).

Many researchers have explored possible reasons for this
cognitive fallacy and proposed didactical strategies that could
help people to realize the underlying mathematical structure of
this situation. For instance, Krauss and Wang (2003) added a
frequency question in order to exploit the natural frequency
concept, and subsequently Krauss and Atmaca (2004) made the
option of a frequency algorithm even more salient by clearly
depicting the three possible car-goat constellations (see Figure 1,
right). For a recent review of literature addressing why humans
systematically fail to react optimally to the Monty Hall problem,
see Saenen et al. (2018).

While problems 2–5 theoretically belong to probability
theory, problem 1 (the Wason selection task) belongs to the
world of logic (note, however, that logic can be considered a
restriction of probability theory to the values 0 and 1). In the
next section (“Person-Related and Task-Related Characteristics
Associated With the Ability to Solve Cognitive Illusions”),
we will take a closer look at both individual and task-
related characteristics as possible predictors for solving such
cognitive illusions.
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Person-Related and Task-Related
Characteristics Associated With the
Ability to Solve Cognitive Illusions
When research on cognitive illusions began, their generality and
their independence from higher education were both praised
(e.g., Slovic et al., 1976; Thaler, 1985). For example, Gould (1992)
says, “Tversky and Kahneman argue, correctly, I think, that our
minds are not built (for whatever reason) to work by the rules of
probability” (Gould, 1992, p. 469). And Piattelli-Palmarini (1991)
summarizes, “We are a species that is uniformly probability-
blind, from the humble janitor to the Surgeon General [. . . ].
We should not wait until Tversky and Kahneman receive a
Nobel prize1 for economics. Our self-deliberation from cognitive
illusions ought to start even sooner.”

Yet since then, these considerations and analyses have
become more differentiated, and constructs such as numeracy
or intelligence have come to be considered covariates in
the framework of cognitive illusions. In the following
we will discuss factors that might influence performance
on statistical and logical cognitive illusions, first at the
individual level of participants (sections “Mathematical
Competence” to “Further Individual Prerequisites”) and
second at the level of the task (sections “Contextualization” to
“Visualizations”).

Person-Related Prerequisites
Stanovich (2012), for instance, claims that individual differences
have largely been ignored in the rationality debate opened up
by the heuristics and biases program (also see Evans et al.,
1993; Stanovich and West, 1998, 2008). The following individual
preconditions have thus far been considered as producing
variability in responding to brain teasers.

Mathematical Competence
Obviously, it is reasonable to assume that mathematical
competence might play an essential role in solving cognitive
illusions of this kind. And indeed, the relevance of mathematical
skills in solving individual brain teasers has already been
documented in several studies. For example, Inglis and Simpson
(2004, 2005) administered a version of the Wason selection
task to three groups, mathematics undergraduates, mathematics
academic staff, and history undergraduates (whom Inglis and
Simpson chose to represent the general population), finding
that both mathematics staff and students were significantly
more likely to make the correct selection (and significantly less
likely to make the standard mistake). The authors conclude
that there is a significant difference between mathematical and
non-mathematical cognition. Regarding tasks about the law of
large numbers (cf. the hospital problem), even Kahneman and
Frederick (2002, p. 50) state that the “mathematical psychologists
who participated in the survey not only should have known
better—they did know better.”

1In 2002, Daniel Kahneman was indeed awarded with the Nobel prize in
economics.

Regarding Bayesian reasoning, Hill and Brase (2012)
examined whether a basic level of numeracy is needed (the
so-called “threshold hypothesis”). Although the highly numerate
tend to perform better across formats, results are mixed
regarding the interaction of the effect of numeracy and the
effect of information format (Chapman and Liu, 2009; Hill
and Brase, 2012; Johnson and Tubau, 2013). Moreover, Galesic
et al. (2009) found that natural frequencies, for instance, can
facilitate performance even for individuals with low numerical
ability. Finally, regarding the Monty Hall problem, there is
evidence that high numeracy level is helpful for recognizing
the correct solution after the problem is simulated many times
(Lee and Burns, 2015).

Reading Competence
Understanding and solving cognitive illusions could also require
a certain degree of reading competence. Especially for text-
heavy tasks such as typical Bayesian reasoning problems, reading
skills might be essential for correctly interpreting the given
information. Also, the understanding of logical operators (such
as the correct mathematical meaning of “and” in the Linda
task; see, e.g., Hertwig et al., 2008) or statements (such as
the “if-then structure” in the Wason task; Liu et al., 1996)
requires linguistic skills. At the same time, there have also been
numerous empirical findings on the influence of text complexity
and the tasks’ exact linguistic formulations on solution rates.
For example, it has been shown that the complexity and
length of the text (Macchi, 2000) and the use of implicit or
explicit questions (Böcherer-Linder et al., 2018) can substantially
impact solution rates (see also Gigerenzer and Hoffrage, 1999;
Mellers and McGraw, 1999; Girotto and Gonzalez, 2002;
Johnson and Tubau, 2013).

Moreover, many studies have of course investigated with
school students the role of reading skills on mathematics ability
in general, where empirical findings also show that students’
mathematical performance is significantly related to general
language competence and text comprehension ability (Duarte
et al., 2011; Vukovic and Lesaux, 2013; Prediger et al., 2015;
Paetsch et al., 2016; Plath and Leiss, 2018). In particular, reading
and understanding the text of the task poses problems for
many students and can lead to difficulties and errors in the
subsequent mathematical task work (Clarkson, 1991; Mayer
and Hegarty, 1996; Wijaya et al., 2014). Aside from the basic
requirements of the subject of mathematics (i.e., technical terms
and academic language), increased verbal complexity in problem
presentation was shown to reduce performance (Johnson and
Tubau, 2013), suggesting a role for basic text comprehension
abilities in performance on Bayesian reasoning problems as well.
In an overview, Schleppegrell (2007) synthesizes research by
linguists and mathematics educators to highlight the linguistic
challenges of mathematics.

General Intelligence (Reasoning)
It is very plausible that correctly solving cognitive illusions
may depend on general cognitive skills (i.e., g). A number of
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studies—especially from the research group around Stanovich—
have shown that individual differences in g have been associated
with the ability to find normatively correct solutions across a
range of decision-making tasks (e.g., Stanovich and West, 2000;
Kokis et al., 2002). Some researchers have argued that this
is just further evidence of the consistent positive correlations
found across diverse measures of abstract cognitive ability (e.g.,
Hunt, 2000), whereas other researchers (e.g., Stanovich and
West, 1998) have suggested that g will play the strongest role
in abstract or decontextualized forms of reasoning (cf. Kaufman
et al., 2011; see also section “Contextualization”). Regarding
cognitive illusions in general, Stanovich (2012) argues that there
are few consistent individual differences in intuitive, heuristic
reasoning, while explicit, knowledge-based reasoning about
such tasks may be connected to both crystallized intelligence
(i.e., learned knowledge) and fluid intelligence (which is close
to g). In sum, Stanovich (2012) claims that one should
expect a correlation between intelligence and solving cognitive
illusions because mindware gaps most often arise from lack of
education or experience.

Also, specifically with respect to Bayesian reasoning,
empirical evidence is mixed, especially concerning interactions
with information format (for details see section “Natural
Frequencies”). Regarding tasks in probability format, Stanovich
and West (2000) did not find any systematic correlations with
cognitive capacity measures (cf. Barbey and Sloman, 2007). On
Bayesian tasks in natural frequency format, a higher proportion
of correct responses was observed in experiments that selected
participants with a higher level of general intelligence as indexed
by the academic selectivity of the university the participant
attended (Cosmides and Tooby, 1996; Brase et al., 2006).
Along the same lines, Sirota et al. (2014) empirically found
that cognitive abilities indeed predicted Bayesian performance,
especially in the natural frequency format. However, there is
also evidence that with respect to Bayesian reasoning tasks,
higher general intelligence is linked to improved performance
across formats (Sirota and Juanchich, 2011; Lesage et al., 2013;
McNair, 2015).

According to Stanovich (2012), fluid intelligence reflects
reasoning abilities operating across a variety of domains—in
particular novel ones. Since it is measured by tasks of abstract
reasoning, fluid intelligence will, of course, in some way be
related to rationality (here: mastering cognitive illusions) because
it indexes the computational power of the algorithmic mind to
sustain decoupling. He also argues that individual differences
in fluid intelligence are a key indicator of the variability across
individuals in the ability to sustain decoupling operations
(Stanovich, 2009, p. 353).

Regarding the Monty Hall problem, De Neys and Verschueren
(2006) examined whether the notorious difficulty of this
special Bayesian task is associated with limitations in working
memory resources (which some researchers again equate with
g). They found that participants who solved the Monty Hall
problem correctly had a significantly higher working memory
capacity than those who responded erroneously. In addition,
correct responding decreased under the mental load of a
second parallel task.

Further Individual Prerequisites
Other possible personality traits that might also be considered
in this context are, for instance, gender, age, educational
background (which for students, e.g., is usually measured by
the socioeconomic status, SES), and prior experience. The
role of gender in mathematics ability has been discussed for
decades. Now there are arguments that similarities between
the sexes take precedence over differences (e.g., Hyde, 2014).
For instance, a meta-analysis shows a large variability in both
the size and the direction of gender effects in mathematics
performance (Else-Quest et al., 2010; but see Brunner et al.,
2008). Concerning stochastics in particular, Engel and Sedlmeier
(2005) found no gender difference. Regarding the hospital
problem, however, where only a few studies report data on
gender at all (e.g., Rasfeld, 2004; Watson and Callingham,
2013), only Watson (2000) explicitly considered gender
effects and found very few differences between females and
males (in favor of males). Thus there is still a necessity
for investigating possible gender differences regarding
stochastic tasks in general or cognitive illusions specifically
(Roth et al., 2015).

Empirical studies so far provide mixed findings on whether
greater age or prior stochastics education (Reagan, 1989)
increases solution rates in statistical reasoning in general (e.g.,
Batanero et al., 1996; Rasfeld, 2004; Brase, 2014; Siegrist and
Keller, 2011). However, it was found that the closer the data
presented in the task were to self-reported experiences, the more
accurate people’s answers were, indicating that the subjective
a priori estimate (of the probability of a certain event) developed
through lived experience had a substantial impact on the
reasoning process (Reani et al., 2019).

Task-Related Features
In addition to individual factors, of course, characteristics of
the task play a role with respect to performance as well.
In the following, we will explain in detail some “didactical
simplifications” of specific cognitive illusions (already briefly
addressed above).

Contextualization (Wason Selection Task)
Cosmides and Tooby (1992) showed that a change of the
abstract rule (i.e., “p → q”) in a problem accommodated in a
more natural and familiar context than the mere card-checking
setup significantly increases the number of correct answers of
participants (cf. Besold, 2013). To date, many different modified
versions have been used along with the classical abstract problem
formulation (e.g., Gigerenzer and Hug, 1992; also see Figure 1,
right), for example:

Imagine you are working for the post office. You are responsible for
checking whether the right stamp is stuck on a letter. The following
rule applies: If a letter is sent to the United States, at least one 90-
cent stamp must be stuck on it. There are four letters in front of
you, of which you can see either the front or the back (front of
letter with “50 cent” and “90 cent,” back of letter with “Italy” and
“United States”).

Which of the letters do you have to turn over if you want to check
compliance with this rule?
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As Gigerenzer and colleagues were able to demonstrate,
the solution rate increased substantially with the use of this
representation, even though, from the point of view of logic, the
situation was unchanged from the original version (Gigerenzer
and Hug, 1992; Fiddick et al., 2000). In similar scenarios, even
very young people can understand the logic behind a puzzle
based on real contexts in the sense of a “cheating detection
paradigm” (e.g., “If Maxi cleans up her room, she is allowed to
go to the playground,” cf. Gummerum and Keller, 2008). The
same holds true in an analogous way for other cognitive illusions.
In this respect, the solution rate for Bayesian reasoning tasks,
for example, would be even lower if the context were removed
and replaced by abstract letters (instead of concrete events) and
mathematical symbols, such as “p(A),” etc.

It should be noted that such contextualization in mathematics
education research corresponds to the aspect of modeling (i.e.,
considering problems formulated in a real-world context; e.g.,
Kaiser and Sriraman, 2006). Within this framework, sometimes
even previously purely inner-mathematical, abstract tasks are
consciously enriched by being related to a reality that is as close
as possible to the student’s everyday life in order to make them
more accessible and appealing to students (for an overview, see
Niss and Blum, 2020).

Natural Frequencies (Bayesian Reasoning Tasks)
In a seminal paper, Gigerenzer and Hoffrage (1995) translated
the numbers in the breast-cancer screening problem (see section
“Cognitive Illusions From the “Heuristics and Biases” Program
(cogIll)”) into natural frequencies:

Mammography problem (natural frequency format):

100 out of 10,000 women of a particular age group who participate
in a routine screening have breast cancer. 80 out of 100 women who
participate in a routine screening and have breast cancer will have
a positive mammogram. 950 out of 9,900 women who participate
in a routine screening and have no breast cancer will have a false-
positive mammogram.

How many of the women who participate in a routine screening and
receive positive mammograms have breast cancer?

This mode of representation of the statistical information
makes it possible to imagine concrete persons; the nested-
set relations become transparent, and thus the solution
algorithm becomes simpler. Given the natural frequency version,
significantly more people are able to make the correct inference
(Gigerenzer and Hoffrage, 1995; Siegrist and Keller, 2011)
because only the proportion of women with breast cancer
among those who have a positive mammogram (i.e., “80 out of
80 + 950” = “80 out of 1,030” = 7.8%) has to be calculated.
A meta-analysis by McDowell and Jacobs (2017) summarized
35 studies that implemented natural frequencies and found
an average performance increase in such versions of Bayesian
reasoning problems of about 24%, compared to only 4% in
probability versions.

The concept of natural frequencies can be extended to
diagnostic situations with more than one medical test available
(Krauss et al., 1999), but it is also applicable to other
statistical problems (regarding the Linda problem, e.g., see

Fiedler, 1988). In the context of the Monty Hall problem, for
instance, a frequency algorithm can be applied to the three
possible car-goat constellations (see Figure 1, right-hand side;
Krauss and Wang, 2003).

Visualizations
Pagin (2019), for instance, investigated the Linda problem by
using a task version in which the situation was presented with
a Venn diagram. As a consequence, the rate of the conjunction
fallacy in a group of participants was substantially lower.

With respect to the Wason task and the corresponding
visualizations (see Figure 1 left or right, respectively),
Gummerum and Keller (2008) have also successfully worked with
pictures of, for example, the (un)tidy room of their protagonist
“Maxi” to offer a visualization of the corresponding context.

There are many types of visualizations that can improve
Bayesian reasoning, for example, 2 × 2 tables (e.g., Steckelberg
et al., 2004; Binder et al., 2015), tree diagrams (e.g., Sedlmeier and
Gigerenzer, 2001; Budgett et al., 2016; Bruckmaier et al., 2019),
double-trees (Khan et al., 2015; Böcherer-Linder and Eichler,
2019), icon arrays (e.g., Zikmund-Fisher et al., 2014; contrary
findings by Reani et al., 2018), different kinds of set diagrams
(e.g., Euler diagram, or Venn diagram; e.g., Reani et al., 2018),
roulette-wheel diagrams (e.g., Brase, 2014), frequency grids (e.g.,
Garcia-Retamero et al., 2015), Eikosograms (also called unit
squares or mosaic plots; e.g., Böcherer-Linder and Eichler, 2017),
and frequency nets (Binder et al., 2020); for an overview see, for
example, Binder et al. (2015).

Regarding the specific Bayesian situation of the Monty Hall
problem, the triggering of a counting algorithm by a frequency
question (Krauss and Wang, 2003) can be supported by explicitly
depicting the three possible car-goat constellations (Krauss and
Atmaca, 2004), and thus combining didactic simplifications (see
sections “Natural Frequencies” and “Visualizations”) is possible
in this case as well.

THE CURRENT STUDY AND RESEARCH
QUESTIONS

In the present study we initially examine, on the basis of
the responses of Luxembourgian school students of age 16–18,
whether various cognitive illusions (cogIll) from Tversky and
Kahneman’s heuristics and biases program form a (reflexive
or formative) construct in a psychometric sense (RQ 1a). In
addition, by means of confirmatory factor analysis, we investigate
how such a supposed competence is related to mathematical
literacy (ml) and intelligence (g) and whether these three abilities
are distinct constructs (RQ 1b). Finally, we explore by means
of regression models (including Bayesian models) which student
abilities and which task characteristics can predict the mastering
of cognitive illusions, both at the construct level and in terms of
the singular illusions (besides ml and g, we here include further
possible predictors such as reading literacy (rl), RQ2). In sum:

Research question 1a (reliability and correlational analysis):
Do the tasks of the heuristics and biases program (cogIll)

form a reflexive or a formative construct? What intercorrelations
do individual tasks have and what causes can be found for
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differential correlations (e.g., What role do facilitations of
cognitive illusions play with respect to their mutual correlations)?

Research question 1b (latent confirmatory factor analysis):
Is cogIll unidimensional? What is the relationship (i.e.,

the latent correlations) between cogIll, ml, and g? Can three
correlated yet still distinct constructs be corroborated by means
of this method?

Research question 2 (regression analysis):
Which abilities and/or task characteristics can predict cogIll

(or the individual brain teasers)? In addition to the constructs
considered in RQ 1b, we will add further predictors like reading
literacy here.

METHOD

Design
PROLOG was a study conducted as an accompanying study of the
Luxembourgian PISA 2009 study (cf. Organisation for Economic
Co-operation and Development [OECD], 2010). The key idea
was to add famous brain teasers to the PISA scales in order to
analyze probabilistic (“PRO”) and logical (“LOG”) thinking as
well as their determinants by using a large and representative
sample of school students of age 16 (and older).

Note that due to the size of Luxembourg, PISA is a mandatory
complete survey for all 15-year-old students in the country.
Therefore, all 15-year-old students from grade nine and ten must
participate, while their younger or older classmates do not have
to (the older students usually have no required activity while
PISA is administered). Making use of this special situation in
Luxembourg, PROLOG was administered to both ninth- and
tenth-graders above the age of 15 (N = 2,643) while their 15-
year-old classmates were working on PISA 2009. Note that in
order not to endanger the integrity of the actual PISA 2009 study,
we implemented items from the PISA 2000 mathematics and
reading test in PROLOG.

Instruments
In the following we describe the items of all constructs
implemented.

Cognitive Illusions (cogIll)
Figure 1 displays all eight cognitive illusions implemented by
PROLOG: (1) two versions of the Wason task: (1a) classic
version and (1b) facilitated version; (2) three different versions
of a Bayesian reasoning problem, namely the AIDS task: (2a)
probability version, (2b) frequency version with tree diagram, and
(2c) frequency version with double-tree diagram as delineated
in Figure 1); (3) the hospital problem; (4) the Linda problem;
and (5) the Monty Hall problem. While both versions of the
Wason task were provided to the participants simultaneously
(i.e., first traditional and then facilitated), only one of the three
versions of the AIDS task was presented to each student. The
reason for this was that both versions of the Wason task (see
Figure 1 on the left for the original and on the right for the
contextualized version) seem distinctly different at first sight, in
other words, because of the different context not immediately
recognizable as basically identical tasks. For the AIDS task,

however, the contexts of all three versions are the same, so that
it makes no sense to deliver the same task more than once
(the only difference being information format). The hospital
problem, the Monty Hall problem, and the Linda problem were
only presented in one version in general. Figure 1 displays the
traditional versions implemented on the left and the facilitated
versions on the right.

All traditional versions (Wason, AIDS, Linda, hospital
problem) were only slightly modified in order to avoid guessing
on the one hand and floor effects on the other. In the Wason
task, for instance, we adjusted the wording (i.e., minor linguistic
changes) of both well-known versions (i.e., the classic, context-
free version with letters and numbers, and the contextualized
version with stamped letters) in order to make the problem
more easily understandable to students. Regarding the Bayesian
reasoning task, we replaced the famous mammography context
(which is usually not of relevance for 16-year-old students) by
a context dealing with HIV tests. In addition, we added a tree
diagram, which school students are familiar with (because in the
probability version without a visualization, floor effects would be
expected; Gigerenzer, 2004; Eichler and Vogel, 2015).

For the hospital problem, we changed the numerical values
slightly and somewhat adapted the answer options to the question
(students were instructed to check the boxes of three statements
as to whether they were right or wrong). For the Linda task, in
deviation from the traditional version, the students in our sample
were asked to rank three available statements (instead of just
naming the more probable statement out of two) and tick the
boxes accordingly; this somewhat diminished the 50% probability
of guessing the right answer.

However, we do not consider these changes systematic
theoretical facilitations, which is why the Wason task
(traditional), the hospital problem, and the Linda task are
still displayed in Figure 1 on the left. In contrast, the reason for
only presenting a facilitated version of the Monty Hall problem
(right side of Figure 1) was that the original problem was
simply too difficult and would probably yield floor effects (e.g.,
Krauss and Wang, 2003; Saenen et al., 2015). Instead, all three
possible constellations (namely, where the main prize could
be) were visualized according to Krauss and Atmaca (2004)
and the cognitive illusion was further mitigated by specifying
intermediate cognitive steps (e.g., in front of and to the right
of the visualization) in which participants were explicitly
asked for the number of constellations for which it would be
worthwhile to change the door selection (i.e., thus triggering a
frequency algorithm).

The order of the cogIll items in the questionnaire was as
follows: First all four traditional (i.e., not facilitated) tasks
were given, namely Wason classical, AIDS probability version
(optional), hospital, and Linda, then the four simplified tasks,
namely Monty Hall, Wason context, and AIDS frequency
version 1 or 2 (if AIDS probability version was not provided).
Since the implemented cognitive illusions, with the exception
of the two Wason tasks (which were clearly separated from
each other in the test booklet), differ substantially from
each other in terms of mathematical structure and solution
strategy, we refrained from randomizing the tasks for test
economic reasons.
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Mathematical Literacy (ml)
Mathematical competence was assessed using items from
the mathematical literacy test (ml) originally implemented
in PISA 2000 (Organisation for Economic Co-operation and
Development (OECD), 2003). In more detail, ml was covered
by items from the four areas of algebra (12 items), arithmetics
(8 items), geometry (10 items), and stochastics (7 items) (see
Figure 2 for a sample item). A complete compilation of all
items covering ml can be found in the electronic Supplementary
Material (ESM). For statistical analyses, four parcels (i.e., sum
scores) of algebra, arithmetics, geometry, and stochastics form
the manifest indicators for ml.

Intelligence (g)
To cover general intelligence (g), we implemented established
reasoning items from the “Berliner Intelligence Structure test”

(BIS; Jäger et al., 1997). Three different statements concerning
different topics were provided (Vacations, Traffic, and Smoking;
see Figure 3 for a sample statement). Then four possible
conclusions were presented, each of which tested whether the
statement was understood logically (i.e., there were four items per
scenario). The three resulting sum scores regarding each of the
three topics form the respective manifest parcels that were used
as indicators for g. A complete compilation of all items covering
g can be found in the ESM.

Reading Literacy (rl)
Since some of the brain teasers are formulated in a linguistically
demanding way, reading literacy (rl) was also included in the
present study. Four situations from the PISA 2000 reading
test including a question and possible answer options in each
scenario were implemented, resulting in 18 corresponding items

FIGURE 2 | Mathematical task “Speed of Racing Car” [with one out of five questions; subscale “algebra”; from Organisation for Economic Co-operation and
Development (OECD), 2003].
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FIGURE 3 | General intelligence items on the topic “Vacations” (from parcel 1; from Jäger et al., 1997).

altogether (for a sample scenario, see Figure 4). In more detail,
rl was covered by items regarding the four descriptive texts Lake
Tchad (three items), Flu (three items), Labor (eight items), and
Police (four items). Unlike g, the items on rl require reading
and in-depth comprehension of longer and more complex texts.
A complete compilation of all items covering rl can be found in
the ESM. For statistical analyses, four parcels (i.e., sum scores)
of the items belonging to each of the four situations form the
manifest indicators for rl.

Further Individual Covariates
In addition, further individual student characteristics were
collected. They included sociodemographic background features
(gender, age, etc.), learning motivation (e.g., interests and self-
image), life goals, and life satisfaction.

Participants
PROLOG was administered to Luxembourgian school students
of age 16–18 in grades nine or ten who did not take part in
the PISA study in 2009. In more detail, a total of 2,643 pupils
(56% girls) from 19 different Luxembourgian schools participated
in PROLOG. The average age M (SD) of the students was
16.31 (0.57) years. About half of the students completed the
Enseignement Secondaire Technique (“EST”; the Luxembourgian
non-academic vocational track), and the other half of the students
the Enseignement Secondaire (“ES”; the Luxembourgian academic
track required for university studies). 68% of the students
attended grade nine (63% EST, 37% ES), while the other 32%

attended grade ten (34% EST, 66% ES). Note that only the
AIDS task (see section “Cognitive Illusions”), which was applied
in three different versions, is an exception in terms of sample
size. Each of the three AIDS versions was processed by only
approximately 880 students of the total sample.

Procedure
PROLOG took place in April and May 2009 during regular
school hours. In the run-up to PROLOG, the research program
was presented to all Luxembourgian secondary schools (i.e., the
principals) in the form of a letter and the schools were encouraged
to allow their students to participate. However, participation was
not compulsory and remained optional for the schools on a
voluntary basis.

In addition to the cognitive illusions and demographic
questions, the PROLOG study included some scales of PISA 2000
and in total lasted about three and a quarter hours (test duration:
2 h 40 min, exclusive of an initial briefing of 15 min and two
breaks, one 5 min and the other 15 min, during the test). The
students were assured that the evaluation of the questionnaire
would be anonymous and that the results of the study would in
no way influence the grades of the individual student.

All measuring instruments were distributed in the form of
one test booklet. PROLOG was conducted by teachers whose 15-
year-old students were participating in PISA and who therefore
were not teaching at the time. Those teachers distributed the test
material, read out standardized instructions on how to fill in the
PROLOG instruments, kept the students quiet during the test,
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FIGURE 4 | Reading task “Police” [with one out of 4 questions; from Organisation for Economic Co-operation and Development (OECD), 2003].
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and finally collected the PROLOG materials and handed it over
to the PISA school coordinators for return.

Statistical Analysis
While ml, g, and rl were treated as reflexive constructs based
on manifest indicators (which in turn were parcels consisting of
single items, see above), in the following, cogIll will be treated as a
construct, but will also be considered at the individual item level.

All analyses were conducted using the open statistical
software R (R Development Core Team, 2020). Regarding RQ
2, an unconditional random effects model (UREM) was used
to estimate the between-task-type, between-participant, and
between-school variances of the binary task results of the cogIll
items, and to compare these three sources within class variance.
Subsequently, to take nesting into account, the “lme4” package
(Bates et al., 2015) and the “blme” package (Chung et al.,
2013) were used to create separate frequentist and Bayesian
generalized mixed regression models. More specifically, mixed
logistic regressions were modeled, which used the following
(logistic) link function to relate the linear term η to the
probability of solving a task (meaning a result of X = 1):

P(X = 1) = eη/(1 + eη)

All models allowed for random intercepts, and the following
indicators of model fit were estimated: R2

Marginal represents the
variance explained by the fixed effects, and R2

Conditional represents
the variance explained by both fixed and random effects as
estimated using the “MuMIn” package (Barton, 2016).

Regarding RQ 2, four predictors were included in all models to
predict outcomes concerning cogIll: ml, g, rl, and “task difficulty”
d (i.e., facilitated or not), which was dummy-coded (0: facilitated;
1: traditional version).

A first model included these predictors in additive fashion
within the linear term γ00 as intercept:

η = γ00 + ml + g + rl + d + Mixed Error Terms

Possible interaction effects between d (task difficulty) and
the other three predictors were modeled via the inclusion
of additional multiplication terms of the form Predictor x
Difficulty. For a detailed description of the interpretation of
such error terms with dummy-coded binary predictors in mixed
models, see Hilbert et al. (2019). Type-I error probabilities for
the significance of the regression estimates were corrected for
sevenfold multiple testing according to Bonferroni, as a maximum
of seven predictors was used for the models, meaning that
p < 0.05/7 = 0.007 was regarded as statistically significant.

RESULTS

In the following, the results are presented according to the three
research questions RQ 1a, RQ 1b, and RQ 2.

Descriptives of cogIll and Reliability
Analysis (RQ 1a)
All items of cogIll were coded dichotomously (0 = wrong;
1 = correct). Overall, the traditional versions (Figure 1, on the
left) of the cognitive illusions, which were processed by N = 2,643
students, yielded expectedly low solution rates (Table 1). The
four “original” items (i.e., without substantial facilitation) were
only correctly solved by 8–16% of the students, specifically
the Wason task (based on letters and numbers) by 14%, the
hospital problem by 10%, the Linda task by 16%, and, finally,
the AIDS task in probability format—despite the additional tree
diagram—by only 2% (note that each of the three AIDS task
versions was only handled by N ≈ 880 students). Regarding
the “facilitated” versions (Figure 1, on the right), both natural
frequency versions of the AIDS task were solved at a significantly
higher rate (yet with solution rates still not over 10% or 11%).
The facilitated Wason task (with the letter-stamp context) was
solved by 29% and the Monty Hall problem, including various
facilitations, by 67%.

TABLE 1 | # correct solutions (in percent), standard deviations, and manifest intercorrelations of cogIll items including Cronbach’s alpha if item deleted.

Traditional versions Facilitated versions

Correlation
N = 2.643
α = 0.21

M (SD) Wason
task

(class.)

AIDS
(prob.

version)

Hospital
problem

Linda
problem

Monty
Hall

problem

Wason
task

(cont.)

AIDS problem
(frequency
version 1)

AIDS problem
(frequency
version 2)

Cronbach’s
α if item
deleted

Wason problem (class.) 0.14 (0.34) – 0.16

AIDS (prob. version) 0.02 (0.15) −0.01 – –a

Hospital problem 0.10 (0.30) 0.03 0.01 – 0.21

Linda problem 0.16 (0.37) 0.01 −0.03 0.01 – 0.27

Monty Hall problem 0.67 (0.47) 0.06** 0.00 0.04 0.00 – 0.16

Wason task (cont.) 0.29 (0.45) 0.14** −0.06 0.02 −0.01 0.10** – 0.12

AIDS (frequ. vs. 1) 0.10 (0.30) 0.04 – 0.11** 0.03 0.13** 0.13** – –a

AIDS (frequ. vs. 2) 0.11 (0.31) 0.07* – 0.01 −0.06 0.10** 0.19** – – –a

*indicates p < 0.05; **indicates p < 0.01. Correlations of facilitated items (cf. Figure 1) with each other are gray-shaded.
The three AIDS versions as an exception were each only processed by ≈ 880 students.
aCronbach’s α if item deleted of all versions of the AIDS task combined is 0.18.
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According to RQ 1a, the statistical analysis of the data showed
a reliability of Cronbach’s α = 0.21 of cogIll (Table 1). The low
value means that the individual brain teasers are only weakly
related to each other, and there seems to be no distinguished
general ability to “see through cognitive illusions.” Although
the internal consistency could be increased up to an alpha of
0.27 by, for instance, deleting the Linda task, there is no way
to arrive at the satisfying reliability level usually requested for
reflexive constructs (e.g., Bühner and Ziegler, 2017). However,
keep in mind that the chosen famous brain teasers cover different
contents, require cognitively varying solution strategies, and
tempt to different traps.

Table 1 (in which all items are listed according to the
administration order) shows that the correlations between the
cogIll items are at a very low level and in some cases even
show—at least descriptively—negative values. The significant, but
small correlation effect between the two versions of the Wason
task of r = 0.14 indicates that it was reasonable to implement
both tasks simultaneously (note that due to the large sample
size, small correlations can also become significant). No mutual
intercorrelations between the three AIDS task variants can be
obtained because each participant only had to solve one of them
(also see legend of Table 1).

A closer inspection of Table 1 reveals a remarkable result:
Facilitated items show substantial correlations to each other.
Separating both problem modes yields the corresponding
reliabilities αcogIll orig. = −0.01 compared to αcogIll facilit. = 0.30.
Thus, interestingly, while the original problems indeed seem
to be solved only randomly, the facilitations are what make
the problems somehow accessible to consistent cognitive
processing. This result is strengthened by the fact that while the
natural frequency versions of the AIDS task display substantial
correlations to other facilitated items, the corresponding AIDS
probability version does not.

Relationship and Confirmatory Factor
Analysis of cogIll, ml, and g (RQ 1b)
In order to address the relationship between cogIll, ml, g, and
rl, we first present the descriptive results on the four constructs,
including their manifest mutual intercorrelations. Although it
will not be part of the confirmatory factor analysis, we include rl
here because it will be used later as an additional predictor in the
regression analyses with respect to RQ 2. Student performance
regarding the three constructs ml, g, and rl (see Table 2) lies,
as expected and in contrast to cogIll, at an average level (i.e.,
students solved about half of the items concerning all three
abilities). The internal consistencies were—except for intelligence
g—satisfactory (and all clearly above the reliability of cogIll).
However, αg = 0.43 for g also corresponds to an acceptable value
given the fact that it is a rather broad scale including three
completely different scenarios and statements. As is abundantly
clear from many PISA cycles, ml and rl are strongly correlated
(r = 0.69), and each is also correlated with g, though less
strongly (Table 2).

TABLE 2 | Descriptives (M, SD, α) of and mutual (manifest) intercorrelations r
(according to Spearman) between the constructs cogIll, ml, g, and rl.

Competence Theory
max.

M (SD) α cogIll ml g rl

cogIll 6 1.41 (0.99) 0.21 –

Mathematical
literacy (ml)

34 14.16 (6.10) 0.82 0.42** –

General
intelligence (g)

12 4.82 (1.73) 0.43 0.16** 0.25** –

Reading literacy (rl) 14 7.01 (3.17) 0.74 0.36** 0.69** 0.23** –

**indicates p < 0.01.

Most importantly, despite the low internal consistency of
cogIll, taken as a construct it displays significant (manifest)
correlations with the other three constructs (the highest with ml,
the lowest with g). Interestingly, ml and rl relate approximately
equally to cogIll. However, since cogIll is not a homogeneous
scale (cf. RQ 1a), correlations with cogIll cannot be generalized
to individual tasks (see also next paragraph; Cohen, 1992).
Considering the small reliability of cogIll (αcogIll = 0.21), it
is rather informative to consider in addition the differential
relationships of ml, g, and rl to each individual item of cogIll.

Regarding Table 3, the following three results are interesting:
First, each single item of cogIll correlates very similarly with ml
and with rl (only the hospital problem clearly depends more on
ml than on rl). Second, for most (but not all) items of cogIll,
the correlation with g lies below the correlations with ml and rl
(which can only partly be explained with the medium reliability
of g). And third (and most importantly), the facilitated versions
correlate more strongly not only with each other (RQ1a), but also
with the three constructs ml, g, and rl.

This third—and most intriguing—result means that
mathematical and reading skills (and also, to a lesser extent,
intelligence) can only help when cognitive illusions are simplified
with didactic measures and thereby made more accessible to
those abilities. Regarding the cogIll items presented in their
traditional versions, there are weaker and mostly not significant
correlations throughout (r = −0.05–0.11), meaning that neither
ml nor g nor rl can be effective here. This is in line with the
provocative statements from Piattelli-Palmarini (1991) and
Gould (1992; see section “Person-Related and Task-Related
Characteristics Associated With the Ability to Solve Cognitive
Illusions”) but contradicts, for instance, the threshold hypothesis
regarding numeracy (Hill and Brase, 2012) and related findings
from Stanovich (2012), who reported correlations between
probabilistic reasoning abilities (even though not specifically
concerning cognitive illusions) and cognitive ability (g) to be
roughly in the range of 0.20–0.35.

With these results in mind, we now turn to the inspection of
the dimensionality of cogIll, ml, and g with a latent confirmatory
factor analysis (CFA, RQ1b). Note that rl was only intended
as a moderator in the study, since according to the literature,
statistical and logical reasoning is much more closely related
to intelligence and mathematics abilities (thus rl was not of
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TABLE 3 | Correlations of individual items from cogIll with ml, g, and rl.

Correlations Traditional versions Facilitated versions

Task
Competence

Wason
(class.)

AIDS prob.
vs.

Hospital
problem

Linda
problem

Wason
(cont.)

AIDS frequ.
vs. 1

AIDS frequ.
vs. 2

Monty Hall

ml 0.11** 0.01 0.09** −0.01 0.30** 0.22** 0.21** 0.33**

g 0.03 −0.02 0.05* 0.03 0.11** 0.09** 0.13** 0.12**

rl 0.08** −0.03 0.00 −0.05* 0.27** 0.18** 0.20** 0.32**

*indicates p < 0.05; **indicates p < 0.01.

theoretical interest with respect to a common model2). The three
included constructs (Figure 5) were formed from the manifest
values of the six single items of cogIll (Wason classic, Wason
context, Monty Hall problem, AIDS task, hospital problem, and
Linda task), the four facets of ml (parcels: algebra, arithmetics,
geometry, and stochastics) and the three facets of g (parcels:
Vacations, Traffic, and Smoking). The CFA revealed adequate
local and global fit [χ2(2,508, 51) = 103.796, p = 0.001,
CFI = 0.990, TLI = 0.987, RMSEA = 0.017, SRMR = 0.084].

As can be seen in Figure 5, cogIll and ml display a strong latent
correlation (r = 0.64), while the other two latent correlations
are substantially lower. The magnitude of the individual factor
loadings of cogIll illustrate that again it is mainly the simplified
tasks that contribute to the construct, while the loadings for ml
and g are consistently high or moderate, respectively. Note that
the fit indices remain pretty much the same if the Linda task were
excluded from the model [model fit: N = 2,508, T (χ2) = 120.786,

2Furthermore, including rl in the latent CFA would also lead to convergence
problems due to its strong correlation with ml.

df = 51, p = 0.000, CFI = 0.986, TLI = 0.982, RMSEA = 0.023,
SRMR = 0.036; see Appendix Figure A1].

Predicting the Ability to Solve Brain
Teasers (RQ 2)
Finally, we will predict the solution of the brain teasers of
cogIll—each as a construct and individually—by means of
regression models. In contrast to the correlational analyses
(section “Relationship and Confirmatory Factor Analysis of
cogIll, ml, and g”), the modeled predictors can now statistically
control for each other.

Preliminary Models
First, an unconditional random effects model (UREM) was
estimated to compare the degrees of variance of the three nesting
levels (task difficulty, participant, and school). The highest
variance accounted for was difficulty d (σ2 = 1.23), followed
by participant-specific differences (σ2 = 0.18) and differences
between the schools (σ2 = 0.09), with R2

Conditional = 0.38. This
means that the most significant factor explaining differences
in performance regarding cognitive illusions relates to the

FIGURE 5 | Three-factor measurement model of cogIll, ml, and g. Model fit: N = 2,508, T [χ2] = 103.796, df = 51, p = 0.001, CFI = 0.990, TLI = 0.987,
RMSEA = 0.017, SRMR = 0.084. The values display latent correlation or standardized coefficients, respectively. Values of χ2

≤ 3df (df = degrees of freedom),
p ≥ 0.01, CFI (Comparative Fit Index) ≥ 0.95, TLI (Tucker-Lewis Index) ≥ 0.95, RMSEA (Root-Mean-Square Error of Approximation) ≤ 0.05, and SRMR
(Standardized Root Mean Residual) ≤ 0.05 indicate a good model fit. cogIll: cognitive illusions, ml: mathematical literacy, g: general intelligence. *indicates p < 0.05;
**indicates p < 0.01.
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“facilitation factor” d (separating between traditional and
facilitated versions), which is why we include this dummy
variable into the following models in addition to ml, g,
and rl.

Direct Effect of Change Factors on cogIll
We then investigated the direct influence of ml, g, rl, and
d on the solution of cognitive illusions using several models
(see Table 4). Because standard frequentist regression models
showed convergence problems, the standard optimizer was
exchanged for the “bobyqa” optimizer, and the convergence
tolerance was set to 0.01. These convergence problems usually
stem from multicollinearity and are likely to be due to the
strong correlation of the covariates ml and rl (see Table 2).
To double-check the results obtained from these models,
additional Bayesian mixed regression models with Wishart
priors for the covariance distributions were estimated, using
the same sets of predictor variables. As can be seen in Table 4
and Appendix Table A1 (where the corresponding Bayesian
models can be found), both types of regression models show
identical patterns of significant predictors for performance in
cogIll.

The results in Table 4 show three significant factors of
influence for cogIll: specifically, the models using only the
additive linear term (i.e., without interaction effects) show that
ml, rl, and g significantly predicted the probability of solving
a cognitive illusion, while the item difficulty d interestingly
showed no significant impact. Additionally, the models including
the interaction terms showed a significant negative interaction
effect of both ml x d and rl x d (whereas also due to the
interaction effect of rl x d, the direct effect of rl is no longer
predictive). This means that higher mathematical and reading
skills were associated with less of an influence of task difficulty
or, in other words, the facilitating measures taken to help
the participants to solve the brain teasers were more helpful
for (or needed by) those students with lower mathematical
and reading skills.

To check the possible influence of the exclusion or inclusion
of the Linda task, we also calculated the identical regression
models (i.e., with and without interaction terms) without the
Linda task (cf. Appendix Table A2). In the linear model, both ml
and g (but not rl) were significant predictors of the probability of
solving cognitive illusions. In the model with interaction terms,
all effects except for the interaction effect ml x d, which was no
longer predictive, remained the same compared to the models
including the Linda task.

Because of the low correlations of the cognitive illusions
with each other (see Table 1), it is reasonable to consider the
prediction of solving the individual brain teasers in addition.
Corresponding regression models (not depicted in Table 4)
revealed differential regression coefficients, especially regarding
reading literacy rl. While rl had almost no effect on, for instance,
performance on the hospital task, it was a relatively strong
predictor on text-intensive or context-rich problem formulations
like the Monty Hall problem or the Wason selection task (with
the letter-stamp context).

TABLE 4 | Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the
criterion cogIll in two different frequentist models (with and without interactions).

Frequentist Model Estimate SE p Explained variance

Without Interactions R2
Marginal = 0.054;

R2
Conditional = 0.040

γ00 −2.2 0.575 <0.001

ml 0.067 0.006 <0.001

g 0.039 0.012 0.001

rl −0.028 0.014 0.04

d −1.074 0.804 0.182

With Interactions R2
Marginal = 0.107;

R2
Conditional = 0.348

γ00 −3.039 0.615 <0.001

ml 0.087 0.008 <0.001

g 0.046 0.016 0.005

rl 0.022 0.018 0.234

d 0.822 0.867 0.343

ml × d −0.042 0.012 <0.001

g × d −0.015 0.024 0.536

rl × d −0.124 0.027 <0.001

Model fit: CFI: 0.990, RMSEA: 0.017.
Estimate, Estimated unstandardized parameter value; SE, Standard error of the
parameter estimate; df, Degrees of freedom; p, Probability of committing a Type I
Error; γ00, Intercept of the additive predictor term; R2

Marginal , Variance explained by
fixed effects; R2

Conditional , Variance explained by both fixed and random effects.
Significant (direct or interaction) effects (p < 0.05) are written in bold.
Corresponding Bayesian models as well as models without the Linda task can
be found in Appendix Tables A1, A2.

DISCUSSION

In this paper we inspect famous statistical and logical cognitive
illusions from the heuristics and biases research program of
Daniel Kahneman and Amos Tversky from a psychometrical
perspective. With a sample of N = 2,643 Luxembourgian
students of age 16 to 18, we implemented the Wason card
selection task (on the understanding of logical implication and
its reversion), the hospital problem (on the empirical law of
large numbers), the Linda task (on the conjunction rule for
multiplying probabilities), the AIDS task (a Bayesian reasoning
problem analogous to the famous mammography task), and the
Monty Hall problem (a special case of a Bayesian reasoning
problem, which was not part of the heuristics and biases program
by Kahneman and Tversky).

Over the last few decades, many researchers (especially from
the research group of the German psychologist Gerd Gigerenzer)
have made attempts to modify information representation and
in that way make these kinds of brain teasers more accessible to
human thinking processes. These variations were acknowledged
as an experimental factor, meaning that some of the brain
teasers were implemented in a version very close to their original
formulations (e.g., the Linda and the hospital problem), and
some in a facilitated way, in order to avoid both guessing and
floor effects (e.g., the Monty Hall problem). Because the contexts
of the classical Wason task (based on numbers and letters)
and the corresponding facilitated version (based on stamps and
letters) substantially differ in the present study, it was possible
to implement both versions simultaneously for all participants.
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Regarding the Bayesian AIDS task, a traditional version (based
on probability format) and two facilitated versions (based on
frequency format) were implemented, yet (in contrast to the
Wason task) only one of these versions was presented to
each participant.

So far, these cognitive illusions have been described
together within the theoretical framework of the heuristics
and biases program (and explained, e.g., by representativeness
or confirmation bias) or the more comprehensive framework
CART. Yet, experiments astoundingly have usually only
implemented one of these brain teasers empirically at the same
time. Explicitly addressing this research desideratum, our design
included all mentioned illusions simultaneously.

Based on our sample of Luxembourgian students of age 16–
18, we found that these brain teasers were only moderately
correlated to each other, yielding a low reliability of an assumed
reflexive construct cogIll (α = 0.21, or a maximum of 0.27 without
the Linda task). Interestingly, this (small) amount of shared
variance was exclusively due to the facilitated versions, while
the reliability of the remaining traditional versions was almost
zero. Analyses of manifest correlations revealed that cogIll was
substantially correlated to intelligence (g) and mathematical and
reading competence (the correlations to the two latter ones, ml
and rl, which were operationalized by parts of the corresponding
PISA tests, were even higher than for g). On the individual
item level, these correlations were again much higher for the
facilitated versions, giving a first hint that the above-mentioned
literacies (ml and rl) and the general cognitive ability (g) cannot
be applied properly to the traditional versions. In a subsequent
confirmatory factor analysis (where rl was excluded because of
multicollinearity), a latent construct cogIll could be modeled and
distinguished from g and ml, yet still displaying a high latent
correlation to ml.

Finally, we ran a series of frequentist and Bayesian regression
models (both with and without interaction terms) in order
to predict the correct solving of the brain teasers both on
construct and on individual item level. The best predictor
across all implemented models was mathematical competence,
followed by intelligence. Interestingly, the (negative) interaction
effect of rl x d (with d being the dummy variable indicating
whether the problem representation was facilitated or not)
suggests that the systematic facilitating measures taken to help
the participants to solve the brain teasers were more helpful
for (or needed by) those students with lower reading skills.
Since the original versions of the cognitive illusions obviously
make it very difficult to extract the relevant information
and then to infer the correct answer, it seems that these
traditional formulations (and not the tasks or the underlying
mathematical structure per se) in a way trigger cognitive
bias. Thus “facilitation” is about translating information into
a more accessible form, which partially “disarms the trap”
and thus makes it easier for people to apply their general or

content-specific skills to the tasks. Furthermore, considering the
individual item level of cogIll, reading literacy was particularly
necessary for text-intensive and context-rich problems such as
the Monty Hall problem.

Of course, the present study can only shed a first light
on psychometric properties of the brain teasers, on their
mutual correlations, and on connections to related constructs.
Empirically examining some of these brain teasers together,
however, the study goes beyond comprehensive but more
theoretical compilations of reasoning items (cf. CART; Stanovich,
2016). Future studies could (1) implement further cognitive
illusions of the heuristics and biases program, (2) vary the
facilitation manipulation more systematically, (3) use additional
constructs for both confirmatory factor and regression analyses,
or (4) administer similar studies with adult samples. However,
we hope to have opened a path toward the consideration and
empirical investigation of statistical and logical cognitive illusions
not only at an individual item level, but also at the level of a
psychometric construct.
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APPENDIX

FIGURE A1 | Three-factor measurement model of cogIll, ml, and g. Model fit: N = 2,508, T [χ2] = 120.786, df = 51, p = 0.000, CFI = 0.986, TLI = 0.982,
RMSEA = 0.023, SRMR = 0.036. The values display latent correlation or standardized coefficients, respectively. Values of χ2

≤ 3df (df = degrees of freedom),
p ≥ 0.01, CFI (Comparative Fit Index) ≥ 0.95, TLI (Tucker-Lewis Index) ≥ 0.95, RMSEA (Root-Mean-Square Error of Approximation) ≤ 0.05, and SRMR
(Standardized Root Mean Residual) ≤ 0.05 indicate a good model fit. cogIll: cognitive illusions, ml: mathematical literacy, g: general intelligence. *indicates p < 0.05;
**indicates p < 0.01.

TABLE A1 | Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in two different Bayesian models (with and without interactions) including
the Linda task.

Bayesian Model Estimate SE p Explained variance

Without Interactions /

γ00 −2.205 0.664 0.001

ml 0.067 0.006 <0.001

g 0.039 0.012 0.002

rl −0.028 0.014 0.042

d −1.077 0.93 0.247

With Interactions /

γ00 −3.045 0.71 <0.001

ml 0.087 0.008 <0.001

g 0.046 0.016 0.005

rl 0.022 0.018 0.23

d 0.825 1.002 0.411

ml × d −0.042 0.012 <0.001

g × d −0.015 0.024 0.534

rl × d −0.124 0.027 <0.001

Estimate, Estimated unstandardized parameter value; SE, Standard error of the parameter estimate; df, Degrees of freedom; p, Probability of committing a Type I Error;
γ00, Intercept of the additive predictor term; R2

Marginal , Variance explained by fixed effects; R2
Conditional , Variance explained by both fixed and random effects.

Significant (direct or interaction) effects (p < 0.05) are written in bold.
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TABLE A2 | Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in four different models (frequentist and Bayesian, both with and without
interactions) without the Linda task.

Frequentist Model Estimate SE p Explained variance

Without Interactions R2
Marginal = 0.131; R2

Conditional = 0.391

γ00 −2.533 0.65 −3.9

ml 0.078 0.007 11.53

g 0.038 0.014 2.767

rl −0.016 0.015 −1.026

d −1.252 1.014 −1.234

With Interactions R2
Marginal = 0.123; R2

Conditional = 0.403

γ00 −3.047 0.679 −4.486

ml 0.086 0.008 1.489

g 0.046 0.017 2.786

rl 0.022 0.019 1.182

d 0.325 1.07 0.304

ml × d −0.02 0.013 −1.508

g × d −0.023 0.028 −0.815

rl × d −0.13 0.031 −4.141

Bayesian Model

Without Interactions /

γ00 −2.539 0.773 −3.285

ml 0.078 0.007 11.365

g 0.038 0.014 2.735

rl −0.016 0.016 −1.004

d −1.255 1.206 −1.04

With Interactions /

γ00 −3.054 0.81 −3.769

ml 0.086 0.008 1.451

g 0.046 0.017 2.783

rl 0.022 0.019 1.188

d 0.328 1.28 0.256

ml × d −0.021 0.013 −1.521

g × d −0.023 0.028 −0.82

rl × d −0.13 0.031 −4.146

Model Fit (Frequentist Model): CFI: 0.990, RMSEA: 0.017.
Estimate, Estimated parameter value; SE, Standard error of the parameter estimate; df, Degrees of freedom; z, z-value; p, Probability of committing a Type I Error; γ00,
Intercept of the additive predictor term; R2

Marginal , Variance explained by fixed effects; R2
Conditional , Variance explained by both fixed and random effects.

Significant (direct or interaction) effects (p < 0.05) are written in bold.
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In the field of mathematics education, one of the main questions remaining under
debate is whether students’ development of mathematical reasoning and problem-
solving is aided more by solving tasks with given instructions or by solving them without
instructions. It has been argued, that providing little or no instruction for a mathematical
task generates a mathematical struggle, which can facilitate learning. This view in
contrast, tasks in which routine procedures can be applied can lead to mechanical
repetition with little or no conceptual understanding. This study contrasts Creative
Mathematical Reasoning (CMR), in which students must construct the mathematical
method, with Algorithmic Reasoning (AR), in which predetermined methods and
procedures on how to solve the task are given. Moreover, measures of fluid intelligence
and working memory capacity are included in the analyses alongside the students’ math
tracks. The results show that practicing with CMR tasks was superior to practicing with
AR tasks in terms of students’ performance on practiced test tasks and transfer test
tasks. Cognitive proficiency was shown to have an effect on students’ learning for both
CMR and AR learning conditions. However, math tracks (advanced versus a more basic
level) showed no significant effect. It is argued that going beyond step-by-step textbook
solutions is essential and that students need to be presented with mathematical
activities involving a struggle. In the CMR approach, students must focus on the relevant
information in order to solve the task, and the characteristics of CMR tasks can guide
students to the structural features that are critical for aiding comprehension.

Keywords: creative mathematical reasoning, cognitive proficiency, working memory, fluid intelligence, rote
learning

INTRODUCTION

Supporting students’ mathematical reasoning and problem-solving has been pointed out as
important by the National Council of Teachers of Mathematics (NCTM; 26T1). This philosophy
is reflected in the wide range of mathematics education research focusing on the impact different
teaching designs might have on students’ reasoning, problem-solving ability, and conceptual

1https://www.nctm.org/26T
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understanding (e.g., Coles and Brown, 2016; Lithner,
2017). One of the recurrent questions in this field is
whether students learn more by solving tasks with given
instructions or without them: “The contrast between the
two positions is best understood as a continuum, and both
ends appear to have their own strengths and weaknesses”
(Lee and Anderson, 2013, p. 446).

It has been argued that providing students with instructions
for solving tasks lowers the cognitive demand and frees up
resources that students can use to develop a conceptual
understanding (e.g., worked example design; Sweller et al.,
2011). In contrast, other approaches argue that students
should not be given instructions for solving tasks; one example
is Kapur (2008, 2010) suggestion of “ill-structured” task
design. With respect to the latter approach, Hiebert and
Grouws (2007) and Niss (2007) emphasize that providing
students with little or no instruction generates a struggle
(in a positive sense) with important mathematics, which in
turn facilitates learning. According to Hiebert (2003) and
Lithner (2008, 2017), one of the most challenging aspects
of mathematical education is that the teaching models used
in schools are commonly based on mechanical repetition,
following step-by-step methods, and using predefined
algorithms—methods that are commonly viewed as rote
learning. Rote learning (i.e., learning facts and procedures)
can be positive, as it can reduce the load on the working
memory and free up cognitive resources, which can be used
for more cognitively demanding activities (Wirebring et al.,
2015). A typical example of rote learning is knowledge
of the multiplication table, which involves the ability to
immediately retrieve “7 × 9 = 63” from the long-term memory;
this is much less cognitively demanding than calculating
7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7. However, if teaching
and/or learning strategies are solely based on rote learning,
students will be prevented from developing their ability to
struggle with important mathematics, forming an interest in
such struggles, gaining conceptual understanding, and finding
their own solution methods.

Indeed, several studies have shown that students are mainly
given tasks that promote the use of predetermined algorithms,
procedures, and/or examples of how to solve the task rather
than opportunities to engage in a problem-solving struggle
without instruction (Stacey and Vincent, 2009; Denisse et al.,
2012; Boesen et al., 2014; Jäder et al., 2019). For example,
Jäder et al. (2019) examined mathematics textbooks from 12
countries and found that 79% of the textbook tasks could
be solved by merely following provided procedures, 13%
could be solved by minor adjustments of the procedure,
and only 9% required students to create (parts of) their
own methods (for similar findings, also see Pointon and
Sangwin, 2003; Bergqvist, 2007; Mac an Bhaird et al., 2017).
In response to these findings, Lithner (2008, 2017) developed
a framework arguing that the use of instructions in terms
of predefined algorithms has negative long-term consequences
for the development of students’ conceptual understanding. To
develop their conceptual understanding, students must instead
engage in creating (parts of) the methods by themselves. This

framework, which addresses algorithmic and creative reasoning,
guides the present study.

Research Framework: Algorithmic and
Creative Mathematical Reasoning
In the Lithner (2008) framework, task design, students’
reasoning, and students’ learning opportunities are related. When
students solve tasks using provided methods/algorithms, their
reasoning is likely to become imitative (i.e., using the provided
method/algorithm without any reflection). Lithner (2008) defines
this kind of reasoning as Algorithmic Reasoning (AR), and argues
that AR is likely to lead to rote learning. In contrast, when
students solve tasks without a provided method or algorithm,
they are “forced” to struggle, and their reasoning needs to
be—and will become—more creative. Lithner denotes this way
of reasoning as Creative Mathematical Reasoning (CMR) and
suggests that CMR is beneficial for the development of conceptual
understanding. It is important to note that creativity in this
context is neither “genius” nor “exceptional novelty;” rather,
creativity is defined as “the creation of mathematical task
solutions that are original to the individual who creates them,
though the solutions can be modest” (Jonsson et al., 2014,
p. 22; see also Silver, 1997; Lithner, 2008; for similar reasoning).
Lithner (2008) argues that the reasoning inherent in CMR
must fulfill three criteria: (i) creativity, as the learner creates
a previously unexperienced reasoning sequence or recreates a
forgotten one; (ii) plausibility, as there are predictive arguments
supporting strategy choice and verification arguments explaining
why the strategy implementation and conclusions are true
or plausible; and (iii) anchoring, as the learner’s arguments
are anchored in the intrinsic mathematical properties of the
reasoning components.

Previous studies have shown that students practicing with
CMR outperform students practicing with AR on test tasks
(Jonsson et al., 2014; Jonsson et al., 2016; Norqvist, 2017; Norqvist
et al., 2019). Jonsson et al. (2016) investigated whether the
effects of effortful struggle or overlapping processes based on
task similarity (denoted as transfer appropriate processing, or
TAP; Franks et al., 2000) underlie the effects of using CMR and
AR. The results did reveal effects of TAP for both CMR and
AR tasks, with an average effect size (Cohens d; Cohen, 1992) of
d = 0.27. While for effortful struggle, which characterizes CMR,
the average effect size was d= 1.34. It was concluded that effortful
struggle is a more likely explanation for the positive effects of
using CMR than TAP.

In sum, the use of instructions in terms of predefined
algorithms (AR) is argued to have negative long-term
consequences on students’ development of conceptual
understanding and to deteriorate students’ interest in struggling
with important mathematics (e.g., Jäder et al., 2019). In
contrast, the CMR approach requires students to engage in a
effortful and productive struggle when performing CMR (e.g.,
Lithner, 2017). However, since the students that participated
in previous studies were only given practiced test tasks (albeit
with different numbers), the results may “merely” reflect
memory consolidation without a corresponding conceptual
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understanding. If, after practice, students can apply their
acquired reasoning to tasks not previously practiced, this would
indicate a conceptual understanding.

In the present study, we investigate the effects of using AR and
CMR tasks during practice, on subsequent test tasks, including
both practiced test tasks and transfer test tasks. We are familiar
with the large amount of transfer research in the literature and
are aware that a distinction has been made between near transfer
and far transfer tasks (e.g., Barnett and Ceci, 2002; Butler et al.,
2017). In the present study, no attempt to distinguish between
transfer and near transfer is made, we define transfer tasks as tasks
that require a new reasoning sequence in order to be solved (see
Mac an Bhaird et al., 2017 for a similar argument). These tasks
are further described in the Methods section in conjunction with
examples of tasks.

Mathematics and Individual Differences in Cognition
Domain-general abilities, such as general intelligence, influence
learning across many academic domains, with mathematics
being no exception (Carroll, 1993). General intelligence, which
is commonly denoted as the ability to think logically and
systematically, was explored in a prospective study of 70,000
students. Overall, it was found that general intelligence could
explain 58.6% of the variation in performance on national tests
at 16 years of age (Deary et al., 2007). Others have found slightly
lower correlations. In a survey by Mackintosh and Mackintosh
(2011), the correlations between intelligence quotient (IQ) scores
and school grades were between 0.4 and 0.7. Fluid intelligence
is both part of and closely related to general intelligence (Primi
et al., 2010), and is recognized as a causal factor in an individual’s
response when encountering new situations (Watkins et al., 2007;
Valentin Kvist and Gustafsson, 2008) and solving mathematical
tasks (Floyd et al., 2003; Taub et al., 2008). Moreover, there is a
high degree of similarity between the mathematics problems used
in schools and those commonly administered during intelligence
tests that measure fluid cognitive skills (Blair et al., 2005).

Solving arithmetic task places demands on our working
memory because of the multiple steps that often characterize
math. When doing math, we use our working memory to
retrieve the information needed to solve the math task, keep
relevant information about the problem salient, and inhibit
irrelevant information. Baddeley (2000, 2010) multicomponent
working memory model is a common model used to describe
the working memory. This model consists of the phonological
loop and the visuospatial sketchpad, which, respectively, handle
visuospatial and phonological information. These two sub-
systems are controlled by the central executive and its executive
components, updating, shifting, and inhibition (Miyake et al.,
2000). In his model, Baddeley (2000) added the episodic
buffer, which is alleged to be responsible for the temporary
storage of information from the two sub-systems and the
long-term memory. Individual differences in the performance
of complex working memory tasks, which are commonly
defined as measures of the working memory capacity (WMC),
arise from differences in an individual’s cognitive ability to
actively store, actively process, and selectively consider the
information required to produce an output in a setting with

potentially interfering distractions (Shah and Miyake, 1996;
Wiklund-Hörnqvist et al., 2016).

There is a wealth of evidence and a general consensus in the
field that working memory directly influences math performance
(Passolunghi et al., 2008; De Smedt et al., 2009; Raghubar
et al., 2010; Passolunghi and Costa, 2019). In addition, many
studies have shown that children with low WMC have more
difficulty doing math (Adam and Hitch, 1997; McLean and Hitch,
1999; Andersson and Lyxell, 2007; Szücs et al., 2014). Moreover,
children with low WMC are overrepresented among students
with various other problems, including problems with reading
and writing (Adam and Hitch, 1997; Gathercole et al., 2003;
Alloway, 2009). Raghubar et al. (2010) concluded that “Research
on working memory and math across experimental, disability,
and cross-sectional and longitudinal developmental studies
reveal that working memory is indeed related to mathematical
performance in adults and in typically developing children and in
children with difficulties in math” (p. 119; for similar reasoning,
also see Geary et al., 2017).

Math Tracks
A math track is a specific series of courses students follow in their
mathematics studies. Examples might include a basic or low-
level math track in comparison with an advanced math track. In
Sweden, there are five levels of math, each of which is subdivided
into parts a–c, ranging from basic (a) to advanced (c). That is,
course 1c is more advanced than course 1b, and course 1b is
more advanced than course 1a. In comparison with social science
students, natural science students study math on a higher level
and move through the curriculum at a faster pace. At the end
of year one, natural science students have gone through courses
1c and 2c, while social science students have gone through
course 1b. Moreover, natural science students that are starting
upper secondary school typically have higher grades from lower
secondary school than social science students2. Therefore, in the
present study, it is reasonable to assume that natural science
students as a group have better, more advanced mathematical
pre-knowledge than social science students.

In the present study, we acknowledge the importance of
both fluid intelligence and working memory and thus include
a complex working task and a general fluid intelligence task as
measures of cognitive proficiency. Furthermore, based on their
curriculum, the students in this study were divided according to
their mathematical tracks (basic and advanced), with the aim of
capturing differences in mathematical skills.

This study’s hypotheses were guided by previous theoretical
arguments (Lithner, 2008, 2017) and empirical findings (Jonsson
et al., 2014, 2016; Norqvist et al., 2019). On this basis, we
hypothesized that:

1. Practicing with CMR tasks would to a greater extent
facilitate performance on practiced tests tasks than
practicing with AR tasks.

2. Practice with CMR tasks would to a greater extent
facilitate performance on transfer test tasks than
practice with AR tasks.

2www.skolverket.se

Frontiers in Psychology | www.frontiersin.org 3 December 2020 | Volume 11 | Article 574366287288

http://www.skolverket.se
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-574366 December 14, 2020 Time: 19:25 # 4

Jonsson et al. Creative Mathematical Reasoning and Cognitive Proficiency

3. Students that are more cognitively proficient would
outperform those who are less cognitively proficient on
both practiced test tasks and transfer test tasks

4. Students enrolled in advanced math tracks are likely to
outperform those enrolled in basic math tracks on both
practiced test tasks and transfer test tasks.

Rationales for the Experiments
The three separate experiments presented below were conducted
over a period of 2 years and encompassed 270 students.
The overall aim was to contrast CMR with AR with respect
to mathematical understanding. An additional aim was to
contrast more cognitively proficient students with less cognitively
proficient students and investigate potential interactions. The
experiments progressed as a function of the experimental finding
obtained in each experiment and were as such, not fully planned
ahead. Experiment 1 was designed to replicate a previous
study on practiced test tasks (Jonsson et al., 2014), and also
introduced transfer test tasks with the aim of better capturing
conceptual understanding. However, when running a between-
subject design, as in experiment 1, there is a risk of non-
equivalent group bias when compared with using a within-subject
design. It was also hypothesized that the findings (CMR > AR)
could be challenged if the students were provided with an easier
response mode. It was therefore decided that experiment 2 should
employ a within-subject design and use multiple-choice (MC)
questions as the test format. After experiment 2, it was discussed
whether the eight transfer test tasks used in experiment 2 were
too few to build appropriate statistics and whether the MC test
format did not fully capture students’ conceptual understanding
because of the possibility of students using response elimination
and/or guessing. Moreover, the total number of test tasks was 32
(24 practiced test tasks and eight transfer test tasks), and some
students complained that there were too many test tasks, which
may have affected their performance. It was therefore decided
that experiment 3 should focus solely on transfer test tasks,
thereby decreasing the total number of test tasks but increase
the number of transfer test tasks without introducing fatigue. In
experiment 3, we returned to short answers as a test format, thus
restricting the possibility of students using response elimination
and/or guessing.

MATERIALS AND METHODS

Practice Tasks
A set of 35 tasks were pilot tested by 50 upper secondary
school students. The aim was to establish a set of novel and
challenging tasks that were not so complex that the students
would have difficulty understanding what was requested. Twenty-
eight of the 35 tasks fulfilled the criteria and were selected for the
interventions. Each of the 28 tasks was then written as an AR task
and as a CMR task, respectively (Figures 1A,B). The AR tasks
were designed to resemble the design of everyday mathematical
textbook tasks. Hence, each AR task provided the student with a
method (a formula) for solving the task, an example of how to
apply the formula, and a numerical test question (Figure 1A).

The CMR tasks did not include any formulas, examples, or
explanations, and the students were only asked to solve the
numerical test questions (Figure 1B). Each of the 2× 28 task sets
(AR and CMR) included 10 subtasks, which only differed with
respect to the numerical value used for the calculation. Although
the number of task sets differed between the three experiments,
there were 10 subtasks in each task set in all three experiments.
Moreover, in each CMR task set, the third subtask asked students
to construct a formula (Figure 1C). If the students completed
all 10 subtasks, the software randomly resampled new numerical
tasks until the session ended. This resampling ensured that the
CMR and AR practice conditions lasted for the same length of
time in all three experiments.

Test Tasks
Test tasks that were the same as the practice tasks (albeit with
different numbers) are denoted as “practiced test tasks” while the
tasks that were different from the practice tasks are denoted as
“transfer test tasks.”

Practiced Test Tasks
The layout of the practiced test tasks consisting of numerical-
and formula tasks and can be seen in Figures 2A,C. The
similarities between practice tasks and practiced test tasks
may promote overlapping processing activities (Franks et al.,
2000) or, according to the encoding specificity principle,
provide contextual cues during practice that can aid later test
performance (Tulving and Thomson, 1973). Transfer test tasks
were therefore developed.

Transfer Test Tasks
The layout of the transfer test tasks consisting of numerical-
and formula tasks can be seen in Figures 2B,D. The rationale
underlying why transfer test tasks constitute a more valid measure
of exploring students’ conceptual understanding of mathematics
is that the solution algorithm (e.g., y = 3x + 1) could have
been memorized without any conceptual understanding. For a
transfer test tasks the same algorithm cannot be used again, but
the same general solution idea (e.g., multiplying the number of
squares or rectangles with the number of matches needed for each
new square/rectangle, and then adding the number of matches
needed to complete the first square/rectangle) can be employed.
We argue that knowing this idea of a general solution constitutes
a local conceptual understanding of the task.

The Supplementary Material provides more examples
of tasks.

Practice and Test Settings
In all three experiments, the practice sessions and test sessions
were conducted in the students’ classroom. Both sets of tasks
were presented to the students on their laptops. All tasks were
solved individually; hence, no teacher or peer support was
provided. The students were offered the use of a simple virtual
calculator, which was displayed on their laptop screen. After
submitting each answer during a practice session, the correct
answer was shown to the students. However, no correct answers
were provided to tasks that asked the students to construct
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A

B

C

Practice AR-task, method provided 
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

If x is the number of squares then the number of  matches y could be calculated by the function 

y = 3x +1
Example: If 4 squares are put in a row then y = 3x + 1 = 3·4+1 = 13 matches are needed 

How many matches are needed to get 100 squares in a row?

Practice CMR-task, constructing method
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

Practice CMR-task, constructing formula
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

Suppose that x is the number of squares in a row and y is the number of matches needed to

build the squares.

How could you describe y as a function of x?

FIGURE 1 | (A–C) Examples of AR and CMR practice tasks and how they were presented to the students on their laptop screen. (A) AR practice task; (B) CMR
practice task; (C) CMR task asking for the formula.

formulas (i.e., the third CMR task). This was done to prevent
students from using a provided formula instead of constructing
a method/formula.

The software that was used for presenting practice and
test tasks also checked and saved the answers automatically.

All students received the same elements of the intervention,
which due to the computer presentations, were delivered in
the same manner to all the students, ensuring high fidelity
(Horner et al., 2006). The Supplementary Material provides
additional examples and descriptions of the tasks employed
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A

B

C

D

Posttest trained task
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

Posttest transfer task
When rectangles are put in a row, it

looks like the figure on the right, 

16 matches are needed for three rectangles.

How many matches are needed to get 100 rectangles in a row?

Posttest formula practice task
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

Suppose that x is the number of squares in a row and y is the number of matches needed to 

build the squares.

How could you describe y as a function of x?

Posttest formula transfer task
When rectangles are put in a row, it

looks like the figure on the right, 

16 matches are needed for three rectangles.

Suppose that x is the number of rectangles in a row and y is the number of matches needed to 

build the rectangles.

How could you describe y as a function of x?

FIGURE 2 | (A–D) Examples of test tasks and how they were presented to the students on their laptop screen. (A,C) Practiced test tasks and (B,D) transfer test
task.

in this study. The three experiments did not include a pre-
test due to the risk of an interaction between the pre-test
and the learning conditions, making the students more or

less responsive to manipulation (for a discussion, see Pasnak,
2018). Moreover, the students were unfamiliar with the
mathematical tasks.
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Cognitive Measurement
The cognitive measures included cognitive testing of a complex
working memory task (operation span; Unsworth et al., 2005)
and general fluid intelligence (Raven’s Advanced Progressive
Matrices; Raven et al., 2003). Raven’s APM consists of 48 items,
including 12 practice items. To capture individual differences and
to prevent both ceiling and floor effects, we used the 12 practice
items as well as the 36 original test items. The 12 practice items
were validated against Raven’s Standard Progressive Matrices
(Chiesi et al., 2012). These 48 test items were divided into 24
odd-numbered and 24 even-numbered items. Half of the students
were randomly assigned to the odd-numbered items and half
were assigned the even-numbered items. The total number of
correct solutions was summed, providing a maximum score
of 24. The task was self-paced over a maximum of 25 min.
The countdown from 25 min was displayed in the upper-
right corner of the screen. Initially, the students practiced on
three items derived from Raven’s Standard Progressive Matrices.
A measure of internal consistency (Cronbach’s alpha) was
extracted from a larger pool of data, which encompassed the
data obtained from the students in experiments 1 and 2, and was
found to be 0.84.

In the operation span task students were asked to perform
mathematical operations while retaining specific letters in their
memory. After a sequence of mathematical operations and
letters, they were asked to recall these letters in the same
order as they were presented. The mathematical operations
were self-paced (with an upper limit of 2.5 standard deviations
above each individual average response time, extracted from
an initial practice session). Each letter was presented after
each mathematical operation and displayed for 800 ms. The
letters to recall were presented in three sets of each set
size. Every set size contained three to seven letters. The
sum of all entirely recalled sets was used as the student’s
WMC score. The measure of internal consistency revealed a
Cronbach’s alpha of 0.83. Operation span was also self-paced, but
without any time limit.

The operation span task and Raven’s matrices were combined
into a composite score denoted as the cognitive proficiency (CP)
index. The CP index score was based on a z-transformation of
the operation span task performance and Raven’s matrices, thus
forming the CP composite scores. These CP composite scores
were then used to split (median split) students into lower and
higher CP groups, and were used as a factor in the subsequent
analyses across all three experiments. The students conducted the
cognitive tests in their classrooms approximately 1 week before
each of the three experiments.

Experiment 1
Participants
A priori power analysis with effect sizes (d = 0.73) from Jonsson
et al. (2014) indicated that with an alpha of 0.05 and a statistical
power of 0.80, a sample size of 61 students would obtain a
statistical group difference. The students attended a large upper
secondary school located in a municipality in a northern region
of Sweden. Recruitment of students was conducted in class by

the authors. One hundred and forty-four students were included
in the experiment. Within each math track (basic, advanced)
students were randomly assigned to engage in either the AR or
CMR3 groups. Out of those, 137 students (63 boys, 74 girls)
with a mean age of 17.13 years (SD = 0.62) were included
and subsequently analyzed according to their natural science
(advanced level), social science (basic level) math tracks and
CP. All students spoke Swedish. Written informed consent was
obtained from the students in accordance with the Helsinki
declaration. The Regional Ethics Committee at Umeå University,
Sweden, approved the study.

Cognitive Measures
The cognitive testing included measures of the working memory
task (operation span; Unsworth et al., 2005) and general fluid
intelligence (Raven’s matrices; Raven et al., 2003). The mean value
for the operation span task was 31.52 (SD = 16.35) and 12.63
(SD = 5.10) for Raven’s matrices, respectively. The correlation
between the operation span and the Raven’s matrices was found
to be significant, r = 0.42, p < 0.001. A CP composite score was
formed based on the operation span and Raven’s matrices scores,
and was used to split the students into low and high CP groups; it
was also used as a factor in the subsequent analyses.

Tasks
From the 28 designed tasks (see above), 14 practice tasks were
randomly chosen for the practice session. The corresponding 14
practiced test tasks together with seven transfer test tasks were
used during the test.

Procedure
In a between-group design, the students engaged in either the
AR practice (N = 72), which involved solving 14 AR task sets
(Figure 1A), or the CMR (N = 65) practice, which involved
solving 14 CMR task sets (Figure 1B). The students had 4 min
to conclude each of the 14 task sets.

One week later, a test was conducted in which students were
asked to solve 14 practiced test tasks, formula and numerical
tasks (Figures 2A,C) and seven transfer test tasks, formula and
numerical tasks (Figures 2B,D). The first test task for both the
practiced test tasks and the transfer test tasks was to write down
the formula corresponding to the practice task with a time limit of
30 s. The second test task for both the practiced test tasks and the
transfer test tasks was comprised of solving a numerical test task.
The students were given 4 min to solve each task. The practiced
test tasks were always presented before the transfer test tasks.

Statistical Analysis
A 2 (CP; low, high) × 2 (group; AR, CMR) × 2 (math tracks;
basic, advanced) multivariate analysis of variance (MANOVA)
was followed by univariate analyses of variance (ANOVAs).
The proportions of correct responses on numerical (practiced,
transfer) and formula (practiced, transfer) tasks were entered as
the dependent variables. Cohens d, and partial eta square (ηp

2)
were used as index of effect sizes.

3In the CMR group data from six participants were lost due to administrative error.
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RESULTS

Table 1A displays mean values, standard deviations, skewness,
kurtosis, and Cronbach’s alpha of proportion correct responses
for the test tasks for both AR and CMR learning conditions.
Separate independent t-tests revealed that there were no
significant differences between students in the AR and CMR
learning conditions for operation span, t(135) = 0.48, p = 63,
d = 0.08 and for the Raven’s matrices, t(135) = 0.12,
p = 0.90, d = 0.02, respectively, showing that these groups
were equal with respect to both complex working memory and
fluid intelligence. Moreover, a subsequent analysis (independent
t-test) of the CP composite score dividing the students
into high and low CP groups showed that they could
be considered to be cognitively separated, t(135) = 15.71,
p < 0.001, d = 2.68.

Table 1B display proportion correct responses for the
test tasks divided according to their CP level. The statistical
analyses confirmed that the students in the CMR learning
condition outperformed those in the AR learning condition,
F(4,126) = 4.42, p = 0. 002, Wilk’s 3 = 0.40, ηp

2
= 0.12.

Follow-up ANOVAs for each dependent variable were
significant, practiced test task formula, F(1,129) = 15.83,
p < 0.001, ηp

2
= 0.10; practiced test task numerical,

F(1,129) = 12.35, p = 0.001, ηp
2
= 0.09; transfer test

task formula, F(1,129) = 8.83, p = 0.04, ηp
2
= 0.06; and

transfer test task numerical, F(1,129) = 5.05, p = 0.03,
ηp

2
= 0.04. An effect of CP was also obtained, F(4,126) = 7.71,

p < 0.001, Wilk’s 3 = 0.80, ηp
2
= 0.20, showing that the

more cognitively proficient students outperformed those
who were less proficient. Follow-up ANOVAs for each
dependent variable revealed significant univariate effects of
CP for the practiced test task formula, F(1,129) = 12.35,
p < 0.001, ηp

2
= 0.09; the practiced test task numerical,

F(1,129) = 25.72, p < 0.001, ηp
2
= 0.17; the transfer test

task formula, F(1,129) = 22.63, p < 0.001, ηp
2
= 0.15; and

the transfer test task numerical, F(1,129) = 22.46, p < 0.01,
ηp

2
= 0.15. However, no multivariate main effects of math

tracks and no multivariate interactions were obtained, with
all p’s > 0.10.

TABLE 1B | Mean proportion correct response (M) and standard deviations (SD)
for AR and CMR learning conditions across low and high CP groups.

CP group (low/high) AR CMR

M SD M SD

Low CP1

Practiced test task formula 0.04 0.11 0.11 0.15

Practiced test task numerical 0.14 0.19 0.29 0.21

Transfer test task formula 0.05 0.10 0.08 0.14

Transfer test task Numerical 0.13 0.16 0.22 0.27

High CP2

Practiced test task formula 0.11 0.15 0.29 0.24

Practiced test task numerical 0.38 0.26 0.54 0.23

Transfer test task formula 0.19 0.21 0.30 0.25

Transfer test task Numerical 0.41 0.27 0.48 0.27

CP, cognitive proficiency, AR, algorithmic reasoning. CMR, creative
mathematical reasoning.
1n = 69.
2n = 68.

DISCUSSION

With respect to all four dependent variables, the analyses showed
that students practicing with CMR had superior results on the
subsequent test 1 week later than students practicing with AR
(confirming hypotheses 1 and 2) and that the more cognitively
proficient students outperformed their less cognitively proficient
counterparts, independent of group (confirming hypothesis 3).
Although the natural science students performed, on average,
better than social science students on all four dependent
variables, no significant main effect was observed for math tracks
(disconfirming hypothesis 4).

Experiment 2
The same hypotheses as in experiment 1 were posed in
experiment 2. However, as pointed out above, there is a higher
risk of non-equivalent group bias when using a between-subject
design, and a simpler test format could challenge the differential
effects found in experiment 1 (CMR > AR). It was therefore

TABLE 1A | Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning
conditions, respectively.

Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha

AR

Practiced test task formula 0.08 0.13 2.13 3.50 0.86

Practiced test task numerical 0.26 0.26 0.95 0.25 0.83

Transfer test task formula 0.12 0.18 1.72 3.07 0.61

Transfer test task numerical 0.27 0.26 0.87 −0.11 0.71

CMR

Practiced test task formula 0.20 0.22 0.97 −0.11 0.86

Practiced test task numerical 0.42 0.25 0.06 1.06 0.88

Transfer test task formula 0.19 0.22 1.40 1.58 0.62

Transfer test task numerical 0.35 0.30 0.59 −0.68 0.76

AR, algorithmic reasoning, CMR, creative mathematical reasoning.
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decided that experiment 2 should employ a within-subject design
and use MC questions as a test format instead of short answers.

Participants
A priori power analysis based on a within-subjects pilot study
(N = 20) indicated that with an alpha of 0.05 and a statistical
power of 0.80, a sample size of 50 students would obtain a
statistical group difference. The students were from a larger
pool of students, of which 82 students were randomly allocated
to a functional Magnetic Resonance Imaging (fMRI) study,
and the remaining 51 students participated in experiment 2.
An independent t-test revealed no differences concerning age,
general fluid intelligence (Raven’s matrices), or WMC (operation
span), with p-values > 0.37. The separate fMRI experiment is not
reported here. Experiment 2 included 51 students (27 girls, 24
boys) from natural science and social science programs in three
upper secondary schools located in a municipality in a northern
region of Sweden with a mean age of 18.13 years (SD = 0.24).
Recruitment of students was conducted in class by the authors,
at each school. The natural science students were enrolled in
more advanced math track compared with the Social science
students; as in experiment 1, math tracks (basic, advanced) were
subsequently entered as a factor in the analyses.

Cognitive Measures
As in experiment 1, the cognitive testing included operation span
and Raven’s matrices. The mean values and standard deviations
of the operation span and Raven’s matrices were similar to
those in experiment 1, for the operation span task (M = 38.27,
SD = 19.10) and Ravens matrices (M = 14.47, SD = 5.34),
respectively. The correlation between operation span and Raven’s
matrices was found to be significant, with r= 0.52 and p < 0.001.
A CP composite score was formed based on the operation span
and Raven’s matrices scores. The CP score was used to split the
students into a low CP group and a high CP group, and was also
used as a factor in the subsequent analyses.

Tasks
In a within-subject design, each student practice with 12 AR task
sets and 12 CMR task sets. The corresponding 24 practice test
tasks, together with eight transfer test tasks, were used as test tasks.

Procedure
In this within-subject design, the students first practiced with
12 AR task sets. After a break of a few hours, they then

practiced with 12 CMR task sets. This order was chosen to avoid
carry-over effects from CMR tasks to AR tasks. The rationale
was that starting with CMR tasks would reveal the underlying
manipulation, which the students could then use to solve the
AR tasks. Hence, constructing the solution without using the
provided formula is the critical factor in the manipulation.
To prevent item effects in which some tasks were more
suitable to be designed as AR or CMR tasks, the tasks that
were, respectively, assigned to be CMR and AR tasks were
counterbalanced. The students were given 4 min to conclude each
of the 12 task sets.

One week later, the students were asked to solve 24 randomly
presented practiced test tasks (albeit with different numbers than
before), of which 12 had been practiced as CMR tasks and
12 as AR tasks. These tasks were followed by eight transfer
test tasks.

Statistical Analyses
A mixed-design ANOVA was conducted with learning condition
(AR and CMR) and task type (practiced and transfer) as
the within-subject factors and CP (low and high) and math
tracks (basic and advanced) as the between-subject factors. The
proportions of correct responses on practiced test tasks and
transfer test tasks were entered as the dependent variables. Cohens
d and partial eta square (ηp

2) were used as index of effect
sizes. Although a within-subject design was used, the more
cognitively proficient students, who are likely to have better
metacognitive ability (see Desoete and De Craene, 2019 for an
overview), could potentially make use of constructive matching
by comparing a possible solution with the response alternatives,
response elimination by determining which answer is more likely,
or of guessing (Arendasy and Sommer, 2013; see also Gonthier
and Roulin, 2020). Therefore, the analysis was corrected using
the formula FS = R – W/C – 1, where FS = formula score;
R= number of items/questions answered correctly; W= number
of items/questions answered incorrectly; and C = number of
choices per item/question (e.g., Diamond and Evans, 1973;
Stenlund et al., 2014).

RESULTS

Table 2A displays the mean values of proportion correct response
(not corrected for guessing), standard errors, and psychometric

TABLE 2A | Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning
conditions, respectively.

Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha

AR

Practiced test task 0.48 0.25 0.27 −0.84 0.80

Transfer test task 0.46 0.33 0.35 −0.99 0.69

CMR

Practiced test task 0.55 0.27 0.00 −1.40 0.82

Transfer test task 0.53 0.35 0.00 1.40 0.63

AR, algorithmic reasoning, CMR, creative mathematical reasoning.
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properties of skewness, kurtosis, and Cronbach’s alpha for the
test tasks. An independent t-test of the CP composite score
dividing the students into high CP groups and low CP groups
showed that the students could be considered to be cognitively
separated, t(49) = 12.14, p < 0.001. d = 3.40. The table shows
that the mean values for CMR are higher than the corresponding
values for AR learning condition for both the practiced test
tasks and transfer test tasks. Table 2B display proportion correct
responses (not corrected for guessing) for the test tasks divided
according to their CP level. The statistical analysis corrected for
guessing revealed significant within-subject effects of learning
condition, with the CMR condition being superior to the AR
condition, F(1,47)= 9.36, p= 0.004, Wilk’s 3= 0.83, ηp

2
= 0.17.

However, there was no significant within-subject effect of task
type, F(1,47) = 0.77, p = 0.38, Wilk’s 3 = 0.98, ηp

2
= 0.012.

Moreover, there was no significant between-subject effects of
CP, F(1,47) = 0.23, p = 0.64, ηp

2
= 0.004, or of math tracks,

F(1,47) = 0.84, p = 0.36, ηp
22
= 0.005, and there were no

interaction effects (p’s > 0.67).
The non-significant effect of CP was rather surprising;

therefore, it was decided to re-run the analyses without the
correction formula. The analyses again revealed a significant
within-subject effect of learning condition, with the CMR
condition being superior to the AR condition, F(1,47) = 7.80,
p = 0.008, Wilk’s 3 = 0.85, ηp

2
= 0.14. Again no significant

within-subject effects from task type, F(1,47) = 2.3, p = 0.13,
Wilk’s 3 = 0.95, ηp

2
= 0.02 or between-subject effect of

math tracks, F(1,47) = 3.45, p = 0.07, ηp
2
= 0.07 were

detected. However, the between-subject effect of CP was now
clearly significant, F(1,47) = 18.74, p < 0.001, ηp

2
= 0.28.

Moreover, a learning condition × CP interaction F(1,47) = 9.05,
p = 0.004, Wilk’s 3 = 0.83 ηp

2
= 0.16 was qualified

by a learning condition × task type × CP interaction,
F(1,47) = 8.10, p = 0.005, Wilk’s 3 = 0.84, ηp

2
= 0.16.

The three-way interaction was driven by students with a
high CP performing better in the CMR learning condition
than in the AR learning condition especially pronounced
for the transfer test tasks. No other interaction effects were
detected (p’s > 0.70).

TABLE 2B | Mean proportion correct response (M) and standard deviations (SD)
for AR and CMR learning conditions across low and high CP groups.

CP group (low/high) AR CMR

M SD M SD

Low CP1

Practiced test task 0.35 0.17 0.40 0.21

Transfer test task 0.33 0.28 0.29 0.22

High CP2

Practiced test task 0.61 0.24 0.76 0.24

Transfer test task 0.58 0.33 0.69 0.30

CP, cognitive proficiency, AR, algorithmic reasoning. CMR, creative
mathematical reasoning.
1n = 25
2n = 26

DISCUSSION

With respect to both practiced test tasks and transfer test
tasks, the analyses showed, as expected, that students who
practiced with CMR had superior results on the subsequent
tests 1 week later compared to the students who practiced
with AR (confirming hypothesis 1 and 2). In comparison with
experiment 1, experiment 2 showed notably higher performance
levels, which most likely reflected the MC test format. Viewed in
relation to previous studies of CMR (e.g., Jonsson et al., 2014)
and the significant number of studies showing that educational
attainments in math are intimately related to cognitive abilities
(e.g., Adam and Hitch, 1997; Andersson and Lyxell, 2007),
the non-significant effect of CP was unexpected. The finding
that task type was non-significant, albeit in the direction of
the practiced test task being easier than the transfer test tasks
was also somewhat unexpected. It is possible that the eight
transfer test tasks (four AR and four CMR) may have been too
few to build reliable statistics. Although no significant effect
was obtained for math tracks, the natural science students
(advanced math track) performed better than the social science
students (basic math track) on average; however, this trend
did not reach statistical significance (disconfirming hypothesis
4). After the unexpected non-significant effect of CP, the
analysis was re-run without the correction formula. The analysis
revealed a main effect of CP (confirming hypothesis 3) and a
learning condition × CP interaction that was qualified by a
learning condition × task type × CP interaction. The three-
way interaction indicates that cognitively stronger students could
utilize response elimination or successful guessing in subsequent
MC tests more effectively than their lower CP counterparts,
especially for the transfer test tasks.

This design, in which the CMR practice tasks were presented
shortly after the AR tasks, may have introduced a recency
effect and thus facilitated the test performance more for
CMR than for AR tasks. However, the CMR practice session
contained 12 different task sets, and each new task set was a
potential distractor for the previous task sets. Moreover, between
the learning session and subsequent test 1 week later, the
students attended their regular classes. These activities, viewed in
conjunction with the well-known fact that the recency effect is
rather transitory (Koppenaal and Glanzer, 1990) and that recall
is severely disrupted even by unrelated in-between cognitive
activities (Glanzer and Cunitz, 1966; Kuhn et al., 2018), probably
eliminated the risk of recency effects. In experiment 2, the total
number of test tasks was 32 (24 practiced test tasks and eight
transfer test tasks), and some students complained that there
were too many tasks, which may have affected their performance,
potentially the cognitively more proficient students were less
affected by the large number test tasks.

Experiment 3
In experiment 3, the same hypotheses were posed as in
experiments 1 and 2. However, as pointed out above, the more
cognitively proficient students were potentially less affected by
fatigue and gained more from using MC questions as a test
format. Therefore, it was decided that experiment 3 should
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retain the within-subject design but use only transfer test tasks.
Moreover, we reintroduced written answers as a response mode
to prevent processes of constructive matching and response
elimination. To reduce a potential, but unlikely, recency effect,
the presentation order for a subsample was reversed, with CMR
tasks being presented before AR tasks.

Participants
Experiment 3 included 82 students. The average age of
participants was 17.35 years (SD = 0.66), whereof 35 were
girls, and 47 boys. The participants were from two upper
secondary schools located in a municipality in a northern region
of Sweden. Recruitment of students was conducted in class by
the authors, at each school. The students were divided into two
math tracks. The first was a mathematical track that included
year 3 technical students and year 2 natural science students
(advanced math tracks); these students were regarded by their
schoolteachers as approximately equal in math skill background.
The second math track consisted of year 1 natural science
students and year 2 social science students (basic math track);
these students were also regarded as approximately equal in
math skill background. The students were subsequently analyzed
according to their math tracks.

Cognitive Measures
The cognitive tests were the same as in experiments 1 and 2.
The mean values and standard deviations of the operation span
(M = 36.78, SD = 16.07) and Raven’s matrices (M = 14.33,
SD = 4.35) were similar to those from experiments 1 and 2.
The correlation between operation span and Raven’s matrices was
found to be significant, with r = 0.40 and p < 0.001, and a CP
composite score based on operation span and Raven’s matrices
scores was again formed, used to split the students into a low
CP group and a high CP group, and used as a factor in the
subsequent analyses.

Tasks
The same practice tasks were used, as in experiment 2. In a
within-subject design, the students practiced with 12 AR task
sets and 12 CMR task sets, and 24 transfer test tasks were used
during the test.

Procedure
The students practiced with the same tasks and setup as in
experiment 2, with the exception that the order of presentation
was reversed for a subset of students, with AR tasks being
practiced before CMR tasks. The students had 4 min to conclude
each of the 12 task sets during practice. One week later, the
students were asked to solve 24 transfer test tasks. The students
were given 130 s to solve each test task.

Statistical Analyses
The initial mixed-design ANOVA analysis, with learning
condition (AR and CMR) as the within-subject factor and
order of presentation as the between-subject variable and
the proportion correct response as the dependent variable,
investigated the potential presentation order × learning
condition interaction. The analysis revealed that this interaction

was non-significant, with F(1,80) = 0.22, p = 0.88, Wilk’s
3 = 0.10, ηp

2
= 0.0004. Therefore, the presentation order was

excluded from further analyses. Considering that the students
differed in age (by approximately 1 year), we controlled for age
by conducting a mixed-design analysis of covariance (ANCOVA)
with learning condition (AR and CMR) as a within-subject
factor and with CP (low and high) and math track (basic and
advanced) as the between-subject factors. The proportion of
correct responses on the transfer test tasks was entered as the
dependent variable, and age was used as a covariate. Cohens d
and partial eta square (ηp

2) were used as index of effect sizes.

RESULTS

Table 3A displays the mean values, standard deviations,
skewness, kurtosis, and Cronbach’s alpha for the test tasks. An
independent t-test of the CP composite score used to divide
the students into a high CP group and a low CP group showed
that the students could be considered as cognitively separated,
t(80) = 12.88, p < 0.001, d = 2.84. The table shows that
practicing with the CMR tasks was superior to practicing with
the AR tasks. Table 3B display proportion correct responses
for the transfer test tasks divided according to their CP level.
The statistical analysis confirmed a within-subject effect of
learning condition, F(1,77) = 20.88, p < 0.001, Wilk’s 3 = 0.78,
ηp

2
= 0.21. The analysis also revealed a between-subject effect

of CP, F(1,76) = 21.50, p < 0.001, ηp
2
= 0.22. However, no

between-subject effect of math tracks and no interaction effects
were obtained, p’s > 0.15.

DISCUSSION

The findings from experiment 3 were in line with those from the
previous experiments, providing evidence that practicing with
CMR tasks was superior to practicing with AR tasks (confirming
hypotheses 1 and 2). As expected, the analyses showed that
the more cognitively proficient students outperformed those
who were less cognitively proficient (confirming hypothesis 3).
Again, no significant effect was obtained for math tracks (again
disconfirming hypothesis 4).

GENERAL DISCUSSION

This study contrasted CMR with AR across three experiments
encompassing 270 students. It was hypothesized that practicing
with CMR leads to better performances than practicing with
AR on practiced test tasks and transfer test tasks (hypotheses 1
and 2). Experiments 1 and 2 included both practiced test tasks
and transfer test tasks, while experiment 3 focused exclusively
on transfer test tasks. The practiced test tasks were identical to
the tasks that the students had practiced (albeit with different
numbers). The transfer test tasks were different from the practice
tasks, but they shared an underlying solution idea. To solve the
transfer test tasks, the students had to rely on relevant knowledge
(a solution idea) acquired during their practice, which is critical
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TABLE 3A | Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning
conditions, respectively.

Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha

AR
Transfer test task 0.26 0.21 0.78 −0.12 0.78

CMR
Transfer test task 0.36 0.23 0.37 −0.33 0.75

AR = Algorithmic Reasoning, CMR = Creative Mathematical Reasoning.

in mathematics. If a student has no solution idea to rely on,
the transfer test tasks required the student to construct the
method from scratch.

Moreover, this study hypothesized that the more cognitively
proficient students would outperform those who were less
cognitively proficient (hypothesis 3), independent of learning
conditions. The upper secondary students were from different
student programs with different mathematical backgrounds (i.e.,
basic and advanced math tracks), which was entered as a factor
in the analyses. It was expected that those enrolled in a more
advanced math track would outperform those enrolled in a basic
math track (hypothesis 4).

Overall, the results confirmed hypotheses 1–3. However, no
effects of math tracks were obtained, disconfirming hypothesis 4.
Below, these hypotheses are discussed in detail.

Hypotheses 1 and 2
The analysis of both the practiced test tasks in experiment
1 followed the setup of Jonsson et al. (2014), in which
the dependent variables included trying to remember specific
formulas and solving numerical practiced test tasks. Moreover,
experiment 1 also went beyond Jonsson et al. (2014) and added
transfer test tasks. The results of experiment 1 were in line with
those of Jonsson et al. (2014): Practicing with CMR tasks lead to
significantly better performance on the practiced test tasks than
practicing with AR tasks. Experiment 1 also found that practicing
with CMR lead to significantly better performance on transfer test
tasks. In experiment 2, we turned to a within-subject design, with
the aim of removing potential non-equivalent group bias, and
introduced MC questions as a test format, thereby challenging
hypotheses 1 and 2 by using an easier test format. Again,
significant CMR > AR effects were detected for both practiced

TABLE 3B | Mean proportion correct response (M) and standard deviations (SD)
for AR and CMR learning conditions across low and high CP groups.

CP group (low/high) AR CMR

M SD M SD

Low CP1

Transfer test task 0.19 0.15 0.26 0.18

High CP2

Transfer test task 0.34 0.24 0.47 0.22

CP, cognitive proficiency; AR, algorithmic reasoning; CMR, creative
mathematical reasoning.
1n = 41.
2n = 41.

test tasks and transfer test tasks. However, the fact that only four
AR and four CMR transfer test tasks were used in experiment
2, the results could be questioned in terms of building adequate
statistics. Therefore, using a within-subject design, experiment 3
focused solely on transfer test tasks, which increased the number
of transfer test tasks and reduced the total number of tasks and,
thus, the risk of fatigue. We also reintroduced written answers as a
response mode to prevent processes of response elimination and
guessing. The analysis of experiment 3 revealed that practicing
with CMR tasks had a more beneficial effect than practicing with
AR tasks on the transfer test tasks, again confirming hypothesis 2.

Hypothesis 3
When a short answer format was used, as in experiments 1 and
3, the effects of CP were clear, confirming previous studies and
hypothesis 3. The second analysis in experiment 2 also confirmed
hypothesis 3. The analysis showed that all participants improved
their performance; hence the proportion correct was higher in
experiment 2 than in experiments 1 and 3 (Tables 1–3). This
performance was most likely due to the MC response mode.
The second analysis indicates that the cognitively more proficient
students could in addition, use response elimination or successful
guessing more effective (Desoete and De Craene, 2019), thereby
outperforming the cognitively less proficient. However, when the
analysis was corrected for guessing (the first analysis), the benefits
of using response elimination or guessing were removed, but the
effects of the easier MC response mode remained, which even out
the difference between the CP groups and thereby also removed
the effect of CP.

Hypothesis 4
The non-significant effect of mathematical track was somewhat
surprising, and disconfirmed hypothesis 4. A plausible
interpretation is that the students enrolled in more advanced
math tracks, which involve (according to the curriculum) better
mathematical training, could not make use of their acquired
mathematical knowledge when solving the novel experimental
test tasks; if this interpretation is correct, it would indicate that
the assumption of task novelty was also correct.

Overall, this study provides support for the argument that
CMR facilitates learning to a greater degree than AR and confirms
the results of previous studies (Jonsson et al., 2014, 2016; Norqvist
et al., 2019). Although the effect sizes were rather small, they must
be viewed in relation to the short interventions that the students
went through. We argue that when students are practicing with
CMR tasks, they are “forced” to pay attention to the intrinsic
and relevant mathematical components, which develops their
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conceptual understanding. The effects on transfer test tasks
indicate that practicing with CMR tasks—in comparison with
practicing with AR tasks—facilitates students’ ability to transfer
their knowledge to a greater extent; that is, they can better transfer
their solution idea from the practice task to a different task
sharing the same underlying solution idea (transfer test tasks).
This argument is in line with the findings of the Norqvist et al.
(2019) eye-tracking study: When students practiced with AR
tasks, they disregarded critical information that could be used
to build a more in-depth understanding; in contrast, students
that practiced with CMR tasks focused on critical information
more frequently. Practice with CMR is most likely associated
with more effortful struggle—an argument that shares similarities
with the framework of “ill-structured tasks” (Kapur, 2008, 2010).
In the ill-structured task approach, students are provided with
tasks for which no method or procedure on how to solve the
task is available and for which multiple solution paths may exist.
Students are required to (try to) solve the ill-structured task
by constructing their own methods before the teacher provides
instructions on the mathematics to be learned (VanLehn et al.,
2003; Kapur, 2010). Those studies showed that the struggle
of creating methods was especially beneficial for developing
a conceptual understanding of the task, as demonstrated by
significantly better performance on transfer test tasks (e.g., Kapur,
2010, 2011). It is argued that the task complexity inherent in
the ill-defined tasks was a key factor that helped students to
create structures that facilitated their conceptual understanding
of mathematics. Furthermore, studies have shown that the
more solutions students generate on their own, the better the
students’ test performance becomes, even when their methods
do not fully solve the practice task (Kapur, 2014). In the CMR
tasks used in the present study, no instructions were given.
Similar to the ill-structured approach, such tasks may identify
knowledge gaps and enable (or “force”) students to search for
and perceive in-depth structural problem features (Newman
and DeCaro, 2019). Although an excessively high cognitive load
may hamper learning, a desirable amount of cognitive load in
terms of struggle (in a positive sense) with mathematics may
be beneficial for developing conceptual understanding (Hiebert
and Grouws, 2007). In the present study, such development of
students’ conceptual understanding was seen in the form of better
performance on the later test as a function of practicing with
CMR tasks relative to AR tasks.

This study provides support for the theoretical link between
the learning process using CMR, performance, and conceptual
understanding. The results also underscore that although CP
was associated with better performance, it did not interact with
the learning condition. Hence, both cognitively stronger and
cognitively weaker students benefited from using CMR relative to
using AR. The theoretical framework (Lithner, 2008, 2017) could
potentially be updated with an individual differences perspective
with respect to cognitive prerequisites and their implication for
the learning process. With respect to the non-significant effect
of math tracks, the assumption of task novelty seems to be
correct. Moreover, the non-significant effect of math tracks also
indicates that students can gain conceptual understanding by
using CMR even with tasks for which the students lack or have

negligible pre-knowledge, and among students with “only” basic
mathematical background.

The results from this study could be discussed from a self-
explanation perspective (for an overview, see Rittle-Johnson
et al., 2017). According to Rittle-Johnson et al. (2017), the
mechanism underlying self-explanation is the integration of new
information with previous knowledge. This involves guiding
students’ attention to the structural features—rather than the
surface features—of the to-be-learned material, and can aid
comprehension and transfer. In the CMR assumption, predictive
arguments supporting strategy choice and verification arguments
explaining why the strategy implementation and conclusions are
“true or plausible” are regarded as critical features.

In sum, in the CMR/AR, ill-structured tasks, and self-
explanation approaches, the critical aspects are how tasks
are designed and how mathematical reasoning is supported.
Moreover, in order to move beyond textbooks’ step-by-step
solutions and understand the underlying ideas, students need
to face (in a positive sense) mathematical struggle activities.
Nevertheless, it is not likely that students will take on such
effort by themselves. The framework of CMR and ill-structured
tasks removes the task-solving methods and requires students
to find an underlying idea and to create solutions on their
own. Although CMR task solving is more cognitively demanding
during practice than AR task solving, it helps the learner to
focus on relevant information for solving the task. Moreover,
similar to the self-explanation approach, the CMR approach
guides students to the structural features that are critical for
aiding comprehension.

Limitations
A limitation in the present study is that experiment 3 did
not include any practiced test tasks. However, the results from
experiments 1 and 2 indicate that using practiced test tasks in
experiment 3 would have yielded the same conclusions as in
experiments 1 and 2. A further potential limitation is that the
presentation format differed in experiment 2 in comparison with
experiments 1 and 3. However, it could in fact be argued that this
is a strength of the study: Despite the different response formats
for the test tasks, the experiments yielded similar results, with
CMR consistently outperforming AR. Although the experiments
were based on convenience samples, which could potentially
narrow the external validity, the students were from four different
upper secondary schools, which provided some heterogeneity.
The results can also be discussed from the perspective of
Hawthorne effects: The awareness of knowing that they were part
of a study may have affected the students’ performance, and—
although this is unlikely—the findings may not generalize to a
regular setting when the researcher is not present.

Moreover, there were no pre-test measures in any of the
experiments, as it was argued that a pre-test could make the
students more or less responsive to the manipulation (see Pasnak,
2018, for a discussion). On the other hand, pre-tests could have
provided insight into how comprehension increased from the
pre- to a post-test. In experiment 1, pre-tests would have provided
a baseline of student performance, which could have been used to
evaluate initial group differences.
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Implications and Future Research
The results from the present and previous studies (e.g., Jonsson
et al., 2014, 2016; Norqvist et al., 2019) have implications
for school settings, as AR tasks (as opposed to CMR tasks)
are commonly used in teaching approaches and textbooks
(Stacey and Vincent, 2009; Denisse et al., 2012; Shield and
Dole, 2013; Boesen et al., 2014; Jäder et al., 2019), but
as argued do not promote optimal student learning. We
argue that an eclectic perspective in which validated methods
that emphasize mathematical struggles—such as task solving
using CMR, ill-structured tasks, and self-explanations—should
be a part of the mathematical curriculum, in conjunction
with approaches that reduce cognitive load, such as worked
examples. In future studies, it would be interesting not only
to contrast CMR with other approaches, but also to investigate
how to combine the CMR approach with, for example, self-
explanation (Rittle-Johnson et al., 2017) and, potentially, with
worked examples as well (Sweller et al., 2011). Another
potential combination could involve retrieval practice, which
is a cognitive-based learning strategy based on self-testing.
At first glance, retrieval practice is very different from using
CMR. Using CMR emphasizes the construction of solutions,
while retrieval practice strengthens memory consolidation
through the process of retrieving information from long-term
memory. For example, retrieving the definition of working
memory without the support of written text will enhance one’s
ability to remember the definition across long-term retention
intervals (Wiklund-Hörnqvist et al., 2014). The performance
difference between retrieval practice and other ways of attaining
information—most commonly re-reading—is denoted as the
“testing effect.” The testing effect is supported by both behavioral
and functional fMRI evidence (for overviews, see Dunlosky
et al., 2013; van den Broek et al., 2016; Adesope et al.,
2017; Antony et al., 2017; Moreira et al., 2019; Jonsson
et al., 2020). Research that currently underway shows that
measures of brain activity following the testing effect (retrieval
practice > study) and the “CMR effect” (CMR > AR) indicate
that the same brain areas are activated. It is possible that by
adding retrieval practice after formulas or procedures have been
established by using CMR, the memory strength of specific
formulas may be enhanced. Future studies are planned to
pursue this reasoning.

Moreover, as stated in the limitation, the experiments
in the present study were based on convenience samples.
A purely randomized sampling or a stratified sampling would
be preferable in future studies. It is also unclear whether the
CMR approach is potent among students with special needs,
although the non-significant effects of math tracks found in

the present study were encouraging; future studies should
pursue this question.
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Research has identified two core difficulties many students have with fractions: first,
they often struggle with processing fraction magnitudes, and second, they rely on
natural number concepts in fraction problems [“Natural Number Bias” (NNB)]. Yet, the
relation between these two difficulties is not well-understood. Moreover, while most
studies of the NNB relied on analyses of whole samples, there is empirical evidence
that the occurrence of the NNB differs between student subgroups. In the present
study, we investigate individual students’ profiles of the occurrence of the NNB and
their ability to process fraction magnitude, using a dynamic assessment that utilizes
continuous diagrams on touchscreen devices. We analyze data of 234 low-achieving
6th-grade students from Germany who completed a symbolic fraction comparison task,
and a fraction magnitude estimation task with continuous circle and tape diagrams.
A cluster analysis on the comparison task revealed three distinct clusters: a Typical
Bias cluster (better performance on symbolic fraction comparison items congruent
to natural number-based reasoning), a Reverse Bias cluster (better performance on
items incongruent to natural number-based reasoning), and a No Bias cluster (similar
performance on congruent and incongruent items). Only students in the No Bias cluster
but not students in the other clusters demonstrated a distance effect in symbolic fraction
comparison, suggesting fraction magnitude processing. Linear mixed models on the
percent absolute error in the magnitude estimation task revealed significantly lower
percent absolute error for students in the No Bias cluster compared to students in the
other two clusters. Students in the No Bias cluster were significantly slower to solve
both fraction comparison and fraction magnitude estimation tasks than students in the
other clusters. The results of this study suggest that the occurrence of the natural
number bias and the ability to process fraction magnitude are closely related. The
continuous representations used in our digital assessment tools appeared to be suitable
for assessing both the natural number bias and fraction magnitude processing.

Keywords: natural number bias, comparing fractions, fraction magnitude, cluster analysis, individual profiles,
computer-based assessment
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INTRODUCTION

Plenty of research has shown that many students struggle with
learning of rational numbers, particularly of fractions (e.g., Behr
et al., 1983; Siegler et al., 2011; Lortie-Forgues et al., 2015).
Two major difficulties seem to be that students (1) are not
sufficiently able to understand and process fraction magnitudes,
and (2) rely on natural number principles when reasoning about
rational numbers, causing Natural Number Bias (see Ni and
Zhou, 2005 and see section “The Natural Number Bias as a Source
of Individual Errors in Solving Fraction Problems”). While both
difficulties have been discussed in the literature, there is still
little evidence about the relation between the two. Moreover,
most previous studies have used whole-sample analyses to study
students’ difficulties, while research about individual students’
profiles is scarce (but see Rinne et al., 2017; Gómez and
Dartnell, 2019; González-Forte et al., 2019). Another issue is
that the tasks that have been used to assess fraction magnitude
often allow the use of alternative strategies (e.g., number line
estimation task) that may not solely require processing of fraction
magnitude, or they actually require processing the magnitudes of
two fractions instead of one fraction (e.g., fraction comparison
task). Finally, performance on the fraction magnitude task
may be affected by the presence of a natural number bias.
The present study assesses individual students’ profiles (i.e.,
student subgroups) of natural number bias and investigates
how these profiles are related to students’ ability of processing
fraction magnitude.

The Natural Number Bias as a Source of
Individual Errors in Solving Fraction
Problems
Before students begin learning about rational numbers and
fractions, they have acquired intense knowledge about natural
numbers, both in informal contexts and in school contexts.
Although natural numbers are—from a formal mathematical
perspective—a subset of rational numbers, there are several
properties that apply within the domain of natural numbers
but not within the more general domain of rational numbers.
Accordingly, relying on properties that apply within the
natural numbers but not rational numbers in solving fraction
problems can lead to systematic errors, a phenomenon that
has been called Natural Number Bias (NNB, also referred to
as Whole Number Bias; see Ni and Zhou, 2005). Researchers
have studied the NNB in various dimensions, including the
dimensions of representation, operation, density, and size (for
an overview, see, for instance, Prediger, 2008; Van Hoof
et al., 2015, 2018; Obersteiner et al., 2019a,c): for example,
each natural number has a unique symbolic representation,
while each rational number has infinitely many symbolic
representations (e.g., 1/2 = 2/4 = 3/6 = 0.5, etc.). An example
regarding operation is that while multiplying natural numbers
always makes numbers bigger, this is not generally true for
rational numbers. Regarding density, although there are only
infinitely many numbers between any two natural numbers,
and every natural number has a unique predecessors and

successors, there are infinitely many numbers between any
two rational numbers, and rational numbers do not have
predecessors or successors.

In this study, we focus on the dimension of size or magnitude.
Processing the numerical magnitude of a natural number is fairly
straightforward considering the base-ten system, and comparison
tasks can be solved with digit-by-digit comparison strategies.
For example, 36 is larger than 28 because 3 (tens) is larger
than 2 (tens). In contrast, processing the numerical magnitude
of a fraction requires reasoning about the numerical relation
between two natural numbers, and considering this relationship
as another (rational) number. Comparing two fractions requires
comparison of two such relationships and considering each
fraction as one (holistic) number rather than considering the
numerator and denominator as two distinct numbers. Moreover,
these comparisons can be counterintuitive, because the fraction
with the larger natural numbers is not necessarily the larger
fraction (e.g., 7/8 > 2/3) but can also be the smaller fraction
(e.g., 3/5 < 2/3). When comparing two fractions, students often
rely on simple comparisons of natural number components—
the numerators and the denominators—and do not consider
the actual fraction magnitudes. Such natural number-based
reasoning would lead to correct responses in problems that
are “congruent” (i.e., in which the larger fraction is composed
of the larger natural numbers), and to incorrect responses in
problems that are “incongruent” (i.e., in which the larger fraction
is composed of the smaller natural numbers). Many studies found
that people are indeed more accurate (e.g., Vamvakoussi and
Vosniadou, 2004) and/or faster (e.g., Van Hoof et al., 2013) to
solve fraction problems that are congruent than problems that
are incongruent. This NNB in fraction comparison seems to be
very persistent. It has been documented in younger and older
students (e.g., Van Hoof et al., 2018) as well as in college students
(e.g., DeWolf and Vosniadou, 2011), university students (Gómez
et al., 2017) and—in some types of problems—even in academic
mathematicians (Obersteiner et al., 2013).

In most earlier studies, the NNB was assessed as the average
performance difference between congruent and incongruent
problems across the whole sample. Such an analysis may
mask individual profiles that may deviate from the pattern
of performance found on the group level. In fact, studies
that did use a person-centered approach identified individual
differences in bias patterns (Rinne et al., 2017; Gómez and
Dartnell, 2019; González-Forte et al., 2019): while a fairly large
number of students showed a strong typical NNB, i.e., better
performance on congruent than incongruent items (Gómez
and Dartnell, 2019), other students showed no NNB or even
a reverse NNB, i.e., better performance in incongruent than
congruent comparison items. Students showing a reverse NNB
seem to consider the fractions with smaller components to
be the larger fraction. An interpretation for that pattern
is that these students have a partial—yet still incomplete—
understanding of fraction magnitude. As Rinne et al. (2017,
p. 14) argue, these students may “recognize that larger numbers
can somehow lead to smaller fraction magnitudes, but they
do not fully understand the relationship between numerator
and denominator.”
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González-Forte et al. (2019) showed that profiles derived from
accuracy and response time measures (as reported in the studies
above) were highly consistent with students’ verbal explanations
they gave in interviews when asked to compare fractions. This
suggests that quantitative person-oriented statistical approaches
may also be apt for characterizing individual students’ reasoning.

While the studies mentioned above have identified individual
differences in NNB profiles, Rinne et al. (2017) studied how
these profiles develop within individuals over time. In their
longitudinal study, they found that some students changed their
bias patterns between grade four and grade six. Most students
shifted from a typical NNB to either a reverse NNB or normative,
correct reasoning. The authors suggest that NNB patterns—the
typical and the reverse—might be usual steps within a learning
trajectory from natural numbers to fraction concepts.

In sum, person-centered approaches are necessary to identify
meaningful individual differences in NNB patterns. A related—
and still open—question is to what extent students with different
bias patterns also differ in terms of magnitude processing.

Assessing Fraction Magnitude
Processing
There are multiple ways to interpret the meaning of a fraction,
for instance, as a ratio, part of a whole, division, or measurement
(e.g., Behr et al., 1983). Fraction magnitude refers to the
aspect that a fraction represents one numerical value. To
assess whether people are able to activate fraction magnitude,
researchers have sought to use tasks that actually require fraction
magnitude processing. Two frequently used tasks are symbolic
fraction magnitude comparison and number line estimation
(e.g., Schneider and Siegler, 2010; Schneider et al., 2018a).
Performance on both of these tasks was found to correlate
with mathematical competence (Schneider et al., 2018b, see also
Schneider et al., 2018a for a detailed review of number line
estimation regarding fractions, and Schneider et al., 2017 for
a detailed review of numerical magnitude processing). Yet, to
our knowledge, research comparing the performance between
symbolic magnitude comparison and number line estimation
regarding fractions is sparse (Schneider et al., 2018b; but see
Hamdan and Gunderson, 2017, for evidence of a transfer
between number line training and fraction comparison task,
suggesting that there is a relation between both tasks at a whole
population level).

In the first frequently-used task to assess fraction magnitude
processing—symbolic fraction comparison—people are asked
to decide which of two fractions represents the larger number.
The distance effect is the effect that the smaller the numerical
distance between the two to-be-compared fractions, the
more difficult the item. The size of this effect is often used
as an index of magnitude processing (see Schneider et al.,
2017). There is empirical evidence that such a distance
effect may be present both regarding accuracy (e.g., Sprute
and Temple, 2011) and response times (e.g., Meert et al.,
2010). However, empirical evidence is still missing whether
a distance effect is present in students showing an NNB.
When utilizing symbolic fraction comparison to assess

fraction magnitude processing, the following issues should
be considered.

As the comparison task involves two fractions by design, the
use of certain comparison strategies such as benchmarking may
make a distance effect less likely to occur. Benchmarking refers
to the use of transitive thinking to compare the two fractions
of interest to a third number (Post et al., 1986; Clarke and
Roche, 2009). When comparing the size of one proper fraction
(those smaller than 1, e.g., 8/9) and one improper fraction
(those larger than one, e.g., 7/6), one may easily compare both
fractions to 1 (i.e., use a transitive benchmarking to 1 strategy)
by simply noticing whether the numerator or the denominator
of the respective fraction is bigger, instead of directly comparing
the two fraction magnitudes. Although such a strategy relies on
fraction magnitude processing to some extent (i.e., noticing that
fractions are smaller or larger than 1) comparison items that
afford benchmarking to 1 are probably easier to solve regardless
of the distance between the two fractions. Thus, participants
applying such a benchmarking to 1 strategy may rely on fraction
magnitude processing and yet not show a distance effect.

Furthermore, the assumption that students activate fraction
magnitudes in fraction comparison tasks may not hold for
comparison tasks with common components (e.g., 5/8 vs. 3/8,
or 4/9 vs. 4/7). In these tasks, students may rather rely on
processing the natural number magnitudes of the non-common
components (Obersteiner and Tumpek, 2016). This possible
absence of fraction magnitude processing in items with common
components may play an important role in distinguishing
between students’ response patterns in comparing fractions with
and without common components: for instance, Gómez and
Dartnell (2019) found that there are students who show a
persistent typical NNB when comparing fractions with common
components (e.g., 4/15 vs. 4/6) but no NNB when comparing
fractions without common components (e.g., 5/6 vs. 8/19). Thus,
it may be argued that those students process fraction magnitude
only when the fractions do not have common components. This
suggests that fraction magnitude processing in symbolic fraction
comparison might be dependent on specific problem features (see
Obersteiner et al., 2020).

Most important for the present study, it seems possible that
students showing a persistent NNB might not use fraction
magnitude processing when comparing two fractions, since they
do not view fractions as holistic symbols but as distinct numbers
in the specific task of symbolic magnitude comparison. This
makes the assessment of fraction magnitude processing in
students who show a persistent (typical or reverse) NNB a
particular challenge: in these students, the absence of a distance
effect in the fraction comparison task may suggest that they do
not process fraction magnitude when comparing two fractions,
but it does not answer the question to what extent they are at all
able to process magnitudes of individual fractions. Assessing the
extent of fraction magnitude processing in students with diverse
NNB patterns (i.e., typical or reverse) is relevant because the
study by Rinne et al. (2017) suggests that NNB patterns may go
hand in hand with qualitatively different levels of understanding
of fraction magnitudes. Therefore, different approaches seem
necessary to assess the potentially gradual differences in fraction
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magnitude processing in low-achieving students that exhibit an
NNB (whether typical or reverse). This motivates the use of tasks
aiming at processing the magnitudes of single fractions.

