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Editorial on the Research Topic

Advanced Neuroimaging of Brain Metastases

Metastasis is the most common cause of brain cancer. Advanced magnetic resonance imaging
(MRI) and positron emission tomography (PET) techniques are playing an increasingly important
role in the surveillance, diagnosis, and management of patients with brain metastases as treatments
for systemic cancers continue to improve. These advanced neuroimaging methods enable better
delineation of metastatic lesions, while also providing a rich array of information regarding the
microstructural, vascular, metabolic, and functional properties of metastases and the affected
brain parenchyma. However, barriers remain in the widespread translation and adoption of these
techniques. The challenges of imaging patients with brain metastases include the heterogeneity of
primary tumors and the tumor microenvironment. The varied appearances of metastases before,
during and after treatment, especially in the face of a growing arsenal of new cancer therapies, are
further difficulties to contend with.

Advanced neuroimaging biomarkers promise to improve the non-invasive characterization,
prognostication, and evaluation of treatment response and post-treatment effects related to brain
metastases. Such biomarkers may aid in the differentiation of metastases from other entities and
serve as valuable adjuncts to conventional imaging in distinguishing disease progression from
treatment-related effects. The standardization and validation of advanced imaging biomarkers will
need to be addressed to facilitate the adoption of such techniques in clinical trials and clinical
practice. A survey of the available techniques will help to define more precisely the role of state-
of-the-art imaging approaches in targeted problem-solving, as well as their broader utility in
elucidating the underlying cancer biology.

This Research Topic provides a glimpse of current and emerging advanced neuroimaging
techniques used in the care of patients with brain metastases. Tong et al. provide a comprehensive
review of advanced MRI techniques for brain metastases. These techniques are useful for both
diagnosis, including differentiating between types of malignancy, and assessment of treatment
response, including distinguishing radiation necrosis from disease progression. These methods
include: black blood MRI; magnetic resonance spectroscopy; quantitative magnetization transfer
imaging; dynamic contrast-enhanced MRI to measure the transmembrane water exchange rate;
chemical exchange saturation transfer measurement; perfusion imaging; and radiomics and
artificial intelligence techniques.

Picking up on the radiomics theme, Lohmann et al. review radiomic techniques and features
when applied to PET/MRI of brain metastases. They discuss the underlying rationale of radiomic
analysis, which is to identify appropriate characteristic image features and to use these to
generate predictive or prognostic mathematical models. Hence, radiomics of brain metastases
can be considered as a tool to complement established imaging analysis methods and other
clinical measures that can be jointly used to make treatment decisions or final diagnoses with
improved confidence.
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Goncalves Filho et al. studied a highly accelerated Wave-
controlled aliasing in parallel imaging (Wave-CAIPI) post-
contrast 3D T1 SPACE MRI sequence for brain metastases, and
found that it provides equivalent visualization of lesions and an
overall diagnostic quality, with three times reduced scan time
compared to standard 3D T1 SPACE MRI.

Two articles present the role of susceptibility weighted
imaging (SWI) MRI for brain metastases. Schwarz et al.
review its role in early diagnosis, determination of type of
malignancy, and treatmentmonitoring, and they discuss therapy-
associated changes that can affect SWI. They also review
recent insights on the role of “isolated SWI signals” and the
controversy on the specificity of SWI for early detection of brain
metastases. Ceballos-Ceballos et al. compared unenhanced SWI
and gadolinium-enhanced SWI (SWI-Gd) to assess if the latter
improves brain metastasis detection in combination with other
MRI sequences. They found that SWI-Gd may improve the
diagnostic yield of brain metastases.

Ari Wijetunga and Jonathan Yang provide useful insights
into various aspects of diagnostic neuroimaging that radiation
oncologists rely on for clinical decision-making, radiation
treatment planning, and assessment of treatment response or
complications of brain metastases. Also of relevance to radiation
treatment of brainmetastases, Swinburne et al. conducted a study
to determine if early intratumoral changes in interstitial fluid
pressure (IFP) and velocity (IFV), estimated from computational
fluid modeling using dynamic contrast-enhanced MRI, can
predict long-term outcomes of lung cancer brain metastases
treated using stereotactic radiosurgery. They found that early
post-treatment assessment of IFP and IFV can be used to
predict long-term response of lung cancer brain metastases to
radiosurgery, allowing timely treatment modifications.

Finally, Kalakoti et al. present an interesting analysis of
morphometric and volumetric differences across anatomical
brain regions in patients with metastases presenting with
seizures. That information could provide useful biomarkers in

the identification of seizure expression and could serve as a
neuronal target for mitigation. Using brain segmentation of T1-
MPRAGE MRI images, they found that certain brain regions,
such as the pars orbitalis, supramarginal and temporal gyrus
(middle, transverse), and the pre-cuneus contribute a maximal
potential for differentiation of seizure from non-seizure patients.

Overall, this collection of research articles and up-to-date
reviews might act as a useful platform of knowledge for scientists
and clinicians grappling with the difficult management of brain
metastasis patients. We believe that the next big challenges
in management of these patients will be to scale up various
efforts and tools in the field of advanced neuroimaging of
brain metastases. For instance, this will require new strategies
and advances in techniques that include diffusion, perfusion,
spectroscopy, functional MRI, positron emission tomography,
radiomics and machine learning, to name a few. Moreover, in
this era of precision medicine, these advanced neuroimaging
techniques will need to be integrated with molecular information
to allow personalized targeting of each patient’s unique type of
metastatic tumor.
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Clinical Value of Susceptibility
Weighted Imaging of Brain
Metastases

Daniel Schwarz 1*, Martin Bendszus 1 and Michael O. Breckwoldt 1,2*

1Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany, 2Clinical Cooperation Unit

Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany

MRI is used for screening, initial diagnosis and follow-up of brain metastases.

Multiparametric MRI protocols encompass an array of image sequences to depict

key aspects of metastases morphology and biology. Given the recent safety concerns

of Gd-administration and the retention of linear Gd-agents in the brain, non-contrast

sequences are currently evaluated regarding their diagnostic value for brain imaging

studies. Susceptibility weighted imaging has been established as a valuable clinical and

research tool that is heavily used in clinical practice and utilized in diverse pathologies

ranging from neuroinflammation, neurovascular disease to neurooncology. We review

the value of SWI in the field of brain metastases with an emphasis on its role in early

diagnosis, determination of the primary tumor entity, treatment monitoring and discuss

therapy-associated changes that can affect SWI. We also review recent insights on the

role of “isolated SWI signals” and the controversy on the specificity of SWI for the early

detection of brain metastases.

Keywords: MRI, brain metastases, SWI, treatment monitoring, radiotherapy

INTRODUCTION

Brain metastases (BM) are highly relevant in solid cancer patients and contribute significantly
to overall morbidity and mortality (1). MR imaging is the gold standard for early diagnosis and
treatment monitoring of BM patients (2). Treatment of BM is mainly based on neurosurgical
resection and radiotherapy with a limited role for systemic chemotherapy due to low efficacy (3, 4).
Recent immunotherapeutic trials have shown promising results in a subset of BM patients and
are currently tested in clinical practice (5, 6). All such therapeutic regimes require regular and
standardized MRI follow-up for disease monitoring to detect changes in the tumor micromilieu
(TME) that occur during therapy.

In general, brainmetastases imaging has threemajor goals: (a) early detection, (b) determination
of the primary tumor entity, and (c) tumor monitoring, including differentiation between tumor
progression and treatment related effects. Susceptibility weighted imaging (SWI) can contribute
to all three challenges and this review will highlight these different aspects. SWI has been first
described in 1997when it was introduced for venous imaging (7). After the original description SWI
has been widely used in clinical and preclinical studies (8–10). In clinical practice SWI is used for
the detection of iron, hemorrhage andmicrobleedings (11–14) but has also been widely investigated
in the field of neurovascular disease (15), for clot detection in stroke (16), in neurooncology (17, 18),
neurotrauma (19), and autoimmune disease (20–23). Also neurosurgical applications of SWI have
been recently reviewed (24).
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ORIGIN OF THE SWI CONTRAST

The SWI signal originates from varying intrinsic susceptibilities
that are present between voxels and get out of phase at
longer echo times, leading to signal loss in the respective
voxel. Susceptibility is altered by paramagnetic and diamagnetic
materials such as deoxygenized hemoglobin within veins,
tissue calcifications or iron depositions. Susceptibility is further
introduced through the distortion of the magnetic field, e.g. at
tissue boundaries or by metal implants. A thorough derivation of
the physics behind SWI is beyond the scope of this article and has
been covered by previous reviews (25).

In brief, for the generation of SWI, phase images are
high-pass-filtered and transformed to a phase mask which is
then multiplied on the magnitude image to increase contrast
(25). It is important to note that the resulting image contrast
depends on the manufacturer and the post-processing used:
In a right-handed system, paramagnetic phase signals (like
hemosiderin and deoxyhemoglobin) are depicted as dark voxels
while diamagnetic phase signals (like calcifications) are shown
as bright voxels. In a left-handed system, the images produced
follow the inverse greyscale.

Newer developments in SWI include quantitative
susceptibility mapping (QSM) and susceptibility tensor imaging
which allow the quantitative measurement of the susceptibility
in a given voxel (26–31). Recently, the minimum size of
histo-pathologically confirmed microhemorrhages that can be
depicted by clinical SWI were established (32). In this work,
MR-positive microbleeds were typically found to correspond
to histopathological hemorrhages of 3.6 mm3 whereas MR
false-negative microbleeds were found to be significantly smaller
in size with an average volume of 0.3 mm3 on histopathology.

SWI FOR BRAIN TUMOR IMAGING

In the brain tumor field SWI has been recently reviewed for
glioma imaging (17). It is important to note that recent studies
have shown that SWI can aid in glioma grading because of its
sensitivity for (micro-)hemorrhages and the microvasculature
itself that correlates with tumor grade (33). In particular,
several authors found that the amount and extent of SWI
artifacts correlated well with the grading of gliomas with more
artifacts being correlated to higher tumor grade and increased
neoangiogenesis (34–36). This could further be confirmed by
quantification of intratumoral SWI patterns using fractal image
analysis (37).

For monitoring of brain metastases multiparametric
anatomical imaging is performed in the routine clinical setting
(38). Further advanced sequences including chemical exchange
saturation transfer imaging (CEST), magnetization transfer
(MT) imaging and MR spectroscopy (MRS) have also been
assessed regarding their clinical value and have recently been
reviewed (39). In the context of neurooncology MT imaging
could differentiate glioblastoma from brain metastasis (40).
Interestingly, magnetization transfer imaging showed subtle
changes also in the normal appearing white matter of the
contralateral site that did not show obvious changes on standard

MRI sequences (41), indicating that MT imaging might be more
sensitive to detect subtle, tumor-induced changes. CEST was
shown to enable the detection of radiotherapy induced apoptosis
(42, 43). MRS has been used to differentiate radiation necrosis
from tumor progression albeit with limited specificity (44).

SWI FOR DIFFERENTIATION OF THE

UNDERLYING TUMOR ENTITY

As SWI provides an image contrast that is different from
conventional spin echo MR sequences, the susceptibility
information can reveal additional features of the tumor
microenvironment. The concept of “intratumoral susceptibility
signals” (ITSS) was introduced as a semiquantitative parameter
that is comprised of “low-signal tubular structures or dot-like
structures with or without conglomeration within a tumor” (45)
that are indicative of tumor microbleedings or neovessels and
indicate highly malignant lesions.

Using this approach, it was shown that metastases could be
differentiated fromGBMdue to higher ITSS numbers in GBM, as
well as high-grade gliomas from lymphomas and non-tumorous
brain lesions (46).

However, the exact grading-scheme remained relatively
reader-subjective, so further efforts were made subsequently
to achieve a more objective, less reader-dependent measure.
Percentage-wise quantification of ITSS using binarized mask of
the SWI map compared the three most common metastatic
entities in the brain, namely bronchial carcinoma (BC),
mamma carcinoma (MC), and malignant melanoma (MM) (47)
(Figure 1). This approach could discriminate MM from MC
[area under the receiver operating characteristic curve (AUC)
of 0.96] or BC (AUC of 0.81) while there was no clear cut-off
between MC and BC. Specifically, only 1/20 MC patients showed
more than 8% ITSS in contrast to 10/15 patients with MM. This
indicates that different brain metastatic entities have different
growth behavior, neoangiogenesis induction and aggressiveness,
which can be inferred by SWI.

An important addition to this observation was made by
Franceschi et al. who reported a correlation of ITSS and
metastatic size (49): while micrometastases (i.e., <0.1 cm3)
only rarely showed ITSS (10/342), ITSS drastically increased
in macrometastases (i.e., >0.1 cm3, in 410/610 metastases). In
this latter subpopulation, a higher propensity of ITSS in MM
compared to MC was confirmed (76.9 vs. 55.6%).

SWI FOR INITIAL DIAGNOSIS OF BRAIN

METASTASES

While SWI thus appears as a promising imaging contrast to
contribute to the determination of the primary tumor entity
in BM, it remained controversial if SWI is helpful for initial,
early diagnosis of BM. This seems even more important in
light of the recent discussions on the significance of gadolinium
depositions in brain tissue following the exposure to gadolinium-
containing contrast agents (50). This question was addressed in
a recent work on the diagnostic performance of different MR
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FIGURE 1 | Differentiation of brain metastases by ITSS. Examples of patients with MC, BC and MM. (Upper) Contrast enhanced T1-weighted images (ce-T1).

(Middle) Contrast enhanced susceptibility weighted images (SWI). Insets: Delineation of the enhancing lesion on ce-T1 images and corresponding ROI on SWI.

(Lower) Percentagewise ITSS quantification with corresponding binarized ITSS map. No ITSS (0%) in MC, minor ITSS (18%) in BC and subtotal ITSS (90%) in MM.

Adapted from Radbruch et al. (48).

sequences in the early detection of melanoma brain metastases
(38): In this work on a large retrospective cohort of more
than 1200 patients, diagnostic sensitivity was compared between
six different MR sequences, including SWI. The authors found
that SWI did not reach the diagnostic sensitivity of contrast-
enhanced T1-weighted imaging (64.7 vs. 99.7%). Interestingly,
SWI also showed a lower sensitivity compared to FLAIR
imaging (77.0%) but could outperform T2-weighted imaging
(61.0%), non-contrast enhanced T1-weighted imaging (56.7%)
and DWI (48.4%).

While data on other brain metastatic entities is currently
lacking, it appears reasonable to assume that current SWI
will not replace contrast-enhanced T1-weighted imaging for
the early detection of metastatic brain disease because the
underlying effects, namely the accumulation of paramagnetic
ions and microbleedings, appear later than the early
disruption of the blood brain barrier—which is delineated
by ce-T1w-imaging.

SWI IN MELANOMA BRAIN METASTASES

Among malignant entities to metastasize to the brain, malignant
melanoma plays a special role with regard to susceptibility
effects. While SWI signal loss can relatively easily be attributed
to (micro-)hemorrhage in other entities, melanin itself in MM
may lead to susceptibility effects due to paramagnetic metal
scavenging which is known to cause non-contrast-enhanced

T1w-hyperintensity (51). This would imply that susceptibility-
related signal losses could potentially indicate metastatic lesions
which are not detectable in standard sequences. This was
first reported by Gaviani et al. on T2∗-weighted imaging in
three malignant melanoma patients (52). However, later studies
analyzing the fate of isolated cerebral SWI artifacts in larger
patient cohorts over time could not confirm the hypothesis that
such “isolated SWI signals” would eventually evolve into overt
brain metastases (53, 54). Indeed, these studies showed that SWI
signal losses without corresponding signal changes on standard
sequences remained constant over time. On the other hand, it was
reported that T1w-hyperintense melanotic metastases did not
exhibit a higher frequency of SWI signal losses as compared to
amelanotic metastases and the radiological presentation between
cases could vary considerably (Figure 2A). Additionally, in
another recent study significant differences in the susceptibility
between melanotic and amelanotic brain metastases as measured
by QSM could also not be demonstrated; nor could a correlation
to T1-weighted signals be found, further underpinning that
melanin per se does not account for a detectable paramagnetic
effect in vivo (55) (Figure 2B).

SWI IN THE ASSESSMENT OF

TREATMENT RESPONSES

Interestingly, Schwarz et al. found a significantly higher
prevalence of isolated SWI artifacts among patients with
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FIGURE 2 | Melanoma metastases and susceptibility. (A) Imaging findings in melanotic and amelanotic brain metastases. T1 pre-Gd-contrast (i), post-Gd-contrast

administration (ii), and SWI (iii) images are shown for melanotic (A) and amelanotic (B) brain metastasis. (C) Examples of metastases with melanotic and amelanotic

imaging features in a single patient. Adapted from Schwarz et al. (54). (B) Scatter plot showing the relation of susceptibility values (χ) and normalized T1w signal of

melanoma metastases (p = 0.87). The line represents a linear fit. From Straub et al. (55).

FIGURE 3 | Therapy related changes of SWI. Example images of a melanoma metastasis before (i, ii) and after radiotherapy (iii, iv). The punctuate contrast

enhancement in the right frontal lobe (i) disappears after stereotactic radiotherapy (iii), being consistent with radiological remission. The SWI signal drop remains as a

remnant of the preexisting metastasis (iv). Adapted from Schwarz et al. (54).

brain metastases as compared to melanoma patients without
metastatic brain disease (54). Of those patients, only patients
after radiotherapy showed an increased number of such artifacts
indicating that these findings did not constitute vital tumor tissue
but may rather represent either non-specific microbleedings
or radiotherapy-related parenchymal damage (56) which are
both well-known phenomena in patients after radiotherapy of
the brain (57). As a third explanation of these findings the
authors proposed the possibility of posttherapeutic remnants
of former metastatic lesions because in cases of radiological
remission of treated metastases, only an isolated SWI artifact
persisted (Figure 3).

As many patients suffering from BM either receive stereotactic
or whole-brain radiotherapy, it is crucial during tumor
monitoring to differentiate between “pseudoprogression”
following successful treatment and true recurrence of the disease
(58, 59). Although not applied to brain metastases so far, R2∗-
mapping, another susceptibility-related imaging approach (60)
has recently been introduced as a promising imaging marker

to differentiate pseudoprogression from progressive disease in
glioblastoma multiforme (61). The authors reported a rim of
high R2∗ values with an accompanied SWI-hypointensity as
indicative of pseudoprogression as well as a ratio of R2∗ in the
contrast-enhancing to the non-contrast enhancing lesion close
to 1. Conversely, a ratio of >1.3 was found in patients with true
progression. According to this quantification a correct diagnosis
was achieved in 9/9 patients. Similarly, promising results were
reported in a preclinical model by the same group (62).

POTENTIAL FUTURE APPLICATIONS:

TEXTURE ANALYSIS AND RADIOMICS

A number of methods have recently been introduced to
extract multiple image features from MRI data to create high
dimensional signatures of a given tumor. Such features of varying
complexity can then, via a dedicated model, be used to predict
certain target variables, in most cases histopathological or clinical
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parameters possibly having an impact on treatment decisions
and prognosis. This multi-step process is broadly referred to as
“Radiomics” (63–65).

Expanding the input parameter space by adding
complementary contrast with new information may provide
new features and lead to a higher classification accuracy and
reliability. SWI has just started to be incorporated into such
models proving that it can indeed provide complementary
discriminators, e.g., in the differentiation of glioblastoma
and solitary brain metastases (66). It needs to be determined
in future studies to which extent SWI will play a role for
these applications.

SUMMARY AND OUTLOOK

SWI is a valuable image sequence that utilizes phase information
to produce an image contrast different from standard anatomical
MR sequences. It therefore provides complementary tissue
information to further characterize brain lesions like brain
metastases. While it does not appear to be usable as a sole
image modality in metastatic brain disease lacking sensitivity
and specificity, it can contribute important supplementary
information on the underlying tumor entity and during
treatment monitoring. In the future, quantitative susceptibility

mapping may further refine tumor MR signatures, which could
be used in texture and radiomic analysis to non-invasively
support early detection and treatment monitoring of metastatic
brain disease.
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Although a variety of imaging modalities are used or currently being investigated for

patients with brain tumors including brainmetastases, clinical image interpretation to date

uses only a fraction of the underlying complex, high-dimensional digital information from

routinely acquired imaging data. The growing availability of high-performance computing

allows the extraction of quantitative imaging features frommedical images that are usually

beyond human perception. Using machine learning techniques and advanced statistical

methods, subsets of such imaging features are used to generate mathematical models

that represent characteristic signatures related to the underlying tumor biology and might

be helpful for the assessment of prognosis or treatment response, or the identification of

molecular markers. The identification of appropriate, characteristic image features as well

as the generation of predictive or prognostic mathematical models is summarized under

the term radiomics. This review summarizes the current status of radiomics in patients

with brain metastases.

Keywords: artificial intelligence, machine learning, deep learning, brain tumors, textural features, amino acid PET,

CT

INTRODUCTION

Brain metastases are one of the most common neurological complications of extracranial cancer
and account for more than half of all brain tumors (1). In patients with solid cancers, the risk to
develop brain metastases depends on the type and initial stage of the primary tumor. It is in the
range of 5–20% and may be increasing due to improvements in control of extracerebral disease by
modern systemic treatment and the resulting increasing life expectancy, and technical advances in
medical imaging for the detection of small brain metastases (1–3).

Lung cancer, breast cancer, andmelanoma are themost common primary tumors that lead to the
formation of brain metastases in adults and account for 67–80% of all cancers (1). In about 10% of
patients with brain metastases, the primary tumor is unknown (cancer of unknown primary, CUP)
(1, 4). Standard treatment for patients with oligometastatic brain disease includes surgical resection,
radiotherapy (predominantly stereotactic radiosurgery), and combinations thereof (5). Whole-
brain radiotherapy is frequently used in patients with multiple brain metastases. Furthermore,

13

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.00001
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.00001&domain=pdf&date_stamp=2020-02-07
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:p.lohmann@fz-juelich.de
https://doi.org/10.3389/fneur.2020.00001
https://www.frontiersin.org/articles/10.3389/fneur.2020.00001/full
http://loop.frontiersin.org/people/506090/overview
http://loop.frontiersin.org/people/262285/overview
http://loop.frontiersin.org/people/115242/overview
http://loop.frontiersin.org/people/1701/overview
http://loop.frontiersin.org/people/362963/overview


Lohmann et al. Radiomics in Brain Metastases

modern systemic treatment options such as immunotherapy
including checkpoint inhibitors and targeted therapy are
increasingly used to control intra- and extracranial disease (6, 7).
Importantly, some molecularly defined subgroups of patients
have been identified which have an improved prognosis (8) and
benefit from these recently developed agents, e.g., combined
BRAF/MEK inhibition using the kinase inhibitors dabrafenib
plus trametinib in patients with BRAF-mutant melanoma brain
metastases (9).

Magnetic resonance imaging (MRI) is the method of choice
to evaluate patients with brain lesions such as primary or
metastatic brain tumors. MRI offers excellent soft tissue contrast
and a high availability, but its specificity is low (10–12).
For example, contrast-enhancing lesions during follow-up and
signal alterations on T2 or fluid attenuated inversion recovery
(FLAIR) MRI may be non-specific and can result from various
causes other than tumor tissue such as infection, demyelination,
inflammation, ischemia, or treatment-related changes after
surgery, radiotherapy, or systemic therapy. Consequently, with
the use of conventional MRI alone, important diagnostic
challenges remain such as the differentiation of local brain
metastasis relapse from radiation injury and the evaluation of
response to treatment that included immunotherapy (13, 14).
The latter may lead to the clinically important phenomenon
of pseudoprogression, which is characterized by worsening
imaging findings on conventional MRI during follow-up caused
by treatment-related changes imitating tumor progression
that spontaneously vanish during further follow-up without
treatment (14). A false diagnosis of pseudoprogression carries the
risk of a premature termination of an effective treatment with
serious consequences for the patients (13–15).

Advanced MRI techniques have been introduced in the last
years to overcome some of the aforementioned limitations
of conventional MRI in patients with brain tumors. The
advanced MRI techniques currently under investigation in
neuro-oncology include, but are not limited to, diffusion-
weighted imaging (DWI), perfusion-weighted imaging (PWI),
and MR spectroscopy (MRS) (16–19). These techniques
might complement conventional MRI by providing insights
into additional tumor characteristics such as perfusion,
angiogenesis, cellularity, pH, or metabolite concentrations
beyond anatomical information.

Another advanced imaging method extensively evaluated in
neuro-oncology is positron emission tomography (PET) with
tracers other than the traditionally used 2-[18F]-fluoro-2-deoxy-
D-glucose (FDG) for the characterization of tumor metabolism.
It has been emphasized by the Response Assessment in Neuro-
Oncology (RANO) working group, the European Association
for Neuro-Oncology (EANO), and the Society for Neuro-
Oncology (SNO) that the additional clinical value of amino
acid PET tracers such as [11C]-methyl-L-methionine (MET),
O-(2-[18F]fluoroethyl)-L-tyrosine (FET), or 3,4-dihydroxy-6-
[18F]-fluoro-L-phenylalanine (FDOPA) in patients with gliomas
(11, 20, 21) and also brain metastases (4, 22) is outstanding and
superior to FDG for various clinical indications.

Although a variety of imaging modalities are used or currently
being investigated for patients with brain tumors including brain

metastases, clinical image interpretation to date uses only a
fraction of the underlying information. Importantly, the images
contain complex, high-dimensional digital information that can
be made accessible by means of advanced image analysis using
machine learning techniques. The growing availability of high-
performance computing allows the extraction of quantitative
imaging features from medical images that are beyond human
perception. Using machine learning techniques and advanced
statistical methods, subsets of these imaging features are used
to generate mathematical models that represent characteristic
signatures related to the underlying tumor biology and might be
helpful for the assessment of prognosis or treatment response,
or the identification of molecular markers. The identification
of appropriate, characteristic image features as well as the
generation of predictive or prognostic mathematical models is
summarized under the term radiomics (23–26).

Radiomics is usually applied in standard-of-care medical
images from any imaging modality (e.g., CT, MRI, PET), thereby
allowing additional data evaluation at low cost. The computed
radiomics features, either predefined (feature-based radiomics)
or generated by supervised learning (deep learning-based
radiomics), are more reliable, robust, and reproducible compared
to the visual interpretation of imaging features, because
radiomics features are computed semi- or fully-automatically.

Another application of radiomics analysis, radiogenomics,
aims at the prediction of molecular biomarkers such as
genetic mutations, chromosome alterations, or methylation
profiles from image data (27). Typically, such biomarkers
require tissue samples obtained by stereotactic biopsy or
tumor resection and are not accessible by conventional,
qualitative image analysis. Consequently, radiogenomics
as a non-invasive method to assess biomarkers in
patients with brain tumors is of great scientific and
clinical interest.

This review summarizes the current status of radiomics in
patients with brain metastases.

RADIOMICS

Basically, radiomics can be subdivided into feature-based and
deep learning-based radiomics. Feature-based radiomics uses
mathematically predefined image features that are extracted and
computed from preprocessed and segmented medical images.
Using machine learning techniques, a subset of these features is
selected for the generation of a predictive or prognostic model
related to the research question.

