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Editorial on the Research Topic

The Role of the IGF/Insulin-IGFBP Axis in Normal Physiology and Disease

The 2019 Gordon Research Conference (GRC) on the insulin-like growth factor (IGF) and Insulin
System in Physiology and Disease was held from March 10th to 15th in 2019. In that meeting, we
focused on “The Impact of IGF and Insulin on Life-Long Health”. We discussed cutting-edge research
on the fundamental roles of IGF and insulin in normal physiology and diseases particularly related to
aging, cancer, andmetabolic disorders. IGFs and insulin are conserved throughout evolution tomediate
the effects of nutrition on growth, metabolism, and development, and hence play a significant role in
health and disease over the lifespan. Theymodulate diverse aspects of cell function such as proliferation,
differentiation, survival, and metabolism of most physiological systems in the body. The IGF family of
ligands, receptors, and IGF binding proteins are frequently affected in many pathological conditions,
such as growth failure, diabetes, cancer, and degenerative diseases, and therefore have become attractive
therapeutic targets. This conference encompassed ground-breaking information regarding critical
characteristics of the biology of the IGF/insulin family in both normal physiology and pathological
states highlighting innovative methodologies and novel interactions (e.g., stem cell biology and the
microbiome). We selected eight exciting topics presented at the GRC for this special issue on “The Role
of the IGF/Insulin-IGFBP Axis in Normal Physiology and Disease” The IGFBPs are frequently
dysregulated in pathological conditions and Duan and Allard, discussed what is currently known about
IGFBP-5 in normal physiology and human disease. They concluded that IGFBP-5 is a multifunctional
protein that can act as a molecular switch to regulate IGF signaling conditionally. Therapy resistance is
a major problem in cancer treatment and Zheng et al., discovered that IGFBP-1 plays a significant role
in resistance to a selective estrogen receptor modulator and antagonist for estrogen receptor alpha
(ERa) in breast tissue, called Tamoxifen. IGFBPs can be post-translationally modified, for example via
proteolytic cleavage and this also has implications for disease. Hoeflich et al., found that reduced
fragmentation of IGFBPs and concomitant reduction of IGF-II to IGFBP ratios modulated the
bioactivity of IGF-II in cerebrospinal fluid during repeated intrathecal triamcinolone acetonide
administration in multiple sclerosis patients, which may have relevance for treatment. In addition,
Hjortebjerg et al., showed that pregnancy-associated plasma protein-A (PAPP-A) and its homolog
PAPP-A2 which are reported as IGFBP proteases are enzymes that modulate the availability and
mitogenic activity of IGF-I. Collectively, the data show that PAPP-A2, but not PAPP-A, is elevated in
patients with lung cancer and is associated with mortality. This novel role of PAPP-A2 in cancer
warrants further functional studies as well as validation in external cohorts. As for signal transduction
n.org April 2022 | Volume 13 | Article 89214014
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of insulin-like peptides, the mini-review by Rieger and O’Connor,
introduced data showing that IGF-I receptor endocytosis and
trafficking to specific subcellular locations can define specific
signaling responses that are important for key biological
processes in normal cells and cancer cells. Once internalized, the
IGF-I receptor may be recycled, degraded, or translocated to the
intracellular membrane compartments of the Golgi apparatus or
the nucleus leading to different outcomes. Okino et al., showed that
the high levels of insulin receptor substrate (IRS)-1 in myoblasts
induces their elimination from the cell layer due to abnormal
sustainment of IGF-I receptor activation. This cell competition
plays a vital role in myotube formation. The mini-review by Barker
et al., presents a brief overview examining aspects of IGFs and the
PI3K/Akt pathway in two apparently unconnected diseases:
Alzheimer’s dementia and cancer. Although these disease states
appear to be opposed, the same vital molecules are controlling
pathology and, differential targeting of therapeutics, may benefit
both. Finally, Stuard et al., provided the latest update on the
function of IGF and related proteins in corneal development,
during wound healing, and in the pathophysiology of disease and
highlighted key areas of research that are necessary for future
studies. From C. elegans to rhesus monkeys, it has been reported
that suppression of insulin-like activity is associated with an
increased life span. Together with other reports from this GRC,
excessive induction of insulin-like activity can lead to cancer, and
excessive attenuation leads to various diseases that are also
problematic in an aging society, such as Alzheimers. These
results clearly demonstrate the importance of regulating insulin-
like activity to an appropriate range to maintain a lifetime of good
health. This regulation is accomplished through ligand production,
interaction with binding proteins, receptor expression, and
signaling. The future mission of this research area is to elucidate
how abnormalities in molecular signalling pathways utilized by the
IGF axis correlate with the phenotype associated with pathological
conditions, to develop preventive and therapeutic interventions,
leading to higher quality resource animals and an increase in
healthy life expectancy in humans. The IGFs are clearly relevant
to all life phenomena and as such have attracted many researchers
to the field from different backgrounds, highlighted by the varied
and diverse presentations covering both normal physiology and
disease. An IGF focus within a cross-disciplinary approach yields
exciting, novel and groundbreaking discoveries that were presented
at the GRC, and the participants all shared in the excitement. We
Frontiers in Endocrinology | www.frontiersin.org 25
are delighted for the broader community to provide a taste of this
GRC in this special issue. The next GRC on the IGF and Insulin
System in Physiology and Disease will be held in March 2023. We
look forward to seeing you all there.
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Myoblasts With Higher IRS-1 Levels
Are Eliminated From the Normal Cell
Layer During Differentiation

Ryosuke Okino 1, Ami Usui 1, Yosuke Yoneyama 1†, Shin-Ichiro Takahashi 1 and

Fumihiko Hakuno 1,2*

1Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The

University of Tokyo, Tokyo, Japan, 2 Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological
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Insulin receptor substrate (IRS)-1 is a major substrate of insulin-like growth factor (IGF)-I

receptors. It is well-known that IGF-I and II play essential roles in myogenesis progression.

Herein, we report an unexpected phenomenon that IRS-1-overexpressing L6 myoblasts

are eliminated from normal cell layers at the beginning of differentiation. Initially, the

IRS protein level and apoptosis were examined during myogenic differentiation in L6

myoblasts. We found that the IRS-1 protein level decreased, whereas active caspase 3

increased around 1 day after induction of differentiation. The addition of a pan-caspase

inhibitor, Z-VAD-FMK, inhibited differentiation-induced suppression of the IRS-1 protein

level. Apoptosis was not enhanced in L6 myoblasts stably expressing high levels of

IRS-1 (L6-IRS-1). However, when L6-IRS-1 was cultured with control cells (L6-mock), we

observed that L6-IRS-1 was eliminated from the cell layer. We have recently reported that,

in L6-IRS-1, internalization of the IGF-I receptor was delayed and IGF signal activation

was sustained for a longer period than in L6-mock. When cells stably expressing IRS-1

3YA mutant, which could not maintain the IGF signals, were cultured with normal cells,

elimination from the cell layer was not detected. These data suggested that the high level

of IRS-1 in myoblasts induces elimination from the cell layer due to abnormal sustainment

of IGF-I receptor activation.

Keywords: insulin-like growth factor (IGF)-I, L6 myoblasts, myogenesis, insulin receptor substrate (IRS)-1, cell

competition

INTRODUCTION

Myogenic differentiation is a tightly regulated complex process in which mononucleated myoblasts
proliferate, express myogenic marker proteins (MyoD, myogenin, myosin heavy chain (MyHC),
etc.), and fuse to formmultinucleated myotubes. Matured myotubes convert into myofibers, which
are capable of muscle contraction. These multiple processes of myogenic differentiation seem
to depend on numerous pathways (1, 2). Extensive investigations using myoblast cell lines and
tissues revealed that several extracellular growth factors modulate myogenic differentiation (3–5).
Many papers have shown that insulin and insulin-like growth factors (IGFs) stimulate myoblast
differentiation and are required for skeletal muscle development (6–9).

IGF-I and IGF-II are anabolic hormones with structures similar to that of proinsulin.
IGFs are revealed to possess various bioactivities, including the induction of cell proliferation,

6
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differentiation, and survival of target tissues. Generally, by
binding to their specific receptors on the plasma membrane,
IGFs activate intrinsic tyrosine kinase activity. The activated
receptor phosphorylates several substrates, including insulin
receptor substrates (IRSs). Phosphotyrosine residues in
IRSs are recognized by several signaling molecules with an
SH2 domain, resulting in activation of the phosphatidyl
inositol 3-kinase-Akt pathway and Ras-mitogen activated
protein kinase pathway. Activation of these pathways
is shown to be required for the expression of various
IGF bioactivities.

It is well-established that IGFs are required for myogenic
differentiation. In particular, in serum-free medium, myogenic
differentiation was blocked and IGF addition significantly
enhanced the creatine kinase level (10). Thus, IGF has an
essential role in myogenic differentiation. However, it is unclear
whether the activation of downstream IGF signaling pathways
is constantly required for myogenesis. For example, IRS-1
knockdown C2C12 myoblasts had defects in myogenesis
(11). On the other hand, we previously reported that
IRS-1 overexpression inhibited myogenic differentiation
in L6 myoblasts through continuous Foxo1 inhibition
that might cause repression of MyHC at the late stage of
differentiation (12).

Recent reports demonstrated that apoptotic cells are
necessary for the myogenic differentiation process. The
phosphatidylserine receptor BAI1, which was previously
linked to apoptotic cell recognition by phagocytes, promotes
myoblast fusion. Blocking apoptosis during myogenic
differentiation potently impaired this process; furthermore,
returning apoptotic myoblasts to this system restored
fusion (13). On the other hand, endoplasmic reticulum
(ER) stress signaling occurs during myoblast differentiation,
and inhibition of ER stress signaling blocked apoptosis
and myoblast differentiation. Moreover, increased ER stress
enhanced differentiation-associated apoptosis of myoblasts
(14). Thus, apoptosis is required for myogenic differentiation.
However, the types of cells that selectively undergo apoptosis
or differentiate into myotubes during myogenic differentiation
remain unknown.

This study was undertaken to evaluate the mechanism
of IGF signal regulation of myoblast proliferation and
apoptosis during myogenic differentiation. We found
that cells expressing high IRS-1 levels are eliminated
from the normal cell layer and undergo apoptosis
upon culturing with normal cells due to sustained IGF
signal activation.

MATERIALS AND METHODS

Materials
Dulbecco’s modified Eagle’s medium (DMEM) was purchased
from Nissui Pharmaceutical Co. (Tokyo, Japan). Fetal bovine
serum (FBS) was obtained from Sigma Aldrich (St. Louis, MO,
USA). Penicillin and streptomycin were obtained from Banyu
Pharmaceutical Co. (Ibaraki, Japan). Z-VAD-FMK was obtained
from BD Biosciences (New York, NY, USA).

Antibodies
Anti-IRS-2 (390761) antibody was obtained from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, USA). Anti-IRS1 (06-
248), anti-myosin heavy chain (05-716) and anti-p85 (06-
195) antibodies were acquired from Millipore (Billerica, MA,
USA). Anti-caspase 3 (#9662), anti-cleaved caspase 3 (#9661),
and anti-Bax (#2772) antibodies were purchased from Cell
Signaling Technology, Inc. (Danvers, MA, USA). Horseradish
peroxidase (HRP)-conjugated secondary anti-rabbit (NA934)
and anti-mouse IgG (NA931) antibodies were obtained from
GE Healthcare (Pittsburgh, PA, USA). Antibodies were diluted
according to the recommendations on their data sheets.
Enhanced chemiluminescence (ECL) reagents were acquired
from PerkinElmer Life Science (Boston, MA, USA). Alexa Fluor
488 or 594-conjugated secondary anti-mouse, anti-rabbit, or
anti-rat IgG antibodies were obtained from Invitrogen (Carlsbad,
CA, USA).

Cell Culture
L6 cells were maintained at 37◦C in a humidified 5% CO2-
controlled atmosphere in DMEM supplemented with 10% FBS,
0.1%NaHCO3, 50 IU/mL penicillin, and 50µg/mL streptomycin.
L6 cell differentiation was induced as previously described (12).
Passage number of cells used in experiments was 8∼15. In each
experiment, passage number of the cell lines are same. PLAT-
E cells were cultured for retrovirus packaging as previously
described (15).

Retrovirus Production and Generation of
Stable Cell Lines
We generated the constructs of the pMX-neo vectors containing
IRS-1 (pMX-GFP-IRS-1, pMX-mycIRS-1, and pMX-IRS-1-3YA)
and pMX-puro vector containing GFP (pMX-GFP). Retrovirus
production and transduction in L6 cells were performed as
described previously (15). Briefly, PLAT-E cells (provided
by T. Kitamura, The University of Tokyo, Tokyo, Japan)
were transiently transfected with each pMX vector using
polyethylenimine (PEI) reagent, and the media containing the
retrovirus were collected. L6 cells were incubated with the
virus-containing medium supplemented with 2 mg/L polybrene.
Uninfected cells were removed by G418 or puromycin selection.
Isolation of the stable L6 line was performed as described
previously (12).

Cell Attachment Assay
Five million L6-mock cells were seeded on a 35mm dish and
cultured until confluent. Either L6-mycIRS-1-GFP or L6-GFP
cells were then seeded on the L6-mock confluent cell layer or on a
vacant dish. One day after the incubation, the cells were fixed, and
the numbers of GFP-positive cells were counted. The cell layer
attachment index (CLAI) was calculated as the number of GFP-
positive cells attached on the cell layer divided by GFP-positive
cells attached on the vacant dish.

Immunoblotting
Cells were lysed at 4◦C with ice-cold lysis buffer (1% NP40,
50mM Tris-HCl [pH 7.4], 150mM NaCl, 1mM EDTA, 1mM
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NaF, 10% glycerol, 20µg/mL phenylmethylsulfonyl fluoride
(PMSF), 5µg/mL pepstatin, 10µg/mL leupeptin, 100 KIU/mL
aprotinin, 1mM Na3VO4, and 10 mg/mL p-nitrophenyl
phosphate), or ice-cold RIPA buffer (50mM Tris-HCl [pH 7.4],
15mM NaCl, 0.1% SDS, 0.5% deoxycholate, 20µg/mL PMSF,
5µg/mL pepstatin, 10µg/mL leupeptin, 100 KIU/ml aprotinin,
1mM Na3VO4, and 10 mg/mL p-nitrophenyl phosphate).
Insoluble materials were removed by centrifugation at 15,000
× g for 10min at 4◦C, and the supernatant was prepared as
a total cell lysate. Immunoblotting was performed as described
previously (15).

Immunofluorescence Staining
For confocal microscopy analysis, L6 cells were grown on
coverslips. The cells were fixed for 10min at 25◦C in prewarmed
4% paraformaldehyde in phosphate-buffered saline (PBS). After
washing three times with PBS, cells were permeabilized with
0.25% Triton X-100 in PBS at 25◦C for 10min. The cells were
washed three times with PBS and then blocked for 1 h at 4◦C
with bovine serum albumin (BSA) blocking buffer (3% BSA
and 0.025% NaN3 in PBS). Primary antibodies diluted in BSA
blocking buffer were added overnight at 4◦C. The samples were
washed three times with PBS and incubated for 1 h at 25◦C in a
solution of Alexa Fluor-conjugated secondary antibodies diluted
in BSA blocking buffer. The coverslips were mounted using
Vectashield for visualization using a fluorescence microscope
(KEYENCE, Tokyo, Japan) or confocal fluorescence microscope
(OLYMPUS, Tokyo, Japan).

Statistical Analysis
Statistical analyses of data were performed using Stat View
software (Abacus Concepts, Inc., Berkeley, CA, USA).
Comparisons between two groups were analyzed by Student’s
t-test, and more than two groups were analyzed by ANOVA
followed by Turkey’s test. Differences were considered to be
statistically significant at P < 0.05, as represented by ∗.

RESULTS

Protein Levels of IRS-1 and Cleaved
Caspase 3 Were Dramatically Changed
During Myogenic Differentiation of L6
Myoblasts
Differentiation of L6 myoblasts was induced by changing media
from DMEM with 10% FBS to DMEM with 2% FBS. As shown
in Figure 1A, we could confirm that expression of the myogenic
marker protein myosin heavy chain increased 2 days after the
induction of differentiation. Protein levels of IRS-1 or IRS-2
were examined by immunoblotting analysis. The IRS-2 protein
level was not changed during differentiation induction, whereas
that of IRS-1 decreased only 1 day after induction. Interestingly,
the level of cleaved caspase 3, an apoptotic marker protein and
active form of caspase 3, increased∼0.75 day after differentiation
induction; this indicated that apoptotic cells were generated, then
IRS-1 protein was decreased. In addition, when the apoptosis
inhibitor Z-VAD-FMK was added to the differentiation medium,
the IRS-1 protein level did not decrease (Figure 1B). Since the

IRS-1 protein level decreased just after apoptosis activation,
we generated the hypothesis that cells highly expressing IRS-1
selectively undergo apoptosis.

To address whether IRS-1 overexpression enhances apoptosis,
we infected L6 myoblasts with retroviruses expressing mock
vector, GFP, or GFP-fused IRS-1 and isolated the stable cell
lines L6-mock, L6-GFP, and L6-GFP-IRS-1. We could confirm
that the GFP-IRS-1 expression level was high in L6-GFP-IRS-
1 lines (Figure 1C). Caspase 3 activation was examined and
found to be activated 1 day after inducing differentiation in
L6-mock and L6-GFP control cells. However, in L6-GFP-IRS-
1, caspase 3 was not activated (Figure 1C). Immunostaining
analysis against cleaved caspase 3 (active caspase 3) also
indicated that apoptosis was suppressed in L6-GFP-IRS-1 cells
(Figure 1D). These data indicated that IRS-1 overexpression did
not enhance apoptosis.

Cells Overexpressing IRS-1 Were
Selectively Excluded When They Were
Surrounded by Normal Cells
To examine the fate of cells overexpressing IRS-1 within a
normal cell population, L6-GFP-IRS-1 or L6-GFP stable cell
lines were mixed with normal L6 cells (L6-mock) at a ratio of
1:10. These cells were then cultured in 10% FBS medium until
confluent. The mixture of the two cell lines was cultured in the
differentiation medium for the indicated days. When L6-GFP
was cultured with normal L6-mock, the number of GFP-positive
cells (L6-GFP) increased at a similar ratio as that of the total
cell number (Figure 2A). On the contrary, when L6-GFP-IRS-
1 was cultured with L6-mock, the cell number of L6-GFP-IRS-
1 decreased (Figure 2A). When L6-GFP was cultured with L6-
mock, the ratio of GFP-positive cells remained unchanged until
day 4 compared to day 0. However, when L6-GFP-IRS-1 was
cultured with L6-mock, the ratio of GFP-positive cells decreased
at day 4 compared to day 0 (Figure 2B). These data strongly
suggested that L6-GFP-IRS-1 was selectively excluded from the
cell layer.

Because protein degradation of IRS-1 is induced by the
activation of the downstream IGF signal kinase mTORC1 (16–
19), it is possible that the level of GFP-fused IRS-1 also degraded
and the GFP signal diminished in response to IGF signal
activation. To exclude this possibility, we generated stable cell
lines expressing both mycIRS-1 and GFP independently (L6-
mycIRS-1-GFP). At first Caspase 3 activation was examined in
the single culture system. By the induction of differentiation,
Caspase 3 activation was not enhanced also in L6-mycIRS-1-
GFP (Figure S1). When L6-mycIRS-1-GFP was cultured with
L6-mock at a ratio of 1:1, it was also selectively eliminated
(Figure 2C). The ratio of L6-mycIRS-1-GFP cells decreased on
day 2 compared to day 0, while the ratio of L6-GFP cells
remained unchanged (Figure 2D). Moreover, growth rate of
L6-mock, L6-GFP, or L6-mycIRS1-GFP was almost comparable
(Figure S2). Although IRS-1 overexpression did neither enhance
apoptosis (Figures 1C,D, Figure S1) nor suppress proliferation
rate (Figure S2), the cell number of L6-mycIRS-1-GFP are
selectively decreased only when these cells are cultured with
normal cells (Figure 2). These data strongly suggested that

Frontiers in Endocrinology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 968

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Okino et al. Significance of Higher IRS-1 Level

FIGURE 1 | Protein level of IRSs and cleaved caspase 3 during myogenic differentiation of L6 myoblasts. (A) Differentiation of L6 myoblasts was induced by changing

media from DMEM with 10% FBS to DMEM with 2% FBS. At the indicated days after differentiation induction, cell lysates were prepared, and total cell lysates were

produced for immunoblotting analysis using the indicated antibodies. (B) Differentiation was induced in the differentiation medium with or without 100µM

Z-VAD-FMK. Immunoblotting was conducted using the indicated antibodies at the indicated days after differentiation induction. (C) L6-mock, L6-GFP, and

L6-GFP-IRS-1 were induced to differentiate into myotubes. Immunoblotting was conducted at the indicated days after differentiation induction. (D) At the indicated

days after differentiation induction, cells were fixed by PFA and immunostained with anti-cleaved caspase 3 antibody. The number of cleaved caspase 3-positive cells

was counted, and the data is shown as means ± SEM. These are representative data from experiments independently performed twice.

cells highly expressing IRS-1 are selectively excluded from the
cell layer.

The Ability of Cells With Higher IRS-1
Levels to Attach to the Normal Cell Layer
Was Impaired
Cells with high IRS-1 levels were eliminated upon culturing with
normal cells. These data suggested that cell-cell contact plays
important roles in this phenomenon. Thus, we examined the cell
attachment ability of cells with high IRS-1 levels. Initially, L6-
mock cells were seeded on the dish and cultured until confluent;
then, L6-mycIRS-1-GFP or L6-GFP cells were seeded on the
confluent L6-mock cell layers. As a control, L6-mycIRS-1-GFP
cells or L6-GFP cells were seeded on the vacant dishes. The
number of cells attached to the vacant dishes was comparable
between L6-GFP and L6-mycIRS-1-GFP (Figure 3A). However,
the number of L6-mycIRS-1-GFP attached on the L6-mock layer
was significantly lower than that of L6-GFP (Figure 3B). The
ratio of the GFP-positive cell number on the L6-mock cell layers
to the number of GFP-positive cells on the vacant dishes was

defined as CLAI. As a result, the cell attachment ability of L6-
mycIRS-1-GFP to L6-mock was significantly lower than that of
L6-GFP to L6-mock cells (Figure 3C).

Cells With Higher Levels of IRS-1 3YA
Mutant Were Not Excluded Upon Culturing
With Normal Cells
As shown in Figure 2, we showed that cells with higher
levels of IRS-1 were selectively eliminated from the cell layer
when cultured with normal cells. Recently, we reported that
IGF-I receptor internalization was inhibited in L6 myoblasts
with high IRS-1 levels, resulting in sustained activation
of IGF signaling. In addition, we prepared L6 myoblasts
stably expressing IRS-1 3YA mutant and GFP (L6-IRS-1
3YA), which did not sustain IGF signal activation since
this mutant could not inhibit internalization of the IGF-
I receptor (20). In L6-IRS-1 3YA, differentiation-induced
Caspase 3 activation was not enhanced (Figure S1), and
the growth rate was almost identical with normal cells
(Figure S2). Next, L6-IRS-1 3YA was cultured with normal
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FIGURE 2 | Elimination of cells highly expressing IRS-1. (A) Mixtures of L6-GFP and L6-mock or L6-GFP-IRS-1 and L6-mock were inoculated into dishes at a 1:10

ratio, and differentiation was induced. At the indicated days after differentiation induction, cells were fixed by PFA, and the total nucleus numbers and the nucleus

numbers of GFP-positive cells were counted (right graphs). Scale bar: 100µm. (B) The percentage of GFP-positive cells was calculated at day 0 or 4 after

differentiation induction, as shown in the graph. Data is shown as means ± SEM. *p < 0.05 vs. day 0. (C) Mixtures of L6-GFP and L6-mock or L6-mycIRS-1-GFP and

L6-mock were inoculated into the dishes at ratios of 1:1, and differentiation was induced. At the indicated days after differentiation induction, cells were fixed by PFA,

and the numbers of GFP-positive and GFP-negative cells were counted (lower graphs). Scale bar: 100µm. (D) The percentage of GFP-positive cells was calculated at

day 0 or 4 after differentiation induction, as shown in the graph. Data is shown as means ± SEM. *p < 0.05 vs. day 0. These are representative data from experiments

independently performed at least three times.
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FIGURE 3 | Attachment ability of cells highly expressing IRS-1. (A) Five million L6-mock cells were seeded on the dish and cultured until confluent. Either

L6-mycIRS-1-GFP or L6-GFP was then seeded on the L6-mock confluent cell layer or directly on a dish. After 1 day of incubation, the cells were fixed and the

numbers of GFP-positive cells were counted. (B) CLAI was defined as shown. (C) CLAI was calculated, and data are shown as means ± SEM (n = 3), *p < 0.05.

These are representative data independently performed at least three times.

cells, and we tested cell elimination from the cell layer. As
shown in Figure 4A, elimination from the cell layer was
observed when L6-mycIRS-1-GFP was cultured with L6-mock,
whereas this was not observed when L6-IRS-1 3YA was co-
cultured with L6-mock (Figures 4A,B). Under this situation,
the attachment ability of L6-IRS-1 3YA to L6-mock cells was
unchanged (Figures 4C,D).

Finally, we performed the similar experiments under the
growth medium. L6-GFP, L6-mycIRS-1-GFP or L6-IRS-1 3YA
was cultured with L6-mock normal cells in the DMEM 10% FBS
and counted the nucleus number at the indicated days. Growth
rate until 2 days was very similar for all cell lines. L6-GFP and L6-
IRS-1 3YA could increase cell number until 4 days whereas L6-
mycIRS-1-GFP could not increase the cell number but decreased
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FIGURE 4 | Elimination of cells overexpressing IRS-1 3YA mutant. (A) L6-GFP, L6-mycIRS-1-GFP, or L6-IRS-1-3YA cells were co-cultured with L6-mock in

differentiation medium at a 1:10 ratio. At the indicated days after differentiation induction, cells were fixed by PFA, and the total nucleus numbers and the nucleus

numbers of GFP positive cells were counted (right graphs). (B) The percentage of GFP-positive cells was calculated at day 0 or 4 after differentiation induction, as

shown in the graph. Data is shown as means ± SEM. *p < 0.05 vs. day 0. (C) Five million L6-mock cells were seeded on the dish and cultured until confluent.

L6-mycIRS-1-GFP, L6-GFP, or IRS-1 3YA mutant cells were then seeded on the L6-mock confluent cell layer or on a dish. After 1 day of incubation, the cells were

fixed and the numbers of GFP-positive cells were counted. (D) CLAI was calculated as previously indicated, and data are shown as means ± SEM (n = 3), *p < 0.05.

These are representative data from experiments independently performed at least three times.
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(Figure S3). This data indicated that cells overexpressing IRS-1
were eliminated from the cell layer also under growth condition.

DISCUSSION

In this study, we revealed that IRS-1 overexpressing cells are
eliminated from the cell layer upon culturing with normal
cells. A similar phenomenon, cell competition, was observed
in Drosophila (21). Cell competition is a cell fitness sensing
mechanism where a less fit cell is eliminated as a “loser” when
surrounded by fitter cells, or “winners.” In Drosophila imaginal
discs, several mutants affecting cell proliferation including
Minute, which have mutations in ribosomal genes, were reported
to cause cell competition. Furthermore, cells with additional
copies of Myc become “super-competitors” and can eliminate
neighboring wild-type cells. Cells with mutant tumor suppressor
genes scribble (scrib), lethal giant larvae (lgl), and discs large (dlg)
lose cell polarity and are eliminated by the surrounding normal
epithelial cells. In addition, recently, a Hippo signaling mutant
caused cell competition in mammalian cells (22). Mammalian
cells overexpressing active YAP1, which is a downstream protein
of the Hippo signal, exhibit a cell-autonomous decrease in cell
adhesion, and cell attachment to the culture dish influences the
win-or-lose outcome of the competition with wild-type cells (23).
In our L6 myogenic differentiation system, IRS-1-overexpressing
cells are eliminated from the cell layer as loser cells. This is the
first report that an IGF signaling protein was identified as a
molecule that caused cell competition.

We have shown that a differential level of IRS-1 caused
cell competition under a heterotypic population. However, we
did not show that such cell competition could occur under
physiological conditions. Recently, we reported the detailed
molecular mechanism underlying the negative feedback loop of
IGF signal transduction. In this paper, we present the precise
mechanism of IGF-I-induced IRS-1 protein degradation. The
downstream kinase mTORC1 phosphorylates the serine residue
of IRS-1 at amino acid 422; this phosphorylation recruits
ubiquitin ligase, resulting in IRS-1 degradation (19). Given our
data, we envisage a possible scenario: since the IRS-1 protein level
is dynamically changed in response to IGF stimulation and varies
in each cell, cells with higher IRS-1 levels are eliminated under
physiological conditions.

In this study, we have shown that attachment ability of IRS-1
overexpressing cells to L6-mock cells is lower than that of normal
cells. These data suggest a possible mechanism of cell elimination
of IRS-1 overexpressing cells. It is well-known that cells lose
adhesion to dishes before cell division during proliferation. After
cell division, divided cells invade into the cell layer again, but IRS-
1 overexpressing cells cannot invade into the cell layer because of
the low attachment ability to normal cells, resulting in selective
elimination of IRS-1 overexpressing cells. Next question is “Do
loser cells die?”. Our data showed that IRS-1 overexpressing
cells are specifically eliminated from the cell layer. And at this
differentiation stage, apoptotic cells increased, suggesting that
eliminated loser cells might die by apoptosis. In Drosophila,
apoptotic signal is activated in loser cells, including the JNK

pathway. But in our model, to identify the apoptotic pathway was
required for the further evaluation.

In order for the loser cells to be recognized by the winner
cells, some components that label cells as “losers” are required.
However, since IRS-1 is an intracellular protein, it could not
be the candidate component of direct recognition for cell
competition. Recently, we showed that IRS-1 interacts with the
medium chain of clathrin-coated adaptor protein (AP2), and this
interaction inhibited AP2 function to facilitate ligand-induced
IGF-I receptor internalization. Thus, IRS-1 overexpression
inhibited IGF-I receptor internalization, resulting in sustained
Akt/mTORC1 activation (20). In this study, overexpression of
IRS-1 mutant 3YA, which is an AP2-binding-deficient mutant,
did not delay AP2-mediated IGF-IR endocytosis after ligand
stimulation and did not cause cell competition. These data
suggested that the accumulation of active IGF-I receptors on
the plasma membrane labels cells as the loser cells. In addition,
we showed that cell attachment to normal cells is inhibited in
cells highly expressing IRS-1. It was reported that integrin and
cadherin were bound to IRS-1 and the IGF-I receptor (24–26),
and these molecules play roles in cell-cell or cell-extracellular
matrix binding (27, 28). Moreover, Canonici et al. explained that
IGF-I modulates association between IGF-I receptor, αv integrin
and E-cadherin (29). These reports suggested that integrin and
cadherin could be candidate components for labeling cells as
the “losers.”

What is the relationship between cell competition and
myogenic differentiation? Some reports demonstrated that
apoptosis induced by the induction of myogenic differentiation
was required for myoblast cell fusion (13). We expect that
apoptosis induced by cell competition is also required for
myoblast differentiation. Actually, we have reported that IRS-
1 overexpression inhibited myogenic differentiation, and also
demonstrated that continuous inhibition of Foxo1 due to
sustained Akt activation caused defect of myogenesis possibly
through repression of MyHC expression in IRS-1 overexpressing
cells at the late stage of the differentiation process (12).
These strongly suggested that defect of myogenesis in IRS-
1 overexpressing cells was not only caused by disturbance
of cell competition which happened in the beginning of
differentiation. Cell competition might be a possible mechanism
to prevent the subpopulation of myoblasts with high-level of
IRS-1 from differentiating into myotubes. However, further
analysis is required to evaluate involvement of cell competition
in myogenic differentiation.

Why was cell competition induced by differential IRS-1
protein levels in myoblast cells? Skeletal muscle differentiation
entails the coordination of muscle-specific gene expression and
terminal withdrawal from the cell cycle, inducing permanent
G1 phase. The execution of this pathway is required for the
formation of multinucleated myotubes (30–33). These findings
suggested that the cell cycle of myoblasts that were fusing
to myotubes was adjusted to the G1 phase. It is well-known
that in a variety of muscle types, IGF-I regulates proliferation
through its effects on the cell cycle (34, 35). Furthermore, it
was recently revealed that apoptotic myoblasts enhanced fusion
(13). Based on these papers, we propose the hypothesis that
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cell competition monitored by the IRS-1 level induces apoptotic
cells, in which the IGF signal and cell cycle phase differ from
neighboring cells. Then, in the surviving cells, the IGF signal and
cell cycle phase are easily synchronized, and these synchronized
cells fuse to myotubes. Thus, it is possible that cell competition
during myogenesis plays important roles for the functionally
synchronized cells to fuse to myotubes.

We showed that myoblasts expressing high IRS-1 levels were
eliminated upon culturing with normal cells. Furthermore, the
sustained activity of the IGF-I receptor on the plasma membrane
might be the signal for the loser cells. This mechanism can
explain why cell proliferation and cell apoptosis can be induced
at the same period during myogenic differentiation. We also
found that the decrease in IRS-1 was also induced in adipogenesis
(unpublished data). These results suggested that the decreases in
IRS-1 and IGF signaling by IGF-I receptor downregulation could
be crucial for cell differentiation.

L6 myoblasts that highly expressed IRS-1 protein were
eliminated from the cell layer upon culturing with normal cells
due to sustained activation of the IGF-I receptor on the plasma
membrane. It is possible that cell competition induced by the
differential level of IRS-1 is required formyogenic differentiation.
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Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding

proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is

the most highly conserved across species and has the broadest range of biological

activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated

by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of

biological actions including prolonging the half-life of IGFs in the circulation, inhibition

of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating

IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to

the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected

in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative

for understanding IGFBP functions. Despite its evolutionary conservation and numerous

biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype.

Recent research has begun to explain this paradox by demonstrating cell type-specific

and physiological/pathological context-dependent roles for IGFBP-5. In this review, we

survey and discuss what is currently known about IGFBP-5 in normal physiology and

human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5

is a multifunctional protein with the ability to act as a molecular switch to conditionally

regulate IGF signaling.

Keywords: IGF signaling, AKT, mTOR, PAPP-A, STC, IGF-dependent, IGF-independent action

INTRODUCTION

The insulin-like growth factors (IGFs), including IGF-1 and IGF-2, are peptides that act throughout
the vertebrate body via endocrine, paracrine, and autocrine signaling. IGFs bind to the IGF-
1 receptor (IGF1R), a receptor tyrosine kinase that structurally resembles the insulin receptor
(1). IGFs have very low affinity for the insulin receptor. The IGF signaling pathway regulates
cell survival, differentiation, migration, and proliferation at the tissue level, and somatic growth,
developmental progression, and aging at the organismal level (2–7).

A family of IGF-binding proteins (IGFBPs), regulates IGF bioavailability by binding to IGF
ligands with equal or higher affinity than the IGF1R (8). Almost all of the IGFs in the extracellular
environment, both in tissues and in the circulation, are found in complexes with IGFBPs (9, 10).
There are six distinct types of IGFBPs in vertebrates, labeled IGFBP-1 through IGFBP-6. IGFBPs are
found in all vertebrates studied to date, though not all species possess genes of all six IGFBP types,
and some have multiple gene paralogs of some or all of the types (11). We have recently discussed
the question of why the IGFBP family comprises such a large number of genes with substantial
functional redundancy (11).
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Here we review the current understanding of the structure,
expression, regulation, and biological actions of IGFBP-5, which
is the most highly conserved IGFBP family member. Like other
IGFBP family members, IGFBP-5 binds to IGFs and can act
to inhibit the interaction of the IGFs with the IGF1R and
thereby reduce IGF signaling activity (11). While all IGFBPs have
both shared and unique biological capabilities, spatiotemporal
expression patterns, post-translational regulatory mechanisms,
protein-protein interaction partners, etc., IGFBP-5 has one of the
most diverse sets of biological actions of any IGFBP. This rich
repertoire of activities makes IGFBP-5 an ideal representative of
the IGFBP family by which to illustrate the range of mechanisms
by which IGFBPs can modulate and fine-tune IGF signaling,
and also carry out incidental functions that are independent of
IGF binding. IGFBP-5 has been investigated for decades and
discussed in a vast literature. We discuss evidence from a variety
of vertebrate species, and in order to avoid confusion resulting
from different gene/protein nomenclature systems, we will use
the name “IGFBP-5” in all cases and explicitly indicate the species
where necessary.