The second frequently-used task to assess fraction magnitude
processing is number line estimation. In this task, participants
are asked to place fractions on an empty number line where
only the start and end points but no other numbers are
marked. Accordingly, number line estimation requires assessing
the magnitude processing of one single fraction at a time.
The relevant measure is the percent absolute error, which is
the deviation between the student’s estimated position and the
correct position of the given fraction divided by the length of the
number line (see Schneider et al., 2018a).

Although number line estimation tasks have often been used
in research, some researchers have argued that this task may
also not be a pure measure of fraction magnitude. One reason
is that number line estimation tasks can be solved by dividing
the number line and counting the resulting pieces, a strategy
that is not directly based on fraction magnitude (i.e., “fractions
as measures,” see Kieren, 1976; Novillis-Larson, 1980; Bright
et al., 1988; also referred to as “line segmentation,” see Schneider
et al., 2018b). Another reason is that one can use strategies
such as rounding, counting or proportional reasoning (Jeong
et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015). On
the other hand, one could argue that these latter strategies also
require the processing of fraction magnitude to some extent
(Schneider et al., 2018a).

Some of these issues may be overcome by using various
visual representations that are more intuitive and less formal
than number lines, such as circle and tape diagrams (e.g.,
Carraher, 1993). Such visual representations can be used in
continuous or discretized forms. Continuous representations
are diagrams with no given partition (e.g., continuous circle
or tape diagram, Hoch et al., 2018b; see also Jeong et al.,
2007; Boyer et al., 2008; Boyer and Levine, 2015; DeWolf
et al., 2015). Discretized representations are “subdivided into
equal-sized units . . . to render them measurable by counting”
(DeWolf et al., 2015, p. 128). Discretized representations do not
seem to be appropriate to assess fraction magnitude processing
because they are more likely to activate counting schemes
and encourage people to “ignore the perceptual relation of
the relevant quantities” (Jeong et al., 2007, p. 238). They may
thus distract individuals from processing fraction magnitude
(DeWolf et al., 2015). Continuous diagrams, on the other
hand, do not allow for counting (Jeong et al., 2007; Boyer
et al., 2008; Boyer and Levine, 2015)—because there are no
countable pieces—and may force students to rely more strongly
on fraction magnitude. Visual representations may be presented
in dynamic formats, for example, on touchscreen devices
(Reinhold et al., 2020; see also Boyer et al., 2008), which allows
students to respond with gestures (i.e., drag and drop, see
section Magnitude Estimation Task). Compared to paper–pencil
assessment, touchscreen devices may prevent students from using
procedural part-whole strategies (e.g., calculating the angle of
the segment in a circle diagram, or adding auxiliary lines to the
representation) that do not rely on fraction magnitude processing
(Reinhold, 2019).

The Present Study
In this study, we use a person-oriented approach to compare
performance between (1) a symbolic fraction comparison task
and (2) estimations of single fraction magnitudes.

We investigate individual profiles of NNB, and the interplay
between an NNB and fraction magnitude processing. As assessing
gradually different fraction magnitude processing in students
showing a persistent NNB may be a particular challenge (see
section “Assessing Fraction Magnitude Processing”), and neither
one of those frequently-used tasks should be considered a pure
measure of magnitude processing (Schneider et al., 2018b), we
chose a research approach that involves two different types
of assessment.

The study has two specific aims. The first aim is to replicate
individual profiles of NNB in symbolic fraction comparison
(typical bias, reverse bias, no bias; Rinne et al., 2017; see also
Gómez and Dartnell, 2019; González-Forte et al., 2019) in low-
achieving students shortly after they have been introduced to
fractions in school. We expect to find clusters with typical NNB,
with reverse NNB, and without an NNB. We also investigate
the relationship between individual students’ NNB profiles and
fraction magnitude processing assessed by the distance effect.
We expect students without NNB to elicit a distance effect
and students with NNB patterns not to elicit a distance effect,
because the former students would be better able to process
fractions magnitudes than the latter. The second aim is to explore
the relationship between individual students’ NNB profiles and
their fraction magnitude processing abilities utilizing continuous
diagrams in a dynamic assessment on touchscreen devices.
We expected to find differences in the percent absolute error
between different NNB profiles with students showing no NNB
demonstrating lower percent absolute error.

MATERIALS AND METHODS

Sample
The sample consisted of N = 234 6th-grade students (42% female)
from 16 classrooms in eight German secondary schools. The
schools were of type Hauptschule, which is the lowest school track
of secondary school in the German school system. Students in this
school track demonstrate below average performance at the end
of primary school (i.e., grade 4) in mathematics, language, and
science, and show typically low performance in secondary school
mathematics (Götz et al., 2013; Sälzer et al., 2013; Reinhold et al.,
2020). Thus, we expected to find patterns of NNB in the present
sample of low-achieving students. The data was collected within
the research project ALICE:fractions (Hoch et al., 2018a; Reinhold
et al., 2020), 8 weeks after students received the first introduction
to fraction magnitudes in school. Note that according to their
curriculum, students had been formally introduced to fractions
at the beginning of grade six only.

Material
We used two different scales, the fraction comparison task
including both congruent and incongruent fraction pairs, and the
magnitude estimation task featuring continuous diagrams.
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Fraction Comparison Task
To solve the fraction comparison tasks students had to pick
the larger of two fractions that were presented in symbolic
representation (Figure 1). Since we expected students to have
fairly low competencies with fractions, all fractions had one-
digit numerators and one-digit denominators. There were nine
items with congruent fraction pairs and 11 items with incongruent
fraction pairs (see section “The Natural Number Bias as a Source
of Individual Errors in Solving Fraction Problems”). Reliabilities
for accuracy on both the congruent and the incongruent
comparison scales were high (Cronbach’s αcon = 0.87, 95% CI
[0.85,0.90], αinc = 0.94, 95% CI [0.92,0.95]). Items varied in
the distance between the two fractions (Table 1), but there was
no significant difference in mean distance between congruent
(M = 0.31, SD = 0.32) and incongruent (M = 0.27, SD = 0.22)
items, t(13.88) = –0.30, p = 0.77. Both the congruent and the
incongruent scale contained items where either both fractions
were proper (e.g., 2/5 vs. 5/7) or where one fraction was
proper and the other fraction was improper (e.g., 2/3 vs. 5/4).
Response Time (RT) was measured as the time between the
item was displayed on the screen of a touchscreen device and
the participant chose the fraction by tapping on the screen.
Reliabilities for RTs were sufficiently high as well (αcon = 0.82,
95% CI [0.79,0.86] and αinc = 0.84, 95% CI [0.81,0.87]). All items
are displayed in Table 1.

Magnitude Estimation Task
In the magnitude estimation task, students had to mark a fraction
on a continuous visual representation, which was either a circle or
a tape diagram (varying across the task, see Figure 2). Students
hat to drag a colored segment from 0 to the desired value within
the given representation using finger movement. There were 16
fractions, and each fraction was presented in both representation
formats, resulting in a total of 32 items (Table 2). Both the
order of the given diagram and the order of the 16 fractions,
was randomized for each student. We measured the Percent
Absolute Error (PAE) as the absolute deviation from the given

TABLE 1 | Items used in the fraction comparison task.

Item Congruent Item Type Distance

1/4 vs. 6/5 1 1 0.950

2/3 vs. 5/4 1 1 0.583

2/5 vs. 5/7 1 0 0.314

2/5 vs. 7/8 1 0 0.475

3/7 vs. 2/5 1 0 0.029

3/8 vs. 1/3 1 0 0.042

4/5 vs. 6/7 1 0 0.057

4/6 vs. 1/3 1 0 0.333

6/8 vs. 7/9 1 0 0.028

5/8 vs. 4/3 0 1 0.708

6/7 vs. 3/2 0 1 0.643

8/9 vs. 6/5 0 1 0.311

1/3 vs. 2/8 0 0 0.083

2/3 vs. 5/8 0 0 0.042

2/5 vs. 3/9 0 0 0.067

2/9 vs. 1/3 0 0 0.111

3/7 vs. 2/3 0 0 0.238

3/8 vs. 2/3 0 0 0.292

4/9 vs. 2/3 0 0 0.222

4/9 vs. 3/4 0 0 0.306

Congruent: 0 = item incongruent, and 1 = item congruent to natural number
thinking; Item Type: 0 = item contains one proper and one improper fraction, and
1 = item contains two proper fractions; Distance: numerical value representing the
distance between the two given fractions in the item.

value, and Response Time (RT) as the time between the item
was displayed and the student pressed the “ok” button after
marking the fraction.

Procedure
The responsible local education authority approved the study.
School principals, classroom teachers, students and their parents
were informed about the goal of the study and the procedure.

FIGURE 1 | Example fraction comparison task as displayed in the digital assessment environment. Original item in German, translated into English for the purpose of
this article.
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FIGURE 2 | Example magnitude estimation tasks as displayed in the digital assessment environment (top) circle diagram; (bottom) tape diagram. Original item in
German, translated into English for the purpose of this article.

They all gave informed consent. Participation for students was
voluntary and without reimbursement.

Students were presented all tasks on a 10.5-inch iPad. All items
had to be solved using the touchscreen with finger input. They
were first presented the fraction comparison task, where they
had to mark the larger fraction by touching it (Figure 1). After
that, the students were presented the magnitude estimation tasks
(Figure 2), first with circle diagrams and then with tape diagram,
or in the reverse order (randomly assigned). Item order in all
three assessments was randomized.

For each task, process data (i.e., task characteristics, student
input, and response time) were recorded and saved on the iPad
using WebStorage.

Data and Statistical Analyses
Because students’ off-task behavior generated outliers that may
affect the results (Kovanoviæ et al., 2015), we preprocessed
response time data (Goldhammer et al., 2014; Hoch et al., 2018a):
response times that deviated more than two standard deviations
from the mean of the corresponding task type (i.e., fraction
comparison task and magnitude estimation task) were considered
as outliers and were replaced by that bound (i.e., two standard
deviations above or below the mean).

To achieve the first aim of this study, we applied a
cluster analysis on the fraction comparison tasks based
on three dimensions: the accuracy in incongruent tasks
(ACCinc), the accuracy in congruent tasks (ACCcon), and

TABLE 2 | Items used in the magnitude estimation task.

Fraction 1/5 1/3 2/6 3/8 2/5 4/10 3/5 6/10 5/8 2/3 4/6 3/4 6/8 4/5 8/10 7/8

Numerical value 0.20 0.33 0.33 0.38 0.40 0.40 0.60 0.60 0.62 0.67 0.67 0.75 0.75 0.80 0.80 0.88
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the average response time (RT). As response time did not
differ significantly between incongruent and congruent
tasks on the student level, we used the combined average
measure to reduce collinearity in the cluster analysis.
Since cluster analysis is sensitive for outliers we used the
logarithm of RT and standardized all three measures before
clustering. We used a two-step clustering approach, utilizing
hierarchical clustering with Ward’s method to identify the
appropriate number of clusters according to the majority rule
(Charrad et al., 2014). Clusters were then defined with the
k-means algorithm (Sharma, 1996; Backhaus et al., 2018).
We then used generalized linear mixed models (GLMMs)
to estimate effects of congruency, distance, and item type
(i.e., one fraction being improper vs. both fractions proper)
on students’ probability to give correct responses in the
fraction comparison task, for each cluster separately. In this
specific case, GLMMs have several advantages over other
statistical methods (e.g., handling of unbalanced designs,
see Brauer and Curtin, 2018, and handling dichotomous
data, see Anderson et al., 2010). The models contained fixed
effects for the predictor variables Congruent (0 = incongruent,
and 1 = congruent), Distance (numerical value representing
the distance between the two given fractions in the item,
centered at grand mean), and Type (0 = item contains
two proper fractions, 1 = item contains one proper and
one improper fraction). The models allowed for random
intercepts for Students, Classrooms (to account for the
nested data structure), and Items. We give estimates as log-
odds which can be transformed to estimated probabilities
for giving a correct response. As a consequence of the
coding and centering, the Intercepts describe the estimated
probability of getting a correct response from an average
student within the cluster on an incongruent item of
average difficulty that consists of two proper fractions with
an average distance.

To achieve the second aim of this study, we firstly
validated the circle and tape diagram scales as a single
magnitude estimation scale by conducting a confirmatory
factor analysis. Secondly, we compared the results from
the magnitude estimation task between students belonging
to different clusters—using both, percent absolute error and
reaction time, as units of analyses. To that end, we used linear
mixed models (LMMs) with the resulting Clusters as fixed
effect and random intercepts for Students, Fractions, Task type
(0 = circle diagram; 1 = tape diagram; to account for different
representations), and Classrooms (to account for the nested
data structure).

All data preprocessing and analyses were conducted in
R (R Core Team, 2008). For cluster analysis, we used
the NbClust package (Charrad et al., 2014) and the stats
package (R Core Team, 2008). For confirmatory factor
analysis, we used the lavaan package (Rosseel, 2012). For
GLMMs and LMMs, we used the lme4 package (Bates
et al., 2015), and for calculating post hoc Tuckey contrasts
between the clusters, we used the multcomp package
(Hothorn et al., 2008).

FIGURE 3 | Cluster centers of the three Student Types, resulting from the
cluster analysis of 254 students based on two solution rates and the
logarithmized combined average time on task for students’ responses in items
on the fraction comparison task.

RESULTS

Identifying and Validating Different
Student Profiles in Fraction Comparison
We were interested in individual profiles of NNB. The cluster
analysis revealed three different profiles. A total of 12 out of 23
stopping rules (among them the Calinski-Harabasz stopping rule
and the Silhouette plot) suggested a three-cluster structure, with
other cluster structures suggested by only one to three stopping
rules. As students are nested within classrooms, the relation
between clusters and classrooms is of interest for interpreting the
results. A chi-square test showed a significant relation between
clusters and classrooms, X2(30, N = 254) = 57.79, p < 0.01. For
that reason, we allowed for a Classroom random intercept in all
GLMMs and LMMs to account for the nested data structure.

We describe those different clusters of students with regard to
their absolute values on ACCinc, ACCcon, and RT. To illustrate
the description, cluster centers for the three types of students are
displayed in Table 3 and depicted in Figure 3.

Students in the Typical Bias cluster showed high accuracy in
congruent items (M = 0.91) and low accuracy in incongruent
items (M = 0.07) (Figure 3). One-sample t-tests against
µ = 0.5 showed that both accuracy rates differed significantly
from chance level (Table 3). In the GLMM model, the effect
of congruency was significant, while distance and type were
not significant (Table 4), suggesting that students in this
cluster relied on natural number thinking and did not process
fraction magnitudes. Relative to the total sample, students in
this cluster were relatively fast in responding to the tasks
(Figure 3), presumably because they did not even try to
solve symbolic fraction comparison tasks by processing fraction
magnitude but relied solely on simple comparisons of natural
number components.
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Students in the Reverse Bias cluster showed a response
pattern opposite to those in the Typical Bias cluster (Figure 3).
These students demonstrated high and significantly above-
chance solution rates in incongruent items, M = 0.81, and
fairly low and significantly below-chance solution rates in
congruent items, M = 0.21 (Table 3). Again, the effect of
congruency was significant and the effects of distance or type
were not (Table 4). Overall, students in this cluster were
also fairly fast in their responses (Figure 3). The results
suggest that these students may already have developed a
partial—yet still incomplete—understanding of fractions and
have overgeneralized their knowledge that larger numbers can
lead to smaller fraction.

Students in the No Bias cluster showed a response pattern
that was not affected by an NNB (Figure 3). These students
demonstrated medium but significantly above-chance solution
rates in both incongruent items, M = 0.60, and congruent
items, M = 0.64 (Table 3). The GLMM shows that there
was no significant effect of item congruency (Table 4). In
contrast to students in the two biased clusters, students in
this cluster showed a significant effect of distance, with the
estimated probabilities of being correct increasing with the
distance between the two fractions (Table 4). In addition,
there was a significant effect of type, with higher accuracy for
items containing two proper fractions than for items containing
one proper and one improper fraction (Table 4). On average,
students in this cluster took three times as long as both
other clusters to solve comparison items (Figure 3), which
could be an indicator that these students were aware of the
cognitive demand of fraction comparison. The results suggest
that these students have started to develop an understanding of
fraction magnitudes.

Error and Response Time in Magnitude
Estimation
For the following analyses, we had to exclude 20 students
(i.e., 7.9% of the sample) because their data on the magnitude
estimation task were not saved due to a software problem. We
do not believe that this reduction affected the results because
the distribution of the remaining 234 students over the three
NNB clusters (n = 101 Typical Bias, n = 67 Reverse Bias, and
n = 66 No Bias) did not differ significantly from the whole sample,
X2(2,234) = 0.32, p = 0.85.

TABLE 4 | Parameter estimates for the generalized linear mixed models for getting
a correct response in items in the fraction comparison task, reported for each
cluster separately.

Typical Bias Reverse Bias No Bias

Fixed effects Estimate SE Estimate SE Estimate SE

Intercept −2.74*** 0.22 1.54*** 0.14 0.76*** 0.32

Distance −0.49 0.73 −0.12 0.50 1.62*** 0.45

Congruent 5.13*** 0.27 −2.93*** 0.16 0.05 0.14

Type (one fraction
improper)

0.23 0.44 −0.04 0.29 −1.00*** 0.26

Random effects Variance SD Variance SD Variance SD

Student 0.08 0.29 0.00 0.00 0.46 0.68

Classroom 0.02 0.13 0.00 0.04 0.03 0.17

Item 0.13 0.36 0.02 0.15 0.03 0.17

Typical Bias: 2016 observations, 105 students, 16 classrooms, 20 items; Reverse
Bias: 1399 observations, 75 students, 16 classrooms, 20 items; No Bias: 1379
observations, 74 students, 16 classrooms, 20 items. Estimates are given as log-
odds. Levels of significance: ***p < 0.001.

Validating the Scales
Our hypothesis was that the magnitude estimation items assessed
the same construct regardless of the specific representation
format (circle or tape). Yet, a confirmatory factor analysis
showed that a model with two different latent factors for each
representation (circle or tape) fit the data significantly better
than a model with one latent factor (regardless of the specific
representation), X2(1) = 104.8, p < 0.001. However, Cronbach’s
Alpha for the unidimensional magnitude estimation scale was
high for both the Percent Absolute Error (PAE, α = 0.92, 95% CI
[0.91,0.94]) and Response Time (RT, α = 0.86, 95% CI [0.84,0.89]).
As for our analysis differences between both representations
are not of particular interest, we chose the unidimensional
magnitude estimation scale for further analyses, but we allowed
for a Task Type random intercept in the following LMMs to
account for variance due to the specific representations.

Differences Between Student Profiles
On average, PAE was 14.4% (SE = 1.1). The estimated marginal
mean of RT was 8.06 s (SE = 1.35). We were interested in how
students in the different NNB clusters differed in these values.
Parameter estimates from the LMMs are given in Table 5.

TABLE 3 | Cluster centers for the three clusters regarding fraction comparison.

Accuracy Response time

Incongruent Congruent

Cluster N M SD t M SD t M SD

Typical Bias 105 0.07 0.12 −37.67*** 0.91 0.12 35.06*** 2.55 1.00
Reverse Bias 75 0.81 0.21 12.66*** 0.21 0.19 −13.15*** 2.37 0.81
No Bias 74 0.60 0.29 2.94** 0.64 0.21 5.55*** 6.25 2.60

N = Cluster size, M = Mean value, SD = Standard deviation, t = One-sample t-test against µ = 0.5. Time on task is given in seconds. Levels of significance: ***p < 0.001,
**p < 0.01.
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TABLE 5 | Parameter estimates for the linear mixed models for percent absolute
error and response time in items on the in the magnitude estimation task.

Percent absolute Response time (RT)
error (PAE)

Fixed effects Estimate SE Estimate SE

Intercept 0.108*** 0.013 9.17 1.41
Cluster
No Bias (baseline) – – – –
Typical Bias 0.058*** 0.013 −1.50** 0.50
Reverse Bias 0.040** 0.014 −1.70** 0.54

Random effects Variance SD Variance SD

Student 0.005 0.073 7.93 2.82
Classroom 0.000 0.018 1.04 1.02
Item 0.001 0.024 0.31 0.56
Task type 0.000 0.005 3.51 1.87

7262 observations, 234 students, 16 classrooms, 16 fractions, 2 task types.
Percent absolute error: estimates are given as the total deviation from the given
value. Time on task: estimates are given in seconds. Levels of significance:
***p < 0.001, **p < 0.01.

Regarding PAE, the random effects in the full model seemed
neglectable. Students in the No Bias cluster showed a PAE of
10.8%, 95% CI [8.2, 13.4], which was significantly lower than
the PAE of students in the Typical Bias cluster (PAE = 16.6%,
95% CI [14.3, 18.9]), p < 0.001, and significantly lower than the
PAE of students in the Reverse Bias cluster (PAE = 14.8%, 95%
CI [12.3, 17.3]), p < 0.05 (Table 5). No significant difference
between students in the Typical Bias cluster and the Reverse Bias
cluster was found, p = 0.32. Thus, students in the No Bias cluster
yielded the most accurate estimations of fraction magnitude in
the magnitude estimation task.

Regarding RT, the students in the No Bias cluster (RT = 9.17,
95% CI [6.40, 11.94]) took significantly longer to estimate the
magnitude of the given fractions than students in the Typical Bias
cluster (RT = 7.68, 95% CI [4.94, 10.41]), p < 0.01, or the Reverse
Bias cluster (RT = 7.48, 95% CI [4.72, 10.24]), p < 0.01 (Table 5).
Again, no significant difference between students in the Typical
Bias cluster and the Reverse Bias cluster was found, p = 0.93.
Thus, in line with the results from the fraction comparison tasks,
students in the No Bias cluster invested more time in solving the
items than students in both biased clusters.

DISCUSSION

We were interested in individual profiles of NNB, and in the
interplay between an NNB and fraction magnitude processing. In
the following, we discuss the results regarding these two aspects.
We then discuss the assessment of fraction magnitude processing
with continuous diagrams on touchscreen devices, as well as
limitations of our study.

Individual Profiles With and Without a
Natural Number Bias
We found three distinct profiles of natural number bias
in fraction comparison, which is in line with results from

recent studies (Rinne et al., 2017; Gómez and Dartnell, 2019;
González-Forte et al., 2019). Students in the Typical Bias cluster
demonstrated a typical NNB (better performance on congruent
than incongruent comparison items), while students in the
Reverse Bias cluster showed an NNB in the opposite direction
(better performance on incongruent than congruent comparison
items). Relative to students in the Typical Bias cluster, students
in the Reverse Bias cluster seem to have changed their number
concepts regarding fractions: they seem to consider a fraction
larger when its components are smaller. These two profiles were
reported in several studies utilizing person-oriented approaches:
Rinne et al. (2017) found them in their longitudinal study with
students from grade 4 to grade 6 before and after systematic
fractions instruction in school; González-Forte et al. (2019) with
seventh graders; and Gómez and Dartnell (2019) with students
from grade 5 to grade 7.

In contrast, students in the No Bias cluster did not show
NNB patterns. They showed above-chance solution rates in
both congruent and incongruent fraction comparison tasks,
although solution rates were not very high overall. Again,
this cluster was found in other studies as well. For example,
Gómez and Dartnell (2019) reported a cluster of non-biased
students performing relatively low—yet above chance—in
symbolic fraction comparison with non-common components.
For students in our No Bias cluster, tasks were more difficult when
one improper fraction had to be compared to one proper fraction
than when both fractions were improper—a result that Rinne
et al. (2017) report for students in the best performing cluster
before initial instruction of fractions in school. This suggests
that students in our No Bias cluster were not yet able to use
benchmarking to 1 as an effective strategy (Clarke and Roche,
2009; Reinhold et al., 2018). In sum, students in the No Bias
cluster seemed to show a beginning development of a deeper
understanding of fractions.

It is noteworthy that students in the Typical Bias cluster
and the Reverse Bias cluster responded considerably faster than
students in the No Bias cluster. We interpret this as an indicator
that students in both biased clusters were not aware of the
difficulty in fraction comparison tasks—and as another empirical
evidence for the presence of the (reverse) NNB in specific student
profiles: it seems reasonable that responding based on (reverse)
NNB thinking—i.e., magnitude processing of natural numbers—
is faster than responding based on fraction magnitude processing
(Obersteiner et al., 2013; Van Hoof et al., 2013), especially at this
early level of fraction magnitude development.

Overall, the strong individual differences in NNB patterns
suggest that research on the NNB in particular and research on
the development of fraction knowledge in general should utilize
person-oriented approaches to account for individual differences
(see Rinne et al., 2017; Van Hoof et al., 2018; Gómez and Dartnell,
2019; González-Forte et al., 2019).

Natural Number Bias and Fraction
Magnitude
We found empirical evidence for a relation between the presence
of an NNB and fraction magnitude processing. This relation was
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found in both the symbolic fraction comparison task (distance
effects) and the magnitude estimation task with continuous
diagrams. Regarding the first relation (NNB and symbolic
fraction magnitude comparison) students in both clusters that
exhibited NNB (typical or reverse) did not show a numerical
distance effect in fraction comparison tasks, while students
in the No Bias cluster did. This result is in line with the
hypothesis that students who are affected by an NNB process
fraction components separately and struggle with processing
fractions as holistic magnitudes. Secondly, the results from the
magnitude estimation task with continuous diagrams showed
that the presence of NNB (both typical and reverse) was related
to a larger percent absolute error. Like in the symbolic fraction
comparison task, students in the No Bias cluster demonstrated
significantly longer response times in magnitude estimations than
students from both biased clusters. This seems counterintuitive
at first sight, but we suggest that students in the No Bias cluster
were at an advanced stage of fraction magnitude understanding,
but did not yet automatize fraction magnitude processing. In
future studies, one could include students at a higher level of
fraction understanding and test whether these students show
faster responses without biases.

Based on current literature and these findings, we suggest a
tentative model of competence in fraction magnitude processing
that could be empirically evaluated in further research: (1) On
the lowest level, students show a persistent NNB with no fraction
magnitude processing (e.g., clusters reported in our study, as well
as Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte
et al., 2019). (2) On the second level, students show a reverse bias
due to misinterpretation of fraction concepts, yet still no fraction
magnitude processing (e.g., clusters reported in our study, as well
as Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte
et al., 2019). (3) On a third level, students do not show an NNB
but demonstrate fraction magnitude processing—yet slow and
with low accuracy (e.g., clusters reported in our study, as well as
Gómez and Dartnell, 2019). (4) On the highest level, students do
not show an NNB (regarding accuracy) and are able to process
fraction magnitude accurately (e.g., clusters reported in Rinne
et al., 2017; Gómez and Dartnell, 2019; González-Forte et al.,
2019)—and quickly (e.g., academic mathematicians reported in
Obersteiner et al., 2013).

While our study does not yield evidence for a developmental
progression (as it is a cross-sectional study from a single
population), the results of the longitudinal study of Rinne
et al. (2017) may suggest a learning trajectory from level 1 to
level 4. This study showed that students do make gradually
transitions between those phases during formal fractions
instruction in school. Further research is needed regarding
students’ development. It seems of particular interest how
learning trajectories regarding fraction magnitude processing,
suggested for instance by Resnick et al. (2016), and learning
trajectories regarding an NNB, suggested for instance by Rinne
et al. (2017), fit together.

Regarding developmental progression, the role of the reverse
bias is not yet completely clear, as current research gives two
different explanations for that pattern. While Rinne et al. (2017)
argue that it might be due to overgeneralization of the fact that

larger numbers may represent smaller fractions, an alternative
explanation for the reverse bias pattern is that students use a
specific strategy to compare fractions, which is gap thinking.
In this strategy one would argue that the larger the difference
between the numerator and the denominator, the smaller the
fraction (González-Forte et al., 2019). Consistent application of
gap thinking in items with non-common components and proper
fractions would result in the reverse bias pattern because it always
leads to correct solutions in incongruent items (e.g., 2/3 > 4/9,
because 3 – 2 = 1 and 9 – 4 = 5), but it may lead to incorrect
solutions in congruent items (e.g., 1/3 > 5/9, because 3 – 1 = 2
and 9 – 5 = 4) (Gómez et al., 2017; see Obersteiner et al., 2020).
Considering the short response times of students in the Reverse
Bias cluster in our study, it seems unlikely that these students’
reasoning was based on gap thinking, which would require
two subtractions. However, further research seems necessary to
explore how use of specific strategies is related the occurrence of
bias patterns in fraction comparison (Obersteiner et al., 2019b).

It is also not very clear how instruction can best support
students in reaching higher levels in fraction magnitude
processing, although multiple recommendations on enhancing
students’ understanding of fractions exist (e.g., Behr et al., 1983;
Butler et al., 2003; Prediger, 2008; Obersteiner et al., 2019a;
Reinhold et al., 2020). Further research with longitudinal and/or
experimental designs is necessary to identify potential causal
effects of instruction on transitions between the suggested levels
of fraction magnitude processing. A particularly interesting
question is whether a reverse bias is a necessary step, or whether
it can be prevented by certain forms of instruction.

Moreover, the role of strategy-use and fraction magnitude
processing in the symbolic comparison task is still not completely
clear. A study of Fazio et al. (2016) showed that young adults
apply a variety of different strategies when comparing the
magnitude of two fractions. It is, however, less clear whether this
is also the case for students learning the concept of fractions (but
see Clarke and Roche, 2009). The study of González-Forte et al.
(2019) yields first evidence that students showing a typical NNB
do rely on component-based comparison strategies.

Assessing Fraction Magnitude With
Continuous Diagrams on Touchscreen
Devices
We argued that continuous diagrams presented on touchscreen
devices are a suitable way to assess fraction magnitude
processing. The results of our study support this argument. The
continuous magnitude estimation task yielded similar results
regarding fraction magnitude processing as the symbolic fraction
comparison task. However, the magnitude estimation task had
the advantage that it allowed for a continuous measure of
processing a single fraction’s magnitude (the percent absolute
error) even in students of the two bias clusters that did not show
a distance effect when comparing two fractions.

Further analysis of the data collected with our touchscreen
tool could give additional insights into the strategies that students
used to determine fraction magnitudes. In particular, finger
tracking data may provide detailed information about students’
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reasoning. Finger tracking—as used in previous studies (Dotan
and Dehaene, 2013; Faulkenberry et al., 2015)—is a fairly natural
way of input and may provide a more direct link between hand
motions and cognitive processes than mouse tracking.

While our study aimed at assessing fraction magnitude
processing, we suggest that our digital assessment tool can be
utilized as an effective tool for supporting students’ development
of fraction magnitude, when adequate feedback is implemented
(Reinhold et al., 2020).

Limitations
Our study included a sample of low-achieving students because
we wanted to study a sample with clear NNB patterns.
Accordingly, the NNB clusters that we identified may not
generalize to other samples. In students with higher mathematical
abilities, one would expect to find an additional cluster of students
who have higher solution rates and stronger distance effects
(comparable to the academic mathematicians in Obersteiner
et al., 2013; or the All Correct profile in González-Forte et al.,
2019). Future research could investigate whether the same
clusters can be found in another sample, and how students make
the transition from one cluster to another during development.
It would also be interesting to study how other factors (e.g.,
intelligence, prior informal learning experiences, the quality of
instruction) are related to memberships in the different clusters.

We argued that continuous representations may be better
apt to assess fraction magnitude processing than discretized
representations—especially in studies with students with NNB
response patterns. As noted, we cannot rule out that continuous
measures also encourage proportional reasoning (e.g., Jeong
et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015).
However, we would argue that “these accounts [magnitude
processing and proportional reasoning] do not exclude each
other” (Schneider et al., 2018a, p. 1468) and that, on the contrary,
proportional reasoning could be foundational for fraction
magnitude processing. Future research could investigate in more
detail the relationship between fraction magnitude processing
and proportional reasoning. Likewise, studies could investigate
potential differences in the cognitive processes involved in
magnitude estimation on either circle or tape diagrams. In our
study, items in both representations proved to form a reliable
scale, although a factor analysis did suggest differences between
both representations.

In addition, further studies could systematically investigate the
differences in abilities required in estimation tasks with number
lines on the one hand and with continuous diagrams on the other.
It would also be of interest whether the used continuous diagram
stimuli show a mode effect between touch screen assessment and
a more traditional paper-based assessment. First evidence by Piatt
et al. (2016) suggest that there is no mode effect in number line
estimation tasks.

CONCLUSION

We found that a natural number bias (whether typical or
reverse) was associated with low fraction magnitude processing,

while the absence of bias was associated with moderate
magnitude processing in a sample of lower-achieving students.
We suggested a way of assessing magnitude processing of
individual fractions using continuous visual representations
on touchscreen devices that have particular advantages in
assessments with low-achieving students. Future research with
longitudinal designs and interventions is necessary to better
understand students’ fraction magnitude processing and bias
patterns, and the factors that influence the relationship
between the two.
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Understanding number magnitude is an important prerequisite for children’s
mathematical development. One early experience that contributes to this understanding
is the common practice of finger counting. Recent research suggested that through
repeated finger counting, children internalize their fingers as representations of
number magnitude. Furthermore, finger counting habits have been proposed to
predict concurrent and future mathematical performance. However, little is known
about how finger-based number representations are formed and by which processes
they could influence mathematical development. Regarding the emergence of finger-
based number representations, it is likely that they result from repeated practice
of finger counting. Accordingly, children need sufficient fine motor skills (FMS) to
successfully count on their fingers. However, the role that different types of FMS
(such as dexterity and graphomotor skills) might play in the development of finger-
based number representations is still unknown. In the current study, we investigated
(a) whether children’s FMS (dexterity and graphomotor skills) are associated with
their emerging finger-based number representations (ordinal and cardinal), (b) whether
FMS explain variance in children’s finger-based number representations beyond
the influence of general cognitive skills, and (c) whether the association between
FMS and numerical skills is mediated by finger-based representations. We tested
associations between preschool children’s (N = 80) FMS (dexterity and graphomotor
skills), finger-based number representations, and numerical skills. Furthermore, visuo-
spatial working memory and nonverbal intelligence were controlled for. Dexterity was
related to children’s finger-based number representations as well as numerical skills
after controlling for chronological age, but not after also controlling for cognitive
skills. Moreover, the relationship between dexterity and numerical skills was mediated
by finger-based number representations. No such associations were observed for
graphomotor skills. These results suggest that dexterity plays a role in children’s
development of finger-based number representations, which in turn contribute to their
numerical skills. Possible explanations are discussed.

Keywords: fine motor skills, dexterity, graphomotor skills, finger counting, numerical skills, embodied numerosity,
early mathematics
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INTRODUCTION

Early in development, children learn implicitly about numerical
and mathematical constructs. Even before the beginning of
formal instruction, children have their first experiences of
magnitude, through enumerations and comparisons (Geary,
2000). Specifically, children are able to discriminate between
different amounts, quantities, or magnitudes, perhaps by virtue of
possessing what has been referred to as an innate “number sense”
(e.g., Dehaene, 1997). As early as six months of age, children have
been reported to be capable of discriminating between sets of
objects or sequences of sounds that differ in numerosity by a large
enough ratio (Xu and Spelke, 2000; Xu et al., 2005). For example,
when presented with two auditory sequences, they notice the
difference between 8 and 16 sounds, but not between 8 and 12
sounds. This ability improves across early development, with nine
month old infants being able to discriminate 8 from 12 dots, but
not 8 from 10 [for an overview see Lipton and Spelke (2004)].

Accordingly, children learn their first number words at the
age of two years (Wynn, 1992). At this age, they are also capable
of rapidly and accurately recognizing the numerosity of small
sets of 1-3 objects without counting; a process also referred to as
“subitizing” (Kaufman et al., 1949; Hannula et al., 2007). Their
numerical abilities then develop further through interactions
with the world and experiences with numerical activities, so
that children enter school with a surprising amount of what
Baroody and Wilkins (1999) called “informal mathematical
knowledge” (p. 84).

Especially in these early stages of informal learning, children’s
hands play an important role in their interactions with the world.
For example, they use their hands to explore and manipulate
objects (e.g., Śniegulska and Pisula, 2013). Further, fingers are
used when children first conceptualize numerical magnitude, also
referred to as numerosity (e.g., Butterworth, 1999). They use their
hands to touch objects during counting, but they also use their
fingers as a counting aid when learning about number words and
remembering the counting sequence (Lafay et al., 2013). As an
important basic numerical skill, counting is strongly associated
with children’s development of mathematical skills later in life
(Pixner et al., 2017).

However, not only basic numerical skills, such as counting,
contribute to the development of mathematical skills. Domain
general abilities such as fine motor skills (FMS) have also
received increasing research interest due to their association with
children’s mathematical abilities (Luo et al., 2007; Pitchford et al.,
2016). FMS can be defined as “small muscle movements requiring
close eye-hand coordination” (Luo et al., 2007, p. 596). However,
the working mechanisms by which FMS are associated with
mathematical skills are still largely unresearched.

Based on recent findings, we suggest that one possible
mechanism by which the association between FMS and
mathematical skills could be formed is the procedure of finger
counting. We argue that by internalizing and automatizing
repeated finger counting procedures, children come to represent
numbers as finger patterns. These finger-based representations
of number might then form a stable association between finger
movements and numerical content (Roesch and Moeller, 2015).

We therefore start by giving an overview of associations
between FMS and mathematics, before describing the
development of finger-based representations and their
implications for mathematical learning. Finally, we present
a working model on how FMS and finger-based representations
might interact to contribute to the acquisition of numerical
and mathematical knowledge, which formed the basis for
the current study.

Fine Motor Skills and Mathematical Skills
A growing number of studies suggest that children’s FMS
are linked to their mathematical skills (Luo et al., 2007;
Roebers et al., 2014; Pitchford et al., 2016; Suggate et al.,
2017; Fischer et al., 2018a). Especially in school, children with
good FMS display better mathematical performance than their
peers with lower FMS.

However, explanations for these findings are sparse and have
for the most part been very general. Some of these explanations
posit that the association is not specific, but that executive
functions or general cognitive skills underlie performance in
both FMS and mathematics. For example, growing proficiency
in writing/graphomotor skills has been hypothesized to free
up working memory capacities for mathematical tasks (Luo
et al., 2007). Indeed, many studies have shown that working
memory capacity is a relevant predictor for mathematical abilities
(Alloway and Passolunghi, 2011; Geary et al., 2013; Li and
Geary, 2013), with especially visuo-spatial working memory
predicting mathematical outcomes longitudinally. For example,
Bull et al. (2008) found that preschoolers’ backward visuo-
spatial memory span in a Corsi Block Tapping task significantly
predicted their mathematical ability three years later. It has been
argued that this association exists because visuo-spatial working
memory “functions as a mental blackboard to support number
representation, such as place value and alignment in columns,
in counting and arithmetic tasks” (Alloway and Passolunghi,
2011, p. 133).

Likewise, verbal working memory has been found to be
associated with FMS (i.e., visuomotor skills) as measured with
a figure copying task (Becker et al., 2014). However, in the
same study, Becker et al. (2014) found that although visuomotor
skills were related to mathematical skills, verbal working memory
was not. Results such as these imply that visuo-spatial working
memory is especially relevant for mathematics performance
(Alloway and Passolunghi, 2011), although some studies suggest
that verbal working memory becomes more relevant with age
(Rasmussen and Bisanz, 2005).

Another common factor hypothesised to underlie the
association between both FMS and mathematics are general
cognitive abilities (Luo et al., 2007; see also Carlson et al.,
2013). General cognitive abilities (i.e., intelligence) play an
important role in children’s academic development in more
aspects than just mathematics, with research indicating that
reading and mathematical skills are influenced to the same
degree by intelligence (Schneider and Niklas, 2017). Although
working memory has been suggested to be a stronger predictor
of academic achievement by some (Alloway and Alloway, 2010),
others have reported that in early development, intelligence has
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a greater impact (Schneider and Niklas, 2017). For mathematics
achievement specifically, nonverbal intelligence has repeatedly
been identified as predictive (e.g., Manolitsis et al., 2013;
Hassinger-Das et al., 2014). Turning to FMS, Davis and colleagues
(Davis et al., 2011) found that within the construct of general
intelligence, especially visual processing was associated with FMS.

In some of the most recent works, however, it has been argued
that the missing link for why an association between FMS and
mathematical skills exists might lie in children’s early counting
experiences (Suggate et al., 2017; Fischer et al., 2018a). Among all
the numerical abilities acquired in early childhood, the mastery
of the counting procedure has probably received the greatest
research interest (e.g., Gelman and Gallistel, 1978; Wynn, 1992;
Dowker, 2008; Colomé and Noël, 2012; Aunio and Räsänen,
2015; Fischer et al., 2018a). One reason for this attention could lie
in the high predictive value of children’s counting skills for their
later mathematical abilities (e.g., Greeno et al., 1984; Stock et al.,
2009; Koponen et al., 2016; Mercader et al., 2018). Therefore,
the acquisition of counting skills is well-documented, as is the
involvement of fingers in attaining this developmental milestone.

Described by Ifrah (1998) as the ‘earliest calculating machine’,
fingers have long been used to aid counting and calculation.
Numerous studies suggest that finger use in early counting is
almost universal (Butterworth, 1999; Lafay et al., 2013; Crollen
and Noël, 2015). As such, finger counting has been suggested
to be a necessary step in numerical development (Moeller et al.,
2011), or at least a helpful tool for numerical development
(Lafay et al., 2013). Finger use not only supports children in
learning to count, but might also help them to develop conceptual
understanding of the purpose of the counting procedure (Siegler,
1991), and thus, the meaning of numbers (Domahs et al., 2008;
Fischer, 2008; Fischer et al., 2018a). Interestingly, the use of
fingers for counting and calculating is often prohibited or at least
frowned upon in schools, most likely because it is considered
an immature strategy that should be replaced early on with
more abstract representations of number (Moeller et al., 2011).
Furthermore, children with mathematical learning difficulties (or
dyscalculia) are often reported to remain active finger counters
for much longer than their peers (Geary et al., 2004). However,
this might simply be due to these children not progressing from
counting strategies to the retrieval of memorized arithmetic
facts, rather than being a problem of the use of fingers per se
(Geary et al., 2004). Accordingly, the current state of research
indicates that the use of fingers for calculation might actually help
rather than impede children’s mathematical development (e.g.,
Kaufmann, 2008; for a discussion see Moeller et al., 2011).

Accordingly, research on associations between FMS and
mathematical skills has increasingly focused on counting and
finger counting. Stronger links have been observed between
children’s finger FMS and their performance on finger-
based mathematical tasks, such as finger counting and finger
calculation, compared to their performance on non-finger-based
tasks, such as object counting and verbal calculation (Suggate
et al., 2017). Furthermore, the association seems to be driven
by the finger counting procedure rather than the outcome. In a
recent study involving German preschool children, Fischer et al.
(2018a) observed that FMS were related to children’s procedural

counting skills (such as correctly assigning one number word to
each counted object), which in turn influenced their conceptual
understanding of counting (such as understanding that the last
number in the counting sequence represents the numerosity of
the counted set). Accordingly, these previous results suggest that
FMS are particularly relevant for children to acquire proficiency
in correctly counting and that understanding the purpose of
the counting procedure seems to result from this increase in
counting proficiency.

However, not all aspects of FMS might be equally relevant
for children’s acquisition of counting skills. As FMS consist
of multiple facets, there might be some aspects that are
more strongly associated with mathematical development than
others. Generally, previous research suggests that not just for
mathematics, but also for other cognitive skills, different facets of
FMS are relevant to varying degrees (Suggate et al., 2016; Martzog
et al., 2019; Fischer et al., 2018b). Specifically, some of the most
recent studies on the association between FMS and numerical
skills employed dexterity measures, that is, measures that require
precise object manipulation skills (Suggate et al., 2017; Fischer
et al., 2018a). However, other facets such as graphomotor or
visuomotor skills (i.e., tasks that are performed with a pencil)
were not considered, although they are found to be associated
with mathematics achievement in elementary school children.

To date, in terms of kindergarten children, only one study in
particular differentiated between graphomotor skills and another
facet of FMS, specifically finger agility (i.e., tasks that require the
ability to move one’s fingers independently, see also Butterworth,
1999). In this study with children who attended the last year of
kindergarten, Roesch and colleagues (unpublished study reported
in a summative article by Fischer et al., 2018b) investigated
associations between graphomotor skills, finger agility, and early
calculation skills. In contrast to previous studies, in which finger
agility was often operationalized as speeded tapping movements
with a single finger (e.g., Penner-Wilger et al., 2007), it was
here operationalized as deliberate taps with different fingers
without time constraints. The authors found that only finger
agility, but not graphomotor skills predicted children’s early
calculation skills. One possible explanation for this finding was
that the deliberate movement of single fingers is necessary
for children’s early finger counting activities, as previously
suggested by Butterworth (1999). Likewise, previous observations
of associations between dexterity and numerical skills might
stem from children either manipulating countable objects or
their own fingers with their hands during counting activities.
Accordingly, based on this previous research, graphomotor skills
might not be relevant for children’s early numerical development,
whereas other facets of FMS such as finger agility and dexterity
might be. They might however become more important when
mathematical skills are taught in school and numbers are
interacted with in a written format.

Internalizing Finger-Based Number
Representations Through Counting
Finger counting routines are learned by children observing and
imitating others’ behavior (Fuson, 1988; Andres and Pesenti,
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2015) in a manner typical of a specific culture. Crucially, because
these cultural conventions for finger counting are stable within
a given culture (i.e., in German finger counting, counting always
starts with the thumb for “one”), certain fingers are almost always
associated with the same number word during finger counting.
This is why it has been suggested that early finger counting
experiences lead children to internalize fingers as implicit
representations of numbers, in which certain finger constellations
are consistently associated with a specific magnitude (Lafay et al.,
2013; Adriano et al., 2014; Wasner et al., 2015).

There are different formats in which numbers are mentally
represented other than as finger constellations. According to
models of numerical processing such as the triple-code model
by Dehaene and colleagues (Dehaene, 1992; Dehaene and Cohen,
1995), there are three codes in which humans represent number.
The model suggests that adults represent numbers verbally as
spoken number words, visually as Arabic numerals, and amodally
as magnitudes along a mental number line. In addition to these
three codes, Roesch and Moeller (2015) suggested that finger-
based representations can be viewed as another representational
format of numbers (Roesch and Moeller, 2015). These finger-
based representations have been hypothesized to exist in two
different forms, the first being an ordinal representation and
therefore representing the finger counting process; and the
second representing actual cardinal magnitudes rather than a
counting sequence in finger-based pictorial form (Wasner et al.,
2015). Regarding the order of acquisition of these finger-based
representations, researchers argue that ordinal representations
are likely acquired before cardinal representations (Roesch and
Moeller, 2015; Wasner et al., 2015). However, the literature
on the general development of ordinality and cardinality
understanding is inconclusive on this issue. Although some
have reported that ordinality precedes cardinality (e.g., Siegler,
1991; Bermejo, 1996), later studies find that the development
might not be sequential or hierarchical, instead suggesting an
iterative development in which both concepts develop in parallel
(Rittle-Johnson et al., 2001). One study by Colomé and Noël
(Colomé and Noël, 2012) even presents results supporting the
opposite view, with children seemingly mastering cardinality
before ordinality.

So although the development of these finger-based number
representations is not yet fully understood, it is well-established
that these representations are permanent. Interestingly, evidence
for stable finger-based representations of numbers has been
observed not only in children, but also in adult participants
(Domahs et al., 2008; Domahs et al., 2010). In these first
studies investigating the pervasive influence of finger counting
on mathematical cognition, finger-based representations were
indirectly measured by assessing how often participants erred by
five in arithmetic tasks (Domahs et al., 2008; Klein et al., 2011).
The inference of these studies was that errors that deviate by five
from the correct result are caused by participants representing
numbers in multiples of five, due to their reliance on finger-
based representations. Thus, finding that errors of ± 5 were
more frequent than errors of ± 4 from the correct result
was interpreted to originate from a subconscious activation of
finger-based representations (i.e., erring by one hand). However,

directly assessing how finger-based representations develop and
are associated with numerical skills in early childhood could
give further insight into how and when these representations are
meaningful for development.

The Current Study
Although previous research has hinted at a possible link between
FMS and mathematical skills via finger counting experiences
(Suggate et al., 2017; Fischer et al., 2018a), this link has not
been tested directly. Although Wasner et al. (2015) suggested that
motor constraints might play a role in the development of finger-
based numerical representations, no data exist to directly confirm
this association.

In this study, we therefore investigated in depth how two
types of finger-based number representations (ordinal and
cardinal) interact with FMS and numerical skills. Furthermore,
building on previous research suggesting different associations
based on different facets of FMS (e.g., Fischer et al., 2018b),
we measured FMS using both tasks geared more toward
measuring finger dexterity in a classical sense as well as a
task assessing graphomotor skill via drawing in a line tracing
paradigm. Because children’s early counting experiences rarely
involve writing or drawing, but might require finger agility and
dexterity, this distinction seems paramount when investigating
the genesis of finger-based number representations. Accordingly,
we differentiate for the first time both between different types
of finger-based number representations (ordinal and cardinal) as
well as different types of FMS (dexterity and graphomotor skills).

In a correlational design, we tested preschool children on
their finger dexterity, graphomotor skill, ordinal and cardinal
finger-based representations, and numerical skills. We expected
that both children’s ordinal and cardinal finger-based numerical
representations should be associated with their dexterity, but
not graphomotor skill. Furthermore, we expected that their
numerical skills should be associated with their dexterity but
not their graphomotor skill. Building on the previously untested
hypothesis that finger counting could be the missing link
between FMS and mathematical skills, we expected that finger-
based number representations would mediate the association
between dexterity and numerical skills (see Figure 1). Based on
previous theoretical work that suggests that ordinal finger-based
representations might be acquired at an earlier developmental
stage than cardinal finger-based representations (c.f. Roesch
and Moeller, 2015), ordinal finger representations were placed

FIGURE 1 | Hypothetical mediation between dexterity and numerical skills via
finger-based number representations.
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before cardinal finger representations in the model. This should
not however imply that cardinal finger representations develop
hierarchically from ordinal finger representations.

In addition to investigating these associations, we controlled
for maturation, nonverbal intelligence, and visuo-spatial working
memory. Thereby, we wanted to account for alternative
explanations of the observed associations.

Specifically, we hypothesized that: (a) Dexterity, but not
graphomotor skill, is associated with ordinal and cardinal finger-
based representations; (b) Dexterity, but not graphomotor skill, is
significantly related to both types of finger-based representations,
even when controlling for age and other cognitive skills; and (c)
the association between dexterity and numerical skills is mediated
by finger-based number representations.

MATERIALS AND METHODS

Ethics Approval Statement
This study was carried out in accordance with the
recommendations of the Ethical Principles of the German
Psychological Society (DGP) and the Association of German
Professional Psychologists (BDP). Written informed parental
consent was obtained and children gave their verbal
assent prior to test administration, in accordance with the
Declaration of Helsinki.

Participants
Prior to testing, we conducted an a priori power analysis
to determine the necessary number of participants using the
program G∗Power 3.1.9.2 (Faul et al., 2009). We assumed a
medium effect size of around f = 0.20 for our mediation
model and strived to acquire sufficient statistical power of 0.85.
Accordingly, for a multiple regression with four predictors in the
final model, the power analysis suggested a sample size of at least
73 participants.

Eighty-two German preschool children attending public
German kindergartens participated in the study. Because two
children (both boys) did not complete either one or both sessions,
they were excluded from the analysis due to incomplete data.
This resulted in a final sample of 80 children (40 boys; age:
M = 4;8 years, SD = 11 months, range: 3;1 – 6;3 years). By
year, the sample consisted of 19 three-year-olds, 28 four-year-
olds, 27 five-year-olds, and 6 six-year-olds. According to a parent
questionnaire, which was handed out to the parents together with
the consent forms, 11.3% of children spoke a language other than
German at home, and 6.3% of children were born outside of
Germany. Also, 43.8% of parents reported having a university
degree, which is substantially higher than the national average of
around 29% (OECD, 2018).

Test Battery
Finger-Based Number Representations
To assess children’s ordinal and cardinal finger-based
number representations, two types of finger-based tasks
were administered (comparable to the ordinal and cardinal
tasks used by Wasner et al., 2015). Ordinal finger-based number

representations were assessed using a finger counting paradigm,
whereas cardinal finger-based number representations were
assessed using a paradigm in which children were asked to show
a number (i.e., finger montring).

Ordinal finger-based representation: finger counting
In the finger counting task, which assessed children’s ordinal
finger-based number representation, children were asked to
count on their fingers to a given number (e.g., “Please count
to four on your fingers.”). All numbers from 1–10 were
administered in a pseudo-randomized order: Numbers 1–5 were
presented prior to numbers 6–10, as the latter needed to be
counted on both hands and switching between one and two
hands could have been confusing or too difficult for the younger
children in our sample. The experimenter documented the
precise order in which the child extended his or her fingers as well
as whether the verbal counting sequence was recited correctly,
with one number word uttered per extended finger. A trial
counted as solved if the child both correctly counted verbally and
extended one finger per number word, and the counting resulted
in the correct number of extended digits. Which fingers children
used did not play a role in the scoring, so children could, for
example, start counting with their right or left hand as well as with
their pinkie finger or thumb. Children could score a maximum of
10 points in this task.

Cardinal finger-based representation: finger montring
In the finger montring task, children’s cardinal finger-based
number representation was assessed. To this end, children
were asked to show a certain number with their fingers (e.g.,
“Please show me four fingers.”). Again, numbers 1–5 were
presented prior to numbers 6–10 in a pseudo-randomized
order. The experimenter documented which fingers the child
extended and whether he or she extended the correct amount
of fingers, and also noted whether children extended their
fingers simultaneously or consecutively. Because this task
was supposed to measure whether children had internalized
number magnitudes as finger patterns, a trial only counted as
solved if the child extended the fingers simultaneously without
counting. Again, the fingers that children used to display
each number was not relevant for the scoring. The maximum
score was 10 points.

Numerical Tasks
In order to test for the direct influence of both FMS as
well as finger-based numerical representations on mathematical
skills, we included additional numerical tasks that were not
related to finger use. These tasks were chosen to cover the
different formats in which numbers can be represented (non-
symbolic as concrete magnitudes, visually as Arabic digits, and
verbally as number words in the counting sequence), which also
correspond to the first three steps of numerical development
according to the “Four-step-developmental model of numerical
cognition” described by von Aster and Shalev (von Aster and
Shalev, 2007). In this model, children acquire understanding of
concrete magnitude in infancy, followed by number words in
their preschool years, and Arabic digits upon entering school.
Accordingly, when combined into a composite score, the varying
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levels of difficulty of these tasks should allow for an accurate
assessment of children’s numerical skills, even given the large
age range of our sample. To test whether the tasks measure
a common underlying construct that can be combined into a
composite score, we entered them into a principal component
analysis. This analysis revealed that the three tasks loaded on
one unitary factor, which explained 83.0% of the variance in
numerical skills, therefore supporting our decision to use a
composite score.

Non-symbolic dot comparison
We measured children’s ability to compare non-symbolic
magnitudes by means of the numeracy screener (Nosworthy
et al., 2013), in which children are required to compare two
dot patterns and determine which of two dot patterns contains
more dots than the other. This task is timed, so that children are
given 120 s to solve as many of the 56 comparisons as possible.
Although this task is generally paper-pencil, we adapted it to our
young participants and therefore printed it out in double size
and had children point at the more numerous array rather than
cross it out. This way, graphomotor requirements of the task
were minimized as well. The experimenter instead checked on
an answer sheet which array the children pointed at. The sum
of correctly solved items within the time limit was used in the
analysis, with possible scores ranging from 0 to 56. Test-retest
reliability for this task after three weeks was previously reported
to be r = 0.62, and convergent validity with a computerized
non-symbolic comparison task was reported to be r = 0.30
(Nosworthy, 2013).

Symbolic number comparison
The same paradigm was presented a second time in a symbolic
version, which was also adapted from the numeracy screener
(Nosworthy et al., 2013). Children had to indicate which of two
Arabic digits was larger than the other by pointing at it, and
the experimenter checked the response on the answer sheet.
Although many participants struggled with the task, most of
them were familiar with small numbers such as 1 and 2, and
accordingly solved more than 50% of the items they attempted
correctly. Again, children were asked to solve as many of the
56 comparisons as possible within 120 s. The sum of items they
solved correctly was used in the analysis, with possible scores
ranging from 0 to 56. The reported test-retest reliability for this
task after three weeks was r = 0.67, and convergent validity
with a computerized symbolic comparison task was r = 0.61
(Nosworthy, 2013).

Verbal counting sequence
In order to assess whether children were familiar with number
words, we tested their knowledge of the verbal counting sequence
without the additional requirement of counting objects or fingers.
In this task, children were asked to simply count aloud as far
as they could. In accordance with instructions given in the
standardized test battery TEDI-MATH (Kaufmann et al., 2009),
children were given help with starting the sequence if they did not
know what to do (“Count like this: one, two, and now you!”) and
were stopped at the number 31 if they did get that far. We scored
the largest number the child counted correctly before making a

mistake. For example, if a child counted ‘1, 2, 3, 5, 6. . .’, the score
would be ‘3’. The maximum score in this task was 31, and was
determined by the cut-off criterion.

Fine Motor Skills
To test children’s dexterity and graphomotor skills, the manual
dexterity scale of the Movement-ABC 2 (M-ABC 2, Petermann,
2015) was administered. This scale consists of three tasks, two of
which were categorized as measuring dexterity (coin posting and
bead threading), while the third (Drawing trail) was used as an
indicator for graphomotor skills.

Dexterity
Coin posting. Children were asked to insert coins into a slot in
a box as quickly as they could. Children from 3-4 years old
received 6 coins, whereas children aged 5-6 years received 12
coins. Children were encouraged to use their dominant hand for
this task, and were given two trials, the faster of which was scored.
To make the scores for 3-4 and 5-6 year-olds comparable, these
scores where converted into standardized scores according to the
M-ABC 2 manual, which were then used in the analysis. Excellent
test-retest reliability after one week was reported for this task in a
Greek study, ICC = 0.93 (Ellinoudis et al., 2011).

Bead threading. In the bead-threading task, children were
instructed to thread square beads onto a string with a pointed
end that made the beading easier. Again, children aged 3-4 years
received 6 beads, and children aged 5-6 years received 12 beads.
The beads were placed in a line in front of them and children
were again instructed to complete the task as fast as possible. Out
of two trials, the faster was scored. As in the coin posting task, the
time children needed to complete the fastest trial was transformed
into standardized scores using the M-ABC 2 manual. Test-
retest reliability for this task was also reported to be excellent,
ICC = 0.92 (Ellinoudis et al., 2011).

Graphomotor skills
Drawing trail. In the graphomotor portion of the manual
dexterity scale, children were presented with a printout of a trail.
They were instructed to help a cyclist depicted at the beginning
of the trail to reach his house, which was depicted at the end
of the trail. Using a red marker, the children had to draw the
path for the biker within the boundaries of the trail, preferably
without drawing outside the given lines. This procedure was
first demonstrated by the experimenter, after which children
performed the task twice. Here, children were instructed to work
as accurately as possible. The score in this task was calculated by
transforming the number of errors children made on the more
accurate of the two trials to standardized scores according to the
M-ABC 2 manual. For this task, test-retest reliability was reported
to be moderate, ICC = 0.66 (Ellinoudis et al., 2011).

Control Variables
To control for children’s nonverbal intelligence and visuo-spatial
working memory capacity, we administered a subtest from an
intelligence test battery (KABC-II, Kaufman and Kaufman, 2015)
as well as a visuo-spatial working memory test (Corsi block-
tapping task, adapted from Kessels et al., 2000, 2008). According
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to test norms for the German version, this subtest showed
excellent reliability, αcr > 0.83.

Nonverbal intelligence: conceptual thinking
The conceptual thinking subtest measures children’s ability to
reason about classifications of things and objects in a nonverbal
format and is part of the problem-solving portion of the KABC-
II. In the conceptual thinking subtest, children are presented with
4 or 5 pictures and have to decide which one of the pictures
does not fit with the set (e.g., three red umbrellas and one yellow
umbrella). Again, children give their response by pointing at the
chosen picture and are awarded one point per correct response.
In total, the subtest consists of 28 items, but testing stops when
a child answers 4 out of 5 consecutive items incorrectly. As
for verbal knowledge, a sum score was entered as a covariate
in the analysis.

Visuo-spatial working memory
Children’s visuo-spatial working memory was assessed via a Corsi
block-tapping task, in which children had to memorize and
replicate a visually presented sequence. The task was conducted
using a wooden board with 9 wooden cubes (3 cm × 3 cm × 3 cm)
glued onto it in a non-geometrical pattern (replicated after the
layout presented in Kessels et al., 2000). First, the experimenter
tapped the cubes in a certain order at a speed of approximately
one cube per second. The child was instructed to wait until after
the experimenter was finished, and then tap the cubes either
in the same (forward span) or reversed (backward span) order.
Two items were presented per span length, with difficulty starting
at two blocks and increasing up to seven blocks. If the child
successfully replicated at least one of the two items of a given
length, testing continued with length increasing by one. As soon
as two items of the same length were replicated incorrectly,
testing was stopped. The longest successfully replicated span –
not the number of correctly remembered items – was used in
the analysis as the child’s visuo-spatial working memory span for
both the forward and backward span.

Procedure
Parents completed the questionnaire at home and returned
it to the kindergarten staff together with the written consent
form. Children were then tested individually in their respective
kindergartens across two sessions by trained undergraduate
students of teaching and the first author. Prior to the beginning of
the study, all student testers were familiarized with the procedure
and received training by the first author on how to conduct
the tests according to the instructions. The first author then
conducted the first two testing sessions herself, with the student
testers observing. Each tester’s first two testing sessions were
conducted under supervision by the first author to ensure that
testing procedures were exactly adhered to. The tasks were
presented in the same order to each child, and completion of all
tasks took approximately 45–60 min per child (two sessions of
20–30 min each).

Analytical Approach
We first tested whether dexterity was associated with finger-
based number representations and numerical skills after

controlling for covariates (i.e., age and cognitive skills) via
correlation analyses and hierarchical regressions. Secondly, a
mediation analysis using a bootstrap sampling method was
performed to test the final hypothesis that the association
between dexterity and numerical skills was mediated by
ordinal and cardinal finger-based number representations. Prior
to this analysis, all measures were z-standardized and the
analysis was conducted using the PROCESS Macro for SPSS
(Hayes, 2013).

In this mediation model, depicted in Figure 1, ordinal finger-
based representations were modeled as preceding cardinal finger-
based representations, although, research on this developmental
path is not fully conclusive. Accordingly, an alternative model
with cardinal preceding ordinal finger-based representations
was also considered, but did not meet the preconditions for
mediation. Notably, ordinal finger-based representations did not
have a significant effect on numerical skills in this model.

RESULTS

Data Preparation
Because we were specifically interested in associations between
finger-based number representations and different facets of
FMS, dexterity (i.e., bead threading and coin posting) and
graphomotor skill (i.e., drawing trail) were entered separately into
the analyses rather than collapsed into a single fine motor score
as suggested in the M-ABC 2 manual. The score for dexterity
was then calculated as the mean of the bead threading and
coin posting scores. Descriptive statistics for the final variables
are presented in Table 1.

Hypothesis 1: Dexterity, but Not
Graphomotor Skill, Is Associated With
Ordinal and Cardinal Finger-Based
Representations
In a first step, we conducted partial correlations, controlling for
chronological age due to the relatively large age span (3;1 –
6;3 years) of our participants. Both raw and partial correlation
results are depicted in Table 2.

Correlations of Fine Motor Tasks
As presented in Table 2 above the diagonal, dexterity
correlated with ordinal finger-based number representations,
r = 0.244, p < 0.05, cardinal finger-based number
representations, r = 0.286, p < 0.05, numerical skills,
r = 0.269, p < 0.05, and nonverbal intelligence, r = 0.371,
p < 0.01. Children’s graphomotor skills were not
significantly correlated with any other variables in the partial
correlation analysis.

Correlations of Finger-Based Representations
The two types of finger-based representations were highly
correlated with each other, r = 0.816, p < 0.001. In addition
to dexterity, both the ordinal and cardinal finger-based
representation were significantly correlated with numerical skills,
ordinal: r = 0.494, p < 0.001, cardinal: r = 0.542, p < 0.001.

Frontiers in Psychology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 1143320321

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01143 May 30, 2020 Time: 19:19 # 8

Fischer et al. Fine Motor Skills and Mathematics

TABLE 1 | Descriptive statistics.

M SD n Min. Max. Skew Kurtosis

Dexterity 10.06 2.64 80 1.00 16.00 −0.57 1.20

Graphomotor skill 9.03 3.32 80 1.00 16.00 −1.08 0.76

Finger-based number representations

Ordinal 7.32 3.25 78 1.00 10.00 −0.81 −0.95

Cardinal 6.84 3.39 79 0.00 10.00 −0.69 −1.05

Numerical skills (Z-score) 0.00 1.00 80 −1.64 1.49 0.07 −1.48

Control variables

Age (months) 55.56 10.92 80 37.00 75.00 −0.13 −1.05

Visuo-spatial working memory (forward span) 3.30 1.12 80 0.00 5.00 −1.01 1.94

Visuo-spatial working memory (backward span) 2.30 1.74 80 0.00 6.00 0.23 −0.60

Nonverbal intelligence 11.73 5.10 80 0.00 24.00 −0.27 −0.07

TABLE 2 | Pearson correlation coefficients between fine motor skills, finger-based number representations, numerical skills, and control variables.

1 2 3 4 5 6 7 8

1 Dexterity – 0.199 0.244* 0.286* 0.268* −0.075 0.187 0.371**

2 Graphomotor skill 0.207 – 0.018 0.041 0.003 0.001 0.148 −0.007

3 Ordinal finger-based representation 0.150 −0.150 – 0.816** 0.494** 0.146 0.359** 0.317**

4 Cardinal finger-based representation 0.185 −0.139 0.908** – 0.542** 0.182 0.349** 0.326**

5 Numerical skills 0.185 −0.158 0.751** 0.781** – 0.216 0.522** 0.545**

6 Working memory forward span −0.072 −0.121 0.464** 0.487** 0.513** – 0.274* 0.167

7 Working memory backward span 0.159 −0.004 0.610** 0.604** 0.710** 0.493** – 0.297**

8 Nonverbal intelligence 0.315** −0.119 0.563** 0.570** 0.705** 0.403** 0.517** –

9 Age 0.003 −0.215 0.703** 0.709** 0.728** 0.531** 0.581** 0.539**

Raw correlations are presented below the diagonal and partial correlations controlling for chronological age above the diagonal. * = p < 0.05, ** = p < 0.01.

Among the control variables, both types of finger-based
representations were also significantly correlated with working
memory backward span (ordinal: r = 0.359, p < 0.01, cardinal:
r = 0.349, p < 0.01) and nonverbal intelligence (ordinal: r = 0.317,
p < 0.01, cardinal: r = 0.326, p < 0.01).

Correlations of Numerical Skills
In addition to the above-mentioned correlations, numerical skills
were also associated with the working memory backward span,
r = 0.522, p < 0.01, and nonverbal intelligence, r = 0.545, p < 0.01.
Note that children’s working memory forward span was not
significantly correlated with any variables of interest.

Hypothesis 2: Dexterity, but Not
Graphomotor Skill, Is Significantly
Related to Both Types of Finger-Based
Representations, Controlling for Age and
Other Cognitive Skills
To test whether dexterity and/or graphomotor skill remained
significantly related to finger-based representations when
controlling for age and cognitive skills, we conducted hierarchical
multiple linear regression analyses. Predicting ordinal and
cardinal finger-based representations, we entered dexterity and
graphomotor skill in a first step, adding age in the second step. In
a third step, we added the control variables visuo-spatial working
memory forward and backward span, and nonverbal intelligence.
Results for both hierarchical regressions are in Table 3.

Predicting Ordinal Finger-Based Representations
For the model predicting ordinal finger-based representations,
dexterity and graphomotor skills did not contribute significantly
to the model when entered in the first step, F(2,76) = 2.243,
p < 0.05, and explained 5.6% of the variance in ordinal finger-
based representations. Adding age to the model significantly
increased the explained variance by 46.9%, F(1,75) = 27.274,
p < 0.01, with both dexterity and age, but not graphomotor
skills, being significant predictors. When adding the control
variables in the third step, explained variance increased by
another 6.8%, F(3,72) = 17.250, p < 0.01. Out of the three
control variables, only the visuo-spatial working memory
backward span was a significant predictor in this final model.
After the control variables were included, dexterity was no
longer a significant predictor, whereas the effect of age
remained significant.

Predicting Cardinal Finger-Based Representations
For cardinal finger-based representations, dexterity and
graphomotor skills did not contribute significantly to
the model in the first step, F(2,76) = 2.702, p = 0.073,
explaining only 6.6% of the variance. Dexterity was a
marginally significant predictor, β = 0.221, p = 0.054,
whereas graphomotor skill was not, β = −0.183, p = 0.110.
The explained variance was significantly increased by
48.0%, F(1,75) = 30.060, p < 0.01, when age was entered
in the second step, and both dexterity and age, but
not graphomotor skill, were significant predictors. In
the third step, adding the control variables increased
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TABLE 3 | Hierarchical linear regression models predicting ordinal and cardinal finger-based representations.

Ordinal finger-based representation Cardinal finger-based representation

Variable B SE B β R2 ρR2 B SE B β R2 ρR2

Step 1 0.056 0.056 0.066 0.066

Dexterity 0.232 0.141 0.188 0.287 0.146 0.221

Graphomotor skill −0.182 0.111 −0.188 −0.186 0.115 −0.183

Step 2 0.525** 0.469** 0.546** 0.480**

Dexterity 0.220 0.101 0.178* 0.270 0.103 0.209*

Graphomotor skill −0.023 0.081 −0.023 −0.015 0.083 −0.015

Age in months 0.211 0.025 0.704** 0.224 0.025 0.712**

Step 3 0.593** 0.068* 0.608*** 0.062*

Dexterity 0.124 0.105 0.101 0.185 0.107 0.143

Graphomotor skill −0.035 0.078 −0.036 −0.026 0.080 −0.026

Age in months 0.138 0.032 0.463** 0.149 0.033 0.475**

Working memory (forward span) 0.128 0.273 0.045 0.262 0.279 0.087

Working memory (backward span) 0.441 0.189 0.236* 0.397 0.193 0.202*

Nonverbal intelligence 0.093 0.064 0.146 0.090 0.066 0.134

* = p < 0.05, ** = p < 0.01.

explained variance by 6.2%, F(3,72) = 18.621, p < 0.01.
Again, visuo-spatial working memory backward span
was a significant predictor in this final model. After the
control variables were included, age remained a significant
predictor, whereas dexterity was no longer a significant
predictor, β = 0.143, p = 0.088, of cardinal finger-based
representations.

Hypothesis 3: The Association Between
Dexterity and Numerical Skills Is
Mediated by Finger-Based Number
Representations
For the mediation analysis, we used dexterity as a predictor
variable, and both ordinal and cardinal finger representations
as mediators to predict numerical skills (see Figure 2). Given
that graphomotor skills were neither significantly correlated with
numerical skills nor associated with ordinal or cardinal finger-
based number representations in the regression analyses, we did
not conduct a mediation analysis with graphomotor skill as a
predictor. To control for the large age range in our sample, and
also because the regression results suggest that age could act as a
suppressor for the association between dexterity and finger-based
number representations, we controlled for age.

The analysis was conducted using the PROCESS Macro
Version 3.3 for SPSS (Hayes, 2013), and was based on 10,000
bootstrap samples using percentile 95% confidence intervals
(Preacher and Hayes, 2008). Using bootstrapping methods to
estimate confidence intervals was necessary due to the sample
size being rather small for a mediation analysis (see e.g., Fritz and
MacKinnon, 2007), and in such cases, bootstrapping can provide
more accurate inferences (Fox, 2015). It is a method in which
repeated samples are drawn from the available data in order to
estimate the characteristics of the population (Fox, 2015).

Results confirmed our hypothesis (see Figure 2). Controlling
for the effects of age, β = 0.357, SE = 0.100, p < 0.01, the

FIGURE 2 | Results of the mediation model for the association between
dexterity, finger-based number representations and numerical skills.

total effect of children’s finger dexterity on numerical skills,
β = 0.185, SE = 0.077, p < 0.05, was mediated by their finger-
based representations as indicated by a significantly reduced,
non-significant direct effect after mediation, β = 0.084, SE = 0.070,
p = 0.232. This finding was further corroborated by the significant
indirect effect of dexterity on numerical skills via ordinal and
cardinal finger-based representations, β = 0.101, SE = 0.039,
Percentile bootstrap CI [0.033,0.186].

Within this sequential model, two other mediations were
observed: The previously significant association between
dexterity and cardinal finger-based representations, r = 0.286,
p < 0.05, was fully mediated by ordinal finger-based
representations and not significant in the full mediation
model. Furthermore, ordinal finger-based representations and
numerical skills, which had been significantly correlated before,
r = 0.494, p < 0.01, were no longer significantly associated in the
full mediation model (see Figure 2).

DISCUSSION

In the current study, we investigated for the first time whether
FMS are associated with finger-based representations of number,
and whether this association might explain the often-observed
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correlation between FMS and numerical skills (e.g., Luo et al.,
2007; Roebers et al., 2014; Pitchford et al., 2016; Suggate et al.,
2017; Fischer et al., 2018a). By measuring dexterity, graphomotor
skills, finger-based representations of number, and numerical
skills, we arrived at a more comprehensive understanding of how
these early childhood abilities interact. As the genesis of implicit
finger-based representations seems to play a substantial role in
children’s numerical development, understanding the underlying
working mechanisms was our primary objective.

We observed, as expected, that FMS were associated with
finger-based number representations, thereby adding to the
growing number of studies findings such links (Luo et al., 2007;
Roebers et al., 2014; Pitchford et al., 2016; Suggate et al., 2017;
Fischer et al., 2018a). Associations were specific, in that a link
was found for dexterity, but not for graphomotor skills. In
the hierarchical regressions of ordinal and cardinal finger-based
representations, we observed that dexterity explained a small but
significant amount of variance in finger-based representations
when age was also entered as a predictor. This finding indicates
that age might have acted as a suppressor variable, which could be
due to the fact that the dexterity tasks were analyzed based on age-
normed standard scores, whereas no age-norms were available
for the measures of finger-based number representations. Recall
that age-norms had to be used for the FMS tasks, as raw scores
were not normally distributed. More notably, when control
variables were entered into the model in a third step, visuo-spatial
working memory backward span explained a significant amount
of variance in both types of finger-based representations.

For both ordinal and cardinal finger-based representations,
the inclusion of the control variables therefore led to dexterity no
longer being significantly related to finger-based representations.
It is possible that children’s visuo-spatial working memory plays a
larger role in their finger counting / finger montring performance
than their FMS. For example, a task analysis of counting
and montring would suggest that these require children firstly
storing a number concept, secondly finding its corresponding
finger-component, and thirdly performing matches between the
number concept and fingers. Furthermore, this finding, although
not in support of our hypothesis, is consistent with previous
research on working memory and finger counting. For example,
Dupont-Boime and Thevenot (2018) observed that children
with a higher working memory capacity were more likely to
spontaneously use their fingers to solve addition problems. These
recent findings are in contrast with previous assumptions that
children with a lower working memory capacity were more likely
to rely on their fingers for finger counting, at least from the
middle of primary school (Geary, 1993).

To better understand the unexpected result that dexterity only
explained significant variance after including age, we conducted
a post-hoc median split for age and repeated the regression
analyses for the two resulting age groups (age group 1: 3;0 to
4;8 years, N = 39; age group 2: 4;9 to 6;3 years, N = 41). If age
plays such a pivotal role in the associations between dexterity
and finger-based representations, the associations might differ
for the two age groups. Indeed, these analyses revealed that
for the younger age group, dexterity was a significant predictor
for ordinal and cardinal finger-based representations in the first

step of the regression, as was originally expected for the entire
sample (see Supplementary Table 1). More so, this association
remained significant in the second step for cardinal finger-based
representations when age was added. In the third step, none of the
control variables explained significant variance for either ordinal
or cardinal representations.

Results were different for the older age group, for whom
no predictors were significant in the first and second step (i.e.,
FMS and age), and only working memory backward span was
a significant predictor in the third step (see Supplementary
Table 2). While these post-hoc analyses with reduced sample
sizes need to be interpreted with caution, they do hint at a
developmental shift in the processes involved in the consolidation
of finger-based number representation. Younger children might
struggle with the motor demands of finger counting/montring,
whereas older children might depend more on retrieving the
finger patterns for counting/montring from memory.

Perhaps most importantly, the mediation analysis, in which
we tested the assumed association between dexterity, ordinal
and cardinal finger-based representations, and numerical skills,
supported our hypothesis about how dexterity influences
numerical development. The results were consistent with the idea
that dexterity might contribute to the development of ordinal
and cardinal finger-based representations, which then influence
numerical skills.

Theoretical Implications
The current study contributes to the growing literature on finger
counting and finger-based representations, in that it takes a
differentiated look at ordinal and cardinal finger-based number
representations and their relationship with FMS and domain-
general cognitive skills often associated with numerical skills. Our
results are in agreement with previous research that suggested
that ordinal and cardinal finger-based representations need to be
differentiated (Wasner et al., 2015), as they seem to play different
roles in children’s numerical skill development. It is also worth
noting that children performed slightly worse on the cardinal
finger montring task, averaging 6.84 out of 10 points, whereas
they averaged 7.32 out of 10 points in ordinal finger counting.
However, seeing as this difference was not statistically significant,
further research will be necessary to determine whether the
development of ordinal finger-based representations really does
precede that of cardinal finger-based representations.

Accordingly, the relative contributions of children’s ordinal
and cardinal finger-based representations to their numerical
skills cannot be deduced from our data. Although cardinality
might be more difficult to master and is often considered an
important predictor for mathematical development (Geary et al.,
2018), it is possible based on previous findings that ordinality
might be a more important predictor than cardinality for certain
aspects of numerical development. For example, it has been
previously suggested that the (spatial) ordering of numbers plays
a large part in children’s understanding of symbolic number
(i.e., number words and Arabic digits) (Sella et al., 2019). In a
similar vein, training children in the ordinal number sequence
transfers to their number ordering and number line estimation
performance (Xu and LeFevre, 2016). Accordingly, it could
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be argued that ordinality might be more relevant for some
aspects of numerical development in the early stages of child
development studied here.

Also, the development of these finger-based number
representations seems to rely on different skill sets, with dexterity
playing only a minor part compared to maturation effects and
the impact of visuo-spatial working memory capacity, as can be
seen in the regression analyses. In the future, longitudinal studies
should investigate the timeline in which these skills develop and
how they influence each other.

At a general level, our findings add to the accumulating body
of work pointing to the importance of dexterity as a key FMS
in relation to cognitive outcomes. For example, Martzog et al.
(2019) found that dexterity was more closely linked to spatial
intelligence than hand-eye coordination or repetitive speed-FMS.
On the other hand, some work indicates that graphomotor skills
play a greater role in reading performance than dexterity does,
presumably due to the functional relevance of graphomotor skills
to writing and thereby reading (Suggate et al., 2018, 2019).

Especially with regard to the importance of graphomotor
skills for mathematics, studies with elementary school children
consistently yield associations between the two domains. For
example, Pitchford et al. (2016) reported stable associations
between a task in which children had to reproduce drawings
of geometric shapes and children’s mathematical reasoning
skills in first grade. Likewise, Carlson and colleagues (Carlson
et al., 2013) observed that in a sample with a broad age range
from five to 18 years, participants’ mathematical skills were
significantly associated with their performance in tracing and
copy-a-figure tasks, which both rely on graphomotor skills. It is
therefore possible that when children enter school, their finger
use during counting decreases, whereas writing of Arabic digits
increases. Thereby, graphomotor skills might gain importance
for mathematical learning and performance over time, whereas
dexterity may become less relevant. This interpretation is also
in agreement with the age-split post-hoc analyses of our data
described above. Dexterity seems to play a significant role in
children’s finger-based representations up to a certain stage
in development, after which other cognitive processes such as
working memory take over.

Taken together, the current study adds to the body of work
indicating that children’s FMS relate both functionally (i.e.,
being able to move fingers as a prerequisite to numerical
development) and at a representational level to mathematical
development (Penner-Wilger and Anderson, 2013). More work
such as the current study examining FMS and mathematics in a
detailed way is needed.

Practical Implications for Education and
Intervention
The present results highlight the importance in viewing
numerical skills in early childhood as a construct influenced
by many different facets of children’s cognitive and motor
development. Therefore, early childhood professionals and
educators should consider children’s FMS as well as their working
memory capacity when employing numerical trainings at this

early developmental stage. Our results also highlight the positive
relationship between children’s finger-based representations and
their numerical skills, and thereby adds to previous similar results
(e.g., Lafay et al., 2013; Soylu et al., 2018). We therefore argue that
fostering children’s early counting skills by encouraging finger
use could be beneficial for their later numerical development,
and might concurrently train their FMS as well as relieve their
working memory load – a notion also suggested by other
researchers (e.g., Beller and Bender, 2011).

Limitations and Future Directions
The current results have given us a first exciting look into how
fingers and numbers interact. However, further research will
be necessary to delve further into which FMS and numerical
skills are specifically associated with finger-based number
representations. Notably, only dexterity, but not graphomotor
skill was associated with the numerical tasks in the age group
surveyed in our study. Although this could also indicate that the
Movement-Assessment Battery for Children 2 (Petermann, 2015)
might not be the ideal measure for investigating finger-number
associations, it is also worth taking a closer look at which tasks
did correlate. In both the coin posting and bead threading tasks,
children have to move one object after another, either into a box
or onto a thread. This sequential moving of objects is very similar
to many counting activities in which children move the counted
objects from one place to another. Also, the coins represent
money, which is also often counted and associated with numbers
that indicate its value. It is therefore possible that fine motor tasks
that mimic a counting movement are more strongly associated
with finger-based representations of number, which also originate
in counting movements. In contrast, the trail drawing subtest
measures a skill that, at least at the age of children in our study,
is not associated with the counting procedure. Future studies
should therefore look into fine motor tasks which bear different
amounts of resemblance to counting movements.

Another possibility for future studies would be to include
tasks that cover additional facets of FMS. For example, while
graphomotor and visuomotor skills are often not differentiated
(e.g., Mayes et al., 2009; Martzog et al., 2019), there are
conceptualizations of FMS that see both as distinct constructs.
For example, Becker et al. (2014) differentiate between tasks
that require motor control (such as the tracing task in the
M-ABC 2) and visuomotor tasks that also require spatial
abilities. The most prominent example of a test of visuomotor
integration is the Beery-Buktenica Developmental Test of Visual-
Motor Integration (Beery VMI; Beery et al., 2010). In this test,
participants have to copy figures into a blank square as accurately
as possible. Because this task might require more visuo-spatial
integration than say, a tracing task, it might be more strongly
associated with numerical skills that also have a strong spatial
component, such as locating numbers on a number line (e.g.,
Ebersbach, 2015). This could also explain previous findings of
associations between the Beery VMI and mathematical skills (e.g.,
Simms et al., 2016).

In our study design, we opted for a combined measure of
different numerical skills because we were interested in whether
finger-based number representations and FMS generally relate
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to numerical skills. However, this approach did not allow us
to investigate associations with specific numerical skills such as
knowledge of the verbal counting sequence or of Arabic digits.
To investigate whether finger-based number representations are
more strongly associated with certain numerical skills (e.g., those
that are closely tied to finger counting, such as knowledge of
the verbal counting sequence), two changes would be necessary
for future studies: Firstly, children of a smaller age range should
be tested that are at a comparable skill level in these numerical
skills; and secondly, numerical tasks should be used that consist
of more items than those in our study and that also measure
both accuracy and fluency for a more precise assessment of the
respective numerical skills.

With regard to the origins of finger-based number
representations, our results suggest that dexterity contributes
to their development. However, it is also worth noting that the
amount of variance was comparatively small (5–6%), especially in
stark contrast to the amount of variance explained by children’s
age (47–48%). Here, future research should consider investigating
a smaller age range with a similar or even larger sample size
than that of our study. Our post hoc analyses for different age
groups suggest that the association is strongest between the ages
of 3 and 4.5 years, so this would be a promising age group
for further investigations. It could also be useful to consider
children’s general level of development in addition to just their
chronological age in future projects.

In the same vein, dexterity only became significantly
associated with numerical skills when age was also entered in the
analysis, suggesting that age might have acted as a suppressor
variable. As noted above, this might have been caused by age-
normed standard scores being used for the FMS tasks, but not the
finger-based number representation tasks. Accordingly, future
studies should consider working with fully unstandardized scores
to disentangle the contributions of age and FMS to finger-based
number representations.

A promising avenue for future studies investigating finger-
based number representations lies in longitudinal designs.
Especially when attempting to explain the impact that dexterity
has on children’s numerical development via their finger-
based number representations, it would be preferable to
measure children’s skills at multiple time points in addition to
concurrent comparisons.

CONCLUSION

In this study, we investigated the link between FMS and children’s
early mathematical development, considering children’s finger-
based number representations as a potential link between the
two. At an age where children use their fingers to interact
with numbers and consolidate their finger-based experiences

into persistent representations, this is of particular relevance
for their mathematical development. Our results highlight
that a differentiation between facets of FMS is necessary, as
graphomotor skills were not associated with either finger-
based number representations or numerical skills. In contrast,
links between dexterity, finger-based number representations,
and numerical skills were observed; with finger-based number
representations mediating the association between dexterity and
numerical skills. However, the relationship between dexterity
and finger-based number representations was only tentative,
depended on children’s age, and was not upheld once visuospatial
working memory was controlled for. It seems that the association
is stronger for younger children, who rely even more on their
fingers to count and depict numerosities. Accordingly, while
dexterity might only play a small part in the acquisition of finger-
based number representations, this relationship can further our
understanding of how dexterity is linked to numerical and
mathematical skills.

At a broader level, our findings add to the growing body of
work indicating that motor experiences and skills are intimately
linked with cognitive skills. Future work is needed to further
our understanding of this question of both theoretical and
pedagogical significance.
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In the past decade, there has been increasing interest in understanding how and when
math anxiety (MA) develops. The incidence and effects of MA in primary school children,
and its relations with math achievement, have been investigated. Nevertheless, only a
few studies have focused on the first years of primary school, highlighting that initial
signs of MA may emerge as early as 6 years of age. Nevertheless, there are some
issues with measuring MA in young children. One of these is that, although several
scales have been recently developed for this age group, the psychometric properties
of most of these instruments have not been adequately tested. There is also no
agreement in the number and identity of the factors that underlie MA at this young
age. Some scales also consist of several items, which make them impractical to use in
multivariate studies, which aim at the simultaneous measurement of several constructs.
Finally, most scales have been developed and validated in US populations, and it is
unclear if they are appropriate to be used in other countries. In order to address these
issues, the current studies aimed at developing a short, new instrument to assess MA
in early elementary school students, the Early Elementary School Abbreviated Math
Anxiety Scale (the EES-AMAS). This scale is an adapted version of the Abbreviated
Math Anxiety Scale (AMAS; Hopko et al., 2003), which is one of the most commonly
used scales to measure MA and has been shown to be a valid and reliable measure
across a number of countries and age groups. The psychometric properties of the new
scale have been investigated by taking into account its dimensionality, reliability, and
validity. Moreover, the gender invariance of the scale has been verified by showing the
measurement equivalence of the scale when administered to male and female pupils.
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We have also demonstrated the equivalence of the scale across languages (Italian and
English). Overall, the findings confirmed the validity and reliability of the new scale
in assessing the early signs of math anxiety and in measuring differences between
genders and educational contexts. We have also shown that MA was already related
to math performance, and teacher’s ratings of children’s math ability at this young age.
Additionally, we have found no gender differences in MA in our samples of 6- and 7-
year-old children, an important finding, given the strong evidence for gender differences
in MA in older age groups.

Keywords: AMAS, early elementary school children, confirmatory factor analysis, invariance, gender differences,
math anxiety, reliability, validity

INTRODUCTION

Although mathematical proficiency is becoming increasingly
important, especially in technological societies, it has been
estimated that about 17% of the population (Luttenberger
et al., 2018) suffer from more or less severe psychological or
physiological symptoms related to feelings of anxiety when
confronted with tasks that require the use of numerical
information. Data from the Programme for the International
Student Assessment (PISA), which tests 15-year-old students,
reported that 31% stated that they get very nervous when they
do math problems (Organisation for Economic Co-operation
and Development, 2013). Math anxiety (MA) has been described
as a feeling of tension and anxiety that interferes with the
manipulation of numbers in a wide variety of ordinary life
and academic situations (Richardson and Suinn, 1972), and it
represents an obstacle to mathematical development.

MA has been found to have a negative relationship with
mathematics performance and achievement (Hembree, 1990;
Ma, 1999). Researchers have reported a consistent, weak
to medium negative relationship between math anxiety and
performance (ranging from −0.11 to −0.36) indicating that
students with higher levels of MA tend to show poorer
mathematics performance. Data from the PISA studies confirm
these results within and across countries (Organisation for
Economic Co-operation and Development, 2013). Additionally,
MA may have a number of important indirect effects. Highly
math anxious students participate less in math lessons and
enjoy them less, they perceive their mathematical abilities to
be poorer and are less likely to see the value of learning math
(e.g., Hembree, 1990; Ma, 1999). A particularly problematic
consequence of MA is that individuals with higher level
of anxiety tend to avoid taking high school and college
or university mathematics courses. Indeed, similar to other
performance-based anxieties, MA involves psychological arousal,
negative cognitions, escape and/or avoidance behaviors and,
when the individual cannot avoid the situation, performance
deficits. MA is also related to reduced cognitive reflection
(Morsanyi et al., 2014; Primi et al., 2018), and poorer
decision making performance (e.g., Rolison et al., 2016;
Rolison et al., 2020).

In the past decade, there has been increasing interest
in understanding how and when MA develops (Wu et al.,

2012; Harari et al., 2013; Jameson, 2013; Ramirez et al., 2013;
Dowker et al., 2016). Studies have investigated the incidence
and effects of MA in primary school samples (e.g., Karasel
et al., 2010; Galla and Wood, 2012; Wu et al., 2012),
and its relation to math achievement (Ramirez et al., 2016).
However, only a few studies have focused on younger pupils,
although initial signs of MA may emerge as early as 6
years of age (Aarnos and Perkkilä, 2012), and MA has
important implications for later development, as it appears fairly
stable over time (Ma and Xu, 2004; Krinzinger et al., 2009;
Cargnelutti et al., 2017).

THE ASSESSMENT OF MATH ANXIETY
IN EARLY PRIMARY SCHOOL

One of the reasons why it is difficult to conduct research into
MA in younger children relates to the assessment of MA (see
Cipora et al., 2019). Following the first scale, which was developed
to exclusively investigate MA, the Mathematical Anxiety Rating
Scale – MARS (Richardson and Suinn, 1972), a substantial
number of scales have been created. These scales vary in their
target population, length, and psychometric properties. In fact,
the psychometric properties of many of these scales have not been
adequately tested. Limitations include small sample sizes, the
weakness of validity data, the lack of test-retest analyses, as well as
the lack of confirmatory procedures to assess the dimensionality
of the scales, and the absence of normative data (Eden et al.,
2013; Harari et al., 2013). Additionally, instruments for children
have mostly been adapted from scales for adults and/or have been
developed for samples with a limited age range. Finally, cross-
national investigations of the psychometric properties of these
scales are also lacking.

Focusing on the already existing instruments for younger
children (see Table 1), we have prepared an overview of
the psychometric properties of these scales. First, we have
found that the interest in assessing MA in younger children
has only emerged recently. Indeed, all papers regarding the
psychometric properties of these scales have been published
after 2010. Additionally, among the seven included instruments,
only the Children’s Anxiety in Math Scale (CAMS; Jameson,
2013) and the Mathematics Anxiety Questionnaire (MAQ),
originally developed by Thomas and Dowker (2000) and
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examined by Wood et al. (2012) were completely newly
developed, whereas the other scales (i.e., the Mathematics
Anxiety Rating Scale for Elementary School Children; MARS-
E; Suinn et al., 1988; the Mathematics Anxiety Questionnaire;
MAQ; Wigfield and Meece, 1988; and the Mathematics Anxiety
Scale for Children; MASC; Chiu and Henry, 1990; the Child
Math Anxiety Questionnaire (CMAQ; Ramirez et al., 2013)
and the Mathematics Anxiety Scale for younger children
(MASYC; Harari et al., 2013) have been developed from an
already existing tool, the MARS (Richardson and Suinn, 1972).
Finally, two scales are revised versions of previously developed
instruments for children: the Child Math Anxiety Questionnaire
Revised (CMAQ-R; Ramirez et al., 2016) and the Revised
Mathematics Anxiety Scale for younger children (MASYC-R;
Ganley and McGraw, 2016).

Concerning the psychometric properties of these scales,
information regarding dimensionality has been provided for
all scales, except for the CMAQ (Ramirez et al., 2013)
and the CMAQ-R (Ramirez et al., 2016). In the case
of three scales, the CAMS, the MASYC, and the Scale
for Early Mathematics Anxiety (SEMA; Wu et al., 2012),
dimensionality has been tested using Exploratory Factor Analysis
(EFA), whereas in the case of the MAQ, a multidimensional
scaling procedure has been used. There is only one scale
(the MASYC-R) where dimensionality has been investigated
using Confirmatory Factor Analysis (CFA). Overall, all of
these studies showed that MA, even at a young age, is a
multidimensional construct. Nevertheless, the number of factors
have varied between two and four, and the identity of these
factors have also differed between the scales. Concerning
the CAMS, EFA has identified three factors, namely General
Math Anxiety, Math Performance Anxiety, and Math Error
Anxiety; whereas the MAQ consists of four factors (i.e., Self-
Perceived Performance, Attitudes in Mathematics, Unhappiness
Related to Problems in Mathematics and Anxiety Related to
Problems in Mathematics); although multidimensional scaling
suggested that these may be combined into two factors
(i.e., Self-perceived performance and attitudes, resulting from
the combination of the first two factors, and Mathematics
Anxiety, resulting from the combination of the other two
factors). Moreover, both the MASYC and the MASYC-R have
three factors (i.e., Negative Reactions, Numerical Confidence,
and Worry). Finally, the SEMA includes two correlated
factors: Numerical Processing Anxiety and Situational and
Performance Anxiety.

Concerning the reliability of the scales, this has been
measured as internal consistency and reliability indices have
been provided for all scales. Additionally, Wu et al. (2012)
also provided split-half reliability. Following the cut-off criteria
for internal consistency proposed by the European Federation
of Psychologists’ Associations (Evers et al., 2013), values range
from moderate to high for all scales, except for the CMAQ,
which is the shortest scale with only eight items, for which
Cronbach’s alpha was 0.55. Indeed, Cronbach’s alfa is strongly
influenced by the number of items. Nevertheless, scales for
early elementary school students must be short, otherwise
children get fatigued.
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Validity measures have been provided by all studies, although
the specific types of validity that were examined varied across
studies. Face validity has been considered only by Jameson’s study
(2013), as items were independently reviewed by five experts who
confirmed the appropriateness of the items.

Criterion validity, which examines the relations between
math anxiety and other related constructs, has mostly been
investigated in relation to math achievement, and it has been
reported for the CAMS, the MASYC, the MASYC-R, and the
SEMA. Additionally, it has been investigated in relation to
trait and general anxiety (for the SEMA and the MASYC-
R, respectively), math reasoning (for the SEMA), and math
confidence, math interest and math importance (for the MASYC-
R). The relations with computation and counting skills, math
concepts and attitude toward mathematics have been investigated
for the MASYC (Harari et al., 2013). Moreover, to identify the
best predictors of MA, a regression analysis was conducted
by Harari et al. (2013), which included general anxiety, math
performance and math attitudes. Results regarding the MASYC-
R suggest that a substantial proportion of the variance in MA
is explained by these variables. Additionally, to investigate the
predictive validity of the MAQ, regression analyses entering the
four MAQ subscales as predictors of numeric and arithmetic
abilities were conducted. Results showed that the “Self-perceived
Performance” subscale was a significant predictor of basic and
complex arithmetic abilities even after controlling gender, age
and verbal and nonverbal short-term memory. Concerning
convergent validity, the correlation between instruments that
assess the same construct was only reported between the MASYC
and the MASYC-R.Our review of the literature has also shown
the overall absence of investigations regarding measurement
invariance across genders, although gender differences in MA
are commonly investigated (Eden et al., 2013; Harari et al.,
2013). When studying test invariance, we determine whether
a tool functions equivalently in different groups, that is, we
test the absence of biases in the measurement process. In
other words, the observed scores should depend only on the
latent construct, and not on group membership. An observed
score is said to measure the construct invariantly, if it depends
on the true level of the trait in a specific person, rather
than on group membership or context (Meredith, 1993). This
means that people belonging to different groups, but with
the same level of a trait, are usually expected to display
similar response patterns on items that measure the same
construct. Unfortunately, the gender invariance of the commonly
used measurement tools in the MA literature has not been
investigated. Another limitation is the absence of different
language versions of the scales. Only one scale (the MAQ) has
German and Portuguese versions available; all the other scales
only have an English version.

In sum, the psychometric properties of these scales have been,
in general, inadequately tested, due to the lack of confirmatory
procedures to assess the dimensionality of the scales, and because
inadequate measures of validity and reliability were used. In
particular, convergent validity has only been investigated in
the case of a few scales. The invariance of the scales across
genders and languages has also not been confirmed, which makes

group comparisons ambiguous, because it makes it difficult
to tell whether any group differences are a function of the
trait being measured, or artifacts of the measurement process
(Vandenberg and Lance, 2000).

THE DEVELOPMENT OF THE EARLY
ELEMENTARY SCHOOL STUDENTS –
ABBREVIATED MATH ANXIETY SCALE
(EES-AMAS)

Starting from these premises, the current work was aimed at
developing a new instrument to assess MA in early elementary
school students, overcoming some of the limitations of the
currently available scales and with the advantage of being short
(Widaman et al., 2011). Among the measures of MA used with
adults but also recently adapted for children between the ages of
8–11 (Italian version by Caviola et al., 2017) and 8–13 (English
version by Carey et al., 2017), the AMAS (Abbreviated Math
Anxiety Scale; Hopko et al., 2003) has presented this property
with only nine items. It was originally developed using the highest
loading items from the MA Rating Scale (MARS; Richardson and
Suinn, 1972) and it is considered a parsimonious, reliable, and
valid scale for assessing MA, with two factors: Learning Math
Anxiety, which relates to anxiety about the process of learning,
and Math Evaluation Anxiety, which is more closely related to
testing situations. Indeed, it is one of the most commonly used
tools to measure MA in college and high school students (for a
review, see Eden et al., 2013). It has been translated into several
languages, including Polish (Cipora et al., 2015, 2018), Italian
(Primi et al., 2014), Persian (Vahedi and Farrokhi, 2011) and
German (Dietrich et al., 2015; Schillinger et al., 2018). These
translations have been found to be valid and reliable, confirming
the cross-cultural applicability of the AMAS.

For these reasons, the AMAS has been chosen as the starting
point for developing our instrument, the Early Elementary School
Students – Abbreviated Math Anxiety Scale (EES-AMAS), with
the aim of also maintaining the two-dimensional structure of
the original scale. The adaptation mainly concerned the need
to make the scale suitable for young children. Indeed, age-
appropriate vocabulary was considered a priority to maximize the
comprehensibility of the scale (Ganley and McGraw, 2016). This
has been achieved by modifying, when necessary, the content
of the items to ensure understanding (i.e., by using simple
and familiar words). Additionally, the age-appropriateness and
meaningfulness of the content has also been ensured by
creating items which were consistent with children’s study habits,
mathematics course organization and materials. For example, one
of the original items of the Learning Math Anxiety factor was
“Having to use the tables in the back of a math book.” This has
been changed to: “When you are using the Number Line” One
of the original items of the Evaluation Math Anxiety factor was:
“Being given a “pop” quiz in math class.” This has been changed
to: “When your math teacher asks you to solve a maths sum.”

Subject matter experts (teachers and developmental
psychologists) have been asked to evaluate whether the test
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items assess the intended content and if they are suitable for
children. Inter-rater reliability indices (Cohen’s Kappa) have been
used to measure the agreement between raters, and adjustments
have been made to obtain the final version of the EES -AMAS.

Additionally, the response scale has been modified to suit the
target age group. Instead of using a Likert scale with numbers, we
have used a pictorial scale, in line with other studies (e.g., Thomas
and Dowker, 2000; Wu et al., 2012; Jameson, 2013). However,
instead of using smiley faces that children could not interpret
correctly (for example, some children assumed that they were
expected to choose the face which was the most similar to them),
we have created a pictorial scale using boxes (Figure 1). For each
item that described a familiar behavior related to the learning or
evaluation of math, participants were asked to choose the box
with the level of anxiety (from little to much anxiety) that each
statement evoked. We have used the word “anxiety” instead of
“worry” (e.g., Thomas and Dowker, 2000) or feeling “nervous”
(Wu et al., 2012), as teachers confirmed that children at this age
were already familiar with the term “anxiety.”

In this study, using CFA, we expected to confirm the two-
factors structure of the scale even at this young age. Several
studies have found that MA, even at a young age, is a
multidimensional construct (e.g., Wu et al., 2012; Harari et al.,
2013; Jameson, 2013), although the number and identity of these
factors differ across instruments. An advantage of adapting the
same scale for different age groups is that it makes it easier, and
more meaningful, to investigate developmental changes in MA.

Additionally, a short measure is more useful considering
that MA is typically investigated together with other related
constructs (e.g., math performance). However, it is also
important to use scales that are reliable. The Cronbach alfa
coefficient is widely used to estimate the reliability of MA.
Nevertheless, using an inter-item correlation matrix may lead
to an underestimation of reliability, especially when the scale
contains a small number of items (Yang and Green, 2011).
Indeed, as reported by Deng and Chan (2017), the application
of coefficient alpha has been criticized (see, e.g., Green et al.,
1977; Raykov, 1997; Sijtsma, 2009; Yang and Green, 2011).
This is because, the sample coefficient alpha yields a consistent
estimate of reliability only when all items have equal covariance
with the true score (i.e., when item scores fit a unidimensional
model in which the loadings are set to be equal and errors
are uncorrelated). However, this assumption is seldom met
in practice by educational and psychological scales (see, e.g.,
Lord and Novick, 1968; Jöreskog, 1971; Green and Yang, 2009).
A measure that overcomes the issues with alpha is coefficient
omega (ω) (McDonald, 1978). It is defined as the ratio between
the variance due to the common factor and the variance of
the total scale scores. In the current study, to overcome the
limitations of the Cronbach’s alfa coefficient, we measured the
reliability of the EES-AMAS using omega. However, to make
it easier to compare the reliability of our scale with other
versions of the AMAS, we also report alpha and ordinal alpha
(based on polychoric correlations instead of the typical Pearson
coefficients), which were used as alternative indices of reliability
in previous studies (e.g., Cipora et al., 2015; Pletzer et al., 2016;
Carey et al., 2017; Devine et al., 2018).

There is a large body of literature examining whether there are
gender differences in MA, but unfortunately the measurement
tools that are often employed in research are not necessarily
gender-invariant. If observed gender differences have been
obtained by employing noninvariant scales across genders, the
overall findings might be misleading because it is impossible to
tell whether these differences reflect actual differences in MA
among males and females or if they reflect differences related to
group membership. In order to understand gender differences,
it is important to employ instruments where invariance across
genders has been verified. Thus, we aimed to test the invariance
of the EES-AMAS across genders in young pupils.

Additionally, applying the same method, we also tested the
equivalence of the EES-AMAS across languages (Italian versus
British English). Testing the invariance of the test concerns
the extent to which the psychometric properties of the test
generalize across groups or conditions. Indeed, invariance
ensures both the fairness and validity of group comparisons
while examining a specific psychological construct (Kane,
2013). Therefore, measurement invariance is a prerequisite of
the evaluation of substantive hypotheses regarding differences
between contexts and groups.

Finally, we tested the validity of the scale by investigating
the relations between MA and math achievement. Studies have
mainly focused on secondary school and university students, and
they have almost always found a negative relationship between
these constructs (−0.18 < r < −0.48) (Luttenberger et al.,
2018). By contrast, the few studies that were conducted with
primary school samples have yielded contradictory results: some
did not find a correlation (Thomas and Dowker, 2000), others
have found that MA was negatively linked to math achievement
(e.g., Wu et al., 2012). However, a limitation of comparing this
relation across different studies is that they have used different
measures to assess achievement (typically, scores on achievement
tests or grades). In this study, to measure math performance, a
similar test was developed and administered in the Italian and
British samples.1 Additionally, to address the lack of measures
of convergent validity, we have tested the relation of the EES-
AMAS with another measure of MA developed for this age
group, the CMAQ-R (Ramirez et al., 2016). Thus, we expected to
find a negative correlation between MA and math achievement
and a positive correlation between the two measures of MA
in both samples.

In sum, in these studies, we have investigated the psychometric
properties of the EES-AMAS, a new scale, which was developed
with the purpose of overcoming some of the limitations of MA
assessment in young children. In detail, in Study 1, with an Italian
sample, we investigated the dimensionality of the scale using a
confirmatory procedure, we measured the reliability of the scale
with coefficient omega (ω) (McDonald, 1978), and its validity,
measuring its relationship with math achievement. Moreover, we
tested the invariance of the scale across genders. In Study 2, we
investigated the invariance of the scale across languages (Italian

1These tests did not have exactly the same items, because the children in the two
countries attended different school grades. Nevertheless, the types of items were
very similar, as well as the overall structure of the assessment and the way the tests
were administered.
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and British English) and we tested the validity of the scale in
both educational contexts, using measures of both criterion and
convergent validity.

STUDY 1

Materials and Methods
Participants
The study involved 150 children (Mean age = 7.1 years; SD = 0.57;
57% female) attending Italian primary schools in central Italy; 73
(49%) were in grade 1 (Mean age = 6.6 years; SD = 0.26; 63%
female) and 77 (51%) were in grade 2 (Mean age = 7.6 years;
SD = 0.29; 51% female).

A detailed study protocol that explained the aims and
methodology of the study was approved by the institutional
review boards of the schools. Parental consent was obtained for
all children before they took part in the study, which assured
them that the data obtained would be handled confidentially
and anonymously.

Materials and Procedure
The Early Elementary School Students-MAS (EES-AMAS)
contains nine Likert-type items related to two aspects of math
anxiety measured by the subscales: Learning Math Anxiety-LMA
(5 items, for example “When you are using the number line”)
and Math Evaluation Anxiety-MEA (4 items, for example,” When
your maths teacher asks you to solve a maths word problem”).
Participants responded to the items using a pictorial scale
consisting of partially filled boxes with a varying level of content
from “little” to “much” anxiety (rated 1–5) (Figure 1).

The scale was individually administered. A trained interviewer
presented a brief description of anxiety with some examples (see
Appendix) to each child, and explained the response scale with
the boxes. After this preliminary introduction, each item was
read aloud by the interviewer who recorded each answer that the
participant gave by pointing at a box on the response sheet. It
took about 10 min to complete the scale.

The AC-MT 6–11 (Cornoldi et al., 2012) was used to measure
mathematics achievement. It is a standardized mathematics test
designed for first- to fifth-graders to assess calculation procedures
and number comprehension. In this study, participants had
to solve 4 written multi-digit calculations (two additions, two

subtractions) designed for first- and second-graders. The test
was paper and pencil administered and it took about 10 min to
complete. Both measures were administered individually during
class time in a random order.

Results
Item distributions and descriptives were examined to assess
normality (Table 2). Skewness and kurtosis indices of some items
revealed that the departures from normality were not acceptable
(Marcoulides and Hershberger, 1997).

Dimensionality
The original factor structure was tested by CFA employing
the Mean-Adjusted Maximum Likelihood (MLM) estimator
(Mplus software; Muthén and Muthén, 2004). This estimator
provides the Satorra– Bentler Scaled chi-square (SBχ2; Satorra
and Bentler, 2001), an adjusted and robust measure of fit for
non-normal sample data. This is more accurate than the ordinary
chi-square statistic (Bentler and Dudgeon, 1996). Criteria for
assessing overall model fit were mainly based on practical fit
measures: the ratio of chi-square to its degrees of freedom
(SBχ2/df), the Comparative Fit Index (CFI; Bentler, 1990), the
Tucker–Lewis Index (TLI; Tucker and Lewis, 1973), and the
Root Mean Square Error of Approximation (RMSEA; Steiger
and Lind, 1980). For the SBχ2/df, values of less than 3 were
considered to reflect a fair fit (Kline, 2010). We deemed CFI
and TLI values of 0.90 and above a fair fit (Bentler, 1995).
For RMSEA, values equal to or less than 0.08 were considered
to represent adequate fit (Browne and Cudeck, 1993). Results
showed that goodness of fit indices for the two-factor model
were all adequate (SBχ2 = 41.67, df 26, p < 0.05, SBχ2/df
1.6; CFI = 0.93; TLI = 0.90; RMSEA = 0.06). Standardized
factor loadings ranged from 0.45 to 0.74, all significant at the
0.001 level, just as the correlation between the two factors
(0.67) (Table 2).

Reliability and Validity
With regard to reliability, the omega for the EES-AMAS
was 0.76; 0.72 for the Learning Math Anxiety subscale
(LMA), and 0.70 for the Evaluation Math Anxiety subscale
(EMA) (see Supplementary Table S1 for the other reliability
coefficients). All item-corrected total correlations were above
0.32 (Table 2). Concerning validity, there was a negative

FIGURE 1 | The rating scale used to measure the level of anxiety elicited by each situation described by the items of the EES-AMAS. Children had to respond by
pointing at the appropriate box.
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TABLE 2 | Means, standard deviations (SDs), skewness, kurtosis, and item- total correlations for each item, and factor loadings of the EES-AMAS.

Item Mean (SD) Skewness Kurtosis Corrected item-total correlations LMA EMA

1 1.70 (1.34) 1.74 1.46 0.33 0.45

3 2.11 (1.42) 0.98 −0.46 0.55 0.67

6 2.54 (1.61) 0.44 −1.44 0.46 0.53

7 2.03 (1.36) 1.04 −0.33 0.38 0.53

9 2.71 (1.46) 0.27 −1.27 0.53 0.68

2 2.30 (1.36) 0.77 −0.63 0.32 0.53

4 2.49 (1.42) 0.41 −1.20 0.56 0.74

5 3.19 (1.60) −0.22 −1.52 0.34 0.47

8 2.70 (1.58) 0.34 −1.42 0.48 0.54

LMA, Learning Math Anxiety; EMA, Evaluation Math Anxiety.

correlation between MA and math achievement (–0.21;
p < 0.01).

Invariance Across Genders and Gender Differences
A multi-group analysis was conducted to investigate the gender
invariance property of the EES-AMAS. It is a step-by-step
procedure in which a series of nested models are organized in
a hierarchical order. In line with the recommended practice
for testing measurement invariance (Little, 1997; Vandenberg
and Lance, 2000; Dimitrov, 2010), first the independence model
was fitted (SBχ2 = 344.03, df = 72, p < 0.001). As reported in
Table 3, the starting point was an unconstrained model to test
configural invariance, which was used as a baseline for testing
weak or metric factorial invariance. Criteria for assessing the
difference between the competing models were based on the
scaled difference chi-square test (Satorra and Bentler, 2010).
Therefore, Model 1 was compared to Model 2. SB1χ2 was not
significant (SB1χ2

Model1 − Model2 = 9.76, p = 0.203), confirming
that the factor loadings were equal across genders. Then, the
equivalence of structural variances and covariances, which were
constrained to be invariant across groups, were also tested
(SB1χ2

Model2 − Model3 = 4.28, p = 0.233). Finally, taking Model
3 as a reference, the error variances/covariances hypothesis
was tested, including constraints in error variances (Model 4).
SB1 χ2 was not significant when comparing the two models
(SB1χ2

Model4 − Model5 = 8.65, p = 0.470) indicating the equality
of measurement errors across gender.

Having preliminarily verified the measurement equivalence of
the scale across genders, we tested gender differences using the
traditional frequentist approach, and also a Bayesian approach.
With the traditional frequentist approach, we compared the total

score (Mean male = 22.47, SD male = 8.4; Mean female = 21.25, SD
female = 7.1) and the scores on each subscale (Learning: Mean
male = 11.91, SD male = 5.5; Mean female = 10.47, SD female = 4.3;
Evaluation: Mean male = 10.56, SD male = 4.2; Mean female = 10.78,
SD female = 4.3). The results showed no significant difference
between genders. Using a Bayesian approach makes it clear when
a set of observed data is more consistent with the null hypothesis
than the alternative. A Bayesian independent samples t-test was
conducted using the default Cauchy prior centered on zero and
with r = 0.707 (Ly et al., 2016). We conducted this analysis using
JASP (JASP Team, 2018). The corresponding Bayes factor for
the total score was 3.70 in favor of H0 over the two-sided H1.
This indicated that the observed data are 3.71 times more likely
under Ho than under H1. All priors suggested moderate evidence
for the null hypothesis (i.e., no gender difference in MA), which
was relatively stable across a wide range of prior distributions
(Figure 2).

Considering the subscale scores as dependent measures, the
results showed a BF01 = 1.30 for the Learning subscale and a
BF01 = 5.39 for the Evaluation subscale (Supplementary Figures
S1, S2). Bayes factors between 1 and 3 are considered weak
evidence for the Ho (a BF value of 1 would mean that the H0
and H1 are equally likely), and values between 3 and 10 are
considered to indicate moderately strong evidence. Overall, these
results suggested no gender differences in math anxiety in this age
group, although the evidence was somewhat weaker in the case of
the Learning subscale.

Discussion
The EES-AMAS was developed in response to the need for a brief
and age-appropriate scale to assess MA in early elementary school

TABLE 3 | Goodness-of-fit statistics for each level of structural and measurement invariance across genders.

Model SBχ2 (df) SBχ2 /(df) CFI RMSEA Model comparison SB1χ2 1df p

1. Invariance of model configuration 98.70 (52) 1.9 0.90 0.08 – – – –

2. Invariance of factor loadings 108.46 (59) 1.8 0.90 0.08 Model1-Model2 9.76 7 0.203

3. Invariance of structural variances/covariances 112.74 (62) 1.8 0.90 0.07 Model2-Model3 4.28 3 0.233

4. Invariance of measurement error 121.39 (71) 1.7 0.90 0.07 Model3 -Model4 8.65 9 0.470

SBχ2, chi square test; df, degrees of freedom; CFI, comparative fit index; RMSEA, root mean square error of approximation; SB1χ2, Satorra–Bentler scaled difference;
1df, difference in degrees of freedom between nested models; p, probability value of SB1χ2-test.
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FIGURE 2 | (A) Bayesian independent samples t-test for the effect size δ. The dashed line illustrates the prior distribution (default Cauchy prior centered on zero,
r = 0.707), the solid line shows the posterior distribution. The two gray dots indicate the prior and posterior density at the test value. The probability wheel on top
visualizes the evidence that the data provide for the null hypothesis (H0: effect sizes are equal) and the alternative hypothesis (auburn, H1: effect sizes are different).
The median and the 95% central credible interval of the posterior distribution are shown in the top right corner. (B) The Bayes factor robustness plot. The plot
indicates the Bayes factor BF01 (in favor of the null hypothesis) for the default prior (r = 0.707), a wide prior (r = 1), and an ultrawide prior (r = 1.414). All priors
suggest moderate evidence for the null hypothesis, which is relatively stable across a wide range of prior distributions. Plots taken from JASP.

students. The first aim of this study was to measure the factor
structure of the EES-AMAS using a confirmatory procedure. The
confirmatory factor analysis provided evidence of the underlying
two-factor structure in younger students. Fit indices were good,
and the items loaded highly on the expected factors, suggesting
that the two dimensions established in the original AMAS
(Learning Math Anxiety and Math Evaluation Anxiety) were
evident also in the early elementary school student version.

Establishing the factor structure of mathematics anxiety may
help with determining at this age whether anxiety pertains to
the performance of mathematics in itself or whether anxiety
is more related to test situations. Identifying for each student
which aspect of MA is higher is also important for designing
interventions. Another advantage of the EES-AMAS is its
shortness. The administration time is less than 10 min and
therefore, in addition to studies focusing primarily on math
anxiety, it is also appropriate for multivariate studies in which
many tests and scales need to be administered together. Indeed,
it is useful to have a short scale. Nevertheless, it is important to
balance the need to have a small number of items and the need
to have good reliability. For this reason, we have developed the
scale taking into consideration item wording and the length of
the scale. The results showed good reliability for the EES- AMAS
as a whole, and both subscales. Additionally, the scale presented
good criterion validity, confirming that students with more severe
MA performed less well in math tasks (Devine et al., 2012;
Hill et al., 2016).

Finally, we tested invariance across genders (i.e., whether the
test functions equivalently for males and females). Concerning
gender differences in younger children, the majority of studies
found evidence that there are small or non-existent gender
differences in children of this age (e.g., Dowker et al., 2012;
Harari et al., 2013; Ramirez et al., 2013; Jameson, 2014;

Erturan and Jansen, 2015; Hill et al., 2016). However, in
the case of most of these studies, a lack of measurement
equivalence of the scales makes group comparisons ambiguous
(Vandenberg and Lance, 2000). Indeed, the EES-AMAS, due to
its gender invariance property, could be a useful tool to better
investigate gender differences in young children in future studies.
In the current study, we found no significant gender difference
in math anxiety in our sample, either in the total math anxiety
score or in the subscale scores. We conducted Bayesian analyses
to quantify the evidence for the null hypothesis in each case. We
found moderate evidence in favor of the null hypothesis in the
case of the total score and the Evaluation subscale score. However,
the evidence for no gender difference was weaker in the case of
the Learning subscale. We will return to this issue in Study 2.

STUDY 2

Although MA is considered a global phenomenon and it is
supposed to be a transcultural trait (Ma, 1999), the majority
of research on MA has been conducted in North America (cf.,
Morsanyi et al., 2016; Mammarella et al., 2019). One large-
scale attempt to evaluate MA across different countries has been
undertaken by the PISA assessment in 2012. Results showed that
33% of 15-year-old students across 65 countries who participated
in this assessment reported feeling helpless when solving math
problems. However, this study has only compared responses
to single items, and did not investigate the structure of MA
across countries. Very few studies have assessed the structure
of MA in children using the same scale translated into different
languages. Ho et al. (2000) tested the dimensionality of the
MAQ (Wigfield and Meece, 1988) with 11 year-old children,
confirming its two-dimensional structure (i.e., affective and
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cognitive). Indeed, the structure of MA has been found to be
similar in American, Chinese and Taiwaneese students. Only the
study of Wood et al. (2012) investigated the structure of MA in
early elementary school students (second and third graders) in
German and Brazilian samples and showed a similar structure
across countries. However, even in this study, the invariance of
the scale across countries has not been investigated.