Deep learning-based radiomics is fundamentally different as
it does not require image segmentation or pre-defined features.
In deep learning, artificial neural networks imitate the function
of the human visual system and automatically extract high-
dimensional features from the original images at different
abstraction levels and such autonomously learn characteristic
patterns and classify them. In the following section, the basic
principles of feature- and deep learning-based radiomics image
analysis are briefly introduced.
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Feature-Based Radiomics
Pre-processing
Radiomics aims at the extraction of quantitative features
from medical images (23–26). Consequently, the imaging data
supposed to be analyzed have to be quantitative or at least semi-
quantitative. In order to allow reproducible and comparable
results, especially if data from different scanners or acquisition
protocols are used, an upfront normalization procedure is
necessary which may include intensity normalizations, spatial
smoothing or re-sampling, other types or image filtering or
corrections of MRI field inhomogeneities (24, 28–30).

Segmentation
For brain metastases, segmentation is usually performed
manually on conventionalMRI or CT. Although brainmetastases
are usually well-circumscribed contrast-enhancing lesions, the
manual, three-dimensional segmentation is time-consuming. To
overcome this issue, machine learning techniques are being
developed for the automated detection and segmentation of brain
metastases using deep learning (31, 32). However, these tools
still have to prove their reliability and added value to ultimately
become part of clinical routine.

Feature Extraction
Different kind of quantitative features can be extracted
from medical images, which are usually grouped into the
following subgroups:

• Shape features: Geometric properties of the segmented region
of interest (ROI) or volume of interest (VOI) such as
compacity, sphericity, volume, or maximum surface can be
described by shape features.

• Histogram-based features (first-order statistics features):
Histograms are used to characterize the distribution of
individual voxel intensity values within the ROI or VOI
without considering their spatial orientation. From the
histogram, measures such as the mean, median, minimum,
maximum, entropy (randomness), uniformity, asymmetry
(skewness), or kurtosis (flatness) can be calculated.

• Textural features (second-order statistics features): The intra-
tumoral heterogeneity can be quantified by means of
textural feature analysis. Textural features represent statistical
relationships between intensity of neighboring voxels and
groups of voxels. Textural features are not directly calculated
from the image, but from special matrices that already
represent a certain aspect of intravoxel relationship; i.e.,
the gray-level co-occurrence matrix (GLCM) represents the
incidence of voxels with the same intensity values at a certain
distance along a fixed direction. Another frequently used
matrix, the gray-level size-zone matrix (GLSZM), represents
the distribution of groups of voxels with the same intensity.
Several other matrices exist from which a number of different
textural features can be calculated (33).

• Higher-order statistics features: Features extracted by
statistical methods after the application of mathematical
transformations (filters) for, e.g., edge enhancement, noise
suppression, or the identification of repeating patterns or

histogram-oriented gradients are considered higher-order
statistics features. Such mathematical transformations or
filters include Laplacian transforms of Gaussian-filtered
images (Laplacian-of-Gaussian, LoG), wavelet transforms,
fractal analysis, or Minkowski functionals.

In this way, hundreds to thousands of quantitative features can
be extracted from a single medical image.

Feature Selection and Model Generation
As mentioned above, hundreds to thousands of features can
be easily extracted from a single medical image, which is why
the relevant parameters from the large number of available
features have to be extracted. This essential step is called feature
selection (26).

Once a subset of important features is identified, a
mathematical model can be generated that predicts the known,
underlying ground truth such as a certain genotype or a
better prognosis. Commonly used machine learning algorithms
for model generation in radiomics are decision trees (e.g.,
random forests), linear or logistic regression, support vector
machines, and k-nearest neighbors. These algorithms are tested
for classification accuracy in a subset of data (training dataset).
Then, in order to assess the robustness of the model, the best-
performing model is applied to another subset of data that were
not used during the process of model generation (validation
dataset). Ideally, the model is finally applied to a third dataset
(test dataset) including imaging data acquired from different
institutions using different scanners and different acquisition
protocols in order to evaluate the generalizability of the model.
However, these steps require large amounts of data (e.g., 70% of
images for training/validation and 30% for testing).

In cases in which the number of patients is small and no
reasonable and balanced data splitting into a training and a test
cohort can be performed prior to model generation, statistical
methods such as cross-validation can be applied to estimate the
model performance without the availability of a test dataset. The
available datasets are partitioned into k subsets of equal size, and
one subset is retained as testing data, while the remaining k-
1 datasets are used as training data. Afterwards, the process is
repeated k-times with each subset used once as testing data. The
model performance estimators from each k iteration can then be
averaged to produce a single estimation of model performance.

Deep Learning-Based Radiomics
Deep learning as another sub-category of machine learning or
artificial intelligence uses artificial neural networks that simulate
the neural structure of the brain for classification of high-
dimensional non-linear data or pattern recognition (34).

Conventional machine learning algorithms require a
workflow involving image preprocessing, segmentation of
the ROI, and definition of the inherent features using feature
selection techniques followed by model generation and
validation. Artificial neural networks automatically extract high-
dimensional features from the original or preprocessed images
at different scaling and abstraction levels, and autonomously
learn the patterns and classify them (35). A cascaded system
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of single layer neural networks is trained to identify and learn
relevant structures within the image data that are useful for
classification without any prior definition or selection. These
complex structures are then combined to generate features with
a higher level of abstraction. The output from the very last layer
of the network is then used to fit a prediction model.

However, artificial neural networks strongly depend on the
input data and usually require large amounts of image for the
identification of robust and representative features which limits
its applicability in neuro-oncological research, where the number
of available datasets usually is small. One technique to overcome
this issue is called transfer learning, wherein an artificial neural
network is utilized that was already trained for a different, but
similar task; e.g., a neural network that has been used for the
classification of glioma subtypes might also be useful for the
classification of brain metastases (36). Thereby, the amount of
data necessary for training the network can be reduced since the
network already has some prior knowledge about brain lesions.

RADIOMICS IN PATIENTS WITH BRAIN
METASTASES

Radiomics in patients with brain metastases is mainly based
on the analysis of conventional MRI data. The majority of
studies investigated the usefulness of radiomics to differentiate
treatment-related changes from brainmetastases recurrence after
radiotherapy, which is one of the most important indications
in the field. Some studies have also evaluated the value
of radiomics for the prediction of brain metastases origin
and the differentiation of brain metastases from glioblastoma.
Furthermore, radiomics in patients with brain metastases was
used for treatment response assessment. In the following, the
key findings of radiomics-based research in patients with brain
metastases are summarized. An overview of the discussed studies
and the main results is provided in Table 1.

Differentiation of Treatment-Related
Changes From Brain Metastases
Recurrence
Patients with brain metastases are increasingly treated with
stereotactic radiosurgery. Not infrequently, radiation injury
(e.g., radiation necrosis) may occur after radiosurgery and is
often indistinguishable from actual tumor progression using
conventional MRI alone.

Peng et al. (37) evaluated the usefulness of MRI radiomics
for this important question. Sixty-six patients with 82 lesions
treated with stereotactic radiosurgery and imaging findings
on contrast-enhanced T1 and FLAIR sequences suspicious for
tumor recurrence were included in the study. Fifty-one radiomics
features (3 shape features, 14 histogram-based features, and 34
textural features) were extracted for each lesion on each MRI
contrast. Models were generated using the IsoSVM algorithm
which performs both feature selection and classification (49). No
separate dataset was available for model testing. However, cross-
validation was performed to assess overall model performance.
The model reached an area under the receiver operating

characteristic curve (AUC) of 0.81 with a specificity of 65% and
a sensitivity of 87%. On the contrary, experienced radiologists
could only classify 73% of the cases with a sensitivity of 97% and
a specificity of only 19%.

Similarly, Zhang et al. (38) used pre- and post-contrast
T1-weighted MR images, T2 and FLAIR from 87 patients to
calculate 285 radiomics features. Interestingly, imaging data
from two time points were available so that the authors also
investigated feature reproducibility to identify a feature subset
with reproducible values. Changes in radiomics features (so-
called “delta radiomics”) from one follow-up time point to the
other were evaluated and used for differentiation of radiation
necrosis and tumor progression. The final model generated by an
ensemble classifier had an overall predictive accuracy of 73% and
an AUC of 0.73 after cross-validation. Again, no separate dataset
for testing was available.

Besides MRI, also amino acid PET images have been used
to evaluate radiomics for the differentiation of treatment-
related changes from brain metastases recurrence. It has
been demonstrated that the evaluation of the time-activity-
curves (TAC) that represent the tracer uptake over time is
helpful for differentiation of treatment-related changes from
brain metastases recurrence (50). However, this requires a
time-consuming dynamic FET PET scan of at least 40min
acquisition time or more. Therefore, Lohmann et al. (39)
calculated 62 textural parameters on static FET PET scans
from 47 patients with MRI findings suspicious for tumor
recurrence after radiosurgery. The goal of the study was to
investigate whether FET PET radiomics in combination with
conventional FET PET parameters could contribute to an
improved diagnosis of recurrent tumor. Parameter combinations
were investigated using ROC analysis without prior feature
selection. The diagnostic accuracy of conventional FET PET
parameters was in the range of 81–83% and could be slightly
increased to 85% when combined with textural features. Such,
FET PET radiomics in combination with conventional PET
parameters may have the potential to increase the diagnostic
accuracy without the need for a more time-consuming, dynamic
FET PET scan. However, no dataset for validation or testing
was available.

In a subsequent study, Lohmann et al. (40) investigated
the value of combining FET PET and MRI radiomics
for the differentiation of treatment-related changes from
brain metastases recurrence. Fifty-two patients with newly
or progressively contrast-enhancing lesions on MRI after
radiotherapy were additionally investigated using FET PET.
Prior to feature extraction, images were filtered using three-
dimensional wavelet transformation and the LoG filter to
enhance edges. Forty-two features were extracted from filtered
and unfiltered MR images as well as from summed FET PET
images (20–40min post injection). After feature selection, logistic
regression models limited to a maximum of five parameters to
avoid over-fitting were generated for the combined PET/MRI
features and for each modality separately and validated using
cross-validation; no test dataset was available. The highest
diagnostic accuracy of 89% (specificity, 96%; sensitivity, 85%)
was achieved by the combination of MRI and FET PET features,
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TABLE 1 | Radiomics based on MRI and/or PET in patients with brain metastases.

Study No. of

patients

(patients/

lesions)

Purpose PET

tracer

MRI contrast(s) Classification method Validation

method

Model applied to a

separate test dataset?

Highest accuracy /Most

important result

Peng et al. (37) 66/82 Differentiation of TRC from

BM recurrence

n.a. T1-CE, FLAIR Support vector machines LOOCV No 0.81 (AUC)

Zhang et al. (38) 87/97 Differentiation of TRC from

BM recurrence by delta

radiomics

n.a. T1, T1-CE, T2, FLAIR Ensemble trees LOOCV No 0.73 (AUC)

Lohmann et al. (39) 47/54 Differentiation of TRC from

BM recurrence

FET n.a. ROC analysis n.a. No 85%

Lohmann et al. (40) 52/52 Differentiation of TRC from

BM recurrence

FET T1-CE, T2, FLAIR Logistic regression 5-fold CV,

10-fold CV,

LOOCV

No 89%

Hotta et al. (41) 41/44 Differentiation of TRC from

BM recurrence

MET n.a. Random forest 10-fold CV No 0.98 (AUC)

Ortiz-Ramon et al. (42) 30/50 Prediction of BM origin n.a. T1 Naive Bayes Nested CV No 0.95 (AUC)

Ortiz-Ramon et al. (43) 38/67 Prediction of BM origin n.a. T1 Random forest Nested CV No 0.96 (AUC)

Kniep et al. (44) 189/658 Prediction of BM origin n.a. T1, T1-CE, FLAIR Random forest Model-

external

5-fold CV

Yes 0.82 (AUC)

Qian et al. (45) 412/412 Differentiation of BM from

GBM

n.a. T1-CE Support vector machines 5-fold CV Yes 0.90 (AUC)

Artzi et al. (46) 439/439 Differentiation of BM from

GBM

n.a. T1-CE Support vector machines 5-fold CV Yes 0.96 (AUC)

Cha et al. (35) 89/110 Prediction of treatment

response to SRS

n.a. CT only Ensemble model (CNN) Validation

dataset

Yes 0.86 (AUC)

Della Seta et al. (47) 48/48 Prediction of treatment

response to SRS

n.a. T1-CE Cox regression n.a. Yes Enhancing tumor volume

associated with a 2.1-fold

longer OS (p = 0.005)

Bhatia et al. (48) 88/196 Prediction of treatment

response to immune

checkpoint inhibitors

n.a. T1-CE Cox regression n.a. Yes Radiomics features

associated with prolonged

OS (p = 0.001)

AUC, area under the receiver operating characteristic (ROC) curve; BM, brain metastasis; CNN, convolutional neural network; CT, computed tomography; CV, cross-validation; FET: O-(2-[18F]fluoroethyl)-L-tyrosine; FLAIR, fluid attenuated

inversion recovery; GBM, glioblastoma; HR, hazard ratio; LOOCV, leave-one-out CV; n.a., not available; OS, overall survival; ROC, receiver operating characteristic; SRS, stereotactic radiosurgery; T1-CE, contrast-enhanced T1-weighted

MRI; TRC, treatment-related changes.
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suggesting that the combined FET PET/MRI radiomics analysis
encodedmore diagnostic information than eithermodality alone.

Hotta et al. (41) developed a random forest classifier to
differentiate recurrent brain tumor from radiation necrosis based
on MET PET in a mixed cohort of 41 patients with brain
metastasis (n = 21) or glioma (n = 20). All patients had been
treated with radiotherapy and presented one or more tumor-like
lesions on MRI. Forty-two features including conventional and
textural features were calculated on summed MET PET images
(20–30min post injection). Afterwards, a random forest classifier
was trained to separate radiation necrosis from recurrent brain
tumor. The results from the optimized classifier were evaluated
using 10-fold cross-validation; no test dataset was available. The
most relevant features for classification were identified by using
the Gini index (51). The highest diagnostic accuracy with an
AUC of 0.98 (specificity, 94%; sensitivity, 90%) was achieved
by the radiomics model and outperformed the conventional
MET PET parameter evaluation (AUC, 0.73; specificity, 73%;
sensitivity, 61%). However, the mixed cohort of gliomas and
brain metastases complicates the interpretation of the results.

Prediction of Brain Metastases Origin
In ∼10% of cases, patients are diagnosed with brain metastases
without knowing the site of the underlying primary tumor.
Conventional MRI usually does not aid the identification of the
primary cancer.

The usefulness of radiomics for the prediction of brain
metastases origin was investigated by Ortiz-Ramon and
colleagues (42). Based on conventional contrast-enhanced
T1-weighted MR images of 30 patients with 50 lesions with
known primary cancer (27 lung cancer; 23 melanoma), a total
of 43 features (3 histogram-based and 40 textural features)
were extracted in 2D and 3D, and five predictive models were
evaluated using a nested cross-validation scheme. Due to the
relatively small number of datasets, no independent test set
was available. The highest diagnostic accuracy with an AUC of
0.95 for the differentiation of brain metastases from lung cancer
and melanoma was achieved using a model generated by the
probabilistic naive Bayes classifier.

In another study of the same group (43), the same question
was addressed with a higher number of patients. Contrast-
enhanced MRI scans from 38 patients with 67 brain metastases
with known primary cancer (27 lung cancer; 23 melanoma; 17
breast cancer) were analyzed. Again, 43 features (3 histogram-
based and 40 textural features) were extracted in 2D and
3D. A z-score normalization was performed prior to feature
selection and a random forest classification within a nested
cross-validation structure was applied. The diagnostic accuracy
for differentiation of the three primary cancer types had an
AUC of 0.87 using 3D texture features. Higher accuracies could
be achieved for a one-by-one classification: AUC, 0.96 (lung
cancer vs. breast cancer); AUC, 0.96 (lung cancer vs. melanoma).
Interestingly, the classification of breast cancer and melanoma
brain metastases was unsatisfactory with an AUC of only 0.61.
The authors concluded that the volumetric (3D) evaluation of
textural features encodes more information and is of higher value

for the identification of the primary cancer than 2D features.
However, no further model validation was performed.

Kniep et al. (44) also addressed the question of predicting the
tumor type in patients with unknown primary lesion at the time
of brain metastases diagnosis usingMRI radiomics. In that study,
658 brain metastases from 189 patients with known primary
cancer were included (151 small cell lung cancer; 225 non-small
cell lung cancer; 50 gastrointestinal cancer; 89 melanoma; 143
breast cancer). Imaging data comprised contrast-enhanced and
native T1-weighted MRI as well as FLAIR images. Of note, the
MR images had been acquired at different MR scanners, thus,
the cohort contained heterogenous imaging data. Basic clinical
data were combined with 1,423 quantitative image features and
evaluated using random forest classification. The final model
was validated with model-external cross-validation using an
independent training and validation dataset. Furthermore, the
results from the classifier were compared with predictions based
on conventional image reading by two radiologists. The final
model accuracy for classification of all five primary cancer types
ranged between an AUC of 0.64 for non-small cell lung cancer
brain metastases and an AUC of 0.82 for melanoma brain
metastases. The prediction performance was superior to the
classification made by two radiologists.

Differentiation of Brain Metastases From
Glioblastoma
Brain metastases and glioblastomas are the two most common
malignant brain tumors in adults (52, 53). Importantly,
glioblastomas and brain metastases often present similar clinical
and imaging characteristics on conventional MRI, resulting in
difficult differential diagnosis based on the clinical presentation
on standard MRI alone.

Qian et al. (45) addressed this important question using
MRI radiomics. A large group of patients (n = 412) with
untreated brain metastases (n = 170) and treatment naive,
newly diagnosed glioblastomas (n = 242) was divided into
a training (n = 227) and a test cohort (n = 180). Tumors
were segmented manually and 1,303 radiomic features were
calculated on contrast-enhanced MR images prior to feature
selection and model generation. The best classifier that showed
a high predictive performance in the test cohort (AUC, 0.90)
was a support vector machine algorithm that used least
absolute shrinkage and selection operator (LASSO) for feature
selection. Also, the classifier showed a better performance than
experienced neuroradiologists.

Artzi et al. (46) extracted 760 radiomics features
from contrast-enhanced MR images of 439 patients with
brain metastases (n = 227) or glioblastoma (n = 212).
After image preprocessing and semi-automatic tumor
segmentation using a region-growing algorithm, feature
selection, and model generation were performed. Prior
to model generation, the datasets were divided into a
training and a test cohort in a ratio of 80/20. Interestingly,
the authors identified the same support vector machine
algorithm as the study by Qian et al. described above, to
have the highest predictive performance in the test cohort
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(AUC, 0.96) for the differentiation of brain metastases
from glioblastoma.

Although these studies demonstrated the model performance
in an independent test cohort, further external validation
is required. However, these two studies nicely demonstrate
that radiomics analyses on routinely acquired imaging
data already allow the differentiation between brain
metastases and glioblastoma with a higher accuracy than
experienced neuroradiologists.

Prediction of Treatment Response
Stereotactic radiosurgery is increasingly used in patients with
a limited number and size of brain metastases. However, the
treatment response may depend not only on the size but also on
the structure of themetastasis whichmay contain tumor cells and
tissue compartments of differing radiosensitivity even within the
same histologic type.

Cha et al. (35) tried to predict the response to stereotactic
radiosurgery in 89 patients with 110 brain metastases using
a deep learning-based radiomics approach by utilizing a
convolutional neural networks ensemble radiomics model
based on planning CT images. Prior to model generation and
evaluation, datasets were randomly assigned to a training,
validation, and test cohort. The convolutional neural network
learned the classification using training images and labels.
The final model was able to predict treatment outcome in
the independent test dataset with a high accuracy (AUC,
0.86). The study demonstrates the feasibility of CT-based
convolutional neural network radiomics models for the
prediction of response to stereotactic radiosurgery also for
smaller patient cohorts.

Della Seta et al. (47) demonstrated that sometimes
complex radiomics models can be outperformed by a
single, conventional imaging feature. Pretreatment contrast-
enhanced MR images of 48 patients with singular brain
metastases treated with stereotactic radiosurgery were
investigated. The subgroup of patients with non-small cell
lung cancer brain metastases (n = 27) was used to find
the ideal cut-off to predict treatment response and the
subgroup of patients with melanoma brain metastases were
used as validation cohort (n = 21). After three-dimensional
segmentation of the lesions, tumor volumes and enhancing
tumor volumes were determined and the percentage of
enhancing tumor volume was calculated. Patients with an
enhancing tumor volume of more than 68.6% survived
significantly longer (4.9 vs. 10.2 months; p = 0.005) and showed
significantly longer progression-free survival rates compared
to patients with a lower proportion of contrast enhancement.
Therefore, the percentage of enhancing tumor volume may
be a prognostic imaging marker in patients with singular
brain metastases.

Besides stereotactic radiosurgery, immunotherapy has
become a valuable treatment option in patients with brain
metastases. For example, the advent of immune checkpoint
inhibition by antibodies against the programmed cell
death protein 1 (PD1; pembrolizumab and nivolumab)
or the cytotoxic T lymphocyte antigen 4 (CTLA-4;

ipilimumab) resulted in an outcome improvement of
patients with melanoma brain metastases. However, there
is a subset of patients that do not respond to the immune
checkpoint inhibitors and have a poor prognosis. To provide
additional diagnostic information over and above what
can be derived from anatomical MRI, further imaging
biomarkers for the early stratification of patients with
melanoma brain metastases according to therapy response
are needed.

Bhatia et al. (48) hypothesized that the radiomics analysis
of MR images could identify imaging features associated
with survival in patients with melanoma brain metastases
treated with immune checkpoint inhibitors. Twenty-one
radiomics features were extracted from contrast-enhanced
MRI scans of 88 patients with 196 melanoma brain metastases.
Following manual segmentation, univariate Cox regression
was performed for each radiomic feature followed by LASSO
regression for dimensionality reduction and multivariate
analysis. Several features were found to be associated with
an increased overall survival and the mean LoG edge feature
best explained the variation in outcome (hazard ratio, 0.68;
p = 0.001). Unfortunately, no further details about overall
survival times were provided. However, no radiomics feature
remained statistically significant in the multivariate analysis.
Surprisingly, the mean LoG edge feature was confirmed to be a
significant predictor of an improved survival in an independent
test dataset.

CONCLUSIONS

Taken together, it has to be emphasized that radiomics should
be considered as an additional tool to complement established
imaging analysis methods and other clinical measures that can
be jointly used to make a treatment decision or a final diagnosis
with maximum confidence. However, although promising results
using radiomics analysis in the field of brain metastases have
already been achieved, most studies lack a further validation
of the initial results. External validation of the generated
models is of high importance and great value to translate
radiomics analyses into clinical routine. Another important
aspect is the need of standardization of radiomics analysis.
In particular, currently self-developed radiomics analysis tools
or highly specialized algorithms are predominantly used that
may prevent other investigators to reproduce the findings and
furthermore limits comparability of the results. In addition,
the influence of different scanners and imaging protocols as
well as the different preprocessing parameters on the radiomics
signatures and the computed models is still not well-understood
and needs more attention in future research in order to
further promote the translation of radiomics analysis into the
clinical workflow.

Notwithstanding, radiomics has a great potential to
add valuable additional diagnostic information to many
clinical important questions in the field of brain cancer. To
overcome the above-mentioned obstacles, respective efforts are
currently ongoing.
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Background and purpose: SWI MRI, a T2∗-dominant MRI sequence with T1

shine-through effect, uses intrinsic structural susceptibility to create enhancement among

brain structures. We evaluated whether gadolinium-enhanced SWI (SWI-Gd) improves

brain metastasis detection in combination with other MRI sequences.

Materials and methods: MRI images of 24 patients (46 studies) were prospectively

acquired using a 1.5-T scanner. T1-weighted, unenhanced SWI (SWI-U) and SWI-Gd

were evaluated blindly to clinical features by two board-certified radiologists.

Results: SWI-Gd revealed more significant metastatic lesions than either T1-Gd or

SWI-U (p = 0.0004 for either comparator sequence). Moreover, SWI-Gd revealed more

lesions only for those patients with ≤5 lesions on T1-Gd (n = 30 studies from 16

patients; p = 0.046). Performing SWI-Gd added <5min of scanning time with no further

additional risk.

Conclusions: Our findings suggest that, when added to T1-Gd and other common

sequences, SWI-Gd may improve the diagnostic yield of brain metastases with only

a few extra minutes of scanning time and no further risk than that of a regular

gadolinium-enhanced MRI.

Keywords: brain metastasis, MRI, SWI, susceptibility-weighted image, gadolinium, metastasis diagnosis

INTRODUCTION

Cerebral metastases are the most common form of brain tumors in adults (1, 2), are a significant
source of morbidity and mortality, and have direct implications on the treatment and prognosis of
the primary tumor (3, 4).

Contrast-enhanced magnetic resonance imaging (MRI) is the standard for diagnosing brain
metastases (5); however, there is no one-size-fits-all MRI protocol for their evaluation (6).
Treatment of brain metastases depends on a number of tumor and host factors, as well as lesion
location and surgical accessibility, for which an adequate MRI staging is crucial (5). Taking
advantage of already established MRI methods–with simple modifications–can potentially result
in earlier detection of metastatic lesions.

Susceptibility-weighted imaging (SWI) is an MRI technique that takes advantage of intrinsic
magnetic susceptibility differences between adjacent tissues (7), leading to a better distinction
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of inter- and intratissue characteristics (8, 9). SWI is routinely
performed without the use of gadolinium contrast enhancement
and is used clinically to evaluate a number of neurological
conditions (10, 11).

Although SWI is a T2∗-dominant sequence, there is also a so-
called T1 shine-through effect, in which lesions preserve on SWI
the characteristics expected on T1-weighted images (12). Hence,
gadolinium can hypothetically enhance lesions on SWI and, by
creating further intratissue contrast, unmask small lesions early
in the course of metastatic seeding.

Gadolinium enhancement has been used experimentally in
SWI for evaluating primary gliomas, where it has shown
promising results on staging, grading, and even determining
the aggressiveness of primary brain tumors (13). SWI-Gd
has been recently shown to be helpful for the detection
of blood–brain barrier dysfunction in patients with multiple
sclerosis (14), suggesting that it can also improve the imaging
assessment of brain metastases. Hence, gadolinium enhancement
in SWI (SWI-Gd) can potentially reveal certain characteristics of
cerebral metastases not observed otherwise. The present study
was therefore designed to investigate if SWI-Gd can improve
identifying metastatic brain lesions in comparison to the usual
(T1-Gd and SWI-U) MRI sequences.

METHODS

Ethics
The study was approved by the Institutional Ethics Review Board
of Hospital San Javier, Guadalajara, Mexico. All patients signed
the informed consent.

Study Design and Selection of Participants
This study was designed as a prospective one. All participants
were adults (≥18 years old) with a histologically confirmed
systemic tumor who came for MRI evaluation either in search
of cerebral metastases or to evaluate previously determined
metastatic disease. Demographic data, as well as specific details
about the diagnosis of the primary and metastatic tumor,
and other diagnostic data were acquired retrospectively from
hospital records.