STRUCTURE AND FUNCTIONAL MOTIFS

IGFBP-5 was first identified and purified from human bone
extracts and conditioned media collected from cultured human
osteosarcoma cells (12, 13). It was subsequently cloned and
characterized in a variety of vertebrate species (14–16). IGFBP-
5 is found in all vertebrates studied to date, and its orthologs
generally share the highest levels of amino acid sequence identity
of any of the IGFBP types. Human IGFBP-5 contains 272
amino acids and most mammalian homologs of IGFBP-5 have
either 272 or 271 amino acids. Human and zebrafish IGFBP-5
have an overall 55% sequence identity. Like all IGFBPs, mature
human IGFBP-5 (252 amino acids) has a primary structure
consisting of 3 domains, a highly conserved N-terminal domain,

FIGURE 1 | The structure of IGFBP-5. IGFBP-5 consists of 3 structurally domains: a highly conserved globular N-terminal domain, a central non-conserved linker

domain, and a conserved C-terminal globular domain. The N-domain contains 12 conserved cysteine residues and a hydrophobic patch important for IGF binding.

The L-domain contains several proteolytic cleavage sites. The C-domain contains six conserved cysteine residues, a RK-rich sequence (red) important for IGF binding,

ALS binding, nuclear localization, and a thyroglobulin-like fold and other sites of interaction with ECM components.

an unstructured linker (L-) domain that acts as a hinge, and a C-
terminal structured domain that contains a thyroglobulin type-
I repeat (11, 17) (Figure 1). The N- and C-terminal domains
(N- and C- domains) are structurally stabilized by intradomain
disulfide bonds between cysteine residues that are conserved
across species, with 12 residues in the N- domain and 6 in the
C domain (Figure 1). The L-domain is the least conserved region
of the protein (17, 18).

Both the N- and C-domains in IGFBP-5 participate in
IGF binding, but a fragment of the N-domain was found to
bind IGF with substantial affinity, suggesting that it contains
a sizable part of the interaction surface (19). The C-domain
contains a highly conserved KR-rich sequence that overlaps
with areas that contribute to IGF binding (20) (Figure 1).
Binding of this region to heparin reduces the affinity for IGF
by 17-fold, promoting release of bound IGF (21, 22). This
region is also important for nuclear localization of IGFBP-5
(16, 23, 24) and ALS association (17, 25) (Figure 1). The C-
domain also contains sites for binding various components of
the extracellular matrix (ECM) (22). IGFBP-5 has been found
to be localized within the ECM in tissues and has been shown
to bind directly to a number of ECM proteins including types
3 and 4 collagen, Laminin, Fibronectin, Plasminogen Activator
Inhibitor 1, Thrombospondin, and Osteopontin (26–28). The
functional significance of ECM binding is discussed further
below. The L-domain contains a number of proteolytic cleavage
sites, phosphorylation, and O-glycosylation sites (17, 18, 29–31).

EXPRESSION AND REGULATION

IGFBP-5 is expressed in a variety of different tissues throughout
the body including lung, bone, muscle, testis, ovary, kidney, etc.,
with variations in different developmental stages and between
species (18). IGFBP-5 expression is regulated by hormones in
certain tissues and cell types, and is expressed constitutively
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in others. For instance, in mammary gland cells, IGFBP-5
expression is inhibited by prolactin (32). In osteoblast-like cells,
parathyroid hormone upregulated IGFBP-5 expression (33).
IGFBP-5 expression can also be upregulated by IGF signaling
in vascular smooth muscle cells and other cell types (34, 35). In
mouse mammary gland, IGFBP-5 expression is suppressed by the
hormone prolactin and STAT-3 (32, 36, 37). IGFBP-5 mRNA has
also been found to be regulated by several miRNAs (37–40).

Post-translational mechanisms also regulate IGFBP-5 in
important ways (18). IGFBP-5 was shown to be phosphorylated
on several serine residues in vivo, which reduced its binding
affinity for heparin but not for IGFs (41). In the extracellular
environment, a number of specific proteases cleave IGFBP-
5. In some cases, proteolysis of IGFBP-5 is inhibited by IGF
binding (42). The zinc-dependent metalloproteinases pregnancy-
associated plasma protein-a (PAPP-A) and PAPP-A2 have been
shown to cleave IGFBP-5 at a single site in the L-domain (31,
43, 44). Unlike IGFBP-4, which is only susceptible to cleavage
by PAPP-A when it is bound to IGF, IGFBP-5 is cleaved by both
proteases regardless of IGF binding (31, 43). PAPP-A2 knockout
mice had 2-fold higher levels of IGFBP-5. Interestingly, these
mice also exhibited a 15-fold reduction in IGFBP-3 levels and a
60% increase in total IGF levels (45). The deletion of PAPP-A2 in
osteoblast cells in mice led to a significant reduction in growth as
measured by both body mass and tail length (46). The proteolytic
regulation of IGFBP-5 by PAPP-A and PAPP-A2 is conserved in
zebrafish (47). In addition to PAPP-A and PAPP-A2, a number
of other proteases have been reported to degrade IGFBP-5. These
include thrombin, elastase, cathepsin G, C1s, ADAM 9, ADAM
12s, MMP-1, and MMP-2 etc. (48–53).

Interactions with extracellular matrix (ECM) and cell surface
proteins are also important for IGFBP-5 activity. A number
of studies have demonstrated a link between IGFBP-5 ECM
binding and its enhanced potentiation of IGF signaling. IGFBP-
5 associated with the cell culture substratum of fibroblasts was
found to potentiate the cellular growth promoting effects of
IGF signaling (26). Binding to the ECM component vitronectin
enhanced IGFBP-5’s potentiation of IGF signaling in smooth
muscle cells, and a mutant form of IGFBP-5 that did not bind
to vitronectin did not produce this effect (54). IGFBP-5 mutants
with reduced ECM binding ability had a reduced ability to
potentiate IGF signaling in vitro (30, 55). Some ECM components
also influence the biosynthesis of IGFBP-5. The ECM component
fibronectin in the culture substrate was found to upregulate
expression and secretion of IGFBP-5 in porcine smooth muscle
cells (56).

Early in vitro studies showed that its binding to heparin-
like glycosaminoglycans protected IGFBP-5 from proteolytic
degradation in media conditioned by human dermal fibroblasts
(57). This mechanismmay allow IGF/IGFBP-5 complexes bound
to proteoglycans in the ECM to avoid proteolysis for an extended
period. It was suggested that IGFBP-5 may serve as a reservoir
of IGF in tissues for later release when needed (30, 58–60).
This may be important in bone tissue, where the IGF-IGFBP-5
complex is found in large quantities, binding to hydroxyapatite
(58–60). A recent study found that IGF-1 released from the
bone matrix promotes the differentiation of mesenchymal stem

cells into osteoblasts, aiding bone formation during bone
remodeling (61).

ENDOCRINE ROLE OF IGFBP-5

In adult human blood, IGFs are found at mean concentrations
that are around 1,000-fold higher than insulin (9). Therefore,
despite the low cross-reactivity of IGFs with the insulin receptor,
if all circulating IGFs were free to interact, the hypoglycemic
effects would overwhelm the effects of insulin itself. In addition,
free IGF has a half-life in circulation of around 10min (4, 62).
Around 1% or less of circulating IGFs are free, and the remaining
>99% are complexed with one of the IGFBPs (9). Binary
complexes of IGF and IGFBP extend the half-life of the IGF to
roughly 30min, but they also facilitate the departure the IGF to be
delivered to tissues (4, 62). Like IGFBP-3, which is the dominant
IGFBP in the circulation, IGFBP-5 can bind to IGF alone or in
a ternary complex with IGF and an 85 kDa glycoprotein called
Acid Labile Subunit (ALS) (25). IGF within the ternary complex
has a greatly prolonged half-life, and the complex is too large
(around 150 kDa) to exit from the circulation, and thus it is
able to maintain a circulating reservoir of IGF (63) (Figure 2A).
About 75–80% of circulating IGF is found in a ternary complex
with IGFBP-3 or−5 (9). When both IGFBP-3 and IGFBP-5 were
knocked out in mice (64), or when ALS itself was deleted (65), the
ternary complex was absent, and serum IGF levels were greatly
reduced. However, there was only a modest reduction in growth,
due to compensatory mechanisms by other IGFBPs.

Global overexpression of IGFBP-5 in mice, which resulted in
a ∼4-fold increase in circulating IGFBP-5, caused a severe body
growth reduction both prenatally and postnatally, significant
neonatal mortality, reduction of fertility in females, and a
30% reduction in skeletal muscle weight (66). This phenotype
was consistent with the notion that IGFBP-5 inhibits IGF
signaling by sequestering IGF away from the IGF1R (4, 10).
However, the relevance of this overexpression phenotype to
the physiological role(s) of endogenous IGFBP-5 is unclear.
Knockout of IGFBP-5 in mice did not result in altered body
growth compared with wildtype, and it was assumed that other
IGFBPs compensate for the lack of IGFBP-5 (67). This is
supported by that fact that mice lacking IGFBP-3,−4, and−5 had
somewhat reduced growth, changes in metabolism, a significant
reduction in circulating and bioactive IGF-1 levels, which
may explain the reduced body growth (64). Another possible
explanation is that altered physiological and/or pathological
states resulting from global dysregulation of IGF signaling led to
growth inhibition.

ROLES OF LOCAL IGFBP-5 IN
REGULATING IGF ACTIONS

Locally expressed IGFBP-5 can inhibit or enhance IGF biological
activity by modulating their interaction with the IGF-I receptor
(Figures 2B,C). IGFBP-5 is the most abundant IGFBP in bone
tissues (68) and there is a host of in vitro findings in the
literature regarding IGFBP-5 actions in osteosarcoma cells.

Frontiers in Endocrinology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 10018

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Duan and Allard Overview of IGFBP-5 Biology

FIGURE 2 | Proposed modes of IGFBP-5 actions. (A) IGFBP-5 modulates circulating IGFs by forming a binary complex with IGF or a ternary complex with IGF and

acid labile subunit (ALS) in the blood. (B) IGFBP-5 inhibits IGF signaling in target cells by sequestrating IGF away from the IGF1R. (C) IGFBP-5 potentiates IGF

signaling in target cells by #1) releasing of bound IGF to the IGF-1R upon interaction with ECM and cell surface molecules or #2) protease-mediated IGFBP-5

proteolysis. (D) IGF-independent action of IGFBP-5 via #1) its putative membrane receptor(s) or #2) interacting with co-factors in the nucleus.

When added in combination with IGF-I to cultured human
osteosarcoma cells, IGFBP-5 was found to inhibit IGF-I-induced
cell growth [(69); 29]. Likewise, stable overexpression of IGFBP-
5 was found to inhibit mouse osteosarcoma cell proliferation
(70). In mesenchymal stem cell cultures, exogenously added
IGFBP-5 and endogenously overexpressed IGFBP-5 inhibited
osteoblast differentiation, while an IGF-binding deficient IGFBP-
5 mutant did not have this effect (71). When IGFBP-5 was
overexpressed in transgenic mice under the control of a bone
specific osteocalcin promotor, osteoblast function was impaired,
leading to reduced trabecular bone volume and reduced mineral
densities (72). On the other hand, IGFBP-5 was also found
to potentiate IGF-I-induced DNA synthesis and differentiation
in bone cells (12, 13, 73, 74). The potentiating effects of
IGFBP-5 were attributed to its ability to bind to the bone
extracellular matrix (ECM) since IGFBP-5 has a high affinity
for hydroxyapatite (73, 75). Given that IGFBP-5 is already
abundantly expressed in bone cells, interpretations of data from
the addition of exogenous IGFBP-5 or overexpression of IGFBP-
5 are not always straightforward. Indeed, IGFBP-5 knockout
mice had minimal changes in bone (64). Another complication
is the presence of one or more IGFBP-5 protease(s) secreted
by these cells and the fact that some IGFBP-5 fragments can

exert IGF-independent actions in bone cells [(44, 76, 77), see
below]. Moreover, different IGFBP-5 fragments might have
different activities in osteosarcoma cells: while the N-terminal
domain fragment inhibited cell proliferation and induced
apoptosis, its C-terminal domain inhibited cell migration and
metastases (78).

Yin et al. (79) investigated the role of endogenous IGFBP-
5 using a siRNA based gene knockdown approach. They
found that knockdown of IGFBP-5 increased osteosarcoma cell
apoptosis. To further elucidate the mechanism underlying this
action of IGFBP-5, we recently generated an expression plasmid
encoding a siRNA resistant form of human IGFBP-5 (BP-5::GFP)
(Figure 3A). The introduction of the siRNA-resistant IGFBP-5
into IGFBP-5 knocked down cells rescued cells from apoptosis
(Figures 3B,D), suggesting that IGFBP-5 is both required and
sufficient for maintaining osteosarcoma cell survival. IGFBP-
5 is not only secreted but also localized in the nuclei and
the IGFBP-5 has nuclear activity (see below). To determine
the mechanism underlying IGFBP-5 actions, a ligand-binding
deficient (LBD) and a nuclear localization deficient (NLS) form
of IGFBP-5 (i.e., LBD::GFP and NLS::GFP) were engineered
in the BP-5::GFP plasmid background (Figure 3A). The NLS
mutant bound normally to IGF-1 but had greatly reduced
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FIGURE 3 | IGFBP-5 regulates osteosarcoma cell survival by binding to IGFs. (A) Schematic diagram showing the structure of IGFBP-5 and three siRNA resistant

IGFBP-5 expression constructs. Three point mutations were introduced into the target region of the siRNA to make the IGFBP-5 resistant to the RNA interference

(BP5::GFP). Since the mutations are on the third position of the codons, the amino acid sequence is unchanged. Nuclear localization mutations (NLS) and IGF ligand

binding deficient mutations (LBD) were further introduced into the siRNA resistant BP5::GFP plasmid, resulting in the NLS::GFP and LBD::GFP construct. (B) Left

panel: Western immunoblot showing the expression levels of the three siRNA resistant IGFBP-5::GFP proteins in transfected U2 osteosarcoma cells. Right panel:

Western ligand blot using DIG labeled IGF-I showing the ligand binding capability of BP5::GFP, NLS::GFP and LBD::GFP. Note the lack of IGF binding of LBD::GFP.

pRC is the empty GFP vector. (C) Percentage of transfected cells with nuclear GFP signal. (D) The three siRNA resistant constructs were co-transfected into human

U2 osteosarcoma cells with pSuper (the empty siRNA vector) or pSuper-BP5 (IGFBP-5 siRNA plasmid). The percentages of TUNEL positive cells were quantified.

*p < 0.05 compared with the pSuper control group.

nuclear localization. The LDB mutant failed to interact with
IGF-I, but showed similar nuclear localization (Figures 3B,C).
The introduction of NLS::GFP but not LBD::GFP into IGFBP-
5 knocked down human osteosarcoma cells rescued them from
apoptosis (Figure 3D). These results suggest that endogenous
IGFBP-5 regulates osteosarcoma cell survival by binding to IGFs
and enhancing IGF action.

Involution of the mammary gland is the process by which
a burst of apoptosis of mammary epithelial cells accompanied
by ECM remodeling returns the gland to its condition before
pregnancy (80). IGFBP-5 is upregulated in mammary epithelial

cells during involution, where it may inhibit IGF signaling
(32, 81, 82). This reduction of IGF signaling removes a
key survival signal and thereby promotes mammary cell
apoptosis (81). Indeed, IGFBP-5 knockout mice exhibited
delayed mammary gland involution, as well as an enhancement
in alveolar bud formation when ovariectomized mice were
regularly injected with ovarian hormones to strongly promote
mammary development (67). Transgenic overexpression of IGFs
in mammary tissue led to a delay in involution (83, 84).
Overexpression of IGFBP-5 in mammary gland resulted in a 50%
reduction in mammary cell number and milk production, along
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with a reduction in the activation of downstream IGF signaling,
an increase in expression of the proapoptotic caspase-3 and a
decrease in expression of antiapoptotic components (85). These
findings suggest that IGF-1 promotes alveolar bud formation
in normal pubertal mammary gland development and inhibits
mammary cell apoptosis, and that IGFBP-5 inhibits these IGF
actions (67). The upregulation of IGFBP-5 has been found to
promote apoptosis in other tissues as well, including neurons and
cardiomyocytes (86, 87).

Genetic studies in zebrafish have shown that IGFBP-5
potentiates IGF signaling in epithelial cells in vivo (88). One
of the two zebrafish IGFBP-5 paralogous genes, IGFBP-5a is
specifically expressed in a population of epithelial cells, known
as Ca2+ transporting ionocytes or NaR cells, whose role is to take
up Ca2+ from the aquatic environment to maintain body Ca2+

homeostasis (89–91). When environmental [Ca2+] becomes
scarce, these normally non-dividing and quiescent ionocytes
reenter the cell cycle and begin to proliferate, producing a much
larger capacity for Ca2+ uptake and allowing the embryos/larvae
to survive under these stressful conditions (90, 92). This
proliferative response is mediated by IGF signaling which is
activated exclusively in these cells in response to low Ca2+

stress (90, 92). Genetic deletion of IGFBP-5a prevented the
activation of IGF signaling in ionocytes under low [Ca2+] stress
(88). This prevented the adaptive proliferation of ionocytes, and
the IGFBP-5 null embryos were therefore unable to survive
under low [Ca2+] stress (88). Reintroduction of wild-type
zebrafish IGFBP5a in the mutant cells restores their adaptive
proliferation. However, a ligand binding deficient IGFBP5a
mutant had no such effect, suggesting that locally expressed
IGFBP-5a regulates epithelial cell proliferation by binding to
the IGF ligand and promoting IGF signaling under low [Ca2+]
stress. This action appears to be conserved in human cells
because knockdown of IGFBP-5 expression in human colon
carcinoma cells reduced their proliferative response to IGF-
2 stimulation (88). In vivo, expression of human IGFBP-5 in
mutant zebrafish increased ionocyte proliferation, whereas two
cancer-associated human IGFBP-5 mutations with impaired
IGF binding ability (93) had no effect (88). This type of
local regulation of IGF signaling by IGFBP-5 under certain
stressful and/or pathophysiological states may be a common
mechanism. It was reported that castration of male mice induces
local IGFBP-5 expression in prostate tissue and the elevated
IGFBP5 increases IGF action and promotes prostate cancer
progression (94, 95). Likewise, an increase in local IGFBP-5
expression has been shown in resection-induced adaptive colon
growth (96).

Another example of the IGF potentiating effects of IGFBP-5
is seen in muscle development, where IGF-2 has been found
to promote proliferation of myoblast cells as well as their
differentiation into mature muscle cells (97). Myoblasts secrete
IGF-2 during differentiation, which acts in an autocrine
fashion (98). Upregulation of IGFBP-5 preceded upregulation
of IGF-2 in these cells and knockdown of IGFBP-5 blocked
myogenic differentiation, suggesting that IGFBP-5 was
necessary to guide the activity of IGF signaling toward
differentiation (99). This action of IGFBP-5 required its

ability to bind to IGF-2 because an IGF-binding deficient
form of IGFBP-5 had no such effect (99). IGFBP-5 was found
incorporated into the ECM in cultures of fetal fibroblasts,
and ECM binding facilitated its potentiation of the growth
promoting effects of IGF on these cells (26). In porcine
vascular smooth muscle cells, IGFBP-5 potentiated the positive
effect of IGF signaling on DNA synthesis, whereas IGFBP-
4 had an inhibitory effect on IGF action (35). In a mouse
model of prostate cancer, upregulation of IGFBP-5 following
androgen withdrawal by castration was found to potentiate IGF
signaling in vivo, which led to faster progression to androgen
dependence (95).

EMERGING ROLE OF IGFBP-5 AS A
MOLECULAR SWITCH THAT TURNS ON
OR OFF IGF SIGNALING

As discussed above, IGFBP-5 has been shown to be able to
inhibit and potentiate IGF signaling in different cell types
and/or contexts. When IGFBP-5 was overexpressed in vivo
in mice, opposite effects were seen on bone formation rate
in the periosteum and endosteum suggesting opposite effects
on osteoblast proliferation or survival in these regions (100).
In vascular smooth muscle cells, IGFBP-5 inhibited IGF-1-
dependent DNA synthesis, while it potentiated IGF-1-dependent
cell migration (101). How can these seemingly opposite effects
be explained? A recent study by Liu et al. (47) has elucidated
that while IGFBP-5 inhibits IGF signaling in zebrafish Ca2+

transporting ionocytes under normal conditions, it potentiates
IGF signaling under low [Ca2+] stress. In addition to IGFBP-
5a, these ionocytes highly express Papp-aa, a zebrafish homolog
of the IGFBP protease PAPP-A. Treatment of fish with
ZnCl2 or batimastat, two metalloproteinase inhibitors (102),
inhibited the low [Ca2+] stress-induced ionocyte proliferation,
suggesting that Papp-aa protease activity is critical. Genetic
deletion of Papp-aa abolished low [Ca2+]-induced ionocyte
proliferation, while it had little effect on ionocyte proliferation
when fish were kept in normal conditions (47). Loss of
Papp-aa expression or activity resulted in diminished IGF1
receptor-mediated Akt-Tor signaling in ionocytes in response
to low [Ca2+] stress (47). This phenotype was similar to the
igfbp5a−/− mutant fish (88). Biochemically, Papp-aa cleaved
IGFBP-5a. Re-introduction of wild-type Papp-aa rescued cell
proliferation and IGF signaling, while a protease deficient Papp-
aa mutant could not rescue the ionocyte proliferative response
(47). Because igfbp5a mRNA levels in each ionocyte did not
change under different [Ca2+], Liu et al. (47) speculated that
a [Ca2+]-dependent post-transcriptional regulatory mechanisms
must block Papp-aa proteolytic activity when [Ca2+] is
sufficient (Figure 4). This idea was supported by the fact
that treatment of fish with NBI-31772, an aptamer that
can displace and release IGF from the IGF/IGFBP complex
(103) promoted ionocyte proliferation under normal [Ca2+].
NBI-31772 treatment significantly also increased the levels
of phospho-Akt and phospho-pS6 activity in ionocytes (47).
These data suggest that latent IGF is present and that
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FIGURE 4 | IGFBP-5 is part of a molecular switch that turns IGF signaling on or off in target cells. Zebrafish IGFBP-5a and the conserved zinc metalloproteinase

Papp-aa are expressed in ionocytes. Left panel: under normal [Ca2+] conditions, Papp-a proteolysis activity is low. Igfbp5a is intact and it inhibits IGF signaling in

these cells by binding to IGFs and prevents their binding to the IGF1R in ionocytes. Right panel: under low [Ca2+] conditions, Papp-a activity is increased. This

increases IGFBP-5a proteolytic cleavage and releases IGFs from the IGFBP-5a/IGF complex to activate IGF-1 receptor-mediated PI3 kinase-Akt-Tor signaling and

promotes ionocytes to proliferate.

the limiting step under normal [Ca2+] is the release of
bioavailable IGFs.

Bony fish produce a hormone called stanniocalcin (STC) in
response to high serum [Ca2+] and it inhibits Ca2+ uptake (104).
The mammalian STC homologs STC-1 and STC-2 were found
to strongly inhibit PAPP-A proteolytic activity (105, 106). In
zebrafish, the levels of STC-1 mRNA are regulated by Ca2+ levels
(107). Although it remains to be determinedwhether endogenous
zebrafish STC1 regulates Papp-aa activity in ionocytes, over
expression of STC-1 and STC-2 in ionocytes in zebrafish
inhibited Papp-aa-dependent activation of ionocyte proliferation
(47). Based on these findings, it was postulated that Papp-aa-
mediated IGFBP-5a proteolysis functions as a [Ca2+]-regulated
molecular switch to conditionally activate IGF signaling in
ionocytes (Figure 4). Under normal [Ca2+] conditions, Papp-
a proteolysis activity is inhibited and Igfbp5a is mostly intact.
The intact IGFBP-5a inhibits IGF action by binding to IGFs and
preventing their binding to the IGF1 receptor. Under low [Ca2+]
conditions, however, Papp-a activity is increased, possibly due
to changes in STC1 levels. This increases IGFBP-5a proteolytic
cleavage and releases IGFs from the Igfbp5a/IGF complex. This
in turn activates IGF-1 receptor-mediated PI3 kinase-Akt-Tor
signaling and promotes ionocyte proliferation (47).

IGF-INDEPENDENT ACTIONS OF IGFBP-5

A number of reports have suggested that IGFBP-5 can act
via IGF-independent mechanisms (Figure 2D). As discussed
above, overexpression of IGFBP-5 in mice resulted in significant
prenatal and postnatal whole body growth inhibition, which is
consistent with the idea that IGFBPs inhibit IGF signaling by
inhibiting IGF-IGF1R binding (66). However, overexpression
of an IGFBP-5 mutant that lacks binding affinity for IGF also

produced significant inhibition of growth, despite the lack of
any effects on the IGF signaling pathway (108). This supports
the notion that that IGFBP-5 can inhibit growth via an IGF-
independent mechanism. Based on in vitro studies, IGFBP-5 has
been suggested as a bone growth factor and exerts biological
activities that are independent of IGFs (109). A number of
early reports have suggested that IGFBP-5 binds to its own cell
surface receptor, and indeed, IGFBP-3, the most closely related
paralog of IGFBP-5, has been found to interact functionally
with the type V transforming growth factor beta receptor (LRP-
1), which may mediate the IGF-independent growth inhibitory
effect (110–112). IGF signaling is crucial for skeletal growth,
and both IGF-1 and IGFBPs, including IGFBP-5 are expressed
in bone tissue. Binding of IGFBP-5 to sites on the bone cell
surface was found to increase proliferation even in the presence
of IGF analogs that have 100-fold reduced binding affinity
for IGFBPs, suggesting that IGF binding was not required for
this action (73). It was suggested that IGFBP-5 may bind to
specific receptors on the surface of osteoblastic cells (113).
However, to date, no specific IGFBP-5 cell surface receptor
has been identified molecularly. But functional interactions
with some cell surface proteins have been reported. IGFBP-5
interacted directly with alpha2beta1 integrin on human breast
cancer cells in vitro and promoted survival and adhesion but
inhibited migration (114). Some IGFBP-5 proteolytic fragments
were reported to exert IGF-independent actions in cultured
bone cells [(76, 77); 44]. In vascular smooth muscle cells,
IGFBP-5 was shown to promote cell migration by an IGF-
independent mechanism that was facilitated by binding to cell
surface proteoglycans (101).

IGFBP-5 contains a conserved nuclear localization sequence
(NLS) motif (115), and was shown to be imported in to the
nucleus in vitro via an importin beta-dependent pathway (23). In
addition to its functional NLS, IGFBP-5 was also found to possess
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transactivation activity in cell culture experiments (24, 116).
IGFBP transactivation and nuclear localization are also found
across species ranging from zebrafish to the cephalochordate
amphioxus (117). Regulation of target genes by nuclear IGFBP-
5 in vivo, and possible physiological roles of this activity have
yet to be elucidated, but the conservation of IGFBP nuclear
transactivation activity across chordate evolutionary history
lends credence to the idea that such physiological roles may
exist. A yeast two hybrid screen for nuclear protein-protein
interaction partners found that IGFBP-5 interacts with nuclear
protein FHL2 in vitro, but the physiological relevance of this
interaction is unclear (118). IGFBP-5 was also found to interact
in the nuclei of osteoblast-like cells in vitro with the vitamin D
receptor (119). This interaction reduced the cellular response to
1,25-dihydroxyvitamin D3 which normally promotes cell cycle
exit, differentiation, and expression of bone matrix proteins
in these cells, and this effect was seen only when the cells
produced IGFBP-5 endogenously and not when it was added
exogenously (119).

IGFBP-5 IN PATHOLOGY AND DISEASE
STATES

IGFBP-5 has been found to be altered in various disease states
(120–123), providing the possibility of using this protein as a
marker of disease progression, and hinting that altered IGFBP-
5 expression may have pathophysiological relevance. Altered
levels of IGFBP-5 have been detected in many types of cancer.
Ding et al. (93) have identified over 20 non-synonymous IGFBP-
5 mutations in a variety of cancer cell lines. These include
frame-shift and non-sense mutations. Several of them, including
G223R and W242∗ were speculated to have lost IGF binding
ability. IGFBP-5 has been found to indicate a poor prognosis
in patients with several types of cancer (124). IGFBP-5 levels
are significantly elevated in osteosarcoma cells that exhibit high
metastatic potential (125, 126). However, others found that
IGFBP-5 expression inhibited osteosarcoma tumor growth and
metastasis (78, 127). In gastric cancer, upregulation of IGFBP-5
was found to partially mediate the action of the PBX/Knotted
Homeobox 2 tumor suppressor (128). In papillary thyroid
carcinoma, IGFBP-5 was reported to promote cell growth, and
miR-204-5p, which inhibits growth by suppressing IGFBP-5,
was downregulated in these cells (39). In MCF-7 breast cancer
cells, IGFBP-5 promoted cell survival and adhesion via an IGF-
independent mechanism (114). A genome wide association study
found an SNP allele associated with reduced IGFBP-5 expression
and this SNP conferred increased susceptibility to breast cancer,
which is consistent with the role of IGFBP-5 in mammary gland
discussed above (129). IGFBP-5 has been found to both inhibit
and promote cancer cell growth in vitro (130–135). It is possible
that the expression of IGFBP-5 protease(s) may be important for
determining the context-specific effects of IGFBP-5.

IGFBP-5 may play a role in the pathogenesis of
atherosclerosis, which is a process of inflammatory tissue
remodeling within the matrix of the arterial wall that is the
top cause of cardiovascular disease and aging-related mortality

in humans (136). A cross-sectional case-control study found
a positive association between circulating IGFBP-5 levels and
coronary heart disease (137). Overexpression of PAPP-A,
whose only known substrates are IGFBP-2, -4, and -5, in the
arterial smooth muscle of mice enhanced the progression of
atherosclerotic lesion development (138). PAPP-A knockout
mice are protected from atherosclerosis as well (139). Conflicting
results have been found in mouse models in which other
components of the IGF system have been manipulated, and there
are indications that circulating IGFmay be protective rather than
pro-atherosclerotic (140). Local IGF signaling plays an important
role in atherosclerosis by stimulating the proliferation of vascular
smooth muscle cells and their migration into the arterial intima
where they contribute to the formation of atherosclerotic
plaques (141–143). Local IGF signaling in the arterial wall
and in atherosclerotic plaques is regulated by multiple IGFBPs
including IGFBP-5 (101, 144). IGFBP-2 and -4 inhibit IGF
signaling in VSMCs but IGFBP-5 enhances it (35, 101). IGFBP-5
expression is upregulated in atherosclerotic plaques and IGFBP-5
protein is found in large quantities associated with ECM within
atherosclerotic plaques (56, 145). IGFBP-5 is known to bind
to ECM components PAI-1 and osteopontin, which have both
been found in atherosclerotic plaques and have been shown to
promote atherosclerosis in loss of function studies (28, 146, 147).
ECM associated IGFBP-5 potentiates IGF signaling, and IGF
signaling can upregulate expression of IGFBP-5, so it is possible
that a positive feedback loop could contribute to atherogenesis
(28, 143).

IGFBP-5 was shown to be upregulated in lung tissue from
patients with idiopathic pulmonary fibrosis (IPF), and exogenous
IGFBP-5 also stimulates the secretion of ECM components by
IPF lung fibroblasts (148). This effect was independent of IGF-
binding but also did not require translocation into the nucleus
(149). Exogenous and endogenously expressed IGFBP-5 was
found to increase the expression of ECM component genes and
pro-fibrotic genes in primary human IPF fibroblasts in vitro
(150). IGFBP-5 was also shown to increase expression of its own
gene in these cells, leading to a positive feedback loop that may
play a role in IPF pathogenesis (150).

The role of IGFBP-5 in both atherosclerosis and fibrosis
may be linked to the induction of cellular senescence (145,
151). Aged artery walls are more susceptible to atherosclerosis
and hypertension which may be related to accumulation of
senescent cells and the resultant compositional changes in the
subendothelial matrix (136). The accumulation of senescent cells
in the arteries of children with the premature aging disease
Hutchinson-Gilford Progeria seems to be the cause of their
severe accelerated atherosclerosis and premature death from
resulting stroke or heart attack before age 20 (152, 153). Senescent
cells exhibit a senescence-associated secretory phenotype that
is characterized by excessive production of ECM components,
and this may play a role in tissue fibrosis (122). IGFBP-5 was
upregulated in senescent human umbilical vein endothelial cells
and knock down of IGFBP-5 partially reversed the senescence,
suggesting a role for IGFBP-5 in promoting cellular senescence
(145). The accumulation of senescent cells may play a causal
role in many aspects of the vertebrate aging process, which is
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known to be promoted by IGF signaling (136). Future research
will determine the extent to which IGFBP-5 may be involved in
linking IGF signaling to aging-related changes in tissues and the
pathology of aging related diseases.

CONCLUSIONS AND PROSPECTS

IGFBP-5 is a multifunctional protein that is capable of regulating
IGF signaling both positively and negatively in different
tissues and cells. It can also promote, or inhibit cell survival,
proliferation, migration, etc. via mechanisms independent of IGF
binding. The range of reported IGFBP-5 actions in different cell
types can be daunting to understand. There are several possible
explanations for the plethora of IGFBP-5 activities: (1) many
actions of IGFBP-5 have been reported only in immortalized
cell lines in vitro, and as such, they can only be accepted as
potential actions with uncertain physiological relevance until
they are confirmed in vivo; (2) different study methodologies
may demonstrate opposite findings as result of a downstream
effects depending sensitively on the dose of IGFBP-5, i.e., a
small amount IGFBP-5 may potentiate IGF signaling while a
large enough excess of IGFBP-5 may switch to inhibition; (3)
in some cases, exogenous and endogenous IGFBP-5 may act
through different mechanisms, possibly as a result of different
posttranslational modifications, etc. (79); and (4) IGFBP-5 can
act as the pivot point in a switch between regulated states of
inhibition and activation of downstream signaling (Figure 4). For
instance, IGFBP-5a inhibits IGF signaling in zebrafish ionocytes
under normal physiological medium, while it potentiates IGF
signaling in the same cells when it is proteolytically cleaved by
Papp-aa under low [Ca2+] stress (47).

We will not understand why IGFBP-5 has IGF-independent
actions until these actions are fully elucidated in vivo. However,
it is worth considering that some of these actions may have
arisen as a result of the opportunistic nature of evolution. If an
ancestral IGFBP was originally involved mainly in conditionally
regulating the availability of IGFs to their receptors, then the
context-specific inducible expression and secretion of IGFBP-
5 would have presented a cue that could easily be coopted
by evolution in order to trigger other adaptive responses to
those same conditions. It is also worth considering that the
one IGFBP gene present in the genome of amphioxus contains
a nuclear localization sequence and transactivation activity,

possibly indicating an ancestral role for IGF-independent
functions (117). Further studies are needed in order to determine
the circumstances in which this activity may play a role
in vivo.