In the current study, the participants were early elementary
school pupils, recruited from two countries: Italy and the UK.
The UK sample was from Northern Ireland, which has the
youngest school starting age (4 years) among the 37 countries
participating in Eurydice, the information network on education
in Europe (Eurydice at NFER, 2012). In Italy, children start
school at 6 years of age. We have recruited 6- and 7-year-
old pupils from both countries, which made it possible to test
the equivalence of the EES-MAS not only across languages,
but also across educational contexts. The aim of this analysis
was to test whether observed MA scores depended only on
the latent construct, and not on group membership. Similar to
Study 1, we have applied multiple group confirmatory factor
analysis (MGCFA), in which the theoretical model is compared
to the observed structure in two samples. Additionally, in both
samples, we tested the criterion validity of the scale, measuring
its relations with math achievement (as measured by a math test,
and by teacher’s ratings of each child’s achievement). Based on
the typical findings in the literature, we expected a small- to
medium negative correlation between math anxiety and math
performance. Additionally, we tested the convergent validity of
the EES-AMAS by measuring its relationship with the CMAQ-
R (the Child Math Anxiety Questionnaire –Revised; Ramirez
et al., 2016), which has been developed for the same age group
as our scale, although it is much longer. We also investigated the
relationship between the EES-AMAS and children’s state anxiety
after they completed the math test.

Materials and Methods
Participants
The participants were 223 early elementary school students
(mean age = 6.7 years; SD = 0.6; 47% female) 46% attending
primary school in Forlì (Italy; mean age = 6.41 years; SD = 0.49;
40% female) and 54 % in Belfast (UK; mean age = 7.11 years;
SD = 0.66; 52% female).

Materials and Procedure
The Italian version of the EES-AMAS was administered to
the Italian pupils. The English version of the EES-AMAS
was obtained using a forward-translation method. Two non-
professional translators worked independently, and then they
compared their translations with the purpose of assessing
equivalence. The wording and content of the items was also
discussed with schoolteachers to obtain a final version. As in
Study 1, an interviewer presented individually a brief description
of anxiety with some examples and participants responded to
items on a pictorial scale consisting of partially filled boxes with a
differing level of content, representing “little” to “much” anxiety.

The CMAQ- R (Ramirez et al., 2016) was designed to be
appropriate for first and second grade children. It contains 16

items that ask children how nervous they would feel during
various math-related situations. Responses are collected using a
5-point Likert scale ranging from 1 (not nervous at all) to 5 (very,
very nervous), which are represented in the form of smiley faces.
Children have to respond by pointing at the appropriate smiley
face on the scale. High scores on the scale indicate high math
anxiety. The Italian version of the CMAQ-R was obtained from
the English version using a forward-translation method. Two
non-professional translators worked independently, and then
they compared their translations with the purpose of assessing
equivalence. With regard to reliability, the internal consistency
Cronbach’s alpha for the CMAQ-R was 0.83 (CI 0.82–0.87) in the
Italian sample and 0.80 (CI 0.74–0.85) in the British sample.

State math anxiety was measured by a single-item scale, which
was administered to pupils after they completed the math test.
The same smiley face scale was used as in the CMAQ-R (Ramirez
et al., 2016). Children were asked to point to one of five smiley
faces to indicate how nervous they felt about completing the
math problems. The face on the leftmost side indicated that the
child was not nervous at all, whilst the face on the rightmost side
indicated that the child felt very, very nervous.

Math Performance in both the Italian and the UK sample
was measured by a test developed for the purposes of this
study. The two tests were developed using the same criteria, but
were different in their contents due to the fact that children
at age 6 attend the first primary school grade in the Italian
school system, and the third grade in Northern Ireland. In
detail, the UK test was based on items from the Test of Early
Mathematics Ability (TEMA-3; Ginsburg and Baroody, 2003).
The test consisted of 38 items, which were administered in a
single session in four parts, with short breaks in between. The
tasks were read out to children to minimize the effect of reading
ability on children’s performance. The items covered addition
and subtraction problems including both single- and two-digit
numbers, additions and subtractions with multiples of ten, and
word problems that also relied on simple addition or subtraction
procedures. The items were selected from a set of 50 problems,
which were piloted in a separate sample of 27 children. Tasks
with accuracy levels between 35 and 75% were retained to ensure
a good variability of scores on the test. The same procedure
was adopted to develop the test administered to the Italian
sample. In the pilot phase, a set of 50 math tasks were used that
included addition and subtraction with both single- and two-
digit numbers, additions and subtractions with multiples of ten,
word problems relying on addition and subtraction, and number
sequencing. These tasks were administered to a sample of 37
children. Nineteen items with accuracy levels between 35 and
75% were retained for the final test, including 5 additions, 4
subtractions, 5 word problems with addition, 3 word problems
with subtractions, and 2 number sequencing tasks. A single
composite score, based on the sum of correct responses, was
calculated for both samples. Cronbach’s alpha was 0.92 in the UK
sample, and 0.86 in the Italian sample.

Teachers were also asked to provide a rating of each
child’s math achievement using a 5-point scale: 1 = working
well below the expected level of attainment for his/her age;
2 = working below the expected level of attainment for his/her
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age; 3 = working toward the expected level of attainment for
his/her age; 4 = working within the expected level of attainment
for his/her age; 5 = working beyond the expected level of
attainment for his/her age.

The study was approved by the School of Psychology ethics
committee at Queen’s University Belfast (UK), and by the ethics
committee of the University of Bologna (Italy). Informed consent
was gained from parents prior to their child’s participation,
whilst assent was obtained from the children before they took
part in the study. Children were tested in two sessions: in
the first session, they were tested in groups of 4–8 in their
classes, and they completed the math assessment. The tasks were
administered in four parts, with short breaks in between. At
the end of the session, children were asked to say how nervous
they felt while completing the math tasks. Individual sessions
were carried out at least 1 day after the group session and
involved children completing the math anxiety questionnaires.
The scales were administered in a fixed order with the CMAQ-R
always administered first. The reason for this was that the EES-
AMAS included detailed instructions, which might have affected
responses on the CMAQ-R. Teachers provided ratings of each
child’s math achievement in their own time.

Results
First, as a prerequisite, the baseline model was tested separately
for each country. For the Italian sample, the two-factor model
had goodness of fit indices as follows: SBχ2/df = 1.55, TLI = 0.90,
CFI = 0.92; and RMSEA 0.07. Standardized factor loadings
ranged from 0.43 to 0.74, all significant at the 0.001 level, just
as the correlation between the two factors (0.77). For the British
sample, the two-factor model was associated with the following
goodness of fit indices: SBχ2/df = 1.45, TLI = 0.90, CFI = 0.91;
RMSEA.07. Standardized factor loadings ranged from 0.37 to
0.70, all significant at the 0.001 level, as well as the correlation
between the two factors (0.75) (Table 4).

Invariance Across Languages/Educational Contexts
A multi-group analysis was conducted to investigate the cross-
language invariance property of the EES-AMAS. It is a step-by-
step procedure in which a series of nested models are organized
in a hierarchical order. In line with the recommended practice

for testing measurement invariance (Little, 1997; Vandenberg
and Lance, 2000; Dimitrov, 2010) first the independence model
was fitted (SBχ2 = 540.38, df = 72, p ≤ 0.001). As reported in
Table 5, the starting point was an unconstrained model to test
configural invariance, which was used as a baseline for testing
weak or metric factorial invariance. Criteria for assessing the
difference between the competing models were based on the
scaled difference chi-square test (Satorra and Bentler, 2010).
Therefore, Model 1 was compared to Model 2 and SB1χ2

was not significant (SB1χ2
Model1 − Model2 = 13.06, p = 0.071),

confirming that the factor loadings were equal across languages.
Then, the equivalence of structural variances and covariances
which were constrained to be invariant across groups, were
also tested (SB1χ2

Model2 − Model3 = 1.40, p = 0.703). Finally,
taking Model 3 as a reference, the error variances/covariances
hypothesis was tested including constraints in error variances
(Model 4). SB1χ2 was not significant when comparing the two
models (SB1χ2

Model4 − Model5 = 8.31, p = 0.503), indicating the
equality of measurement errors across languages.

Having verified the measurement equivalence of the scale,
we tested group differences in mean scores on the total score
(MeanItalian = 21.01, SD Italian = 7.7; MeanBritish = 20.59,
SDBritish = 6.6), and each subscale (Learning: MeanItalian = 10.9,
SD Italian = 4.7; MeanBritish = 9.1, SDBritish = 3.5; Evaluation:
MeanItalian = 10.9, SD Italian = 4.1; MeanBritish = 11.5, SD
female = 4.0). Results showed no significant differences between
the groups, indicating that, at 6-years of age, Italian and Northern
Irish children experienced similar levels of math anxiety.2

A Bayesian independent samples t-test was conducted using
the default Cauchy prior centered on zero and with r = 0.707.
The corresponding Bayes factor for the total score was 6.23 in
favor of H0 over the two-sided H1. All priors suggest moderate
evidence for the null hypothesis, which is relatively stable across
a wide range of prior distributions (Figure 3).

Considering the subscale scores as dependent measures, the
results showed a BF01 = 1.38 for the Learning subscale, indicating

2It is of note that the CMAQ-R indicated a significant difference in MA across
countries [t(221) = 2.28 p = 0.023]. Nevertheless, given that the measurement
equivalence of the CMAQ-R across countries has not been verified, it is possible
that this difference was the result of different interpretation of the items by Italian
and British children.

TABLE 4 | Means, standard deviations (SDs), item- total correlation for each item and factor loadings of the EES-AMAS for each sample.

Italian sample British sample

Item Mean (SD) Corrected item-total correlations LMA EMA Mean (SD) Corrected item-total correlations LMA EMA

1 1.80 (1.38) 0.47 0.56 1.19 (0.67) 0.30 0.37

3 1.88 (1.29) 0.41 0.47 1.82 (1.45) 0.52 0.70

6 1.87 (1.31) 0.44 0.57 1.84 (1.95) 0.33 0.50

7 2.02 (1.41) 0.38 0.43 1.66 (1.07) 0.38 0.48

9 2.52 (1.61) 0.61 0.74 2.57 (1.45) 0.44 0.41

2 2.53 (1.49) 0.59 0.69 2.81 (1.44) 0.46 0.58

4 2.26 (1.34) 0.46 0.56 3.01 (1.49) 0.45 0.65

5 3.50 (1.40) 0.49 0.63 3.29 (1.53) 0.36 0.45

8 2.61 (1.40) 0.45 0.60 2.43 (1.40) 0.53 0.62

Frontiers in Psychology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 1014338339

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01014 May 19, 2020 Time: 19:5 # 11

Primi et al. The Early Elementary School – AMAS

FIGURE 3 | (A) Bayesian independent samples t-test for the effect size δ. The probability wheel on top visualizes the evidence that the data provide for the null
hypothesis (H0: effect sizes are equal) and the alternative hypothesis (auburn, H1: effect sizes are different). The median and the 95% central credible interval of the
posterior distribution are shown in the top right corner. (B) The Bayes factor robustness plot. The plot indicates the Bayes factor BF01 (in favor of the null hypothesis)
for the default prior (r = 0.707), a wide prior (r = 1), and an ultrawide prior (r = 1.414).

TABLE 5 | Goodness-of-fit statistics for each level of structural and measurement invariance across languages.

Model SBχ2 (df) SBχ2 /(df) CFI RMSEA Model comparison SB1χ2 1df p

1. Invariance of model configuration 109.57 (52) 2.1 0.90 0.07 – – – –

2. Invariance of factor loadings 122.63 (59) 2.1 0.90 0.07 Model1-Model2 13.06 7 0.071

3. Invariance of structural variances/covariances 124.03 (62) 2.0 0.89 0.07 Model2-Model3 1.40 3 0.704

4. Invariance of measurement error 132.34 (71) 1.9 0.89 0.06 Model3 -Model4 8.31 9 0.503

SBχ2, chi square test; df, degrees of freedom; CFI, comparative fit index; RMSEA, root mean square error of approximation; SB1χ2, Satorra–Bentler scaled difference;
1df, difference in degrees of freedom between nested models; p, probability value of SB1χ2-test.

TABLE 6 | Descriptive statistics for the measures, and correlations between the measures of math achievement and math anxiety (results for the UK sample are
presented in brackets).

EES-AMAS CMAQ-R State math anxiety Math test performance Math achievement
(teacher rating)

EES-AMAS –

CMAQ-R 0.70** (0.69**) –

State math anxiety −0.04 (0.22*) 0.09 (0.23*) –

Math test performance −0.38** ( − 0.32**) −0.39** ( − 0.43**) −0.04 ( − 0.21*) –

Math achievement (teacher rating) −0.30** ( − 0.34**) −0.32** ( − 0.29**) −0.09 ( − 0.24**) 0.53** (0.70**) –

M (SD) Italian 21.01 (7.75) 39.16 (11.68) 1.69 (1.20) 21.83 (8.80) 3.54 (1.01)

M (SD) UK 20.59 (6.59) 35.69 (10.96) 1.83 (1.44) 22.47 (8.42) 3.52 (1.11)

*p < 0.05; ** p < 0.01.

weak evidence in favor of the null hypothesis. In the case of
the Evaluation subscale, a Bayesian independent samples t-test
(BF01 = 3.74) indicated moderate evidence in favor of the null
hypothesis (Supplementary Figures S3, S4).

Reliability and Validity
With regard to reliability, in the Italian sample omega was 0.79
and in the English sample it was 0.74. In both samples, all item-
corrected total correlations were above 0.30 (Table 4).

Concerning validity, to investigate the relationship between
MA and math achievement, correlations between the EES-AMAS

and math test scores, as well as teacher’s ratings of children’s math
achievement were calculated. The results showed that higher
levels of MA were associated with poorer math performance
in both samples, and the strength of this relationship was
moderate (Table 6).

To analyze convergent validity, we tested the relationship
between the EES-AMAS and the CMAQ-R, as well as children’s
state anxiety immediately after completing a math test. Strong,
positive correlations were found in both samples between
the two MA scales. Regarding state math anxiety, there was
no relationship between trait and state math anxiety in the
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TABLE 7 | Gender differences in math anxiety and math performance.

Male M (SD) Female M (SD) t (df) p BF01

EES-AMAS Italy 20.73 (7.72) 21.44 (7.86) −0.456 (101) 0.650 4.30

UK 21.12 (6.54) 20.11 (6.65) 0.839 (118) 0.403 3.74

Learning anxiety Italy 9.87 (4.59) 10.44 (4.98) −0.595 (101) 0.553 4.03

UK 9.28 (3.88) 8.89 (3.20) 0.606 (118) 0.546 4.35

Evaluation anxiety Italy 10.85 (4.26) 11.00 (3.99) −0.174 (101) 0.863 4.65

UK 11.86 (3.77) 11.24 (4.29) 0.839 (118) 0.403 3.74

Math test performance Italy 23.08 (9.19) 19.87 (7.87) 1.799 (98) 0.075 1.12

UK 23.46 (7.68) 21.59 (8.99) 1.217 (118) 0.226 2.63

Math achievement (teacher rating) Italy 3.50 (1.14) 3.60 (.78) −0.486 (100) 0.628 4.22

UK 3.53 (1.17) 3.51 (1.06) 0.090 (118) 0.928 5.11

Italian sample, but in the UK sample there was a weak
positive correlation.

Similar to Study 1, we checked whether there were any gender
differences in MA. Additionally, we also made comparisons
between girls’ and boys’ math performance based on their math
test scores and teacher’s ratings (Table 7). There were no gender
differences in MA either in the Italian or in the UK sample
(ps > 0.40). This was also the case when we checked separately
whether there were gender differences in Learning or Evaluation
MA. There were also no gender differences in math performance,
although in the Italian sample, there was a non-significant trend
toward boys scoring higher on the math test (p = 0.075).

Bayesian independent samples t-tests were conducted for
the effect size δ (Table 7). The results indicated moderate
evidence in favor of the null hypothesis considering gender as the
independent variable in each country.

Discussion
Study 2 tested the equivalence of the Italian and English versions
of the EES-AMAS, attesting the appropriateness of the scale
to be used in both languages and educational contexts. The
equivalence of the scale across countries is important for being
able to generalize findings obtained with one country/language
version of the test to other countries.

Additionally, we tested the validity of the scale in both
populations. In particular, we have tested the criterion validity
of the scale, using teacher ratings and a math test adapted for
both countries. As expected, MA negatively correlated with the
measures of math achievement in both countries. Moreover,
the strength of this relationship was moderate. This is an
important finding, because some previous studies did not find a
relationship between math achievement and math performance
in young pupils (Cain-Caston, 1993; Thomas and Dowker, 2000;
Krinzinger et al., 2009; Dowker et al., 2012). Nevertheless, in
line with our findings, other studies have reported a relationship
between MA and math performance even in the first school
grades (Wu et al., 2012, 2014; Ramirez et al., 2013; Vukovic et al.,
2013; Ramirez et al., 2016). It has also been argued that young
children generally have positive feelings about mathematics, but
their feelings and attitudes deteriorate with age (Wigfield and
Meece, 1988; Ma and Kishor, 1997). Related to this point, our
findings show that young pupils in both countries tended to

report low levels of anxiety (as indicated by their ratings of
the scale items). Additionally, similar to Study 1, there were no
gender differences in MA in either the Italian or the UK sample
in the case of the total score, and no gender difference in either
the Learning or the Evaluation subscale, with moderate evidence
for the null hypothesis in both samples.

We also investigated the validity of the EES-AMAS by
assessing its relationship with a well-known measure of MA
developed for this age group, the CMAQ-R. The strong, positive
correlation between the two measures confirmed that the two
scales measured the same construct. We have also measured the
relations between the EES-AMAS and children’s self-reported
state math anxiety after completing the math test. We have
found a weak positive correlation between state and trait anxiety
in the UK sample. However, in the Italian sample, there was
no relationship between state and trait anxiety. Additionally,
although the CMAQ-R is much longer, the two MA scales showed
very similar relations with math performance.

A limitation of this study is that the math assessment was
developed specifically for this study, and therefore its validity has
not been independently established. However, the math test was
based on items from a standardized, curriculum-based test, the
TEMA-3, and it had high internal consistency in both samples.
We also piloted the test in a separate sample of children in
both countries to make sure that the items covered a range of
difficulty levels, although very easy or very difficult items were not
included. Another limitation is that we used an ad hoc, single item
scale to measure state math anxiety. Although state math anxiety
was related to MA and math performance in the UK sample, no
similar relations were found in the Italian group. Given that this
measure has not been used outside this study, these findings are
difficult to interpret.

CONCLUSION

MA is a widespread, worldwide problem affecting all age groups.
Recent studies have shown that MA affects performance even
in the first years of education (Harari et al., 2013; Ramirez
et al., 2013). However, to date there are only a few studies that
have investigated MA in this age group. One of the problems
which contributes to the difficulty of conducting research into
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MA in young children relates to the question of how MA
should be measured in this age group. Based on our review of
the psychometric properties (i.e., dimensionality, validity and
reliability) of the scales developed for this age group, we have
identified areas for improvement in the assessment of MA in
young children. In order to address these limitations, the current
study aimed at developing a new instrument to assess MA in early
elementary school students.

Among the existing measures of MA, the AMAS (Hopko
et al., 2003) has been used with adults in different cultural and
linguistic contexts, and it showed good psychometric properties.
Additionally, it was adapted for primary school children from
8 years of age, and was shown to be a valid and reliable scale
for measuring MA in children (Carey et al., 2017; Caviola et al.,
2017). For all these reasons, the AMAS was chosen as our
starting point to develop the Early Elementary School Students –
Abbreviated Math Anxiety Scale (EES-AMAS). Although the EES-
AMAS is a short scale (similar to the original AMAS), it showed
good validity and reliability, and also maintained the two-factors
structure of the original scale, indicating, that from a young
age, children experience anxiety (even if it is not too intense) in
both math learning and evaluation contexts. Given that the same
factors appear to underlie MA in the case of younger and older
children, adolescents and adults, it might be possible for future
studies to longitudinally track the developmental trajectories of
these factors. Indeed, currently very little is known about how
MA within the same individual unfolds over time, and there is
especially little understanding of the early origins of MA.

The new scale was shown to be invariant across genders
and linguistic/educational contexts. Although we have only
tested the equivalence of the scale across two countries, the
evidence for equivalence is a promising initial result, given the
differences between the school systems in Italy and Northern
Ireland (most notably, there is a 2-year difference in children’s
school starting age).

Using our new scale, we have found no evidence of gender
differences in MA, with Bayesian t-tests indicating moderate
evidence in favour of the null hypothesis. This finding was
consistent across all samples of children (two from Italy and
one from the UK) that were included in our studies. This is
an important result given the ubiquitous evidence for gender
differences in studies with older age groups. This finding also
suggests that gender differences in MA are unlikely to have a
biological basis, and most likely reflect societal influences, and
differences in the experiences of male and female pupils both
within and outside of the educational context.

A novelty of our scale is that we have introduced a pictorial
rating scale, consisting of partially filled boxes, which was easy
to use for children even at this young age, and avoided the
problems associated with other rating scales. In particular, when
a rating scale consisting of smiley and sad faces is used, young
children might be inclined to select faces that they find more
attractive instead of selecting a face that best represents their
emotional state.

In recent years, the assessment of MA has attracted increasing
research attention, and several studies have focussed on young
children. Nevertheless, the instruments used in these studies

had various shortcomings. The EES-AMAS is a psychometrically
sound short scale, which offers several advantages over previously
developed scales. Indeed, with the advancement of knowledge
about MA, and research questions becoming increasingly
complex and involving a growing number of constructs, shorter
scales offer added value (Ziegler et al., 2014). The EES-AMAS
can be used to investigate the development of MA, as well as to
further investigate the presence or absence of gender differences
in MA in young children. If the invariance of the scale is further
confirmed across different countries and languages, it could also
offer support for the claim that the MA construct generalizes
across countries, and linguistic and educational contexts. Finally,
future studies could also investigate potential differences in the
two dimensions of MA (i.e., Evaluation and Learning MA) across
countries. Indeed, countries differ in the age at which various
forms of assessment are introduced, and in the ways children
are given feedback on their performance, which might lead to
differences in the development of MA.
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APPENDIX: THE EARLY ELEMENTARY SCHOOL ABBREVIATED MATH ANXIETY
SCALE

Now i am going to read you some sentences about situations that can happen at school. For each sentence you should tell me how
much anxious you feel.

Do you know what anxiety is?
Feeling anxious means that you feel worried, upset, your hands sweat, you are afraid to give the wrong answer.
For example, if your teacher asks you something, how do you feel? do you feel anxious? Are you worried? are your hands sweating?

Are you afraid to give your teacher the wrong answer?
To tell me how anxious you feel in each situation, you should point at one of these squares:
If you choose the one on your left, that is almost empty, it means that you feel just a little anxious in that situation. if you choose

the one on your right, that is completely filled, it means that you feel really anxious in that situation (explain the other squares).
Do you understand? let’s begin.
How much anxiety do you feel:

A little anxiety Much anxiety

1. When you are using the number line. 1 2 3 4 5

2. When you think about a maths test that you have to do soon. 1 2 3 4 5

3. When you watch your teacher solving a maths sum on the whiteboard. 1 2 3 4 5

4. When you are taking a maths test at school. 1 2 3 4 5

5. When your maths teacher gives you homework that is long and difficult. 1 2 3 4 5

6. When your maths teacher explains a new topic. 1 2 3 4 5

7. When another student solves a sum on the whiteboard. 1 2 3 4 5

8. When your maths teacher asks you to solve a maths sum. 1 2 3 4 5

9. When you have to learn how to solve a new kind of maths sum. 1 2 3 4 5
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In the past few years, many studies have suggested that subjects with high sensory
precision in the processing of non-symbolic numerical quantities (approximate number
system; ANS) also have higher math abilities. At the same time, there has been interest
in another non-cognitive factor affecting mathematical learning: mathematical anxiety
(MA). MA is defined as a debilitating emotional reaction to mathematics that interferes
with the manipulation of numbers and the solving of mathematical problems. Few
studies have been dedicated to uncovering the interplay between ANS and MA and
those have provided conflicting evidence. Here we measured ANS precision (numerosity
discrimination thresholds) in a cohort of university students with either a high (>75th
percentile; n = 49) or low (<25th percentile; n = 39) score on the Abbreviate Math
Anxiety Scale (AMAS). We also assessed math proficiency using a standardized test
(MPP: Mathematics Prerequisites for Psychometrics), visuo-spatial attention capacity
by means of a Multiple Objects Tracking task (MOT) and sensory precision for non-
numerical quantities (disk size). Our results confirmed previous studies showing that
math abilities and ANS precision correlate in subjects with high math anxiety. Neither
precision in size-discrimination nor visuo-spatial attentional capacity were found to
correlate with math capacities. Interestingly, within the group with high MA, our data
also revealed a relationship between ANS precision and MA, with MA playing a key role
in mediating the correlation between ANS and math achievement. Taken together, our
results suggest an interplay between extreme levels of MA and the sensory precision in
the processing of non-symbolic numerosity.

Keywords: approximate number sense (ANS), numerical cognition, math anxiety, math abilities, Weber fraction

INTRODUCTION

Numerical and mathematical competencies are central predictors of an individual’s success in
life. Developing adequate numerical and mathematical skills is a prerequisite to accomplishing
numerous tasks in daily life, such as setting and keeping to a budget (Parsons and Bynner, 2005),
as well as pursuing careers in the STEM fields: science, technology, engineering, and mathematics
(STEM; Beilock and Maloney, 2015; Ferguson et al., 2015). Impairments in mathematical skills
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might be triggered by several factors and, amongst these,
mathematical anxiety (MA) has been suggested to play a key role.
MA has been defined as feelings of apprehension and increased
physiological reactivity when individuals have to manipulate
numbers, solve mathematical problems, or when they are exposed
to an evaluative situation connected to math (Hembree, 1990;
Ashcraft, 2002). Similar to other performance-based anxieties,
MA involves psychological arousal, negative cognitions, escape
and/or avoidance behaviors and, when the individual cannot
avoid the situation, performance deficits. MA is also related
to reduced cognitive reflection (Morsanyi et al., 2014; Primi
et al., 2018), and poorer decision making performance (e.g.,
Rolison et al., 2016). In other words, MA is described as a
multidimensional construct that is related to, but distinct from,
other forms of anxiety, such as trait, social, or test anxiety
(Ashcraft and Moore, 2009; Vukovic et al., 2013). MA has been
shown to hinder math performance. It has been reported that
individuals with higher levels of MA obtain lower scores in
math achievement tests, take fewer math courses, and tend to
avoid career paths involving mathematics (Ma, 1999; Ashcraft
and Krause, 2007; Ashcraft and Moore, 2009).

Two theoretical frameworks have traditionally been proposed
to account for the link between MA and math achievements
(Carey et al., 2016). The deficit theory posits that poor
mathematical performance leads to future high levels of MA.
In line with that, it has been suggested that MA could result
from low numerical (and/or spatial) skills which compromise
the development of high proficiency in mathematical problem
solving (Maloney et al., 2011; Maloney, 2016). On the other
hand, the cognitive interference theory posits that it is MA
that affects subsequent mathematical performance. During the
phases of information processing and recall, MA would create
cognitive interference which affects mathematical performance.
According to this theory, anxiety would generate intrusive
thoughts to reduce working memory (WM) capacity, with these
thoughts acting as a secondary task draining resources that,
otherwise, would have been allocated to solving the mathematical
task (Ashcraft and Kirk, 2001). An alternative theory posits
that MA and mathematical performance show a bidirectional
relationship (Ashcraft and Krause, 2007); past failures and
negative experiences in mathematical performance would lead
to MA which, subsequently, would lead to poorer mathematical
performance and vice versa (Ma and Xu, 2004).

Whatever the nature of the link between MA and low
achievement in math learning, several studies have highlighted
various factors that might account for the negative relationship
between these factors. A possible explanation of the gap in
math performance between students with high and low levels of
MA derives from behavioral and psychophysiological studies,
which provide converging evidence for individual (cognitive,
affective/physiological, motivational) and environmental
(social/contextual) factors (Chang and Beilock, 2016). Recent
reports, focused on genetic and neurophysiological factors,
suggested that MA arises from a basic level deficiency in
symbolic numerical processing. In particular, genetic studies
of MA in twins evidenced that genetic factors accounted for
about 40% of the variation in MA, and that 12% of the total

variance in MA was associated with genetic influences related
to math problem-solving (Wang et al., 2014; Malanchini et al.,
2017). Finally, children with high mathematical anxiety (HMA),
compared with low mathematical anxiety (LMA) peers, show
reduced responses in posterior parietal cortex, including the
intraparietal sulcus (IPS) and dorsolateral prefrontal cortex
regions, known to play a critical role not only in numerical
and mathematical cognition, but also in non-symbolic number
evaluation (Dehaene et al., 1999; Eger et al., 2003; Piazza et al.,
2004; Young et al., 2012; Castaldi et al., 2016).

Whilst symbolic numerical representation and arithmetic
are recent cultural inventions specifically adopted by humans,
humans share with many non-human animal species an intuitive
“approximate number system” (ANS), which is the core ability
to automatically and efficiently process numerical magnitude
information (Dehaene, 2011). The sensory precision of this
system is refined during development and varies considerably
between individuals (Halberda et al., 2008; Halberda et al., 2012;
Odic et al., 2013). It is suggested that numerosity represents
a primary visual attribute (Anobile et al., 2016b) and, in
line with this idea, recent studies showed that numerosity is
spontaneously perceived, even by 5-year old children (Cicchini
et al., 2016). Interestingly, several studies reported strong
correlations between the precision in numerosity judgments and
current, future or past formal mathematical skills in children
(Halberda et al., 2008; De Smedt et al., 2009; Anobile et al., 2013,
2018a; Feigenson et al., 2013; Starr et al., 2013). Complementary
studies carried out on subjects with mathematical disabilities
(developmental dyscalculia) show that a deficit in mathematical
processing generalizes to yield severe difficulties in estimating
and comparing numerosity (Landerl et al., 2004; Piazza et al.,
2010; Mazzocco et al., 2011; Pinheiro-Chagas et al., 2014; Anobile
et al., 2019b). In light of all these results, some authors suggested
that an intact number sense might be a base prerequisite for
the later mathematical acquisition or, in other words, that the
number sense acted as an early non-symbolic start-up tool for
the later development of language-based formal mathematical
skills (Butterworth, 1999; Piazza, 2010; Butterworth et al., 2011;
Dehaene, 2011).

Given the intimate relationship between MA and
mathematical achievements, and the complementary link
between these and the ANS, it has also been suggested that there
is a possible interplay between ANS and MA. However, evidence
collected so far is controversial. In particular, two studies
have found that individuals with HMA represent numerical
magnitude less precisely than their LMA peers (Maloney et al.,
2011; Núñez-Peña and Suárez-Pellicioni, 2014). However, as
both studies tested with Arabic digits, they only supported a
link between MA and symbolic representation of quantity, not
numerosity. Recently Braham and Libertus (2018) showed that
the association between precision in perceived numerosity (ANS
acuity) and subjects’ performance in applied problem solving
was present only in subjects with HMA levels, suggesting that
an efficient ANS system might act as a potential protective
factor for highly math anxious students. Another study reported
a link between non-symbolic numerical processing and MA
(Lindskog et al., 2017); these authors found that people with high
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levels of math anxiety show poorer precision in a non-symbolic
numerical comparisons task, compared to those with low levels
of math anxiety. They also showed that the correlation between
math skills and numerosity precision was fully mediated by
participants’ level of MA. However, several studies measuring
ANS acuity by means of non-symbolic tasks failed to find a
significant correlation between ANS and MA in both adults
(Dietrich et al., 2015; Colomé, 2019) as well as children (Gómez-
Velázquez et al., 2015; Wang et al., 2015; Hart et al., 2016),
leaving open the question of whether this interplay occurs.

The current study aims to assess the role of MA in math
skills and numerosity perception. We devised two groups with
extremely low or high levels of mathematical anxiety (drawn
from a large sample of university students) and measured, in
both groups, differences in ANS acuity and math abilities as
well as correlations between these variables. We first investigated
whether the numerosity thresholds were different in subjects
with HMA compared to their LMA peers. Then we addressed
the question whether any possible numerosity impairments in
HMA participants ware selective for numerosity or whether
it was related to a more general perceptual weakness in
magnitude judgments. This goal was achieved by measuring
discrimination thresholds on a non-numerical magnitude task, in
which participants were engaged in an object-size discrimination
task. The issue of specificity was also tested by measuring a non-
magnitude parietal function, as many studies suggested a key
role of parietal cortex in both numerosity perception and math
processing. To this aim, we decided to administer a Multiple
Object Tracking (MOT) task as it was shown to activate the
parietal cortex, which has been found to correlate well with both
numerosity and math abilities (Corbetta and Shulman, 2002;
Ansari et al., 2007; Steele et al., 2012; Anobile et al., 2013). In
order to assess the specific role played by MA in mathematical
performance, we measured individuals’ anxiety on a more general
dimension, such as performance anxiety (Ashcraft and Ridley,
2005; Lindskog et al., 2017). Finally, we tested for the potential
mediation role of MA on the link between ANS and math
abilities, using a mediation model in which ANS was associated
with math achievement through math anxiety. Mediation implies
a situation where the effect of the independent variable (X) on the
dependent variable (Y) can be explained using a third mediator
variable (M) which is caused by the independent variable and
is itself a cause for the dependent variable. By modeling an
intermediate variable, the overall effect between X and Y can
be decomposed into component parts called the direct effect of
X on Y and the indirect effect of X on Y through M (i.e., the
mediated effect).

The importance of our study, which took into consideration
several possible differences between subjects with high and low
math anxiety, relies on the fact that such multidimensional
analysis is the most suitable tool to investigate the effect of
MA on both low-level quantity processing (ANS) as well as
high-level mathematical proficiency. Such an approach is not
only likely to allow a full understanding of the interplay
between MA, math achievements and ANS, but will also improve
understanding of the brain mechanisms underpinning these
processes, as well as providing useful information about how to

optimize mathematical learning procedures or customized early
targeted interventions.

MATERIALS AND METHODS

Participants
Participants were 88 university students attending an
introductory statistics course at the School of Psychology of
the University of Florence. They were selected from a class of 179
students based on their level of math anxiety. The LMA group
comprised 39 participants (69% female; age range 18–22 years,
mean = 20.1, SD = 0.7) who scored below the 25th percentile
(score range 10–19, mean = 16.3, SD = 2.6) on the Abbreviated
Math Anxiety Scale (AMAS; Hopko et al., 2003). The HMA
group comprised 49 participants (82% female; age range 18–37,
mean = 20.4, SD = 2.9) who scored above the 75th percentile
on the AMAS (score range 27–40, mean = 30.1, SD = 3.2). All
students participated on a voluntary basis. The whole procedure
was performed in accordance with the declaration of Helsinki.

Measures
The Mathematics Prerequisites for Psychometrics (MPP; Galli
et al., 2011) is a test which was developed to measure the
mathematical skills of students enrolled in statistics courses. The
scale was developed using item response theory (IRT) because
it offers a different value of test precision for each specific level
of underlying latent variable being measured, and it does not
assume that a single estimate of reliability, and corresponding
standard error of measurement, is sufficient to describe precision
of measurement over all levels of ability (Embretson and Reise,
2000). The scale consists of 30 problems and has a multiple-
choice format (one correct response out of four options). For
example, “The value 0.05 is” (i) lower than 0; (ii) between− 1 and
0; (iii) higher than 0.1; and (iv) between 0 and 1, and “Knowing
that xy = 3 which of the following is true?” (i) y = 3/x; (ii) y = 3x;
(iii) c = 3x; and (iv) xy/3. The sum of correct responses gave us a
single composite score for each participant. In the present sample,
Cronbach’s α was 0.73 (IC:0.70–0.78). We used this measure as an
estimate of the students’ math knowledge (Primi et al., 2014).

The Abbreviated Math Anxiety Scale (AMAS; Hopko et al.,
2003; Italian version: Primi et al., 2014) measures MA
experienced by students in learning and test situations.
Participants were required to respond on the basis of how anxious
they would feel during given events (for example, “Listening
to another student explain a math formula” or “Starting a new
chapter in a math book”) by using a 5-point response scale
(ranging from strongly agree to strongly disagree). High scores on
the scale indicate HMA. A single composite score was obtained,
based on participants’ ratings of each statement. In the present
sample, Cronbach’s α was 0.84 (IC:0.80–0.87).

The Test Anxiety Inventory (TAI; Spielberger et al., 1978) was
developed to measure anxiety associated with task-performing
situations in high school and college students. The test consists
of 20 items, which investigate a range of anxiety symptoms
occurring before, during or after exams. Responses are collected
using a 4-point Likert scale ranging from 1 (almost never) to 4

Frontiers in Psychology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 1095347348

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01095 May 22, 2020 Time: 19:53 # 4

Maldonado Moscoso et al. ANS, Math Performance and MA

(always). The TAI yields a total score calculated as the sum of all
20 items, with higher scores corresponding to high test anxiety.
In the present sample, Cronbach’s α was 0.94 (IC:0.93–0.96).

Numerosity Discrimination Task
Stimuli consisted of two brief (250 ms) patches of dots, presented
on either side of a central fixation point (Figure 1A). Dots
were 0.25◦ in diameter, half white and half black (to balance
luminance), presented at 80% contrast on a gray background of
40 cd/m2. They were constrained to fall within a virtual circle of
10◦ diameter, centered at 10◦ eccentricity. Standard numerosity
(randomly left or right) was fixed at 24 dots while the probe
adaptively changed, according to participant responses, with
numerosity defined by an adaptive staircase QUEST algorithm
(Watson and Pelli, 1983). All participants performed one session
of 80 trials. Participants were asked to indicate the side of the
screen with more dots. We plotted the proportion of trials
where the standard stimulus appeared more numerous than the
probe against the probe numerosity (on log axis) and fitted
with cumulative Gaussian error functions. We defined the point
of subjective equality (PSE) as the physical numerosity of the
probe yielding 50% of probe more numerous responses. Then
we defined subjects’ precision as just notable difference (JND),
that is the numerosity offset defining the 50–75% range of probe
more numerous. Finally, normalizing PSE by JND we obtained
a single index Weber Fraction (WF), a typical dimensionless
psychophysical index for discrimination thresholds.

Size Discrimination Task
Stimuli were gratings sinusoidally modulated in luminance with a
spatial frequency of 2 cycles per degree and a Michelson contrast
of 90% which were vignetted in an annular contrast window
(Figure 1B). In each trial, two annuli were simultaneously
presented for 250 ms on the left and the right side of the
central fixation point, at an eccentricity of 10◦. Subjects were
required to indicate which stimulus appeared to be larger.
The diameter of the test stimulus (presented randomly on the
left or right) was 5◦ or 8◦ (40 trials each, randomized trial-
by-trial), while the probe varied in diameter by a percentage
drawn randomly from a Gaussian distribution centered at 0
with SD = 20%. To minimize alternative judging strategies
(such as estimating border-to-center of the screen distance),
we independently jittered the horizontal eccentricity of the
test and the probe between 8.5◦ and 11.5◦, and their distance
from the horizontal meridian within ± 3◦. After the stimuli
presentation, a 100 ms full-screen random noise mask was
displayed to cancel out possible afterimages. The proportion
of “test largest” trials was plotted against the log-ratio of
the test to probe and fitted with cumulative Gaussian error
functions. Even for the size discrimination task, the dependent
variable which we took into account was Weber Fraction
(see above), indicating subjects’ sensory precision in the size
discrimination thresholds.

Visual Sustained Attention Task
Visual sustained attention (Figure 1C) was measured by a
multiple object tracking task (MOT; Pylyshyn and Storm, 1988).

At each trial, a total of twelve disks with a diameter of 0.9◦ moved
randomly on the full screen at 7◦/s for a period of 2 s. The green
targets could be 2, or 3, or 4 (representing the three conditions)
and the remaining stimuli (distractors) were red. After the 2 s,
the green targets turned red (like the distractors), and continued
to move randomly on the full screen for 4 s. The participants
were required to continue to track them with their attention.
After this period, the disks stop moving, and 4 of them turned
orange. Participants had to identify (using the mouse cursor)
which one of the four orange items was a green target at the
beginning of the trial (4AFC). Each experimental session had
10 trials and participants performed 2 sessions, for a total of 20
trials. No feedback was provided. We measured the performance
of the participants as the proportion of correct responses for each
condition (Anobile et al., 2013).

Procedure
Participants were tested individually. Before the testing sessions,
students provided informed consent. Math skills (MPP), Math
anxiety (AMAS), and Test anxiety (TAI) were all measured before
psychophysical experiments. The scales were in a paper-and-
pencil format. The psychophysical tasks were then performed
in a quiet and dimly illuminated room. Participants sat in front
of a BARCO 27” monitor subtending 39◦ by 29◦ from the
subject’s viewing distance of 57 cm. The monitor resolution was
1024 × 768 and the refresh rate equal to 120 Hz. Stimuli for
the psychophysical experiments were all generated and presented
with PsychToolbox (Brainard, 1997) routines for MATLAB (ver.
2010a, The Mathworks, Inc.).

Statistical Analysis
Preliminarily, we tested differences within the group (LMA and
HMA) on numerosity and size discrimination tasks as well
as sustained attention with a mixed 3 (within factor: tasks)
× 2 (between factor: groups) ANOVA. Correlations between
variables were tested by Pearson’s r. To further enhance the
understanding of the mechanisms underlying the relationships
among these variables, a mediation model was tested. Specifically,
MA was modeled as the intermediate variable (M) between ANS
and math proficiency. This procedure allowed us to conclude
whether the independent variable influences the dependent
variable directly (path c’ in Figure 5) and/or indirectly (path
a or b in Figure 5) through the mediator. Obviously, the
direct and indirect effects added to the yield of the total
effect (path c in Figure 5) of the independent variable on
the dependent variable. The mediation model was estimated
to derive from the total, direct, and indirect effects of ANS
on math achievement through MA. The indirect effect of ANS
on math achievement was quantified as the product of the
ordinary least squares (OLS) regression coefficient estimating
MA from ANS (i.e., path a in Figure 5) and the OLS
regression coefficient estimating math achievement from MA
when controlling for ANS (i.e., path b in Figure 5). To
test the mediation model, we used the INDIRECT macro
for SPSS (Hayes, 2013). The INDIRECT macro tested the
hypothesized model using a bootstrapping procedure (with 5000
bootstrap samples) to estimate the 95% confidence interval for
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FIGURE 1 | Illustration of tasks and stimuli. (A) Numerosity Discrimination: two patches of dots were briefly (250 ms) presented to both side of a central fixation
point. Subjects were required to select which dots ensemble was more numerous. (B) Size Discrimination: Participants were asked to indicate which of two briefly
(250 ms) presented annuli was perceived as being larger (method adapted from Pooresmaeili et al., 2013). (C) Multiple Object Tracking (MOT): At the beginning of
the session, some disks (2, 3, or 4) out of twelve were colored in green with the remaining being red. All dots moved randomly on the screen (7◦/s) for a period of 2 s
then the green disks turned red (like the distracters) and subjects had to track them for 4 s. At the end of the tracking period, all dots stopped and 4 of them turned
orange with one of the orange dots being green at the beginning. This dot was the target subjects had to indicate in a 4-alternative forced paradigm (4ACF).

the indirect (mediated) effect (for more details, see Preacher
and Hayes, 2008). Bootstrapping is a resampling strategy for
estimation and hypothesis testing. With the bootstrapping
method, the sample is conceptualized as a pseudo-population
that represents the broader population from which the sample
was derived, and the sampling distribution of any statistic can
be generated by calculating the statistic of interest in multiple
resamples from the dataset. The bootstrapping procedure has
been suggested as representing the most trustworthy test
for assessing the effects of mediation models, overcoming
issues associated with inaccurate p-values which result from
violations of parametric assumptions (Hayes and Scharkow,
2013). Indeed, the bootstrapping procedure is advantageous
because it does not impose the assumption of normality on
the sampling distribution of indirect effects, and it retains
high power while maintaining adequate control over Type
I error rate (MacKinnon et al., 2002; Mackinnon et al.,
2004; Preacher and Hayes, 2008; Hayes, 2009). The bootstrap
test is statistically significant (at 0.05) if both confident
limits have the same sign (e.g., both positive and both
negative). This indicates that zero is not a likely value, and

therefore, that the null hypothesis of a null indirect effect
has to be rejected.

RESULTS

Differences Between Groups
At first, we measured the difference in math anxiety between the
students in the HMA and LMA group that turned out in being
highly statistically significant [t(86) = -21.85, p < 0.001]. We
then measured performance difference between HMA and LMA
groups in the psychophysical tasks (see Table 1 for descriptive
statistics). Numerosity and size discrimination thresholds (WF)
were measured separately for each participant. Attentional
performance in the MOT task was computed as a percentage
of correct responses separately for the three experimental
conditions (tracking of 2, 3 or 4 dots) however, given all these
conditions turned out to be highly correlated to each other (Mot
2 and Mot 3 r = 0.351, p < 0.001; Mot 2 and Mot 4 r = 0.305,
p = 0.004; Mot 3 and Mot 4 r = 0.61, p < 0.0001), we computed
a single index to estimate the performance in the attentional
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TABLE 1 | Descriptive statistics for LMA and HMA groups.

LMA HMA

M SD N M SD N

ANS Wf (%) 23.57 8.69 39 24.41 9.02 49

Size Wf (%) 12.15 8.26 39 9.96 4.27 49

Attentional Index 0.69 0.11 39 0.71 0.1 49

Math performance 23.63 3.51 38 21.33 3.75 49

Math anxiety 16.36 2.57 39 30.08 3.18 49

Test anxiety 34.34 9.42 38 55.20 12.12 49

task by averaging the scores across conditions. Individuals in the
low and high math-anxiety groups, showed similar performance
across all tasks [F(1, 86) = 0.036, p = 0.85]; the interaction was
also not significant [F(2, 172) = 1.539, p = 0.218]. Post hoc t-test
confirmed the differences between groups were not significant
in both, numerosity and size discrimination tasks [Numerosity
Wf: t(86) = −0.444, p = 0.658; Size Wf: t(86) = 1.607, p = 0.112,
Figures 2A,B]. Similarly, performance in the attentional task
did not turn out to be statistically significant between the two
groups considering neither the aggregate index (Figure 2C), nor
each experimental condition (defined by the number of objects
to track) independently [Mot 2: t(86) = -0.24, p = 0.8; Mot 3:
t(86) = -1.95, p = 0.05; Mot 4: t(86) = 0.28, p = 0.78]. Finally,
not only the LMA group had statistically higher math proficiency
but also lower test anxiety scores compared to the HMA group
[t(85) = 2.923, p = 0.004; t(85) = -8.75, p < 0.001 for math
performance and test anxiety score respectively].

Correlations Between Variables
After showing that the two math-anxiety groups did not differ
in their precision to discriminate stimuli numerosity or size
and were also comparable in terms of attentional performance,

FIGURE 2 | Performance in the three different psychophysical tasks.
(A) Average numerosity discrimination thresholds (Weber fraction) for subjects
with high (HMA) and low (LMA) levels of math anxiety. (B) Average object-size
discrimination thresholds (Weber fraction) for subjects with high (HMA) and
low (LMA) levels of math anxiety. (C) Average proportion of correct response
in the Multiple Object Tracking task, for subjects with high (HMA) and low
(LMA) levels of math anxiety.

TABLE 2 | Pearson correlations between all measured variables in the HMA
sub-group (above diagonal) and LMA sub-group (below diagonal).

Measure 1 2 3 4 5 6

1. Math performance – −0.290* −0.186 −0.014 −0.479*** −0.009

2. ANS acuity −0.205 – −0.062 −0.082 0.481*** 0.073

3. Size acuity −0.139 −0.023 – 0.128 −0.065 −0.156

4. Attentional index 0.242 −0.330* −0.297* – −0.255* −0.212

5. Math anxiety −0.261 0.073 0.140 −0.256 – 0.104

6. Test anxiety 0.087 −0.008 −0.108 0.047 0.072 –

*p < 0.05, ***p < 0.001. Bold numbers indicate significant correlations.

we investigated the relationships between perceptual and non-
perceptual measures within the two groups (see Table 2 for full
correlation values).

For clarity, we will describe the data separately for the two
math-anxiety groups.

Within the HMA group, results demonstrated a significant
correlation between MA level and math abilities, with individuals
with higher levels of MA having lower math scores (r = − 0.479,
p < 0.001; Figure 3). Moreover, participants with worse
numerosity thresholds (higher Wf) also showed higher levels of
MA (r = 0.48, p < 0.001; Figure 4A) and lower math scores
(r = −0.29, p < 0.02; Figure 4B). Interestingly, object size
discrimination thresholds were not related to math anxiety level
(r =−0.065, p = 0.33, see Table 2) nor to math scores (r =−0.19,
p = 0.1, see Table 2). Within the HMA group, participants with
better performance in the Multiple Object Tracking task (MOT)
also had lower math anxiety levels (r = −0.255, p = 0.04, see
Table 2). All the remaining correlations with the MOT task were
not statistically significant (p > 0.05). Finally, test anxiety did
not significantly correlate with any of the aforesaid variables
(p > 0.05, see Table 2). To further assess the specificity of the
link between ANS, MA and math scores, we ran a series of
partial correlations taking into account, as covariates, size acuity
(WF) and attentional performance (attentional index). These
analyses were only run within the HMA group, where bivariate
correlations turned out to be statistically significant coefficients.
Results of partial correlations revealed that the link between ANS
acuity and math anxiety, as well as with math performance,
remained statistically significant even when simultaneously
controlling for the effects of size acuity, attentional performance
and test anxiety [(r(partial) = 0.478, p < 0.001, r(partial) = − 0.3,
p = 0.019 for math anxiety and math performance respectively].

Within the LMA group, the pattern of correlations changed
significantly. Despite math anxiety and math abilities being
(marginally) negatively correlated (r =− 0.26, p = 0.05; Figure 3)
within this group, numerosity discrimination thresholds were not
related to math-anxiety levels (r = 0.07, p = 0.33; Figure 4A) nor
to math scores (r =− 0.20, p = 0.1; Figure 4B).

In order to check whether the lack of correlations between
numerosity thresholds and MA, and math scores in the group
with LMA was due to a difference between subject variance for
WF between High and Low anxious individuals, we analyzed and
compared variance of numerosity thresholds in the LMA and
HMA groups by means of a bootstrap technique (Anobile et al.,
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FIGURE 3 | Correlations between math anxiety and math in participants with
LMA (orange) and those with HMA (blue).

FIGURE 4 | (A) Correlations between Numerosity discrimination thresholds
and math anxiety or (B) math scores for the low math anxiety participants (in
orange) and high math anxiety participants (in blue).

2019a). On each of 10,000 iterations (sample-with-replacement),
we computed Wf average standard deviation in the LMA and
HMA groups separately. We then statistically computed the
difference between HMA and LMA by counting the number of
times that, in each of the 10,000 iterations, the difference between
the average in the HMA sample was higher than the average
in the LMA sample (one-tailed p-value). The p-value was 0.56,
suggesting that the lack of correlations described above did not
depend on a different level of variance in the data of the two
(LMA and HMA) groups. With the same procedure we also
excluded a difference in the degree of variability in the MA scores
between the two groups (p = 0.1).

Mediation Analysis
Given the robust link between numerosity perception (ANS)
and math abilities in the group with HMA (see right panel in
Figure 4), we explored the nature of this link by measuring

FIGURE 5 | Path coefficients for mediation analysis on achievement; a, b, c,
and c′ are unstandardized ordinary least squares (OLS) regression
coefficients. *p < 0.05; **p < 0.01.

the mediating role of MA. For this purpose, we ran a
mediation model to derive the total, direct, and indirect effects
of ANS on math achievement through MA. As shown in
Figure 5, results indicate a significant total effect of ANS on
math achievement while the direct effect, their relationship
not mediated by MA, was found to be not significant. In
contrast, a significant negative indirect effect of ANS on math
achievement was found when MA was considered as a mediator.
Indeed, the bias-corrected bootstrap 95% CI for the product
of these paths (ab) did not include zero (point estimate = -
0.08, 95% CI = [-0.1459, -0.0109]), indicating an indirect effect
(Preacher and Kelley, 2011).

DISCUSSION

In the current study, we found that numerosity and object size
discrimination thresholds, as well as the ability to attentively
track objects in space (MOT), did not differ, on average,
between university students with high and low levels of math
anxiety. Interestingly, within the high math-anxiety group,
numerosity (but not object size) thresholds correlated with
both math abilities scores and math- anxiety levels. Crucially,
the link between numerosity and math was fully mediated
by math-anxiety levels. Overall, our data replicates previous
studies on the link between math abilities and numerosity
perception but also provided innovative information on the
key role that math anxiety plays in such a relationship.
Moreover, the fact that math anxiety was found not to be
related to size discrimination thresholds, nor to the ability
to attentively track objects in space (MOT), strongly suggests
that the link between numerosity perception and math-anxiety
is not generic but reflects a specific relationship within the
numerosity-domain.

Several previous studies have shown that individuals with
HMA performed worse on several numerical and mathematical
tasks, compared with their low math anxious peers (Ashcraft
and Faust, 1994; Maloney et al., 2011). Individuals with lower
levels of mathematical skills and high levels of math anxiety
show the tendency to avoid situations and careers that require
mathematical abilities (Hembree, 1990; Ashcraft, 2002). Given
the significant impact of MA on an individual’s quality of life,
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it is important to better understand its nature. Moreover, to
devise successful supporting strategies to reduce the level of
anxiety related to math procedures, it might be important to
find a predictor or a correlated dimension to MA which could
be assessed even before the beginning of school. Some studies
suggest that such a dimension might be ANS acuity.

In the current study, we tackled this issue by investigating
whether the performance in several perceptual tasks concerning
parietal driven magnitude processing (discrimination of stimuli
numerosity or size) were related to MA as well as math
proficiency. We found that MA is an intermediary factor in the
link between math abilities and numerosity perception (ANS
acuity) in individuals with HMA. The ANS is considered to have
evolutionary roots and it appears very early during development
(Starkey et al., 1990; Dehaene et al., 1998). Maloney et al.
(2010) suggested that a deficit of basic and core numerical
knowledge, such as numerical information, could produce MA
(Maloney et al., 2011). By taking into account individuals located
in the tails of the MA distribution, a procedure exploited
by several previous studies (Maloney et al., 2010; Maloney
et al., 2011; Suárez-Pellicioni et al., 2013; Núñez-Peña and
Suárez-Pellicioni, 2015; Colomé, 2019), and by considering as
a measure of ANS acuity the Weber Fractions (Wf; Piazza
et al., 2004, 2010; Halberda et al., 2008; Mazzocco et al., 2011),
we found that a significant correlation between ANS precision
and MA only exists in HMA groups. Our data shows that
individuals with very high levels of MA also have a noisy
approximate number sense. Notably, the lack of correlation
in the LMA group between these two variables was not due
to a difference in variability between the two samples. These
results are not just important per sè, but also because they
are likely to resolve the controversy in the literature about a
possible link between MA and ANS precision. For example,
Lindskog and Poom (2017) reported that individuals with high
levels of MA also show lower ANS precision compared to
low mathematics-anxious individuals. However, other studies
reported that MA and ANS acuity did not significantly covary
in adults (Braham and Libertus, 2018; Dietrich et al., 2015) or
in children (Wang et al., 2015; Hart et al., 2016). One possibility
is that MA and ANS acuity covaried differently according to
the MA level. For example, in the present study a significant
correlation between these two dimensions was found just within
the group of participants with HMA. On the contrary, by
considering all participants as a whole, MA and ANS acuity
shows a weaker correlation that turned out to be marginally
significant. In other words, ANS precision and MA strongly
correlated in the group of HMA individuals but much less
in the group of LMA. If so, the statistical significance of the
correlation amongst these dimensions, when the two groups
are not independently taken into account, depends on the
amount of HMA participants and the severity of their anxious
levels, variables which robustly differed in the studies reporting
conflicting results in the literature.

Our data highlighted another important point: individuals
situated in the lower tail of the HMA group performed better
in the numerosity task than the individuals situated in the
upper tail of the LMA group. This result supports the idea

that an “optimum” level of MA might exist which, if exceeded,
becomes deleterious not only for math performance (Evans,
2000), but also for discrimination of abstract numerosity.
Furthermore, our findings provide supporting evidence to
the theory that individuals with a noisy ANS may be more
likely to have significant levels of MA. Poor ANS could
increase the probability of going through an initial failure
and negative learning experience during math education in
childhood (Lindskog et al., 2017). One possible explanation of
our data is that math abilities and ANS (Weber fraction) are
separate (partially independent) predictors of MA, suggesting a
bidirectional relationship between MA and math performance,
in which a poor ANS induces a low performance in math
related tasks and this, in turn, induces MA. This increase in
MA might, subsequently, negatively impact math performance,
establishing a vicious cycle that dramatically affect an individual’s
performance and quality of life.

Math anxiety is strongly correlated with math abilities in
individuals with HMA. In line with previous studies, we found
that higher levels of MA are linked to lower performance in
school or college tests (Hembree, 1990; Ma and Kishor, 1997).
MA is at least partly related to fear of failure, so that repeated
experiences of failure in mathematics, involving low scores in
formal assessments or personal experience of confusion and
bewilderment in mathematical activities, may lead to anxiety.
Our results are also in line with other studies showing that
adults with higher precision in discriminating non-symbolic
quantities show higher abilities in math performance (Libertus
et al., 2012; Fazio et al., 2014; Lindskog et al., 2017; Schneider
et al., 2017; Braham and Libertus, 2018). However, it should be
mentioned that, despite many studies which found statistically
significant correlations between math abilities and numerosity
perception, the literature on this topic is still controversial as
other studies report insignificant correlations (Krueger, 1984;
Inglis et al., 2011) and the direction of the causal link between
ANS and mathematical skills remains highly unclear. While
some research suggests that the ANS is a precursor of later
mathematical abilities (Gilmore et al., 2010; Piazza, 2010; Anobile
et al., 2013; Park and Brannon, 2013) other research failed to
find a correlation between ANS precision and mathematical
achievements (Krueger, 1984; Inglis et al., 2011; Feigenson et al.,
2013; Anobile et al., 2018a). Even if the reasons subtending
these discrepancies are still unclear, recent works suggested the
important role of the different tests used to assess formal math
abilities (Piazza et al., 2010; Lourenco et al., 2012; Anobile
et al., 2013; Braham and Libertus, 2018), the numerical ranges
used to assess numerosity perception (Anobile et al., 2016a;
Anobile et al., 2019a) as well as the age of the participants
(Inglis et al., 2011; Anobile et al., 2018a). For example, Braham
and Libertus (2018) recently found that students’ ANS acuity
did not correlate with their ability to perform mathematical
computations in written format, but the correlation occurred
with their ability to perform speeded mental arithmetic and
quantitative reasoning problems. Similarly, Anobile et al. (2013)
found that numerosity thresholds in neurotypical primary school
children were related to math tasks requiring the encoding of
digit magnitude (e.g., choose the largest among others) but not
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with those more related to memory (e.g., tables) or transcoding
(e.g., number writing or repetition), replicating evidence on
dyscalculic children (Piazza et al., 2010). Other recent works
suggested that the link between numerosity perception and math
is present only for the perception of intermediate numerosity
levels and not for very low (Anobile et al., 2019a) or very
high (Anobile et al., 2016a) numerous ensembles. The current
study makes the general picture even more complicated as
we found a significant correlation between math and ANS
only among adults with relatively high level of math anxiety.
The mathematical test used in the current study, which was
developed by Galli et al. (2011), includes 30 multiple-choice
questions covering many aspects of arithmetic knowledge, such
as probabilistic reasoning, use of fractions, percentages, ratios,
calculation, sorting and others. The test, as a whole, is capable of
differentiating subjects with low and high MA and also correlates
with numerosity thresholds, at least in the high anxiety group.
Future studies on larger and more heterogeneous populations
than that involved here, could analyze if and which of these
30 items are more specifically related to both anxiety and
numerosity perception.

In addition to the controversial literature on the link between
numerosity perception and math abilities, an influential recent
theory challenged the idea that numerosity can be encoded
by a specialized numerical system. This theory suggests that
numerosity and other continuous quantities, such as objects
sizes, are perceived by a generalized magnitude system (Henik
et al., 2017; Leibovich et al., 2017). In the present study we
didn’t find a significant correlation between size and numerosity
threshold (Weber fractions). Moreover, whilst numerosity WFs
were found to be significantly correlated with math scores, the
correlation between math performance and size discrimination
thresholds turned out in being not significant. These results
clearly contradict the generalized magnitude theory and agree
with studies suggesting separate mechanisms for the perception
of objects’ numerosity and size. Among these, a recent study
found similar results, with no correlations between numerosity
and size thresholds as well as between numerosity and size
sensory adaptation magnitudes, in both children and adults
(Anobile et al., 2018b). Regarding the selective link between
numerosity and math abilities, Piazza et al. (2013) showed
that the exposure of non-schooled indigenous peoples to
mathematical knowledge improves the sensitivity to numerosity
but not to the size of objects. Similarly, Anobile et al.
(2018b) found that discrimination thresholds for numerosity,
but not for objects size, is compromised in dyscalculia. Overall,
despite being still under debate, our results favor the idea of
a specialized numerosity system, specifically linked to math
abilities and math anxiety.

We didn’t observe an impairment in the performance of
the visual sustained attention task in subjects with HMA,
suggesting that they don’t suffer from a general attentional
problem despite previous studies in the literature reporting
that sustained attention correlates with non-symbolic numerical
perception and mathematical skills (Steele et al., 2012; Anobile
et al., 2013). Taken together, these results suggest that the

link between non-symbolic numerical processing and MA is
genuine and does not arise from a generic deficit in the
processing of magnitude information or a generic attentional
deficit. Even though our approach did not allow us to infer
causal connections between the variables we investigated, and
the present results cannot be generalized due to the specific
sample we chose (students from the Psychology school with
un unbalance sampling between male (34%) and female (76%)
students), our findings might have important implications in
the study of the relationship between ANS and mathematical
skills in children with and without mathematical difficulties
(e.g., dyscalculia), where MA is meant to play a key role.
Indeed, the present results make clear that, in addressing
deficits in mathematical performance, low-level aspects such
as the ANS acuity as well as high-level aspects as MA have
both to be considered. Future research may test the role
of MA in the relationship between ANS and mathematical
skills in a population of school-age children with a typical
development as well as in age-matched subjects affected
by dyscalculia, information which would provide a more
detailed description of the interplay between MA, ANS and
math proficiency.
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In this research the effects of reciprocal peer tutoring on students’ mathematics anxiety
levels were examined. A pretest posttest with control group design was used at a
public middle school in Spain. A total of 420 students in 7th, 8th, and 9th grades
participated in the study, of which 215 were female and 205 were male. Students
were randomly assigned and equally distributed by course grade (140 in each course
grade) and experimental condition (210 in the experimental group and 210 in the
control group). Quantitative data were gathered using the Mathematics Anxiety Scale
developed by Chiu and Henry (1990). Qualitative information was gathered during eight
focus group sessions that were held with students. Two main factors were analyzed
using the quantitative and qualitative information: mathematics learning anxiety and
mathematics evaluation anxiety. Results were analyzed by gender and course grade.
Statistically significant improvements were reported for both male and female students
in the experimental group and for each course grade for both factors. No statistically
significant differences were reported for students in the control group in any case.
A moderate effect size was reported for mathematics evaluation anxiety (Hedge’s
g = 0.42), and a large effect size was reported for mathematics learning anxiety (Hedge’s
g = 0.84). Information obtained from the focus groups was consistent with the reported
quantitative results. The main conclusion is that peer tutoring may be very beneficial
for reducing middle school students’ mathematics anxiety, regardless of their gender
or grade.

Keywords: peer tutoring, mathematics anxiety, middle school, reciprocal tutoring, effect size, mixed methods,
learning anxiety, evaluation anxiety

INTRODUCTION

State of the Problem and Need for This Research Study
Authors such as Passolunghi et al. (2016), Foley et al. (2017), and Núñez-Peña and Bono (2019)
recently addressed the link between mathematics anxiety and mathematics achievement among
secondary education students. According to them, mathematics anxiety has a significantly negative
impact on students’ achievement in mathematics. Several authors in the educational psychology
field, including Holmes and Hwang (2016), Guita and Tan (2018), and Choi-Koh and Ryoo (2019),
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found that cooperative and active learning methodologies may
decrease students’ mathematics anxiety and, as a result, positively
impact their academic performance in mathematics. This finding
has been long supported by authors like Stodolsky (1985), who
attributed students’ high levels of mathematics anxiety to a lack of
social support provided through cooperative learning strategies
such as peer tutoring. Peer tutoring is one of the learning
methodologies that has been studied the most in the field of
cooperative learning. Indeed, authors such as Topping (Topping
and Whiteley, 1993; Shanahan et al., 1994; Topping et al., 2011;
Topping, 2019), Fuchs and Fuchs (Fuchs et al., 1995, 2019; Powell
and Fuchs, 2015), and Ginsburg-Block and Fantuzzo (Fantuzzo
and Ginsburg-Block, 1998; Ginsburg-Block et al., 2006; Can and
Ginsburg-Block, 2013), among others, have been studying the
academic, social, and psychological benefits of peer tutoring in
mathematics and other subjects for more than three decades.
The positive effects of this cooperative learning strategy on
variables such as self-concept, attitude toward mathematics, self-
esteem, and social integration have been repeatedly documented
(Alegre et al., 2020; Moliner and Alegre, 2020). Nevertheless,
in spite of the broad range of literature that exists regarding
peer tutoring, very few studies have addressed the effects of
this methodology on students’ mathematics anxiety. Studies by
Reyes and Castillo (2015) and Garba et al. (2019) have shown
promising results but are limited in terms of information, and
both suggest further research on the effects of peer tutoring on
students’ mathematics anxiety. Hence, given the need for students
to participate in cooperative and active learning methodologies
that lower their mathematics anxiety, and given the proven
positive effects of peer tutoring on academic achievement and
other psychological variables, a study testing the effects of
peer tutoring on students’ mathematics anxiety can not only
build on the existing literature, but also inform educators on
best practices for helping students with mathematics anxiety to
improve their performance.

Mathematics Learning Anxiety vs
Mathematics Evaluation Anxiety
In this research two main constructs are analyzed: mathematics
learning anxiety and mathematics evaluation anxiety. On one
hand, mathematics learning anxiety may be defined as feelings
of fear, tension, and apprehension that some people feel during
the study and assimilation of mathematics contents (Powell
et al., 2019). Authors such as Lazarides and Buchholz (2019)
consider that students must control this type of anxiety and
highlight its importance as a prerequisite for academic outcome
in mathematics and well-being. On the other hand, mathematics
evaluation anxiety may be defined as worry brought on by
examinations and tests or other evaluation of performance in
mathematics (Everingham et al., 2017). Authors such as Lu
et al. (2019) highlight its importance as they state that this type
of anxiety may be developed even from the earliest years of
mathematics instruction in kindergarten. The differences and
relationships between these two types of mathematics anxiety has
been addressed recently. In this sense, authors such as Schillinger
et al. (2018) state that although evaluation anxiety and lerning

anxiety have shared variance, they may also be thought of as
separable constructs. Authors such as Pizzie and Kraemer (2017)
consider that both types of anxiety are highly correlated, play a
vital role in students’ performance in mathematics and that must
be studied in depth.

Gender and Age Differences Regarding
Mathematics Anxiety
The effectiveness of an academic intervention in psychological
variables may be influenced by variables such as students’
gender or age. In this sense, previous studies have shown
important differences between female and male students
regarding mathematics students. Research by Karimi and
Venkatesan (2009), Ganley and Vasilyeva (2014), or Stoet et al.
(2016) reported significant gender differences in mathematics
anxiety in different academic interventions. These authors
highlight the importance of analyzing the effects separately and
altogether when studying mathematics anxiety. Analogously,
authors such as Baloglu and Kocak (2006) or Sidney et al.
(2019) state that differences in mathematics anxiety may be
reported even within the same educational levels. One of the
main conclusion of their studies is that both, age and gender
differences should be investigated in the studies of mathematics
anxiety and that the multidimensionality of anxiety should be
carefully taken into account.

Peer Tutoring: Conceptual Framework
Peer tutoring may be defined as a cooperative and active
learning strategy in which students help each other in dyads,
while learning at the same time (Alegre Ansuategui and
Moliner Miravet, 2017). Zapata (2020) noted that students of
different educational levels have very positive perceptions of
this learning methodology. Different types of peer tutoring
may be implemented, depending on students’ abilities,
academic competencies, organizational issues, material, and
personal resources. Traditionally during peer tutoring, the most
academically competent student serves as the tutor, and the least
academically competent student serves as the tutee. When the
students do not switch roles during the peer tutoring program,
that is, in each pair the tutor is always the tutor and the tutee
is always the tutee, the learning method is called fixed peer
tutoring. When the students do exchange roles, that is, when
the students go from being the tutor to being the tutee and vice
versa, depending on the peer tutoring session, then the tutoring
method is referred to as reciprocal peer tutoring (Youde, 2020).
Moreover, peer tutoring methods may be classified according to
the age of the participants: same-age peer tutoring involves a pair
of students who are of the same age, while cross-age tutoring
involves students of different ages (Zendler and Greiner, 2020).
The benefits of peer tutoring have been documented for different
subjects and at different educational levels. These benefits are
not restricted to competent or proficient students, as struggling,
learning disabled, and at-risk learners have also been found to
benefit from peer tutoring (Huber and Carter, 2019; Mahoney,
2019; Sarid et al., 2020). Although most of the research in the
field has been carried out at the primary and secondary education
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levels, several recent studies have focused on peer tutoring in
higher and continued education (Struk et al., 2019; Ellis and
Gershenson, 2020). The variety of tutoring typologies and the
different organizational possibilities (for example, duration of
the peer tutoring sessions, duration of the peer tutoring program,
and number of sessions per week) make this learning method
adaptable to different educational contexts, independent of time
available for implementation and the students’ educational stages
and academic competencies or abilities.

Peer Tutoring in Mathematics: Academic
and Psychological Effects
From an academic perspective, the effects of peer tutoring
on students’ mathematics achievement seem to be moderate.
Alegre-Ansuategui et al. (2018) performed a meta-analysis on
peer tutoring and academic achievement in mathematics. The
reported average effect size was moderate, and most studies
included in the meta-analysis reported statistically significant
improvements. The authors who conducted the meta-analysis
noted that peer tutoring interventions in primary education
seemed to be more effective than those implemented in secondary
education. This difference may also be appreciated when
considering the results of the meta-analytic reviews conducted in
primary education (Alegre et al., 2019a) and secondary education
(Alegre et al., 2019b). Although the reported average effect size
was moderate in both reviews, it was somewhat larger for the
primary education study than for the research that focused on
secondary education.

From a psychological perspective, mathematics self-concept
is the primary variable that has been analyzed through the
years. Studies conducted by Fantuzzo et al. (1995), Lee and Park
(2000), Topping et al. (2003), Tsuei (2012), Zeneli et al. (2016a),
and Alegre Ansuategui and Moliner Miravet (2017) consistently
reported significant improvements in students’ mathematical
self-concepts as a result of peer tutoring. Various social,
behavioral, and academic meta-analyses in the peer tutoring field
all revealed that significant improvements may be found from
a psychological perspective when this learning methodology is
implemented (Leung et al., 2005; Ginsburg-Block et al., 2006;
Bowman-Perrott et al., 2013, 2014).

MATERIALS AND METHODS

The Valencian Ministry of Education institutional review board
authorized this research. The board approved the research,
but the consent obtained specified that data had to be
analyzed anonymously.

Aim of the Study and Hypotheses
The main aim of this research was to determine the effect
of peer tutoring on middle school students’ mathematics
anxiety. To this purpose, as stated above, two main factors
were analyzed: mathematics learning anxiety and mathematics
evaluation anxiety. Considering the aim and the analyzed factors,
the following three hypotheses were defined.

First, as indicated in the introduction section, significant
statistical improvements and moderate effect sizes may be
expected when implementing peer tutoring and targeting
psychological variables. Hence, hypothesis 1 and 2 were
defined as follows.

Hypothesis 1: Statistically significant differences will be
reported between the pretest and the posttest for students
in the experimental group in both, mathematics learning
anxiety and mathematics evaluation anxiety and moderate
effect sizes will be reported.
Hypothesis 2: Posttest scores for the experimental group
in both, mathematics learning anxiety and mathematics
evaluation anxiety will be significantly lower than the
posttest scores for the control group.

Moreover, as previously stated, several authors highlight
the importance of addressing age and gender differences in
mathematics anxiety studies. Hence, given this fact, hypothesis
3 and hypothesis 4 were defined as follows.

Hypothesis 3: No statistically significant differences will be
reported for the posttest scores among 7th, 8th, and 9th
grade students’ in the experimental group in mathematics
learning anxiety or mathematics evaluation anxiety.
Hypothesis 4: No statistically significant differences will
be reported for the pretest or posttest scores between
female and male students’ mathematics learning anxiety
and mathematics evaluation anxiety.

Research Design
Authors such as Zeneli et al. (2016b) and Alegre et al. (2019a)
have highly recommended including control groups when
conducting peer tutoring studies in middle school mathematics,
noting that the absence of a control group may result in an
overestimation of the effect sizes resulting from the study. Hence,
following the guidance provided by these authors, a quasi-
experimental pretest posttest with control group design was used
in this research (Nind and Lewthwaite, 2019).

Sample Access
Weaver and Snaza (2017) and Chen and Reeves (2019) addressed
the difficulty in obtaining a proper sample for educational
studies. Participants in this research were selected intentional
sampling, that is, non-probabilistic sampling technique (Yue
and Xu, 2019). One public middle school in Spain was
selected for this research after researchers suggested it to
the Valencian Educational Government. Written and informed
consent was obtained from the parents or guardians of students
who participated in the study. Written authorization was also
obtained by the School Council and the Valencian Educational
Government. Research ethics provided by the Ethics Committee
of the Spanish National Research Council (CSIC) were followed
during the study.

Participants
A total of 420 students from grades 7–9 participated in the
research. Their ages ranged from 12 to 15 years old. The mean age
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at the beginning of the study was 13.56 years old with a standard
deviation of 1.25 years, and the median value was 13.67. Students
were equally distributed by course grade, that is, there were 140
students from each of the three participating grade levels. Further,
215 (51.19%) were female, and 205 (48.81%) were male, while
223 (53.10%) were Hispanic, 99 (23.57%) were Rumanian, 68
(16.19%) were African, 5 (1.19%) were Asian, and the other 5.95%
were from other ethnic groups. The students were from families
of average sociocultural and socioeconomic status, according to
national standards. Students were assigned to the experimental
or the control group following as follows. Class groups were
already established at the beginning of the course. Half of the class
groups in each grade were randomly allocated to experimental
conditions and the other half acted as control group in each grade.
Therefore, half of the students from each grade were randomly
allocated to the experimental group and the remaining half to
the control group.

Sample Power
StudySize 3.0 software by Creostat HB was used to determine
the sample power. A sample power of 0.92 was determined
when using inferential statistics (Students’ t-test and Analysis of
Variance) with a significance level of 0.05 for 420 participants.

Peer Tutoring Intervention
Academic Content
The mathematical content worked on by the students during
the peer tutoring implementation included algebra, geometry,
statistics, and probability. This content corresponded to the
second and third trimesters of the math courses for each grade.
Seventh grade students worked with basic first degree equations,
used the Pythagorean theorem, calculated surface areas and
regular prism volumes, calculated basic statistical centralization
parameters for qualitative and quantitative variables, used
the Laplace rule, and completed basic tree diagrams for
probability problems. Eighth grade students updated the course
content of the previous year as described above and also
calculated compound probabilities, standard deviations and
variations, and first-degree equations with fractions; performed
basic systems of equations; and calculated the volumes of
irregular prisms. The ninth grade students also updated the
previous content and worked with quartiles, percentiles and box
diagrams; developed advanced tree diagrams; applied the Laplace
succession rule; calculated complex surfaces and volumes;
performed complex systems of equations; and solved third and
fourth direct resolution degree equations (using Ruffini’s rule
and factorization).

Typology of the Peer Tutoring Intervention
The same-age, reciprocal peer tutoring method was used in this
research. This type was selected over other types (cross-age or
fixed) for different reasons. First, cross-age tutoring is more
complicated than same-age tutoring to implement in middle
school settings (Alegre et al., 2019b) for organizational and
scheduling reasons, as arranging for students of different ages
and from different grades to meet for tutoring sessions can
be challenging due to the different schedules followed by the

different grades. Moreover, cross-age tutoring most often occurs
with the elder student tutoring the youngest student; that is,
employing fixed peer tutoring is almost a must for cross-age
tutoring. Therefore, cross-age was absolutely discarded as an
option. Further, several authors point to reciprocal peer tutoring
as providing greater benefits for psychological variables than fixed
tutoring (Moeyaert et al., 2019; Sytsma et al., 2019), which they
attributed to the students’ exchanging tutor and tutee roles, which
does not happen during fixed peer tutoring. Hence, tutees may
feel less competent or not as useful as their peers (Gazula et al.,
2017). Thus, same-age, reciprocal peer tutoring was deemed most
appropriate for this study.

Organization and Scheduling
During the first trimester of the school year, mathematics
teachers in all classes used traditional teaching methods. Students
sat individually, interactions between them were limited, and
the one-way instructional teaching method was employed.
All students participating in the study took the pretest right
after the first trimester ended. Then, during the second and
third trimesters peer tutoring was implemented. Students in
the experimental group worked through peer tutoring in
their mathematics classes, while students in the control group
continued with the one-way traditional learning methods above
mentioned (but did not participate in peer tutoring). Students
in the control group sat individually and interactions between
them were restricted. Students in both, experimental and control
group, had the same teacher in each grade. Students in the
experimental and control groups were given the same exercises
and problems for every session. If a pair of students in the
experimental group solved the task correctly, although tutoring
was not necessary in these occasions, they were told to share the
procedures they had employed to solve the exercises or problems.

In order to maximize the psychological outcomes of the
peer tutoring intervention, the organizational issues for this
research followed the structure provided by Rees et al. (2016) and
Leung (2019a,b). As such, peer tutoring was implemented three
times per week for 6 months with students in the experimental
group. Interaction between peers lasted no more than 20 min.
The same exercises and problems were given to students in
both the experimental group and the control group throughout
the year in each grade, and both groups used the same type
of materials (textbook, worksheets, and online exercises, for
example). Moreover, the same teachers taught students in both
groups so that teacher effects did not influence the psychological
outcomes (Cleary and Kitsantas, 2017).

Distribution of pairs was carried out following the indications
by Duran (2017). According to this author, variations in students’
academic achievements must be minimized for students placed
in pairs for reciprocal peer tutoring. Hence, in order to arrange
the pairs, students were placed from highest to lowest, taking
their average mathematics mark of the first trimester. In other
words, the first student, that is, the student at the top of the
list, was paired with the second student (the student with the
second highest score or grade), and then the third was paired
with the fourth, and so on. Several authors note that students
prefer this way of pairing because they are assigned to work
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with a peer whose competency in that subject is similar to theirs
(Thurston et al., 2019).

Students’ Peer Tutoring Training
Students in the experimental group were trained in two sessions
of 1 h each on tutoring skills and procedures the week before
the peer tutoring program began. They took place during
school hours to ensure students’ attendance. This training was
carried out by the same mathematics teachers who taught the
students during the year. Although the teachers conducted
these sessions, students also participated actively. For example,
students were asked to identify those characteristics and qualities
that good tutors and good tutees must have to succeed in
peer tutoring. In addition, students were instructed on the
procedure to follow during the tutoring sessions and on the
nature of their interactions. They were given “Pause, Prompt,
and Praise” techniques and were advised on the importance
of communication during the tutoring sessions (Duran et al.,
2019a). Issues like sharing only mathematics content, referring
only to the mathematics exercises and problems, and not talking
about other non-academic subjects during the peer tutoring
sessions were highlighted. Different ways to explain content to
a peer and different procedures employed to solve a problem
were praised. Patience and respect were emphasized, and a main
goal was defined for the tutoring sessions: all students had to
understand and finish the exercises and problems by the time the
tutoring session was over.

Classroom Dynamics During Peer Tutoring
The dynamics of the classroom were as follows. First, the teacher
reviewed the students’ homework, provided the correct answers
on the board, and explained the new content, all of which
took about 20 min. After that, students had to complete two
exercises and one or two problems, depending on the difficulty
of the didactic unit. Students were given approximately 15 min
to complete these tasks and were instructed to complete the
tasks individually, without interacting with their classmates.
During this time, the teacher could help students who didn’t
know how to complete the exercise or solve a problem. At this
point, the teacher also checked to make sure that at least one
of the two students in each pair had solved the exercises and
problems correctly. If this was not the case, the teacher provided
assistance. Afterward, the students participated in the reciprocal
peer tutoring sessions for approximately 20 min to check and
finalize the work they had done individually. Indications and
protocols analogous to those provided by Moliner and Alegre
(2020) were followed during peer tutoring. Working in pairs,
students had to compare the results they had arrived at when
working on their own, share the procedures they had employed
to solve the tasks, ask each other questions regarding the exercises
and problems, and work together to solve any problems that
they hadn’t completed when working independently. If they had
different results for any of the work, both tutor and tutee had to
try to identify the mistake at the same time. Then the student
with the right answer had to help the other student by explaining
how to correctly solve the problem. Students were allowed to ask
questions regarding the exercises and problems and help each

other during tutoring, but individual work and perseverance were
a must. Both tutors and tutees had to be able to solve the exercises
and problems by themselves by the time the tutoring period was
over. If a pair of students finished their work very early, they were
given additional problems. When the tutoring session was over,
for the last 10 min of class, the teacher provided and explained
the correct answers to the exercises and problems on the board.

Interactions between pairs of students were supervised by the
teacher. As Duran et al. (2019b) stated, teachers play a vital role
during the implementation of peer tutoring. They must ensure
that communication between students is respectful and rich in
content and that students are effectively working together and
helping one another.

Instrument Used to Collect Information
Students’ mathematics anxiety was measured using the
Mathematics Anxiety Scale developed by Chiu and Henry
(1990). This instrument is based on a 4-point Likert scale with
no reversed items. Students were asked to rate each item to
document how they felt according to the following scale: 1
(not nervous), 2 (a little bit nervous), 3 (nervous), and 4 (very
nervous). The average score indicated students’ anxiety level
in mathematics. The higher the average score, the higher the
student’s mathematics anxiety level. Two main factors were
defined in the questionnaire: mathematics learning anxiety
and mathematics evaluation anxiety. The mathematics learning
anxiety factor was assessed by six items, such as (item 5) starting
a new chapter in a mathematics book or (item 6) watching
a teacher work a mathematics problem on the chalkboard.
The mathematics evaluation anxiety factor was assessed using
eight items, such as (item 10) thinking about a math test the
day before the test or (item 12) taking an important test in
a mathematics class. This instrument was selected because
it is specifically geared toward middle school mathematics
students, because its psychometric properties, validity, and
reliability have been repeatedly documented (Beasley et al.,
2001; Lukowski et al., 2019), and because it has been widely
used for decades and continues to be used in the field of
educational psychology (Fan et al., 2019; Namkung et al.,
2019; Van Mier et al., 2019). The average scores for each
of the two factors were calculated and used as measures of
students’ mathematics anxiety for use in this study. Students
completed the questionnaire individually during tutoring
time. It took less than 10 min for almost all students to
complete it. Researchers explained to the students how to
complete the questionnaire and remained with them while
they completed it to answer questions. As the instrument
was originally designed in English, each item was translated
to Spanish and adapted to the Spanish population by a
professional translator. A reliability analysis was performed
with SPSS software version 25 to ensure that the psychometrics
properties of the instrument had not been significantly altered
for this research. The pretest scores for students in both,
experimental and control group were used to perform this
analysis. A Cronbach’s alpha value of 0.91 was reported for
Mathematics learning anxiety factor and a Cronbach’s alpha
value of 0.93 was reported was mathematics evaluation anxiety
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factor. These values were almost identical to the original values
reported by Chiu and Henry (1990).

Focus groups were used to collect qualitative information
from the students (Carter Andrews and Gutwein, 2020). A total
of 28 students (7 focus groups of 4 students each) from
the experimental group were randomly selected to participate.
The protocol was as follows: a draw was performed including
students’ of all grades until 28 students were selected. The first
four students selected constituted the first focus group, the next
four the second group and so on. Students were told that they
had been randomly selected and were asked individually if they
wanted to participate in the focus group. Two of the researchers
conducted the focus groups (both were present in each of them).
The questions asked by the researchers during these focus groups
were aimed directly at revealing the anxious feelings students
experienced during peer tutoring (Bokhorst-Heng and Marshall,
2019). Specifically, the students’ feelings about learning anxiety
and evaluation anxiety were addressed through questions such
as “Why do you think that you feel more or less stressed during
mathematics classes?” or “How did you feel during the exam after
peer tutoring?” These focus group sessions, lasting about 20 min
each, were held during tutoring hours in private spaces.

In order to avoid any Hawthorne effect (Greener, 2018),
students were not told that research was being conducted or
that they were taking part in a study. They were not told they
belonged to a experimental or control group. This was done
to try that students did not modify their behavior or alter
their answers in the questionnaires or during the focus group
sessions as a result of being aware that they were being observed
(van Alten et al., 2019).

Data Analyses
Quantitative data coming from the Mathematics Anxiety Scale
was analyzed using SPSS software version 25. The Kolmogorov
Smirnov test was performed to ensure normality of the data for
the pretest scores in the experimental and control groups (Fang
and Chen, 2019). Means, standard deviations, and Student’s t-test
(95% confidence level) were calculated for both mathematics
learning anxiety and mathematics evaluation anxiety in order to
determine differences between and within groups (Gibbs et al.,
2017). Analyses of variance (ANOVAs) were also performed to
identify differences among 7th, 8th, and 9th grade students. Given
the fact that in this research multiple comparisons are carried
out, inferential tests were performed with a notion of correcting
for multiple assessments. Hence, the Bonferroni adjustment
(Umlauft et al., 2019) implied that differences between and within
groups would need a significance level of p < 0.01 instead
of p < 0.05 so that they could be considered as significant.
Effect sizes were reported for each of the two analyzed factors.
Hedge’s g was used as a measure of effect size (Ebner and
Gegenfurtner, 2019). Rule of thumb provided by Lee et al. (2019)
and Morris (2019) for effect sizes was followed. According to
these authors, in educational psychology the following values
may be used for interpreting results. A Hedges’ g value of 0.2
indicates a small effect, a value of 0.5 indicates a moderate
or medium effect, and a value of 0.8 or higher indicates a
large effect size.

Qualitative data from the focus group sessions were analyzed
using content analysis (Adler et al., 2019). ATLAS.ti software
version 8 was used for this purpose. After the transcription of
the conversations from the focus group sessions, researchers
analyzed the information and defined two main dimensions:
mathematics learning anxiety and mathematics evaluation
anxiety. The students’ quotes were codified as number of focus
group and grade: for example, FG2_9 refers to focus group
number 2 of 9th grade.

RESULTS

Quantitative Results
The Kolmogorov Smirnov test showed that students’ scores
followed a normal distribution (p = 0.92). Means, standard
deviations (SDs), and number of students (n) by group
(experimental or control) and phase of the study (pretest or
posttest) are shown in Table 1 for mathematics learning anxiety
and in Table 2 for mathematics evaluation anxiety. In order
to facilitate readers’ global vision of the results scores for the
experimental and control group are represented through a graph
in Figure 1 for mathematics learning anxiety and in Figure 2 for
mathematics evaluation anxiety.

Mean differences between groups and Student’s t-test results
are reported in Table 3 for mathematics learning anxiety and
in Table 4 for mathematics evaluation anxiety. Statistically
significant differences were not found between the experimental
and control groups for the pretest scores. No statistically
significant differences were found between the pretest and
posttest scores for the control group. Statistically significant
improvements were reported between the pretest and the
posttest for the experimental group in both, mathematics
learning anxiety and mathematics evaluation anxiety. Statistically
significant differences were also reported for the posttest scores
between the experimental group and the control group. In both

TABLE 1 | Means, standard deviations and number of students by group and
phase of the study for mathematics learning anxiety.

Pretest Posttest

Experimental Control Experimental Control

Mean SD n Mean SD n Mean SD n Mean SD n

2.24 0.55 210 2.22 0.59 210 1.81 0.51 210 2.19 0.52 210

TABLE 2 | Means, standard deviations and number of students by group and
phase of the study for mathematics evaluation anxiety.

Pretest Posttest

Experimental Control Experimental Control

Mean SD n Mean SD n Mean SD n Mean SD n

2.44 0.68 210 2.50 0.67 210 2.16 0.66 210 2.46 0.67 210
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FIGURE 1 | Mathematics learning anxiety pretest and posttest scores and
standard deviations for the experimental and control group.

FIGURE 2 | Mathematics evaluation anxiety pretest and posttest scores and
standard deviations for the experimental and control group.

TABLE 3 | Mean differences between groups and Students’ t-test for
mathematics learning anxiety.

Comparison Mean difference t-value

Experimental group pretest vs control group
pretest

0.02 0.36

Control group posttest vs control group pretest −0.03 0.33

Experimental group posttest vs experimental
group pretest

−0.43 8.31*

Experimental group posttest vs control group
posttest

−0.40 7.54*

*p < 0.01.

TABLE 4 | Mean differences between groups and Students’ t-test for
mathematics evaluation anxiety.

Comparison Mean difference t-value

Experimental group pretest vs control group
pretest

−0.10 0.91

Control group posttest vs control group pretest −0.04 0.61

Experimental group posttest vs experimental
group pretest

−0.28 4.28*

Experimental group posttest vs control group
posttest

−0.34 5.30*

*p < 0.01.

TABLE 5 | Student’s t-tests by gender for mathematics learning anxiety.

Male vs female t-value p

Experimental group pretest 0.26 0.79

Experimental group posttest 0.43 0.67

TABLE 6 | Student’s t-tests by gender for mathematics evaluation anxiety.

Male vs female t-value p

Experimental group pretest 0.32 0.75

Experimental group posttest 0.66 0.51

cases, mathematics learning anxiety and mathematics evaluation
anxiety experimental group posttest scores were significantly
lower than control group posttest scores. A moderate effect
size was reported for mathematics evaluation anxiety (Hedge’s
g = 0.42), and a large effect size was reported for mathematics
learning anxiety (Hedge’s g = 0.84). Therefore, hypothesis 1
(statistically significant differences will be reported between
the pretest and the posttest for students in the experimental
group in both, mathematics learning anxiety and mathematics
evaluation anxiety and moderate effect sizes will be reported)
was rejected since a large effect size was reported for
mathematics learning anxiety. On the contrary, hypothesis 2
(posttest scores for the experimental group in both, mathematics
learning anxiety and mathematics evaluation anxiety will be
significantly lower than the posttest scores for the control
group) was confirmed.

ANOVAs across grades were calculated for the posttest scores
of the experimental group for both, mathematics learning anxiety
and mathematics evaluation anxiety. No statistical significant
differences across grades were reported for mathematics learning
anxiety F(2, 207) = 0.87, p = 0.42 nor mathematics evaluation
anxiety F(2, 207) = 2.40, p = 0.09. Hence, hypothesis 3
(no statistically significant differences will be reported for the
posttest scores among 7th, 8th, and 9th grade students’ in
the experimental group in mathematics learning anxiety or
mathematics evaluation anxiety) was confirmed.

The results of the analysis by gender for are reported for
mathematics learning anxiety in Table 5 and for mathematics
evaluation anxiety in Table 6. No statistically significant
differences were reported in any case. Hence, hypothesis 4
(no statistically significant differences will be reported for the
pretest or posttest scores between female and male students’
mathematics learning anxiety and mathematics evaluation
anxiety) was confirmed.

Qualitative Results
Information coming from the focus groups was mostly
positive regarding the effects of peer tutoring on students’
mathematics anxiety. As noted in the data analysis section, this
information may be classified into two dimensions: mathematics
learning anxiety and mathematics evaluation anxiety. The
qualitative results confirmed the quantitative information
coming from the questionnaires. Regarding the first category,
students’ mathematics learning anxiety seemed to have improved
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substantially. (All names in the following are invented for
anonymity reasons.) It’s less stressful when you have a colleague
who can help you (FG3_7). They felt less stressed when working
with a peer as they had an established routine that facilitated their
interactions. I prefer to work with a classmate than alone. It’s kind
of relaxing to know that, if you don’t understand something, you
can ask him/her at any time (FG2_8); Having Sam with me in
mathematics class was great. We learned a lot together, and I feel
really secure with him by my side (FG1_9). In addition, they stated
that they would like to have more peer tutoring experiences in
future courses. I would like to do more peer tutoring next year.
You feel less stressed in class if you know that a colleague can help
you (FG2_7); Working together is less stressful than doing it alone.
I hope next year we do this in more subjects (FG1_9). Regarding
the second category, students seemed less anxious when being
evaluated, as they had more trust in themselves. The exam is the
same, you know, but you trust yourself a little bit more if you see
something you have explained before to someone. You think that
if you explained it a week or two ago, you can do it now (FG3_8).
I had explained a very similar problem to Jessica the week before.
When I saw it in the exam, I knew I could do it and that she was
going to be able to do it, too. Having a peer that can help when the
exam is close also seemed to have a positive effect on students’
evaluation anxiety. I know I had Pete to help me with the exercises
the days before the exam. Yeah, you can ask the teacher, but I prefer
to ask him (FG1_7). I tried to do Ruffini for homework. No way.
Then I was like chill, I’ll ask Allen tomorrow when we work in
pairs, and then I’ll know how to do it for the exam (FG8_9). In
summary, students seemed to like the evaluation process being
integrated into the peer tutoring process, as they did not find
it as stressful.

DISCUSSION

The partial confirmation of hypothesis 1 (statistically significant
differences will be reported between the pretest and the
posttest for students in the experimental group in both,
mathematics learning anxiety and mathematics evaluation
anxiety and moderate effect sizes will be reported) was
predictable, considering findings from previous research in
the field. Recently, although not specifically in the field of
mathematics, several authors, such as Knight et al. (2018) and
Garba et al. (2019), documented anxiety improvements through
peer tutoring in their respective fields of research. Consequently,
it was not surprising that significant improvements were
found. In addition, the qualitative information coming from
the focus group sessions confirmed these improvements.
Nevertheless, the rejection of this hypothesis due to the
large effect size reported for mathematics learning anxiety
(moderate effect sizes were expected) was not predictable
(Hedge’s g = 0.84). Most meta-analyses and literature reviews
in the field of peer tutoring in mathematics reported moderate
effect sizes for these types of interventions in both psychological
and academic outcomes (Bowman-Perrott et al., 2013, 2014;
Alegre-Ansuategui et al., 2018). The effect size reported for
mathematics evaluation anxiety (Hedge’s g = 0.42) is consistent

and similar to findings previously reported in the field. Several
authors have stated that mathematics evaluation anxiety is
always greater and more difficult to address than mathematics
learning anxiety (Ling, 2017; Yáñez-Marquina and Villardón-
Gallego, 2017). As such, it was reasonable to find greater
improvements for learning anxiety than for evaluation anxiety.
Moreover, the qualitative information obtained from the focus
groups also reinforced this statement, as students seemed to
have experienced larger gains regarding learning than regarding
evaluation. Nevertheless, the fact that effect sizes for one factor
were double the effect sizes for the other (Hedge’s g = 0.84 vs
Hedge’s g = 0.42) is not consistent with previous literature in the
field and requires further examination in future research.

The confirmation of hypothesis 2 (posttest scores for the
experimental group in both, mathematics learning anxiety and
mathematics evaluation anxiety will be significantly lower than
the posttest scores for the control group) was predictable taking
into account the findings of recent studies in the field of peer
tutoring and mathematics (Campbell, 2019; Grove et al., 2019;
Moliner and Alegre, 2020; Yoo, 2020). In them, it is reported
how the experimental group outscores the control group and
statistically significantly differences are found when analyzing
other psychological variables such as mathematics self-concepts
or mathematics attitude. Hence, it could be expected that the
posttest scores for the experimental group would be significantly
better than the posttest scores for the control group.

The fact that hypothesis 3 was confirmed (no statistically
significant differences will be reported for the posttest scores
among 7th, 8th, and 9th grade students’ in the experimental
group in mathematics learning anxiety or mathematics
evaluation anxiety) is consistent with previous research in
the field (Hill et al., 2016; Ramirez et al., 2018; Geary et al.,
2019). According to these authors, the differences by gender
regarding mathematics anxiety are more likely to appear
during students’ high school years and college than during
primary school or middle school. Analogously, the fact that
hypothesis 4 (no statistically significant differences will be
reported for the pretest or posttest scores between female and
male students’ mathematics learning anxiety and mathematics
evaluation anxiety) is also consistent with previous literature
in the field. Authors such as Gresham and Burleigh (2019),
Macmull and Ashkenazi (2019), and Morosanova et al. (2020)
reported that, although mathematics anxiety increases through
the years, differences are difficult to report within the same
educational stage. That is, although important differences
in mathematics anxiety may be reported between primary
school, middle school, high school, and college students,
students in middle school are likely to report similar results in
mathematics anxiety independent of the course grade they are
taking. In this sense and regarding hypotheses 3 and 4, several
authors in the mathematics peer tutoring field have found no
differences in academic or psychological outcomes by gender or
course grade within the same educational stage (Alegre et al.,
2019c; Hartini, 2019; McCurdy et al., 2020; Sun et al., 2020).
The qualitative information supported these findings, as no
important differences in students’ opinions were detected by
gender or course grade. Most students seemed to have enjoyed
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the experience and reduced their mathematics anxiety levels
independent of these two variables.

Limitations
Although the potential positive impact of peer tutoring on
middle school students’ mathematics anxiety seems quite
evident considering the results reported in this research, certain
limitations must be considered when interpreting them. First,
the sample size, although not considered short or trivial by
many researchers in the educational psychology field, cannot be
considered large, either (Hendrickson et al., 2019; Sassenberg and
Ditrich, 2019). Also, the sample was obtained by means of an
intentional sampling (non-probabilistic) and only a single middle
school participated in the study, so it is not representative of
middle school students in Spain nor students outside the country.
Moreover, as noted previously, this peer tutoring experience was
designed to optimize the psychological outcome. Future research
must test the effects of peer tutoring on mathematics anxiety
under different circumstances (low or high sociocultural and
socioeconomic status of the students’ families, lower or higher
number of peer tutoring sessions, more or fewer months of
implementation, more or less time for the tutoring interactions
by session, as examples), as it may not be as effective as shown
in this research (Funder and Ozer, 2019; Rutkowski et al., 2019).
Furthermore, researchers of this manuscript, as stated above, did
their best efforts to try to avoid a Hawthorne effect or similar
and there is no evidence or record that something similar may
have taken place during this research. Nevertheless, the possibility
that experimental group students talked with control group
students leading to a change in the conduct of some students and
therefore to an alteration of the results in the study must be taken
into account. Moreover, although the same teachers that taught
students in the experimental group also taught in the control
group, this study is not immune to the clustering effect, that is, the
abilities, competence, experience and knowledge of the middle
school teachers that participated in this research may have also
influenced the outcome of the experience.

Considerations for Future Research
It would have been interesting to test the simultaneous effects
on students’ mathematics achievements and investigate the
possible relationships between those factors. Unfortunately, it
was impossible to obtain legal consent to include students’
mathematics marks in this research. The School Council
only authorize the researchers of this article to measure and
report students’ mathematics anxiety, but no permission was
obtained to use any academic achievement variable or any
related achievement index for this research. One of the main
reasons we want to decrease mathematics anxiety is so that
students will improve their mathematics achievement. The
decrease in anxiety could just be in stated attitudes, with no
performance-related change actually taking place. This must
be considered as a possible future topic of research, as it is
necessary to determine if the reported decreases in students’
mathematics anxiety correlated with an improvement in students’
mathematics achievements.

Conclusion
The main conclusion that can be drawn from this study is
that peer tutoring may be very beneficial for middle school
students’ (12–15 years old) mathematics anxiety, independent
of their gender or their course grade. Considering the results
of this research, same-age and reciprocal peer tutoring is
recommended for practitioners in the field who want to
improve students’ mathematics anxiety. Additionally, from an
organizational perspective, same-age and reciprocal tutoring are
easier to carry out, as they may be implemented within the same
classroom. The promising results of this research as well as of
previous research in the field suggest no more than 20 min of
interactions between pairs of students by session and no more
than three tutoring sessions per week. Including a control group
is highly recommended, as effect sizes may be overestimated
due to its absence. Furthermore, in light of previous studies in
the literature, practitioners in the field may find improvements
not only in students’ mathematics anxiety, but also in other
academic and psychological variables, such as self-concept or
attitude toward mathematics. Students’ mathematics learning
anxiety is expected to be lower and easier to reduce than students’
mathematics evaluation anxiety. Although the effect size for
students’ mathematics learning anxiety was large in this research
and future research is needed regarding this issue, effect sizes
in these types of interventions are expected to be moderate, as
was the case for mathematics evaluation anxiety. Although results
may seem very promising, this research has important limitations
(non-probabilistic sampling, quasi-experimental design, sample
size. . .) that must be considered. Caution is required when
interpreting the results as more evidence is needed to confirm
the potential effects of peer tutoring on middle school students’
mathematics anxiety.
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Mathematical problem-solving and spatial visualization are areas in which performance
has been shown to vary with sex. This article describes the impact of gender on spatial
relations measured in 331 secondary school students (202 males, 129 females), 145
(105 males, 40 females) of whom had been selected to participate in a mathematical
talent stimulation project after passing a complex problem-solving test. In the two tests
administered, the Differential Aptitude Tests-Space Relations (DAT-SR) and the Primary
Mental Abilities-Space Relations (PMA-SR), performance was assessed on the grounds
of both absolute scores and the ratio to the number of items answered. The students
participating in the talent program earned higher scores on both tests, although no
interaction was identified between mathematical abilities and gender in connection
with the differences in spatial habilities observed. In PMA-SR, boys answered more
items and scored higher, whereas in DAT-SR girls tended to omit more items. None
of the indicators studied exhibited differences between the sexes in both tests and in
some cases the differences in the absolute values of the indicators were absent when
expressed as ratios.

Keywords: mathematical talent, visual ability, gender differences, spatial tests, mathematical problem-solving

INTRODUCTION

Although the importance of visualization in mathematical problem solving has been highlighted
in mathematics education (Clements and Battista, 1992; Arcavi, 2003), no consensus has yet been
reached on its role in improving performance (Bishop, 1980; Lean and Clements, 1981). Traditional
studies concluded that spatial awareness and the capacity to visualize abstract mathematical
relationships were not necessarily components of mathematical talent (Krutetskii, 1976), whilst
later studies revealed that talented students preferred non-visual methods (Presmeg, 1986).
More recent research has found significant evidence of a relationship between visualization and
mathematical ability, however (Rivera, 2011; Rabab’h and Veloo, 2015; Ramírez and Flores, 2017).
The controversial findings are explained by the existence of different conceptions of mathematical
talent and visualization, thereby requiring a clear view on what factors are used in the research
to characterize both mathematical talent and visualization. Although there is consensus in that
visualization should be considered an inherent ability needed to accomplish certain mathematical
tasks, there is still no consensus on what instruments are most appropriate for identification of
mathematical talent (Pitta-Pantazi and Christou, 2009).
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A number of studies has focused on gender differences in
these two areas, suggesting possible relationships between them
(Ganley and Vasilyeva, 2011). Gender differences in spatial skills
may serve as cognitive predictors of mathematical performance,
particularly as regards geometry. Gender differences in spatial
reasoning, together with the partial contribution of visual
reasoning to problem solving, may have gender-related
implications in mathematical contexts. Whilst males and females
differ in spatial visualization and performance in high school
geometry, however, their logical reasoning skills and use of
geometric problem-solving strategies are indistinguishable
(Battista, 1990).

This exploration of the effect of gender and mathematical
performance on the differences observed in secondary school
students’ visual abilities includes a review of the literature on
gender differences in the two types of skills.

Gender Differences in Mathematical
Performance
Review papers and meta-analyses have identified greater
mathematical problem-solving aptitudes among men (Maccoby
and Jacklin, 1974; Hyde et al., 1990; Hyde, 2014). Hyde et al.
(1990) reported wider differences between male and female
secondary school students in complex problem solving than in
parameters such as computation or understanding mathematical
concepts. They observed no gender difference in arithmetic or
algebra. Male superiority in geometry was minor, whilst the
widest gender gap was recorded for tests with mixed content. The
exercises used to assess mathematical performance have also been
deemed to affect the results, with men performing better than
women in problems involving mathematical reasoning (Halpern,
2000) and word problems which to be solved must be translated
into mathematical terminology (Low and Over, 1993).

Other factors to be considered in gender difference studies
is the date they are conducted and the group of people
participating. A meta-analysis conducted 18 years later by Hyde
et al. (2008) with 2nd to 11th year students in the United States
revealed no difference between boys’ and girls’ lower level
mathematical skills. When items entailing complex problem
solving were included, girls in year 12 performed as well as
their male classmates. Similarly, in a meta-analysis of studies
conducted from 1990 to 2007, Lindberg et al. (2010) found
only a minor difference between the sexes in complex problem
solving. Else-Quest et al. (2010) conducted a meta-analysis
of gender differences in mathematical performance, reporting
substantial inter-country variability while also furnishing further
evidence that, on average, males and females differ vary little in
mathematics achievement, despite more positive attitudes toward
mathematics among the former.

Although women continue to be underrepresented in science,
technology, engineering and mathematics (STEM) education
and careers (Else-Quest et al., 2013), gender differences in
mathematical performance have been less consistently found
(Ganley and Vasilyeva, 2011). Unlike other meta-analyses of
performance in mathematical tests that reported males to
perform more highly than females, a study on classroom gender

differences authored by Voyer and Voyer (2014) found women to
earn higher marks in all areas. That variability can be attributed
to the diversity of the instruments used to measure mathematical
performance (Gibbs, 2010). Boys have been perceived to be
academically stronger in mathematics and science (Olszewski-
Kubilius and Turner, 2002), with more male than female high-
achievers in those subjects (Reis and Park, 2001). Gender
differences have been recorded in tests assessing mathematical
talent in students aged 12 to 14 (Benbow and Stanley, 1996).
The decline in the male-female ratio among the highest scoring
students in recent years calls for further study, however. Some
authors have suggested that the male advantage in mathematical
skills may be limited to the upper end of the talent distribution
(Halpern et al., 2007).

Further to a meta-analysis of differences between the
sexes in mathematics covering a number of countries (Else-
Quest et al., 2010), the largest mean effect size was recorded
in the PISA (Program for International Student Assessment)
space/shape domain, which assesses the understanding of
spatial relationships. The population studied, students aged
14 to 16, was deemed old enough to be able to solve
complex mathematical problems. The data for that meta-analysis
were drawn from the 2003 TIMSS (Trends in International
Mathematics and Science Study and the Program for International
Student Assessment), however, in which Spanish students did
not participate. This study aims to further investigate on this
particular group of students.

Gender Differences in Visuospatial
Ability: Performance Factors
Meta-analyses have consistently reported males to be more
spatially skilled than females (Linn and Petersen, 1985; Hedges
and Nowell, 1995; Voyer and Saunders, 2004; Halpern et al.,
2007). A host of authors (Strand et al., 2006; Steinmayr and
Spinath, 2008; Voyer and Voyer, 2014; Wach et al., 2015) has
observed men to score higher than women on visuospatial tests,
in particular in connection with mental rotation, where several
authors observed a wider gap between men’s and women’s scores
than in skills such as spatial perception or visualization (Voyer
et al., 1995; Alansari et al., 2008; Geiser et al., 2008; Moè, 2009;
Hyde, 2014; Xu et al., 2016). This study aims to look deeper into
the prevalent role of mental rotation in gender differences, hence
we will compare the results of a mental rotation test with those of
another test related to the spatial ability of visualizing an object in
three dimensions from a two-dimensional model.

Different performance factors have been identified in the
effect of gender on mental rotation results, depending on the
measuring instrument used and the conditions in which the
tests were administered and scored. In a 3D mental rotation
test measuring speed of performance as one such factor, time
limits and the use of raw scores were found to benefit males
(Goldstein et al., 1990). Loring-Meier and Halpern (1999) found
males to answer more rapidly than females, whereas no difference
was observed between them in the number of correct answers
to items unrelated to mental rotation but involving visuospatial
working memory. Robert and Chevrier (2003) reported similar
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numbers of correct answers among men and women when no
time limit was established in mental rotation test, although
men answered the items more quickly than women. Whilst
some studies showed that such gender differences are more
pronounced when the time to do the test is limited in mental
rotation test (Voyer and Saunders, 2004; Peters, 2005; Voyer,
2011; Maeda and Yoon, 2016), others designed to assess mental
rotation aptitudes reported no statistically significant differences
between the sexes in completion time (Yoon and Mann, 2017).
A third group observed males to score higher on visual tests
irrespective of the existence of time limitations in mental
rotation test (Delgado and Prieto, 1996; Geiser et al., 2006) or
other figure analogy test (Blum et al., 2015). The use of ratios
to score mental rotation performance significantly narrowed
gender-related differences (Stumpf, 1993), whereas that approach
reduced the gap between the two sexes’ scores for other aptitudes
less meaningfully. Subsequent studies questioned the effect of
these factors, confirming that the raw score-measured effect size
of gender differences was unaffected when longer test times
were allowed and that the reluctance to guess was similar for
males and females, while males answered correctly to more
exercises irrespective of timing (Delgado and Prieto, 1996).
Masters (1998) found no evidence that the gender differences in
mental rotation tests were affected by the scoring method or the
time limit, with men scoring higher than women regardless of the
scoring procedure. Other authors reported that the magnitude
of gender differences in mental rotation was similar in distinct
timing conditions when a conventional scoring method was used
(Voyer et al., 2004).

The effect of time is associated with the strategy used to
complete tests, with women being shown to be less self-assured
when sitting these tests in mental rotation (Cooke-Simpson
and Voyer, 2007) or in questionnaires about attitude and belief
(Parsons et al., 1982) and as a result to adopt more conservative
strategies in mental rotation test of other test (Hong and Aqui,
2004; Voyer and Saunders, 2004; Hirnstein et al., 2009). Research
in figure analogy test has found women to be slower to answer
and more reluctant to guess at answers in items they deem
difficult, and hence to leave more items blank than males
(Blum et al., 2015). A study of the impact of response latency,
response frequency and time invested on a dynamic spatial test
revealed that males outperformed females even when the effects
of those performance factors were partial (Contreras et al., 2007).
Other factors that may attenuate gender differences in mental
rotation have also been identified, such as using the ratio of the
correct to the attempted items as an alternative scoring criterion
(Goldstein et al., 1990).

Purpose of Study
The literature review conducted for this article revealed wider
differences between the sexes in mental rotation than other
spatial exercises. No consensus was detected, however, on how
such differences may be impacted by scoring criteria, i.e., by
the use of absolute values or the ratio of each to the number
of items answered. The review also identified the early years of
secondary school as the time when gender differences appear in
complex mathematical problem solving. No conclusive evidence

was found of interaction between spatial skills and complex
problem-solving abilities in the differences between the sexes
observed, particularly among Spanish students.

With a view to contributing to this issue, the research
questions posed in this study were: do gender and the ability
to solve complex problems affect the differences observed in
the participants of the current study’ spatial aptitudes? If so,
what performance measurements reflect that effect? To this end,
results of 13- to 16-year old Spanish students are compared in
two different test assessing the spatial ability (mental rotation
and visualization of an object in three dimensions from a two-
dimensional model) as well as the factors related to performance,
completion time, and strategies used to answer the items.

MATERIALS AND METHODS

Subjects
A total of 331 s, 2nd, 3rd and 4th -year secondary education
students participated in this study. The mean age of the sample
was 15 (±0.97) and the range 13 to 16. Part of the sample,
105 males and 40 females from nine provinces in Spain, were
selected to participate in ESTALMAT, a project to encourage
mathematically talented students, selected on the grounds of a
math test in which the problems were divided into sections by
level of difficulty. The participants didn’t receive any incentives.
The test assessed students’ aptitude for and attitudes around
mathematical knowledge. The differences in the number of boys
and girls in this group attested to the differences between the
sexes in complex problem-solving reported for youths of those
ages, especially where the questionnaires combined areas such
as geometry, arithmetic and logical reasoning (Hyde et al., 1990;
Hyde, 2014). These students (‘’) had proven their ability to solve
complex mathematical problems by passing a test with problems
such as the following.

‘The vertices of a triangle bear the number 1 or −1 and the
product of the three is shown in the middle. If we add the four
numbers: (a) What values may the sum take? What combination
yields zero? (b) What would the sum be if instead of a triangle
we had a square? (c) If we use a polygon with an even number of
sides, can the sum be zero? Why? (d) What sort of polygons with
an odd number of sides could give us zero? Why?’

The 186 students (97 males and 89 females) in the other group
were enrolled in 2nd, 3rd, or 4th-year secondary education in
two schools, each in a different Spanish province. According to
their teachers, these students (‘NCPs’) had exhibited no complex
problem-solving talent.

With a view to exploring the issue in greater depth, this
study analyzed the effect of gender and mathematical ability
on performance in two spatial tests frequently used to diagnose
spatial aptitudes in Spain.

Materials
The following instruments were used in this study:

- The Primary Mental Abilities Test (PMA) – Spatial Relations
(SR) (Thurstone and Thurstone, 1976). Thurstone’s initial
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battery of PMA tests yielded seven ‘primary mental
abilities’: verbal comprehension (V), spatial orientation (S),
inductive reasoning (I or R), number (N), word fluency
(W), associative memory (M), and perceptual speed (P).
The Spanish adaptation was created by TEA Ediciones
in 1987. This study applied the test for spatial relations,
defined in the Spanish edition as ‘the ability to interpret and
recognize objects that change their spatial position, while
maintaining their internal structure’. Cronbach’s alpha (a
measure of reliability or internal consistency) for the SR
factor has been shown to be 0.93, whilst the value calculated
for the present sample was 0.89.

PMA-SR measures the ability to mentally rotate two-
dimensional figures quickly and accurately (Linn and Petersen,
1985; Voyer, 2011). One of its features favored by researchers
is the correction for guessing, for the final score is the number
of correct minus the number of incorrect answers (Voyer and
Saunders, 2004). Another prominent characteristic is the short
time allowed, just 5 min, to answer 20 multiple-choice items, each
with six options. Subjects consequently have an average of 15 s to
analyze the six options in each item, without knowing how many
are correct. Differences between the sexes have been identified
for PMA-SR, with men scoring higher (Stericker and LeVesconte,
1982; Kail et al., 1984; Campos, 2014).

- The Differential Aptitude Test (DAT-5) – Space Relations
(SR) (Bennett et al., 2000). The tests in the fifth version
of the DAT assess eight aptitudes: verbal, numerical
and abstract reasoning, perceptual speed and accuracy,
mechanical reasoning, space relations and spelling and
language usage. The Spanish adaptation of the original
version was created in 2000 by TEA Ediciones. Level 1
of the space relations (SR) scale was chosen in this study
to measure the ability to visualize an object in three
dimensions from a two-dimensional model and mentally
rotate the object in space. Cronbach’s alpha for groups
participating in SR test Level 1 range from 0.86 to 0.93,
whilst the value calculated for the present sample was 0.97.

Each test item consists in a two-dimensional drawing, which
subjects must match to only one of four three-dimensional
figures. This test is often used to study gender differences
(Hartlage, 1970; Feingold, 1988; Delgado and Prieto, 1996), which
have been identified by some authors (Hall, 1979) and reported by
others to be minor only and less accentuated than observed with
the mental rotation test (Linn and Petersen, 1985; Voyer et al.,
1995; Kaufman, 2007). In this test subjects are given 20 min to
choose one of four possible replies to each of 50 items. They must
consequently answer each item in an average 24 s, although not all
four choices must necessarily be analyzed, for participants know
only one is correct.

Hereafter, the two aforementioned tests are referred to as
PMA-SR and DAT-SR. The working hypothesis defined to
explore the impact of gender differences and mathematical
abilities on performance indicators was based on the earlier
findings described above. The PMA-SR test was therefore deemed
more appropriate to detect gender differences in spatial ability,

for it measures mental rotation in a specific plane, whereas
the DAT-SR test measures the ability to construct a three-
dimensional object from its two-dimensional representation.
The PMA-SR test might better identify gender differences in
speed-related factors, given the short time afforded subjects
to complete the exercise. The DAT-SR test, in turn, might
furnish a more reliable measure of strategy-based self-confidence.
Since there is only one correct answer to each item in DAT-
SR, items left blank are a more sensitive indication of student
uncertainty and therefore their level of self-confidence. More self-
confident subjects would not need to analyze all the options as
intensely and could consequently answer more quickly without
leaving items blank.

Procedure
The tests were administered to the original recommendations on
instructions and timing. The talented complex problem-solvers
sat the tests during one of their ESTALMAT project sessions,
routinely conducted outside class time (on Saturday mornings).
The PMA-SR instructions were delivered in 5 min, after which
students were allowed 5 min to complete the test. After a 30 min
break, the DAT-SR test was administered, again with a 5 min
explanation followed in this case by 20 min to do the exercise. The
same procedure was deployed with the control group students,
who participated during normal classroom time.

As students were given no prior information about the scoring
procedure, they did not know that the total score in PMA-
SR was found as the difference between the number of correct
and incorrect answers and in DAT-SR as the number of correct
responses. They were, however, told that the number of correct
choices per item in PMA-SR was indeterminate and that there
was only one per item in DAT-SR.

All the subjects gave their consent to voluntarily participate
in the study, which are compliant with the guidelines given by
the Bioethics Committee from both UNED and University of
Granada in relation to human subjects.

Design and Variables
A 2× 2, bi-factorial intergroup design was used, in which Gender
(categories: male and female) and Ability (categories: CP, talented
complex problem-solvers; and NCP, no complex problem-solving
talent) were the independent variables. The dependent variables
were performance, speed and confidence, measured in terms of
the following indicators.