MRI Protocol
MRI studies were acquired on a 1.5-T scanner (Achieva; Philips
Healthcare, Best, The Netherlands) using a 16-channel coil.
After signing the informed consent, participants underwent
a standard unenhanced MRI protocol [T1-, T2-, diffusion-
weighted, and fluid-attenuated inversion recovery (FLAIR)],
followed by T1-GD images (duration of acquisition: 3’17”)
and SWI-Gd (duration of acquisition: 3’26”), instead of only
acquiring the routine T1-Gd images. The order of sequence
acquisition postcontrast infusion was as follows: (1) Perfusion-
weighted (duration: 1’11”); (2) T1-weighted (duration: 3’17”);
SWI (duration: 3’26”). Therefore, gadolinium-enhanced T1-
weighted images were acquired 1’11” post-infusion, while SWI-
Gd were acquired 4’38” post-infusion. Lesions of interest were
defined a priori as follows: in SWI-U, as single or multiple,

hypointense or hyperintense lesions, as previously reported (15).
In gadolinium-enhanced sequences, lesions show nodular or ring
enhancement.MRI studies were performed from September 2017
to August 2018. Studies that had artifacts interfering with the
interpretation or those suggestive of an alternative diagnosis were
excluded from the study.

Contrast-enhanced with fast field echo (FFE) T1-weighted
images were acquired using the following parameters: slice
thickness 0.55mm; FOV 230× 183× 142mm3; matrix 256×
159; TR/TE/TI 11,000/130/2,800ms; and acquisition time 5min
and 8 s. SWI images were acquired with a flow-compensated
3D gradient-echo method using the following parameters:
FOV, 230× 187× 130mm3; matrix, 244× 186mm3; voxel
size, 1.0× 1.0× 2.0mm3; voxel volume, 2mm3; TR/TE,
51/60ms; slice thickness, 1mm; flip angle = 20◦; acquisition
time, 3min and 26 s. For image reconstruction on SWI,
we used raw data, as well as minimum intensity projection
(MinIP). Gadolinium-enhanced SWI and T1-weighted images
were repeated after intravenous administration of 0.2ml/kg
(0.1mmol/kg) of gadoterate meglumine (Dotarem R©; Guerbet;
Paris, France), which was infused as a bolus at a rate of
2.0ml/s. The order of imaging acquisition was consistent
between participants. SWI images were reviewed simultaneously
in phase and magnitude; phase was used to detect the
paramagnetic/diamagnetic signal that is suggestive of blood or
calcium content. All images were analyzed blindly to patient
information by two radiologists; one of them (JC-C) is a
neuroradiologist with 30 years of diagnostic experience, while
the second one (DAL-G) has 3 years of neuroimaging diagnostic
experience. Images were analyzed jointly by both reviewers, and
individual lesions, as well as lesion burden, were determined
by consensus.

Statistical Analysis
Statistical analysis was performed using Prism version 6
(GraphPad Software, San Diego, CA). Images were analyzed
independently by two observers, and the number of metastatic
lesions was counted manually on unenhanced SWI and T1-
weighted followed by Gd-enhanced sequences. Continuous
data such as means and standard deviations were obtained.
Student t and one-way ANOVA tests were used to compare
differences between groups, and p < 0.05 were considered
statistically significant.

RESULTS

Sample
Thirty-five patients agreed to participate; however, six did not
sign the informed consent and were therefore excluded from
the study; of the 29 remaining patients, five patients had to be
excluded due to technical reasons. Our final sample included
24 patients (19 female, 5 male), with a total of 58 MRI
studies, of which 12 studies were excluded from the analysis
due to movement artifacts, leaving us with 46 MRI studies
that were considered of good quality for analysis (on average,
1.9 studies/patient).
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Demographic and Tumor-Specific Baseline
Characteristics
Patients presented with a wide variety of clinical manifestations,
but the presence of headache, altered mental status, and focal
neurological signs were the most commonly recorded (Table 1).

The mean age at diagnosis of the primary tumor was 56.4±
16.1 years, while the age at diagnosis of metastatic disease was
57.8± 16.5 years. The mean time from diagnosis of the primary
tumor to metastatic brain disease was 372± 519 days. The most
common tumor was breast cancer (n = 11; 45.8%) followed by
lung (n = 7; 29.5%), and colon (n = 2; 8.3%) cancer; there
was one patient each with pancreatic, kidney, melanoma, or
hematopoietic cancer.

MRI Findings
Burden of Metastatic Brain Disease
In T1-Gd, we observed an average of 5.61 ± 10.02 brain
metastases; in SWI-U, we observed an average of 6.22 ± 11.61
brain metastases. In contrast, in the SWI-Gd, we observed, on
average, 12.52± 21.95 brain metastases. SWI-Gd was statistically
superior to either reference sequence (one-way ANOVA,
p= 0.0009; intergroup Student’s t-test, p= 0.0004) (Figure 1A).

A sub-analysis of MRI studies independently of the burden of
metastasis showed that, in 24 out of 46 sets of images obtained
from 14 patients, SWI-Gd revealed one or more enhancing
lesions that had not been observed in T1-Gd; in comparison, T1-
Gd revealed more enhancing lesions than those seen by SWI-Gd
in only one case. We observed no difference in the number of
metastatic lesions in the remaining studies.

We then wondered if SWI-Gd would result in an improved
ability to determine the number of brain lesions in patients
with a smaller burden of metastatic disease (Figure 2). First, we
reviewed MRI scans from patients with ≤5 brain metastases in
T1-Gd. A total of 30MRIs from 16 patients were analyzed. In this
group, T1-Gd revealed a mean of 2.13± 1.0 metastases; SWI-U,
1.47 ± 1.46 metastases; while SWI-Gd, 3.03 ± 2.71 metastases.
Here, we also observed that SWI-Gd was statistically superior

TABLE 1 | Clinical manifestations of brain metastases (patients had in general

more than one clinical manifestation).

Tumor (N = 24) Frequency (%)

Asymptomatic/incidental (n = 3) 12.5

Headache (n = 10) 41.6

Altered mental status (n = 5) 20.8

Focal signs (n = 4) 16.7

Seizures (n = 3)

• Status epilepticus (n = 1) 12.5

Cerebellar/ataxia: (n = 3) 12.5

Cranial nerve signs (n = 2) 8.3

Pain/sensory loss (n = 2) 8.3

Vertigo/dizziness (n = 2) 8.3

Visual disturbances (n = 2) 8.3

Gait disorders (n = 2) 8.3

Intracranial hypertension (n = 2) 8.3

(one-way ANOVA, p = 0.003; intergroup Student’s t-test,
p= 0.046 vs. T1-Gd and p= 0.0003 vs. SWI-U) (Figure 1B).

Finally, we reviewed MRI scans from patients with ≤2 brain
metastases in T1-Gd. A total of 20 MRIs from 11 patients were

FIGURE 1 | Detection of metastatic brain lesions by different MRI sequences.

The number of detected metastases by each of the analyzed MRI sequences

with all cases (A); those with five or fewer lesions (B); or those with two or

fewer lesions (C). Each dot represents a patient. Error bars represent median

± interquartile range. Statistical values represent differences between groups,

and a value of p ≤ 0.05 was considered statistically significant.
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analyzed. In this group, T1-Gd revealed 1.6 ± 0.5 metastases;
SWI-U, 1.0 ± 0.86 metastases; and SWI-Gd, 1.85 ± 0.93
metastases. At this level (two or fewer lesions or visible on T1-
Gd), SWI-Gd was superior to SWI-U (Student’s t-test, p = 0.01),
but not statistically different to T1-Gd (Figure 1C).

Non-oncologic Findings
Images suggestive of microbleeds were observed in three scans
using SWI-U and four scans using SWI-Gd (p= ns). Microbleeds
were concurrent on SWI-U and SWI-Gd in two patients with
breast cancer metastases and one patient with hematopoietic
cancer metastases. The differing case occurred in one patient
with malignant melanoma metastases. Six patients had non-
specific white matter intensities suggestive of microangiopathy;
three had dilated perivascular spaces; two patients had intrasellar
arachnoidocele; and one had leukoaraiosis associated with
radiotherapy. As expected, non-oncological findings were
consistent between studies.

DISCUSSION

Here, we present compelling preliminary evidence suggesting
that SWI-Gd MRI increases the ability to recognize brain
metastases from extracerebral tumors (Figure 2).

Ever since its inception in the clinical arena, brain MRI
changed the way intracranial metastases are diagnosed (16).
Among the common MRI sequences available, SWI takes
advantage of intrinsic tissue magnetic characteristics to generate
intrinsic contrast. SWI generates invaluable information
about cerebral vasculature, deoxyhemoglobin in veins,
hemorrhage and microbleeds, iron, and calcium deposition,
and neovascularization, all without the need for contrast agents
(17–19). SWI is therefore used routinely to evaluate a number of
neurological conditions, including diffuse axonal injury, stroke,
multiple sclerosis, or cerebral amyloid angiopathy, to name a
few (10, 11). Recent evidence suggests that gadolinium can be
useful in susceptibility-weighted MRI (14) hypothetically by
taking advantage of the so-called T1 shine-through effect (12),

FIGURE 2 | Illustrative cases of lesions seen only with SWI-Gd. (A–C) MRI from a 45 years old female patient diagnosed with breast cancer and preexisting

metastases on the right parieto-occipital region and a second one on the fifth left temporal gyrus. T1-Gd shows heterogeneous enhancement on both lesions (A) that

were heterogeneous but predominantly hypointense on SWI-U (B). SWI-Gd showed annular enhancement and edema of the previously described lesions, as well as

an otherwise not seen lesion (arrow) in the left occipital lobe with annular enhancement (C). (D–F) MRI from a 58 years old female with pancreatic cancer. T1-Gd

shows three small enhancing lesions: two in the right frontal lobe; another in the left frontal lobe (D), that were not observed with SWI-U (E). SWI-Gd shows the lesions

observed in T1-Gd, as well as two previously unseen lesions (arrows) (F).
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potentially leading to improved detection of brain metastases,
lesions know to be small, complex, and heterogeneous.

The diagnostic sensitivity of different MRI sequences
(including T1-Gd and SWI-U) for the detection of brain
metastases has been addressed before. In the case of brain
metastases from systemic melanoma or breast cancer, T1-Gd has
been shown to be better than other modalities (15, 20). Moreover,
in direct comparison with T1-Gd for detecting melanoma
metastases, SWI-U has shown no diagnostic advantage (21). To
our knowledge, the present study is the first one to prospectively
evaluate the added value of SWI-Gd for the potential detection
of brain metastases. Here, we observed that SWI-Gd reveals
more lesions with a greater level of detail than the usual
sequences. This held true across the whole sample, as well as
when we selected those participants with ≤5 lesions. However,
we failed to observe differences when only those with ≤2 were
considered, probably reflecting that SWI-Gd has no role at
the lower burden of metastatic disease, but may also reflect a
lack of power to detect differences due to the small sample
size. Interestingly, some lesions that were visible in SWI-U
became clearer after contrast administration; however, others
were only observable only in SWI-Gd, even with a side-by-
side unblinded comparison with SWI-U or T1-Gd. As expected,
we did not observe improved detection of hemorrhagic lesions
between SWI-U and SWI-Gd. This may be also due to the
small sample size, as we observed microhemorrhages on a
very small subset (three patients on SWI-U; four patients
on SWI-Gd).

SWI-Gd has been evaluated for primary brain tumors with
mixed results. In gliomas, SWI is useful in determining certain
characteristics of the tumor, including growth potential (low- and
high-grade) (22), intratumor vasculature (23, 24), and treatment
response (25, 26). To our knowledge, our study is the first
to analyze SWI-Gd for metastatic brain disease; its utility in
the diagnosis of primary gliomas suggests that it can be a
useful addition to the standard MRI protocol for evaluating
brain metastases.

In the present study, the interval between gadolinium infusion
and SWI acquisition was around 5min. The timing between
infusion of gadolinium and MRI acquisition can critically
interfere with image enhancement, where delayed postcontrast
acquisition (∼20min) may theoretically result in improved
rates of lesion detection (27). However, shorter intervals (as
in the present study, in which the delay was 4’38”) have
shown minimal, if any, impact on image quality or detection
ability (28).

Due to the non-invasive nature of the present study, while all
primary tumors were histologically confirmed, we did no obtain
histological confirmation from the observed metastatic lesions.
However, preclinical evidence derived from animal models of
tumor metastases suggests that gadolinium-enhancing lesions
correspond to metastatic seeding (29).

Our study has several limitations. First of all, we have a
relatively small sample size due to the exploratory (proof-of-
concept) design; therefore, our findings will have to be replicated

or rejected in future studies. Other important limitations include
a mixture of primary tumors, analysis of parenchymal (but
not leptomeningeal) lesions, as well as expected differences in
tumor biology among participants. Also, we did not perform
a concordance analysis between MRI evaluators. While some
patients were scanned only once, some others were scanned as
many as four times during the duration of the present study, and
we did not perform an intrasubject analysis. Those limitations,
inherent to a proof-of-concept study, will, therefore, need to be
validated in larger, tumor-specific, cohorts.

The study has also some technical limitations. In every case,
T1-Gd was acquired before SWI-Gd; while the span between
both was short, it is possible that the observed advantage of
SWI-Gd was due in part to delayed enhancement. We plan
to evaluate this in a follow-up study. Also, we used a 1.5-T
scanner, something that can be seen as a limitation as well as
an advantage: a limitation as it is known that more powerful
scanners have better sensibility and require half the dose of
gadolinium to achieve similar results; on the opposite end,
1.5-T scanners are widely available, making the results more
easily generalizable.

In conclusion, here we observe for the first time that SWI-Gd
can be a valuable addition to the detection of brain metastases. By
taking advantage of gadolinium contrast, SWI-Gd may improve
the detection of brain metastases when added to the standard
contrast-enhanced MRI sequences without further risk (as the
patient is already receiving gadolinium) and with only a few extra
minutes of scanning.
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Early detection of brain metastases and differentiation from other neuropathologies

is crucial. Although biopsy is often required for definitive diagnosis, imaging can

provide useful information. After treatment commences, imaging is also performed

to assess the efficacy of treatment. Contrast-enhanced magnetic resonance imaging

(MRI) is the traditional imaging method for the evaluation of brain metastases, as

it provides information about lesion size, morphology, and macroscopic properties.

Newer MRI sequences have been developed to increase the conspicuity of detecting

enhancing metastases. Other advanced MRI techniques, that have the capability

to probe beyond the anatomic structure, are available to characterize micro-

structures, cellularity, physiology, perfusion, and metabolism. Artificial intelligence

provides powerful computational tools for detection, segmentation, classification,

prediction, and prognosis. We highlight and review a few advanced MRI techniques for

the assessment of brain metastases–specifically for (1) diagnosis, including differentiating

between malignancy types and (2) evaluation of treatment response, including the

differentiation between radiation necrosis and disease progression.

Keywords: cube, neural network, MRS, quantitative magnetization transfer (qMT), trans-membrane water

exchange, chemical exchange saturation transfer (CEST), radiomic, artificial intelligence

INTRODUCTION

Early detection of brain metastases (BM) and accurate differentiation from other neuropathologies
is crucial. Early diagnosis affects prognosis and outcome (1). Separating metastases from other
etiologies such as primary brain tumors, infection, demyelination, infarction, and hemorrhage is
important because the respective treatments are vastly different. Although biopsy is often required
for definitive diagnosis, imaging can provide useful information.

Recent improvements in local procedures combined with newer systemic treatments, including
targeted therapeutics, have substantially modified the prognosis and survival of patients with brain
metastases. Primary approaches to the treatment of brain metastases include surgery, stereotactic
radiosurgery (SRS), and whole brain radiation therapy (WBRT). One key determinant in informing
treatment decisions is the number of metastases present. Convergent data suggest SRS to the
surgical cavity is preferable to WBRT in most patients with up to four brain metastases (2, 3),
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providing similar intracranial disease control with less risk of
neurocognitive decline. Treatment for patients with multiple
(>4) brain metastases has yet to be determined (4). Although
expert opinion on the limit on number and size varies, there
is no question that accurate accounting of the number of brain
metastases is necessary.

Besides detection and tallying, imaging is also performed to
assess treatment effects. According to the Response Assessment
in Neuro-Oncology Brain Metastases (RANO-BM) working
group’s proposal, the size of metastases is an important
criteria for assessing treatment response (5). Indeed, the four
categories of response (complete response, partial response,
progressive disease, and stable disease), are defined based
on the lesion size. Another crucial task for clinicians and
radiologists after radiotherapy is the distinction between
radiation necrosis and tumor progression, which is challenging
because of their overlapping features on conventional MRI
sequences. Recent advances in the treatment of brain metastases
(e.g., immunotherapy and targeted therapies) have also posed
challenges for the interpretation of MRIs, specifically with regard
to the question of pseudoprogression or radiation necrosis vs.
true disease progression.

Traditionally, contrast-enhancedmagnetic resonance imaging
(MRI) is the preferred imaging study for the diagnosis of
brain metastases (6, 7). The two most commonly used MRI
sequences for assessing brain metastases are contrast-enhanced
T1-weighted (CET1W) and T2-weighted FLAIR, which provide
information about size, morphology and macroscopic structures.
Newer MRI sequences have been developed to increase the
conspicuity of enhancing metastases. More recently, advanced
MRI techniques that have moved beyond anatomical imaging are
available to characterize microstructures, cellularity, physiology,
perfusion, and metabolism. Changes in these attributes may
supersede perceivable macroscopic anatomic changes and can
serve as potential biomarkers for monitoring treatment effect,
recurrence, and disease progression (8).

The recent interest of artificial intelligence has transformed
the field of medicine. Radiomics and deep learning are
deployed to unveil discernible and grossly indiscernible features
within radiological images, which can assist with decision-
making in oncology (9, 10). Radiomics use sophisticated
computational methods to extract quantitative features from
medical images, which can be beyond human visual perception
(9). A vast amount of computational data are generated,
which are then mined by using various machine-learning
algorithms to develop models that may potentially improve
diagnostic, prognostic, and predictive accuracy (9). On the
other hand, deep learning uses multilayer artificial neural
networks to learn imperceptible features directly from data,
without the constraints of predefined equations and is a
powerful tool for classification, detection, and segmentation
tasks (11).

Here, we highlight and review the utility of advanced
MRI techniques, including new imaging sequences, quantitative
methods, and artificial intelligence to evaluate brain metastases–
specifically for (1) diagnosis, including differentiating between
malignancy types and (2) evaluation of treatment response,

including the differentiation between radiation necrosis and
disease progression.

BLACK BLOOD MR IMAGING

A clinically dedicated brain metastasis MRI protocol typically
consists of pre-contrast (i.e., diffusion-weighted, T2-weighted,
T1-weighted) and post-contrast (i.e., T1-weighted, FLAIR)
sequences. The critical sequence is the postcontrast 3D T1-
weighted sequence, which is a high-resolution sequence acquired
by either 3D volumetric Fast Spoiled Gradient-Echo (FSPGR) or
Fast Spin-Echo (FSE) technique.

3D volumetric gradient echo imaging (e.g., BRAVO, GE
Healthcare; MPRAGE, Siemens Healthcare; 3D TFE; Philips
Healthcare) is employed broadly because of the excellent gray-
white matter differentiation provided by the technique. 3D
volumetric FSE imaging (e.g., CUBE, GE Healthcare; SPACE,
Siemens Healthcare; VISTA, Phillips Healthcare) is a relatively
newer technique that is also optimal for high-resolution imaging.
T1-weighted, T2-weighted, PD-weighted, or FLAIR images
can be obtained with the FSE technique. One important
distinguishing feature between both of these techniques is the
appearance of the vessels. Specifically, the vasculature appears
bright on post-contrast 3D T1 FSPGR but appears dark (“black
blood”) on post-contrast 3D T1 FSE. As a result of the “bright
blood” appearance on post-contrast FSPGR, it can sometimes
be difficult to distinguish enhancing parenchymal metastases
or leptomeningeal carcinomatosis (Figure 1) from background
vascular enhancement (12). On the contrary, post-contrast FSE
provides inherent background vascular suppression, yielding
a higher contrast-to-noise ratio (CNR) of lesions, making
enhancing parenchymal, and leptomeningeal metastases more
conspicuous (13).

Detection of Brain Metastases
To make metastases even more perceptible, thick-section
maximum intensity projection (MIP) images can be
reconstructed from post-contrast 3D T1 FSE. Reconstruction
with slice overlapping can further help to reduce artifacts from
partial volume averaging and improve visualization of lesions
(Figure 2) (14). The use of MIP images is standard practice for
detecting pulmonary nodules in chest imaging (15), because
discrete lesions are accentuated from the background. Yoon et al.
used a similar technique and demonstrated better and faster
detection of brainmetastases usingMIP images constructed from
overlapping post-contrast T1-weighted CUBE (oCUBE-MIP).
They compared oCUBE-MIP images with more conventional
imaging techniques–source post-contrast 3D T1 FSPGR, source
post-contrast 3D T1 CUBE, and non-overlapping CUBE MIPs
(nCUBE-MIP) (14). As expected, the CNR was highest on
oCUBE-MIP and lowest on FSPGR, for both small (<4mm)
and large lesions (>4mm). The sensitivity for lesion detection
was highest with oCUBE-MIP (0.96). oCUBE-MIP had a slightly
higher false-positive rate than FSPGR, which they attributed
to erroneous diagnosis of tiny vascular segments as punctate
metastases. However, the false-positive rate of oCUBE-MIP was
improved when source CUBE images were provided along with
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FIGURE 1 | 68-years-old patient with primary lung adenocarcinoma and leptomeningeal carcinomatosis. Diffuse nodular leptomeningeal enhancement is seen over

the left cerebellar surface on (A) post-contrast 3D T1 FSPGR and (B) post-contrast 3D T1 CUBE, compatible with leptomeningeal carcinomatosis. Conspicuity of

enhancement is increased in (B) compared to (A).

oCUBE-MIP images for cross-referencing purposes, because
vessels can be more accurately traced on source CUBE images.
The mean interpretation time with oCUBE-MIP was 94.7 +/–
36.5 s, which was significantly lower than with source CUBE
(173.5 +/– 67.7 s) and source BRAVO (195 +/– 64.8 s) alone,
providing an average saving of at least 100 s per case.

Taking advantage of the higher CNR on CUBE images, Oh
et al. demonstrated significantly better diagnostic accuracy for
detection of leptomeningeal carcinomatosis in 78 subjects with
post-contrast 3D T1 CUBE images (p < 0.05). Highest sensitivity
was achieved on post-contrast CUBE (97.43%), followed by post-
contrast 2D T1-weighted spin-echo (66.67%), and post-contrast
T1 FSPGR (64.1%). There were no significant differences in
specificities among the three imaging techniques (16).

Clinical Implication
Post-contrast 3D T1 CUBE, particularly with overlapping thick-
section MIP reconstruction, is a clinically available imaging
technique that offers high contrast-to-noise ratios of enhancing
lesions within the brain and allows for fast and sensitive detection
of brain metastases (Table 1).

MAGNETIC RESONANCE
SPECTROSCOPY (MRS)

Protons of different molecules resonate at slightly different
frequencies secondary to the local magnetic field generated by
the electron cloud surrounding them. Magnetic resonance
spectroscopy (MRS) detects tissue metabolites by their
characteristic resonant frequencies (17). In oncologic
applications, the metabolites of interest are products or
byproducts of malignancy-related pathways (17, 18). The most
common metabolites are N-acetylaspartate (NAA), choline

(Cho), lipid (Lp), and creatine (Cr). NAA is a neurotransmitter,
which is abundant in neurons, and is a marker for neuronal
health (19). Its concentration is related to the extent of neuronal
destruction (20). Choline is involved in the manufacturing
of phospholipids, which is an integral component of cell
membranes (21). Higher levels of choline are associated with
higher cell membrane turnover, presumably from cell damage.
Lipid is a byproduct associated with cellular necrosis and is
often seen in the setting of glioblastoma or metastases. Creatine
is involved in intracellular metabolic processes. Creatine
concentration is higher in areas with higher energy metabolism

(22). The concentration of these metabolites can be measured on
MRS and can help to determine the underlying pathophysiology
of a lesion.

There are many spectroscopic acquisition techniques, with
commonly usedmethods being “PRESS” (23) and “STEAM” (24).
While technical details of MRS are beyond the scope of this

article, MRS can be acquired with either short or long echo-time

(TE), with typical short TE values ranging between 18 and 45ms
and long TE values ranging between 120 and 288ms. Different TE
values highlight different aspects of the spectra. For example, on
short TE MRS, the spectra tend to have an irregular fluctuating
baseline, and NAA may overlap with the glutamine/glutamate
peak. On long TEMRS, lipids may not be detected, and there may
be an artifactual elevation of the Cho/Cr ratio (25). The optimal
TE for brain malignancy MRS is still under discussion (25). MRS
is acquired by using a single voxel technique, with a small voxel
size of a few cubic centimeters, or with a (2D or 3D) multi-voxel
technique, which provides larger coverage of a target lesion at
a higher spatial resolution. However, both methods are limited
in spatial resolution and coverage, making MRS susceptible to
partial volume effects. Diagnostic accuracy of MRS can also be
limited by sampling error, especially with heterogeneous lesions
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FIGURE 2 | Enhancing cerebral metastases in a 78-years-old patient with metastatic lung carcinoma. Postcontrast 3D T1-weighted (A) FSPGR, (B) CUBE, and (C)

overlapping CUBE maximum intensity projection (oC-MIP) images demonstrate enhancing metastatic lesions. The lesions appear most conspicuous with overlapping

CUBE MIPs (C). The contrast-to-noise ratio of lesions is also highest for oC-MIP (C).

TABLE 1 | Summary of imaging techniques, features, and potential applications.

Technique Features Potential applications

Overlapping post-contrast 3D

T1-weighted CUBE (oCUBE-MIP)

High contrast-to-noise ratio of

enhancing lesions

• Fast and sensitive detection of brain parenchymal and leptomeningeal metastases

• Clinically available and easy to implement

Magnetic resonance spectroscopy Detects tumoral metabolites • Lipids detected in metastases and glioblastomas

• Higher NAA/Cr in metastases than in primary gliomas

• Higher Cho/Cr and Cho/NAA with tumor progression than with radiation necrosis

• Clinically available but more difficult and complex to implement; complementary to

structural imaging

• Standardization across different MRI vendors is needed

Quantitative magnetization transfer Characterizes magnetization transfer

ratio (MTR), macromolecular

concentration (F), exchange rate

between the bound protons and free

water protons (kf)

• Peritumoral MTR lowest in meningioma compared to glioblastoma and metastases

• Macromolecular fraction in the non-contrast-enhancing region of tumor highest in

metastases

• Largely investigational at this time

• No standardized post-processing software

Trans-membrane water exchange Measures transmembrane

intra-extracellular water exchange

rate constant (kIE) which is sensitive

to apoptosis

• kIE higher in responders (to radiosurgery) than non-responders

• Largely investigational at this time

Chemical exchange saturation

transfer

Measures metabolites of neoplasm

milieu

• Higher MTRAmide and NOE with tumor progression than with radiation necrosis.

• Promising and rapidly developing molecular-imaging tool

• More studies in humans and standardized techiques to improve the specificity

are needed

Perfusion imaging Relative cerebral blood volume and

cerebral blood flow

• Peritumoral rCBV and rCBF higher in glioblastomas than metastases

• Intratumoral rCBV can help to distinguish infection from tumor

• Higher intratumoral and peritumoral ASL-rCBF in glioblastomas than in metastases.