The paradox of IGFBPs in general, and IGFBP-5 in particular,
is that they each seem to have many unique and important roles,
and yet, loss of function experiments in model organisms have
generally found either no phenotype or very minimal phenotypes
when IGFBPs are deleted (11). This is especially puzzling for
IGFBP-5 because it is the most evolutionarily conserved among
all of the IGFBPs and yet IGFBP-5 knockout mice had normal
growth, organ weights and body composition, and the only
reported phenotype was a delay in mammary gland involution

(67). But despite the apparent dispensability of IGFBP-5, no
vertebrate species is known to have lost this gene. The emerging
explanation for this apparent paradox is that IGFBP-5 acts mainly
as conditional modulator of IGF signaling which confers an
evolutionary advantage by facilitating the rapid adaptation of
cell population growth rates to the needs of the environment.
It is possible that we are not aware of all of the specific cases in
which IGFBP-5 may conditionally act in different species. It is
expected that these cases would not arise in laboratory conditions
but would be much more likely to occur in response to the
vicissitudes of life in the natural environment. The requirement
of zebrafish IGFBP-5a for survival under low [Ca2+] stress (88)
provides a paradigmatic example of the kind of circumstances in
which previously undiscovered IGFBP-5 functions may be found.
Future studies will clarify whether there are in fact other sets of
conditions in which IGFBP-5 activity is required for survival.
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The insulin-like growth factor (IGF) family plays key roles in growth and development.

In the cornea, IGF family members have been implicated in proliferation, differentiation,

and migration, critical events that maintain a smooth refracting surface that is essential

for vision. The IGF family is composed of multiple ligands, receptors, and ligand binding

proteins. Expression of IGF type 1 receptor (IGF-1R), IGF type 2 receptor (IGF-2R), and

insulin receptor (INSR) in the cornea has been well characterized, including the presence

of the IGF-1R and INSR hybrid (Hybrid-R) in the corneal epithelium. Recent data also

indicates that each of these receptors display unique intracellular localization. Thus,

in addition to canonical ligand binding at the plasma membrane and the initiation of

downstream signaling cascades, IGF-1R, INSR, and Hybrid-R also function to regulate

mitochondrial stability and nuclear gene expression. IGF-1 and IGF-2, two of three

principal ligands, are polypeptide growth factors that function in all cellular layers of the

cornea. Unlike IGF-1 and IGF-2, the hormone insulin plays a unique role in the cornea,

different from many other tissues in the body. In the corneal epithelium, insulin is not

required for glucose uptake, due to constitutive activation of the glucose transporter,

GLUT1. However, insulin is needed for the regulation of metabolism, circadian rhythm,

autophagy, proliferation, and migration after wounding. There is conflicting evidence

regarding expression of the six IGF-binding proteins (IGFBPs), which function primarily

to sequester IGF ligands. Within the cornea, IGFBP-2 and IGFBP-3 have identified roles

in tissue homeostasis. While IGFBP-3 regulates growth control and intracellular receptor

localization in the corneal epithelium, both IGFBP-2 and IGFBP-3 function in corneal

fibroblast differentiation and myofibroblast proliferation, key events in stromal wound

healing. IGFBP-2 has also been linked to cellular overgrowth in pterygium. There is a

clear role for IGF family members in regulating tissue homeostasis in the cornea. This

review summarizes what is known regarding the function of IGF and related proteins

in corneal development, during wound healing, and in the pathophysiology of disease.

Finally, we highlight key areas of research that are in need of future study.

Keywords: cornea, IGF-1, IGF-1R, INSR, Hybrid-R, IGFBP-2, IGFBP-3
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INTRODUCTION

The cornea constitutes the outer covering of the eye and
provides two thirds of the refractive power necessary for vision.
It is composed of five layers including a stratified epithelium,
Bowman’s membrane, the collagenous stroma, Descemet’s
membrane, and the single cell layered endothelium (Figure 1A).
Corneal innervation is supplied by the ophthalmic branch of the
trigeminal nerve. While corneal innervation is described in detail
elsewhere and is beyond the scope of this review, it is important
to note that the corneal epithelium is the highest innervated
structure in the body due to the high density of intraepithelial
nerve terminals (Figure 1B) (4). This, along with the tight barrier
function of the epithelium, plays a major role in protecting
intraocular structures from the outside environment. In addition
to protection, the cornea must maintain a smooth, transparent,
and avascular appearance to allow for the passage of light. The
avascular nature of the cornea is one of the cornea’s many unique
properties. Other important properties include the peripheral
location of stem cells in the corneal limbus, the paired movement
of daughter cells in the central cornea from the basal layer to the
surface epithelium, the epithelium’s exceedingly high glycogen
content, and the precise organization of collagen lamellae that
facilitates transparency.

Corneal wound healing is complex and requires a unique
orchestration of events including resurfacing of the corneal
epithelium, deposition of basement membrane, and regeneration
of the extracellular matrix. At the level of the epithelium,
immediately upon wounding, the basement membrane is

FIGURE 1 | The cornea in health and disease. (A) Anatomical schematic showing all five cell layers in the cornea. A five to seven stratified layer of epithelial cells

(basal, wing, and squamous) composes the corneal epithelium. Keratocytes, normally quiescent cells, reside in the corneal stroma which consists of intertwining

collagen fibrils. Finally, there is a single endothelial cell layer on the innermost layer of the cornea that faces the interior of the eye and is responsible for maintaining

stromal hydration. Figure taken from Polisetti et al. (1). (B) Maximum intensity projection of nerves labeled with neuronal beta tubulin (green) in the mouse cornea in

situ. Epithelial nuclei are counterstained with propidium iodide in red. Nerve fibers that run among the basal layer of the epithelium and just beneath it form the

subbasal nerve plexus (arrow). Intra-terminal nerve fibers branch perpendicularly from the subbasal nerve plexus and run throughout the corneal epithelium to the

surface of the eye (arrowhead). Figure taken from Cai et al. (2). (C) A cornea with diabetic keratopathy. Note the large central opacification and significant

neovascularization. Image taken from Matsumoto et al. (3).

disassembled and epithelial cells surrounding the wound margin
migrate as a sheet to cover the wound. In the presence of
an incisional wound, epithelial cells migrate down into the
wounded stroma. Once the wounded area is fully covered
by these flattened epithelial cells, proliferation of limbal
and transient amplifying cells ensues, followed by migration,
stratification, the re-establishment of junctional proteins, and
the restoration of the basement membrane. When wounds
extend beyond the epithelium into the corneal stroma, cytokines
released by epithelial cells and present in tears transform the
normally quiescent keratocytes into fibroblasts that migrate
into the wounded area. This is followed by their sequential
transformation into myofibroblasts, strong contractile cells that
function to close the wound. Ultimately, over time, keratocytes
repopulate, and remodel the extracellular matrix. However,
abnormal extracellular matrix often persists, resulting in corneal
fibrosis. Unlike the corneal epithelium, when damaged, the
corneal endothelium does not proliferate to close a wound.
Instead, endothelial cells flatten and spread, taking on a
polymorphic appearance.

Many systemic diseases, such as diabetes, can dramatically
alter the normal biology of the cornea, resulting in a thinned,
dysplastic epithelium with damaged corneal nerves, and cell loss
in the endothelial monolayer, the latter of which drives corneal
swelling. Most notably, since diabetes can negatively impact all
layers of the cornea, impaired corneal wound healing can present
a major clinical problem that is often refractory to therapy. While
greatly under-recognized, corneal complications occur in 40–
70% of diabetics (5). These complications, which range frommild
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to severe, can result in chronic and painful corneal complications,
predispose the cornea to infection, and in advanced stages, lead
to neurotrophic disease and blindness (Figure 1C) (6, 7). The
importance of proper growth factor signaling in the normal and
diabetic cornea is well-established. The focus of this review is to
chronicle what is known about the localization and function of
insulin-like growth factor (IGF) family members in the cornea
and to highlight critical areas of investigation for future studies.

THE IGF SYSTEM

The insulin-like growth factor (IGF) system consists of two
peptide ligands, IGF-1 and IGF-2, and the hormone insulin
(Figure 2). These extracellular ligands activate the IGF Type 1
receptor (IGF-1R), the IGF type 2 receptor (IGF-2), and insulin
receptor (INSR), all with varying affinities. The system is further
regulated at the extracellular level by the presence of IGF-binding
proteins (IGFBPs). There are six known IGFBPs. Historically,
IGFBPs function to bind IGF-1 to prolong its half-life in
circulation and to prevent IGF-1 induced activation of IGF-1R.
This is mediated by proteolytic enzymes that function to cleave
IGFBPs, thereby regulating the amount of bioavailable IGF-1. To
date, two known proteases have been identified. They include
the pregnancy-associated plasma proteins, PAPP-A, and PAPP-
A2, which are inhibited by the stanniocalcins (8, 9). In addition,
the ligands, as well as binding proteins, have been shown to
interact with IGF family receptors to exert unique effects that
are cell and tissue dependent (10, 11). IGF-1 is well-known for
its role in growth and development in physiologically healthy
tissues (12). In the cornea, IGF-1R, IGF-2R, and INSR and their
canonical ligands have been studied in the epithelium, stroma,
and endothelium. As seen in other tissues, these works have
demonstrated key biological roles for members of the IGF family
in proliferation, homeostasis, differentiation, and wound healing.

FIGURE 2 | IGF/insulin-IGFBP family members in the corneal epithelium.

Receptors include insulin receptor A and B (INSRA and INSRB), IGF type 1

and type 2 receptors (IGF1-R and IGF-2R) and the hybrid receptors

(INSRA/INSRB, IGF-1R/INSRA, and IGF1-R/INSRB). Insulin binds with higher

affinity to INSRB and the hybrid receptor (IGF-1R/INSRB), predominantly

activating metabolic pathways. IGF-1 and IGF-2 bind with higher affinity to

IGF-1R and IGF-1R/INSRA, activating mitogenic signaling. IGF-2 also binds

the scavenger receptor, IGF-2R. IGF binding protein-3 (IGFBP-3) sequesters

IGF-1 and IGF-2, preventing them from binding to their cognate receptors.

CHARACTERIZATION OF IGF-1R, IGF-2R,
AND INSR IN THE HUMAN CORNEA

Structurally, IGF-1R and INSR are transmembrane tetrameric
glycoproteins comprised of two transmembrane beta subunits,
each containing an intracellular tyrosine kinase domain, and
two alpha subunits, each containing an extracellular ligand
binding domain (13). In contrast to these receptors, IGF-
2R is a monomeric transmembrane protein with 15 different
extracellular domains (14). INSR differs from IGF-1R and IGF-
2R in that it undergoes alternative splicing at exon 11 resulting
in two different isoforms, INSRA and INSRB. Each isoform is
thought to play distinct roles in development and metabolism.
Expression of each also mediates affinity for insulin, kinase
activity, and may contribute to the rate of internalization and
receptor recycling.

INSR was first identified in the cornea by Naeser in the late
90’s (15). In that work, he used immunohistochemical techniques
to stain for INSR in donor human corneas with and without
diabetic retinopathy. He found strong staining for INSR in
the corneal epithelium, stromal keratocytes, and endothelium.
Staining was unchanged in diabetes. Rocha and colleagues also
used immunohistochemical techniques to show that INSR was
indeed expressed in the corneal epithelium (16). In their study,
INSR localized to the cytoplasm and plasmamembrane primarily
in the wing and superficial cell layers. Varied expression was
evident in the basal and intermediate suprabasal cell layers.While
not reported, INSR appeared to be expressed in nuclei of corneal
epithelial cells. More recent work by our laboratory has used
multiple complementary approaches to confirm expression of
INSR in corneal epithelial cells and to define the intracellular
localization of this protein (as discussed in greater detail later in
this manuscript).

Nakamura first used ligand-binding assays to confirm the
presence of IGF-1R in corneal epithelial cells and showed that
IGF-1R had the greatest affinity for IGF-1, followed by IGF-
2, and then insulin (17). As they did for INSR, Rocha also
stained for the presence of IGF-1R in the corneal epithelium.
Using an antibody that recognizes the extracellular alpha subunit
of IGF-1R, they demonstrated robust staining at the plasma
membrane throughout all epithelial layers. Subsequent studies
by our laboratory have further characterized the expression and
localization of IGF-1R in cultured corneal epithelia (11, 18, 19).
Using antibodies that recognize both the alpha and beta subunits
of IGF-1R, we found that the full mature receptor localized
to the nucleus of corneal epithelial cells. We confirmed this
using subcellular fractionation and immunoblotting assays. We
further found that IGF-1R interacts with E-cadherin at areas
of cell-cell junctions (18). Interactions between IGF-1R and E-
cadherin have been previously reported in tumor biology where
they are thought to regulate tumor invasion and in Madin
Darby canine kidney cells (20, 21). In this latter cell type,
is was shown that binding to E-cadherin negatively regulated
ligand-induced activation of IGF-1R (20). The significance of
the interaction between IGF-1R and E-cadherin in the corneal
epithelium is unknown. Consistent with a growth inhibitory role,
we postulate that E-cadherin binding is necessary to attenuate
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IGF-1R activation and downstream signaling events that mediate
proliferation and growth (18).

It has long been known that IGF-1R and INSR are highly
homologous receptors, with 45–65% homology in the amino acid
sequence in the alpha subunit and 84% homology in the beta
subunit (22). Due to this high level of homology, IGF-1R and
INSR can hybridize to form an IGF-1R/INSR hybrid (Hybrid-
R). Hybrid-Rs can form with either INSR isoform. Hybrid-R is
expressed in the corneal epithelium (19). Using dithiothreitol to
cleave the class 1 disulfide bonds and separate IGF-1R alpha/beta
subunits from INSR alpha/beta subunits following stimulation
with IGF-1 or insulin, we confirmed that Hybrid-R is activated
by IGF-1 and not insulin in corneal epithelial cells. Since INSR
isoform A is predominantly activated by IGF-1 to promote IGF-
1 signaling, whereas INSR isoform B is predominantly activated
by insulin and functions to attenuate IGF-1 signaling, our data
suggest that in the corneal epithelium, Hybrid-R is composed of
IGF-1R and INSR isoform A (19). This finding remains to be
confirmed at a protein level.

Bohnsack and colleagues evaluated IGF-2R distribution in
human, murine, and porcine corneas. In their study, they found
that IGF-2R was present throughout all cell layers of the cornea
(23). In murine and porcine models, expression was primarily
localized to the basal epithelium. After wounding, they reported
an 11-fold increase in IGF-2R in the stroma and epithelium.
The increase in IGF-2R was associated with an increase in
differentiation of fibroblasts to myofibroblasts, demonstrated
by an increase in α-SMA expression, which was subsequently
blocked by shRNA knockdown of IGF-2R. Likewise, when
keratocytes were cultured in serum free media and treated with
TGF-beta to induce myofibroblast differentiation in vitro, there
was a similar increase in IGF-2R expression in myofibroblasts,
at the mRNA and protein level. Together, these findings suggest a
potential role for IGF-2R inmediating fibroblast to myofibroblast
transformation during wound healing.

INTRACELLULAR IGF-1R, INSR, AND
HYBRID-R

More recently, non-canonical roles for IGF-1R and INSR have
been suggested (24). In their seminal paper, Sehat et al. used
human melanoma (DFB) and leiomysocarcoma (SKUT-1) cells
along with human embryonic kidney cells (HEK 293) to first
describe the nuclear localization of IGF-1R (25). Using a
serum-based model, they demonstrated that serum starvation
depletes IGF-1R from the nucleus and that treatment with IGF-
1 induced translocation of IGF-1R from the plasma membrane
to the nucleus. They further showed that translocation to the
nucleus was mediated by SUMOylation of IGF-1R by the SUMO
modifier SUMO-1. It has since been shown that nuclear IGF-
1R interacts with several different nuclear proteins and functions
to regulate the cell cycle, DNA damage responses, invasion, and
metastasis (26–29).

Like IGF-1R, studies have also reported that INSR localizes
to the nucleus. In the late 70’s, Goldfine and colleagues were
the first to demonstrate that insulin bound to isolated nuclei in

vitro (30). They further showed that treatment of isolated nuclei
with trypsin prevented insulin binding. The authors concluded
that a hormone receptor modulated by insulin was present in rat
liver nuclei. Just over a decade later, a second group refuted these
earlier findings. In their study, Soler et al. used a combination
of in vitro techniques to investigate a potential nuclear localized
receptor (31). In contrast to the prior work, they concluded
that once dissociated from INSR, the biologically intact and
active hormone accumulated in the nucleus and associated with
heterochromatin. Until recently, few studies have followed up on
the potential for a nuclear-localized INSR. In rat hepatocytes,
INSR has been shown to translocate to the nucleus where it
regulates calcium signals and proliferation (32). Hancock and
colleagues have also investigated the role of INSR in the nucleus
of mouse liver cells (33). In their studies, they found that INSR
directly associated with genome-wide promoters and regulates
gene expression through interactions with RNA polymerase II.

Consistent with these studies, we have found that both IGF-1R
and INSR localize to the nucleus of corneal epithelial cells (18).
Unlike prior studies however, we have found that the nuclear
localized receptor is Hybrid-R (19). We have further shown that
Hybrid-R nuclear translocation occurs in response to growth
factor withdrawal and is not induced by stimulation with IGF-1.
Instead, expression and localization of each receptor is mediated
by insulin (11). In the absence of insulin, expression of IGF-
1R and INSR is upregulated and the receptors accumulate as
Hybrid-R in the corneal epithelial cell nucleus. This is mediated
through SUMOylation by the SUMO modifier SUMO2/3. The
ability of insulin levels to regulate Hybrid-R nuclear translocation
is due to its ability to regulate extracellular levels of IGFBP-3.
Studies in our laboratory which decrease expression of IGFPB-3
using siRNA knockdown followed by the addition of exogenous
recombinant human IGFBP-3 not only demonstrate robust
translocation to the nucleus, but also drive receptor accumulation
in the insoluble nuclear fraction, indicating association with
DNA (11). While we have been unable to detect the presence
of IGF-1R alone in the nucleus, we have not yet ruled out the
presence of INSR not complexed with IGF-1R.

Our more recent studies on the function of intracellular IGF-
1R, INSR, and Hybrid-R have led to the novel observation
that INSR and IGF-1R are present in mitochondria (34). Using
mitochondrial fractionation assays, we have confirmed that IGF-
1R and INSR localize tomitochondria and that expression of both
accumulates during stress induced by growth factor withdrawal.
Using reciprocal immunoprecipitation, we have further found
that INSR and IGF-1R bind the voltage gated anion channel,
VDAC1. Importantly, when we disrupt the interaction between
INSR and VDAC1 using INSR knockdown, we see robust
mitochondrial ring/donut shaped fragmentation. This finding
indicates that the novel interaction between INSR and VDAC1
is important for mediating mitochondrial stability (34).

INSULIN AND GLUCOSE UPTAKE

Insulin is a peptide hormone that functions to mediate metabolic
effects in addition to growth and proliferation. Structurally,
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bioactive insulin presents in humans as a monomer consisting
of two chains: an A-chain and B-chain, joined by disulfide bonds
(35, 36). Insulin is produced by beta cells in the pancreas, where it
is stored and secreted in response to high levels of blood glucose
(37). In most cell types and tissues, insulin is required for glucose
uptake. In tissues such as skeletal muscle, adipose tissue, and
lungs, insulin binds INSR and promotes the uptake of glucose
from circulation through glucose transporter-4 (GLUT4) (38). In
certain tissues however, such as the corneal epithelium, glucose
uptake is insulin independent, meaning that corneal epithelial
cells do not require insulin for glucose uptake (Figures 3A,B)
(39, 40). Instead, glucose uptake is mediated by a constitutively
active glucose transporter, GLUT1 (41). This allows for the
continuous passage of glucose into cells (39). In conditions where
the metabolic demand is increased, such as following a wound,
the corneal epithelium responds by increasing the number of
GLUT1 transporters in order to provide sufficient energy for
proliferation, migration, and survival (42).

Using a rat corneal wound model, Takahashi and colleagues
found that levels of both GLUT1 mRNA and protein were
increased in the corneal epithelium as early as 4 h after wounding,
peaking at 2 days post-injury (43). They hypothesized that
the increase in GLUT1 was necessary to facilitate increased
glucose uptake and provide fuel to promote wound healing. In
a subsequent study by the same group, they used streptozotocin,
a drug known to kill insulin-producing pancreatic beta cells,
to induce Type 1 diabetes mellitus. They then examined
GLUT1 expression before and after wound healing. They
found that in response to the wound, GLUT1 was similarly
increased in both diabetic and control groups compared to the
non-wounded controls. However, there was no difference in
receptor expression prior to wounding between diabetic and
non-diabetic animals. Together, their findings indicated that
GLUT1 expression had no impact on delayed corneal wound
healing in diabetes. This work is in agreement with early
studies done by Kumagai et al. that also failed to show any

FIGURE 3 | Corneal epithelial cells are “insulin insensitive” and do not require insulin for glucose uptake. (A) Glucose content (micromoles per gram ± SEM) of corneal

epithelial cells after incubation with 35mM glucose in TC-199 with and without insulin. (B) Corneal epithelial cell sorbitol (micromoles per gram ± SEM) content after

incubation with 35mM glucose in TC-199 with and without insulin. A&B adapted from Friend et al. (39). (C) Radioimmunoassay (RIA) measurement of mean insulin

levels present in tears of fasted vs. fed human subjects, P < 0.05. Adapted from Rocha et al. (16). *P < 0.05. (D) Insulin levels in tears measured by RIA over time

after systemic administration of glucose (1 g/kg body wt) in rats. Adapted from Cunha et al. (40).
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differences in GLUT1 expression in the diabetic vs. non-diabetic
human cornea (44).

In addition to its role in glucose homeostasis, insulin
has broader cellular functions including regulation of cell
metabolism, autophagy, apoptosis, growth, and proliferation
(45). While insulin is not required for glucose uptake, insulin
and its receptors are present in the human cornea and tear
film (16). Moreover, insulin levels are increased in tears in fed
individuals compared to fasted (Figure 3C). Similar to humans,
insulin is increased in the rat tear film following a single bolus
of glucose administered intravenously (Figure 3D) (40). It is
unknown whether tear derived insulin is taken up by terminally
differentiated surface epithelial cells or is able to somehow cross
the tight epithelial barrier, the latter of which is unlikely. Thus,
the functional significance of insulin in tear fluid is unknown.

INSULIN AND METABOLISM IN CORNEAL
EPITHELIAL CELLS

Cunha and colleagues were the first to confirm a role for insulin
in corneal metabolism (40). Studies in our laboratory have
sought to further this work and define the mechanism by which
insulin regulates cellular metabolism and growth in the corneal
epithelium. To accomplish this, we first investigated the role
of insulin in regulating cell cycle control in human corneal
epithelial cells. After 48 h of growth factor withdrawal, corneal
epithelial cells arrested in G0/G1. This arrest was partially
restored following treatment with insulin for the final 24 h (11).
In that same study, we determined the metabolic phenotype
of corneal epithelial cells. We again found that insulin was
able to partially restore mitochondrial respiration. This was
not due to a shift in glycolysis however, but an increase in
mitochondrial respiration (11). To further investigate these
findings, we tested the effect of co-treatment with insulin when
cells were cultured in basal conditions (no growth factors).
Interestingly, we found that corneal epithelial cells undergo a
metabolic fuel switch between 24 and 48 h of culture during
growth factor withdrawal. In the first 24 h, metabolic activity
is driven principally by mitochondrial respiration, whereas in

the last 24 h, glycolysis is upregulated to account for a sudden
decrease in respiration. In both conditions, insulin was able
to maintain both respiration and glycolysis. Consistent with
the measured drop in respiration at 48 h, fluorescent imaging
showed that mitochondria were largely depolarized. Similar to
its effect on respiration, co-treatment with insulin also blocked
the loss of depolarization in these cells (Figure 4) (34). Together,
these findings support that insulin promotes mitochondrial
respiration in corneal epithelial cells by maintaining
mitochondrial polarization.

Insulin is known to activate PI3K/Akt/mTOR signaling by
first binding INSR or IGF-1R at the plasma membrane and
then activating downstream cell survival pathways (46). In our
laboratory, we showed that insulin regulates phosphorylation of
Akt at ser473 in human corneal epithelial cells (11). Activation
of this kinase cascade led to an increase in phosphorylation
of GS3Kβ at the inhibitory residue, ser9. Since GS3Kβ is a
key regulator of cell cycle control, mitochondrial function and
apoptosis, and the autophagy inhibitor mTOR, phosphorylation
of this residue leads to activation of mTOR and a block
in autophagy (47, 48). Autophagy or macroautophagy is a
cannibalistic mechanism used by cells to recycle damaged
components and debris (49). Selective autophagy represents
organelle-specific autophagy. Mitophagy, which is a key
mitochondrial quality control mechanism, is the process
whereby mitochondria are targeted to autophagosomes (50).
In the presence of mitochondrial depolarization, as shown in
our growth factor withdrawal model, PTEN-induced kinase 1
(PINK1) becomes stabilized in the mitochondria. PINK1 is a
well-studied mitophagy marker that functions to recruit Parkin
to the mitochondria. Parkin in turn ubiquitinates mitochondrial
proteins, triggering recognition by the autophagosome for
subsequent engulfment by the autophagolysosome. Similar
to autophagy, insulin blocks all autophagic flux, including
mitophagy, in corneal epithelial cells (34). In contrast to this, in
breast cancer cells, IGF-1 has been shown to induce mitophagy
through activation of the mitophagy receptor BNIP3 (51).
Whether IGF-1 is able to activate macro- or selective autophagy
in corneal epithelial cells is still unknown, but represents an
exciting avenue for study.

FIGURE 4 | Insulin blocks loss of mitochondrial depolarization. hTCEpi cells were cultured for 48 h in KGM or KBM with or without 5µg/ml of insulin. Mitochondria

were stained with MitoTracker green (MTG, green), a marker of mitochondrial morphology, and TMRE (red), a marker for polarized mitochondria. Culture in basal

media without growth factor supplements resulted in mitochondrial depolarization and fragmentation. Concurrent treatment with insulin blocked depolarization and

stimulated mitochondrial elongation. KGM, keratinocyte growth media; KBM, keratinocyte basal media; INS, insulin; hTCEpi cells, human telomerized corneal

epithelial cells. Scale bar: 5µm. Adapted from Titone et al. (34).
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INSULIN AND THE DIABETIC CORNEA

Several studies have described the effects of high glucose
on corneal epithelial homeostasis through modulation of cell
signaling, cell proliferation, and wound healing (7, 52–54).
Clinically, these changes are manifested in the diabetic cornea in
the form of superficial punctate keratitis, alterations in epithelial
barrier function, recurrent epithelial erosions due to the presence
of an abnormal basementmembrane, persistent epithelial defects,
and refractory wounds despite treatment (7, 54). In addition to
cellular changes, the loss of corneal nerves drives a reduction
in corneal sensitivity and this leads to epithelial thinning and
reduced tear secretion. The latter of which underlies a cause of
dry eye (53). The mechanisms leading to development of corneal
complications are multifactorial and are due in part, to abnormal
growth factor signaling and the accumulation of reactive oxygen
species (53).

Due to the ability of insulin to promote proliferation in
cell culture, topical insulin has been proposed as a treatment
modality to promote corneal epithelial wound healing (Table 1).
In their study, Zagon et al. used streptozotocin to induce
diabetes in Sprague-Dawley rats (55). In this model, they
made a 5mm corneal wound, followed by treatment with
topical insulin four times a day for 7 days. Compared to the
vehicle control, topical insulin promoted epithelial resurfacing
and an increase in proliferation of basal epithelial cells.
Interestingly, treatment with topical insulin also restored corneal
sensitivity to normal levels, suggesting that insulin also promoted
corneal re-innervation.

Bastion later reported on the results of a retrospective
study evaluating the effects of topical insulin on healing
epithelial defects in human diabetic patients who were subject
to epithelial debridement while undergoing vitreoretinal surgery
(56). Fifteen eyes of 14 patients (one patient had bilateral
epithelial defects) were divided into one of three groups, diabetics
who received topical insulin, diabetics who did not receive
topical insulin, and non-diabetics who received topical insulin.
In all cases where insulin was administered, re-epithelialization
was accelerated compared to non-insulin controls. There were
no cases of toxicity or adverse events reported. However, only
five patients were evaluated per group. Fai et al. reported
on the results of a much larger study (57). Over a 2 year
period, all patients with epithelial defects following vitreoretinal
surgery were recruited and randomized into one of four
groups: 0.5, 1.0, or 2 units of insulin or a saline control.
Patients receiving 0.5 units of topical insulin four times a day
demonstrated the best efficacy, with clinical effects being lost at
the highest dosage.

More recently, Wang and colleagues reported on a small
case series of six human subjects with refractory corneal
ulcers (59). Patients ranged in age from 2 to 73 years
and all presented to clinic with non-healing neurotrophic
corneal ulcers. Patients all had past ocular histories that
included a battery of therapeutic treatments and surgical
procedures that resulted in incomplete healing. In all six
cases, one unit of insulin was administered at a frequency of
2–3 times a day and all patients resolved over a period of
7–25 days.

TABLE 1 | Published studies evaluating the role of IGF family ligands in the cornea.

Molecular

pathway

Wound repair References

Insulin Promotes epithelial resurfacing and proliferation in rodent model. (55)

Enhances healing rates in patients with epithelial defects following vitrectomy. (56)

Dosed at 0.5 units QID was effective on healing epithelial defects post vitrectomy in diabetic patients without drug toxicity. (57)

Aides in wound repair through restoration of circadian rhythm in the corneal epithelium. (58)

Promotes healing in neurotrophic corneal ulcers. (59)

IGF-1 Used with substance P accelerates corneal epithelial cell migration. (60)

Used with the substance P-derived peptide (FGML) increases epithelial migration. (61)

Used with Substance P promotes epithelial wound healing in an in vivo rabbit model. (62)

Used with substance P promotes epithelial attachment to fibronectin and Type VI collagen in a rabbit model. (60)

Identified the minimum sequence of substance P necessary for a synergistic wound healing effect. (63)

Used with substance P restores barrier function. (64)

Used with substance P increases wound healing and barrier function in capsaicin injected rat model. (65)

Used with FGLM-NH(2) promotes corneal epithelial wound healing in diabetic rats. (66)

C domain is the portion necessary for a synergistic wound healing effect with Substance P. (67)

Induces corneal epithelial cell migration and increases lamin-5 and β1-integrin expression. (68)

Used with FGLM-amide accelerates resurfacing of persistent epithelial defects. (69)

IGF-1 peptide sequence SSSR used with FGLM-amide accelerates wound healing. (70)

Upregulates IGF-1R expression in corneal epithelial limbal stem cells and drives differentiation during corneal regeneration. (71)

Used with substance P increases the rate of re-epithelialization in rabbits post PRK. (72)

IGF-2 IGF-2R protein expression increases in corneal wound healing in order to regulate keratocyte differentiation to myofibroblasts. (23)

Increases along with its receptor in corneal injury. Aids in the proliferation of keratinocytes and synthesis of N-cadherin. (73)
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INSULIN AND CIRCADIAN RHYTHM

In rodent models, the proliferation of basal epithelial cells
in the central cornea and epithelial regeneration following a
wound are regulated in part by circadian rhythms (74–77). In
addition, oscillations in the expression of core circadian genes,
including Clock and Bmal1, have also been reported (74). While
diabetes and other metabolic disorders are known to disrupt
normal circadian rhythms, Song and colleagues investigated
the impact of diabetes on circadian rhythms in the corneal
epithelium using a Type 1 streptozotocin mouse model (58).
After 2 weeks of disease, there was a significant change in key
clock genes, a reduction in basal cell proliferation, and an increase
in leukocyte infiltration in the limbal region. These effects were
partially restored by the administration of systemic insulin. Since
these studies were performed so early on following onset of
diabetes, the circadian effects could be measured without the
corresponding effects from loss of the subbasal nerve plexus.
Thus, it is likely that alterations in the circadian rhythm reflect
an early change in diabetes that contributes to disruption of
normal homeostasis.

INSULIN AND THE CORNEAL
ENDOTHELIUM

The corneal endothelium is a single cell layer on the posterior
aspect of the cornea that is flush with the aqueous humor.
Function of the corneal endothelium is critical to maintain
optimal hydration and stromal transparency. The role of IGF and
insulin in the corneal endothelium has not been well-studied.
In the bovine corneal endothelium, IGF-1R is ∼25 times more
highly expressed than INSR (78). This finding would explain
why stimulation of bovine corneal endothelial monolayers with
IGF-1 promoted DNA synthesis. While low levels of IGF-1 are
able to not only stimulate DNA synthesis, they also induce an
upregulation of the proto-oncogene c-fos. Unlike IGF-1, a high
concentration of insulin is required to have a similar effect. This is
likely due to the ability of insulin to activate IGF-1R at high levels.

Insulin has been shown to play a key role in the regulation
of the Na/K-ATPase pump. The Na/K-ATPase pump functions
to maintain water balance in the corneal stroma. In diabetes,
endothelial cells are highly subject to damage during intraocular
surgery and often display a certain degree of pleomorphism even
in the absence of surgery (79). Corneal thickening in diabetes
is thus due to improper pump function secondary to loss of
corneal endothelial cells. In support of this, studies using an
alloxan-induced diabetic rabbit model showed that a decrease
in NA/K-ATPase activity was associated with an increase in
corneal thickness and poor hydration control (80). Like glucose,
insulin is present in the aqueous at a much lower concentration
than serum. In alloxan-induced diabetes, levels of insulin in the
aqueous are further depleted. To determine whether alterations
in aqueous insulin levels in diabetes could account for the
changes in pump function, Hatou et al. investigated the effect
of insulin on Na/K-ATPase activity in mouse corneal endothelial
cells in vitro (81). Importantly, they found that administration

of insulin (0.01–10µM) to an endothelial monolayer increased
the activity of the Na/K-ATPase pump through activation of
protein kinase C in a concentration dependent manner (82). It
is important to note that these changes were transient in nature.
Thus, a chronic insult from either no insulin in Type 1 diabetes
or reduced signaling due to insulin resistance, such as that seen
in Type 2 diabetes, may contribute to the pathophysiology of
diabetes induced corneal endothelial damage.

IGFS IN WOUND HEALING AND REPAIR

IGF-1 and -2 are homologous peptides that modulate
cellular proliferation and differentiation throughout the
body (83). Activation of their cognate receptors triggers
autophosphorylation of their intracellular kinase domain,
leading to downstream activation of the Janus kinase/signal
transducers and activators of transcription (JAK/STAT),
phosphoinositide 3-kinase (PI3K), and mitogen-activated
protein kinase (MAPK) pathways (22, 84, 85). IGF-1 has been
well-studied for its important role in cellular migration and
proliferation in non-ocular tissues (86). In all three cell layers
of the cornea, IGF has been shown to have critical regulatory
functions that preserve homeostasis and promote wound
repair. In the corneal epithelium, IGF-1 promotes proliferation.
This occurs through activation of Hybrid-R and subsequent
phosphorylation of Akt (19). IGF-1 was also shown by Lee
and colleagues to induce corneal epithelial cell migration and
increased expression of Lamin-5 and β1-integrin. These effects
were mediated through the PI3K/AKT pathway (68).

Lastly, some data exists to support that IGF-1 also contributes
to the differentiation of limbal stem cells into corneal epithelial
cells. In their study, Trosan et al. found that after central epithelial
debridement in the mouse cornea, IGF-1 and IGF-2 secretion
is increased in corneal epithelial cells, while IGF-1R expression
was increased in the limbus (71). Interestingly, the increase
in IGF-1R expression in the limbus was driven by IGF-1 and
promoted differentiation of limbal epithelial cells, evidenced by
an upregulation of the cytokeratin K12. A subsequent study
with a similar experimental design showed the same effect for
IGF-2 (73).

IGF AND SUBSTANCE P

Much of what is known regarding the function of IGF-1 in
corneal epithelial wound healing is focused on the interactive
role of IGF-1 with the neuropeptide, substance P (Table 1).
In their in vitro studies, Nishida and colleagues showed that
IGF-1 administered at a concentration of 10 ng/ml accelerated
corneal epithelial cell migration across a wounded rabbit corneal
stroma ex vivo when used in conjunction with 25 or 50µg/ml
substance P (60). Likewise, IGF-1 together with substance P,
promoted corneal epithelial attachment to fibronectin and Type
IV collagen. They further showed that this effect was not due to
changes in ligand binding sites for IGF-1, but was mediated by
interactions between substance P and the Tachykinin receptor,
Nrk1 (17, 87). These findings were confirmed in a rabbit model
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subject to epithelial debridement using N-heptyl alcohol (62).
Additional work by this group induced corneal neuropathy
in a rat model by thermocoagulating the ophthalmic nerve
that branches from the trigeminal ganglion (64). Using this
model they showed that treatment of corneal epithelial wounds
with substance P and IGF-1 improves barrier function in the
corneal epithelium by promoting wound healing. Subsequent
publications by this same group have further elaborated on these
key findings and identified the specific amino acid sequences for
both substance P and IGF-1 that are responsible for mediating
these effects (63, 65–67, 69, 70, 72).