• Number of correct items (A1): in PMA-SR an item was
deemed correct only if, of the six options given, all the
actual rotations and no others were chosen. In DAT-SR an
item was deemed correctly answered if the single correct
option was chosen.
• Number of incorrect items (A2): in PMA-SR an item was

deemed incorrect if any actual rotation was not chosen, or
any non-rotations were. In DAT-SR, items were deemed
incorrect when the wrong option was chosen.
• Number of items attempted (B1): the number of items

attempted was the number answered: B1 = A1+ A2.
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TABLE 1 | Mean, standard deviation, and F-values for the parameters describing dependent variables mathematical talent and gender, expressed as absolute values:
PMA-SR and DAT-SR tests.

Talented complex problem-solvers Untalented

Male Female Male Female F(1,323)

M SD M SD M SD M SD Ability Gender Interaction

Absolute values PMA-SR

Right (A1) 11.40 3.85 10.83 3.67 7.73 4.52 5.95 4.01 77.60** (p = 0.000) 5.86* (p = 0.016) 1.54 (p = 0.216)

Wrong (A2) 2.22 1.91 1.88 1.56 4.61 4.22 4.88 4.02 46.60** (p = 0.000) 0.012 (p = 0.911) 0.594 (p = 0.911)

Score (A3) 32.26 10.92 30.55 10.06 23.40 12.57 18.49 11.63 58.41** (p = 0.000) 5.84* (p = 0.016) 1.36 (p = 0.244)

Attempted (B1) 13.62 3.83 12.70 3.66 12.34 3.94 10.82 3.57 12.29** (p = 0.000) 7.36** (p = 0.007) 0.436 (p = 0.510)

Last item (B2) 13.96 3.85 13.53 3.95 12.83 4.07 11.34 3.86 12.55** (p = 0.000) 4.26* (p = 0.040) 1.28 (p = 0.259)

Blank (C1) 6.38 3.83 7.30 3.66 7.66 3.94 9.17 3.57 12.29** (p = 0.001) 7.36** (p = 0.007) 0.436 (p = 0.517)

Omitted (C2) 0.34 1.06 0.83 2.37 0.49 1.94 0.51 1.69 0.163 (p = 0.687) 1.56 (p = 0.212) 1.30 (p = 0.253)

DAT-SR

Right (A1) 43.98 7.73 44.38 7.92 32.39 11.16 30.77 9.66 127.47** (p = 0.000) 0.299 (p = 0.585) 0.811 (p = 0.369)

Wrong (A2) 4.33 5.84 2.55 2.55 13.73 10.72 14.11 8.87 116.95** (p = 0.000) 0.515 (p = 0.474) 1.24 (p = 0.265)

Score (A3) 43.98 7.73 44.38 7.92 32.39 11.15 30.77 9.61 127.47** (p = 0.000) 0.299 (p = 0.585) 0.811 (p = 0.369)

Attempted (B1) 48.31 4.85 46.92 7.06 1.00 6.34 44.88 6.78 8.42** (p = 0.004) 3.20 (p = 0.074) 0.011 (p = 0.916)

Last item (B2) 48.57 4.37 47.95 5.04 46.40 6.16 45.85 6.70 10.04** (p = 0.002) 0.744 (p = 0.389) 0.003 (p = 0.957)

Blank (C1) 1.69 4.85 3.08 7.06 3.89 6.34 5.11 6.78 8.42** (p = 0.004) 3.20 (p = 0.074) 0.011 (p = 0.916)

Omitted (C2) 0.26 1.00 1.03 5.21 0.28 0.91 0.97 2.44 0.005 (p = 0.946) 6.85** (p = 0.009) 0.021 (p = 0.884)

**p < 0.01; *p < 0.05. In the table the exact values of p are presented for each value of F.

• Number of blank items (C1): blank items were all the ones
where students chose none of the options. In PMA-SR,
B1+ C1 = 20 and in DAT-SR, B1+ C1 = 50.
• Test score (A3): in PMA-SR the score was found by

subtracting the number of incorrect from the number of
correct items. In DAT-SR the score was the number of
correctly answered items.
• Last item answered (B2): as the items were sorted

correlatively, the value was the item answered that was
numbered highest.
• Number of omissions (C2): the number of omissions was

the number of items left blank prior to the last item
answered. For PMA-SR, C2 + (20-B2) = C1 and for DAT-
SR C2+ (50-B2) = C1.

Performance is measured by A3 indicator, which in DAT
coincides with A1 whereas in PMA it also involves A2 for its
calculation. B1 and B2 are speed indicators. C2 and C1 are used
for measuring confidence, as they can differentiate whether an
item is blank because of doubts in the correct answer or because
of lack of time to answer it. The ratios of the number of correct
answers and the number of items omitted to the number of
items answered were used to infer the effectiveness of the strategy
deployed (Goldstein et al., 1990; Delgado and Prieto, 1996):

• Number of correct answers/number of items answered
(AR1).
• Number of items omitted/number of items answered

(CR2).

Data Analysis
In order to perform statistical analyses of data, those subjects
whose protocols were incomplete or showed errors were removed
from the analysis. First, the mean and standard deviation
in the different scores was calculated (see Table 1), and the
Kolmogorov–Smirnov test was used to assess the distribution of
the scores. Determining the potential differences between groups
in all variables was achieved through bifactorial intergroup 2× 2
ANOVAs taking Gender and Ability as independent variables,
and the scores obtained in PMA-SR and DAT-SR (absolute and
ratio values) as dependent variables. Effect size was measured
as partial eta-squared (η2

p
) and statistical significance was set at

a confidence interval of 95%, with p < 0.05 as the accepted
level of significance. All the analyses were performed using SPSS
v.19 for Windows.

RESULTS

Absolute Values
CPs scored significantly higher than NCPs in all the
performance indicators in both tests: more correct answers
(A1) [F(1,323) = 77.60, p = 0.000, η2

p = 0.194 in PMA-SR;
F(1,323) = 127.47, p = 0.000, η2

p = 0.283 in DAT-SR]; fewer
incorrect answers (A2) [F(1,323) = 46.60, p = 0.000, η2

p = 0.126
in PMA-SR; F(1,323) = 116.95, p = 0.000, η2

p = 0.226 in DAT-SR];
and a higher score (A3) [F(1,323) = 58.41, p = 0.000, η2

p = 0.153
in PMA-SR; F(1,323) = 127.47, p = 0.000, η2

p = 0.283 in DAT-SR].
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TABLE 2 | Mean, standard deviations, and F-values for the parameters describing dependent variables mathematical talent and gender, expressed as the ratio to the
number of items answered: PMA-SR and DAT-SR.

Talented complex problem-solvers Untalented

Male Female Male Female F(1,323)

M SD M SD M SD M SD Math Gender Interaction

Ratios PMA-SR

Right (AR1) 0.83 0.13 0.84 0.14 0.62 0.29 0.54 0.30 78.61** (p = 0.000) 1.50 (p = 0.222) 0.250 (p = 0.114)

Omitted (CR2) 0.03 0.09 0.09 0.30 0.07 0.41 0.05 0.19 0.010 (p = 0.929) 0.456 (p = 0.500) 1.25 (p = 0.263)

DAT-SR

Right (AR1) 0.91 0.12 0.93 0.07 0.70 0.22 0.68 0.18 128.24** (p = 0.000) 0.129 (p = 0.720) 1.46 (p = 0.228)

Omitted (CR2) 0.007 0.04 0.05 0.31 0.007 0.02 0.02 0.06 1.16 (p = 0.282) 5.11* (p = 0.024) 1.11 (p = 0.291)

**p < 0.01; *p < 0.05. In the table the exact values of p are presented for each value of F.

Gender had a significant effect on two of the performance
indicators in PMA-SR, with males answering more items
correctly (A1) [F(1,323) = 5.86, p = 0.016, η2

p = 0.016] and
scoring higher [F(1,323) = 5.84, p = 0.016, η2

p = 0.018]. The
differences in the number of incorrect responses (A2) were
not statistically significant, however. Gender was not observed
to prominently affect any of the performance indicators in
DAT-SR. Nor was any significant interaction between the
independent variables identified in any of the performance
indicators in either test.

The CPs scored consistently higher in the speed indicators
than the NCPs: more items attempted (B1) [F(1,323) = 12.29,
p = 0.001, η2

p = 0.037 in PMA-SR; F(1,323) = 8.42, p = 0.004,
η2

p = 0.025 in DAT-SR] and a larger number of last items answered
(B2) [F(1,323) = 12.55, p = 0.000, η2

p = 0.037 in PMA-SR;
F(1,323) = 10.04, p = 0.002, η2

p = 0.030 in DAT-SR].
In the PMA-SR test male subjects earned higher speed

indicator scores, answered more items (B1) [F(1,323) = 7.36,
p = 0.007, η2

p = 0.022] and completed more of the test by number
of items answered (B2) than females [F(1,323) = 4.26, p = 0.040,
η2

p = 0.013]. In contrast, gender had no significant effect on
the DAT-SR test speed indicators, nor was any inter-variable
interaction observed for speed in either of the two tests.

Problem-solving capacity exerted no prominent effect on the
number of items omitted (C2) in either test, although talented
complex problem-solvers left significantly fewer items blank
(C1) [F(1,323) = 12.29, p = 0.001, η2

p = 0.037 in PMA-SR;
F(1,323) = 8.42, p = 0.004, η2

p = 0.025 in DAT-SR].
Although no differences were observed between the sexes

in the total number of items left blank in the DAT-SR test,
obvious differences were recorded in the number omitted (C2)
[F(1,323) = 6.85, p = 0.009, η 2

p = 0.021].
The gender differences in the number of speed-related blank

items found in PMA-SR were not observed in connection with
omissions. In this test the mean number of omissions was less
than half an item, an indication that subjects only exceptionally
failed to answer due to uncertainty. As in the other indicators, no
inter-variable interaction was observed in omissions.

Ratios
CPs exhibited significantly higher AR1 scores than NCPs
in both tests, denoting a higher percentage of correct
answers and fewer errors [F(1,323) = 78.61, p = 0.000,
η2

p = 0.196 in PMA-SR; F(1,323) = 128.24, p = 0.000,
η2

p = 0.284, in DAT-SR]. Only minor differences were
observed between the two groups in the number of items
omitted, however, confirming the effectiveness of the
non-omission strategy.

Males’ statistically significant higher absolute performance in
terms of number of correct answers, scores and number of items
answered in the PMA-SR test was absent in the AR1 findings. In
other words, the differences between the sexes in the fraction of
correct answers relative to the number of items answered were
not significant.

In DAT-SR, as in the case of the absolute values which
showed no differences in performance by sex, the AR1 ratio
revealed the absence of significance between males’ and females’
likelihood of responding correctly to the items answered. In
contrast, a significantly higher ratio of items omitted to items
answered was observed for females (CR2) [F(1,323) = 5.11,
p = 0.024, η 2

p = 0.016].

DISCUSSION

This study used two spatial tests, PMA-SR and DAT-SR,
to analyze the effect of gender and the ability to solve
complex mathematical problems on performance. Gender
(male/female) and mathematical ability (complex problem
solvers/non-solvers) were the independent variables, while
the performance indicators were score, number of correct
and incorrect answers, number of items attempted, number
left blank, number omitted and the last item answered,
along with the ratios of the number of correct answers
and the number of omissions to the total number of items
answered. The study’s four major contributions to the effect
of gender and mathematical talent on spatial aptitudes are
highlighted below.
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Performance Was Higher Among
Students With Complex Mathematical
Problem-Solving Talent Than Among
Their Less Talented Peers
CP students performed better and faster than NCPs in both tests
administered here. The former were found to score significantly
better than the latter in both tests: making fewer mistakes, leaving
fewer items blank, answering more items, and exhibiting a higher
success rate per item answered. The present findings therefore
corroborate the positive relationship between mathematical
talent and visual ability reported earlier (Rivera, 2011; Ramírez-
Uclés et al., 2013; Rabab’h and Veloo, 2015; Ramírez and Flores,
2017), for the CP students in the sample implemented efficient
test strategies, answering rapidly and omitting very few items.

No Interaction Was Identified Between
Ability to Solve Complex Problems and
Gender
Although gender differences have been frequently and separately
reported in studies of mathematical performance and visual
skills, no interaction was observed in any of the indicators
analyzed here. When explored together, the effect of one variable
on the other was not determinant and the differences in
mathematical ability were unrelated to the gender differences
found in the tests. Nor did gender determine the differences
observed in mathematical ability. Unlike other studies, the
research conducted here was unable to confirm that differences
between the sexes revealed by spatial tests concur with differences
in complex problem-solving abilities (Olszewski-Kubilius and
Turner, 2002). Nor was evidence found that such differences
impact mathematical performance (Ganley and Vasilyeva, 2011).
Although differences between the sexes in some indicators were
apparently narrower in the CP group than in the sample as a
whole, they were not statistically significant.

None of the Indicators Denoted
Significant Gender Differences in Both
Tests
The inference drawn from the data, according to which none of
the indicators denoted gender differences in both tests, is that
the differences between the sexes in the performance factors were
related to characteristics specific to each test. In other words, this
study failed to find males more visually skilled, faster or more
confident, for the differences in men’s and women’s scores were
not observed consistently across the instruments and assessment
criteria applied (Stumpf and Eliot, 1995; Gibbs, 2010). That boys
scored significantly higher than girls in the PMA test while sex
had no prominent effect of on the DAT test scores would seem
to confirm that gender differences are better substantiated in
mental rotation tests than in other spatial tests, as often described
elsewhere (e.g., Voyer et al., 1995; Moè, 2009; Xu et al., 2016).

In this study, the performance differences observed in the
PMA-SR test were speed-related, with males answering more
items and completing more of the test, although at a success rate
no higher than the females’ in any of the items. In this test, boys

implemented a better strategy because it was faster, whereas they
did not outperform the females in terms of success per item or
number of omissions. Therefore, the strategy of answering more
items per unit of time yields more correct responses per unit
of time, as reported by other authors for mental rotation tests
(Delgado and Prieto, 1996). The fact that only 9% of the subjects
completed the PMA-SR test compared to 70% who completed
the DAT-SR test attests to the need to answer more speedily to
complete the former.

No differences between the sexes were observed in the speed
or effectiveness indicators for DAT-SR. Differences were observed
in that test with respect to omissions, with females more willing
to leave an item blank when they were unsure of the answer.
That finding was not consistent with results reported for an
abridged version of the DAT-SR test, which revealed significant
gender differences in the number of correct answers and items
answered, but not in the absolute number of omissions or the
ratio of omissions to the items answered (Delgado and Prieto,
1996). The characteristics of the two studies differed, however.
Firstly, the earlier authors used an abridged version of DAT-SR
(30 items) that was administered to two groups, one of which
was allowed 12 and the other 25 min to complete the test. As
that difference in timing spawned significant differences in the
success rates relative to the items attempted, the effectiveness
of the test was conditioned by that parameter. Secondly, in the
present study the CPs performed better and faster, confirming
that they differed significantly from the NCPs in respect of their
mathematical skills. Similarly, 70% of the subjects in this research
completed the full version of the DAT-SR (50 items in 20 min),
compared to only 27.2% of the students in the earlier study who
were given the same amount of time in items per minute.

Gender-related differences in strategy implemented varied
depending on the test. In the PMA boys deployed faster strategies,
whereas in the DAT test girls proved more reluctant to guess.

Differences Between Absolute Variables
and Ratios
The findings for the CP group were the same whether expressed
as the absolute value of the variables or the value relative to
the number of items attempted. The absolute DAT test results
were likewise unchanged in any of the indicators when ratioed
to the number of items attempted. In PMA-SR in contrast, the
differences observed between the sexes in the absolute number
of correct answers were absent when expressed as a fraction of
the number of items answered, as observed by earlier authors
(Goldstein et al., 1990; Stumpf, 1993). The strategy indicator
‘number of omissions’ yielded the same results in absolute
and relative terms, a finding also consistent with other reports
(Delgado and Prieto, 1996). In light of such disparity, the use
of variable ratios cannot be said to necessarily narrow the
gender gap observed.

Implications and Limitations
Two limitations to this study are sample size and the smaller
proportion of women. In relation to the sample, the results
obtained are specific to the Spanish students who participated

Frontiers in Psychology | www.frontiersin.org 7 March 2020 | Volume 11 | Article 191375376

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00191 March 4, 2020 Time: 8:54 # 8

Ramírez-Uclés and Ramírez-Uclés Gender Differences in Visuospatial Abilities

in the study, using the ability to solve complex mathematical
problems as an indicator of mathematical ability, and the
results obtained in PMA and DAT test as an indicator of
spatial ability. Further generalization of the results of this study
about gender differences in mathematical performance and
visualization should take this limitation into account, as well as
the heterogeneity of students with mathematical talent (Pitta-
Pantazi and Christou, 2009). Another limitation stems from the
smaller proportion of women in the sample selected, derived
from their lower presence in the group of students selected to
solve complex mathematical problems. Again, the results of this
study should be interpreted under this limitation, which can
itself be considered an indicator of sexes differences as found in
certain contexts about mathematical abilities (Hyde et al., 1990;
Hyde, 2014). In this sense, we consider that the assumption
that females are not as capable in solving complex mathematical
problems or spatial visualization tasks compared to males is wide-
spread and, moreover, has often the character of a prejudice
that may condition girls to not participate in some mathematical
programs. It is necessary to investigate the specific factors that
motivate these differences and not consider them as a “simple”
effect of gender that may influence decisions in educational
and social fields.

The inequalities between the CP and control groups were
consistent with previous reports (Else-Quest et al., 2013; Hyde,
2014). This line of research would also benefit from a comparison
to the results for other spatial tests and performance indicators.
The present findings are nonetheless deemed to have significant
implications, particularly for identifying gifted students or
the direction adopted in future assessments of mathematical
performance and visual ability. Affective factors associated with
performance, speed or self-confidence have been shown to
play different roles. In other words, the effect of greater self-
confidence, greater speed or greater reluctance to guess on visual
capacity might differ depending on the test. For instance, two
subjects who work at different speeds might earn different scores
in PMA-SR but the same in DAT-SR. By the same token, if one

subject is more reluctant to guess than another, the two might
earn the same scores in PMA-SR, but perform differently in
DAT-SR. Just as the use of several instruments is recommended
to identify gifted students (Pitta-Pantazi and Christou, 2009),
the present authors believe a number of instruments should
be deployed to assess visual ability and how they are impacted
by other factors.

Although some of the test scores attest to differences between
the sexes, an analysis of the cognitive aspects associated with such
differences is believed to be in order. Despite the dependence of
the reluctance to guess on personality factors, the parameter of
greatest relevance may be the time invested in mentally rotating
objects rather than the speed in answering or the decision
to answer an item.
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When learners self-explain, they try to make sense of new information. Although
research has shown that bodily actions and written notes are an important part of
learning, previous analyses of self-explanations rarely take into account written and non-
verbal data produced spontaneously. In this paper, the extent to which interpretations
of self-explanations are influenced by the systematic consideration of such data is
investigated. The video recordings of 33 undergraduate students, who learned with
worked-out examples dealing with complex numbers, were categorized successively
including three different data bases: (a) verbal data, (b) verbal and written data, and (c)
verbal, written and non-verbal data. Results reveal that including written data (notes)
and non-verbal data (gestures and actions) leads to a more accurate analysis of self-
explanations than an analysis solely based on verbal data. This influence is even stronger
for the categorization of self-explanations as adequate or inadequate.

Keywords: self-explanation, gesture, multimodality, trigonometry, complex numbers

INTRODUCTION

Imagine a learner considering a worked-out example that presents the solution of a task dealing
with right-angled triangles. The given example includes the complete solution of that task without
describing the theorems or principles that were used for the calculations depicted. While reading
the worked-out example, the learner thinks aloud: “Ok, this triangle ABC,. . . the missing side. . .
was calculated. And they made it. . . the Pythagorean Theorem, I think. This side here. . . then would
be. . . uhm, square root of. yes, that works.” When confronted with worked-out examples, texts or
other instructional material, learners can learn in different ways with worked-out examples, e.g.
superficially or thoroughly. The statement above illustrates an advantageous learning approach:
The learner explains to herself the calculations in the material drawing on her (activated) prior
knowledge of the Pythagorean Theorem, she is self-explaining.

Self-explaining means explaining something to oneself by generating information not provided
in the given material and by creating inferences to organize given or new information in order
to make sense of the material – it is a generative activity that occurs during learning (Chi, 2000,
2009; Fiorella and Mayer, 2016). Typical examples of self-explaining are activating and integrating
prior knowledge, integrating different representations in a text, and clarifying requirements for

Frontiers in Psychology | www.frontiersin.org 1 November 2020 | Volume 11 | Article 513758379380

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.513758
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.513758
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.513758&domain=pdf&date_stamp=2020-11-23
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.513758/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-513758 November 23, 2020 Time: 14:50 # 2

Salle Self-Explanations and Multimodality in Mathematics

depicted mathematical operations (Chi et al., 1989; Chi,
2000). To distinguish cognitive processes and overt activities
of learners, utterances generated during self-explaining—like
the statement depicted above—are called self-explanations
(Chi, 2000, 2009).

Self-explaining as a learning strategy can serve to aid learners’
comprehension of a topic (de Koning et al., 2011; Chiu and Chi,
2014; Wylie and Chi, 2014; Fiorella and Mayer, 2016). There are
several broadly approved methods to foster self-explaining like
different forms of self-explanation prompts (e.g. Chi et al., 1994;
Berthold et al., 2009; van der Meij and de Jong, 2011; Hefter
et al., 2015) or trainings (McNamara, 2004; Kurby et al., 2012;
Hodds et al., 2014), and it has been shown that these methods
increase learning outcomes and understanding. In summary,
when learning with instructional material, self-explaining is
essential to a deep and meaningful understanding (Renkl, 2014;
Wylie and Chi, 2014). Self-explanations, quantified and counted
based on transcripts or recordings, have been identified as
main predictors for learning outcomes in psychometrical designs
when investigating the benefits of instructional material, e.g.
worked-out examples or instructional texts (e.g. Chi et al., 1989;
Butcher, 2006; Griffin et al., 2008).

These findings have been replicated in different domains.
Especially, a plethora of studies focusing on instructional material
and self-explanations has been conducted with mathematical or
mathematically-related content (e.g. Chi et al., 1989; Renkl, 1997;
Neuman and Schwarz, 1998; Stark, 1999; Renkl et al., 2004).

Until the 1980s, many researchers thought of mathematics
as a purely cognitive and disembodied discipline, “based on the
premise of a human mind-body split and of the transcendence
of mind over body” (Gerofsky, 2014). Since then, many studies
have shown that the whole body and its different modalities are
important parts of the communication about and the learning
of mathematics (Núñez et al., 1999; Arzarello et al., 2008;
Radford, 2009; Gerofsky, 2010).

While there are numerous results of qualitative as well as
quantitative studies underlining this importance, it remains
unclear so far, how significant the inclusion of further modalities
for quantifications of learning processes really is. In how far
do individual differences, e.g. in gesturing behavior, influence
the quantification of learning processes? Apart from the
methodological level, these questions are also relevant when
estimating privacy issues (audio recordings vs. video recordings)
and necessary resources (duration of data analysis, expensive
digital tools for data analysis) for empirical studies. Since
quantifying self-explanations is an important and frequently
used approach in studies analyzing meaningful learning, self-
explaining is a fruitful concept for further investigations.
Previous research on self-explanations mostly rely solely on
verbal transcripts of think-aloud sessions (Ericsson and Simon,
1993; Chi, 1997) and exclude non-verbal or written data. In
most cases, thinking aloud in self-explanation studies refers to
the recording of verbal utterances, (i) without giving learners
the opportunity to take notes, respectively, without considering
written notes or their use during the learning sessions, and (ii)
without considering gestures, actions or other non-verbal data
during analysis.

The main question this paper intends to answer can, therefore,
be stated as follows: In what way does considering written
notes and gestures influence the analysis of self-explaining in
mathematical learning processes?

Pursuing this question, an empirical study was conducted
in which undergraduate students performed a learning exercise
with worked-out examples from the field of complex numbers.
Their learning processes were videotaped and categorized based
on different data sources in order to analyze the influence of
non-verbal and written data on the reconstruction of learning
processes and self-explanations. Besides the results for self-
explanations in particular, the design and the data analysis in
this paper may be a transferable example for investigations that
perform quantitative analyses to show the importance of gestures
and notes in learning processes.

LITERATURE REVIEW

Self-Explanations
Adequate use of cognitive strategies and engaging in domain
specific cognitive activities are essential to meaningful and deep
learning (Swing and Peterson, 1988; Murayama et al., 2012). Since
the seminal work of Chi et al. (1989), a large number of empirical
works has shown the analytic and predictive power of self-
explanations, which constitute a class of meaningful cognitive
activities. Self-explanations are the main predictors for learning
outcomes when investigating the benefits of instructional
material like worked-out examples or instructional texts, and
facilitate evaluation of instructional methods (e.g. Chi et al., 1989;
Renkl, 1997, 2005; Butcher, 2006; de Koning et al., 2011).

Although both self-explaining and explaining are constructive
activities (Chi, 2009), there are clear differences. While
self-explaining is a cognitive activity that does not require
verbalization (although it can be traced through overt
activities and verbalization), explaining is inherently bound
to communication. Self-explaining is based on one’s own prior
knowledge, whereas explaining must be based on the knowledge
of another person. From a cognitive point of view, explaining
needs additional selecting and organizing processes to give
others a suitable and comprehensible explanation (Fiorella
and Mayer, 2016). Typical examples of self-explanations are
inferencing from depicted data (Wong et al., 2002), repairing
misconceptions (Chi, 2000), explaining solution steps with
prior knowledge (Chi et al., 1989), explaining the goals of an
operation (Chi et al., 1989; Renkl, 1997; Renkl et al., 1998), and
integrating symbolic calculations and iconic representations
(Aleven and Koedinger, 2002). By definition, self-explanations
can be incomplete, fragmented or even wrong, e.g. explaining the
goals of an operation could address the wrong goals (Chi, 2000).

Self-explanation studies apply experiments in different
domains, covering topics like the blood flow and the circulatory
system (e.g. Ainsworth and Loizou, 2003; de Koning et al., 2011)
or LISP programming (Pirolli and Recker, 1994; Bielaczyc et al.,
1995). However, one of the domains most often investigated
is mathematics. Such studies often deal with mathematical
or mathematically-related content on a lower secondary level
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like elementary probability theory (e.g. Renkl, 1997; Renkl
et al., 2004), compound-interest calculations (e.g. Renkl et al.,
1998), algebra word problems (e.g. Neuman and Schwarz,
1998; Neuman et al., 2000), elementary geometry (Wong
et al., 2002), and Newton’s laws and calculating forces (e.g.
Chi et al., 1989; Chi and VanLehn, 1991). To determine the
impact of self-explaining on test performance in those domains
quantitatively, self-explanations are categorized and quantified
based on data that is typically collected in one of two common
procedures:1

(1) Coding of written texts produced by learners after or
during their work with learning materials or tasks (e.g.
Schworm and Renkl, 2006; Berthold et al., 2009);

(2) Coding of protocols from think-aloud sessions that are
recorded during or after learners’ work with instructional
material or tasks (e.g. Chi et al., 1989; Renkl, 1997; Durkin
and Rittle-Johnson, 2012; McEldoon et al., 2013).

In the first case, the participants themselves sum up
their learning processes in writing. The resulting products
are examined for passages which can be identified as self-
explanations. In contrast to the second case, this procedure
includes all available data (the written text).

During the second procedure, the participants, working
individually, are instructed to think aloud while learning
and working with different materials and/or tasks.
Typically, the procedure follows the methodological
principles of Ericsson and Simon (1993).

In the studies following the second procedure, participants
in thinking aloud settings studies were audio- or videotaped.
Subsequently, the recorded data was transformed into verbal
protocols for further coding procedures.2 When video data was
collected, it was not considered in the analyses of verbal protocols
(e.g. Bielaczyc et al., 1995; Neuman et al., 2000). If participants
were allowed to take notes or sketch diagrams, these written
documents were not analyzed synchronously with the verbal
protocols and oftentimes not analyzed at all.3

Some authors try to gain insight into the role of incorrect
self-explanations for learning (Wilkin, 1997; McNamara, 2004;
Butcher, 2006; Ainsworth and Burcham, 2007; de Koning
et al., 2011). Both negative and positive effects of incorrect
self-explanations are revealed: For less demanding activities
such as paraphrasing, the number of incorrect self-explanations
correlates negatively with subsequently measured performance;
for more demanding activities such as inferencing new
information based on given texts, however, positive correlations

1Studies reviewed: Chi et al. (1989, 1994), Chi and VanLehn (1991), Pirolli and
Recker (1994), Bielaczyc et al. (1995), Recker and Pirolli (1995), Renkl (1997,
2002), Neuman and Schwarz (1998), Renkl et al. (1998), Renkl et al. (2004),
Stark (1999), Neuman et al. (2000), Wong et al. (2002), Ainsworth and Loizou
(2003), McNamara (2004), Butcher (2006), Ainsworth and Burcham (2007), de
Koning et al. (2011), Durkin and Rittle-Johnson (2012), Lin and Atkinson (2013),
McEldoon et al. (2013), and Rittle-Johnson et al. (2015).
2An exception is Stark (1999) who applied a “live coding” during the intervention
phase.
3Although some studies (e.g. Chi et al., 1989) allowed drawing and notetaking, no
hints could be found that these documents were considered in the self-explanation
data analysis.

show the potential benefit of incorrect self-explanations
(McNamara, 2004). These findings correspond with results that
show the learning potential of incorrect self-explanations (Chi,
2000). However, the majority of studies on self-explanation do
not distinguish between correct and incorrect self-explanations,
although from a psychological as well as from a domain-specific
perspective the differentiation would be an important issue for
investigations of learning processes across all domains, especially
for mathematics.

Learning and Multimodality
Many studies in the last 30 years have demonstrated that the
whole body and its modalities are an important partaker of and
a constitutive entity for communication and learning (Lakoff
and Johnson, 1999; Núñez and Freeman, 1999; Gerofsky, 2014).
Therefore, thoughts and language are created and expressed
through many “modalities linked together – sight, hearing, touch,
motor-actions, and so on.” (Gallese and Lakoff, 2005, p. 456).
Although especially mathematics is typically regarded as a highly
cognitive discipline, many researchers have (re-)discovered and
verified the body’s importance for mathematical learning (Núñez
et al., 1999; Lakoff and Núñez, 2000; Gerofsky, 2014). By
emphasizing the importance of bodily modalities and their
role for the origination of mathematics, gesturing can be seen
as “a key element in communication and conceptualization”
(Radford et al., 2009, p. 93).

As an important part of a multimodal perspective, analyses
have shown teachers and learners gesturing frequently and
intensely when communicating and thinking about mathematics
(e.g. Alibali and DiRusso, 1999; Goldin-Meadow and Singer,
2003; Greiffenhagen and Sharrock, 2005; Edwards, 2008; Radford,
2009; Yoon et al., 2011; Kita et al., 2017). Gesturing can support
uttered words as well as supplement or contradict them in
different ways (e.g. Alibali and Goldin-Meadow, 1993; Alibali
and DiRusso, 1999; Goldin-Meadow and Singer, 2003; Hegarty
et al., 2005; Robutti, 2006; Arzarello et al., 2008). In combination
with notes or other inscriptions, gestures are applied in specific
and subtle ways to construct and communicate mathematical
knowledge (Krause, 2016; Krause and Salle, 2016, and, more
general, Streeck and Kallmeyer, 2001).

Some studies analyze the use of gestures during explanations
or think-aloud settings. When learners explain things to each
other or to a video camera, their expressions go beyond verbal
utterances and are often accompanied by different kinds of
gestures (Schwartz and Black, 1996; Emmorey and Casey, 2001;
Hegarty et al., 2005; Salle, 2014). In about 50% of all think-
aloud sessions with students who solved gear-problems, Schwartz
and Black (1996) found that content-related “rotating” and
“ticking” gestures could be observed. Hegarty et al. (2005) report
that 98.5% of all identified verb phrases in a gear-problem
experiment were accompanied by pointing and tracing gestures,
revealing “important individual differences in the use of gesture
in both communication and inference” (p. 354). Other works
show how gestures are used in explanations to depict certain
aspects of verbalized parts (Koschmann and LeBaron, 2002;
Alibali and Nathan, 2012).
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Findings about the role of different modalities in self-
explanation analyses are rare. In eye-tracking studies, learners’
direction of gaze while integrating information given in material
was analyzed; including data from eye-tracking devices allows
for more accurate analyses of self-explanation (Merten, 2002;
Conati and Merten, 2007; She and Chen, 2009; Hodds et al.,
2014). However, no systematical analysis of self-explanations
and the role of bodily modalities and inscriptions in think-
aloud settings has been carried out yet. Thus, the extent to
which the consideration of spontaneously produced written notes
and non-verbal utterances, such as gestures, could influence
the identification of self-explanations in think-aloud settings
remains unclear. A multimodal analysis could help to identify
adequate and inadequate self-explanations, improve explanations
for learning gains or optimize the design of learning materials by
providing better measures of self-explanation.

CONCEPTUAL FRAMEWORK AND
RESEARCH QUESTIONS

Multimodality and Self-Explanations
An utterance is understood as an expressive product in the
sense of the multimodal framework of Edwards and Robutti
(2014). Hence, expressive products are “physical ‘traces,’ whether
permanent or ephemeral, of people’s actions” (p. 13). That
includes speech and gestures as bodily based expressive products,
and inscriptions like written words, symbols, graphs and visuals
as external to the body (ibid.).

Applying this definition, spoken words as well as gestures and
written products like sentences or drawings can “become fully
partakers of the utterance itself ” (Nemirovsky and Ferrara, 2008,
p. 162). The different expressive products can be seen as facets
of one single underlying mental process (Robutti, 2005; Edwards
and Robutti, 2014) and, thus, allow identification of specific
cognitive processes. Three main types of utterances (expressive
products) can be distinguished:

• Verbal utterances: spoken sentences and words, shouts
and other sounds.
• Written utterances: written inscriptions such as characters,

words, sentences with specific syntax, drawings,
figures, markers.
• Non-verbal utterances: gestures, sign language4, facial

expression, gaze, actions like the movements when writing
or drawing.

Based on the remarks above, the definition of a self-
explanation can be broadened. In the classical definition, self-
explanations are defined as “units of utterances” produced
by self-explaining (the cognitive activity), whereby utterances
are meant to be verbal (Chi, 2000, p. 165). Hence from a
multimodal perspective, a self-explanation will refer to a unit of
intertwined (verbal, written, and non-verbal) utterances produced
by self-explaining. This definition was used for the present
study. All forms of verbal, written and non-verbal utterances

4A language ‘spoken’ through specific gestures (Sfard, 2008).

that were recorded on video are considered in this paper
except for gaze and facial expression, which were not included
in the analysis.

Gestures
Gestures are bodily based expressive products (Edwards and
Robutti, 2014), cognitive processes are mirrored in speech and
gesture. Gestures occur in combination with speech, but they also
have self-oriented functions that may occur in combination with
thought (Alibali et al., 2000; Kita et al., 2017). This paper follows
McNeill (1992) and Kita et al. (2017) in their definition of gestures
as idiosyncratic spontaneous movements of the hands and arms
which depict action, motion, or shape, or indicate location or
trajectory, they “include iconic gestures, metaphoric gestures,
and deictic gestures” (Kita et al., 2017, p. 245) in the taxonomy
described by McNeill (1992) and the differentiation of iconic
gestures in mathematics as iconic-physical and iconic-symbolic
formulated by Edwards (2008). As long as movement is not part
of a functional act (taking notes, measuring something with a
ruler), the movement is a gesture; otherwise, it is an action with a
purpose (Goldin-Meadow, 2003; Kendon, 2004; Sabena, 2008).

In think-aloud scenarios, gestures can convey important
information (Schwartz and Black, 1996; Hegarty et al., 2005;
Yammiyavar et al., 2007); they are, therefore, co-thought and/or
co-speech gestures. Following the definition of self-explanations
from a multimodal perspective, a gesture as well as an action with
or without simultaneous speech may allow a coder to identify
self-explaining activities.

Inscriptions
An inscription is defined as “an external ‘representation,’
whether symbolic or imagistic, which is non-ephemeral and
therefore amenable to reflection, review, and revision” (Edwards
and Robutti, 2014). Since mathematics makes much use of
external representations like symbols or graphs, inscriptions
play an important role in doing, communicating and learning
mathematics (Arzarello et al., 2011; Krause, 2016). Learners
create and use inscriptions on paper or other mediums to store
and highlight important information for themselves (Kiewra,
1989; Kobayashi, 2005, 2006), to organize them in specific ways
(e.g. Eppler, 2006; Kenehan, 2007), or to use such collections
when studying (Luo et al., 2016).

During think-aloud procedures, learners can refer to
inscriptions already present in the instructional setting or
produced by the learners themselves; therefore, researchers may
identify self-explaining processes by considering inscriptions in
combination with speech and gestures or without them.

Adequate and Inadequate
Self-Explanations
Whether a self-explanation is “correct” or not depends not only
on the utterance itself, but also on the content to be learned and
the aims of the instructional setting. For example, the notion of a
tangent line as a line that touches a circle at one point is absolutely
adequate in elementary Euclidean geometry. When it comes to
functions and calculus, however, this conception only holds true
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for special cases and areas. Tangent lines on graphs of third grade
polynomials might not fit this explanation.

Such examples illustrate that a classification into “right” or
“wrong” self-explanations is difficult. Hence, a classification that
distinguishes between adequate and inadequate self-explanations,
always matched to the goals of an intervention and the
instructional material itself, fits more precisely and is used
throughout the paper.

Research Questions
Two research questions will guide the following analyses:

(1) Does the consideration of non-verbal utterances (e.g.
spontaneous gestures and actions) and written utterances
(e.g. notes and diagrams) alter or support the coding of
self-explanations?

(2) Does the consideration of non-verbal and written
utterances alter or support the determination of
self-explanations as adequate or inadequate?

MATERIALS AND METHODS

Participants
The subjects were 33 undergraduate students at a German
university (22 females, 11 males) who voluntarily participated
in this study. The students ranged in age from 21 to
25 years (M = 23.2, SD = 1.1), all of them spoke German
fluently. All participants were enrolled in teacher training
courses for middle school mathematics at the time of the
experiment. They were in the third, fourth or fifth semester
of their course. All participants were familiar with worked-out
examples and computers.

Materials
The participants worked with three worked-out examples
that addressed the multiplication of complex numbers.
The chosen topic was new and relevant to them: First, it
concerned elementary concepts and objects like polynomials,
the fundamental theorem of algebra and trigonometric
functions. Dealing with complex numbers helps participants
in understanding these contents, which will be relevant
for teaching in school, from a more general point of view.
Second, this topic represents a foundation for further lectures
in algebra, analysis, geometry, etc. Third, the experience of
becoming acquainted with a new number system has parallels
to school children’s first encounter with rational and real
numbers, and, thus, gives future teachers the chance to reflect
on certain aspects and obstacles concerning the encounter
with new numbers.

Worked-out examples were chosen because they allow a
structured investigation of self-explanations and constitute
a common format in self-explanation research studies (see
literature review). Every used worked-out example (Figure 1)
was divided into three parts: (1) transformation of Cartesian
coordinates into the trigonometric form of polar coordinates,
(2) calculation of the product of two complex numbers

represented in the trigonometric form and (3) the geometrical
representation of the calculated product.5 The second worked-
out example showed a second solution to a similar multiplication
task and followed the same structure as the first example.
In contrast to the first example, the coefficients of the
complex numbers were fractions which represented vectors
outside the first quadrant of the coordinate system. The third
worked-out example dealt with trigonometrically represented
polar coordinates that had to be transformed into Cartesian
coordinates. Subsequent to this transformation, the Cartesian
coordinates were multiplied and geometrically represented.
Furthermore, the material contained different representations
(symbolic calculations, geometrical representations and a part
where those two were intertwined).

Objects of the Intervention
The following list provides a selection of favored self-
explanations likely to arise during learning with the first
worked-out example. They depict general principles of and
insights into the mathematical topic and were results of a
mathematical-content analysis6 that was based on Hankel (1867)
and Courant and Robbins (2010). The complete list forms
the basis for the identification of adequate self-explanations
(see Supplementary Material and section “Coding of Self-
Explanations”). Numbers in parentheses refer to the three parts
of the first example. A learner. . .

(1) explains the calculation of the vector’s length as application
of the Pythagorean Theorem.

(1) recognizes the calculation of the angle α as the application
of a trigonometric equation in a right-angled triangle.

(1) integrates the symbolic representation of a complex
number and its parts with respective characteristics of the
geometrical counterpart.

(2) explains the change of the algebraic sign between line four
and five of the calculation by the relation i2

= −1.
(2) explains the simplification from line six to seven of the

calculation as an application of the addition theorems.
(3) identifies the factor

√
74 as the length of the vector s · t.

(3) recognizes that the resulting angle of s · t is the
sum of α and β.

Procedure
First, participants had to complete a pre-test assessing their prior
knowledge and competencies concerning complex numbers,
trigonometric calculations and functions, and rules of calculating.
The test contained 20 items where students had to draw complex
numbers in different representations in coordinate systems (4),
simplify simple and more complicated symbolic terms with roots
and complex numbers (6), determine sine and cosine on right-
angled triangles and in the unit circle (6) and give reasons for
properties of real and complex numbers (4). The participants had
45 min to complete the test. On the one hand, the results revealed

5The worked-out examples were constructed based on state-of-the-art guidelines
for instructional material (e.g. Mayer, 2014).
6This mathematical content analysis was carried out by a mathematician and two
researchers of mathematics education, one of them being the author.
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FIGURE 1 | First worked-out example that was used in the intervention phase (translated from the German original, scaled-down version).
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whether participants had the necessary basic arithmetic and
algebraic knowledge for the intervention.7 On the other hand,
participants with too much experience in the field of complex
numbers and polar coordinates could possibly be excluded from
the study.8

In the intervention phase, the participants worked individually
with three worked-out examples presented on paper. The
assignment given to them was explained in the following way:
“Try to understand the worked-out examples. Signal when you
have finished. And please think aloud.” After any period of
20 s of silence, the participants were reminded to think aloud.
There was no time limit. The participants were permitted to use
a prepared ‘cheat sheet’ with definitions and formulas, a pen,
a triangle ruler and a calculator application on the computer
screen. The think-aloud procedure followed the guidelines of
Ericsson and Simon (1993) and Greene et al. (2011). Before
the intervention phase there was a short training sequence for
the think-aloud procedure. No guidelines on taking notes or
gesturing were provided, so all occurrences of gestures and notes
were produced spontaneously.

Data
The data base for the analysis of self-explanations consisted of
video recordings from the intervention phases of 33 participants.
These intervention sequences contained verbal data (participants’
voices) and non-verbal data (recordings of the participants’
upper bodies and bodily actions, recorded by the webcam on
top of a computer display, and the recordings of calculations
made on the computer screen). Furthermore, written notes,
comments and calculations made on the worksheets, the ’cheat
sheets’ or additional blank paper were collected (referred to as
written data).

Analysis
To analyze the data, a qualitative content analysis consisting of
two phases was conducted (Mayring, 2000; Lamnek, 2010). The
units of coding, context and analysis were refined successively.

Pilot Phase
During the pilot phase, preliminary category schemes were
derived from a literature review (see section “Coding of Self-
Explanations”). Based on two video sequences of students (unit
of coding) who did not participate in the main study, the category
schemes were revised, refined and adapted to the empirical
findings (Mayring, 2000). Specifically, categories were extended
to include written and non-verbal data, e.g. regarding the ways
in which special examples of self-explanations were uttered
through written or non-verbal expressive products, and regarding
their intertwining with verbal utterances. The unit of context
comprised a learning session of a participant, and the units
of analysis comprised verbal utterances including gestures and
notes. All codings were based on semantic features.

7A list summarizing necessary prior knowledge was another result of the
mathematical content analysis mentioned above.
8One student was excluded.

Main Phase
Data gathered during the main phase consisted of video
sequences from 33 participants. The units of context and analysis
were identical to those employed during the pilot phase. In
order to compare the self-explanations coded on the basis
of different data and to follow common frameworks in self-
explanation studies, recordings were divided into units of analysis
based on verbal data. A unit of analysis was a sentence, a half-
sentence or a shorter utterance, separated from other sentences
by pauses. The segmentation of the data was done by both coders
together. Disagreements were discussed and solved. This division
was maintained throughout all coding procedures. The coding
procedures are described in the next paragraph.

CODING OF SELF-EXPLANATIONS

The 33 video sequences were coded three times in consecutive
coding procedures (described in sections “First Coding
Procedure – Verbal Data,” “Second Coding Procedure – Verbal
and Written Data,” and “Third Coding Procedure – Verbal,
Written and Non-verbal Data”). Using the category schemes
resulting from the pilot phase, each coding procedure was
applied by a total of two coders familiar with the mathematical
content and the research method. These coders coded the
video material in all three procedures. 10% of the videos
were encoded by both coders to determine the inter-coder
reliability (described in section “Inter-Coder Reliability”).The
first procedure used only the verbal data from the video
recordings to analyze verbal utterances, which included all
spoken words, sentences and sounds. During the second
procedure, the verbal data from the recordings and the written
data were included. During the third procedure, the verbal,
written and non-verbal data were included. Facial expressions
were omitted from the analysis. The units of analysis were held
constant throughout all procedures to allow for a one-to-one
comparison between the analyses and thus facilitate quantitative
comparisons. Examples of self-explanations identified during
each of the three coding procedures can be found in the
results section.

First Coding Procedure – Verbal Data
Based on the division into units of analysis, the verbal data was
categorized first. The term “verbal data” refers to the audio track
of the video recording, the first coding procedure was carried
out based on this audio track. Two decisions were made for
every unit of analysis: (a) Can a self-explanation be identified?
(Identification of self-explanations). (b) If so, can the self-
explanation be identified as adequate or inadequate with respect
to the mathematical goals of the intervention? (Determination of
adequate and inadequate self-explanations).

(a) Identification of self-explanations. Based on the verbal data,
it was coded whether a unit of analysis was a self-explanation or
not, using the following category scheme:

• (Self-explanation): A unit of analysis was coded as a
self-explanation if a generation of inferences and/or a
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mapping of inferences or information onto the learners’
existing mental models could be identified; hence, if
self-explaining could be reconstructed. Typical examples
are activating prior knowledge for explanations of solution
steps, calculations or representations; integrating different
representations, e.g. symbolic and geometrical; and
drawing inferences from information depicted in examples
or the ‘cheat sheet.’
• (No self-explanation): Examples for passages coded as

no self-explanation are: reading a sentence from the
instructional material without signs of bringing in new
information through written or non-verbal utterances, or
mentioning a number and pointing to it without integration
of other information.

Category schemes used to develop the scheme for
identification of self-explanations in the present study were
those published by Chi et al. (1989), Renkl (1997), Wong et al.
(2002), de Koning et al. (2011), and Salle (2014). The given
categories were collected, merged if necessary and refined
based on the results of the pilot phase, including written
and non-verbal utterances. Finally, all identified categories
were grouped together to the category “self-explanation”
given above.

(b) Identification of adequate and inadequate self-explanations.
Based on the verbal data, it was decided if a coded self-
explanation was adequate or inadequate. If a self-explanation
could not be identified as either, it was left unclassified in step
(b). The following category scheme was used:

• (Adequate): Self-explanations that matched the goals of
the intervention phase were coded as adequate self-
explanations, e.g. if a learner identified the vector s
as geometrical representation of the symbolically given
complex number s (list “Objects of the intervention” in
section “Materials and Methods”).
• (Inadequate): With regard to the mathematical subject

of complex numbers, self-explanations that revealed
misconceptions, misunderstandings or inference errors
were coded as inadequate, e.g. if a learner mistakenly
explained the form of an equation by a multiplication with
i instead of a rearrangement of terms.

(Unclassified): If it could not be derived whether the self-
explanation was adequate or not, the self-explanation passage was
labeled as unclassified.

Based on the mathematical content analysis described in
Section “Materials and Methods,” misconceptions and typical
errors were determined. The formulation of the category
scheme for adequate and inadequate self-explanations was
based on Wilkin (1997), McNamara (2004), Butcher (2006),
Ainsworth and Burcham (2007), and de Koning et al. (2011)
regarding the remarks in Section “Adequate and Inadequate
Self-Explanations.” The categories of adequate and inadequate
self-explanations were then supplemented with findings from
the pilot phase.

Second Coding Procedure – Verbal and
Written Data
The second coding procedure followed the same steps as the
first, but was based on the verbal data from the recordings
supplemented by the written data. To synchronize the two
data sources, the written data was scanned and segmented by
time before the second coding procedure. This preliminary
segmenting was conducted by a person not involved in the coding
procedures. For every unit of analysis, it was checked, based on
the written and video data, which written expressive products
were present at its end and its beginning. By this comparison,
it could be derived which annotations were made during that
unit. The set of these annotations constituted the written data
belonging to the respective unit of analysis.9

The two decisions described above (identification of self-
explanations and identification of adequate and inadequate self-
explanations) are supported by a broader data base which
includes the intertwining of the two types of utterances (see
theoretical framework). Based on these two data sources, coding
was carried out simultaneously without knowing the results of the
first procedure. Differences between the results of the two coding
procedures (units of analysis that were coded as self-explanations
in one of the two procedures but not the other) were analyzed
again by a second person to avoid coding errors. Discrepancies
were then solved by consensus.

Third Coding Procedure – Verbal, Written
and Non-verbal Data
For the third coding procedure, the data base was extended to
verbal, written and non-verbal data. For every unit of analysis
the coders listened to the audio data, read the segmented written
products and, additionally, watched the video sequence of the
participant’s body, hands, and all objects on the table in front of
the participants.

Although the coding procedure applied here is not based
on transcriptions of verbal and non-verbal data, methodological
advices from McNeill (2005, 263f.) were considered for the
coding of the video sequences. Before beginning the coding
procedures, the first pass to “facilitate interpretations of gesture
productions on later passes,” an analysis of the “product
of elicitation” (results of the mathematical content analysis
described in “Materials and Methods”), was discussed with all
coders (McNeill, 2005, p. 264). Several purposes of the passes
5 and 6 described by Duncan and McNeill were considered
for the coding procedure including non-verbal data to identify
locations of gestures, beginning and ending of gesture phrases,
and the identification of movements as gestures or actions.
Hence, during the third coding procedure and based on the
interplay of the three data sources, coders answered the following
questions before they decided whether a unit of analysis could
be counted as a self-explanation, respectively, as an adequate
or inadequate self-explanation: is there a relevant movement
visible in the non-verbal data? Is the relevant movement a
gesture or an action? Is the whole gesture (“gesture phrase”)

9This comparison was based on video data (see also the discussion section).
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or action located inside the unit of analysis or does it
begin/end in a adjacent unit? The respective answers provided
the foundation for the categorization of passages as self-
explanations and their classification as adequate or inadequate.
Again, discrepancies in the three coding procedures as described
above were analyzed by a different person to avoid errors and then
solved by consensus.

Inter-Coder Reliability
Inter-coder reliability for all coding procedures was ascertained
by two coders based on categorizations of 10% of the data.
Because of the small number of categories, all reliability values
were calculated with Cohen’s κ, which takes random matches
into account (Wirtz and Caspar, 2002). For the coding of self-
explanations, the inter-coder reliability was 86.96% for the coding
procedure based on verbal data, 88.93% for the procedure based
on verbal and written data, and 89.2% for the coding based on
all available data. Decisions on adequate and inadequate self-
explanations showed an inter-coder reliability of 84.79% based on
verbal data, 88.6% based on verbal and written data, and 90.11%
for the coding based on all available data. Discrepancies were
resolved by consensus.

RESULTS

The results section consists of four parts. Subsections “Coding
of Self-Explanations,” “Changes of the Coding Results With
Different Data Bases,” and “Alteration of the Interpretation of
a Self-Explanation” depict results concerning the first research
question (see section “Research Questions”): in what way will
the consideration of non-verbal utterances (e.g. spontaneous
gestures and actions) and written utterances (e.g. notes and
diagrams) alter or support the coding of self-explanations?
Subsection “Adequate and Inadequate Self-Explanations” depicts
results concerning the second research question: In what way
will the consideration of non-verbal and written utterances alter
or support the determination of self-explanations as adequate or
inadequate?

The pre-test results of the 33 subjects range between 36% and
87% (Figure 2). All participants had the basic knowledge that
was necessary for the intervention phase (basic knowledge of
sine and cosine, calculations with sine, cosine and real functions,
and rearranging equations). There are small correlations between
pre-test results and the number of coded self-explanations that
increase with additional data sources (Table 1). Therefore, a
strong relationship between prior knowledge and coding results
could be ruled out.

FIGURE 2 | Pre-test results of all participants.

TABLE 1 | Correlations (Bravais–Pearson) between pre-test results and coding
results.

Verbal Verbal and written Verbal, written, and
non-verbal

Pretest result in % 0.17 0.21 0.27

Coding of Self-Explanations
On average, each one of the 33 data sessions lasted about
24:36 min (standard deviation: 14:28 min). In total, 935 self-
explanations were coded based on all available data. Without
non-verbal data and based on verbal and written data only, 738
self-explanations were coded, which amounts to a difference of
197 self-explanations. From the 197 self-explanations 31 could be
coded because of actions like using the calculator or the ‘cheat
sheet.’ The remaining 166 could be coded because of gestures and
their intertwining with verbal and written data. In all but three
of these 166 passages, participants used gestures that point to or
retrace objects depicted in the material. Based on verbal data only,
676 self-explanations were coded; this amounts to a difference
of 62 self-explanations that were not coded because written data
were not considered. Compared to the coding results based on
all available data, 259 self-explanations were not coded based on
verbal data (Figure 3).

The individual results of the self-explanation coding show
differences in the number of self-explanations coded during each
of the three coding procedures (Figure 4). Some participants’
self-explanations were coded based nearly exclusively on verbal
data (no. 8, 16, 17, 26 in Figure 4), while others show more
codings based on all available data (no. 1, 10, 11, 24, 25, 33
in Figure 4). Other learners showed greater numbers of self-
explanations that were coded based on verbal and written data
(no. 3, 10 in Figure 4).

The following sequence gives an example for a self-
explanation that could only be coded during the coding
procedure based on all available data.

A self-explanation only coded due to the inclusion of non-
verbal data. Leo (participant no. 24 in Figure 4) is reading the
lines of the calculation on the first example sheet (see Figure 5).
The transcript depicts two units of analysis, divided by the
pause in line 2.

Leo: At first cosine times cosine (points at #1 and #3) sine
times co- (points at #2 and #3).,
ah, at first cosine times sine, (points at #1 and #4) sine times
cosine (points at #2 and #3), and sine times sine (points at #2
and #4) with the i square.

Looking only at the verbal protocol without considering
the accompanying pointing gestures, it seems as if Leo reads
aloud the third line in the snippet, because the words refer
almost exactly to the depicted formula (Figure 5). However,
the accompanying pointing gestures intertwined with the verbal
utterances reveal a self-explanation: She connects line two (the
line she is pointing at) and line three (the line she compares her
words to) of the calculation by carrying out the expansion of
the product with her fingers. Hence, based on all available data,
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FIGURE 3 | Numbers and percentages of self-explanations coded during the three coding procedures.

FIGURE 4 | The lengths of the bars depict the individual numbers of self-explanations coded during the three coding procedures. Subjects were ranked with regard
to their number of self-explanations that was coded based on verbal, written and non-verbal data.

FIGURE 5 | Snippet of Leo’s example sheet. Leo points at these four positions while she seems to read out parts of the line below.

this segment could be coded as a self-explanation in the third
coding procedure. During this scene, Leo did not produce written
data. This example illustrates a behavior frequently observed
during the coding procedures. Verbal utterances that seem to be
read aloud text passages become self-explanations when taking
accompanying gestures into account.

Changes of the Coding Results With
Different Data Bases
On average, 72.3% of all coded self-explanations were coded
based on verbal data. Thus, there is an average difference of
28.14% in contrast to the coding based on all available data (see
Figure 3). The individual differences between results based on
these two data bases vary with a standard deviation of 16.19%.
Individual results describing the proportion of self-explanations
that were coded based on all available data range between 70%
(learner no. 33 in Figure 4: seven out of ten self-explanations
were coded based on all available data) and 0% (learners no. 26

and no. 31 in Figure 4: all self-explanations were coded based
on verbal data only). Although there is a tendency toward higher
differences in higher ranks, higher as well as lower differences can
be found across the whole spectrum of ranks.

Although some partial sequences remain the same, there
is a non-negligible difference between the different ranks
and the different total numbers of self-explanations that
could affect, e.g. subsequent statistical calculations predicting
individual achievement (see Figure 6).

Alteration of the Interpretation of a
Self-Explanation
The quantitative coding does not consider the concrete
interpretation of a self-explanation, e.g. whether a coded
self-explanation is an activation of prior knowledge or the
identification of a goal of an operation. However, a detailed
analysis of certain self-explanations reveals a further aspect
regarding the influence of written and non-verbal data on
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FIGURE 6 | Results of coding self-explanations with different data bases. The
black bars depict the number of coded self-explanations based on verbal
data. The light gray bars depict the number of coded-self-explanations based
on verbal, written and non-verbal data. Bars are ordered according to the
numbers of self-explanations coded based on verbal data (numbers in
parentheses). In comparison, the order according to the numbers of
self-explanations coded based on verbal, written and non-verbal data is
depicted.

the identification of self-explanations. The following snippet
shows in detail how a self-explanation receives an additional
meaning when it is interpreted based on all available data. Lena
(participant no. 10 in Figure 4) is working on the second example
and tries to understand the transformation of s = − 1

2 +
1
2 · i into

polar coordinates (see Figure 7).

Lena: Now I ask myself why, where this two by two comes
from, (points at #1) but, .ah, exactly, this is here (points at #2)
(points at #3). opposite side (lifts the pencil and points at #3
again). by adjacent side.

This self-explanation was coded based on verbal data because
the words “opposite side” and “adjacent side” are neither
depicted on the worked-out example nor on the ‘cheat sheet.’10

10In the original protocol, she uses the words “Gegenkathete” for opposite side and
“Ankathete” for adjacent side, which are technical terms in German.

So, without considering the pointing gestures, this self-
explanation would be described as an activation of prior
knowledge because Lena uses the technical terms she has learned
in class. However, considering the pointing gestures leads to
an additional interpretation as an integration of geometric and
symbolic representations, because the participant combines the
fraction and coordinate system using her words and gestures
simultaneously. Generally, the additional data often revealed
integrations of representations (as can be seen in Lena’s protocol)
or links between different information.

Results so far have focused on whether a unit of utterances
is a self-explanation or not and how a self-explanation can
be interpreted. In the following subsection, the influence of
the different data on the categorization of self-explanations as
adequate and inadequate will be analyzed.

Adequate and Inadequate
Self-Explanations
Of all 935 self-explanations, 835 could be determined as adequate
and 68 as inadequate. In the end, 32 self-explanations could not
be identified as adequate or inadequate and were left unclassified.

Number of Coded Adequate and Inadequate
Self-Explanations
835 adequate self-explanations could be identified by considering
all available data. Based on verbal and written data, only 59.9%
(500 of 835 self-explanations) were coded as adequate. About
48% (400 of 835 self-explanations) were coded as adequate
based on verbal data (Figures 8A,B). Comparing the coding
procedure based on verbal data and the coding procedure based
on all available data, individual coding results of adequate self-
explanations vary with a standard deviation of 20.55% around
the mean of 48% (Figure 9). The individual proportion of
adequate self-explanations coded based on all available data
ranges between 84.8% (learner no. 10: only 5 of 33 adequate
self-explanations were coded based on verbal data) and 0%
(learners no. 26 and no. 31: all coded adequate self-explanations
were coded based on verbal data). Thus again, although there
is a tendency toward higher differences in higher ranks, higher
differences as well as lower differences can be found across the
whole spectrum of ranks. The overall percentages are even more
distinct when reconstructing inadequate self-explanations: 68
inadequate self-explanations could be identified by considering
all available data (n = 68). Based on verbal and written data,
47.1% (32) self-explanations were categorized as inadequate.
Considering verbal data, only 26.5% (18) inadequate self-
explanations could be identified.

To give an insight into the importance of non-verbal data for
the coding of inadequate self-explanations, a typical example is
presented in the following paragraph.

An Example of an Inadequate Self-Explanation
Coded Based on Verbal and Non-verbal Data
Emily (participant no. 1 in Figure 4) reads out the fourth line
of the solution: “The angle between the R-axis and the vector s
is.” (Figure 7).
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FIGURE 7 | Snippet corresponding to Lena’s (#1, #2, #3) as well as Emily’s (#4, #5) protocols in Sections “Alteration of the Interpretation of a Self-Explanation” and
“Adequate and Inadequate Self-Explanations.”

FIGURE 8 | Data used to code adequate (A) and inadequate (B) self-explanations. The first row depicts the proportion based on verbal, written and non-verbal
data. The second row depicts the corresponding proportion based on verbal and written data. The third row depicts the proportion of adequate self-explanations
that were coded based on verbal data.

Emily: Ok, the angle between the R-axis,. that’s this one (traces
along the i·R-axis at #4). and the vector s, this one. (traces
along vector s at #5).

Without the pointing gestures, the coder does not know which
part of the example her comment “that’s this one” refers to. From
the intertwining of speech and gesture it can be recognized that
she is identifying the wrong axis. In general, self-explanations
like linking of concepts or notions to geometrical representations
are often accompanied by written notes or pointing gestures. In

order to decide whether a self-explanation is adequate or not,
coders have to know the positions, terms and numbers in the
given calculation to which participants may refer.

DISCUSSION

Summary of the Findings
Although more than two-thirds of all self-explanations
(676 of 935) could be reconstructed solely based on verbal
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FIGURE 9 | Data used to code adequate self-explanations. The subjects are ordered according to the number of self-explanations coded based on verbal, written,
and non-verbal data (same order as in Figure 4).

data, the consideration of gestures, actions and written
products notably affected individual results distinctly:
individual differences in self-explanations coded in the
three procedures vary independently of the amount of self-
explanations and the resulting ranks. The results underline
the key role of video data to link the instructional material
and written notes to verbal utterances: taking into account
more data results in more distinct changes in the ranking.
An analysis including written and non-verbal data seems
to fit better to the concept of self-explaining than an
analysis without.

The influence of written and non-verbal data is even more
important for the coding of self-explanations as adequate or
inadequate. Verbal data often leaves the researcher uncertain
with regard to objects referred to and connections emphasized
by participants. Taking into account the intertwining of verbal
utterances, written notes and gestures seems to improve the
reconstruction of adequate and inadequate self-explaining and,
hence, complex learning processes.

The variability of individual coding results for self-
explanations as well as adequate and inadequate self-explanations
may have several reasons. Important factors why people
gesture more or less are the spoken language (Pika et al.,
2006), differences in cognitive abilities (e.g. Hostetter and
Alibali, 2007; Wartenburger et al., 2010) or other personal
characteristics (Hostetter and Potthoff, 2012). Apart from
general differences in gesture frequency, processing difficulties
and the strength of mental representations may have an
influence on how frequently learners use gestures (Melinger
and Kita, 2007; Sassenberg and van der Meer, 2010). Another
explanation for the differing coding results based on written
data might be the differing use of learning strategies that
need paper and pencil, like note-taking (Kiewra et al., 1995;
Kobayashi, 2006). Last but not least, the general use of self-
explaining activities influence the individual coding results
as well; empirical studies show that students have different

self-explanation-styles and, therefore, the quality and quantity of
spontaneously generated self-explanations may differ distinctly
(Renkl, 1997).

Methodological Discussion
The analyses described in this paper tried to thoroughly
investigate multimodality and self-explanations, which is
a very effortful endeavor. In order to facilitate similar
methodological approaches, e.g. the application of tablets
could decrease the effort: participants’ written products
could be segmented and assigned to specific units of analysis
automatically. By omitting facial expressions, the current
analysis of non-verbal data was less complex than an analysis
including such expressions; however, considering such data
could increase the precision of self-explanation analyses.
The same holds true for gaze analysis via eye-tracking
devices, which may give further insights into learners’
self-explaining activities (e.g. Conati and Merten, 2007;
Hodds et al., 2014).

This paper follows a traditional approach to self-
explanation analysis as applied in many previous studies
(e.g. Chi et al., 1989; Renkl, 1997; McEldoon et al., 2013)
and extends this approach by including further modalities.
Hence, on the one hand, the constant segmentation used
throughout the study provides a reliable frame for a one-
to-one comparison of analyses considering different data
bases. Furthermore, the results offer some perspectives for
methodological variations of traditional self-explanation
studies. For example, by consideration of written and
non-verbal data, maybe even sparse verbal protocols may
reveal self-explaining activities (such sparse protocols were
mentioned, e.g. in Renkl, 2002; Renkl et al., 2004). On the
other hand, certain characteristics of multimodality could
not be considered in the analysis, e.g. in what way different
modalities alter the segmentation of the data or whether
there are fundamental differences between self-explanations
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accompanied by gestures or actions and self-explanations
unaccompanied by gestures or actions. The use of gestures
could be related to the proximity of uttered concepts to
practical actions (Kita et al., 2017) or to the use of metaphors
that express spatial concepts (Lakoff and Johnson, 1980;
Lakoff and Núñez, 2000). Other explanations may refer
to the cognitive effort – the more demanding cognitive
processes are, e.g. conceptualization, the more often gestures
occur (Hostetter et al., 2008) – or to the durability of self-
explanations: frequent gesturing will “make learning last”
(Wagner Cook et al., 2008).

The fact that in the present study 676 self-explanations could
be coded solely based on verbal data does not imply the absence
of gestures. Although not necessary for the coding decision, more
than two thirds of these 676 self-explanations and about 80% of
all 935 coded self-explanations were accompanied by gestures
or actions.11 Thinking aloud appears to be strongly connected
to gesturing and acting in silence (Schwartz and Black, 1996;
Hegarty et al., 2005), particularly if no visible human person is
available as a dialogue partner (Emmorey and Casey, 2001).

More detailed analyses regarding the interplay of and
emphasis on the modalities involved could provide deeper
insights into the learners’ cognitive effort of learners (e.g.
more frequent use of gestures when learners engage in more
demanding cognitive processes), their specific use of gestures in
combination with speech and writing (e.g. lowering cognitive
load by locating things with gesture or writing things down;
intertwining use of writing and gesturing for themselves) and,
more generally, into their generative cognitive activities. In
combination with the broadened concept of self-explanation
introduced in this paper, answers to these questions may
provide a foundation for an intensified conceptual discussion
and for the integration of self-explanations and gestures (Alibali
and Goldin-Meadow, 1993; Kita et al., 2017). Comparisons
to gesture-speech mismatches (Alibali and Goldin-Meadow,
1993), growth points (McNeill, 2002) or, more general, cognitive
functions of gesturing like the activation, the manipulation,
the packaging or the exploration of spatio-motoric information
(Kita et al., 2017) offer promising starting points for further
theoretical integration.

Implications for Learning and Instruction
Since instructional learning is an important method in schools
and universities around the world, the implementation of
self-explaining in such settings is highly relevant (Chiu and
Chi, 2014). Considering the results presented in this paper,
teachers seeking to identify specific self-explaining processes
applied by learners have to carefully consider not only
verbal utterances, but all multimodal aspects. Especially the
subtle changes expressed by writing, gesturing and their
combined use can help determine concrete self-explaining
processes carried out more precisely (e.g. distinguishing reading
of a passage, activating prior knowledge and integrating
different representations) in order to facilitate individual
learning processes. Based on the qualitative analyses in this

11Details of this analysis are not depicted in this paper.

study, it could also be hypothesized that a classification
of high quality and low quality self-explanations would be
affected distinctly by the consideration of more modalities
(cf. Roy and Chi, 2005). This could be of some benefit especially
to the identification of successful self-explaining activities and
elicitations through self-explanation prompts or trainings in the
classroom, and could hereby confirm or alter the scope of such
interventions to foster meaningful learning (Chi et al., 1994;
Berthold et al., 2009).

Furthermore, teachers often support their explanations by
writing, diagrams on a blackboard or a slideshow, and gestures
(Alibali et al., 2014; Yeo et al., 2017). Since these teachers’
gestures influence the learners’ understanding of learners and
are partly imitated by them (e.g. Goldin-Meadow et al.,
1999; Cook and Goldin-Meadow, 2006), teachers’ awareness of
how such gestures influence learners’ explanations and self-
explaining could lead to a deeper understanding of what’s
going on in the learners’ minds. Additionally, for learners
as well as teachers, knowing in what way gesturing (to
oneself and to others) can influence self-explaining would
be of extremely high value for the understanding and
improvement of learning. Deeper analyses of the functions
and purposes of gestures during self-explaining could, for
example, clarify to what extent actions and gestures may
decrease cognitive load during learning (Goldin-Meadow, 2010;
Alibali et al., 2011; Krause and Salle, 2016; Kita et al., 2017).
This information could provide learners with the opportunity
to optimize their self-explaining by an adequate use of
specific gesturing.

Implications for Further Research
Several questions arise from the results presented. This paper
does not address the influence of different coding results
on predictions of achievement; to confirm the predictive
power of multimodal self-explanations, further studies may
quantify the extent to which those predictions vary by the
inclusion of additional data sources during analysis. Therefore,
multimodal self-explanations may serve as reliable measures
for the construction and evaluation of instructional materials
(e.g. Renkl, 2005; Butcher, 2006; de Koning et al., 2011).
Furthermore, future analyses may reveal the extent to which
gestures accompanying self-explanations can be characterized
in terms of iconic, metaphorical and deictic gestures (McNeill,
1992; Goodwin, 2003; Edwards, 2008), or, in more detail, as
tracing gestures or pointing gestures (cf. Hegarty et al., 2005).
Additionally, it remains unclear to what extent these gestures
can be found when dealing with geometrical representations
instead of symbolic calculations, in what way they are intertwined
with simultaneous verbal and written utterances and whether
the presence or absence of the learning material and the
presentation on paper or screen influence gesturing and
learning. Regarding current theories on cognitive functions of
gestures, answers to these questions could shed light on more
fundamental questions regarding the use of gestures during
thinking (Kita et al., 2017).

Although the results discussed here are specific to the
mathematical domain, it could be hypothesized that written and
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non-verbal data may influence the results of self-explanation
studies in other domains, too. The analytical approach therefore
may provide a promising starting point for a deeper analysis of
cognitive activities in general.
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Students Rely on When They
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Katharina Siefer1* , Timo Leuders1* and Andreas Obersteiner1,2*
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Self-efficacy is an important predictor of learning and achievement. By definition,
self-efficacy requires a task-specific assessment, in which students are asked to
evaluate whether they can solve concrete tasks. An underlying assumption in
previous research into such assessments was that self-efficacy is a one-dimensional
construct. However, empirical evidence for this assumption is lacking, and research
on students’ performance suggests that it depends on various task characteristics
(e.g., the representational format). The present study explores the potential multi-
dimensionality of self-efficacy in the topic of linear functions. More specifically, we
investigate how three task characteristics – (1) the representational format, (2)
embedding in a real-life context, or (3) the required operation – are related to
students’ self-efficacy. We asked 8th and 9th graders (N = 376) to evaluate their
self-efficacy on specific linear function tasks which systematically varied along the
three dimensions of task characteristics. Using confirmatory factor analysis, we
found that a two-dimensional model which includes the task characteristic of real-
life context (i.e., with vs. without a real-life context) fitted the data better than
other two-dimensional models or a one-dimensional model. These results suggest
that self-efficacy with linear functions is empirically separable with respect to tasks
with vs. without a real-life context. This means that in their self-evaluation of
linear function tasks students particularly rely on whether or not the linear function
task is embedded in a real-life context. This study highlights the fact that even
within a specific content domain students’ self-efficacy can be considered a multi-
dimensional construct.
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INTRODUCTION

Self-efficacy is an important predictor of school learning and it
is closely linked to performance (Bandura, 1977; Valentine et al.,
2004; Zarch and Kadivar, 2006; Klassen and Usher, 2010; Honicke
and Broadbent, 2016; Talsma et al., 2018). Self-efficacy can be
understood as “a situational or problem-specific assessment of
an individual’s confidence in her or his ability to successfully
perform or accomplish a particular task or problem” (Hackett
and Betz, 1989, p. 262). In line with this definition, Bandura
(2006, 1977) recommended assessing self-efficacy in a task-
specific way. One way of conducting task-specific assessments is
to confront individuals with concrete mathematical tasks and ask
them how well they think they are able to solve them. Another
way is to provide an individual with a (more abstract) description
of a type of mathematical task (instead of presenting the tasks
themselves) and ask them to evaluate their abilities. The former
approach seems preferable because it requires less abstraction.
However, the caveat to this approach is that it is unclear which
characteristic of the tasks presented students will actually rely
on when evaluating their own abilities. Previous studies that
used task-specific assessments of self-efficacy in mathematics
often do so without considering the potential impact of a
student’s interpretation of different task characteristics (Kranzler
and Pajares, 1997; Krawitz and Schukajlow, 2018). An implicit
assumption of such a task-specific definition and assessment
is that self-efficacy is a one-dimensional construct. However, it
is largely unclear whether and in which cases this is a valid
assumption. There are few studies (Street et al., 2017) which have
addressed the empirical separability of self-efficacy dimensions
in mathematics, and there is no study in the domain of linear
functions. The present study investigates the way in which
students’ self-efficacy regarding linear functions depends on
task characteristics. We chose the mathematical topic of linear
functions because in this domain research has identified task
characteristics that actually affect performance (Leinhardt et al.,
1990; Bayrhuber et al., 2010; Schukajlow et al., 2012; Bock et al.,
2015). It is also a key topic in the mathematics curriculum
in all grades. As a general goal, this study aims to combine
a domain-specific, mathematics-educational perspective with a
more psychological perspective on self-efficacy.

Self-Efficacy
Bandura defined self-efficacy as “people’s beliefs about their
capabilities to produce designated levels of performance”
(Bandura, 1994, p. 2). In comparison to other related constructs,
such as the academic self-concept, self-efficacy is related to a
specific activity for solving a problem rather than a general
evaluation of one’s own competence (Marsh et al., 2018).
Self-concept is often conceptualized in a broader way than
self-efficacy and it encompasses the entire system of beliefs
about oneself and one’s self-evaluation (Shavelson et al., 1976),
which includes knowledge about oneself, personal qualities,
competences, interests, feelings, and behavior (Rosenberg, 1979).
Marsh et al. (2018) distinguished between both constructs on
a theoretical and empirical basis using a sample of N = 3350
students. These authors suggest three main distinctions between

self-efficacy and self-concept: first, the relation to which the
assessment of self-concept or self-efficacy takes place (self-efficacy
stands in relation to one’s individual self, self-concept in relation
to a social group); second, the temporal orientation of the
prediction (self-efficacy is related to the future, self-concept is
related to the past); and third, the evaluation or description of the
constructs (self-efficacy seems more a description of one’s own
abilities whereas self-concept has a higher abstraction). In our
study we focus on the construct of self-efficacy.

The concept of self-efficacy is not uniformly used in the
literature, which can make interpretations of empirical findings
difficult (for an overview see Bong and Skaalvik, 2003; Ferla
et al., 2009; Marsh et al., 2018). Roughly, the literature on self-
efficacy has differentiated between varying levels of self-efficacy
in respect to specificity (Bandura, 2006; Honicke and Broadbent,
2016; Marsh et al., 2018) (see Figure 1 for an overview). At the
first and most general level, self-efficacy (largest circle in Figure 1)
represents one’s confidence in one’s ability to successfully perform
at school, such as in classroom discourse, seatwork, homework or
in tests (Mittag et al., 2002). An example of an instrument that
assesses self-efficacy at this general level is the frequently used
survey by Jerusalem and Satow (1999). An example of a question
in their instrument is: “I can solve difficult tasks if I pay attention
in class.”

At the second, domain-specific, level, self-efficacy depends
on certain domains such as school mathematics or writing (two
medium-sized circles) (Lewis et al., 2012; Marsh et al., 2018). One
example is the frequently used Mathematics Self-Efficacy Scale
(MSES) scale by Betz and Hackett (1983) as well as Kranzler
and Pajares (1997) with items like: “I feel confident enough to
ask questions in my mathematics class.” Other than in the scales
of Jerusalem and Satow (1999) described above, items in this
instrument explicitly refer to the domain of mathematics.

The MSES scales of Betz and Hackett (1983) also include a sub-
scale with concrete tasks, which is a characteristic of the third
level of self-efficacy. At this most specific level, self-efficacy is
considered in a specific subject area (the smallest circles) such as

FIGURE 1 | Levels of self-efficacy with varying subject specificity.
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geometry, algebra (Hackett and Betz, 1989) or functions (Siefer
et al., 2020), which are all areas of mathematics. Students have
to evaluate their abilities for solving specific tasks. Typically,
students are presented with specific tasks and have to indicate
for each whether they think they have the ability to solve it
successfully. The major difference to the domain-specific level is
the use of concrete tasks.

These diverse conceptualizations demonstrate that a
theoretical clarification and empirical investigation on the
operationalization of self-efficacy seems worthwhile (Pajares and
Kranzler, 1995; Bandura, 2006). Bandura (1977) highlighted that
there is not only one correct way to measure self-efficacy, but
the assessment of self-efficacy should depend on the context. He
emphasizes the necessity to be attentive to a variety of demands
within a given domain or task. In fact, Bandura (1997) clearly
states that, “in developing efficacy scales, researchers must draw
on conceptual analysis and expert knowledge of what it takes to
succeed in a given pursuit” (p. 43). Therefore, it seems important
that instruments take into account the context of what (content)
the students are taught in school.

Empirical studies find that the correlations between self-
efficacy, when assessed at different levels (task-specific and
domain-specific assessment), and self-concept are far from
perfect, suggesting that different kinds of self-efficacy assessments
may actually tap into different underlying constructs. For
example, Marsh et al. (2018) found that the correlation between
domain-specific self-efficacy (or “generalized self-efficacy,” p. 21)
in mathematics and task-specific self-efficacy (or “test-related
self-efficacy,” p. 22) was moderate to high (r = 0.58). Moreover,
domain-specific self-efficacy in mathematics correlated more
strongly with mathematical self-concept than task-specific self-
efficacy. Accordingly, domain-specific self-efficacy seems to be
related more closely to a student’s self-concept than task-specific
self-efficacy. In conclusion, to assess self-efficacy one should use
an operationalization that is linked tightly to the theoretical
conceptualization of self-efficacy as a task-specific construct. In
the following, we briefly describe different ways to assess self-
efficacy in a task-specific way.

Task-Specific Assessment of Self-Efficacy
Some studies used verbal descriptions of tasks to assess self-
efficacy, which may be considered an “indirect assessment”
(Bofah and Hannula, 2011; Dreher et al., 2020). For example,
Dreher et al. (2020) used statements like “I’m sure I can solve
tasks with graphs” to assess self-efficacy for graphs.

Another way of using a task-specific assessment of self-efficacy
is to present students a concrete mathematical task and to ask
them how confident they feel about being able to solve this
task (Siefer et al., 2020). Such an assessment may be considered
as a more “direct assessment”; indeed, there are some studies
which have used such a form of assessment. The frequently
used Mathematics Self-Efficacy Scale (MSES) by Hackett and
Betz (1989) includes 18 concrete mathematical problems from
the fields of arithmetic, algebra and geometry based on Dowling
(1978). The reliability of the whole scale of mathematical self-
efficacy was high (Cronbach’s alpha = 0.92). Yet the authors did
not analyze the dimensionality of self-efficacy further with respect

to the different content areas of arithmetic, algebra and geometry.
Moreover, the rationale for choosing tasks from these content
areas remains unclear and we do not know to what extent specific
task characteristics may have affected students’ self-evaluation.
Another example of a task-specific assessment is the study by
Bonne and Johnston (2016), who used 10 arithmetic problems
(reliability not reported).

The studies described above utilized specific tasks and showed
good reliabilities. The studies all relied on the assumption that
self-efficacy is a one-dimensional construct, and they did not
investigate its potential multi-dimensionality. There are few
studies focusing on the potential multi-dimensionality of self-
efficacy. One example is the study by Bruning et al. (2013), which
focused on general self-efficacy in writing with middle school
students (N = 696). The authors used confirmatory factor analysis
to show that in their sample self-efficacy was a three-dimensional
construct. The three dimensions in writing could be classified
as idea generation, observing conventions and self-regulation.
However, in their study, Bruning et al. (2013) did not use concrete
tasks to represent the three dimensions. In contrast, Street et al.
(2017) used concrete tasks of a mathematics performance test
with 756 Norwegian 5th, 8th, and 9th graders. They also used
confirmatory factor analysis to show that a multi-dimensional
model fitted the data best. Of course, their results depended
on the tasks used and the models tested. The dimensions of
confirmatory factor analysis were structured according to the
level of difficulty (easy, medium, difficult) in the performance
test. However, other task characteristics were not considered.
A requirement for the validity of a direct assessment is that tasks
are selected carefully in order to cover all relevant parts of the
target domain or topic. Students are then supposed to be able to
rely on all important task characteristics which may actually affect
their performance. It is possible that the same task characteristics
which had been shown to affect performance are also relevant
to students’ evaluation of their self-efficacy. However, other
task characteristics which have not been considered yet may
systematically play a role too. In order to explore systematically
such influences in the present study, we address the question of
dimensionality of self-efficacy within a particular mathematical
context: linear functions. Linear functions are a central topic in
school mathematics.

Characteristics of Linear Functions
Students develop self-efficacy in mathematics through solving
specific mathematical tasks. Students may associate their success
or failure in working with these tasks with specific task
characteristics (e.g., a specific representation) or, more generally,
with the complete content area of the tasks (e.g., functions). The
role of task characteristics is well studied in the domain of linear
functions. Linear functions are also an interesting topic to study
because they are a key concept within the domain of mathematics
and within school curricula at all ages (Vollrath, 1989; Elia
et al., 2008). Understanding functions is relevant in real-world
contexts (Van Dooren and Greer, 2010), and it is correlated
with abstract thinking as well as with performance in other
mathematical topics like problem solving (Leuders et al., 2017;
Krawitz and Schukajlow, 2018). Most importantly, research on
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linear functions has identified the challenges that students have
with respect to specific task characteristics. In the following we
describe three task characteristics which research has identified
as being challenging for many students. These task characteristics
are also typically addressed in the mathematics classroom in
line with curricula and standards for school mathematics [e.g.,
National Governors Association Center for Best Practices &
Council of Chief State School Officers, 2010; Ministerium für
Kultus, Jugend und Sport in Baden-Württemberg., 2016].

A first task characteristic when working with functions
is the representational format. Representation in the field of
linear functions includes graphs, tables and algebraic terms as
well as situational-verbal representations. Solving function tasks
often requires working with these representations. Therefore,
this characteristic includes the ability to use different forms
of representation (Leinhardt et al., 1990; Ainsworth, 1999;
Duval, 2006; Elia et al., 2008). There is broad empirical
evidence that the type of representation is relevant for students’
competencies related to functions (including their knowledge,
their abilities, their preferences, etc.). Elia et al. (2008) argue
that the ability to deal with representations is indispensable for a
deep understanding of the concept of functions. Bayrhuber et al.
(2010) assessed problem-solving abilities of 872 13–14 year-olds
when working with different representations of linear functions.
The authors showed with latent class analysis that students
have different profiles with respect to graphical, numerical and
situational-verbal representations. Studies which investigated
students’ preferences (Keller and Hirsch, 1998) found that
students tend to prefer certain representations depending on the
context of the task. Furthermore, Acevedo Nistal et al. (2013)
showed in their think-aloud study that a student’s (age 14–16)
justification of his/her choice for using a specific representation
(graph, table, term) for solving function tasks could be classified
by several dimensions, namely: task-related, subject-related,
context-related and representation-related justifications. The
result of the study documented a large number of subject-
related justifications (operationalized as justifications where
students’ subject characteristics influenced the choice itself), but
participants hardly ever gave reasons for these subject-related
justifications. Students often voiced personal preferences, yet
what these preferences were based on remained unclear. It
seems possible that students have a particular confidence in their
abilities when dealing with, for example, the representational
format of the graph. In summary, all these studies show that the
representational aspect of task characteristics is very important
and influences performance.

A second task characteristic when working with functions
relates to the context of the task. Students have to understand
the specific context for linear function tasks because these tasks
are often embedded in a real-life context (Schukajlow et al.,
2012; Van Dooren et al., 2018). For example, determining the
slope of a function in an intra-mathematical task may be easier
than interpreting the meaning of the slope in the context of a
mountain hike (Bell and Janvier, 1981). Bock et al. (2015) showed
that students had far fewer problems using a negative slope in
an intra-mathematical context than in an extra-mathematical

context. In contrast, Schukajlow et al. (2012) used self-reports
and different tasks in the context of linear functions as well
as Pythagoras’s theorem. The tasks were classified as intra-
mathematical tasks, word problems and modeling problems.
The authors found no significant difference in self-efficacy
between intra-mathematical tasks,word problems and modeling
problems. The results are not in line with other research findings
by Van Dooren et al. (2018), for example, who found that the
context of a task played an important role. A possible reason
relates to the method of assessment via self-report or the mix of
the two topics of linear functions and Pythagoras’s theorem. The
mix of these two topics does not offer the chance to have different
self-reports for multiple topics.

A third important task characteristic when solving function
tasks is the specific operation that needs to be carried out. For
example, tasks may ask students to describe the type of a graph
or table, draw a graph from a given equation, interpret a table
or complete a table with given information (Nitsch et al., 2015;
Rolfes et al., 2018). These types of operations may also affect how
difficult a problem is. For example, tasks which require creating a
graph may be perceived as more difficult than tasks which require
reading off a point on a graph. There are only few empirical
studies which focus on the task characteristic of “operations” with
regard to linear functions. One rare example is the study by Rolfes
et al. (2018), which focused on the interaction between different
kinds of operation and different representations (graph, table,
bar charts) when solving function tasks. The study found that
retrieving information is easier with a table than with a graph, and
that interpreting growth is easier with a graph than with a table.

In summary, theoretical considerations and empirical
evidence suggest that the three task characteristics of
representation, context and operation may affect student
performance on linear function tasks. We therefore expect that
students rely on different task characteristics when they evaluate
their own abilities. Consequently, a student’s self-efficacy may be
affected by some task characteristics, but not necessarily by all
three task characteristics to the same extent.

The Present Study
In the literature, self-efficacy is assumed to be domain- and task-
specific. Accordingly, when students are asked about their self-
efficacy in a certain area, they should be presented with concrete
tasks. However, in such an assessment using concrete tasks, it is
not clear which task characteristics students actually consider in
their evaluation. We therefore explore the relevance of different
task characteristics in linear function tasks: their representation,
the context and the required operation. This selection of task
characteristics resulted from previous studies on performance
in linear functions. With respect to the representation, we
distinguish between graphs and tables. Regarding the context, we
consider intra-mathematical and extra-mathematical tasks. With
respect to the operation, we distinguish between creating (a graph
or a table) and reading off information (from a graph or a table).

Using a task-specific assessment of self-efficacy, we were
interested in whether in our data self-efficacy is a one-
dimensional construct or whether it is a multi-dimensional one
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along the dimensions of the task characteristics of representation
(graph/table), context (intra-mathematical/extra-mathematical)
and/or operation (create/read). We assume that students rely on
one or more of these task characteristics to evaluate their abilities.
However, the current state of research on self-efficacy does not
allow us to make predictions about which task characteristics
may play a more or less prominent role for students. Therefore
with respect to multi-dimensionality, we were interested in
the question of which characteristics (representation, context,
operation) best represented the data derived from students’ task-
specific self-evaluation.

The specific research questions were:

(1) Is self-efficacy (assessed via task-specific self-evaluation)
a one-dimensional construct or a multi-dimensional
construct along the three selected dimensions of task
characteristics?

(2) Which task characteristics do students rely on most in their
evaluation?

MATERIALS AND METHODS

Participants
The Ministry of Education in Germany responsible approved
the study. Invitations were sent to medium-track secondary
schools (German “Realschule”) in southern Germany. In the
end five schools with a total of 376 students (204 males
and 172 females) participated in the study. All schools and
students participated voluntarily and all participants’ and
their parents’ consents were obtained. The students came
from 16 different classes in grades 8 (n = 192) and 9
(n = 184). The average age of the students at the time of the
assessment was M = 14.96 (SD = 0.91) years. According to
the curriculum, all students were familiar with linear functions.
The 8th graders had been introduced to the topic about
3 months before the study, the 9th graders had already worked
on the topic in the previous school year. Accordingly, we
expected that all students were familiar with all the tasks
used in the survey. All the classes participating followed the
same curriculum and used the same textbooks, according
to their teachers.

Materials
To assess self-efficacy in a task-specific way, we selected
20 items from a performance test on linear functions

TABLE 1 | Overview of the number of tasks per task dimension.

Context

Representation Operation Intra-mathematical Extra-mathematical

Table create 2 3

read 3 2

Graph create 2 2

read 3 3

FIGURE 2 | Sample Item.

(Leuders et al., 2017). We discussed the selection of items
in an expert interview with mathematics teachers and
mathematics education researchers. We selected the items
from a broad range of topics relating to linear functions.
Furthermore, it was taken into account that the students
should be familiar with the content of the tasks. The items
were systematically selected in such a way that they varied
with respect to the task characteristics of representation
(graph/table), context (intra-mathematical/extra-mathematical)
and operation (creating/reading), as described above. Each
dimension was represented by ten items. A total of 14 of these
items had been used in a pilot study (N = 120) which assessed
students’ self-efficacy and performance. The other six items
supplemented these 14 items to get a balanced mixed design.
Each of the 20 single items has a distinctive feature in all three
dimensions. Table 1 provides an overview of the number of
tasks per dimension.

Figure 2 shows a sample item. The item represents an extra-
mathematical context, and studens have to create a table. The
item in Figure 2 is extra-mathematical although it is only
embedded in a context to a limited extent.

Procedure
The assessment of self-efficacy took place in regular classrooms.
Students received a booklet with 20 items. For each item, students
were asked to look at the item for 30 s but not to solve it.
They were then asked, without any time pressure, to indicate
the degree of agreement with the statement “I am sure that
I can solve this task correctly” on a ten-point Likert scale
(from 1: “I completely disagree” to 10: “I fully agree”). The ten-
point Likert scale was chosen in compliance with the procedure
of other studies (Pajares et al., 2001; Pajares, 2003; Bandura,
2006). The time span of 30 s was used to prevent students
from actually trying to solve the task. Prior pilot interviews
suggested that a period of 30 s was suitable for this purpose.
Overall, the assessment of self-efficacy took approximately
25 min. The assessment of self-efficacy was followed by a test
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TABLE 2 | Global fit index according to Kline (2011).

Absolute Fit Incremental Fit Economy Comparison

χ2 p df RMSEA SRMR TLI CFI CMIN/df BIC

Acceptable
Good

>0.05 <0.08
<0.05

<0.08
<0.05

>9
>0.95

>0.9
>0.95

<2
<1.5

smallest

χ2, Chi-square; RMSEA, Root Mean Square Error of Approximation; SRMR, Standard Root Mean Squared Residual; TLI, Tucker-Lewis index; CFI, Comparative Fit Index;
CMIN/df, criterion of economy; BIC, Bayesian Information Criterion.

session, in which students were asked to actually solve the
same 20 tasks1.

Data-Analysis
We used SPSS 25 (Arbuckle, 2013) for item analysis and also to
provide descriptive statistics. We further used Mplus (Muthén
and Muthén, 2017) to conduct confirmatory factor analysis
(CFA) with the aim of understanding the theoretically assumed
structure of self-efficacy. In this analysis, self-efficacy was
modeled as a latent variable (Hu and Bentler, 2000; Kline, 2011).
MacCallum (2000) suggests constructing a sequence of models
ranging from those with a relatively simple structure (model
1: one latent variable, self-efficacy, underlying participants’
responses on all items, as well as models 2–4 with a between-item
multi-dimensionality approach without a particular hierarchy) to
those with a relatively complex structure (model 5: a within-item
multi-dimensionality approach) (Aish and Jöreskog, 1990).

To determine the model fits, we tested for global and local
fit values. The global fit values (also known as goodness of fit
values) refer to the entire measurement model and distinguish
between absolute Chi-square (CMIN), Root Mean Square Error
of Approximation (RMSEA), Standard Root Mean Squared
Residual (SRMR), incremental [estimate of comparative fit versus
a null relation baseline model, named Comparative Fit Index
(CLI) and Tucker Lewis Index (TLI)], and economy fit values
(CMIN/df ). A limitation of relying on the Chi-square statistics is
that the model can be “adapted too closely to the sample at hand
and [contain] too many parameters” (Arzheimer, 2016, p. 63).
The goodness of fit values are more informative when the sample
size increases (Kline, 2011). This is the reason why we mainly
refer to the goodness of fit values.

Table 2 shows which values are acceptable and which are
“good” according to Kline (2011). A good RMSEA value is lower
than 0.05. It represents the proportion of information in the
variance-covariance matrix that is not explained by the model.
The SRMR-value is the square root of the average deviation of
the model-predicted and empirical covariance-variance matrix.
It should be lower than 0.05. The TLI and CFI values refer to
the information proportions of the variance-covariance matrix

1For the purpose of the present article, we did not systematically analyze the
performance data. However, in a preliminary analyses, a confirmatory factor
analysis suggested that a confirmatory performance was a one-dimensional
construct χ2(170) = 240.40 p < 0.001; RMSEA = 0.033; SRMR = 0.044; TLI = 0.902;
CFI = 0.912), that is, students did not differ in their performance due to task
characteristics. The one-dimensional model was tested against the same two-
dimensional models as for self-efficacy. The BIC values were always found to be
better for the one-dimensional model. There were no significant differences in the
linear functions test between the 8 and 9 graders t(374) = 0.979; p = 0.328. Hence,
merging the classes seemed to have no further effect on the results.

compared to the independence model and should be greater than
0.95. The economy fit values CMIN/df should be lower than 1.5
and refer to the economy of a model (Kline, 2011).

To test competing models, the model value of the BIC
(Bayesian Information Criterion) can be used. Basically, the
following applies: a model is considered better when the BIC
decreases by about six points compared to another model
(Raftery, 1995).

The absolute fit values are not always sufficient to judge
whether the data adequately represent a theoretical model. For
this reason, local fit values are also relevant; they can distinguish
between convergent validity and discriminant validity. The
convergent validity includes the indicator reliability, the average
variance extracted (AVE), the t-value, and the factor reliability.
The standard values are located together with the results in
Table 7 (Bagozzi and Baumgartner, 1996). The discriminant
validity is tested by means of the Fornell-Lacker criterion. It
focuses on the correlation of two constructs and their separability
(Fornell and Larcker, 1981). More precisely, on average it is
empirically clarified that the variance of a construct is greater
than the squared correlations of the construct with all other
constructs considered (Kline, 2011).

RESULTS

Descriptive Statistics
Overall, self-efficacy ratings were high for all 20 items (ranging
from Mmin = 5.22 to Mmax = 8.90; on a scale from 1 to
10), suggesting that the participants were confident in their
ability to solve most of the items correctly. Item-analysis of the
distributions indicated that there was a left skewed distribution,
which deviated significantly from a normal distribution in nearly
all items. For this reason, further analyses were carried out
with the Robust Maximum Likelihood estimation (Muthén and
Muthén, 2017). Furthermore, item 1 (Pi = 0.83) and item 20
(Pi = 0.89) were excluded from further analyses due to high
student ratings2 (Döring and Bortz, 2016). Table 3 shows the
mean values, the standard deviation as well as the skewness and
item-difficulty of all self-efficacy items3.

2The higher the value is (max 1), the more students have responded that they are
confident about being able to solve this task correctly. So the item was too easy.
3A comparison of self-efficacy for grade levels showed significant differences
between 8th and 9th graders (t(359.15) = –2.33; p = 0.02). 9th graders showed
slightly higher self-efficacy (M = 7.35; SD = 1.5) than 8th graders (M = 6.93;
SD = 1.9). However, the effect size of this difference was fairly small (d = 0.24).
Because there were no theoretical reasons to assume grade level differences in the
dimensionality of self-efficacy, and in order not to reduce statistical power for our
model analyses, we did not include grade level as a factor in our models.
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TABLE 3 | Mean values (manifest), standard deviation (SD), item-difficulty
(Pi ) and skewness.

M SD Pi Skewness

Item1 8.26 2.33 0.82 −1.58

Item2 7.52 2.78 0.75 −0.93

Item3 8.23 2.46 0.82 −1.58

Item4 5.69 3.14 0.57 −0.08

Item5 6.31 3.25 0.63 −0.28

Item6 6.26 2.82 0.63 −0.31

Item7 5.22 2.97 0.52 0.17

Item8 7.70 2.61 0.77 −1.70

Item9 8.11 2.54 0.80 −1.32

Item10 6.39 3.23 0.40 −0.34

Item11 7.70 2.91 0.77 −1.09

Item12 7.21 3.06 0.72 −0.77

Item13 6.40 3.02 0.64 −0.38

Item14 7.21 2.80 0.72 −1.67

Item15 7.43 2.88 0.74 −0.91

Item16 7.14 2.70 0.71 −0.76

Item17 7.66 2.60 0.77 −1.03

Item18 7.22 2.65 0.72 −0.78

Item19 6.13 2.98 0.61 −0.33

Item20 8.90 2.23 0.89 −2.38

The minimum of each item is 1, the maximum of each item is 10.

Confirmatory Factor Analysis
Global Fit Values
We first tested a one-dimensional model, which does not include
task characteristics as factors (see Figure 3). As displayed
in Table 4, the model exhibited acceptable values in all
global fit values.

Next, we tested two-dimensional models, which each include
the two dimensions of representation (table/graph; model 2),
the context (intra-mathematical/extra-mathematical; model 3),
or the operation (create/read; model 4) (see Figure 4).

As Table 5 displays, model 3 shows good values in the
different global fits. In contrast, model 2 and model 4 only

show acceptable global fit values, with better values for model
2 than model 4. The BIC values (lower is better) indicate
that all three models had better fit values than the one-
dimensional model 1, and that among the three two-dimensional
models, model 3 had the best global fit values. Furthermore,
the BIC values indicate that in direct comparison of models
with acceptable fit indices, model 3 fits the data better because
the BIC difference between model 3 and model 2 is lower
by the value 43 and the BIC difference between model 3
and model 4 is lower by the value of 51. Furthermore,
the likelihood-ratio test (Kline, 2011) showed significantly
better results for model 3 (χ2(1) = 42.67, p < 0.001)
than model 1, as well as for model 2 than for model 1
(χ2(1) = 10.73 p < 0.001).

Considering the results of models 2–4, which were all
between-item multi-dimensionality models, we tested one more
complex within-item multi-dimensionality model (model 5).
Because models 2 and 3 were the two models with the best
global fit among the two-dimensional models, and had better BIC
values [differences higher than 6 according to Raftery (1995)]
than the one-dimensional model, we included the dimensions of
the task characteristics of representation and context in model 5
(see Figure 5).

The results (see Table 6) showed that this model did not have
acceptable fit values.

Finally, for the purpose of comparison, we created a two-
dimensional random model in which all items were assigned
randomly to one of the two dimensions. The random model
showed no better results than models 1–4 (χ2(134) = 251.44
p < 0.001; RMSEA = 0.048; SRMR = 0.044; TLI = 0.929;
CFI = 0.938 BIC = 31209.97).

In conclusion, the one-dimensional model 1 along with
model 2 (representation) and model 4 (operation) only exhibit
acceptable values. The more complex model 5, on the other hand,
did not have acceptable fit values. Model 3 (context) showed the
best global fit values.

FIGURE 3 | Model 1: one-dimensional. ε = error variances; λ = factor padding loading; I = item = task. For the sake of simplicity, the figure displays only 8 instead of
all 18 items included in the analysis.
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TABLE 4 | Global fit values of the one-dimensional model.

Absolute Fit Incremental Fit Economy Comparison

χ2 p df RMSEA SRMR TLI CFI CMIN/df BIC

model 1: one-
dimensional

254.16 0.001 135 0.048++ 0.044++ 0.93+ 0.93+ 1.89+ 31208.25

For thresholds of acceptable fit see Table 2. Good values are marked with ++. Acceptable values are marked with +.

FIGURE 4 | Model 2–4 task characteristic: Model of confirmatory factor analysis task characteristic differentiated in model 2: representation (graph or table), model
3: context (extra-mathematical or intra-mathematical), and model 4: operation (create and read). For simplification, only 8 items are shown. ε = error variances;
λ = factor padding loading; I = item = task.

Local Fit Values
We further analyzed the local fit values for those models
which had acceptable global fit values (i.e., models 1–4).
Table 7 shows that all models have good t-values, factor
reliability and AVE. However, the indicator-reliabilities are
not acceptable for all models. Model 1 (one-dimensional)

and model 2 (representation) have items which are
outside the acceptable range of 0.3. These items have
a low share of variance for the factor and should be
excluded from the model. For model 3 (context) and
model 4 (operation), all items have the acceptable value of
over 0.3.
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TABLE 5 | Global fit values of models 2–4 (each two-dimensional) task characteristic.

Absolute Fit Incremental Fit Economy Comparison

CMIN p df RMSEA SRMR TLI CFI CMIN/df BIC

model 2:
representation

243.43 0.001 134 0.047++ 0.043++ 0.93+ 0.94+ 1.82+ 31199.22

model 3:
context

211.49 0.001 134 0.039++ 0.040++ 0.95++ 0.96++ 1.57+ 31156.10++

model 4:
operation

251.41 0.001 134 0.048++ 0.044++ 0.93+ 0.94+ 1.90+ 31207.11

For thresholds of acceptable fit see Table 2. Good values are marked with ++. Acceptable values are marked with +.

FIGURE 5 | Complex Model 5: Model of confirmatory factor analysis with two task characteristics context and representation. For simplification, only 8 items and
one epsilon are shown. ε = error variances; λ = factor padding loading; I = item = task.

TABLE 6 | Global fit values model 5 with task characteristic representation and context.

Absolute Fit Incremental Fit Economy Comparison

CMIN p df RMSEA SRMR TLI CFI CMIN/df BIC

model 5 representation
and context

480.94 0.001 117 0.09 0.24 0.75 0.81 4.11 31573.01

For thresholds of acceptable fit see Table 2.

TABLE 7 | Local fit values.

Indicator variable Indicator reliability t- value Factor reliability AVE r Fornell-Lacker

threshold >0.3 >2 >0.6 >0.5

model 1:
one-dimensional

0.24–0.49 6.47–11.21*** 0.99 0.83

model 2:
representation

graph 0.24–0.50 5.56–11.40*** 0.98 0.84 0.91 fulfilled

table 0.98 0.83 fulfilled

model 3: context intra 0.32–0.53 6.60–11.68*** 0.98 0.83 0.80 fulfilled

extra 0.98 0.85 fulfilled

model 4: operation create 0.30–0.50 6.48–11.25*** 0.98 0.84 0.96 not fulfilled

read 0.97 0.82 not fulfilled

For thresholds of acceptable fit see Bagozzi and Baumgartner (1996) and Hair (1995). For the Fornell-Lacker criterion see Fornell and Larcker (1981). ***p < 0.001.

The correlation (r) between the respective latent constructs
varies depending on the model. There was a strong correlation
between the different latent variables ranging from r = 0.80
(model 3: context) to r = 0.91 (model 2: representation)

to 0.96 (model 4: operation). At first glance, the high
correlation between the respective latent constructs seems
alarming. The high correlation raises the question whether
the two dimensions are actually separable. The Fornell-Lacker
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criterion, which focused on the correlation as compared to
the AVE, is not fulfilled in all models. Only for model 2
(representation) and model 3 (context) was the criterion fulfilled.
Hence, it appears that a separation of the dimensions (e.g.,
for context the separation of intra-mathematical from extra-
mathematical) is possible.

In conclusion, the results of the local fit values confirm the
results of the global fit values. Model 3 (context) seems to be the
best model for all values.

Finally, we briefly report the reliabilities for the dimensions
in models 2 and 3. A reliability analysis using Cronbach’s alpha
showed Cronbach’s alpha = 0.87 for the intra-mathematical
items, Cronbach’s alpha = 0.86 for the extra-mathematical items,
Cronbach’s alpha = 0.83 for the items with a graph and Cronbach’s
alpha = 0.82 for the items with a table.

DISCUSSION

The aim of this study was to explore which task characteristics
are relevant when students evaluate their own ability to
perform mathematical tasks with linear functions successfully.
Bandura (1997) clearly stated that when developing self-efficacy
scales, researchers should draw on conceptual analysis and the
knowledge of experts to find out what it takes to succeed in a
given pursuit. The study draws its data both from a conceptual
analysis and the expert knowledge from mathematics educators
and learning experts, to construct a self-efficacy scale that takes
account of the salient aspects of solving linear functions. The
study advances previous research by including multiple task
characteristics which have not been considered in combination
yet. A distinction was made between three task characteristics,
namely those of the representational form (graph and table), the
context (intra-mathematical and extra-mathematical), and the
operation (create and read). We expected that these three task
characteristics potentially affect students’ self-efficacy because all
students have gained experience with tasks in these formats. All
of these task characteristics should be familiar for students.

Is Self-Efficacy a One-Dimensional
Construct or Is It a Multi-Dimensional
Construct Along the Dimensions of the
Task Characteristic?
Previous research (e.g., Chen and Zimmerman, 2007; Bonne and
Johnston, 2016) assumed one-dimensional models of self-efficacy
or a multi-dimensionality of self-efficacy (e.g., Bruning et al.,
2013; Street et al., 2017) without focusing on concrete tasks or
task characteristics. With such a premise, it is not necessary
to consider specific task characteristics because students are
assumed to relate a presented task to the area of self-efficacy in
question. However, in our study the two-dimensional models,
which assume that students do in fact assess their self-efficacy
differently depending on task characteristics, fit our data better
than a one-dimensional model. More specifically, students
appear to differentiate in their self-efficacy between tasks with
and without context as well as between tasks with different

representational forms. As examined in previous studies such
as Acevedo Nistal et al. (2013), students who are given a
choice of a representational form are clearly influenced by
both the subject and choice of the task itself. The subject-
related justification could be explained by differences in self-
efficacy for different task characteristics. However, the study
here provides support that students do not rely on all relevant
characteristics (representation, context, and operation) of a task
when they evaluate their own abilities. The results underline
the complexity of task characteristics in the context of linear
functions (Leinhardt et al., 1990).

The Task Characteristics of the Context
Represented the Data Best
Model 3 (context) showed the best values at both global and local
levels. This can be explained in two ways. Firstly, students may
have had learning experiences with the strongest influence on
their self-efficacy when tasks contained a context. This would
be in line with an often-reported dislike of word-problems (Van
Dooren et al., 2018). Secondly, it is also possible that during
assessment the task characteristics relating to context were the
most salient, so that when evaluating their abilities students
tended to perceive these characteristics more easily, whether
intra- or extra-mathematical. The results go hand in hand with
the important role of context in mathematical situations, as
stated above (Bock et al., 2015; Van Dooren et al., 2018). Our
results seem to differ from those of Schukajlow et al. (2012)
who also assessed self-efficacy in a task-specific manner. In
their study, Schukajlow et al. formed three item groups for
self-efficacy in modeling problems, intra-mathematical tasks and
word problems. In each group they used tasks on linear functions
as well as on Pythagoras’s theorem. They found no difference in
the mean values of the self-efficacies defined by these three groups
of tasks. However, the authors did not perform an analysis of
the dimensionality and therefore did not make a statement about
whether self-efficacy in their definition was to be considered a
one-dimensional or multi-dimensional construct.

Similarly, model 2 (representation) had better global fit values
than the one-dimensional model, although some items had to be
excluded, and in direct comparison the model 2 had a worse fit
than model 3. This emphasizes the fact that representation plays
an important role in students’ self-evaluation, and this goes along
with the results of research in the role of representational forms
for performance (Keller and Hirsch, 1998; Duval, 2006). In direct
comparison (BIC) to model 3 (context), model 2 (representation)
indicated a worse fit.

Model 4 (operation) had no better BIC values than the one-
dimensional model. At the local level it did not seem possible to
separate the creating and reading dimensions. This suggests that
the operation did not play a similarly important role in students’
self-evaluation as the previous models. Again, two explanations
are possible. First, students have not experienced the operation
as relevant affordance in tasks during their learning history.
Second, it may also be the case that students do not spontaneously
perceive the importance of the operation which is required to
solve the task. Since research has shown the role of operations

Frontiers in Psychology | www.frontiersin.org 10 March 2021 | Volume 12 | Article 596901405406

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-596901 March 8, 2021 Time: 17:12 # 11

Siefer et al. Self-Efficacy and Task Characteristics

in performance situations (Rolfes et al., 2018), one may assume
that salience might be a better explanation for our results.

The adequacy of the two-dimensional models 2 and 3,
each focusing on one task characteristic, encouraged further
analyses in a within-item multi-dimensionality approach. The
main assumption of model 5 (representation/context) was that
students rely on the context while also taking the representational
form into account and then came to conclusions about their
abilities. However, the analysis of model 5 showed that there were
no acceptable global fit values. This may have been caused by a
focusing mechanism: learners do not simultaneously rely on the
representational form and the context of a task while evaluating
their abilities, but rather rely on only one aspect, i.e., the context
in which a mathematical task is embedded. Additionally, the
economy fit value CMIN/df of 4.1 was relatively high. It is
possible that with an even larger sample, a higher number of
degrees of freedom would lead to a better fit value for such
a complex model.

In conclusion, the findings with respect to a task-
specific assessment of self-efficacy confirm the theoretical
assumption that self-efficacy is not a one-dimensional construct.
A comparison of the two best models (“representation” and
“context”) showed that the context model is a significantly
better model.

The results of this study are relevant for future research
on self-efficacy with task-specific assessments in at least three
ways. First, according to the findings by Marsh et al. (2018)
or Pajares and Kranzler (1995), the results suggest that it is
very important to use a task-specific assessment because the
construct of self-efficacy is inherently dependent not only on
the domain but also on the task type. Second, it is important to
select tasks carefully and to analyze the required abilities. Third,
the mathematical educational perspective showed that subject-
related justifications (Acevedo Nistal et al., 2013) on tasks could
be explained by self-efficacy.

Limitations
Our study has at least four limitations. First, the sample consisted
of N = 376 students of similar age and with a very similar
curricular background. It is possible that a variation in cognitive
and curricular conditions across, for example, different school
types would produce different results. In a similar manner, it
could be possible that model 2 (representation) and model 4
(operation) could show a better fit, due to the students’ different
learning trajectories. Moreover, the most complex model (model
5) would perhaps show a better fit with an even larger sample
(higher value of df ).

Second, the study showed that among the models we tested,
some fit better than others. Of course, we were not able to test all
possible models. Accordingly, we cannot rule out the possibility
that even more complex models, or models that include other
task characteristics not considered here, fit the data even better.
However, we do not think this is very likely because we derived
our models from careful theoretical analyses of the content
domain (linear functions) and previous empirical findings.

Third, a further limitation may result from our focus on
linear functions. It is possible that an assessment in other areas

of mathematics would lead to different results. In particular,
it remains an open question whether the context of the
tasks would also be the most salient task characteristic in a
different content area, or whether other characteristics, such
as the representational form, would be more salient. One can
assume that in areas such as binomial formulae, where extra-
mathematical contexts do not typically play an important role,
students would rely on other task characteristics to assess
their own abilities.

Fourth, it should also be considered that self-efficacy was
recorded with the help of a printed booklet. Although students
received explicit instructions when to turn pages, it was not
possible to ensure that all students actually followed these
instructions (e.g., turning pages after 30 s). One way to
avoid this issue would be to present problems to the whole
class using a projector, or by a computer-based assessment.
These assessments would, however, reduce the validity of
the assessment, since students commonly solve mathematical
problems on paper.

Further Research and Implications
The present study focused on the assessment of students’ self-
efficacy, although we also assessed students’ performance on the
same tasks. While we identified a multi-dimensional structure
in self-efficacy, similar CFA analyses for the performance test
suggested a one-dimensional structure. This result requires
further investigation, particularly because an earlier study
of students’ performance with similar items did detect a
multi-dimensional structure of performance as well (Leuders
et al., 2017). More generally, further research is needed
to better understand the relation between students’ task-
specific self-efficacy and their performance on the very
same tasks, and the factors that influence this relation
(Siefer et al., 2020).

Another issue for further research is in how far the results
can be generalized to include other contexts. A worthwhile next
step might be to extend the dimensionality analysis to other
mathematical domains (e.g., geometry) or to other special topics
(e.g., Pythagoras’s theorem). It would then be interesting to see
whether it is possible to identify overarching task characteristics
(e.g., a real-life context) that are relevant for students’ self-
efficacy in all topics.

Within a task-specific assessment, it could be interesting
to run validation studies to compare the two forms of task-
specific assessments (indirect vs. direct assessment, described
above). One can expect that there will not (necessarily) be
a high correlation between the different assessments because
of the higher abstraction of the different forms. For example,
when students respond to the question “I can work with
graphs,” they may think of a wide variety of operations
in dealing with graphs, while in a task-specific assessment,
the concrete operation is presented in the given task. To
understand students’ thinking better during their assessment of
self-efficacy, one could use qualitative methods. For example,
one could ask question such as: “What features of the task have
you considered?” A limitation is that such a question could
stimulate students to reflect on the tasks, which could lead to
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a biased measurement of subsequent tasks. Another less invasive
method could be eye-tracking, which could provide insights into
perception processes (Holmqvist, 2015; Nugteren et al., 2018).

The results of this study may be used to support student
learning in different ways. A reflected assessment of one’s own
abilities in which all task characteristics can be taken into
account may result in higher accuracy (Chen, 2003). The results
underline the fact that in spontaneous evaluation processes of
abilities, students focus particularly on the context and the
representational form of the tasks. Different prompts could
encourage students to consider other task characteristics as well,
which could result in higher accuracy of the assessment, in
relation to actual performance (Chen, 2003).

Conclusion
This study emphasized the importance of task characteristics
in the assessment of students’ self-efficacy. Self-efficacy appears
to be a multi-dimensional construct even within a specific
mathematical topic. The study showed the empirical separability
of self-efficacy dimensions related to linear functions according
to task characteristics. Future research should consider more
strongly the specific demands of a domain when assessing
students’ self-efficacy. On a more general note, the study showed
the importance of the specificity of the domain and subject-
matter when assessing a psychological construct.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ministry of Culture, Youth and Sports Baden-
Württemberg. Written informed consent to participate in this
study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

KS collected and the data. KS, TL, and AO interpreted the data
and wrote the manuscript. All authors developed the concept of
the study, regular exchange about the article, and contributed
equally to its success.

FUNDING

This work originates from the Interdisciplinary Graduate
School VisDeM “Visualization in the German and the
Mathematics Classroom,” which is funded by the Ministry
of Science, Research, and the Arts of the State of Baden-
Württemberg, Germany.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2021.596901/full#supplementary-material

REFERENCES
Acevedo Nistal, A., Van Dooren, W., and Verschaffel, L. (2013). Students’ reported

justifications tor their representational choices in linear function problems: an
interview study. Educ. Stud. 39, 104–117. doi: 10.1080/03055698.2012.674636

Ainsworth, S. (1999). The functions of multiple representation. Comp. Educ. 33,
131–152.

Aish, A.-M., and Jöreskog, K. G. (1990). A panel model for political efficacy and
responsiveness: an application of LISREL 7 with weighted least squares. Qual.
Quant. 24, 405–426. doi: 10.1007/BF00152013

Arbuckle, J. L. (2013). IBM SPSS Amos 22 User Guide. Amsterdam: Elsevier.
Arzheimer, K. (2016). Strukturgleichungsmodelle: Eine Anwendungsorientierte

Einführung (Lehrbuch). Wiesbaden: Springer VS.
Bagozzi, R., and Baumgartner, H. (1996). “The evaluation of structural equation

models and hypothesis testing,” in Principles of Marketing Research, ed. R. P.
Bagozzi (Cambridge: Blackwell Business), 386–422.

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change.
Psychol. Rev. 84, 191–215. doi: 10.1037/0033-295x.84.2.191

Bandura, A. (1994). “Self-Efficacy,” in Encyclopedia of Human Behavior, 4th Edn,
ed. S. V. Ramachaudran (New York, NY: Academic Press), 71–85.

Bandura, A. (1997). Self-efficacy: The Exercise of Control. New York, NY: Freeman.
Bandura, A. (2006). “Guide for constructing self-efficacy scales,” in Self-efficacy

Beliefs of Adolescents, eds F. Pajares and T. C. Urdan (Greenwich: IAP -
Information Age Pub. Inc.), 307–337.

Bayrhuber, M., Leuders, T., Bruder, R., and Wirtz, M. (2010).
“Repräsentationswechsel beim Umgang mit Funktionen- Identifikation
von Kompetenzprofilen auf der Basis eines Kompetenzstrukturmodells.

Projekt HEUREKO,” in Kompetenzmodellierung. Zwischenbilanz des DFG-
Schwerpunktprogramms und Perspektiven des Forschungsansatzes, eds K.
Eckhard, D. Leutner, and M. Kenk (Weinheim: Beltz), 28–39.

Bell, A., and Janvier, C. (1981). The interpretation of graphs representing situations.
For Learn. Math. 2, 34–41.

Betz, N. E., and Hackett, G. (1983). The relationship of mathematics self- efficacy
expectations to the selection of science- based college majors. J. Vocat. Behav.
23, 329–345. doi: 10.1016/0001-8791(83)90046-5

Bock, D., de, van Dooren, W., and Verschaffel, L. (2015). Students’ understanding
of proportional, inverse proportional, and affine functions: two studies on the
role of external representations. Int. J. Sci. Math. Educ. 13, 47–69. doi: 10.1007/
s10763-013-9475-z

Bofah, E. A.-T., and Hannula, M. S. (eds). (2011). “Reliablity and factorial validity
of students mathematics- belief, representations and preference on function,” in
Conference: Proceedings of the 17th Conference on Mathematical Views, Bochum.