• Higher rCBV, higher rPH, lower PSR, higher Ktrans in recurrent tumor; lower rCBV,

lower rPH, higher PSR, lower Ktrans in radiation necrosis

• Clinically available with different acquisition and post-processing methods, limiting

its universal adoption; complementary to structural imaging

Radiomics and textural analysis Computes quantitative patterns and

inter-pixel relationships of tumors

• Some textural parameters can distinguish glioblastomas from metastases

Some textural parameters can classify the primary origins of brain metastases

• Largely investigational at this time; large multicenter datasets are needed

for validation

(8). In general, a multi-voxel technique is recommended for
evaluation of heterogeneous tumors or multiple lesions in order
to minimize sampling error from a specific area of a lesion

(26). Moreover, voxels should be positioned away from fat, bone,
air, ventricles, vessels, and cerebrospinal fluid in order to avoid
contamination of the spectra.
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Differentiate Malignancy Types
Similar to glioblastoma, brain metastases express elevated lipid
signal (presumably as a result of cellular necrosis) on MRS.
The lipid peak, therefore, has been used to differentiate these
two tumor types from other brain neoplasms (27). Ishimaru
et al. studied 11 patients with anaplastic gliomas, 20 patients
with glioblastomas, and 25 patients with brain metastases using
single-voxel MRS to differentiate between the three malignancy
types (27). They measured the levels of lipids, NAA, Cho, and
Cr. Metastases and glioblastomas showed definite lipid peak
or lipid/lactate mixture peak, but no lipid signal was detected
in anaplastic gliomas. Absence of the lipid signal precluded
metastases. A strong Cho peak was detected in all tumors.
No definite Cr peak was detected in 21 of the 25 metastases.
Therefore, the presence of a Cr peak was suggestive of glioma,
whereas the absence of a Cr peak was more suggestive of
metastasis. The NAA/Cr ratio was shown to be higher in brain
metastases (NAA/Cr = 1.58 ± 0.56), as compared to anaplastic
gliomas (NAA/Cr = 0.70 ± 0.23) and glioblastomas (NAA/Cr =
0.76± 0.40) (27).

Similar results were reported in another study investigating
32 patients with high-grade gliomas, 14 patients with low-grade
gliomas, and 14 patients with brain metastases using multi-voxel
2D MRS on 3T (28). Both NAA/Cr and Cho/Cr ratios within
the tumors were higher in brain metastases (NAA/Cr = 4.43 ±

4.5, Cho/Cr = 4.88 ± 7.0), than in low-grade gliomas (NAA/Cr
= 1.68 ± 0.9, Cho/Cr = 2.7 ± 2.1), and high-grade gliomas
(NAA/Cr = 1.04 ± 0.6, Cho/Cr = 3.4 ± 1.7). In the peritumoral
regions, NAA/Cr and Cho/Cr ratios were highest in low-grade
gliomas (NAA/Cr = 3.73 ± 2.61, Cho/Cr = 4.62 ± 6.95),
followed by brain metastases (NAA/Cr = 2.53 ± 1.13, Cho/Cr
= 2.72 ± 2.55), and lowest in high-grade gliomas (NAA/Cr =
1.49 ± 0.83, and Cho/Cr = 2.49 ± 2.02) (28). Higher lipids
were measured in high-grade gliomas (Lipids = 118.2 ± 215.9),
which could help to discriminate them from metastases (Lipids
= 35.48 ± 48.22). However, lipid levels in low-grade gliomas
were similar to that of metastases and were therefore not useful
to discriminate between the two (28). Lactate signal was also
significantly different in high-grade gliomas (Lactate = 94.62
± 123), with respect to low-grade gliomas (Lactate = 50.02
± 97.89), and metastases (Lactate = 15.07 ± 16.74). Of note,
the reported standard deviations in metabolite measurements
were quite large and overlapped between tumor types. Therefore,
further studies with larger populations are needed to better
determine if MRS is useful for differentiating brain metastases
from different glioma types.

Evaluate Treatment Effect
Sjobakk et al. used single voxel MRS to study lipid peak in
21 patients with brain metastases before treatment to predict
outcome. Patients with a higher lipid signal at baseline had
a higher 5-months survival rate. Four patients in the cohort
underwent repeat MRS after treatment, which demonstrated
decreased lipid signal. The two patients with a larger drop in lipid
signal survived longer than the other two (16 vs. 3 months) (29).

MRS has also been used to differentiate radiation necrosis
from tumor progression in brain metastases. Weybright et al.

evaluated MRS in 29 patients with brain metastases after
radiotherapy. Metastases that progressed showed significantly
higher ratios of Cho/Cr and Cho/NAA compared to radiation
necrosis (30). Schlemmer et al. also used MRS to differentiate
radiation necrosis from disease progression in 56 patients (6
metastases, 2 meningiomas, 50 grade I to IV astrocytomas).
Higher Cho/Cr and Cho/NAA ratios (p < 0.0001) were observed
in tumor progression (n= 34) compared with radiation necrosis
or stable disease (n = 32) and contralateral normal brain (n =

33). Using Cho/Cr and Cho/NAA ratios to classify a lesion as
progressive tumor yielded 82 and 81% accuracy, respectively (31).

These findings were further interrogated in a meta-analysis
of 13 studies, encompassing 397 lesions, that showed higher
Cho/Cr and Cho/NAA ratios in tumors than in radiation necrosis
(22). There was a significant difference in Cho/Cr ratio between
recurrent tumor and radiation necrosis (0.77, 95%CI = 0.57 to
0.98, p= 0.001). There was also a significant difference in ratios of
Cho/NAA between recurrent tumor and radiation necrosis (1.02,
95%CI = 0.03 to 2.00, p = 0.044). However, there was a large
overlap in the values between the two groups.

These promising studies suggest that the concentrations
and ratios of metabolites in tumor milieu detected by
MRS may be useful in distinguishing between the following
groups: neoplastic and non-neoplastic brain lesions, progressive
disease and radiation necrosis, and treatment responders
and non-responders.

Clinical Implication
MRS is a clinically available technique that provides information
on tumoral metabolites in the treatment naïve and post-
treatment setting (Figures 3, 4). However, given overlapping
features with different tumor types and subtypes and other
metabolically active disease processes, prospective studies with
larger sample sizes are needed to further investigate its potential
diagnostic capabilities (Table 1). Partial volume effects and
limited coverage are some of the reasons why MRS is replaced by
other whole-brain techniques such as perfusion. Standardization
across sites and different vendors of acquisition and analysis
techniques is also needed before MRS can be widely adopted as
clinical tool (32).

QUANTITATIVE MAGNETIZATION
TRANSFER (qMT)

Magnetic transfer describes the phenomenon where net
magnetization of free water hydrogen protons is exchanged
with that of restricted hydrogen protons (those bound to
macromolecules) (33). Such macromolecules include lipids
constituted in myelin and cell membranes. Magnetization
transfer imaging (MTI) applies radiofrequency energy (MT
pulses) to the bound protons, which is then transferred to the
free water pool (34). Depending on the degree of coupling
between these pools, the free water pool becomes partially
saturated. When imaged, this saturation effect (secondary to
magnetization transfer) manifests as signal loss. Quantitative
magnetization transfer imaging (qMT) characterizes the
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FIGURE 3 | 67-years-old patient with a left medial frontal lobe brain metastasis from primary lung cancer treated with stereotactic radiosurgery. (A) Post-contrast

T1-weighted image shows the treated enhancing lesion. (B) Multi-voxel 2D magnetic resonance spectroscopy acquired at 3T with grid placed on the lesion. (C)

Spectra (from the voxel highlighted in yellow) shows findings of disease progression, with the presence of a lipid peak (indicative of necrosis), high Cho peak, and

increased Cho/NAA and Cho/Cr ratios. Subsequent short-term follow-up MRI showed growth of the lesion (not shown), supporting the diagnosis of disease

progression.

FIGURE 4 | 79-years-old patient with left thalamic metastasis from lung cancer treated with stereotactic radiotherapy. (A) Post-contrast T1-weighted image shows

the treated enhancing lesion. (B) Multi-voxel 2D magnetic resonance spectroscopy acquired at 3T with grid placed on the lesion. (C) Spectra (from the voxel

highlighted in yellow) shows mild elevation of the choline peak, slightly increased Cho/Cr ratio, slightly increased Cho/NAA ratio, and normal NAA/Cr ratio. Subsequent

follow-up MRI showed shrinkage of the contrast-enhancing mass (not shown), supporting the diagnosis of radiation necrosis.

magnetization transfer ratio (MTR), the macromolecular
concentration (F), the exchange rate between the bound protons
and free water protons (kf), as well as the relaxation times (T1,
T2) of the bound and free proton pools (34). MTR of each
voxel is computed as: MTR = (So – SMT)/So, where So is the
magnitude of tissue signal before the MT pulse and SMT is the
signal after applying MT pulse.

Differentiate Malignancy Types
Garcia et al. used magnetization transfer ratio (MTR) and qMT
parameters to differentiate brain metastases from other brain
tumors in 26 patients (35). (Figure 5) Significant differences
were found in the MTR and qMT parameters (on both the
tumor rim and core) of glioblastoma, meningiomas, and brain

metastases (35). MTR on the non-contrast-enhancing region of
tumor was highest in metastases (MTR= 35.1%± 0.5), followed
by glioblastoma (MTR = 33.8% ± 1.2 and meningiomas (MTR
= 28.9% ± 1.6), and was capable of separating metastases
from meningiomas. MTR on the contrast-enhancing region
was highest in meningiomas (MTR = 30.5% ± 1.2), followed
by metastases (MTR = 27.4% ± 1.0) and glioblastoma (MTR
= 25.2% ± 0.6), and could separate glioblastoma from
meningiomas. MT exchange rate on the contrast-enhancing
region of the tumor (kf = 0.8 ± 0.1, 1.1 ± 0.1, 0.6 ± 0.0 for
brain metastases, meningiomas, and glioblastomas, respectively)
and macromolecular fraction on the non-contrast-enhancing
region of the tumor (F = 7.2 ± 0.7, 5.6 ± 0.2, 3.6± 0.7
for brain metastases, meningiomas, and glioblastomas,
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FIGURE 5 | Conventional T2-FLAIR and T1-weighted contrast-enhanced as well as magnetization transfer ratio (MTR), macromolecular concentration (F), and

exchange rate between the bound protons and free water protons (kf) images of a patient with a malignant pleomorphic glial tumor in the left temporal and occipital

lobes showing contralateral tumor extension via the splenium of the corpus callosum. Abnormal MTR values can be discerned ventrally and laterally to the altered

looking tissue on conventional MRI (black arrows). Reproduced, with permission, from Garcia et al. (35).

respectively) could distinguish between all three tumor
types (35).

Clinical Implication
Quantitative magnetization transfer imaging is largely research-
based at this time. More and larger clinical studies are needed to
validate its use in the clinical setting (Table 1). Currently, there
are no FDA approved or standardized software to post-process
the acquired data or display the results.

TRANS-MEMBRANE WATER EXCHANGE

Biologic tissue can be grossly divided into three compartments–
vascular, intracellular, and extracellular extra-vascular, with
different physiochemical properties. Water molecules move
between these two non-vascular compartments constantly. The
exchange rate of water molecules between intracellular and
extracellular compartments depends on the permeability of the
cell membrane as well as on the size and shape of the cell
(36). Transmembrane intra-to-extracellular water exchange rate
constant (kIE) is very sensitive to structure damage such as
apoptosis. During apoptosis, cells are disfigured, shrunken, and
have higher cell membrane permeability (36, 37), leading to an
increase in kIE. It has been shown that kIE increases significantly
within days after inducing apoptosis (38, 39).

Evaluate Treatment Effect
Mehrabian et al. developed a water exchange quantification
technique for dynamic contrast-enhanced MRI, to measure
the transmembrane water exchange rate (kIE) (39). Since
the transmembrane intra-to-extracellular water exchange rate
constant (kIE) is sensitive to apoptosis, and assuming effective
treatment destroys malignant cells by apoptosis, kIE can be
used to distinguish responders from non-responders to therapy.
The authors investigated the change in transmembrane water
exchange rate (kIE) between pre-treatment and 1-week post-
treatment scans, and correlated measurements with treatment
efficacy in 19 patients with brain metastases undergoing
stereotactic radiosurgery (39). Trans-membrane water exchange
rate constant is significantly increased in responders, as
determined according to RANO-BM criteria (5), than non-
responders within 1 week after treatment (p < 0.001). In
addition, the increase in transmembrane water exchange rate
(kIE) correlated with tumor shrinkage at 1 month after treatment
(R = −0.76, p < 0.001). This ability to differentiate responders
from non-responders at such early post-treatment stage can
potentially help to inform treatment plans.

Clinical Implication
Multi-center trials complying with criteria of evidence-based
medicine have not yet been completed, therefore transmembrane
water exchange imaging is primarily investigational at this
time (Table 1).
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FIGURE 6 | Example CEST amide effect maps within the tumor and immediately surrounding tissue, including edema, at baseline and 1 week post-treatment for 2

patients: (A) tumor volume decreased 1 month post-therapy and (B) tumor volume increased 1 month post-therapy. The margins of the enhancing tumor are

indicated with an arrow and outlined in black on the CEST maps. The corresponding slice from the high resolution, contrast-enhanced T1-weighted volume is shown

for comparison. Contrast-enhanced T1-weighted and FLAIR images at 1 month follow-up are shown in the third row. Reproduced, with permission, from Desmond

et al. (48).

CHEMICAL EXCHANGE SATURATION
TRANSFER (CEST)

Chemical exchange saturation transfer MRI (CEST) is a novel
MR technique that detects the chemical shift between exchanging
protons of the metabolites with the local electron cloud (40).

CEST can image certain compounds at concentrations that

are too low to be detected by standard MR imaging or MRS
(40–42). CEST is sensitive to the exchange of labile protons

(including amide protons), rapid exchange of hydroxyl protons,
and intramolecular transfer of magnetization from aliphatic
(-CH) protons to labile protons, termed as relayed nuclear
Overhauser effect (rNOE) (43). These protons are found in
metabolites such as glutamate, lactate, myo-inositol and glucose,
which are common constituents in a neoplastic milieu (44).
The most commonly used CEST metrics in cancer are amide
proton transfer (APT) (45), magnetization transfer ratio for
amide (MTRAmide), and nuclear Overhauser effect (NOE) (46).

NOE is the transfer of nuclear spin polarization from one nuclear
spin population to another via dipolar cross-relaxation (47).

Evaluation of Treatment Effect
Desmond et al. applied endogenous CEST-MRI to determine
response of 25 patients with brain metastases within 1 week after
stereotactic radiosurgery (SRS) treatment (48). Reduced CEST
signal in responders and increased CEST in non-responders were
observed (Figure 6). Furthermore, changes in CEST signals at 1-
week post treatment correlated with the change in tumor volume
measured at 1 month post-treatment. In particular, the width of
the NOE peak in tumor (correlation coefficient, r = −0.55, p
= 0.028) and amplitude of NOE peak on the normal-appearing
white matter (r= 0.69, p= 0.002) yielded the highest correlations
(48). The amplitude of the NOE peak in the contralateral normal-
appearing white matter (NAWM) at baseline (before SRS) was
inversely correlated with the degree of tumor volume change at
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1 month post-treatment (r=−0.69, p= 0.002), which may be an
indicator of tumor aggressiveness (48).

Mehrabian et al. used CEST to differentiate radiation necrosis
from tumor progression in 16 patients with brain metastases,
with nine confirmed radiation necrosis and seven tumor
progression (49). Both MTRAmide and NOE were able to
differentiate progressive tumors from radiation necrosis with
high accuracy (p< 0.0001) (49). HigherMTRAmide wasmeasured
in tumor progression (MTRAmide = 12.0 ± 1.9), compared to
radiation necrosis (MTRAmide = 8.2 ± 1.0). Higher NOE was
measured in tumor progression (NOE = 12.6 ± 1.6), compared
to radiation necrosis (NOE= 8.9± 0.9).

Clinical Implication
Chemical exchange saturation transfer shows promise as a tool
for molecular imaging of CNS malignancy. Although CEST is
largely a research tool currently, there are rapid development
in CEST techniques for improving the acquisition speed and
spatial coverage (50). More studies in humans and standardized
techniques to improve the specificity of the methods will be
needed in order to translate into the clinical setting (50) (Table 1).

PERFUSION IMAGING

The most commonly used techniques for assessing tumor
perfusion are dynamic susceptibility contrast (DSC), dynamic
contrast-enhanced (DCE), and arterial spin labeling (ASL)
imaging (Figure 7). Different perfusion parameters are derived
from each technique. For CNS tumor imaging, cerebral blood
volume (CBV) and cerebral blood flow (CBF) are commonly
studied metrics. CBV measures the amount of blood per volume
of tissue. CBFmeasures the amount of blood per volume of tissue
per unit of time. Both CBV and CBF reflect tumor vascularity.
In addition to measuring absolute values, CBV and CBF are
often measured relative to an internal control (typically the
contralateral normal parenchyma). The ratios are often referred
to as relative cerebral blood volume (rCBV) and relative cerebral
blood flow (rCBF), respectively. In contrast to DSC and DCE
imaging, ASL is a non-contrast method for determining CBF.

Differentiation of Malignancy Types
Server et al. measured DSC perfusion parameters within the
tumor and peritumoral regions to differentiate glioblastomas (n
= 40) frommetastases (n= 21) (51). The rCBV and rCBF within
the peritumoral region were significantly higher in glioblastomas
(rCBV = 1.8 ± 0.7, rCBF = 2.1 ± 1.4) than metastases (rCBV
= 0.6 ± 0.1, rCBF =0.7 ± 0.5). An rCBV threshold of 0.8
yielded 95% sensitivity and 92% specificity for differentiating
glioblastomas from metastasis. Other similar studies showed
high negative predictive value and high specificity for detecting
metastases with a peritumoral rCBV cutoff of 1.0 (52, 53).

Interestingly, the rCBV and rCBF within the tumor were not
significantly different between glioblastomas andmetastases (51).
However, studies have shown that neoplasms (rCBV = 4.28 ±

2.11) have higher rCBV than infectious lesions (rCBV = 0.63
± 0.49), and intratumoral rCBV can be helpful to distinguish
infectious lesions from neoplasms (54).

Sunwoo et al. performed qualitative and quantitative
analyses on ASL-CBF in 128 patients with glioblastoma (n
= 89) and brain metastases (n = 39) (55). Intratumoral
and peritumoral rCBF were assessed. Both qualitatively and
quantitatively, glioblastomas demonstrated higher intratumoral
and peritumoral rCBF than metastases. They report an area
under the curve (AUC) of 0.835 for differentiating the two with
peritumoral rCBF (55).

Evaluation of Treatment Effect
Tumor recurrences typically develop increased abnormal
vasculature, which is represented by increased rCBV. Relative
peak height (rPH), which is the maximum change in signal
during the passage of contrast agent, correlates with tumor
capillary blood volume. Tumor recurrences will also have
relatively higher rPH (56). Percentage of signal-intensity
recovery (PSR), an indicator of blood-brain-barrier integrity,
reflects the degree of contrast agent leakage caused by alteration
of capillary permeability. Tumor recurrences often have
increased permeability due to abnormally formed vessels,
which allow more gadolinium to leak into and remain in the
extracellular space, leading to persistent gadolinium effects
of decreasing signal and consequently decreased PSR. In
contrast, in radiation necrosis, the vasculature is damaged,
with resulting decreased blood flow, which is represented by
decreased rCBV. Also, as there is less leakage of contrast into
the extracellular space, the PSR will be higher in radiation
necrosis (56).

Barajas et al. used DSC perfusion imaging to aid in the
diagnosis of tumor recurrence vs. radiation necrosis; the
authors assessed a total of 30 lesions in 27 patients with
brain metastases, which were enlarging after SRS. They showed
that rCBV and rPH were statistically higher and PSR was
lower in recurrent tumor than in cases of radiation necrosis.
Additionally, they demonstrated that PSR was the best indicator
of radiation necrosis when a cutoff value of >76.3% was
used, yielding a sensitivity of 95.65% and a specificity of
100% (56).

Ktrans, derived from DCE, reflects the permeability of the
tissue. An increased Ktrans suggests tumor recurrence. Morabito
et al. demonstrated similar accuracy of DCE compared to DSC in
distinguishing between tumor recurrence and radiation necrosis
in a total of 28 patients (total of 72 lesions) in both primary brain
tumors (15 cases) and metastatic lesions (57 lesions) treated with
SRS. The rCBV values for DSC and the Ktrans values for DCE
were compared and showed similar accuracy in differentiation
radiation necrosis from tumor progression (57).

Clinical Implication
MR perfusion imaging is a widely available clinical technique
used for assessing tumor vascularity, for differentiating between
tumor types, and for differentiating tumor recurrence from
treatment effect (Table 1). However, widespread adoption has
been limited by lack of imaging acquisition and post-processing
standardization across multiple and different institutions.
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FIGURE 7 | Utility of arterial spin labeling (ASL), dynamic contrast enhancement (DCE), and dynamic susceptibility contrast (DSC) perfusion MRI to differentiate

between recurrent tumor and treatment effect. Top panel shows recurrent tumor in a 34-years-old female with a left frontal breast cancer metastasis that was

previously resected and treated with stereotactic radiosurgery. ASL, DCE, and DSC images demonstrate high cerebral blood flow, Ktrans, and cerebral blood volume

(arrows), respectively, associated with the contrast-enhancing lesion. Tumor was confirmed on histopathology from subsequent re-resection. Bottom panel shows

treatment effect in a 65-years-old female with a right frontal lung cancer metastasis who was previously resected and treated with stereotactic radiosurgery. ASL,

DCE, and DSC images demonstrate low cerebral blood flow, Ktrans, and cerebral blood volume (arrowheads), respectively, associated with the mildly enhancing

lesion. Treatment effect was confirmed with negative PET/MRI (not shown) and a stable 3-months follow-up MRI (not shown).

RADIOMICS AND ARTIFICIAL
INTELLIGENCE

Treatment and prognosis for patients with primary CNS
malignancies and different types of metastases are different,
which makes distinguishing between them important. However,
these neoplastic brain lesions have overlapping features on
conventional MRI, such as enhancement, surrounding edema
and central necrosis. More sophisticated features, beyond
standard morphometric features, are needed to distinguish them.

Texture analysis, a common radiomics approach, uses
high-order statistical methods to extract quantitative patterns
and inter-pixel relationships within an image. The generated
computational data are then mined by using various machine-
learning algorithms to develop models that may potentially
improve diagnostic, prognostic, and predictive accuracy (9).
Texture analysis can characterize tumor heterogeneity by
evaluating relationships of gray pixels/voxels to each other using
mathematical techniques such as gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), etc. Texture
analysis has been used to distinguish brain metastases from
various primary malignancies (58–60).

Differentiation of Malignancy Types
Petrujkic et al. performed texture analysis on 30 patients with
glioblastomas and 25 patients with solitary metastases on T2-
weighted, susceptibility weighted, and post-contrast MPRAGE

(CET1) images (61). Five textural parameters were calculated–
Angular second moment (SASM), Inverse difference moment
(SIDM), Contrast (SCON), correlation (SCOR), and Entropy
(SENT). Compared to glioblastomas, metastases had higher SENT ,
SCOR, and SCON , and lower SASM and SIDM (61). All five
textural parameters from T2-weighted imaging were significantly
different between glioblastoma and metastasis. Inverse difference
moment (SIDM) on T2-weighted imaging was most useful
for differentiating the two (sensitivity = 83.3%). On CET1
images, four textural parameters (SASM , SIDM , SCON , SENT)
were significantly different, with Inverse difference moment
(SIDM) being most specific (specificity = 84%). Performance was
better when multi-sequence textural parameters were combined,
achieving an AUC of 0.908, with 86.7% sensitivity and 80.0%
specificity (61).

Similar results were reported in another study using perfusion
imaging by Mouthuy et al. (62). Other investigators explored
tumor heterogeneity bymeans of both 2D and 3D texture analysis
in search for structural differences between brain metastases
originating from different systemic cancers (63). Ortiz-Ramon
et al. used random forest machine-learning approach based on
texture analysis in 38 patients, to classify the primary origins
of three brain metastases– lung cancer, melanoma, and breast
cancer (64). Forty-three rotation-invariant 3D and 2D texture
features were examined. Overall, 3D texture features were more
discriminative than 2D features. A random forest classifier, using
four 3D texture features, was accurate in differentiating lung
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FIGURE 8 | Probability maps, generated by neural-network, overlaid on post-contrast BRAVO image in patient with three lung carcinoma metastases. The yellow

outline represents “ground-truth” segmentation manually drawn by neuroradiologists.

cancer metastases from breast cancer metastases (AUC = 0.963
± 0.054). Another random forest classifier, using eight 3D texture
features, was very good in differentiating lung cancer metastases
from melanoma metastases (AUC = 0.936 ± 0.070). However,
none of their random forest classifiers were able to differentiate
breast cancer metastases from melanoma metastases (AUC =

0.607 ± 0.180), presumably because of a limited small dataset.
Nonetheless, texture analysis is a promising tool for classifying
brain neoplasms.

Automatic Detection and Segmentation
Typical planning in stereotactic radiosurgery (SRS) requires
accurate detection and meticulous segmentation of each
target lesion. Both steps are time-consuming and subject to
interobserver variation. Artificial intelligence is well-suited for
tackling manually tedious and repetitive tasks that require high-
precision, such as brain metastases detection and segmentation.
Several deep learning (DL) algorithms have been developed to
detect and segment primary brain metastases, by learning from
voxel-wise labeled MRI data (65–67).

Grovik et al. designed a convolution neural network
(CNN) for automatic detection and segmentation of brain
metastases using multisequence (pre-contrast T1-weighted
CUBE, post-contrast T1-weighted CUBE, post-contrast T1-
weighted BRAVO, and 3D CUBE FLAIR)MRI data as input (68).
Ground truth segmentations of the metastases were manually
outlined on each slice depicting the lesion on post-contrast
BRAVO images. The network’s input was a slab of seven slices
from each of the four sequences (pre-contrast T1-weighted
CUBE, post-contrast T1-weighted CUBE, post-contrast T1-
weighted BRAVO, and 3D CUBE FLAIR). The center slice of
the slab was selected at the center of the metastasis. The CNN

was based on the GoogLeNet architecture and was trained using
TensorFlow. The output was a probability map (ranging between
0 and 1) of whether the voxel represented a metastasis (Figure 8).
Voxel-wise detection accuracy was 0.98 +/– 0.04, corresponding
to 94% sensitivity and 97% specificity. According to subgroup
analysis and based on disease burden, the ability to detect
metastatic voxels was better in patients with few (1–3) metastases
than in those with more than four. Segmentation performance, as
measured by the Dice coefficient, was slightly better for patients
with 4–10 metastases. Using the optimal probability threshold,
on a lesion-by-lesion basis, the sensitivity was 83 +/– 22%, with
a false positive rate of 8.3 lesions per cases. False positive lesions
were found primarily near vascular structures at the skull base
such as the venous sinuses or over the cortex. Overall, the CNN
performed best on patients with few metastases, both in terms of
sensitivity and the number of FPs.