IGF-1 IN TEAR FLUID

IGF-1 is present in tear fluid, although at very low levels (88, 89).
In normal healthy conditions, the ratio of IGF-1 to IGFBP-
3 is not sufficient to blunt the effects of IGF-1. However, in
human diabetic tear fluid, the ratio of IGF-1 to IGFBP-3 is
significantly reduced (89). Since IGF-1 binds IGFBP-3 with a
greater affinity than IGF-1R, the shift in the IGF-1 to IGFBP-3
ratio is sufficient to sequester IGF-1 and inhibit the ability of IGF-
1 to induce phosphorylation of IGF-1R or Hybrid-R (89). The
inability of IGF-1 to promote proliferation in the diabetic corneal
epithelium may contribute to delayed wound healing. IGF-1 and
IGF-2 have both been shown to be upregulated during corneal
wound healing. It is not clear whether either of these proteins are
upregulated in the diabetic eye.

IGF-1 AND STROMAL KERATOCYTES

The effects of IGF-1 are not restricted to the corneal epithelium,
but also play an important regenerative role in the stroma.
Corneal keratocytes, the primary cell type in the stroma, are
essential for not only maintaining stromal structure but also
form an interconnected, communication network within the
cornea. It has been shown that IGFs play an important role in
regulating formation of this network. Using the IGF-1R inhibitor,
picropodophyllin (PPP), Berthaut found that the addition of
IGF-1 in concert with PPP blocked both the number of tubules
and interconnections formed by corneal fibroblasts cultured
on Matrigel loaded with growth factors (90). IGF-1 is also
critical in the process of keratocyte differentiation. During
inflammation and wounding, stromal cells become activated and
induce a differentiation program. Using a co-culture model, Ko
et al. showed that both Simian virus 40-transformed human
corneal epithelial cells (HCE) and primary cultured corneal
fibroblasts secrete IGF-1 (91). Using siRNA knockdown of IGF-
1 in HCEs, they further demonstrated that IGF-1 secreted
by corneal epithelial cells induces N-cadherin expression, an
adherens junction protein, in cultured corneal fibroblasts and
that this was most likely regulated by the zinc finger protein,
ZEB1. Unlike cancer cells, where the upregulation of N-
cadherin is associated with downregulation of E-cadherin and the
subsequent epithelial-mesenchymal transition, the increase in N-
cadherin in corneal fibroblasts was not associated with changes
in any other junctional proteins.

IGF-1 has also been shown to modulate the TGF-beta/SMAD
signaling pathway, although the data is conflicting. Sarenac
demonstrated that treatment of keratocytes with IGF-1 inhibited
differentiation into myofibroblasts by attenuating TGF-beta
signaling (92). They concluded that IGF-1 may be a viable
therapeutic option to limit fibrosis during corneal wound
healing. In contrast to this, Izumi found that IGF-1 stimulated
proliferation of myofibroblasts during wound healing without
first reverting cells back to their naïve state (93). This
increased proliferation of myofibroblasts would further promote
fibrosis. Taken together, these findings suggest that IGF-1 may
induce differential effects on stromal cells depending on their
differentiation status.

IGF-2 IN STROMAL KERATOCYTES

IGF-2 has been shown to play a key role in development of
the murine eye (94). The function of IGF-2 has also been
investigated in postnatal corneal development. To accomplish
this, Kane et al. used keratocytes harvested from bovine and
rabbit corneas (95). They measured collagen production and
secretion of IGF-2 and IGFBP-2. Striking differences were
noted. Rabbit keratocytes, which were proliferative in culture,
secreted both Type I collagen and IGF-2. In contrast, bovine
keratocytes, secreted IGFBP-2 and not IGF-2. Culture of
bovine keratocytes in conditioned media from rabbit keratocytes
promoted proliferation and collagen deposition, suggesting that
IGF-2 is important in collagen production. Using microarrays,
gene expression was next evaluated in keratocytes obtained from
mouse neonates and compared to adults. IGF-2 was the most
abundant growth factor present. IGF-I and IGFBP-4 were also
detected, but were expressed at much lower levels. Interestingly,
prior work by this same group showed that IGF-2 was present
in the bovine stroma, despite not being secreted by bovine
keratocytes (96). They further demonstrated that IGF-2 was
capable of inducing keratocyte proliferation without inducing
myofibroblasts differentiation. While the source of IGF-2 in the
bovine stroma was not determined, IGF-2 appears to be integral
to early stromal development.

IGF-1 AND THE CORNEAL ENDOTHELIUM

There has been limited research done on the role of IGF-1
in the corneal endothelium. In embryonic corneal tissue, IGF-
1 has been shown to promote DNA synthesis in endothelial
cells (97, 98). Feldman and colleagues later used adult bovine
corneal endothelium to test the effects of IGF-1 and insulin
on DNA synthesis (78). Using BrdU labeling, they found that
insulin and IGF-1 were both able to promote DNA synthesis.
While both ligands were effective, insulin required much higher
concentrations than IGF-1. This was due to the reduced affinity of
insulin for IGF-1R. Another study evaluated the effects of IGF-1
on rabbit endothelial cells. In this study, Choi showed that IGF-1
promotes rabbit endothelial cell proliferation through the IRS-1
pathway (99). IGF-1 did not alter collagen production by these
cells. Moreover, IGFBP-2 was produced by rabbit endothelial
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cells and functioned to sequester IGF-1. It is important to
note however, that corneal endothelial cells do not undergo
regeneration in vivo in cats, non-human primates, or humans.
Thus, while IGF-1 promotes DNA synthesis and proliferation on
corneal endothelial cells capable of mitosis, the effect of IGF-1 on
the human corneal endothelium is relatively unknown.

IGFBPs

IGF-1 and IGF-2 are secreted into the extracellular environment
where they are bound to IGFBPs (100). Currently, there are six
highly conserved IGFBPs. IGFBPs are found in serum and most
extracellular fluids, including the aqueous humor and vitreous
(101, 102). Due to the presence of the blood-retinal barrier,
the origins of these binding proteins are thought to be tissues
within the eye. Several groups have probed for the presence of
IGFBP-3 in ocular tissues. Most of these studies have focused
on the localization of IGFBP mRNAs. Arnold et al. were the
first to investigate the distribution of the IGFBPs in the eye.
Using northern blotting, they reported that mRNAs for IGFBP-
2 and IGFBP-3 were present in bovine corneas, but their exact
distribution was not specified (101).

In the developing chick embryo, the appearance of IGFBP-
2 mRNA expression was found to be temporally and spatially
controlled (103). Initially noted in the surface ectoderm at
embryonic day 3.5 (E3.5), mRNA transcripts were detected in
both the corneal epithelium and endothelium, as soon as the
cornea began to develop into multilayers (E6). As development
neared completion, IGFBP-2 transcripts were evident in all
cells throughout the cornea. In a subsequent study, Burren and
colleagues were able to confirm the presence of mRNA for
IGFBP-2 in the cornea. In the rat eye, they found that IGFBP-2
localized to the basal layer of the corneal epithelium, keratocytes,
and endothelium; however, they were unable to detect transcripts
for any of the other binding proteins (104). More recently,
expression of all six binding proteins was evaluated in a
transgenic rat model that over-expressed the renin-2 gene (REN-
2). The REN-2 transgenic rat is a model for hypertension
characterized by an alteration in the renin-angiotensin system
that controls blood pressure (105). Type 1 diabetes was induced
in this model using streptozotocin. The authors reported that
transcripts for IGFBP-1, IGFBP-5, and IGFBP-6 were present
in the cornea, with IGFBP-5 and -6 found to be expressed at
the protein level throughout the cornea, including the corneal
epithelium. Moreover, transcript levels for these two binding
proteins were altered in diabetes, with IGFBP-5 levels increasing
and IGFBP-6 levels decreasing.

IGFBP-2 AND STROMAL FIBROBLAST
DIFFERENTIATION

IGFBP-2 has been found to have an important role in mediating
differentiation of corneal fibroblasts (102). In this study, the
authors demonstrated that human corneal keratocytes express
high levels of IGFBP-2. In corneal fibroblasts cultured on plastic,
increased levels of IGFBP-2 were associated with increased

expression of aldehyde dehydrogenase (ALDH1A1) and
keratocan, markers for quiescent keratocytes. In contrast,
keratocytes cultured on plastic and treated with TGFβ
transformed into myofibroblasts and expressed high levels
of α-smooth muscle actin (α-SMA) and very low levels of
IGFBP-2. This finding is consistent with the observation
that TGFβ downregulates IGFBP-3 in dermal keratinocytes
(106). Importantly, co-treatment of myofibroblasts with
IGFBP-2 partially blocked this transformation through an
increase in ALDH1A1, keratocan, and a partial loss of stress
fibers, while siRNA knockdown of IGFBP-2 increased α-
SMA. Collectively, these data indicate that IGFBP-2 may be
a crucial protein that regulates the sequential transition of
keratocytes into fibroblasts and myofibroblasts and provide
further support of a critical role for the IGF system in corneal
wound healing.

IGFBP-2 AND PTERYGIUM

Recent data has shown a link between IGFBP-2 and human
malignancies including prostate, ovarian, and colon cancer
(107–109). Similarly, IGFBP-2 has been linked to pathological
processes in the cornea. Pterygium, a non-cancerous conjunctival
overgrowth onto the cornea, is known to express cellular
markers that reflect increased proliferation and cellular invasion.
Using cDNA microarrays, IGFBP-2 expression was increased
in fibroblasts cultured from the pterygium body compared to
conjunctival fibroblasts collected from normal tissue (110). In
contrast, there were no differences in IGFBP-3 expression. This
finding was confirmed at the protein level and suggests that
aberrant IGFBP-2 expression may play a role in the development
of pterygium.

IGFBP-3

Unlike IGFBP-2, IGFBP-3 is highly regulated at the post-
translational level by glycosylation and phosphorylation (111,
112). These post-translational modifications are hypothesized to
regulate IGFBP-3s stability and function. In addition, IGFPB-
3 is also regulated by synthesis rate and extensive proteolysis
(113, 114). Many tissues produce IGFBP-3 locally, where it
plays an important role in growth inhibition, including the
corneal epithelium (10, 115, 116). IGFBP-3 has also been
described as marker for senescence in cancer and in human
fibroblasts (117, 118).

In dermal keratinocytes, IGFBP-3 has been shown to function
as themain binding protein that interacts with IGF-1 tomodulate
proliferation (106). Consistent with this, altered expression of
IGFBP-3 is associated with the development of psoriatic lesions
(119). Izumi and colleagues used human corneal fibroblasts to
show that treatment with TGFβ to induce α-SMA expression
also upregulated IGF-1 and IGFBP-3 mRNA (93). As already
discussed, the increase in IGF-1 has multiple effects including
an increase in myofibroblast proliferation and stimulation of
collagen production. Prolonged proliferation of myofibroblasts
would contribute to excess fibrosis. IGFBP-3 on the other
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hand, modulates proliferation of myofibroblasts in an IGF-
dependent manner. In the mouse cornea in vivo, following
photorefractive keratectomy, IGFBP-3 was upregulated and
expressed throughout the corneal stroma (93). IGFBP-3 has been
shown to bind to certain extracellular matrix proteins and once
bound, may alter its affinity for IGF-1. Thus, a potential temporal
or spatial gradient in IGF-1 and IGFBP-3 may regulate the degree
of fibrosis during corneal wound healing.

More recently, work by our laboratory has begun investigating
the role of IGFBP-3 in mediating stress responses in the corneal
epithelium. We have shown that IGFBP-3 is upregulated during
growth factor withdrawal. This increase in IGFBP-3 is necessary
to induce nuclear translocation of Hybrid-R (10). Once in
the nucleus, IGF-1R and IGFBP-3 accumulate in the insoluble
fraction (10). IGFPB-3 does harbor a nuclear localization
sequence and has been shown to traffic to the nucleus in other cell
lines and tissues (120). Most available data suggests that nuclear
localization is important in regulating apoptosis. The function of
nuclear IGFBP-3 in the cornea is unknown.

While IGFBP-3 is necessary to induce trafficking of IGF-
1R, loss of IGF-1R in turn downregulates IGFBP-3. Thus,
IGFBP-3 and IGF-1R undergo mutual regulation to maintain
homeostasis in the corneal epithelium (10). We have also found
that IGFBP-3 secretion is increased in response to hypoxia
(unpublished observations), and in response to hyperglycemia
(89). In agreement with this latter finding, we have reported that
human tear levels of IGFBP-3 are similarly increased in patients
with diabetes (121). More importantly, the increase in tear levels
of IGFBP-3 in Type 2 diabetes correlates with damage to the
corneal subbasal nerve plexus (Figure 5) (121). What remains
unknown is the size of IGFBP-3 present in human tear fluid and
whether this is the full-length glycosylated protein or a smaller
cleavage fragment.

SUMMARY AND FUTURE DIRECTIONS

The IGF family is responsible for maintaining tissue homeostasis
through the regulation of metabolic and/or mitogenic pathways
at all cellular levels in the cornea. In addition to their canonical

pathways, recent studies have led to the discovery of important
intracellular functions in the corneal epithelium. This includes
the nuclear translocation of Hybrid-R to the nuclei of human
corneal epithelial cells in an IGF-1 independent manner and
the ability of Hybrid-R to bind DNA and modulate gene
expression. INSR and IGF-1R are also present in mitochondria
where they likewise accumulate in the absence of IGF-1. The
interaction of IGF-1R and INSR with VDAC1, a protein present
in the outer mitochondrial membrane, suggests novel regulatory
functions including the trafficking of molecules and ions,
mitochondrial stability, and apoptosis. Further interrogation of
these interactions may lead to the identification of critical new
regulatory mechanism(s) that mediate mitochondrial function
and quality control in the cornea and elsewhere in the body.
These exciting new findings may also lead to the development
of new therapeutic targets aimed at mitigating or preventing
complications in patients with diabetes, where mitochondrial
dysfunction is a central feature in the pathophysiology of disease.

One of the interesting characteristics that makes the corneal
epithelium distinct from other epithelial tissues is the finding that
insulin is not required for glucose uptake. Given the avascularity
of the cornea, this is not altogether surprising. Insulin does
have important regulatory roles in proliferation and cell growth
in the corneal epithelium. These findings are not restricted to
cell cultures in vitro, but extend to animal models and human
studies. In diabetes, topical insulin does promote wound healing.
The ability of insulin to restore circadian rhythm through
BMAL1 and CLOCK genes may facilitate re-epithelialization, as
these rhythms may be disturbed in diabetes. One advantage of
insulin compared to IGF-1 as a therapeutic option is that IGF-
1 is a potent inducer of angiogenesis. While insulin does have
angiogenic capabilities, it is not clear from the limited clinical
data whether the development of neovascularization from topical
use will develop.

In the last few years, several studies have focused on
elucidating non-glucose transport functions for insulin. The
most recent findings from our laboratory have demonstrated
roles for insulin in the regulation of metabolic homeostasis
through control of mitochondrial respiration, glycolysis, and
autophagy. We have further shown that insulin regulates

FIGURE 5 | Human tear levels of IGFBP-3 correlate with loss of the subbasal nerve plexus in T2DM. (A,B) In vivo confocal microscopy of the corneal subbasal nerve

plexus showing (A) fewer corneal nerve fibers and branches in T2DM; and (B) normal nerve morphology in the healthy, non-diabetic control. Scale bar: 100µm. (C)

Tear level of IGFBP-3 were increased in patients with T2DM compared to healthy controls (P = 0.003, t-test). Adapted from Stuard et al. (121).
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secretion of IGFBP-3, which in turn, mediates intracellular
receptor trafficking. Interestingly, IGFBP-3 secretion is also
mediated in part by IGF-1R. Taken together, these findings
highlight the crosstalk that occurs between all the components
of the IGF system. While the potential presence of proteases
that further regulate IGF-1 bioavailability has not yet been
investigated, it is clear that there is a delicate balance between
members of the IGF-1 family that is critical for normal
corneal development and tissue maintenance. Available evidence
suggests that this balance is disrupted in diabetes and may
contribute in part to recalcitrant wound healing. Moreover, since
most of this work has been done in corneal epithelia, the role of
insulin in keratocyte and endothelial health is relatively unknown
and represents an important area of future study.

IGFBP-3 is a pleiotropic protein whose function is cell and
context specific. Based on our prior studies, we hypothesize that
IGFBP-3 functions as a major stress response protein in the
corneal epithelium. In support of this view, tear levels of IGFBP-3
are increased in patients with diabetes and this increase correlates
with loss of the subbasal nerve plexus. Much remains to be
done to determine whether or not this discovery will lead to a
novel diagnostic test that can be used to monitor patients with
diabetes to determine potential risk for neuropathic or ocular
complications. The advantages of using tears to monitor patients
with diabetes include the ease and the relatively non-invasive
nature of collection compared to phlebotomy. However, studies
are needed to evaluate the impact of reflex tearing and dry eye
on tear levels of IGFBP-3, and to determine its sensitivity and
specificity compared to hemoglobin A1c.

In terms of wound healing, the major challenge facing
clinicians today is fibrosis. While fibrosis may be disfiguring in

skin, it is a leading cause of blindness in the cornea. In severe
cases, fibrosis necessitates full thickness corneal grafts to restore
vision. There is a growing body of evidence to indicate that IGF
family members play an important role in fibrosis. This includes
regulating the differentiation of keratocytes into fibroblasts
and myofibroblasts and the induction of myofibroblast
proliferation without reverting cells back to a fibroblastic
phenotype. Much more data is needed to fully understand
the contribution of this system to wound healing, the critical
crosstalk amongst the differing cell layers in the cornea, and
corneal development.

In conclusion, a new outline regarding the impact of IGF
family members on the cornea is beginning to emerge. Huge gaps
in knowledge persist, creatingmultiple new areas ofmuch needed
research. Future studies will not only allow us to fill in these
gaps, but will also allow us to gain a greater appreciation for the
function of insulin, IGF, related binding proteins, and proteases,
in the normal cornea and in disease.
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Insulin-like growth factor (IGF) system plays a significant role in many cellular processes,

including proliferation, and survival. In estrogen receptor positive breast cancer, the level

of circulating IGF-1 is positively associated with the incidence and at least 50% of cases

have elevated IGF-1R signaling. Tamoxifen, a selective estrogen receptor modulator and

antagonist for estrogen receptor alpha (ERα) in breast tissue, is a commonly prescribed

adjuvant treatment for patients presenting with ERα-positive breast cancer. Unfortunately,

tamoxifen resistance is a frequent occurrence in patients receiving treatment and the

molecular mechanisms that underlie tamoxifen resistance not adequately defined. It

has recently been reported that the inhibition of IGF-1R activation and the proliferation

of breast cancer cells upon tamoxifen treatment is mediated by the accumulation of

extracellular insulin-like growth factor binding protein 1 (IGFBP-1). Elevated IGFBP-1

expression was observed in tamoxifen-resistant (TamR) MCF-7 and T-47D cells lines

suggesting that the tamoxifen-resistant state is associated with IGFBP-1 accumulation.

MCF-7 and T-47D breast cancer cells stably transfected with and IGFBP-1 expression

vector were generated (MCF7-BP1 and T47D-BP1) to determine the impact of breast

cancer cell culture in the presence of increased IGFBP-1 expression. In these cells,

the expression of IGF-1R was significantly reduced compared to controls and was

similar to our observations in tamoxifen-resistant MCF-7 and T-47D cells. Also similar

to TamR breast cancer cells, MCF7-BP1 and T47D-BP1 were resistant to tamoxifen

treatment, had elevated epidermal growth factor receptor (EGFR) expression, increased

phospho-EGFR (pEGFR), and phospho-Erk (pErk). Furthermore, tamoxifen sensitivity

was restored in the MCF7-BP1 and T47D-BP1 upon inhibition of Erk phosphorylation.

Lastly, the transient knockdown of IGFBP-1 in MCF7-BP1 and T47D-BP1 inhibited pErk

accumulation and increased tamoxifen sensitivity. Taken together, these data support the

conclusion that IGFBP-1 is a key component of the development of tamoxifen resistance

in breast cancer cells.
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INTRODUCTION

Insulin-like growth factor (IGF) signaling is a complex system
that affects almost every organ in the human body via regulation
of multiple cellular processes, such as proliferation, survival,
mitogenesis, migration, senescence, angiogenesis, and autophagy
(1, 2). The IGF system consists of two natural ligands, insulin-
like growth factor-1 (IGF-1) and IGF-2; two transmembrane
receptors, insulin-like growth factor 1 receptor (IGF-1R) and
IGF-2R; and six high affinity IGF binding proteins (IGFBPs)
1-6 (3). The binding of IGF-1 or IGF-2 to IGF-1R results in
the activation of tyrosine kinase activity of the receptor (4),
which in turn activates phosphatidylinositol 3-kinase (PI3K)-
AKT pathway and mitogen-activated protein kinases (MAPK)
pathway (5). IGF-2R, on the other hand, acts as a tumor
suppressor and directs the degradation of IGF-2 specifically (6).
The bioavailability and half-life of IGF-1 and IGF-2 are tightly
regulated by IGFBP1-6 (7), each of which has different binding
affinities and distinct functions depending on the tissue (8).
In addition to the complexity of the IGF system, there is an
increasing body of evidence showing the interactions between
IGF pathway and other hormone signaling pathways suck as
estrogen receptor (ER) pathway (9) and epidermal growth factor
receptor (EGFR).

The IGF system plays an important role in breast cancer
as exemplified both in vitro and in vivo (10). At least 50%
of breast tumors present with activated IGF-1R (11) and the
level of circulating IGF-1 positively correlates with the incidence
of estrogen receptor positive (ER positive) breast tumors (3).
The tumor volume was significantly higher in the xenografts
containing ER positive MCF-7 cells with IGF-1 overexpression
compared to the control in the mouse model (12); IGF-1
potentiated the invasive ability of MCF-7 cells (13). IGFBP-1,
inhibitor of IGF-1 signaling, decreases activation of IGF-1R and
inhibits proliferation and survival in MCF-7 cells (14).

Tamoxifen, a selective estrogen receptor modulator and
antagonist for estrogen receptor alpha (ERα) is a commonly
prescribed adjuvant treatment for patients presenting with ERα-
positive breast cancer. IGFBP-1 has also been shown to mediate
the decrease in cell viability observed in tamoxifen-treated
MCF-7 cells (15). In spite of the clinical benefit of tamoxifen
treatment, about 40% of the patients develop resistance to
tamoxifen over the course of treatment (16). It has been found
that the loss of IGF-1R expression is one of most significant
characteristics of acquired tamoxifen resistance (17). As a result,
it was hypothesized that the accumulation of IGFBP-1 upon
long-term tamoxifen treatment would result in the loss of
IGF-1R expression, and eventually lead to the development of
tamoxifen resistance.

In this study, initially we discovered that both tamoxifen
resistantMCF-7 and T-47D cells expressed higher level of IGFBP-
1 compared to parental cells. Then we found that both IGFBP-1
overexpressing MCF-7 and T-47D (MCF7-BP1 and T47D-BP1)
cells shared some similarities with the corresponding TamR cells,
such as the reduction of IGF-1R expression and increased Erk
phosphorylation. Furthermore, we shown that both MCF7-BP1
and T47D-BP1 were tamoxifen-nonresponsive. Moreover, we

found the transient knockdown of IGFBP-1 expression in these
stable cells resulted in the reduced level of pErk and re-sensitized
the cells to tamoxifen. Finally, we demonstrated the transient
knockdown of IGFBP-1 restored the tamoxifen sensitivity in
MCF7-TamR and T47D-TamR cells. Taken together, our data
revealed a new mechanism of tamoxifen action that contributed
to the development of tamoxifen resistance.

MATERIALS AND METHODS

Cell Culture
MCF-7 and T-47D breast cancer cells were purchased from
ATCC (ATCC, Manassas, VA). All cells lines were maintained
in maintenance DMEM supplemented with 10% fetal bovine
serum, 1mM sodium pyruvate and 2mM L-glutamine (Life
Technologies, Carlsbad, CA). All cell lines for experiments
were lower than passages 35 and both nucleotide and protein
purifications were performed on cell lines at similar confluency.

Establishment of Stably Transfected Cells
Human IGFBP-1 expression vector (NM_000596) and the
vector devoid of IGFBP-1 ORF were purchased from OriGene
(Rockville, MD). Plasmid transfection was performed using
Lipofectamine 3000 reagent in serum-free Opti-MEM (Life
Technologies, Carlsbad, CA) according to the manufacture’s
protocol. After 96 h of transfection, cells were washed with 1X
PBS, and allowed to recover in maintenance media for 24 h
then washed with 1X PBS followed by the addition of fresh
maintenance media containing 800 or 400µg/mL Geneticin
(Life Technologies, Carlsbad, CA) for MCF-7 and T-47D cells,
respectively. Untransfected cells were treated with Geneticin
every 5 days until all cells were killed to demonstrate efficacy
of Geneticin. All stably transfected cells were validated after
selection by immunoblot and qRT-PCR. The stably transfected
cell lines with IGFBP-1 containing plasmid were named MCF7-
BP1 or T47D-BP1 and cells containing the vector devoid of
IGFBP-1 ORF were named MCF7-EV and T47D-EV.

Establishment of Tamoxifen Resistance
(TamR) Cells
The method of establishing tamoxifen resistance cells was
previously described (18). Briefly, cells were exposed 1µM
4-hydroxytamoxifen (4-OHT) (Fluka, St. Louis, MO) in
maintenance media. After 72 h of exposure, spent media was
removed and new maintenance media containing 1µM 4-OHT
was added. After 21 days of 4-OHT exposure, cells that remained
were allowed to recover and grow in fresh maintenance media.
Cells were then split and maintained in maintenance media
containing 1µM 4-OHT. The cell lines generated by this method
were named MCF7-TamR and T47D-TamR.

shRNA Knockdown
Human IGFBP-1 shRNA plasmid kit (Locus ID 3484) was
purchased from OriGene (Rockville, MD). Plasmid transfection
was performed using Lipofectamine 3000 reagent in serum-free
Opti-MEM (Life Technologies, Carlsbad, CA) according to the
manufacture’s protocol. After 96 h of shRNA knockdown, cells
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were harvested and the expression of IGFBP-1 was measured
by immunoblot.

Cell Treatment
4-hydroxytamoxifen (4-OHT) (Sigma-Aldrich, St. Louis, MO)
treatment was previously described (15). Briefly, 48 h prior to
the treatment, cells were washed with 1X PBS and maintenance
media was replaced with phenol red-free DMEM supplemented
with 1% charcoal-stripped FBS (CS media) (Life Technologies,
Carlsbad, CA). Cells were then washed with 1X PBS and treated
with indicated concentrations of 4OHT in serum-free DMEM
for 5 days. Ethanol was used to dissolve 4OHT. PD98059 (Life
Technologies, Carlsbad, CA) was used to block the activation of
MAP kinase (MEK). Forty eight hours prior to the treatment,
cells were washed with 1X PBS and maintenance media was
replaced with phenol red-free DMEM supplemented with 1%
charcoal-stripped FBS (CS media) (Life Technologies, Carlsbad,
CA). Cells were then washed with 1X PBS and treated with
indicated concentrations of PD98059 in serum-free DMEM
for 5 days. Ethanol was used to dissolve PD98059. For the
EGF treatment, recombinant human EGF (Life Technologies,
Carlsbad, CA) was used. Forty eight hours prior to the treatment,
cells were washed with 1X PBS and maintenance media was
replaced with phenol red-free DMEM supplemented with 1%
charcoal-stripped FBS. After 24 h, cells were washed with 1X
PBS and starved with serum and phenol red-free DMEM. After
24 h, cells were washed with 1X PBS and treated with serum and
phenol red-free DMEMwith the addition of indicated amount of
EGF. Deionized water was used to dissolve the lyophilized EGF.
Cells were harvested in 5 days.

Total RNA Extraction and Quantitative
Real-Time PCR Analysis
Total RNA was extracted using the PureLink RNA Mini Kit
(Life Technologies, Carlsbad CA) followed by on-column
DNA digestion using Purelink DNase Set (Life Technologies,
Carlsbad CA). cDNA was synthesized from 1 µg total RNA
using the High Capacity RNA-to-cDNA Kit (Life Technologies,
Carlsbad CA) and used as template in subsequent quantitative
real-time PCR (RT-qPCR) reactions. qRT-PCR was performed
using SYBR Green Master Mix (Life Technologies, Carlsbad
CA) and the 7300 Real-Time PCR system (Bio-Rad, Hercules,
CA). Primer pairs used for qRT-PCR: human IGFBP-1 forward
5′-CTA-TGA-TGG-CTC-GAA-GGC-TC-3′; reverse 5′-TTC-
TTG-TTG-CAG-TTT-GGC-AG-3′ (19). Human IGF-1R
forward 5’-GCA-CCA-TCT-TCA-AGG-GCA-ATT-TG-3′;
reverse 5′-AGG-AAG-GAC-AAG-GAG-GAC-CAA-GG-3′.
Human RPL30 gene was used as the internal control to
normalize for mRNA in qRT-PCR reactions. Human RPL30
forward 5′-ACA-GCA-TGC-GGA-AAA-TAC-TAC-3′; reverse
5′-AAA-GGA-AAA-TTT-TGC-AGG-TTT-3′ (20).

Immunoblot Analysis
To prepare samples for immunoblot analysis, cells were harvested
with RIPA lysis buffer containing protease and phosphatase
inhibitor cocktails (Prod# 89901, 1862209, and 186249, Thermo
Scientific, Rockford, IL). After lysis, cells were centrifuged

at 12,000 × g for 15min at 4◦C, supernatant was collected
protein concentrations was determined by BCA assay (Thermo
Scientific, Rockford, IL). 30–75 µg total protein was resolved
using Bolt 4–12% Bis-Tris Plus gels and transferred to PVDF
membrane (Life Technologies, Carlsbad, CA). PVDFmembranes
were blocked in 1X Tris-buffered saline-0.1% Tween 20 (TBST)
containing 5% fat-free milk at room temperature for 1 h with
slow agitation.Membranes were thenwashedwith 1XTBST three
times and primary antibody was added and allowed to incubate
overnight at 4◦C. The following primary antibodies including
dilution factor in 5% milk TBST were used in the current
study: IGFBP-1 (#31025, Cell Signaling Technology, Danvers,
MA); IGF-1R (#3027, Cell Signaling Technology Danvers,
MA); P-IGF-1R (Tyr 1131) (#3021, Cell Signaling Technology,
Danvers, MA); p44/42 MAPK (Erk1/2) (#9102, Cell Signaling
Technology, Danvers, MA); P-p44/42 MAPK (T202/204) (#4377,
Cell Signaling Technology, Danvers, MA); EGFR (#4267, Cell
Signaling Technology, Danvers, MA); P-EGFR (Tyr 1068)
(#3777, Cell Signaling Technology, Danvers, MA); Integrin β1
(sc-374429, Santa Cruz Biotechnology, Dallas, TX); β-actin (sc-
47778, Santa Cruz Biotechnology, Dallas, TX). The dilution
ratio for primary antibodies from Cell Signaling Technology
was 1:1,000; The dilution ratio for primary antibodies from
Santa Cruz Biotechnology was 1:2,000. After primary antibody
incubation, membranes were washed three times with 1X TBST
then incubated with anti-rabbit IgG conjugated to horseradish
peroxidase (#7074, Cell Signaling Technology, Danvers, MA) or
anti-mouse IgG conjugated to horseradish peroxidase (sc-81178,
Santa Cruz Biotechnology, Dallas, TX) with dilution ratio of
1:5,000 at room temperature for 1 h. After washing membranes
with 1X TBST three times, chemiluminescence reagent (34076,
Thermo Scientific, Rockford, IL) was added and detected using
Gel DocTM XR ChemiDocTM imaging system (BioRad, Hercules,
CA) followed by quantification using ImageJ (NIH). Restore
plus western blot buffer (46430, Thermo Scientific, Rockford, IL)
was used to strip membranes of antibodies prior to probing for
loading control where needed.

Extracellular IGFBP-1 Measurement
The method was previously described (15). Briefly, media
was collected and concentrated with centrifugal filter units
(UFC800396, MillporeSigma, Burlington, MA) at 4◦C with
the speed of 4,000 rpm for 1 h. Once centrifugated, media
was collected with an addition of protease inhibitor cocktail
(Prod #1862209, Thermo Scientific, Rockford, IL). Total protein
concentration of concentrated media was measured by BCA
assay, and the level of extracellular IGFBP-1 was determined by
immunoblot analysis as previously described. For the external
loading control, same amount of total protein (30 µg) of
concentrated media samples were resolved by Bolt 4–12% Bis-
Tris Plus gels. The gels were then washed with deionized
water for 5min and stained with Coomassie blue for 1 h.
Thereafter, gels were destained with deionized water overnight.
Gels were then imaged with FOTODYNE gel imager (FOTODYN
INCORPORATED, Hartland, WI). The same intensity of protein
band indicated the equivalent loading of samples.
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Cell Viability Assay
After 5 days of treatments, cells were trypsinized and harvested
with 1X PBS. The cell numbers were determined by counting
via hemocytometer and compared to the vehicle-treated samples,
which were normalized to 100%.

Statistical Analysis
All statistical analysis was performed by one-way ANOVA,
Tukey’s post-hoc test using Prism 6 (GraphPad, San Diego, CA).
Differences were considered significant if p ≤ 0.05 and the error
bars are± SEM.

RESULTS

MCF7-TamR and T47D-TamR Expressed
More IGFBP-1 and the Establishment of
MCF7-BP1 and T47D-BP1 Stable Cell Lines
Previously, insulin-like growth factor binding protein-1 (IGFBP-
1) induction in 4-hydroxytamoxifen (4-OHT)-treated breast

cancer cells was shown to mediate the efficacy of 4-OHT (15). To
determine if IGFBP-1 is critical for the development of tamoxifen
resistance in breast cancer cells, the level of IGFBP-1 in MCF-
7 parental cells (MCF7-P) and MCF-7 tamoxifen resistant cell
(MCF7-TamR), as well as in T-47D parental (T47D-P) and T47D-
TamR was determined. Both MCF7-TamR and T47D-TamR
expressed higher levels of IGFBP-1 compared to parental cells
that did not have detectable levels of IGFBP-1 (Figure 1A). These
data suggested that IGFBP-1 may promote the development
of tamoxifen resistance. To determine if IGFBP-1 exposure is
sufficient for the development of tamoxifen resistance in breast
cancer cells, MCF-7 and T-47D cells with stable overexpression of
IGFBP-1 were generated. After selection, both extracellular and
intracellular levels of IGFBP-1 were determined by immunoblot.
For both MCF-7 and T-47D cells, the level of intracellular and
extracellular IGFBP-1 in empty vector (EV) controls was low
and similar to the parental cell lines. For MCF-7 and T-47D
cells stably expressing the IGFBP-1 expression vector (designated
BP1 for each cell line), high levels of both intracellular and

FIGURE 1 | MCF7-TamR and T47D-TamR expressed more IGFBP-1 and the establishment of MCF7-BP1 and T47D-BP1 stable cell lines. Immunoblot analysis of

IGFBP-1 expression in MCF-7 and T-47D stable cells. (A) Measurement of IGFBP-1 expression in MCF7-P and MCF7-TamR (left), and in T47D-P and T47D-TamR

(right); (B) measurement of IGFBP-1 expression in MCF7-EV and MCF7-BP1 (left), and in T47D-EV and T47D-BP1 (right). The Coomassie blue staining indicated the

even loading of the proteins from the concentrated media. Results are the representatives of 3 independent experiments. Extra-IGFBP-1: extracellular IGFBP-1;

intra-IGFBP-1: intracellular IGFBP-1.
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extracellular IGFBP-1 were observed compared to the EV
controls (Figure 1B). Additionally, MCF7-BP1 and T47D-BP1
cells had a significant induction of IGFBP-1 transcript compared
to EV controls (data not shown).