Bong, M., and Skaalvik, E. (2003). Academic self-concept and self-efficacy:
how different are they really? Educ. Psychol. Rev. 15, 1–40. doi: 10.1023/A:
1021302408382

Bonne, L., and Johnston, M. (2016). Students’ beliefs about themselves as
mathematics learners. Think. Skills Creat. 20, 17–28. doi: 10.1016/j.tsc.2016.02.
001

Bruning, R., Dempsey, M., Kauffman, D. F., McKim, C., and Zumbrunn, S. (2013).
Examining dimensions of self-efficacy for writing. J. Educ. Psychol. 105, 25–38.
doi: 10.1037/a0029692

Chen, P. (2003). Exploring the accuracy and predictability of the self-efficacy
beliefs of seventh-grade mathematics students. Learn. Indiv. Differ. 14, 77–90.
doi: 10.1016/j.lindif.2003.08.003

Frontiers in Psychology | www.frontiersin.org 12 March 2021 | Volume 12 | Article 596901407408

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.596901/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.596901/full#supplementary-material
https://doi.org/10.1080/03055698.2012.674636
https://doi.org/10.1007/BF00152013
https://doi.org/10.1037/0033-295x.84.2.191
https://doi.org/10.1016/0001-8791(83)90046-5
https://doi.org/10.1007/s10763-013-9475-z
https://doi.org/10.1007/s10763-013-9475-z
https://doi.org/10.1023/A:1021302408382
https://doi.org/10.1023/A:1021302408382
https://doi.org/10.1016/j.tsc.2016.02.001
https://doi.org/10.1016/j.tsc.2016.02.001
https://doi.org/10.1037/a0029692
https://doi.org/10.1016/j.lindif.2003.08.003
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-596901 March 8, 2021 Time: 17:12 # 13

Siefer et al. Self-Efficacy and Task Characteristics

Chen, P., and Zimmerman, B. (2007). A cross-national comparison study on the
accuracy of self-efficacy beliefs of middle-school mathematics students. The
Journal of Experimental Education 75, 221–244. doi: 10.3200/JEXE.75.3.221-244

Döring, N., and Bortz, J. (2016). Forschungsmethoden und Evaluation in den Sozial-
und Humanwissenschaften (Springer-Lehrbuch). Berlin: Springer.

Dowling, D. M. (1978). The Development of Mathematics Confidence scale and its
Application in the study of Confidence in Women College Students. Ohio State
University: Unpublished Doctoral Dissertation.

Dreher, U., Holzäpfel, L., and Leuders, T. (2020). Graphische und numerische
Repräsentationen von Funktionen: Die Rolle der verschiedenen Spezifitätsebenen
von Selbstwirksamkeitsüberzeugungen, Pädagogische Hochschule, Freiburg:
Dissertation, Mathematikdidaktik.

Duval, R. (2006). A cognitive analysis of problems of comprehensive in learning of
mathematics. Educ. Stud. Math. 61, 103–131. doi: 10.1007/s10649-006-0400-z

Elia, I., Panaoura, A., Gagatsis, A., Gravvani, K., and Spyrou, P. (2008). Exploring
different aspects of the understanding of function: toward a four-facet model.
Can. J. Sci. Math. Technol. Educ. 8, 49–69. doi: 10.1080/14926150802152277

Ferla, J., Valcke, M., and Cai, Y. (2009). Academic self-efficacy and academic
self-concept: reconsidering structural relationships. Learn. Individ. Differ. 19,
499–505. doi: 10.1016/j.lindif.2009.05.004

Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with
unobservable variables and measurement error. J. Mark. Res. 18:39. doi: 10.
2307/3151312

Hackett, G., and Betz, N. E. (1989). An exploration of the mathematics self-
efficacy/mathematics performance correspondence. J. Res. Math. Educ. 20,
261–273. doi: 10.2307/749515

Hair, J. F. (1995). Multivariate Data Analysis With Readings, 4th Edn. Englewood
Cliffs, NJ: Prentice Hall.

Holmqvist, K. (2015). Eye Tracking: A Comprehensive Guide to Methods and
Measures. Oxford: Oxford University Press.

Honicke, T., and Broadbent, J. (2016). The influence of academic self-efficacy on
academic performance: a systematic review. Educ. Res. Rev. 17, 63–84. doi:
10.1016/j.edurev.2015.11.002

Hu, L., and Bentler, P. (2000). “Evaluating model fit,” in Structural Equation
Modeling: Concepts, Issues, and Applications, ed. R. H. Hoyle (Thousand Oaks,
CA: Sage Publication), 76–99.

Jerusalem, M., and Satow, L. (1999). “Schulbezogene Selbstwirksamkeit,” in Skalen
zur Erfassung von Lehrer- und Schülermerkmalen, eds R. Schwarzer and M.
Jerusalem (Berlin: Springer), 18–19.

Keller, B. A., and Hirsch, C. R. (1998). Student preferences for representations
of functions. Int. J. Math. Educ. Sci. Technol. 29, 1–17. doi: 10.1080/
0020739980290101

Klassen, R. M., and Usher, E. L. (2010). “Self-efficacy in educational settings: recent
research and emerging direction,” in Advances in Motivation and Achievement,
eds T. C. Urdan and S. A. Karabenick (Bingley: Emerald). doi: 10.1108/s0749-
7423(2010)000016a004

Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling, 3rd
Edn. New York, NY: Guilford Press.

Kranzler, J., and Pajares, F. (1997). An exploratory factor analysis of mathematical
self-efficacy scale revised (MSES-R). Meas. Eval. Counsel. Dev. 29, 215–229.
doi: 10.1080/07481756.1997.12068906

Krawitz, J., and Schukajlow, S. (2018). Do students value modelling problems,
and are they confident they can solve such problems? Value and self-efficacy
for modelling, word, and intra-mathematical problems. ZDM 50, 143–157.
doi: 10.1007/s11858-017-0893-1

Leinhardt, G., Zaslavsky, O., and Stein, M. K. (1990). Functions, graphs, and
graphing: tasks, learning, and teaching. Rev. Educ. Res. 60, 1–64. doi: 10.3102/
00346543060001001

Leuders, T., Bruder, R., Kroehne, U., Naccarella, D., Nitsch, R., Henning-
Kahmann, J., et al. (2017). “Development, validation, and application of a
competence model for mathematical problem solving by using and translating
representations of functions,” in Competence Assessment in Education: Research,
Models and Instruments, eds D. Leutner, J. Fleischer, J. Grünkorn, and E. Klieme
(Cham: Springer), 389–406. doi: 10.1007/978-3-319-50030-0_23

Lewis, J. L., Ream, R. K., Bocian, K. M., Cardullo, R. A., Hammond, K. A., and
Fast, L. A. (2012). Teacher caring, math self-efficacy, and math achievement
among Hispanic English learners. Teach. Coll. Rec. Teach. Coll. Rep. 114, 1–42.
doi: 10.1080/13664530.2020.1850514

MacCallum, R. (2000). “Model specification: procedure, strategies and
related issues,” in Structural Equation Modeling: Concepts, Issues, and
Applications, ed. R. H. Hoyle (Thousand Oaks, CA: Sage Publication),
16–36.

Marsh, H. W., Pekrun, R., Parker, P. D., Murayama, K., Guo, J., Dicke, T., et al.
(2018). The murky distinction between self-concept and self-efficacy: beware
of lurking jingle-jangle fallacies. J. Educ. Psychol. 111, 331–353. doi: 10.1037/
edu0000281

Ministerium für Kultus, Jugend und Sport in Baden-Württemberg.
(2016). Bildungsplan 2016. Allgemeinbildende Schulen Sekundarstufe 1.
Anhörungsfassung Mathematik. Stuttgart: Ministerium für Kultus, Jugend und
Sport in Baden-Württemberg.

Mittag, W., Kleine, D., and Jerusalem, M. (2002). “Evaluation der schulbezogenen
Selsbtwirksamkeit von Sekundarschüler,” in Selbstwirksamkeit und
Motivationsprozesse in Bildungsinstitutionen, 44th Edn, eds M. Jerusalem
and D. Hopf (Beltz: Frankfurt am Main), 145–173.

Muthén, L. K., and Muthén, B. O. (2017). Mplus User’s Guide. Los Angeles CA:
Muthén & Muthén.

National Governors Association Center for Best Practices & Council of Chief
State School Officers (2010). Common Core State Standards for Mathematics.
Washington, DC: National Governors Association Center for Best Practices,
Council of Chief State School Officers.

Nitsch, R., Fredebohm, A., Bruder, R., Kelava, A., Naccarella, D., Leuders, T.,
et al. (2015). Students’ competencies in working with functions in secondary
mathematics education- empirical examination of a competence structure
model. Int. J. Sci. Math. Educ. 13, 657–682. doi: 10.1007/s10763-013-9
496-7

Nugteren, M. L., Jarodzka, H., Kester, L., and van Merriënboer, J. J. G. (2018).
Self-regulation of secondary school students: self-assessments are inaccurate
and insufficiently used for learning-task selection. Instruct. Sci. 46, 357–381.
doi: 10.1007/s11251-018-9448-2

Pajares, F. (2003). Self-efficacy beliefs, motivation, and achievement in writing:
a review of the literature. Read. Writ. Q. 19, 139–158. doi: 10.1080/
10573560308222

Pajares, F., Hartey, J., and Valiante, G. (2001). Response format in writing self-
efficacy assessment: greater discrimination increases prediction. Meas. Eval.
Counsel. Dev. 33, 214–221. doi: 10.1080/07481756.2001.12069012

Pajares, F., and Kranzler, J. (1995). Self-efficacy and general mental ability in
mathematical problem solving. Contemp. Educ. Psychol. 20, 426–443. doi:
10.1006/ceps.1995.1029

Raftery, A. E. (1995). Bayesian model selection in social research. Sociol. Methodol.
25:111. doi: 10.2307/271063

Rolfes, T., Roth, J., and Schnotz, W. (2018). Effects of tables, bar charts, and graphs
on solving function tasks. J. Math. Didaktik 12:167. doi: 10.1007/s13138-017-
0124-x

Rosenberg, M. (1979). Conceiving the Self, New York, NY: Basic Books.
Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., and Messner, R.

(2012). Teaching methods for modelling problems and students’ task-specific
enjoyment, value, interest and self-efficacy expectations. Educ. Stud. Math. 79,
215–237. doi: 10.1007/s10649-011-9341-2

Shavelson, R. J., Hubner, J., and Stanton, G. C. (1976). Self-concept: validation
of construct interpretations. Rev. Educ. Res. 46, 407–441. doi: 10.3102/
00346543046003407

Siefer, K., Leuders, T., and Obersteiner, A. (2020). Leistung und
selbstwirksamkeitserwartung als kompetenzdimensionen: eine
erfassung individueller ausprägungen im themenbereich lineare
funktionen. J. Math. Didaktik 41, 267–299. doi: 10.1007/s13138-019-00
147-x

Street, K. E. S., Malmberg, L.-E., and Stylianides, G. J. (2017). Level, strength, and
facet-specific self-efficacy in mathematics test performance. ZDM 49, 379–395.
doi: 10.1007/s11858-017-0833-0

Talsma, K., Schüz, B., Schwarzer, R., and Norris, K. (2018). I believe, therefore I
achieve (and vice versa): a meta-analytic cross-lagged panel analysis of self-
efficacy and academic performance. Learn. Indiv. Differ. 61, 136–150. doi: 10.
1016/j.lindif.2017.11.015

Valentine, J., DuBois, D., and Cooper, H. (2004). The relation between self-beliefs
and academic achievement: a meta-analytic review. Educ. Psychol. 39, 111–133.
doi: 10.1207/s15326985ep3902_3

Frontiers in Psychology | www.frontiersin.org 13 March 2021 | Volume 12 | Article 596901408409

https://doi.org/10.3200/JEXE.75.3.221-244
https://doi.org/10.1007/s10649-006-0400-z
https://doi.org/10.1080/14926150802152277
https://doi.org/10.1016/j.lindif.2009.05.004
https://doi.org/10.2307/3151312
https://doi.org/10.2307/3151312
https://doi.org/10.2307/749515
https://doi.org/10.1016/j.edurev.2015.11.002
https://doi.org/10.1016/j.edurev.2015.11.002
https://doi.org/10.1080/0020739980290101
https://doi.org/10.1080/0020739980290101
https://doi.org/10.1108/s0749-7423(2010)000016a004
https://doi.org/10.1108/s0749-7423(2010)000016a004
https://doi.org/10.1080/07481756.1997.12068906
https://doi.org/10.1007/s11858-017-0893-1
https://doi.org/10.3102/00346543060001001
https://doi.org/10.3102/00346543060001001
https://doi.org/10.1007/978-3-319-50030-0_23
https://doi.org/10.1080/13664530.2020.1850514
https://doi.org/10.1037/edu0000281
https://doi.org/10.1037/edu0000281
https://doi.org/10.1007/s10763-013-9496-7
https://doi.org/10.1007/s10763-013-9496-7
https://doi.org/10.1007/s11251-018-9448-2
https://doi.org/10.1080/10573560308222
https://doi.org/10.1080/10573560308222
https://doi.org/10.1080/07481756.2001.12069012
https://doi.org/10.1006/ceps.1995.1029
https://doi.org/10.1006/ceps.1995.1029
https://doi.org/10.2307/271063
https://doi.org/10.1007/s13138-017-0124-x
https://doi.org/10.1007/s13138-017-0124-x
https://doi.org/10.1007/s10649-011-9341-2
https://doi.org/10.3102/00346543046003407
https://doi.org/10.3102/00346543046003407
https://doi.org/10.1007/s13138-019-00147-x
https://doi.org/10.1007/s13138-019-00147-x
https://doi.org/10.1007/s11858-017-0833-0
https://doi.org/10.1016/j.lindif.2017.11.015
https://doi.org/10.1016/j.lindif.2017.11.015
https://doi.org/10.1207/s15326985ep3902_3
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-596901 March 8, 2021 Time: 17:12 # 14

Siefer et al. Self-Efficacy and Task Characteristics

Van Dooren, W., and Greer, B. (2010). Students’ behavior in linear and non-linear
situations. Math. Think. Learn. 12, 1–3. doi: 10.1080/10986060903465749

Van Dooren, W., Lem, S., Wortelaer, H., and Verschaffel, L. (2018). Improving
realistic word problem solving by using humor. J. Math. Behav. 53, 96–104.
doi: 10.1016/j.jmathb.2018.06.008

Vollrath, H.-J. (1989). Funktionales denken. JMD 10, 3–37. doi: 10.1007/
BF03338719

Zarch, M., and Kadivar, P. (2006). “The role of mathematics self-efficacy and
mathematics ability in the structural model of mathematics performance,” in
Proceedings of the 9th WSEAS International Conference on Applied Mathematics
Istanbul, 242–249.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Siefer, Leuders and Obersteiner. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Psychology | www.frontiersin.org 14 March 2021 | Volume 12 | Article 596901409410

https://doi.org/10.1080/10986060903465749
https://doi.org/10.1016/j.jmathb.2018.06.008
https://doi.org/10.1007/BF03338719
https://doi.org/10.1007/BF03338719
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-556607 January 9, 2021 Time: 17:55 # 1

ORIGINAL RESEARCH
published: 18 January 2021

doi: 10.3389/fpsyg.2020.556607

Edited by:
Douglas F. Kauffman,

Medical University of the Americas –
Nevis, United States

Reviewed by:
Ove Edvard Hatlevik,

Oslo Metropolitan University, Norway
Michael S. Dempsey,

Boston University, United States

*Correspondence:
Yusuf F. Zakariya

yusuf.zakariya@uia.no

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Psychology

Received: 28 April 2020
Accepted: 28 December 2020

Published: 18 January 2021

Citation:
Zakariya YF (2021) Self-Efficacy
Between Previous and Current

Mathematics Performance
of Undergraduate Students: An
Instrumental Variable Approach

to Exposing a Causal Relationship.
Front. Psychol. 11:556607.

doi: 10.3389/fpsyg.2020.556607

Self-Efficacy Between Previous and
Current Mathematics Performance of
Undergraduate Students: An
Instrumental Variable Approach to
Exposing a Causal Relationship
Yusuf F. Zakariya*

Department of Mathematical Sciences, University of Agder, Kristiansand, Norway

Purpose: Self-efficacy has been argued theoretically and shown empirically to be an
essential construct for students’ improved learning outcomes. However, there is a
dearth of studies on its causal effects on performance in mathematics among university
students. Meanwhile, it will be erroneous to assume that results from other fields of
studies generalize to mathematics learning due to the task-specificity of the construct.
As such, attempts are made in the present study to provide evidence for a causal
relationship between self-efficacy and performance with a focus on engineering students
following a mathematics course at a Norwegian university.

Method: The adopted research design in the present study is a survey type in
which collected data from first-year university students are analyzed using structural
equation modeling with weighted least square mean and variance adjusted (WLSMV)
estimator. Data were generated using mainly questionnaires, a test of prior mathematics
knowledge, and the students’ final examination scores in the course. The causal effect
of self-efficacy was discerned from disturbance effects on performance by using an
innovative instrumental variable approach to structural equation modeling.

Results: The findings confirmed a significant direct effect of the prior mathematics
knowledge test (β = 0.52, SE = 0.01, p < 0.001) on self-efficacy, a significant direct
effect (β = 0.43, SE = 0.19, p = 0.02) of self-efficacy on performance, and a substantial
mediating effect (β = 0.22, SE = 0.10, p = 0.03) of self-efficacy between a prior
mathematics knowledge test and performance. Prior mathematics knowledge and self-
efficacy explained 30% variance of the performance. These findings are interpreted to
be substantial evidence for the causal effect of self-efficacy on students’ performance
in an introductory mathematics course.

Conclusion: The findings of the present study provide empirically supports for
designing self-efficacy interventions as proxies to improve students’ performance
in university mathematics. Further, the findings of the present study confirm some
postulates of Bandura’s agentic social cognitive theory.

Keywords: self-efficacy, prior mathematics knowledge, undergraduate learning, causal model analysis,
instrumental variable approach
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INTRODUCTION

There has been a growing interest in research on students’
affective factors and their contributions to learning outcomes
at all levels of education. Apart from the fact that some of
these affective factors, e.g., self-efficacy, satisfactorily predict
students’ performance, an explanation for the growing interest
may be ascribed to the ease of developing interventions that
influence such factors (Czocher et al., 2019). For instance,
perceived self-efficacy, which has been conceptualized as “beliefs
in one’s capabilities to organize and execute the courses of action
required to produce given attainments” (Bandura, 1997, p. 3), was
shown to predict academic achievement better than intelligence
test scores, measures of self-esteem, and personal traits among
school children (Zuffianò et al., 2013; Özcan and Eren Gümüş,
2019). With regards to the learning outcomes in undergraduate
mathematics, perceived self-efficacy was found to be a better
predictor of performance than the usefulness of mathematics,
prior mathematics knowledge, self-concept (Pajares and Miller,
1994), mathematics anxiety, and mental ability (Pajares and
Kranzler, 1995). A high sense of self-efficacy has also been linked
with the adoption of deep approaches to learning, high learning
motivation, positive attitude toward mathematics. In contrast, a
low sense of self-efficacy has been linked with the adoption of
surface approaches to learning, high mathematics anxiety, and
low interest in mathematics (Bandura, 1997; Rozgonjuk et al.,
2020; Zakariya et al., 2020b). More recently, Schukajlow et al.
(2019) demonstrate an approach through which constructing
multiple solutions to real-life problems can be used as an
intervention to influence students’ self-efficacy in mathematics.
Student-centered instructional methods have also been linked
with high self-efficacy (Lahdenperä et al., 2019).

Even though the relationship between self-efficacy and
students’ performance has been widely studied, little is known
about the causal effect of the former on the latter as it concerns
the learning of university mathematics. The available studies on
self-efficacy with a focus on university mathematics are either
relatively old (e.g., Hackett and Betz, 1989; Pajares and Miller,
1994), utilized regression models which make it difficult to
evaluate causal hypotheses between self-efficacy and students’
performance in mathematics (e.g., Peters, 2013), or do not
account for confounding factors in their structural models (e.g.,
Roick and Ringeisen, 2018). By a causal effect, the author means,
if A is a cause of B then at least all the following conditions are
satisfied: (1) A temporarily precedes B, i.e., data on A are collected
before data on B or A is theorized to happen before B; (2) There
is a substantial correlation between A and B; (3) There should
not be a third variable C that explains the relationship between
A and B (Antonakis et al., 2010). The third condition is the
most difficult to meet, especially in non-experimental research.
Such variable C will always exist. The most important question
is how well a researcher can control it? Among the several
attempts that have been shown empirically to yield satisfactory
performance in controlling for an extraneous variable, such as C
in non-experimental research, is the use of instrumental variable
approach (Antonakis et al., 2010; Bollen, 2019). The basic idea
of the instrumental variable approach is to find a fourth variable

called an instrument that satisfies some properties (which will be
explained in the “Materials and Methods” section) and use it to
discern the actual effect of A on B from any confounding effects
of C (Greenland, 2000; Bollen, 2019).

As such, the primary purpose of the present study is
to investigate the causal effects of perceived self-efficacy on
the current students’ performance in mathematics among
engineering students with an application of the innovative
instrumental variable approach to modeling. Further, the effects
of prior mathematics knowledge on the perceived self-efficacy
and the current students’ performance are also investigated. An
advantage of using the innovative instrumental variable approach
in exposing these causal effects lies in a fact that reliable estimates
of effects can be justified. Despite the wide application of
the instrumental variable approach among epidemiologists and
econometricians (Antonakis et al., 2010), it is innovative in the
present study because the author is not aware of its previous use
in mathematics education research. It is the opinion of the author
that policymakers, researchers, and education stakeholders are
more interested in studies that explore answers to questions on
what brings about improved students’ performance and to what
extent? Rather than, in studies that focus on correlations between
variables whose findings are either complicated to interpret
or beset by unclear conclusions (Pajares and Miller, 1994).
The present study, therefore, attempts to address the following
research question: What are the direct and indirect causal effects
of prior mathematics knowledge and perceived self-efficacy on
performance in mathematics among engineering students? The
author draws on both theoretical and analytical perspectives to
address this question. The statistical analyses in the present article
are moderately advanced and up to date. However, the author has
deliberately chosen a simple language of presentation with less
mathematical abstractions to make the findings more accessible.

The remaining part of the present article is organized as
follows: An overview of a theoretical perspective which leads
to the formulation of research hypotheses is presented in the
next section. Next is the “Materials and Methods” section where
research methodological related issues are presented. The fourth
section presents analyses and results. The major findings are
discussed in the fifth section, including potential limitations and
recommendations for further studies. Finally, the article closes
with some remarks.

CONCEPTUAL FRAMEWORK

Perceived self-efficacy is firmly rooted in the agentic social
cognitive theory (henceforth, social cognitive theory) as
propagated by Albert Bandura in his decades of work on the
theory (Bandura, 2001, 2012). Bandura, dissatisfied with some
ontological and epistemological claims of traditional cognitive
theory (cognitive theory), developed the social cognitive theory.
The ontological paradigm shift from the cognitive theory lies
in a rejection of dualism between personal agent and object of
actions. Reciprocal determinism is an epistemological position
that differentiates the social cognitive theory from the cognitive
theory. Reciprocal determinism is a feedback causal model of
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the relationship between behavioral factors, personal factors, and
environmental factors (Bandura, 2012). That is, an individual’s
behavioral changes are consistently being regulated and modified
by interacting with social factors in the environment whose
feedback influences the next actions and outcomes.

Therefore, it is argued that perceived self-efficacy being an
integral part of the personal factors cannot be a fixed trait. It
changes in response to changes that occur to the rest of the
factors in the reciprocal deterministic system (Bandura, 2012).
As it concerns mathematics learning, Borgonovi and Pokropek
(2019) conceptualized and described reciprocal determinism as
“the sets of relationships underlying the interactions between (a)
individuals’ exposure to mathematics tasks, (b) mathematics self-
efficacy beliefs, and (c) mathematics ability” (p. 269). Therefore, it
follows logically to argue that mathematics perceived self-efficacy
(henceforth, self-efficacy) is a task-specific construct and affects
the performance of engineering students in calculus tasks. Earlier
studies have investigated the task-specificity of self-efficacy and
confirm that proper attention to task-specificity is a satisfactory
way to improve the predictive power of self-efficacy on students’
performance in mathematics (Pajares and Miller, 1995). In the
present study, the implications of the task-specificity of self-
efficacy go beyond the prediction of performance but extend to
the research focus and adoption of a self-efficacy measure whose
detail is presented in the “Materials and Methods” section.

The concept of self-efficacy has emerged from the social
cognitive theory to become a theory on its own. According to the
self-efficacy theory, there are four primary sources of self-efficacy
beliefs: enactive mastery experience, i.e., personal previous task-
based achievement, vicarious experience, i.e., experience gained
by monitoring peers or people around, verbal/social persuasions,
i.e., complementary or contradictory feedback received from
others, and physiological or affective states, i.e., physical or
emotional situations during the behavioral changes (Bandura,
2008). Among the sources of influence of self-efficacy, previous
task-based achievement has been shown empirically to have the
most significant impact on students’ self-efficacy on mathematics
tasks (e.g., Joët et al., 2011; Zientek et al., 2019). Further, Yurt
(2014) showed that, apart from predicting self-efficacy, mastery
experience has a highly significant correlation with students’
mathematics achievement as measured by the end of the semester
course grades. As such, if pre-university mathematics content
knowledge is considered to be part of the personal previous
task-based achievement, then a causal effect is expected between
prior mathematics knowledge and the self-efficacy of engineering
students. Therefore, the following hypothesis is formulated:

Hypothesis one: There is a direct effect of prior
mathematics knowledge on self-efficacy among first-year
engineering students.

Fundamental goals of self-efficacy theory within the teaching
and learning context are to explain, predict and evaluate
differences in students’ performance that are brought about by
their self-efficacy (Bandura, 2012). A high sense of self-efficacy
instills confidence on students’ minds when confronted with
difficult and challenging mathematical tasks and as such, enables

the students to persevere, so that desired outcomes are achieved.
In contrast, students with a low sense of self-efficacy cannot
forebear difficult situations, doubt their ability, and as such,
perform poorly on the learning material. Roick and Ringeisen
(2018) reported a longitudinal study in which the contribution
of self-efficacy to students’ performance in mathematics was
investigated. They used a structural equation modelling (SEM)
approach with a sample of 206 university students and
found that self-efficacy predicts students’ performance. Similar
corroborative findings on the predictive power of self-efficacy as
it concerns university mathematics can be found, elsewhere (e.g.,
Pajares and Miller, 1994; Pajares and Kranzler, 1995). However,
as it is highlighted in the introduction section of the present
article, some of these studies have one limitation or the other
that makes it difficult to deduce substantial causal claims between
self-efficacy and students’ performance in mathematics. More so,
it could be erroneous to assume that findings from other fields
generalize to the university mathematics context considering the
task-specificity of self-efficacy. Instead, the author draws on these
studies and some postulates of self-efficacy theory to formulate
the following hypotheses:

Hypothesis two: There is a direct effect of self-efficacy on
engineering students’ performance in a first-year calculus
course.
Hypothesis three: Self-efficacy mediates the effect of
engineering students’ prior mathematics knowledge on
their performance in a first-year calculus course.

MATERIALS AND METHODS

Research Focus
The present study focuses on the engineering students following
a first-year mathematics course at a Norwegian university.
Students enrolled in a first-year mathematics course are chosen
as participants in the present study for several reasons. First, the
author can assess their pre-university mathematics knowledge
effectively better than that of students in year two, year three
and year four. Second, they are more susceptible to poor
performance, high anxiety, and lack of confidence due to their
transition from secondary school to university and newness to
the university culture. In line with the task-specificity of self-
efficacy, data collected from students enrolled on a common
mathematics course are more likely to be objective and when
analyzed could give a close estimation of the causal relationship
between the research constructs. Further, engineering students
are the target group in the present study because they form
the largest student population following a common mathematics
course in the university.

Sample of the Study
An effective sample of 189 engineering students voluntarily
participated in the study, most of whom are men (75%). Their
age distributions are as follows: 17–20 years (31%), 21–25 years
(49%), 26–35 years (15%), and over 36 years (5%). The inclusion
and exclusion criteria are based on voluntary consent. As such,
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the sample can be characterized as a convenient sample. The
language of instruction in the course is Norwegian as well as the
language used for the mandatory exercises and examinations.

Measures
Prior Mathematics Knowledge
The author adopted a Norwegian mathematics test as a proxy
to expose the prior mathematics content knowledge of the
participating students in the present study. The test was designed
by the Norwegian Mathematical Council to assess pre-university
mathematics content knowledge, and it is administered every two
years, independent of the present study, to first-year students
across several universities and colleges in Norway. It is a 22-
item test in which questions are formulated based on the
secondary school curriculum. It is assumed that the test is
most appropriate in the present study because it has been
developed within the Norwegian context and consistently been
applied to serve a similar purpose as that of the present study,
for the past three decades. Further, the construct validity and
the reliability index (using Omega coefficient) of the test have
been investigated using a latent variable approach in Mplus 8.3
program, and the latter was found to be 0.92 which together
with the unidimensionality of the test show high internal
consistency of its items (Zakariya et al., 2020a). However, only
a portion of the test (17 items, henceforth, PKMT – prior
knowledge of mathematics test) that is of high psychometric
properties such as appropriate item difficulty indices (−2.795 to
0.923), item discrimination indices (0.421–1.354), item reliability
(0.151–0.646), and unidimensionality, i.e., all the 17 items expose
a common latent construct (Zakariya et al., 2020a), is used in
the present study. The 17-item PKMT has only two standard
multiple-choice questions, and the remaining 15 questions
require short answers. All the questions examine the basic
knowledge of operations with fractions, decimals, percentages,
ratios, similar triangles, speed and distance, and some word
problems. A score of 1 point was assigned to a correct answer
and a 0 point, otherwise.

Calculus Self-Efficacy
Following the task-specificity of the self-efficacy, the calculus
self-efficacy inventory (CSEI) was adopted in the present study.
The CSEI was developed with a specific purpose of exposing
students’ self-efficacy in solving some mathematical tasks drawn
from the first-year introductory calculus course (Zakariya et al.,
2019). According to the self-efficacy theory, such an inventory
offers the best precision in exposing the construct (Bandura,
2006). The CSEI has two parts: preliminary and main parts. The
preliminary part of the CSEI contains questions on gender, age,
and grade points of students in the highest upper secondary
school mathematics course (HGP) they followed before their
enrollment into the university. Responses of students to the
question on HGP, in addition to the PMKT, are used as proxies
to measure their prior mathematics content knowledge. The
response values on this item ranging from 1 to 6 points depending
on the grades. Further, the main part of the CSEI contains 13
items on exam-type mathematics tasks in which the contents
are drawn from the current course curriculum followed by the

students. The responses of students on this part of CSEI are
used as proxies to expose the latent construct of self-efficacy.
The students rate their confidence, on a scale of 0–100, in their
belief that they can successfully solve the mathematics tasks.
The conceptualization, operationalization, and psychometric
properties of the CSEI have been previously studied using factor
analysis in FACTOR program coupled with Spearman’s rank
correlation and well documented (Zakariya et al., 2019). The
CSEI was found to possess construct and discriminant validity,
unidimensionality, and with a reliability index of 0.90 using
ordinal coefficient alpha (Zakariya et al., 2019).

Performance
Finally, the current performance of students in the present study
is operationalized and measured by their final scores achieved
in the first-year introductory calculus course they followed. It is
presumed in the present study, and consistent with the literature
(e.g., Cano et al., 2018), that such scores offer the best opportunity
to compare individual performance in the course.

Data Collection and Ethical
Considerations
The data used in the present study are collected mainly through
an online platform, SurveyXact. The author together with his
research team independently converted the PKMT to an online
test after being granted permission to access the test by the
Norwegian Mathematical Council. Similarly, an online version
of the CSEI was also prepared. The students were informed of
the purpose of the study at a class visit before data collection.
Their voluntary consent to take part in the study was sought.
As such, they were promised of no consequence, whatsoever, for
anyone who decides not to participate in the study. The students
were informed that their data will be treated with a high level
of security and confidentiality in line with the regulations of the
Norwegian Centre for Research Data.

The data were collected on three occasions. At the first
occasion, the PKMT was administered in which 40 min of class
time was used on the test. This test administration took place
in the early weeks of the Autumn semester 2019 because the
beginning of the semester is the best time to assess pre-university
mathematics content knowledge. On the second occasion, toward
the last week of lectures in the Autumn semester 2019, the
researchers administered the CSEI through students’ registered
emails with the university. Because items of the CSEI are
drawn from the ongoing mathematics course curriculum, the
administration of CSEI was deliberately delayed until the end of
the semester. This delay was aimed at ensuring a substantial part
of the course curriculum had been covered. The collected data
from the two occasions were merged to form an effective sample
for the study. In order to ensure the personal data protection
regulations are met, the students’ administrative affairs office was
involved in the process when it came to collating identifiable
data. The researcher simply sent the generated survey data to
the examination office where the individual final examination
scores in the course were added. Afterward, the examination
office removed any identifiable information from the data set,
and the researcher was provided with a completely anonymized
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data set. This procedure constitutes the third occasion of the
data collection. The data were screened for out of range values,
missing values, and normal distribution, all of which pose no
challenge to the analyses.

Data Analysis
The Hypothesized Model and Choice of an
Instrument
The hypothesized model of the relationship between the calculus
self-efficacy (CSE), prior mathematics knowledge (HGP and
PKMT), and students’ performance in the course (Exam) is
presented in Figure 1. The main aim of evaluating this model
is to estimate the effects of CSE and HGP on Exam. However,
there is a challenge with the model. This is because there are
some omitted variables, such as the similarity between items on
the CSEI and the final examination. The omitted variables act as
common causes of both the CSE and the Exam, thereby causing
the errors e1 and e2 to correlate. This correlation may bias the
estimate of the effect of self-efficacy on performance, and thereby
constitutes an endogeneity problem in the model (Antonakis
et al., 2010). CSE is an endogenous variable in the model because
both HGP and PKMT predict it, and it predicts Exam. A way to
circumvent this problem, so that a reliable estimate of the effect
of self-efficacy on performance can be found is to introduce an
instrumental variable, simply called an instrument, in the model
(Greenland, 2000). It is assumed that the omitted variables do not
affect both HGP and PKMT because they are exogenous variables,
i.e., they are not predicted by any variable in the model, and
as such do not need an instrument. The double-headed arrow
between HGP and PKMT in Figure 1 is a standard notation for
correlation between the variables in the SEM literature. It should
not be confused with a feedback effect.

An instrument “I” is an exogenous variable that satisfies the
following properties: (a) “I” has a direct effect on the endogenous

variable (CSE) that needs an instrument; (b) The direct effect
of “I” on the outcome variable (Exam) is close to zero or
completely negligible in the presence of the endogenous variable;
(c) “I” should not correlate with the errors associated with the
outcome variable (Greenland, 2000; Antonakis et al., 2010). The
preliminary analysis in the present study shows that PKMT is the
only variable that satisfies the properties (a)–(c), and thus, it was
selected as an instrument to discern the true effect of self-efficacy
on the performance from the omitted causes in the model.

The Procedure of Data Analysis
The collected data are analyzed using the SEM approach to
evaluate the model presented in Figure 1 and as such, to
confirm the plausibility of the research hypotheses. The SEM
approach was adopted in the present study because it offers
the best and most robust modeling capacity to evaluate causal
hypotheses (Bollen and Pearl, 2013). SEM does it better than
the path analysis, multiple linear regression, and the partial-
least square techniques (Antonakis et al., 2010). Because PKMT
was dichotomously scored, the weighted least square mean and
variance adjusted (WLSMV) estimator was used which has been
shown to provide satisfactory parameter estimates in the analysis
of categorical data (Suh, 2015). The author ascertains the “data
fitness” of the hypothesized model by looking at both global
and local fit indices and parameters. The global fit criteria used
are chi-square ratio to the degree of freedom of less than 3,
comparative fit (CFI) and Tucker-Lewis indices of greater than
or close to 0.90 (Bentler, 1990), and a root mean square error of
approximation (RMSEA) value of less than 0.08 (Brown, 2015).
The local fits of the model parameters are ascertained by looking
at the magnitude and the significant levels of factor loadings,
standard errors, and the residual variance, in line with the best
practice in SEM literature (Marsh et al., 2004). All the analyses
were performed in Mplus 8.3 program.

FIGURE 1 | The hypothesized model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus
course. Both HGP and PKMT are measures of the prior mathematics knowledge of the students, CSE is a measure of the self-efficacy, and Exam represents a
measure of performance. The items of both PKMT and CSE are not included in Figure 1 to enhance the readability of the figure.
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RESULTS

The first set of results are from the evaluations of one-factor
models for each of the prior mathematics knowledge test and the
calculus self-efficacy measurement models. These measurement
models are evaluated separately before an evaluation of the
hypothesized structural model. In this way, the author could
detect and correct any local misspecification in each of the
measurement models. This two-step of measurement-before-
structural model evaluation has been proven efficient and
highly recommended in SEM literature (Byrne, 2012). The
dichotomously scored 17 items of the PKMT are hypothesized to
expose a common latent factor (prior mathematics knowledge)
and tested. All the factor loadings are freely estimated, and the
factor variance is fixed to 1 so that the model is identified
(Zakariya et al., 2020a). Similarly, the 13 items of the CSEI are
hypothesized to expose a common latent factor (self-efficacy)
and tested. The factor loadings are freely estimated, the factor
variance is fixed to 1, two error covariances between item 09 and
item 11 as well as between item 12 and item 13 are allowed in
the model as recommended by Zakariya et al. (2019). Further,
a maximum likelihood with robust standard errors (MLM)
estimator was used instead of the WLSMV because the students’
responses on the CSEI are continuous and not categorical. The
results from these analyses with regards to the selected global fit
indices are presented in Table 1.

The results presented in Table 1 show that the global fit
indices are within the recommended ranges for acceptable model
fits of the analyzed data. In particular, the ratios of chi-square
values to the degrees of freedom, the CFI and the TLI values
suggest an acceptable fit for both the PKMT and CSEI models.
The RMSEA value and its associated 90% confidence interval
with a non-significant p-value of the PKMT model show that
there is an excellent agreement between the model and the data
(Bentler, 1990). Even though the p-value of the 90% confidence
interval for the RMSEA value in CSEI model is significant, the
estimate is lower than 0.08, which suggests a good fit (Brown,
2015). The factor loadings are significant and moderately high,
the standard and residual errors are low which are suggestive
of acceptable local fit statistics for both the PKMT and CSEI

TABLE 1 | The selected global fit indices for evaluated PKMT and CSEI
measurement models.

Global fit indices PKMT model CSEI model

Chi-square

Estimate (χ2) 143.793 132.162

Degrees of freedom (df ) 119 64

χ2/df 1.21 2.065

CFI/TLI

CFI 0.944 0.911

TLI 0.936 0.892

RMSEA

Estimate 0.043 0.076

90 percent confidence interval [<0.001, 0.066] [0.057, 0.094]

Probability RMSEA ≤ 0.05 0.676 0.013

models (Marsh et al., 2004). As such, the author proceeds to the
evaluation of the hypothesized structural model, as presented in
Figure 1, and the resulting global fit indices are presented in
Table 2. Further, Figure 2 presents the standardized estimates of
the causal effects between the research variables.

The results presented in Table 2 show an excellent model
fit of the evaluated hypothesized structural relationship between
the research variables. An excellent model fit in the sense that
there is a substantial agreement between the hypothesized model
and the analyzed data. This model fit can be deduced from
the selected global fit indices that are within the recommended
ranges. The ratio of chi-square estimate to the degree of freedom
is far less than 3. The CFI and TLI indices are greater 0.95, which
indicate an excellent model fit according to the cutoff criteria by
Hu and Bentler (1999). The RMSEA estimate together with its
perfect (p-value = 1.000) 90% confidence interval, suggested that
there is a substantial-close fit between the model and analyzed
data (Brown, 2015). The global fit indices presented in Table 2
strengthen the plausibility of the standardized estimates of the
causal effects presented in Figure 2.

The results presented in Figure 2 show reliable estimates of
the standardized causal effects between the research variables.
The reliability of these estimates has been strengthened by
the excellent global fit indices reported in Table 2. Figure 2
shows a significant direct effect of PKMT (β = 0.52, standard
error – SE = 0.01, p < 0.001) on self-efficacy. The direct effect of
HGP on self-efficacy is negative and not significant (β = −0.12,
SE = 0.09, p > 0.05). Even though, one would have expected a
positive effect of HGP on self-efficacy given that students with
high grade points in upper secondary school mathematics are
expected to have high self-efficacy. The result of the present study
does not conform to this expectation. These results show that
among the two measures of prior mathematics knowledge, it is
only the scores of students on the pre-university mathematics
test that have a substantial effect on students’ self-efficacy. As
such, Hypothesis one is confirmed. The correlation between
PKMT and HGP is significant (r = 0.31, SE = 0.08, p < 0.001),
and it is expected. This is because both PKMT and the HGP
are hypothesized to expose different facets of a construct. The
correlation between these variables was evaluated instead of a

TABLE 2 | The selected global fit indices of the evaluated hypothesized structural
model of the relationship between the research variables.

Global fit indices Hypothesized model (Figure 1)

Chi-square

Estimate (χ2) 492.432

Degrees of freedom (df ) 458

χ2/df 1.075

CFI/TLI

CFI 0.958

TLI 0.954

RMSEA

Estimate 0.020

90 per cent confidence interval [<0.001, 0.033]

Probability RMSEA ≤ 0.05 1.000
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FIGURE 2 | The evaluated model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus
course. Both HGP and PKMT are measures of the prior mathematics knowledge of the students, CSE is a measure of the self-efficacy, and Exam represents a
measure of performance. The significant estimates are in bold faces, and the items of both PKMT and CSE are not included in Figure 1 to enhance the readability of
the figure. The full figure that contains all the items and the associated model parameters is available in Appendix Figure A1.

causal relationship for two reasons. The first reason is that they
expose different facets of a construct while the second reason is
to comply with the recommendations of instrumental variable
approach for handling endogeneity problem due to omitted
variables in the model (e.g., Kenny, 2012).

It is also revealed in Figure 2 that the direct effect of
self-efficacy on students’ performance is significant (β = 0.43,
SE = 0.19, p = 0.02) and a significant standardized residual
estimate of 0.76. These results confirm the plausibility of
Hypothesis two. The residual error shows that the prior
mathematics knowledge of students explains 24% of the factor
variance in self-efficacy. The percentage of the explained factor
variance is moderate, considering the limited number of variables
that predict self-efficacy in the model. The error covariance
between the self-efficacy and students’ performance is not
significant (r = 0.10, SE = 0.25, p > 0.05) which is a good result
as it confirms the reliability of the estimated effect of self-efficacy
on performance after introducing the instrument in the model.
Figure 2 also shows that the direct effect of HGP on the students’
performance is significant (β = 0.20, SE = 0.07, p = 0.005).

More so, the results of the mediation analysis show the
standardized total effect of prior mathematics knowledge (PKMT
and HGP) on performance to be 0.37. A significant indirect
effect of PKMT through self-efficacy was found (β = 0.22,
SE = 0.10, p = 0.03), and a non-significant indirect of HGP on
performance through self-efficacy efficacy (β = −0.05, SE = 0.04,
p > 0.05). These results show that self-efficacy mediates the
direct effect of PKMT on performance while that of HGP on

performance is not mediated, beyond chances. This finding
confirms, in part, the plausibility of Hypothesis three. Finally,
the significant standardized residual estimate of 0.70 on the
Exam variable in Figure 2 shows that 30% of the variability in
students’ performance is explained by both the prior mathematics
knowledge and self-efficacy. This variability is considered to be
moderately high, and more discussion about this is presented in
the next section.

DISCUSSION, LIMITATIONS, AND
RECOMMENDATIONS

Discussion of Findings
Self-efficacy has been articulated theoretically to be an important
construct in explaining variability in students’ performance.
Several pieces of empirical evidence have demonstrated its
relevance to students’ performance in psychology, sport, and
clinical medicine (Bandura, 1997). Meanwhile, due to the task-
specificity of self-efficacy, it could be erroneous to assume
generalization of findings from other fields to the mathematics
learning context. More so, there are limited studies with a
focus on mathematics self-efficacy and its effects on students’
performance in university mathematics. As such, attempts are
made in the present study to investigate the causal effects
of mathematics self-efficacy on students’ performance through
an innovative approach of instrumental variable modeling
(Greenland, 2000). Prior mathematics knowledge (PKMT
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and HGP) and self-efficacy (CSEI) are conceptualized and
operationalized based on previous studies and the self-efficacy
theory. The measurement model of PKMT was evaluated, and
it was found to provide reliable estimates of the construct
it was hypothesized to expose. The findings of the present
study also confirm reliable estimates of the measurement model
of CSEI. These findings are consistent with the findings of
previous studies on the two measures (Zakariya et al., 2019,
2020a). After establishing acceptable measurement models of the
two measures, the hypothesized structural relationship between
the research constructs was evaluated. The major findings are
discussed in the forthcoming paragraphs.

The results of the present study confirm a direct effect of
prior mathematics knowledge test on students’ calculus self-
efficacy. This finding can be interpreted to mean that students
with high scores on the prior mathematics knowledge test have
a high sense of self-efficacy in solving first-year calculus tasks
successfully. This finding is consistent with the postulated impact
of personal previous task-based achievement on self-efficacy
by the self-efficacy theory (Bandura, 2012). It was found that
prior mathematics knowledge test alone accounts for 27% (i.e.,
the square of 0.52 times 100%) of the variability of the self-
efficacy. However, this percentage of explained variance reduced
to 24% when this direct effect of the test scores is combined
with the direct effect of HGP on self-efficacy. The direct effect
of prior knowledge of mathematics test on self-efficacy found
in the present study is far higher than the effects of high
school level, and the college credits (both operationalized to
measure prior experience) on students’ self-efficacy in completing
mathematics problem-solving tasks reported, elsewhere (Pajares
and Miller, 1994; Pajares and Kranzler, 1995). Given that
these studies are relatively old and the mathematics curriculum
in higher education is changing to catch up with our 21st-
century challenges, it is claimed that the present finding is
novel and the captures current situation on the causal relation
between prior mathematics knowledge and self-efficacy among
university students.

Another major finding of the present study is the exposed
direct effect of calculus self-efficacy on students’ performance
in the course. A unique feature about the estimate of this
direct effect lies in the ability of the instrumental variable
approach to discern this effect from that of other disturbances
which affect students’ performance but are not included in
the model. This finding is interpreted to mean a high sense
of self-efficacy is a potential cause of high scores of students,
beyond chances, in the first-year introductory calculus course. By
implication, this finding provides empirical support for designing
interventions that foster self-efficacy as proxies to enhance
students’ performance in the first-year introductory mathematics
course. Such interventions may be in the inform of realistic
modeling of the links between previous achievements and self-
efficacy, social persuasion by older students who have passed
the course, and other related activities that can be traced to the
sources of self-efficacy. The magnitude of the estimated causal
effect of self-efficacy on students’ performance in the present
study is substantially higher than comparable direct effects
reported in previous studies (Pajares and Kranzler, 1995; Roick

and Ringeisen, 2018). As such, the author claims that the causal
relationship exposed between self-efficacy and performance by
the findings of the present study has a significant contribution
to mathematics education literature.

Apart from the substantial contribution of the calculus self-
efficacy to students’ performance exposed in the present study,
a major finding is the detected mediating role of self-efficacy
between prior knowledge mathematics test and students’ current
performance in the course. It was found in the present study
that about 46% (i.e., 0.17 out of 0.37) of the total effect of
prior mathematics knowledge (PKMT and HGP) on students’
performance is mediated by self-efficacy. On the one hand, this
finding may be interpreted to mean students with high scores on
both the prior knowledge of mathematics test and the self-efficacy
performed, beyond chances, better than the students who do not
score high on the two measures. On the other hand, it confirms
the mediating role of self-efficacy as postulated by the self-
efficacy theory (Bandura, 1997). This finding also corroborates
the mediating role of mathematics self-efficacy that is reported,
elsewhere, using path analysis (Pajares and Miller, 1994). Despite
the limited number of variables the author considered in the
evaluated structural model of the relationship between the
research constructs, the percentage of the explained variance
(30%) in students’ performance is higher than the reported values
in studies with several predictor variables (Pajares and Miller,
1994, 1995). It is conjectured that the task-specificity of the
self-efficacy measure coupled with the innovative instrumental
variable approach used in the present study contributes to
the moderately high percentage of explained variance in the
students’ performance. Potential variables that could increase
the percentage of explained variance, if included in the model,
are approaches to learning mathematics, academic motivation,
mathematics anxiety, and attitudes toward mathematics learning.
Future studies are recommended with this intention.

Potential Limitations and
Recommendations
A potential limitation of the present study is attributable to
the restriction of sample to first-year engineering students
enrolled on a course. Even though this restriction offers several
advantages as previously highlighted in the “Materials and
Methods” section, it might also hinder the generalization of the
findings beyond a similar student population. Future replicated
studies are recommended with a focus on students following
a variety of courses at different levels of higher education.
However, such studies should devise innovative ways or use
robust statistical modeling such as multi-level SEM combined
with the instrumental variable approach to account for task-
specificity of the self-efficacy across diverse populations. Also,
the relatively small sample size (189 students) could be a threat
to the validity of the SEM results given that some researchers
have recommended higher sample sizes (Marsh et al., 1998;
Byrne, 2012). However, it has been theoretically argued and
empirically shown that a “one size fits all” rule is not tenable for
sample sizes of SEM studies (Wolf et al., 2013). As such, sample
sizes close to 200 cases are recommended for conducting SEM

Frontiers in Psychology | www.frontiersin.org 8 January 2021 | Volume 11 | Article 556607417418

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-556607 January 9, 2021 Time: 17:55 # 9

Zakariya Self-Efficacy Causal Effects on Performance

studies that involve moderately complex models (Kline, 2016).
Notwithstanding, future replication studies are recommended
with a larger sample size to cross-validate the findings of
the present study.

More so, the self-efficacy theory postulates a feedback causal
relationship between self-efficacy and students’ performance in
mathematics through reciprocal determinism model (Borgonovi
and Pokropek, 2019). Nevertheless, the focus of the present
study is only on one-directional causal effect from self-efficacy to
students’ performance which could also constitute a limitation.
The author argues that such a feedback causal relationship is
better investigated using a longitudinal research design (e.g.,
Roick and Ringeisen, 2018) than the survey research design used
in the present study. As such, future longitudinal studies are
recommended with this intention. The author also acknowledges
that a limited number of predictor variables in the evaluated
structural model of the present study may constitute another
limitation. Had been more relevant variables such as approaches
to learning, motivation, and mental ability that have been linked
with performance are included in the model (Pajares and Miller,
1994; Zakariya et al., 2020b), the percentage of explained variance
in students’ performance would have improved. Future study
may also be conducted with this intention.

CONCLUSION

The present study is motivated by the lack of empirical evidence
on the causal relationship between self-efficacy and students’
previous and current performance in university mathematics.
Therein, attempts are made to fill this gap by investigating
hypothesized causal claims between the research constructs using
the instrumental variable approach to modeling. The major
findings in the present study establish a causal relationship with
reliable estimates between self-efficacy and students’ performance
in an introductory calculus course at a university in Norway. The
author conjectures that these findings are generalizable to similar
student populations within and beyond Norwegian borders. This
conjecture is based on both theoretical and innovative statistical

perspectives adopted in the present study. As such, the author
recommends replication of the present study to investigate this
conjecture within the quantitative research paradigm. The author
declares that an outright discovery of the causal relationship
between self-efficacy and students’ performance in mathematics
is not claimed in the present study. Instead, it is hoped that
foundations are laid for future experimental, randomized-control
trial studies with this intention.
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APPENDIX

FIGURE A1 | The full evaluated model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus
course. The significant paths are in bold faces.
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Previous studies suggested that culture have impact on students’ mathematics

achievement and subjective wellbeing, but few investigated the effects of culture on

the balance between them. Drawing on Hofstede’s cultural dimensions theory, this

study investigated the effects of culture on balance between students’ mathematics

achievement and subjective wellbeing. Results showed the significant effects of cultural

dimensions of long-term orientation vs. short-term orientation and indulgence vs.

restraint. Students from countries of high long-term orientation and low indulgence

culture were more likely to get both high mathematics achievement and high SWB.

Besides, wealth-related variables (family SES and GDP per capita) and gender were

also found to influence the odds ratio of balance. The findings confirmed the effects of

national culture on the balance between mathematics achievement and SWB. Based on

the findings, this study discussed the effects of long-term orientation and restraint culture

and Confucian heritage culture’s potential benefit. The results indicate that mathematics

educators should consider cultural differences in educational practice and stress the

importance and meaning of mathematics learning.

Keywords: culture, mathematics achievement, subjective wellbeing, PISA, balance

INTRODUCTION

Mathematics achievement and subjective wellbeing (SWB) are both critical indicators of high-
performing education systems (OECD, 2019a) and play an essential role in students’ lives
(Steinmayr et al., 2018). As the saying goes, “all work and no play makes jack a dull boy,” implying
to attach importance to balance between achievement and personal subjective wellbeing. However,
previous studies revealed that the correlation between mathematics achievement and SWB was
weak, which means that high-achieving students do not necessarily report higher SWB than their
classmates (for review, see Suldo et al., 2006; Bucker et al., 2018). Under such circumstance, how
to prepare students with both high achievement and high SWB? For educators, it is essential to
learn about the antecedents of both. Although various studies have explored the determinants
of students’ academic achievement or SWB separately, few empirical studies investigated their
common influential factors. As a result, more research is needed to explore the factors that influence
the balance between achievement and SWB.
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Moreover, the strives of mathematics education indisputably
take place under a specific cultural environment. Consequently,
it is essential to understand the potential influence of culture on
both mathematics achievement and SWB. Previous comparative
studies have discovered that culture plays a role in explaining
disparities in mathematical achievement (e.g., Bishop, 1988;
Chen and Uttal, 1988; Stevenson et al., 1993; Leung, 2006) and
SWB between countries (Veenhoven et al., 1993; Inglehart and
Klingemann, 2000; Diener and Biswas-Diener, 2002; Steel et al.,
2018). Their conclusions, however, seem to be in conflict. For
example, some behaviors valued by the high-achieving countries,
such as delaying gratification and working hard, were found
to reduce SWB (Oishi and Diener, 2003; Steel et al., 2018).
These findings suggested that the “happiness” culture may not
be compatible with the “high-achieving” culture. Consequently,
it raises the issue of cultural effects on the balance between
mathematics achievement and SWB.

In order to address these above issues, the present study will
examine the effects of culture on the balance between students’
mathematics achievement and subjective wellbeing.

LITERATURE REVIEW

This section will review the related concepts and studies in
order to present a picture of current research on the relationship
between culture, mathematics achievement, and SWB.

The Construct of Culture
Culture is a broad phrase that encompasses a complex set of
concepts (Taras et al., 2009). In previous studies, scholars tend
to define culture from different perspectives. For example, it was
defined by Hofstede (1980, p. 25) as “the collective programming
of the mind that distinguishes the members of one group or
category of people from others.” While according to Triandis
(1972, p. 4), it refers to “an individual characteristic way of
perceiving the man-made part of one’s environments . . . involves
the perception of rules, norms, roles, and values.” Moreover,
many definitions continue to evolve over time (for reviews, see
Taras et al., 2009; Steel et al., 2018).

Among dozens of definitive models of culture, most of them
share several common elements. First, it is generally agreed that
culture refers to relatively stable values shared by a group or
society for a long period (Taras et al., 2009). Second, culture is
viewed as a multilevel construct. Many scholars use the “onion”
metaphor to separate culture for different layers (Hofstede, 1980;
Trompenaars, 1993). According to Hofstede (2001), the different
layers of the culture “onion” are values, rituals, heroes, and
symbols. The values lie at the center of the “onion,” symbols
represent the outer layers, and rituals and heroes form the middle
layers. Third, culture is multidimensional. Almost all the existing
models comprise various dimensions of values and attitudes
(Taras et al., 2009).

In the research field of mathematics education and subjective
wellbeing (e.g., Hu et al., 2018; Steel et al., 2018), Hofstede
(1980) cultural dimensions theory is the most popular one which
combines the aforementioned common features. Hofstede (1980)
original model divided culture into four dimensions, including

power distance, individualism-collectivism, masculinity-
femininity, and uncertainty avoidance. (1) Power distance (PDI)
refers to the extent to which members of organizations or
countries believe that power is equally distributed. A higher PDI
level indicates a well-established societal hierarchy, whereas a
lower one shows an equitably distributed power structure. (2)
individualism-collectivism (IDV) indicates the extent to which
people are integrated into groups. (3) masculinity-femininity
(MAS) is a sociocultural trait indicating the division of emotional
roles between genders. Higher MAS reveals a society with
a preference of achievement, assertiveness, and heroism,
while lower MAS reveals a “feminine” society that prefers
cooperation, modesty, and caring for the weak. (4) Uncertainty
avoidance (UAI) is a term that describes people’s aversion toward
uncertainty. People from higher UAI countries treat uncertainty
as threats, while those from low UAI countries would be more
accustomed to unfamiliar situations.

In addition, Hofstede further proposed the other two
dimensions in the following research (Hofstede et al., 2010). That
is (5), Long-term orientation vs. short-term orientation (LTO).
This dimension is halfway between long-term and short-term
perspectives. The long-term pole emphasizes the importance
of virtues that lead to future rewards, such as perseverance
and thrift, whereas the short-term pole emphasizes past and
present virtues, such as reverence for tradition and maintaining
one’s “face.” (6) Indulgence vs. restraint (IND). This dimension
refers to the degree of freedom that society allows for human
desires. A high IND civilization allows for relatively unrestricted
gratification of fulfilling human desires, whereas a low IND
society regulates the gratification of needs.

Hofstede’s framework is widely accepted by cross-cultural
scholars. In the review of Taras et al. (2009), more than 120
existing survey instruments of culture shared one or more
common dimensions with Hofstede’s approach. The finding
reveals that the framework is well-representative of culture
when it comes to defining and measuring it. Therefore, the
present study will use Hofstede’s six cultural dimensions to
describe culture. Furthermore, in line with the traditional way
in mathematics education (e.g., Stankov, 2010; Leung, 2014),
the culture used in this study refers to the cultural value, which
belongs to the core module of the “onion” construct of culture.

The Influence of Culture on Mathematics
Achievement
International large-scale surveys (e.g., TIMSS and PISA)
always reported substantial national differences in mathematics
achievement. Such across-national differences have been the
focus of mathematics education for a long time (e.g., Hess et al.,
1987; Bishop, 1988; McInerney et al., 1997). Among various
factors that contribute to the achievement differences, culture is a
non-negligible one. For example, when comparing the differences
between East-Asian and Western countries, scholars discovered
that cultural factors may be more effective than economic
determinants in explaining the better performance of East-Asian
students (Chen and Uttal, 1988; Stevenson et al., 1993; Leung,
2006).
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The effects of culture could take place at the national level.
In the study of Hu et al. (2018), the cultural dimension of
long-term orientation was significantly related to mathematics
achievement. Specifically, countries with a higher level of long-
term orientation would outperform inmathematics achievement.
Besides, many studies explored the cultural difference in the
national curriculum (Leung’s, 1992; Li and Ginsburg, 2006). For
instance, in Leung’s (1992) comparative study, he found that the
U.K. curriculum stressed the intrinsic aims, whilst the Chinese
curriculum did not, and such a difference could be explained by
the cultural differences between individualistic and collectivistic
orientations. This explanation is also in line with Hofstede’s
dimension of individualism-collectivism. In addition, Li and
Ginsburg (2006) showed that, compared with the U.S., the East-
Asian countries’ textbook showed a higher level of classification,
but their teachers had a lower level of autonomy in selecting ways
for knowledge presentations. The differences were explained by
the cultural values of authority relations, which align with the
cultural dimension of power distance.

The effects could also take place at the classroom and
individual levels. Based on observation of classroom teaching
in different cultures, Leung (2001) summarized six differences
between the Eastern and Western mathematics educations,
such as rote vs. meaningful learning and extrinsic vs. intrinsic
motivation, and further argued that the characteristics in East-
Asian classrooms could attribute to the Confucian heritage
culture. In terms of the individual-level effects, Hu (2019) found
that student-espoused cultural values, such as dimensions of
individualism-collectivism and power distance, were significantly
associated with their mathematics achievement in some cultural
groups of China.

In conclusion, culture has gotten a lot of attention in
mathematics education, and it’s been found to be an important
element in explaining pupils’ math achievement. However,
the effects of culture on mathematics achievement may not
be consistent with that on students’ subjective wellbeing. As
mentioned above, high-achieving students do not necessarily
report higher SWB than low-achieving ones (Suldo et al.,
2006; Bucker et al., 2018). Moreover, some cultural dimensions
contributing to high achievement may sacrifice students’ SWB.
For instance, Leung (2014) found that East-Asian students had
negative attitudes towardmathematics, and the culture could be a
possible explanation. Therefore, the influence of culture on SWB
will be reviewed in the next section to extend the understanding
beyond achievement.

The Influence of Culture on Subjective
Wellbeing
Similar to mathematics achievement, previous international
surveys also reported consistent differences in SWB across
countries (Veenhoven et al., 1993; Inglehart and Klingemann,
2000). The differences could partially attribute to the wealth and
related predictors, but not all (Diener et al., 2003). Furthermore,
the effects of wealth-related factors on SWB normally decrease as
national economic situation improve (Diener and Biswas-Diener,
2002). It was assumed that the wealth-related variables matter

most to SWB before meeting basic human needs (Inglehart and
Klingemann, 2000). In this way, scholars turned to look for
explanatory factors other than wealth. One interesting finding
was that the cultural differences seemed to parallel to the
SWB differences. For example, European Americans always
reported higher life satisfaction and less unhappiness than Asian
Americans, though living in the same country (Okazaki, 2000).
One explanation of this phenomenon is the cultural differences in
self-evaluations and attributions (Diener et al., 2003). It has been
found that North Americans tended to judge themselves with
self-enhancement, while East Asians tended to do this with self-
criticism (Oishi and Diener, 2003). This kind of self-evaluation
differences (self-enhancement or self-criticism) was related to the
cultural focus on individualism and collectivism.

Another cultural difference exists in people’s strategies for
tradeoffs. The most common thing would be the tradeoff
between immediate happiness and future goals. A previous
study suggested that Asian-American students would feel better
when pursuing future goals, while Caucasian students preferred
immediate hedonic activities (Asakawa and Csikszentmihalyi,
2000). Similar things were also found between European and
Asian Americans (Oishi and Diener, 2003). Asian American
students were very perseverant in reaching the goal of a particular
task, but European Americans would be more likely to give up
and switch to other tasks if they cannot do well in a certain task.
As a consequence, the switching strategy of European American
students would lead to more enjoyment. These findings revealed
the difference in cultural dimensions of long-term orientation
and indulgence. It seems that culture in favor of immediate
happiness would lead to higher enjoyment. However, this tradeoff
method may not be beneficial to long-term goals like learning
(Diener et al., 2003).

Furthermore, it seems that the “happy” culture may not
be consistent with the “high-achieving” culture. In the meta-
analysis of Steel et al. (2018), it was found that happy nations
had specific features of low power distance, low uncertainty
avoidance, high femininity, and high individualism. However,
those features seem to contradict East-Asian Culture, which
is always featured by high mathematics performance, with
relatively high collectivism, high uncertainty avoidance, and high
power distance. Moreover, some behaviors valued by Confucian
heritage culture, such as delaying gratification and working hard,
were found to reduce SWB (Oishi and Diener, 2003; Steel et al.,
2018). The findings were also in line with the reports of large-
scale assessments, which suggested that East Asian students had
negative motivation but high mathematics performance (Mullis
et al., 2016).

The Present Study
The different patterns between culture-achievement and culture-
SWB relationships may challenge mathematics educators on
preparing students with proficient mathematics literacy and
abundant SWB. As discussed above, the efforts of mathematics
education indisputably take place under a specific cultural
environment. Therefore, it is essential to understand the effects of
culture on balance between students’ mathematics achievement
and SWB. Although previous studies explored the effects of
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culture on mathematics achievement and SWB separately, few
focused on the balance. Therefore, this study attempted to bridge
the gap by exploring the effects of national culture on the balance
between high mathematics achievement and high SWB.

METHODS

Data Source and Sample
In order to operationalize culture for study, every research
that attempts to investigate culture-related phenomena of
any kind must first define and categorize it correctly. This
is a difficult task because culture is a complex and dynamic
entity. We used Hofstede’s more current six-dimensional
model of culture in building our conceptual framework.
Despite the fact that Hofstede’s culture model is the most
generally used and influential model of a nation-centered
cultural framework (Steenkamp, 2001; Dwyer et al., 2005),
it has been criticized. McSweeney (2002), for example,
critiques Hofstede’s conceptualization of national culture
and points out that culture transcends political borders. As
a result, nation states are not an appropriate level of study.
Besides, giving an overly simplified dimensional definition
of culture and neglecting the presence of cultural variety
within countries seems inappropriate (Minkov and Hofstede,
2014).

Despite these concerns, Hofstede’s approach has influenced a
large number of research that use one or more of the dimensions
to explain observed disparities between nationalities (Botero and
Van Dyne, 2009; Landau, 2009; Kaasa, 2015). It is still widely
regarded as a well-founded method for describing culture in
the sense employed in this study (Sivakumar and Nakata, 2001;
Secter, 2003; Venaik and Brewer, 2008). Hofstede’s framework of
national culture is considered to be a valid and useful instrument
in quantifying national culture in a relatively large number of
countries (Gibson et al., 2006). The data was collected from
more than 116,000 respondents in over 50 countries and regions.
Subsequent studies validating the earlier results have included
respondents such as commercial airline pilots, students, civil
service managers, “up-market” consumers and “elites.”

It is worth noting that country-level research, particularly
which based on Hofstede’s national scores, has been chastised
for committing an ecological fallacy (McSweeney, 2002; Sharma,
2009; Henrich et al., 2010). We agree with this criticism,
noting that a person’s cultural values cannot be defined
solely by his or her nationality. Nonetheless, cross-country
variances in mean values, as well as considerable intra-
country differences, cannot be denied. For example, Huang
et al. (2019) founded that the university teachers from China
and Spain showed difference on their intentions to use
technology, due to their perceived cultural preferences were
quite different. Our research takes a multi-level approach.
We anticipate that a country-level analysis will provide
macrolevel insights into behavior differences between countries,
complementing the findings of an individual-level study.
Therefore, these criticisms do not undermine the fundamental
premise of the current study: culture have impact on students’
mathematics achievement, subjective wellbeing, and the balance
between them.

The data source consists of records from three databases—
PISA 2018 database (OECD, 2019b), Hofstede’s cultural database
(Hofstede, 2015), and the International Monetary Fund database
(IMF, 2018). First, the PISA 2018 database provides information
about 15-year-old students’ mathematics achievement and family
background variables (e.g., family SES) in 79 participating
countries/economies. Second, the present study included the
GDP per capita records in 2018 from the IMF database
to represent each participating country’s national economic
development. Third, Hofstede’s cultural database contains a
series of data collected between 1971 and 2015, representing
the national culture value from six dimensions. Although the
timeslot of the cultural database is different from PISA 2018, it is
reasonable to link these databases at the national level (e.g., Chiu
and Klassen, 2010; Hu et al., 2018), since the national culture
remains very stable for an extended period (Hofstede et al., 2010).

The intersection of PISA 2018 and Hofstede’s cultural
databases includes 56 countries/economies, in which 10 ones
did not participate in the wellbeing survey of PISA 2018.
After excluding the 10 countries, the remaining dataset
contains 355,042 students from 46 countries/economies. Table 1
demonstrates the descriptive statistics of interested variables for
these countries/economies. The missing data of SES (2.3%) and
SWB variables (Positive feeling, 8.7%; Life satisfaction, 6.8%;
Meaning in life, 8.3%) were imputed with the EM algorithm by
SPSS 20.0 (Graham, 2009) (See Appendix for details).

Variables
The dependent variable is the balance between mathematics
achievement and subjective wellbeing. This study defined
“balance” as a dichotomous variable, with “1” representing a state
of getting both high mathematics achievement and high SWB,
and “0” for otherwise. The mathematics achievement and three
SWB variables (life satisfaction, positive feeling, and meaning
in life) were retrieved from PISA 2018 databases. First, this
study classified students into three categories according to their
mathematics achievement. That is, high achievement (ranking
0–25%), medium achievement (25–75%), and low achievement
(75–100%). Second, the same approach was applied to classified
students according to their scores in three dimensions of
subjective wellbeing, such as high life satisfaction or medium
positive feeling. Students were then classified as high SWB for
at least two high scores and one medium score out of three SWB
dimensions. Third, the variable balance was assigned to 1 when a
student got both high mathematics achievement and high SWB;
otherwise, 0.

Independent variables. The independent variables were the six
cultural dimensions in Hofstede’s cultural databases, including
power distance, individualism, masculinity, uncertainty
avoidance, long-term orientation, and indulgence.

Control variables.At the national level, this study included the
log GDP per capita as the control variable. At the student level,
the control variables were gender and family SES (PISA index of
economic, social, and cultural status).

The descriptive statistics of all the variables mentioned above
were demonstrated in Table 1.
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TABLE 1 | Descriptive statistics of variables.

Variables Mean SD Description

Student-level

Mathematics achievement 470.36 97.51 Student mathematics

performance. Min = 5.22, max =

915.10

Life satisfaction 7.09 2.49 The first dimension of subjective

wellbeing. It represents one’s

reflective assessment of general

life satisfaction. Min = 0,

max = 10

Positive feeling 0.09 0.96 The second dimension of

subjective wellbeing. It

represents one’s positive feelings

of happiness, joyfulness, and

cheerful. Min = −3.07,

max = 1.24

Meaning in life 0.10 0.94 The third dimension of subjective

wellbeing. It represents one’s

sense of meaning and purpose

in life. Min = −2.15, max = 1.74

Gender Girl = 49.97% boy = 50.03%

SES −0.31 1.11 PISA index of economic, social

and cultural status. Min =

−7.75, max = 3.96

Country-level

Log GDP per capita 10.29 0.52 Min = 8.98, max = 11.46

Power distance 60.28 20.89 Min = 11, max = 104

Individualism 45.13 21.68 Min = 13, max = 91

Masculinity 49.20 21.44 Min = 5, max = 110

Uncertainty avoidance 71.07 21.74 Min = 29, max = 112

Long-term orientation 53.28 22.43 Min = 13, max = 100

Indulgence 45.48 20.05 Min = 13, max = 97

Analysis
Because students were nested in each country/economy, such a
clustered structure requires applying the multilevel linear model
(Cohen, 1988; Raudenbush and Bryk, 2002). A two-level logistic
regression model was established to examine the influence of
culture on students’ balance between mathematics achievement
and subjective wellbeing. In this model, the dependent variable
is the balance between mathematics achievement and subjective
wellbeing. As aforementioned in the variable section, this variable
was assigned to 1 when a student got high mathematics
achievement and high SWB; otherwise, 0. That is based on the
following considerations:

Firstly, we used the upper Quartile to represent the advantaged
students. According to PISA 2018 Technical Report, the
students in top quarter are considered as the advantaged. For
example, PISA 2018 results point out that socio-economically
advantaged students are students in the top quarter of the PISA
index of economic, social and cultural status (ESCS) in their
country/economy, socio-economically disadvantaged students
are students in the bottom quarter of the PISA index of economic,
social and cultural status (ESCS) in their country/economy.

Besides, students are classified as high SWB for at least two
high scores and one medium score out of three SWB dimensions.
The procedure followed methods used by relevant research.
For example, Huppert and So (2013) proposed a categorical
diagnosis for flourishing that required a strong endorsement of
positive emotion, plus a strong endorsement of four out of five
“positive characteristic” features and three out of four “positive
functioning” feature. It should be noted that selecting thresholds
according to data distribution makes Huppert and So’s model the
only one in which individual flourishing depends on how well
others are doing (Hone et al., 2014).

The independent variables were six cultural dimensions, and
the control variables were log GDP per capita, gender, and family
SES. The multilevel model was conducted by HLM 6.0. Before
establishing the model, continuous variables were standardized
into Z scores, and the student weight (SENWT) provided by PISA
2018 was used to estimate statistics.

RESULTS

Partitioning Variation in Student Balance
Between Mathematics Achievement and
SWB
Due to the logistic distribution feature, the level-1 unexplained
variation is always equal to π2/3, which is 3.29 (Goldstein et al.,
2002). The results of the null model showed that the variation in
level-2 is 0.883 (see Table 2). Therefore, the ICC is 0.833/(0.833
+ 3.29) = 0.202. According to Cohen (1988), an ICC >0.059
indicates a non-negligible within-cluster dependence. Thus, it is
necessary to apply a multilevel model.

TABLE 2 | Two-level logistic regression models for balance between mathematics

achievement and subjective wellbeing.

Null model Control model Full model

Est. S.E. Est. S.E. Est. S.E.

Fix effect

Student level

Gender 0.434*** 0.024 0.434*** 0.024

Family SES 0.818*** 0.049 0.819*** 0.049

Country level

Ln GDP per capita 0.710*** 0.156 0.562** 0.167

Power distance −0.043 0.090

Individualism 0.174 0.092

Masculinity −0.083 0.067

Uncertainty avoidance 0.131 0.111

Long-term orientation 0.323** 0.094

Indulgence −0.212** 0.071

Random effect Variance Variance Variance

Country level 0.883 0.538 0.335

Student level 3.29 3.29 3.29

**p < 0.01; ***p < 0.001.
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The Influence of Culture on Balance
Between Mathematics Achievement and
SWB
The two-level logistic regression model results could indicate
which factors would enhance students’ probability of reaching
a state of balance, that is, getting both high mathematics
achievement and high SWB. The control model showed that
gender, family SES and GDP per capita were all the significant
factors contributing to students’ balance. For example, the
standardized coefficient of gender (0= female, 1=male) is 0.434,
suggesting that boys were more likely to reach a balanced state
than girls. In more detail, the odds ratio between boys and girls
was 1.543 (e0.434). Besides, both family SES and Ln GDP per
capita could also enhance the odds of being balanced.

After including cultural variables in the full model, the
significance level of Ln GDP per capita declined slightly.
In addition, it can be seen that two out of six cultural
dimensions were significantly related to the log odds of the
balance. Specifically, the dimension of long-term orientation
had a positive effect on the state of balance. The odds of the
state of balance would increase by 1.38 (e0.323) times for the
same student if s/he lived in another country with a one-
standard-deviation-higher score on the long-term orientation
dimension. Conversely, the indulgence dimension coefficient was
negative, indicating that the odds would drop to about four-
fifth (0.81, e−0.212) if the scores of indulgences increase by one
standard deviation.

DISCUSSION

The Effects of Long-Term Orientation and
Restraint Culture
In this study, national culture was found to have strong
associations with the balance between mathematics achievement
and SWB. Specifically, the cultural dimensions of long-
term orientation and restraint were significantly related to
better balance.

The result is in line with previous studies on mathematics
education. First, in terms of the long-term orientation,
comparative studies between East-Asian and Western countries
suggested that some behaviors in line with the long-term
orientation culture, such as delaying gratification and working
hard, may contribute to the high performance of East-
Asian students (Li, 2002; Leung, 2014). For example, students
from long-term culture societies emphasize the importance
of education and believe deeply in their own efforts (Leung,
2014). Moreover, long-term culture could promote people’s self-
regulation ability and delayed gratification, which are essential
for successful learning (Bembenutty and Karabenick, 2013).
Second, according to Hofstede’s cultural dimensions theory,
the restraint culture is the opposite pole to indulgence. A
high indulgence society allows relatively free gratification of
fulfilling human desires, while high restraint indicates a society
of restraint that controls the gratification of needs. Therefore,
the restraint culture mechanism may overlap with that of long-
term orientation in terms of delaying gratification. It is also

interesting to notice that restraint culture was not found to be
related to mathematics achievement in previous studies (Hu
et al., 2018; Hu, 2019). In this way, the restraint culture may be
influential when consideringmathematics achievement and SWB
simultaneously. That is, the long-term culture could contribute
to the value of virtues oriented toward future rewards, but it
may need the complement of restraint culture in resisting the
short-term desires.

However, the findings revealed some differences with research
on SWB. Some previous studies found that culture favoring
immediate happiness would lead to higher enjoyment (Diener
et al., 2003; Oishi and Diener, 2003), but our study supported
the benefits of long-term orientation and restraint cultures. The
contradictory results could attribute to the tradeoff between
immediate happiness and future goals. It has been suggested that
values in favor of immediate happiness may not benefit long-
term goals, such as mathematics learning (Diener et al., 2003).
According to Maslow’s needs theory, subjective wellbeing would
be determined by different levels of need-satisfaction. Besides,
compared with pursuing lower-level hedonic pleasant, pursuing
a meaningful life would produce more desirable results, such
as more profound happiness, serenity, and richness of inner
life (Maslow, 1981). The goal of pursuing a meaningful life is
congruent with the values of long-term orientation and restraint
culture (Hofstede et al., 2010). The orientation to pleasure is quite
common and easy, but the pursuit of meaning requires more
effort and control. To this end, our findings supported the benefit
of long-term orientation and restraint culture on the quality of
SWB—high SWB along with high mathematics achievement.

The Potential Benefit of Confucian
Heritage Culture
Previous studies showed the challenge of keeping a balance
between high achievement and high SWB (Suldo et al., 2006;
Bucker et al., 2018). The complicated relationship between
mathematics achievement and SWB raises concerns on whether
there is a tradeoff between mathematics achievement and
SWB. On the one hand, it is obvious that the benefits of
mathematics learning are not always instantaneous and rely
heavily on cumulative effects over time.What is more, the process
of learning mathematics is full of obstacles and frustrations
(Schoenfeld, 1985; Op’t Eynde et al., 2007), which may reduce
students’ SWB. On the other side, the strategies for immediate
happiness may not benefit long-term learning goals (Diener
et al., 2003). Therefore, it seems that there is a tradeoff. This
study found that both mathematics achievement and SWB were
related to the national culture. In more details, students would
be more likely to get both high mathematics achievement and
high SWB in a society with high long-term orientation and low
indulgence culture.

It is worth noting that the two influential cultural dimensions
were not included in Hofstede’s original model. As a consequence
of his subsequent studies in East-Asian countries, Hofstede
added the dimensions of long-term orientation vs. short-term
orientation and indulgence vs. restraint into his framework
(see in Hofstede et al., 2010). To some extent, this interesting
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finding may indicate the unique value of East-Asian culture,
especially the value of Confucian heritage culture. Unlike rational
utilitarianism thoughts on the quality of life, Confucian heritage
culture stresses more on life’s meaning (Sundararajan, 2005).
Under the Confucian philosophy, people tend to answer “what
is a good life” by a strong evaluation of the meaning (Taylor,
1985). The underlying belief of their evaluation is a moral map.
A good example is a Confucian philosopher Mencius’s proverb
(Legge, 1861), “fish are my favorite; bear’s paws are also my
favorites. If I cannot have both, I will choose bear’s paws over fish,”
in which the fish and bear’s paws were metaphors of life and
righteousness. The emphasis on themeaning of life could provide
the horizon for people’s evaluation of life quality. In this way, the
goal of learning could be consistent with the pursuit of a good
life for Confucian heritage culture learners. Besides, different
from the happy culture emphasizing on the high emotional
arousal, Confucian heritage culture seeks for the balance state
between extreme positivity and negativity, such as serenity, inner
harmony, and mindfulness (Averill and More, 2000; Kitayama
and Markus, 2000). The emphasis on balance may contribute to
a better balance between high mathematics and high SWB.

The above discussion is not to demonstrate any exclusive
advantage of Confucian heritage culture, but to search for
possible explanations from Confucian heritage culture.
Moreover, this study’s finding was within the 46 participating
countries of PISA 2018, which was not limited to Confucian
heritage culture countries. Although this study’s findings were
in line with some Confucian heritage values, it should be noted
that those values of long-term orientation and restraint could
also be found in other societies, for instance, in Muslim and
East European countries. In this way, shared values could be
explained through the lens of different cultural perspectives.
Therefore, it is more important to establish the indigenous
identities for mathematics education based on deep-rooted
cultural values (Leung, 2001), which is still the weakness for East
Asian countries. The above discussion provides the possibility
of establishing the identities of Confucian heritage culture in
mathematics education.

The Implications for Mathematics
Education
The balance between mathematics achievement and SWB
is essential for students, education systems, and societies.
Proficient mathematics skills and affluent SWB were found to be
STEM leaders’ characteristics and contribute a lot to economic
development (McCabe et al., 2020). This study explored the
effects of national culture and other variables on the balance
between mathematics achievement and SWB, which could
provide some implications.

First, mathematics educators should stress the importance of
education and encourage students to pursue the long-term goal of
mathematics learning. As suggested by previous studies, students
need to be perseverant in mathematics learning (Schoenfeld,
1985; Op’t Eynde et al., 2007), but the process may reduce their
SWB (Oishi and Diener, 2003; Steel et al., 2018). This study
showed the positive effects of long-term orientation and restraint

culture. From the Confucian heritage culture, the positive effects
may derive from the emphasis on education and meaning.
Specifically, working hard in mathematics learning would be
moremeaningful if students believe in the value of education, and
success in learning could in turn bring them great satisfaction.
Therefore, it is important to help students realize the value
and meaning of mathematics learning. A variety of studies
have investigated the factors that influence students’ attitudes
toward mathematics learning, such as school-related factors (e.g.,
teaching materials, classroom management, teacher knowledge,
guidance, beliefs) and family-related factors (e.g., educational
background, parental expectations) (Cheung, 1988; Mata et al.,
2012; Tan, 2017). A common feature of those factors is to help
students to find the meaning in mathematics learning. However,
there is a widespread problem that mathematics instruction
emphasizes too much on developing procedural knowledge,
with limited attention to conceptual knowledge (Rittle-Johnson,
2019). Many students do not develop sufficient conceptual
knowledge and fail to realize the connections of concepts and
relations with their daily lives (Kilpatrick et al., 2001; Rittle-
Johnson, 2019). In this aspect, mathematics educators should
confirm the importance of developing both types of knowledge
and impart the underlying meaning of mathematics knowledge.

Second, mathematics educators should search for the practice
and establish theory compatible with indigenous culture. Our
findings confirmed the effects of national culture on balance
between mathematics achievement and SWB in the sample of 46
countries. Therefore, culture should be a non-negligible factor
in the research of mathematics education (Hess et al., 1987;
Bishop, 1988; Chen and Uttal, 1988; Stevenson et al., 1993;
McInerney et al., 1997; Leung, 2006). Previous studies found
large variations between national culture (Hofstede et al., 2010),
but the mathematics education worldwide showed the trend
of institutional isomorphism (Anderson-Levitt, 2008; George
et al., 2019; Kezar and Bernstein-Sierra, 2019). For example,
mathematics curriculum around the world has become more
uniform (Anderson-Levitt, 2008). Conversely, this study found
the culture favoring long-term orientation and restraint could
better support students’ mathematics achievement and SWB,
which indicates the potential benefit of non-western culture, such
as Confucian heritage culture. Moreover, borrowing theories may
not fit the local culture (e.g., Leung, 2001; Hu, 2019). In this way,
mathematics educators should be more confident and humbler
to learn from traditions and search for the practice and theory
rooted on indigenous cultural values (Leung, 2001).

Third, mathematics educators should focus on the problem
of education equity. In this study, students’ mathematics
achievement and SWB were found to be significantly related to
wealth-related variables (family SES and GDP per capita).
This result indicates that students from disadvantaged
families and regions are more likely to perform worse in
mathematics achievement and SWB. In the past, the issue
of education equity has received extensive attention in
terms of academic achievement. However, the SWB was
ignored. This result of this study suggested the importance
of research on SWB in providing the full picture of
educational equality.
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CONCLUSION

This study examined the effects of culture on balance between
students’ mathematics achievement and subjective wellbeing.
Results showed the significant effects of cultural dimensions of
long-term orientation vs. short-term orientation and indulgence
vs. restraint. Students from countries of high long-term
orientation and low indulgence culture were more likely to get
both high mathematics achievement and high SWB. Besides,
wealth-related variables (family SES and GDP per capita) and
gender were also found to influence the odds ratio of balance.
The findings confirmed the effects of national culture on the
balance between mathematics achievement and SWB. Based
on the findings, this study discussed the effects of long-term
orientation and restraint culture. The results indicate that
mathematics educators should consider cultural differences in
educational practice and stress the importance and meaning of
mathematics learning.

A Few limitations should be noted in this study. First,
this study explored the effects of culture at the national level.
The results cannot show how culture influences individual
learning and subjective feeling. It remains future studies to
examine the influence of culture at the individual level. Second,
culture is only one of the many influential factors related
to the balance between mathematics achievement and SWB.
The effects of culture may rely on interactions with other
factors, such as national curriculum, classroom teaching, or

motivation. Therefore, although this study found the quantitative
relationship between culture, mathematics achievement, and
SWB, further research is needed to explain the underlying
mechanism. Third, since PISA 2018 involved few Muslim and
African countries, it may result in bias at the national level.
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APPENDIX 1

TABLE 1A | The participating countries and their economic development and

cultural values.

Countries/economies GDP PDI IDV MAS UAI LTO IND

Argentina 18261.48 49 46 56 86 20 62

Austria 46359.70 11 55 79 70 60 63

Brazil 14347.28 69 38 49 76 44 59

B-S-J-Z (China) 16097.76 80 20 66 30 87 24

Bulgaria 20588.08 70 30 40 85 69 16

Chile 22837.23 63 23 28 86 31 68

Chinese Taipei 47161.39 58 17 45 69 93 49

Colombia 13271.72 67 13 64 80 13 83

Croatia 23331.15 73 33 40 80 58 33

Czech Republic 33179.76 57 58 57 74 70 29

Estonia 30351.51 40 60 30 60 82 16

Finland 41404.71 33 63 26 59 38 57

France 40780.17 68 71 43 86 63 48

Germany 46549.52 35 67 66 65 83 40

Greece 25833.11 60 35 57 112 45 50

Hong Kong 57047.03 68 25 57 29 61 17

Hungary 28358.2 46 80 88 82 58 31

Indonesia 11759.71 78 14 46 48 62 38

Ireland 70747.04 28 70 68 35 24 65

Japan 39316.95 54 46 95 92 88 42

Korea 38467.01 60 18 39 85 100 29

Latvia 26579.18 44 70 9 63 69 13

Lithuania 30742.25 42 60 19 65 82 16

Luxembourg 94521.08 40 60 50 70 64 56

Malaysia 27822.98 104 26 50 36 41 57

Malta 40131.92 56 59 47 96 47 66

Mexico 18319.48 81 30 69 82 24 97

Netherlands 50195.30 38 80 14 53 67 68

Peru 12654.90 64 16 42 87 25 46

Philippines 7946.38 94 32 64 44 27 42

Poland 28439.38 68 60 64 93 38 29

Portugal 28800.89 63 27 31 104 28 33

Romania 23501.42 90 30 42 90 52 20

Russian Federation 25588.94 93 39 36 95 81 20

Serbia 15596.91 86 25 43 92 52 28

Slovak Republic 31221.95 104 52 110 51 77 28

Slovenia 32648.13 71 27 19 88 49 48

Spain 35696.63 57 51 42 86 48 44

Sweden 47674.52 31 71 5 29 53 78

Switzerland 57767.17 34 68 70 58 74 66

Thailand 17313.34 64 20 34 64 32 45

Turkey 24920.01 66 37 45 85 46 49

United Arab Emirates 61510.5 80 38 53 68 23 34

United Kingdom 40644.85 35 89 66 35 51 69

United States 55864.78 40 91 62 46 26 68

PDI, power distance; IDV, individualism-collectivism; MAS, masculinity-femininity; UAI,

uncertainty avoidance; LTO, long-term orientation vs. short-term; IND, indulgence vs.

restraint.
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Supporting growth in problem solving is key to capacity development for both teachers

and students. When teachers engage in rich academic conversations that inquire deeply

into content and pedagogy, they have an opportunity to cultivate student capacity to

engage in rich academic discourse, problem solving and mathematical learning. In this

study, we examined an intensive professional development training intervention in which

teacher participants learned to use and understand the Teaching Learning Community

(TLC) approach, design and connect standards-based lessons, and nurture a mindset

of learning and thinking like a problem solver among students and teachers alike. We

further examined whether there were any differences in students’ MAP test scores

over time among students whose teachers participated in the intervention and students

whose teachers did not participate. Findings from the Analysis of Variance of students’

MAP test scores indicated that students whose teachers participated in the intervention

demonstrated more growth in mathematical proficiency, particularly in Grade 3. Thus,

implementing an intervention like the one described herein that provides the appropriate

resources to teachers, education in the form of high-quality professional development,

and an opportunity to collaborate with peers and experts can result in direct improvement

to student achievement in math.

Keywords: elementary mathematics, mathematics education, content coaching, teacher learning community,

mathematical thinking, numeracy

INTRODUCTION

Is it possible to create change in a school mathematics curriculum delivery? What interventions can
be provided for teachers to build their own capacity and support their students’ building numeracy
skills all at the same time? In this study, interviews with four elementary principals revealed a
need to build strong student numeracy skills including problem solving in order to provide a
smooth transition to fourth grade with higher stakes testing. Vygotsky’s (1978) sociocultural theory
contends that children grow into the intellectual community that surrounds them. In order to
prepare students for life-long learning, the focus of education needs to be on learning to acquire
knowledge, create, innovate, communicate, and discern. For teachers, that means facilitating robust
learning habits in their students. When teachers engage in rich academic conversations that inquire
deeply into content and pedagogy, they have a better shot at cultivating student capacity to engage
in rich academic discourse (West and Cameron, 2013). In order to build such capacity, teachers
are ideally charged with having deep and flexible knowledge about the content they teach and how
their students learn that content.
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Ma (2010) describes the development of teachers’
understanding of school mathematics as “a process with a
series of interactions: between considerations of what one
should teach and how to teach it; among colleagues; between
teachers and students; and between one’s interest in mathematics
as a teacher and as a layperson or mathematician” (p. 41).
Additionally, building number sense in children is fundamental
for their growth in mathematical reasoning. But the extent
to which building number sense “becomes an individual’s
major talent still rests with the type and strength of genetic
input and the environment in which the individual grows and
learns” (Sousa, 2015, p. 12). Number sense is often discussed
in math education, but what is it? Fennell and Landis (1994)
state, “Number sense is an awareness and understanding about
what numbers are, their relationships, their magnitude, the
relative effect of operating on numbers, including the use of
mental mathematics and estimation” (Parrish, 2010, p. 35–36).
Developing a healthy sense of numbers is essential to building a
confident mathematical learner in grades K-3 while connecting
with future mathematical productivity.

What about the role of mathematical proficiency? In order
to build capacity through building numeracy mathematical
proficiency is key. In their book, Kipatrick et al. (2001) reported
five “interwoven and interdependent” stands, which have
implications for “how students acquire mathematical proficiency,
how teachers develop that proficiency in their students, and how
teachers are educated to achieve that goal” (p. 5). The five stands
are “conceptual understanding,” “procedural fluency,” “strategic
competence,” “adaptive reasoning,” and “productive disposition”
(Kipatrick et al., 2001, p. 5). Furthermore, when children are
in classrooms where these strands of proficiency are developed
together, they are able to build a stronger understanding of both
mathematical concepts and procedures (Walle et al., 2018).When
supported by knowledgeable and caring teachers, mathematical
proficiency builds capacity for future learning and connections.

To explore the development of an intervention for building
students’ numeracy and mathematical proficiency, a Midwestern
university implemented a 2-years project, entitled “Supporting
Strategies for Building Numeracy in Grades K-3,” that focused
on building capacity of educators to identify and support high-
level instructional practices that result in improved mathematical
learning in the elementary grades. Specifically, the project sought
to prepare teachers and students in building numeracy. The
2-years grant project targeted four elementary schools in two
rural school districts in the United States. Participants included
four administrators and 26 teachers of Grades K-3 in Year 1
of the grant. Year 2 of the grant project included three of the
same administrators and one new administrator. Year 2 of the
grant retained 17 of the teachers from Year 1 and added eight
new teachers.

The focus of the project was initially established through
interviews with principals at four schools that revealed patterns
of concern regarding a lack of problem-solving skills and a
decrease in state testing scores between third and fourth grades.
From this, the project investigators identified the following
patterns of needs in mathematics education: focusing on number
sense in the early grades; preparing K-3 students and their

teachers to be problem solvers; and supporting and guiding
students in formulating their own mathematical questions. The
investigators then designed and implemented the project to meet
these needs.

During the 2015 through 2017 school years, teacher
participants took part in an intensive training process to
acquire and then apply knowledge and skills in mathematics to
build numeracy and capacity for productive, meaningful, and
successful teaching and learning. Interventions for the teachers
included full- and half-day professional development seminars
with experts in the mathematical education field. As part of
the training, participating teachers experienced co-teaching with
mathematics teaching experts, mathematics professors from state
universities and their own colleagues. They also took time to slow
down and meet in reflective focus groups twice each school year.
Substitute teachers were provided for collaborations, allowing the
participating teachers to meet and talk, observe each other in the
classroom settings, andwork in small groups with amathematical
expert to develop and connect strategies to build capacity.

Components of the Intervention
The training intervention involved several important
components. The first was helping teachers develop an
understanding of the Teaching Learning Community (TLC)
approach to building numeracy. The content coaching model
of Plan, Teach, and Debrief was utilized. Content coaching is a
process designed to cultivate rigorous, collaborative, professional
learning habits among adults (West and Cameron, 2013).
Throughout the span of the project, participating teachers
interacted and processed their new learning through content
coaching in their own classrooms with experts. Additionally, the
teachers observed colleagues and experts, wrote collaborative
lesson plans, shared on a teacher-initiated Facebook page,
and completed various formative evaluations. Feedback was
provided throughout from the math expert, debriefings, pre-
planning collaborative sessions, and the actual collaborating
teaching experiences both formal and informal. Timely, specific
feedback is one of the most effective ways to ensure learning
at any age (Hattie and Timperly, 2007). Providing feedback
in non-threatening settings such as small expert groups and
in the classroom supports teacher growth in implementing
new strategies.

A second component is the mathematical landscape.
The mathematical landscape provided many new teaching
opportunities for both teachers and their students including
teaching with mini-lessons, using new models, landmark
strategies, and focusing on the big ideas. Teachers found
more opportunities to discuss the math with their colleague
and their own students. Teachers began to understand the
value of teaching in small groups. These small group lessons
provided opportunities to directly see how their students actually
interacted and responded to the math questions. Teachers
noticed error patterns in these small groups that they had not
noticed before in the traditional whole class settings. Teachers
could address misconceptions “in the moment” not when they
were grading paper later. A few of the strategies that were new
to the teachers included bead-strings for counting and grouping,
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problem solving situations, the use of thinking strategies such
as “true or not true,” using “number strings,” use of the open
number line, using small group focused mini-lessons, and many
more. For example, repetitive drill and practice are typically
used to help students master the operations of multiplication.
Students need to understand “what it means to multiply and
divide before the facts can become automatic, but understanding
does not necessary lead to this automaticity” (Uittenbogaard and
Fosnot, 2007, p. 6–7). To somewhat counter and support at the
same time what Uittenbogarrd stated, Boaler stated, “My lack of
memorization has never held me back at any time or place in my
life, even though I am a mathematics professor, because I had
number sense, which is more important for students to learn and
includes learning of math facts along with deep understanding
of numbers and the ways they relate to each other” (Boaler,
2016, p. 38). She goes on the say that “for about one-third of
students, the onset of timed testing is the beginning of math
anxiety” (Boaler, 2016, p. 38). Slowing down in the math process
was supported by both teachers and students as they solved
problems together.

A third component is standard-based lesson planning.
Teacher participants were taught to design and connect
standards-based lessons to mathematical learning using the
National Council of Teachers of Mathematics (National
Council of Teachers of Mathematics, 2014) Process Standards.
These standards, which outline the mathematical processes
through which pre-K-12 students acquire and use mathematical
knowledge, should not be regarded as separate content or
strands in the mathematics curriculum; rather, they are integral
components of all mathematics learning and teaching (Walle
et al., 2016). These direct classroom interventions provided
valuable models for the teachers to connect to their own future
lessons. Participants then wrote practice lesson plans and
submitted them for program evaluation and formative feedback
that included the process standards. Not only did they write the
plans, but they collaborated in their planning within schools,
between schools, and with the experts. This model parallels
Schmoker’s school reform recommendation: small groups
of teachers working in collaborative learning communities
focused on day-to-day instruction that leads to short-term
goals of student improvement (Stewart and Brendefur, 2005).
Teacher participants focused upon incorporating the NCTM’s
Standards for Mathematical Practice (SMP) into their daily
mathematical routines for teaching and learning. The SMP go
beyond specifying mathematics content expectations to also
outline proficiencies. These tenets are based on the underlying
frameworks of the NCTMprocess standards and the components
of mathematical proficiency identified by the National Research
Council (Walle et al., 2016). Unfortunately, the SMP are often
overlooked because they are not directly embedded into any
grade-level standards. They are intended to be overarching
standards used and taught throughout all grades (Aungst, 2016).
In the intervention project, teacher participants incorporated the
SMP in every lesson plan created either solely by the teachers or
in collaboration with experts and colleagues. The SMP supported
the development and the depth of learning by both teachers and
their students.

Building Students’ Mathematical Thinking
Teacher participants benefitted from learning to nurture students
in developing a mindset of learning and thinking like a problem
solver. According to Burns (2015), solving problems is the
ultimate reason for students to study mathematics. It is likely
that all of today’s students will face problems to solve “that call
for reasoningmathematically” (Burns, 2015, p. 41). Mathematical
learning should focus on “developing understanding of concepts
and procedures through problem solving, reasoning, and
discourse” (Leinwant et al., 2014, p. 11). The intervention aimed
at supporting teacher participants in helping their student to be
a lifelong problem solver. Teacher participants were guided in
applying mathematical thinking mindset as defined by Dweck
(2006) and Boaler (2016) in their own classrooms. A shift in the
teacher participants’ own willingness to share their mathematical
thinking processes through the 2-years period of the grant project
was positively noticed in the focus groups with the teachers
and in professional development events. In the present study,
we examined the effect of enhancing teachers’ competence in
building numeracy on their students’ mathematical thinking
as measured by test scores. Our specific research question is
as follows: Are there any differences in students’ mathematical
thinking test scores over time among students whose teachers
participated in the intervention and students whose teachers did
not participate?

METHODS

Data Source
The project was conducted and reviewed in accordance with
the rules and regulations of the funding agency (Kentucky
Department of Education). All teacher and administrator
participants reviewed the proposed activities related to the
project and evaluation, and gave written informed consent to
participation, including providing access to student assessment
data (anonymous and non-identifiable to project staff).
Student assessment was planned and administered by schools
independent of their participation in the project. One type of
student assessments used by the four participating schools is
Measures of Academic Progress (MAP) testing. The MAP is
a standardized test used by the participating school districts
during the fall, winter, and spring of every school year except
one school’s kindergarten. Student MAP data was used for the
present study. The use of student data did not require further
consent to be obtained as these data were provided by the
schools to the authors in an anonymous and non-identifiable
format. The separate files from each participating school were
then merged together using SPSS version 23.0 for further
analyses. The merged dataset had 343 students whose teachers
participated in the intervention and 53 students whose teachers
did not participate in the intervention. Out of the 343 students,
53 students were in kindergarten; 110 first grade; 64 second
grade; and 116 third grade. For the 53 students whose teachers
did not participate in the intervention (the control group), 18
students were in kindergarten; 21 first grade; 21 second grade;
and 23 third grade.
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Variables
Student MAP test score. MAP testing is developed by Northwest
Evaluation Association (NWEA), a not-for-profit organization
that produces assessment solutions that preciselymeasure growth
and proficiency. The student MAP test score ranges from about
100 to 300. The MAP testing is known for its validity and
reliability in measuring student mathematical proficiency.

Condition. Students whose teachers participated in the year-
long training were placed in the intervention group while
students whose teachers did not participate were placed in the
control group.

Time. Student MAP test scores (anonymous and non-
identifiable) from Fall 2016, Winter 2016, and Spring 2017
were analyzed.

RESULTS

The means and standard deviations of student MAP test scores
arranged by grade level (K, 1, 2, and 3) in two different conditions
(intervention and control) at the three testing times (fall, winter,
and spring) are shown in Table 1. The third-grade treatment
group showed more growth in mathematical achievement than
its respective control group. The kindergarten and second-grade
treatment groups did not show much difference when compared
to their control groups. The first-grade treatment group showed
a slight advantage over its control group.

A mixed-method ANOVA was conducted with time (Time 1,
Time 2, and Time 3) as a within-subjects factor and conditions
(intervention vs. control) and grade levels (K, 1, 2, and 3)
as between-subjects factors. Table 2 summarizes analysis of
variance (ANOVA) results.

The ANOVA revealed that the main effect for time was
statistically significant: F(1,418) = 1087.72, p < 0.001, η2 = 0.72.
The main effect of grade level was also statistically significant:
F(31,418) = 229.77, p < 0.001, η2 = 0.62. Further, the within-
subjects Time × Grade Levels interaction was statistically

TABLE 1 | Means and standard deviations for student MAP test scores by grade

levels in intervention and control conditions at three testing times.

Testing time Intervention Control

K 1 2 3 K 1 2 3

Time 1

M 137.64 165.81 172.38 199.75 136.39 166.24 174.76 192.30

SD 12.06 14.60 11.16 12.42 12.49 10.04 8.87 6.66

n 53 110 64 116 18 21 21 23

Time 2

M 154.72 173.75 179.52 209.11 155.56 174.76 194.86 195.57

SD 13.04 13.91 10.54 13.03 16.38 8.87 5.35 8.78

n 53 110 64 116 18 21 21 23

Time 3

M 163.77 184.18 186.38 213.57 165.72 179.71 203.43 202.52

SD 14.17 16.32 10.39 10.36 16.45 10.19 6.72 8.35

n 53 110 64 116 18 21 21 23

significant: F(3,418) = 33.09, p < 0.001, η2 = 0.19. Moreover, the
within-subjects Time × Conditions × Grade Levels interaction
was statistically significant: F(3,418) = 15.05, p < 0.001, η2 =

0.10. Finally, the between-subjects Conditions × Grade Levels
was statistically significant: F(3,418) = 11.96, p < 0.001, η2 = 0.08.
All other main effects and interactions were non-significant.

DISCUSSION

In this study, we examined whether there were any differences
in students’ MAP test scores over time among K-3 students
whose teachers participated in the intervention and students
whose teachers did not participate. The sample number in each
grade groups are not the same. The sample number in the third-
grade groups was the highest. Our findings indicated students
whose teachers participated in the intervention demonstrated
more growth in mathematical proficiency, particularly in Grade
3. One plausible explanation is that the third-grade groups and
their teachers had more at stake than the K, 1, or 2 groups
since mandated testing and comparisons begin at grade 3 at
the state level in the area of mathematics. In a way, testing,
especially high-stake testing affects teaching and learning. It
could be true that compared with K-2 teachers in our study,
the third grade teachers in our study had a higher motivation
to help their students in mastering mathematics. However,
research also indicated that high-stake testing may lead to
negative and undesirable outcomes as well. Possible negative
impact includes “the superficial coverage of subject matters,
the emphasis on basic skills that are arbitrarily defined and
seldom add up to more complex learning, the focus on outcomes
and evaluation rather than on assessing for promoting further
learning, and the loss of professional standing for teachers and
educators, as the provision of external information on students’
achievement is prioritized over educators’ knowledge and skills
(e.g., Darling-Hammond, 1997; Elmore, 2004; Fuhrman, 2004;
Afflerbach, 2005)” (Kontovourki and Campis, 2010, p. 236).
Informal observations and focus group transcripts seemed to

TABLE 2 | Analysis of variance results for student MAP test scores.

Source df SS MS F p η
2

Between Subjects

Conditions 1.00 2.13 2.13 0.01 0.94 0.00

Grade Levels 3.00 249017.17 83005.72 229.77 0.00 0.62

Conditions ×

Grade Levels

3.00 12960.30 4320.10 11.96 0.00 0.08

Error 1 418.00 151002.36 361.25

Within Subjects

Time 1.00 48120.92 48120.92 1087.72 0.00 0.72

Time × Conditions 1.00 178.10 178.10 4.03 0.05 0.01

Time × Grade

Levels

3.00 4391.39 1463.80 33.09 0.00 0.19

Time × Conditions

× Grade Levels

3.00 1997.41 665.80 15.05 0.00 0.10

Error 2 418.00 18492.41 44.24
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suggest a different explanation. Informal observations and focus
group transcripts indicated a higher-level of engagement and
collaboration from the third grade teachers overall. it is the
authors’ perspective that teachers who learned to fluently use
the TLC approach, design and connect standards-based lessons,
and nurture a mindset of learning and thinking like a problem
solving mathematician are more likely to be able to build their
students’ numeracy.

Providing the appropriate resources and supports to
teachers’ education in the form of high-quality professional
development, and an opportunity to collaborate with peers
and experts has potential to make a difference. To replicate
the training intervention designed in this project, the authors
recommend the following: train teachers in the TLC approach
or another Professional Learning Community approach to
building numeracy; use the co-teaching model of Plan, Teach,
and Debrief as suggested by the TLC approach; provide direct
content coaching and side-by-side teaching experiences in an
authentic classroom setting; create standards-based lessons
incorporating the SMP including collaborative pre-planning,
co-teaching, and then debriefing; provide opportunities for
teachers to visit the classrooms of other teachers in their
schools for math collaborations by placing substitute teachers
in classroom for release time; and promote opportunities for
teachers to participate in their own math problem solving and
mathematical discourse with their peers and math experts.
School administrators can support teachers by arranging
times for teachers to meet informally to collaborate and have
mathematical discourse; and nurture a mindset of thinking like
a mathematician for teachers, students, and administrators.
Creating a mathematical community of learners working
together benefits all.

LIMITATIONS

We utilized non-equivalent control group pretest-posttest quasi-
experimental design in the current study. One limitation of this
quasi-experimental research design is that it is likely affected
by the selection threat to the validity. In the study, teachers
and students were not randomly assigned to intervention (the
TLC approach) and control groups. Preexisting differences in
teachers and students could have contributed to the difference
in the MAP test scores in the third grade or the non-significant
differences in the MAP test scores in the K-2 grades. Second,
students’ numeracy in grades K-3 was measured by student MAP
test score in this study. Additional instruments could be used
to further corroborate the findings of this study. Third, the
current study included only K-3 students in two rural school
districts in the United States, results on the TLC approach
may not be generalized to a larger population elsewhere. For

future research, it is recommended that a more diverse sample,
coupled with random assignment, could be used to further
investigate the effect of the use of the TLC approach on enhancing
teachers’ competence in building students’ numeracy. Moreover,
it would be necessary to develop and use other valid and reliable
instrument to measure students’ numeracy.
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Modern technology offers an increasing number of tools for teaching mathematics, but
technology adoption in schools encounters many barriers. The Technology Acceptance
Model explains that technology usage is dependent on intentions, which rest on
perceived ease of use and perceived usefulness. Less is known about the relationship
between intentions and actual behavior. In the current study we show that the level of
cognitive investment on the part of the teachers, captured by the construct of Need
for Cognition (NC), is crucial in the use of technology in mathematical instruction,
while controlling for a variety of background factors. Furthermore NC moderates the
relationship between intentions and technology use, such that high NC weakens the
relationship between the perceived usefulness of technology in pedagogy and its
actual use.

Keywords: ICT, need for cognition, teachers self-efficacy, technology acceptance, burnout, supervisor support

INTRODUCTION

Technology offers a set of potential tools for pedagogy. In the case of mathematics education,
which has traditionally been dominated by pen and paper tasks, several broad categories of
instruments are now available. Teachers can use computer algebra systems, numerical analysis
software, statistical software, function graphers, and calculators, spreadsheets, geometry packages
and many others. These new tools bring many new possibilities to education, but their application
is often met with a variety of difficulties (Pierce and Ball, 2009).

Many of those difficulties are general and appear across different areas of technology use.
The Technology Acceptance Model (TAM) (Davis, 1989; Venkatesh, 2000; Venkatesh and Davis,
2000) explains that technology use is dependent on intentions. Intentions are a result of two
factors: perceived technology usefulness and perceived ease of use. As the data confirming the
model show, perceived usefulness has a stronger direct impact on technology use intentions, but
this might be due to the fact that perceived ease of use has both a direct and indirect effect on
intentions. Directly, user friendly technology increases the intended use. Indirectly, technology
which is easy to use is also perceived as more useful. Furthermore research has shown that perceived
usefulness is mainly influenced by perceived job relevance of the particular technology, as well as
the demonstrability and tangibility of results obtained by its use (Venkatesh and Davis, 2000).
Social influence is also a factor in perceived usefulness, especially in relation to innovations. Use
of innovative technology is linked to maintenance of a favorable image and status in a social group
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and this indirectly increases perception of its usefulness
(Venkatesh and Davis, 2000). The other TAM factor influencing
intentions is perceived ease of use. Ease of use is affected by
the levels of general self-efficacy, lack of computer anxiety,
computer playfulness as well as the degree of external support
(Venkatesh, 2000). In summary, individuals who feel they have
both internal control, as well as external support, enjoy dealing
with technology and do not express worries about involvement in
such a new complex task. They tend to perceive using technology
as easy. Individuals who see concrete results and job relevance
of technology, as well as feel that using it influences their status,
perceive technology as useful.

Although much is already known about determinants of the
intentions to use technology, much less is known about a crucial
relationship between the intention to use it and actual usage
of technology. Many people declare that they intend to use
innovative technology, but fewer actually do (Venkatesh and
Davis, 2000). In the context of teaching, using new technology
requires an in important change in behavior. Often, a departure
from the type of teaching that one is used to and has observed
in the past. This requires an orchestration of existing pedagogical
competences with the novel tools, which can be accomplished in
many different ways (Drijvers et al., 2010). This process requires
a substantial level of cognitive investment on the part of the
teachers. On the basis of research from the field of individual
differences, one can predict that people show relatively stable
individual differences in the degree to which they are willing
to make such investments (von Stumm and Ackerman, 2013).
Cacioppo and Petty (1982) use the term Need for Cognition (NC)
to describe the differences in the tendency to engage in and enjoy
effortful cognitive activity.

Research shows that high levels of NC relate to an increase
of cognitive resources spent specifically in response to situations
placing high cognitive demands. Merely labeling a message as
complex and challenging generates motivational differences in
processing of this message by individuals varying in NC (See
et al., 2009). High NC therefore results in high effort spent on
a complex task, but can actually diminish effort in burdensome
tasks, which are perceived as simple and predictable (Cacioppo
and Petty, 1982; Mussel et al., 2016). High levels of NC also
predict high effort when a complex task seems optional, but not
personally relevant for the present moment. For tasks which are
highly personally relevant or surprising NC does not moderate
effort (Petty and Cacioppo, 2016; Luttrell et al., 2017).

In the context of education it has been shown that there is a
significant, but rather modest positive relationship between NC
and academic achievement of students, evident especially in the
later grades, with a lack of such a relationship in earlier grades
(Luong et al., 2017). On the other hand NC strongly predicts the
tendency to seek optional education programs which allow for
enriched, deep learning (Meier et al., 2014). The choice of such
programs is predicted by NC, while controlling for intelligence,
academic self-concept, mastery or performance goals.

There is less data on the relationship between NC and
adult education, but the results match with what we observe
in adolescents and young adults. Recent data shows that
NC is positively related to the effectiveness of continuous

education, predicting the effects of professional training for
medical physicians (Hassan et al., 2015). Additionally NC
mediates the relationship between age and numeracy skills. Age
related decreases in numeracy can be, to a significant extent,
explained by motivational factors, such as a decrease in need
for cognition (Bruine de Bruin et al., 2015). These results can
be summarized, by a reference to learning styles. High NC is
related to engagement in deep learning strategies, critical analysis
and content structuring while low NC relates to using low effort
strategies such as memorizing and rehearsing (Evans et al., 2003;
Cazan and Indreica, 2014).

Taking these results into account it can be argued that NC
is the crucial variable responsible for the cognitive investment,
which marks the difference between intention to use and
actual use of technology in pedagogy. The effect of NC on
technology use should be stronger in a context in which certain
conditions are met: (a) when use of technology is optional,
not required by the teaching curriculum; (b) when technology
use is perceived as a complex and challenging task; and (c)
when its adaptability and benefits from use in the context of
learning are not immediately, personally visible. Stating this
hypothesis in the terms of the Technology Acceptance Model:
NC influences behavioral engagement in technology use to a
greater extent when perceived usefulness and perceived ease
of use of technology are low, rather than high. That is, NC
moderates the relationship between intentions and use, in such
a way that when intentions to use a particular technology in
a particular context are low, the effect of NC on actual use of
that technology is strong. In a case when intentions to use this
technology are high, an individual is already strongly convinced
of its benefits and ease of use, the effect of NC on actual
technology use is weaker.

It also needs to be noted, that the direct effect of NC on
technology use should be supplemented by an indirect effect.
NC can be relevant for perceived ease of use of technology.
Research by Venkatesh (2000) shows, for example, that computer
playfulness is related to perceived ease of use of such technology.
Computer playfulness is a construct defined as being specific
to the use of computer technology, but it is similar to NC in
that both relate to intrinsic motivation and engagement in a
task “just for the sake of it.” Being intrinsically motivated to
engage in a task lowers the perception of effort spent on the
task, despite an objectively greater effort (Ryan and Deci, 2000).
Therefore it can be argued that high NC increases the general
strength of intentions to use technology, through increased
perceived ease of use.

Potential Confounders in the
Relationship Between NC and
Technology Use
We have argued that NC influences technology use both
directly and indirectly, but there are also potential confounders
which need to be taken into account when analyzing this
relationship. Several variables might cause changes both in
NC, as well as in technology use. The list of such contextual
variables is large and a particular selection will always be
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subject to argument. None the less, some assumptions need to
be made in order to show the relationship between NC and
technology use, while holding potential confounders constant.
In the current study we decided to control for (a) selected
teaching practices (promotion of comprehension/pupil control);
(b) general teaching self-efficacy; (c) peer and supervisor support;
and (d) job burnout.

Promotion of Comprehension
Teachers differ in the degree to which they put emphasis
on content comprehension and deep learning. It has been
shown that promotion of comprehension prevents intellectual
helplessness of students (Sȩdek and McIntosh, 1998). Promotion
of comprehension is visible in requests of teachers for students
to justify their answers, but in such a way that those requests
allow for students’ individual interpretations. Therefore
these justifications are not just elaborate memorizations, but
actually reflect student comprehension and mistakes inherent
in early phases of learning. Promotion of comprehension
is therefore similar to mastery-approach learning, oriented
toward developing new skills and understanding. Positive
correlation between mastery goals and NC is very likely
(Hoffman and Nadelson, 2010; Ranellucci et al., 2013)
as well as a positive relationship between NC and deep
learning (Evans et al., 2003; Cazan and Indreica, 2014).
Therefore we can expect that teachers who place emphasis
on deep learning, will also be likely to exert more effort in
information search, as well as engage in mastery of new
technological tools.

Student Control Ideology
Teachers have different views as to how much autonomy should
be given to students in their school interactions. Autonomy
can be defined as the perception of being volitional in one’s
behavior (Howard et al., 2017). Autonomy does not necessarily
equal independence. Rather, it is a perception of a willing
choice to follow certain rules or regulations – treating them
as relatively self-given. In the school context this relates to
the degree to which children are given the option to influence
the regulations, question teacher’s opinion and make decisions
regarding course content. Autonomy is inversely related to
hierarchical power structure in which the teacher is the sole
controller of motivation, rewards and punishments (Howard
et al., 2017). Lack of willingness to afford student autonomy is
also related with higher teacher burnout (Bas, 2011). The less
autonomy a teacher is willing to give the students the more likely
he/she views them as irresponsible and potentially undisciplined.
With high student control beliefs, order maintenance will be
seen as one primary goals, and since introduction of new
technology is likely to result in elevated class disturbance,
teachers without autonomy preference should be less willing
to engage in such behavior. Additionally, as Ryan and Deci
(2000) argue, fulfillment of autonomy needs is factor in
internal motivation. It is likely that teachers who provide
supportive conditions for student autonomy, are themselves
more likely to be characterized by internal motivation and
need for cognition.

Teaching Self-Efficacy and Burnout
Burnout is a syndrome of interrelated feelings of emotional
exhaustion, negative and detached attitude toward the people one
works with and reduced feelings of personal accomplishment, as
well as negative self-evaluation (Maslach et al., 2001). Teaching
is generally considered as an occupation with high levels of
job related psychological stress (Johnson et al., 2005) which
is likely to result in burnout (Kokkinos, 2007). Self-efficacy
is a personal attribute, which helps in coping with challenges
(Tschannen-Moran and Hoy, 2001). Differences in self-efficacy
are especially visible in responses to a novel task. For example,
self-efficacy in computer use can affect perception of the
ease of use before any experience with particular software
or hardware (Venkatesh and Davis, 1996). Similarly, teaching
self-efficacy can influence the intentions to use technology as
a pedagogical tool, even without direct, hands-on experience.
Teacher self-efficacy is related to teachers’ task persistence
and commitment, as well as instructional style (Tschannen-
Moran and Hoy, 2001). Research shows that self-efficacy and
burnout explain teachers’ motivation to leave their profession.
Skaalvik and Skaalvik (2016) have shown that there are two
ways in which stressors affect the decision of teachers to quit
their profession. Time pressure directly causes burnout and
feelings of emotional exhaustion, which then predict the decision
to quit. The other route is through lack of social support,
especially supervisory support and trust, combined with low
student motivation. This results in low-self efficacy and finally
predicts the decision to quit. Taking this into account, one can
expect that both burnout and teaching self-efficacy can predict
general engagement in any complex and novel tasks in teachers’
daily activities.

Social Support
The extent to which people can count on their colleagues and
supervisors in their jobs significantly affects their perception
of challenges and stress (Widerszal-Bazyl and Cieślak, 2000).
Perceived support from the school predicts teacher’s motivation
to persist in implementation of project-based learning (Lam
et al., 2010). This perception is based on feelings of collegiality
as well as autonomy and competence acknowledged by the
supervisors. Studies also show that social support predicts
higher general control over job related challenges and this
explains the negative relationship between social support and
burnout (Ben-Zur and Michael, 2007). As previously mentioned,
lack of supervisor support and trust is one of the main
reasons for leaving the teaching profession (Skaalvik and
Skaalvik, 2016). Similarly, as with self-efficacy and burnout,
social support is therefore an important determinant of general
job engagement and perception of challenges. Specific social
support, related to particular technology (IT support) is also
included in the TAM, as a factor influencing perceived ease
of use (Venkatesh, 2000). In the current study we therefore
aim to control for both the perception of supervisor and peer
social support. In summary, in the current study we probe
the relationship between NC, intentions to use technology
and actual use of technology in teaching. We test for two
effects. (1) That NC serves as a moderator of the relationship
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between intentions to use technology in teaching and actual
behavior. When intentions are high, NC is not necessary
for investment in behavior to take place. On the other
hand, when intentions to use technology in teaching are low,
NC becomes the regulator of intellectual investment; and
(2) That NC is generally, positively related to intentions to
use technology. We test those effects while controlling for
perceived social support, self-efficacy, burnout and selected
pedagogical beliefs.