Other groups, using different variations of neural networks
and imaging sequences as input, have reported comparable
results (65–67). In essence, the CNNs have the potential to
integrate detection, segmentation, and quantification of brain
metastases using a streamlined process. The output of the CNN
can also potentially be used as masks for radiotherapy planning.

Evaluate Treatment Effect
Larroza et al. used texture analysis and Support Vector
Machine classification (a type of machine-learning classification
technique) to differentiate between brain metastases and
radiation necrosis on contrast-enhanced T1-weighted images
(69). A total of 179 texture features were extracted from 115
lesions from 73 patients (60 untreated lesions, 23 SRS-treated
lesions, and 32 radiation necrosis). A support vector machine was
used to find a subset of features that attained best classification
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performance. The highest classification accuracy was achieved by
a machine trained with treated metastases, using a subset of 10
features (AUC = 0.94 ± 0.07). The second best performer was
a machine trained with both treated and untreated metastases,
using a subset of seven features and tested on treated metastases
(AUC = 0.93 ± 0.02). Texture analysis on conventional MRI
seems to be capable of differentiating between brain metastasis
and radiation necrosis with high accuracy.

Clinical Implication
Studies using radiomics and machine learning in all fields of
medicine are rapidly growing; however, validation with large
multicenter and heterogeneous datasets is needed to confirm
performance accuracy before deployment in the clinical neuro-
oncology setting (Table 1).

CONCLUSION

Treatment of brain metastases has become increasingly
individualized as surgical and radiosurgical techniques have
evolved over the past several decades. Accurate diagnosis and
assessment of brain metastases in patients with systemic cancers
has important implications for patient prognosis and treatment
strategy. Newer anatomic imaging techniques such as “black-
blood” MR imaging accentuate detection of enhancing brain
parenchymal metastases and has been reported to have more
sensitivity for the detection of leptomeningeal carcinomatosis.
Overlapping CUBE-MIP images make identifying brain
metastases easier and quicker. Advanced MRI techniques that
penetrate beyond macrostructures of brain metastases, such
as MRS, MR perfusion, CEST, and qMT, provide quantitative

parameters that are sensitive to underlying tissue microstructure
and pathophysiology. These parameters may hold promise as
imaging biomarkers for monitoring disease progression and
predicting treatment outcome. However, it is important to note
that some of the MRI techniques highlighted in this review are
still largely research-based tools and have not been integrated
into clinical practice. Systematic validation using standardized
protocols in the clinical setting is needed before any potential
efficacy or utility of these methods is realized.

Artificial intelligence can enhance assessment of brain
metastases. Texture analysis computes a large amount of intrinsic
features for quantitative comparisons. Various machine-learning
algorithms can be applied in tandem to extract useful features
for classification. Deep Learning, utilizing neural networks,
can automate detection and segmentation with high accuracy
and precision.

These important advancements are helpful for promoting
individualized risk-stratification, tumor characterization, and
treatment decisions. However, further investigations are needed
to standardize these advanced techniques and measurements.
Larger multicenter clinical trials are also imperative to fully
evaluate the clinical utility of these various techniques and
image data.
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Background: Early imaging-based treatment response assessment of brain metastases

following stereotactic radiosurgery (SRS) remains challenging. The aim of this study is

to determine whether early (within 12 weeks) intratumoral changes in interstitial fluid

pressure (IFP) and velocity (IFV) estimated from computational fluid modeling (CFM) using

dynamic contrast-enhanced (DCE) MRI can predict long-term outcomes of lung cancer

brain metastases (LCBMs) treated with SRS.

Methods: Pre- and post-treatment T1-weighted DCE-MRI data were obtained in 41

patients treated with SRS for intact LCBMs. The imaging response was assessed

using RANO-BM criteria. For each lesion, extravasation of contrast agent measured

from Extended Tofts pharmacokinetic Model (volume transfer constant, Ktrans) was

incorporated into a computational fluid model to estimate tumor IFP and IFV. Estimates

of mean IFP and IFV and heterogeneity (skewness and kurtosis) were calculated

for each lesion from pre- and post-SRS imaging. The Wilcoxon rank-sum test was

utilized to assess for significant differences in IFP, IFV, and IFP/IFV change (1) between

response groups.

Results: Fifty-three lesions from 41 patients were included. Median follow-up time after

SRS was 11 months. The objective response (OR) rate (partial or complete response)

was 79%, with 21% demonstrating stable disease (SD) or progressive disease (PD).

There were significant response group differences for multiple posttreatment and 1

CFM parameters: post-SRS IFP skewness (mean −0.405 vs. −0.691, p = 0.022),

IFP kurtosis (mean 2.88 vs. 3.51, p = 0.024), and IFV mean (5.75e-09 vs. 4.19e-

09 m/s, p = 0.027); and 1 IFP kurtosis (mean −2.26 vs. −0.0156, p = 0.017) and

IFV mean (1.91e-09 vs. 2.38e-10 m/s, p = 0.013). Posttreatment and 1 thresholds

predicted non-OR with high sensitivity (sens): post-SRS IFP skewness (−0.432,

sens 84%), kurtosis (2.89, sens 84%), and IFV mean (4.93e-09 m/s, sens 79%);

and 1 IFP kurtosis (−0.469, sens 74%) and IFV mean (9.90e-10 m/s, sens 74%).
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Conclusions: Objective response was associated with lower post-treatment tumor

heterogeneity, as represented by reductions in IFP skewness and kurtosis. These

results suggest that early post-treatment assessment of IFP and IFV can be used to

predict long-term response of lung cancer brain metastases to SRS, allowing a timelier

treatment modification.

Keywords: Stereotactic radiosurgery (SRS), brain metastases from lung cancer, perfusion MRI, computational

fluid modeling, interstitial fluid pressure, treatment response

INTRODUCTION

Brain metastases (BMs) represent the largest category of
intracranial malignant tumors with an annual incidence 3–10
times greater than primary brain malignancies (1, 2). Occurring
in up to 40% of patients with systemic cancer (3), BMs
represent a major source of morbidity and mortality in this
population. In particular, the most frequent source are primary
lung malignancies, which comprise up to 36–64% of brain
metastases (4).

Radiation therapy (RT) is the standard of care for patients in

whom complete surgical resection is not possible due to surgically
inaccessible lesion locations, disqualifying comorbidities, or

uncontrolled systemic disease. Stereotactic radiosurgery (SRS),

which employs single high-dose targeted treatment using
stereotactic image guidance, has shown comparable efficacy
to whole brain radiation therapy (WBRT) in controlling
oligometastatic intracranial disease, achieving >80–90% local
control while decreasing the risks of toxicities, such as
neurocognitive decline (5–8).

Identification of eventual non-response in the early post-
SRS time period is difficult. Surveillance MRI, which represents
the standard for assessing brain metastasis treatment response,
may be confounded in the early post-treatment setting by the
tendency of up to one-third of BMs to transiently increase
in size following SRS (9). The ability to predict SRS failure
has major clinical importance, as it would potentially allow
non-responsive tumors to undergo treatment intensification or
prompt modifications to systemic therapy regimens.

The limitations of traditional size-based treatment response
assessment following locoregional therapies, such as SRS, have
driven the development of advanced MR imaging techniques,
such as dynamic contrast-enhanced (DCE) perfusion MRI,
that go beyond anatomic visualization to characterize tumor
physiology. The extended Tofts pharmacokinetic model (ETM) is
one such paradigm that quantifies surrogate measures of vascular
permeability (i.e., volume transfer constant, Ktrans [min−1]).
Interstitial pressures within the tumor affect the extravasation of
medications into the interstitium and influence the response and
outcome to radiotherapy (10–12).

The disorganized and tortuous architecture of blood vessels
results in altered fluid dynamics across the vasculature and
in the interstitium. The resulting elevated interstitial fluid
pressure (IFP) effectively reduces the hydrostatic pressure
differential that normally exists between vasculature and
extracellular extravascular spaces, which can adversely impact

the successful delivery of anti-tumor therapy (13–15). IFP
returns to normal levels in the healthy tissues surrounding the
tumor. The precipitous drop in IFP at the tumor periphery
results in a zone where the interstitial fluid velocity (IFV) is
increased and directed outward, causing rapid exudate flux
of interstitial fluid from regions of high to low pressure
(16), further diminishing the effectiveness of drug delivery
and therapy.

To support this model, the direct invasive measurement of
intralesional IFP in cervical cancer using modified wick-in-
needle (WIN) probes has shown mid–radiation therapy IFP
to be significantly different between patients with complete
and partial responses at 1 month post-treatment (17). Fyles
et al. reported high IFP measurement to be associated with
a negative prognosis in cervical cancer (18). However, the
invasive measurement of IFP and interstitial fluid velocity
(IFV), which can be derived from the IFP gradient (19),
is not feasible in many settings, especially where a tumor
cannot be easily or safely accessed. Additionally, single-
point WIN probing of tumor does not provide insight into
the internal spatial variation of IFP. Therefore, non-invasive
computational fluid modeling (CFM) to provide estimates
of tumor IFP using the volume transfer constant (Ktrans)
obtained from ETM (20, 21) is a desirable alternative.
Ktrans is incorporated into an observable CFM equation to
modulate the net pressure developed in tissue, including
trans-capillary hydrostatic pressure, for the delivery of fluid,
which is taken into consideration by conventional DCE-derived
pharmacokinetic models.

Previously, we investigated the ability of ETM parameters
to predict long-term local tumor control in the early post-SRS
setting for patients with lung cancer brainmetastases.We showed
that Ktrans standard deviation (SD) was highly sensitive (89%)
for predicting disease progression vs. no progressive disease (22).
This result was not surprising, as Ktrans SD is considered amarker
of tumor vascular heterogeneity (22, 23), and tumors are known
to recruit disorganized and heterogeneous microvasculature.

In the present study, we have aimed to investigate
whether non-invasive IFP and IFV estimates of global
tissue physiology can predict the long-term response of
lung cancer brain metastases treated within 12 weeks
of SRS. The patient cohort is from our previous work
that utilized more conventional DCE-derived parameters.
These novel imaging biomarkers may further our ability to
optimize patient management by demonstrating changes in
tumor physiology.
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MATERIALS AND METHODS

Patients and Treatment
This retrospective investigation was performed at a tertiary
cancer center following institutional review board approval
and in accordance with the Health Insurance Portability and
Accountability Act. Patients treated between 2012 and 2015 that
met the following inclusion criteria were included in this analysis:

• Histopathologic diagnosis of non-small cell lung
cancer (NSCLC).

• Treatment of one or more intact (non-resected) brain
metastases with SRS.

• No history of WBRT prior to SRS.
• DCE perfusion MRI scans, including coverage of the treated

lesion(s) obtained both pre-treatment and within 12 weeks
following SRS treatment.

Patient demographic and treatment data collected included
patient age, histologic tumor subtype, three-dimensional lesion
size, lesion location, and SRS treatment dose(s). All treatments
employed single-fraction SRS. Our study population consisted of
41 patients who were previously included in a study analyzing
DCE-MRI parameters (22).

MR Perfusion Imaging Acquisition
Patients were scanned on 1.5T or 3T scanners (Signa Excite,
HDx andDiscovery 750, GEHealthcare) using an 8-channel head
coil. Standard T1-weighted, T2-weighted, diffusion-weighted,
fluid-attenuated inversion recovery, susceptibility-weighted, and
contrast T1-weighted images were acquired in multiple planes.
T1-weighted DCE data were acquired using an axial 3D spoiled
gradient-echo sequence (repetition time [TR], 4–5ms; echo
time [TE], 1–2ms; section thickness, 5mm; flip angle [FA],
25 degrees; field of view, 24 cm; matrix, 256 × 128). Ten
phases were acquired pre-injection followed by another 30
phases during the dynamic injection of intravenous contrast.
This was followed by a 40-mL saline flush. The time between
phases (temporal resolution) was 5–6 s. Matching contrast T1-
weighted (TR/TE, 600/8ms; thickness, 5mm; matrix, 256 ×

224) spin-echo images were obtained. Ten to twelve slices were
obtained to cover the entire volume of each lesion. Gadopentetate
dimeglumine (Magnevist; Bayer HealthCare Pharmaceuticals,
Berlin, Germany) was power-injected via an intravenous catheter
(18–21 gauge) at doses standardized by patient body weight
(0.2 mL/kg body weight, maximum 20mL) at 2–3 mL/s. High
resolution 3D T1-weighted contrast-enhanced images in the axial
plane with a slice thickness of 1mm and no gaps between
slices were routinely acquired for SRS planning and follow-up
after therapy.

DCE MRI Pharmacokinetic Modeling
The two-compartment extended Tofts model (ETM) accounts for
vascular space (vp) and extravascular extracellular space [EES],
(ve). The ETM expression for modeling Ct(t) is given (24):

Ct(t) = Ktrans

∫ t

0
e−kep(t−τ)Cp (τ )dτ + vpCp(t) (1)

where, Ktrans (min−1) is the volume transfer constant of CA,
Cp(t) is the delivery time-course of plasma CA concentration
(or arterial input function, AIF), and ve and vp are the volume
fractions of the EES and blood plasma, respectively. CA transfer
from EES back into the vascular space is defined as kep =

Ktrans/ve. A detailed calculation of tissue contrast concentration
Ct from DCE signal is given elsewhere (25).

AIF for each patient was selected from a sagittal sinus voxel
in the imaging time course (25, 26). Brain metastasis volumes-
of-interest (VOIs) were manually segmented by an attending
neuroradiologist on late phases of the T1w DCE images using
ITK-SNAP (27).

In the absence of multi-flip angle pre-contrast T1 images,
T10 values were set to either 0.8 or 1s (dependent on magnetic
field strength) for each voxel in determination of 1R1. Tissue
concentration time course, Ct(t) [Equation. (1)], was calculated
using non-linear fitting to minimize the sum of squared errors
(SSE) betweenmodel fit and data. The fitting procedure estimates
the values of Ktrans, ve and vp, for each voxel. Parameter
estimation bound limits were set: Ktrans ε [0, 5] (min−1),
ve, and vp ε [0, 1]. All DCE data analysis was performed
using in-house MRI-QAMPER software (Quantitative Analysis
Multi-Parametric Evaluation Routines) written inMATLAB (The
MathWorks, Inc., Natick, MA).

Interstitial Fluid Pressure Simulation
CFM Mathematical Model
The fluid mechanics of a system are given by the Navier-Stokes
hydrodynamic mass-balance equation (28). The extracellular
matrix is modeled as a porous medium. We assumed the case
of an incompressible fluid, ignoring friction within fluid, and
exchange of momentum between fluid and solid phases. Fluid
movement through EES is approximated with low-Reynolds
Number flow (29) andmodeled under assumption of steady-state
velocity.We applied the well-knownDarcy’s Law to describe bulk
fluid movement, expressing the product of gradient in IFP (∇pi)
and the hydraulic conductivity of the porous medium, KH as the
interstitial fluid velocity, u:

u = −KH∇pi (2)

A dynamic system can then be modeled as follows: fluid enters
EES via the vascular compartment. In the human brain, there
is no established lymphatic system of clearance, and we take
the lymphatic drainage function to be zero in both normal and
tumor tissue.

The full derivation for the continuity equation [Equation. 3]
is presented in the Appendix. The final form is given in terms of
the dependent variable interstitial pressure, pi:

− KH∇
2pi=

Ktrans

〈

Ktrans
〉 [LP

S

V

(

pV − pi − σT (πV − πi)
)

] (3)

−

LpLSL

V

(

pi−pL
)

where
〈

Ktrans
〉

represents mean Ktrans values within the tumor;
this term is used to account for heterogeneous fluid leakiness in
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the tumor (30), LP is the hydraulic conductivity of the capillary
wall (or vessel permeability), S/V is microvascular surface area
per unit volume, pV is the blood pressure in the microvessel,
and pi is interstitial fluid pressure; πV is osmotic pressure in
microvasculature, πi is osmotic pressure in interstitial space, and
σT is the osmotic reflection coefficient. The lymphatic clearance
term, LpLSL/V, is assumed to be zero in the brain. Estimates for
physical parameters were selected in agreement with previous
literature on modeling IFP in brain tumors (21, 31–34).

Computational Fluid Modeling
The continuity partial differential equation (PDE) was
implemented using the COMSOL CFM simulation PDE
module. Solving [Equation. 7] provides the basis for estimation
of p–i and 3D parametric maps of IFP and IFV.

The 3D physiological mesh model was generated from
each patient’s T1w DCE tumor images. ROIs for tumor in
the simulation domain were resliced to be 1 mm3-isotropic
in MATLAB using the NIfTI Toolbox (35) and converted to
stereolithography (STL) file format. STL files were imported into
the simulation software and interpreted as boundary meshes for
the model.

ETM-estimated Ktrans maps were co-registered to match
the simulation mesh space. Ktrans maps were incorporated in
COMSOL as a scalar field over the simulation domain and
numerical values for physical constants in normal and tumor
tissue were defined in the appropriate regions of the 3D STL
domain mesh, as listed in Table 1. A stationary solution of
Equation 13 was computed on the 3D extended domain ROI, and
pressure at the simulation boundary was set to zero to agree with
pressure conditions in normal brain tissue.

Simulation was conducted using the general coefficient form
PDE module in a commercial multiphysics software package
(COMSOL Inc., Stockholm, Sweden) using the finite element
method to solve PDE computations.

Data Analysis
We analyzed IFP and IFV parameters as follows. For each
metric, we computed the mean and descriptive statistics such
as standard deviation (SD), kurtosis, and skewness, leading to
a set of eight features. We generated three sets of these eight
features: pre-RT, post-RT, and the change of values (denoted as
1) between pre-RT and post-RT. For each imaging feature, an
average value was computed across multiple slices on each lesion.
Univariate analysis was performed using theWilcoxon rank-sum
test to find the degree of differences in these features between
patients with an objective response (either partial or complete

response, OR) vs. non-OR (either stable disease or progressive
disease). A receiver operating characteristic (ROC) curve analysis
was performed to find the best cutoffs on these features using
Youden’s index.

For clinical data, local control was assessed by the modified
Response Assessment in Neuro-Oncology Brain Metastases
(RANO-BM) criteria using conventional MRI (40), with
additional information from surgical resection if performed after
SRS. The modification we made to standard RANO-BM criteria
was to lower the minimum size limit of measurable disease to
5mm. We chose to lower the limit because we routinely treat
BMsmeasuring between 5 and 10mmwith SRS at our institution.
Local relapse-free survival was calculated from day of treatment
to most recent imaging. Failure was determined by progressive
disease defined by RANO-BM or surgical resection indicating
viable tumor. All statistical analysis was performed using R
language version 3.5.2 and MATLAB version R2018b.

RESULTS

Forty-one patients with 53 BMs were included in the analysis
(Table 2). Thirty-two patients had a single brainmetastasis, seven
patients had two metastases, and two patients had three or
more metastases. Median SRS treatment dose was 21Gy (range,
18–22 Gy).

TABLE 2 | Patient characteristics.

Characteristic N (%)

Number Patients 41

Lesions 53

Sex Male 21 (51.2)

Female 20 (48.8)

Age (y) Median (range) 52 (36–71)

Histologic subtype (by patient) Adenocarcinoma 35 (85.4)

Squamous cell 3 (7.3)

Large cell 1 (2.4)

Poorly differentiated/not

otherwise specified

2 (4.9)

Number of lesions Single 29 (70.7)

Multiple 12 (29.3)

Location Supratentorial 46 (86.8)

Infratentorial 7 (13.2)

Radiation dose Median (range) 21Gy (18–22)

TABLE 1 | List of assigned physical parameters in the CFM simulation.

Parameter Description Units Normal tissue Tumor tissue References

KH Interstitial hydraulic conductivity m2

Pa ·s 5.65 × 10−15 4.9 × 10−13 (21, 36, 37)

Lp Vascular hydraulic conductivity m2

Pa ·s 8 × 10−14 6.4 × 10−13 (21, 38, 39)

S/V Vessel exchange area m−1 10,000 20,000 (21, 31)

Peff Effective pressure Pa 400 1,550 (21, 31)
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No patients received concurrent systemic therapy with SRS.
Per our institution’s general practice, most patients (n = 39)
had a washout period before and following SRS: at least 2
weeks for systemic therapies and at least 1 week for targeted
systemic therapies.

Post-treatment imaging was obtained 7–8 weeks (n = 19),
9–10 weeks (n = 16), or 11–12 weeks (n = 18) following SRS.
Median duration of post-treatment follow-up was 11 months
(range, 3.7–8.3 months), including 73% of patients who were
followed until death. Following SRS, one patient subsequently
underwent resection for a growing mass and was found to have
viable tumor. Eight patients were treated with WBRT after SRS
for control of non-index metastases. Local control at 1-year post-
treatment was 85% as determined by subsequent histopathologic
sampling, where available, or RANO-BM imaging criteria.
Rates of complete response, partial response, stable disease,
and progressive disease were 9, 49, 21, and 21%, respectively
(Table 3).

Univariate analysis using Wilcoxon rank-sum test (Table 4)
showed a significant difference between lesions showing OR vs.
non-OR: post-SRS IFP skewness (mean −0.405 vs. −0.691, p =

0.022), IFP kurtosis (mean 2.88 vs. 3.51, p = 0.024), and IFV
mean (5.75e-09 vs. 4.19e-09 m/s, p = 0.027); and 1 IFP kurtosis
(mean −2.26 vs. −0.0156, p = 0.017) and IFV mean (1.91e-09
vs. 2.38e-10 m/s, p = 0.013). Using the Youden index, balanced
thresholds for differentiating non-OR vs. OR were determined:
post-SRS IFP skewness−0.432 (sensitivity 84%, specificity 59%),
IFP kurtosis 2.89 (sensitivity 84%, specificity 63%), and IFV
mean 4.93e-09 m/s (sensitivity 79%, specificity 67%); and 1 IFP
kurtosis −0.469 (sensitivity 74%, specificity 59%) and IFV mean
9.90e-10 m/s (sensitivity 74%, specificity 74%). SRS dose was not
significantly correlated with RANO-BM treatment response.

Figure 1A shows representative pre-SRS and post-SRS
anatomic MR images and corresponding lesion Ktrans, IFP, and
IFV color maps. Figure 1B exhibits representative histograms
showing the distribution of intratumoral voxel values for IFP
in two patients who experienced OR vs. non-OR. The left-shift
in the IFP values (kPa) of the histogram for the patient who
experienced OR shows a decrease in pressure after treatment. In
contrast, the histogram of a patient who experienced non-OR
shows a subtle upward shift in mean IFP values and has many
voxels with the same IFP value, resulting in a skew distribution.
Receiver operating characteristic areas-under-curve for post-SRS
IFP skewness (0.70), IFP kurtosis (0.70), and IFV mean (0.69);

TABLE 3 | Summary of RANO-BM response categories.

RANO-BM category Number of lesions

OR CR 5 (9%)

PR 26 (49%)

Non-OR SD 11 (21%)

PD 11 (21%)

OR, objective response; CR, complete response; PR, partial response; SD, stable disease;

PD, progression of disease.

and 1 IFP kurtosis (0.71) and IFV mean (0.72) are shown in
Figures 2, 3.

DISCUSSION

We investigated whether non-invasive estimates of intratumoral
IFP and IFV in the early post-treatment setting using ETM-
derived Ktrans can predict the long-term response of lung cancer
brain metastases to SRS. IFP and IFV parameters estimated
from CFM were able to accurately predict long-term response
using both isolated post-treatment values (IFP kurtosis, IFP
skewness, and IFV mean) and changes between post- and pre-
treatment values (1 IFP kurtosis and 1 IFV mean). Our results
support the use of these biomarkers as early post-SRS predictors
of long-term treatment response in LCBMs. These parameters
may enable the earlier identification of LCBM non-responders,
allowing more timely treatment intensification or modifications
to systemic therapies.

A major cause of elevated IFP within tumors is aberrant
microvasculature resulting in altered fluid dynamics (41).
Radiation therapy causes early and sustained damage to
vasculature (42–44), which tends to lower intratumoral
microvascular heterogeneity (45). In our cohort, IFP kurtosis
and skewness, measures of tumoral IFP heterogeneity, showed

TABLE 4 | Univariate analysis using the Wilcoxon rank-sum test.

Parameter (Units) Non-OR mean OR mean P

Pre-SRS IFP mean (kPa) 1.44 1.44 0.784

IFP SD (kPa) 0.0139 0.0257 0.752

IFP skewness −0.698 −6.33 0.430

IFP kurtosis 3.53 4.93 0.644

IFV mean (m/s) 3.95e-09 3.80e-09 0.774

IFV SD (m/s) 2.56e-09 2.44e-09 0.518

IFV skewness 1.79 1.72 0.926

IFV kurtosis 9.39 8.95 0.782

Post-SRS IFP mean (kPa) 1.40 1.42 0.705

IFP SD (kPa) 0.0145 0.0178 0.186

IFP skewness −0.691 −0.405 0.0216

IFP kurtosis 3.51 2.88 0.0243

IFV mean (m/s) 4.19e-09 5.75e-09 0.0272

IFV SD (m/s) 2.61e-09 3.10e-09 0.265

IFV skewness 1.61 1.28 0.135

IFV kurtosis 8.24 6.47 0.228

Change IFP mean (kPa) −0.0475 −0.0154 0.428

IFP SD (kPa) 5.91e-04 −9.55e-03 0.441

IFP skewness 0.00614 0.357 0.255

IFP kurtosis −0.0156 −2.26 0.0170

IFV mean (m/s) 2.38e-10 1.91e-09 0.0132

IFV SD (m/s) 5.33e-11 5.80e-10 0.177

IFV skewness −0.179 −0.577 0.141

IFV kurtosis −1.16 −3.12 0.188

OR, objective response; IFP, interstitial fluid pressure; IFV, interstitial fluid velocity; SD,

standard deviation. Bolded values represent statistically significant P-values (P < 0.05).

Frontiers in Neurology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 40246

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Swinburne et al. Intratumoral IFP Predicts SRS Response

FIGURE 1 | (A) - Representative pre-SRS and post-SRS T1-weighted post-contrast MR images of a patient (59 years, male) with brain metastases who experienced

progressive disease (PD). The green rectangle delineates the ROI at the metastatic lesion. Ktrans (min−1 ), IFP (kPa), and IFV (10−9 m/s) maps are zoomed at the

location of the ROI. (B) - Histograms of percentage (%) voxel-wise IFP values at pre- and post-SRS treatment from representative patients who experienced (I) OR

(male, 73 years old) and (II) non-OR (male, 47 years old).

early decreases in patients who ultimately showed objective
response to SRS. This is intuitive, since post-treatment necrosis
would be expected to smooth tumoral IFP distribution, resulting
in decreased heterogeneity. Furthermore, Smith et al. showed
that a necrotic tumor core, which lacks functioning vasculature
necessary for fluid resorption, results in decreased pressure decay
within the core and thus promotes increased IFV (31). This
may provide a framework to explain why IFV mean was both
significantly higher following SRS and showed greater relative
increases from baseline in patients with objective response.

Conversely, the correlation between poor outcomes and
persistent intratumoral hypertension following treatment may
be related to previous observations that high IFP in extracranial
tumors decreases the uptake of chemotherapy drugs (41, 46) and
promotes the outward flow of tumor-promoting growth factors
and chemoreceptor ligands (47, 48).