Expression of IGF-1R Decreased in
MCF7-BP1 and T47-BP1 Cells
It has been reported that the acquired tamoxifen resistance
in MCF-7 and T-47D cells is associated with the decreased

IGF-1R transcription and expression (17, 21). In agreement with
these reports, the TamR cells generated (Figure 1) expressed
significantly less IGF-IR compared to the parental cells. Since
IGF-1R expression is associated with tamoxifen resistance, IGF-
1R expression was used as an indicator of tamoxifen resistance
MCF7-BP1 and T47D-BP1 cells. In both cell lines, IGF-1R
expression was decreased compared to MCF7-EV and T47D-EV
cells (Figure 2A). Additionally, low levels of IGF-1R transcript
were observed in the each TamR cells line when compared to

FIGURE 2 | Expression of IGF-1R decreased in MCF7-BP1 and T47-BP1 cells. (A) Immunoblot analysis of IGF-1R protein expressions in MCF-7 and T-47D cells. (B)

qRT-PCR analysis of IGF-1R mRNA levels in MCF-7 and T-47D cells. Results are the average of 3 independent experiments, and error bars are the standard error of

the mean. *p < 0.05.
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parental cells consistent with previous reports (17). Similar to
the observations of decreased IGF-1R expression in TamR breast
cancer cells, IGF-1R expression was decreased in MCF7-BP1 and
T47D-BP1 compared to MCF7-EV and T47D-EV (Figure 2B).
These results suggested that sustained exposure to IGFBP-1 in
breast cancer cells contributes to the development of tamoxifen
resistance by altering the IGF-1 signaling pathway.

Sustained IGFBP-1 Exposure Increases
EGFR Signaling
The upregulation of epidermal growth factor receptor (EGFR)
is commonly observed in tamoxifen resistance MCF-7 cells
(22–25). In addition, the increase of EGFR phosphorylation at
tyrosine 1068 has been reported (26). Also, it has been shown
that the phosphorylation of Erk is elevated in MCF7-TamR cells
(21, 23, 24). In the TamR breast cancer cells developed for this
study, alterations in signaling pathways consistent with previous
reports were observed (Figure 3A). Additionally, MCF7-BP1
cells expressed higher level of phospho-EGFR, EGFR, and
phospho-Erk compared to MCF7-EV (Figure 3A). Given that
the expression of EGFR was upregulated in MCF7-TamR and
MCF7-BP1, stimulation of cells by EGFR was determined. While
the viability of MCF7-P and MCF7-EV was not significantly

increased upon EGF treatment, the viability of both MCF7-
TamR and MCF7-BP1 was increased by EGF in a dosage-
dependent manner (Figure 3B). Additionally, an upregulation
of EGFR expression in T47D-TamR compared to T47D-P
was observed and phospho-EGFR as well as phospho-Erk
observed (Figure 3C). Similar to the T47D-TamR, the levels
of EGFR, phospho-EGFR, and phospho-Erk were increased in
T47D-BP1 compared to T47D-EV (Figure 3C). Similar to the
observations with the MCF-7 and derived cells lines, EGF did
not increase the viability of both T47D-P and T47D-EV while
EGF treatment increased the viability of both T47D-TamR and
T47D-BP1 (Figure 3D). Taken together, these data indicated
that the sustained exposure to IGFBP-1 results in increased
EGFR signaling in breast cancer cells and this transition to
EGF sensitivity is similar to the transition that occurs during
development of tamoxifen resistance in breast cancer cells.

Sustained IGFBP-1 Exposure Results in the
Development of Tamoxifen Resistance in
Breast Cancer Cells
EGFR pathway is the predominant pathway related to tamoxifen
resistance (27). In particular, it has been suggested that elevated
expression of EGFR may serve as an indication of anti-estrogen

FIGURE 3 | Sustained IGFBP-1 exposure increases EGFR signaling. (A) Immunoblot analysis of phospho-EGFR (Y1068), EGFR, phospho-Erk, and Erk in MCF-7 cells

(top); measurement of relative cell number (%) in MCF-7 cells after 5 days of EGF treatment (bottom). (B) Immunoblot analysis of phospho-EGFR (Y1068), EGFR,

phospho-Erk, and Erk in T-47D cells (top); measurement of relative cell number (%) in T-47D cells after 5 days of EGF treatment (bottom). Results are the average of 3

independent experiments, and error bars are the standard error of the mean. *p < 0.05.
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resistance in ER α positive breast cancer cells (28–30). Given
that both of the MCF7-BP1 and T47D-BP1 had higher levels of
EGFR, phospho-EGFR, and phospho-Erk, it was hypothesized
that the long-term exposure to IGFBP-1 was sufficient for the
development of tamoxifen resistance in breast cancer cells.
MCF7-BP1 and T47D-BP1 cells were treated with 4-OHT, and
cell numbers were measured after 5 days of treatment. While
the viability of MCF7-P and MCF7-EV was reduced by the 4-
OHT treatment in a dosage-dependent manner, the viability of
MCF7-TamR was increased by the 4-OHT treatment, and the
viability of MCF7-BP1 was not decreased by 4-OHT (Figure 4).
These observations are consistent with previous reports reference
previously in this contribution. To determine if the BP-1 variants
of the MCF-7 and T-47D cells had a similar resistance to
4-OHT treatment, these cells were treated with 4-OHT and
viability was determined by cell counts. Treatment with 4-
OHT significantly decreased viability of T47D-P and T47D-
EV cells, while cell viability was not significantly altered upon
4-OHT treatment T47D-TamR or T47D-BP1 cells. These data
suggest that sustained exposure to IGFBP-1 is sufficient for the
development of tamoxifen resistance in breast cancer cells.

MAPK Inhibition Reverses Tamoxifen
Resistance in Breast Cancer Cells
Activation of Erk plays an important role in the development
of tamoxifen resistance in ER α positive breast cancer cells
(31–33). Previously, it was reported that MAPK inhibitor
PD98059 inhibits proliferation in MCF-7 cells (34), while it
had no significant effect in tamoxifen resistant MCF-7 cells
(35). However, it was shown that the combination of 4-OHT
and PD98059 decreased cell viability tamoxifen resistant MCF-
7 cells. To determine if the IGFBP-1 expressing MCF-7 and T-
47D cells were sensitive to PD98059 treatment or co-treatment
with 4-OHT with PD98059, cell were treated, and viability was
determined by cell count. In Figure 5A, the level of phospho-
Erk was reduced by PD98059 and the co-treatment of tamoxifen
and PD98059 in MCF7-EV. Consistently, the cell numbers of
MCF7-EV were significantly decreased by the treatment of
4-OHT and PD98059, and the co-treatment of 4-OHT with
PD98050 appeared to have an additive effect on killingMCF7-EV

cells (Figure 5A). Both treatment with PD98059 or the co-
treatment of 4-OHT with PD98059 effectively reduced the level
of phospho-Erk in MCF7-BP1. Interestingly, while neither 4-
OHT or PD98050 alone was able to reduce the cell numbers
of MCF7-BP1 significantly, the co-treatment of both drugs
decreased the viability of MCF7-BP1 cells (Figure 5B). Similar to
MCF7-EV, single treatment of 4-OHT or PD98059 significantly
reduced the cell numbers of T47D-EV, and the co-treatment
of both drugs had an decreased T47D-EV cells (Figure 5C).
In T47D-BP1 cells, viability was not reduced by either 4-OHT
or PD98059, however co-treatment significantly reduced the
viability of T47D-BP1cells (Figure 5D). Taken together, our
data revealed that the activation of Erk in MCF7-BP1 and
T47D-BP1 cells played a protective role against the 4-OHT
treatment, and the inhibition of Erk activation by PD98059 re-
sensitized the cells to 4-OHT suggesting that Erk activation
in MCF7-BP1 and T47D-BP1 cells was a key element for
tamoxifen resistance.

Knockdown of IGFBP-1 in MCF7-BP1 and
T47D-BP1 Reduced the Level of
Phospho-Erk and Sensitized the Cells to
4-OHT
Besides functioning to regulate IGF-1 action, IGFBP-1 is reported
to be a stimulator of Erk in several cell types (36–38). A similar
role for IGFBP-1 in breast cancer cells has not been reported. To
determine if IGFBP-1 exposure results in the activation of Erk
in breast cancer cells, IGFBP-1 was transiently reduced in MCF7-
BP1 and T47D-BP1 cells and Erk phosphorylation was measured.
The transient knockdown of IGFBP-1 for 96 h effectively reduced
both extracellular and intracellular IGFBP-1 accumulation and
this knockdown also reduced the accumulation of phospho-Erk
in both MCF7-BP1 and T47D-BP1 cells (Figures 6A,B). The
previous experiments demonstrated that inhibition of phosphor-
Erk accumulation sensitized both MCF7-BP1 and T47D-BP1
cells to 4-OHT treatment (Figure 5B), it was reasoned that
knockdown of IGFBP-1 would similarly sensitize MCF7-BP1 and
T47D-BP1 cells to 4-OHT treatment. Knockdown of IGFBP-1 in
MCF7-BP1 resulted in a result in a significant decrease in viability

FIGURE 4 | Sustained IGFBP-1 exposure results in the development of tamoxifen resistance in breast cancer cells. (A) Measurement of relative cell number (%) in four

different MCF-7 cell lines under 4-hydroxytamoxifen (4OHT) treatment for 5 days. (B) Measurement of relative cell number (%) in four different T-47D cell lines under

4-hydroxytamoxifen (4OHT) treatment for 5 days. Results are the average of 3 independent experiments, and error bars are the standard error of the mean. *p < 0.05.
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FIGURE 5 | MAPK inhibition reverses tamoxifen resistance in breast cancer cells. (A) Left: immunoblot analysis of phospho-Erk (pErk) of treated MCF7-EV; right:

measurement of relative cell number (%) of MCF7-EV under different treatments for 5 days. (B) Left: immunoblot analysis of phospho-Erk (pErk) of treated MCF7-BP1;

right: measurement of relative cell number (%) of MCF7-BP1 under different treatments for 5 days. (C) Left: immunoblot analysis of phospho-Erk (pErk) of treated

T47D-EV; right: measurement of relative cell number (%) of T47D-EV under different treatments for 5 days. (D) Left: immunoblot analysis of phospho-Erk (pErk) of

treated T47D-BP1; right: measurement of relative cell number (%) of T47D-BP1 under different treatments for 5 days. Results are the average of 3 independent

experiments, and error bars are the standard error of the mean. *p < 0.05.

when treated with 1µM 4-OHT compared to non-targeting
control. Similar to MCF7-BP1 cells, neither the treatment of
4-OHT nor the knockdown of IGFBP-1 decreased the cell
numbers of T47D-BP1, whereas the combination of 4-OHT
treatment with IGFBP-1 knockdown significantly reduced the
cell numbers (Figure 6B). These data suggest that exposure to
IGFBP-1 is involved in the development of tamoxifen resistance
in breast cancer cells. Furthermore, these data suggest that
elevated IGFBP-1 levels stimulate Erk activation and resulting in
tamoxifen resistance in breast cancer cells.

Transient Knockdown of IGFBP-1 Restores
Tamoxifen Sensitivity in Breast Cancer
Cells
To determine if elevated IGFBP-1 expression is required for
tamoxifen sensitivity in breast cancer cells, transient knockdown
of IGFBP-1 expression was performed in both MCF7-TamR and
T47D-TamR cells. Transient knockdown of IGFBP-1 for 96 h in
MCF7-TamR sufficiently reduced the accumulation of IGFBP-1
and phospho-Erk (Figure 7). Transient knockdown of IGFBP-1
reduced cell viability suggesting that IGFBP-1 is a prosurvival
factor in MCF-TamR cells. Furthermore, transient knockdown
of IGFBP-1 in MCF7-TamR cells restored tamoxifen sensitivity
as indicated by decreased cell numbers upon 4-OHT treatment
preceded by IGFBP-1 knockdown. Similar experiments were
performed in T47D-TamR, however, IGFBP-1 knockdown was
less robust in this cell line. In the T47D-TamR phospho-Erk
accumulation was not reduced upon IGFBP-1 knockdown while

the knockdown did significantly reduced cell viability of T47D-
TamR. These data support the conclusion IGFBP-1 is a pro-
survival signal in TamR breast cancer cells. When T47D-TamR
were treated with 1µM 4-OHT after IGFBP-1 knockdown, a
reduction of viability was observed, however this reduction was
not statistically significant (p= 0.0950) like what was observed in
the MCF-7 model. Taken together, these results provide evidence
that IGFBP-1 contributes to the development of tamoxifen
resistance in breast cancer cells and is a pro-survival signal for
tamoxifen resistant breast cancer cells.

DISCUSSION

Tamoxifen resistance remains a clinically relevant complication
for women receiving adjuvant breast cancer treatment. Much
work has been directed toward understanding tamoxifen
resistance and several mechanisms or chemoresistance have
been proposed. These range from the loss or alteration
of ER α expression to the activation of alternative growth
factor pathways observed in tamoxifen resistant cells (39–
41). The data described in this contribution provides a
link between the G protein-coupled estrogen receptor 1
(GPER1)-mediated IGFBP-1 accumulation associated with
tamoxifen treatment in breast cancer cells (15) with the
alteration in growth factor signaling previously reported
(17). Furthermore, these data demonstrate that sustained
IGFBP-1 exposure results in tamoxifen resistance and IGFBP-
1 expression is a critical component of chemoresistance
in breast cancer cells. Taken together, these data provide
support for the conclusion that IGFBP-1 is sufficient
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FIGURE 6 | Knockdown of IGFBP-1 in MCF7-BP1 and T47D-BP1 reduced the level of phospho-Erk and sensitized the cells to 4-OHT. (A) Immunoblot analysis of

IGFBP-1, phospho-Erk, and Erk after transfected with non-targeting (NT) shRNA or IGFBP-1 shRNA in MCF7-BP1 (left); measurement of relative cell number (%) in

MCF7-BP1 after transfected with NT shRNA or IGFBP-1 shRNA and treated with either vehicle or 1µM 4-OHT (right). (B) Immunoblot analysis of IGFBP-1,

phospho-Erk, and Erk after transfected with non-targeting (NT) shRNA or shRNA for IGFBP-1 in T47D-BP1 (left); measurement of relative cell number (%) in

T47D-BP1 after transfected with NT shRNA or IGFBP-1 shRNA and treated with either vehicle or 1µM 4-OHT (right). Results are the average of 3 independent

experiments, and error bars are the standard error of the mean. *p < 0.05.

to confer tamoxifen resistance in breast cancer cells
and is a prosurvival factor for chemoresistant breast
cancer cells.

IGFBPs are known to have many functions in cells and these
can be intracellular and/or extracellular. Complete elucidation of
the role that IGFBP-1 plays in tamoxifen resistance will require
continued discovery and analysis of IGFBP-1-mediated cellular

pathways. IGFBP-1 is anti-proliferative for MCF-7 cells (14) and
T-47D cells (42) was demonstrated to inhibit the mobility of
human metastatic breast cancer cell line MDA-231BO (43). Data
from these reports supports a tumor suppressive role for IGFBP-1
in breast cancer cells. However, in the tamoxifen resistant breast
cancer cell the role for IGFBP-1 has been altered. The results
reported herein suggest that IGFBP-1 has a prosurvival role in the
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FIGURE 7 | Knockdown of IGFBP-1 restores 4-OHT sensitivity in breast cancer cells. (A) Immunoblot analysis of IGFBP-1, phospho-Erk, and Erk after transfected

with non-targeting (NT) shRNA or IGFBP-1 shRNA in MCF7-TamR (left); measurement of relative cell number (%) in MCF7-TamR after transfected with NT shRNA or

IGFBP-1 shRNA and treated with either vehicle or 1µM 4-OHT (right). (B) Immunoblot analysis of IGFBP-1, phospho-Erk, and Erk after transfected with non-targeting

(NT) shRNA or shRNA for IGFBP-1 in T47D-TamR (left); measurement of relative cell number (%) in T47D-TamR after transfected with NT shRNA or IGFBP-1 shRNA

and treated with either vehicle or 1µM 4-OHT (right). Results are the average of 3 independent experiments, and error bars are the standard error of the mean. *p <

0.05.

tamoxifen resistant breast cancer cell and that sustained IGFBP-1
exposure is sufficient for the development tamoxifen resistance.
Thus far, the mechanism by which IGFBP-1 acts to enhance
cell viability in breast cancer cells has not been determined.
One possible mechanism that underlies the prosurvivla role for
IGFBP-1 in breast cancer cells is the known interaction with
integrin α5β1. The integrin recognition sequence Arg-Gly-Asp
(RGD) of IGFBP-1 interacts with integrin α5β1 resulting in the
activation of Erk in multiple cell lines (36–38). Integrin α5β1 has
been implicated in solid tumors, and it was shown to promote the
adhesion and invasion for breast cancer cells (44).

In addition to the role that IGFBP-1 has in the activation
of cellular pathways, the regulation of IGFBP-1 expression and
activity will need to be investigated to include analyzing the
phosphorylation status of IGFBP-1 in the tamoxifen resistant
breast cancer cell context. There are three major sites of
phosphorylation in the linker domain of human IGFBP-1, which
are Ser 98, Ser 101, and Ser 119 (45). The phosphorylation

on these residues contributes to increased binding affinity of
IGFBP-1 to IGF-1 (46). Non-phosphorylated IGFBP-1 has lower
IGF-1 binding affinity and thus potentiates IGF-1R activation
(8) which was also demonstrated to activate Erk (47, 48). One
explanation for the data presented here is that IGFBP-1 is
expressed but not phosphorylated and therefore potentiates Erk
activation in tamoxifen resistant breast cancer cells. This line
of investigation will require analysis of the kinase involved in
IGFBP-1 phosphorylation such as CK1 and CK2 (49).

Differentiating the extracellular and intracellular roles of
IGFBP-1 is necessary to fully understand the contribution of
IGFBP-1 in breast cancer cells both during tamoxifen treatment
and in the tamoxifen resistant state. For example, IGFBP-
3, the most widely studied IGFBP family member, can be
internalized and relocated to nucleus via its binding to transferrin
and caveolin 1 (50). Once located in the nucleus, IGFBP-
3 was shown to interact with histone-DNA complex and act
as a transcriptional regulator for certain genes (51). Because
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IGFBP-1 is expressed both intracellularly and extracellularly and
shares high degree of homology of transferrin and caveolin
1 binding regions with IGFBP-3 (50). Until know, the only
functions associated with IGFBP-1 in tamoxifen treated breast
cancer cells have focused on the extracellular role of this
protein. The potential involvement of intracellular IGFBP-1
and the contribution to tamoxifen resistance will need to
be studied.

Taken together, these data reveal a novel role for IGFBP-1 in
the development of tamoxifen resistance in breast cancer cells.
In tamoxifen-sensitive cells, IGFBP-1 accumulation function to
decrease cell viability while the long-term exposure to IGFBP-
1 results in tamoxifen resistance. This suggests that IGFBP-
1 is sufficient for the development of tamoxifen resistance.
Furthermore, tamoxifen resistant cells have increased IGFBP-1
accumulation the viability of the cells is decreased when IGFBP-
1 is reduced. This suggests that IGFBP-1 is a key prosurvival
factor in the tamoxifen resistant cell state. These results may have
clinical implications due to the possibility of monitoring IGFBP-1
expression as a marker of tamoxifen resistance.
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This minireview is a brief overview examining the roles of insulin-like growth factors

(IGFs) and the PI3K/Akt pathway in two apparently unconnected diseases: Alzheimer’s

dementia and cancer. For both, increased age is a major risk factor, and, in accord with

the global rise in average life expectancy, their prevalence is also increasing. Cancer,

however, involves excessive cell proliferation and metastasis, whereas Alzheimer’s

disease (AD) involves cell death and tissue destruction. The apparent “inverse” nature

of these disease states is examined here, but also some important commonalities in

terms of the PI3K/Akt pathway, glucose utilization and cell deregulation/death. The

focus here is on four key molecules associated with this pathway; notably, the insulin

receptor substrate 1 (IRS-1), cellular tumor antigen p53 (p53), peptidyl-prolyl cis-trans

isomerase NIMA-interacting 1 (PIN1) and low-density lipoprotein receptor–related

protein-1 (LRP1), all previously identified as potential therapeutic targets for both

diseases. The insulin-resistant state, commonly reported in AD brain, results in

neuronal glucose deprivation, due to a dampening down of the PI3K/Akt pathway,

including overactivity of the mammalian target of rapamycin 1 (mTORC1) complex,

hyperphosphorylation of p53 and neuronal death. This contrasts with cancer, where there

is overstimulation of the PI3K/Akt pathway and the suppression of mTORC1 and p53,

enabling abundant energy and unrestrained cell proliferation. Although these disease

states appear to be diametrically opposed, the same key molecules are controlling

pathology and, with differential targeting of therapeutics, may yet provide a beneficial

outcome for both.

Keywords: cancer, Alzheimer’s, PI3K/Akt pathway, IGF-1, insulin, LRP1, PIN1, p53

BACKGROUND

In 2018 there were 17 million new cases of cancer and 9.6 million deaths worldwide (1). One of
its most common forms is breast cancer, a leading cause of cancer mortality worldwide (2), with
over two million new cases in 2018. Dementia is also a major cause of suffering and death globally,
with 9.9 million new cases estimated each year (3); 60–70% of these are diagnosed as Alzheimer’s
disease (AD) (4). AD and breast cancer, as examples of each disease spectrum, are contrasted here
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with respect to differences in the PI3K/Akt pathway. By
comparing four specific key molecules, we hope to provide
some insight into potential, differential therapeutic targeting.
Although, due to the limitations of a mini-review we needed to
narrow our selection, we acknowledge that additional molecules
contributing to the inverse nature of these pathologies have also
been reviewed previously (5).

Every normal cell in the body will acquire mutations over a
lifetime, which may result in cancer. It has been clear for many
years that the initiating mutations and neoplastic transformation
may occur decades before symptoms become present and the
cancer is diagnosed. Most breast cancers are epithelial tumors
that develop from cells lining ducts or lobules: carcinoma in
situ, and are located exclusively in the breast, tending to be
detected by routine physical examination or mammography.
Invasive breast cancer can spread however, to most organs, with
the main sites being the lungs, liver, bone and brain. There are
five main subtypes of breast cancer, depending on the expression
of the estrogen, progesterone and human epidermal growth
factor receptor 2 (HER2) receptors which dictate treatment
strategies (6). One mutational profile often observed in many
cancers is hyperactivity of the PI3K/Akt signaling pathway
leading to deregulated control of cell proliferation (7). Another
common feature associated with cancer risk and progression is
chronic inflammation, which can be initiated by triggers, such
as infections, obesity and autoimmune diseases, the effects of
which can bemediated by cytokines, such as tissue necrosis factor
(TNF) and interleukins (IL-1 and 6) (8).

As for cancer, the diagnosis of AD usually occurs long
after the onset of neuropathology, often 10–20 years later,
mainly because symptoms do not generally become evident
until the brain has been severely compromised. Loss of short-
term memory is usually the first symptom; later, cognitive
failure and confusion, and finally an inability to carry out
tasks required for successful daily living. Its two defining brain
pathologies are the presence of amyloid plaques, comprised
mainly of the toxic peptide Aβ42 (processed from the amyloid
precursor protein (APP), which quickly fibrillises and deposits
in the parenchyma of the brain, and hyperphosphorylated tau,
which accumulates within neurones into neurofibrillary tangles
(NFT). The parallel spread of these two pathologies across
the brain, occurs over a long period before clinical symptoms
become evident. Until recently, this has made early diagnosis
and assessment of treatment effectiveness difficult. Positron
emission tomography (PET) scans with ligands which register
amyloid and NFT, as well as markers of neuroinflammation,
are now available, helping diagnosis, clinical trial investigation
and basic scientific discovery (9). Recent investigations with PET
ligands in living patients suggest that symptoms are noticeable
when amyloid and NFT both reach sufficiently high levels
(10). The brain, separated from the peripheral immune system
by the blood-brain-barrier (BBB), relies on its innate immune
system for defense, this includes production of Aβ42 peptide
(11) and activation of the resident macrophages, microglia,
resulting in neuroinflammation, neuronal loss and ultimately
death (12). Unless constantly cleared, Aβ42 forms plaques, whilst
toxic, soluble oligomeric forms also contribute to neuronal

death. Familial forms of AD with mutations with increased
Aβ42 formation, led to the “amyloid cascade hypothesis” (13)
where amyloid precipitates the full spectrum of pathology and
symptoms. Although clearly still very useful, this is undergoing
re-appraisal in terms of the non-familial or common sporadic
form (14, 15).

Whilst most cancers, including breast cancer, involve
apparently unrestrained cell proliferation, AD involves cell loss.
Neurones in the brain, are terminally differentiated post-mitotic
cells, which if forced into cycle re-entry usually die (16).
Cancer is associated with an increased glucose uptake by tumor
cells, that is preferentially converted to lactate fermentation: a
phenomenon known as the Warburg effect (17). The Warburg
effect co-ordinates a number of cellular processes however, in
addition to lactate fermentation, including preventing damage
from reactive oxygen species (ROS), ensuring that cancer cells
have a supportive microenvironment for cell proliferation (18).
By contrast, AD is associated with an early reduction of glucose
uptake and utilization in certain areas of the brain (19, 20).
Due to its commonly seen insulin-resistance brain profile, AD
is sometimes referred to as Type3 diabetes mellitus (T3DM)
(19–22).

Despite the apparently different pathologies, we investigate
here aspects of insulin/IGF signaling and the PI3K/Akt pathway
that may determine these differences and briefly explore
underlying commonalities between the mechanisms which play
a role in the two disease states. Glucose intolerance increases
generally with age (16, 17) and this is thought to be due to insulin-
resistance, commonly observed in older adults (18, 19). Despite
the opposing pathologies, cancer and AD have common risk
factors such as aging, diabetes, obesity, smoking (23) and lack of
exercise, each of which is also associated with insulin-resistance
(24–27). Yet, as noted, although the AD brain often develops
insulin-resistance, tumor cells generally do not. Here, we discuss
normal cellular energy homeostasis and how this differs in cancer
and AD.

REGULATION AND FUNCTION OF INSULIN
AND IGF-1 IN HEALTH, CANCER AND AD

The main source of insulin is that secreted from the beta-cells
of the pancreas in response to food; this normalizes the levels of
blood glucose, by inducing its target tissues, liver, muscle, and
fat cells to increase glucose uptake. IGF-I is secreted by the liver
in response to growth hormone, and its circulating levels remain
constant via its unique interaction with its IGF binding proteins
(IGFBPs) (28). Unlike insulin, IGF-I (and IGF-II) are also made
in most cells of the body, where they play key roles in growth,
survival and metabolism. During an insulin-resistant state the
usual normalizing processes are inhibited, leading to increased
levels of circulating insulin and glucose. This also leads to a
stimulation of hepatic IGF-I synthesis (29), and downregulation
of IGFBPs-1 and−2, resulting in an increased bioavailability of
IGF (30).

The phosphoinositide-3-kinase-(PI3K/Akt) signaling
pathway, as depicted in Figure 1A, has been evolutionarily
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FIGURE 1 | PI3K/Akt pathway in health (A), cancer (B) and AD brain (C) cells. This is a schematic of the PI3K/Akt cellular pathway which regulates cell proliferation,

metabolism and death. These figures attempt to highlight possible differences in cancer and AD compared with health. These indicated differences, as described in

human and animal tissues and in cell culture, are meant to represent general concepts not specific cases. (A) shows normal regulation (B) indicates a cancer

phenotype (C) illustrates AD as an insulin-resistant state i.e., T3DM. Green lines represent activation and purple lines represent feedback from the activation pathway.

Activation of the IGF-1/insulin receptors leads to tyrosine phosphorylation of IRS-1 and activation of mTORC2 and Akt, resulting in glucose uptake. Homeostasis is

maintained partly by mTORC1 sensing of metabolic conditions, which, as appropriate, leads to phosphorylation of p53 and S6K1 serine phosphorylation of IRS-1.

p53 is a negative regulator of IGF/insulin receptors, IGF-II and glucose transporters. [A] Normal cellular homeostasis as described above [B] In cancer, negative

feedback pathways are switched off leading to upregulation of proliferation, metabolism and cell survival. A modified genetic landscape (e.g., p53, PTEN) enables

tumor cells to benefit from a glucose-rich, IGF/insulin-rich environment (insulin-resistance such as in T2DM).In cancer, Akt can phosphorylate and inactivate GSK-3β,

which results in increased protein synthesis that supports cell growth. [C] In AD brain with insulin-resistance, or if, due to decreased blood flow there is no glucose

accessible, the PI3K/Akt pathway is effectively switched off or downregulated. This leads to upregulation of GSK-β that culminates in tau phosphorylation and

aggregation and increased amyloid beta production. Lack of intraneuronal glucose would trigger AMPK to activate mTORC1, p53, S6K1 serine phosphorylation of

IRS-1. This could be a self-perpetuating cycle.

conserved to regulate and maintain appropriate cell growth,
survival and metabolism. This schematic presents an overview of
glucose utilization management within normal cells. Two major
activators of this pathway are insulin and IGFs (31) which act
via specific receptor tyrosine kinases, IGF-IR and the insulin
(IR) receptors. The IR can be spliced to produce two isoforms,
IR-A and IR-B. Upon ligand binding, the receptors can dimerize
forming IR/IGF-IR hybrids which have different biological
consequences depending upon the IR isoform present (32, 33).
Generally, insulin acts via the IR, and IGF-I and IGF-II act via
the IGF-IR and hybrid receptors. IR-A binds IGF-II and insulin,
whereas IR-B has a higher affinity for insulin (34, 35). Emerging
data have expanded our understanding of the complexity of these
receptors and how they signal, in terms of their localization,
trafficking and their ability to interact with other molecules
(36). To ensure adequate fuel, insulin/IGF-I bind and activate
IR/IGF-IR, causing tyrosine phosphorylation of insulin receptor
substrate-1 (IRS-1), leading to Akt activation. This results in
translocation of glucose transporter isoforms (GLUTs) (37) to
the cell membrane enabling glucose uptake. Phosphorylation of
mTORC1 initiates subsequent negative feedback mechanisms,
such as serine/threonine phosphorylation of IRS-1, which are
lost in a cancer phenotype (Figure 1B). mTORC1 (as opposed to

mTORC2) is also considered a main regulator of autophagy, that
maintains tissue homeostasis by degrading “abnormal” cellular
contents (38). Aberrant autophagy occurs in and contributes to
both cancer and AD, however, the impact of this is dependent on
the stage of disease for both pathologies (39, 40).

Epidemiologic studies have shown that “higher” normal levels
of circulating IGF-I are associated with a 25% increased risk
of breast cancer, compared with “lower” normal levels (41).
Overexpression of the IGF ligands and their receptors, IGF-IR,
IR (particularly IR-A) and IGF-IR/IR hybrid receptors leads to
increased activity of the PI3K/Akt pathway (36, 42–44). The IGF-
IIR is a single, non-signaling, transmembrane receptor, enabling
homeostasis by clearing excess IGF-II (45); thus loss of function
mutations in the IGF-II receptor (46, 47) and/or loss of IGF-II
gene imprinting (48) can lead to excess IGF-II available to activate
the PI3K/Akt pathway. IGFBPs are often deregulated in cancer;
IGFBP-2, for example, is often upregulated which intrinsically
downregulates phosphatase and tensin homolog (PTEN) (49, 50)
removing the inhibitory brake on the PI3K/Akt pathway. The
cells compensate by upregulating glucose transporters, notably
GLUT1, which substantially increases glucose importation into
the cytoplasm (51, 52) and the cells switch to lactate fermentation
(Warburg effect).
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AD as an insulin-resistant state, by contrast is exemplified in
Figure 1C. The brain has a high energy dependence, using about
20% of the body’s resting energy requirement (∼60% of glucose
use) (53). Insulin crosses the BBB using a saturable transporter.
Although GLUT1 and GLUT3 glucose transporters in the brain
are insulin independent, the insulin dependent GLUT4 and
GLUT8 are present in regions particularly affected in AD (54–
56). IR (particularly IR-A) and IGF receptors are also strongly
expressed in brain areas, such as the hippocampus, olfactory bulb,
hypothalamus and cerebral cortex in neurones and glia and are
important in memory formation in the hippocampus (55, 57, 58).
Brain insulin and IGF levels are reduced in the aged brain with
decreased insulin signaling and receptor activity (19, 59, 60),
coinciding with decline in cognitive abilities. An early reduction
of glucose uptake/metabolism is seen in pathology-related brain
areas in AD and preclinical, pre-symptomatic subjects (61–63).
Brain insulin-resistance is associated with impaired cognitive
function (54) and is an important feature of AD in patients and
in post-mortem tissue (64–69). Reduced insulin or IGF signaling
leads to deficient uptake of glucose into neurones in those with
mild cognitive impairment (MCI) who subsequently convert to
AD, as well as being a major contributor to neuronal dysfunction
and death in AD (70, 71). Reduced levels of insulin, IGF-I,
II and their receptors associate with severity of pathology (19,
72). Furthermore, binding ability of these proteins is decreased,
relative to increasing pathology (59, 73). In experimental studies,
reduced IGF-I signaling was linked to increased deposition of
Aβ (74, 75), phosphorylation of tau (76, 77), increased oxidative
stress, neuro-inflammation and neuronal death (78). Of interest
also, is the finding that the (non-toxic) monomeric form of Aβ

can activate insulin/IGF-1 receptor signaling, and since these
monomers aggregate in early AD, it is suggested that this may
form a prelude to the disease process (79). Notably, systemic
administration of IGF-I was able to lower the toxicity of Aβ in
normal mice (80) and restore cognitive function in AD mouse
models (81).

There are studies which are not in line with the hypothesis that
IGF-I downregulation in AD is causative in the disease process
but rather may be protective. The mixed results may partly
lie in the fact that total IGF-I poorly reflects its bioactivity as
most circulating IGF-I is bound to IGFBPs and will therefore be
biologically inactive (82). There are also several variables between
studies, for instance age of onset, stage of disease progression,
presence of diabetes, or IGF-I gene polymorphisms.

Therefore, overall, in cancer and AD, the control of
these pathways is compromised, allowing feed-forward
and feed-backward cycles which lead either to cell over
proliferation/deregulation or conversely death.

COMPARING REGULATORY MOLECULES
AND THEIR ROLE IN AD AND CANCER

The PI3K/Akt pathway is kept in equilibrium by key regulators,
some of these are briefly discussed here in terms of their effects
on glucose metabolism in cancer and AD and are depicted in
Figures 1A–C.

IRS-1
IRS-1 plays a critical regulatory role in transmitting signals
from IGF-IR/IR receptors via the PI3K/AKT pathway. It
is commonly overexpressed in cancer and this has been
associated with poor outcome for breast cancer patients (83),
particularly if the tumor is positive for the estrogen receptor
(84). Tyrosine phosphorylation activates and serine/threonine
phosphorylation inhibits IRS-1 activity. Ribosomal protein
S6 kinase beta-1 (S6K1) is one kinase responsible for
inhibitory phosphorylation of IRS-1(85) and this negative
feedback inhibition is lost in many cancers, including breast
cancer (86).