MATERIALS AND METHODS

Participants and Procedure
A total of 150 mathematics teachers (130 females, Mage = 45,15,
SD = 9,5, min = 23, max = 65) from Poland took part in the
study. Teachers were employed by institutions from International
Standard Classification of Education (ISCED) level 1 - primary
(34,7%), ISCED-2 - lower secondary (17,3%), ISCED-3 - upper
secondary schools (48%). Mean teachers work experience was
19,7 years (SD = 10,03).

Procedure
The study was conducted in a form of an online questionnaire.
Link to the study was distributed through a mailing list of an
non-profit foundation, which specializes in education, as well as
a publisher of mathematics textbooks in Poland. The mailing list
contained about five thousand emails of teachers, mostly teachers
of mathematics, who agreed to receive information from the
foundation and the publisher. This mailing list was created on
the basis of participation in workshops, conferences or textbook
sales, related to teaching of mathematics. Data was gathered from
8.02.2018 to 27.03.2018. Questionnaires could be completed on
a stationary computer or a mobile phone. There was no scale-
related missing data in the study, as the questionnaire required
answers to all questions. The study procedure was accepted by
the Ethics Committee of the SWPS University of Social Sciences
and Humanities (decision nr 31/2017).

Measures
Need for Cognition – Polish, Short Version
Matusz et al. (2011) developed a 36-item scale for measurement
of the construct of the Need for Cognition, with two main goals
in mind: (a) to measure the universal NC construct using items in
Polish which would paraphrase the original items from Cacioppo
and Petty (1982); and (b) to create a scale which would include
items sensitive to distinctions in a population with an elevated
level of NC. The authors noted that some of the original items
such as “Thinking is not my idea of fun” or “I only think as
hard as I have to” are likely to show low discrimination in a
population with elevated NC. Matusz et al. (2011) have shown
validity, reliability of their scale, as well as its unitary structure.
Unfortunately, a scale measuring a unitary construct with 36
items is not very parsimonious. Therefore, for the purpose of
the current study, we created a more efficient version of this
scale, similar to Cacioppo et al. (1984). We have contacted the
authors and obtained raw data from the studies described in

Matusz et al. (2011). Following Guadagnoli and Velicer (1988)
we set the criteria which would offer a stable solution for sample
size of about 100 and decided to select items with loadings
above 0.5. There were 10 items that met this criterion. For
full list of items see Supplementary Material. Scale includes
questions such as “I like it when my life involves intellectual
challenges,” answered on a 5-point scale from 1: “Definitely no”
to 5: “Definitely yes.” We also ran a Confirmatory Factor Analysis
(CFA) for the current data. CFA was conducted using JASP
Team (2019) following Brown (2014) goodness-of-fit indices
criteria. Single factor solution produced acceptable indices with
SRMR = 0.049, RMSEA = 0.035, CFI = 0.983 TLI = 0.977.
Residual covariance was allowed for item pair: 5–10 because
of a strong conceptual overlap between these two items, both
related to quitting when faced with an intellectual challenge (“I
do not attempt to solve complex intellectual problems” and “I
quickly give up when I cannot solve a task”). Scale reliability
is good with Cronbach’s α = 0.827 (95% CI 0.782–0.865),
McDonald’s ω = 0.832.

Teachers Student Control Ideologies
Scale was created by the Educational Research Institute (IBE,
2010) on the basis of Pupil Control Inventory (Willower et al.,
1967). Scale includes 13 items and describes beliefs spanning a
continuum from high to low student autonomy and hierarchical
relations in the educational process e.g., “Students should not
be allowed to question the opinions of teachers.” Statements are
evaluated on a 5-point scale, from 1: Definitely no, to 5: Definitely
yes. Because we lack current data on for the scale psychometric
properties, we also CFA for this scale. Single factor model
produced acceptable indices with SRMR = 0.051, RMSEA = 0.034,
CFI = 0.976, TLI = 0.971. Reliability is also acceptable with
α = 0.846 (95% CI 0.808–0.880), ω = 0.85.

Promotion of Comprehension Scale
Scale consists of nine items measuring the degree of emphasis
put in pedagogy on content comprehension and deep learning
e.g., “When checking what students know I require them to
justify their answers” (Sȩdek, 1995). The scale stems out from
studies on prevention of intellectual helplessness and teaching
styles (Sȩdek and McIntosh, 1998). We lack current data on the
scale psychometric properties and therefore we ran CFA. Single
factor model produced acceptable indices with SRMR = 0.049,
RMSEA = 0.02, CFI = 0.991, TLI = 0.987 although it must be
noted that residual covariance was allowed for three item pairs: 4–
9; 1–3; 2–5. There was a strong conceptual overlap between these
items, which diminishes the conviction that the scale is indeed
unidimensional. For example, it’s a logical necessity to “allow
students to ask a question if they do not understand” (item 2)
if you also declare that you “encourage students to voice out any
doubts” (item 5) or in order to analyze “mistakes made during
initial problem solving attempts” (item 4) it seems necessary to
“allow students to communicate in their own words how they
understand the concept” (item 9). The issues with these item pairs
should be taken into account in any further uses of the scale and
it is recommended to make proper modifications to those items
in order to strengthen the evidence for scale unidimensionality.
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Agreement with scale items is evaluated on a 5-point scale from
1: “Definitely no” to 5: “Definitely yes.” Reliability of the scale is
acceptable, with α = 0.702 (95% CI 0.624–0.768), ω = 0.709.

Norwegian Teachers Self-Efficacy
24-item scale measures various aspects of self-efficacy beliefs of
teachers (Skaalvik and Skaalvik, 2007). Participants respond to
statements starting with “Declare to what degree you are able
to. . .” followed by various aspects of self-efficacy and a 7-point
scale from 1:“I am definitely not able” to 7: “I am definitely
able.” Results from the Polish adaptation of the Norwegian
Teachers Self-Efficacy have shown that the structure of the scale
largely differs from the original 6 factor solution and could be
simplified to a 3 factor model (Baka, 2017). Because of this
discrepancy between original model and the model from the
Polish adaptation, for clarification an exploratory factor analysis
(EFA) was performed on the current data set. CFA was not
performed as it was unclear whether to test the structure of the
original version or the Polish adaptation. EFA results converged
on suitability of retaining a three factor solution. Three factors
explained 58.9% of the variance, which is similar to results
obtained by Baka (2017), but with some minor discrepancies in
item factor loadings. Extracted factors were: (a) General Teaching
Self-Efficacy Scale, α = 0.936 (95% CI 0.902–0.950), ω = 0.937; (b)
Relationships Maintenance Self-Efficacy Scale, α = 0.741 (95% CI
0.669–0.801), ω = 0.750; (c) Discipline Maintenance Self-Efficacy
Scale, α = 0.864 (95% CI 0.826–0.896), ω = 0.868. See ESM for
details of this analysis.

Social Support
Two scales of social support were adopted from the Psychosocial
Working Conditions Inventory (Widerszal-Bazyl and Cieślak,
2000). Both scales include the same eight questions, but the
questions refer to either “colleagues” or “supervisors,” e.g., “To
what extent you can count on your colleagues [supervisors] to
help you in some concrete way?” Answers are marked on a 5-
point scale from 1: Very little, to 5: Very much. Reliability of both
scales is good with α = 0.958 (95% CI 0.947–0.967), ω = 0.958 for
peer support and α = 0.967 (95% CI 0.958–0.974), ω = 0.967 for
supervisor support.

Oldenburg Burnout Inventory
Inventory is a 16-item measure and includes two sub-scales:
exhaustion and distancing (Halbesleben and Demerouti, 2005),
with a Polish adaptation by Baka and Basińska (2016). Exhaustion
is defined as feelings of intense physical, affective and cognitive
strain related to job demands, e.g., “I can tolerate the pressure
of my work very well.” Distancing relates to disengagement from
work in general or work content; beliefs that one’s work is not
interesting, challenging and satisfying and one is not willing to
continue in this occupation, e.g., “Lately, I tend to think less
at work and do my job almost mechanically.” Agreement with
statements is evaluated on a 5-point scale from 1: “Definitely no”
to 5: “Definitely yes.” Half of the items are positively and half
are negatively worded. Reliability of both sub-scales is good with
α = 0.816 (95% CI 0.768–0.857), ω = 0.832 for Disengagement
and α = 0.862 (95% CI 0.826–0.893), ω = 0.866 for Exhaustion.

Both scales are highly positively correlated, r(150) = 0.765,
p < 0.001 and are summarized into one burnout score for
further analyses.

ICT Acceptance Scale
ICT acceptance is an 8-item index based on Technology
Acceptance Model (Davis, 1989; Venkatesh, 2000). As the study
rationale did not require a separation of the intention to use
technology, from perceived ease-of-use, as well as perceived
usefulness, the scale includes items from all of those components.
Usefulness was measured by items such as “Thanks to technology,
I have more control over the tasks performed,” perceived
ease-of-use: “Learning to use technological tools is easy.” and
intention to use technology: “I will often use ICT in the
future.” Statements are evaluated on a 5-point scale, from 1:
Definitely no, to 5: Definitely yes. Reliability of the scale is
good with α = 0.871 (95% CI 0.838–0.900), ω = 0.876. In order
to provide data for the structure of the scale an exploratory
factor analysis (EFA) was performed. Analysis was done using
IBM SPSS Statistics 24 for Windows (IBM Corporation, 2016).
Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy was
expected to be above.5 (Kaiser, 1974). The Bartlett’s Test of
Sphericity was expected to be significant (p < 0.05) for factor
analysis to be suitable. For the EFA results for Kaiser–Meyer–
Olkin (KMO) = 0.888, Bartlett’s Test of Sphericity was significant,
χ2 = 542.8, p < 0.001, therefore principal component analysis
(PCA) was run. SPSS R-Menu v2.0 was used for determining
the criteria for retaining factors in EFA (Courtney and Gordon,
2013). Velicer’s Squared Minimum Average Partial test suggested
a 1 factor solution and Comparative Data test (Ruscio and
Roche, 2012) suggested that moving from 1 factor to 2 factor
solution did not provide statistically significant improvement
to model fit (p = 0.164). In summary, test results converged
on the suitability of retaining a 1 factor solution. This factor
explains 53.7% of the variance. Cut-off value of 0.40 was used
for analysis of factor loadings (Hair et al., 2013). Analysis of
coefficients from the component matrix suggests that all items
load to a single factor and no coefficient drops below the cut-
off value.

Complexity of ICT Use
Complexity of the current use of technology is a self-report
declaration, which is composed of four cafeteria questions. (a)
What ICT tools do you currently use in teaching?; (b) What
do you use ICT for?; (c) Where do you get the content and
classroom scenarios from?; (d) How do you communicate with
students via ICT?. Each cafeteria answer has a hidden weight,
which corresponds with the complexity of the use of particular
method. Weights were specified by the authors before the
start of the study, on the basis of personal experience with
technology use in training programs for mathematics teachers in
Poland. Main criterion for assigning weights is the complexity,
specificity and rarity of the particular technology use. For
example sharing educational material on social networks or via
e-mail is given less weight than sharing it on one’s own website
or other webpages. Creating educational materials from scratch
is given more weight than downloading ready-made scripts.
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TABLE 1 | Summary of cafeteria answers for the Complexity of ICT Use scale.

Question Cafeteria answer options Weights

Which ICT tools do you use in teaching? Office (Word, Excel, Powerpoint)
Libre office or similar open-source package
E-learning platform
Electronic journal
Cloud-based software (e.g., Google, Microsoft)
Communicators (e.g., Skype)
E-mail
[Other]

1
1
1
1
1
1
1
1

What do you use ICT for? Using ICT for in class presentations
For communication with students
For communication with parents (e-mail, e-journal)
For communication with other teacher (e,g., Bulletin boards; discussion forums)
For assignment and checking of homework.
For assigning additional tasks, pointing to interesting web-content.
For conducting interactive tasks
For sharing my didactic knowledge, e,g., creating publicly available didactic content for
or with others.
[Other]

1
1
1
1
2
2
2
3
1

Where do you get your content for ICT classes? I find it online, created by other teachers
From textbooks, or textbook publishers websites
From knowledge portals for teachers (e,g., Scholaris)
From materials obtained at teacher conferences
From materials made at workshops/training sessions
From personally remixed materials
I create my own content from scratch
[Other]

1
1
1
1
2
2
3
1

How do you distribute ICT content to your students? Through social networks
Through e-mail
On schools’ webpage
On an e-learning platform
On my own website
On an international ICT website (e.g., Geogebra.org)
[Other]

1
1
2
2
3
3
1

Summary of the cafeteria options and weights are described
in Table 1.

RESULTS

Descriptive statistics are presented in Table 2. Main analytical
goal was to verify the relationship between NC and ICT
Acceptance as well as ICT Use, while controlling for other
variables. Minimal p < 0.05 level for significance was adopted
in all analyses. Sample size in this study (N = 150) allows
for a detection of medium effects with up to 10 predictors in
multiple regression (Miles and Shevlin, 2001). Full Correlation
Matrix is included in the ESM. Hierarchical multiple regressions
with ICT Acceptance and ICT Use as outcomes and 10
predictors were performed with JASP 0.11.1 JASP Team
(2019). In each case the null model included 9 predictors
(Support_Colleague, Support_Supervisor, Self_efficacy_General,
Self_efficacy_Relationships, Self_efficacy_Discipline, General_
Burnout, Comprehension_Promo, Student_Control, Work_
experience_years) and NC was entered in the first step.

Regression with ICT Acceptance as outcome produced an
non-significant null model, F(9,140) = 1,58, n.s. and addition
of NC produced a significant final model, F(10,139) = 3,6,

p < 0.001, with Adjusted R2 = 0.15. In the final model both NC
(standardized beta = 0.41) and Supervisor Support (standardized
beta = 0.23) were significant predictors of ICT Acceptance.
Collinearity statistics were all within accepted limits of tolerance
>0.2 and VIF < 4 (Hair et al., 2010).

Regression with ICT Use as outcome produced a significant
model, F(9,140) = 2,45, p < 0.01, with Adjusted R2 = 0.08. Self-
Efficacy in Discipline was the only significant predictor with
standardized beta = 0.31. Addition of NC produced a significant
change in R2 = 0.07 in the final model, F(10,139) = 3,68, p < 0.001.
NC (standardized beta = 0.33) and Self-Efficacy in Discipline
(standardized beta = 0.27) were significant predictors of ICT Use
in the final model. Collinearity statistics were all within accepted
limits, with tolerance >0.2 and VIF < 4 (Hair et al., 2010).

Results so far show that NC is an important predictor of both
ICT Acceptance and Complexity of ICT Use. Furthermore ICT
Acceptance is moderately, positively related to Complexity of
ICT Use, r(150) = 0.434, p < 0.05; in the next the step it was
verified, using the PROCESS procedure created by Preacher and
Hayes (2019), whether NC moderates the relationship between
ICT Acceptance and ICT Use. When effect of ICT Acceptance
on ICT Use is conditioned at three values of the NC: 16th (low)
50th (medium), and 84th (high) percentile, the effect becomes
insignificant at the highest level of the NC (see: Figure 1), there
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TABLE 2 | Descriptive statistics.

Variable M SD Skewness Kurtosis Min Max

Work_experience_years 19.7 10.03 −0.11 −0.67 0.5 45

Need_Cognition 4.09 0.51 −0.4 −0.02 2.4 5

Student_Control 2.78 0.6 0.4 −0.2 1.46 4.23

Comprehension_Promo 4.38 0.39 −0.89 1.45 2.78 5

Self_efficacy_General 5.38 0.84 −0.85 0.92 2.75 7

Self_efficacy_Relationships 5.27 0.85 −1.03 2.06 2 6.8

Self_efficacy_Discipline 5.35 0.98 −1.17 1.92 1.8 7

Support_Colleague 3.67 0.85 −0.87 0.58 1.13 5

Support_Supervisor 3.31 1.01 −0.57 −0.51 1 5

General_Burnout 2.44 0.64 0.92 1.38 1.13 4.69

ICT_Acceptance 4.11 0.67 −0.72 0.51 1.5 5

ICT_Use 23.19 7.05 −0.22 −0.37 6 40

FIGURE 1 | Relationship between ICT Acceptance (mean centered) and ICT Use diminishes with increasing levels of NC (mean centered). Regression lines for low
NC (square, dot), b = 4,53, t = 4,79, se = 0,95, p < 0.001, medium (diamond, dash), b = 3,12, t = 3,77, se = 0,83, p < 0.001, high (circle, line), b = 1,72, t = 1,4,
se = 1,2, p > 0.05.

is a significant increase in R2 = 0.02, p < 0.05 attributable to
this moderation.

DISCUSSION

Results obtained in this study are in accordance with the
expectations formed on the basis of previous research on NC and
TAM. NC significantly predicts intentions to use ICT as well as
actual ICT behavior, while controlling for burnout, self-efficacy,
social support and pedagogical beliefs. Furthermore NC acts as a

moderator between intentions and behavior, in such a way that
the relationship between intentions and behavior is weaker, for
higher levels of NC. This suggests that NC influences behavioral
engagement to a greater extent when perceived usefulness and
perceived ease of use of technology is low. This gives support to
research showing that NC moderates effort in a context in which
a task is not highly personally relevant or related to important
job requirements (Petty and Cacioppo, 2016; Luttrell et al., 2017).
NC becomes crucial when introducing innovative technology
is not mandatory and it’s not yet clear what the job-related
usefulness of the technology will be. The different pace at which
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changes in school curricula and official job requirements are
made and at which technological advancements are made makes
it almost certain that this context will be common to education.
Introducing technology in teaching makes it a complex task
and hard to routinize, because of constant challenges made
by the software development process. On the other hand it
makes teaching a challenging task, introducing novelty and
incorporating the most recent ideas. It should be noted that
this is vastly different from another type of change common to
education - institutionally caused changes in reorganization of
textbooks/learning materials, which provide a cognitive load, but
do not add novelty or complexity.

It is also worth relating current results to some of
the findings from the Elaboration Likelihood Model (ELM)
(Cacioppo et al., 1996). According to ELM high NC leads to a
stronger relationship between attitudes and behavior (Cacioppo
et al., 1986, Verplanken, 1989). Generally high NC is related
to deep processing of incoming information and therefore
more elaborated, stronger beliefs are formed, which are then
not swayed by situational factors. Greater attitude-behavior
consistency is explained by the saliency of well thought of
attitudes when an individual is making a decision to engage
behaviorally (Pieters and Verplanken, 1995). This is contrary to
the results we obtained. The relationship between attitudes and
behavior was weaker for high NC individuals. This result can
be explained by the finding that the strength of the intention-
behavior link is different when we consider an implementation
intention for a single action in a particular context or a broader
goal (Sheeran, 2002). It appears that high NC is related to a
broader goal of engagement in technology use, because of the
complexity of this intellectual task. With low NC, there is no
such general motivation and therefore what strongly predicts
behavior is implementation intention based on pedagogical
usefulness of technology.

Secondary results from the current study, for which we did
not specify hypotheses, show that there is a lack of relationship
between technology use and some important differences in
teaching styles: tendency to promote comprehension and
preferred degree of student autonomy. This suggests that
technology per se does not influence these global teaching styles.
Future studies could test whether it is the case that technology
can both serve to decrease or increase student autonomy or be
used to promote comprehension, but equally likely to promote
memorization. It is likely that teachers incorporate technology
into their, already established, preferred styles of interaction
(Drijvers et al., 2010) and therefore a mere change in the use of
technology won’t result in changes of pedagogical approach.

Other secondary results show that supervisor support, but
not peer support, predicts intentions to use ICT. This result is
in accordance with other studies showing that ICT supportive
school leaders influence beliefs about ICT adoption in their
institutions (Hatlevik and Arnseth, 2012). It confirms the
TAM assumptions about the importance of norm setting in a
particular environment. Perhaps surprisingly, self-efficacy beliefs
of teachers were generally not related to their technology
acceptance or use, apart from beliefs about efficacy in maintaining
discipline, which predicted technology use. Future studies should

focus on whether this can be explained by the fact that the
introduction of any active pedagogical methods often involves an
increase of the level of classroom noise and possible disruptions.

Study Limitations
Before we offer some suggestions as for technology adoption
in teaching, it should be noted that the current study has
several limitations. Data was gathered via self-reports and on
one occasion only. This suggests a potential method bias, as
the measurement of intentions and declared technology use was
done simultaneously. In order to avoid the confounding effect
of declared intentions on retrospective of past behavior, we have
tried to be as specific and concrete as possible in creating the
cafeteria of answers in the Complexity of ICT Use scale. When
taking into account that the questionnaire was anonymous and
there was no major incentive for lying, we can assume that the
self-report of actual technology use was fairly accurate.

It also needs to be mentioned that the sample might have been
pre-selected on the basis of at least minimal interest in the use
of modern technologies. Additionally, because the questionnaire
was voluntary and not related to any governmental institution,
we might have obtained a sample characterized by inflated NC
in relation to the general population of teachers. Predicting this,
we have used a NC scale which was especially designed to be
sensitive to distinctions in a population with an elevated level of
NC. We are less confident in the lack of impact of the possibly
biased sample on the measures for burnout and self-efficacy.
Especially for burnout, it is likely that the method of recruitment
and therefore the sample, excluded teachers with high levels of
this trait, which would diminish the predictive value of burnout
on the variables we measured in the current study.

Additional limitation refers to the availability of the
intellectual investment measures in Polish. We have used a scale
which refers to NC, but there are several personality concepts
which affect learning which share crucial aspects of content and
definition: curiosity as a feeling of interest, curiosity as a feeling of
deprivation, epistemic curiosity, typical intellectual engagement,
openness to ideas and need for cognition (Litman, 2008; Mussel,
2010). These constructs share important content, but are not
identical. As shown by Mussel (2013) NC is specifically related
to the process of seeking and an operation of thinking. Arguably,
technology use in pedagogy is also, if not more, related to the
operation of learning a new skill, or creating a new artifact, as
well as the process of conquering challenges (Mussel, 2013). In
future studies its suggested to focus on those distinctions.

CONCLUSION

Despite those limitations, we believe that the current results
allow for suggestions for the potential ways to increase the
use of technology in pedagogy. It seems that two routes
are possible. On one hand any intervention which would
increase the general level of NC would also result in an
increased level of technology engagement. When thinking about
such interventions it should be noted that NC is related to
performance on rational thinking tasks, which are not captured
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by standard intelligence measures, but rather relate to heuristics,
biases and critical thinking (Toplak et al., 2014). Examples of
such tasks include resistance to contextual affective framing,
sensitivity to base-rate information or “otherside thinking” which
involves the tendency to consider both reasons consistent and
inconsistent with one’s own prior beliefs. Arguably, adoption of
ICT and its optimal use in education requires only an investment
in technical equipment, but also an investment in the tools
of the mind that practitioners in this occupation use. Most
commonly education practitioners refer external barriers such
as insufficient equipment, lack of software/hardware training or
insufficient class time to adopt ICT in teaching (Pelgrum, 2001).
However, even when equipment and training is provided, ICT
adoption often gives sub-optimal results, in that it does not
lead to improvements in students skills or does not bridge the
gap between advantaged and disadvantaged students (OECD,
2015; Pérez-Sanagustín et al., 2017). On the other hand, for
individuals with low NC, the importance of the perception
of the ease of use and usefulness of technology increases as
predictor of actual behavioral engagement. As shown by Gray
et al. (2015) individuals with low NC might benefit especially
from clearly setting a mastery goal structure in the context
of technology adoption. Setting a mastery goal structure can
be contrasted with setting either a performance approach or a
performance avoidance structure. Unfortunately, in the context
of school teachers’ performance evaluation, at least in Poland, it
is more often the case that a performance avoidance structure is
established. Job evaluation is aimed at avoidance of standing out
negatively. This leads to enhanced risk-avoidance and challenge-
avoidance, especially when perceived competence for a particular
task is initially low (Harackiewicz et al., 2002) and a mixture
of performance goals and being challenged in a context of
low-perceived ability can produce symptoms similar to learned
helplessness (Elliott and Dweck, 1988). It should also be noted
that studies show that teacher training programs, which include
new content, can lead to a temporary decline in teaching
effectiveness (Breckwoldt et al., 2014) and time is required for
experiences to accumulate which can shift this (Thomas et al.,
1996). It is likely that NC can protect against some of the
effects of a performance avoidance structure in that it shifts
attention away from comparison with others to analysis of own
performance, seeing evidence for improvement as well as seeking
feedback (Luong et al., 2017). Other studies show that it is crucial
the teachers are involved in active development of the learning
materials and not only in the enactment of ready-made tasks
(Coenders and Terlouw, 2015).

We believe that this study points to the importance of
focusing on the typical intellectual investment, or need of

cognition of teachers in both recruitment and training. This
is likely to result in an increase of the use of ICT dependent
active teaching methods in the teaching of mathematics. Active
learning methods, such as peer instruction, think-pair-share or
minute papers can be introduced without the use of technology
(McConnell et al., 2017), but then they rarely answer to the issue
raised by Bloom (1984) described as the 2 sigma problem. The
problem refers to a large discrepancy in teaching effectiveness
between individual tutoring and classic large scale formal
education. Technology is seen as a possible vehicle for simulating
some effects of individual tutoring while keeping it affordable for
public education.
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The Influence of Attitudes and Beliefs
on the Problem-Solving Performance
Nina Sturm1* and Carla Bohndick2
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The problem-solving performance of primary school students depend on their attitudes
and beliefs. As it is not easy to change attitudes, we aimed to change the relationship
between problem-solving performance and attitudes with a training program. The training
was based on the assumption that self-generated external representations support the
problem-solving process. Furthermore, we assumed that students who are encouraged to
generate representations will be successful, especially when they analyze and reflect on
their products. A paper-pencil test of attitudes and beliefs was used to measure the
constructs of willingness, perseverance, and self-confidence. We predicted that
participation in the training program would attenuate the relationship between attitudes
and problem-solving performance and that non-participation would not affect the
relationship. The results indicate that students’ attitudes had a positive effect on their
problem-solving performance only for students who did not participate in the training.

Keywords: attitudes and beliefs, word problem, training program design, problem-solving, problem-solving
success, primary school, moderation effect analysis

INTRODUCTION

Mathematical problem solving is considered to be one of the most difficult tasks primary students
have to deal with (Verschaffel et al., 1999) since it requires them to apply multiple skills (De Corte
et al., 2000). It is decisive in this respect that “difficulty should be an intellectual impasse rather than a
computational one” (Schoenfeld, 1985, p. 74). When solving problems, it is not enough to retrieve
procedural knowledge and reproduce a known solution approach. Rather, problem-solving tasks
require students to come up with new ways of thinking (Bransford and Stein, 1993). Problem-solvers
must activate their existing knowledge network and adapt it to the respective problem situation (van
Dijk and Kintsch, 1983). They have to succeed in generating an adequate representation of the
problem situation (e.g., Mayer and Hegarty, 1996). This requires conceptual knowledge, which
novice problem-solvers have to acquire (Bransford et al., 2000). As problem solving is the foundation
for learning mathematics, an important goal of primary school mathematics teaching is to strengthen
students’ problem-solving performance. One central problem is that problem-solving performance is
highly influenced by students’ attitudes towards problem solving (Reiss et al., 2002; Schoenfeld, 1985;
Verschaffel et al., 2000).

Attitudes and beliefs are considered quite stable once they are developed (Hannula, 2002; Goldin,
2003). However, students who are novices in a particular content area are still in the process of
development, as are their attitudes and beliefs. It can therefore be assumed that their attitudes change
over time (Hannula, 2002). However, such a change does not take place quickly (Higgins, 1997;
Mason and Scrivani, 2004). Nevertheless, in a shorter period of time, it might be possible to reduce
the influence of attitudes on problem-solving performance (Hannula et al., 2019). In this paper, we
present a training program for primary school students, which aims to do exactly that.
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Problem-Solving Performance
Successful problem solving can be observed on two levels:
problem-solving success and problem-solving skills. Many
studies measure the problem-solving performance of students
on the basis of correctly or incorrectly solved problem-solving
tasks, that is, the product (e.g., Boonen et al., 2013; de Corte et al.,
1992; Hegarty et al., 1992; Verschaffel et al., 1999). In this case,
only problem-solving success, that is, specifically whether the
numerically obtained result is correct or incorrect, is evaluated.
This is a strict assessment measure, since the problem-solving
process is not taken into account. As a result, the problem-solving
performance is only considered from a single, product-oriented
perspective. For instance students’ performance is assessed as
unsuccessful when they apply an essentially correct procedure or
strategy but achieve the wrong result, or it is considered successful
when students achieve the right result even though they have
misunderstood the problem (Lester and Kroll, 1990). An
advantage of this operationalization, however, is that student
performance tends to be underestimated rather than
overestimated.

A more differentiated view of successful problem solving
includes the solver’s problem-solving process (Lester and
Kroll, 1990; cf. Adibnia and Putt, 1998). In this way, sub-skills
such as understanding the problem, adequately representing the
situation, applying strategies, or achieving partial solutions are
taken into account. These are then incorporated into the
evaluation of performance and, thus, of problem-solving skills
(Charles et al., 1987; cf. Sturm, 2019). The advantage of this
operationalization option is that it also takes into account smaller
advances by the solver, although they may not yet lead to the
correct result. It is therefore less likely to underestimate students’
performance. In order to assess and evaluate the problem-solving
skills of students in the best way and, thus, avoid over- and under-
estimating their skills, direct observation and questioning should
be implemented (e.g., Lester and Kroll, 1990). An analysis of
written work should not be the only means of assessment (Lester
and Kroll, 1990).

Attitudes and Beliefs
Attitudes are dispositions to like or dislike objects, persons,
institutions, or events (Ajzen, 2005). They influence behavior
(Ajzen, 1991). Therefore, it is not surprising that attitudes–which
are sometimes also synonymously referred to as beliefs–are a
central construct in psychology (Ajzen, 2005).

Individual attitudes to word problems influence, albeit rather
unconsciously, approaches to such problems and willingness to
learn mathematics and solve problems (Grigutsch et al., 1998;
Awofala, 2014). Research on attitudes of primary students to
word problems is scarce. Most research focuses on students with
well-established attitudes. However, the importance of the
attitudes of younger children is undisputed (Di Martino,
2019). Di Martino (2019) conducted a study on kindergarten
children as well as on first-, third-, and fifth-graders and found
that, with increasing age, students’ perceived competence in
problem solving decreases, and negative emotions towards
mathematical problems increase. Whether a solver can
overcome problem barriers when dealing with word problems

depends not only on his or her previous knowledge, abilities, and
skills, but also on his or her attitudes and beliefs (Schoenfeld,
1985; Verschaffel et al., 2000; Reiss et al., 2002). It has been shown
many times that attitudes towards problem solving are
influencing factors on performance and learning success which
should not be underestimated (Charles et al., 1987; Lester et al.,
1989; Lester & Kroll, 1990; De Corte et al., 2002; Goldin et al.,
2009; Awofala, 2014). Learners associate a specific feeling with an
object, in this case with a word problem, triggering a specific
emotional state (Grigutsch et al., 1998). The feelings and states
generated are subjective and can therefore vary between
individuals (Goldin et al., 2009).

Attitudes towards problem solving can be divided into
willingness, perseverance, and self-confidence (Charles et al.,
1987; Lester et al., 1989). This distinction comes from the
Mathematical Problem-Solving Project, in which Webb,
Moses, and Kerr (1977) found that willingness to solve
problems, perseverance in attempting to find a solution, and
self-confidence in the ability to solve problems are the most
important influences on problem-solving performance. When
students are willing to work on a variety of mathematics tasks and
persevere with tasks until they find a solution, they are more task
oriented and easier to motivate (Reyes, 1984). Perseverance is
defined as the willing pursuit of a goal-oriented behavior even if
this involves overcoming obstacles, difficulties, and
disappointments (Peterson and Seligman, 2004). Confidence is
an individual’s belief in his or her ability to succeed in solving
even challenging problems as well as an individual’s belief in his
or her own competence with respect to his or her peers (Lester
et al., 1989). Students’ lack of confidence in themselves as
problem-solvers or their beliefs about mathematics can
considerably undermine their ability to solve or even approach
problems in a productive way (Shaughnessy, 1985). The division
of attitudes into these three sub-categories can also be found in
current studies (Zakaria and Yusoff, 2009; Zakaria and Ngah,
2011).

Reducing the Influence of Attitudes and
Beliefs
As it seems impossible to change attitudes within a short time
frame, we developed a training program to reduce the influence of
attitudes on problem solving, on the one hand, and to foster the
problem-solving performance of primary-school students, on the
other hand.

The training program was an integral part of regular math
classes and focused on teaching students to generate and use
external representations (Sturm, 2019; Sturm et al., 2016; Sturm
and Rasch, 2015; see also Supplementary Appendix A). Such a
program that concentrates on the strengths and weaknesses of
novices and on their individually generated external
representations can be a benefit for primary-school students in
two ways. The class discusses how the structure described in the
problem can be adequately represented so that the solution can be
found, working out multiple approaches based on different
student representations. The students are thus exposed to
ideas about how a problem can be solved in different ways.
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Such a training program fulfils, albeit rather implicitly, another
essential component. By respectfully considering their individual
thoughts and difficulties, the students are made aware of their
strengths and their creativity and of the fact that there is not a
single correct approach or solution that everyone has to find
(Lester and Cai, 2016; Di Martino, 2019). This can counteract
fears of failure and lack of self-confidence, and generate positive
attitudes (Lester and Cai, 2016; Di Martino, 2019). The teacher
pays attention to the solution process rather than to the
numerical result in order to reduce the influence of attitudes
on performance (Di Martino, 2019). In the same way,
experiencing success and perceiving increasing flexibility and
agility can reduce the influence of attitudes. As a result, we
expected attitudes and beliefs to have a smaller effect on
problem-solving performance.

HYPOTHESIS

Based on previous research, our goal was to reduce the influence
of attitudes on the problem-solving performance of students (see
Figure 1). To this end, the hypothesis was derived that
participation in the training program would minimize the
effect of attitudes and beliefs on problem-solving success, so
that students would succeed at the end of the training despite
initial negative attitudes and beliefs.

METHODS

Participants
In total 335 students from 20 Grade 3 classes from eight different
primary schools in the German state of Rhineland-Palatinate took
part in the intervention study (172 boys and 163 girls). Nineteen
students dropped out because of illness during the intervention.
The age of the participants ranged between seven and ten years
(M � 8.10, SD � 0.47).

Procedure
This investigation was part of a large interdisciplinary project1. A
central focus of the project was to investigate whether
representation training has a demonstrable effect on the

performance of third-graders (cf. Sturm, 2019). For this
reason, we implemented a pretest-posttest control group
design. The intervention took place between Measurement
Points 1 and 2. We measured the problem-solving
performance of the students with a word-problem-solving test
(WPST) at Measurement Points 1 and 2. All other variables were
measured at Measurement Point 1 only (factors to establish
comparable experimental conditions: intelligence, text
comprehension, and mathematical abilities; co-variates for the
mediation model: metacognitive skills, mathematical abilities).

In the intervention, third-grade students worked on
challenging word problems for one regular mathematics lesson
a week. The intervention was based on six task types with
different structures (Sturm and Rasch, 2015): 1) comparison
tasks, 2) motion tasks, 3) tasks involving comparisons and
balancing items or money, 4) tasks involving combinatorics, 5)
tasks in which structure reflects the proportion of spaces and
limitations, and 6) tasks with complex information. Two word
problems were included for each task type and were presented to
all classes in the same random sequence. Each task had to be
completed in a maximum of one lesson.

The training was implemented for half of the classes and was
conducted by the first author; the other half worked on the tasks
with their regular mathematics teacher. They were not informed
on the purpose of the intervention and not given any instructions
on how to process the tasks. In the lessons for students doing the
training, the students were explicitly cognitively stimulated to
generate external representations and to use them to develop
solutions. They were repeatedly encouraged to persevere and not
to give up. The diverse external representations generated by the
students were analyzed, discussed, and compared by the class
during the training. They jointly identified the characteristics of
representations that enabled them to specifically solve the tasks
and identified different approaches (for more details about the
study, see Sturm and Rasch, 2015). With the goal of reducing the
influence of attitudes on performance, the class worked directly
on the students’ own representations instead of on prefabricated
representations. The aim was that students realized that it was
worthwhile investing effort into creating representations and that
they were able to solve problem tasks independently.

Thus, the study was composed of two experimental
conditions: training program (n � 176; 47% boys) (hereinafter
abbreviated to T+) and no training program (n � 159; 58% boys)
(hereinafter abbreviated to T-). In order to control potential
interindividual differences, the 20 classes were assigned to the
experimental conditions by applying parallelization at class level
(Breaugh and Arnold, 2007; Myers and Hansen, 2012). The
classes were grouped into homogeneous blocks using the R
package blockTools Version 0.6-3 and then randomly assigned
to the experimental conditions (Greevy et al., 2004; Moore, 2012;
see also Supplementary Appendix B for more information).

Measures
Word-Problem-Solving Test
Before the intervention and immediately after it, the students
worked on aWPST, which we created. It consisted in each case of
three challenging word problems with an open answer format.

FIGURE 1 | The moderation model with the single moderator variable
training influencing the effect of attitudes and beliefs on problem-solving
success.

1

This project was part of the first author’s PhD thesis
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Each of the three tasks represented a different type of problem.
The word problems from the WPST at Measurement Point 1 and
the word problems from the WPST at Measurement Point 2 had
the same structure. We implemented two parallel versions; only
the context was changed by exchanging single words (see
Supplementary Appendix C). An example of an item from
the test is a task with complex information (Sturm, 2018):
Classes 3a and 3b go to the computer room. Some students
have to work at a computer in pairs. In total there are 25
computers, but 40 students. How many students work alone at
a computer? How many students work at a computer in pairs?
Direct observation and questioning could not be conducted due
to the large number of participants in the project; only the
students’ written work was available for analysis. The
problem-solving process of the students could therefore only
be assessed indirectly. For this reason, the performance of
students in the two tests was evaluated based on problem-
solving success, ruling out overestimation of performance.

Problem-Solving Success
The success of the solution was measured dichotomously in two
forms: 1) correct solution and (0) incorrect solution. Only the
correctness of the result achieved was evaluated. This dependent
variable acted as a strict criterion that could be quantified with high
observer agreement (κ � 0.97; κmin � 0.93, κmax � 1.00). A
confirmatory factor analysis using the R package lavaan version
0.6-7 confirmed that the WPST measured the one-dimensional
construct problem-solving success. The one-dimensional model
exhibited a good model fit (Nussbeck et al., 2006; Hair et al., 2009):
χ2 (27) � 36.613, p � 0.103; χ2/df � 1.356, CFI � 0.985, TLI � 0.981,
SRMR � 0.032, RMSEA � 0.033 (p � 0.854). The reliability
coefficients at Measurement Point 1 were classified as low
(Cronbach’s α � 0.39) because the test consisted of only three
items (Eid et al., 2011) and a homogeneous sample was required at
this measurement point (Lienert and Raatz, 1998). The Cronbach’s
alpha for the second measurement point (α � 0.60) was considered
to be sufficient (Hair et al., 2009). The test score represented the
mean value of all three task scores.

Attitudes and Beliefs About Problem Solving
The attitudes and beliefs of the learners were recorded with the
Attitudes Inventory Items (Webb et al., 1977; Charles et al., 1987).
The original questionnaire comprises 20 items, which are
measured dichotomously (“I agree” and “I disagree”). The
Attitudes Inventory measures the three categories of attitudes
and beliefs related to problem solving: a) willingness (six items),
b) perseverance (six items), and c) self-confidence (eight items).
An example of an item for willingness is: “I will try to solve almost
any problem.” An example of an item for perseverance is: “When
I do not get the right answer right away, I give up.”An example of
an item for self-confidence is: “I am sure I can solve most
problems.”

Because the reported reliabilities were only satisfactory to
some extent (α � 0.79, mean � 0.64) (Webb et al., 1977), the
Attitudes Inventory was initially tested on a smaller sample (n �
74; M � 8.6 years old; 59% girls). A satisfactory Cronbach’s α �
0.86 was achieved (mean α � 0.73). The number of items was

reduced to 13 (four items for willingness, four items for
perseverance, five items for self-confidence), which had only a
minor influence on reliability (α � 0.83). For economic reasons,
the shortened questionnaire was used in the study. The three-
factor structure of the questionnaire was confirmed with a
confirmatory factor analysis using the R package lavaan
version 0.6–7. As the fit indices show, the three-factor model
had a good model fit: χ2 (62) � 134.856, p < 0.001; χ2/df � 2.175,
CFI � 0.948, TLI � 0.935, RMSEA � 0.062 (p � 0.086) (Hair et al.,
2009; Brown, 2015). The three-factor model had a better fit than
the single-factor model (p � 0.0014): χ2 (65) � 152.121, p < 0.001;
χ2/df � 2.340, CFI � 0.938, TLI � 0.926, SRMR � 0.061, RMSEA �
0.066 (p � 0.028). The students were grouped into three groups
(M–1 SD; M; M +1SD). The responses were coded in such a way
that high scores (M +1SD) indicated positive attitudes and beliefs,
and low scores (M–1 SD) indicated negative attitudes and beliefs.

Additional Influencing Factors
In order to ensure the internal validity of the investigation, we
collected student-related factors that influence the solution of
word problems from a theoretical and empirical point of view. It
has been shown that the mathematical abilities and metacognitive
skills of students significantly influence their performance (Sturm
et al., 2015).

Mathematical Abilities
The basic mathematical abilities were determined using a
standardized German-language test as a group test
(Heidelberger Rechentest HRT 1–4, Haffner et al., 2005). The
test consists of eleven subtests, from which three scale values were
determined: calculation operations, numerical-logical and spatial-
visual skills as well as the overall performance for all eleven
subtests. The reliability was only satisfactory (Cronbach’s α �
0.74). Total performance was included in the study.

Metacognitive Skills
The metacognitive skills of the students were measured using a
paper-pencil version of EPA2000, a test to measure metacognitive
skills before and/or after the solving of tasks (Clercq et al., 2000).
The prediction skills and evaluation skills of the students were
collected for all three word problems of theWPST using a 4-point
rating scale: 1) “absolutely sure, it’s wrong,” 2) “sure, it’s wrong,”
3) “sure, it’s right,” and 4) “absolutely sure, it’s right” (Clercq
et al., 2000). If the students’ assessments of “absolutely sure”
matched their solution, they were awarded 2 points. If they agreed
with “sure,” they received 1 point. No match was scored with 0
points (Desoete et al., 2003). The reliabilities were only
satisfactory (Cronbach’s αtotal�0.74, αprediction�0.56, αevaluation �
0.73). A confirmatory factor analysis revealed that prediction
skills and evaluation skills represent a single factor (χ2 (9) �
16.652, p < 0.001; χ2/df � 1.850, CFI � 0.952, TLI � 0.919, RMSEA
� 0.053 (p � 0.396)). The aggregated factor was used as a control
variable in the moderator analysis.

In addition to the variables considered in this paper, text
comprehension and intelligence were also surveyed in the project.
However, they are not the focus of this paper; additional
information can be found in Sturm et al. (2015).
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RESULTS

Descriptive Statistics and Correlations
Between the Measures
The descriptive statistics and correlations of all scales are
presented in Table 1 (see Supplementary Appendix D for a
separate overview for each of the experimental conditions). The
signs for all correlations were as expected. The variable training
program is not listed because it is the dichotomous moderator
variable (T+ and T−).

Moderated Regression Analyses
The hypothesis was tested with a moderated regression analysis
using product terms from mean-centered predictor variables
(Hayes, 2018). This model imposed the constraint that any
effect of attitudes and beliefs was independent of all other
variables in the model. This was achieved by controlling for
mathematical abilities, metacognitive skills, and problem-solving
performance at Measurement Point 1. The estimated main effects
and interaction terms are presented in Table 2.

When testing the hypothesis, we found a significant main
effect of attitudes and beliefs, a significant main effect of the
training program, and a significant moderator effect of the
training on attitudes and beliefs as a predictor of problem-
solving success. The main effect of the training program
indicated that students who participated in the training
performed better in the second WPST. The main effect of
attitudes and beliefs showed that students with more positive
attitudes and beliefs were more successful than students with
negative attitudes and beliefs.

To further explore the interaction between attitudes and
beliefs and the training program, we analyzed simple slopes at
values of 1 SD above and 1SD below the means of attitudes and
beliefs (Hayes, 2018). As can be seen from the conditional
expectations in Figure 2, attitudes and beliefs did not affect
the problem-solving success of students who participated in
the training program. Attitudes and beliefs only had a positive
effect on the problem-solving success of students who did not
participate in the training.

DISCUSSION

Our results confirm previous findings that the attitudes and
beliefs of students correlate with their problem-solving
performance. They indicate that this correlation can be
moderated by student participation in a training program.
Negative attitudes and beliefs did not affect the performance
of students who participated in a problem-solving training
program over several weeks. Whether the training program
also causes a change in the attitudes and beliefs of the
students over time has to be investigated in a follow-up study,
which is planned with a longer intervention period with at least
two measurements of attitudes and beliefs. A longer intervention
period would have the advantage that attitudes develop
depending on the individual experiences of a person
(Hannula, 2002; Lim and Chapman, 2015), for instance, when

TABLE 1 | Descriptive statistics and correlations of all variables for both
experimental conditions.

(1) (2) (3) (4) (5)

Independent variables
(1) Mathematical abilities
(2) Metacognitive skills 0.39**
(3) Success (t1) 0.38** 0.39**
(4) Attitudes and beliefs 0.36** 0.12** 0.22**

Dependent variable
(5) Success (t2) 0.48** 0.68** 0.45** 0.25**
# 11 6 3 13 3
M 46.36 0 0.11 7.92 0.40
SD 10.18 0.87 0.20 3.48 0.35
Min 28 −1.4 0 0 0
Max 80 2.1 1 13 1

Note. # � number of items; t1 � Measurement Point 1; t2 � Measurement Point 2. *p <
0.05, **p < 0.01.

TABLE 2 | Results from the regression analysis examining the moderation of the
effect of attitudes and beliefs on problem-solving success (t2) by participation
in the training program, controlling for mathematical abilities, metacognitive skills,
and problem-solving success from the pretest.

b SE t p

Constant 0.22 0.03 8.27 <0.001
Attitudes and beliefs (X) 0.02 0.01 4.07 <0.001
Training program (W) 0.12 0.03 4.41 <0.001
Attitudes and beliefs x Training program (XW) −0.02 0.01 -2.94 � 0.004
Mathematical abilities <0.01 <0.01 4.47 <0.001
Metacognitive skills 0.23 0.07 3.06 �0.002
Problem-solving success (t1) 0.21 0.02 12.27 <0.001

Note.R2 � 58.75%,MSE � 0.05; F (6, 310) � 73.59, p < 0.001;R2 (change) � 1.15%, F (6,
310) � 8.62, p � 0.004.

FIGURE 2 |Moderator effect of the training program on problem-solving
success at Measurement Point 2.
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new experience is gathered or new knowledge is acquired (e.g.,
Ajzen, 2005).

Some limitations need to be considered when interpreting the
results of the study. For example, the mitigating processes need to
be investigated further. It is also unclear as to which components
of the training are ultimately responsible for counteracting the
effect of attitudes and beliefs. Although the study did not provide
results in this regard, we assume that the following factors might
have an effect: generating external representations, reflecting on
the representations together as a group, and fostering an
appreciative and constructive approach to mistakes. Further
studies are needed to show whether and to what extent these
factors actually attenuate the effect of attitudes and beliefs.

Furthermore, the measurement instruments for the control
variables mathematical abilities and metacognitive skills were
rather limited. If researchers are interested in understanding
further effects of metacognitive skills, more aspects should be
included. Furthermore, according to Lester et al. (1987),
investigating attitudes and beliefs using a questionnaire is
associated with disadvantages. How accurately students answer
the questions depends on how objectively and accurately they can
reflect on and assess their own attitudes. Misinterpretations and
errors cannot be ruled out. The most serious disadvantage,
however, is that data collection using an inventory can easily
be assumed to have unjustified validity and reliability. For a
deeper insight into the attitudes and beliefs of primary school
students, qualitative interviews have to be implemented.

However, for the purpose of this study, it seems sufficient to
consider the two control variables mathematical abilities and
metacognitive abilities. We were able to ensure that the
correlation between attitudes and beliefs and the mathematical
performance of students was not influenced by these factors.

Regardless of the limitations, our study has some practical
implications. Participation in the training program,
independently of the mathematical abilities and text
comprehension of students, reduced the influence of attitudes
and beliefs on their performance. Thus, for teaching practice, it
can be concluded that it is important not only to implement
regular problem-solving activities in mathematics lessons, but
also to encourage students to externalize and find their own
solutions. The aim is to establish a teaching culture that promotes
a variety of approaches and procedures, allows mistakes to be
made, and makes mistakes a subject for learning. Reflecting on
different possible solutions and also on mistakes helps students to

progress. Thus, students develop a repertoire of external
representations from which they can profit in the long term
when solving problems.
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This brief research report presents an experiment investigating how people interpret
quantities displayed in pictorial charts. Pictorial charts are a popular form of data
visualization in media. They represent different quantities with differently scaled pictures.
In the present study, 63 university students answered a 12-item questionnaire containing
three different pictorial charts. The study aimed to evaluate how individuals perceive
the quantities in the pictorial charts intuitively. Therefore, the students’ answers were
not rated as correct or incorrect. Instead, it was analyzed which functional relationship
between scale factor and estimated quantity best described people’s interpretation
of pictorial charts. The experiment showed that, on average, a model assuming a
quadratic relationship fitted best. This result deviates from research that found an
overgeneralization of linearity when students compare the areas of two mathematically
similar shapes. It may be that the routines for the interpretation of pictures differ
considerably depending on whether a person must calculate a quantity arithmetically
or is prompted to estimate the quantity based on visual perception.

Keywords: pictorial charts, illusion of linearity, problem-solving, cognitive processing, statistical literacy, data
visualization

INTRODUCTION

Data and data analyses play an important role in decision making in modern society. Consequently,
print media try to convey data of public relevance in graphically appealing and reader-friendly
data visualizations. These graphics are becoming increasingly popular, graphically elaborate,
and complex and are nowadays subsumed within the term information graphics or infographics
(e.g., Cairo, 2013).

A specific and popular form of an infographic is a pictorial chart (Huff, 1954). It uses a picture
related to the data to make the data presentation more aesthetically pleasing. Different quantities are
displayed by scaling the picture up or down. Figure 1, which compares the nitrogen oxide emissions
of different types of cars, provides an example of a pictorial chart. White clouds display the
threshold values for nitrogen oxide emissions, and gray clouds represent the cars’ actual emission
values. The “larger” the cloud, the greater the represented quantity of emissions.

An appealing graphical design for a chart can make data more accessible. However, graphical
features can create a distorting visual impression and mislead the reader. Therefore, various
countries’ curricula and standards in mathematics require students to have the ability to judge
statistical data visualizations and to be able to identify misleading data displays (e.g., National
Council of Teachers of Mathematics, 2000). Consequently, standardized testing includes the
evaluation of pictorial charts (cf. Figure 2). To evaluate whether a pictorial chart is misleading,
it is worth knowing how people interpret this form of data visualization. Do individuals base their
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interpretation on the real-life volume of the garbage can? Do they
consider the covered area on the paper? Or do they only compare
the height of the garbage cans?

First, this brief research report reflects from a theoretical
perspective upon how people interpret pictorial charts and
reviews empirical results from mathematics education and
psychology that could substantiate different assumptions.
Subsequently, the paper presents an empirical study investigating
how students interpret pictorially displayed quantities in pictorial
charts. Finally, in the “Discussion” section, the paper tries to
explain the different research results by suggesting that whether
people have to assess pictures analytically or perceptually might
have a substantial effect. Furthermore, it is argued that given
the increasing variety and importance of data visualization in
public life, mathematics education should pay more attention to
popular or novel forms of data visualizations.

THEORETICAL BACKGROUND

A pictorial chart is based on a similarity transformation.
A graphic designer uniformly scales a picture A by a factor to
generate a mathematically similar picture B. Tufte (2001) pointed
out that in data visualization, the visual representation should be
consistent with the numerical representation. For pictorial charts,
Tufte’s claim raises the question of how people interpret visual
representations and whether people’s interpretation is consistent
with the intended numerical representation.

Therefore, one can try to generate assumptions about how
people interpret pictorial charts by exemplarily analyzing an item
(Figure 2) from a standardized test of the National Assessment
of Educational Progress (NAEP). This item (National Assessment
of Educational Progress NAEP, 1992) represents two quantities
(the number of tons of trash produced in the United States in the
years 1960 and 1980) using two perspective drawings of a garbage
can. The students had to explain why the chart was misleading.
The expected answer was based on mathematical considerations
concerning the displayed objects’ volume in the real world. If
the length, width, and height of a three-dimensional object are
doubled, the volume increases eightfold. In other words, the
relationship between the scale factor and the volume is cubic.

While the mathematics of volume is clear, this might not be the
way people interpret the pictures of the garbage cans. If readers
perceptually evaluate pictures based on the area covered by ink,
the garbage can of 1980 extends over four times as much area as
the garbage can of 1960. Generally speaking, the area of a shape
quadruples if the shape’s length and width are doubled, due to
a quadratic relationship between the scale factor and the area.
There is also a third manner in which people could interpret the
pictorial chart. In Figure 2, one could argue that the garbage cans
are just replacing the bars of a bar chart to make the chart more
appealing to the reader. Therefore, it might be possible that the
reader, in the same way as when reading a bar chart, takes only
the garbage cans’ height into account.

This ambiguity begs the question whether empirical
research provides evidence of how readers evaluate pictorial
charts. Empirical research that explicitly addressed readers’

interpretation of pictorial charts could not be found. However,
research results from mathematics education and psychology
may substantiate some theoretical assumptions outlined above.

Results From Related Empirical
Research
Since most pictorial charts rely on displaying quantities via
representations of two- or three-dimensional objects, the reader’s
ability and strategies to deal with measures (length, area, and
volume) might influence the interpretation of pictorial charts.
However, the ability to calculate these measures exactly does not
play a significant role when interpreting pictorial charts. Instead,
the ability to estimate measures might be crucial.

One strategy for estimating measures is the reference point
strategy (Joram et al., 2005), that is, mentally comparing an object
whose measurement is known with an object whose measure has
to be estimated. When one estimates the length of a line by sight,
for example, the empirical results turned out to be relatively clear-
cut. Participants perceived lengths in a linear manner: that is,
a line twice as long as another line was perceived to be twice
as long (Stevens, 1975; Hartley, 1981). When a two-dimensional
object was used and the size had to be estimated, the results
were ambiguous. Stevens and Guirao (1963) used a square as the
stimulus and found that doubling the side of the square resulted
in a perceived apparent size 2.6 times as large. In two experiments
Schneider and Bissett (1988) found that people estimated areas
approximately correctly or slightly underestimated the area,
whereas the participants consistently underestimated volumes.
Based on his experiments, Morgan (2005) suggested that people
apply various heuristics for estimating areas by combining width
and height estimates. Investigating bubble charts, Raidvee et al.
(2020) concluded that the human visual system does not perceive
bubbles or discs in terms of their area but judges their size
closer to their radius or diameter. These results indicate that
people’s quantity estimation is not stable. Therefore, Joram et al.
(1998) concluded that “measurement estimation is a highly
volatile process, and easily influenced by the to-be-estimated
objects” (p. 417).

A further research strand that relates to the interpretation
of pictorial charts is research on problem-solving. In one
experiment, De Bock et al. (1998) asked seventh-graders to solve
word problems that required comparing areas. The students
had to calculate how many hours it would take to fertilize
a square piece of land with a side 600 m in length if a
square piece of land with a side 200 m in length took 8 h to
fertilize. The task was accompanied by scale drawings of the two
square pieces of land. The results showed that most students
assumed a linear relationship and answered 24 h; only 8% of
them detected the quadratic relationship and solved the item
correctly by answering 72 h. Solution rates for word problems
that required an area comparison of two circles (5%) or two
mathematically similar but irregular plane shapes (1%) were
even lower than the rates for comparisons based on squares. In
a replication study with tenth-graders, the solution rates were
higher but still low (square: 39%, circle: 21%, irregular shape:
7%). The assumption of a linear relationship in situations that
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FIGURE 1 | Pictorial chart of the nitrogen oxide emission of cars in a German magazine (Allgemeiner Deutscher Automobil-Club, 2017, p. 14). Copyright 2017 by
Allgemeiner Deutscher Automobil-Club. Reprinted with permission (Grenzwert Euro: threshold value Euro norm, realer Ausstoβ: actual emission).

are based on nonlinear relationships has been termed the illusion
of linearity. This phenomenon has been replicated in several
studies (e.g., De Bock et al., 2002; Vlahović-Štetić et al., 2010)
and could be demonstrated even among university students
(Esteley et al., 2010).

Present Study
In summary, the theoretical analyses and the empirical results
in mathematics education and psychology show that it is still

FIGURE 2 | Stimulus for a standardized test item in a task: “The picture above
is misleading. Explain why” (National Assessment of Educational Progress
NAEP, 1992). Material of the National Assessment of Educational Progress is
public domain.

unclear how people interpret pictorial charts. That is, the
question is the quantity Q2 that readers will assign to picture
B when a picture A with a known quantity Q1 is uniformly
scaled by a factor s and results in picture B. To evaluate
whether a pictorial chart is misleading, one should know how
people “read” a pictorial chart. Assuming that the processing
of pictorial charts in media is based on intuitive heuristics that
people quickly perform, the present study focuses on this System
1 (Kahneman, 2011). The study did not assess whether the
participants’ cognitive processes were correct or incorrect but
aimed to describe the participants’ perception non-judgmentally.
Therefore, the study investigated the functional relationship
between the scale factor and the individually perceived quantity.

Some assumptions could be derived from the presented
theoretical background. If readers apply an approximately
linear relationship (as discovered in research about the
overgeneralization of linearity) between the scaling factor and
the quantity Q2, it results in the rule Q2 ≈ s · Q1. If people
base their judgment on the perceptual aspects of interpreting
a picture as a two-dimensional object (cf. summarized research
above about the perception of areas), an approximately quadratic
relationship could be assumed, that is, Q2 ≈ s2 · Q1. If a pictorial
chart consists of perspective pictures of three-dimensional
objects (e.g., photographs or perspective drawings of garbage
cans), a spatial interpretation based on an approximately cubic
relationship is possible (Q2 ≈ s3 · Q1). The NAEP coding guide,
for example, evaluates this approach as the only correct solution
for interpreting three-dimensional pictures. Although these three
options would provide a clear-cut theoretical explanation for
their occurrence, different exponents (e.g., 1.6 or 2.4) in the
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power functions could not be ruled out. Therefore, it appears
reasonable to replace the exponent with a variable b so that the
rule results in the general equation Q2 = sb · Q1.

The research questions for this study were: (RQ1) When
one views a pictorial chart in which a quantity Q2 is displayed
via scaling a picture representing the known quantity Q1
with a scaling factor s, which value b in the power function
Q2 = sb · Q1 best describes a person’s interpretation of a
quantity Q2? (RQ2) Does the value b vary substantially between
persons? (RQ3) Does the value b depend on the picture? (RQ4)
Does the value b depend on whether the pictures were enlarged
or reduced?

MATERIALS AND METHODS

Participants
This study drew the participation of 63 mathematics teacher-
education students from a German university (primary and
secondary school education) with an average age of M = 21.5
(SD = 2.0). Since most of the students aspired to the primary
school teaching profession, female students predominated in the
sample (58 females, 5 males). The students had not received
instruction on the study’s topic, nor was the topic explicitly taught
in any course. The students were recruited during ordinary
course time and did not receive a financial incentive. Ethics
approval was obtained from the students.

Materials
The questionnaire consisted of 12 items (three testlets with four
items each). A specific picture formed the basis of every testlet.
The three pictures differed in their level of realism and the extent
to which they can be interpreted two- or three-dimensionally.
In the CO2 testlet, a line drawing of a cloud represented the
amount of carbon dioxide emitted by a factory. This line drawing
could be interpreted two-dimensionally as the cross-section of
a cloud. A three-dimensional interpretation was also possible
by taking into consideration the real-life nature of a cloud and
the overlapping lines. However, how deep the cloud is perceived
depends on the reader’s interpretation. In the Garbage testlet
(Figure 3), a photograph of a garbage can depicted the amount
of garbage produced by a household. The photograph was used
to stimulate a three-dimensional interpretation. In the Sugar
testlet, a perspective line drawing of a sugar lump in cavalier
projection displayed the amount of sugar a person consumes.
Like the Garbage testlet, the Sugar testlet should stimulate a three-
dimensional interpretation. A picture of a cloud, a garbage can,
or a sugar lump on the left-hand side displayed a base quantity
of 100 units in each testlet. On the right-hand side, the same
picture was uniformly scaled by a specific factor (e.g., 0.7 or
1.6, with the complete item booklet provided in Supplementary
Material, File 2, Chapter A). Different scale factors were used to
derive general rules from the data about the relationship between
scale factors and perceived quantities. The pictorial charts did
not contain an ordinate, and the pictures were not placed on a
horizontal baseline. The participants had to intuitively estimate
the quantity represented by the picture on the right because

FIGURE 3 | Item of the Garbage test translated into English: The garbage can
on the left is scaled by the factor 0.7.

the aim of the experiment was to determine the readers’ innate
interpretation of the pictorial chart. Each testlet comprised four
comparisons. The 12 items were presented in a fixed order (CO2,
Garbage, Sugar). The scale factor s in the experiment ranged
from 0.3 to 1.9.

Administration
The students answered the questionnaire with paper and pencil.
They were told that the questions dealt with intuitive estimation.
Hence, the students were asked to refrain from using a calculator
or a ruler and from performing calculations manually. It took the
students between 5 and 10 min to complete the questionnaire.

Data Analysis
Each of the three testlets contained four items, resulting in
12 items per person. The data analysis aimed to determine
the functional relationship between scale factor and a person’s
estimate. It was assumed that the estimation follows a power
function Q2 = sb · Q1 (cf., section “Theoretical Background”).
In the experiment, Q1 always equaled 100, so the equation
becomes Q2 = 100 sb. Taking logarithms of the equation, we
get: log( Q2

100 ) = b · log (s). Therefore, to determine the exponent
b, we apply a linear regression y = bx+ e with the logarithm
of the scale factor, log(s), as the independent variable x and
the logarithm of Q2 divided by 100, log( Q2

100 ), as the dependent
variable y, and e as the residual. In the equation y = bx+ e, the
value of the regression slope b equals the exponent b in the power
function. The regression intercept is zero.

The data had a multilevel structure because the responses were
nested within testlets and persons. Classical regression analysis
cannot account for the dependence on the responses within
persons. Therefore, multilevel models (cf. Gelman and Hill, 2006)
were applied to all analyses.

First, a two-level-approach (responses nested within persons)
was applied. To answer the first research question, an average
value for the exponent b for all participants across all items
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TABLE 1 | Descriptive information concerning the items.

Estimated quantity for Q2

Item No. Test Task Scaling factor If b = 1 (linear) If b = 2 (quadratic) If b = 3 (cubic) N M SD 95% CI

1 CO2 a 0.9 90 81 73 63 80.9 7.4 (79.0, 82.7)

2 b 1.3 130 169 220 62 177.5 59.6 (162.4, 192.7)

3 c 0.3 30 9 3 60 10.9 4.1 (9.8, 11.9)

4 d 1.6 160 256 410 63 290.2 98.3 (265.4, 314.9)

5 Garbage a 0.7 70 49 34 63 54.5 16.1 (50.4, 58.6)

6 b 1.5 150 225 338 62 189.3 47.0 (177.3, 201.2)

7 c 1.9 190 361 686 63 344.4 147.4 (307.2, 381.5)

8 d 0.5 50 25 13 62 28.4 12.0 (25.3, 31.4)

9 Sugar a 1.4 140 196 274 63 195.0 52.1 (181.9, 208.1)

10 b 0.8 80 64 51 63 67.9 13.2 (64.6, 71.2)

11 c 0.4 40 16 6 63 19.2 9.0 (16.9, 21.5)

12 d 1.8 180 324 583 63 365.6 180.9 (320.1, 411.2)

The six outliers were eliminated before calculating the descriptive statistics.

was estimated (Model 1: fixed slope). To evaluate whether the
exponent b varies among individuals (research question 2), a
value for the exponent b for every participant across all 12
items was determined (Model 2: random slope). In Model 3,
the testlet structure was taken into account (answers nested
within testlets and individuals). That is, this model estimated
whether the testlet (CO2, Garbage, and Sugar) had an effect on the
exponent b (research question 3). In Model 4, a further fixed effect
(enlargement or reduction) was added to Model 3 to evaluate
RQ4. A detailed description of the multilevel analyses can be
found in Supplementary Material, File 2, Chapter B.

Outliers were replaced with missing values before conducting
the multilevel analyses. A value was defined as an outlier if picture
B was scaled down, but a student estimated a value bigger than
100 and vice versa.

RESULTS

Every participant answered all 12 items, resulting in 756 item
responses (cf. descriptive statistics in Table 1). Six item responses
were identified as outliers and replaced with missing values.

Regarding the first research question, the aim was to identify
in the power function Q2 = 100 sb the exponent b that best
described the participants’ perception of the quantities in the
pictorial charts. Using logarithms of the estimation values and the
scale factors caused the slopes in the multilevel analyses to equal
the searched value b (cf. “Materials and Methods” section). The
first multilevel model (Model 1) with fixed slopes (i.e., assuming
that the value b did not vary among participants) resulted in a
value 1.92 for the exponent b, 95% CI (1.87, 1.96). The explained
variance in this model was 91% (Pseudo-R2). That is, on average,
the interpretation of the displayed quantities in a pictorial chart
followed approximately a quadratic relationship.

The second research question dealt with the question whether
the value b varied among participants. The second multilevel
model (Model 2) with random slopes showed that the exponent
b varied significantly among the participants, as a model

comparison between the first and second model showed. The
values ranged from the lowest value 1.4 to the highest value
2.7. Thirty-two of the participants (i.e., 51%) had an exponent
between 1.75 and 2.25, that is, an approximately quadratic
relationship. Several participants showed values in between two
whole numbers for the exponent b. Twenty-three participants
(37%) had an exponent between 1.25 and 1.75, and 8 participants
(13%) had exponents between 2.25 and 2.75.

RQ3 addressed the issue of whether the estimation process
depended on the picture in a pictorial chart. Therefore, in a three-
level model (Model 3), a testlet effect was estimated by assuming
a fixed effect of the testlet. This model fitted significantly better
than Model 2, χ2(1) = 100.1, p < 0.001, and the explained
variance was enhanced from 93.5 to 95.6%. Although the testlet
effect was significant, its size was rather small. This model’s
average value for the exponent b also was 1.92, 95% CI (1.83,
2.01). For the CO2 testlet, the value 0.04, 95% CI (0.01, 0.07) has
to be added to this exponent; for the Garbage testlet, the value
0.06, 95% CI (–0.10, –0.03), has to be subtracted, and for the Sugar
testlet, the value 0.02, 95% CI (–0.01, 0.05), has to be added.

Finally, the question was whether the estimation process was
influenced by whether the pictures were enlarged or reduced
(RQ 4). Model 4 did not improve the model fit in comparison
with Model 3, χ2(1) = 0.13, p = 0.72, and the fixed effect
(enlargement or reduction) did not significantly differ from zero,
95% CI (–0.09, 0.06). Detailed information about the results of
the multilevel analyses can be found in Supplementary Material,
File 2, Chapter B.

DISCUSSION

The study showed that the participants applied, on average,
an approximately quadratic relationship (b = 1.92) between
the scale factor and the estimated quantity. That is, generally,
the participants estimated the quantity in a pictorial graph
based on the area of the picture. The b-values, however,
differed among participants. None of the 63 participants could
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be identified to operate with a linear relationship or a cubic
relationship when dealing with pictorial charts. The majority
based their judgment on an approximately quadratic relationship
(51%). A considerable proportion of the students (37%) had
an estimation process in between a linear and a quadratic
relationship. These students might have intended to estimate
the area but did it in a biased manner because research has
shown many people underestimate areas (e.g., Stevens, 1975;
Raidvee et al., 2020). That means that the interpretation of
pictorial charts is probably based on the visual perception of
the ink-covered area rather than the result of an analytical
process. As for the research question on whether the picture
influences the estimation process, the experiment showed that
the exponent b varied among testlets, although the difference
was relatively small (between 1.84 and 1.95). Therefore, the type
of picture (i.e., a perspective or non-perspective line drawing
or a photograph) did not substantially influence the estimation
process, nor did it have an effect on whether the picture was an
enlargement or a reduction.

Within the context of the theoretical considerations presented
and prior empirical results from mathematics education and
psychology, the experiment revealed some surprising results.
First, the assumption that, in general, participants apply
spatial considerations to a two-dimensional picture of a three-
dimensional object cannot be corroborated. Second, the present
study’s results seem to deviate from the results of several
experiments that found a robust overgeneralization of linear
models when pictures were provided in problem-solving tasks.
However, the study’s empirical results align most closely with the
findings regarding the perception and estimation of areas.

These results raise the question whether the different results
from the research on the illusion of linearity and the present
experiment can be reconciled. In research concerning the
overgeneralization of linear models, the students were asked
to calculate the area or an indirect measure of the area (e.g.,
the time to fertilize a piece of land). The students had to
use arithmetic operations (e.g., addition and multiplication) to
solve the problem. Research has shown that students looked for
analogies when asked to solve a new problem (Gentner et al.,
2001). Proportional reasoning is often successful in mathematics.
Students seem to rely on this heuristic in mathematics even when
a closer look at the picture of the square of land could reveal
its incorrectness. In the present study, however, students were
requested to estimate the quantity of the pictures displayed based
on their perception. The participants were explicitly asked to
refrain from calculations.

The assumption that it matters whether students have to
estimate the quantity represented based on visual perception or
to calculate the quantities using arithmetic operations can be
supported by theories concerning information processing of texts
and pictures (e.g., Mayer, 2014). They assume that cognitive
processing differs according to whether it occurs on the symbolic
(e.g., words, texts, mathematical signs) or the pictorial channel.
In research detecting the illusion of linearity, students were urged
to work on the symbolic channel because symbolic information
was given (e.g., the length of the side of a square of land), and
calculations were required. In the present experiment, however,

the students were not provided with numerical information about
the figure’s length or width. They were nudged to process the
pictures on the pictorial channel and to assign quantities based on
their visual perception. Therefore, it seems reasonable to assume
that the processing channel has a decisive effect on the results.

With respect to the learning and teaching of mathematics,
the experiment showed that tasks such as those in Figure 2
are problematic when the aspect of “misleading” is only judged
theoretically as the NAEP coding guide does. The present
experiment showed that even mathematically inclined persons
did not base their quantity interpretations on real-world volume.
Therefore, students must be sensitized to this issue on a
more sophisticated level. However, further research in this field
is necessary to infer more specific knowledge that can be
taught in school about the interpretation of novel forms of
data visualizations.

However, some limitations should be mentioned. First, the
sample with mathematics teacher education students is selective.
The question is whether the findings are generalizable to different
samples (e.g., younger students or less mathematically educated
individuals). It could be possible that mathematically inclined
individuals interpret pictorial charts differently from people
without a mathematics background. Furthermore, there could
have been a priming effect, as the clouds were always presented
first and could have prompted an estimate based on areas.
Moreover, in future experiments, the picture’s effects in pictorial
charts should be investigated further by using diverse types of
pictures and varying them systematically. In a subsequent study,
the presented results should be replicated using a more diverse
sample and different pictures. A possible sequencing effect should
be controlled for by permuting the testlets. Furthermore, it would
be interesting to investigate whether providing a legend in a
pictorial chart would affect the reader’s interpretation.

CONCLUSION

Some conclusions can be drawn from the present study in
terms of the design of pictorial charts. Readers do not seem
to interpret two-dimensional pictures of three-dimensional
objects spatially. Therefore, chart designers probably should
refrain from using pictures of three-dimensional objects to
display quantities. With regard to the growing popularity of
infographics (e.g., Yau, 2011; Cairo, 2013) and software for
data visualizations (e.g., GapMinder), the investigation of how
individuals perceive these visualizations is also an important
educational aspect. Therefore, mathematics education should
also integrate teaching and research on nonstandard, novel forms
of data visualizations because they are becoming increasingly
prevalent in everybody’s life.
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Several meta-analyses suggest that identifiable characteristics of self-regulated

learning interventions result in improvement in students’ academic performance and

self-regulatory competence across content areas. Nevertheless, little is known about

recent interventions and about specific characteristics of interventions that may be

domain specific. In this systematic review, we targeted mathematics and reviewed

36 self-regulated learning intervention studies conducted with school-aged learners.

We examined patterns of effective interventions with identified characteristics, such

as theoretical guidance, type of strategies instructed, type of outcome assessments,

and targeted outcomes. Findings revealed that those interventions grounded in

metacognition-oriented theories and those interventions that targeted multiple strategies

including cognitive, metacognitive, and motivational, tended to yield effective increases

in both mathematics achievement and self-regulated learning. The review also examined

patterns within interventions conducted from 1992 to 2020. Findings indicate recent

interventions tend to adopt a social-cognitive SRL model and employ standardized

knowledge assessments. Implications for practice and future self-regulated learning

interventions in mathematics are discussed.

Keywords: self-regulated learning, mathematics, interventions, systematic review, school-aged learners

INTRODUCTION

One focus of education is to develop self-regulated learners. Self-regulated learners are active
agents who use a repertoire of knowledge and strategies to regulate their learning adaptively
and efficiently (Zimmerman, 1990, 2002; Schraw and Moshman, 1995). Self-regulated learners
also examine their strengths and weakness against academic task standards in order to set
appropriate goals, deploy strategies, adapt to varying environments, and to overcome obstacles
(Winne and Hadwin, 1998; Zimmerman, 2002). In addition to vast theoretical support that
self-regulated learning strategies should result in increased learning (e.g., Zimmerman, 1990),
findings from intervention studies establish that effective self-regulated learning (SRL) is associated
with improved academic achievement (e.g., Schmitz and Wiese, 2006). Recent systematic
reviews and meta-analytic studies (online learning: Broadbent and Poon, 2015; long-term
effects of metacognitive strategy training: de Boer et al., 2018; learning strategies: Donker
et al., 2014) examined different aspects of SRL interventions. Particularly, in the last decade,
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Dignath and colleagues conducted two comprehensive meta-
analyses and examined the effectiveness of SRL interventions for
primary and secondary school students (Dignath and Büttner,
2008; Dignath et al., 2008). Their findings demonstrated that
students improved their academic performance as well as their
self-regulatory strategy use through SRL interventions. In terms
of academic domain, findings supported that SRL interventions
were more effective for mathematics than language arts.

Given these previous findings, we were interested in a
focused examination of possible unique elements that contribute
to effective SRL interventions in mathematics in school-
aged learners. School mathematics is a known gatekeeper to
future careers in STEM fields (e.g., Douglas and Attewell,
2017; Scott et al., 2017; Woods et al., 2018; Torbey et al.,
2020). Achievement and engagement in school mathematics
are also critical factors for post-secondary mathematics
enrollment (e.g., Byun et al., 2015; McDonald, 2016).
Therefore, a specific focus on mathematics SRL interventions
is warranted.

While students may benefit from general self-regulated
learning interventions, effective SRL is domain- and task-
specific. The strategies students employ, their motivational beliefs
and efficacy, and the nature of their metacognitive knowledge
and regulation would vary given a specific learning task and
by academic domain (Rickey and Stacy, 2000). Further, self-
regulated learning in mathematics may also present unique
challenges. For example, Pape and colleagues recognized the
critical and unique role that SRL can play in supporting
mathematical thinking in middle school learners (e.g., Pape et al.,
2003; Bell and Pape, 2014). Among other scholars, Aminah
et al. (2018) also recognized the need for instruction to target
SRL elements for effective mathematical thinking. Their work
particularly targeted metacognitive teaching and learning in high
school students.

However, there are differences in intervention elements for
older learners (e.g., middle school and high school students)
when compared to younger learners (e.g., kindergarten and
young elementary students). Specifically, older learners may need
more intense intervention activities and an incorporation of
cognitive, motivational, and metacognitive elements to improve
their mathematics learning effectively. There are several reasons.
First, students in higher grade levels are at a critical time to
develop learning in mathematics and to build trajectories toward
STEM fields and other career paths (Anderton et al., 2017;
Berger et al., 2020; Torbey et al., 2020). Second, students often
do not successfully master mathematics content, especially as
the demands of higher-level mathematics increase (Cleary and
Chen, 2009; Grønmo et al., 2015). Particularly, mathematics
may be more challenging for students who are experiencing the
difficult transition from elementary to advanced mathematics.
Challenges in advanced mathematics curriculum may lead to
students’ failure, a lack of interest in gaining mathematics
achievement, and a detrimental decrease in engagement and
subsequent learning in mathematics (Anderton et al., 2017;
Berger et al., 2020). Effective self-regulatory strategies may
serve to support older learners and mitigate the challenges

they face. Young children, in comparison, face different
challenges, such as recognizing and writing down mathematical
symbols (Hughes, 1986), which requires different teaching and
learning strategies.

To our knowledge, there is no previous systematic review of
SRL interventions formathematics targeting both young children
and their older peers. With the emergence of new theoretical
models of SRL and additional intervention studies, amore refined
analyses of SRL interventions in mathematics is warranted.
Therefore, in this systematic review, we identified the effective
characteristics of existing SRL interventions focused on students’
mathematics learning. Our intent is both to inform additional
research and to advise effective classroom practice.

THEORETICAL MODELS OF SRL

SRL interventions are guided by theoretical models. SRL
theoretical models include those proposed by Boekaerts (1996),
Winne and Hadwin (1998), Pintrich (2000), Zimmerman
(2000), Efklides (2011). Two theoretical reviews (Puustinen
and Pulkkinen, 2001; Panadero, 2017) identified and compared
models of SRL. Through their analysis, Puustinen and Pulkkinen
(2001) determined SRLmodels can be categorized as motivation-
oriented models, strategy-oriented models, and those with both
orientations. Specifically, both Boekaerts’ and Pintrich’smodels of
SRL emphasize motivation and examine motivational factors in
relation to students’ learning. Pintrich, for example, incorporated
motivational and affective aspects reflecting learners’ self-
efficacy and goal orientation during self-regulatory processes.
Interventions grounded in these models target varied elements
of SRL. For instance, corresponding to the affective component
of Pintrich’s model, Tzohar-Rozen and Kramarski (2014)
examined fifth graders’ mathematics achievement and affective
self-regulation through a 5 week intervention designed to
promote positive emotions with affective self-regulatory strategy
use. Students were asked to reflect and self-question their
emotions before, during, and after task completion, and to
regulate possible negative emotions. Findings demonstrated that
students who received the intervention significantly decreased
negative emotions.

In comparison, Winne and Hadwin’s SRL model is strategy-
oriented and emphasizes metacognition. Specifically, this model
defines SRL as a metacognition-driven process where learners
regulate their learning and use of strategies based upon task
context Winne and Hadwin (1998, 2008). Duffy and Azevedo
(2015) adopted this model and examined undergraduates’
growth in academic achievement and SRL through MetaTutor,
a hypermedia tutoring system. MetaTutor aimed to scaffold
students’ SRL strategy use during their learning of the human
circulatory system by providing prompts and feedback from
a virtual tutor agent. Students in the experimental condition
received prompts and feedback from the virtual tutor and
were compared to students who received no prompts nor
feedback. The prompts served as a reminder of strategy use
and encouraged students to deploy specific SRL strategies for
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particular learning situations, such as rereading and assessing
their own understanding of the human circulatory system,
during the learning process. Findings indicated that students
in the prompt and feedback condition demonstrated more
frequent use of SRL strategies and improved achievement
performance. Consistent with Winne and Hadwin’s model, they
emphasized teaching students’ task-specific SRL strategies in
context-specific situations.

In contrast, Zimmerman’s three-phased cyclical SRL model
(i.e., forethought phase, performance phase, and self-reflection
phase) is considered both motivation- and strategy-oriented. The
forethought phase reflects students’ motivational factors (e.g.,
self-efficacy) in setting goals for a task, and strategic factors
in planning use of strategies. The performance phase reflects
motivational factors in completing the task and strategic factors
in using strategies during task completion. For instance, students
may use self-instructions as a strategy, as well as maintain
motivation during the performance phase. Finally, the third, self-
reflection phase, determines students’ satisfaction with their task
product, which, in turn, influences their next phases in setting
goals, planning, and strategy use. With the interaction between
motivation and strategy orientations, Zimmerman’s phased
cyclical model grounded in social-cognitive theory, provides a
framework often adopted by researchers and practitioners. As the
model describes self-regulatory processes in detail, it can provide
insight into the effective design and testing of interventions for
students’ SRL and academic achievement (Panadero and Alonso-
Tapia, 2014).

A more recent theoretical review by Panadero (2017) further
examined SRL models and included newly emerged models
and more recent empirical evidence. For instance, Efklides’s
(2011) model, which considers both metacognitive and affective
perspectives [metacognitive and affective model of self-regulated
learning (MASRL)] leverages previous theoretical SRL models.
Specifically, Efklides’ model includes a person level, which
refers to a learner’s characteristics, and a person-and-task level,
referring to the interaction between a learner’s characteristics and
the nature of the task. The person level reflects Zimmerman’s
SRL model with a focus on affect; and the person-and-task
level reflects Winne and Hadwin’s SRL model that focuses
on the task context. Dina and Efklides (2009) adopted the
preliminary MASRL model and examined relationships among
person characteristics, mathematics performance, and emotions
by creating individual student profiles. As a result, they identified
eight student profiles that reflected various person characteristics,
such as self-anxiety, performance ability, and self-concept. The
findings of the profiles further indicated that students with
varied person characteristics had different task perceptions and
varied levels of performance, as expected and supported by the
MASRL model.

As such, the theoretical orientation adopted to support an
intervention may directly influence elements of the intervention,
the instructional strategies employed by the intervention, the
degree and nature of scaffolding in an intervention, as well
as the role and nature of feedback and assessments employed.
Corresponding to Panadero (2017), the impact of interventions
varied based upon their theoretical framework and therefore it
is critical to consider which theoretical framework was adopted

when examining the effectiveness of SRL interventions. In
short, all aspects of an intervention may be influenced by the
choice of theoretical framework. This review sought to explore
these impacts.

EFFECTIVENESS OF SRL INTERVENTIONS

As noted, Dignath et al. (2008) conducted two meta-analyses
focused on the effective characteristics of SRL interventions in
classrooms. Their work demonstrated general improvement in
students’ academic performance and SRL through intervention,
with an average effect size of 0.69 (Cohen’s d). Dignath et al.
(2008) first examined the effects of existing interventions
on primary school students’ SRL and academic performance
based upon 48 comparisons resulting from 30 articles across
academic content domains. They reported that, based on
the included studies, interventions that targeted mathematics
performance demonstrated the highest effect (d = 1.00). In
comparison, SRL interventions that targeted reading and writing
performance demonstrated less effect (d = 0.44). In further
analysis, Dignath et al. (2008) categorized the intervention
strategies into cognitive strategy, metacognitive strategy, and
motivational strategy interventions. Findings showed that
students benefited most from the combination of metacognitive
and cognitive strategies or metacognitive and motivational
strategies, when compared to interventions of cognitive strategies
alone. Instruction of motivational strategies alone was also quite
effective for both academic performance and SRL outcomes.
Dignath and her colleagues further concluded that the most
effective SRL interventions were grounded in social cognitive
theory, and included instruction or training of combined
cognitive, metacognitive, and motivational strategies (2008).

Building upon their previous review, Dignath and
Büttner (2008) expanded their meta-analysis to include
interventions conducted with secondary school students and
drew comparisons to those with primary school students. They
included 35 studies and reported that, overall, secondary school
students’ academic performance (d = 0.71) improved slightly
better than primary school students (d = 0.68) through SRL
interventions. Specifically, reading and writing performance
demonstrated higher effect sizes for secondary school students
(d = 0.92) than primary school students (d = 0.44) with
the implementation of SRL interventions. In mathematics,
however, SRL interventions were more effective for primary
school students’ mathematics performance (d = 0.96) than
secondary school students (d = 0.23). These findings may
correspond to the high difficulty and intensity in mathematics
that secondary students confront. It also indicated the need
to develop effective SRL interventions in mathematics for
older students. Importantly, although the effect for secondary
students in mathematics was lower than primary students,
secondary students were reported to use strategies more
effectively (d = 0.88) than primary students (d = 0.72). This
finding corresponds to the developmental nature of SRL
as secondary students tend to have a larger repertoire of
strategies available to support their learning processes (Flavell,
1979; Flavell et al., 1995; Kuhn, 2000; Brown et al., 1996).
Consistent with findings from Dignath and her colleagues’
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previous review, they reported that instruction for secondary
school students with combined metacognitive and motivational
strategies led to higher effectiveness when compared to
cognitive strategies alone. However, little is known about how
cognitive, metacognitive, and motivational strategies may
affect students’ SRL and learning in mathematics specifically.
The present review examined how these types of strategies
were varied in students’ SRL and academic performance
in mathematics.

Taking a closer look of strategies included in SRL
interventions, a later meta-analysis by Donker et al. (2014)
focused on specific types of strategies and substrategies that
were implemented in SRL interventions with primary and
secondary school students for writing, science, mathematics, and
comprehensive reading. With a focus on strategy characteristics
that may improve students’ academic performance, they reported
that, overall, strategy training in mathematics was more effective
than comprehensive reading. Interestingly, cognitive strategies
were found more effective in mathematics than motivational
strategies, in contrast with Dignath et al. (2008). Donker et al.
(2014) further examined student characteristics that may affect
the effectiveness of interventions. Findings demonstrated that
both primary and secondary school students benefited from
interventions, however, there was not a significant difference
between primary and secondary students. This differs from
Dignath and Büttner (2008) where SRL interventions were
overall more effective for primary school students when
compared to secondary students in mathematics. In the present
review, we sought to understand these inconsistent findings
and to identify elements that may contribute to effective SRL
interventions in mathematics.

SRL IN MATHEMATICS

SRL interventions are beneficial for learners’ improved
performance in a variety of academic domains. Empirical
evidence indicated that SRL was associated with academic
performance in general. For instance, Zimmerman and
Martinez-Pons (1986) examined high school students’ use
of 14 SRL strategies by conducting a structured interview
procedure across six different learning contexts including
learning situations across domains (i.e., writing assignments
and mathematics assignments) in classrooms and at home.
Through the interviews, Zimmerman and Martinez-Pons
(1986) found that, when compared to low-performing students,
high-performing students utilized multiple strategies instead of
a single strategy. High-performing students also reported more
frequent use of SRL strategies than low-performing students
who reported rarely using strategies. This evidence supported
that SRL strategies were associated with academic achievement
across academic domains and task contexts. However, SRL is also
considered domain specific as it is related to students’ cognitive
skills in specific academic domains. For example, Moos and
Azevedo (2008) reported that college students with high prior
knowledge in biology tended to use monitoring and planning
strategies frequently during a learning task with hypermedia

when compared to students with low prior knowledge. Schunk
(1987) also suggested that the domain specificity of SRL can
be explained by the characteristics of self-efficacy. Specifically,
self-efficacy refers to students’ perceived capabilities to perform
a future specific task (Bandura, 1986). Students tend to
perceive their capabilities more accurately when more specific
information is provided for the task. In SRL, the extent to which
students feel self-efficacious about performing a task determines
the plans and goals they set before the task, the strategies they use
during the task, and the self-evaluation standards they compare
against the final task product.

Within the domain of mathematics, Cleary et al. (2017)
tested a SRL intervention (SREP) and found increases in
middle school students’ SRL and mathematics performance.
Grounded in Zimmerman’s SRL model, the SREP intervention
guided students to understand SRL concepts, practice self-
regulated strategies, and reflect on their performance. Similarly,
Desoete et al. (2003) previously reported students’ improvement
in mathematics and SRL. In their study, students who were
assigned to the metacognition condition received training
sessions of metacognitive strategies. Findings demonstrated that
students in the metacognition condition improved cognitive
and metacognitive skills in mathematics than students in the
control condition.

The above evidence is extracted from short-term SRL
interventions, while longitudinal studies also showed significant
improvement in students’ mathematics achievement and SRL.
For instance, Núñez et al. (2013) implemented a school-year long
mentoring program with teacher mentors that taught 7th graders
SRL strategy use to enhance their language and mathematics
achievement and their SRL and motivation. Students were asked
to read stories about how a story character overcame obstacles
and deployed SRL strategies in different learning situations.
Mentors then directed students to learn from those stories and
self-evaluate their declarative knowledge, procedural knowledge,
and conditional knowledge of different SRL strategy use (e.g.,
taking notes) during learning. Mentors also led discussions about
how students could best deploy identified SRL strategies as well
as build a larger repertoire of strategies. As a result, Núñez
et al. (2013) reported that both students’ SRL strategy use and
their mathematics achievement were improved. Although these
interventions demonstrated effective results in students’ SRL
and mathematics achievement, an examination of how these
intervention activities were designed and delivered to students is
in need.

Specifically, a variety of treatment traits of existing
interventions can be further examined (e.g., types of strategies
implemented). These treatment traits may reveal why existing
SRL interventions for older mathematics students were less
effective when compared to their younger peers. Further,
identification of such treatment traits may also inform future
directions in developing effective SRL interventions.

One overall purpose of this systematic review was to identify
the effective characteristics of existing SRL interventions in
mathematics, with a particular focus on older students relative
to young elementary school students. Our second goal was
to identify patterns of effective mathematics SRL interventions
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TABLE 1 | Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

1. Studies that were empirical and

peer-reviewed and studies included

in doctoral dissertations

Book chapters

2. Studies that focused on

self-regulated learning,

metacognition, and motivation

Studies that focused on other

psychological constructs

3. Studies that focused on students

within general education

Studies that focused on students with

learning disabilities or difficulties

4. Studies that focused on the domain

of mathematics

Studies that focused on reading,

language arts, or science

5. Studies that focused on school-aged

students

Studies that focused on college

students

6. Quantitative or mixed-methods

studies

Qualitative studies

7. Studies that were reported in the

English language

Studies that were reported in other

languages

8. Full text accessible Full text is not accessible or preview

accessible only

over time. Since the most recent systematic reviews of SRL
interventions were conducted more than 10 years ago (i.e.,
Dignath and Büttner, 2008; Dignath et al., 2008), a timely update
is warranted. Instruction of SRL strategies in classrooms may
have changed. Therefore, examination of patterns and changes
may reveal strengths and weaknesses of SRL interventions and
how these interventions have evolved over time. We sought an
in-depth understanding of existing SRL interventions with these
goals. Overall, we have two research questions as following:

1. What are the effective characteristics of existing SRL
interventions in mathematics for school-aged students?

2. What are the patterns of SRL interventions in mathematics
over time?

METHODS

Inclusion Criteria and Search Procedures
This systematic review examined the characteristics of existing
and publicly available intervention studies of SRL inmathematics
classrooms. We developed a three-tier search strategy through
electronic databases including PsycINFO, Educational Resources
Information Center (ERIC), ProQuest Education, and Google
Scholar. Our search of literature was limited to articles with
publication years between 1990 and 2020. We further established
specific inclusion criteria in line with the purpose of this review.
The inclusion and exclusion criteria for the sampled studies
are presented in Table 1. Book chapters were excluded from
our search.

We reviewed over 291 articles with our literature search and
36 articles met the inclusion criteria for the present systematic
review. Specifically, we carried out the literature search in three
tiers: online library database search, referrals search from the
identified studies, and individual studies found through search
existing review studies. We completed the first tier of search

TABLE 2 | Search strategies.

Database Search Strategy Number

of Article

ERIC Self-regulation (AB) AND Intervention (AB)

AND Mathematics (All)

31

ERIC *Metacognition AND *Middle school students

AND *Learning strategies AND Self-regulation

(AB)

2

ERIC *Metacognition AND *Elementary school

students AND *Learning strategies AND

Self-regulation (AB)

9

ERIC *Intervention AND *Metacognition AND

*Mathematics skills

11

PsycINFO Self-regulation (AB) AND Intervention (AB)

AND Mathematics (All)

38

PsycINFO Motivation (IF) AND Intervention (IF) AND

Mathematics (IF)

7

PsycINFO *Self-regulated learning AND *School-based

intervention AND Mathematics (AB)

3

PsycINFO Self-regulation (AB) AND High school

students (ALL) AND Mathematics (AB)

30

PsycINFO Self-regulation (AB) AND Elementary school

students (ALL) AND Mathematics (AB)

23

ProQuest

Education

Self-regulation (AB) AND Intervention (AB)

AND Mathematics (AB)

41

AB, keywords show in abstract; AND, multiple keywords; ALL, keywords show in

anywhere; IF, keywords are identifiers; keywords with asterisk retrieved from the thesaurus.

Dissertation studies were searched with the same search strategies through the

dissertation databases.

through PsycInfo, ERIC, and ProQuest for peer-reviewed articles
using the following search terms: self-regulation, intervention,
mathematics, metacognition,middle school students, high school
students, learning strategies, motivation, self-regulated learning,
school-based intervention. We conducted 10 searches with
different combinations of these terms. We also searched the
doctoral dissertation studies with the same search terms as we
used for journal articles. Detailed search strategies are presented
in Table 2.

The identification of studies included two iterations. Our first
identification of studies was conducted in 2017. We reviewed
each of the studies from the first-tier search based on the
established inclusion criteria. Duplicated studies and studies that
did not meet the inclusion criteria were removed. After the
first tier of search, we identified 13 studies to include. Through
the second tier, we examined the citations of all the identified
studies from the first-tier search and recognized studies that
might potentially meet our inclusion criteria. We then accessed
these studies from citations through Google Scholar. As a result,
eight additional studies were identified. In the third tier, we
extracted individual studies that met the inclusion criteria from
existing meta-analysis and other review studies in the area of
self-regulated learning. We identified four additional studies.
Thus, the final number of identified studies was 28. We further
conducted an updated identification of studies in 2020 including
studies published between 2017 and 2020 and eligible doctoral
dissertation studies. As a result, we identified 36 studies for the
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FIGURE 1 | Flowchart of article delimitation.

present review. Two independent raters’ agreement of excluded
articles reached 100%. Figure 1 shows the search and screening
procedures and the article delimitation process.

Coding Scheme
To promote comparisons with existing research and for
consistency within existing reviews of SRL interventions, a

coding scheme was adapted and expanded based on Dignath
and Büttner (2008) to categorize the characteristics of the
identified studies. Overall, our coding categories for the
identified articles reflected categories and subcategories within
six overarching themes: theoretical orientation, characteristics
of the sample, characteristics of the treatment, type of
the assessment instrument, type of outcome variables, and
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TABLE 3 | Coding scheme for identified studies.

Coding categories Sub-coding categories or description

Theoretical framework 1. social cognitive theoretical framework

2. metacognitive theoretical framework

3. unknown theoretical framework

Characteristics of

sample

1. sample sizes

2. age group

Treatment

characteristics

1. type of design

2. nature of control group

3. condition assignment

4. delivery mode

5. teacher training

6. type of strategy instructed [i.e., metacognitive (meta),

cognitive (cog), motivational (motiv)]

7. duration of intervention

Type of mathematic

achievement test

1. standardized instrument (S)

2. researcher self-generated instrument (R)

3. teacher self-generated instrument (T)

Type of outcome

variables

1. mathematics achievement outcome

2. SRL outcome

Information for effect

size estimates

Specific and relevant information from studies was

extracted for effect size calculation (e.g., means,

standard deviations)

information for estimated effect sizes. Detailed coding categories
including sub-categories are shown in Table 3.

Theoretical Orientation
As established, the theoretical framework or model is
foundational when designing and developing an intervention.
Interventions based on different theoretical models may result
in varied effects on students’ achievement and SRL (Puustinen
and Pulkkinen, 2001; Panadero, 2017). Therefore, we coded
theoretical models of SRL for each identified study to examine
potential differences in intervention effectiveness. Across
interventions, the theoretical models of SRL were categorized
into three larger theoretical orientations: social-cognitive
theory-oriented (e.g., Zimmerman’s model), metacognition
theory-oriented (e.g., Winne’s model), and motivation theory-
oriented (e.g., Pintrich’s model). Most of the studies were
designed based on one theoretical orientation. When a study was
grounded in more than one theoretical orientation, it was coded
as combination of theoretical orientations. A few studies did not
state clearly which theoretical model was adopted. We coded
these studies without a clear statement of theory as “unknown.”

Sample Characteristics
Sample characteristics included the total size of a sample, the
size of a treatment group, and the size of a control group.
This category also included the geographical location where the
intervention was implemented and participants’ age and grade
level information.

Treatment Characteristics
Treatment characteristics specified elements of the design
of an intervention or of the training. Coded subcategories
included: type of study design, nature of control group,

condition assignment, delivery mode, teacher training, type
of strategy, and duration of intervention. Specifically, the
implementation of a pre- or post-test, and the assignment
of a control group as a comparison group were coded as
types of study design (e.g., pre-post-control design). When a
control group was assigned, the nature of the control group
was also categorized. Particularly, a control group was coded as
“received nothing,” “received alternative treatment,” or received
“other.” Experimental designs and quasi-experimental designs
were categorized separately based upon the involvement of
random assignment. Furthermore, delivery mode indicated the
agent, such as the teacher or a researcher, who delivered the
intervention. Moreover, when teachers were the agents, whether
they received a training session from authors was coded as Yes
or No.

According to Boekaerts (1999), there are three types of
self-regulated learning strategy interventions (i.e., cognitive
strategies, metacognitive strategies, and motivational strategies).
Specifically, cognitive strategies are content-specific or domain-
specific in mathematics. Strategies that focus on enhancing
students’ problem-solving skills or any other content-specific
skills were coded as cognitive strategies. Metacognitive strategies
were coded when an intervention involved the improvement of
certain self-regulatory constructs. For example, strategies that
help students to monitor, plan, and regulate their learning
processes were coded as metacognitive strategies. Finally,
motivational strategies refer to strategies that target students’
motivation and affect for learning mathematics. For example,
interventions designed to enhance students’ self-efficacy or
affective self-regulation, were coded as motivational strategies.
The duration of interventions was also coded, specifying the
number of treatment sessions and the number of total hours from
available information provided in the articles.

Types of Achievement Assessment
When a pretest was administered, differences in the pretest
were coded as either some group differences or no group
differences. The types of assessment that measured mathematics
achievement outcomes were coded into three categories based
on our review of the identified studies: standardized knowledge
test, researcher-developed test, and teacher-developed test. With
respect to students’ changes in SRL, we specified the type of
SRL measure that was used including self-report questionnaires,
calibration techniques, students’ diaries, think-aloud approach,
and mathematics discourse analysis.

Types of Outcome Variables
In line with our purposes for the present systematic review,
we focused on two types of outcome variables, mathematics
achievement and SRL-related outcomes. Specifically, we
examined whether students’ mathematics performance and
SRL improved through intervention, and therefore statistical
significance of results was also coded.

Effect Size Estimates
To compare the effectiveness of the interventions on students’
mathematics performance and SRL, effect size estimates of
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students’ math performance scores and scores on SRL measures
were calculated with the statistical information provided by
the authors of the articles. Information needed for effect
size calculations was guided by Lipsey and Wilson (2001)’s
coding scheme for effect sizes. Eight studies did not provide
adequate information for effect size calculations for mathematics
outcomes. Moreover, ten studies did not include adequate
information for calculating effect sizes of SRL outcomes. The
authors of these studies were contacted; however, the required
information was not available and therefore, these studies were
excluded for the calculations of effect size estimates.

Effect size estimates were calculated by an effect size calculator
developed by David Wilson [read Lipsey and Wilson (2001) for
more information]. In particular, Cohen’s d was calculated by
obtaining the mean difference between the conditions on the
posttest (i.e., mean score of experimental condition minus mean
scores of the control condition) and then divided by the pooled
standard deviation obtained from the study. Thus, a positive
Cohen’s d indicates an increase on the outcome variable and a
negative Cohen’s d indicates a decrease on the outcome variable.
The extent of effectiveness was determined by the magnitude of
the effect size (small effect: d = 0.2; medium effect: d = 0.5; large
effect: d = 0.8, Cohen, 1988).

Most of the studies were designed as pre- and post-test
control with two groups. Some studies, however, included
more than two groups. In these cases, we identified the
treatment group with a SRL component and then calculated
the effect size based on the difference in outcome between
the SRL treatment group and the control group. For instance,
Tzohar-Rozen and Kramarski (2017) examined the extent to
which fifth graders’ mathematics achievement benefited from a
self-regulation intervention. Their intervention included three
conditions including a metacognitive regulation condition, an
affective regulation condition, and a control condition. In the
metacognitive regulation condition, students were explicitly
trained to ask themselves questions during the mathematics
problem-solving process. In comparison, the affective regulation
condition had an emphasis on students’ emotion, which is not
the focus of the present review. Therefore, in this case, we
only calculated the effect size for the difference between the
metacognitive regulation condition and the control condition.
Furthermore, some studies included multiple achievement
outcomes to compare with the control condition. For instance,
Kramarski and Zoldan (2008) administered two mathematics
achievement tests because their intervention addressed two
specific content areas: linear functions (e.g., definition of linear
functions) and graph interpretation (e.g., interpretation of linear
graphs). Therefore, there were two effect sizes calculated for the
achievement measures. For such studies, the average of two effect
sizes was recorded.

Two independent raters coded the theoretical orientation and
type of strategy for each identified article as these two coding
categories were considered more likely to contain variation in
coding when compared with other categories, such as sample size
and location. For instance, some researchers did not explicitly
state their strategy was cognitive, metacognitive, or motivational,
which required the two raters to identify the type of strategy based

on their research experience and other information provided in
the study. The exact agreement for the category of theoretical
orientation was 0.82 and was 0.71 for the type of strategy
between two raters. Discrepancies in coding were resolved
by discussion.

RESULTS

Research Question 1: Characteristics of
the Existing SRL Interventions in
Mathematics
Our overarching purpose was to examine the characteristics
of the existing SRL mathematics interventions for school-aged
students. The identified studies were published between 1992 and
2020. We particularly focused on five elements: the theoretical
orientation that these studies adopted, the characteristics of the
sample, the characteristics of the treatment, the assessment of
mathematics achievement and SRL, and the estimated effect sizes
associated with these four characteristics on outcome variables
(i.e., mathematics achievement outcome and SRL outcome)
across 28 years. Detailed information about the categories is
presented in Table 4. We considered these characteristics as
necessary elements to identify and describe SRL interventions
in mathematics.

To further address our purpose, we also compared trends with
previous meta-analyses (Dignath and Büttner, 2008; Dignath
et al., 2008). Dignath and Büttner (2008)’s meta-analysis provided
a snapshot of SRL intervention characteristics in promoting
self-regulated learning across academic domains at primary
and secondary schools. They suggested potential effective
training characteristics for SRL and critical implications for
classroom practice. The present systematic review focused on the
domain of mathematics and drew comparisons to characteristics
identified by Dignath and Büttner (2008). We also examined
and compared some other characteristics and their effects on
mathematics with those previously reported, such as students’
participation in cooperative learning and the delivery approach
of strategic instructions.

Theoretical Orientation
Overall, the theoretical orientations adopted by the identified
studies corresponded to our coding categories and the extant
SRL models. Specifically, of the 36 identified studies, design of
15 intervention studies was solely grounded in social-cognitive
perspectives, 10 studies solely adopted metacognitive theories,
four studies solely adopted motivational theories, five studies
were grounded in a combination of theoretical frameworks [i.e.,
combination of metacognitive and social-cognitive theoretical
orientation (n = 3), combination of motivational and social-
cognitive theoretical orientations (n = 1), and combination of
metacognitive and motivational theoretical orientations (n= 1)].
However, two studies lacked explicit description of the theoretical
perspective adopted and were coded as unknown.

Including the studies with combined theoretical orientations,
a number of 19 studies were grounded in social-cognitive
theories. For instance, Zimmerman’s cyclical model was
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TABLE 4 | Coding information of the identified studies.

References Theory Sample characteristics Treatment characteristics Math test

(Effect size)

SRL test

(Effect size)

Design Control

group

Condition

assigned

Delivery

mode

Teacher

training

Strategy Dose

Brandenberger et al.

(2018)

Motiv 348 seventh-grade students Pre-

post-control

Absolute

control

Not random Teacher Yes Motiv 12 sessions throughout a

year

S Q (−0.15)

Byrd (2019) Socio-cog 26 fifth-grade students Pre-

post-control

Absolute

control

Not random Teacher Yes Meta 36 sessions throughout

12 weeks

R

(−3.51)

Q (0.36)

Cardelle-Elawar (1992) Meta 122 sixth-grade students Pre- post-

control

Absolute

control

Not random Researcher NA Meta + Cog 7 weeks R

(5.99)

–

Cardelle-Elawar (1995) Meta 463 third to eighth-grade

students

Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Cog 1 year R –

Cleary et al. (2017) Socio-cog 42 seventh-grade students Pre- post-

control

Alternative

treatment

Random Teacher Yes Meta + Motiv

+ Cog

28 sessions throughout a

year

S

(0.35)

Q (0.49)

Collingwood and Dewey

(2018)

Meta 144 fourth-grade students Pre-post-

control

Absolute

control

Random Teacher Yes Aff + Meta +

Cog

4 sessions throughout 4

weeks

R

(0.37)

Q (0.13)

Digiacomo and Chen

(2016)

Socio-cog and

Meta

30 sixth- and seventh-grade

students

Pre- post-

control

Absolute

control

Random Researcher NA Meta 5 sessions throughout 3

weeks

R

(1.04)

CA

Ford (2018) Socio-cog 33 high school students Pre-post-

control

Absolute

control

Not random Teacher Yes Meta 3 sessions throughout 3

weeks

R

(−0.33)

CA (0.21)

Herriman (2018) Socio-cog 40 high school students Pre-post-

control

Absolute

control

Not random Researcher NA Motiv 28 sessions throughout

14 weeks

S

(0.07)

Q (−0.38)

Kereluil (2013) Socio-cog 69 high school students Pre- post-

control

Absolute

control

Random Researcher NA Meta + Cog +

Motiv

4 sessions throughout 18

weeks

R

(0.01)

Q (0.32)

Kramarski (2004) Meta 195 eighth-grade students Pre- post-

control

Alternative

treatment

Not random Teacher Yes Meta + Cog 10 sessions throughout 5

weeks

R

(0.76)

DA (2.27)

Kramarski and Gutman

(2006)

Meta 65 ninth-grade students Pre- post-

control

Alternative

treatment

Random Teacher Yes Meta + Cog 10 sessions throughout 5

weeks

R

(0.44)

Q (0.21)

Kramarski and Mevarech

(2003)

Meta 384 eighth-grade students Pre- post-

control

Alternative

treatment

Random Teacher Yes Meta + Cog 10 sessions throughout 2

weeks

R

(0.85)

Q (0.36)

Kramarski and Zoldan

(2008)

Meta 115 ninth-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Cog 36 sessions throughout

12 weeks

R

(0.32)

Q (2.86)

Kramarski et al. (2001) Meta 182 seventh-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Cog – R

(0.53)

Q (1.16)

Kramaski et al. (2013) Meta + Motiv 61 seventh-grade students Pre- post-

control

Alternative

treatment

Random Teacher Yes Meta + Cog 9 sessions throughout 3

weeks

R

(0.56)

Q

Kramarski and Mizrachi

(2006)

Meta 86 seventh-grade students Pre- post-

control

Alternative

treatment

Random Teacher No Meta + Cog 20 sessions for 4 weeks S

(1.68)

Q (2.67)

Labuhn et al. (2010) Socio-cog 90 fifth-grade students Pre- post-

control

Absolute

control

Random Researcher NA Meta + Cog 1 session R

(0.37)

CA

Leidinger and Perels

(2012)

Socio-cog 135 fourth-grade students Pre- post-

control

Absolute

control

Not random Teacher No Meta + Motiv 6 sessions throughout for

6 weeks

S

(0.68)

Q (0.26)

Maloney et al. (2019) Unknown 104 second-level students Pre-post-

control

Alternative

treatment

Not random Researcher NA Meta + Motiv 10 sessions for 10 weeks – Q (0.16)

(Continued)
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TABLE 4 | Continued

References Theory Sample characteristics Treatment characteristics Math test

(Effect size)

SRL test

(Effect size)

Design Control

group

Condition

assigned

Delivery

mode

Teacher

training

Strategy Dose

Mavarech (1999) Meta 174 seventh-grade students Pre- post-

control

Alternative

treatment

Random Teacher No Meta + Cog 40 sessions throughout 8

weeks

R

(0.44)

–

Núñez et al. (2013) Socio-cog 94 seventh-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Motiv

+ Cog

36 sessions throughout

36 weeks

S

(0.34)

Q (0.98)

Otto and Kistner (2017) Socio-cog 105 fourth-grade students Time series

design

Alternative

treatment

Random Researcher No Meta + Motiv

+ Cog

7 sessions throughout 42

days

R Diary

Panaoura (2012) Meta +

Socio-cog

255 fifth-grade students Pre- post-

control

Absolute

control

Not random Researcher No Cog 20 sessions T Q

Perels et al. (2005) Socio-cog 249 eighth-grade students Pre- post-

control

Absolute

control

Random Researcher No Meta + Motiv

+ Cog

24 sessions for 4 weeks R

(0.01)

Q (0.09)

Perels et al. (2009) Socio-cog 53 sixth-grade students Pre- post-

control

Absolute

control

Not random Teacher No Meta + Motiv

+ Cog

9 sessions for 3 weeks T

(0.44)

Q (1.40)

Schmitz and Perels

(2011)

Socio-cog 195 eighth-grade students Pre- post-

control

Absolute

control

Random Researcher

and Teacher

No Meta 7 sessions R

(0.22)

Q (0.29)

Smit et al. (2017) Meta +

Socio-cog

762 fifth- and sixth-grade

students

Pre- post-

control

Alternative

treatment

Not random Teacher Yes Meta + Cog 9 sessions throughout 3

months

S R

Stoeger and Ziegler

(2005)

Socio-cog 36 fourth-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta 6 sessions throughout 6

weeks

T

(0.36)

Q (0.15)

Stoeger and Ziegler

(2006)

Socio-cog +

Motiv

393 fourth-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Motiv 30 days T

(0.32)

Q (0.09)

Stoeger and Ziegler

(2008)

Socio-cog 219 fourth-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Cog 5 weeks T

(0.40)

Q (0.11)

Stoeger and Ziegler

(2010)

Socio-cog 201 fourth-grade students Pre- post-

control

Absolute

control

Not random Teacher Yes Meta + Motiv

+ Cog

2 weeks T

(0.37)

Q (0.33)

Tzohar-Rozen and

Kramarski (2013)

Socio-cog 107 fifth-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Motiv

+ Cog

10 sessions throughout 5

weeks

S

(0.62)

Q (0.34)

Tzohar-Rozen and

Kramarski (2014)

Motiv 118 fifth-grade students Pre- post-

control

Alternative

treatment

Random Teacher Yes Meta + Motiv

+ Cog

10 sessions throughout 5

weeks

S + R Q (−0.03)

Tzohar-Rozen and

Kramarski (2017)

Motiv 170 fifth-grade students Pre- post-

control

Absolute

control

Random Teacher Yes Meta + Motiv

+ Cog

10 sessions throughout 5

weeks

S + R

(1.03)

Think aloud

Verschaffel et al. (1999) Unknown 232 fifth-grade students Pre- post-

control

Absolute

control

Not random Teacher Yes Meta + Cog 20 sessions throughout 4

months

S + R

(0.31)

–

Meta, metacognitive theory/strategy; Cog, cognitive theory/strategy; Motiv, motivational theory/strategy; dose, dosage; S, standardized test; R, researcher-generated test; T, teacher-generated test; + means a combination of multiple

theoretical frameworks or strategies; Q, questionnaire; CA, calibration accuracy; DA, discourse analysis; not all studies reported available data for effect size calculation; not all studies specify the duration by sessions.
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consistently adopted across these studies. Studies grounded in
Zimmerman’s model, in general, were designed with different
stage goals aligned to the three cyclical phases that he proposed.
For instance, Otto and Kistner (2017) implemented a training
program to enhance fourth-grade students’ SRL in mathematics
learning. Five training sessions were distributed in three phases:
pre-action phase, action phase, and post-action phase. The
pre-action phase consisted of two sessions focused on guiding
students, for example, to set goals and make plans toward the
upcoming tasks. The action phase consisted of two sessions
focused on the active process of mathematics problem-solving
during task completion. Finally, the post-action phase consisted
one session focused on evaluating and reflecting on learning
results after task completion. As such, this type of intervention
design corresponds to Zimmerman’s SRL cyclical model as well
as its sub-processes.

In comparison, studies grounded in Pintrich’s model an
emphasized learners’ motivation and affective self-regulation.
Specifically, we identified three studies solely grounded
in Pintrich’s model, which is motivation-oriented, and an
additional two grounded in a combination of motivational
and metacognitive or social-cognitive theoretical orientation.
For instance, Tzohar-Rozen and Kramarski (2014) adopted
Pintrich’s model (2000) in their study focused on students’
emotion regulation, metacognitive regulation, and mathematics
achievement. Specifically, in the training sessions, teachers
were asked to promote students’ positive emotions and to
deliver affective self-regulation strategies toward mathematics
problem-solving through teacher-student dialogues. Collectively,
although Zimmerman’s and Pintrich’s models both have some
social-cognitive and motivational perspectives, they target
different foci when guiding the design of interventions.

Notably and interestingly, within the 14 studies (i.e., 10
single metacognitive-oriented theories and four combined
metacognitive-oriented theories) grounded in metacognitive
theoretical orientation, seven of these studies were conducted
by the same research team, Kramarski and her colleagues.
These seven studies adopted an established mathematics and
metacognition training model called “IMPROVE” developed
by Mevarech and Kramarski (1997). The IMPROVE model
represented teaching and learning strategies for students’
metacognitive development and mathematics learning and
specifically included Introduction of new mathematics topics
(I), Practicing (P), Reviewing (R), Obtaining mastery skills
(O), Verifying learning results (V), and Enriching learning
content (E). According to Mevarech and Kramarski (1997),
IMPROVE was grounded in a metacognitive perspective
and encouraged students to use metacognitive questioning
strategies during mathematics task completion to improve
their problem-solving and monitoring process. These seven
studies were application of the IMPROVE model and produced
positive effects for students’ metacognition and mathematics
learning. These positive effects suggest that interventions
grounded in metacognitive theories can be valuable in practice
for students’ mathematics learning, although more research
is needed to examine the degree of generalizability from
such interventions.

Effect size estimates indicated that metacognition-oriented
interventions resulted in better effects for improving students’
mathematics performance and SRL, when compared to social-
cognitive theory. This finding supported that the design of
an intervention grounded in different theoretical perspectives
may produce differential effects on students’ mathematics
achievement and changes in SRL.

Newer SRL models developed in the recent decade, such as
Efklides (2011)’s model (Metacognitive and Affective Model of
Self-Regulated Learning-MASRL), were not directly adopted in
our identified studies. Notably, however, several authors cited
MASRL in their introduction. For instance, when Cleary et al.
(2017) described the multidimensional and dynamic nature of
SRL in their literature review section and cited Efklide’s model to
illustrate the refinement of SRL theoretical models in the recent
years. Future researchers may investigate person and task level
characteristics in promoting students’ SRL through intervention
grounded in this model.

Sample Characteristics
Across the 36 studies, the sample sizes ranged broadly from 26
to 762 (M = 161.36, SD = 145.29). For instance, Digiacomo
and Chen (2016) conducted ametacognitive intervention with 30
middle school students randomly assigned to two conditions and
measured students’ predictive accuracy and post-dictive accuracy
of their performance judgments. They reported insignificant
statistical results on mathematics performance and the accuracy
of performance judgments. However, the effect size represented
a large effect on students’ mathematics performance (d = 1.036).
This indicated that the statistical significance of this study may
be limited by the small sample size when compared to the
practical significance. However, some studies that included large
samples, such as Cardelle-Elawar (1995) (n = 489), and Stoeger
and Ziegler’s intervention (2006) (n = 393), demonstrated
statistically significant and practically effective results in general.
Specifically, Cardelle-Elawar (1995) reported that students in
the experimental condition significantly outperformed students
in the control condition. Similarly, Stoeger and Ziegler
(2006) reported statistically significant improvement on both
mathematics and SRL outcomes. A medium effect size was found
on students’ mathematics achievement between treatment and
control conditions (d = 0.32). Nonetheless, these large sample
sizes did not always indicate practically effective and statistically
significant outcomes on either mathematics achievement or SRL.
For instance, with a sample size of 249 students, Perels et al.
(2005) (n = 249) reported minimal effects on both students’
mathematics performance (d = 0.01) and SRL (d = 0.09), when
compared to the control group. This may be explained by the
increasing difficulty of implementation as sample size increases.
In particular, the treatment fidelity of the studies may be hard
to control and maintain, especially when it involves cooperation
among multiple teachers and/or schools, as well as consistent
training and communication. Thus, it is understandable that
there was not a single pattern to describe the effectiveness of an
intervention and its sample size.

Although we searched literature across primary and secondary
grade levels, the grade levels across samples did not vary widely
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in our review, ranging from Grade 4 to Grade 9. Specifically,
after we read through these excluded studies with very young
children, we found that these studies usually tend to have a
focus on behavioral self-regulatory strategies and outcomes for
students with learning disabilities or difficulties. For instance,
Fuchs et al. (2003) delivered a SRL intervention for 3rd graders’
mathematics learning focused on children with disabilities.
Another longitudinal study conducted by Vauras et al. (1999)
focused on Grade 3 students with learning problems. They
asked students to complete the word problem solving task by
following and repeating a set of steps in order to help them
learn the strategies. Studies that focused on younger children
also tended to target the behavioral aspect of self-regulation. For
example, DeFlorio et al. (2019) assessed kindergarten children’
self-regulation by asking them to perform gift wrap tasks. Thus,
studies like these with a special group of students and a different
focus of SRL from our goals of the systematic review, were
excluded from our selection.

We further coded the location where the intervention was
implemented. We recognized that more studies were conducted
outside of the United States, with many studies conducted in
Israel and Germany. For instance, the interventions conducted
by Kramaski and her research team, which represent almost one
third of our selection, all took place in Israel.

Treatment Characteristics
Among the 36 intervention studies, we identified several distinct
characteristics regarding the SRL treatment: the types of strategy
implemented, the duration of the intervention, the delivery of
training, and students’ participation in cooperative learning.