To the best of our knowledge, ours is the first study to
assess the predictive capabilities of non-invasively estimated
IFP and IFV parameters for brain metastases that have been
treated with SRS. A prior investigation successfully used these
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FIGURE 2 | Patients with OR showed significantly lower mean IFP skewness

and kurtosis and higher mean IFV within 12 weeks post-SRS compared with

patients with non-OR (either SD or PD). OR, objective response; SD, stable

disease; PD, progressive disease.

FIGURE 3 | Patients with OR showed significantly greater pre-SRS to

post-SRS (1) declines in mean IFP kurtosis and greater increases in mean IFV

within 12 weeks post-SRS compared with patients with non-OR (either SD or

PD). OR, objective response; SD, stable disease; PD, progressive disease.

parameters to predict outcomes in cervical cancer (49). Utilizing
histogram analysis, we showed a difference in the distribution
of IFP in patients who experienced OR vs. non-OR. Similar

to prior studies in cervical cancer (17, 50), IFP may be
a useful prognostic indicator for brain metastases. Further
investigation is needed to determine whether the evaluation of
metastasis microenvironments fromCFM estimated IFP and IFV
can be utilized to personalize therapy regimens and improve
outcomes. This may be especially relevant in the context of
targeted chemotherapeutic agents and immunotherapy since
elevated intratumoral IFP can prevent adequate penetration of
intravenous drugs.

Boucher et al. (51) reported direct WIN measurements of IFP
in rodent models, and from 11 human primary brain tumors
during intracranial brain surgery. The rodent brain tumor mean
IFP in n = 4 small F98 gliomas (Vmean = 10 ± 2.5 mm3) was 1.2
+ 0.33 kPa. In 10 of the 11 human cases, IFP ranged from 0.066
to 0.4 kPa; in one astrocytoma, IFP was found to be 1.2 kPa. The
estimates of IFP in our CFM are consistent with the measured
results in the small-scale rodent tumors. Similar results were
found in measurements of IFP in preclinical study by Navalitloha
et al. (52) on rat gliomas.

A strength of our study is the inclusion of only NSCLC brain
metastases undergoing single modality locoregional therapy
with SRS. This allows for the relative control of potential
confounders, including heterogeneous tumor histologies and
variable baseline treatment effects from non-ablative modalities
like WBRT. Additionally, the majority of our patients were
followed until death, providing a clearer understanding of
individual lesion outcomes.

As a retrospective investigation limited to BMs of a
single, albeit common, histopathology, our results cannot
be generalized to the treatment of BMs with SRS more
broadly. With respect to our fluid model, the parameter
values for hydraulic conductivity, vessel permeability,
effective pressure, and microvascular surface area need
to be verified experimentally to increase the simulation
accuracy. Furthermore, the lack of confirmatory direct lung
cancer brain metastasis pressure measurements within our
cohort, for example, via the WIN approach, precludes the
comparison of our derived IFP and IFV estimations against a
gold standard.

In conclusion, this study shows that IFP and IFV parameters
in lung cancer brain metastases derived from DCE-MRI within
12 weeks of SRS can predict long-term local tumor control.
These results suggest that IFP and IFV represent promising
imaging biomarkers that can non-invasively characterize global
tissue physiology in lung cancer brain metastases. Further
investigation is needed to validate these results for other brain
metastasis histologies and to assess the use of these non-invasive
biomarkers to guide personalized treatment regimens that target
the tumor microenvironment.
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Christina Ledbetter 1, Eduardo Gonzalez-Toledo 5, Anil Nanda 3,4 and Hai Sun 3,4*

1Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, United States,
2Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States, 3Department of

Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States, 4Department of Neurosurgery,

Rutgers University, Newark, NJ, United States, 5Neuroradiology, Department of Radiology, Louisiana State University Health

Science Center, Shreveport, LA, United States

Introduction: Studies quantifying cortical metrics in brain tumor patients who present

with seizures are limited. The current investigation assesses morphometric/volumetric

differences across a wide range of anatomical regions, including temporal and

extra-temporal, in patients with gliomas and intracranial metastases (IMs) presenting with

seizures that could serve as a biomarker in the identification of seizure expression and

serve as a neuronal target for mitigation.

Methods: In a retrospective design, the MR sequences of ninety-two tumor patients

[55% gliomas; 45% IM] and 34 controls were subjected to sophisticated morphometric

and volumetric assessments using BrainSuite and MATLAB modules. We examined

103 regions of interests (ROIs) across eight distinct cortical categories of interests (COI)

[gray matter, white matter; total volume, CSF; cortical areas: inner, mid, pial; cortical

thickness]. The primary endpoint was quantifying and identifying ROIs with significant

differences in z-scores based upon the presence of seizures. Feature selection employing

neighborhood component analysis (NCA) determined the ROI within each COI having

the highest significance/weight in the differentiation of seizure vs. non-seizure patients

harboring brain tumor.

Results: Overall, the mean age of the cohort was 58.0 ± 12.8 years, and 45%

were women. The prevalence of seizures in tumor patients was 28%. Forty-two ROIs

across the eight pre-defined COIs had significant differences in z-scores between tumor

patients presenting with and without seizures. The NCA feature selection noted the

volume of pars-orbitalis and right middle temporal gyrus to have the highest weight in

differentiating tumor patients based on seizures for three distinct COIs [GM, total volume,

and CSF volume] and white matter, respectively. Left-sided transverse temporal gyrus,

left precuneus, left transverse temporal, and left supramarginal gyrus were associated

with having the highest weight in the differentiation of seizure vs. non-seizure in tumor

patients for morphometrics relating to cortical areas in the pial, inner and mid regions

and cortical thickness, respectively.
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Conclusion: Our study elucidates potential biomarkers for seizure targeting in patients

with gliomas and IMs based upon morphometric and volumetric assessments. Amongst

the widespread brain regions examined in our cohort, pars orbitalis, supramarginal and

temporal gyrus (middle, transverse), and the pre-cuneus contribute a maximal potential

for differentiation of seizure patients from non-seizure.

Keywords: gliomas, intracranial metastases, seizures, pars orbitalis, supramarginal gyrus, pre-cuneus, brainsuite,

temporal plus epilepsy

INTRODUCTION

Seizures are a common neurological symptom that can be
provoked by toxins, head trauma, electrolyte imbalances, brain
hemorrhage, and/or tumors (1). Among brain tumor patients,
seizures are often the only presenting clinical symptom, and
its incidence varies across different tumor histopathology (2–5).
The presence of seizures in tumor patients impacts the quality
of life and is associated with worse outcomes following surgical
resection (4, 5). Low-grade gliomas (LGGs) tend to have a higher
estimated incidence of seizures, ranging from 60–75% (6–11),
compared to high-grade gliomas (HGGs) [25–60%] (12–14) or
intracranial metastases (IM) [20–35%] (15, 16). The variation
in seizure incidence is primarily linked to tumor size, location
(8), and possibly to the tumoral and peritumoral microstructure.
A comprehensive understanding of these microarchitectural
variations can potentially aid our ability to predict seizures
and subsequently serve for implementing treatments to prevent
seizures in tumor patients before its onset. In the contemporary
era of cost-containment ushered by the introduction of bundled
payments, such efforts could improve the value in neurosurgical
healthcare delivery in tumor patients with seizures.

Studies have characterized the anatomical locations of HGGs
to areas with a high ratio of gray and white matter volume,
while the LGGs tend to have a preferential bias toward
the secondary functional regions of the brain (17, 18). Our
recent investigation characterized the peritumoral differences in
fractional anisotropy (FA) and mean diffusivity (MD) values
estimated from diffusion tensor imaging (DTI) in patients with
HGGs and IM (19, 20). The higher FA and lower MD of
HGGs in the peritumoral region were linked to a greater extent
of infiltration of glioma upon the surrounding parenchyma
(19). Traditional understanding of epileptogenic focus is related
to structures in the temporal lobe. However, contemporary
scientific advancements have established the specific anatomical
basis of temporal-plus (TP+) epilepsy (21, 22). This new
understanding has led researchers to scan outside the temporal
lobe, toward neighboring regions for epileptogenic focus.
Occipital, insular, or orbitofrontal areas are often considered
for resection in addition to sections of the temporal lobe. Yet,
limited literature exists on the etiological basis of extra-temporal
involvement for seizure development (22). Although patients
with brain tumors have not been directly linked to TP+ epilepsy,
many tumor patients experience at least one seizure or develop
multiple seizures even when the lesion is outside the temporal
lobe. Therefore, investigating regions outside of the temporal

lobe in brain tumor patients with seizures can be essential for
future research.

Previously, our research team identified voxel-based metrics
associated with a regional and global disruption in resting-
state functional connectivity that may elucidate the epileptogenic
focus and guide resection of cerebral cavernous malformations
in patients with focal epilepsy (23). Despite single-institutional
studies and observational cohorts utilizing administrative
databases having identified the impact of seizures on short
and long-term outcomes in patients undergoing intracranial
tumor resection (4, 5, 24–27), meaningful clinical literature
quantifying morphometric or volumetric analysis in tumor
patients with seizures are limited. In the current investigation,
we performed volumetric assessments to examine a wide
range of anatomical regions [>100 regions of interests (ROIs)]
across eight distinct cortical areas in patients with gliomas
and IMs to elucidate the differences in cortical volume on
the epileptogenicity of brain tumor. The primary objectives of
the study are: (1) To quantify the normalized cortical volume
estimates across predefined ROIs in tumor patients with and
without seizures with respect to normal controls; and (2) To
identify pertinent regions that express a significant contribution
to differentiate seizure and non-seizure patients based upon
volumetric distinctions. To achieve these objectives, we subjected
the MR sequence images for tumor patients and controls to
a battery of sophisticated brain-segmentation processing tools
employing relevant BrainSuite andMATLABmodules. The study
hypothesizes that the identification of significant volumetric
differences across distinct ROIs in tumor patients could serve
as possible biomarkers for predicting patients with the seizure
disorder resulted from having brain tumors.

MATERIALS AND METHODS

Study Protocol and Patient Population
In this retrospective design, adult patients (>18 years of age)
with IM and gliomas that underwent surgical resection at the
University Health/Louisiana State University Health Sciences
Center (LSUHSC), Shreveport between January 2011 and June
2016 were identified. The preoperative surgical decision-making
was not influenced by morphometric/volumetric imaging
analysis, as performed in the current investigation, using a
combination of BrainSuite and MATLAB custom designed
modules; rather was guided by the consensus of a multi-
disciplinary team of physicians in the institutional Tumor Board
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tailored upon patient’s clinical characteristics and traditional
neuroimaging modalities/scans. The study was approved by The
LSUHSC Institutional Review before study initiation. Inclusion
criteria applied for selection of patients that were surgically
managed for their tumor pathology included: (1) confirmatory
histopathological diagnoses, (2) complete MR sequences [1.5
Tesla; GE Medical Systems, Milwaukee, WI, USA] without
evidence of movement artifacts. Image acquisition included
T1-weighted Magnetization Prepared Rapid Acquisition with
Gradient Echo (MPRAGE) sequences, diffusion tensor imaging
(DTI), and 3-dimensional sagittal FLAIR sequences. Patients
with a previous history of radiotherapy, chemotherapy, or
neurosurgical intervention and those with multiple intracranial
tumors (>2) were excluded. A review of medical records was
conducted on eligible patients for the extraction of pertinent data
on demographics (age, gender, race) and clinical characteristics.
The latter included the presence of seizure at presentation,
tumor-specific data including laterality, location, histology, and
primaries for patients with IM. In addition to medical chart
review, electroencephalogram (EEG) findings were used for
seizure confirmation.

Controls
Thirty-four healthy controls matched for age [range: 19–79
years] and gender [15 women] were included and served
as a comparison group. All control subjects were free of
any neurological diseases and had no prior history of any

neurological diseases. Image acquisition and processing for the
control subjects was performed in a manner like that of the
eligible patients.

Morphometric/Volumetric Analysis
For image processing, T1-MPRAGE sequences of all eligible
patients (n = 102) and controls (n = 34) were subjected to
the inbuilt automated cortical surface extraction processing in
the BrainSuite software (version 18a; http://brainsuite.org/). This
allows for stripping the skull from the MR sequences and
initiates brain segmentation (Figure 1). Anatomical information
from both the cortical surface models in the predefined atlas
(BrainSuiteAtlas1) of BrainSuite and the volumetric estimates
computed from stripped T1-MPRAGE images are utilized for
co-registration between the patient imaging and the atlas (28–
31). To compute relevant morphometric/volumetric data, partial
tissue fraction volume was utilized along with co-registration,
which yielded a single output file for each patient/control.
The parcellation yielded volumes (or morphometrics) across
103 regions of interest (ROIs) using the Collin27 atlas within
eight different cortical surface categories of interest (COIs):
mean cortical thickness (mm), gray matter (GM) volume
(mm3), cerebrospinal fluid volume (CSF) (mm3), white matter
(WM) volume (mm3), total volume (mm3), mid cortical area
(mm²), inner cortical area (mm²), and pial cortical area (mm²).
(Figure 1) The total volume was the summation of WM and GM
volume. Out of the 102 patients deemed eligible using the study

FIGURE 1 | Subject DT007: BrainSuite processed MR image. The image underwent brain segmentation to determine COI values. DT007 was a 57-year-old male with

a high-grade glioblastoma and presented with seizures. Colors are used to distinguish ROIs. (A) Anterior coronal view (B) Left hemisphere view (C) Right hemisphere

view (D) Superior axial view (E) Inferior axial view.
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criteria, ten were excluded with mutual consensus following a
two-step independent review [A.E. and C.F.] owing to processing
and segmentation errors encountered in BrainSuite.

Volume Normalization and Z-Score
Derivation
To minimize bias arising from variation in volume across
patients due to differences in brain sizes/volume, whole-brain
normalization was performed as a function of percent-volume
for every ROI across the four cortical COIs [GM, CSF, WM,
and total volume]. Quantified estimates of raw volume for ROIs
were normalized in relation to individual patient/controls overall
ROI. This was performed by computing percent-volume of each
ROI by dividing individual ROI raw volume with summation
of volumes across all ROIs for respective COIs factored by two
(to accommodate both hemispheres). Following normalization,
z-scores were computed for individual ROIs across all COIs.
For COI’s signifying area morphometrics [cortical areas: inner,
mid, pial] or thickness [cortex], z-scores were computed from
raw values for cortical areas and thickness, respectively. Prior
to estimating z-scores, tumor patients were grouped based upon
the presence of seizures, within each COI, in alignment with the
study objective. Z-scores derivation for each ROI was performed
using the following formula:

z− score =
Patient ROI Value − Control ROI µ

Control ROI σ

To exclude aberrant z-score values affecting estimates, the mean
and standard deviation (SD) for each ROI within the seizure
and non-seizure COI’s were calculated. ROI values beyond three
SD (top/bottom 0.135%) on either end of the z-score spectrum
were excluded.

Primary Outcome Measures
The primary outcome measures were: (1) mean z-score estimates
for brain tumor patients with and without seizures and (2) ROI’s
associated with significant differences across z-score estimates
between the two patient groups.

Statistical Analysis
Categorical variables were expressed as a function of frequency
and proportion while values of quantitative variables were
reported as mean ± standard deviation (SD). The differences
in categorical variables across tumor patients [gliomas, IM] and
control were analyzed using Pearson’s χ

2 test of proportion or
Fisher Exact test (32) as appropriate. The norm for analyzing
differences in quantitative values across groups was based upon
testing for Gaussian distribution. For analyzing differences across
2 groups [gliomas vs. IM; gliomas vs. controls; IM vs. controls],
an independent-sample t-test or non-parametric Mann-Whitney
U-test were utilized. For assessing differences in mean estimates
across 3 groups [gliomas, IM and controls], one-way analysis of
variance (ANOVA) or the non-parametric Kruskal-Wallis tests
was employed.

The ROI’s within individual COI’s demonstrating significant
one-tailed differences in z-scores were subjected to further
analysis for feature weight determination within the seizure and

non-seizure group using the MATLAB’s Statistics and Machine
Learning Toolbox. Serial iterations using the neighborhood
component analysis (NCA) feature selection was utilized to
determine the factor having the most weight in the classification
algorithm’s attempt to label each tumor patient based on the
presence of seizure (vs. non-seizure) based on z-scores from the
relevant COIs. To perform this, the cohort of tumor patients
was split into a testing set (n = 66) and a training set (n = 26).
Patients in both sets were assigned class labels as either seizure
or non-seizure. More specifically, feature weights were computed
using the MATLAB function for predictors and responses in
which the predictors were the ROIs for every patient in each COI
that was significant, and the response was the subject’s seizure
classification (coding for non-seizure = 0; seizure as 1). NCA
was used to determine the patterns that classified each patient
as either seizure or non-seizure and determined the component
(ROI) that had themost weight on this classification by taking out
each component iteratively until a maximum prediction accuracy
was achieved (Tables S3, S4).

All statistical analyses were performed using SPSS version
25.0 (IBM Corp., NY), R Foundation for Statistical Computing
(64-bit; version 3.3.3) and MATLAB. Unless otherwise stated
(Tables S1, S2), all reported statistical estimates are derived from
a 2-tailed significance set at a 5% alpha value.

RESULTS

Overall, 92 patients with brain tumors were included in the study.
The mean age of the cohort was 58.0 ± 12.8 years, and 45% were
women. Of these, ∼55% (n = 51) had a low/high grade glioma
while 45% (n= 41) had IM. In patients with gliomas and IMs, no
statistical differences was noted in terms of age (56 vs. 60 years; p
= 0.145), gender (women: 37 vs. 54%; p= 0.116), tumor laterality
(right: 43.1 vs. 39%; p = 0.690) or location; however racial
differences were observed with a higher proportion of whites
presenting with gliomas compared to IMs (75 vs. 53%; p= 0.029).
The overall prevalence of seizure in our cohort was 28%, with no
statistical differences noted across patients with glioma and IMs
(37 vs. 22%; p = 0.228). Nearly 86% (n = 44) of glioma patients
had an HGG vs. 14% (n = 7) with LGG. In HGGs, astrocytomas
(WHO Grade III or IV) constituted the majority of the cohort (n
= 43; 84%). In patients with IMs, most had primary cancer in the
lung (n = 29; 71%), usually of the poorly-differentiated subtype
of the non-small cell lung cancer (NSCLC). This was followed
by breast cancer (n = 7; 17.1%), lymphoma (n = 2; 4.9%) and
one each (2.9%) for metastatic melanoma, endometrial cancer,
and renal cell carcinoma (Table 1). An overview of demographics
and clinical characteristics of patients and controls is presented in
Table 1.

A group of 34 gender-matched controls (44% women; 56%
men; age range: 19–79 years) were included for comparison.
Comparing controls to patients with glioma (p = 0.527) or IMs
(p= 0.411), no gender differences were noted.

Z-Score Estimates Across ROI’s
Using one-tailed significance testing, forty-two ROIs among eight
categories of interest (COIs) were identified to have significant
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TABLE 1 | Demographics and clinical characteristics of patients with brain tumors (gliomas and IM) with respect to controls.

Characteristics Gliomas IM Total P value Controls P value

N = 51 N = 41 N = 92 N = 34

Age, years

Mean ± SD 56.3 ± 14.5 60.1± 10.2 58.0 ± 12.8 0.145 28.6 ± 10.7 <0.001

Median (IQR) 58 (25) 60 (10) 59 (14) 26 (7)

Range 26-83 34-83 26-83 19-79

Gender, n (%)

Male 32 (62.7) 19 (46.3) 51 (55.4) 0.116 19 (55.9) 0.290

Female 19 (37.3) 22 (53.7) 41 (44.6) 15 (44.1)

Race, n (%)

Whites 38 (74.5) 21 (52.5) 59 (64.1) 0.029 - -

African-Americans 12 (23.5) 19 (47.5) 31 (33.7) 0.017 - -

Unknown 1 (2.0) 0 (0.0) 1 (1.1) 1.000
†

- -

Tumor Laterality, n (%)

Right 22 (43.1) 16 (39.0) 38 (41.3) 0.690 - -

Left 27 (52.9) 17 (41.5) 44 (47.8) 0.273 - -

Corpus callosum 1 (2.0) 0 (0) 1 (1.1) 1.000
†

- -

Intraventricular‡ 1 (2.0) 0 (0) 1 (1.1) 1.000
†

- -

Bilateral 0 (0) 8 (19.5) 8 (8.7) 0.001
†

- -

Tumor Location, n (%)

Midline 5 (9.8) 1 (2.4) 6 (6.5) 0.220
†

- -

Temporal 17 (33.3) 9 (22.0) 26 (28.3) 0.228 - -

Extra-temporal 29 (56.9) 29 (70.7) 58 (63.0) 0.171 - -

Midline + Extra-temporal 0 (0) (4.9) 2 (2.2) 0.196
†

- -

Tumor Histology, n (%)

High-grade gliomas 44 (86.2) - - - -

Astrocytoma 43 (84.2) - - - -

Oligodendroglioma 1 (2.0) - - - -

Low-grade gliomas 7 (13.8) - - - -

Astrocytoma 3 (5.9) - - - -

Oligodendroglioma 3 (5.9) - - - -

Oligo-astrocytoma 1 (2.0) - - - -

Primary Cancer, n (%)

Lung 29 (70.7) - - -

Breast 7 (17.1) - - -

Lymphoma 2 (4.9) - - -

Melanoma 1 (2.4) - - -

Endometrial adenocarcinoma 1 (2.4) - - -

Renal cell 1 (2.4) - - -

Seizures, n (%) 19 (37.3) 9 (21.9) 26 (28.3) 0.228 - -

†
Fisher exact test;

‡
Included few patients with midline tumors.

The bold P-values depict significant statistical differences across the groups at Type I error set at 5%.

differences in z-score estimates. Spatial orientation of these
potential ROIs that differ based upon normalized volume [GM.
WM, total volume and CSF], area [cortical: inner, mid and pial]
and cortical thickness across COIs are depicted in Figure 2. The
mean z-score estimates for these ROIs across individual COI’s
depicting one-tailed significance are plotted in a dot-diagram for
seizure vs. non-seizure (Figures 3A–H). Also, the quantified z-
score estimates across tumor patients’ groups upon the presence
of seizure are tabulated (Tables S1, S2).

Volumetric Morphometric Assessments
The filtering of ROI’s significant on one-tailed significance
was performed by assessments using two-tailed testing
for GM, WM, Total, and CSF volume. The two-tailed
significance testing formed the primary basis for identifying
true differences across seizure and non-seizure patients and
presented in Tables 2, 3 for volumetric and morphometric
(area and thickness) differences across different ROIs for the 8
COIs, respectively.
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FIGURE 2 | Spatial representation of all forty-two ROIs found to be significant in differentiating seizure and non-seizure brain tumor patients. ROIs are indicated by

white highlight and numbers are associated by key.

Feature Selection: Neighborhood
Component Analysis
Using feature selection, the ROIs with the most influence
on differentiating the seizure and non-seizure groups in
tumor patients was found for all eight COIs (Figure S1).
The NCA analysis demonstrated the normalized volume
of right-sided pars orbitalis across three COIs, viz. GM,
total volume and CSF volume, had the most weight
in differentiating tumor patients with seizure from
non-seizures. Analysis of the COI involving the WM,

right-sided middle temporal gyrus was noted to have
the most weight in distinguishing the presence of seizures

from non-seizures.
Left-sided transverse temporal gyrus, left precuneus,

left transverse temporal, and left supramarginal gyrus

were associated with having the highest weight in

the differentiation of seizure vs. non-seizure in tumor
patients for morphometrics relating to cortical areas

in the pial, inner and mid regions and cortical
thickness, respectively.
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FIGURE 3 | Comparison of seizure and non-seizure subject groups, in terms of z-scores, for each significant ROI among the eight different categories of interest. The

points with a more positive value indicate a raw score that is higher than the control, while points with a more negative value indicate a raw score that is lower than the

control. Each graph indicates a different COI: (A) Gray matter volume, (B) White matter volume, (C) Total matter volume, (D) CSF volume, (E) Cortical thickness, (F)

Mid cortical area, (G) Inner cortical area, and (H) Pial cortical area.
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TABLE 2 | Significant differences in the mean z-scores in tumor patients with seizure vs. non-seizure across all volumetric COIs using two-tailed significance.

Significant ROI’s Gray matter White matter Total volume CSF volume

Seizure Non-

seizure

P value

(2-tailed)

Seizure Non-

seizure

P value

(2-tailed)

seizure Non-

seizure

P value

(2-tailed)

seizure Non-

seizure

P value

(2-tailed)

R. middle frontal gyrus - - - 3.00 0.07 0.019 2.90 −0.12 0.011 - - -

L. pars opercularis - - - - - - - - - 1.79 −0.42 0.022

L. pars triangularis - - - - - - - - - 1.38 −0.54 0.001

R. pars orbitalis 1.75 0.31 0.094 - - - 2.58 0.59 0.055 0.36 −0.69 0.009

L. pars orbitalis - - - 0.77 −0.64 0.042 - - - 0.29 −0.78 0.003

L. transverse frontal gyrus −1.50 −0.02 0.010 - - - −1.25 0.16 0.017 - - -

R. posterior orbito-frontal gyrus - - - - - - - - - −0.05 −1.09 0.048

L. paracentral lobule - - - −2.70 0.94 0.040 - - - - - -

L. post-central gyrus - - - - - - 4.48 0.81 0.017 - - -

L. supramarginal gyrus 2.96 −0.36 0.001 - - - 4.04 −0.33 0.002 - - -

L. superior temporal gyrus - - - 0.81 −1.23 0.013 2.47 −0.23 0.013 1.999 −0.583 0.001

L. transverse temporal gyrus - - - - - - −1.08 0.77 0.017 - - -

R. middle temporal gyrus - - - 3.25 −0.17 0.008 - - - 2.01 −0.17 0.008

L. middle temporal gyrus - - - 1.92 −0.74 0.008 - - - 1.53 −0.39 0.024

L. inferior occipital gyrus - - - 1.56 −0.14 0.040 - - - - - -

L. Insula - - - - - - 4.43 0.01 0.047 3.51 0.58 0.014

L. inferior colliculus - - - - - - - - - −1.73 −0.87 0.010

L. Ventricular System 1.12 0.30 0.016 - - - - - - - - -

Yellow highlighted values represent the ROI in respective COI to have the highest weight in the NCA. The bold P-values depict significant statistical differences across the groups at Type I error set at 5%.

TABLE 3 | Mean differences in z-scores across Cortical Thickness and Cortical Area zones (mid, inner, and pial) across tumor patients with and without seizures using two-tailed significance.

Significant ROI’s Cortical thickness Mid cortical area Inner cortical area Pial cortical area

Seizure Non-

seizure

P value

(2-tailed)

Seizure Non-

seizure

P value

(2-tailed)

Seizure Non-

seizure

P value

(2-tailed)

Seizure Non-

seizure

P value

(2-tailed)

L. paracentral lobule - - - - - - −2.77 0.21 0.022 - - -

R. post-central gyrus - - - - - - −2.98 −1.31 0.047 - - -

L. supramarginal gyrus 0.33 −0.13 0.055 - - - - - - - - -

L. pre-cuneus - - - - - - −2.68 −1.97 0.069 - - -

L. superior temporal gyrus −0.41 0.09 0.020 - - - - - - - - -

L. transverse temporal gyrus - - - −1.53 −0.53 0.007 - - - −1.21 0.06 0.005

Yellow highlighted values represent the ROI in respective COI to have the highest weight in the NCA.