In AD, insulin and IGF signaling is adversely affected in
important brain areas. Phosphorylation of IRS-1 at serine 616
(pS616) and p-serine 636/639 are early markers of brain insulin-
resistance, commonly present inMCI and AD (67). Aβ oligomers
are thought to initiate IGF-I resistance and IRS-1 inactivation
and to be associated with increased oligomeric Aβ plaques
and memory impairment. Neurones in the temporal cortex in
AD have been reported to show reduced levels of active IRS-
1 and−2, but increased inactivated IRS-1, particularly at p-
serine 312 and 616, and this was associated with NFT (73).
Apart from indicating insulin-resistance and decreased glucose
uptake, it suggests a relationship between IRS-1, tau (NFT) and
Aβ pathology.

p53 Tumor Suppressor Gene
Wild-type p53 regulates many cell functions including cell
cycle arrest, apoptosis and metabolism (87). P53 negatively
regulates IGF-IR, IGF-II, GLUTs 1 and 4 and positively stimulates
IGFBP-3 (pro-apoptotic factor) (88–91). In cancer, including
breast cancer, p53 is often mutated, resulting in a loss of
its tumor suppressor activity (92–94). This disrupts regulation
of IGF-IR, IGF-II, GLUTs 1, 4, and IGFBP-3, leading to
enhanced activation of the PI3K/Akt pathway and glucose
uptake. Increased Aβ positively correlates with p53 levels
(91, 92). AD brain levels of p53 are thus increased, which
promotes tau hyperphosphorylation and ultimately neuronal
death (90).

Peptidyl-Prolyl Cis-Trans Isomerase
NIMA-Interacting-1 (PIN1)
Pin1 is a peptidyl-prolyl cis–trans isomerase (PPIase) able to
isomerise p-serine/p-threonine-proline sequences thus effecting
conformational change which alters the activity of its target
proteins (95). It is highly expressed in many cancers (96,
97) and facilitates activation of the PI3K/Akt pathway. One
way it does this is by increasing Akt stability through serine
473 phosphorylation (98). In breast cancer, high levels of
both Akt-p-S473 and PIN1 predict a poorer prognosis than
either alone (99). PIN1 can also induce a conformational
change to the tumor suppressor gene p53 (100) and its
overexpression in the presence of p53 mutations are prognostic
for poor clinical outcome in breast cancer (101). SUMO
protease-1 (SENP1) binds to, and deSUMOylates PIN1, and
its levels correlate with those of PIN1 in breast cancer (102,
103). PIN1 is inhibited by BRCA-1, the tumor suppressor
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gene (104) suggesting that PIN1 would play an important
role in the development of tumors in which BRCA1 is
mutated. PIN1 also supports increased cell proliferation by
promoting glycolysis in tumor cells. This is achieved by
stimulation of pyruvate kinase translocation (that catalyses
the rate-limiting step during glycolysis) to the nucleus (95,
105). As a consequence of these functions, PIN1 inhibitors
have been developed and shown to slow the progression of
cancer (96).

In brain, PIN1 is located in neuronal dendrites and
postsynaptic densities and its activity and expression are
reduced in MCI and AD (106, 107), likely to make neurons
more vulnerable to Aβ and increasing synaptic degeneration
(108). Notably, PIN1 enables tau dephosphorylation via protein
phosphatase PP2A and co-localizes with hyperphosphorylated
tau in AD brain (109).

Low-Density Lipoprotein Receptor–Related
Protein 1 (LRP1)
The LRP1 receptor is a multifunctional receptor involved in
many cellular functions including endocytosis and cell signaling.
Notable is its intrinsic link with energy homeostasis; through its
binding to the IGF-IR (110) and the IR (111), LRP1 plays a central
role in insulin/IGF signaling affecting cell proliferation, survival,
glucose and lipoprotein metabolism (112, 113).

The role that LRP1 plays in cancer is dependent upon the
type of tumor and the cellular environment. In breast cancer,
early reports indicated that a low expression of LRP1 correlated
with more aggressive tumors (114). More recent work, however,
consistently indicates a role for LRP1 in supporting breast cancer
cell invasion and metastasis (115, 116) by increasing expression
of matrix metalloproteinases (MMPs), MMP-2, and 9 (117).

In the brain, LRP1 is important for cell survival, lipoprotein
metabolism and synaptic plasticity, and is highly expressed
in neurones. It binds leptin, enabling leptin receptor
phosphorylation and Stat3 activation. Deletion of the Lrp1
gene in the mouse hypothalamus results in increased body
weight (obesity) (118); conditional Lrp1 brain knock-out
produces glucose intolerance (111). LRP1 interacts with the
insulin receptor, regulating insulin signaling and glucose
uptake, and influencing GLUT3 and−4 glucose transporter
levels (111). Insulin resistance in peripheral tissues in rodents
involves loss of GLUT4 function (119, 120). Centrally, in
the rat hippocampus, GLUT4 is vital to memory acquisition,
inhibition causing memory impairment (56). Amyloid requires
constant clearance pathways, LRP1 is known for its function
as a clearance receptor able to remove amyloid across the BBB
(121), but also to endocytose Aβ for elimination by lysosomes.
LRP1 expression is reduced with age in mouse (122) and
human brain (123), and to a greater degree in AD (122, 123).
Notably, hyperglycaemia and increased insulin resistance, as in
type-2 diabetes mellitus (T2DM), suppress LRP1 expression and
exacerbate AD pathology in mice (111). Reduced LRP1 levels
are associated with increased neuronal death (124) signifying
that LRP1 is required for the neuroprotective effects of insulin
signaling (125).

SUMMARY

The PI3K/Akt pathway is central to the sensing of metabolic
and nutritional changes in our environment and is clearly
deregulated in both cancer and AD. Considering that most
of the risk factors for both, such as obesity, T2DM and
smoking are modifiable through lifestyle changes, an effective
strategy could be a preventive approach; for instance re-
establishing physiological glucose levels by diet. This minireview,
however, attempts to briefly explore some of the underlying
mechanisms to identify possible therapeutic targets for these
conditions, already ongoing. By addressing the apparent
inverse relationship between cancer and AD we hope to
identify regulatory molecules in the PI3K/Akt pathway
important in cell proliferation and glucose utilization. In
cancer this leads to upregulation of glucose uptake and cell
proliferation, which contrasts with AD where there is lack
of glucose availability, increased pathology, and consequent
neuronal death. For both breast cancer and AD there has
been a drive for the identification of biomarkers for early
detection, ultimately to improve long-term survival. Notably,
pre-clinical studies have identified IRS-1, p53, PIN1 and
LRP1 as individual potential therapeutic targets (126–133) for
both disease states, and changes in these are in themselves
putative biomarkers.

These may provide alternative targets for future trials, but
the possibility of inverse effects of altering these proteins, as
we outline here, suggests that a delicate balance is required
within the PI3K/Akt pathway. It is notable therefore that
Metformin, an antihyperglycemic agent for diabetes, appears to
promise some beneficial therapeutic outcome in both cancer
and AD (134, 135). In cancer the mechanism is likely to be via
mTOR inhibition and activation of p53 (136); in T2DM and
T3DM-AD, it is probably the reduction of insulin-resistance
(137). Whilst it is challenging to develop specific drugs for
the clinical setting, understanding the regulatory aspects of
this pathway may enable a co-targeting approach to reduce
non-specific toxicity and increase specificity, thus achieving a
better outcome.
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Pregnancy-associated plasma protein-A (PAPP-A) and its homolog PAPP-A2 are

enzymes that modulate the availability and mitogenic activity of insulin-like growth factor-I

(IGF-I). PAPP-A has been implicated in numerous cancers but reports on PAPP-A2

in malignancy are non-existent. In a prospective observational study of 689 patients

under suspicion of lung cancer, we examined levels of PAPP-A and PAPP-A2 and their

relationship withmortality. SerumPAPP-A and PAPP-A2 concentrations were determined

in pre-diagnostic blood samples using ELISA, and immunohistochemical staining of

PAPP-A and PAPP-A2 was performed in malignant tissue from five operable patients.

A total of 144 patients were diagnosed with lung cancer, whereas the diagnosis was

rejected in 545 subjects, who served as a control group. PAPP-A2 concentrations were

higher in patients with lung cancer [median (IQR): 0.33 (0.21–0.56) ng/mL] than in controls

[0.27 (0.17–0.39) ng/mL], p < 0.001, whereas PAPP-A levels did not differ. Presence of

PAPP-A and PAPP-A2 were confirmed in tumor specimens, and staining occurred in a

heterogeneous pattern. Patients were observed for a median (range) of 7 (6; 8) years,

during which 114 patients (79.2%) died. Patient mortality differed according to PAPP-A2

tertile (p < 0.001). PAPP-A2 was associated with mortality with an unadjusted hazard

ratio (95% CI) per doubling in protein concentration of 1.30 (1.12; 1.53), p = 0.001.

In a multivariable model adjusted for age, sex, and BMI, PAPP-A2 remained predictive

of the endpoint with a hazard ratio per doubling in protein concentration of 1.25 (1.05;

1.48), p = 0.013. Collectively, PAPP-A2, but not PAPP-A, is elevated in patients with

lung cancer and associated with mortality. This novel role of PAPP-A2 in cancer warrants

further functional studies as well as validation in external cohorts.

Keywords: insulin-like growth factor, insulin-like growth factor binding protein, lung cancer, mortality,

pregnancy-associated plasma protein-A, pregnancy-associated plasma protein-A2
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INTRODUCTION

Lung cancer is one of the most common human malignancies
worldwide with considerable attendant societal costs. Tumor
heterogeneity and the lack of seromarkers for detection of the
disease at early stages pose a formidable challenge and contribute
to high mortality rates. Insulin-like growth factor I (IGF-I) is a
pivotal player in the multifaceted process of malignant disease,
including lung cancer, and signaling through the IGF-I receptor
(IGF-IR) stimulates mitogenesis, metabolism, and anti-apoptosis
(1, 2).

Pregnancy-associated plasma protein-A (PAPP-A) and PAPP-
A2 comprise the only two known members of the pappalysin
family of metalloproteinases, sharing 45% amino acid identity
(3, 4). They are responsible for proteolytic cleavage of a subset
of IGF-binding proteins (IGFBPs), through which they increase
IGF availability and potentiate its growth stimulatory effects (5).
PAPP-A has been suggested as an accomplice in several types
of cancer (6–9) and has been extensively studied due to its
biomarker potential (3, 10–13). Although PAPP-A2 was recently
established as a regulator of the IGF axis in human physiology
(14), the biology of PAPP-A2 is poorly understood compared to
PAPP-A (15), and there are currently no reports linking PAPP-A2
protein and cancer mortality (9).

PAPP-A specifically cleaves IGFBP-2,−4, and−5 and is widely
expressed in multiple tissues, including those of tumor origin,
where it tethers to cell surfaces (16, 17). Thus, PAPP-A causes
a release of bioactive IGF in close proximity to the IGF-IR. Shifts
in PAPP-A levels have been suggested to modify the relationship
between bound and free IGF in various neoplasms (8, 18–20). In
patients with lung cancer, serum PAPP-A levels have been shown
to be elevated (19), and down-regulation of PAPP-A expression
decreases lung cancer progression in vivo (21). The present
authors previously described a cohort of women with ovarian
cancer, in which PAPP-A levels were investigated in serum and
malignant ascites (20). In ascites, which surrounds the ovarian
tumor in the abdominal cavity and is a negative prognostic
factor, PAPP-A levels were 46-fold higher as compared to serum
from the same patient. It was further shown that the ability
of ascites to activate the IGF-IR in vitro was increased by 31%
as compared to serum, and immunohistochemistry (IHC) of
ovarian tumor specimens revealed abundant staining of both
IGF-IR and PAPP-A.

Similar to PAPP-A, placentally derived PAPP-A2 is
abundantly present in the circulation throughout pregnancy, but
the protein is also detectable in non-pregnant men and women
(22). However, PAPP-A2 has generally not been investigated
in human pathologic conditions outside pregnancy. PAPP-
A2 exhibits proteolytic activity against IGFBP-3 and−5, but
unlike PAPP-A, PAPP-A2 does not show surface tethering
(15). Recently, Dauber et al. (14) reported the first human
PAPP-A2 deficiency cases, who presented with short stature
and severe perturbations in the IGF system. This finding
provided conclusive evidence of the importance of PAPP-A2 in
human physiology.

The present study evaluated PAPP-A and PAPP-A2 levels in
serum from 689 patients under suspicion of lung cancer and

assessed PAPP-A and PAPP-A2 expression by IHC in surgical
specimens. Furthermore, we investigated the associations of
PAPP-A and PAPP-A2 with mortality in the 144 patients with a
cancer diagnosis and compared their prognostic performances.

METHODS

Patient Characteristics
The Department of Pulmonary Medicine at Aarhus University
Hospital receives patients under suspicion of lung cancer referred
from their general practitioner or other hospital departments
within the region of Aarhus, Denmark. All referred patients
are examined in a fast-track diagnostic setup, where medical
examination, routine biochemistry, CT, PET, lung function tests,
endosonography, and biopsies are performed within four weeks
of their first visit.

All patients referred from February 2009 through April 2011
were invited to participate in the present study at their first
visit. A total of 1,405 patients were registered, and information
was obtained on smoking habits, symptoms including dyspnea,
height, weight, recent weight gain or loss, and reasons for
exclusion when applicable. These data were paired with routine
biochemistry, diagnoses given at the end of the diagnostic
course, lung function tests, diagnoses given in conjunction with
previous contacts with the Danish health system, and Charlson
comorbidity index. The TNM system was used to stage the
cancer; T describing the size of the primary lung tumor, N
describing regional lymph node involvement and M describing
distant metastasis. These values were combined to assign an
overall cancer stage (1–4). Project blood samples were collected
in conjunction with the routine samples, centrifuged, separated
in aliquots, and stored at−80◦ until assay. Exclusion criteria were
previous malignancies apart from non-melanoma skin cancer (n
= 188), severe heart failure (NYHA III/IV) (n = 11), thyroid
dysregulation (n = 67), lack of mental resources (23), linguistic
and cultural barriers (n = 45) and long dwell time (n = 19).
Of all registered cases in the period, 132 patients were not
asked by the investigator. In addition, biochemical criteria were
applied to identify patients with poorly managed diabetes and
decreased renal function. Patients with diabetes and an HbA1c
above 7.0% DCCT were excluded from the study (calculated
as an average of all available measurements across the study
period) (n = 123). This level equals 53 mmol/mol by the IFCC
standard and reflects an estimated average plasma glucose of
8.5 mmol/l. Patients with an estimated glomerular filtration
rate (eGFR) below 40 ml/min were excluded (determined by
the MDRD formula without correction for ethnicity) (n = 28).
Exclusion criteria reduced the cohort to 803 patients. Of these,
35 did not wish to participate. Some patients were subsequently
diagnosed with malignant mesothelioma (n = 12) and other
cancers than lung cancer includingmetastases (n= 36), and these
two groups were excluded from analyses. Finally, patients were
also excluded due to lack of sufficient blood for determination
of target proteins (n = 15), resulting in a total of 705 patients
available for laboratory measurements. However, to ensure that
all variables were investigated in the context of lung cancer,
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patients were excluded if a new cancer diagnosis occurred <2
years from study inclusion (n= 16). Patients that received a new
cancer diagnosis more than 2 years into follow-up were included
in the study (n = 34). A total of 689 patients were eligible for
analysis (Figure 1). Hereof, 144 patients (20.9%) were diagnosed
with lung cancer, whereas this diagnosis was rejected in 545
patients. Patients were grouped as follows: controls (control, n
= 545), small cell lung carcinoma (SCLC, n= 13), non-small cell
lung carcinoma, NSCLC, adenocarcinoma subtype (NS-Ad, n =

75), NSCLC, squamous cell subtype (NS-Sq, n= 27), andNSCLC,
other subtypes than NS-Ad and NS-Sq (NS-x, n= 29).

Baseline descriptions of controls and patients are summarized
in Table 1, including the clinical stage in lung cancer patients.
Patients were allocated to treatment independent of study
participation. A total of 117 controls were diagnosed with
pneumonia, hemoptysis, sarcoidosis, or other respiratory
diseases. Control subjects where a malignant cause was ruled
out were given an unspecific “observation” diagnosis (n = 303),
whereas others showed an abnormal computerized tomography
scan (n = 182). Written informed consent was obtained from all
patients, and the study (id: 1-10-72-155-12) was approved by the

Central Denmark Region Committees on Biomedical Research
Ethics (IRB 0005129). The study was conducted in accordance
with the Declaration of Helsinki.

Outcome Measures
All-cause mortality for lung cancer patients was recorded until
March 2017. The 144 patients with a cancer diagnosis had
a median (range) survival of 377 days (14 days−8 years).
Since the first cancer patient was included in March 2009
and the final patient in March 2011, all cancer patients were
followed for at least 6 years [median (range): 7 (6; 8) years].
Survival was documented for each individual using the Danish
Civil Registration System and the National Causes of Death
Registry, which offers information from physicians on causes of
death according to the International Classification of Diseases,
Tenth Revision (ICD-10). Because of the high-quality Danish
registration system, no patients were lost during follow-up.

Laboratory Measurements
Routine biochemistry was performed at the hospital’s laboratory
using widely available automated assays. Serum protein levels

FIGURE 1 | Flow chart of patient inclusion. Some patients met more than one exclusion criteria; hence the sum does not equal the reduction in patient number.
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TABLE 1 | Baseline and survival characteristics.

Characteristics Control Cancer Cancer subtype

SCLC NS-Ad NS-Sq NS-x

Number, n 545 144 13 75 27 29

Males, n (%) 266 (48.8) 66 (45.8) 6 (42.2) 23 (30.7)** 18 (66.7) 19 (65.5)

Age, years 61.9 ± 13.1 67.1 ± 10.6** 67.7 ± 10.9 64.7 ± 10.0 72.8 ± 9.6** 67.5 ± 11.4*

BMI, kg/m2 25.5 ± 4.9 23.6 ± 3.7** 25.6 ± 3.6 23.1 ± 3.5** 23.9 ± 3.6 23.5 ± 4.4*

CRP (mg/L) 2.6 (0.9; 6.8) 13.9 (3.6; 32.9)** 5.8 (2.4; 22.8)* 8.7 (3.1; 24.0)** 32.5 (20.6; 48.7)** 13.1 (4.4; 33.9)**

eGFR 85 (74; 99) 90 (79; 106)** 86 (81; 101) 88 (78; 103) 91 (79; 112) 93 (83; 108)

Smoking status, n (%)

Never 117 (21.5) 7 (4.6) 0 (0.0) 4 (5.3) 1 (3.7) 2 (6.9)

Former/current 368 (67.5) 131 (91.0) 13 (100.0) 69 (92.0) 25 (92.6) 24 (82.8)

Unknown/missing 60 (11.0) 6 (4.2) 0 (0.0) 2 (2.7) 1 (3.7) 3 (10.3)

Stage, n (%)

1 27 (18.8) 2 (15.4) 17 (22.7) 2 (4.4) 6 (20.7)

2 14 (9.7) 0 (0.0) 7 (9.3) 4 (14.8) 3 (10.3)

3 29 (20.1) 5 (38.5) 6 (8.0) 13 (48.2) 5 (17.2)

4 56 (38.9) 4 (30.8) 35 (46.7) 5 (18.5) 12 (41.4)

Unknown 18 (12.5) 2 (15.4) 10 (13.3) 3 (11.1) 3 (10.3)

PAPP-A, ng/mL 1.03 (0.84; 1.27) 1.04 (0.86; 1.36) 1.02 (0.90; 1.54) 1.01 (0.84; 1.26) 1.10 (0.78; 1.43) 1.02 (0.90; 1.26)

PAPP-A2, ng/mL 0.27 (0.17; 0.39) 0.33 (0.21; 0.56)** 0.33 (0.22; 0.78) 0.29 (0.20; 0.47) 0.47 (0.24; 0.67)** 0.34 (0.23; 0.49)*

Survival, days 377 (190; 1,301) 550 (324; 1,717) 397 (206; 1,535) 281 (141; 899) 307 (157; 865)

Mortality at endpoint, n (%) 78 (14.3) 114 (79.2) 10 (76.9) 59 (78.7) 23 (85.2) 22 (75.9)

Baseline and survival characteristics in controls, patients with lung cancer and subtypes of lung cancer. Patients are grouped as follows; control subjects (Control), all cancer patients,

(Cancer), small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), NSCLC adenocarcinoma subtype (NS-Ad), NSCLC squamous cell subtype (NS-Sq), and NSCLC

other subtypes than NS-Ad and NS-Sq (NS-x). Survival refers to median survival time and comprises all cancer patients who were censored or experienced an event. Categorical

variables are indicated as number (n) and percentage (%) of patients, and continuous variables are mean ± SD or median (25th percentile; 75th percentile). *p < 0.05, **p < 0.005 as

compared to controls. BMI, body mass index; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; PAPP-A, pregnancy-associated plasma protein-A.

of PAPP-A and PAPP-A2 were measured using PAPP-A (AL-
101) and PAPP-A2 (AL-109) ELISA kits (AnshLabs, Webster,
TX, USA). All samples were analyzed in a blinded fashion in
random order.

Immunohistochemistry
A subgroup of five patients who were operable provided tumor
tissue for IHC, which was performed as previously described (20)
using antibodies specific for PAPP-A (PAC1-D8-mIgG2a) (24)
and PAPP-A2 (P257) (22) at 10 and 20 mg/L, respectively.

Statistical Analysis
The assumption of normality was checked using quantile-
quantile plots and by the Shapiro-Wilk test, and non-normally
distributed variables were transformed prior to statistical
analyses. Whenever possible, parametric statistical tests were
applied. Groups were compared with Student’s t-test (two
groups) or one-way ANOVA and post-hoc tests with Bonferroni’s
correction (multiple groups). If there was evidence against the
assumption of equal variance by Bartlett’s test, or if data did not
follow a normal distribution,Wilcoxon rank-sum test or Kruskal-
Wallis test was applied, respectively. Categorical variables were
evaluated by χ2-test. PAPP-A and PAPP-A2 were modeled
categorically as tertiles and as continuous variables after log
transformation using log(protein)/log(2). Accordingly, one unit

increase in protein level on the log2-scale corresponds to a
doubling in protein. Test for linear trend (continuous protein
level) across ordered groups (cancer stage) was performed by
linear regression analyses with the ordered group as a continuous
explanatory variable with equal distance between steps. Test for
ordered categorical trend (protein tertile) across ordered groups
was performed using an extension of theWilcoxon rank-sum test
developed by Cuzick (25).

The area under the receiver operating characteristic (ROC)
curve (AUC) was used to assess the prognostic ability of PAPP-A
and PAPP-A2. However, AUC is a metric for binary classification
and does not consider individual survival times and censoring.
As proposed by Harrell et al. (26) as an extension of AUC, the
concordance (C) index was used as a measure of concordance
between the protein of interest and the possibly censored survival
outcome, using a similar range from 0 to 1. Suggested by Pencina
et al. (27, 28), the Harrell’s C index is the most appropriate in
capturing the discriminating ability of a prognostic variable to
separate subjects with varying survival time and outcome status.

Kaplan-Meier survival curves were performed for PAPP-A
and PAPP-A2 tertiles, and incidence distributions were compared
using the log-rank test. Cox proportional hazards models were
developed to explore associations between survival endpoint and
the explanatory variable, using both the continuous variable and
tertiles with the low tertile as reference group. Hazard ratios
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(HRs) assessed the risk of death in unadjusted models and after
adjustment for a priori defined covariables; age, sex, and BMI.
Smoking status was not associated with PAPP-A or PAPP-A2
level, and hence, not included. The validity of the proportional
hazards and linearity assumptions were checked by log-log plots,
fitted survival curves and smoothed martingale and Schonenfeld
residuals plot; no deviations from proportionality were identified
(26, 29, 30).

Results are presented as mean ± SD for normally distributed
data and median (25th percentile; 75th percentile) for skewed
data. AUC, C-statistics, and HRs are presented with 95%
confidence intervals (CI). Two-tailed P-values < 0.05 were
considered statistically significant. Data were analyzed using
Stata software (StataCorp LP, College Station, TX, USA). Harrell’s
C index and Somers’ D statistics for censored data was calculated
using the “somersd” module in Stata version 13.

RESULTS

Baseline Characteristics
Control and patient characteristics by subtype of lung cancer
are given in Table 1. Cancer patients were significantly older
than controls and had a lower BMI, and a higher percentage
were current or former smokers. Among cancer subtypes,
patients were similar with regards to age and BMI, and disease
stage did not differ between cancer subgroups. However, as
expected, cancer patients differed from controls in a wide
range of inflammatory markers, organ markers, and markers of
general nutritional status (data not shown). Especially patients
with squamous NSCLC exhibited a distinct pattern in their
biochemical profile, suggesting a higher degree of inflammation
than in patients with other subtypes.

To assess if the included cases were representative of the
total group of patients diagnosed with lung cancer in the study
period, patients were compared to non-participating patients.
The distribution of non-included and included patients on the
various histological diagnoses as well as disease stages did not
differ (data not shown).

PAPP-A2, but Not PAPP-A, Is Elevated in
Patients With Lung Cancer and Differ
Between Subtypes
Serum PAPP-A2 was elevated in patients with lung cancer as
compared to control subjects (p < 0.001) (Table 1). When
comparing the individual cancer subtypes with controls, the
highest concentrations were observed in the NS-Sq group (p <

0.001). Levels in the NS-x group were also elevated (p < 0.05),
whereas PAPP-A2 was not significantly higher in the other cancer
subtypes. By contrast, PAPP-A levels were similar in cancer
and control subjects and did not differ among cancer subtype
or stage. PAPP-A2 as a continuous variable was not associated
with cancer stage (p = 0.123), and thus, patients with early-
stage cancer displayed similar concentrations as patients with
more advanced-stage cancer. However, when assessing PAPP-A2
tertiles, a higher tertile was significantly associated with higher

cancer stage (ptrend = 0.003). Cancer stage according to PAPP-A
and PAPP-A2 tertiles is shown in Figure 2.

The group of NS-Ad patients was of sufficient size to allow
for further analyses of cancer TNM classification. Overall group
differences as well as linear trend across TNM category were
assessed. However, neither PAPP-A nor PAPP-A2 was associated
with tumor size, lymph node involvement or metastatic status.

PAPP-A was positively associated with age (r = 0.27, p <

0.001) in all subjects, whereas PAPP-A2 was positively associated
with age (r = 0.40, p < 0.001) and negatively associated with
BMI (r = −0.19, p < 0.001). Additionally, in the cancer
patients, PAPP-A2 showed correlations with several markers
of inflammation, organ status and overall illness, including
C-reactive protein (CRP) (r = 0.34, p < 0.001), erythrocyte
sedimentation rate (ESR) (r= 0.29, p< 0.001), eGFR (r=−0.18,
p < 0.05) and hemoglobin (r = −0.30, p < 0.001). PAPP-A2 was
also positively associated with levels of leukocytes, neutrophils,
and monocytes (all p < 0.05).

Immunohistochemistry
The expression of PAPP-A and PAPP-A2 was confirmed by IHC
of tumors removed during surgery. Tissue originated from one
patient with SCLC, two with NS-Ad, and two with NS-Sq. The
anti-PAPP-A antibody stained tumor specimens in a vacuole-
like or cell membrane accentuated pattern, as expected for a
secreted protease, and staining intensity varied across cell types
and between patients. Staining for PAPP-A2 was demonstrated
in four out of five patients, with no staining in the SCLC tumor
sample. PAPP-A2 staining was present in malignant cells as well
as areas densely infiltrated by macrophages. Staining was mild
to moderate and occurred in a heterogeneous pattern. Examples
of the breadth and intensities of PAPP-A2 staining patterns are
illustrated in Figure 3.

Survival Analyses of Cancer Patients
During follow-up, 114 patients (79.2%) died, and median (range)
survival of all cancer patients was 377 days (14 days−8 years)
(Table 1). Median survival of patients was 550 days in SCLC, 397
days in NS-Ad, 281 days in NS-Sq and 307 days in NS-x. There
was no difference in overall mortality between cancer subtypes;
76.9% in SCLC, 78.7% in NS-Ad, 85.2% in NS-Sq and 75.9% in
NS-x (p= 0.672).

ROC AUC was 0.55 (0.43; 0.67) for PAPP-A and 0.63 (0.52;
0.73) for PAPP-A2. Log-rank analysis showed similar mortality in
the low, middle and high PAPP-A tertiles (p = 0.324). However,
incidence distributions differed significantly according to PAPP-
A2 tertile (p < 0.001), and mortality increased with increasing
PAPP-A2 tertile (ptrend < 0.001). Mortality distribution in
the PAPP-A2 tertiles did not differ among the various lung
cancer subtypes (p = 0.341). Log-rank test and deaths among
the various lung cancer subtypes are shown in Table 2. To
suggest and illustrate a future potential clinical utility of PAPP-
A and PAPP-A2 as biomarkers, Kaplan-Meier survival curves
were constructed according to tertiles of PAPP-A and PAPP-A2
(Figure 4). To further investigate the prognostic power of PAPP-
A and PAPP-A2, we calculated Harrell’s C index, which assesses
discrimination ability of survival models. Harrell’s C index for
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FIGURE 2 | Cancer stage according to PAPP-A and PAPP-A2 tertiles. PAPP-A, pregnancy-associated plasma protein-A.

FIGURE 3 | Immunohistochemical staining of PAPP-A2. Expression of PAPP-A2 in lung cancer tissue was determined by immunohistochemical staining. Examples

are shown for two patients with non-small cell lung cancer of adenocarcinoma subtype. PAPP-A2 staining was present in malignant cells in recognizable glandular

patterns as well as areas densely infiltrated by macrophages. Staining was moderate (left) and weak (right) and occurred in a heterogeneous pattern. Scale bar =

100µm. PAPP-A2, pregnancy-associated plasma protein-A2.

PAPP-A was 0.52 (0.46; 58), whereas that for PAPP-A2 was 0.62
(0.57; 0.68).

The association between mortality and PAPP-A or PAPP-A2
was investigated using both the continuous variable and tertiles
with the low tertile as reference group (Table 3). PAPP-A was not
associated with outcome. In contrast, with each 2-fold increase in
PAPP-A2, themortality increased by 30% [HR: 1.30 (1.12; 1.53), p
= 0.001]. In a categorical model using the first tertile as reference,
PAPP-A2 was associated with mortality with a HR of 1.57 (0.98;
2.50), p = 0.060, for the second tertile and 2.60 (1.64; 4.14), p
< 0.001, for the third tertile. In multivariable Cox regressions
adjusted for age, sex, and BMI, PAPP-A2 as a continuous variable

remained predictive of the endpoint, whereas PAPP-A2 as a
categorical variable remained significant when the high tertile
was compared to the low tertile.

DISCUSSION

This prospective study sought to investigate PAPP-A and
PAPP-A2 in patients with lung cancer and evaluate potential
associations with mortality. PAPP-A2, but not PAPP-A, was
elevated in patients with lung cancer, and we demonstrated a
prognostic significance of PAPP-A2. The present study is the first
exploration of the potential clinical significance of PAPP-A2 in
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TABLE 2 | Log-rank analyses on all-cause mortality according to PAPP-A or PAPP-A2 tertiles.

Log-rank Concentration (ng/mL) Total patients (n) SCLC (n) NS-Ad (n) NS-Sq (n) NS-x (n) All-cause mortality (n) p

PAPP-A 0.77 [0.57; 0.86] 48 3 19 8 5 35 0.324

1.04 [0.98; 1.12] 48 2 24 7 8 41

1.54 [1.36; 1.77] 48 5 16 8 9 38

ptrend 0.322

PAPP-A2 0.18 [0.13; 0.22] 48 3 20 4 5 32 <0.001

0.33 [0.28; 0.37] 48 2 19 7 11 39

0.69 [0.57; 0.88] 48 5 20 12 6 43

ptrend <0.001

Number of events in low, middle and high PAPP-A or PAPP-A2 tertile groups. Median (25th percentile; 75th percentile) concentrations of PAPP-A and PAPP-A2 are shown for each tertile

group. In addition, deaths among the various lung cancer subtypes are shown. Values are reported a numbers (n) of patients. P-values, log-rank test for equality of survivor function or

test for trend of survivor function across ordered tertile groups (ptrend ).

FIGURE 4 | All-cause mortality in patients according to tertiles of PAPP-A and PAPP-A2. Tick marks represent censored events. P-values: log-rank test for equality of

survival between tertile groups. PAPP-A, pregnancy-associated plasma protein-A.

this disease. However, the novel association between PAPP-A2
and lung cancer warrants further validation in external cohorts
as well as functional studies to establish a causal relationship.

Early detection and treatment of lung cancer are urgent
global healthcare priorities and pose a formidable challenge.
Unfortunately, early symptoms, if present, are indistinct and
non-specific, and the majority of patients appear with advanced
disease. Thus, novel ways to identify patients and treatment
options are crucial. IGF signaling clearly plays a pivotal role in
the progressive transformation of normal cells into malignant
derivatives and has been shown to regulate most steps of
tumor progression, including sustained cell proliferation, clonal

expansion, angiogenesis, migration, invasion, and colonization of
secondary sites and resistance to certain anti-cancer therapies (2).
PAPP-A has emerged as an oncogene, and burgeoning evidence
indicates that PAPP-A is implicated in tumor formation through
the amplification of IGF actions. PAPP-A is expressed by a wide
range of cells of malignant origin (31, 32), being transiently
increased in some cancers and constitutively expressed by others
(8, 20, 33). In murine models, PAPP-A deficiency results in
a delayed occurrence of age-related fatal cancers and sporadic
tumors (34, 35). In 2009, Bulut et al. found increased PAPP-A
levels in serum from patients with lung cancer (19). However,
we were unable to confirm this finding in the present study.
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TABLE 3 | Cox regression analyses.

Range (ng/mL) Univariable HR (95% CI) p Multivariable HR (95% CI) p

ALL-CAUSE MORTALITY

PAPP-A

Continuousa 1.13 [0.84;1.51] 0.435 1.09 [0.80;1.48] 0.574

Categoricalb,d

Low tertile 0.77 [0.57; 0.86] Reference Reference

Middle tertile 1.04 [0.98; 1.12] 1.41 [0.89; 2.21] 0.139 1.32 [0.82; 2.10] 0.251

High tertile 1.54 [1.36; 1.77] 1.26 [0.79; 1.99] 0.328 1.16 [0.729; 1.87] 0.545

PAPP-A2

Continuousa 1.30 [1.12; 1.53] 0.001 1.25 [1.05; 1.48] 0.013

Categoricalb,d

Low tertile 0.18 [0.13; 0.22] Reference Reference

Middle tertile 0.33 [0.28; 0.37] 1.57 [0.98; 2.50] 0.060 1.51 [0.94; 2.43] 0.086

High tertile 0.69 [0.57; 0.88] 2.60 [1.64;4.14] <0.001 2.12 [1.26; 3.58] 0.005

PAPP-A and PAPP-A2 were investigated both in univariable analyses and in multivariable analyses extended by covariables age, sex, and BMI. BMI, body mass index; CI, confidence

interval; HR, hazard ratio; PAPP-A, pregnancy-associated plasma protein-A.
aHazard ratio (HR) per doubling of the protein; modeled as log(marker)/log(2). Modeled using Cox proportional hazards regression.
bHazard ratio with the low tertile as reference group. Modeled using Cox proportional hazards regression.
dFor PAPP-A and PAPP-A2, low, middle and high tertile refers to the lowest, middle and highest tertiles of the protein.

Furthermore, PAPP-A was not associated with mortality and
does not appear to possess potential as a seromarker in a
heterogeneous cohort of lung cancer patients.

In view of the roles of PAPP-A in neoplasia, we also examined
its homolog, PAPP-A2. Proteolytic activity against IGFBP-5 has
been reported in various fluids and cells from several sources
(4, 36–39). Inmice, genetic deletion of PAPP-A2 results in normal
size at birth, but there is postnatal growth retardation and bone
abnormalities (23). Recently, a novel loss-of-functionmutation in
the human PAPPA2 gene was discovered, resulting in a syndrome
of growth retardation with elevated concentrations of IGFs, but
a decreased bioactivity due to a concomitant increase in serum
IGFBP-3 and−5 (14). These are the first human cases of reduced
IGF-I bioavailability caused by defects in IGFBP regulation,
demonstrating that PAPP-A2 has relevant consequences in
human growth. Furthermore, the study confirmed the absence of
functional redundancy between PAPP-A and PAPP-A2. In regard
to cancer, few studies mention PAPP-A2. In 2013, a whole-exome
sequencing study of lung adenocarcinoma patients identified
PAPPA2 gene mutations that were associated with prolonged
survival times (40). In 2017, the present authors investigated
PAPP-A, PAPP-A2 and IGF activity in pleural fluid collected at
baseline from a limited number of patients with lung cancer (n
= 24) (18). The study showed that the distribution of IGF system
proteins in pleural effusions was substantially different from that
of the circulating IGF system. As compared to serum, pleura
contained 47-fold higher concentrations of PAPP-A and 3.3-fold
higher concentrations of PAPP-A2. Although total IGF-I levels
in pleura and serum were comparable, levels of free IGF-I and
the ability of pleural fluid to activate the IGF-IR in vitro was
more than 3-fold higher. These findings support that not only
PAPP-A, but also PAPP-A2, modulate the IGF signaling cascade
in cancers, and furthermore, indicate that the local activity of
the IGF system in extravascular fluids differs substantially from

that of the circulating IGF system. Finally, our previous findings
support the hypothesis that PAPP-A and PAPP-A2 regulate IGF
activity without affecting total IGF-I levels.