We identified three types of strategies including cognitive
strategies, metacognitive strategies, and motivational strategies
throughout the selected studies. Some interventions only
implemented one type of strategy, while others incorporated
multiple strategies. The majority of studies implemented
combined strategies (n = 27) and 24 studies included
metacognitive strategies. Specifically, 10 studies implemented
a combination of all three types of strategies, 14 studies
implemented the combination of metacognitive and cognitive
strategies, three studies implemented the combination
of metacognitive and motivational strategies, six studies
implemented metacognitive strategies only, two studies
implemented motivational strategies only, and one study
implemented cognitive strategies only.

Strategies that were categorized as metacognitive had a
focus on training students’ metacognitive awareness to be self-
regulated learners in mathematics. For instance, Kramarski
and Zoldan (2008) implemented both metacognitive and
cognitive strategies for ninth graders. In particular, they
compared the effects of three metacognitive strategies on
students’ mathematical reasoning, including error diagnosis, self-
questioning, and the combination of the two. Students in the
error diagnosis condition were asked to evaluate their answers
to math problems and diagnose their incorrect answers with
potential justifications. Students assigned in the self-questioning
condition were required to ask themselves questions while they
were solving math problems. For example, students would ask

themselves whether they understood the question before they
started to solve the problem. These two strategies both aimed at
training students’ metacognitive thinking during a mathematical
reasoning task. Kramarski and Zoldan (2008) reported that
students who received the combination of the two metacognitive
strategies demonstrated the most effective improvement on the
problem-solving task (d = 0.38) when compared to students
who received no strategy training. Furthermore, students who
received the combination of the two outperformed students
who received either the error diagnosis strategy only or
self-questioning strategy only. These strategies demonstrated
increased performance in the problem-solving task and but also
increased metacognitive monitoring. Specifically, students in the
combination condition outperformed students in the control
condition on self-monitoring errors in the posttest (d = 2.69).

In comparison, interventions coded as cognitive strategies
focused on teaching students for particular mathematical
problem-solving tasks. Panaoura (2012) implemented a
mathematical model that included six stages to solve a
mathematical problem: understanding the phenomenon
under investigation, constructing a mathematical model,
working through the mathematical model using disciplinary
methods, interpreting the outcome of the computational work,
evaluating the model by checking the interpreted outcome, and
communicating the solution of the problem. Thus, this strategy
model focuses on guiding students to perform better on the
mathematical problem-solving task. Specifically, students were
asked to complete the mathematical problem-solving task on a
computer following the six stages corresponding to the model.
Panaoura (2012) reported that students demonstrated improved
performance and self-regulated strategy use. Information was
unavailable to calculate the effect size of the intervention.

Moreover, a few studies implemented motivational strategies
combined with other strategies. In particular, these studies
focused on enhancing students’ self-efficacy and goal setting
in mathematics learning. For instance, Perels et al. (2009)
implemented an intervention focused on improving students’
self-motivation and goal pursuit in mathematics learning. Results
showed that students in the experimental group demonstrated
improved mathematics achievement performance (d= 0.44) and
improved self-regulation overall (d = 1.40).

Throughout the 36 studies, we identified emerging patterns
regarding the association between types of strategies and
effectiveness. That is, studies that included multiple types of
strategies tended to be more effective than studies that included
a single strategy. This pattern is consistent with results reported
by Dignath and Büttner (2008). Specifically, they reported that
interventions for secondary school students that solely include
cognitive strategies were less effective than those that combined
metacognitive and motivation strategies. Training students with
multiple strategies may assist them to better deploy strategies as
one strategy may complement students’ understanding of others.
For instance, learning metacognitive strategies helps students to
be better aware of which cognitive or motivational strategy is
appropriate for a particular task or situation. However, findings
from the present review indicated some exceptions. For example,
Perels et al. (2005) implemented a combination of all three types
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of strategies with limited benefit for mathematics performance or
SRL outcomes (i.e., d for math= 0.01, d for SRL= 0.09).

The duration of the intervention also varied among the 36
studies. Specifically, based on the available information provided
in the studies, intervention duration ranged from one session
to 49 sessions. Overall, there was no consistent pattern in the
relationship between the duration of intervention and effect
size. For instance, Schmitz and Perels (2011) obtained an effect
size of d = 0.22 on students’ mathematics performance with
their 49 day intervention; while Digiacomo and Chen (2016)
obtained an effect size of d = 1.04 with their one session and
3.75 h intervention. Perhaps some interventions tend to produce
immediate large effects that may fade as the intervention persists.
This idea is not consistent with results reported by Dignath
and Büttner (2008). Specifically, Dignath and Büttner (2008)
reported that interventions with a longer duration tended to be
more effective. Their finding aligns with former research on the
development of metacognition and self-regulation as well as the
development of strategies (Alexander et al., 1998; Kuhn, 2000).
In general, it requires time for students to generalize and master
new strategies and providing students with adequate time during
intervention allows them to practice newly learned strategies.

Nevertheless, no consistent pattern was identified in the
present review. There may be several explanations. First, perhaps,
the sample size of studies was small due to our specific inclusion
criteria. Second, not all the studies reported specific hours or
sessions that interventions were delivered to students. Last, other
training characteristics may play a stronger role in intervention
effects such that duration of interventions did not form a trend.
While counter intuitive, these findings correspond to previous
research. de Boer et al. (2018) also reported no effects for
intervention duration on students’ academic performance when
metacognitive strategies were implemented in interventions.

Further, how interventions were delivered was coded as
either training delivered by researchers or training delivered by
teachers. Dignath and Büttner (2008) reported that interventions
had more effective outcomes if the training instructions were
delivered by researchers when compared to teacher delivered
training. The present review, however, does not support this
finding. First, in the studies reviewed here, the majority
of interventions were delivered by teachers, with 10 studies
delivered by researchers. Therefore, there were not enough cases
to determine which delivery approach is more effective. Notably,
the intervention (i.e., Cardelle-Elawar, 1992) that had the highest
effect size on achievement performance was researcher-delivered.
It may be that the majority of interventions were delivered by
teachers because SRL interventions in mathematics are highly
related to mathematical curricula, thereby making teachers
best suited to deliver intervention. Further, most interventions
were conducted in classrooms during class sessions and having
teachers deliver them may result in both less disruption and
greater external validity.

In addition, students’ cooperative learning was defined by
whether the experimenters or instructors created an environment
that encouraged students to discuss or work together. For
instance, Perels et al. (2009) designed their intervention with an
element of group work. Specifically, in their first two sessions

of self-regulation strategy training, they asked students to learn
strategies in a group format involving communication with each
other. Students were also asked to work together to make posters
representing their strategy learning. Results indicated positive
effects on bothmathematics achievement performance (d= 0.44)
and SRL as measured by a questionnaire that the research team
constructed (d = 1.40). Findings from Dignath and Büttner
(2008) supported benefit for cooperative learning and reported
that group work had a positive impact on intervention effect
sizes. Similarly, in the present review, interventions that included
group work all demonstrated positive effects on mathematics and
SRL, with small to large effect sizes (i.e., d = 0.31 to 0.44 for
mathematics; d = 0.21 to 1.40 for SRL). Most studies (n = 24)
that we identified, however, encouraged students’ independent
work instead of group work with only 12 studies emphasizing on
group work. Nonetheless, given the benefit of group work on the
effects of SRL interventions, group work may be a viable way to
enhance the outcomes of an intervention.

The type of the mathematics assessment administered was
another important characteristic examined in the identified
intervention studies. Three types of mathematics assessments
were identified and included. Standardized math tests (n = 8),
teacher-generated math tests (n = 6), and researcher-generated
math tests (n= 21). Three studies administered more than one of
these assessments: Tzohar-Rozen and Kramarski (2014), Tzohar-
Rozen and Kramarski (2017), and Verschaffel et al. (1999).

Overall, 28 studies had available information for the
calculation of effect sizes, as well as explicit information with
regard to the type of assessment. Most researcher-generated
assessments demonstrated higher effect sizes when compared
to teacher-generated and standardized mathematics assessments.
Moreover, teacher-generated achievement assessments tended to
be associated with lower effect sizes than researcher-generated
and standardized assessments. The strength of intervention
effects on researcher-generated achievement assessments may
be the result of their close association with the elements of
the intervention.

Research Question 2: Patterns of SRL
Mathematics Interventions Over Time
We were also interested in identifying any patterns of elements
of SRL interventions in mathematics over time and examined
patterns for theoretical frameworks, treatment characteristics,
and types of achievement assessments.

Theoretical Framework
The timeline of theoretical frameworks indicates some
interesting trends. First, metacognition was the primary focus of
SRL mathematics interventions in the 1990s and early twenty
first century. Social cognitive theory, particularly Zimmerman’s
model, was not a focus of intervention until 2005. Since then,
however, the model has been highly influential. Similarly, since
2006, Pintrich’s SRL model with a focus on motivation, also
became more frequently adopted by SRL researchers. These
trends indicate the changing influence of SRL theories, with most
of the recent intervention studies in mathematics grounded in
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Zimmerman’s cyclical model rather than previous emphasis on
metacognition frameworks.

Treatment Characteristics
We first examined the implementation of strategies developed
between 1992 and 2020. Findings show that metacognitive
strategies aimed at promoting students’ self-regulated learning
appeared throughout the entire timeline. Notably, however,
motivational strategies were not of focus until 2006, and have
since became much more popular, after 2012, especially in
combination with cognitive and metacognitive strategies. This
increase is likely associated with the development and refinement
of SRL theories that more recently include affective factors in
more recent SRL models. The inclusion of multiple strategies in
SRL interventions for mathematics was quite consistent across
time and represented one of the most common features of
all interventions.

The types of assessments used in interventions demonstrated
some trends across time. Specifically, researcher-generated
achievement tests are the most common throughout the timeline.
All the identified studies that were published from 1992 to
2004 administered researcher-generated achievement tests only.
Notably, teacher-generated achievement tests first appeared in
2005. Then, the administration of standardized achievement
tests appeared in 2006. Standardized achievement assessments
were more often administered from 2012 to 2018. Moreover,
the combination of both researcher-generated achievement tests
and standardized achievement tests appeared in more recent
years. Interestingly, teacher-generated achievement tests tended
to produce a roughly consistent magnitude of effect (Mean of
effect sizes d = 0.24) while researcher-generated achievement
tests tended vary from the lowest effect at −3.51 to the highest
at 5.99.

DISCUSSION

Overall, the characteristics that we identified in this systematic
review support the effectiveness of SRL interventions in
mathematics for school-aged students. This systematic review
contributes to the literature in several ways. First and broadly,
to our knowledge, this is the first systematic review focused on
SRL interventions in mathematics. The picture generated from
this systematic review may directly inform research and practice
in mathematics to improve SRL interventions and to support
student learning as self-regulation may be best targeted to
specific academic domains (Wolters and Pintrich, 1998). Indeed,
although mathematics as an academic domain requires domain-

general strategies that support students’ learning, mathematics
also requires specific and unique strategies less employed in other
domains or within specific mathematics content or curricula.
Further, an updated systematic review of SRL interventions
allows researchers to draw comparisons with previous review
studies and discern developmental patterns of SRL interventions
across the last decades. The present review demonstrates
patterns among SRL interventions over time and can inform
future research directions in SRL interventions with regard
to refinement of theoretical support, implementation of a
combination of strategies within intervention, and approaches of
delivering the intervention.

While this systematic review provided a critical update
to previous reviews and contributed to understanding of
effective SRL intervention in mathematics, there are recognized
limitations. First, we identified the effective characteristics in
mathematics. However, characteristics of SRL interventions may
work differently in other academic domains. Updating and
investigating intervention characteristics for other domains is
a future direction. Second, some intervention studies included
in this review did not report adequate information for the
calculation of effect size. This may result in an incomplete
understanding of the effectiveness of SRL interventions. Future
research may address this issue with comprehensive meta-
analyses. Third, we acknowledge that there may be characteristics
of the interventions that we did not identify or overlooked that
may prove important. For instance, the inclusion of psychometric
properties of the measures used may be a characteristic to
further examine. Thus, future research may expand upon our
coding scheme to capture additional intervention characteristics,
such as delivery method (e.g., online format of instructions in
mathematics courses: Broadbent and Poon, 2015). Finally, a large
portion of the studies included in this review were conducted by
the same research team (i.e., Kramarski and colleagues). Drawing
conclusions from one research model may result in limited
understanding of the benefits of interventions more broadly.
As more SRL interventions in mathematics are developed from
additional perspectives, future research will allow comparison
across interventions.
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In today’s digital information society, mathematical and computational skills are becoming 
increasingly important. With the demand for mathematical and computational literacy 
rising, the question of how these skills can be effectively taught in schools is among the 
top priorities in education. Game-based learning promises to diversify education, increase 
students’ interest and motivation, and offer positive and effective learning experiences. 
Especially digital game-based learning (DGBL) is considered an effective educational tool 
for improving education in classrooms of the future. Yet, learning is a complex psychological  
phenomenon and the effectiveness of digital games for learning cannot be taken for  
granted. This is partly due to a diversity of methodological approaches in the literature 
and partly due to theoretical and practical considerations. We present core elements of 
psychological theories of learning and derive arguments for and against DGBL and 
non-DGBL. We discuss previous literature on DGBL in mathematics education from a 
methodological point of view and infer the need for randomized controlled trials for 
effectiveness evaluations. To increase comparability of empirical results, we propose 
methodological standards for future educational research. The value of multidisciplinary 
research projects to advance the field of DGBL is discussed and a synergy of Affective 
Computing and Optimal Experimental Design (OED) techniques is proposed for the 
implementation of adaptive technologies in digital learning games. Finally, we make 
suggestions for game content, which would be suitable for preparing students for 
university-level mathematics and computer science education, and discuss the potential 
limitations of DGBL in the classroom.

Keywords: game-based learning, active learning and teaching methodologies, academic emotions, academic 
motivation, STEM education, computational literacy, research practice
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INTRODUCTION

Mathematical and computational skills have become an integral 
component of basic literacy, and improving students’ proficiency 
in mathematical and computational thinking plays a key role 
in many countries’ education strategies (Committee on STEM 
Education, 2018; European Schoolnet, 2018).

Yet, while over the last decades Organisation for Economic 
Co-operation and Development (OECD) countries’ expenditure 
per student increased on average by 15%, students’ performance 
did not change significantly (OECD, 2019b). Pertaining issues 
are the significant and robust relationship between socioeconomic 
status and academic performance, especially in science and 
mathematics (Thomson, 2018; OECD, 2019b), a negative 
association between countries’ socioeconomic inequality and 
performance in the Programme for International Student 
Assessment (PISA; Parker et al., 2018), and decreasing mobility 
between socioeconomic backgrounds (OECD, 2018). Students 
generally tend to lose motivation, competency beliefs, and 
interest along the educational chain (Wigfield et  al., 1991; 
Jacobs et  al., 2002; Frenzel et  al., 2010), which in turn affects 
academic performance (Singh et  al., 2002; Arens et  al., 2016) 
and course selection (Köller et al., 2001). Accordingly, educational 
interventions are needed which effectively decrease achievement 
gaps, sustain motivation, engagement, and interest in mathematics 
and computational subjects and provide educational opportunities 
which all students profit from (van den Hurk et  al., 2019).

Playful learning (Hirsh-Pasek et  al., 2009) has long been 
advocated as a promising pedagogical approach for effectively 
teaching students mathematics and computer science in an 
engaging, fun and motivating way (Mayo, 2009; Papastergiou, 
2009; Zosh et  al., 2016). Game-based learning interventions are 
supposed to offer students active self-guided learning opportunities 
and positively affect attitudes, emotions, motivation, and 
engagement (Vandercruysse et  al., 2012; Weisberg et  al., 2016).

With PISA’s focus for 2024 being on the “ability of students 
to learn in a digital world,”1 the importance of digital learning, 
including digital game-based learning (DGBL), can be expected 
to rise. The anticipated benefits of digital over non-digital 
learning tools lie in their flexibility, adaptiveness, and 
interactivity which foster non-linear and self-directed (no 
preset order, students can actively choose the next step) 
learning (Hsiao et  al., 2010; Brusilovsky, 2012; Kärkkäinen 
and Vincent-Lancrin, 2013; Committee on STEM Education, 
2018). Yet, to ensure the effectiveness of digital learning, the 
design and development of digital learning environments 
should be  evidence-based and grounded on psychological 
theory. Furthermore, rigorous scientific evaluations of digital 
learning tools are required to systematically assess their relative 
effectiveness regarding learning outcomes and psychological 
effects (Kickmeier-Rust et al., 2006; Kickmeier-Rust and Albert, 
2010; Nussbaumer et al., 2019). In the following, we  briefly 
review key psychological literature on the relationship between 
emotion, motivation, mode of information acquisition, and 
learning. Based on the reviewed evidence, we  develop our 

1 http://www.oecd.org/pisa/

arguments for and against DGBL, infer the need for 
interdisciplinary research and advanced technology, and propose 
methodological standards for effectiveness evaluations.

PSYCHOLOGICAL THEORY OF 
LEARNING

Learning-related cognitive, motivational and emotional processes 
shape the learning process (Arens et  al., 2016; Pekrun et  al., 
2017), as well as the way information is acquired (Bruner, 
1961; Schunk, 1990; Gureckis and Markant, 2012; Ruggeri 
et  al., 2019). These variables are closely interrelated and 
significantly shape the learning process. Thus, they deserve 
special consideration in any educational setting.

Academic Emotion
Academic emotions are defined as emotions students experience 
in an academic setting, i.e., emotions associated with achievement, 
instruction, and the learning process (Pekrun et  al., 2002, 
2017). Mathematics emotions are closely related to mathematics 
achievement: over a 5  years period of annual testing (grades 
5–9), mathematics performance, measured by end-of-the-year 
grades and standardized test scores, and mathematics emotions, 
measured with the Achievement Emotions Questionnaire (AEQ)-
Mathematics (Pekrun et  al., 2011), reciprocally affected each 
other (Pekrun et  al., 2017). Mathematics anxiety has been 
consistently shown to be negatively associated with mathematics 
performance, with effect sizes being moderate (Ma, 1999; 
Namkung et  al., 2019).

Emotions have a subjective, a cognitive and a behavioral 
component. Due to their complexity, they often cannot 
be  pinpointed to one concrete sensation. For example, when 
working on a challenging task, students can be  anxious that 
they might fail, motivated to master the challenge, and proud 
when they master sub-goals – all at the same time. Given 
that emotions are associated with other learning-relevant 
psychological resources such as motivation, attitudes, and interest, 
stimulating positive academic emotions, accurately detecting 
students’ emotions, and reacting to them appropriately are of 
crucial importance in educational settings.

Emotion and Motivation: Control Value 
Theory of Achievement Emotions
Control value theory of achievement emotions describes the 
relationship between academic emotions and motivation (Pekrun 
et al., 2007a; Pekrun and Stephens, 2010). Students’ expectations, 
attributions, and competency beliefs influence their perceived 
control, which evokes an emotional reaction. For example, when 
being asked a question by the teacher, low perceived controllability 
of the situation may arise from the belief that one is not talented 
in mathematics. This creates the expectation of being unable 
to answer the question correctly, which in turn may evoke 
anxiety, helplessness, or sadness. In contrast, when feeling in 
control, a student may enjoy the opportunity to answer a question 
and be the focus of attention. The perceived value of an academic 
activity shapes the strength of the experienced emotion.  
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For example, a high or low test score in a mathematics exam 
may not evoke strong emotions in a student who thinks that 
mathematics is not important for her future life, in contrast 
to a student who values mathematics very highly.

Active Learning and Flow Theory
Active learning environments give students the opportunity to 
self-regulate, develop intrinsic motivation, and exert control over 
the learning process (Bandura, 1991; Zimmerman et  al., 1992; 
Zimmerman, 2002), which are beneficial for children’s 
psychological development and learning outcomes (Bruner, 1961; 
Kolb, 1984; Boekaerts, 1997). From a cognitive and computational 
perspective, active information acquisition and control over the 
flow of incoming information positively affect efficiency of 
information acquisition, learning, and memory (Gureckis and 
Markant, 2012; Ruggeri et al., 2019). Flow theory (Csikszentmihalyi, 
1975; Csiksentmihalyi and Schiefele, 1993) states that intrinsically 
motivated behavior and the experience of flow are fostered in 
situations, which are shaped by a learner and characterized by 
a fit between learners’ abilities and the demands of a situation.

A Psychological Argument for 
Game-Based Learning
This brief discourse into the psychology of learning elucidates 
the complex interrelation between characteristics of the learning 
environment, students’ academic motivation and emotions, and 
learning outcomes. Well-designed learning games are interactive 
learning environments which give students the opportunity to 
acquire knowledge and practical skills in a playful and self-
directed way, experience engagement and flow and develop 
positive attitudes, feelings, and competency-beliefs (Gee, 2008; 
Kapp, 2012; Plass et al., 2015; Weisberg et al., 2016; Becker, 2017). 
Digital learning games are expected to even expand these 
positive characteristics of learning games, given their high 
flexibility, engagement, and fun due to their digital nature 
(Prensky, 2003). Yet, to successfully exploit the psychological, 
pedagogical, and academic potentials of games in DGBL 
environments, not only a firm grounding in psychological and 
pedagogical theories (Malone, 1981; Ryan et  al., 2006; Starks, 
2014) but also adherence to standards in digital educational 
game design (Göbel et  al., 2018), advanced technologies and 
rigorous effectiveness evaluations are of fundamental importance. 
In the following, we  discuss previous literature on DGBL and 
make methodological suggestions for future research in the 
field. We  stress the need for interdisciplinary research projects 
and advances in technology research, especially for implementing 
adaptivity in learning games. We also highlight possible limitations 
of DGBL and suggest ways to overcome these limitations.

DIGITAL GAME-BASED LEARNING 
RESEARCH: CURRENT PRACTICE AND 
FUTURE DEVELOPMENTS

Research on DGBL paints a complex picture: it is generally 
characterized by a multitude of approaches, terminologies, 
and methodologies (Connolly et  al., 2012; Boyle et  al., 2016; 

de Freitas, 2018). While some studies report overall positive 
effects of digital game-play on learning outcomes (Chang 
et  al., 2015) and motivational variables (Hung et  al., 2014; 
Partovi and Razavi, 2019), others report no general advantage 
of digital games over standard teaching methods (Ke, 2008a; 
Brom et  al., 2011). In the context of mathematics education, 
Erickson (2015) evaluated 30 digital mathematics games and 
found that only five scored high on all the three identified 
motivational dimensions (ease of understanding, control, and 
immersion). The investigated games differed in the degree 
to which they provided cognitive scaffolding and offered 
opportunities for proficiency development and reflection upon 
learning strategies. In a recent meta-analysis which included 
17 studies, Byun and Joung (2018) found an overall weighted 
effect size of d  =  0.37 for the relative effectiveness of digital 
games for learning mathematics. Yet, effect sizes vary largely 
between the analyzed studies. For example, while an effect 
size as small as d  =  0.13 was reported by Ke (2008b), very 
high effect sizes above two were found in two studies by 
Sedig (2007, 2008) and a set of experiments by Shin et  al. 
(2012). Besides these extreme cases, the remaining studies 
found small (van Eck, 2006; Ke and Grabowski, 2007; 
Ke, 2008a; Bai et  al., 2012; Kolovou et  al., 2013; Lin et  al., 
2013; van den Heuvel-Panhuizen et  al., 2013; Pareto, 2014; 
Bakker et  al., 2016), medium (Kebritchi et  al., 2010; 
Plass et al., 2013) or large (Sedig, 2007; Yang and Chen, 2010; 
Ke, 2013) effects.

The high variability of results in research on DBGL in 
mathematics education is indicative of differences in research 
methodologies and practices, which makes general 
conclusions about the effectiveness of DGBL in mathematics 
difficult. Among the most striking differences between 
studies are design and content of the games used, research 
designs (RCT or quasi-experiment; mixed or quantitative 
methods), age groups (primary, secondary, or university 
education), and number of participants as well as effectiveness 
criteria and instruments employed in the effectiveness 
evaluation. The most prevalent research design is the quasi-
experiment; less often randomly controlled experimental 
designs are realized (Boyle et  al., 2016). Group assignment 
is usually conducted on a class level (Papastergiou, 2009; 
Kebritchi et  al., 2010; Bai et  al., 2012; Kim et  al., 2017; 
Brezovszky et  al., 2019) and seldom on a school level 
(Rutherford et  al., 2014), and very few studies follow an 
experimental approach with randomization on subject level 
(Plass et  al., 2013). Whereas most studies include a control 
group, studies without a control group can also be  found 
(for example, Iten and Petko, 2016). Often multiple 
measurement points are reported, differing in time intervals 
between measurements (Bottino et al., 2007; Kebritchi et al., 
2010; Habgood and Ainsworth, 2011; Bai et  al., 2012; Shin 
et  al., 2012; Bakker et  al., 2015). Methodologies entail 
qualitative, quantitative, and mixed methods, with the latter 
two being the most prevalent (for a comprehensive overview, 
see Byun and Joung, 2018).
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The Need for Preregistered Randomly 
Controlled Trials, Standardized 
Procedures, and Methods
Even though quasi-experimental research designs and 
randomization on a class level may be the most feasible approach 
for educational research, randomly controlled experiments with 
randomizing on a subject level are fundamental for generating 
solid empirical evidence. Preregistering experiments (or even 
using preregistered reports) increase credibility of results and 
limit questionable research practices (Nosek et  al., 2018). 
Furthermore, standardizing pre‐ and post-test measures raises 
comparability between studies. We  suggest using standardized 
scales from the international studies PISA and TIMMS if 
applicable (International Association for the Evaluation of 
Educational Achievement, 2015; OECD, 2019a) and standardized 
psychological instruments, for example, scales measuring 
academic emotion (Pekrun et al., 2011; Lichtenfeld et al., 2012), 
self-concept (Pekrun et  al., 2007b; Arens et  al., 2016), and 
motivation (Schwarzer and Jerusalem, 1995; Midgley et  al., 
1998). For evaluations of the relative effectiveness of digital 
learning games for learning outcomes, standardized tests are 
not always available. These tests should then be  developed in 
collaboration with experts (e.g., cognitive scientists, psychologists, 
or teachers), validated, and tested for reliability. To further 
standardize timing of measurements, we  suggest conducting 
the pre-test a week before the intervention to avoid effects of 
testing on experimental results and to generate a non-biased 
baseline. The post-test is conducted on the day of the intervention 
in case of a single intervention to measure immediate effects. 
In case of a longitudinal study, it may be  advisable to have 
measurements on each intervention day as well as one day 
after the intervention is completed to balance out daily variability. 
Follow-up tests are important to evaluate the persistence of 
effects; their timing depends on the study design and the 
resulting shape of the forgetting curve, as well as the claims 
authors make regarding the effectiveness of their intervention 
(Murre and Dros, 2015; Nussbaumer et  al., 2019). Enriching 
quantitative measures with qualitative measures and classroom 
discussion can be  informative to determine the feasibility of 
a method, better understand the underlying mechanisms, and 
solidify students’ learning, yet the core criterion in effectiveness 
evaluations should be  preregistered statistical analyses of 
experimentally obtained data.

Interdisciplinary Research on Adaptive 
Game-Based Learning
A promising way to improve learning experiences in digital 
learning environments is adaptive technology. Adaptive learning 
tools promise to offer students the learning experiences they 
need in a given moment by recognizing their cognitive, 
motivational, and emotional states. International and 
interdisciplinary research on evidence-based digital education 
platforms which adapt to students’ individual needs is growing. 
Projects range from adaptive structuring of learning experiences 
on digital learning platforms (Hsiao et al., 2010; Brusilovsky, 2012) 
to adaptive DGBL interventions (Brezovszky et  al., 2019), 

developing sophisticated software components for adaptive 
learning based on sound psychological and pedagogical principles 
(Kickmeier-Rust et  al., 2006; Maurer et  al., 2017; Nussbaumer 
et al., 2019). The authors distinguish different levels of adaptivity 
and corresponding software assets:

1.  Pre-game adaptation: personalization of the initial stages of the 
game based on student characteristics, which are measured 
prior to game-play using standardized instruments.

2.  Competence-based in-game adaptivity: monitoring learning 
progress to adapt learning path, instructions, and support.

3.  Psychological in-game adaptivity: monitoring psychological 
state and adapting game characteristics accordingly (e.g., adapt 
difficulty level, offer support, and change game design).

As the body of research on adaptive digital learning games 
is growing, meta-analyses are needed to determine the relative 
effectiveness of different kinds of adaptivity, e.g., based on 
performance, motivation and/or emotion, adaptation of game 
design, instruction, and/or game content. Importantly, adaptive 
learning games, which are currently available online, are not 
necessarily scientifically evaluated, and teachers and parents 
should be  made aware of this. A way to give users guidance 
would be  a quality seal, which indicates the level of scientific 
evidence (research methodology, see “The Need for Preregistered 
Randomly Controlled Trials, Standardized Procedures, and 
Methods,” and outcomes) for the effectiveness of an adaptive 
digital learning game.

Affective Computing and Optimal 
Experimental Design for Software 
Adaptivity
One research stream on adaptive digital learning is based on 
insights from Affective Computing. Affective Computing is 
defined as “computing that relates to, arises from, or influences 
emotions” (Picard, 1997, p.  1). It is a relatively young field 
of research, yet it has rapidly grown over the last decades 
(Picard, 2015). A recent systematic review (Aranha et al., 2019) 
revealed that education is the most frequent application area 
of Affective Computing. A majority of studies investigate 
affectively adaptive digital games, yet affective learning (Picard 
et al., 2004) also refers to affectively intelligent tutoring, dialogue, 
agent-based, and other learning systems (Santos, 2016).

The general goal of affective learning research is to develop 
software which recognizes users’ affective state and adapts its 
interactive behavior accordingly, based on sophisticated models 
of emotion-cognition interaction (D’Mello et al., 2008; Hudlicka, 
2008, 2017; Cooper et  al., 2011; D’Mello and Graesser, 2015). 
Despite the theoretical complexity and methodological difficulties 
in emotion research, advances have been made in the modeling 
of emotion-cognition interactions (Hudlicka, 2011, 2017) and the 
development of formal emotion languages (Schröder et al., 2015). 
The methodologies used for emotion detection include 
psychophysiological methods (electrodermal activity, heart rate 
recording, EEG, and EMG measures), camera-based methods 
(capturing facial expressions, eye-movements, and voice), and 
behavioral measures (user input and in-game behavior). 
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Emotionally adaptive learning games promise to offer students 
learning experiences which are tailored to their emotional needs. 
Yet, emotional adaptivity must be  handled with care: adaptivity 
requires the collection of sensitive data, which may or may not 
be  adequate in a given context. Due to the still low accuracy 
in emotion detection, predictions may be  inaccurate (Aranha 
et  al., 2019), indicating the need for further advances in the 
development of non-intrusive and reliable emotion detection 
mechanisms. This also requires improved software infrastructure 
for interoperability between systems, adequate  and contextual 
feedback, and interaction mechanisms (Santos, 2016). Lastly, 
educators may prioritize giving students the option to experience 
a wide range of situations and emotions, including those which 
are not adapted to their learning profile. Keeping these 
considerations in mind, how can adaptive technology be enhanced?

Computational methods which have previously been employed 
to implement adaptivity are supervised classification, probabilistic 
models, and regression analyses (Santos, 2016). We  propose 
Optimal Experimental Design (OED), a computational method 
which optimizes experimental designs for discrimination among 
multiple psychological models (Myung and Pitt, 2009), as a 
novel tool for effectively implementing software adaptivity in 
learning games. Game-play situations can be regarded as mini-
experiments, and their outcomes can inform the system’s 
knowledge base about the user. OED confronts the learner 
with those situations which are most informative for the system’s 
construction of the learner model. It can be  integrated into 
the system’s profiling asset (Maurer et  al., 2017) and support 
in-game adaptivity based on performance, motivation, 
engagement, and emotional state of the learner, allowing the 
system to build an increasingly fine-grained model of the 
learner and personalize learner-system interactions. A python 
package, ADOpy (Yang et  al., 2019), is available as an open 
source resource to the public2.

Computational and Mathematical Topics 
for Game-Based Primary Education
Even though the number of digital educational games for 
learning mathematics (Erickson, 2015; Byun and Joung, 2018) 
and programming (Lindberg et  al., 2018) has been growing, 
evidence-based digital learning games for computer science in 
primary education are rare. In a recent systematic literature 
review, only two studies were identified which investigated 
DGBL in elementary computer science education, both of which 
were of relatively low quality in terms of study design, 
appropriateness of methods and analyses, generalizability, 
relevance, and trustworthiness of findings (Hainey et al., 2016).

The university guidelines for undergraduate computer science 
curricula from ACM and IEEE (2013) include the following 
topics, which we  suggest for game-based learning in primary 
and secondary education and which have already been 
successfully implemented in games: basic principles of machine 
learning (Wallace et  al., 2008; Stöckl, 2019), algorithms and 
complexity (Hong and Kung, 1981; Battistella et  al., 2017), 

2 https://github.com/adopy/adopy

information theory (Greeff et al., 2017), and computer architecture 
(Tlili et  al., 2016). In mathematics education, the majority of 
learning games focus on numbers and operations, algebra, 
geometry, measurement, and data analysis and probability (Byun 
and Joung, 2018). Additional topics for game-based learning 
in mathematics are combinatorics, probabilities, functions, and 
number systems. Besides educational content, the so-called 
“21st century skills” (Binkley et al., 2012), which include critical 
thinking skills such as scientific reasoning, systems thinking, 
computational thinking, decision making, and problem solving, 
can be  taught in a gamified way (Qian and Clark, 2016).

We are currently developing a game, Entropy Mastermind 
(Figure  1; Schulz et  al., 2019), to promote students’ entropy 
intuitions by providing experiential access to the relationship 
between probability distributions and the mathematical concept 
entropy (Crupi et  al., 2018). Entropy is not only an important 
concept in cognitive science, computer science, mathematics, the 
philosophy of science, and information theory but it also has 
many practical applications (Martignon et  al., 1991; Mana et  al., 
2018) and educational relevance (Haglund et al., 2010). The game 
Entropy Mastermind is an extension of the classic Mastermind 
game. In Entropy Mastermind, a secret code is generated from 
a probability distribution by random drawing with replacement. 
The player (code breaker) has to guess the secret code by testing 
out codes and getting feedback about the correctness of the 
guessed code. The feedback is comprised of three different kinds 
of smileys: a happy smiley indicating that a guessed item is 
correct in kind and position, a neutral smiley indicating that a 
guessed item is the correct kind but not in the correct position, 
and a sad smiley indicating that a guessed item is incorrect 
regarding both kind and position. Importantly, the order of smileys 
in the feedback is always the same: happy smileys come first, 
then neutral, and lastly sad smileys – the position of smileys in 
the feedback array does not correspond to the positions of items 
in the guessed code. The entropy of the distributions from which 
the secret code is generated varies between rounds of the game. 
Figure  2 displays a low entropy (left game environment) and a 
high entropy (right game environment) Entropy Mastermind 
game. The level of entropy in the underlying probability distribution 
affects the difficulty of the game (the number of queries needed 
to guess the secret code; Schulz et  al., 2019), and the resulting 
variations in difficulty give experiential access to the concept entropy.

In the Entropy Mastermind educational intervention, learning 
about entropy is evaluated using specifically designed test 
items which quantify entropy intuitions (for example, Figure 2); 
psychological effects are assessed using the AEQ (Lichtenfeld 
et al., 2012), the mathematical self-concept scale (Pekrun et al., 
2007b; Arens et  al., 2016), and the general self-efficacy scale 
(Schwarzer and Jerusalem, 1995). First studies using Entropy 
Mastermind in educational contexts have been conducted: 
these include the development and implementation of a roadmap 
for an instructional unit aimed at fostering elementary students’ 
intuitions about entropy using a non-digital version of Entropy 
Mastermind (Özel et al., n.d., submitted). Based on insights 
from this first study, a digital version of Entropy Mastermind 
was developed (Figure  1), and first pilot studies conducted 
using this digital version of the game (Bertram et  al., 2019;  
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Schulz et  al., 2019; Bertram et  al., 2020). Yet, further research 
is needed to evaluate the effect of playing Entropy Mastermind 
on entropy intuitions, knowledge about probabilities, and 
learning-related psychological variables, and to further validate 
the developed test items for assessing entropy intuitions.

Possible Limitations of Digital 
Game-Based Learning
Despite the above described potential benefits of DGBL, it is 
important to also consider its limitations. Digital worlds are reduced 
in their dimensionality compared to the physical world, lacking 
sensual experiences such as touch or smell. Embodied education 
(Shapiro and Stolz, 2019), an emerging research field rooted in 
the literature on grounded and embodied cognition (Varela et al., 
1991; Clark, 1996; Barsalou, 2008; Barsalou, 2010; Shapiro, 2019), 

education theory, and learning science (Montessori, 1972; Bresler, 
2005), stresses the fundamental role of bodily experiences in the 
learning process (Hostetter and Alibali, 2008; Tellier, 2008). In 
digital learning games, students remotely interact with the game 
environment by touching a display, using a keyboard, mouse, or 
voice control. This kind of interaction is indirect and mediated 
(the digital device is the mediator) compared to interactions in 
physical environments. Physical behavior may not only be reduced 
to finger, hand, or arm movements, but also be  incongruent to 
the actual behavior carried out in the game environment. This 
divergence between cognition and behavior may interfere with 
the learning process (Shapiro and Stolz, 2019). Yet, digital learning 
games may overcome these limitations by incorporating embodiment 
principles in the game design (Black et  al., 2012): gestural or 
natural user interfaces can be  operated via touch (touch use 
interfaces) or remotely (free form interfaces), stimulating body 
movements congruent to the learning content, and thus benefitting 
learning (Hostetter and Alibali, 2008; Tellier, 2008). For example, 
Wang et  al. (2014) successfully created a natural user interface, 
operated via body movements, to teach elementary students the 
projectile motion.

Other limitations arise from the potentially high costs associated 
with digital game design and the purchase of digital technologies. 
These costs are justifiable under the assumption that digital learning 
games significantly improve education. Digitalizing education is 
also a necessary step toward modernization and improvement 
of the education system. Yet, in the process of introducing digital 
learning tools into the classroom – including digital learning 
games – it is important to realistically assess the relative benefits 
of these digital learning games and conduct cost-effectiveness 
evaluations (Tobias et  al., 2014). If, for example, an adaptive 
game turns out to only have little advantage (e.g., regarding 
learning outcomes or effects on academic emotion and motivation) 
over its non-adaptive version, the development costs may exceed 
the benefits. Similarly, a digital learning game may or may not 
be  more effective for learning than its non-digital version.  

FIGURE 1 | Icon arrays representing two example code jars (in this version of the game fruit bowls) which generated the secret code. Left panel: low entropy 
code jar. The first guess and the corresponding feedback are displayed. Happy emoticon: correct fruit and correct position; neutral emoticon: correct fruit but wrong 
position; sad emoticon: incorrect fruit and position. Positions of faces do not correspond to positions in the code. Right panel: high entropy code jar. Game 
environment before the first guess was entered. Initially, each position of the code is blank, and players can cycle through the fruits by clicking on the blank field. 
Feedback is provided after players clicked on the “Check” – button. Play the game yourself: http://jonathandnelson.com/curious/masterminding.html.

FIGURE 2 | Example pre‐ and post-test questions testing entropy intuitions. 
Students are asked for each pair of code jars which of the two would 
be harder/easier to play with or whether the two urns are equally hard. 
Answers to these questions quantify entropy intuitions (Crupi et al., 2018).
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In these cases, it is advisable to consider the use of relatively 
cost-effective methods to enrich education with games, e.g., 
using haptic versions (to reduce costs associated with purchasing 
digital devices) or already programmed digital versions of classic 
games (to reduce game development costs), such as chess, 
card games, riddles, board games, code-breaking games, or 
puzzles. These games are engaging, intrinsically motivating, 
and fun to play but do not need sophisticated visuals and 
complex virtual environment simulations.

Also, it should be  carefully observed if using digital games 
in education disadvantages those students who have limited 
financial capacities and may not have access to digital devices 
at home. Equal opportunities are a key characteristic of good 
education systems and must be  constantly preserved and 
improved. Another delicate issue associated with digital learning 
is students’ digital rights: every student and/or their parents 
or legal guardians should own their data and be  able to 
decide how their data are used, for example, by giving informed 
consent about the usage of their data or by having access 
to their own data via a password. When collecting data is 
part of digital game-based education interventions, ethical 
integrity, thoughtful data handling, and strict adherence to 
data protection regulations are a prerequisite and must 
be accompanied with transparent communication with parents 
or legal guardians.

DISCUSSION

In this article, we discussed future directions in research on DGBL 
in mathematics and computer science education. We  highlighted 
the importance of a sound psychological foundation for the 
development of learning games and the need for interdisciplinary 
research projects and randomized controlled experimental designs 
to evaluate the effectiveness of games and game features. 
We  introduced a new methodology to implement adaptivity, a 
synergy of Affective Computing and OED techniques and suggested 
topics for digital mathematics and computer science games.  
We  also presented our own digital educational game, Entropy 

Mastermind, for fostering students’ intuitions about entropy.  
Lastly, we  discussed limitations of DGBL and suggested ways 
to overcome potential complications. When keeping in mind 
these potential limitations and complications, game-based digital 
and non-digital learning is a fruitful field for systematic 
interdisciplinary research and a promising practical educational 
tool for enriching educational methods and realizing equal 
opportunities in classrooms of the future – giving all students 
the opportunity to learn at their best.
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Mathematics is a struggle for many. To make it more accessible, behavioral and
educational scientists are redesigning how it is taught. To a similar end, a few rogue
mathematicians and computer scientists are doing something more radical: they are
redesigning mathematics itself, improving its ergonomic features. Charles Peirce, an
important contributor to ordinary symbolic logic, also introduced a rigorous but non-
symbolic, graphical alternative to it that is easier to picture. In the spirit of this iconic logic,
George Spencer-Brown founded iconic mathematics. Performing iconic arithmetic,
algebra, and even trigonometry, resembles doing calculations on an abacus, which is
still popular in education today, has aided humanity for millennia, helps even when it is
merely imagined, and ameliorates severe disability in basic computation. Interestingly,
whereas some intellectually disabled individuals excel in very complex numerical tasks,
others of normal intelligence fail even in very simple ones. A comparison of their wider
psychological profiles suggests that iconic mathematics ought to suit the very people
traditional mathematics leaves behind.

In mathematics you don’t understand things, you get used to them.

—attributed to John van Neumann
(Zukav, 1979)

Keywords: iconic mathematics, embodied mathematics, mathematical cognition, math education, stem
education, dyscalculia, hypercalculia

INTRODUCTION: TOWARD A MORE ERGONOMIC
MATHEMATICS

Icons Versus Symbols
Mathematics is a widely used and highly effective tool. Yet over the course of some 3,000 years,
it has developed more or less organically rather than according to a carefully thought-through,
preconceived plan (Kline, 1990). Today, professional mathematicians concern themselves with
mathematical problems, rarely with revising the system in which they are expressed, and
much less with improving its ergonomic features; those are matters for others to worry about.
Yet what those others, including math teachers and behavioral and educational researchers,
focus on is not redesigning mathematics but helping people, especially children, become
better at it. Indeed, overhauling such an enormous, already well-entrenched system as that of
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mathematics may seem too daunting a task to take seriously.
Consider, however, that its imposing edifice (its derived rules or
theorems) is based on a relatively small foundation (its ground
rules or axioms). These axioms are not particularly complicated,
and a lot can be achieved by tinkering specifically with them.

The present analysis of the concept of iconic mathematics
argues that there is an opportunity for the behavioral and
educational sciences to contribute to this endeavor. The goal
would not be to break new ground in mathematics—let us leave
this to the mathematicians—but rather to apply to math what
we know about the human mind and make math easier to learn
and use, more ergonomic. The point of departure for this project
is Spencer-Brown’s (1969) seminal adaptation of Charles Peirce’s
iconic logic (Roberts, 1973; Kauffman, 2001; Shin, 2002) that
became the cornerstone of iconic mathematics (Kauffman and
Varela, 1980; James, 1993; Kauffman, 1995; Bricken, 2019a,b,
2021).

Unlike their traditional counterparts, iconic logic and iconic
mathematics shun arbitrary squiggles that have only conventional
meanings, like digits and plus, minus, and other abstract symbols.
As much as possible, they are “postsymbolic” (Bricken, 2019a),
and use icons instead. By definition, icons are more concrete
than symbols, and often illustrate their own meaning, are their
own mnemonic devices, and hint at their own intended use.
Euler and Venn diagrams, which tellingly are still very popular
tools in teaching logical and set theoretical relationships today
(Trafimow, 2011; Reani et al., 2019), can be seen as precursors
of the more versatile, more encompassing systems of iconic logic
and iconic mathematics. Here, I limit myself to the latter and
offer my take on a recent, particularly substantial contribution
to iconic mathematics by computer scientist Bricken (2019a,b,
2021) and his student James (1993). In the process, I introduce an
alternative notation to render the original one considerably more
concise and even more ergonomic. The goal is to demonstrate
that ordinary, symbolic mathematics need not be the only game
in town; that, without sacrificing rigor, one can aspire to develop
a more user-friendly kind of mathematics that can be used either
as a stepping stone to learning ordinary, symbolic mathematics
or as an alternative to it.

Iconic mathematics is, as much as possible, an “embodied”
mathematics (Bricken, 2019a). To introduce this concept and
set the stage, I therefore begin with a brief introduction
of embodiment in mathematical cognition and mathematical
education, and then, in the main conceptual analysis, show
how embodiment permeates the nuts and bolts of iconic
mathematics itself. I discuss iconic number representation and
iconic addition and subtraction, then iconic multiplication,
division, and taking the power or logarithm of numbers, and after
that—to demonstrate iconic math’s potential—iconic imaginary
numbers and their relationship with trigonometry. After the
main analysis, I address why ordinary mathematics, curiously
enough, is more difficult for some intelligent individuals than
for others deemed intellectually disabled. I lay out how both
talent in mathematics, and the near-total lack of it, are related
to genetic conflict and patterns in mental disease. On the basis
of this material and additional evidence obtained with the
abacus, I argue that iconic mathematics promises to be of help

especially to those who, with traditional mathematics, tend to
struggle the most.

Embodiment Versus Abstraction
Ordinary symbolic mathematics is highly abstract, but mounting
evidence suggests that mental number representations and
mathematical operations are embodied—that is, grounded in
Lakoff and Núñez (2000), or at least shaped or affected by
Winter and Yoshimi (2020), the sensory experiences our bodies
provide to us (for reviews, see Fischer and Brugger, 2011; Fischer
and Shaki, 2018; Soylu et al., 2018; Barrocas et al., 2020; see
also especially Fischer et al., 2021; Glenberg, 2021) and other
studies not covered by the reviews: Hilton, 2019; Proverbio and
Carminati, 2019; van den Berg et al., 2021. For example, whereas
Germans are accustomed to counting to ten using two hands,
the Chinese manage the same with just one, and as if forced to
mentally switch hands, Germans take longer than the Chinese to
identify the smaller (or larger) of such numbers as 4 and 6 but
not 2 and 4. Likewise, as if numerical distances were physical,
numbers are distinguished faster if they are numerically far apart,
like 1 and 9, than if they are close together, like 1 and 3 (Dehaene,
2011). And, as if numbers were mentally represented along a
number line, in people reading from left to right, numbers are
processed quicker if small and presented on the left, or large and
presented on the right, rather than the converse (Dehaene, 2011;
see for a related review Umiltà et al., 2009 and for related research
papers and references therein Ashkenazi and Henik, 2010; Longo
and Lourenco, 2010; Pia et al., 2010; Kramer et al., 2011; Thomas
et al., 2017; Patro et al., 2018). Relatedly, addition can be pictured
as rightward, and subtraction as leftward, movement along this
line (Knops et al., 2009; Marghetis et al., 2014). Alternative
kinds of the embodiment have been observed in mathematical
cognition too (Winter and Yoshimi, 2020).

Embodied math education is tapping into this embodied
math cognition by providing students with objects and tools
that can help them understand abstract mathematical concepts
and operations in more concrete physical or virtual ways
(Carbonneau et al., 2013; Abrahamson et al., 2020). To give them
a better sense of proportion, ratio, fraction, young students have
been asked to keep a screen green while moving two cursors up
or down (Hutto et al., 2015). The otherwise red screen turned
green whenever the students happened to raise their right hand
twice as high as their left one. Trial and error then showed the
students how, as their hands move up or down, the distance
between them had to be proportionally increased or decreased to
keep the screen green. A sense of proportion was thus instilled
in the students in terms of not abstract symbols and austere
rules but concrete physical action and sensory experience (see
also Szkudlarek et al., 2022). Hands-on mathematics has a long
history and features prominently in Montessori education (Laski
et al., 2015). Earlier in the 20th century, Laisant’s table (Laisant,
1915; Maffia and Mariotti, 2020) allowed students to physically
explore—by counting squares—the meaning and validity of the
distributive law of multiplication (Figure 1). And physically
rearranging simple geometrical shapes has been used as far back
as during the Han dynasty, 206 B.C.−220 A.D. (Wang, 2009), to
prove the Pythagorean theorem and resolve problems like finding
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FIGURE 1 | Laisant’s table [adapted from Maffia and Mariotti (2020)]. Each
black-framed rectangle represents a multiplication—that of its width in little
squares by its height in little squares. The outcome of this multiplication equals
the total number of little squares contained within the black-framed rectangle.
In the present example, the upper-left black-framed rectangle represents the
multiplication 1 × 1, the lower-right one 8 × 8. Now consider, say, the
multiplications of 2 × 3, 2 × 4, and 2 × 7. Count the number of little squares
inside the black-framed rectangles that correspond to each of these
multiplications and note that—as per the distributive law of
multiplication—(2 × 3)+(2 × 4) = 2 × 7.

the side of an unknown square that just fits a known right triangle
(Figure 2; for video demonstrations, see footnote

1
).

One major problem remains, however, a meta-analysis
found that whereas hands-on interaction considerably improves
retention of abstract mathematical facts or operations, it does
not have as big a positive effect on students’ ability to
solve new abstract mathematical problems (Carbonneau et al.,
2013). Combining embodied and symbolic mathematics helps
establish a link between the two and facilitates the desired
transfer of learned skills from the one to the other (Laski
et al., 2015; Coles and Sinclair, 2019; Maffia and Mariotti,
2020). Still, there obviously remains a gap between embodied
cognition and embodied education on the one hand and un-
embodied, formal mathematics on the other. The un-embodied,
formal mathematics itself is still as opaque and abstract as it
has always been.

Like symbolic math, iconic mathematics is rigorous and
formally based on axioms but, unlike symbolic math, it is
nonetheless much more embodied. That is, it is expressed with
the help of either physical or virtual objects, or iconic depictions
of objects, rather than with arbitrary tokens that depict nothing.
Iconic mathematics may help students transition from embodied

1
https://en.wikipedia.org/wiki/Pythagorean_theorem

FIGURE 2 | Abstract algebraic expressions as physical geometric puzzles
[adapted from Wang (2009)]. (A) Let the areas of, respectively, the dark-gray,
black, and white-framed squares be a2, b2, and c2. By placing the triangular
parts of the dark-colored squares that fall outside the white frame onto the
light-colored triangles inside it, the dark-colored squares exactly cover the
area of the white-framed square. That is, a2+b2 = c2 (the Pythagorean
theorem). (B) On the left, a dark square is shown that just fits inside a
dark-colored triangle. Task: Find the length x of one of the sides of the dark
square. Solution: Next to the triangle and square (shown in dark colors) add a
copy of it (shown in light colors) so that a rectangle emerges with area ab.
Rearrange the pieces (shown on the right) so that another rectangle emerges
with area (a+b)x. Compare the rectangle on the left with the one on the right
and note that ab = (a+b)x and thus that x = ab/(a+b).

to symbolic math by offering them something in between. Yet
more importantly, as a coherent system of mathematics in its
own right, iconic mathematics also has the potential to become a
valid alternative to symbolic mathematics. As we shall see shortly,
doing iconic mathematics resembles performing calculations on
an abacus. In the West, this age-old tool has all but fallen out
of use. In the East, however, it continues to be popular in math
education, and as shown in the last section, it has even been
found to improve the mathematical performance of students with
a severe numerical disability (dyscalculia). As a kind of extension
of the abacus, iconic math thus offers hope for those who struggle
with symbolic math.

MAIN CONCEPTUAL ANALYSIS: NUTS
AND BOLTS

Iconic Addition and Subtraction
The mathematics we currently have is more abstract, and less user
friendly, than it needs to be. The trouble starts with something
even more basic than its axioms: its digits. The problem is that
the digits of symbolic math offer no clue to either the meaning
of the numbers they represent, the interrelationships between
these numbers, or the use of these numbers in calculations. For
example, none of the tokens used in “3 + 4” suggest in any
way that the end result should be “7.” To be able to see that it
should, we need to translate the abstract tokens into something
more concrete. In fact, in the absence of anything to hold on
to, young children and dyscalculics often try to relate abstract

Frontiers in Psychology | www.frontiersin.org 3 June 2022 | Volume 13 | Article 890362493494

https://en.wikipedia.org/wiki/Pythagorean_theorem
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-890362 June 6, 2022 Time: 16:50 # 4

Kramer Iconic Mathematics

FIGURE 3 | Iconic number representation. Ordinary symbolic numbers are
shown along with their iconic translations based on dot tally-marks. Of the
mighty-dice translations, all four columns are shown; of the depth-value ones,
only the first three. The three rows underneath the main table show symbolic
numbers, corresponding iconic numbers, and corresponding iconic numbers
that have been adjusted for readability. In the latter, two nested pairs of
brackets are replaced by just one pair of thick ones. The might-dice and
thin-fat notations, henceforth together referred to as the “black-and-white
notation,” have been developed for easy reading; for easy writing of this
notation, ideally some kind of an app would be developed.

digits to the physical ones of their hands (Geary, 2011; Kucian
and von Aster, 2015; Tran et al., 2017). Soon they run out of
hands and fingers, and thus out of answers. Engaging additional
body parts, New Guinean Yupno men count up to 33—a number
represented by the penis and referred to as such (Lancy, 1983; see
also Butterworth, 1999; Mareschal et al., 2013). Yupno women,
reportedly, do not count in public. It is clear, in any case, that the
body-parts system inevitably runs up against its limits.

To represent numbers, a more intuitive alternative to the use
of digits, and a more practical one to that of body parts, is
the use of tally marks—typically bars or dots (Bricken, 2019a;
see also Schwenk et al., 2017). Adopting Kauffman’s (1995)
“depth-value notation,” Bricken and James use collections of
aligned or unaligned dots (Figure 3). To render them more
ergonomic and almost as concise as digits, I organize these dots
within the standard configurations of what I call “mighty dice,”
which are like ordinary dice but can represent the numbers 1−9
rather than merely 1−6 (Figure 3; Krajcsi et al., 2013). Because
symbolic digits are abstract, and their meanings established
only by convention, their numeric value (cardinality) must be
retrieved from memory. Numbers in the mighty-dice notation,
instead, can be read in three different ways. First, one can retrieve
their cardinality from memory by recognizing the conventional
configurations of the dots. Second, one can subitize the dots
(enumerate them at a single glance with near-perfect accuracy;
Anobile et al., 2019; Liu et al., 2020; Decarli et al., 2021),
which is facilitated by the dice-like configurations (Krajcsi et al.,
2013; Jansen et al., 2014; Katzin et al., 2019). And third, one
can count the dots, which requires more than a single glance
but is nonetheless considerably easier and faster when the
dots are configured like either dice (Jansen et al., 2014) or
mighty dice (Krajcsi et al., 2013; see also Piazza et al., 2002;
Ashkenazi et al., 2013).

Bricken and James represent negative numbers by enclosing
them between angle brackets (Figure 3). Yet, black and white are
intuitively seen as opposites, and across cultures, perhaps because
we are a diurnal rather than nocturnal species, the particularly
dark color of black tends to be perceived more negatively than
the particularly light color of white (Jonauskaite et al., 2020).
Logically, emotional negativity is unrelated to mathematical
negativity. Psychologically, however, the former can be exploited
as a mnemonic device for the latter. I thus represent positive
mighty-dice numbers in black on white, with white as the
dominant color, and negative ones in white on black, with black as
the dominant color

2
. This representation, which also happens to

be more concise than the original one, I call the “black-and-white
notation.”

The depth-value system Bricken and James rely on resembles
an abacus—an apparatus that deals with numbers in a particularly
concrete and tangible way (Figure 4). The abacus features several
rungs of beads, and the higher the rung the larger the numbers it
represents. This is fairly intuitive, as high and large go together
psychologically in a way that high and small or low and large
do not—they have the same polarity (Proctor and Cho, 2006).
By arbitrary convention still, ten beads on the abacus’s lower
rung can be traded in for exactly one bead with a value of 10 on
its next higher rung, ten beads with each a value of 10 can be
traded in for one with a value of 100 on the next higher rung,
and so on. In both the depth-value and mighty-dice systems,
the rungs are replaced with “containers” (here pairs of enclosing
round brackets). Like big fish tend to eat smaller ones but not
the other way around, containers representing larger numbers
can encompass containers representing smaller ones but not the
other way around. And like in the case of the abacus, ten dots can
be traded in for exactly one dot with a value of 10 in a container,
ten dots in containers with each a value of 10 can be traded in
for one dot with a value of 100 in a container nested within
a container, and so on (Figure 4). The numeric value of dots
thus increases with the depth of their nesting within containers.
The use of the abacus, and of the depth-value and mighty-dice
systems, is only partially intuitive and partially still depends on
arbitrary conventions. Importantly, however, by appropriately
shifting beads from one side to the other on the abacus’s various
rungs, addition and subtraction become transparent mechanical
processes before our eyes rather than opaque mysterious ones
inside our heads. And, by shifting dots in and out of containers,
much the same can be achieved in the depth-value and mighty-
dice systems.

In the latter two systems, more specifically, addition and
subtraction consist of putting numbers together and rewriting
them to obtain as few numbers as possible (typically just one),
each containing as few dots as possible (Figure 5; see also
Kauffman, 1995; Bricken, 2019a). Provided standard notation
is respected (Figure 3), the dots can be moved, binned (put
into containers), and unbinned (taken out of containers), and
matching pairs of white and black elements can be eliminated

2
Perceptually, the surface of the mighty-dice extends behind their dots (a process

called amodal completion); the color of this surface thus dominates that of the dots,
even in the case of the numbers 9 and−9.
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FIGURE 4 | Iconic and abacus number representation. (A) Representation of the number 10 with ten beads shifted to the right on the abacus’s lower rung (left) or,
equivalently, with one bead with a value of 10 shifted to the right on its next higher rung (right). (B) A similar representation in depth-value notation with ten beads
(left) or, equivalently, one bead with a value of 10 in a container (right). (C) A similar representation in black-and-white notation. (D) Representation of the number 100
with ten beads with a value of 10 shifted to the right on the abacus’s second rung (left) or, equivalently, with one bead with a value of 100 shifted to the right on its
next higher rung (right). (E,F) Similar representations in the depth-value and black-and-white notations.

(Figure 5). There is no zero in iconic mathematics; the zero is
replaced with literally nothing. When clarity demands some kind
of token, in the depth-value notation one can use an empty space
between a pair of angle brackets: the negative of nothing is still
nothing, just like−0 = 0. In the black-and-white notation, I use an
empty black die instead. For anyone unaccustomed to it, dealing
with iconic digits and iconic addition and subtraction may at first
be a challenge. Yet consider how it compares to learning symbolic
digits and symbolic addition and subtraction for the first time.

Iconic Arithmetic and Algebra
The abacus can handle not only addition and subtraction but
also multiplication and division. I will not go into details here
but instead lay out a system that reminds one again of the
abacus, with its rungs replaced by containers. Unlike the abacus,
this system can not only handle arithmetic (with numbers) but
also algebra (with at least one variable instead of a number).
This James algebra (James, 1993; Bricken, 2019a,b, 2021) features
negation, addition, subtraction, exponentiation, and taking
logarithms but has no need for explicit multiplication or division.

Multiplication of natural numbers is effectively a shorthand
for repeated addition. Starting from 0, for example, adding 10
three times (10 × 3 = 30), or 3 ten times (3 × 10 = 30),
gives us 0+10+10+10 = 30 or 0+3+3+3+3+3+3+3+3+3+3 = 30.
The inverse of multiplication is division, and division of
natural numbers is effectively a shorthand for repeated

subtraction
3
. Starting from 30, subtracting 10 three times

(30/10 = 3), or 3 ten times (30/3 = 10), gets us back to
30−10−10−10 = 0 or 30−3−3−3−3−3−3−3−3−3−3 = 0.
Exponentiation can function as a shorthand for repeated
multiplication—a multiplication by itself of a number (the
“base”), repeated as many times as indicated by a another number
(its “power”). Starting from 1, for example, multiplying by 10
three times gives us 1 × 10 × 10 × 10 = 103 = 1000, with 10
representing the base of 103 and the superscript 3 its power. The
inverse of raising a base to a certain power is taking the logarithm
of its outcome: log10(1000) = log10(103) = 3, with 3 representing
the logarithm in log10(1000) = 3 and the subscript 10 its base. If
the power is not larger than 1 but between 0 and 1, exponentiation
can function as a shorthand for repeated division. Starting from
1000, dividing by 10 (10001/3 = 10) three times (log10(1000) = 3)
gets us back to ((1000/10)/10)/10 = 1. This kind of exponentiation
is also called to taking roots and 10001/3

=
3√1000 = 10.

Note that 1 × 10 × 10 × 10 = 1000 can be written
as 100

× 101
× 101

× 101 = 103 and also, without
using any multiplication, as 100+1+1+1 = 103. Likewise,
((1000/10)/10)/10 = 1 can be written as ((103/101)/101)/101 = 100

and also, without using any division, as 103−1−1−1 = 100. Log10

3
Multiplication of fractions (numbers divided by other numbers) represents a

mix of repeated addition and subtraction. For example: 2
3 ×

9
3 =

2×9
3×3 =

9+9
3+3+3 =

18
9 = 2 because, to get to zero, one can subtract 9 from 18 twice.
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FIGURE 5 | Iconic addition and subtraction. (A) Provides the rules, whereby the first rule on the right can be derived from the first two rules on the left. (B–E) Shows
examples of iconic addition and subtraction with—based on the provided rules—a justification for each next step in a calculation (left), the calculation-step itself
(middle), and a symbolic interpretation (right). Note the following: First, the brackets that enclose a number need not be adjacent to this number. For instance, in the
432+281-example, the 4 of 432 is enclosed between two pairs of brackets even though the right-most bracket of one of these two pairs appears immediately to the
right of the 3 and not the 4. The 3 itself is enclosed by one pair of brackets. Second, the order of iconic digits (mighty dice) within an iconic number is free and space
between these digits optional, like in the final two examples. Third, in the end, just for readability, dots are binned, shifted to the right as much as standard notation
allows, and compacted. Fourth, the iconic representation of a number and of an addition can coincide. For instance, in the 9+7-example, the iconic notations of
10+6 and of 16 are identical.

is often abbreviated to log, and so, log(10) = 1, log(100) = 2,
and log(10 × 100) = log(1000) = 3. What this means is that
100 × 10 can be rewritten as 10log(100 × 10), which equals
10log(1000) and thus 103. Yet, importantly, using addition
rather than multiplication, 100 × 10 can also be rewritten as
10log(100)+log(10), which equals 102+1 and thus also 103. Likewise,
100/10 can be rewritten as 10log(100/10), which equals 101. Yet,
importantly, using subtraction rather than division, it can also
be rewritten as 10log(100)−log(10), which equals 102−1 and thus

also 101. In fact, powers and logarithms can transform any
multiplication or division into an addition or subtraction. So, to
avoid bringing more operators into play than necessary, James
algebra uses the iconic equivalents of powers and logarithms but
no equivalents of multiplication or division.

In symbolic mathematical notation, the interrelationships
between mathematical operations are not very apparent and must
be learned and stored in memory. Instead of a letter string like
“log” for logarithm or seemingly unrelated tiny superscript to
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A

B

C

FIGURE 6 | Definitions. In black on white (left), symbolic operations are shown
with their James-algebraic translations. In black or white on gray (right),
equivalent symbolic operations are shown with their full black-and-white
translations and shorthand versions. These shorthands are merely a
convenience and can at any time be replaced by their full versions. (A) Basic
operations. (B) Some operations derived from the basic ones. (C) Equivalent
fat notations of the exponent of an exponent of A and the logarithm of a
logarithm of A (white), as well as their negative versions (black). The logarithms
and exponents are assumed to have the same arbitrary base B. Lacking a
better alternative, variables are still represented by letters.

express the power of a number, James algebra expresses the power
or logarithm of a number by putting it into one or another
container. This is a rather arbitrary choice, but containers do have
the advantage of being concrete and easy to picture rather than
abstract and further removed from sensory experience (Figure 6,
right; Bricken, 2019a). Indeed, one could in principle use physical
containers (and physical mighty dice) instead of their depictions;
this might be an especially good idea to let very young children
get the hang of their use (Hutto et al., 2015; Tran et al., 2017).
Bricken presents various alternatives to containers, including
blocks, nodes in networks, and even entire rooms. These can
all be turned into physical objects, concrete electronic devices,
or immersive virtual-reality worlds. For writing convenience,
Bricken most often simply uses pairs of brackets that are merely
suggestive of containers. A pair of square brackets, for example,
serve as a logarithm operator, a pair of round ones as a power
operator (Supplementary Figure 1). Note, however, that round
brackets also appear, with a different meaning, in the depth-value
notation of numbers (Figure 3). To allow an unambiguous use of
the depth-value notation within James algebra, and also to reduce
container nesting and enhance readability, I therefore propose an
alternative notation that extends the previous section’s black-and-
white one.

The extended black-and-white system relies on two
independent binary operators (Figure 6; for an alternative
notation, see Supplementary Figure 1). One is a container
operator that either takes the logarithm of a number (by putting
this number into an upright container) or raises it to a power
(by putting it into an upside-down container). The other is
a contrast operator that gives a number a value that is either
positive (light) or negative (dark). If color can be used, upright
containers could, instead of black or white, be yellow or blue
(easily distinguished by almost all colorblind people). This
would enhance the perceptual difference between upright and
upside-down containers and thereby improve readability (see
Supplementary Figures 3, 4). Alternatively, hue could also be an
interesting option for exploitation as a third operator, should one
be desired. In this case, the same container could concurrently
express three different operators with its orientation (upright vs.
upside down), contrast (light vs. dark), and hue (yellow vs. blue,
whereby brown counts as dark yellow).

I will assume that numbers only exist in combination with
their operators, just like −1, as a negative number, cannot exist
without the negation operator and 1/2, as a rational number, not
without the division operator. Because the container operator
is assumed to be binary (as simple as possible and easy to
implement in electronic devices), it can only take a logarithm or
raise a number to a power, it cannot in addition leave a number
unmodified. Yet taking the logarithm of a number (by putting
the number into an upright container), and raising the result to a
power (by putting the upright container with its content into an
upside-down container), gives us something equivalent to A. For
convenience and for short, I will label this A-equivalent simply
“A” (Figure 6, “shorthand”-column). Conversely, first raising a
number to a power and then taking the logarithm of the result
also gives us something equivalent to A, which I will therefore
also label “A.”

In this line of thought, the mighty-dice numbers should all be
considered shorthands. In fact, it is possible to even define the
number 1 as an empty upside-down white container (Figure 7;
see also Bricken, 2019a); its equivalent in symbolic terms is
B0, which—regardless of the value of B—equals 1. Similarly,
considering that the logarithm of smaller-and-smaller positive
numbers approaches negative infinity, one can define −∞ as a
completely empty white upright container and∞ as a completely
empty black upright container (see also Bricken, 2019a).

The contrast operator only affects the outer container of a
number or mathematical expression, not the container’s contents.
This procedure avoids confounding numbers and expressions
that need to be distinguished, like for example −A and – –A
(Figure 6). Note that, in the black-and-white notation, iconic
A and iconic –A differ only in contrast, not in container
type; and iconic BA and iconic log(A) only in container type,
not in contrast. This demonstrates the independence of the
contrast and container operators. In principle, instead of two, just
one operator would suffice—an operator that “marks” a single,
fundamental distinction between yin and yang, so to speak,
between something and nothing, contained and uncontained,
black and white, and—in electronic devices—on and off
(Spencer-Brown, 1969; see also Kauffman and Varela, 1980;
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FIGURE 7 | Iconic math’s axioms and a few iconic theorems. (A) The axioms of James algebra (slightly altered) shown in black-and-white notation (left) and
accompanied by a symbolic interpretation (right). The first line says that 1+1>1, which means 1+1 adds up to more than 1 (namely, 2). It follows that 1+1+1 adds up
to even more (namely, 3) and so on. (B) Iconic theorems and additional ones added by me myself, derived from the iconic axioms shown in (A) and accompanied by
symbolic interpretations. In the last additional iconic theorem, an A with a dot as a subscript should be read as A1, meaning the first copy of A, and An and Am as the
nth and mth copies of A. Intervening dots stand for intervening copies of A. So, the theorem shows n copies of A in the first upright container and m copies of A in
the second one.

Kauffman, 1995; Bricken, 2019a,b, 2021). However, reducing
operator types tends to come at the price of more container
nesting or otherwise reduced readability (Bricken, 2019b,
Chapter 20.5). For this reason, I will stick to a two-operator
system here (see also Kauffman, 1995; Bricken, 2019b). All
permissible transformations of iconic mathematical expressions,
as well as the meaning of addition, are spelled out in the
axioms and theorems provided in Figure 7 (for a proof of
the last additional theorem, see Supplementary Figure 2).
The application of these axioms and theorems is illustrated
with basic arithmetic examples in Figures 8–10 and with an
algebraic example in Figure 10C (for another example, see
Supplementary Figure 2).

Although James algebra does not use multiplication or
division in any explicit way, its iconic power-and-logarithm
equivalents of these operations are nonetheless easily interpreted
in terms of multiplication and division. For example, two or
more white upright containers nested within one white upside-
down container represent a multiplication (see the 4× 2-example
in Figure 8). These white upright containers can also be seen
as the numerator of a division in which any black upright
containers take the role of denominators (see the rest of Figure 8).
Iconic formulations, unlike symbolic ones, are thus often easy to
interpret in multiple, mathematically equivalent ways, bringing
more clearly to the fore the interrelationships between these
different interpretations (Figures 8–10).

Powers and logarithms in James algebra differ a little from
those most used in symbolic mathematics. In Bx and logB(x),

B is the base of these expressions. It so happens, however, that
expressions like these can always be rewritten in a form in which
the base can have any arbitrary value rather than just a single
specific one. For example, log4(16) = logB(16)/logB(4) regardless
of the value of B. To keep things simple, James algebra therefore
only uses “base-free” expressions in which, for example, log4(16)
is replaced—without ever mentioning any base—with an iconic
equivalent of logB(16)/logB(4) that does not use explicit division
(Figure 9C; see also Figure 10C).

All beginnings are a challenge, and already familiar symbolic
mathematics will, of course, be easier than as yet unfamiliar iconic
mathematics. To compare them fairly, therefore, put yourself in
the shoes of someone to whom both are new. Imagine you know
nothing and have to start from scratch.

Iconic Imaginary Numbers and
Trigonometry
James algebra can deal not only with mundane topics but also
with exotic ones that might seem more challenging to bring
down to earth. For example, due to their particular graphical
nature, iconic mathematical expressions can sometimes look
a bit like modernistic paintings. It is symbolic mathematics,
however, that produced a gravity-defying equation that many
consider conceptual art: eiπ + 1 = 0 (Euler’s identity). The
formula relates to one another no fewer than five mysterious
numbers. The first two are 0 and 1, which have rather unusual
properties (Bricken, 2019b, 2021). The next two are e and π, two

Frontiers in Psychology | www.frontiersin.org 8 June 2022 | Volume 13 | Article 890362498499

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-890362 June 6, 2022 Time: 16:50 # 9

Kramer Iconic Mathematics

FIGURE 8 | Iconic multiplication and division. (A–D) Show examples with, based on Figure 7 axioms and theorems, the justification of each next step toward a
problem’s solution (left), the step itself (middle), and a symbolic interpretation (to avoid excessive clutter, the last example has only a few, key symbolic
interpretations). The last example shows how to deal with relatively large numbers and with a division’s irreducible remainder. All logarithms and exponents are
assumed to have the same arbitrary base.

numbers that, by definition, are impossible to express as rational
ones, and are thus considered irrational, and that cannot even
be described with elaborate algebraic operations and are thus
also considered transcendental. The letter e stands for “Euler’s
number” (the base of the “natural” logarithm, discovered by
Bernoulli rather than Euler) and the Greek letter π for the ratio
of a circle’s perimeter to its diameter. The fifth number is i,
an imaginary number defined as i =

√
–1. Because i2 = −1,

the number i is an imaginary solution to such equations as
x2 + 1 = 0.

A less well-known imaginary number that is also associated
with Euler’s identity is J, defined as J = log(–1). Defying common
sense, J turns out to be a nonzero solution of the equation
x + x = 0. Substituting x with J, the equation becomes J +
J = log(–1) + log(–1) = log(–1 × –1) = log(1) = 0 (for an iconic
proof, see Figure 10; see also Bricken, 2021). Thus, although J
is nonzero and therefore certainly counts for something, two Js
together add up to nothing (in iconic math) or zero (in symbolic
math). Adding two Js together is like going around a circle 180◦
(something) and then another 180◦ (something) to get back to
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FIGURE 9 | Iconic exponentiation and taking iconic logarithms and roots. (A–D) Show examples with, based on Figure 7 axioms and theorems, the justification of
each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (right). In the first example, the logarithm’s base has been left
unspecified and the final result cannot be computed. In the third, a base has been specified in the symbolic version, and a base-free equivalent of it in the iconic
version; now the final result can be computed.

0◦ (nothing) or like taking a step toward a mirror and then
an imaginary step into the mirror, which reflects you back to
where you came from—square zero (Bricken, 2021). Although

two Js add up to nothing, J can nonetheless function as the very
cornerstone of arithmetic, as all other numbers can be derived
from it, in particular those that are candidate foundational
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FIGURE 10 | Imaginary number J. (A) An iconic proof of the fact that x = J is a solution of the equation x + x = 0, with, based on Figure 7 axioms and theorems, the
justification of each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (right). (B) An iconic definition of J and iconic
definitions, exclusively in terms of J, of the other candidate foundational numbers: –1, 0, 1, and i. (C) An iconic proof of the fact that x = JB solves the equation Bx +
1 = 0, with B being any arbitrary base, which for example can be e. Note that mixing real and imaginary numbers is subject to restrictions (Bricken, 2021), and to
prevent inconsistencies, the last axiom in Figure 7 is not used here.

numbers themselves (Figure 10B; Bricken, 2021). Importantly,
just like log2(–1) solves the equation 2x + 1 = 0 and log3(–1)
the equation 3x + 1 = 0, loge(–1) solves the equation ex + 1 = 0.
This means that eiπ + 1 = 0 (Euler’s identity) is a special case of
Bx + 1 = 0, popping up when B = e and x = Je = loge(–1) = iπ
(for iconic representations of i, J, and JB see Figure 10; for iconic
representations of i, π, e, and Euler’s identity, see Bricken, 2021).

Euler’s identity is better known as a special case of not Bx +
1 = 0 but Euler’s equation: eiα = cos(α) + i sin(α), emerging when
α = π. Euler’s equation implies that all three of the fundamental
functions of trigonometry can be expressed as exponential ones
instead: cos(α) = (eiα + e−iα)/2, sin(α) = (eiα

− e−iα)/2i,
tan(α) = sin(α)/cos(α). This, in turn, means that James algebra
needs no other tools than those already discussed to be able
to deal with trigonometry (Bricken, 2021). Very little extra is

needed, in fact, to allow it to handle differential calculus as well
(Bricken, 2021). This goes to show that there is no reason to
dismiss out of hand the idea that, in principle, all of mathematics
can be iconized.

BENEFICIARIES: HYPERCALCULICS
VERSUS DYSCALCULICS

Now that the background and nuts and bolts of iconic
mathematics have been laid out, the question arises who stands
to benefit from this alternative, more concrete, more grounded
system of mathematics. Who needs it and why? I lay out
how a comparison between the broader psychological profiles
of hypercalculics and dyscalculics suggests that the people
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traditional mathematics leaves behind tend to have a problem
that, compared to symbolic mathematics, iconic mathematics is
better equipped to handle.

The Problem
Intriguingly, whereas some intellectually disabled “savants” can
effortlessly perform extraordinary calculations off the top of their
heads (Treffert and Christensen, 2005; Baron-Cohen et al., 2007;
Bor et al., 2007; Crespi and Badcock, 2008; Badcock, 2009, 2019;
Heavey et al., 2012; van Leeuwen et al., 2020), quite a few properly
schooled and otherwise intelligent people can hardly manage
any math at all. About 3–6% of otherwise normal children, for
example, are afflicted with dyscalculia and have unusually poor
numerical skills (Dehaene, 2011; Kucian and von Aster, 2015;
Butterworth, 2019; see also Kaufmann et al., 2013). Dyscalculics
find it difficult to estimate quantities, understand what numbers
mean, and perform basic calculations (Kucian and von Aster,
2015). Children with mathematical learning disabilities, who may
have dyscalculia, run into trouble in telling ways (Geary, 2011).
To solve the equation 5 + 3 = ?, for example, one can count
five times “1, 2, 3, 4, and 5” and then three more times: “6, 7,
and 8.” This method tends to be preferred by the least talented
children. A quicker method lets one start from 5 right away
and then count only “6, 7, and 8.” Unlike most of their peers,
however, some children undercount with “5, 6, and 7.” Others,
trying to subtract a larger number from a smaller one, arrive
at 83−44 = 41, subtracting 4 from 8 but 3 from 4 rather than
the converse, or they misunderstand “borrowing” and arrive at
92−14 = 88 rather than 78.

The Proximate Cause
The problems of dyscalculics appear related to temporary or
permanent weaknesses in one or more cognitive or perceptual
domains (and deficits in associated brain regions; Dehaene, 2011;
Geary, 2011; Kaufmann et al., 2013; Kucian and von Aster,
2015; Rapin, 2016; Menon and Chang, 2021). The problems
concern visual-spatial ability, hence numerical representation;
working memory and attention, hence mathematical reasoning
and the maintenance and manipulation of quantities (see also
Friso-Van den Bos et al., 2013); semantic memory, hence the
storage of mathematical facts; and procedural memory, hence
the acquisition of mathematical skills, as opposed to knowledge
(see also Ullman et al., 2020). Some doubt has even been cast
on ordinary people’s mnemonic abilities. At remembering briefly
presented symbolic numbers, in fact, most of us are far worse
than a well-trained chimpanzee (Matsuzawa, 2009; to take the
test, search “chimpanzee memory” on YouTube). Of note, in any
case, is that there is substantial comorbidity between dyscalculia
and other disorders, in particular dyslexia—delayed and deficient
reading despite an otherwise normal cognitive ability (Geary,
2011; Butterworth and Kovas, 2013; Kucian and von Aster, 2015;
Ullman et al., 2020).

The talents of hypercalculics are accompanied by a mirror
opposite psychological profile to that of dyscalculics. Kim Peek,
for example, who inspired the movie “Rain man,” was able to
tell within seconds the day of the week on which people were
born (superior calculation skill) and remember the contents

of more than 9,000 books (superior memory), which he read
at a speed of about 9 s per page (hyperlexia: high-speed and
precocious reading) (Treffert and Christensen, 2005; Badcock,
2009, 2019; see also Heavey et al., 2012). In contrast, he had
poor communication skills, was socially inept, and could not live
without his father’s constant help (Treffert and Christensen, 2005;
Badcock, 2009, 2019).

Much better adjusted to society, but like most hypercalculics
diagnosed with autism (although only in its mild form of
Asperger’s) is the savant Daniel Tammet (Baron-Cohen et al.,
2007; Bor et al., 2007; Badcock, 2009, 2019; van Leeuwen
et al., 2020; see also the BBC documentary “The boy with the
incredible brain”). Tammet can learn a new language in a week,
perform complex mental calculations in seconds, and recite
22,514 decimals of the number π. To Tammet, abstract numbers
are not really abstract; they evoke in him percepts of concrete
shapes—a form of synesthesia (sensory experience unprovoked
by commensurate sensory input), which is a condition associated
with autism (Baron-Cohen et al., 2007; van Leeuwen et al., 2020,
2021). According to Tammet, it is the phantom number-shapes he
sees that help him pull off his startling numerical feats. Whether
other hypercalculics also visualize abstract numbers in concrete
ways is currently unknown but several studies confirm that
synesthesia does influence the processing of not only concrete
numerosities but also abstract numbers (for a brief review, see
Gertner et al., 2013).

The Ultimate Cause
According to the diametric theory of genomic imprinting,
people’s mental strengths and weaknesses are shaped by a
tug of war between their parents (see Bressan and Kramer,
2021 and references therein, including especially Crespi and
Badcock, 2008; Badcock, 2009, 2019; Del Giudice et al., 2010;
Crespi, 2020; see also Úbeda, 2008; Úbeda and Gardner, 2015;
Mokkonen et al., 2018). As parents bestow their genes onto
their children, some of these genes are turned on and others
off. Remarkably, in the case of so-called imprinted genes, the
maternally and paternally inherited copies show a diametrically
opposite pattern of activation and silencing (Moore and Haig,
1991; Haig, 2010; Kotler and Haig, 2018). Genomic imprinting
likely evolved for the benefit of the individual parent rather than
their offspring (and possibly also to turn off viral DNA that is
permanently embedded within the offspring’s own DNA; Kramer
and Bressan, 2015). As it normally leaves the genes of only
one parent expressed, imprinting locally annuls the offspring’s
benefit of inheriting genes from two parents rather than just
one. Much the same is true for sex chromosomes, especially in
men (Xirocostas et al., 2020). Compared to others, imprinted
genes and sex chromosomes are indeed disproportionately
often implicated in both physical and mental disease, most
prominently in pairs of syndromes that are genetically related
but have roughly opposite physical and behavioral characteristics
(Bressan and Kramer, 2021).

Some imprinted genes promote the offspring’s consumption
of maternal resources during gestation (Moore and Haig, 1991;
Haig, 2010; Kotler and Haig, 2018) and the growth of parts of
the brain that allow one to deal with the physical environment
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(Bressan and Kramer, 2021). The paternally inherited copies
of these genes tend to be turned on and the maternally
inherited ones off. Some imprinted genes promote the growth
of parts of the brain that allow the offspring to deal with
its social environment, which also facilitates its ability to
take the mother’s directions. The maternally inherited copies
of these genes tend to be turned on and the paternally
inherited ones off. A relatively strong semantic memory for
facts (including technical ones) but weak episodic memory
for events (including social ones) tends to emerge whenever
paternal imprinting dominates; the opposite whenever maternal
imprinting does (Bressan and Kramer, 2021). A paternal
imprinting bias is associated with a tendency toward autism-
spectrum disorders, which besides autism includes hyperlexia
(Ostrolenk et al., 2017), despite that other verbal skills tend
to be poor. A maternal bias, instead, is associated with a
tendency toward psychosis-spectrum disorders, which besides
schizophrenia includes dyslexia, despite that other verbal skills
tend to be good. Dyslexia is frequently comorbid with dyscalculia
and savantism with hypercalculia. This circumstance leads one
to suspect that dyscalculia may be a psychosis-spectrum feature
and hypercalculia an autism-spectrum one. In fact, because of
its strong association with autism, savantism is frequently called
“autistic savantism.”

Even disregarding full-blown mental disorders, individuals
with just a slight tendency toward autism are more likely to
be interested in math, and to be better at it, than individuals
with a slight tendency toward psychosis (Bressan and Kramer,
2021). Among people with an autistic tendency, there are
relatively many men (Bressan, 2018) and, among those with
a psychotic tendency, relatively many women (Bressan and
Kramer, 2021). Overall, men do not outperform women in
math, but among the best performing are relatively many
men (Wang and Degol, 2017). Moreover, better math than
verbal performance predicts greater affinity with, and success
in, math and the physical sciences (Wang and Degol, 2017;
see also Su et al., 2009). Parental and societal expectations
and pressures seem important (Wang and Degol, 2017) but
the reason behind their existence is still unclear. In fact,
countries with the greatest gender equality in such things as
income, parliamentary seats, and academic enrollment (Norway,
Sweden, and Finland) do not have the highest, but the lowest,
percentage of women with college degrees in mathematics and
the physical sciences compared to other disciplines (Stoet and
Geary, 2018, 2020). What the dyscalculia and hypercalculia
research and the diametric theory together suggest, in any case,
is that math ought to be easier for the least talented among
us if it were less of a burden on reading ability and (non-
episodic) memory.

The Solution
Requiring no reading and hardly any memorization, the abacus
accommodates these needs perfectly. No wonder it has been
in continuous use for more than 4,000 years (Ifrah, 2001).
Interestingly, learning to perform mental calculations with
an imaginary, rather than a real, abacus has been associated
with functional and structural changes in visuospatial and

frontoparietal areas of the brain, with related improvements
in working and short-term memory, numerical magnitude
processing, and calculation performance (review: Wang, 2020;
recent papers: Lu et al., 2021; Zhang et al., 2021) as
well as with a reduction in dyscalculia (Lu et al., 2020).
Several studies found a greater practice effect of abacus-
based mental calculation than of additional course work in
symbolic mathematics (Wang, 2020). When they compare
which of two abacus depictions has more beads, children
trained in abacus-based mental calculation are distracted by
the beads’ positions on the abacuses’ rungs (Du et al.,
2014). These positions are task-irrelevant but do affect the
beads’ numerical value. The finding thus demonstrates that
bead arrangements can fully automatically invoke associations
with cardinality.

The abacus is ill-suited to dealing with powers and logarithms
and cannot handle algebra. As a sophisticated kind of abacus,
iconic mathematics is much more versatile; yet it can be seen as
a natural extension of the abacus and it still mimics the features
that brought the abacus success.

DISCUSSION: MAIN BENEFITS OF
ICONIC MATHEMATICS

To better understand mathematics, it can help to change one’s
perspective of it. The solution of many an algebraic problem, for
example, seems more apparent when this problem is rephrased
as an equivalent geometric one. Likewise, that nonzero numbers
can add up to zero is difficult to wrap one’s head around, until
one thinks of them as steps along a circle that bring you back
to where you came from. Iconic mathematics offers a different
perspective on math than symbolic mathematics does, and this
can be instructive for the same reason. Changing perspective also
helps keep one’s mathematical thinking flexible.

It is often said that mathematics needs to be understood
rather than learned by heart. The more exotic the math, however,
the less intuitive its axioms, and more generally, theorems
only make sense if one manages to recall their derivations,
which can be a tall order. In fact, as laid out in the previous
section, remembering abstract mathematical facts that on the
surface may seem senseless is a major challenge to those who
underperform in math. Iconic mathematics can help out by
making mathematical expressions more concrete, more intuitive,
easier to picture, or even more tangible, and thus—for all these
reasons—more memorable.

Like a game of chess or checkers, math is a rule-based game.
The rules of chess and checkers are quite arbitrary. To be able
to play, however, one need not make sense of these rules, one
merely needs to accept them, get used to them, make them second
nature. Some games are, of course, easier to learn than others,
and the game of mathematics is quite complex and requires
extensive training. Whether in a game-like simulator or for real,
flying an airplane is complex and requires extensive training too.
Yet it is understood that what suffices to avoid accidents are
neither technically perfect airplanes nor optimal pilot training;
to keep them in the air, airplanes need to be designed to respect
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their pilots’ perceptual, attentional, and cognitive limitations.
Human factors research has, in fact, greatly improved the design
of airplanes and countless other products. Yet, although the faulty
use of mathematics can certainly have disastrous consequences,
math’s ergonomic design is hardly ever questioned. We put all
our eggs in the basket of education and hope for the best. No
wonder that even for many intelligent and properly schooled
individuals, math is not a pair of wings but merely a plane
crash waiting to happen. Iconic mathematics, instead, offers
hope that we may be able to mold not only users’ brains to
the requirements of mathematics, but also mathematics to the
requirements of users’ brains.
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Heuristics (shortcut solution rules) can help adaptation to uncertainty by leading 
to sufficiently accurate decisions with little information. However, heuristics would 
fail under extreme uncertainty where information is so scarce that any heuristic 
would be  highly misleading for accuracy-seeking. Thus, under very high levels of 
uncertainty, decision-makers rely on heuristics to no avail. We  posit that eristic 
reasoning (i.e., self-serving inferences for hedonic pursuits), rather than heuristic 
reasoning, is adaptive when uncertainty is extreme, as eristic reasoning produces 
instant hedonic gratifications helpful for coping. Eristic reasoning aims at hedonic 
gains (e.g., relief from the anxiety of uncertainty) that can be pursued by self-serving 
inferences. As such, eristic reasoning does not require any information about the 
environment as it instead gets cues introspectively from bodily signals informing 
what the organism hedonically needs as shaped by individual differences. We explain 
how decision-makers can benefit from heuristic vs. eristic reasoning under different 
levels of uncertainty. As a result, by integrating the outputs of formerly published 
empirical research and our conceptual discussions pertaining to eristic reasoning, 
we conceptually criticize the fast-and-frugal heuristics approach, which implies that 
heuristics are the only means of adapting to uncertainty.

KEYWORDS

eristic, biases, hedonic goals, extreme uncertainty, self-serving beliefs

1. Introduction

Heuristics are short-cut solution rules that reduce effort and time for decision-making 
(Kahneman, 2003; Shah and Oppenheimer, 2008). Heuristics can produce biased decisions in the 
sense that decisions may be  inaccurate due to incongruencies with probability theory (e.g., 
conjunction rule; Ahmad et al., 2020; Kahneman, 2003). However, heuristics can be crucially less 
susceptible to noise and inaccuracy in an uncertain environment than complicated probabilistic 
calculations (Artinger et al., 2015; also see Hertwig and Gigerenzer, 1999). As such, the use of 
heuristics can be ecologically rational as they can lead to sufficiently accurate, quick and effective 
decisions under uncertainty (Gigerenzer, 2008). Yet, such effective uses of heuristics depend on 
sensing critical (non-compensatory) heuristic cues (i.e., cues that can be used by a heuristic), which 
can compensate for the lack of probabilistic information (Baron, 2006). Heuristic reasoning cannot 
be the only means of adapting to uncertainty, especially when uncertainty levels are so high that one 
cannot recognize heuristic cues.

The concept of heuristics is becoming like a garbage bin, as anything that cannot be explained 
by logic and probability is often attributed to heuristics (Shah and Oppenheimer, 2008). It is possible 
that people do not always adapt to uncertainty by using heuristics (Newell et al., 2003; Navarrete and 
Santamaría, 2011). Adaptation is likely to be achieved with a wide variety of strategies involving 
disparate motivations during judgement and decision-making (Tetlock, 2002). In this respect, 
we identify eristic reasoning as an adaptation strategy that functions differently than that realized 
by heuristics. In heuristic decision-making, decisions are made to satisfy desires by intelligently 
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processing the cues in the external environment. As such, the use of 
heuristics represents an intelligent strategy to deal with uncertainty, as 
heuristics are tools of intendedly rational decision-making (Simon, 
1978, 1990). By intended rationality, we  refer to the procedural 
rationality norm of Simon (1978, 1990), who suggests that a decision-
maker is intendedly rational when she follows rationality as a process 
where she strives to make a judgement based on the calculation of 
decision consequences. In comparison, in eristic decision-making, 
decisions are made by blindly following desires through self-serving 
illusory beliefs. Eristic reasoning serves purely hedonic goals that can 
be  achieved without the need to sense the heuristic cues in the 
environment. For instance, one can decide eristically by superstitions 
(Morisseau et  al., 2021) or by wishful thinking (Bhattacharya 
et al., 2018).

Particularly under extreme uncertainty, it is more adaptive to change 
the intention of reasoning and shift from intelligent and intendedly 
rational methods to irrational methods where the decision is guided by 
self-serving hedonic inferences that are shaped by individual differences. 
In this regard, a neurotic person would have different hedonic needs 
than a dopaminergic person under extreme uncertainty. A neurotic 
person is overly anxious, pessimistic and unconfident (Sharma et al., 
2014). Such a person would hedonically need anxiety-relieving and risk 
aversion. By contrast, a dopaminergic person is overly unconcerned 
about the future, optimistic and confident (Daw et  al., 2006). The 
hedonic needs of a dopaminergic person would be sensation-seeking 
and risk-seeking. Thus, people with different personalities would react 
to uncertainty in distinct ways because of their distinct hedonic needs. 
Likewise, people can respond to stress differently in their risk-taking 
depending on their level of social anxiety (Hengen and Alpers, 2021). 
Yet, except for studies on the risk-sensitivity theory that accounts for the 
varying needs of individuals (Mishra, 2014), the psychological 
interaction between individual differences and the external environment 
is often neglected in the literature on decision-making under 
uncertainty. What we suggest is that human action does not always 
follow the tenets of the computational theory of mind, where decision-
making is assumed to be  handled almost exclusively by intelligent 
calculations, as championed by Simon (1983).

Irrational eristic inferences can be  purposeful and, therefore, 
potentially adaptive, as every human action is goal-driven in some way 
or another (Mises, 1988). We posit that irrationality is adaptive for its 
eristic nature, i.e., winning-oriented thinking with disrespect for truth. 
For instance, acting on untruthful or superstitious beliefs can 
be  adaptive: such beliefs can artificially decrease the anxiety that is 
caused by uncertainty, which in turn can boost ensuing performance 
(e.g., Damisch et al., 2010; Risen, 2016). Similarly, wishful thinking (e.g., 
Seybert and Bloomfield, 2009) and non-accuracy-seeking motivated 
reasoning (e.g., Gershman, 2019) can be adaptive for providing instant 
hedonic gratification.

While people usually have multiple goals in their minds when 
making their decisions, they have to prioritize them in their decision 
(Kung and Scholer, 2021). As an intendedly rational approach, heuristics 
serve the goals that can be achieved by solving the problem at hand via 
truth-seeking. By contrast, eristically made irrational decisions serve the 
goals that can be achieved without seeking a truthful solution to the 
problem at hand. In this respect, people preferring eristic reasoning over 
heuristic reasoning prioritize immediate hedonic goals such as anxiety-
relieving, pleasure-seeking, bonding, sensation-seeking, etc., which are 
shaped by individual differences. While both heuristic and eristic 
reasoning can eventually serve hedonic goals, eristic reasoning does not 

involve the first step of the truth-seeking present in heuristic reasoning. 
As such, eristic reasoning directly targets instant hedonic gratification 
as opposed to indirect hedonic gratification that can be attained by first 
pursuing accuracy in problem-solving. For instance, smoking cigarette 
is an eristic decision to directly satisfy hedonic urges (albeit in a 
non-adaptive way). Yet, the harms of smoking would normally deter a 
person from smoking if one rationally considers the long-term hedonic 
consequences of smoking.

By introducing a novel conceptual distinction between the eristic 
nature of irrational reasoning and intendedly rational heuristic 
reasoning, we  assert that some of the eminent biases (i.e., the 
overconfidence bias, the endowment effect, status quo bias, loss aversion, 
and wishful thinking) are more attributable to eristic reasoning than 
heuristic reasoning. This is not just a matter of labelling: We posit that 
eristic reasoning and related biases are adaptive to extreme uncertainty 
by providing instant hedonic gratifications useful to cope with the 
unknown. Accordingly, our main theoretical prediction is that 
individuals are likely to rely on eristic reasoning rather than heuristic 
reasoning when the uncertainty level is high to extreme. That is to say, 
when uncertainty approaches extreme levels, accuracy-seeking becomes 
so infeasible that one needs to listen to her desires blindly as shaped by 
their personality traits.

2. Eristic vs. heuristic reasoning

The term “eristic” originates from the argumentation literature 
(Perelman, 1982; Wolf, 2010; Kurdoglu and Ateş, 2022), in which eristic 
arguments are contrasted with heuristic arguments. The literature 
suggests that eristic arguments signify reasoning to win a debate with 
disrespect for truth. Eristic arguments are purely winning-oriented and 
directly interest-seeking moves. By contrast, heuristic arguments signify 
reasoning to find a sensible and impartial solution to the problem at 
hand. For instance, judges are supposed to argue and make their 
judgements heuristically as a disinterested party, whereas lawyers are 
predicted to argue eristically to defend the interests of their clients in a 
one-sided manner. Because individuals mainly use reasoning for arguing 
(Perelman and Olbrechts-Tyteca, 1969; Mercier and Sperber, 2011; 
Mercier, 2013), the terms’ heuristic vs. eristic’ can be moved into the 
realm of individual reasoning and decision-making from the realm of 
argumentation (Kurdoglu et al., 2022; Kurdoglu and Ateş, 2022).

Eristic reasoning is initiated by myths, passions, prejudices and 
vested interests (Perelman, 1979, 1982). These factors directly respond 
to individuals’ psychological or material comfort. Heuristic reasoning is 
not blind to personal well-being either. However, heuristic reasoning 
seeks personal well-being indirectly by first aiming at “real” problem-
solving that depends on accuracy. Solving problems, in turn, can help to 
achieve well-being. By contrast, eristic reasoning directly aims at 
personal well-being by spurious inferences. For instance, myths in the 
form of superstitions are observed to be  helpful for psychological 
comfort under uncertainty (Tsang, 2011; Hamerman and Morewedge, 
2015; Risen, 2016; Walco and Risen, 2017). Myths are unfounded beliefs 
that are not backed by reliable evidence (such as conspiracy theories or 
belief in karma), while they can be  psychologically comforting or 
frightening. Similarly, passions deteriorate our capacity to decide 
impartially regarding what we are passionate about. Passions are strong 
identity-setting emotional attachments to certain activities, people, 
objects and ideas (Vallerand et al., 2003). When we are passionate about 
an activity, idea, person or object, we inherently get pleasure from it (Ho 
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et al., 2011). “Following passions” constitute an eristic shortcut in this 
respect. Prejudices, such as in-group favoritism and out-group 
derogation, are almost the opposite of passions in the sense that 
prejudices create a negative emotional distance to a person, object or 
idea (Hewstone et al., 2002). Finally, vested interests can cause people to 
sacrifice seeking accuracy to attain instant hedonic gratification. For 
instance, if a doctor is afraid of being sued for inaction, she may 
prescribe drugs without questioning their benefits for a particular case.

In comparison to eristic reasoning, heuristic reasoning is about 
finding a solution through truth-seeking in an efficient way (Shah and 
Oppenheimer, 2008). In this regard, fast-and-frugal heuristics advocated 
by Gigerenzer and his followers (e.g., Gigerenzer and Gaissmaier, 2011; 
Kruglanski and Gigerenzer, 2011; Gigerenzer et  al., 2016), such as 
recognition, fluency, take-the-best, and tallying heuristics, are obviously 
practical methods of solving a problem at hand by seeking truth 
efficiently. As such, these heuristics directly address problem-solving 
goals such as accuracy of perception or efficiency (Felin et al., 2017; 
Lieder and Griffiths, 2020).

While heuristics can indirectly help to achieve hedonic goals — after 
all, solving a problem can also make the decision-maker happy—it is the 
eristic reasoning that seeks hedonic goals in a direct way without truth-
seeking. Unlike intendedly rational heuristics or formally rational logic 
and probability, eristic reasoning produces pleasurable feelings without 
pursuing the truth in a calculative manner to resolve the problem at 
hand. For instance, if a financial analyst is searching for the best stock 
to invest in a profitable way, the financial analyst can directly aim at 
hedonic gratifications (e.g., increased sensation or reduced anxiety) by 
eristically picking a stock of a firm simply because the stock label 
includes a lucky number. However, a good heuristic solution could 
eventually make her happy as well. For instance, one could look for a 
heuristic cue (e.g., past performances of stocks) to solve the investment 
problem with profitable outcomes, which can eventually make the 
analyst happy. The issue we would like to highlight is that an eristic 
solution passes the first step of problem-solving by truth-seeking and 
directly aims at hedonic gratification.

The use of eristics mainly signifies a change in the goals of reasoning. 
In comparison to reasoning in heuristics, reasoning in eristics does not 
engage with external reality, and it does not offer intelligent solutions. 
By contrast, heuristic reasoning engages with external reality to reach 
satisficing outcomes, and it involves intelligence in problem-solving 
(e.g., intelligently ignoring part of available information). Yet, as 
we outlined above, a change in the reasoning goals implies changes in 
the prioritization of decision goals.

2.1. Eristic biases

Eristic reasoning underly various well-known biases, such as the 
overconfidence bias, the endowment effect, status quo bias, loss aversion, 
and wishful thinking. The endowment effect blinds people to their 
belongings’ real market value as people can be hedonically tied to their 
property. Similarly, loss aversion bias stems from emotional attachment 
to one’s possessions (Kahneman et al., 1991). Likewise, overconfidence 
bias indicates a tendency to hedonically overestimate one’s own skills, 
intellect and talent (Berthet, 2022). In a similar fashion, status quo bias 
represents a tendency to stick with the existing state of affairs with a 
close-minded attitude toward alternatives (Gunaydin et al., 2018). In this 
regard, these eristic biases are products of self-serving inferences, which 
are not helpful for seeking the truth for an intendedly rational 

calculation. Such biases involve self-deception and distorted reasoning 
motivations which are explicitly visible in wishful thinking.

In contrast to eristic biases, heuristic biases involve disregarding 
some part of the available information (Gigerenzer, 2008) while the aim 
is truth-seeking or an associated problem-solving goal (i.e., morality or 
efficiency). The fast-and-frugal heuristics advocated by Gigerenzer and 
his followers (e.g., Gigerenzer and Gaissmaier, 2011) involve that kind 
of bias. By contrast, the biases mentioned in the preceding paragraph 
(i.e., the overconfidence bias, the endowment effect, status quo bias, loss 
aversion, and wishful thinking), which have been studied by the 
heuristics-and-biases tradition proponents (e.g., Kahneman, 2003) have 
a different character that cannot be  associated with heuristics by 
definition. They should be instead associated with eristic reasoning, as 
explained in the preceding paragraph. However, another set of biases 
associated with the heuristics-and-biases tradition, namely, 
representativeness (using similarities to estimate probabilities), 
availability (focusing on easily recallable memories to make judgements), 
and anchoring (using a benchmark to make predictions) are still 
examples of heuristic biases as they aim at accurate decision-making, 
albeit with imprecision, while saving time and effort (Shah and 
Oppenheimer, 2008). As such, we believe that our distinction between 
eristic and heuristic biases can be helpful to alleviate the theoretical 
dispute between the heuristics-and-biases approach and the fast-and-
frugal heuristics approach as both approaches paint the heuristic 
reasoning with a broad-brush conflating heuristic reasoning with eristic 
reasoning, therefore producing a confusing theoretical debate.

2.2. Abductive calculations of heuristic 
reasoning vs. self-serving inferences of 
eristic reasoning

Contrary to the formal rationality of logic and probability, heuristics 
operate by intendedly rational abductive calculations. Abduction 
involves using deductive and inductive reasoning iteratively to produce 
the subjectively most convincing explanation from the available data in 
a pragmatic fashion (Martela, 2015). As inferences in abductive 
reasoning do not depend on mathematical or statistical calculations, 
abductive reasoning makes calculations in a subjective and imperfect 
way (Behfar and Okhuysen, 2018). By contrast, logic and probability do 
not allow abductive calculations as they rely on objective calculations 
driven by deductively built inferences. During the process of abductive 
reasoning, individuals infer conclusions from their personal knowledge 
base to make sense of the data they observe (Peirce, 1997). This is 
consistent with heuristic decision-making processes, in which the drawn 
knowledge base can be intuitions as well as inductively built experiential 
and personally or culturally learned knowledge (Denison and Xu, 2019). 
In comparison to inductive reasoning, in which generalized conclusions 
are produced from a series of observations, abductive reasoning can 
produce conclusions even from one observation by heuristically 
applying prior knowledge to a new situation (Behfar and 
Okhuysen, 2018).

In comparison to abductive calculations present in heuristic 
reasoning, eristic inferences operate in a serving inferencing manner to 
satisfy hedonic goals as shaped by individual differences. The sources of 
self-serving inferences are the hedonic needs of the individual rather 
than the heuristic cues present in the environment. Rather than relying 
on abductive calculations present in heuristic reasoning, eristic 
reasoning relies on directionally motivated cognition directed to satisfy 
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hedonic urges (e.g., Hughes and Zaki, 2015). While heuristic cues are 
processed for an intendedly rational abductive search for truth, such as 
for purposes of foraging (Bella-Fernández et al., 2021), hedonic needs 
are processed to form self-serving eristic inferences. Overall, rather than 
responding to goals associated with accuracy-seeking and problem-
solving, eristic reasoning responds to hedonic needs, which can 
be satisfied in a self-serving manner. Yet, eristic reasoning is not a foolish 
move as it can be adaptive under extreme uncertainty.

3. Extreme uncertainty and 
adaptiveness of eristic reasoning

We define extremely uncertain environments based on three 
criteria: (1) Environments that are subjectively new and thus have not 
yet been experienced or explored by the decision-maker in the past, (2) 
environments in which not just probabilistic quantitative information 
seems to be lacking but also qualitative information seems to be scarce 
for the decision-maker after a thorough information search, and (3) 
environments in which heuristic cues are either lacking at all or are very 
weak, and ultimately potentially unreliable as they are untested before 
in a similar environment. By heuristic cues, we  mean cues that are 
helpful for seeking truth and solving the problem at hand accordingly. 
For instance, for recruitment decisions in a foreign country, the 
educational background of candidates constitutes a heuristic cue. 
Similarly, in medical decisions, symptoms are often primary heuristic 
cues for diagnosis. In cases of extreme uncertainty, however, heuristic 
cues can be  absent. When heuristic cues are present, they are very 
ambiguous under extreme uncertainty. For instance, medical doctors 
may struggle to make a diagnosis after observing the symptoms. 
Extreme uncertainty can also emerge because of the volatility of the 
situation (e.g., stock market shocks, war-time conditions), rendering 
past experiences irrelevant. Similarly, it can happen because of the 
unprecedented nature of the situation (e.g., pandemic), causing many 
unknowns. In such circumstances, extreme uncertainty can be resolved 
if people can seek more information, ask around or familiarize 
themselves with the issue. Yet, this may not always be  possible or 
affordable during decision-making. As such, people may have to decide 
without an opportunity to wait for a reduction in the uncertainty levels.

The judgement and decision-making research neglects extremely 
uncertain environments, despite the fact that they can be related to 
substantial decisions, while the intendedly rational methods are 
unfeasible in such environments. For example, a patient may decide on 
a treatment whose risks are completely unknown (cf., Gigerenzer et al., 
2016). Without reliable heuristic cues, a decision for such treatment 
depends on the feeling of desperation and personality traits rather than 
an elusive realistic assessment of the treatment. Similarly, decisions 
about career changes and even long-term mating decisions can also 
be subject to extreme future uncertainties. Individual differences can 
precipitate different hedonic goals, such as sensation-seeking or anxiety-
relieving. To satisfy such hedonic goals, people can sometimes change 
their careers without much experience and reliable information about 
the new job and its future prospects. Likewise, people can choose their 
partners impulsively. Moreover, entrepreneurs and innovators may 
sometimes decide to invest in extremely uncertain endeavors because of 
their impulses stemming from their dopaminergic personalities 
(Nicolaou et al., 2021). Eristic reasoning is particularly likely to play 
some role in entrepreneurial decisions under extreme uncertainty, as 
entrepreneurs often make their investment decisions by following their 

entrepreneurial passions (Cardon et al., 2009; Mueller et al., 2017; Croce 
et al., 2020).

Although we do not face highly uncertain decision environments 
daily, they present frequently enough to be of interest. Moreover, their 
impact can be substantial for the individuals involved. Since heuristics 
would be ineffective in forming predictions about outcome performance 
in such environments, people may need to resort to eristic reasoning to 
cope with the situation, as will be  explained next. In this regard, 
illuminating what people maximize beyond outcome performance helps 
to better understand adaptive decision-making in those situations.

3.1. Eristic reasoning is adaptive under 
extreme uncertainty

We posit that while heuristic reasoning enables adaptation to 
uncertainty when uncertainty is at moderate levels, eristic reasoning is 
instead adaptive under extreme uncertainty. According to the fast-and-
frugal heuristics approach, the bias that comes with ignoring some 
relevant variables by heuristics can be advantageous under uncertainty 
because an alternative probabilistic or mathematical model comprised 
of many variables can be more fallible (Gigerenzer and Brighton, 2009). 
Gigerenzer (2008) presents the situation succinctly: When all relevant 
parameters are added to a decision-making model, predictions can 
be  highly inaccurate under uncertainty because of noise (increased 
variance when more variables are added to the model). Hence, it is 
possible to improve decision-making accuracy by being biased in the 
selection of parameters for the prediction model, as that would reduce 
the noise. This is called a variance minimization strategy. The idea is that 
total accuracy errors essentially stem from prediction biases and 
aggregate variance (Total Error = prediction biases + Aggregate Variance 
+ Unexplained Error). When fewer parameters are added to the 
prediction model under uncertainty, predictions would be biased (i.e., 
prediction biases will be high), but the total error would still decrease as 
the aggregate variance (i.e., aggregation of variance per each variable) 
will decline sharply because of having fewer parameters to vary 
(Gigerenzer and Gaissmaier, 2011).

The variance minimization strategy, which justifies the biases of 
heuristic rules, omits the potential effects of extreme uncertainty. High 
levels of uncertainty would extremely raise the effect of heuristic biases 
and make the prediction errors enormously large in comparison to any 
possible decrease in total variance gained by focusing on a few deciding 
factors. As such, under extreme uncertainty, truth-seeking will be so 
elusive that it would be ecologically more adaptive to abandon truth-
seeking completely and focus on anxiety reduction or similar hedonic 
interests by pursuing eristic reasoning. Therefore, we suggest that people 
can change their goals depending on the level of uncertainty they face 
and the utilities they drive from each goal. Accordingly, we posit that 
people can disengage from accuracy-related goals and switch to other 
goals when they particularly face higher levels of uncertainty. After such 
a switch, the solutions offered by eristic reasoning do not make sense for 
the original goal associated with truth-seeking, whereas it makes sense 
for the new hedonic goal. In this sense, objectives beyond decision 
accuracy (such as an eristic method’s potential for emotion regulation 
and stress management) might be relevant for decision-makers in such 
environments. Accordingly, we  argue that the by-products of the 
motivational processes have been neglected in the heuristic decision-
making literature (e.g., Gigerenzer and Gaissmaier, 2011), which focuses 
almost exclusively on the outcome of a decision.
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A person’s eristic method is not intendedly rational as it involves 
reasoning aiming at the satisfaction of emotional urges rather than 
calculations of consequences of an action. We also recognize that eristic 
reasoning is irrational from the perspective of theoretical rationality 
norms (cf., Audi, 2004), as eristic reasoning is not interested in the 
truthful representation of reality. Yet, eristic reasoning can 
be instrumentally justifiable as it leads to, for example, a reduction of 
anxiety and a reduction of stress in the decision process (e.g., Hengen 
and Alpers, 2021). As such, while eristic reasoning is not intendedly 
rational as it does not involve calculative reasoning, we recognize that 
eristic reasoning can be rational from the point of view of instrumental 
rationality (cf. Domeier et al., 2018) in the sense that eristic reasoning 
can be instrumental for hedonic aims. Yet, even hedonic gains such as 
emotional relief can be  more appropriately pursued by solving the 
problem at hand realistically through intendedly rational methods 
rather than by producing self-serving conclusions through eristic 
reasoning. Therefore, only under extreme uncertainty does eristic 
reasoning becomes the adaptive method by changing the intentions 
since extreme uncertainty precludes intentions of rationality. In 
comparison, under moderate uncertainty, heuristic reasoning and its 
intended rationality offer the most adaptive route as consequences can 
be calculated heuristically, thanks to the existence of reliable cues to 
assess future consequences.

On the other hand, we do not suggest that eristic reasoning and its 
biases (e.g., loss aversion, status quo bias, endowment effect) occur only 
under extreme uncertainty. Rather, we  suggest eristic reasoning is 
particularly adaptive under extreme uncertainty. As such, when extreme 
uncertainty is identified, it is possible to predict the use of eristics as an 
adaptation strategy, while eristic reasoning can also be  used 
maladaptively in different circumstances. For instance, many 
entrepreneurial decisions are marked by extreme uncertainty (Huang 
and Pearce, 2015; Packard et al., 2017; Foss, 2020). In such circumstances, 
eristic reasoning that draws on entrepreneurial passion can 
be responsible for entrepreneurial decisions (de Mol et al., 2020; Lex 
et al., 2022) rather than predictions made by heuristics. While following 
passion does not guarantee entrepreneurial success, it is justified in 
terms of adaptation when there is extreme uncertainty and a need to 
satisfy hedonic urges. As very high levels of entrepreneurial failure attest 
(Hogarth and Karelaia, 2011), many entrepreneurial endeavours are 
likely to be initiated by eristic reasoning driven by passion and other 
hedonic factors rather than by truth-seeking heuristics involving 
calculations of consequences. From an adaptation perspective, however, 
eristic submission to passion is adaptive if the decision suffers from 
extreme uncertainty. Poor consequences would not change the adaptive 
properties of eristic reasoning as its adaptiveness does not involve a 
calculation of consequences anyway.

3.2. Adaptive utility function

While Gigerenzer and his colleagues (Gigerenzer, 2008, 2018; 
Gigerenzer and Gaissmaier, 2011; Artinger et  al., 2015) extensively 
explore prediction accuracy advantages of heuristics under uncertainty, 
they neglect adaptation through eristic strategies aiming at hedonic 
goals. We would like to make our point by focusing on the adaptiveness 
of anxiety relief as a hedonic goal. Assume that an individual faces a 
problem whose resolution is important for the individual. When 
uncertainty is zero or low, there would be  no anxiety owing to 
uncertainty. In such a situation, it would be  adaptive to exploit 

intendedly rational methods (logic, probability and heuristics) rather 
than pursuing hedonic goals through eristic reasoning. Assuming that 
the applicable formally rational methods (analytical methods that 
depend on logic and probability) are not too time-consuming or 
unaffordable, the decision-maker would not resort to heuristic 
reasoning. As such, the adaptive method of decision-making under 
negligible uncertainty would be analytical methods rather than heuristic 
methods. On the other hand, when there is a considerable level of 
uncertainty, heuristics can outperform logical and probabilistic 
calculations (Gigerenzer and Brighton, 2009; Gigerenzer and Gaissmaier, 
2011). The reason is that heuristics depend on a single or a few decision-
making variables (cues), thus becoming less vulnerable to variance 
relative to logical and probabilistic calculations that take many variables 
into consideration. The elegance of heuristic decision-making is that 
salient cues are intuitively recognized by the decision-maker (Filevich 
et al., 2017). However, under extreme uncertainty, heuristics would be as 
error-prone as random guesses since the salient cues are not perceived 
by the decision-maker. Under extreme levels of uncertainty, heuristics 
become useless as predictions by heuristics would be very misleading. 
Indeed, pursuing truth in any form of rationality, in general, becomes 
meaningless, while pursuing hedonic gains through eristic reasoning 
might provide opportunities for exploration, opening up possibilities of 
serendipitous outcomes and learning, or at least reduced suffering from 
extreme uncertainty.

To demonstrate the adaptiveness of eristic reasoning, we propose an 
“adaptive utility” function comprised of the summation of two elements: 
Gains from problem-solving by accuracy seeking (gains from intended 
rationality) and hedonic gains from satisfying emotional urges such as 
anxiety relief in the face of uncertainty. Both types of gains change as a 
function of uncertainty and the chosen decision-making method. Gains 
from intended rationality decrease when the uncertainty level is 
decreased. By contrast, gains from eristically satisfying hedonic urges 
increase when the uncertainty level is increased. The adaptive utility 
function can be presented as shown below.

 
f x x M x( ) = ( ) + ( )A

where,

 x : Level of Uncertainty

 ( ) Adaptive utility:f x

A x( ) :  Gains from problem-solving by accuracy-seeking (intended 
rationality gains).

M x( ) : Gains from eristically satisfying hedonic urges (e.g., 
anxiety relief).

Figure  1 demonstrates how adaptive utility changes for each 
decision-making approach (analytical methods, heuristic methods and 
eristic methods) under different levels of uncertainty. In Figure 1, the 
x-axis represents the level of environmental uncertainty, while the y-axis 
represents the level of adaptive utility. For simplicity, linear relationships 
are assumed between uncertainty and adaptive utility for three different 
decision-making approaches. We assume that the maximum adaptive 
utility, as well as maximum loss out of any decision-making method, is 
ß in Figure 1. Per each decision-making approach, there are varying 
adaptive utility values between ß and-ß. We  assume that decision-
makers aim at satisficing levels of adaptive utility.

511512

https://doi.org/10.3389/fpsyg.2023.1004031
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Kurdoglu et al. 10.3389/fpsyg.2023.1004031

Frontiers in Psychology 06 frontiersin.org

Until the uncertainty level at point a (negligible uncertainty), analytical 
approaches yield the most adaptive choices as accuracy is easily attainable 
under low levels of uncertainty. In comparison, at an uncertainty level 
between point a and point b, heuristic methods are the ecologically 
adaptive option as the accuracy of heuristics now tends to be better than 
analytical approaches. Between point b and point c, heuristic methods 
continue to be ecologically more adaptive than eristic methods, but at point 
c, the adaptive utility of eristic and heuristic methods are equalized as 
uncertainty levels are getting high. Between points b and c, eristic methods 
become increasingly more adaptive for their hedonic gains, while analytical 
as well as heuristic methods become increasingly less adaptive for their 
reduced accuracy. This is because, at that interval of uncertainty, the gains 
attainable from hedonic pursuits (i.e., anxiety relief for this example) are 
increasing while the gains attainable by pursuing truth are decreasing, 
although heuristic methods can still outperform eristic methods in terms 
of producing larger adaptive utility as heuristics methods are still capable 
of sufficiently accurate predictions. However, further to point c, uncertainty 
becomes so extreme that it is adaptively more beneficial to pursue decision-
making by eristic methods rather than elusively pursuing truth either by 
heuristic or analytical methods.

3.3. An example from game theory

As Shafir and Tversky’s (1992) experiments of the (single-shot) 
prisoner’s dilemma game demonstrated, individuals indeed decide 
eristically under uncertainty. When playing the prisoner’s dilemma 
game, players can either compete (confess the crime) or cooperate (not 

confess the crime) with each other under the uncertainty of what the 
other player will do. (i) If both cooperate, they get a short sentence, (ii) 
if one competes and the other cooperates, only the cooperating one gets 
a long sentence, (iii) if both compete, both get a medium sentence. From 
the logical perspective, self-interested utility-maximizing players in the 
prisoner dilemma game should both compete due to comparative trade-
offs to do so under the uncertainty of the other player’s action. This 
holds true despite the fact that both players would be both better off if 
they both cooperated. Yet, as Shafir and Tversky’s experiment reported, 
37% of 444 participants cooperated against these expectations.