The bold P-values depict significant statistical differences across the groups at Type I error set at 5%.
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DISCUSSION

In this study, we utilized image processing techniques to analyze
MR sequences of patients with low/high-grade gliomas and IMs,
as well as a healthy group of controls. By categorizing tumor
patients into two groups, seizure and non-seizure, we employed
multiple metrics to differentiate the two groups across eight
predefined COIs in the brain: gray matter volume, white matter
volume, total matter volume, CSF volume, cortical thickness,
middle cortical area, inner cortical area, and pial cortical area.

The study findings suggest significant difference in z-scores
in tumor patients with seizure vs. those without seizures across
several temporal and extra-temporal regions. Most consistent
extratemporal areas that demonstrated significant differences in
z-scores across seizure vs. non-seizure patients were right pars
orbitalis, left supramarginal gyrus, left transverse gyrus, right-
middle frontal gyrus and left paracentral lobule. Right-sided
pars orbitalis, the rostral portion of the inferior frontal gyrus,
has been implicated in high-frequency oscillations during focal
neocortical seizures, especially in patients with drug-resistant
epilepsy (33). The paracentral lobule, spanning over the fronto-
parietal lobe, has been termed an “independent pro-epileptogenic
factor” in relation to primary brain tumors due to the high
volume of neurons in the structure and its association with the
primary motor cortex (34). These results support the claim that
the frontal lobe influences epileptogenesis progression, especially
among tumor patients of all types and locations (34). Specifically,
ictal spikes in the paracentral lobule from the non-dominant
hemisphere are characterized by sexual sensations affecting the
genitalia (35). Unfortunately, given the scope of the current
study, we could not explore the relationship between tumor
location and seizure semiology. Other frontal lobe structures
that are known to be associated with epileptic loci, significant
in our analysis, include middle frontal gyrus, pars opercularis
and pars triangularis. Another pertinent ROI, the supramarginal
gyrus, has been implicated in TP+ epilepsy syndromes both in
patients with and without tumors (22), and differed significantly
across tumor patients with seizures vs. those without seizure
activity. While it is not surprising regarding the association
of temporal structures (middle and superior temporal gyrus,
transverse temporal gyrus) in epilepsy, studies have shown that
temporal lobe epilepsy might be due to the dysfunction of GABA-
B receptors (2, 36).

Our second method of determining which ROIs had the
most weight in predicting whether a patient would present with
seizures was Neighborhood Component Analysis (NCA) Feature
Selection. NCA was used to determine the patterns that classified
each subject as either seizure or non-seizure and determined the
component (ROI) that had the most weight on this classification
by taking out each component iteratively until a maximum
prediction accuracy was achieved. This method determined that
the ROIs—L. supramarginal gyrus and L. transverse temporal
gyrus, along with three other ROIs—appeared again as an
accurate classifier as to whether the patient was in the seizure
or non-seizure groups. The COIs that these ROIs appeared
in were Cortical Thickness (L. supramarginal gyrus) and Mid
Cortical Area (L. transverse temporal gyrus). The reappearance
of these ROIs’ significance supports the claim that they have an

important role in differentiating seizure and non-seizure patients.
In addition to these regions of interest, the R. pars orbitalis
was found to have the most feature weight in three categories
of interest: gray matter volume, total volume, and CSF volume.
Because of this unexpected finding, as this region of interest
is not normally associated with seizure activity, it provides an
opportunity for further research on this subject to confirm or
deny any suspicions.

Although it is beneficial to elucidate ROI’s associated with
seizure development in tumor patients, the authors acknowledge
that tumor location alone cannot definitively predict seizures.
Although temporal lobe tumors have higher proponderence for
developing seizures but not all such tumors result in seizures.
Pathological predisposition for seizures in tumors arising from
the temporal area can be explained from dual reasoning:
hippocampal sclerosis and/or co-existent focal cortical dysplasia
in temporal or extratemporal structures. On the contrary, the
authors believe that such associations for extra-temporal tumors
are harder to deduce. Compared to deep-seated or infratentorial
tumors, superficially located tumors are more likely to be seizure
prone due to its proximity to the neuronal cell bodies and thereby
increasing the likelihood of cortical irritation (37, 38). Further,
the literature suggests that epileptogenicity of frontal or parietal
lobe tumors is second to that of temporal lobe tumors followed
by occipital lobe lesions which are considered least epileptogenic
(37, 38). The identified extra-temporal ROIs in our study can
explain the association of fronto-parietal epilepsies. In relation
to the occurrence of intraoperative seizures in tumor patients
undergoing awake craniotomy, Gonen et al. concluded that
tumors localized in the supplementary motor area (SMA) had
higher incidence (OR: 11.36; p < 0.002) compared to non-SMA
frontal, temporal, or parietal regions (39). The authors opine that
the existing knowledge linking an association of tumor location
with seizure propensity is derived from limited observational
studies, and that a systematic review/meta-analysis using larger,
granular, homogenous cohorts from the published literature is
appreciable for strengthening such association.

STUDY LIMITATIONS

Despite the merit of the current investigation, pertinent
limitations governing the study need to be addressed. First,
the heterogeneity in tumor types (subgroups of gliomas and
IMs) and relatively smaller sample sizes within each group limit
generalization of our findings owing to suboptimal power for
subgroup analysis for tumor histology. Second, the study did
not account for seizure semiology and/or localization of the
epileptogenic zone with tumor location. However, given the
focus of the investigation, quantifying and contrasting z-scores
for ROIs across seizure and non-seizure brains would not be
impacted due to this limitation. Regarding the study design,
the retrospective, observational nature of our investigation fails
to establish a causal relationship between the differences in the
ROI’s due to epileptogenic loci or a result of seizure spread,
which could serve as a future direction for research on the topic.
As the study was not powered enough, the lack of predictive
parameters (e.g., sensitivity, specificity) limits validation of the
ROIs for seizure prediction. Despite these limitations, the utility
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of the current investigation lies in the widespread brain areas
that were examined to assess differences across scans of tumor
patients with and without seizures. Discovering these ROIs in
connection with differentiating seizure and non-seizure brain
tumor patients has provided a foundation for more extensive
research on this subject. With a larger cohort of patients, we
suspect that among these significant regions found in this study, a
smaller variety of ROIs will become solidified and provide a more
specific connection to seizures, brain tumors, and the volume of
structures in the brain.

CONCLUSION

Our study elucidates potential morphological biomarkers for
seizure targeting in patients with gliomas and IMs based
upon morphometric and volumetric assessments. Amongst the
widespread brain regions examined in our cohort, pars orbitalis,
supramarginal andtemporal gyrus (middle, transverse), and the
precuneus contribute a maximal potential for differentiation
of seizure patients from non-seizure. The significance of these
regions of interest using a t-test as well as feature selection,
supports the claim that these areas are connected to tumoral
seizures. In the future, gathering a larger cohort that specifies in
a smaller variety of tumor types will be beneficial to this specific
field of interest.
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Brain metastases are a significant contributor to morbidity and mortality. The incidence of

brain metastases is increasing as a result of increased time for metastasis development in

the setting of improved systemic therapy and extracranial disease control and improved

detection by MRI. Radiotherapy is an essential treatment modality for brain metastases

in both the definitive and post-surgical adjuvant treatment contexts, and radiation

oncologists rely heavily on diagnostic neuroimaging to guide treatment. Insight into

the aspects of diagnostic neuroimaging that radiation oncologists rely on for clinical

decision-making, radiation treatment planning, and assessment of treatment response or

complications can help guide radiologists when constructing their neuroimaging reports

in the context of brain metastases.

Keywords: brain metastases, radiation oncology, radiology, radiotherapy, palliation, MRI, neuroimaging

INTRODUCTION

Brain metastases occur in as many as 25% of patients with cancer and are a significant contributor
to morbidity andmortality (1). They are estimated to be symptomatic in 60–75% of patients (2) and
can be associated with headaches, seizures, syncope, focal neurological deficits, gait disturbances,
cognitive dysfunction, nausea, vomiting, cranial nerve dysfunction, cerebellar symptoms, and
speech disturbances (3). Brain metastases arise most commonly from lung, breast, colorectal,
melanoma, and renal cell primaries (4). At presentation,∼60% of patients havemultiple lesions (5).
There are an estimated 200,000 incident brain metastases per year, and the incidence is increasing
(6) as a result of increased time for metastasis development because of improved systemic therapy
and extracranial disease control and improved detection by MRI (1, 4).

Radiation therapy (RT) plays an essential role in the management of brain metastases. The first
report of the palliative benefit of whole brain radiotherapy (WBRT) was a case series by Chao
et al. from Memorial Hospital (now Memorial Sloan Kettering) in 1954 that demonstrated 24 of
38 patients benefiting from WBRT (7). Several subsequent trials found that post-surgical WBRT
improved overall survival, local control, and functional independence relative to WBRT alone,
and RT became the standard adjuvant post-surgical treatment for brain metastases (8, 9). More
recently, targeted stereotactic radiosurgery (SRS) is an increasingly useful tool for treating brain
metastases while minimizing off-target brain irradiation-associated neurocognitive decline (10).
When added to WBRT, SRS was demonstrated to improve overall survival in patients with a single,
unresectable brain metastasis compared with WBRT alone (11). This was followed by a practice-
changing trial showing that SRS with WBRT reserved for treatment failure or disease progression
had equivalent overall survival compared with upfront SRS and WBRT in patients with less than
five brain metastases (12). Finally, SRS without WBRT was non-inferior in treating 5–10 brain
metastases when compared with 2–4 brain metastases (13). Consequently, SRS is now the favored
treatment for limited brain metastases for most solid tumor histologies, defined as the number of
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metastases where SRS is as effective as WBRT with more
cognitive protection, whereas WBRT is used to target extensive
brain disease, though it is worth noting that the National
Comprehensive Cancer Network (NCCN) guidelines allow for
SRS to be used for both limited and extensive brain disease (14).

In both the definitive and post-surgical adjuvant treatment
contexts, radiation oncologists rely heavily on diagnostic
neuroimaging to decide on a treatment course and for treatment
planning. Given the panoply of features that radiologists
can address when constructing their reports, there are key
observations that may help to guide RT. In the following article,
we will provide an overview of the radiation oncology approach
to brain metastases to provide insight into specific information
that may be relevant to our discipline. First, we will review the
aspects of diagnostic neuroimaging that radiation oncologists
rely on for clinical decision-making. Then, we will provide
an overview of radiation treatment planning. Lastly, we will
describe how radiation oncologists use diagnostic neuroimaging
to assess treatment response, treatment-related complications,
and disease recurrence.

Diagnostic Imaging Considerations
Brain metastases tend to occur at specific sites within the brain,
and their distribution can vary by histology. For example, brain
metastases are often located at the gray–white matter junction,
the subarachnoid space, and the interfaces of major arterial
vascular territories (15). Within the brain parenchyma, most
brain metastases (up to 80%) occur in the cerebral hemispheres,
whereas ∼17% occur in the cerebellum and 3% in the basal
ganglia (16). Within the cerebrum, metastases tend to occur in
the frontal and parietal lobes more often than in the temporal
and occipital lobes (16). Uterine, prostate, and gastrointestinal
cancers tend to metastasize to the posterior fossa (17).

When patients present with symptoms related to intracranial
disease, CT imaging is often obtained, and it can provide
initial insight into the presence of large metastases, mass effect,
herniation, and hydrocephalus. Thus, CT imaging can indicate
when a surgical emergency exists for which delaying care to plan
RT would be inappropriate. However, CT is not the primary
method for identifying and planning RT for brain metastases.
Although the sensitivity of CT can be improved with contrast,
CT has low sensitivity for small brain metastases relative to
contrast MRI, the current gold standard for visualizing brain
metastases (18, 19). Radiation oncologists typically only use
CT for lesion visualization and treatment planning when MRI
is contraindicated.

There are several characteristics of brain metastases that
can distinguish them from primary malignancies, as well as
from non-cancer abnormalities on MRI imaging. The T1 pre-
contrast sequence has limited utility in visualizing most brain
parenchymal metastases because brain parenchymal metastases
tend to be iso-intense. However, this sequence is useful in
visualizing melanoma metastases, which are T1-weighted pre-
contrast hyperintense because of the presence of melanin
(Figure 1) (20). Also, the presence of T1-weighted pre-contrast
hyperintensity may indicate a hemorrhage, and lung, melanoma,
choriocarcinoma, renal cell carcinoma, and thyroid carcinoma

FIGURE 1 | A patient with metastatic melanoma treated with stereotactic

radiosurgery (27Gy in 3 fractions) demonstrating lesion enhancement without

contrast. (A) T1 pre-contrast sequence demonstrating that the melanin within

the tumor tends to enhance. (B) T1 post-contrast sequence.

TABLE 1 | Summary of brain metastases imaging findings.

MRI sequence Typical findings for brain metastases

T1 pre-contrast Iso-intense with brain parenchyma (hemorrhage

and melanoma can appear hyperintense)

T1 post-contrast Enhancing

T1-weighted post-contrast

spoiled GRE

Enhancing

T2 Variable intensity

T2 FLAIR Hyperintense peritumoral edema

DWI Peritumoral edema with elevated ADC compared

with primary brain tumors

DTI Anisotropy measures are lower in contrast

enhancing tumor relative to primary brain tumors

SWI/GRE Hypointense with intratumoral hemorrhage

DCE/DSC Elevated rCBV

Spectroscopy Choline peak within tumor and no elevation in

peritumoral edema

Lipid peak associated with necrosis

NAA decreased

metastases are more likely to hemorrhage compared with other
histologies (21). Other MR sequences such as susceptibility-
weighted imaging (SWI) or gradient echo (GRE) can also
detect hemorrhage and calcifications (22). The T1-weighted post-
contrast sequence is essential for visualizing brain metastases.
Because secondary malignancies in the brain violate the blood–
brain barrier and have vasculature representative of their
parent tumors (23), brain metastases generally enhance on T1-
weighted post-contrast imaging, tending to appear as bright,
well-demarcated, spherical masses. The center of the mass is
often contrast-devoid, resulting in a rim of enhancement. Cystic
metastases may appear hyperintense within the tumor on a
T2-weighted sequence, whereas mucinous tumors may be T2
hypointense (24). The T2-weighted fluid-attenuated inversion
recovery (FLAIR) MR sequence allows the visualization of
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FIGURE 2 | Whole brain radiation therapy (WBRT) for a patient with non-small

cell lung cancer with multiple brain metastases. (A) T2 FLAIR axial image

before WBRT. (B) T2 FLAIR axial image 6 months after WBRT with 30Gy in 10

fractions. (C) Radiation field for WBRT defined using the skull anatomy.

peritumoral edema. Diffusion-weighted imaging (DWI) is an
area of interest because metastases and gliomas have different
apparent diffusion coefficients (ADCs) compared with normal
brain matter, although there is considerable overlap between the
ADCs of primary brain tumors, metastases, edema, and non-
tumoral lesions (25). DWI can potentially distinguish gliomas
from brain metastases because the mean minimum ADC within
the vasogenic edema of metastases was found to be higher than
that of the infiltrative edema of gliomas (26). Conversely, in
dynamic contrast-enhanced (DCE) perfusion MR imaging, the
relative cerebral blood volume (rCBV) of peritumoral edema
for gliomas tends to be significantly greater than that of brain
metastases (27). The typical MRI findings for brain metastases
are summarized in Table 1.

Primary brain malignancies and non-cancer abnormalities
have specific characteristics on diagnostic imaging that allow for
their identification relative to brain metastases. Both gliomas
and brain metastases tend to have low signal on T1-weighted
sequences and high signal on T2-weighted sequences, making it
difficult to distinguish between gliomas and brain metastases on

FIGURE 3 | Comparison of the radiation planning treatment volumes for a

primary malignancy and stereotactic radiosurgery (SRS) for a brain metastasis.

(A) A primary glioblastoma multiforme with a GTV, green, encompassing the

gross tumor, red, and edema. A CTV, yellow, and PTV, blue, are shown as

concentric expansions from the GTV. (B) A metastatic brain lesion treated with

SRS and a GTV, green, with a PTV, blue. No CTV is required because of low

risk of tumor invasion into the brain parenchyma.

this basis. However, gliomas tend to form expansile masses that
conform to the barriers of the lobe or deep nuclear structures,
whereas brain metastases are well demarcated. Because most
brain metastases are contrast enhancing, enhancement can also
aid in distinguishing gliomas from brain metastases depending
on glioma grade. Approximately 70% of high-grade gliomas are
contrast enhancing, whereas only 20% of low-grade gliomas are
(28). Like gliomas, non-cancer brain abnormalities visible on
imaging, including infarcts, demyelinating plaques, abscesses,
hematomas, necrosis, and encephalitis, may also be confused
with metastases (29). These entities can demonstrate contrast
enhancement, perilesional edema, mass effect, and central
necrosis. Acute infarcts can appear as masses with contrast
enhancement on CT, like brain metastases; however, infarcts
show evolving changes over time on repeat MRIs. T1-weighted
and T2-weighted MRI sequences are less useful in the acute
setting because they show abnormalities in <50% of acute infarct
cases, whereas techniques like perfusion imaging and DWI can
show differences within minutes of symptom onset (30). In
the subacute and chronic settings, infarcted brain is associated
with high extracellular fluid content and increased T2-weighted
MRI signal. Abscesses are difficult to distinguish from brain
metastases, appearing as round lesions with associated edema
and ring-like peripheral contrast enhancement (31). DWI can
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FIGURE 4 | A patient with a non-small cell lung cancer metastasis shown (A)

preoperatively, (B) postoperatively on T1-post weighted MRI, and (C) on 3D

brain volume (BRAVO) MRI. The postoperative cavity is contoured as the GTV,

red, with an expansion to the PTV, blue. The patient was treated with

stereotactic radiosurgery and 27Gy in 3 fractions.

help to distinguish abscesses and tumors because abscesses have
restricted diffusion in their center from the high cellularity
and viscosity of pus relative to brain metastases, although
mucinous and highly cellular brain metastases may also have
central restricted diffusion (32). Necrosis can be the result of a
malignancy or a side effect from radiation (see Post-radiation
evaluation). It is considered a hallmark of high-grade gliomas,
like glioblastoma multiforme, whereas it is relatively uncommon
in the setting of a small, treatment-naive brain metastasis. Both
necrosis and tumor can appear T2 hyperintense and contrast
enhancing, so conventional MRI may fail to distinguish them
(33). However, recent advances inMRI have shown a potential for

TABLE 2 | Typical point dose constraints for organs at risk.

Organ Total dose (Gy)

Brainstem 55

Cochlea 50

Cord 50

Lacrimal gland 40

Lens 10

Optic chiasm 54

Optic nerve 54

Pituitary 60

Retina 45

differentiating necrosis from tumors, such as MR spectroscopy
and amide proton transfer (APT) MR. APT MR can detect
the amide protons of low-concentration mobile proteins and
peptides in the cytoplasm of necrotic cells, thus differentiating
necrosis from brain tumors (34).

Radiation Planning and Treatment
Considerations
According to the NCCN guidelines, the type and timing of
RT for brain metastases depends on the clinical scenario,
including the number and volume of metastases, the dose and
fractionation of planned radiation, systemic treatment options,
and the anticipated benefit of surgical resection (35). If a brain
metastasis is>2 cm, or if the patient is acutely symptomatic from
the brain metastasis, they may be referred for surgery before
RT (36). The benefit of surgical resection depends on the need
for tissue diagnosis, the size and location of the lesion, and the
institutional experience. As SRS is a treatment option for limited
brain metastases (13), at our institution, SRS is the preferred
treatment method for limited brain metastases when patients
have new or stable systemic disease and have additional systemic
treatment options. In the setting of multiple brain metastases,
the NCCN recommends SRS over WBRT if the patient has a
good performance status, radioresitant histology, or low overall
tumor volume. When 116 radiation oncologists were surveyed
for the “maximum number of brain metastases [they] would
commonly treat with upfront SRSwithout offeringWBRT,” 40.4%
indicated 1–4, 42.1% indicated 5–10, 14% indicated 10–20, and
3.5% did not have a limit (37). Furthermore, when asked what
other factors influenced this decision, the location and histology
of the metastases mattered the most. In a similar survey, the
average cutoff for switching from SRS to WBRT was 8.1 brain
metastases for central nervous system (CNS) specialists with a
high clinical volume compared with 4.9 brain metastases for
CNS specialists with a low clinical volume (38). An example of
a WBRT plan for a patient with numerous brain metastases as
well as the response to the treatment is shown in Figure 2.

The first step in planning RT is a CT (also known as a
radiation simulation) with the patient in the treatment position
and appropriate immobilization devices, such as a rigid, custom-
made thermoplastic mask and headrest. Using the planning
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FIGURE 5 | Organs at risk (OARs) defined on a planning CT and corresponding T2-weighted MR images. The included OARs are the lenses, yellow, the eyes, aqua,

the optic nerves, purple, the optic chiasm, green, and the brain stem, red.

CT in conjunction with MRI, radiation oncologists define the
radiation treatment area primarily using three target volumes.
The gross tumor volume (GTV) encompasses all visible disease.
The clinical target volume (CTV) includes the GTV, but it also
accounts for subclinical disease spread. The CTV is often an
expansion beyond the GTV that respects anatomical borders and
can include areas at risk for microscopic disease (e.g., including
involved cranial nerves in the case of observed neurotropism).
However, for metastatic lesions to the brain, the expansion from
GTV to CTV is usually 0mm as there is no expected subclinical
extension of disease. Finally, the planning target volume (PTV)
is an expansion on the CTV that accounts for daily setup
uncertainties (39). Modern RT techniques include positioning
devices specifically designed for neuroradiation and onboard
imaging (daily 2D and 3D imaging) that allows for high accuracy
of treatment and results in minimal patient setup uncertainties,
thus allowing the PTV margin to be as small as 0–2mm. An
example of GTV, CTV, and PTV volumes for a typical brain
metastasis SRS case compared with a primary malignancy case
can be seen in Figure 3. In the postoperative setting, the T1 post-
contrast image from the postoperative MRI is used to define a
GTV as enhancing disease. If there is no enhancing disease, the
postoperative cavity is contoured as a CTV. An expansion is
made to the PTV directly from a GTV, in the case of residual

tumor, or fromCTV, in the case of gross resection, using amargin
of 2–3mm. An example of a postoperative SRS case can be seen
in Figure 4.

In planning RT for brain metastases, radiation oncologists
typically request an MRI with contrast and 1-mm slice thickness
for optimal visualization of the metastases. Ideally, the patient
will be immobilized during the MR with the same mask that
is used for the planning CT, which will allow for near-perfect
registration of the two imaging studies for contouring and
treatment planning. For WBRT, no fusion is typically needed,
as the anatomical borders of the brain will determine the
borders of the treatment fields. However, MRI fusion is required
for hippocampal-sparing WBRT, a technique associated with
memory preservation and improved quality of life, to ensure
the lack of visible metastases in the bilateral hippocampal
regions and for accurate contouring (40). For SRS planning,
the T1-weighted post-contrast sequence is generally able to
visualize the metastases. A T1-weighted post-contrast spoiled
GRE sequence, known for high spatial resolution to display
anatomical structures of both normal brain and tumors (41) and
to detect small brain metastases (42), is also often requested.
These two MR sequences are fused to the planning CT, and a
GTV is contoured encompassing the visible lesion with a 0–2mm
expansion to PTV.
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FIGURE 6 | The planning target volumes and corresponding radiation plan for three patients using stereotactic radiosurgery and altered fractionation depending on

number and location of metastases relative to organs at risk. (A) A patient with a single brain metastasis treated with 21Gy in 1 fraction. No organs at risk fall within

the treatment fields. (B) A patient with multiple brain metastases, each treated with 27Gy in 3 fractions. The lesions are close to one another and are located at the

midline. (C) A patient with a single brain metastasis overlying the optic chiasm, green, treated with 30Gy in 5 fractions. GTV, red. PTV, blue. The radiation dose

gradient depicts 10Gy as blue and >100% of prescribed dose as orange.

To safely deliver radiation to the brain, it is important to
note the proximity of a tumor to organs at risk (OARs). The
doses to OARs are constrained according to empirically derived
limits and can vary by institution and study group. Whether the
mean radiation dose to the organ or the maximum point dose to
the organ is constrained during radiation planning depends on
whether the organ functions serially (such as the brainstem), in
parallel (such as the brain parenchyma), or both. The common
OARs that are constrained in the head are the lens, eyes,
lacrimal glands, optic nerves, optic chiasm, cochlea, pituitary, and
brainstem (Table 2). Each structure is carefully contoured during
treatment planning so that toxicities are limited (Figure 5). The
proximity of a tumor to an OAR will alter a planned dose and
fractionation so that dose limits are not exceeded, and patients
are spared risk of toxicity (Figure 6). MR imaging can detect
toxicity to OARs after RT. For example, decreased white matter
fiber integrity in the para-hippocampal cingulum after brain
irradiation demonstrated by MR diffusion tensor imaging (DTI)
is thought to relate to late cognitive decline (43).

Post-radiation Evaluation
Patients are usually evaluated every 2–3 months for 1–
2 years after RT with high-resolution MRI to determine

treatment response and are followed by interval scans every 4–6
months thereafter. The Response Assessment inNeuro-Oncology
group defined treatment response using criteria that include
T1 gadolinium enhancing disease, T2 and FLAIR changes,
the appearance of new lesions, corticosteroid requirement,
and clinical status. Evaluation of treatment response can be
complicated by several factors, including radiation inflammation,
radionecrosis, and recurrence of the tumor (44). Post-radiation
changes to tumors and normal tissue vary over time and are
typically observed as acute (during or immediately following
RT), subacute (within 3 months of RT), or late (months to
years after RT). Acute-onset encephalopathy related to RT
may not have associated imaging findings but will likely have
associated symptoms that will prompt neuroimaging, such
as headache, nausea, vomiting, fever, altered mental status,
worsening neurologic symptoms, and increased intracranial
pressure. It is estimated that ∼5% of patients receiving SRS
to the brain will present with acute neurotoxicity (45), and
MRI can show varying amounts of edema. Depending on
the imaging findings and the severity of symptoms, high-dose
steroids can often improve the acute effects of brain irradiation,
and, occasionally, surgery is warranted. Subacute radiation effects
include increased inflammation, which may cause a tumor

Frontiers in Neurology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 80167

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wijetunga and Yang Radiotherapy for Brain Metastases

FIGURE 7 | An example of radiation necrosis after stereotactic radiosurgery with 21Gy in 1 fraction with upper images showing T1-post contrast and the lower

images showing edema. (A) Pre-radiotherapy scans showing a left frontal metastasis. (B) 2 months post-RT scans showing contraction of the treated metastasis with

some effacement of the ventricles. (C) 6 months post-RT peripheral enhancement of treated metastasis with a necrotic center and associated edema, ultimately

requiring surgical intervention.

to appear larger on MRI than it was before radiation. In
addition, some chemotherapies, such as temozolomide, can cause
pseudoprogression in the subacute context, making irradiated
brain lesions look like they have progressed on MRI when they
have not (46). If a patient with suspected pseudoprogression
is asymptomatic, they are typically monitored with follow-up
MRI to rule out genuine disease progression. Late changes after
radiation include stabilization or contraction of the observed
lesion if there has been treatment response. MR SWI sequences
can show microbleeds after radiation that increase in frequency
over time (47). In the subacute to late setting, potentially
symptomatic radiation necrosis can also occur, with mass effect
and neurologic dysfunction.