In the present study, PAPP-A2 levels were higher in patients
with lung cancer than controls. Furthermore, the presence of
PAPP-A2 in cancerous tissue was demonstrated by IHC and
PAPP-A2 possessed prognostic ability. Further studies to test
the hypothesis could lead to the establishment of PAPP-A2
as a diagnostic and prognostic biomarker. In addition, it is
reasonable to assume that increased serum levels of PAPP-
A2 in lung cancer patients may correlate with augmented IGF
signaling in tumor cells, and thus, PAPP-A2 may also possess
potential as a biomarker for IGF-I targeted therapy. Interestingly,
higher PAPP-A2 levels were not unambiguously associated with
advanced stages of tumor development, suggesting that the
increase in PAPP-A2 may be present even at early stages. Only
when assessing PAPP-A2 tertiles, an association with tumor
stage was seen. By scrutinizing PAPP-A2 levels, it was clear
that some patients exhibited significantly higher PAPP-A2 levels
than others, and that levels differed between tumor subtypes.
We speculate that the secretion of PAPP-A2 may be elevated
in some tumors, whereas others do not express PAPP-A2 at
a higher level than non-cancerous lung tissue. This notion is
further supported by the fact that IHC staining of PAPP-A2
was only demonstrated in four out of five patients, and that
staining intensity was heterogeneous and varied considerably
across cell types and between patients. Of interest, staining
was lacking in the one patient with SCLC. The clinically most
important division is between SCLC and NSCLC, and the lack
of PAPP-A2 staining supports the concept of different cancerous
mechanisms in SCLC and NSCLC. IHC analysis was, however,
only performed in five patients, and more patients are needed to
further investigate these speculations. Nevertheless, such tumor
heterogeneity has previously been shown to apply to PAPP-A.
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Studies have demonstrated that somemalignant cells show higher
proclivity toward expressing PAPP-A than others. In women
with breast cancer, overexpression of PAPP-A was observed in
79% (8), and various subtypes revealed extensive IHC staining of
PAPP-A in 45 of 46 specimens (41). The PAPPA gene is located
in a chromosomal region associated with high frequency of loss
of heterozygosity in ovarian tumors (42). However, in a study of
lung cancer cell lines, PAPP-A was only secreted from two out
of seven (21). In mice with patient ovarian tumor grafts, PAPP-A
inhibition with a neutralizing antibody showed beneficial effects
only in tumors expressing moderate-to-high levels of PAPP-A
(7). These findings imply that PAPP-A secretion from cancer
cells contributes to growth in a tumor-specific manner, and
the same may very well be the case for PAPP-A2. The growth
of some malignant tumors may not be under the influence of
PAPP-A2 or may only be affected by PAPP-A2 secreted from
non-malignant neighboring cells or by PAPP-A2 of endocrine
origin, which is present in the tumor environment. Finally, the
activity of PAPP-A2 in the promotion of tumor growth is tied
to the capability of cells to not only secrete functional PAPP-A2,
but also express IGF-IRs. Dysregulation of signaling pathways
in differentiating cells can dictate the emergence of neoplastic
cells, but tumors have a diverse genetic makeup that renders
them reliant on different signaling pathways for growth. Indeed,
the IGF signaling pathway is only one of many, and the large
number of driving forces behind different cancer subtypes is
poorly understood. Collectively, inter-tumoral variability makes
interpretations of the pathophysiology of PAPP-A2 difficult.
Most current therapies treat cancer as a homogenous disease and
customizing anti-cancer therapies to target specific neoplasms
presents an ongoing challenge in the field of cancer therapy.

The increase in PAPP-A and PAPP-A2 in tumors and tumor
microenvironments may also be reflective of other pathological
processes. PAPP-A is often associated with inflammatory
states, and levels are up-regulated by several pro-inflammatory
cytokines, with IL-1β and tumor necrosis factor (TNF)-α
being invariably potent promoters (43, 44). Aberrant immune
responses are involved in cancer patients before clinical
confirmation of disease, and chronic inflammation predisposes to
and is involved in the onset of tumorigenesis (45). Furthermore,
an inflammatory microenvironment has been suggested to
induce proliferation of neoplastic cells (46). The mechanism as
to how inflammatory signals exacerbate malignant development
is poorly understood. In a cancer setting, an inflammatory
milieu may potentiate PAPP-A and perhaps PAPP-A2 expression,
further encouraging tumor growth. However, in this study,
PAPP-A did not appear associated with markers of inflammation,
and levels were not higher in NS-Sq patients, although this group
displayed a higher degree of inflammation than patients with
other subtypes. On the contrary, PAPP-A2 showed correlations
with several markers of inflammation, and the highest levels of
PAPP-A2 were found in the NS-Sq group. Thus, high PAPP-A2
levels may reflect an inflammatory state as well as cancer disease.

The IGF system and its protease system is an exciting area
of research that could spur progress in cancer diagnostics and
treatment, and it is conceivable that PAPP-A2 neutralizing
antibodies would show beneficial effect in cancer therapy.

However, most important are studies into the specific driving
forces behind different subtypes and intra-tumor heterogeneity,
which will facilitate a better understanding of the nature of cancer
and provide insight into the development of more effective and
personalized cancer therapies.

Some strengths and limitations of our study should be
acknowledged to aid in data interpretation. A primary strength
is the Danish nationwide health registers that offer ideal
opportunities for epidemiological research. Registration of
cancer cases in Denmark is mandatory and provides complete
follow-up, the ascertainment of lung cancer is near complete and
the free public healthcare system essentially eliminates private
hospital treatment. However, this is a single center, prospective
cohort study design, and although prospective studies usually
have fewer potential sources of bias and confounding than
retrospective studies, our results must be evaluated in light of
that. Samples were collected at baseline with no measurement
beyond, and thus, we were unable to evaluate dynamic changes
in protein levels over time. Furthermore, the small number
of cancer patients in some of the histological subgroups
did not encourage profound subdivisions. The control group
comprised non-cancer patients but cannot be considered healthy
participants. All were referred due to suspected lung cancer
but held a variety of other diagnoses. Finally, to ensure that
PAPP-A and PAPP-A2 levels were analyzed in the context of
lung cancer and not another undiscovered cancer disease, we
excluded control patients who had an incident cancer diagnosis
at another site during the first 2 years of follow-up. Eventually,
our studies must be validated in a second independent cohort,
and functional and mechanistic studies must be performed to
establish causal relationships.

CONCLUSION

In lung cancer patients, PAPP-A2 emerged as a predictor of
mortality, levels were increased as compared to controls and
PAPP-A2 expression was documented in malignant tissues.
PAPP-A2 may induce augmented IGF signaling in tumor cells,
and further studies to test this hypothesis could lead to the
establishment of PAPP-A2 as a prognostic marker or a biomarker
for IGF-I targeted therapy. To confirm this association, our
studies must be validated in new and external cohorts in
the future.
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Multiple sclerosis (MS) is a chronic autoimmune disease of the brain and spinal cord
causing a wide range of symptoms such as impaired walking capability, spasticity, fatigue,
and pain. The insulin-like growth factor (IGF) system has regulatory functions for the
induction of inflammatory pathways in experimental encephalomyelitis. We have therefore
assessed expression and regulation of the IGF system on the level of IGFs and IGFBPs in
serum and cerebrospinal fluid (CSF) in the course of four repeated triamcinolone acetonide
(TCA) administrations in two female and four male MS patients. Sample series of 20
treatment cycles were analyzed. IGF-I and IGF-II were quantified by ELISAs, and IGFBPs
were analyzed by quantitative Western ligand (qWLB) and Western immunoblotting (WIB)
in order to differentiate intact and fragmented IGFBPs. The ratios of fragmented to intact
IGFBP-2 and -3 were calculated in serum and CSF. Finally, the ratios of IGF-I and IGF-II to
the total IGF-binding activity, quantified by qWLB, were determined as an indicator of IGF-
related bioactivity. After the fourth TCA administration, the average level of IGF-I was
increased in serum (p < 0.001). The increase of IGF-I concentrations in serum resulted in
an increased ratio of IGF-I to IGFBPs in the circulation. By contrast in CSF, fragmentation
of IGFBP-2 and IGFBP-3 and the ratio of IGF-II to intact IGFBPs were decreased at the
fourth TCA administration (p < 0.01). Furthermore, reduced fragmentation of IGFBP-3 in
CSF was accompanied by increased concentrations of intact IGFBP-3 (p < 0.001). We
conclude that reduced fragmentation of IGFBPs and concomitant reduction of IGF-II to
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IGFBP ratios indicate regulation of bioactivity of IGF-II in CSF during repeated intrathecal
TCA administration in MS patients.
Keywords: insulin-like growth factor (IGF), insulin-like growth factor (IGF)-binding proteins (IGFBPs), cerebrospinal
fluid (CSF), multiple sclerosis, IGFBP-fragment, triamcinolone acetonide
INTRODUCTION

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic progressive disease of the
central nervous system that often manifests in young adulthood
and particularly in women. MS is a very heterogeneous disease,
with complex pathophysiology reflected by three different
patterns of active white matter lesions (1). In the course of the
disease, MS patients develop a variety of neurological symptoms
such as depression, fatigue, paresis, and spasticity, the latter
leading to severe impairment of the patients’ abilities, pain, and
contractures (2). Therapeutic options for MS-related spasticity
include oral applications of gamma-aminobutyric acid agonists,
centrally acting a2 adrenergic agonists, postsynaptic muscle
relaxants, and hydrochloride salts (2, 3). Another option for
MS patients with predominantly spinal cord symptoms such as
spasticity is the intrathecal injection of sustained-release steroids
such as triamcinolone acetonide (TCA) (4). Due to its invasive
application form, repeated TCA administration is restricted to
highly selected patients and applied only at experienced
MS centers.

Relevance of the Insulin-Like Growth
Factor System for MS
The insulin-like growth factor (IGF) system is particularly
relevant in MS (5). In mice, disruption of the Igf1 gene resulted
in smaller brains, smaller amounts of oligodendrocytes, and
deficits of myelination (6), whereas IGF-I transgenic mice had
larger brains and increased myelin content in the brain (7).
Therefore, the administration of IGF-I has been considered as an
option for the treatment of MS. However, neither in rodent
models nor in human MS patients, a significant effect of IGF-I
alone or in combination with IGFBP-3 on demyelination or
clinical impairment could be observed so far (8–11). Targeted
expression of IGF-I in mouse brains in order to increase local
IGF-I concentrations (12) did also not protect from experimental
autoimmune encephalomyelitis (EAE). A very recent publication
has demonstrated that, in fact, IGFs exert proinflammatory
responses in EAE. This effect was shown to be dependent on
the presence of IGF-I receptor and mediated via the Akt
signaling pathway (13). At the cellular level, IGF-I induced the
differentiation of T helper 17 (Th17) cells and therefore impacted
the Th17 and regulatory T cell (Treg) balance (13), which is
required for host defense and adequate immune tolerance.
Notably, the Treg-Th17 balance is altered under conditions of
autoimmune diseases, including MS (14, 15). Accordingly, it is
essential to improve our understanding of how therapeutic
approaches for MS may modulate the IGF system. The local
activity of IGFs is regulated by hormone concentrations, IGF-I
n.org 278
receptor density, and high-affinity IGF-binding proteins
(IGFBPs) (5). According to the current concept of the IGF
system, a proteolytic system triggers the controlled release of
IGFs from IGFBPs, thereby mediating local and acute IGF effects
via IGF-I receptors (16).

In order to assess the regulation of the IGF system in MS
patients, we have quantified IGF and IGFBP concentrations in
serum and CSF in response to repeated intrathecal TCA
administration. We have also asked if proteolysis of IGFBPs
can be postulated in serum or CSF, which may have relevance for
the ratio of IGF to intact IGFBPs in both compartments.
METHODS

Patients
In our biobank, we identified paired CSF and serum samples
obtained as a by-product of the administration and monitoring
of TCA therapy in MS patients with spasticity. The samples were
collected in the years 2009–2012 and stored at −80°C until use.
The patients gave their prior consent to the use of residual
clinical samples for research purposes. The ethics committee of
the University Medical Center Rostock approved the use of the
samples for this study (approval A 2016-0088). We included only
complete sample series representing the full treatment cycle
(Figure 1) consisting of four applications of TCA (applied
every second day in a dose range of 40–80 mg). CSF was
collected immediately before intrathecal TCA injection and
peripheral blood after lumbar puncture. Each patient received
at least one treatment cycle of intrathecal TCA injections before
the collection of the samples analyzed in this study. The previous
treatment cycles of the patients ended about 3 months before.
We examined paired CSF and serum sample series from 20
treatment cycles (six treatment cycles of two postmenopausal
female patients and 14 treatment cycles of four male patients),
resulting in the analysis of a total of 80 CSF and 80 serum
samples. The patients were 52.9 ± 9.5 years old (mean ± standard
deviation), had a median disease duration of 10 years (range: 4–
26), and were characterized by relatively severe disability
(Expanded Disability Status Scale score: 6.2 ± 1.1) and a body
mass index of 28.3 ± 5.1. Only one of the patients received a
disease-modifying treatment (glatiramer acetate) in addition to
the intrathecal TCA injections.

Analysis of Insulin-Like Growth Factors
and Insulin-Like Growth Factor-Binding
Proteins
IGF-I and IGF-II were studied in serum and CSF from all
patients using commercial ELISAs according to the instructions
January 2021 | Volume 11 | Article 565557
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of the manufacturer (product codes: E20 and E30, Mediagnost,
Reutlingen, Germany). Concentrations of IGFBP-2 and -3 were
determined in CSF and serum samples using quantitative Western
ligand blotting, as described previously (17). Intraassay and
interassay variations were smaller than 20% for the analytes, and
limits of quantification were 0.25 ng for IGFBP-2 and 1 ng for
IGFBP-3. Serial dilutions of human IGFBP-2 and -3 standardswere
used for the quantification of IGFBP-2 and IGFBP-3. In addition,
Western immunoblotting was used for the study of the structural
integrity of IGFBP-2 (32 kDa) and IGFBP-3 (band doublet between
40 and 43 kDa) in CSF and serum, also as described before (18). In
brief, for the identificationof IGFBP-2and IGFBP-3after transfer to
polyvinylidene difluoride membranes, blots were incubated for 2 h
at room temperature with specific antibodies (goat anti-human
IGFBP-2, 1:1,000, Cat. No. SC-6002, Santa Cruz Biotechnology,
Santa Cruz, CA, USA; rabbit anti-human IGFBP-3, 1:600, Cat. No.
13216, Cell Signaling Technology). After five consecutive washing
steps for 5 min in Tris-buffered saline containing 0.05% Tween20,
the membranes were incubated for 1 h with secondary antibodies
(anti-goat or anti-rabbit IgG, 1:2,500). Again, recombinant human
standards were used as positive controls, and molecular weight
markers were used for estimating the molecular weights of IGFBP
fragments. As a measure of IGFBP degradation, the ratio of
fragmented to intact IGFBP was calculated for each lane. For the
comparison of molar ratios, the concentrations of the IGF
compounds were normalized by their molecular weight.
Accordingly, IGF-I and -II levels were divided by 7.5, and IGFBP-
2 and -3 levels were divided by 32 and 41.5, respectively.
Frontiers in Endocrinology | www.frontiersin.org 379
Statistical Analyses
The data analysis was performed using SAS software, Version 9.4
for Windows (SAS Institute Inc., Cary, NC, USA). Descriptive
statistics and tests for normality were calculated with the
UNIVARIATE procedure of Base SAS software. CSF and serum
data were approximately normally distributed and were analyzed
by repeated measurement analyses of variance using the MIXED
procedure of SAS/STAT software. The repeated measurement
ANOVA model for CSF and serum data (statistical model
#1) contained the fixed factor application (levels: I, II, III, and
IV) and the covariate treatment cycle. Repeated measures on the
same patient (treatment cycle, application) were taken into
account by the REPEATED statement of the MIXED procedure
using the SUBJECT=patient option to define the blocks of the
block-diagonal residual covariance matrix and the TYPE=CS
option to define their covariance structure. Least-squares means
(LS-means) and their standard errors (SE) were computed for
each fixed effect in the model, and all pairwise differences of these
LS-means were tested by the Tukey-Kramer test, a procedure for
pairwise multiple comparisons. The SLICE statement of the
MIXED procedure was used for performing partitioned analyses
of the LS-means. With respect to the small number of patients
included in the present study and the imbalanced gender
contribution, gender was not included in the statistical analysis
presented in Figures 2–6. Nevertheless, the effect of gender was
considered by extending the above statistical model #1 by gender
as a fixed factor in a separate statistical analysis (statistical model
#2). Test results were considered significant if p < 0.05.
FIGURE 1 | Chart of a treatment cycle and sample collection. Multiple sclerosis (MS) patients suffering from spasticity were treated with intrathecal triamcinolone
acetonide (TCA) every 3 months. Each treatment cycle consisted of four TCA applications (usually every other day). The patients were lumbar-punctured, and to
avoid CSF pressure differentials, the CSF was drained and replaced with the same amount of TCA solution. After the procedure, peripheral blood was drawn for
routine laboratory analyses. Remaining sample material was stored in a biobank at −80°C.
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FIGURE 2 | Concentrations of IGF-I (left panels) and IGF-II (right panels) in serum (upper panels) and CSF (lower panels) in MS patients at consecutive time points of
intrathecal TCA injection. The data are based on sample series from 20 treatment cycles (14 cycles in four males and 6 cycles in two females) and are given as
means ± SEM (significant differences are indicated; *p < 0.05; **p < 0.01; ***p < 0.001).
FIGURE 3 | Concentrations of IGFBP-2 (left panels) and IGFBP-3 (right panels) in serum (upper panels) and CSF (lower panels) in MS patients at the time points of
intrathecal TCA injection. The data are based on sample series from 20 treatment cycles (14 cycles in four males and 6 cycles in two females) and are given as
means ± SEM (#p < 0.067; *p < 0.05; ***p < 0.001).
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RESULTS

Analysis of Insulin-Like Growth Factor-I
and Insulin-Like Growth Factor-II in Serum
and Cerebrospinal Fluid
The concentrations of IGF-I and -II in serum and CSF were
quantified by ELISA. Repeated TCA application had a significant
enhancing effect on the concentration of IGF-I in serum (Figure
2) when all samples were considered in the analysis (application 1
versus application 4: p < 0.001). Within the treatment cycles a
progressive increase of serum IGF-I can be described, with
significant increases between application #1 and #2 (p < 0.05)
and additional increases between application #2 and #4 (p < 0.05).
If gender was included in the statistical model (model #2), the
male groups was characterized by higher concentrations of IGF-I
in all serum samples (p < 0.01; data not shown). In CSF from the
same patients, application of TCA had no effect on the IGF-I. In
addition, significant effects of repeated TCA injections could not
be observed on the concentrations of IGF-II in serum or CSF.

Analysis of Insulin-Like Growth Factor-
Binding Proteins in Serum and
Cerebrospinal Fluid by Western Ligand
Blotting
IGFBPs were analyzed byWestern ligand blotting in serum andCSF
of TCA-treated MS patients (Figure 3). Similar to IGF-I, IGFBP-3
Frontiers in Endocrinology | www.frontiersin.org 581
concentrations in serum were higher in males than in females
(statistical model #2: p < 0.05, data not shown). While in serum
the concentrations of IGFBP-2 and IGFBP-3 were not altered in
response to intrathecal TCA injections, the average IGFBP-3 levels
in CSF were elevated from TCA application #1 to TCA application
#4 (p < 0.001). The increase of IGFBP concentrations in the CSFwas
evident in the sample series of both genders, even though statistical
significance was reached only for IGFBP-3 within the female group
(p < 0.05). A significant increase of IGFBP-3 in CSF was present
already at the time of application #2 if compared to application #1
but not further increased to a significant extent between application
#2 and #4. The increase of IGFBP-2 in response to TCA application
between application #1 and #4 only reached border significance (p <
0.067) but was identified if the statistical model included gender as a
fixed effect (statisticalmodel #2: application #1 versus application #4:
p < 0.05).

Identification of Insulin-Like Growth
Factor-Binding Protein Fragments and
Ratio of Fragmented Versus Intact Insulin-
Like Growth Factor-Binding Proteins
In order to investigate the presence of IGFBP fragments in serum
and CSF, Western immunoblotting was used. IGFBP-2-related
immunoreactivity was present at four and two different molecular
weights in serum and CSF (Figure 4), respectively. In serum, bands
around 50, 32, 25, and 11 kDa were identified, while in CSF, bands
FIGURE 4 | Fragmentation of IGFBP-2 in serum (left panel) and CSF (right panel) from MS patients in the course of repeated intrathecal TCA injections. A subset of
samples from 14 treatment cycles (nine cycles in four males and five cycles in two females) was considered for this analysis. Fragmentation was calculated by the
average ratio of fragmented (11 kDa) versus intact (32 kDa) IGFBP-2 and is presented in percentages (means ± SEM; significant differences are indicated; *p < 0.05;
**p < 0.01; ***p < 0.001). On the lower panels examples for the Western immuno blot (WIB) are provided for the analysis of serum and CSF. All samples from a
treatment cycles I to IV were loaded on the same gel and recombinant human IGFBP-2 (BP-2) was loaded as the positive control.
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around 32 and 11 kDa were detected. The ratio of fragmented (11
kDa) to intact (32 kDa) IGFBP-2 was higher in CSF than in serum
by more than one order of magnitude (p < 0.001). As an effect of
repeated TCA administration, the ratio of fragmented (11 kDa) to
intact (32 kDa) IGFBP-2 decreased inCSF (application1 versus 2, 3,
or 4: p < 0.01). The reduction of IGFBP-2 fragmentation in CSF in
the course of the TCA treatment cycle was also significantwhen the
female group was assessed separately (p < 0.01; data not shown).
The ratio of the 25 kDa or 50 kDa IGFBP-2 band to intact IGFBP-2
was not affected by TCA application (data not shown).

Antibodies directed against IGFBP-3 detected intact IGFBP-3
(40-43 kDa) and additional bands characterized by higher (≈55
kDa) or lower (≈27 kDa) molecular weight in serum and CSF
(Figure 5). As an effect of repeated intrathecal TCA application, the
ratios of fragmented to intact IGFBP-3 decreased in CSF samples
from TCA applications #3 and #4 compared to application #1
(p < 0.05).

The Molar Ratios of Insulin-Like Growth
Factor-I and Insulin-Like Growth Factor-II
to the Sum of Insulin-Like Growth Factor-
Binding Proteins Quantified by Western
Ligand Blot
In serum, the ratio of IGF-I to IGFBPs was significantly (p <
0.05) increased between application #1 and #3 (Figure 6). The
Frontiers in Endocrinology | www.frontiersin.org 682
ratio of IGF-II to the sum of IGFBP-2 and -3 (Figure 6) was
significantly reduced in CSF after the initial TCA application (p <
0.01). This reduction (TCA application #1 compared to
applications #3 and #4) was also significant when the samples
from men and women were analyzed separately (p < 0.05; data
not shown).
DISCUSSION

IGF-I is required for brain growth and development, and the lack
of IGF-I in knockout mice resulted in reduced brain growth and
hypomyelination (6). In addition, IGF-I, as an effector of Th17/
Treg cell balance, induced proinflammatory responses in EAE
(13). Therefore, IGF-I is not only considered as a neuroprotective
agent but is also discussed concerning health-related fitness in
MS patients after aerobic training (19). Accordingly, substantial
reasons argue for the assessment of the IGF system in MS
patients, both in CSF and in the circulation. Here, we analyzed
the dynamics of IGF-I and -II and IGFBPs in serum and CSF in
male and female MS patients in response to four consecutive
intrathecal TCA injections. In order to estimate IGF-related
bioactivity in serum and CSF, we calculated the molar ratios of
IGF to the sum of intact IGFBPs detected by quantitative
Western ligand blot in both compartments.
FIGURE 5 | Fragmentation of IGFBP-3 in serum (left panel) and CSF (right panel) from MS patients at the time points of intrathecal TCA application. A subset of samples
from 11 treatment cycles (seven cycles in four males and four cycles in two females) was used in this analysis. Fragmentation was calculated by the average ratio of
fragmented (25 kDa) versus intact (40–43 kDa) IGFBP-3 and is presented in percentages (means ± SEM; *p < 0.05; **p < 0.01). On the lower panels examples for the
Western immuno blot (WIB) are provided for the analysis of serum and CSF. All samples from treatment cycles I to IV were loaded on the same gel and recombinant
human IGFBP-3 (BP-3) was loaded as the positive control. R1 and R2 represent technical replicate samples for normalization of different experiments.
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Compounds From the Insulin-Like Growth
Factor System in Serum and
Cerebrospinal Fluid From Multiple Sclerosi
Patients
Our results on the concentrations of IGFs and IGFBPs in serum
generally correspond to previous findings in MS patients (20, 21).
Compared to other studies in MS patients (22–24), but also to
published reference concentrations (25), we found higher IGF-I
concentrations in the serum of our patients. The reason for this
could be related to differences in severity and stage of the disease,
therapeutic interventions, different age, and gender distributions,
and, last but not least, to different analytical techniques. As we
have identified an inducing effect of intrathecal TCA
administration on serum concentrations of IGF-I, it is possible
that repeated TCA injections may have long-lasting enhancing
effects on serum IGF-I concentrations in MS patients.

For CSF, concentrations of IGFBP-3 have already been
published in a similar range as we found in this study (20). By
contrast, IGFBP-2 concentrations in theCSF are 5- to 10-fold lower
in the present study compared to other studies in MS patients (20,
26). In these studies, IGFBP-2 ELISAs were used. Therefore, the
strong differences could be related to the different methods used
and/or to the presence of IGFBP-2 fragments in theCSF (27),which
potentially were included in the measurement by quantitative
ELISA but not in quantitative Western ligand blotting.
Between 3 and 40 years of age, the CSF concentrations of IGFBP-
3 range between 14 and 22 ng/ml (28). However, CSF IGFBP-3
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levels decrease with age (28), possibly explaining why lower
concentrations (5–13 ng/ml) were observed in the patients, which
were up to 67 years old. Themeasured concentrations of CSF IGF-I
(3.4–4 ng/ml) and -II (37–49ng/ml)were higher (20) or in a similar
range (23, 27) compared to published results from the literature.

Association of Age and Gender With
the Insulin-Like Growth Factor System
In this study, four male and two female patients aged between 40
and 67 years were included. Due to the small number of patients,
gender-specific differences could not be clearly delineated.
However, according to published reference levels (25), males (at
the age of 51–55 years: 119 ng/ml) have slightly higher
concentrations of IGF-I in serum than females (at the age of 51–
55 years: 110 ng/ml).Moreover, as an effect of age, the level of IGF-I
in serum is roughly 10 ng/ml lower per decade of life (29). Thismay
be related to growth hormone (GH) secretion, which is altered
during chronic or acute illness (30) and is known to control both
IGF-I and IGFBP-3 levels. Interestingly, in glial cells, sex steroids
and glucocorticoids have been shown to differentially regulate
expression of the IGF system (31). Unfortunately, IGF-II mRNA
expression was not assessed in the cited study (31). Since TCA is
detectable in the periphery after intrathecal administration (32),
differential steroid effects on IGF secretion can be assumed in the
periphery aswell. Effects of steroids on the expression and secretion
of IGF-Ihavebeenalreadydemonstrated in animalmodels (33) and
healthy subjects (34).
FIGURE 6 | Molar ratios of IGF-I (left panels) and IGF-II (right panels) in serum (upper panels) and CSF (lower panels) to total IGF-binding activity detected by
Western ligand blotting. The samples were obtained from MS patients with spasticity receiving treatment cycles of four intrathecal TCA applications. Total IGFBP
activity is composed of IGFBP-2 and IGFBP-3. The plot depicts the average change in molar ratios over 20 treatment cycles (14 cycles in four males and 6 cycles in
two females). Data are given as means ± SEM (*p < 0.05; ***p < 0.001).
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Effects of Triamcinolone Acetonide
Application
Serum IGF-I concentrations increased in response to repeated
TCA applications. This effect was also significant in the male
subgroup. A previous study showed that after aerobic training,
the serum concentrations of IGF-I in MS patients are
significantly correlated with muscle strength (left and right-
hand strength, quadriceps strength) and walking speed (19).
Low levels of IGF-I in the circulation were further associated
with fatigue and cognitive impairment in MS patients (24). The
positive effects of repeated TCA injections on serum
concentrations of IGF-I and on the ratio of IGF-I to IGFBPs in
serum from MS patients may thus have relevance for physical
and cognitive functions. A potential relation to the finding that
repeated application of TCA significantly increased walking
distance in MS patients (35) may be addressed in future
multicentric studies comprising larger patient cohorts.

In CSF, but not in the circulation, repeated intrathecal
application of TCA evoked increased concentrations of IGFBP-
3 and with borderline significance also of IGFBP-2. Degradation
products were seen for both IGFBP-2 and -3. The elevated
intrathecal levels of IGFBP-2 and -3 in the course of TCA
treatment were reflected by reduced levels of distinct IGFBP-2
and -3 fragments. Proteolytic degradation of IGFBPs in the
periphery is part of the physiological growth control in human
development (36–38) as well as in cancer (39).

For IGFBP-2, proteolytic fragments characterized by molecular
weights of 12 and 23 kDa have been described (39). Notably, both
fragments can be formed by the activity of PAPP-A (40). By
contrast, the nature of IGFBP-2 related immunoreactivity around
50 kDa is less clear and further investigation is required to clarify
the identity of this band, although no biomarker content appeared
to be connected with this signal in this study. For IGFBP-3, which
is cleaved by PAPP-A2 (16), a proteolytic fragment withmolecular
weight smaller than 30 kDa and bigger than 25 kDa also was
describe before (18, 41). Since the concentrations of IGFBP-2 and
-3 in serumwere in a normal range as discussed above, we have no
direct evidence to assume that the substantial amounts IGFBP-
fragments are due to unspecific degradation during long-term
storage in this compartment. Instead, endogenous proteases may
be responsible for a high turnover of intact IGFBPs as part of
physiological and conditional control of IGF-system in the
circulation (16). In a recent study, PAPP-A was identified also
in CSF from diabetic patients with and without diabetic
polyneuropathy and in control participants (42). The study by
Kallestrup et al. (42) revealed a positive correlation between the
Neuropathy Rank Sum Score (NRSS) and proteolytic activity (i.e.,
concentration of fragmented IGFBP) in CSF. Since IGFBP
proteolysis in diabetic patients is positively correlated with
NRSS, reduced IGFBP proteolysis may contribute to beneficial
effects of repeated TCA administration inMS patients. Subsequent
studies are warranted for confirmation and closer inspection of the
underlying molecular events.

In order to model the interactions between IGFs and IGFBPs,
we calculated the ratios of both growth factors to the binding
activity detected by Western ligand blotting. As an effect of TCA
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application, the ratio of IGF-II to the IGF-binding activity (intact
IGFBP-2 plus intact IGFBP-3) was reduced at application #4
compared to application #1. Since the concentrations of IGF-II in
CSF did not change significantly during TCA treatment, we can
assume that the ratio of IGF-II to IGF-binding activity is
regulated in response to intrathecal TCA administration at the
level of IGFBPs and more specifically at the level of IGFBP
proteolysis. From the reduced ratio of IGF-II to IGF-binding
activity in CSF, it might be appropriate to assume lower IGF-
bioactivity at TCA application #4. With respect to the important
and novel findings by DiToro et al. (13), it is possible to conclude
here that reduction of IGF-related bioactivity could block
inflammatory pathways also in MS patients. In fact, a direct
relation between proteolytic activity and bioactivity of IGF-I has
been established in pleural fluid (18). Although in CSF from
diabetic patients, elevated bioactivity of IGF-I in the presence of
elevated IGFBP proteolysis could not be confirmed (42).

Our retrospective study has several limitations. Lumbar
puncture is an invasive procedure that is rarely performed, e.g.
to confirm the diagnosis of MS. An exception is the intrathecal
administration of TCA, which can be considered in a small
number of MS patients with spasticity for whom no other
therapies are effective. Therefore, the number of patients that
could be included in this study was limited and imbalanced in
terms of sex and age distribution. Furthermore, healthy controls
could not be included, and thus, it is challenging to interpret
absolute hormone levels determined in MS patients. Therefore,
quantitative data were discussed in comparison to published
hormone concentrations in serum and CSF. Moreover, we only
addressed IGFBPs detected by Western ligand blotting but
did not include low-abundant IGFBPs because serum and CSF
were not available in quantities sufficient for multiple ELISAs.
Proteolysis of IGFBPs in serum and even more in CSF has
received not much attention and we do not have specific
knowledge about preclinical conditions affecting the
concentrations of intact versus fragmented IGFBPs in either
matrix, be it fresh or long-term stored. It is also unknown if the
substantial reductions of IGF-II to IGFBP ratio in CSF are
biologically relevant since IGF-II is in high molar excess to the
IGFBPs in CSF. It would thus be necessary to study IGF-II related
biological activity in CSF in future studies. Finally, future studies
will also have to assess the roles of PAPP-A and PAPP-A2 for the
control of IGF-related bioactivity in order to test hypotheses
developed or supported by the present study.

To summarize, in response to repeated intrathecal TCA
administration, the IGF system is regulated differently in
serum and CSF: IGF-I concentration and the ratio of IGF-I
to intact IGFBPs is elevated in serum, while IGFBP-3 and,
at least in tendency, IGFBP-2 levels increase in response to
TCA administration in CSF. The increase of intact IGFBP-3
concentrations is reflected by reduced levels of respective IGFBP
fragments in CSF and by reductions of the IGF-II to IGF-binding
activity ratios during the treatment cycles. We hypothesize that
intrathecally administered TCA influences IGF-II-related
bioactivity either by controlling IGFBP fragmentation in CSF
and/or by controlling the molar ratio of IGF-II to IGFBPs.
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Accordingly intrathecal injection ofTCAdifferentially regulates the
systemic and central IGF-system in MS patients.
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Ligand-induced activation of the IGF-1 receptor triggers plasma-membrane-derived
signal transduction but also triggers receptor endocytosis, which was previously
thought to limit signaling. However, it is becoming ever more clear that IGF-1R
endocytosis and trafficking to specific subcellular locations can define specific signaling
responses that are important for key biological processes in normal cells and cancer cells.
In different cell types, specific cell adhesion receptors and associated proteins can
regulate IGF-1R endocytosis and trafficking. Once internalized, the IGF-1R may be
recycled, degraded or translocated to the intracellular membrane compartments of the
Golgi apparatus or the nucleus. The IGF-1R is present in the Golgi apparatus of migratory
cancer cells where its signaling contributes to aggressive cancer behaviors including cell
migration. The IGF-1R is also found in the nucleus of certain cancer cells where it can
regulate gene expression. Nuclear IGF-1R is associated with poor clinical outcomes. IGF-
1R signaling has also been shown to support mitochondrial biogenesis and function, and
IGF-1R inhibition causes mitochondrial dysfunction. How IGF-1R intracellular trafficking
and compartmentalized signaling is controlled is still unknown. This is an important area
for further study, particularly in cancer.