Shafir and Tversky (1992) interpreted the situation as wishful 
thinking (thinking that the other participant will cooperate as well) or as 
non-consequentialist evaluation (principled adherence to certain actions) 
by participants. We agree with their interpretation, but our framework 
provides a richer explanation: Some individuals engage in wishful 
thinking or give up consideration of the outcomes for adapting to 
perceived extreme uncertainty, as their eristic reasoning provides a 
hedonic relief. As we  mentioned, eristic reasoning directly aims at 
hedonic satisfaction, whereas heuristic reasoning provides hedonic 
satisfaction via problem-solving. Participants who decided to compete 
might have only perceived moderate uncertainty as they might have 
presumed that the other party was likely to compete, so they would 
become vulnerable to exploitation if they cooperated instead. Hence, such 
a problem-solving approach could be relieving for those participants who 
perceive moderate uncertainty. By contrast, the participants who decided 
to cooperate might have thought that the situation was unpredictable, 
where there was no clue about whether the other party would cooperate 
or compete. These participants who perceived extreme uncertainty might 

FIGURE 1

Adaptive utility of decision-making methods under varying uncertainty.
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have resorted to eristic reasoning as a matter of blindly following their 
desire for the better outcome (i.e., both players are cooperating) by 
wishfully thinking that the other player can cooperate just like them. It is 
in this way those participants might have eristically chosen to cooperate 
to adapt to the extreme uncertainty they perceived.

Our interpretation depends on the condition that under the certainty 
of the other player’s move, eristic reasoning cannot be the adaptive option 
as there would be  no need for a direct route to hedonic satisfaction. 
Indeed, a simple modification in the experimental study supports our 
conclusion. In the same study, Shafir and Tversky conducted the same 
experiment with a little change: uncertainty of the other player’s action was 
removed in two different scenarios. In the first scenario, participants were 
informed that the other player had competed. As expected, 97% of the 
participant chose to compete in response to the “compete” decision of the 
other player. In the second scenario, participants were informed that the 
other player was cooperating. This time, 84% of the participants acted by 
competing and therefore did not reciprocate the cooperation. Only 16% 
of the participants cooperated as an ethical reciprocation when the other 
player was known to be also cooperating. However, the 16% cooperation 
rate is much lower than the 37% cooperation rate in the original 
experimental scenario, where there is instead uncertainty about whether 
the other player is cooperating or not. In other words, when uncertainty 
is removed in the modified experiment, the participants’ cooperation rate 
unexpectedly declines. This is puzzling as one would normally expect to 
see increased cooperation rates once the other party is known to 
be cooperating as well. It seems to us that when uncertainty is removed in 
the modified experiment, individuals did not feel the need to directly 
pursue hedonic relief as they did not perceive extreme uncertainty. In that 
sense, they instead mostly focused on gains from accurate problem-
solving. This can explain why participants became unexpectedly less 
cooperative when uncertainty was removed.

Similar to the situations portrayed in the prisoner’s dilemma game, 
people face uncertainties in their relationships with others. We posit that 
just like people can use heuristic reasoning (e.g., tit for tat, using 
familiarity to choose mates) to rationally manage some of their 
interactions with other people (cf. Hertwig et al., 2013), they can also 
use eristic reasoning to irrationally manage their social relationships 
with side-taking. Such eristic reasoning can be particularly observed in 
the reasoning of football fanatics, partisan groups, and religious zealots 
who are moved by a variety of hedonic drives (e.g., Jost et al., 2003; 
Kruglanski et al., 2021).

4. Some ideas for future research

The distinctions between heuristic and eristic reasoning offer 
exciting opportunities for future research. First and foremost, future 
research can study how people are inclined to shift from using heuristics 
to eristic methods when environmental uncertainty increases. Second, 
research can identify which eristic methods are preferred under 
particular scenarios. Third, the roles of eristic reasoning in different 
domains of decision-making can be explored. For instance, exploring 
the role of eristic reasoning in moral and political decision-making can 
be  a possible direction for future research. Eristic reasoning can 
be favorable for political purposes because of its self-serving interest-
seeking nature. Yet from a normative perspective, eristic reasoning is not 
appropriate for principled decision-making that most moral 
philosophies seek in one way or another. In this respect, while adaptive 
in some circumstances, eristic methods can nevertheless lead to 

unethical consequences. As such, further research on eristics can 
be insightful for studying ethically sensitive issues in different conditions.

As an example of ethical problems, Gigerenzer (2015) mentions how 
doctors can prescribe unnecessary drugs out of fear of persecution. 
We believe that such ethically controversial actions are products of the 
eristic reasoning of doctors who are normally expected to prescribe what 
is best for the patient. Research can establish antecedents of such eristic 
moves and thereby identify potential interventions for reducing the 
application of eristics. Likewise, research on eristic reasoning can shed 
new light on biases leading to discrimination or misconduct in different 
contexts, such as hiring at the workplace. As a case of demonstration, 
we  suggest that police misconduct is also possibly related to eristic 
reasoning. For instance, in shooter-bias experiments (e.g., Johnson et al., 
2018), researchers typically present some criminal scenarios to 
participants where group-based (e.g., racial) stereotypes are the only 
available distinctive cue for a participant’s decision to shoot or not. In 
those experiments, racial stereotypes are not heuristically reliable in 
deciding on using deadly force. Thus, in the absence of any heuristic cue 
(such as the criminal history of a suspect), an extremely uncertain 
situation presents itself to participants. In such a situation, the mind may 
adaptively, though ethically controversially, think eristically and act by 
following the only available distinctive cue (e.g., race prejudices) that 
triggers self-serving conclusions. The good news is that in the presence 
of meaningful heuristic cues, most police officers are unlikely to reason 
eristically and act solely on their prejudices (Cesario, 2021). In all 
respects, research can be  useful to understand the antecedents and 
consequences of such ethically controversial uses of eristic reasoning.

At the moment, eristic reasoning can be distinguished from heuristic 
reasoning by checking for some unique nonlogical elements (i.e., 
captivating emotions, myths, unfounded prejudices, and vested interests in 
the reasoning) because these elements have nothing to do with truth-
seeking reasoning that is useful for intendedly rational calculations. 
However, since people may either refuse to accept their true reasoning 
motivations or they may be unconscious of them, we believe neuroscience 
methods can be perhaps useful in identifying eristic strategies in decision-
making (cf. Volk and Köhler, 2012; Serra, 2021). For instance, as a 
theoretical possibility, fMRI technology can be utilized to study the changes 
in the brain’s reward activity during the use of eristic reasoning vs. heuristic 
reasoning. In particular, through research designs that incorporate 
economic decision-making games, brain imagining techniques may 
identify different brain regions that can be associated with eristic and 
heuristic strategies (Sanfey et al., 2006). As such, it is theoretically possible 
to discover the neural basis of eristic reasoning. In this respect, neuroscience 
methods can be perhaps useful to have a definitive biological distinction 
between heuristic and eristic reasoning. This can be an exciting avenue to 
explore, particularly for researchers of neuroeconomics (cf. Camerer et al., 
2005; Loewenstein et al., 2008; Kable, 2011).

5. Conclusion

In this paper, we explicate a useful distinction for the psychological 
literature on adaptive decision-making as we outline how eristic reasoning 
is an adaptive alternative to heuristic reasoning under extreme uncertainty 
(Kurdoglu et al., 2022, 2023). We argue that heuristic methods are, by 
definition, intendedly rational, whereas eristic methods are not intendedly 
rational as they are employed to target hedonic goals with self-serving 
inferences. Overall, we outline how to distinguish heuristic methods from 
eristic methods, as well as how to distinguish their adaptiveness under 
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varying uncertainty levels. In this respect, we posit that the adaptiveness 
of decision-making methods should be judged by their intentions at the 
moment of decision-making and how these intentions match different 
levels of uncertainty. Under extreme uncertainties, eristics can be adaptive 
because rationality intentions could be futile under extreme uncertainty 
while acting eristically would be more adaptive for achieving hedonic 
gains precipitated by personality characteristics.

Our view enables us to identify an adaptive utility function where 
we have introduced a new component (satisfaction of hedonic urges) to 
recast the ecological rationality framework of Gigerenzer and his 
colleagues (e.g., Gigerenzer and Gaissmaier, 2011). Our adaptation 
function demonstrates that extreme environmental uncertainties can 
justify eristically made decisions. For instance, eristic decisions can 
be adaptive when there is a need to suppress the fear of death and avoid 
depression (Vail et al., 2012), such as by self-deception, in the face of 
extreme uncertainties (Perry-Smith and Mannucci, 2017), as was the case 
during the initial stages of the Covid-19 epidemic (Eden et al., 2020). Yet, 
when the level of uncertainty is not that high, it is more adaptive to adopt 
heuristic methods. Further research can empirically test our view by 
checking whether individuals indeed adjust their decision-making by 
shifting from using heuristic methods to eristic methods depending on 
the level of uncertainty they face. We believe studying eristic methods 
offers an exciting path for future research on adaptive decision-making.
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The well-documented association between fingers and numbers is not only based
on the observation that most children use their fingers for counting and initial
calculation, but also on extensive behavioral and neuro-functional evidence. In this
article, we critically review developmental studies evaluating the association between
finger sensorimotor skills (i.e., finger gnosis and fine motor skills) and numerical
abilities. In sum, reviewed studies were found to provide evidential value and indicated
that both finger gnosis and fine motor skills predict measures of counting, number
system knowledge, number magnitude processing, and calculation ability. Therefore,
specific and unique contributions of both finger gnosis and fine motor skills to the
development of numerical skills seem to be substantiated. Through critical consideration
of the reviewed evidence, we suggest that the association of finger gnosis and fine
motor skills with numerical abilities may emerge from a combination of functional and
redeployment mechanisms, in which the early use of finger-based numerical strategies
during childhood might be the developmental process by which number representations
become intertwined with the finger sensorimotor system, which carries an innate
predisposition for said association to unfold. Further research is nonetheless necessary
to clarify the causal mechanisms underlying this association.

Keywords: finger gnosis, fine motor skills, finger counting, numerical development, embodied numerosity, finger-
based numerical strategies, mathematics achievement

INTRODUCTION

Fingers and numbers seem to be inextricably associated. Almost all children across different
cultures use their fingers for counting and initial calculation (e.g., Carpenter and Moser, 1982;
Fuson and Hall, 1983; Fuson, 1988; Butterworth, 1999), and most cultures seem to develop
specific finger-based counting strategies and systems (e.g., Butterworth, 1999; Ifrah, 2000; Bender
and Beller, 2012). Even blind children use their fingers for counting and displaying numerical
magnitudes (Crollen et al., 2011). Moreover, a growing body of literature dedicates itself to
examining this association, both on a behavioral and neuro-functional level. Perhaps, one of
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the most intriguing sets of evidence among these is the well-
documented association between finger motor and sensory
abilities – that is, the capability of differentially moving and
mentally representing one’s fingers [henceforth referred to as
fine motor skills (FMS) and finger gnosis, respectively] and
basic numerical abilities in early childhood (e.g., Noël, 2005;
Grissmer et al., 2010). In this context, one study even found that
training of finger gnosis improved numerical performance in first
graders (Gracia-Bafalluy and Noël, 2008; but see Fischer, 2010).
Although many studies seem to substantiate the existence of this
association, its driving mechanisms remain largely unexplained.
Disclosing these mechanisms requires a critical evaluation of the
existing evidence on the association of fingers and numbers in
preschool age. In this article, we briefly review developmental
studies evaluating the association of finger gnosis and FMS with
basic numerical abilities in preschool age.

Early Numerical Development
The ability to reason with numbers is critical for individual
life and career prospects (Dowker, 2005; Duncan et al., 2007;
Butterworth et al., 2011; Ritchie and Bates, 2013). Importantly,
however, the foundations of numerical development are laid
long before children get in contact with formal mathematical
instruction (e.g., Siegler and Braithwaite, 2017; for a review).
Instead, they begin to unfold in early childhood when children
first learn how to count and understand the meaning of number
magnitude. These basic, early numerical abilities constitute
building blocks for more complex arithmetic and mathematical
competences in the future (e.g., Jordan et al., 2009).

Given their importance, it is unsurprising that the
development of children’s basic numerical abilities has prompted
the interest of researchers across different disciplines. The study
of children’s early understanding of number can be traced back
to Piaget (1952) constructivist theory, in which he advanced
the concept of equinumerosity (i.e., the comprehension that
the cardinality of two sets of objects are equivalent only when
their components can be paired with each other in one-to-one
correspondence) as the cornerstone of numerical understanding.

Expanding on Piaget’s theory, cognitive psychologists Gelman
and Gallistel (1978) introduced an influential view on numerical
development, which stated that the act of counting following
designated counting principles (i.e., stable order, one-to-
one correspondence, and cardinality) is already in itself
is an indication of children’s ability to represent number.
The authors further argue that the acquisition of counting
requires the construction of a bi-directional mapping system of
innate preverbal, analog magnitudes onto their corresponding
symbolic representations (Gallistel and Gelman, 1992). This
rationale is also echoed by more recent theories of early
numerical development which accentuate the importance of
acquiring the ability to map non-symbolic onto symbolic
representations of number (e.g., Siegler and Lortie-Forgues,
2014). Furthermore, as children take their initial steps into
a numerate world, they learn how to represent non-symbolic
magnitudes with increasing precision, acquire number concepts
and number words, counting procedures, and cardinality
knowledge (Geary, 2007).

However, also authors in the field of mathematics education
elaborated on children’s acquisition of counting skills as an
important milestone preceding their understanding of number.
For instance, Steffe et al. (1982) described three types of
counting in which pre-numerical children operate with either
perceptual, figural, and/or motor unit items. These procedures
differ in their degree of reliance on immediate perception
of the to-be-counted objects and are claimed to give rise to
different ways of mentally operating on numbers for problem-
solving, with counting motor unit items (i.e., by moving
fingers or other body parts) being the type with least reliance
on the material presence of counting units. Through the
acknowledgment of finger use as a sophisticated, effective
means of mentally manipulating numerical information, Steffe
et al. (1982), alongside Fuson (1982) and later followed up
by Brissiaud (1992), considered finger-based strategies in a
theoretical framework of early numerical development within the
mathematics education literature.

Fingers and Numbers
The importance of fingers for the development of early numerical
abilities is reflected in Butterworth’s (1999) claim that numerical
representations are partially supported by FMS and finger gnosis.
Moreover, finger counting has been argued to be a prototypical
instance of embodied cognition (Fischer and Brugger, 2011). This
means that numerical representations, once thought to be purely
abstract, seem to be rooted in early sensorimotor experiences
of finger counting (Moeller et al., 2012), which are assumed to
leave a lasting trace on adult number processing in turn (Di Luca
and Pesenti, 2011). The embodiment of numerical concepts and
processes has been demonstrated by numerous studies dedicated
to evaluating sensory and motor biases in adult numerical
cognition (e.g., Fischer, 2003; Andres et al., 2004; Badets et al.,
2010; Sixtus et al., 2017), as well as studies reporting influences
of finger-based numerical representations on number processing.
For instance, Domahs et al. (2008) found that second graders
tend to commit specific split-five errors (i.e., erroneous answers
deviating by ±5, and thus by one hand, from the correct result)
when solving mental arithmetic problems. Furthermore, Domahs
et al. (2010) reported significant effects of counting habits on
magnitude processing of Arabic digits, and finger movement has
been found to interfere with mental calculation even in adults
(Michaux et al., 2013; Soylu and Newman, 2016).

Beyond this behavioral evidence, results from
neurophysiological studies provide converging evidence for
an association of fingers and numbers already at the neural
level. In this context, numerous functional neuroimaging studies
indicated overlapping activation of cortical networks for number
processing and finger movement starting from childhood (e.g.,
Simon et al., 2002, 2004; Krinzinger et al., 2011; Tschentscher
et al., 2012; Berteletti and Booth, 2015) – albeit with slight
developmental differences. For instance, Kaufmann et al. (2008)
observed significantly higher activation of areas responsible
for finger-related movements in children than in adults when
processing non-symbolic numerosities in addition to areas
typically found to be involved in number magnitude processing
(i.e., the intraparietal sulcus). Moreover, Rusconi et al. (2005)
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expanded on these neuroimaging results by applying transcranial
magnetic stimulation to the left angular gyrus. They observed
this to disrupt both finger gnosis and number processing in
adults, which substantiates the assumption of a functional link
between the neural representation of fingers and numbers. This
idea is further corroborated by electrophysiological evidence
indicating increased corticospinal excitability of right-hand
muscles on a parity judgment task with small numerals (i.e.,
1–4) in participants who started counting on their right thumbs
from one to five (Andres et al., 2007). These results suggest that
hand motor circuits were activated during non-symbolic number
processing in adults (Andres et al., 2007), and this effect seems
to be modulated by individual differences in finger counting
routines (Sato et al., 2007). Taken together, these findings were
argued to be indicative of intertwined cortical representations
for numbers and fingers, which may be reminiscent of embodied
numerical strategies in childhood.

There are many ways in which the use of fingers may
functionally support the acquisition of basic numerical
abilities (and thereby engender the embodiment of numerical
representations). Considering the three levels of basic numerical
development suggested by the model of Krajewski and Schneider
(2009) (see Figure 1), the act of counting on one’s fingers may help
children get acquainted with the one-to-one correspondence
principle (Brissiaud, 1992), as well as convey the counting
principles of stable order and ordinality (Crollen et al., 2011).
Furthermore, the finger patterns depicting numerical quantities
may facilitate the acquisition of the cardinality principle
(Brissiaud, 1992) and advance the comprehension of part-whole
relations (Gattegno, 1974; Brissiaud, 1992; Krajewski and
Schneider, 2009). Additionally, fingers may also help convey a
sense of structure (Björklund et al., 2019) and hint at the base-10
structure of the number system. As previously pointed out,
these abilities are consensually regarded as fundamental for the
development of mature numerical reasoning within both the
domain of mathematics education and (cognitive) psychology
(see Figure 1).

Nevertheless, as noted by Moeller et al. (2011), the use of
fingers in support of numerical learning has been subject of
controversy among researchers in the fields of (neuro-cognitive)
psychology and mathematics education. The question of whether
fingers constitute a scaffold or rather a hinderance for numerical
development resides in the epicenter of these discussions.
Recently, the notion that finger usage is a strategy adopted
mostly by children with mathematical difficulties (e.g., Neuman,
1987) or cognitively low-performing children was challenged by
evidence showing that 6-year-old children with high working
memory capacity were more likely to use finger-based strategies
than children with low working memory capacity – with these
strategies also leading to better arithmetic performance (Dupont-
Boime and Thevenot, 2018). In conjunction with the body of
work supporting the perspective of embodied numerosity, this
finding may hint toward the need to shift attention from fingers
as putative cognitive crutches to seek a clearer understanding
of individual differences in the use of finger-based numerical
strategies, as well as likely scenarios in which finger use may be
less or more effective in dealing with numerical information.

Crucially, the successful use of finger-based strategies depends
not only on the intuition that fingers may be used as tools
for representing and computing numerical quantities, but also
largely on the ability to perform the intricate, fine-grained
movements required for counting and producing specific finger
postures. In support of this view, several studies documented
an association between FMS and finger gnosis (i.e., the ability
to move and mentally represent one’s fingers) and performance
in basic numerical abilities in early childhood (e.g., Noël, 2005;
Grissmer et al., 2010). Recently, Soylu et al. (2018) provided an
interesting review focusing largely on the role of finger gnosis for
early mathematics development and not particularly considering
FMS. Therefore, considering the influences of basic finger motor
in addition to sensory finger abilities on the development of
early numerical abilities may be a promising direction for
better understanding the almost universal appeal of fingers for
supporting learning and processing of numerical content.

In particular, the ability to mentally represent, discriminate
between, display and locate one’s fingers is most commonly
termed finger gnosis (e.g., Penner-Wilger et al., 2007; Reeve and
Humberstone, 2011). Finger gnosis has been claimed to be one
of the fundamental competences supporting the development of
numerical skills (Butterworth, 1999), and associations between
finger gnosis and numeracy have been observed in both typical
and clinical populations (e.g., developmental Gerstmann
syndrome, Gerstmann, 1940; Benson and Geschwind, 1970;
Suresh and Sebastian, 2000). Beyond finger gnosis, FMS have also
been argued to support numerical processing and development
(Butterworth, 1999). The association between academic
achievement and FMS, that is “control and coordination of the
distal musculature of the hands and fingers” (Bruininks and
Bruininks, 2005), was the subject of numerous studies over the
last decades (e.g., Keogh and Smith, 1967). Historically, FMS have
also been termed visual-motor integration, perceptual-motor
ability or psychomotor skills. The association between FMS and
numerical skills has been observed in both typically developing
children (e.g., Grissmer et al., 2010) as well as in clinical
populations with motor impairments such as cerebral palsy (e.g.,
van Rooijen et al., 2012, 2016), developmental coordination
disorder (e.g., Holsti et al., 2002; Pieters et al., 2012, 2015; Gomez
et al., 2015) and spina bifida myelomeningocele (e.g., Barnes
et al., 2005, 2011; Raghubar et al., 2015). The origin of this
association has been assumed to rely on either simultaneous
maturation, subordination of both to general intelligence (Luo
et al., 2007), more stimulating home environments corroborating
both FMS and cognitive development (McPhillips and Jordan-
Black, 2007; Suggate et al., 2017b), a functionally or culturally
driven connection (Butterworth, 1999; Fischer et al., 2017), or
FMS building the fundamental basis of cognitive development,
which has been claimed to be embodied by nature (e.g., Lakoff
and Núñez, 2000; Thelen, 2000).The emergence of the intriguing
association between fingers and numbers can be interpreted
under the light of different explanations (Penner-Wilger and
Anderson, 2013): first, according to the functionalist proposition
(Butterworth, 1999), fingers and numbers become associated
through early developmental experiences of using fingers
for counting and initial calculation. In this line of thought,
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FIGURE 1 | Schematic depiction of how fingers may support acquisition of basic numerical abilities according to influential theories of early numerical development
(Gelman and Gallistel, 1978; Brissiaud, 1992; Geary, 2007; Krajewski and Schneider, 2009). Adapted with permission from Roesch and Moeller (2015).

the use of fingers in support of early numerical reasoning
during childhood is the driving mechanism of the association
of numerical abilities with finger sensorimotor skills (i.e.,
finger gnosis and FMS). Alternatively, a second explanation to
these findings is that both finger and number representations
recruit a common neural circuitry. According to the so-called
massive redeployment view (Anderson, 2010; Penner-Wilger
and Anderson, 2013), some of the neural circuits originally
involved in finger representation may have been exapted or
re-used through evolutionary mechanisms for supporting
numerical cognition.

The key difference between these different accounts on
the observed association of fingers and numbers lies in the
relative weight attributed to the neurofunctional aspects of
this association and the direction of its causality: while the
functionalist hypothesis suggests that fingers and numbers may
become associated on a neural level through the systematic
experience of using fingers in the course of early numerical
development, the massive redeployment hypothesis posits that
the pre-existence of a shared neural substrate for fingers and
numbers drives the use of fingers for numerical reasoning.
Despite proposing diametrically different causal explanations,
both functionalist and massive redeployment propositions are
well-accepted within the literature and seem to gather similar
degrees of support from different authors without a clear
preponderance of one over the other. Therefore, to this day there
is no consensus regarding the precipitating mechanisms of the
association of fingers and numbers.

In this context, studies investigating the role of fingers
for the acquisition of preschool numerical skills offer
particularly relevant insights, as they may shed light on the
association between fingers and numbers prior to the onset

of functional strategies, that is, before (or around the time)
children start using their fingers for counting and representing
numerical magnitudes. A critical consideration of these studies’
contributions may be a promising direction to elucidate
which causal mechanisms may be responsible for shaping this
association, as well as help extricate functionalist and massive
redeployment explanations of these findings.

In this article, we review developmental studies evaluating
the association between fingers and numerical skills in typically
developing preschool children. Drawing partially (but not
exclusively) on Butterworth (1999) theoretical framework, we
will specifically focus on research targeted at FMS and finger
gnosis. After briefly elaborating on our search strategy and
describing all thereby obtained studies, we will discuss how
both variables relate to children’s numerical development, reflect
on their constraints and suggest potential directions for future
research. Finally, we discuss the scope and limitations of the
two main explanatory propositions of these findings considering
current neuro-functional evidence.

Search Strategy and Inclusion Criteria
Studies were searched up to October 2019 in PsycARTICLES
and PsycINFO. Search terms included “fingers,” “finger gnosis,”
“finger gnosia,” “finger sense,” “fine motor skills,” “finger
dexterity,” “finger tapping,” and “finger agility” in combination
with the terms “numerical skills,” “numerical development,”
“numerical cognition,” and “mathematics achievement,” filtering
the results for the age group of preschool. The search produced
543 hits on PsycINFO and PsycArticles. Titles and abstracts
of these studies were manually scanned for relevance. All
peer-reviewed articles (published in journals or conference
proceedings) focusing on the longitudinal and concurrent
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FIGURE 2 | Overview of developmental studies on the influence of fine motor skills (below the line) and finger gnosis (above the line) on numerical skills and
mathematics achievement. Co, counting; N, number knowledge; Ca, calculation; M, magnitude; Math, mathematics achievement. For simplification purposes,
children’s mean ages upon assessment of independent and outcome variables were rounded up or down in intervals of 0.5 year ranging from age 5 to 8. Medium to
large effect sizes are represented in bold typeface. Outcome variables composed of different numerical measures but expressed in one single score are given in
brackets. **Study used a predictor variable based on a composite measure of sensory-motor skills. The studies are, in order: 1. Fayol et al. (1998), 2. Long et al.
(2016), 3. Noël (2005), 4. Penner-Wilger et al. (2007), 5. Penner-Wilger et al. (2009), 6. Poltz et al. (2015), 7. Wasner et al. (2016), 8. Asakawa and Sugimura (2014),
9. Cameron et al. (2012), 10. Dinehart and Manfra (2013), 11. Fischer et al. (2017), 12. Gashaj et al. (2019), 13. Grissmer et al. (2010), 14. Kim et al. (2017), 15. Luo
et al. (2007), 16. Pagani et al. (2010), 17. Pitchford et al. (2016), 18. Son and Meisels (2006), 19. Suggate et al. (2017a). The study of Gashaj et al. (2018) was not
represented in the figure because the predicted association was indirect.

association between finger-related variables and the development
of numerical skills in preschool age through the first school years
were considered in this review. References from the relevant
studies were further inspected for additional studies to be
considered. Research articles focusing on clinical subgroups (e.g.,
children with cerebral palsy, van Rooijen et al., 2012), adults
(Penner-Wilger et al., 2014), older school-aged children (e.g.,
Carlson et al., 2013) and published in languages other than
English or German were not considered for the present review.
This resulted in a final set of 20 studies considered in this review.

RESULTS

Finger Gnosis and Numerical Abilities
In recent years, the impact of finger gnosis on typically
developing preschoolers’ numerical abilities has been investigated

following the idea that – if finger gnosis indeed constitutes a
building block for the development of numerical abilities (e.g.,
Butterworth, 1999) – better finger gnosis should be associated
with better numerical abilities.

One of the first studies to investigate this claim found
that a composite of sensory-motor measures including finger
gnosis assessed in kindergarten was a better predictor of
children’s numerical skills in first grade than a measure of
their overall cognitive development (assessed by the “Draw-a-
Person test,” Fayol et al., 1998). Similarly, Noël (2005) found that
preschoolers’ finger gnosis significantly predicted their numerical
skills, but not their reading ability, both concurrently and at
the end of first grade (see Figure 2 for an illustration of
these associations). Along with handwriting and block design,
finger gnosis explained about 46% of variance of children’s later
numerical skills (see Table 1 for more detailed information on the
respective studies).
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TABLE 1 | Overview of studies examining the association between finger gnosis and numerical skills.

References Finger variable Age
(Y;M)

N Task Control variables Numerical outcome variables1 (with
reported effect sizes)

Fayol et al. (1998)L Neuropsychological
Score2 (T1)

T1: 5;9
T2: 6;5

177 10 Trials; single and
consecutive touch;
pointing and label
naming

Lozenge and
human figure
drawing test, age
(T1)

Co: r = 0.40 (T1) N: Number writing:
r = 0.16 (T1); r = 0.27 (T2) Number
sequence: r = 0.42 (T1) Ca: Problem
solving; r = 0.40 (T1); r = 0.45 (T2) All:
r = 0.50 (T1); r = 0.46 (T2)

Long et al. (2016)C Finger gnosis 7;1 197 50 Trials; single,
consecutive and
simultaneous
touch; pointing

Age Co: Dot counting: r = 0.10 N: Symbolic
comparison: r = 0.06 Ca: r = 0.12 M:
Non-symbolic comparison: r = 0.38

Noël (2005)L Finger gnosis (T1
and T2)

T1: 6;8
T2:
7;11

41 40 Trials; single,
consecutive and
simultaneous
touch; pointing

Processing speed,
hand preference,
left–right orientation
(T1), block design,
handwriting (T2)

Co, N, Ca, M3: Numerical accuracy
score r = −0.48 (FG T1) r = −0.36 (FG
T2) Numerical speed score r = −0.30
(FG T1) r = −0.01 (FG T2)

Penner-Wilger et al.
(2007)C

Finger gnosis 6;10 146 20 Trials;
simultaneous or
consecutive touch;
pointing

Gender, receptive
vocabulary,
processing speed

N: r = 0.27 Ca: r = 0.19

Penner-Wilger et al.
(2009)L

Finger gnosis (T1) T1:
6;10
T2:

∼7;10

100 20 Trials;
simultaneous or
consecutive touch;
pointing

Gender, processing
speed, receptive
vocabulary (T1)

N: distance effect β = −0.35 (T2) M:
number line estimation linearity β = 0.27
(T2)

Poltz et al. (2015)L Finger gnosis (T1
and T2)

T1: 5;3
T2: 6;0

1,594 16 Trials; single and
simultaneous
touch; pointing

Nonverbal IQ, visual
WM, selective
attention, number
skills T1)

FG T1 Co: r = 0.26 (T1), r = 0.23 (T2)
N: r = 0.26 (T1), r = 0.18 (T2) Ca:
r = 0.33 (T1), r = 0.32 (T2) FG T2 Co:
r = 0.23 (T1), r = 0.20 (T2) N: r = 0.19
(T1), r = 0.15 (T2) Ca: r = 0.25 (T1),
r = 0.30 (T2)

Wasner et al.
(2016)C

Finger gnosis 6;5 321 21 Trials; single and
consecutive touch;
pointing and visual
recognition

Age, gender,
general cognitive
ability, verbal and
visual short-term
memory, numerical
precursor skills

Ca: Addition: r = 0.23, β = 0.14
Subtraction: r = 0.24, β = 0.13

Medium to large effect sizes (Cohen, 1988) are displayed in bold typeface. Regression coefficients were not interpreted in terms of effect size. ∼Indicates an approximate
mean age when exact means are not provided. Tests included in the p-curve analysis are underlined. L, longitudinal; C, cross-sectional. 1 In order to facilitate comparisons
between studies, we grouped the outcome variables into four different categories whenever possible (Wyschkon et al., 2015): Co, counting (i.e., forward, backward,
from x to y), N, number (e.g., number reading, symbol-magnitude mapping, cardinality, and place value), Ca, calculation (e.g., addition and subtraction), M, magnitude
(e.g., subitizing, size comparison, and magnitude judgment). Original outcome measure names as described in the studies are cited when different from category names.
2Simultagnosia, finger gnosis, digital discrimination, and graphisthesia. 3Negative association because the study used a finger agnosia score.

Building on these results, Penner-Wilger et al. (2007)
found that finger gnosis assessed in first grade significantly
predicted children’s concurrent calculation ability, although
only indirectly through number system knowledge. Expanding
on these findings longitudinally, Penner-Wilger et al. (2009)
observed that children with better finger gnosis scores in first
grade performed significantly better in a number magnitude
comparison task 1 year later (see Figure 2). Additionally,
finger gnosis significantly predicted linearity of estimates in a
number line estimation task, claimed to reflect better numerical
representations (Siegler and Booth, 2004).

Although these earlier studies seemed to corroborate an
association between finger gnosis and numerical skills, it needs
to be noted that they have important limitations which preclude
a clear understanding of this association. While some lacked an

analysis of the unique contribution of finger gnosis to numerical
skills (Fayol et al., 1998; Noël, 2005), others used a finger
gnosis task which had either a number processing or motor
confound: for instance, Fayol et al. (1998) required participants
to identify the touched finger by naming the number assigned by
the experimenter to the respective finger, whereas Noël (2005);
Penner-Wilger et al. (2007), and Long et al. (2016) asked children
to point at the touched finger (see Figure 3 for more details on
task specifics across studies; see also Guedin et al., 2018, for an
alternative paradigm of finger gnosis measurement which may be
more suited for younger children). Moreover, most studies did
not control for the influence of other important predictors of
numerical development such as general cognitive ability (Noël,
2005; Long et al., 2016) or numerical precursor skills (e.g.,
Fayol et al., 1998).
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FIGURE 3 | Response types of finger gnosis assessment paradigms in children. Beyond these differences, tasks also diverged in terms of whether or not the child’s
hands were made visible after pointing to the finger to facilitate recognition, as well as in number of trials and whether fingers were pointed at individually,
consecutively or simultaneously (or yet a combination of these stimulation modalities). *Although contralateral tapping was not present in any of the here reviewed
studies, it was adopted by other authors investigating finger gnosis, such as Newman (2016).

Attempting to tackle these issues, more recent studies found
the predictive power of finger gnosis to be weaker than previously
thought (Poltz et al., 2015; Long et al., 2016; Wasner et al., 2016).
When controlling for numerical precursor skills, nonverbal
IQ and other domain-general skills, Poltz et al. (2015) found
that 5-year-olds’ finger gnosis was a unique predictor of their
numerical skills at age six (see Figure 1), but accounted for
only a small part of variance (about 2%). In line with this,
Wasner et al. (2016) showed that finger gnosis was associated
with first graders’ addition and subtraction performance, but
again accounted for no more than 1–2% of variance when
the influence of general cognitive ability, short term memory
and numerical precursor skills (e.g., symbolic and non-symbolic
magnitude comparison) was considered (for similar results see
also Long et al., 2016).

Even though these findings seem to substantiate the
hypothesis of a parallel development of finger gnosis
and numerical abilities, it is important to note that
the correlational design of two of these studies (Long
et al., 2016; Wasner et al., 2016) does not permit causal
interpretations of their results. For instance, in the
study of Wasner et al. (2016), the fact that concurrently
assessed finger gnosis accounted for little variance on
numerical performance after controlling for numerical

precursor skills does not rule out the possibility that these
very basic numerical abilities being accounted for were
acquired with assistance of finger-based strategies in earlier
numerical development.

It is also important to acknowledge that, although most studies
followed a common parameter for the assessment of finger gnosis
(i.e., indicating the finger(s) stimulated by the experimenter;
Baron, 2004), task specifics appear to be heterogeneous in
what concerns number of trials, way of finger stimulation and
response modality (see Figure 3 and Task column in Table 1),
which may give rise to comparability issues. For instance,
although most studies used a combination of trials comprising
stimulation of one individual finger as well as consecutive
or simultaneous stimulation of two fingers, some of them
(Penner-Wilger et al., 2007, 2009) included only consecutive and
simultaneous trials, which increases task difficulty. Moreover,
while most experimental procedures allowed children to identify
the touched finger(s) by means of visual guidance, one study
(Long et al., 2016) required children to point to the touched
fingers with their hands still out of sight. Additionally, as
pointed out by Wasner et al. (2016), the internal consistency of
finger gnosis tests was mostly weak throughout studies (see also
Long et al., 2016 for a discussion of this point). Future studies
should thus aim at establishing a standard way for measuring
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FIGURE 4 | p-curve distribution for tests studying the association between finger gnosis and numerical abilities.

finger gnosis to avoid confounds and warrant comparability of
research findings.

To evaluate the evidential value of the reviewed findings, we
conducted a p-curve analysis (Simonsohn et al., 2014, 2015). This
procedure allows for accounting for publication bias and provides
an estimate of the true effect size associated with a given set of
findings. For this analysis, we selected the significant coefficients
based on the following criteria: (1) only one coefficient was
chosen from each study (see Table 1 for disclosure); (2) in case
coefficients were reported for both concurrent and longitudinal
associations, preference was given to the longitudinal test; (3) in
case more than one longitudinal coefficient was given, we opted
for the association covering the age range and/or test interval
closest to the one investigated by other studies; (4) for one study
(Wasner et al., 2016) in which test results were provided for both
addition and subtraction, we chose the result for addition due

to consistency with other studies; (5) when tests from different
studies were not independent (i.e., Penner-Wilger et al., 2007,
2009), only one of them was considered.

As evidenced by the right-skewed distribution of the p-curve
(see Figure 4), the tests entered into the analysis were considered
to provide evidential value and had high statistical power.
Therefore, the association of finger gnosis and numerical skills
seems to have evidential value and should continue to be
investigated for further clarification of underlying mechanisms.

In sum, while recent evidence endorsed the idea that finger
gnosis may uniquely predict the development of numerical
competences (see Figure 2), it also suggests that its impact
may be less conspicuous than thought initially. Although this
seems to speak against the claim that well-developed finger
gnosis at an early age may be an important advantage for future
numerical development, the questions of why and how this
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association emerges (and yet, is repeatedly evidenced) remains
unanswered. In this context, considering the influence of FMS
on numerical development might be informative to endorse or
refute a functional explanation of these findings.

Fine Motor Skills and Numerical Abilities
Most studies investigating the association between FMS and
numerical competences relied on a rather general construct of
FMS. For instance, considering six sets of large-scale longitudinal
data, Grissmer et al. (2010) found that FMS assessed in
kindergarten were a better predictor of later mathematics
achievement than measures of attention (see Table 2). Similarly,
Luo et al. (2007) found that FMS significantly predicted
mathematics achievement at kindergarten entry even after
partialling out influences of other background variables such as
sex, age, and socioeconomic status (see also Son and Meisels,
2006; Pagani et al., 2010).

However, as these studies derived a single FMS score based
on performance on drawing, copying and block building
tasks (see Table 2), they lacked differentiation between
specific subcomponents which might contribute specifically
and differentially to the development of numerical skills.
More recent studies aimed at filling this gap. Pitchford et al.
(2016), for instance, examined the specific contribution
of two types of FMS distinguishable by how much they
rely on visual-perceptual processing, namely (a) fine motor
integration (which requires coordinated hand-eye movements
and visual-perceptual integration for adequate motor output)
and (b) fine motor precision (a more pure measure of FMS
indexed by tasks of drawing, folding and cutting within given
boundaries). Performance on visual-perceptual integration tasks
administered in first grade was found to be a better predictor
of concurrent mathematics achievement than of reading ability,
even after accounting for influences of general cognitive ability
(see Figure 2).

An alternative characterization of FMS was suggested by
Dinehart and Manfra (2013), who proposed the existence of
two highly correlated but distinct subcomponents of FMS: (a)
fine motor object manipulation, which requires manual dexterity
and is necessary for placing pegs in holes, lacing, and building
with blocks; and (b) fine motor writing (i.e., graphomotor skills),
a more complex ability which requires several cognitive and
neuromotor processes and is necessary for drawing or writing.
The authors found that both fine motor object manipulation
and fine motor writing skills assessed in kindergarten exerted
unique influences on second grade mathematics scores (see
Table 2), with a larger effect size for fine motor writing (see
also Cameron et al., 2012). Similar results were found by Kim
et al. (2017), who found that preschoolers’ visuomotor integration
performance was associated with their numerical skills measured
at the end of first grade.

In order to isolate FMS from contamination by visual-spatial
skills, Penner-Wilger et al. (2007) used a computerized version
of a finger tapping task and found that finger agility contributed
directly and uniquely to the concurrent prediction of first
graders’ number system knowledge, but not calculation skills.
Asakawa and Sugimura (2014) also investigated the relationship

between FMS and numerical skills more differentially and
found that finger dexterity predicted participants’ arithmetic
performance more strongly than it predicted their vocabulary
skills. Additionally, these authors observed that the association
between FMS and numerical skills was already strong in 4-year-
old children, suggesting that the relation between finger dexterity
and numerical skills emerges very early in life.

More recently, Gashaj et al. (2019) examined the concurrent
and longitudinal (Gashaj et al., 2018) associations of FMS (as
measured by bead threading, coin posting and drawing within
boundaries at age 6), executive functioning and numerical
abilities. After accounting for the influence of numerical
precursor skills and executive functions, the authors observed
that FMS significantly predicted non-symbolic (but not symbolic)
number line estimation in 6-year-old children (Gashaj et al.,
2019). However, using structural equation modeling, they found
that FMS at age 6 only predicted mathematics achievement in
second grade indirectly through basic numerical abilities such
as magnitude comparison and number line estimation, but not
directly (Gashaj et al., 2018).

The evidential value of these findings was also evaluated by
means of a p-curve analysis (Simonsohn et al., 2014, 2015).
All included tests were selected based on the same criteria
previously used for selection of the finger gnosis findings (see
Table 2 for disclosure) with two new added criteria: (1) when
multiple FMS scores were given (e.g., Cameron et al., 2012),
we selected either the more comprehensive score or the one
mirroring our operational definition of FMS (e.g., Kim et al.,
2017); (2) when tests for multiple numerical dependent variables
were provided, we opted for the one with the highest predictive
value (expressed by its beta weight in a regression analysis;
Suggate et al., 2017a) or largest effect size (expressed by Cohen’s
d; Dinehart and Manfra, 2013).

As expected from the large sample sizes of nearly all included
studies, the evidential value of these findings was corroborated
by a right-skewed distribution of the p-curve (see Figure 5)
with again high statistical power. Therefore, the validity of the
association of FMS and numerical skills is corroborated and thus
merits further investigation.

Taken together, these studies point to a clear contribution of
FMS to numerical and mathematical abilities, most specifically in
what regards mathematics achievement but also number system
knowledge and arithmetic abilities (see Figure 1). Importantly,
however, there appear to be subtle differences across studies
in what is subsumed under the term FMS as well as some
terminological disagreement among researchers. For instance,
while some authors use the terms “manual dexterity” and “FMS”
interchangeably as having the same meaning (Makofske, 2011),
others consider the first to be a specific subtype of FMS (Houwen
et al., 2008). Additionally, most studies investigating FMS so
far used a composite measure of different subcomponents,
including tasks heavily based on visual-motor skills (e.g., Son
and Meisels, 2006; Luo et al., 2007; Grissmer et al., 2010; see
Table 2). To the best of our knowledge, the few existing studies
which attempted to isolate contributions of different aspects
of FMS to numerical abilities (Dinehart and Manfra, 2013;
Pitchford et al., 2016) still lacked an effective dissociation of a
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TABLE 2 | Overview of studies examining the association between fine motor skills and numerical skills.

References Finger variable Age (Y;M) N Task Control variables Numerical outcome variables1 (with
reported effect sizes)

Asakawa and
Sugimura (2014)L

Finger dexterity (FD)
(T1, T2, T3, and T4)

T1: 4;8 T2:
5;2 T3: 5;8

T4: 6;2

33 Pegboard Age, gender, rhythmic hand
movement (T1, T2, T3, and
T4)

Ca: addition FD T1 r = 0.53 (T1),
r = 0.34 (T2), r = 0.48 (T3), r = 0.36 (T4)
FD T2 r = 0.58 (T2), r = 0.44 (T3),
r = 0.32 (T4) FD T3 r = 0.57 (T3),
r = 0.38 (T4) FD T4 r = 0.55 (T4)

Cameron et al.
(2012)L

Fine motor skills
(T1)

T1: 5;0 T2:
5;4 T3: 5;9

213 Block building,
copying,
drawing

Gender, ethnicity, age,
maternal education,
executive function, gross
motor skills (T1)

Ca: applied problems fine motor
composite – r = 0.17 (T2), r = 0.25 (T3)
blocks – r = 0.11 (T2), r = 0.17 (T3)
design copy – r = 0.16 (T2), r = 0.24
(T3) draw-a-person – r = 0.10 (T2),
r = 0.08 (T3)

Dinehart and
Manfra (2013)L2

Fine motor object
Manipulation
(FMOM) and Fine
motor writing
(FMW) (T1)

T1: 5;2 T2:
∼8;2

3234 Block building,
string weaving,
bead stringing;
page turning,
pegboard;
cutting; play
dough; paper
folding

Expressive & receptive
language, matching, counting
(T1), gender, ethnicity, SES,
school absences

Math achievement (Ca, T2): FMOM:
r = .21, Cohen’s d = .14 (GPA), r = .22,
d = .09 (SAT10) FMW: r = 0.31,
Cohen’s d = 0.21 (GPA), r = 0.33,
d = 0.11 (SAT10)

Fischer et al.
(2017)C

Fine motor skills 4;6 177 Pegboard,
bead-
threading,
block turning

General cognitive ability, age,
home math, home FMS

Co: procedural counting r = 0.41,
β = 0.31 Conceptual counting r = 0.36,
β = 0.21 (total effect)

Gashaj et al.
(2018)L

Fine motor skills T1: 6;5 T2:
8;0

136 Bead-
threading, coin
posting,
drawing within
boundaries

Numerical skills, executive
functions

M, N:
magnitude comparison (S), number line
estimation (S & NS) β = 0.31
(concurrent)
Math achievement (N, Ca): β = 0.09
(longitudinal)

Gashaj et al.
(2019)C

Fine motor skills 6;5 151 Bead-
threading, coin
posting,
drawing within
boundaries

Numerical skills, executive
functions (regression models),
age (correlations)

M, N: magnitude comparison (NS)
r = 0.15,
β = 0.14 Magnitude comparison (S)
r = 0.22,
β = 0.09 Number line estimation (NS)
r = 0.42,
β = 0.33 Number line estimation (S)
r = 0.36, β = 0.02

Grissmer et al.
(2010)L2

Fine motor skills
(T1)

T1: ∼5;0
T2: ∼6;03

21.260
(ECLS-
K) 2714
(NLSY)
11.200
(BCS)

Block building,
design copying,
drawing

Social skills, attention, gross
motor skills, early math, early
reading

Math achievement (N, Ca): FMS:
β = 0.14 (ECLS-K, T2) Motor/social:
β = 0.05 (NLSY, T2) Copying: β = 0.36,
Drawing:.09 (BCS, T2)

Kim et al. (2017)L4 Fine motor
coordination (FMC)
and visuomotor
integration (VMI)
(T1, T2, and T3)

T1: 5;6
(beginning

KG) T2:
end KG3

T3: end 1st

grade

135 Design
copying,
speeded
drawing within
boundaries

Age, gender, SES, treatment
condition

Ca, M: mathematics skills (T1, T2, T3)
FMC (T1): r = 0.24, r = 0.23, r = 0.21
FMC (T2): r = 0.18, r = 0.14, r = 0.03
FMC (T3): r = 0.24, r = 0.16,
r = 0.15/β = 0.33 VMI (T1):
r = 0.57/β = 0.43, r = 0.61/β = 0.13,
r = 0.58 VMI (T2): r = 0.53, r = 0.59,
r = 0.58/β = 0.14 VMI (T3): r = 0.54,
r = 0.56, r = 0.67

Luo et al. (2007)L2 Fine motor skills
(T1)

T1: 5;7 T2:
6;2 T3: 7;2

10060
9816
EUA5

244
EAA6

Block building,
design copying,
drawing

Gender, age, mother’s and
father’s education, SES,
parental educational
expectations

Math achievement growth rate -
Co, N, Ca (T1, T2, and T3): B = 1.68
(intercept) B = 0.09 (slope)

Pagani et al.
(2010)L2

Fine motor skills
(T1)

T1: 5;5 T2:
∼ 7,5

1,145 Object
manipulation

Early math and reading, age,
gender, ethnicity, health, birth
time and weight, SES (T1)

Math achievement (teacher-reported):
r = 0.30 (T2)

(Continued)
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TABLE 2 | Continued

References Finger variable Age (Y;M) N Task Control variables Numerical outcome variables1 (with
reported effect sizes)

Penner-Wilger et al.
(2007)C

Finger agility 6;10 146 Finger tapping Gender, receptive
vocabulary,
processing speed

N: r = .18 Ca: r = .12

Pitchford et al.
(2016)C

Fine motor
precision (FMP) and
fine Motor
integration (FMI)

Study 1:
5;5 – 6;8
Study 2:

4;0 – 6;03

Study
1: 62
Study
2: 34

Design
copying,
drawing, folding
and cutting
within
boundaries

SES, gender, verbal and
nonverbal IQ, verbal STM
(Studies 1 and 2)

Math achievement – Ca: Study 1
FMP: r = 0.60/β = 0.42 FMI:
r = 0.57/β = 0.16 Study 2 FMP:
r = 0.31 FMI: r = 0.50

Son and Meisels
(2006)L2

Fine motor skills
(T1)

T1: 5;5 T2:
∼6;11

12,583 Block building,
design copying,
drawing

Achievement in T1, age,
gender, ethnicity, SES

Math Achievement – Co, N. Ca:
r = 0.44 (T1), r = 0.48 (T2)

Suggate et al.
(2017a)C

Fine motor skills 4;9 81 Pegboard,
bead-
threading,
block turning

Age, receptive vocabulary Co, Ca: numerical skills (total):
r = 0.73/β = 0.34 finger numerical skills:
r = 0.69/β = 0.40 non-finger numerical
skills: r = 0.70/β = 0.24

Medium to large effect sizes (Cohen, 1988) are displayed in bold typeface. Regression coefficients were not interpreted in terms of effect size. ∼Indicates an approximate
mean age when exact means are not provided. Tests included in the p-curve analysis are underlined. L, longitudinal; C, cross-sectional. 1 In order to facilitate comparisons
between studies, we grouped the outcome variables into four different categories whenever possible (Wyschkon et al., 2015): Co, counting (i.e., forward, backward,
from x to y); N, number (e.g., number reading, symbol-magnitude mapping, cardinality, and place value); Ca, calculation (e.g., addition and subtraction); M, magnitude
(e.g., subitizing, size comparison, and magnitude judgment). Original outcome measure names as described in the studies are cited when different from category names.
2Studies based on large scale assessment data sets. The Early Childhood Longitudinal Study (ECLS-K) was used by Son and Meisels (2006); Luo et al. (2007), and
Grissmer et al. (2010). Additionally, the National Longitudinal Survey of Youth (NLSY) and the British Cohort Study (BCS) were also used by Grissmer et al. (2010). Lastly,
the Miami-Dade School Readiness Project (M-DSRP) was used by Dinehart and Manfra (2013) and the Quebec Longitudinal Study of Child Development (QLSCD) by
Pagani et al. (2010). 3 It was not possible to retrieve information regarding mean age at assessment time points. 4The study also included a 1 st–2nd grade cohort which
was not considered for the present review. Only the Kindergarten (KG) cohort was included. 5European American children. 6East Asian American children.

type of fine motor ability which is goal-oriented and visually
guided from a second type which consists of the mere motor
act of controlling and coordinating finger movements. This
distinction may be crucial for understanding the relevance of
FMS for numerical development because the first type involves
many other (cognitive) processes, such as visual-spatial skills
and components of executive function such as planning and
inhibition. Recent studies (Gashaj et al., 2018, 2019) tackled
this issue by controlling for influences of executive functioning,
which may be a further promising direction for disentangling
influences of FMS from those of visual-spatial skills in addition
to indexing FMS by finger tapping performance (Penner-Wilger
et al., 2007). Nevertheless, further studies are needed to further
delineate specific connections between finger motor skills and
numerical abilities.

Finger Gnosis, Fine Motor Skills, and
Finger-Based Numerical Strategies
Although finger gnosis and FMS seem to make specific
contributions to the development of numeracy (Penner-Wilger
et al., 2007, see Figure 1), it is possible that they reflect
different dimensions of finger-based numerical strategies which
may be dissociable and stem from different mechanisms. To
this date, only one study attempted to disentangle the specific
contributions of finger gnosis and FMS (Penner-Wilger et al.,
2007) to the development of numerical skills. Results showed
that, while finger gnosis seemed to be associated with both
number system knowledge and calculation skills, FMS (in this

study, finger agility) were only found to relate to number system
knowledge. The authors chose finger agility as a proxy for FMS
due to its relative independence from visual-motor integration
skills, which may be considered a confound. These initial findings
hint at the need to further investigate the specific contributions of
different FMS components and finger gnosis to the development
of numerical skills.

From a functional perspective, it is nonetheless easy to fathom
how finger gnosis and FMS may be intertwined. For instance,
to effectively count on one’s fingers, one must be able to
recognize them as separate entities and assign different numerical
magnitudes to each finger while moving them individually. Thus,
the success in using one’s fingers to count relies both on good
differentiability and adequate movement capacity of fingers.
In this line of thought, the existence of a functional relation
between both finger gnosis or FMS and numerical abilities may
be corroborated. In functionalist proposition Butterworth (1999),
fingers and numbers are indirectly related through children’s
use of their fingers to represent quantities, extending number
processing beyond the subitizing range and serving as functional
aids in numerical representation and computation. The role of
fingers then would be that of a “missing tool” for the connection
of non-symbolic and symbolic number representations which are
necessary for numerical computations (Andres et al., 2008, see
also Gallistel and Gelman, 1992).

Recent evidence provides further support for this claim. For
the case of FMS, Fischer and colleagues (2017) found that
the association between FMS (as measured by bead-threading,
block turning, and a pegboard task) and conceptual counting
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FIGURE 5 | p-curve distribution for tests studying the association between fine motor skills and numerical abilities.

knowledge in preschool children was mediated by procedural
counting knowledge. This finding suggests that children with
better FMS may be more successful at using their fingers
for counting procedures, which might in turn facilitate the
acquisition of a conceptual understanding of counting.

Similarly, Suggate et al. (2017a) found that preschoolers’
FMS (indexed by bead-threading, block turning, and a pegboard
task) were more strongly related to performance in counting
and arithmetic tasks that involved the use of finger-based
strategies than to those tasks that were solved without
help of fingers, even after controlling for the influence of
age, vocabulary, and general cognitive ability. Moreover, the
association of FMS and non-finger-based numerical tasks was
entirely mediated by finger-based numerical skills, supporting
the idea of finger-based strategies as a link between FMS and
numerical development.

Moreover, for the case of finger gnosis, Reeve and
Humberstone (2011) found that preschool children’s finger
gnosis was related to whether they used their fingers while
performing calculations as well as to their performance in a
calculation task. In particular, children with poor finger gnosis
barely used their fingers and committed more errors while
calculating. Furthermore, Costa et al. (2011) observed that
dyscalculic children had significantly poorer finger gnosis,
even though their general cognitive ability and working
memory were at typical level. In their study, finger gnosis
was particularly relevant for solving word problems, which
required manipulations of quantities between 1 and 10, for
which the use of fingers may be specifically suited. The authors
argued that finger gnosis deficits relate to an inability to use
fingers to transiently represent magnitudes. Furthermore,
a recent study by van Rinsveld et al. (2020) found that
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preschoolers’ performance in a finger pattern recognition
task was a better longitudinal predictor of their number line
estimation performance at the beginning of first grade than
finger gnosis. In particular, the authors observed that, although
finger pattern recognition was concurrently correlated with
finger gnosis, only the former predicted children’s later number
line estimation. These findings seem to corroborate the idea
of a rather indirect role of finger gnosis for the acquisition of
number representations in that it may scaffold the emergence
of finger-based numerical representations. In sum, this evidence
supports the assumption that the association between fingers and
numbers may be functional and stem from the usage of fingers
for numerical tasks.

Nevertheless, it must be noted that the functionalist
proposition is based to a large extent on the behavioral and
ethnocultural evidence available at the time of its publication
(Butterworth, 1999). In the meantime, neuroimaging methods
saw significant improvements and a leap in popularity, giving
rise to several neurofunctional and neurostimulation studies
capable of specifying the neural correlates of finger gnosis and
numerical abilities in more detail. This new evidence provides
further insights into how the neural circuits supporting finger
and number representations are intertwined. As mentioned
above, overlapping activation of cortical networks for number
processing and finger movement can be observed in children
as young as 8 years old and is still observed in adulthood (e.g.,
Kaufmann et al., 2008), when fingers are most likely no longer
used in aid of numerical processes.

Although this observation speaks in favor of a common
neural substrate for representing numbers and fingers, it does
not provide clarifying information on the origins of this
shared neural circuitry. In lieu of a functionalist explanation,
it is in principle likewise possible that the neural circuitry
supporting sensorimotor finger function is also at least partially
involved in number representation and numerical operations
through evolutionarily redeployment mechanisms. Although
the massive redeployment hypothesis does not preclude that
numerical representations may be in some way grounded in
sensorimotor experience (Anderson, 2010), early finger usage
is thought to be no more than a useful tool for physically
(and spatio-temporally) representing to-be-learned concepts
with no semantic grounding resulting from these actions.
That is not to say that finger-based strategies are not a
useful resource for numerical learning, but rather that their
application may be analogous to the purpose of speech-
accompanying gesturing, that is, an outlet for conveying ideas
not yet suited for verbal expression (Goldin-Meadow, 2003;
Anderson, 2010).Finally, it should be noted that the association
of fingers and numbers on the neural level may be accounted
for by another interpretation, namely, the neuronal recycling
hypothesis (e.g., Dehaene, 2009). Although the neuronal
recycling hypothesis appears similar to the massive redeployment
hypothesis, they differ in their definition of how exactly fingers
and numbers come to be served by common neural circuits:
while the neuronal recycling perspective posits that this may
be the product of learning-driven neuronal plasticity (Dehaene,
2009), the massive redeployment hypothesis pins down the

origin of this association to human phylogenesis. In other
words, while the first assumes the association of fingers and
numbers to be the product of human development, the second
attributes it to the repurposing of phylogenetically older neural
systems to support evolutionarily recent functions such as
numerical reasoning.

While the neuronal recycling account may complement the
functionalist hypothesis where the latter does not delve into
detail – that is, the neurofunctional network sustaining the finger-
number association – assuming a complete independence of
these systems prior to the onset of developmental experience may
be hasty. After all, as argued by Jones (2018), neural plasticity
is a process which may be too slow-paced to satisfactorily
explain how neural systems supporting number processing
may shift so rapidly in function. Therefore, experiential
events connecting fingers to numbers may serve the purpose
of increasing connectivity between the respective neural
systems, which may already have been associated to some
extent to begin with. Yet, on the other hand, it is widely
known that learning may lead to considerable changes in
functional but also structural aspects of the brain. In the end,
the most likely scenario is that all explanatory accounts on
the behavioral and neuro-functional association of fingers
and numbers may be at least partially correct but also
partially incorrect. That is to say that, while there may be
an innate disposition for numerical abilities to be grounded
in the sensorimotor systems subserving fingers, certain
developmental experiences would still be required for said
association to unfold.

Although this claim seems to be supported by both behavioral
as well as neurophysiological data, further studies are necessary
to disentangle the nature vs nurture mechanisms of the
association of finger and numbers. Exploring these associations
before the onset of “nurture” influences – that is, before
children start using their fingers for counting and representing
numerical magnitudes – may be one promising direction for
disentangling these explanations. To this end, it may also be
informative to explore differential neural activation for finger
gnosis and FMS, as they may reflect different aspects or
degrees of functionality of associations between fingers and
numbers. Finally, some additional insights on the innateness
of a shared neural circuitry for fingers and numbers may
be gained from animal (e.g., Shoham and Grinvald, 2001)
or computational models (e.g., De La Cruz et al., 2014; Di
Nuovo and McClelland, 2019). Further neurofunctional or
electrophysiological studies of people belonging to cultures
with non-finger-exclusive embodied counting systems or with
a limited to non-existent representational system for exact
number (e.g., Pica et al., 2004; Frank et al., 2008) may also be
particularly enlightening for elucidating the causality direction of
this association.

CONCLUSION AND PERSPECTIVES

Taken together, the studies reviewed above seem to point to a
specific and unique contribution of finger-related variables to
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the development of numerical skills that seems to persist over
and above the influence of other important predictors such
as general cognitive ability or numerical precursor skills. In
particular, finger gnosis and/or FMS were observed to predict
measures of counting (Fayol et al., 1998; Noël, 2005; Luo et al.,
2007; Penner-Wilger et al., 2009; Poltz et al., 2015), number
system knowledge (Fayol et al., 1998; Noël, 2005; Son and Meisels,
2006; Luo et al., 2007; Penner-Wilger et al., 2007, 2009; Poltz
et al., 2015), number magnitude processing (Noël, 2005; Son
and Meisels, 2006; Luo et al., 2007; Poltz et al., 2015), and
calculation ability (Fayol et al., 1998; Noël, 2005; Son and Meisels,
2006; Luo et al., 2007; Penner-Wilger et al., 2007; Dinehart and
Manfra, 2013; Asakawa and Sugimura, 2014; Poltz et al., 2015;
Long et al., 2016; Pitchford et al., 2016; Wasner et al., 2016).
Furthermore, finger gnosis and FMS were found to be better
predictors of some numerical outcome measures than of other
variables such as reading ability (Noël, 2005) and vocabulary
(Asakawa and Sugimura, 2014).

However, the contribution of both finger gnosis and
FMS to numerical development seems to be smaller than
previously thought with, for instance, finger gnosis explaining
about 1–2% of variance of first graders’ calculation skills
(e.g., Wasner et al., 2016) after controlling for domain-
general skills as well as natural variables such as general
cognitive ability and age. Although results from training
studies of both FMS (Atsushi et al., 2017) and finger gnosis
(Gracia-Bafalluy and Noël, 2008; but see Fischer, 2010 for
methodological limitations as well as Jay and Betenson, 2017
for differing results) showed improvements on first graders’
basic numerical and arithmetical skills, the longitudinal evidence
presented above is hard to reconcile with the idea of finger
gnosis and/or FMS being necessary component skills of
numerical abilities. However, this does not imply that finger-
related variables are not relevant for children’s numerical
development. As suggested by recent evidence, finger gnosis
and FMS may be functionally relevant for the acquisition of
numerical skills in that they support the successful use of
finger-based numerical strategies such as finger counting or
calculating (Reeve and Humberstone, 2011; Fischer et al., 2017;
Suggate et al., 2017a, but see Lafay et al., 2013).

In line with this, Roesch and Moeller (2015) recently
discussed the influence of finger-based numerical strategies in
the light of a current model of early numerical development
(Krajewski and Schneider, 2009). They argued that fingers do
not only help children in counting, reciting number words and
grasping the concept of cardinality (for similar conclusions,
see also Gunderson et al., 2015), but also serve as a tool
for corroborating initial arithmetic operations such as part-
whole relations. As such, finger-based numerical strategies may
support early numerical development at all stages specified by
Krajewski and Schneider (2009) (see also Figure 1) as well
as bolster the acquisition of foundational numerical abilities
described by influential authors in the field of numerical
development (e.g., Gelman and Gallistel, 1978; Butterworth,
1999; Geary, 2007).

Therefore, although using fingers may not be impera-
tive for the acquisition of basic numerical concepts

(Nicoladis et al., 2010; Crollen et al., 2011), finger-based strate-
gies constitute a natural scaffold for the development of
crucial numerical abilities and may be highly advantageous
for most – if not for all – children in early stages of their
numerical development. This may be further evidenced by
studies specifically designed to detect differences in specific
numerical abilities which may be more directly supported by use
of fingers, as well as expanding the examined age range to even
younger children in order to capture developmental windows
in which finger-related abilities may more directly influence the
acquisition of numerical skills. Specifically, evaluating whether
and if so, how FMS mediate the association between finger
gnosis and numerical abilities may be crucial to unraveling
the causality controversy. Furthermore, when examining the
associations of finger sensory and motor abilities, finger-based
strategies and numerical abilities, it would be desirable to
investigate not only whether children use their fingers for
numerical computations, but how they do so. This may be
relevant because finger-based strategies may vary in terms of
efficiency and complexity (Björklund et al., 2019) both from a
cognitive and from a motor perspective, potentially leading to
differential associations between finger sensorimotor skills and
numerical outcomes.

Moreover, even if it seems plausible to conclude that higher
finger gnosis and FMS may lead to more successful finger
usage for counting and initial calculation, it might be that
they constitute a consequence rather than a cause of frequent
and differential finger use for number processing. In line
with this, Poltz et al. (2015) observed a bi-directional relation
between finger gnosis and numerical development, as not only
children’s numerical ability was longitudinally predicted by finger
gnosis, but also finger gnosis was predicted by earlier numerical
performance – even though the second association was weaker.

Furthermore, cross-sectional and correlational evidence
do not suffice for pinpointing the mechanisms precipitating
the association of fingers and numerical representations. As
such, the existing evidence may not be sufficient to fully
endorse either the functionalist or redeployment explanation of
empirical findings. Crucially, the latter regards this association
as innate rather than functionally acquired, arguing that the
natural inclination to use fingers for representing numerical
quantities feels natural because the neural circuits supporting
finger motor and sensory skills have been redeployed for
supporting numerical representations (Penner-Wilger and
Anderson, 2013). In fact, Anderson (2010) argued that “the
motor control system is here [for representing numerical
information] being used for a specific cognitive purpose not
because it is performing semantic grounding or providing
metaphorically guided domain structuring, but because it offers
an appropriate physical (and spatiotemporal) resource for the
task” at hand (p. 256).

However, observed cross-cultural differences in embodied
(finger) counting systems appear to reflect the existence of
functional mechanisms influencing the association of fingers
and numbers to some extent. For instance, although finger
counting seems to be culturally universal, non-finger-based
embodied strategies were found to be part of the counting
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system of the new Guinean Oksapmin community (Butterworth,
1999; Ifrah, 2000; Saxe and Esmonde, 2004; Bender and
Beller, 2012), who employs body parts such as shoulders,
eyes and nose in addition to their fingers for counting. The
fact that embodied counting systems may not be entirely
limited to fingers is not directly explained by redeployment
mechanisms, as shared sensorimotor circuits for number
processing seem to be specific to finger movements (e.g.,
Michaux et al., 2013).

Further evidence supporting a functional association of fingers
and numbers can be found in studies employing different
research methodologies. For instance, on a behavioral level, it
was observed that a certain type of addition and subtraction
errors (i.e., getting the answer to a problem wrong by ±5)
can be observed in primary school-children at the time when
multiplication is introduced to them (Domahs et al., 2008).
These so-called split-five errors in mental calculation were
interpreted to reflect a failure to account for one full-hand-
unit, suggesting that finger-based strategies influence mental
calculations specifically. In line with this, sequential finger
movements were found to interfere only with arithmetic
operations ontogenetically supported by using fingers, that is, in
addition but not in multiplication (Michaux et al., 2013).

Moreover, electrophysiological evidence indicates that
right-hand muscles were activated on a parity judgment
task with small numerals (i.e., 1–4) in participants who
started counting on their right hands (Andres et al.,
2007), suggesting that the activation of hand motor
circuits in number processing seems to be modulated
by individual differences in finger counting routines
(Sato et al., 2007).

Finally, in a cross-cultural study, Domahs et al. (2010)
found that adult symbolic magnitude processing is influenced
culture-specific aspects of the respective finger counting habits
(i.e., finger postures for numbers from 6 to 10 require
both hands in German but only one hand in Chinese
finger counting routines). In particular, German participants
took more time for magnitude comparisons on pairs of
symbolic numbers of which at least one required a two-
hand posture as compared to one-hand postures in the
Chinese finger counting routine (e.g., 6 vs 9). This finding
is particularly compelling because, if number processes were
not considered to be somehow shaped by cultural specificities
of finger-based numerical strategies, such influences of specific
properties of finger counting routines should not be observed
on a cross-cultural level. Furthermore, recent developmental
findings suggesting that (culture-specific) finger-based numerical
strategies (or representations) mediate the association of
numerical skills with either finger gnosis or FMS (Costa
et al., 2011; Reeve and Humberstone, 2011; Fischer et al.,
2017; Suggate et al., 2017a; van Rinsveld et al., 2020) also
corroborate a functionalist stance of associations between
fingers and numbers.

Finally, on a sensorimotor level, numerical processing seems
to be facilitated not only by posturing cardinal finger patterns
(Sixtus et al., 2017) but also by ordinal aspects of finger
counting, namely by tactile stimulation matching the last

finger used to count to a certain number on the respective
finger counting routine (Sixtus et al., 2020). Such individual
and culture-specific differences may not be directly expected
under the massive redeployment hypothesis, at least not in
the version described by Penner-Wilger and Anderson (2013).
Taken together, these research findings seem to corroborate
the idea that the association of fingers and numbers is
functionally modulated and may emerge from the use of
finger-based numerical strategies in early stages of children’s
numerical development.

However, contemplating this (mostly) behavioral evidence
does not resolve the chicken-or-egg conundrum involving the
functionalist vs redeployment debate, as some functionally driven
variability is also to be expected (although to a lesser extent)
from the massive redeployment hypothesis (Anderson, 2010).
Crucially, we argue that these theoretical accounts are not
mutually exclusive and may thus not necessarily need to be
treated as an either-or-question. Instead, the motor behavior
of finger counting might be the developmental process by
which number representations are grounded in the finger
sensorimotor system, which may already have a predisposition
to accommodate these (Lakoff and Núñez, 2000). Therefore,
once these numerical representations become developmentally
connected to the finger sensorimotor circuitry, they become
permanently associated both on a neurofunctional and on a
behavioral level, resulting in widespread associations between
fingers and numbers.

Although this proposition seems to render a plausible
explanation for associations between fingers and numbers, it
needs to be substantiated by future studies. In order to expand
on the topic, some research directions may be particularly
fruitful. First, on a behavioral level, further longitudinal or
training studies may disentangle the relations between early
finger gnosis and FMS, finger-based numerical strategies, and
early numerical abilities while controlling for the influence of
domain-general variables. Moreover, contemplating individual
differences in the association of finger gnosis, FMS and numerical
abilities may inform why and to what extent some children might
prefer and benefit more from strategies other than finger usage.
Additionally, future research should aim at establishing a gold
standard for measuring finger gnosis as well as increase the
reliability of finger gnosis tasks to avoid confounds and ensure
comparability between studies. Second, on a neurofunctional
level, it may be informative to investigate the neural circuitry
subserving numerical representations and finger movements
prior to the adoption of functional strategies, as well as
explore differential activations for finger gnosis and fine motor
ability. Finally, some additional insights into the innateness
of a shared neural circuitry for fingers and numbers may
be gained from cross-cultural studies, as well as animal and
computational modeling. Disclosing the driving mechanisms
of the association between finger sensorimotor skills and early
numerical development would represent a breakthrough to
both psychological and mathematics education research, as
it may help establish a common ground on the potentials
but also limitations of finger-based numerical strategies for
educational practice.
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Based on the dual mechanisms of control (DMC) theory, there are two distinct mechanisms 
of cognitive control, proactive and reactive control. Importantly, accumulating evidence 
indicates that there is a developmental shift from predominantly using reactive control to 
proactive control during childhood, and the engagement of proactive control emerges as 
early as 5–7 years old. However, less is known about whether and how proactive control 
at this early age stage is associated with children’s other cognitive abilities such as working 
memory and math ability. To address this issue, the current study recruited 98 Chinese 
children under 5–7 years old. Among them, a total of 81 children (mean age = 6.29 years) 
contributed useable data for the assessments of cognitive control, working memory, and 
math ability. The results revealed that children at this age period predominantly employed 
a pattern of proactive control during an AX-Continuous Performance Task (AX-CPT). 
Moreover, the proactive control index estimated by this task was positively associated 
with both working memory and math performance. Further regression analysis showed 
that proactive control accounted for significant additional variance in predicting math 
performance after controlling for working memory. Most interestingly, mediation analysis 
showed that proactive control significantly mediated the association between working 
memory and math performance. This suggests that as working memory increases so 
does proactive control, which may in turn improve math ability in early childhood. Our 
findings may have important implications for educational practice.

Keywords: proactive control, working memory, math ability, individual differences, early childhood

INTRODUCTION

Cognitive control, the ability to regulate and coordinate goal-directed behavior so as to allow 
for flexible adaptation to changing environments, has been considered as one of the most 
basic cognitive skills in humans (Miller and Cohen, 2001). Previous research has indicated 
that cognitive control is involved in a wide range of cognitive activities including learning 
(Abrahamse et  al., 2016), comprehension (Ye and Zhou, 2008), theory of mind (Carlson and 
Moses, 2001), problem solving (Passolunghi and Siegel, 2001), and general fluid intelligence 
(Benedek et  al., 2014). Moreover, measures of cognitive control have been shown to explain 
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a significant amount of variance in academic achievements, 
above and beyond the effect of general fluid intelligence 
(Magalhães et al., 2020). Given these critical aspects, the numbers 
of studies investigating cognitive control have increased 
dramatically during the past decades. However, to date, much 
of the prior research has focused on the individual executive 
skills such as inhibition control, working memory, and mental-set 
shifting through which cognitive control is exerted (Diamond, 
2013; Morra et  al., 2018). Relatively few research efforts have 
been dedicated to examine the temporal dynamics of how 
cognitive control is used.

Importantly, a recently developed cognitive theory, the 
dual mechanisms of control (DMC) model, proposes that 
cognitive control can be  implemented with two temporally 
distinct cognitive processes: proactive control and reactive 
control, and humans can flexibly shift between these two 
cognitive control processes for high-order cognition (Braver, 
2012). Proactive control refers to the cue-driven and top-down 
cognitive processes that can allow an individual to maintain 
task-relevant goals in advance of the stimuli requiring a 
response. Reactive control, on the other hand, refers to the 
probe-driven and bottom-up cognitive processes in which 
relevant information cannot be utilized until an event requiring 
a response has occurred (Braver et al., 2007). Generally, these 
two types of cognitive control processes can be assessed using 
a specific experimental paradigm, the AX-Continuous 
Performance Task (AX-CPT, Braver et  al., 2007). In AX-CPT, 
cue-probe pairs are presented sequentially. Participants are 
instructed to make a target response to the probe when an 
A cue is followed by an X probe (AX trials), and to make 
a non-target response for all other cue-probe pairs including 
AY, BX, and BY trials, where Y and B represent any stimuli 
other than A and X. Considering the high proportion of 
AX trials during this task, participants who use a proactive 
form of cognitive control tend to prepare a target response 
when an A cue appears. Hence, they are inclined to prepare 
an incorrect target response when an A cue is not followed 
by an X probe (AY trials). Moreover, the participants are 
inclined to prepare a correct non-target response when a B 
cue appears, even if it is followed by an X probe (BX trials). 
By contrast, participants who use a reactive form of cognitive 
control do not prepare a response according to the cue 
presented. Thus, they do not need to overcome the strong 
target expectancy that an A cue is followed by an X probe, 
and should make a correct non-target response on AY trials 
quickly. However, the X probe tends to lure them into incorrect 
target responses on BX trials. Nowadays, the AX-CPT has 
been widely used to examine proactive and reactive control 
in adults, repeatedly showing that young adults rely more 
on proactive control with worse performance on AY than 
BX trials (Braver et al., 2007), whereas older adults demonstrate 
a typical reactive pattern with worse performance on BX 
than AY trials (Paxton et  al., 2008; Braver et  al., 2009).

Several recent studies have tried to examine proactive and 
reactive control in children, and propose that age-related 
improvements in cognitive control during childhood may 
be accounted for by a developmental shift from heavy reliance 

on reactive control to more proactive control (Brahmbhatt 
et  al., 2010; Munakata et  al., 2012; Lucenet and Blaye, 2014; 
Chevalier et  al., 2015; Troller-Renfree et  al., 2020). In this 
view, younger children tend to rely almost exclusively on 
reactive control, a late correction mechanism that involves 
waiting for a control-demanding event to occur and then 
implements cognitive control in a just-in-time manner. 
Conversely, older children can use both forms of cognitive 
control. As age increases, they tend to rely more on proactive 
control, through which they could actively maintain goal-
relevant information before an event occurs and thereby 
optimally orient behavior. Compared with reactive control, 
proactive control poses a greater cognitive demand on working 
memory, but it is generally more effective, which may explain 
better behavioral performance in many cognitive skills (Chevalier 
et  al., 2013; Gonthier et  al., 2019). To date, the efficiency in 
proactive control during childhood has been convincingly 
shown to increase with age, with older children demonstrating 
more and more advantages on BX than AY trials (Chatham 
et  al., 2009; Lorsbach and Reimer, 2010). Moreover, recent 
work suggests that the shift from reactive to proactive control 
begins in early childhood – presumably occur at around 
5–7 years of age (Lucenet and Blaye, 2014; Gonthier et al., 2019).

However, it remains unclear whether proactive control in 
early childhood is associated with other cognitive abilities. The 
literature has put one possible answer forward: working memory. 
Critically, working memory requires individuals to actively 
maintain and manipulate task-related information, and proactive 
control requires individuals to use proactive cues to prepare 
for maintaining and manipulating task-related information 
(Braver, 2012). In addition, neuroimaging studies have 
consistently reported that proactive control recruits brain regions 
(e.g., the prefrontal cortex) that are largely overlapping with 
the working memory network (Müller and Knight, 2006; Aron, 
2011). Hence, it is reasonable to speculate that working memory 
may be  related to the use of proactive control. In agreement 
with this hypothesis, accumulating evidence has demonstrated 
proactive control is closely related to working memory in adults 
(Redick, 2014; Richmond et  al., 2015; Wiemers and Redick, 
2018). For instance, Redick (2014) showed that in young adults, 
individuals with high working memory capacity tend to use 
proactive control more often than individuals with low working 
memory capacity. Additionally, Richmond et al. (2015) reported 
that in young adults, inter-individual differences in working 
memory could predict inter-individual differences in the efficiency 
of proactive control engagement. A few studies also reported 
similar relationships during childhood (Lorsbach and Reimer, 
2010; Troller-Renfree et  al., 2020). For instance, individual 
differences in working memory were found positively related 
to more proactive control in children at 9  years old (Troller-
Renfree et  al., 2020). Given the positive relationship between 
working memory and proactive control reported in both 
adulthood and late childhood, we  hypothesize that working 
memory may relate to the use of proactive control in early 
childhood. Investigation of this question would bring us a 
deeper understanding of the mechanisms underlying cognitive 
development during early childhood.
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A related question is whether proactive control in early 
childhood could be  linked to academic abilities. Of particular 
interest is the math ability that is critical to many aspects in 
daily life (Hafer et  al., 2002; Shapka et  al., 2006; Joensen and 
Nielsen, 2009). Research has documented numerous cognitive 
factors that may affect math ability (Clark et al., 2010; Raghubar 
et  al., 2010). One of the most investigated factors is working 
memory (Raghubar et al., 2010). It is assumed that operational 
processes in math problem solving involve temporary storage 
and retrieval of task-relevant information, which greatly consumes 
working memory resources. Since proactive control and working 
memory have been suggested to share overlapping cognitive 
processes and neural resources (Müller and Knight, 2006; Aron, 
2011; Braver, 2012; Redick, 2014), the use of proactive control 
at early childhood may play a critical role in the development 
of math ability, and even affect the impact of working memory 
on math ability. To date, only one study specifically focused 
on the relationship between proactive control and math ability 
in children, and reported that individual differences in proactive 
control engagement were positively related to variations in 
math performance (Kubota et al., 2020). Notably, this relationship 
was detected in a sample with a wide age range of 6–10  years 
old, and most of the participants were in middle or late 
childhood. It remains unclear whether the use of proactive 
control in early childhood contributes to individual differences 
in math performance.

Based on the literature mentioned above, the present study 
aimed to investigate the relationships of proactive control with 
both working memory and math ability in early childhood. 
Of particularly, we focused on the age of 5–7 years old because 
this age period has been suggested as the earliest stage for 
the emergence of proactive control (Lucenet and Blaye, 2014; 
Gonthier et  al., 2019). Additionally, the testing point in this 
study was set at the start of primary school. This is a period 
of interest because it is marked by important changes to both 
children’s cognitive abilities and external demands of the school 
environment. Investigating relations in cognitive abilities at this 
age stage can help us identify the early skills that may have 
long-term consequences for later cognitive and academic 
outcomes (Mazzocco and Kover, 2007; De Smedt et  al., 2009). 
Children at this age period performed an animal version of 
the AX-CPT task that could measure engagement in proactive 
control. In addition, they completed several cognitive tasks 
that could measure working memory and math ability. Based 
on findings in prior research (Lucenet and Blaye, 2014; Gonthier 
et  al., 2019), we  hypothesized that children at this age period 
would show a predominantly proactive pattern of cognitive 
performance, with worse performance on AY trials than on 
BX trials in the AX-CPT. Besides, we  hypothesized that the 
proactive control index as measured by the AX-CPT would 
be  positively correlated with both working memory and math 
performance. Moreover, since prior research has consistently 
reported that working memory is closely related to math 
performance (Raghubar et al., 2010), we further tested whether 
the relationship between proactive control and math performance 
would be  independent from the relationship between working 
memory and math performance, and whether individual 

differences in proactive control would mediate the relationship 
between working memory and math performance. Additionally, 
the literature has provided some evidence that variations in 
age, gender, socioeconomic status, and fluid intelligence of the 
samples may affect behavioral performance in working memory 
and math ability during childhood (Espy et  al., 2004; Noble 
et  al., 2007; Wei et  al., 2012; Yeniad et  al., 2013). Therefore, 
these variables would be  incorporated into the present study 
as control variables.

MATERIALS AND METHODS

Participants and Procedures
We enrolled a total of 98 children aged 5–7  years old from 
a primary school in Chinese Mainland. They were from rural 
families, had normal hearing and normal visual acuity, had 
no history of psychiatric or neurological disorders, and had 
studied the same curriculum with no special educational 
assistance requirements. At the time of testing, they were all 
at the beginning of their first-grade years. Specifically, three 
computer-based cognitive tasks generated using E-Prime 1.1 
were used to measure proactive control, and verbal/visual 
working memory. The children were tested one-by-one in a 
quiet room at school, and the order of the three computerized 
tasks was counterbalanced between subjects. After all the 
computerized tasks, two paper-pencil tests that assessed math 
and fluid intelligence were administrated in a group manner. 
Additionally, parents finished a questionnaire including a widely 
used marker of socioeconomic status – average monthly 
household income. A total of 15 children were not included 
in final statistical analyses due to withdrawal from the study 
after the enrollment (N = 9) or incomplete behavioral assessments 
(N  =  6). Moreover, two children were excluded due to the 
mean of accuracy in the AX-CPT task being below 50% and 
3 SD below the mean accuracy of all participants. Consequently, 
81 children constituted the final analytical sample (N  =  81, 
mean age  =  6.29  years, SD  =  0.35, range  =  5.76–7.32, 40 
boys, Table  1).

Cognitive Control
An animal version of the AX-CPT task was used to measure 
cognitive control (Gonthier et  al., 2019). In this task, if an X 
probe (giraffe) occurred after an A cue (panda), participants 
were instructed to press the green button with their dominant 
index finger, but if any other cue-probe pairs (AY, BX, and BY 
trials, where Y and B represent any animals other than panda 
and giraffe) occurred, participants were required to press the 
red button with their other index finger. They were instructed 
to respond as fast and accurately as possible. Similar to prior 
research (Lucenet and Blaye, 2014), AX trials made up  70% of 
the trials, while each of the other three types of cue-probe 
pairs made up  10% of the trials. There were 16 practice trials, 
which could be  repeated one more time if needed, to make 
the participants acquainted with this task. The formal testing 
included four blocks of 80 trials, yielding a total of 320 trials. 
For each trial, a fixation was firstly displayed in the center of 
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the screen for 500  ms; then a cue animal picture was presented 
on the screen for 500  ms, followed by a blank interval for 
1,500  ms; subsequently, a probe animal picture was presented 
on the screen up to 1,500  ms or disappeared if a response was 
given. Error rates and mean reaction time for correct responses 
were calculated for each condition. Then the proactive behavioral 
index (PBI) that has been used widely in previous research 
(Gonthier et  al., 2019; Kubota et  al., 2020), was calculated to 
measure the use of proactive control. The PBI score was computed 
as (AY  −  BX)/(AY  +  BX) for both error rates and reaction 
time. This index could reflect the relative balance of interference 
between AY and BX trials, where a higher value in PBI scores 
would reflect more reliance on proactive control.

Working Memory
Both verbal and visual working memory tasks were conducted 
to obtain a domain-general estimate of working memory ability.

Verbal working memory was measured by a forward digit 
memory span task that was derived from the Wechsler intelligence 
scale (Watkins and Smith, 2013). In this task, a set of sequences 
with single digits (1–9) were presented aurally at a rate of 
one digit per second. Participants were instructed to repeat 
those numbers in order immediately after the presentation of 
the last digit. The task started with a sequence length of two 
digits, and each length was tested with two independent digit 
sequences. The sequence length would increase by 1 if either 
one or both digit sequences for the same length were recalled 

correctly, otherwise the task would be  discontinued. Verbal 
working memory was determined by the maximum sequence 
length the subject could recall correctly. If both trials of the 
maximum sequence length were recalled successfully, verbal 
working memory was indexed by this sequence length; otherwise 
verbal working memory was indexed by the maximum length 
minus 0.5.

Visual working memory was measured by an animal span 
task adapted from Loosli et  al. (2012). The task consisted of 
two stages. In the encoding stage, a sequence of animals was 
presented in the center of the screen and participants were 
asked to identify the orientation of each animal by pressing 
the left or right button (press the right button for correct 
presentation and press the left button for upside-down). At 
the same time, they were required to remember the order in 
which the animals were presented. If the participants made a 
wrong response or did not give a response within 3,000  ms, 
an error feedback was presented. In the recall stage, the 
participants were required to recall the previously displayed 
animal sequence by clicking on the appropriate animals from 
the display without time limits. The task started with a sequence 
length of two animal pictures. The length on the next animal 
sequence would increase by 1 if the participant recalled the 
current animal sequence correctly, otherwise it would remain 
stable. The task would be discontinued if the participants could 
not correctly recall two animal sequences with a same length. 
Visual working memory was assessed by the maximum number 
of animals that the participant could recall correctly.

Math
Math ability was measured by the arithmetic subscale of the 
Heidelberg Rechentest (Haffner, 2005), which has been reported 
to have good reliability for the Chinese population (Wu and 
Li, 2005). It consisted of four timed subtests: mental addition 
(e.g., 7+1=_), mental subtraction (e.g., 60−4=_), number 
equations filling (e.g., 11+_=15–2), and number comparison 
(e.g., 12+9_20). Problems in each subscale were displayed 
serially in a list with an order of increasing difficulty. Participants 
were instructed to solve the math problems with numbers or 
symbols such as “>,” “<,” and “=” within a time limit of 1  min 
for each subtest. For each participant, the number of correct 
answers combined for all subtests was used as an estimate of 
math ability. Moreover, this math test provides an additional 
subtest for number writing speed. Children were required to 
copy as many numbers as possible within 30  s. This measure 
could be  used to control for the effect of general writing 
speed on math performance.

Fluid Intelligence
Fluid intelligence was measured by Raven’s Standard Progressive 
Matrices (Raven, 2003). The test has also been reported to show 
good reliability for the Chinese population (Wang et  al., 2007). 
It includes 72 items and each item consists of a series of geometric 
figures with one of them missing. Participants were asked to 
choose the appropriate geometric figure from a set of given 
figures. To reduce fatigue in the child participants, we  split the 

TABLE 1 | Mean (SD) and range of all the study variables (N = 81).

Study variables Mean SD

Age 6.29 0.36

Gender
Percentage of 
boys 49.4%

Socioeconomic status

Monthly household income 
(RMB) 5,360 2,711

Fluid intelligence Raw scores 16.35 4.46

AX-CPT

Reaction time AX 584 90
AY 800 129
BX 662 139
BY 702 130

Error rates AX 0.18 0.08
AY 0.38 0.14
BX 0.27 0.13
BY 0.14 0.09

Proactive control indices
PBI in reaction 
time 0.10 0.10
PBI in error 
rates 0.17 0.35
Composite PBI 0.00 0.76

Working memory

Verbal working memory 5.76 0.94
Visual working memory 4.79 1.05
Composite working memory 0.00 0.83

Math 42.35 11.53
Number copying 20.22 6.94

SD, standard deviation.
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Raven’s test into odd and even items (36 items per version), 
and only the version with odd items was used. Participants had 
20 min to complete the test, and the number of correct responses 
was used as a measure of fluid intelligence.

RESULT

Descriptive Analyses
In the AX-CPT task, the mean of reaction time and error 
rates across all trials were 625  ms (SD  =  89, range  =  416–945) 
and 0.21 (SD  =  0.06, range  =  0.06–0.34), respectively. Mean 
reaction time was not significantly correlated with error rates 
(r  =  0.012, p  =  0.918), indicating no speed-accuracy trade-off 
in AX-CPT. Consistent with previous studies (Lucenet and 
Blaye, 2014; Kubota et  al., 2020), the children performed more 
slowly [t(80)  =  8.195, p  <  0.001, d  =  152  ms] and committed 
more errors [t(80)  =  4.613, p  <  0.001, d  =  0.107] on the AY 
trials than the BX trials, thereby revealing their use of a 
proactive mode of cognitive control. To estimate the inter-
individual differences in the use of proactive control, the PBI 
scores in term of both reaction time and error rates were 
computed for each participant. A higher value would indicate 
more use in proactive control processes. Then a composite 
PBI score was computed by standardizing and averaging the 
reaction time PBI scores and error rates PBI scores, thereby 
summarizing the use of proactive control with a single index. 
Regarding to the two working memory measures, verbal working 
memory was found positively related to visual working memory 
(r  =  0.392, p  <  0.001). Then a composite working memory 
score was computed by standardizing and averaging the scores 
on these two working memory tasks so as to obtain a domain-
general estimate of working memory capacity. The descriptive 
statistics of all the measures in the present study are displayed 
in Table  1.

Correlational Analyses
We first examined the potential relations of age, socioeconomic 
status, fluid intelligence, and number copying speed with our 
key study variables. As shown in Table 2, significant correlations 
were detected between fluid intelligence and composite PBI 
scores (r  =  0.228, p  =  0.041), between fluid intelligence and 
visual working memory (r  =  0.236, p  =  0.034), as well as 
between fluid intelligence and math ability (r = 0.224, p = 0.045). 
No other significant relationships with these key study variables 
were detected. Additionally, none of these key study variables 
showed any significant gender differences (smallest p  =  0.152).

Then we  examined the relations of proactive control with 
both working memory and math ability (Table 3). Importantly, 
both the composite PBI scores (r = 0.392, p < 0.001, Figure 1A) 
as well as PBI scores in reaction time (r  =  0.330, p  =  0.003) 
and error rates (r  =  0.264, p  =  0.017) were found positively 
correlated with the composite working memory scores, 
confirming that children with higher working memory capacity 
tended to be  more proactive. To confirm the stability of this 
finding, the same analyses were replicated by considering the 

two working memory tasks separately. Significant or marginal 
correlations with the PBI scores were also found separately 
for verbal working memory (composite PBI: r = 0.304, p = 0.006; 
PBI reaction time: r  =  0.259, p  =  0.020; PBI error rates: r  =  0.203, 
p = 0.069) and visual working memory (composite PBI: r = 0.349, 
p  =  0.001; PBI reaction time: r  =  0.292, p  =  0.008; PBI error rates: 
r = 0.238, p = 0.032), confirming that the relationship between 
proactive control and working memory was domain general. 
Moreover, the composite PBI scores were found positively 
correlated with children’s math performance (r = 0.407, p < 0.001, 
Figure  1B). Similar correlations were also found between PBI 
scores in reaction time and math ability (r = 0.325, p = 0.003), 
as well as between PBI scores in error rates and math ability 
(r = 0.292, p = 0.008), providing further evidence that proactive 
shift of cognitive control may be  beneficial for math problems 
solving. Notably, all the above significant correlations remained 
similar when controlling for the effect of fluid intelligence as 
well as other factors including age, socioeconomic status, and 
number copying speed. Additionally, in line with prior research 
(Raghubar et  al., 2010), individual differences in composite 
working memory were found positively correlated with children’s 
math performance (r = 0.317, p = 0.004, Figure 1C). Significant 
correlations were also found between verbal working memory 
and math performance (r  =  0.219, p  =  0.049), as well as 
between visual working memory and math performance 
(r  =  0.311, p  =  0.005), indicating that the relationship between 
working memory and math performance was domain general. 
Post hoc power analysis using the G-Power Analysis software 

TABLE 2 | The correlations of age, socioeconomic status, and fluid intelligence 
with key study variables.

Age Socioeconomic 
status

Intelligence Number 
copying

Proactive control

PBI reaction time −0.061 −0.083 0.194 0.082
PBI error rates 0.008 −0.077 0.151 −0.031
Composite PBI −0.035 −0.106 0.228* 0.034

Working memory

Verbal 0.031 −0.164 −0.002 0.099
Visual −0.081 −0.16 0.236* 0.048
Composite −0.030 −0.194 0.14 0.088

Math 0.114 −0.095 0.224* 0.106

*p < 0.05.

TABLE 3 | The correlations of proactive control with both working memory and 
math ability.

Working memory Math

Composite Verbal Visual

Proactive control

Composite PBI 0.392*** 0.304** 0.349** 0.407***

PBI reaction time 0.330** 0.259* 0.292** 0.325**

PBI error rates 0.264* 0.203 0.238* 0.292**

***p < 0.001; **p < 0.01; *p < 0.05.
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A B
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FIGURE 1 | Relationships among proactive control, working memory, and math ability. (A) Represents the relationship between proactive control and working 
memory; (B) represents the relationship between proactive control and math ability; and (C) represents the relationship between working memory and math ability.

TABLE 4 | Hierarchical regression analyses predicting math performance.

Step Total R2 ΔR2 Fluid 
intelligence

Working 
memory

Proactive 
control

1 0.050 0.050 0.224*

2 0.134 0.084 0.183 0.292**

3 0.211 0.077 0.129 0.179 0.307**

**p < 0.01; *p < 0.05.

program (Faul et  al., 2007) revealed that with the current 
sample size of N  =  81, and for the observed correlations of 
the composite PBI scores with both working memory and 
math performance, the achieved power could reached the 
standard threshold of 0.80.

Regression and Mediation Analyses
Hierarchical regression analyses were carried out to examine 
whether proactive control could explain a significant amount 
of variance in math performance beyond the effect of working 
memory. As there was a significant correlation between fluid 
intelligence and math performance, the intelligence score was 
entered into the model as a covariate in step  1. The composite 
working memory score was entered into the model in step  2 
to control for the effect of working memory. Finally, the 
composite PBI scores were entered into the model to determine 
the unique influence of proactive control after controlling for 
the effects of both fluid intelligence and working memory. 
Regression results were expressed in term of R-square change 
(ΔR2) accounted for by the model and standardized regression 
coefficients (β) of each predictor, which were displayed in 
Table 4. Our results showed that this final model was significant 
[F(3,77)  =  6.847, p  <  0.001, total R2  =  0.211]. The composite 
PBI scores accounted for additional 7.7% variance increase in 
explaining individual differences in children’s math performance. 
The results remained significant when controlling for other 

factors including age, socioeconomic status, and number 
copying speed.

Since proactive control, working memory, and math ability 
were found to be  significantly correlated with each other, 
we  further ran a mediation model to test whether individual 
differences in proactive control could mediate the relationship 
between working memory and math ability. The mediation 
effect was evaluated using the PROCESS (Hayes, 2012) 
implemented in SPSS 22.0. To test the significance of mediation 
effect, a 95% bootstrapped CI was generated from repeated 
resampling (10,000 samples) of the observed data. CIs that 
do not include zero would indicate a significant mediation 
effect of the predictor (working memory) on the outcome 
(math performance) through the mediator (proactive control). 
Given that fluid intelligence scores were found to be significantly 
correlated with all three measures, it was included as a covariate. 
The result indicated that the composite PBI scores exerted an 
indirect mediation effect on the relation between composite 
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working memory and math performance [CI (0.416, 3.569), 
Figure  2]. The same analyses were conducted with composite 
working memory scores replaced by verbal or visual working 
memory scores, respectively. Similarly, the composite PBI scores 
mediated the relationship between verbal/visual working memory 
scores and math performance [verbal working memory: CI 
(0.348, 2.732); visual working memory: CI (0.253, 2.596)]. 
These results remained significant when controlling for age, 
intelligence, socioeconomic status, and number copying speed.

DISCUSSION

It has been now well accepted that cognitive control improves 
rapidly during childhood, with one of the dominant changes 
being a developmental shift from predominantly reactive control 
to a more planful and sustained pattern of proactive control 
(Lucenet and Blaye, 2014; Gonthier et al., 2019; Troller-Renfree 
et  al., 2020). However, less is known about whether and how 
this proactive shift of cognitive control relates to other cognitive 
abilities. Although several recent studies have provided evidence 
for significant associations between the use of proactive control 
and individual differences in working memory and math 
ability, they focused on adults (Redick, 2014; Wiemers and 
Redick, 2018), older children (Troller-Renfree et  al., 2020), 
or children with a wide age range (Kubota et  al., 2020). It 
is currently not clear whether and how proactive control at 
early childhood relates to individual differences in working 
memory and math ability. The current study tried to address 
this question in children under 5–7 years of age. First, consistent 
with prior research (Lucenet and Blaye, 2014; Gonthier et  al., 
2019), the present study demonstrated that children aged 
5–7  years old engaged cognitive control more proactively, as 
reflected by worse performance in term of both response time 
and error rates on AY than BX trials. Second, the proactive 
control index measured by the AX-CPT task was found positively 
associated with behavioral performance in both working memory 
and math tasks. Third, hierarchical regression analyses indicated 
that proactive control accounted for additional variance in 
predicting math ability beyond the effect of working memory. 
Finally, a mediation model showed that individual differences 

in proactive control significantly mediated the relationship 
between working memory and math ability. Altogether, these 
findings suggest that proactive control during early childhood 
is closely related to inter-individual differences in working 
memory and math ability, which may have important implications 
for future educational interventions.

The Use of Proactive Control
Previous research has consistently reported that as age increases, 
children shift from heavy reliance on reactive control to more 
proactive control during childhood (Brahmbhatt et  al., 2010; 
Munakata et  al., 2012; Chevalier et  al., 2013; Lucenet and 
Blaye, 2014; Troller-Renfree et  al., 2020). Importantly, a recent 
study by Gonthier et al. (2019) suggests that this developmental 
shift begins in early childhood – presumably occur at around 
5–7  years of age. In their study, pre-kindergartners (mean 
age  =  4.41  years) showed a clear pattern of reactive control 
in the AX-CPT, with higher error rates on BX than AY trials. 
In contrast, kindergartners (mean age  =  5.72  years) and first-
grade children (mean age  =  6.68  years) showed more reliance 
on proactive control, with both more errors and longer reaction 
time on AY than BX trials. Interestingly, our study also revealed 
that children aged 5–7  years old engaged cognitive control 
more proactively, with higher error rates and longer reaction 
time on AY than BX trials (Table  1). The sample age in our 
study was similar to the age of kindergartners and first-grade 
children in the study by Gonthier et  al. (2019). Hence, our 
study, with a relatively larger sample size, replicated their 
findings and suggested that children aged 5–7  years old have 
acquired the ability to use proactive control.

Relationships Between Working Memory 
and Proactive Control
Previous research has consistently reported that individual 
differences in working memory are significantly correlated with 
variations in proactive control, indicating some common cognitive 
substrates between these two processes (Lorsbach and Reimer, 
2010; Richmond et al., 2015; Wiemers and Redick, 2018; Troller-
Renfree et  al., 2020). It has been suggested that the engagement 

FIGURE 2 | The mediation role of proactive control in the relationship between working memory and math ability. Numbers are standardized beta coefficients, and 
the value after the forward-slash indicates the standardized beta coefficient after the inclusion of the mediator. ***p < 0.001; **p < 0.01.
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of proactive control may critically depend on working memory, 
as proactive control requires continuous and active maintenance 
of goal-related information in working memory. Accordingly, 
individuals with higher working memory capacity may be better 
at using valid cues to prepare their responses to incoming targets, 
and show more efficiency in proactive control engagement. 
However, the majority of previous studies have detected this 
relationship in young adults (Richmond et  al., 2015; Wiemers 
and Redick, 2018) and older children (Lorsbach and Reimer, 
2010; Troller-Renfree et  al., 2020). Little is known about how 
this relationship unfolds in early childhood. Importantly, our 
study extended previous findings by revealing a positive relationship 
between proactive control and working memory in children at 
5–7  years old. Consistent with the study by Gonthier et  al. 
(2019), our study found that both verbal and visual working 
memory were positively correlated with the use of proactive 
control. Hence, there may be a domain-general factor of working 
memory rather than a domain-specific working memory 
component that could account for the close relationship. However, 
the study by Gonthier et  al. (2019) used a wide age range and 
the relationships disappeared when controlling for age. Additionally, 
participants in their study were recruited from different school 
grades including pre-kindergarten, kindergarten, and first grade. 
Thus, the associations between working memory and proactive 
control could be  interfered by confounding factors such as 
schooling effect (Brod et al., 2017). By contrast, our study focused 
only on the first-grade students and all the tests were administered 
at the start of the first grade. Hence, our study might provide 
more clear evidence for the positive relationships between working 
memory and proactive control in early childhood. Finally, several 
previous studies in adults have implicated the same brain circuitry 
(e.g., the prefrontal and parietal regions) in both proactive control 
and working memory paradigms (Müller and Knight, 2006; 
Aron, 2011). Hence, it is possible that the relationships between 
proactive control and working memory observed in the current 
study were driven by involvement of a shared brain circuitry. 
Consistent with this conjecture, a previous study reported that 
the links between proactive control and working memory in 
9-year-old children were mediated by increases in parietal activity 
underlying working memory (Troller-Renfree et  al., 2020). 
However, further study is warranted to identify the neural 
mechanism underlying the relation between proactive control 
and working memory in early childhood.

Relationships Between Proactive Control 
and Math Ability
Another interesting finding of the current study is that individual 
differences in the use of proactive control at this early age 
stage were positively correlated with variations in math ability. 
This adds a new perspective to the field by demonstrating 
that children may benefit from using proactive control in 
specific academic skills. A growing body of studies have been 
dedicated to investigating the potential factors accounting for 
individual differences in math ability (Bull and Scerif, 2001; 
De Smedt et al., 2009; Wang et al., 2015). However, the majority 
of previous studies have tried to explain individual differences 
in math ability by investigating the impact of specific cognitive 

skills such as working memory, response inhibition, and task 
switching (Bull and Scerif, 2001; Raghubar et  al., 2010; Wang 
et  al., 2015). Interestingly, the selection and use of appropriate 
strategies has also been suggested to explain part of the variability 
in math ability (Imbo et  al., 2007; Imbo and Vandierendonck, 
2007). And a recent study in adults has shown that the use 
of proactive control has positive influences on the strategy 
selection and execution when solving math problems (Hinault 
et  al., 2017). Hence, it is possible that the use of proactive 
control helps children use cues to prepare appropriate math 
strategies in advance, and thereby contributes to their improved 
math performance. Notably, considering that working memory, 
which was found significantly correlated with the use of proactive 
control in the present study, has been convincingly shown to 
play a critical role in the development of math ability in 
children (De Smedt et  al., 2009; Raghubar et  al., 2010), one 
may wonder whether individual differences in working memory 
accounts for the relationship between proactive control and 
math ability. Nevertheless, this is unlikely as our hierarchical 
regression model showed that proactive control still explained 
a unique portion of math ability after controlling for those 
explained by working memory. Moreover, the contribution of 
proactive control to math ability remained significant when 
the intelligence score was included as a covariate, highlighting 
the importance of proactive control for math performance.

Proactive Control Mediates the 
Relationships Between Working Memory 
and Math Ability
The close relationship between working memory and math ability 
during childhood has been supported by a growing body of 
research (Swanson and Sachse-Lee, 2001; Berg, 2008; Raghubar 
et  al., 2010; Van de Weijer-Bergsma et  al., 2015). Importantly, 
the present study found that this relationship at early childhood 
was mediated by individual variations in the use of proactive 
control. This mediation effect could be replicated when the verbal/
visual working memory scores were used as the dependent 
variable. Together, these results indicate that working memory 
may contribute to the early development of math ability through 
the engagement of proactive control. We speculated that children 
with higher working memory capacity might engage proactive 
control more efficiently when solving math problems. As a result, 
they may be  easier to prepare and select appropriate math 
strategies and thereby accomplish the math tasks in a more 
efficient manner. A previous neuroimaging study by Taillan et al. 
(2015) investigated the neural correlates of strategy selection 
when solving math problems, and showed greater brain activations 
in the right anterior cingulate cortex, dorsolateral prefrontal 
cortex, and angular gyrus when selecting the better math strategies. 
Interestingly, these brain regions were previously observed in 
both working memory (Owen et al., 2005) and proactive control 
processes (Müller and Knight, 2006; Aron, 2011). Thus, it is 
also possible that the shared underlying neural mechanism 
contributes to the mediation role of proactive control in the 
effect of working memory on math performance. In the present 
study, the relationship between working memory and math ability 
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was completely mediated by proactive control. This complete 
mediation effect might be  attributable to the way the math test 
tested in this study. Although, all the participants in the present 
study answered the same math problems, children with higher 
working memory capacity might solve the math problems more 
efficiently by direct retrieval and progress further through the 
math test. They might thus encounter increasingly difficult math 
problems that elicited more procedural strategies. Given that 
proactive control has been suggested to play a prominent role 
in adaptive strategy selection such as planning the order of 
arithmetic operations (Hinault et  al., 2017), proactive control 
might be thus used more frequently when solving these increasingly 
difficult math problems and thereby exerted a complete 
mediation effect.

Limitations and Future Directions
The current study had a few limitations that should be considered 
in future research. First, we  employed only an AX-CPT task 
and a standardized arithmetic test for measuring proactive control 
and math ability. A broader measurement for proactive control 
and math ability is recommended for future research to improve 
the generalization of the findings. Additionally, as the present 
study only examined a set of very limited variables, it remains 
unclear whether other cognitive factors untested would affect 
the results. Future studies should also consider other cognitive 
measures to address the potential confounding issues more 
rigorously. Second, the current findings are limited to the age 
range under investigation. Further study is warranted to investigate 
whether similar relations exist during preschool, primary school, 
and adolescence to address the role of proactive control in 
cognitive development more comprehensively. Third, the current 
study does not allow for conclusions about the directionality 
of the relationships of proactive control with working memory 
and math ability. Future research should consider investigating 
the causal relationships between proactive control and cognitive 
functions, for example, by examining whether targeted training 
on proactive control could improve working memory and math 
ability in children. Finally, the neural correlates of proactive 
control in early childhood remain largely unknown. Future 
research should try to clarify the potential neural mechanism 
that may underlie the relationships among proactive control, 
working memory, and math ability in early childhood.

CONCLUSION

To summarize, this study indicated that individual differences 
in proactive control at early childhood could explain variations 
in working memory and math ability. Moreover, individual 
differences in proactive control were found to explain additional 

variances in math ability beyond the effect of working memory, 
and were found to significantly mediate the association between 
working memory and math ability. More rigorous studies are 
needed to examine the causal relationships between proactive 
control and various cognitive functions at early childhood, 
and to identify the neural mechanism underlying these 
relationships. Lastly, it is tempting to think that targeted training 
on proactive control at an early age may be helpful in enhancing 
cognitive and academic skills in children with cognitive deficits, 
which deserves a further investigation.
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INTRODUCTION

Numeracy is critically associated with personal and vocational life-prospects (Evans et al., 2017;
Grotlüschen et al., 2019); yet, many adults and children lack a basic level of proficiency (Jonas,
2018). At the same time, research interest in numerical cognition, and its neuro-cognitive
foundations (e.g., Cohen Kadosh and Dowker, 2015), as well as in mathematics education (e.g.,
Dennis et al., 2016) continues to grow. In this opinion, we argue that more intensive discussion
across the disciplines is necessary to answer the question how results from basic research can make
it to the classroom, how classroom practices can be validated by research, and discuss a theoretical
framework for guiding future transfer endeavors.

Transferring basic research results to educational praxis is not a new challenge. As early as
1899, James (1958) noted the difficulty of directly deriving suggestions for pedagogical practice
from psychological research. Even when successful, research in psychology might not be enough
to derive effective suggestions or direct conclusions for educational practice without considering
environmental challenges and requirements of teaching. Clearly not all basic research aims at
informing educational practice; however, failure of important results from research to successfully
impact practice reflects missed opportunities at some point during dissemination—as is failing
to validate effective existing practices through research to allow for what may be called practice-
based evidence.

BASIC RESEARCH, APPLIED RESEARCH, AND USE-INSPIRED
BASIC RESEARCH

To illustrate possible barriers for moving basic research results on numerical cognition
into the classroom, Stokes’ Quadrant Model of Scientific Research (Stokes, 1997) may be
considered. Agnostic to a specific discipline, Stokes offered two dimensions to visualize
goals of research: research inspired by the quest for fundamental understanding vs. research
specifically designed with consideration of use. Stokes emphasized that the two dimensions
do not describe two opposite poles on a linear scale because if so, the quest for
fundamental understanding and consideration of use would drift apart, or at least would not
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be connected. Additionally, Stokes described a category syncing
basic research with more applied research which he termed use-
inspired basic research. Research in this category is inspired by the
quest for fundamental understanding, with the idea to explicitly
consider usefulness for practical needs.

Disciplinary fields such as the learning sciences, cognitive
science, neuroscience, and educational psychology may overlap
in terms of more basic or more applied research. For reasons
of parsimony, we conceptualized more basic research as that
conducted in the disciplines of neuroscience, cognitive science,
biology, and genetics. In contrast, we conceptualized more
applied research as research in the disciplines of mathematics
education, educational psychology, and the learning sciences.
Moreover, we operationalized use-inspired basic research as
research conducted by any of the above disciplines explicitly
for use in educational contexts. Of course, each of these
disciplines operates on different levels of observation (e.g., brain,
individual, classroom) and therefore contributes considerably
to our understanding of numerical cognition from the neuro-
cognitive foundations to the acquisition and teaching of
numerical skills. In the following, we provide examples of
research from several fields.

MORE BASIC AND MORE APPLIED
RESEARCH ON NUMERICAL COGNITION

The number of meta-analyses published since 2015 manifests
the contributions from both more basic and more applied
research. Examples of more applied research on numerical
cognition include evaluations of effectiveness of interventions
in early childhood (Mononen et al., 2014; Wang et al., 2016;
Christodoulou et al., 2017; Nelson and McMaster, 2019); for
older students (Jitendra et al., 2018; Stevens et al., 2018); across
age groups (Dennis et al., 2016); and across different regions of
the world (Conn, 2017). Other examples include interventions
for students with emotional difficulties (Losinski et al., 2019);
math anxiety (Namkung et al., 2019); or on attitudes toward
achievement (Savelsbergh et al., 2016); the impact of homework
(Fan et al., 2017); and specific teaching strategies (Capar and
Tarim, 2015; Rittle-Johnson et al., 2017; Guillaume and Van
Rinsveld, 2018).

On the other hand, meta-analyses of more basic research
include synthesized results on the association of numerical and
spatial cognition (Hawes et al., 2019); magnitude understanding
(Vanbinst and De Smedt, 2016; Sokolowski et al., 2017); rapid
automatized naming (Koponen et al., 2017); specific brain
regions associated with numerical cognition (Yeo et al., 2017);
specific numerical processes (Arsalidou et al., 2018); specific
cognitive functions (Peng et al., 2016); different numerical
representations (Schneider et al., 2017); and genetic influences
(Chen et al., 2017; King et al., 2019).

The above list is far from exhaustive. Synthesizing the entire
corpus of work-to-date to create a holistic understanding of what
we currently do and do not know on numerical cognition, and
then disseminating that work across disciplines and to educators,
is a substantial challenge for moving research results into

the classroom. Looking at just 15 evidence-based instructional
practices, using three different procedures for either early or
late implementation, Koedinger et al. (2013) explained that an
educator would have to consider 205 trillion options; and the
effectiveness of these instructional practices is susceptible to
contextual variables (e.g., Dunlosky et al., 2013; Davenport et al.,
2019).

RESEARCH AND NOISY APPLICATION IN
CLASSROOMS

But how can research then come to influence classroom practice?
And how can classroom practice influence what is researched? In
our opinion, suggestions for two-way bridges over research-to-
practice gaps (e.g., Bowers, 2016; Reynvoet et al., 2016; Mackey,
2019; Thomas, 2019) require more in-depth analysis. Where
(Stokes, 1997) provides amacro-view, Connell’s Adaptation Loop
(2012, see Figure 1) provides a closer look.

The right chart of Figure 1 reflects research, whereas the left
represents educational practice. Moving in clockwise direction,
starting at the top left corner of the diagram, the process
of research and adaptation illustrates recognizing a problem,
translating the problem into research questions, investigating
questions by scientific domain, providing explanations, designing
solutions, validating solutions in the educational environment,
and then repeating the process.

However, within the domain of educational practice, the
application loop indicates the iterative nature of changes
within educational settings and reflects the necessity for
further adaptation during the validation process. We suggest
the Application Loop model as an accurate reflection of
what occurs within education. Education is not a unitary
system, but a system made up of different sub-systems with
hierarchies of stakeholders (i.e., policymakers, administrators,
teachers, students). Implementation of explanatory models or
interventions previously proven effective in basic research often
fails to produce similar results in educational practice because, at
each hierarchical level, humans make decisions which introduce
new variables. While researchers are cognizant of some of these
variables, and often consider these as noise with the aim to
control these through experimental design or statistical models,
this noise may be the key to the comprehension of use-inspired
basic research.

Listen to the Noise
Collaboration, whether across disciplines or within educational
contexts, with the explicit aim of conducting use-inspired
research, is not easy. Berliner claimed that education research “is
the hardest science of all” (Berliner, 2002, p. 18). Belowwe discuss
a few issues critical for researchers to consider when planning to
conduct use-inspired research.

First, research in the classroom interrupts daily business
of teachers and students. Moreover, testing in classrooms and
controlled interventions change the typical dynamic of teaching
and learning. Evaluating the effectiveness of interventions
may necessitate students’ absence from the classroom. Such
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FIGURE 1 | Adaptation Loop (Source: Connell et al., 2012, Reproduced with permission of Michael W. Connell ©2010–2014. All rights reserved. Author contact:

Michael.W.Connell@gmail.com).

interruptions not only let students miss instruction but may
also disturb learning progress of other students. Students may
either come to resent being pulled from their classroom or resent
not being pulled when not assigned to the treatment group.
These circumstances reflect conflicts of goals between the parties
involved in use-inspired research, which may lead to tensions.

Additionally, researchers are interested in publishing their
work, thus strive for theoretically and methodologically sound
but also positive results. Therefore, they have to include multiple
and different measures to evaluate effects of interest, or to control
for potential moderators, mediators, or confounds. However,
time in classrooms is limited and a precious resource. Schools
have demands, schedules, and goals, which are different from
those of researchers. This discrepancy often leads to a zero-
sum game, in which compromises to meet the needs and
interests of both schools and researchers may impact outcomes.
Careful consideration of the cost/benefit of variables likely
to inform research results requires balancing the cost to the
students/teachers/schools and the benefits to science.

How to Increase Use-Inspired Basic
Research
There have been others advocating for use-inspired basic research
with careful consideration of how to increase implementation
and ecological validity of research (e.g., Cai et al., 2017,
2018, 2019). For example, Smolkowski et al. (2019) provided
suggestions on levels of implementation, andHiggins et al. (2019)
focused on how research can become more use-inspired:

• Choose outcome measures that matter to educators in
their context

• Include educators and students in the research process (i.e.,
researching with them not on them)

• Be flexible and sensitive to time and schedules
• Consider that research that was effective in the lab may not be

effective in the classroom
• Ask questions educators want and need to have answered
• Disseminate findings in non-academic media (i.e., social

media, websites); attend educator specific conferences.

Space limitations do not allow us to provide multiple successful
examples of such use-inspired research (e.g., Hawes et al.,
2020), of research partnerships (e.g., Kaplan et al., 2019), or
of societies actively promoting and including educators during
their annual conferences (e.g., The Math Cognition Learning
Society, The International Mind, Brain, and Education Society,
The Earli SIG 22). We recommend readers consider the above
citations as references for how to reframe perspectives of
what it means to conduct use-inspired research. Additionally,
researchers interested in what teachers are doing in the (math)
classroom can follow the Twitter hashtags #mtbos, #iteachmath,
and #SwDMathChat. These clearly indicate that educators often
ask the same questions as researchers; although usually without
the benefit of being able to validate their work beyond their
personal and peer experiences. Collaborative work is happening,
though not yet at scale. For example, educator Simon Gregg
and researcher Tali Leibovich-Raveh co-authored a paper on
numerical magnitude understanding after several discussions on
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Twitter (preprint: https://osf.io/ndyb6/). Sharing preprints via
social media, talking to educators face-to-face, going to educator
focused conferences, or any other means of closing feedback
loops are examples of ways to move research on numerical
cognition forward within and across disciplines.

INTERDISCIPLINARY, COLLABORATIVE
RESEARCH: A WAY TO BRIDGE THE GAP?

More than 100 years ago, James (1958) not only described the
difficulty of directly deriving suggestions from psychological
research to pedagogical practice; he also claimed that research
must include the expertise of educators to respect the complexity
of teaching in classrooms. A first step would be when basic
and more applied research on numerical cognition find a
shared vocabulary and bring their expertise together to do
interdisciplinary use-inspired basic research (i.e., Stokes, 1997).
Moreover, going from the lab to the classroom and vice versa
could offer new perspectives for teaching and learning. Connell
et al. (2012) idea of application loops points to the next steps
by indicating the necessity of iterations at the application
stage to consider contextual demands of classroom practice.
To illustrate, imagine various entities in Connell et al. (2012)
as overlapping concentric circles in a Venn Diagram: circles
for each domain of applied and basic research, and also
circles for the different stakeholders in educational practice.
Maybe, any two circles will overlap, or some may overlap with
more than one other circle, but in the best case, all circles
should overlap at a shared core. Each circle is necessary, but
the point at which all circles overlap is where use-inspired,
contextually relevant research occurs. There will always be
a need for basic research, which may not directly impact
use, and many open questions remain for researchers to
explore. In contrast, classroom teachers have context-specific

and practice-relevant questions for research. We propose that
results from research should find their way into classrooms,
but we need more integration of different perspectives and
fruitful collaborations between researchers of different disciplines
with educators. Only then we may have a chance to bring
results from basic research into educational practice. However,
as Minshall (2009) put it, “knowledge transfer is a ‘contact sport’;
it works best when people meet to exchange ideas, . . . and spot
new opportunities.”
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