Radiation oncologists often rely on MRI to identify radiation
necrosis. Radiation necrosis is hypothesized to be related to
vascular injury and glial and white matter damage, as well
as effects on the fibrinolytic enzyme system and immune
mechanisms (48). The volume of irradiated brain increases the
risk of this serious complication (49, 50). In a study of 206
patients with 310 brain metastases treated with SRS, radiation
necrosis was observed in 24% of treated lesions, and roughly
half were asymptomatic, unlikely to have been detected in the
absence of MRI (49). Moreover, in autopsy studies of patients
who underwent SRS for brain metastases, necrosis was noted

as early as 3 weeks after treatment (51). Some indications
of radiation necrosis that are noted on MRI are conversion
from non-enhancing to enhancing lesions, new periventricular
enhancement, and soap-bubble or Swiss cheese enhancement
(48). To correctly distinguish necrosis from tumor recurrence, it
is likely that multiple MRI sequences will be needed (52). There
is some evidence that the DTI anisotropy ratio of a contrast-
enhanced lesion is significantly lower in patients with radiation
necrosis than in those with recurrent tumor, and facilitated
diffusion favors radiation necrosis (53). MR spectroscopy, which
can interrogate the chemical content of a volume of tissue
may be useful in differentiating radiation necrosis from disease
recurrence. Because necrotic tissue and treated tumor should
have different metabolic profiles, identifying metabolic spectra
can differentiate necrosis and treatment response (54). There is
also some evidence of elevated lipid levels in necrotic brain tissue
that may be detectable on MR spectroscopy (55). As tumors are
generally more metabolically active than necrotic tissue, fluorine-
18 fluorodeoxyglucose (FDG) PET-CT activity can also help
distinguish progression relative to radiation injury, though it
is not as predictive as perfusion imaging (56). An example of
radiation necrosis after SRS is shown in Figure 7.

A recurrent brain metastasis can be obscured by post-
treatment inflammation and radionecrosis, so it is important to
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FIGURE 8 | Perfusion imaging of a patient with metastatic squamous cell carcinoma. (A) A pre-treatment T1-post contrast MRI with corresponding Vp and Ktrans

perfusion imaging demonstrating increased signal. (B) 2-month follow-up scan after receiving SRS with 27Gy in 3 fractions showing slight contraction of the mass on

T1-post MRI and marked decrease in perfusion.

carefully rule out these side effects during follow-up imaging.
Because DCE MRI can provide insight into tumor vascularity
and hemodynamics, plasma volume (Vp) and the volume transfer
coefficient (Ktrans) can aid in deciphering brain metastasis
recurrence during post-treatment diagnostic imaging. These
MR sequences use a two-compartment kinetic model, where
contrast is initially assumed to be within the blood plasma
volume and, over time, it leaks into the interstitial space. Vp

approximates tumor vascularity, and Ktrans is proportional to
the accumulation of contrast in the interstitial space, where it
can indicate increased permeability. In contrast to gliomas that
can produce molecules such as VEGF that disrupt the blood–
brain barrier (57), metastatic disease generally does not affect the
surrounding vascularity of the brain. Therefore, an increase in
Vp after radiation, when the Vp signal was previously noted to
nadir, is correlated with tumor recurrence (56). Elevated Ktrans

signal has also been associated with tumor recurrence compared
with treatment-induced necrosis (58), and the combination of
Vp and Ktrans signals together can further improve sensitivity
and specificity (56). An example of post-RT perfusion imaging
is shown in Figure 8. Dynamic susceptibility contrast (DSC)

MRI has similar perfusion parameters to DCE MRI, such as
rCBV, but it is not preferred over DCE MRI because of worse
spatial resolution and more artifacts (59). Like Vp and Ktrans,
elevated rCBV is shown to indicate recurrent metastatic tumors
after brain SRS (60). As is the case with radionecrosis, in MR
spectroscopy, the metabolic spectra of enhancing edema may
be able to differentiate tumor recurrence. For example, N-acetyl
aspartate (NAA) is suppressed and choline is elevated in both
high-grade primary malignancies and secondary brain tumors;
however, only the edema associated with primary tumors tends
to have a relative increase in choline (61).

CONCLUSION

In the USA, radiation oncology split from diagnostic radiology
training in 1969, as it was recognized that radiation oncology
training should be specialized to accommodate increasing cancer
detection, new imaging modalities, and improved radiation
delivery. Because radiation oncologists often do not receive
formal diagnostic radiology training, they are instead expected to
partner with diagnostic radiologists, who can provide important
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insight to guide clinical decision-making. As Sarah Donaldson,
a former president of the Radiologic Society of North America
and radiation oncologist, wrote, “[Radiation oncologists] need
to see and measure tumors in every dimension, understand
how tumors move, their heterogeneity, their blood supply,
and their molecular pathways. More than ever before in the
history of radiology, radiation oncologists have an intensely
strong interrelationship that already aligns radiologists as
partners.” (62) Though there have been numerous advances in
imaging, including MRI with DWI, DTI, SWI/GRE, DCE/DSC,
MR spectroscopy, and APT MR, these methods are not
always incorporated into clinical decision-making by radiation
oncologists. Thus, the close partnership between radiologists and
radiation oncologists will allow these exciting technologies to
become commonplace in radiation oncology clinical practice

and, ultimately, lead to earlier brain metastases detection,
improved radiotherapy treatment planning, more accurate
treatment delivery, and optimal post-therapy monitoring.
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Compared With Standard T1 SPACE
for the Detection of Brain Metastases
in Clinical 3T MRI
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Background and Purpose: Brain magnetic resonance imaging (MRI) examinations

using high-resolution 3D post-contrast sequences offer increased sensitivity for the

detection of metastases in the central nervous system but are usually long exams. We

evaluated whether the diagnostic performance of a highly accelerated Wave-controlled

aliasing in parallel imaging (Wave-CAIPI) post-contrast 3D T1 SPACE sequence was

non-inferior to the standard high-resolution 3D T1 SPACE sequence for the evaluation of

brain metastases.

Materials and Methods: Thirty-three patients undergoing evaluation for brain

metastases were prospectively evaluated with a standard post-contrast 3D T1

SPACE sequence and an optimized Wave-CAIPI 3D T1 SPACE sequence, which

was three times faster than the standard sequence. Two blinded neuroradiologists

performed a head-to-head comparison to evaluate the visualization of pathology,

perception of artifacts, and the overall diagnostic quality. Wave–CAIPI post-contrast

T1 SPACE was tested for non-inferiority relative to standard T1 SPACE using a 15%

non-inferiority margin.

Results: Wave–CAIPI post-contrast T1 SPACE was non-inferior to the standard T1

SPACE for visualization of enhancing lesions (P< 0.01) and offered equivalent diagnostic

quality performance and only marginally higher background noise compared to the

standard sequence.
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Conclusions: Our findings suggest that Wave-CAIPI post-contrast T1 SPACE provides

equivalent visualization of pathology and overall diagnostic quality with three times

reduced scan time compared to the standard 3D T1 SPACE.

Keywords: brain, metastases, magnetic resonance imaging, parallel imaging, Wave-CAIPI, post-contrast,

high-resolution, 3D

INTRODUCTION

Brain metastases are the most common tumors of the central
nervous system (CNS) (1). However, their true incidence
is probably underestimated as they may be asymptomatic
in 60–70% of cases (2), or even some are overlooked in
severely ill patients. Nevertheless, the current advancements
in immunotherapeutic agents and improved local stereotactic
radiosurgery demonstrate the importance of early surveillance
for brain metastases. If CNS metastases are recognized earlier,
when patients still have a good performance status, they
can benefit from more aggressive treatment strategies (3).
Certain malignancies are more frequently associated with
brain metastases, including cancers of the lung, breast, skin
(melanoma), colon, kidney, pancreas, testes, ovary, and cervix
(1, 2, 4). Moreover, melanomas have the highest preference to
metastasize to the brain (∼50%) (5).

Brain magnetic resonance imaging (MRI) provides high
sensitivity for non-invasive diagnosis of intracranial metastases.
It allows for a detailed evaluation of the different compartments
of the CNS, including the skull, brain parenchyma, ependymal
surface, leptomeninges, and pachymeninges. The intrinsic
superior soft-tissue contrast and themultiplanar capability ofMR
imaging increase the sensitivity for the screening of secondary
tumor implants. Metastases typically enhance after administering
gadolinium contrast material due to the absence of the blood-
tumor barrier (6). Contrast-enhanced MRI is considered the
preferred modality for the evaluation of metastatic disease and
is superior to other modalities such as computed tomography
in detecting metastases from systemic melanoma or breast
cancer (6).

There is much debate regarding which post-contrast T1-
weighted pulse sequence is the best. The preference may vary
according to the available field strength and other limitations

in hardware and software resources at different sites. 3 Tesla

(3T) MRI offers better signal-to-noise ratio and produces higher
contrast between tumor and normal brain tissue than at 1.5T
(7). Magnetization prepared 3D gradient recalled echo pulse
sequences, that include MPRAGE, IR-SPGR, and BRAVO, are

T1-weighted sequences that show excellent anatomical depiction
and are widely available in clinical protocols. In fact, they are
considered a pillar sequence in the standardized brain tumor
protocol for gliomas (8) and in the minimum requirements for
brain imaging recommended by the Response Assessment in
Neuro-Oncology–Brain Metastases working group (9). However,
gradient recalled echo (GRE)-based pulse sequences show
brighter white matter signal and may potentially diminish the
conspicuity of enhancing lesions due to the reduced contrast ratio

(5). Conversely, Spin-Echo (SE)-based sequences offer increased
contrast in enhancing lesions and better flow suppression,
facilitating the distinction of cortical subcentimeter enhancing
metastases from vessels that might otherwise appear as bright
dots in GRE-based sequences (5).

The introduction of optimized 3D fast/turbo SE imaging,
such as sampling perfection with application-optimized contrasts
using different flip angle evolutions (SPACE), offers a robust
and flexible approach for 3D SE-based imaging with the benefits
of optimal contrast depiction and the added advantage of
multiplanar reformatted viewing for evaluating tumor within
the complex brain anatomy (10). A meta-analysis by Suh et al.
(11) included studies that compared the detectability of brain
metastases using SE or GRE contrast-enhanced sequences and
found that 3D SE images using 1mm thick slices are preferred for
detecting brain metastases in 3T scans, notably for the detection
of small lesions (11). Thus, the ideal recommended contrast-
enhanced pulse sequence suggested in the most recent consensus
publication on a standardized protocol for brain metastases
imaging (5) favors the 3D SE-based sequence (SPACE) over the
GRE-based pulse sequence (MPRAGE).

Several advanced MR techniques, including proton MR
spectroscopy, diffusion, and perfusion imaging, increase the
precision of tumor characterization and support the distinction
of metastases from other entities. Hence, MR brain protocols for
the evaluation of neoplasms often consist of multiple standard
and advanced sequences that result in a prolonged scanning
time, which may contribute to motion artifacts (12) and patient
anxiety (13). The introduction of a new encoding technology that
can accelerate the scan time of high-resolution sequences could
facilitate broader application of the advantages of 3D SE-based
MRI, such as SPACE (14). Wave-controlled aliasing in parallel
imaging (Wave-CAIPI) is an advanced technique that combines
a corkscrew gradient trajectory with CAIPI shifts in the ky and
kz directions to efficiently encode k-space and evenly spread
the voxel aliasing in all dimensions, taking full advantage of
the 3D coil sensitivity information to provide highly accelerated
parallel imaging with negligible artifact and signal-to-noise ratio
penalties (15). Wave-CAIPI is an advanced parallel imaging
encoding technique that has been demonstrated to achieve highly
accelerated structural imaging with negligible noise amplification
using standard scanner hardware (16).

The goal of this study was to compare a highly accelerated
Wave-CAIPI post-contrast 3D T1 SPACE sequence
(Wave-T1 SPACE) with the commonly used standard high-
resolution 3D T1 SPACE sequence for routine clinical brain
imaging at 3T. We hypothesized that Wave-T1 SPACE is
non-inferior to the standard sequence with equivalent
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TABLE 1 | Demographic information and clinical diagnoses of participants.

Oncologic cases (N = 33)

Age (mean ± SD, year) 58.2 ± 13.5

Sex (%)

Male 12 (36%)

Female 21 (64%)

Systemic diagnosis (%)

Melanoma 12 (36%)

Lung cancer 8 (24%)

Gastrointestinal cancer 5 (15%)

Breast cancer 4 (12%)

Lymphoma 1 (3%)

Thyroid cancer 1 (3%)

Biliary cancer 1 (3%)

Sarcoma 1 (3%)

diagnostic quality and an estimated three-fold reduction of
acquisition time.

METHOD

Selection of Participants and Study Design
With Institutional Review Board (IRB) approval, 33 patients
undergoing clinical brain MRI with and without contrast for
the evaluation of brain metastases at a single institution were
consecutively enrolled. Adult patients (age > 18 years) were
scanned on a 3T MRI scanner (MAGNETOM Prisma, Siemens
Healthcare, Erlangen, Germany) using a commercially available
20- or 32-channel receiver coil array. The study was Health
Insurance Portability and Accountability Act compliant. The
need for informed consent was waived by the institution’s IRB
since all MRI exams were acquired as part of the standard care
of the enrolled individuals, without significant added time to
each exam (i.e., <2min of additional imaging per case). Instead,
patients were provided with an information sheet describing the
scope of the research study and could opt out prior to the start
of the scan. All participants had a prior confirmed diagnosis of
systemic tumor and came for MRI evaluation, in both inpatient
and outpatient settings, in search of intracranial metastases or to
evaluate previously diagnosed metastatic disease. Distribution of
the study subjects and detailed systemic oncologic diagnoses are
demonstrated in Table 1.

MRI Protocol
The accelerated post-contrast Wave-T1 SPACE was embedded in
the standard contrast enhanced brainMRI protocol for oncologic
evaluation. Each scan included a standard post-contrast T1
SPACE sequence and Wave-T1 SPACE sequence. Gadolinium-
enhanced images were obtained after intravenous administration
of standard dose of 0.2 ml/kg (0.1 mmol/kg) of gadoterate
meglumine (Dotarem R©, Guerbet; Paris, France) at a flow rate of
∼2 ml/s. Twenty-four studies were performed with the standard
post-contrast T1 SPACE sequence acquired before Wave-T1
SPACE, and 9 studies were performed with the sequence order
inverted, acquiring Wave-T1 SPACE before the standard T1

TABLE 2 | Pulse sequence acquisition parameters.

Standard T1-SPACE Wave-T1 SPACE

Acquisition parameters

FOV read (mm) 230 256

Matrix size 256 × 256 256 × 256

Slice thickness (mm) 0.9 1.0

TR/TE (ms) 700/11 700/12

Flip angle (degree) 120 120

Echo train length 38 43

Acceleration factor R GRAPPA, R = 4 Wave-CAIPI, R = 9

Scan time 4min 19 s 1min 40 s

SPACE, to control for potential differences related to the order
of acquisition.

Wave-CAIPI Post-contrast T1 SPACE

Sequence and Reconstruction
Wave-T1 SPACE was implemented using a prototype single slab
3D fast spin echo SPACE sequence (15). On-line reconstruction
was performed using an autocalibrated procedure in which the
true gradient trajectory is estimated during the reconstruction
without the need for additional calibration scans. This
allowed for simultaneous estimation of the parallel imaging
reconstruction and the true k-space trajectory (17), with a
reconstruction time of ∼60 s. We matched the main pulse
sequence parameters that contribute to T1-weighted contrast
(i.e., TR, TE, and flip angle) between the Wave-T1 SPACE
and standard T1 SPACE sequences. The standard T1-SPACE
sequence used in our institution’s routine clinical protocol
employs the default vendor reconstruction filter, which
introduces a small degree of spatial smoothing. To provide
comparable effective spatial resolution using the prototype
Wave-T1 SPACE sequence, a slightly larger isotropic voxel
size was used (0.9 vs. 1.0mm). This resulted in visually
comparable effective spatial resolution as evaluated by the study
neuroradiologists. Additional sequence parameters are shown in
Table 2.

Image Evaluation
Two neuroradiologists (O.R and S.Y.H.) with 18 and 8 years
of experience, respectively, independently reviewed all images
in a blinded and randomized fashion. A pre-determined 5-
point grading scale was used to compare Wave-T1 SPACE with
the standard T1 SPACE, following the scales set for previously
published clinical validation studies of Wave-CAIPI sequences
(18) and adapted for the evaluation of enhancing lesions. After
the DICOM datasets had been anonymized, reviewers evaluated
only the post-contrast images on an independent workstation
and were allowed to adjust the window width and level settings
for each image series for optimal viewing.

Reviewers underwent several head-to-head analysis sessions
in which they evaluated the detection of pathological
enhancement in common locations for metastatic seeding
(parenchymal, leptomeningeal, dural, and ependymal), the
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FIGURE 1 | Representative images comparing the post-contrast Standard T1 SPACE and Wave-T1 SPACE sequences. (A) A 25-year-old female with metastatic

melanoma presenting a large mass in the right frontal lobe. Other smaller scattered enhancing metastases are visualized in both hemispheres (arrows and box). (B)

Infratentorial intraparenchymal metastasis in a 76-year-old female with a history of melanoma. There is also abnormal dural enhancement on the overlying tentorium

(arrow). (C) Multiple cortical/subcortical metastases in a 54-year-old man with lung cancer are equally visualized in both sequences (arrows).

presence of artifacts related to motion or background image
noise, and the overall diagnostic quality. The screen position of
the sequences and the order of the cases were randomized.

All cases were rated for each feature within the 5-point grading
scale, where positive numbers favored the sequence on the right
and negative numbers favored the sequence on the left side
of the screen (Supplementary Table 1). Disagreements between

readers were adjudicated by a third neuroradiologist (P.W.S.)
with over 20 years of experience.

Statistical Analysis
We tested for non-inferiority of Wave-T1 SPACE compared
to standard T1 SPACE in the head-to-head analysis. A non-
inferiority margin (1) of 15% was chosen as part of a larger,
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systematic evaluation of Wave-T1 SPACE for post-contrast
imaging, with the null hypothesis (H0) that the proportion of
cases where standard T1 SPACE was preferred over Wave-T1
SPACE was >15% (19). We used the Z statistic to calculate the
probability of the standard sequence being preferred over the
Wave-T1 SPACE sequence in more than 15% of cases (H0 > 1),
with a type 1 error rate (α) of 0.05. Other descriptive data
were summarized by the calculation of means and standard
deviations. We also calculated the upper bound of the 95%
confidence interval for the proportion of cases where standard
T1 SPACE was preferred over Wave-T1 SPACE, i.e., the critical
value, Pcritical. The interrater agreement was reported using the
quadratically weighted Cohen κ to disproportionately penalize
larger disagreements. The agreement of categorical variables was
interpreted according to Landis and Koch (20). All statistical
calculations were performed using R version 3.6.3.

RESULTS

All the 33 oncologic cases were successfully acquired and
evaluated. In the head-to-head comparison, abnormal
enhancement concerning for metastases was detected in 20

cases (60%) (Figure 1). Of the 20 cases that showed abnormal
enhancement, 15 (75%) had parenchymal enhancement, 10
(50%) had dural enhancement, 10 (50%) had leptomeningeal
enhancement, and 2 (10%) had ependymal enhancement, with
11 showing more than one type of enhancing lesion. Interrater
agreement ranged from moderate to substantial (κ = 0.40 for
visualization of enhancing lesions, 0.52 for artifacts, 0.68 for
diagnostic quality). The results of the head-to-head comparison
and the non-inferiority testing are shown in Figure 2. Wave-T1
SPACE was non-inferior to standard T1 SPACE for delineating
enhancing pathology with most cases being rated as equivalent
by reviewers (19 of 20 cases, 98%). In one case (1 of 20 cases,
2%), Wave-T1 SPACE was preferred over the standard sequence.

From the complete cohort, most cases (65%) were considered

equivalent for evaluation of the general perception of artifacts,
in 18 cases (55%) for noise level and 25 cases (76%) for motion.
In only two cases (3%), the Wave-T1 SPACE was preferred over
the standard sequence for perception of artifacts. The standard
sequence was preferred over Wave-T1 SPACE for presenting
less background noise in 14 cases (42%) and in 7 cases (21%)
for fewer motion artifacts, but this difference did not affect
the visualization of underlying structures nor obscured any

FIGURE 2 | Balloon plot showing the results of the head-to-head comparison of Standard T1 SPACE and Wave-T1 SPACE for visualization of pathology (i.e.,

enhancing lesions), artifacts, and diagnostic quality. Each circle’s size and color represent the percentage of cases assigned a given score from a total of 33 cases.

The percentage of cases receiving a given score is indicated below each circle. A zero-score indicates equivalency, negative scores (left) favor Standard T1 SPACE,

and positive scores (right) favor Wave-T1 SPACE. The critical value (Pcritical ) is also provided, corresponding to the upper bound of the 95% confidence interval for the

proportion of cases in which Standard T1 SPACE was preferred.
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small lesions. The overall diagnostic quality was considered
equivalent in 88% of the sample (29 cases, of 33). In three cases
(9%), the standard sequence was preferred without affecting
the final clinical diagnosis. In one case (3%), Wave-T1 SPACE
was preferred to the extent that it would affect the final clinical
diagnosis, due to the presence of extensive motion artifact on
the standard sequence. To better validate the comparison of
Wave-T1 SPACE with the standard sequence, we also performed
additional sub analyses by coil channel, by order of acquisition,
and expanded the evaluation of visualization of enhancement
by each compartment (parenchymal, leptomeningeal, dural, and
ependymal). The results showed that Wave-T1 SPACE provided
equivalent visualization of enhancing pathology independently
of the number of channels in the coil array and the order of
acquisition (Supplementary Figures 1–5). However, given the
larger number of independent coil elements in the 32-channel
coil, we observed an improvement in the image signal-to-noise
ratio (SNR) and noise amplification (g-factor), which translated
in a better performance of the diagnostic quality in this subset
of cases.

DISCUSSION

This study compared the performance of highly accelerated 3D
Wave-T1 SPACE to the standard 3D T1 SPACE sequence in
the visualization and diagnostic evaluation of brain metastases.
Wave-T1 SPACE showed equivalent diagnostic performance for
delineating enhancing metastases and was three times faster
than the standard sequence. Wave-T1 SPACE images were
slightly noisier compared to the standard sequence, but this
difference did not interfere with the final diagnosis. Our findings
suggest that Wave-T1 SPACE could replace standard T1 SPACE
for the evaluation of brain metastases, as the advantages of
lesion detection of the thin slice 3D SE-based pulse sequence
are preserved and the gains in saved acquisition time would
improve patient comfort and utilization of MR resources. The
decreased scan time of Wave-CAIPI may overcome the slight
underperformance in image quality from slightly greater noise,
likely due to the high intrinsic contrast-to-noise ratio of the 3D
SE-based pulse sequence for enhancing lesions.

The savings in acquisition time without loss of clinically
important information can provide synergistic benefits with
the combined use of accelerated sequences that shorten the
overall exam time and may improve utilization of MR resources,
particularly in motion-prone populations. The Wave-CAIPI
encoding approach has been applied to other imaging sequences
providing complementary contrasts such as susceptibility
weighted imaging (18, 21) and structural MPRAGE (without
IV contrast administration) (22). Combining multiple Wave-
CAIPI based 3D acquisitions could synergistically further reduce
acquisition times and increase patient throughput, to the benefit
of the patients and their providers.

Our study has several limitations. First, we have a relatively
small sample size due to the proof-of-concept design within
the specific indication of contrast-enhanced imaging for the

evaluation of brain metastases. Other relevant limitations involve
the heterogeneity of the multiple primary tumors and differences
in tumor biology among participants. Nevertheless, our findings
show a clear trend in the benefits of reduced scan time with
preserved sensitivity for lesion detection, suggesting that these
findings might be generalized to many tumor types. The small
sample size probably underpowered the non-inferiority test, and
the results could be considered as the basis for replicating these
findings in a larger tumor-specific future study.

Second, we observed slightly greater artifacts with Wave-T1-
SPACE than Standard-T1-SPACE (standard sequence preferred
in 32%, Wave sequence preferred in 3%, no preference in
65%). Artifacts in 3D SE-based sequences, including SPACE,
arise through a variety of mechanisms. Because it can be
difficult for the radiologist to be certain of the mechanism of
a given artifact, we grouped the different causes of artifact in a
single category. Possible explanations for the increased artifacts
observed in Wave-T1 SPACE include interactions between
the Wave-CAIPI approach and motion/flow-related artifacts
(possibly exacerbated by high vascular signal in the presence of
gadolinium contrast), the free induction decay (10) and other
3D SE related artifacts, or imperfections in the Wave-CAIPI
acquisition and reconstruction procedure itself. Although these
factors did not result in the obscuration of any enhancing
lesions and did not alter the radiologists’ overall assessment
of diagnostic quality, further evaluation of the underlying
causes (and strategies for artifact mitigation) is warranted
before a more general application of Wave-T1-SPACE in a
clinical setting.

Third, although we did our best to balance the order
of acquisition for the post-contrast standard and Wave-
T1 SPACE sequences to control for potential differences
in the conspicuity of enhancing lesions related to the time
elapsed between contrast injection and image acquisition,
more studies had standard T1 SPACE acquired before
Wave-T1 SPACE (24 vs. 9). Despite this imbalance, 98%
of the cases were rated as equivalent for visualization of
enhancing lesions, attesting to the minimal contribution of
acquisition order to the overall degree of enhancement on
either sequence, as supported by the head-to-head analysis
results as well as qualitative assessment of the images by all
three raters.

Finally, the selection of a suitable non-inferiority margin
for imaging studies is often challenging. Our selection was
informed by a review of similar imaging-based non-inferiority
studies and consensus among our group of neuroradiologists
that the new sequence could be considered non-inferior if the
standard sequence were preferred in fewer than 15% of cases.
Since this threshold is essentially subjective, we also reported
the critical value (Pcritical), equivalent to the upper bound on a
95% confidence interval for the proportion of cases in which
the standard sequence was preferred. Lastly, although readers
were blinded to the acquisition protocol, some aspects of the
images might have allowed the readers to identify the pulse
sequence being evaluated, which could introduce bias.We sought
to minimize this possibility by matching the most important
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parameters that determine image quality and image contrast
(including TR, TE, and flip angle) between acquisitions.

CONCLUSION

In conclusion, we show that contrast-enhanced Wave-CAIPI 3D
T1 SPACE provides equivalent visualization of enhancing lesions
and overall diagnostic quality for evaluating brain metastases
with three times reduction in scan time compared to standard 3D
T1 SPACE. The clinical application of the Wave-CAIPI approach
may facilitate more efficient utilization of MR resources without
loss of clinically valuable information, which can be especially
beneficial to motion-prone patients with brain metastases. The
present study offers several opportunities for future study,
including the mechanisms and appearance of Wave-T1 SPACE
artifacts, and supports the promise and continued evaluation of
post-contrast Wave-T1 SPACE for routine use in clinical practice
and clinical trials.
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