Keywords: insulin-like growth factor 1 receptor (IGF-1R), signaling, endosomes, nucleus, Golgi
INTRODUCTION

Insulin-like growth factor-1 (IGF-1) stimulates essential cellular processes including proliferation,
differentiation, survival and metabolism and thereby is essential for normal growth and
development. Upon IGF-1 binding to the IGF-1 receptor (IGF-1R), the kinase domain becomes
activated, leading to autophosphorylation of specific tyrosine residues (1–4). The subsequent
recruitment and phosphorylation of Insulin-receptor-substrate (IRS-1 and IRS-2) proteins (5, 6)
facilitates recruitment of PI3-Kinase and activation of the AKT-mTOR pathway (Figure 1A). This
conserved signaling pathway regulates metabolism and transcription to promote cell survival
growth or proliferation (7, 8). Activated IGF-1R may also recruit Src homology and Collagen (SHC)
adaptor proteins (6, 9), and IGF-1-induced SHC phosphorylation leads to activation of RAS and the
MAPK pathways that mediate mitogenic, differentiation, and migratory signals (10, 11).
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IGF-1R activity can facilitate tumorigenesis, maintenance of the
transformed phenotype and cancer progression (12, 13).
Furthermore, IGF-1 may stimulate cancer cell migration,
acquisition of epithelial-mesenchymal transformation (EMT) and
chemotherapy resistance. Unsurprisingly, targeting the IGF-1R has
been extensively investigated as a strategy in cancer therapy. Several
kinase inhibitors and blocking monoclonal antibodies that inhibit
ligand binding and signal transduction, while also triggering
downregulation of the receptor have been tested (14, 15).
However, the fact that these inhibitors have been largely
unsuccessful in clinical trials renewed attention on how
regulation of IGF-1R internalization, subcellular location and
signaling are controlled in normal and cancer cells.

Although once thought that when cell surface RTKs are
internalized, their signal transduction is terminated, it is
now generally accepted that internalized receptors, including
the IGF-1R may signal from endosomal and intracellular
membrane compartments, or may also regulate gene
transcription by translocating to the nucleus (16–22). However,
the mechanisms of intracellular trafficking and which signals
determine the subcellular localization of the IGF-1R or its
compartmentalization with other signaling proteins are not
known. Recent studies suggest that these events are regulated
in a cell type-specific way and that cell-specific signals may
influence the recruitment and activation of effector proteins
(20, 22). Therefore, the cell-specific IGF-1R trafficking,
compartmentalization and its subcellular location may define
how cells respond to different extracellular stimuli.

Here, we review recent work on IGF-1R endocytosis,
post-endocytotic trafficking and IGF-1R signaling to and from
intracellular membrane compartments. We review how a non-
canonical trafficking pathway via translocation of the receptor to
internal membrane compartments and its signaling from the Golgi
apparatus may contribute to its activity in cancer cells. Finally, we
review the functions of IGF-1R presence in the nucleus and its
effects of IGF1 signaling on mitochondrial activity.
LEAVING THE PLASMA MEMBRANE-
INSULIN-LIKE GROWTH FACTOR 1
RECEPTOR UBIQUITINATION AND
ENDOCYTOSIS

Whether the IGF-1R undergoes ligand-induced endocytosis or
remains on the plasma membrane is determined by the
recruitment of interacting proteins (Figure 1A). It has been
suggested that under pathological conditions like cancer, the
IGF-1R associates with a range of other receptor and signaling
complexes at the plasma membrane (23, 24). In particular,
adhesion receptors and kinases, known to associate with the
IGF-1R include E-cadherin (25), b1-Integrin (26), the discoidin
domain receptor 1 (DDR1) (27), focal adhesion kinase (FAK)
(28, 29), Src (30), the feline-sacroma-related kinase (FER) (31).
All of these have been implicated in modulating IGF-1R stability
or endocytosis to promote specific cellular responses
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(Figure 1A). However, it is unknown whether or how they
might influence IGF-1R endosomal trafficking.

As with other RTKs, IGF-1R endocytosis is initiated by vesicle
formation on the membrane (Figure 1B), and endocytosis via
clathrin-coated-pits (CCP) is considered to be the fastest and
predominant mode of internalization (23, 24, 32). The formation of
CCPs requires recruitment of proteins that contain a ubiquitin-
interacting motif, such as epsin, Eps15, or AP-2, to the activated
receptor (23, 24, 32). Once clathrin-dependent endocytosis is
saturated due to a large number of surface receptors being
activated, it has been proposed that alternative endocytosis
mechanisms subsequently facilitate IGF-1R internalization (33–35).

A clathrin-independent mechanism of endocytosis has been
described for ligand-activated EGFR via micro- and
macropinocytic vesicles. This involves the reorganization of the
cytoskeleton and dynamic membrane ruffling (36–38). Although
a similar process could be possible for IGF 1R endocytosis, it has
not been demonstrated. However, clathrin independent IGF-1R
endocytosis also involves the formation of lipid rafts/caveolae,
which are generally described as plasma membrane
invaginations. Indeed, IGF-1R has been shown to co-localize
with the phosphorylated version of caveolin-1, the main
component of these lipid rafts (35, 39).

Ubiquitination of the b-subunit of the IGF-1R is associated
with initiation of IGF-1R endocytosis (24, 35, 40). This is
dependent on IGF-1R kinase activity and requires the presence
of the receptor C-terminal tail (35, 41).

Four E3 ligases have been described to either directly or
indirectly interact with IGF-1R to facilitate its ubiquitination.
The least studied in the context of IGF-1R is HRD1, which
functions in the endoplasmic reticulum (42, 43), whereas the
others, Nedd4 (40, 44), MDM2 (35, 45–47) and c-Cbl (39), are
well studied (Figure 1B). IGF-1R ubiquitination can be observed
within the first 5 min of ligand-binding. Two IGF-1R
ubiquitination sites at Lys1138 and Lys1141 located within the
kinase domain are believed to be the key lysine residues for
ubiquitination (48). It is proposed that MDM2 recruitment to
the IGF-1R occurs when low amounts of IGF-1are available,
leading to IGF-1R endocytosis via clathrin, while high IGF-1
concentrations may initiate c-Cbl-mediated ubiquitination of the
receptor followed by endocytosis using the caveolin/lipid raft
route (39). This supports the idea that alternative endocytosis
mechanisms are activated to internalize the IGF-1R, once
clathrin-dependent endocytosis is saturated (33–35). A protein
complex consisting of MDM2 and the b-arrestin protein links
K63-conjugated ubiquitin polypeptide chains to the IGF-1R.
This mode of ubiquitination is generally associated with cell
signaling responses, DNA repair and protein trafficking (49–51)
(Figure 1B). c-Cbl attaches K48-conjugated ubiquitin
polypeptide chains to the IGF-1R, which may initiate
degradation of the receptor (51) (Figure 1B). Thus, it is
possible that depending on available IGF-1 levels, different E3
ligases are recruited to the receptor to initiate ubiquitination.

Although IGF-1R kinase activity is clearly essential for
recruiting the proteins that facilitate receptor internalization
and ubiquitination, it is not understood how the C-terminal
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tail contributes to ubiquitin-mediated IGF-1R trafficking
and degradation. Our recent study showed that IGF-1-
promoted phosphorylation of the Tyr1250/1251 site in the IGF-
1R C-terminal results in enhanced IGF-1R internalization
and proteosomal degradation (22). However, whether the
Tyr1250/1251 phospho-site is involved in or modulates IGF-1R
ubiquitination is still unknown. The C-terminal tail contains
three lysines that are putative sites for ubiquitination, but this
has not been demonstrated in cells. It remains possible that
phosphorylated Tyr1250/1251 could provide a binding site for
adaptor proteins or an E3 ligase that targets these sites.
This would implicate the activity of domains of the receptor
other than the kinase in regulating IGF-1R internalization
and trafficking.

Travel Direction-Determining Insulin-Like
Growth Factor 1 Receptor Trafficking
Routes
CCP/caveolin-vesicles that contain internalized IGF-1R become
fused with early endosomes (27, 40, 44, 52). Here the IGF-1R
proteins are sorted, either targeted for degradation (24, 35),
transported toward the Golgi network (22), transported to the
nucleus (20, 53–56), or recycled back to the plasma membrane
(57) (Figure 1B). Internalized ubiquitinated proteins can be
detected by distinct multiprotein complexes that comprise the
Frontiers in Endocrinology | www.frontiersin.org 389
endosomal sorting complex required for transport (ESCRT)
(58–61) and serve as signal for cargo sorting (58). The fate of
internalized proteins to either undergo degradation or recycling
is determined within the endosomal sorting network (61). Before
membrane cargo within the early endosomes, is submitted to
several rounds of cargo sorting, as the early endosome matures
into a late endosome (62), cargo destined for the fast recycling
route is sorted and delivered back to the cell surface (63). There is
also a slow recycling route where proteins first traffic through the
recycling compartments before moving back to the cell surface.

Emerging evidence indicates that cargo may also enter a
retrograde trafficking route where it is transported back to the
Golgi apparatus, a process that serves to maintain a robust
membrane protein delivery along the Golgi-associated
microtubules (18, 64–66). This particular transport route is
important for b1-Integrin-promoted cell migration and
adhesion (65). Although precise details of IGF-1R sorting
mechanisms and which proteins are involved is still unknown,
it is clear that the endosomal network is essential for selecting
internalized IGF-1R and its trafficking to distinct cellular
compartments. The IGF-1R also travels on a path to the Golgi
apparatus as a response to IGF-1-induced phosphorylation at
Tyr1250/1251 (22). This enhances the potential for distinct
intracellular signaling responses from the IGF-1R in different
cells and different physiological or pathological settings.
A B

FIGURE 1 | Leaving the plasma membrane. (A) Located on the plasma membrane, activated IGF-1R induces two major pathways, PI3-K/AKT and MAPK/ERK1/2,
to regulate cellular processes including metabolism and transcription. Different adhesion related kinases (FAK, Src, FER) and interacting proteins (IRS-1, DDR1)
regulate IGF-1R endocytosis and thereby prolong or reduce IGF-1R signaling from the cell surface. In addition, these IGF-1R interacting proteins can enhance bias
IGF-1R signaling or their cooperation is needed for the activation of IGF-1-induced pathways (Integrin). (B) Ligand-induced IGF-1R activation leads to the recruitment
of E3-liages (MDM-2, Nedd4, c-Cbl) that can initiate IGF-1R poly- and mono-ubiquitination. Via membrane invagination and formation of clathrin- and caveolin-
coated pits, the IGF-1R enters the cell in endosomal vesicles. It is assumed that the endosomal sorting system decides, whether IGF-1R gets degraded, travels back
to the plasma membrane or translocates to intracellular membrane compartments. To this day it is unknown how the post-endocytotic IGF-1R translocation to
intracellular membrane compartments, such as the Golgi and the nucleus is regulated and whether IGF-1R regulation of mitochondrial function is exclusively due to
signaling transduction. Figure elements adapted from Servier Medical Art (https://smart.servier.com/), under license CC-BY3.0.
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BACK TO THE START—THE GOLGI
APPARATUS AS A NEW INSULIN-LIKE
GROWTH FACTOR 1 RECEPTOR
SIGNALING COMPARTMENT

The Golgi apparatus has a long-understood function in
distribution, modification and secretion of newly synthesized
proteins. However, it is also intimately involved in cellular
processes such as cell polarization (67), directional migration
(68), stress (69) and DNA repair (70). Cell migration requires
coordinated communication between the plasma membrane and
the Golgi apparatus (68). This may be facilitated by the
retrograde trafficking of internalized plasma membrane
proteins back to the Golgi apparatus (65, 71). This retrograde
trafficking enables persistent cell migration because Golgi-
derived microtubules act as a fast-track lane to deliver essential
proteins to cell migration hot-spots, such as the sites of focal cell
adhesion (Figure 2A) (64–66). Several key signaling proteins
including Ras/MAPK (72–74) and RTKs, including MET, KIT,
VGFR2, EGFR, FGFR (21, 75–77) and IGF-1R (22) have been
demonstrated to locate to the Golgi apparatus, which acts as a
signaling hub in normal and cancer cells (Figure 2A).

The rapid endocytosis and subsequent translocation of the IGF-
1R to the Golgi in fibroblasts and cancer cell lines requires an
adhesion-dependent autophosphorylation onTyr1250/1251 in the C-
terminal tail (Figure 2A).Although evident in all cells tested, Golgi-
localized IGF-1R ishowever a particular feature ofmigratory cancer
cells, because cancer cell lines with low or no migratory capacity
exhibit little less Golgi-localized IGF-1R. Golgi-derived IGF-1R
signaling might therefore contribute to aggressive cancer cell
behavior (22). In migratory cancer cell lines, IGF-1-induced SHC
phosphorylation, which is required for cell migration, is dependent
on an intact Golgi apparatus and also requires cell contact with the
extra-cellular matrix (ECM), suggesting that the IGF-1R mediates
communication between the plasma membrane and Golgi. IGF-1-
induced cell migration also requires an intact Golgi apparatus (22),
aswell as cooperative signalingbetween the IGF-1Randb1-Integrin
(26, 78–81) (Figure 2A). b1-Integrin connects the ECM with the
actin cytoskeleton of cells and thereby has both a structural and
signaling function in cell adhesion and migration (82, 83). This
suggests, that inmigrating normal and cancer cell lines b1-Integrin
signaling from the plasma membrane can influence IGF-1R
distribution within cells and determine its presence at the Golgi
apparatus (Figure 2A).

While b1-Integrin is a strong candidate for determining IGF-
1R translocation to and its release from the Golgi in migratory
cells (Figure 2A), E-cadherin is a strong candidate for enhancing
IGF-1R stability and plasma membrane location in low- or non-
migratory cell lines. E-cadherin, which is often repressed in
migratory cancer cell lines and upon EMT, especially in triple
negative breast cancer cells, is readily detectable in a complex
with the IGF-1R at sites of cell–cell contact in cancer cells with
no or low migratory capacity (25, 84). However, in confluent
migratory cancer cells (with evident high levels of cell-cell
contact), and under conditions where cells are unable to
migrate, the IGF-1R remains in the Golgi apparatus. Therefore,
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E-cadherin expression in cancer cells with no or low migratory
capacity may limit IGF-1R translocation to the Golgi apparatus.
Regulated and exclusive expression of cadherins and Integrins
has been linked to the migratory capacity of cells during
embryonic development, tumor invasion and metastasis (85–87).

Thus, it is likely that IGF-1R function in facilitating cell
migration through its translocation to and signaling from the
Golgi is influenced by adhesion related proteins that are
expressed differently depending on cell type, which may be
influenced by their hormone receptor expression, and fate, as it
has already been proposed (23, 24). However, the mechanisms of
this interplay between adhesion receptors and IGF-1R trafficking
to and from the Golgi are still unknown. It is not known how
phosphorylation and or dephosphorylation of key residues on
the receptor control this and how the array of signaling proteins
present at the Golgi interact.
JOURNEY TO THE CENTER OF THE
CELL- INSULIN-LIKE GROWTH FACTOR 1
RECEPTOR IN THE NUCLEUS

Several RTKs have been observed in the nucleus of cancer cells.
These include EGFR family members (88–90), FGFR1 and 3 (91,
92), the IR (93, 94),VEGFR (95, 96), and IGF-1R(19, 20, 52–54, 97).

Translocation of the IGF 1R to the nucleus in cancer cells is
induced by IGF-1 (20, 53, 98). Nuclear IGF-1R is more
pronounced in cancer cell lines, including breast cancer,
prostate cancer and sarcoma cells, compared to non-
transformed cells (97). Furthermore, nuclear IGF-1R has been
linked to a poor outcome for cancer patients and suggested to
promote a more advanced disease stage (20, 53, 98, 99). Nuclear
IGF-1R traffics from the plasma membrane (97) and the levels of
IGF-1R nuclear translocation are proportional to ligand-induced
kinase activation, because its translocation in cancer cells can be
inhibited by xentuzumab, an IGF-1/2 neutralizing antibody, or
by inhibition of IGF-1R endocytosis (20, 53, 54).

The precise mechanisms of IGF-1R import into the nucleus of
normal and cancer cells are still unclear because the IGF-1R does
not have a nuclear localization sequence (NLS) (53, 54) (Figure
2B). SUMOylation of the IGF-1R induced by IGF-1R
internalization was proposed to be important (54), and IGF-1R
translocation in cancer cells is facilitated by a specific subunit of
dynactin p150Glued (52) (Figure 2B). The latter study showed
that IGF-1-bound and internalized IGF-1R is transported within
early endosome antigen 1 (EEA1)-positive vesicles (Figure 2B),
it becomes positioned in the nuclear pore complex by b-
importin, and is subsequently SUMOylated by RanBP2 for
translocation into the nucleus (52). Suppression of any of the
proteins involved in this import, leads to a significant decrease in
nuclear IGF-1R. However, mutation of the SUMOylation lysine
sites on IGF-1R did not abolish accumulation of IGF-1R in the
nucleus (54), suggesting that additional import mechanisms
exist. IGF-1R association with other proteins containing an
NLS, such as IRS-1, which was previously shown to translocate
to the nucleus in response to IGF-1, could also promote the
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import (100). It has also been suggested that heterodimerization
with the IR, which occurs rapidly in response to Insulin
stimulation (93) could promote nuclear import (55).

Nuclear IGF-1R may associate with DNA to enhance
transcription (19, 54–56, 101), for example, by mediating the
recruitment of RNAPol2 (20). Nuclear IGF-1R autoregulates its
own expression in breast cancer cells depending on their
estrogen receptor (ER) status (102) and binds the LEF1
transcription factor, which subsequently leads to upregulated
cyclinD1 and axin 2 and cell proliferation (56). In HeLa cells,
nuclear IGF-1R can increase the expression of SNAI2 (55), which
is involved in EMT by suppressing E-cadherin expression (103).
In prostate cancer cells nuclear IGF-1R facilitates expression of
JUN and FAM 21, which are linked to cell survival, anchorage
independent growth and cell migration, all of which are
associated with advanced cancer stage (20). Nuclear IGF-1R is
associated with proliferation of alveolar rhabdomyosarcoma cells
(104) and contributes to chemoresistance in sarcomas and
hepatocellular carcinoma (105, 106).
Frontiers in Endocrinology | www.frontiersin.org 591
Overall, the results from recent studies suggest that nuclear
IGF-1R facilitates an aggressive cancer phenotype. However,
Aleksic et al. suggest that the sites of IGF-1R binding in DNA,
and therefore the genes influenced by nuclear IGF-1R, might be
cell type specific and that this could be defined by nuclear
structure and chromatin organization (20). This is supported
by the result of Sarfstein et al., which suggests that in presence of
ER, nuclear IGF-1R cannot enhance its own expression (102).
GOING THE DISTANCE-INSULIN-LIKE
GROWTH FACTOR 1 RECEPTOR SIGNALS
TO THE MITOCHONDRIA

While IGF-1signaling inmetabolismhasbeenwell studied (107), its
contributions to mitochondrial function, maintenance and
turnover is an emerging topic. Mitochondrial metabolism and
oxidative phosphorylation (OXPHOS) provide building blocks
A B

C

FIGURE 2 | IGF-1R trafficking routes and signaling to the mitochondria and from the Golgi and the Nucleus. (A) The IGF-1R translocates to the Golgi apparatus. In
migratory cell lines, IGF-1R autophosphorylates Tyr1250/1251 in an adhesion dependent manner. Phosphorylation of Tyr1250/1251 IGF-1R leads to rapid IGF-1R endocytosis
leads to activation of the MAPK pathway and results in translocation of the IGF-1R to the Golgi which promotes sustained SHC activation to facilitate migration. points.
The release and retention of IGF-1R in the Golgi may be regulated by b1-Integrin and its interaction with the ECM. In cells with low or no migratory capacity, IGF-1R
remains on the surface inducing signaling from the membrane. The interaction with other proteins, including E-cadherin, stabilizes the adhesion points and internalization
rate of the IGF-1R is low. (B) IGF-1R translocates to the nucleus. IGF-1 binding to the IGF-1R induces the translocation of the membrane receptor to the nucleus. Various
mechanisms have been proposed for the import of the IGF-1R to the nucleus. Nuclear IGF-1R can bind to DNA and enhance or initiate the transcription of various genes,
leading to cell survival, migration, EMT and cell cycle progression. (C) IGF-1 signaling regulates mitochondrial function. The activation of the PI3-K pathway in response to
IGF-1 induces the expression of the mitophagy regulators PGC1b and PRC. Inhibition of GSK-3 b by PI3-K activation leads to the release of NFE2L2/Nrf2, which
translocates to the nucleus to enhance the expression of the mitophagy receptor BNIP-3. Activation of IGF1-R also enhances the expression of the UTP importer PNC-1,
which was linked to cell growth and the reduction of ROS. Through these pathways IGF-1 signaling contributes to the maintenance of mitochondrial homeostasis. Figure
elements adapted from Servier Medical Art (https://smart.servier.com/), under license CC-BY3.0.
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and energy for all cellular functions (108).At the same time, reactive
oxygen species (ROS), which are a normal by-product of OXPHOS
are neutralized to avoid accumulation and cell damage (109).
Mitochondria synthesis (mitochondrial biogenesis) and the
regulation of numbers and quality (mitophagy linked to
mitochondrial fission and fusion) are well-orchestrated processes.
The importance of mitochondrial quality control and
mitochondrial homeostasis in the maintenance of healthy tissues
is well documented (108, 110). Impairedmitophagy can lead to the
accumulation of dysfunctional mitochondria and oxidative stress,
which is associated with various diseases including
neurodegeneration, diabetes, heart disease and cancer (108,
111–115).

IGF-1 signaling and a functional IGF-1R is essential for
mitochondrial biogenesis through inducing the transcriptional
mediators Peroxisome proliferator-activated receptor gamma
coactivator 1 b (PGC1b) and PGC-1-related coactivator (PRC)
(116, 117) (Figure 2C). Suppression of the IGF-1Ror the PI3-
Kpathway using the IGF-1R kinase inhibitor BMS-754807 or
LY294002, respectively, leads to a reduction in mitochondrial
mass and biogenesis (116). IGF-1 also induces the mitophagy
receptor BNIP-3 (116) through GSK-3b mediated activation of
NFE2L2/Nrf2 (118) (Figure 2C). This highly conserved signaling
pathway is conserved from C. elegans where it coordinates
mitochondrial biogenesis with mitophagy and thereby controls
cellular metabolism that is ultimately linked with lifespan (119,
120). In mammalian cells (normal or transformed), IGF-1-
mediated regulation of mitochondrial biogenesis and mitophagy
is more complex that in C. elegans. In metazoans, it needs to be
integrated with metabolic status and IGF-1-stimulated mTORC1
actions in suppressing cellular macro-autophagy (121, 122).
Although IGF-1 signaling may be critical for both mitochondrial
biogenesis andbasalmitophagy, it isnothowever easy todistinguish
specific signals for mitophagy from general autophagy. Moreover,
IGF-1 signals may control basal mitochondria health and the
triggering of mitophagy in very specific cellular contexts such as
cell division or differentiation.

Further evidence for an essential IGF-1 signal in maintaining
healthy mitochondria comes from the IGF-1-inducible
mitochondrial UTP importer, pyrimidine nucleotide carrier 1
(SLC25A33/PNC1) that is required for maintaining
mitochondrial RNA and DNA (123, 124) (Figure 2A).
Suppression of PNC-1 results in cellular accumulation of ROS
under normal oxygen conditions, an increase in glycolysis and a
profound induction of EMT in cancer cells (124).

Overall, it will be important to establish how IGF-1 signals
and IGF-1R activity support mitochondrial function in normal
cells and in phenotypically distinct cancer cells, and whether an
Frontiers in Endocrinology | www.frontiersin.org 692
essential component of these signals is to maintain a healthy pool
of mitochondria that would prevent cancer aggressiveness that is
associated with hypoxia, mitochondria dysfunction and an
accumulation of cellular ROS.

Where to go From Here?—Remaining
Questions in the Field
This review summarizes current knowledge on IGF-1R trafficking
and signaling to and from intracellular compartments. Overall, the
potential for intracellular IGF-1R signaling adds complexity to
understanding and modulating IGF-1 actions in physiological
and patho-physiological conditions. For example, efforts to
inhibit IGF-1R signaling at the plasma membrane are not very
effective, as is evident from the poor success ofmAb in targeting the
IGF-1R in cancer. One explanation for this is that continued
signaling from intracellular pools of IGF-1R in association with
specific organelles or protein signaling complexes may circumvent
plasma membrane targeting. Correlating IGF-1R location and
activity at the Golgi or in the nucleus with a specific subset of
cancermay be a valuable biomarker for targeting IGF-1R in cancer
(125). Therefore, if IGF-1R trafficking to and signaling from
intracellular compartments determines its activity in cancer and
contributes to an aggressive cancer behavior (20, 22), it is now
important to identify themolecular regulatorsof IGF-1R trafficking.
The functions of these proteins in selecting incoming receptors and
regulating their cellular distribution and localizationmay the key to
cellular signaling responses. Illuminating the mechanisms of IGF-
1R trafficking and endosomal sorting would provide new insights
on IGF signaling in normal cells and cancer cells, and may also
identify potential co-targets for pharmacological intervention in
cancer. Targeted therapy against proteins facilitating IGF-1R
location and activity in the Golgi or the nucleus, or enhancing
IGF-1R sorting toward proteosomal degradation may be beneficial
in certain subtypes of cancer.Moreover, the presence of the IGF-1R
at the Golgi may have potential to identify cancer subtypes where
membrane targeting would not be effective. Our data on IGF-1R
derived Golgi signaling also suggest that removing the receptor is
important to suppress IGF-1 signaling. However, it is not yet clear
whether specific antibodies that promote IGF-1R internalization
could be used to direct it to the degradation machinery. It may be
necessary to identify the key regulators of receptor trafficking to
achieve selectivity here. 125.
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24. Crudden C, Song D, Cismas S, Trocmé E, Pasca S, Calin GA, et al. Below the
Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells
(2019) 8(10):1223. doi: 10.3390/cells8101223

25. Nagle AM, Levine KM, Tasdemir N, Scott JA, Burlbaugh K, Kehm J, et al.
Loss of E-cadherin Enhances IGF1–IGF1R Pathway Activation and
Sensitizes Breast Cancers to Anti-IGF1R/InsR Inhibitors. Clin Cancer Res
(2018) 024(20):5165–77. doi: 10.1158/1078-0432.CCR-18-0279

26. Kiely PA, Leahy M, O’Gorman D, O’Connor R. RACK1-mediated
Integration of Adhesion and Insulin-like Growth Factor I (IGF-I)
Signaling and Cell Migration Are Defective in Cells Expressing an IGF-I
Receptor Mutated at Tyrosines 1250 and 1251. J Biol Chem (2005) 280
(9):7624–33. doi: 10.1074/jbc.M412889200

27. Belfiore A, Malaguarnera R, Nicolosi ML, Lappano R, Ragusa M, Morrione A,
et al. A novel functional crosstalk between DDR1 and the IGF axis and its
relevance for breast cancer. Cell Adhesion Migration (2018) 12(4):305–14. doi:
10.1080/19336918.2018.1445953

28. Taliaferro-Smith L, Oberlick E, Liu T, McGlothen T, Alcaide T, Tobin R,
et al. FAK activation is required for IGF1R-mediated regulation of EMT,
migration, and invasion in mesenchymal triple negative breast cancer cells.
Oncotarget (2015) 6(7):4757–72. doi: 10.18632/oncotarget.3023

29. Kiely PA, Baillie GS, Barrett R, Buckley DA, Adams DR, Houslay MD, et al.
Phosphorylation of RACK1 on Tyrosine 52 by c-Abl Is Required for Insulin-
like Growth Factor I-mediated Regulation of Focal Adhesion Kinase. J Biol
Chem (2009) 284(30):20263–74. doi: 10.1074/jbc.M109.017640

30. Peterson JE, Kulik G, Jelinek T, Reuter CWM, Shannon JA, Weber MJ. Src
Phosphorylates the Insulin-like Growth Factor Type I Receptor on the
Autophosphorylation Sites: REQUIREMENT FOR TRANSFORMATION
BY src. J Biol Chem (1996) 271(49):31562–71. doi: 10.1074/jbc.271.49.31562

31. Stanicka J, Rieger L, O’Shea S, Cox O, Coleman M, O’Flanagan C, et al. FES-
related tyrosine kinase activates the insulin-like growth factor-1 receptor at
sites of cell adhesion. Oncogene (2018) 37(23):3131–50. doi: 10.1038/s41388-
017-0113-z

32. Yoneyama Y, Lanzerstorfer P, Niwa H, Umehara T, Shibano T, Yokoyama S,
et al. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate
sustained IGF signaling. eLife (2018) 7:e32893. doi: 10.7554/eLife.32893

33. Backer JM, Shoelson SE, Haring E, White MF. Insulin receptors internalize
by a rapid, saturable pathway requiring receptor autophosphorylation and
an intact juxtamembrane region. J Cell Biol (1991) 115(6):1535–45. doi:
10.1083/jcb.115.6.1535

34. Prager D, Li HL, Yamasaki H, Melmed S. Human insulin-like growth factor I
receptor internalization. Role of the juxtamembrane domain. J Biol Chem
(1994) 269(16):11934–7.

35. Sehat B, Andersson S, Vasilcanu R, Girnita L, Larsson O. Role of
Ubiquitination in IGF-1 Receptor Signaling and Degradation. PloS One
(2007) 2(4):e340. doi: 10.1371/journal.pone.0000340

36. Haigler HT, McKanna JA, Cohen S. Rapid stimulation of pinocytosis in
human carcinoma cells A-431 by epidermal growth factor. J Cell Biol (1979)
83(1):82–90. doi: 10.1083/jcb.83.1.82

37. Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson
LE. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci (2002)
115(Pt 9):1791–802.

38. Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp
Cell Res (2008) 314(17):3093–106. doi: 10.1016/j.yexcr.2008.08.013

39. Sehat B, Andersson S, Girnita L, Larsson O. Identification of c-Cbl as a New
Ligase for Insulin-like Growth Factor-I Receptor with Distinct Roles from
Mdm2 in Receptor Ubiquitination and Endocytosis. Cancer Res (2008) 68
(14):5669–77. doi: 10.1158/0008-5472.CAN-07-6364

40. Monami G, Emiliozzi V, Morrione A. Grb10/Nedd4-mediated
multiubiquitination of the insulin-like growth factor receptor regulates
receptor internalization. J Cell Physiol (2008) 216(2):426–37. doi: 10.1002/
jcp.21405
January 2021 | Volume 11 | Article 620013

https://doi.org/10.1038/s41467-018-03219-7
https://doi.org/10.1038/352073a0
https://doi.org/10.1038/ncomms14892
https://doi.org/10.1074/jbc.M112.393074
https://doi.org/10.1530/JME-17-0311
https://doi.org/10.1128/MCB.15.5.2500
https://doi.org/10.1074/jbc.M309234200
https://doi.org/10.3389/fendo.2015.00106
https://doi.org/10.1073/pnas.90.23.11217
https://doi.org/10.1128/MCB.14.6.3604
https://doi.org/10.1172/JCI114315
https://doi.org/10.3390/cells8080895
https://doi.org/10.1083/jcb.200602080
https://doi.org/10.1083/jcb.200602080
https://doi.org/10.1126/scisignal.2002351
https://doi.org/10.1016/j.ccell.2016.07.017
https://doi.org/10.1016/j.ccell.2016.07.017
https://doi.org/10.1074/jbc.M117.781492
https://doi.org/10.1158/0008-5472.CAN-17-3498
https://doi.org/10.1158/0008-5472.CAN-17-3498
https://doi.org/10.1038/s41388-018-0537-0
https://doi.org/10.1038/s41388-018-0537-0
https://doi.org/10.1126/scisignal.aba3176
https://doi.org/10.1101/cshperspect.a017459
https://doi.org/10.3390/cells8101223
https://doi.org/10.1158/1078-0432.CCR-18-0279
https://doi.org/10.1074/jbc.M412889200
https://doi.org/10.1080/19336918.2018.1445953
https://doi.org/10.18632/oncotarget.3023
https://doi.org/10.1074/jbc.M109.017640
https://doi.org/10.1074/jbc.271.49.31562
https://doi.org/10.1038/s41388-017-0113-z
https://doi.org/10.1038/s41388-017-0113-z
https://doi.org/10.7554/eLife.32893
https://doi.org/10.1083/jcb.115.6.1535
https://doi.org/10.1371/journal.pone.0000340
https://doi.org/10.1083/jcb.83.1.82
https://doi.org/10.1016/j.yexcr.2008.08.013
https://doi.org/10.1158/0008-5472.CAN-07-6364
https://doi.org/10.1002/jcp.21405
https://doi.org/10.1002/jcp.21405
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Rieger and O’Connor IGF-1R Intracellular Signaling
41. Marshall S. Kinetics of insulin receptor internalization and recycling in
adipocytes. Shunting of receptors to a degradative pathway by inhibitors of
recycling. J Biol Chem (1985) 260(7):4136–44.

42. Xu Y-M, Wang H-J, Chen F, Guo W-H, Wang Y-Y, Li H-Y, et al. HRD1
suppresses the growth and metastasis of breast cancer cells by promoting
IGF-1R degradation. Oncotarget (2015) 6(40):42854–67. doi: 10.18632/
oncotarget.5733

43. Yan C, XuW, Huang Y, Li M, Shen Y, You H, et al. HRD1-Mediated IGF-1R
Ubiquitination Contributes to Renal Protection of Resveratrol in db/db
Mice. Mol Endocrinol (2016) 30(6):600–13. doi: 10.1210/me.2015-1277

44. Vecchione A, Marchese A, Henry P, Rotin D, Morrione A. The Grb10/
Nedd4 Complex Regulates Ligand-Induced Ubiquitination and Stability of
the Insulin-Like Growth Factor I Receptor.Mol Cell Biol (2003) 23(9):3363–
72. doi: 10.1128/MCB.23.9.3363-3372.2003

45. Girnita L, Girnita A, Larsson O. Mdm2-dependent ubiquitination and
degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad
Sci (2003) 100(14):8247–52. doi: 10.1073/pnas.1431613100

46. Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Vasilcanu D, Girnita A, et al. b-
Arrestin and Mdm2 Mediate IGF-1 Receptor-stimulated ERK Activation
and Cell Cycle Progression. J Biol Chem (2007) 282(15):11329–38. doi:
10.1074/jbc.M611526200

47. Worrall C, Suleymanova N, Crudden C, Trocoli Drakensjö I, Candrea E,
Nedelcu D, et al. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation
restrains the IGF-1-dependent invasive phenotype of skin melanoma.
Oncogene (2017) 36(23):3274–86. doi: 10.1038/onc.2016.472

48. Mao Y, Shang Y, Pham VC, Ernst JA, Lill JR, Scales SJ, et al.
Polyubiquitination of Insulin-like Growth Factor I Receptor (IGF-IR)
Activation Loop Promotes Antibody-induced Receptor Internalization
and Down-regulation. J Biol Chem (2011) 286(48):41852–61. doi: 10.1074/
jbc.M111.288514

49. Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects
in DNA repair and multiubiquitination.Mol Cell Biol (1995) 15(3):1265–73.
doi: 10.1128/MCB.15.3.1265

50. Hoege C, Pfander B, Moldovan G-L, Pyrowolakis G, Jentsch S. RAD6-
dependent DNA repair is linked to modification of PCNA by ubiquitin and
SUMO. Nature (2002) 419(6903):135–41. doi: 10.1038/nature00991

51. Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking: The network at
work. Exp Cell Res (2009) 315(9):1610–8. doi: 10.1016/j.yexcr.2008.10.014

52. Packham S, Warsito D, Lin Y, Sadi S, Karlsson R, Sehat B, et al. Nuclear
translocation of IGF-1R via p150Glued and an importin-b/RanBP2-
dependent pathway in cancer cells. Oncogene (2015) 34(17):2227–38. doi:
10.1038/onc.2014.165

53. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD,
et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of
human tumor cells. Cancer Res (2010) 70(16):6412–9. doi: 10.1158/0008-
5472.CAN-10-0052

54. Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, et al.
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